xref: /openbmc/linux/arch/x86/kvm/mmu/spte.c (revision 38bf9d7b)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * Macros and functions to access KVM PTEs (also known as SPTEs)
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright 2020 Red Hat, Inc. and/or its affiliates.
9  */
10 
11 
12 #include <linux/kvm_host.h>
13 #include "mmu.h"
14 #include "mmu_internal.h"
15 #include "x86.h"
16 #include "spte.h"
17 
18 #include <asm/e820/api.h>
19 #include <asm/memtype.h>
20 #include <asm/vmx.h>
21 
22 bool __read_mostly enable_mmio_caching = true;
23 module_param_named(mmio_caching, enable_mmio_caching, bool, 0444);
24 
25 u64 __read_mostly shadow_host_writable_mask;
26 u64 __read_mostly shadow_mmu_writable_mask;
27 u64 __read_mostly shadow_nx_mask;
28 u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
29 u64 __read_mostly shadow_user_mask;
30 u64 __read_mostly shadow_accessed_mask;
31 u64 __read_mostly shadow_dirty_mask;
32 u64 __read_mostly shadow_mmio_value;
33 u64 __read_mostly shadow_mmio_mask;
34 u64 __read_mostly shadow_mmio_access_mask;
35 u64 __read_mostly shadow_present_mask;
36 u64 __read_mostly shadow_memtype_mask;
37 u64 __read_mostly shadow_me_value;
38 u64 __read_mostly shadow_me_mask;
39 u64 __read_mostly shadow_acc_track_mask;
40 
41 u64 __read_mostly shadow_nonpresent_or_rsvd_mask;
42 u64 __read_mostly shadow_nonpresent_or_rsvd_lower_gfn_mask;
43 
44 u8 __read_mostly shadow_phys_bits;
45 
46 static u64 generation_mmio_spte_mask(u64 gen)
47 {
48 	u64 mask;
49 
50 	WARN_ON(gen & ~MMIO_SPTE_GEN_MASK);
51 
52 	mask = (gen << MMIO_SPTE_GEN_LOW_SHIFT) & MMIO_SPTE_GEN_LOW_MASK;
53 	mask |= (gen << MMIO_SPTE_GEN_HIGH_SHIFT) & MMIO_SPTE_GEN_HIGH_MASK;
54 	return mask;
55 }
56 
57 u64 make_mmio_spte(struct kvm_vcpu *vcpu, u64 gfn, unsigned int access)
58 {
59 	u64 gen = kvm_vcpu_memslots(vcpu)->generation & MMIO_SPTE_GEN_MASK;
60 	u64 spte = generation_mmio_spte_mask(gen);
61 	u64 gpa = gfn << PAGE_SHIFT;
62 
63 	WARN_ON_ONCE(!shadow_mmio_value);
64 
65 	access &= shadow_mmio_access_mask;
66 	spte |= shadow_mmio_value | access;
67 	spte |= gpa | shadow_nonpresent_or_rsvd_mask;
68 	spte |= (gpa & shadow_nonpresent_or_rsvd_mask)
69 		<< SHADOW_NONPRESENT_OR_RSVD_MASK_LEN;
70 
71 	return spte;
72 }
73 
74 static bool kvm_is_mmio_pfn(kvm_pfn_t pfn)
75 {
76 	if (pfn_valid(pfn))
77 		return !is_zero_pfn(pfn) && PageReserved(pfn_to_page(pfn)) &&
78 			/*
79 			 * Some reserved pages, such as those from NVDIMM
80 			 * DAX devices, are not for MMIO, and can be mapped
81 			 * with cached memory type for better performance.
82 			 * However, the above check misconceives those pages
83 			 * as MMIO, and results in KVM mapping them with UC
84 			 * memory type, which would hurt the performance.
85 			 * Therefore, we check the host memory type in addition
86 			 * and only treat UC/UC-/WC pages as MMIO.
87 			 */
88 			(!pat_enabled() || pat_pfn_immune_to_uc_mtrr(pfn));
89 
90 	return !e820__mapped_raw_any(pfn_to_hpa(pfn),
91 				     pfn_to_hpa(pfn + 1) - 1,
92 				     E820_TYPE_RAM);
93 }
94 
95 /*
96  * Returns true if the SPTE has bits that may be set without holding mmu_lock.
97  * The caller is responsible for checking if the SPTE is shadow-present, and
98  * for determining whether or not the caller cares about non-leaf SPTEs.
