xref: /openbmc/linux/arch/x86/kvm/mmu/spte.c (revision 7158bee4)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * Macros and functions to access KVM PTEs (also known as SPTEs)
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright 2020 Red Hat, Inc. and/or its affiliates.
9  */
10 
11 
12 #include <linux/kvm_host.h>
13 #include "mmu.h"
14 #include "mmu_internal.h"
15 #include "x86.h"
16 #include "spte.h"
17 
18 #include <asm/e820/api.h>
19 #include <asm/vmx.h>
20 
21 static bool __read_mostly enable_mmio_caching = true;
22 module_param_named(mmio_caching, enable_mmio_caching, bool, 0444);
23 
24 u64 __read_mostly shadow_host_writable_mask;
25 u64 __read_mostly shadow_mmu_writable_mask;
26 u64 __read_mostly shadow_nx_mask;
27 u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
28 u64 __read_mostly shadow_user_mask;
29 u64 __read_mostly shadow_accessed_mask;
30 u64 __read_mostly shadow_dirty_mask;
31 u64 __read_mostly shadow_mmio_value;
32 u64 __read_mostly shadow_mmio_mask;
33 u64 __read_mostly shadow_mmio_access_mask;
34 u64 __read_mostly shadow_present_mask;
35 u64 __read_mostly shadow_me_mask;
36 u64 __read_mostly shadow_acc_track_mask;
37 
38 u64 __read_mostly shadow_nonpresent_or_rsvd_mask;
39 u64 __read_mostly shadow_nonpresent_or_rsvd_lower_gfn_mask;
40 
41 u8 __read_mostly shadow_phys_bits;
42 
43 static u64 generation_mmio_spte_mask(u64 gen)
44 {
45 	u64 mask;
46 
47 	WARN_ON(gen & ~MMIO_SPTE_GEN_MASK);
48 
49 	mask = (gen << MMIO_SPTE_GEN_LOW_SHIFT) & MMIO_SPTE_GEN_LOW_MASK;
50 	mask |= (gen << MMIO_SPTE_GEN_HIGH_SHIFT) & MMIO_SPTE_GEN_HIGH_MASK;
51 	return mask;
52 }
53 
54 u64 make_mmio_spte(struct kvm_vcpu *vcpu, u64 gfn, unsigned int access)
55 {
56 	u64 gen = kvm_vcpu_memslots(vcpu)->generation & MMIO_SPTE_GEN_MASK;
57 	u64 spte = generation_mmio_spte_mask(gen);
58 	u64 gpa = gfn << PAGE_SHIFT;
59 
60 	WARN_ON_ONCE(!shadow_mmio_value);
61 
62 	access &= shadow_mmio_access_mask;
63 	spte |= shadow_mmio_value | access;
64 	spte |= gpa | shadow_nonpresent_or_rsvd_mask;
65 	spte |= (gpa & shadow_nonpresent_or_rsvd_mask)
66 		<< SHADOW_NONPRESENT_OR_RSVD_MASK_LEN;
67 
68 	return spte;
69 }
70 
71 static bool kvm_is_mmio_pfn(kvm_pfn_t pfn)
72 {
73 	if (pfn_valid(pfn))
74 		return !is_zero_pfn(pfn) && PageReserved(pfn_to_page(pfn)) &&
75 			/*
76 			 * Some reserved pages, such as those from NVDIMM
77 			 * DAX devices, are not for MMIO, and can be mapped
78 			 * with cached memory type for better performance.
79 			 * However, the above check misconceives those pages
80 			 * as MMIO, and results in KVM mapping them with UC
81 			 * memory type, which would hurt the performance.
82 			 * Therefore, we check the host memory type in addition
83 			 * and only treat UC/UC-/WC pages as MMIO.
84 			 */
85 			(!pat_enabled() || pat_pfn_immune_to_uc_mtrr(pfn));
86 
87 	return !e820__mapped_raw_any(pfn_to_hpa(pfn),
88 				     pfn_to_hpa(pfn + 1) - 1,
89 				     E820_TYPE_RAM);
90 }
91 
92 bool make_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
93 	       unsigned int pte_access, gfn_t gfn, kvm_pfn_t pfn,
94 	       u64 old_spte, bool speculative, bool can_unsync,
95 	       bool host_writable, u64 *new_spte)
96 {
97 	int level = sp->role.level;
98 	u64 spte = SPTE_MMU_PRESENT_MASK;
99 	bool wrprot = false;
100 
101 	if (sp->role.ad_disabled)
102 		spte |= SPTE_TDP_AD_DISABLED_MASK;
103 	else if (kvm_vcpu_ad_need_write_protect(vcpu))
104 		spte |= SPTE_TDP_AD_WRPROT_ONLY_MASK;
105 
106 	/*
107 	 * For the EPT case, shadow_present_mask is 0 if hardware
108 	 * supports exec-only page table entries.  In that case,
109 	 * ACC_USER_MASK and shadow_user_mask are used to represent
110 	 * read access.  See FNAME(gpte_access) in paging_tmpl.h.
