xref: /openbmc/linux/arch/x86/kvm/mmu/spte.c (revision 21f9cb44)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * Macros and functions to access KVM PTEs (also known as SPTEs)
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright 2020 Red Hat, Inc. and/or its affiliates.
9  */
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11 
12 #include <linux/kvm_host.h>
13 #include "mmu.h"
14 #include "mmu_internal.h"
15 #include "x86.h"
16 #include "spte.h"
17 
18 #include <asm/e820/api.h>
19 #include <asm/memtype.h>
20 #include <asm/vmx.h>
21 
22 bool __read_mostly enable_mmio_caching = true;
23 static bool __ro_after_init allow_mmio_caching;
24 module_param_named(mmio_caching, enable_mmio_caching, bool, 0444);
25 EXPORT_SYMBOL_GPL(enable_mmio_caching);
26 
27 u64 __read_mostly shadow_host_writable_mask;
28 u64 __read_mostly shadow_mmu_writable_mask;
29 u64 __read_mostly shadow_nx_mask;
30 u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
31 u64 __read_mostly shadow_user_mask;
32 u64 __read_mostly shadow_accessed_mask;
33 u64 __read_mostly shadow_dirty_mask;
34 u64 __read_mostly shadow_mmio_value;
35 u64 __read_mostly shadow_mmio_mask;
36 u64 __read_mostly shadow_mmio_access_mask;
37 u64 __read_mostly shadow_present_mask;
38 u64 __read_mostly shadow_memtype_mask;
39 u64 __read_mostly shadow_me_value;
40 u64 __read_mostly shadow_me_mask;
41 u64 __read_mostly shadow_acc_track_mask;
42 
43 u64 __read_mostly shadow_nonpresent_or_rsvd_mask;
44 u64 __read_mostly shadow_nonpresent_or_rsvd_lower_gfn_mask;
45 
46 u8 __read_mostly shadow_phys_bits;
47 
48 void __init kvm_mmu_spte_module_init(void)
49 {
50 	/*
51 	 * Snapshot userspace's desire to allow MMIO caching.  Whether or not
52 	 * KVM can actually enable MMIO caching depends on vendor-specific
53 	 * hardware capabilities and other module params that can't be resolved
54 	 * until the vendor module is loaded, i.e. enable_mmio_caching can and
55 	 * will change when the vendor module is (re)loaded.
56 	 */
57 	allow_mmio_caching = enable_mmio_caching;
58 }
59 
60 static u64 generation_mmio_spte_mask(u64 gen)
61 {
62 	u64 mask;
63 
64 	WARN_ON_ONCE(gen & ~MMIO_SPTE_GEN_MASK);
65 
66 	mask = (gen << MMIO_SPTE_GEN_LOW_SHIFT) & MMIO_SPTE_GEN_LOW_MASK;
67 	mask |= (gen << MMIO_SPTE_GEN_HIGH_SHIFT) & MMIO_SPTE_GEN_HIGH_MASK;
68 	return mask;
69 }
70 
71 u64 make_mmio_spte(struct kvm_vcpu *vcpu, u64 gfn, unsigned int access)
72 {
73 	u64 gen = kvm_vcpu_memslots(vcpu)->generation & MMIO_SPTE_GEN_MASK;
74 	u64 spte = generation_mmio_spte_mask(gen);
75 	u64 gpa = gfn << PAGE_SHIFT;
76 
77 	WARN_ON_ONCE(!shadow_mmio_value);
78 
79 	access &= shadow_mmio_access_mask;
80 	spte |= shadow_mmio_value | access;
81 	spte |= gpa | shadow_nonpresent_or_rsvd_mask;
82 	spte |= (gpa & shadow_nonpresent_or_rsvd_mask)
83 		<< SHADOW_NONPRESENT_OR_RSVD_MASK_LEN;
84 
85 	return spte;
86 }
87 
88 static bool kvm_is_mmio_pfn(kvm_pfn_t pfn)
89 {
90 	if (pfn_valid(pfn))
91 		return !is_zero_pfn(pfn) && PageReserved(pfn_to_page(pfn)) &&
92 			/*
93 			 * Some reserved pages, such as those from NVDIMM
94 			 * DAX devices, are not for MMIO, and can be mapped
95 			 * with cached memory type for better performance.