99  */
100 bool spte_has_volatile_bits(u64 spte)
101 {
102 	/*
103 	 * Always atomically update spte if it can be updated
104 	 * out of mmu-lock, it can ensure dirty bit is not lost,
105 	 * also, it can help us to get a stable is_writable_pte()
106 	 * to ensure tlb flush is not missed.
107 	 */
108 	if (!is_writable_pte(spte) && is_mmu_writable_spte(spte))
109 		return true;
110 
111 	if (is_access_track_spte(spte))
112 		return true;
113 
114 	if (spte_ad_enabled(spte)) {
115 		if (!(spte & shadow_accessed_mask) ||
116 		    (is_writable_pte(spte) && !(spte & shadow_dirty_mask)))
117 			return true;
118 	}
119 
120 	return false;
121 }
122 
123 bool make_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
124 	       const struct kvm_memory_slot *slot,
125 	       unsigned int pte_access, gfn_t gfn, kvm_pfn_t pfn,
126 	       u64 old_spte, bool prefetch, bool can_unsync,
127 	       bool host_writable, u64 *new_spte)
128 {
129 	int level = sp->role.level;
130 	u64 spte = SPTE_MMU_PRESENT_MASK;
131 	bool wrprot = false;
132 
133 	WARN_ON_ONCE(!pte_access && !shadow_present_mask);
134 
135 	if (sp->role.ad_disabled)
136 		spte |= SPTE_TDP_AD_DISABLED_MASK;
137 	else if (kvm_mmu_page_ad_need_write_protect(sp))
138 		spte |= SPTE_TDP_AD_WRPROT_ONLY_MASK;
139 
140 	/*
141 	 * For the EPT case, shadow_present_mask is 0 if hardware
142 	 * supports exec-only page table entries.  In that case,
143 	 * ACC_USER_MASK and shadow_user_mask are used to represent
144 	 * read access.  See FNAME(gpte_access) in paging_tmpl.h.
145 	 */
146 	spte |= shadow_present_mask;
147 	if (!prefetch)
148 		spte |= spte_shadow_accessed_mask(spte);
149 
150 	if (level > PG_LEVEL_4K && (pte_access & ACC_EXEC_MASK) &&
151 	    is_nx_huge_page_enabled(vcpu->kvm)) {
152 		pte_access &= ~ACC_EXEC_MASK;
153 	}
154 
155 	if (pte_access & ACC_EXEC_MASK)
156 		spte |= shadow_x_mask;
157 	else
158 		spte |= shadow_nx_mask;
159 
160 	if (pte_access & ACC_USER_MASK)
161 		spte |= shadow_user_mask;
162 
163 	if (level > PG_LEVEL_4K)
164 		spte |= PT_PAGE_SIZE_MASK;
165 
166 	if (shadow_memtype_mask)
167 		spte |= static_call(kvm_x86_get_mt_mask)(vcpu, gfn,
168 							 kvm_is_mmio_pfn(pfn));
169 	if (host_writable)
170 		spte |= shadow_host_writable_mask;
171 	else
172 		pte_access &= ~ACC_WRITE_MASK;
173 
174 	if (shadow_me_value && !kvm_is_mmio_pfn(pfn))
175 		spte |= shadow_me_value;
176 
177 	spte |= (u64)pfn << PAGE_SHIFT;
178 
179 	if (pte_access & ACC_WRITE_MASK) {
180 		spte |= PT_WRITABLE_MASK | shadow_mmu_writable_mask;
181 
182 		/*
183 		 * Optimization: for pte sync, if spte was writable the hash
184 		 * lookup is unnecessary (and expensive). Write protection
185 		 * is responsibility of kvm_mmu_get_page / kvm_mmu_sync_roots.
186 		 * Same reasoning can be applied to dirty page accounting.
187 		 */
188 		if (is_writable_pte(old_spte))
189 			goto out;
190 
191 		/*
192 		 * Unsync shadow pages that are reachable by the new, writable
193 		 * SPTE.  Write-protect the SPTE if the page can't be unsync'd,
194 		 * e.g. it's write-tracked (upper-level SPs) or has one or more
195 		 * shadow pages and unsync'ing pages is not allowed.