111 	 */
112 	spte |= shadow_present_mask;
113 	if (!speculative)
114 		spte |= spte_shadow_accessed_mask(spte);
115 
116 	if (level > PG_LEVEL_4K && (pte_access & ACC_EXEC_MASK) &&
117 	    is_nx_huge_page_enabled()) {
118 		pte_access &= ~ACC_EXEC_MASK;
119 	}
120 
121 	if (pte_access & ACC_EXEC_MASK)
122 		spte |= shadow_x_mask;
123 	else
124 		spte |= shadow_nx_mask;
125 
126 	if (pte_access & ACC_USER_MASK)
127 		spte |= shadow_user_mask;
128 
129 	if (level > PG_LEVEL_4K)
130 		spte |= PT_PAGE_SIZE_MASK;
131 	if (tdp_enabled)
132 		spte |= static_call(kvm_x86_get_mt_mask)(vcpu, gfn,
133 			kvm_is_mmio_pfn(pfn));
134 
135 	if (host_writable)
136 		spte |= shadow_host_writable_mask;
137 	else
138 		pte_access &= ~ACC_WRITE_MASK;
139 
140 	if (!kvm_is_mmio_pfn(pfn))
141 		spte |= shadow_me_mask;
142 
143 	spte |= (u64)pfn << PAGE_SHIFT;
144 
145 	if (pte_access & ACC_WRITE_MASK) {
146 		spte |= PT_WRITABLE_MASK | shadow_mmu_writable_mask;
147 
148 		/*
149 		 * Optimization: for pte sync, if spte was writable the hash
150 		 * lookup is unnecessary (and expensive). Write protection
151 		 * is responsibility of kvm_mmu_get_page / kvm_mmu_sync_roots.
152 		 * Same reasoning can be applied to dirty page accounting.
153 		 */
154 		if (is_writable_pte(old_spte))
155 			goto out;
156 
157 		/*
158 		 * Unsync shadow pages that are reachable by the new, writable
159 		 * SPTE.  Write-protect the SPTE if the page can't be unsync'd,
160 		 * e.g. it's write-tracked (upper-level SPs) or has one or more
161 		 * shadow pages and unsync'ing pages is not allowed.
162 		 */
163 		if (mmu_try_to_unsync_pages(vcpu, gfn, can_unsync, speculative)) {
164 			pgprintk("%s: found shadow page for %llx, marking ro\n",
165 				 __func__, gfn);
166 			wrprot = true;
167 			pte_access &= ~ACC_WRITE_MASK;
168 			spte &= ~(PT_WRITABLE_MASK | shadow_mmu_writable_mask);
169 		}
170 	}
171 
172 	if (pte_access & ACC_WRITE_MASK)
173 		spte |= spte_shadow_dirty_mask(spte);
174 
175 out:
176 	if (speculative)
177 		spte = mark_spte_for_access_track(spte);
178 
179 	WARN_ONCE(is_rsvd_spte(&vcpu->arch.mmu->shadow_zero_check, spte, level),
180 		  "spte = 0x%llx, level = %d, rsvd bits = 0x%llx", spte, level,
181 		  get_rsvd_bits(&vcpu->arch.mmu->shadow_zero_check, spte, level));
182 
183 	if (spte & PT_WRITABLE_MASK)
184 		kvm_vcpu_mark_page_dirty(vcpu, gfn);
185 
186 	*new_spte = spte;
187 	return wrprot;
188 }
189 
190 u64 make_nonleaf_spte(u64 *child_pt, bool ad_disabled)
191 {
192 	u64 spte = SPTE_MMU_PRESENT_MASK;
193 
194 	spte |= __pa(child_pt) | shadow_present_mask | PT_WRITABLE_MASK |
195 		shadow_user_mask | shadow_x_mask | shadow_me_mask;
196 
197 	if (ad_disabled)
198 		spte |= SPTE_TDP_AD_DISABLED_MASK;
199 	else
200 		spte |= shadow_accessed_mask;
201 
202 	return spte;
203 }
204 
205 u64 kvm_mmu_changed_pte_notifier_make_spte(u64 old_spte, kvm_pfn_t new_pfn)
206 {
207 	u64 new_spte;
208 
209 	new_spte = old_spte & ~PT64_BASE_ADDR_MASK;
210 	new_spte |= (u64)new_pfn << PAGE_SHIFT;
211 
212 	new_spte &= ~PT_WRITABLE_MASK;
213 	new_spte &= ~shadow_host_writable_mask;
214 
215 	new_spte = mark_spte_for_access_track(new_spte);
216 
217 	return new_spte;
218 }
219 
220 static u8 kvm_get_shadow_phys_bits(void)
221 {
222 	/*
223 	 * boot_cpu_data.x86_phys_bits is reduced when MKTME or SME are detected
224 	 * in CPU detection code, but the processor treats those reduced bits as
225 	 * 'keyID' thus they are not reserved bits. Therefore KVM needs to look at
226 	 * the physical address bits reported by CPUID.