96 			 * However, the above check misconceives those pages
97 			 * as MMIO, and results in KVM mapping them with UC
98 			 * memory type, which would hurt the performance.
99 			 * Therefore, we check the host memory type in addition
100 			 * and only treat UC/UC-/WC pages as MMIO.
101 			 */
102 			(!pat_enabled() || pat_pfn_immune_to_uc_mtrr(pfn));
103 
104 	return !e820__mapped_raw_any(pfn_to_hpa(pfn),
105 				     pfn_to_hpa(pfn + 1) - 1,
106 				     E820_TYPE_RAM);
107 }
108 
109 /*
110  * Returns true if the SPTE has bits that may be set without holding mmu_lock.
111  * The caller is responsible for checking if the SPTE is shadow-present, and
112  * for determining whether or not the caller cares about non-leaf SPTEs.
113  */
114 bool spte_has_volatile_bits(u64 spte)
115 {
116 	/*
117 	 * Always atomically update spte if it can be updated
118 	 * out of mmu-lock, it can ensure dirty bit is not lost,
119 	 * also, it can help us to get a stable is_writable_pte()
120 	 * to ensure tlb flush is not missed.
121 	 */
122 	if (!is_writable_pte(spte) && is_mmu_writable_spte(spte))
123 		return true;
124 
125 	if (is_access_track_spte(spte))
126 		return true;
127 
128 	if (spte_ad_enabled(spte)) {
129 		if (!(spte & shadow_accessed_mask) ||
130 		    (is_writable_pte(spte) && !(spte & shadow_dirty_mask)))
131 			return true;
132 	}
133 
134 	return false;
135 }
136 
137 bool make_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
138 	       const struct kvm_memory_slot *slot,
139 	       unsigned int pte_access, gfn_t gfn, kvm_pfn_t pfn,
140 	       u64 old_spte, bool prefetch, bool can_unsync,
141 	       bool host_writable, u64 *new_spte)
142 {
143 	int level = sp->role.level;
144 	u64 spte = SPTE_MMU_PRESENT_MASK;
145 	bool wrprot = false;
146 
147 	WARN_ON_ONCE(!pte_access && !shadow_present_mask);
148 
149 	if (sp->role.ad_disabled)
150 		spte |= SPTE_TDP_AD_DISABLED;
151 	else if (kvm_mmu_page_ad_need_write_protect(sp))
152 		spte |= SPTE_TDP_AD_WRPROT_ONLY;
153 
154 	/*
155 	 * For the EPT case, shadow_present_mask is 0 if hardware
156 	 * supports exec-only page table entries.  In that case,
157 	 * ACC_USER_MASK and shadow_user_mask are used to represent
158 	 * read access.  See FNAME(gpte_access) in paging_tmpl.h.
159 	 */
160 	spte |= shadow_present_mask;
161 	if (!prefetch)
162 		spte |= spte_shadow_accessed_mask(spte);
163 
164 	/*
165 	 * For simplicity, enforce the NX huge page mitigation even if not
166 	 * strictly necessary.  KVM could ignore the mitigation if paging is
167 	 * disabled in the guest, as the guest doesn't have any page tables to
168 	 * abuse.  But to safely ignore the mitigation, KVM would have to
169 	 * ensure a new MMU is loaded (or all shadow pages zapped) when CR0.PG
170 	 * is toggled on, and that's a net negative for performance when TDP is
171 	 * enabled.  When TDP is disabled, KVM will always switch to a new MMU
172 	 * when CR0.PG is toggled, but leveraging that to ignore the mitigation
173 	 * would tie make_spte() further to vCPU/MMU state, and add complexity
174 	 * just to optimize a mode that is anything but performance critical.