196 		 */
197 		if (mmu_try_to_unsync_pages(vcpu->kvm, slot, gfn, can_unsync, prefetch)) {
198 			pgprintk("%s: found shadow page for %llx, marking ro\n",
199 				 __func__, gfn);
200 			wrprot = true;
201 			pte_access &= ~ACC_WRITE_MASK;
202 			spte &= ~(PT_WRITABLE_MASK | shadow_mmu_writable_mask);
203 		}
204 	}
205 
206 	if (pte_access & ACC_WRITE_MASK)
207 		spte |= spte_shadow_dirty_mask(spte);
208 
209 out:
210 	if (prefetch)
211 		spte = mark_spte_for_access_track(spte);
212 
213 	WARN_ONCE(is_rsvd_spte(&vcpu->arch.mmu->shadow_zero_check, spte, level),
214 		  "spte = 0x%llx, level = %d, rsvd bits = 0x%llx", spte, level,
215 		  get_rsvd_bits(&vcpu->arch.mmu->shadow_zero_check, spte, level));
216 
217 	if ((spte & PT_WRITABLE_MASK) && kvm_slot_dirty_track_enabled(slot)) {
218 		/* Enforced by kvm_mmu_hugepage_adjust. */
219 		WARN_ON(level > PG_LEVEL_4K);
220 		mark_page_dirty_in_slot(vcpu->kvm, slot, gfn);
221 	}
222 
223 	*new_spte = spte;
224 	return wrprot;
225 }
226 
227 static u64 make_spte_executable(u64 spte)
228 {
229 	bool is_access_track = is_access_track_spte(spte);
230 
231 	if (is_access_track)
232 		spte = restore_acc_track_spte(spte);
233 
234 	spte &= ~shadow_nx_mask;
235 	spte |= shadow_x_mask;
236 
237 	if (is_access_track)
238 		spte = mark_spte_for_access_track(spte);
239 
240 	return spte;
241 }
242 
243 /*
244  * Construct an SPTE that maps a sub-page of the given huge page SPTE where
245  * `index` identifies which sub-page.
246  *
247  * This is used during huge page splitting to build the SPTEs that make up the
248  * new page table.
249  */
250 u64 make_huge_page_split_spte(struct kvm *kvm, u64 huge_spte, union kvm_mmu_page_role role,
251 			      int index)
252 {
253 	u64 child_spte;
254 
255 	if (WARN_ON_ONCE(!is_shadow_present_pte(huge_spte)))
256 		return 0;
257 
258 	if (WARN_ON_ONCE(!is_large_pte(huge_spte)))
259 		return 0;
260 
261 	child_spte = huge_spte;
262 
263 	/*
264 	 * The child_spte already has the base address of the huge page being
265 	 * split. So we just have to OR in the offset to the page at the next
266 	 * lower level for the given index.
267 	 */
268 	child_spte |= (index * KVM_PAGES_PER_HPAGE(role.level)) << PAGE_SHIFT;
269 
270 	if (role.level == PG_LEVEL_4K) {
271 		child_spte &= ~PT_PAGE_SIZE_MASK;
272 
273 		/*
274 		 * When splitting to a 4K page where execution is allowed, mark
275 		 * the page executable as the NX hugepage mitigation no longer
276 		 * applies.
277 		 */
278 		if ((role.access & ACC_EXEC_MASK) && is_nx_huge_page_enabled(kvm))
279 			child_spte = make_spte_executable(child_spte);
280 	}
281 
282 	return child_spte;
283 }
284 
285 
286 u64 make_nonleaf_spte(u64 *child_pt, bool ad_disabled)
287 {
288 	u64 spte = SPTE_MMU_PRESENT_MASK;
289 
290 	spte |= __pa(child_pt) | shadow_present_mask | PT_WRITABLE_MASK |
291 		shadow_user_mask | shadow_x_mask | shadow_me_value;
292 
293 	if (ad_disabled)
294 		spte |= SPTE_TDP_AD_DISABLED_MASK;
295 	else
296 		spte |= shadow_accessed_mask;
297 
298 	return spte;
299 }
300 
301 u64 kvm_mmu_changed_pte_notifier_make_spte(u64 old_spte, kvm_pfn_t new_pfn)
302 {
303 	u64 new_spte;
304 
305 	new_spte = old_spte & ~SPTE_BASE_ADDR_MASK;
306 	new_spte |= (u64)new_pfn << PAGE_SHIFT;
307 
308 	new_spte &= ~PT_WRITABLE_MASK;