227 	 */
228 	if (likely(boot_cpu_data.extended_cpuid_level >= 0x80000008))
229 		return cpuid_eax(0x80000008) & 0xff;
230 
231 	/*
232 	 * Quite weird to have VMX or SVM but not MAXPHYADDR; probably a VM with
233 	 * custom CPUID.  Proceed with whatever the kernel found since these features
234 	 * aren't virtualizable (SME/SEV also require CPUIDs higher than 0x80000008).
235 	 */
236 	return boot_cpu_data.x86_phys_bits;
237 }
238 
239 u64 mark_spte_for_access_track(u64 spte)
240 {
241 	if (spte_ad_enabled(spte))
242 		return spte & ~shadow_accessed_mask;
243 
244 	if (is_access_track_spte(spte))
245 		return spte;
246 
247 	/*
248 	 * Making an Access Tracking PTE will result in removal of write access
249 	 * from the PTE. So, verify that we will be able to restore the write
250 	 * access in the fast page fault path later on.
251 	 */
252 	WARN_ONCE((spte & PT_WRITABLE_MASK) &&
253 		  !spte_can_locklessly_be_made_writable(spte),
254 		  "kvm: Writable SPTE is not locklessly dirty-trackable\n");
255 
256 	WARN_ONCE(spte & (SHADOW_ACC_TRACK_SAVED_BITS_MASK <<
257 			  SHADOW_ACC_TRACK_SAVED_BITS_SHIFT),
258 		  "kvm: Access Tracking saved bit locations are not zero\n");
259 
260 	spte |= (spte & SHADOW_ACC_TRACK_SAVED_BITS_MASK) <<
261 		SHADOW_ACC_TRACK_SAVED_BITS_SHIFT;
262 	spte &= ~shadow_acc_track_mask;
263 
264 	return spte;
265 }
266 
267 void kvm_mmu_set_mmio_spte_mask(u64 mmio_value, u64 mmio_mask, u64 access_mask)
268 {
269 	BUG_ON((u64)(unsigned)access_mask != access_mask);
270 	WARN_ON(mmio_value & shadow_nonpresent_or_rsvd_lower_gfn_mask);
271 
272 	if (!enable_mmio_caching)
273 		mmio_value = 0;
274 
275 	/*
276 	 * Disable MMIO caching if the MMIO value collides with the bits that
277 	 * are used to hold the relocated GFN when the L1TF mitigation is
278 	 * enabled.  This should never fire as there is no known hardware that
279 	 * can trigger this condition, e.g. SME/SEV CPUs that require a custom
280 	 * MMIO value are not susceptible to L1TF.
281 	 */
282 	if (WARN_ON(mmio_value & (shadow_nonpresent_or_rsvd_mask <<
283 				  SHADOW_NONPRESENT_OR_RSVD_MASK_LEN)))
284 		mmio_value = 0;
285 
286 	/*
287 	 * The masked MMIO value must obviously match itself and a removed SPTE
288 	 * must not get a false positive.  Removed SPTEs and MMIO SPTEs should
289 	 * never collide as MMIO must set some RWX bits, and removed SPTEs must
290 	 * not set any RWX bits.