175 	 */
176 	if (level > PG_LEVEL_4K && (pte_access & ACC_EXEC_MASK) &&
177 	    is_nx_huge_page_enabled(vcpu->kvm)) {
178 		pte_access &= ~ACC_EXEC_MASK;
179 	}
180 
181 	if (pte_access & ACC_EXEC_MASK)
182 		spte |= shadow_x_mask;
183 	else
184 		spte |= shadow_nx_mask;
185 
186 	if (pte_access & ACC_USER_MASK)
187 		spte |= shadow_user_mask;
188 
189 	if (level > PG_LEVEL_4K)
190 		spte |= PT_PAGE_SIZE_MASK;
191 
192 	if (shadow_memtype_mask)
193 		spte |= static_call(kvm_x86_get_mt_mask)(vcpu, gfn,
194 							 kvm_is_mmio_pfn(pfn));
195 	if (host_writable)
196 		spte |= shadow_host_writable_mask;
197 	else
198 		pte_access &= ~ACC_WRITE_MASK;
199 
200 	if (shadow_me_value && !kvm_is_mmio_pfn(pfn))
201 		spte |= shadow_me_value;
202 
203 	spte |= (u64)pfn << PAGE_SHIFT;
204 
205 	if (pte_access & ACC_WRITE_MASK) {
206 		spte |= PT_WRITABLE_MASK | shadow_mmu_writable_mask;
207 
208 		/*
209 		 * Optimization: for pte sync, if spte was writable the hash
210 		 * lookup is unnecessary (and expensive). Write protection
211 		 * is responsibility of kvm_mmu_get_page / kvm_mmu_sync_roots.
212 		 * Same reasoning can be applied to dirty page accounting.
213 		 */
214 		if (is_writable_pte(old_spte))
215 			goto out;
216 
217 		/*
218 		 * Unsync shadow pages that are reachable by the new, writable
219 		 * SPTE.  Write-protect the SPTE if the page can't be unsync'd,
220 		 * e.g. it's write-tracked (upper-level SPs) or has one or more
221 		 * shadow pages and unsync'ing pages is not allowed.
222 		 */
223 		if (mmu_try_to_unsync_pages(vcpu->kvm, slot, gfn, can_unsync, prefetch)) {
224 			wrprot = true;
225 			pte_access &= ~ACC_WRITE_MASK;
226 			spte &= ~(PT_WRITABLE_MASK | shadow_mmu_writable_mask);
227 		}
228 	}
229 
230 	if (pte_access & ACC_WRITE_MASK)
231 		spte |= spte_shadow_dirty_mask(spte);
232 
233 out:
234 	if (prefetch)
235 		spte = mark_spte_for_access_track(spte);
236 
237 	WARN_ONCE(is_rsvd_spte(&vcpu->arch.mmu->shadow_zero_check, spte, level),
238 		  "spte = 0x%llx, level = %d, rsvd bits = 0x%llx", spte, level,
239 		  get_rsvd_bits(&vcpu->arch.mmu->shadow_zero_check, spte, level));
240 
241 	if ((spte & PT_WRITABLE_MASK) && kvm_slot_dirty_track_enabled(slot)) {
242 		/* Enforced by kvm_mmu_hugepage_adjust. */
243 		WARN_ON_ONCE(level > PG_LEVEL_4K);
244 		mark_page_dirty_in_slot(vcpu->kvm, slot, gfn);
245 	}
246 
247 	*new_spte = spte;
248 	return wrprot;
249 }
250 
251 static u64 make_spte_executable(u64 spte)
252 {
253 	bool is_access_track = is_access_track_spte(spte);
254 
255 	if (is_access_track)
256 		spte = restore_acc_track_spte(spte);
257 
258 	spte &= ~shadow_nx_mask;
259 	spte |= shadow_x_mask;
260 
261 	if (is_access_track)
262 		spte = mark_spte_for_access_track(spte);
263 
264 	return spte;
265 }
266 
267 /*
268  * Construct an SPTE that maps a sub-page of the given huge page SPTE where
269  * `index` identifies which sub-page.
270  *
271  * This is used during huge page splitting to build the SPTEs that make up the
272  * new page table.
273  */
274 u64 make_huge_page_split_spte(struct kvm *kvm, u64 huge_spte, union kvm_mmu_page_role role,
275 			      int index)
276 {
277 	u64 child_spte;
278 
279 	if (WARN_ON_ONCE(!is_shadow_present_pte(huge_spte)))
280 		return 0;
281 
282 	if (WARN_ON_ONCE(!is_large_pte(huge_spte)))
283 		return 0;
284 
285 	child_spte = huge_spte;
286 
287 	/*
288 	 * The child_spte already has the base address of the huge page being
289 	 * split. So we just have to OR in the offset to the page at the next
290 	 * lower level for the given index.