309 	new_spte &= ~shadow_host_writable_mask;
310 	new_spte &= ~shadow_mmu_writable_mask;
311 
312 	new_spte = mark_spte_for_access_track(new_spte);
313 
314 	return new_spte;
315 }
316 
317 u64 mark_spte_for_access_track(u64 spte)
318 {
319 	if (spte_ad_enabled(spte))
320 		return spte & ~shadow_accessed_mask;
321 
322 	if (is_access_track_spte(spte))
323 		return spte;
324 
325 	check_spte_writable_invariants(spte);
326 
327 	WARN_ONCE(spte & (SHADOW_ACC_TRACK_SAVED_BITS_MASK <<
328 			  SHADOW_ACC_TRACK_SAVED_BITS_SHIFT),
329 		  "kvm: Access Tracking saved bit locations are not zero\n");
330 
331 	spte |= (spte & SHADOW_ACC_TRACK_SAVED_BITS_MASK) <<
332 		SHADOW_ACC_TRACK_SAVED_BITS_SHIFT;
333 	spte &= ~shadow_acc_track_mask;
334 
335 	return spte;
336 }
337 
338 void kvm_mmu_set_mmio_spte_mask(u64 mmio_value, u64 mmio_mask, u64 access_mask)
339 {
340 	BUG_ON((u64)(unsigned)access_mask != access_mask);
341 	WARN_ON(mmio_value & shadow_nonpresent_or_rsvd_lower_gfn_mask);
342 
343 	if (!enable_mmio_caching)
344 		mmio_value = 0;
345 
346 	/*
347 	 * Disable MMIO caching if the MMIO value collides with the bits that
348 	 * are used to hold the relocated GFN when the L1TF mitigation is
349 	 * enabled.  This should never fire as there is no known hardware that
350 	 * can trigger this condition, e.g. SME/SEV CPUs that require a custom
351 	 * MMIO value are not susceptible to L1TF.
352 	 */
353 	if (WARN_ON(mmio_value & (shadow_nonpresent_or_rsvd_mask <<
354 				  SHADOW_NONPRESENT_OR_RSVD_MASK_LEN)))
355 		mmio_value = 0;
356 
357 	/*
358 	 * The masked MMIO value must obviously match itself and a removed SPTE
359 	 * must not get a false positive.  Removed SPTEs and MMIO SPTEs should
360 	 * never collide as MMIO must set some RWX bits, and removed SPTEs must
361 	 * not set any RWX bits.
362 	 */
363 	if (WARN_ON((mmio_value & mmio_mask) != mmio_value) ||
364 	    WARN_ON(mmio_value && (REMOVED_SPTE & mmio_mask) == mmio_value))
365 		mmio_value = 0;
366 
367 	if (!mmio_value)
368 		enable_mmio_caching = false;
369 
370 	shadow_mmio_value = mmio_value;
371 	shadow_mmio_mask  = mmio_mask;
372 	shadow_mmio_access_mask = access_mask;
373 }
374 EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
375 
376 void kvm_mmu_set_me_spte_mask(u64 me_value, u64 me_mask)
377 {
378 	/* shadow_me_value must be a subset of shadow_me_mask */
379 	if (WARN_ON(me_value & ~me_mask))
380 		me_value = me_mask = 0;
381 
382 	shadow_me_value = me_value;
383 	shadow_me_mask = me_mask;
384 }
385 EXPORT_SYMBOL_GPL(kvm_mmu_set_me_spte_mask);
386 
387 void kvm_mmu_set_ept_masks(bool has_ad_bits, bool has_exec_only)
388 {
389 	shadow_user_mask	= VMX_EPT_READABLE_MASK;
390 	shadow_accessed_mask	= has_ad_bits ? VMX_EPT_ACCESS_BIT : 0ull;
391 	shadow_dirty_mask	= has_ad_bits ? VMX_EPT_DIRTY_BIT : 0ull;
392 	shadow_nx_mask		= 0ull;
393 	shadow_x_mask		= VMX_EPT_EXECUTABLE_MASK;
394 	shadow_present_mask	= has_exec_only ? 0ull : VMX_EPT_READABLE_MASK;
395 	/*
396 	 * EPT overrides the host MTRRs, and so KVM must program the desired
397 	 * memtype directly into the SPTEs.  Note, this mask is just the mask
398 	 * of all bits that factor into the memtype, the actual memtype must be
399 	 * dynamically calculated, e.g. to ensure host MMIO is mapped UC.