291 	 */
292 	if (WARN_ON((mmio_value & mmio_mask) != mmio_value) ||
293 	    WARN_ON(mmio_value && (REMOVED_SPTE & mmio_mask) == mmio_value))
294 		mmio_value = 0;
295 
296 	shadow_mmio_value = mmio_value;
297 	shadow_mmio_mask  = mmio_mask;
298 	shadow_mmio_access_mask = access_mask;
299 }
300 EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
301 
302 void kvm_mmu_set_ept_masks(bool has_ad_bits, bool has_exec_only)
303 {
304 	shadow_user_mask	= VMX_EPT_READABLE_MASK;
305 	shadow_accessed_mask	= has_ad_bits ? VMX_EPT_ACCESS_BIT : 0ull;
306 	shadow_dirty_mask	= has_ad_bits ? VMX_EPT_DIRTY_BIT : 0ull;
307 	shadow_nx_mask		= 0ull;
308 	shadow_x_mask		= VMX_EPT_EXECUTABLE_MASK;
309 	shadow_present_mask	= has_exec_only ? 0ull : VMX_EPT_READABLE_MASK;
310 	shadow_acc_track_mask	= VMX_EPT_RWX_MASK;
311 	shadow_me_mask		= 0ull;
312 
313 	shadow_host_writable_mask = EPT_SPTE_HOST_WRITABLE;
314 	shadow_mmu_writable_mask  = EPT_SPTE_MMU_WRITABLE;
315 
316 	/*
317 	 * EPT Misconfigurations are generated if the value of bits 2:0
318 	 * of an EPT paging-structure entry is 110b (write/execute).
319 	 */
320 	kvm_mmu_set_mmio_spte_mask(VMX_EPT_MISCONFIG_WX_VALUE,
321 				   VMX_EPT_RWX_MASK, 0);
322 }
323 EXPORT_SYMBOL_GPL(kvm_mmu_set_ept_masks);
324 
325 void kvm_mmu_reset_all_pte_masks(void)
326 {
327 	u8 low_phys_bits;
328 	u64 mask;
329 
330 	shadow_phys_bits = kvm_get_shadow_phys_bits();
331 
332 	/*
333 	 * If the CPU has 46 or less physical address bits, then set an
334 	 * appropriate mask to guard against L1TF attacks. Otherwise, it is
335 	 * assumed that the CPU is not vulnerable to L1TF.
336 	 *
337 	 * Some Intel CPUs address the L1 cache using more PA bits than are
338 	 * reported by CPUID. Use the PA width of the L1 cache when possible
339 	 * to achieve more effective mitigation, e.g. if system RAM overlaps
340 	 * the most significant bits of legal physical address space.
341 	 */
342 	shadow_nonpresent_or_rsvd_mask = 0;
343 	low_phys_bits = boot_cpu_data.x86_phys_bits;
344 	if (boot_cpu_has_bug(X86_BUG_L1TF) &&
345 	    !WARN_ON_ONCE(boot_cpu_data.x86_cache_bits >=
346 			  52 - SHADOW_NONPRESENT_OR_RSVD_MASK_LEN)) {
347 		low_phys_bits = boot_cpu_data.x86_cache_bits
348 			- SHADOW_NONPRESENT_OR_RSVD_MASK_LEN;
349 		shadow_nonpresent_or_rsvd_mask =
350 			rsvd_bits(low_phys_bits, boot_cpu_data.x86_cache_bits - 1);
351 	}
352 
353 	shadow_nonpresent_or_rsvd_lower_gfn_mask =
354 		GENMASK_ULL(low_phys_bits - 1, PAGE_SHIFT);
355 
356 	shadow_user_mask	= PT_USER_MASK;
357 	shadow_accessed_mask	= PT_ACCESSED_MASK;
358 	shadow_dirty_mask	= PT_DIRTY_MASK;
359 	shadow_nx_mask		= PT64_NX_MASK;
360 	shadow_x_mask		= 0;
361 	shadow_present_mask	= PT_PRESENT_MASK;
362 	shadow_acc_track_mask	= 0;
363 	shadow_me_mask		= sme_me_mask;
364 
365 	shadow_host_writable_mask = DEFAULT_SPTE_HOST_WRITEABLE;
366 	shadow_mmu_writable_mask  = DEFAULT_SPTE_MMU_WRITEABLE;
367 
368 	/*
369 	 * Set a reserved PA bit in MMIO SPTEs to generate page faults with
370 	 * PFEC.RSVD=1 on MMIO accesses.  64-bit PTEs (PAE, x86-64, and EPT
371 	 * paging) support a maximum of 52 bits of PA, i.e. if the CPU supports
372 	 * 52-bit physical addresses then there are no reserved PA bits in the
373 	 * PTEs and so the reserved PA approach must be disabled.
374 	 */
375 	if (shadow_phys_bits < 52)
376 		mask = BIT_ULL(51) | PT_PRESENT_MASK;
377 	else
378 		mask = 0;
379 
380 	kvm_mmu_set_mmio_spte_mask(mask, mask, ACC_WRITE_MASK | ACC_USER_MASK);
381 }
382