291 	 */
292 	child_spte |= (index * KVM_PAGES_PER_HPAGE(role.level)) << PAGE_SHIFT;
293 
294 	if (role.level == PG_LEVEL_4K) {
295 		child_spte &= ~PT_PAGE_SIZE_MASK;
296 
297 		/*
298 		 * When splitting to a 4K page where execution is allowed, mark
299 		 * the page executable as the NX hugepage mitigation no longer
300 		 * applies.
301 		 */
302 		if ((role.access & ACC_EXEC_MASK) && is_nx_huge_page_enabled(kvm))
303 			child_spte = make_spte_executable(child_spte);
304 	}
305 
306 	return child_spte;
307 }
308 
309 
310 u64 make_nonleaf_spte(u64 *child_pt, bool ad_disabled)
311 {
312 	u64 spte = SPTE_MMU_PRESENT_MASK;
313 
314 	spte |= __pa(child_pt) | shadow_present_mask | PT_WRITABLE_MASK |
315 		shadow_user_mask | shadow_x_mask | shadow_me_value;
316 
317 	if (ad_disabled)
318 		spte |= SPTE_TDP_AD_DISABLED;
319 	else
320 		spte |= shadow_accessed_mask;
321 
322 	return spte;
323 }
324 
325 u64 kvm_mmu_changed_pte_notifier_make_spte(u64 old_spte, kvm_pfn_t new_pfn)
326 {
327 	u64 new_spte;
328 
329 	new_spte = old_spte & ~SPTE_BASE_ADDR_MASK;
330 	new_spte |= (u64)new_pfn << PAGE_SHIFT;
331 
332 	new_spte &= ~PT_WRITABLE_MASK;
333 	new_spte &= ~shadow_host_writable_mask;
334 	new_spte &= ~shadow_mmu_writable_mask;
335 
336 	new_spte = mark_spte_for_access_track(new_spte);
337 
338 	return new_spte;
339 }
340 
341 u64 mark_spte_for_access_track(u64 spte)
342 {
343 	if (spte_ad_enabled(spte))
344 		return spte & ~shadow_accessed_mask;
345 
346 	if (is_access_track_spte(spte))
347 		return spte;
348 
349 	check_spte_writable_invariants(spte);
350 
351 	WARN_ONCE(spte & (SHADOW_ACC_TRACK_SAVED_BITS_MASK <<
352 			  SHADOW_ACC_TRACK_SAVED_BITS_SHIFT),
353 		  "Access Tracking saved bit locations are not zero\n");
354 
355 	spte |= (spte & SHADOW_ACC_TRACK_SAVED_BITS_MASK) <<
356 		SHADOW_ACC_TRACK_SAVED_BITS_SHIFT;
357 	spte &= ~shadow_acc_track_mask;
358 
359 	return spte;
360 }
361 
362 void kvm_mmu_set_mmio_spte_mask(u64 mmio_value, u64 mmio_mask, u64 access_mask)
363 {
364 	BUG_ON((u64)(unsigned)access_mask != access_mask);
365 	WARN_ON(mmio_value & shadow_nonpresent_or_rsvd_lower_gfn_mask);
366 
367 	/*
368 	 * Reset to the original module param value to honor userspace's desire
369 	 * to (dis)allow MMIO caching.  Update the param itself so that
370 	 * userspace can see whether or not KVM is actually using MMIO caching.
371 	 */
372 	enable_mmio_caching = allow_mmio_caching;
373 	if (!enable_mmio_caching)
374 		mmio_value = 0;
375 
376 	/*
377 	 * The mask must contain only bits that are carved out specifically for
378 	 * the MMIO SPTE mask, e.g. to ensure there's no overlap with the MMIO
379 	 * generation.