400 	 */
401 	shadow_memtype_mask	= VMX_EPT_MT_MASK | VMX_EPT_IPAT_BIT;
402 	shadow_acc_track_mask	= VMX_EPT_RWX_MASK;
403 	shadow_host_writable_mask = EPT_SPTE_HOST_WRITABLE;
404 	shadow_mmu_writable_mask  = EPT_SPTE_MMU_WRITABLE;
405 
406 	/*
407 	 * EPT Misconfigurations are generated if the value of bits 2:0
408 	 * of an EPT paging-structure entry is 110b (write/execute).
409 	 */
410 	kvm_mmu_set_mmio_spte_mask(VMX_EPT_MISCONFIG_WX_VALUE,
411 				   VMX_EPT_RWX_MASK, 0);
412 }
413 EXPORT_SYMBOL_GPL(kvm_mmu_set_ept_masks);
414 
415 void kvm_mmu_reset_all_pte_masks(void)
416 {
417 	u8 low_phys_bits;
418 	u64 mask;
419 
420 	shadow_phys_bits = kvm_get_shadow_phys_bits();
421 
422 	/*
423 	 * If the CPU has 46 or less physical address bits, then set an
424 	 * appropriate mask to guard against L1TF attacks. Otherwise, it is
425 	 * assumed that the CPU is not vulnerable to L1TF.
426 	 *
427 	 * Some Intel CPUs address the L1 cache using more PA bits than are
428 	 * reported by CPUID. Use the PA width of the L1 cache when possible
429 	 * to achieve more effective mitigation, e.g. if system RAM overlaps
430 	 * the most significant bits of legal physical address space.
431 	 */
432 	shadow_nonpresent_or_rsvd_mask = 0;
433 	low_phys_bits = boot_cpu_data.x86_phys_bits;
434 	if (boot_cpu_has_bug(X86_BUG_L1TF) &&
435 	    !WARN_ON_ONCE(boot_cpu_data.x86_cache_bits >=
436 			  52 - SHADOW_NONPRESENT_OR_RSVD_MASK_LEN)) {
437 		low_phys_bits = boot_cpu_data.x86_cache_bits
438 			- SHADOW_NONPRESENT_OR_RSVD_MASK_LEN;
439 		shadow_nonpresent_or_rsvd_mask =
440 			rsvd_bits(low_phys_bits, boot_cpu_data.x86_cache_bits - 1);
441 	}
442 
443 	shadow_nonpresent_or_rsvd_lower_gfn_mask =
444 		GENMASK_ULL(low_phys_bits - 1, PAGE_SHIFT);
445 
446 	shadow_user_mask	= PT_USER_MASK;
447 	shadow_accessed_mask	= PT_ACCESSED_MASK;
448 	shadow_dirty_mask	= PT_DIRTY_MASK;
449 	shadow_nx_mask		= PT64_NX_MASK;
450 	shadow_x_mask		= 0;
451 	shadow_present_mask	= PT_PRESENT_MASK;
452 
453 	/*
454 	 * For shadow paging and NPT, KVM uses PAT entry '0' to encode WB
455 	 * memtype in the SPTEs, i.e. relies on host MTRRs to provide the
456 	 * correct memtype (WB is the "weakest" memtype).
457 	 */
458 	shadow_memtype_mask	= 0;
459 	shadow_acc_track_mask	= 0;
460 	shadow_me_mask		= 0;
461 	shadow_me_value		= 0;
462 
463 	shadow_host_writable_mask = DEFAULT_SPTE_HOST_WRITABLE;
464 	shadow_mmu_writable_mask  = DEFAULT_SPTE_MMU_WRITABLE;
465 
466 	/*
467 	 * Set a reserved PA bit in MMIO SPTEs to generate page faults with
468 	 * PFEC.RSVD=1 on MMIO accesses.  64-bit PTEs (PAE, x86-64, and EPT
469 	 * paging) support a maximum of 52 bits of PA, i.e. if the CPU supports
470 	 * 52-bit physical addresses then there are no reserved PA bits in the
471 	 * PTEs and so the reserved PA approach must be disabled.
472 	 */
473 	if (shadow_phys_bits < 52)
474 		mask = BIT_ULL(51) | PT_PRESENT_MASK;
475 	else
476 		mask = 0;
477 
478 	kvm_mmu_set_mmio_spte_mask(mask, mask, ACC_WRITE_MASK | ACC_USER_MASK);
479 }
480