380 	 */
381 	if (WARN_ON(mmio_mask & ~SPTE_MMIO_ALLOWED_MASK))
382 		mmio_value = 0;
383 
384 	/*
385 	 * Disable MMIO caching if the MMIO value collides with the bits that
386 	 * are used to hold the relocated GFN when the L1TF mitigation is
387 	 * enabled.  This should never fire as there is no known hardware that
388 	 * can trigger this condition, e.g. SME/SEV CPUs that require a custom
389 	 * MMIO value are not susceptible to L1TF.
390 	 */
391 	if (WARN_ON(mmio_value & (shadow_nonpresent_or_rsvd_mask <<
392 				  SHADOW_NONPRESENT_OR_RSVD_MASK_LEN)))
393 		mmio_value = 0;
394 
395 	/*
396 	 * The masked MMIO value must obviously match itself and a removed SPTE
397 	 * must not get a false positive.  Removed SPTEs and MMIO SPTEs should
398 	 * never collide as MMIO must set some RWX bits, and removed SPTEs must
399 	 * not set any RWX bits.
400 	 */
401 	if (WARN_ON((mmio_value & mmio_mask) != mmio_value) ||
402 	    WARN_ON(mmio_value && (REMOVED_SPTE & mmio_mask) == mmio_value))
403 		mmio_value = 0;
404 
405 	if (!mmio_value)
406 		enable_mmio_caching = false;
407 
408 	shadow_mmio_value = mmio_value;
409 	shadow_mmio_mask  = mmio_mask;
410 	shadow_mmio_access_mask = access_mask;
411 }
412 EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
413 
414 void kvm_mmu_set_me_spte_mask(u64 me_value, u64 me_mask)
415 {
416 	/* shadow_me_value must be a subset of shadow_me_mask */
417 	if (WARN_ON(me_value & ~me_mask))
418 		me_value = me_mask = 0;
419 
420 	shadow_me_value = me_value;
421 	shadow_me_mask = me_mask;
422 }
423 EXPORT_SYMBOL_GPL(kvm_mmu_set_me_spte_mask);
424 
425 void kvm_mmu_set_ept_masks(bool has_ad_bits, bool has_exec_only)
426 {
427 	shadow_user_mask	= VMX_EPT_READABLE_MASK;
428 	shadow_accessed_mask	= has_ad_bits ? VMX_EPT_ACCESS_BIT : 0ull;
429 	shadow_dirty_mask	= has_ad_bits ? VMX_EPT_DIRTY_BIT : 0ull;
430 	shadow_nx_mask		= 0ull;
431 	shadow_x_mask		= VMX_EPT_EXECUTABLE_MASK;
432 	shadow_present_mask	= has_exec_only ? 0ull : VMX_EPT_READABLE_MASK;
433 	/*
434 	 * EPT overrides the host MTRRs, and so KVM must program the desired
435 	 * memtype directly into the SPTEs.  Note, this mask is just the mask
436 	 * of all bits that factor into the memtype, the actual memtype must be
437 	 * dynamically calculated, e.g. to ensure host MMIO is mapped UC.
438 	 */
439 	shadow_memtype_mask	= VMX_EPT_MT_MASK | VMX_EPT_IPAT_BIT;
440 	shadow_acc_track_mask	= VMX_EPT_RWX_MASK;
441 	shadow_host_writable_mask = EPT_SPTE_HOST_WRITABLE;
442 	shadow_mmu_writable_mask  = EPT_SPTE_MMU_WRITABLE;
443 
444 	/*
445 	 * EPT Misconfigurations are generated if the value of bits 2:0
446 	 * of an EPT paging-structure entry is 110b (write/execute).
447 	 */
448 	kvm_mmu_set_mmio_spte_mask(VMX_EPT_MISCONFIG_WX_VALUE,
449 				   VMX_EPT_RWX_MASK, 0);
450 }
451 EXPORT_SYMBOL_GPL(kvm_mmu_set_ept_masks);
452 
453 void kvm_mmu_reset_all_pte_masks(void)
454 {
455 	u8 low_phys_bits;
456 	u64 mask;
457 
458 	shadow_phys_bits = kvm_get_shadow_phys_bits();
459 
460 	/*
461 	 * If the CPU has 46 or less physical address bits, then set an
462 	 * appropriate mask to guard against L1TF attacks. Otherwise, it is
463 	 * assumed that the CPU is not vulnerable to L1TF.
464 	 *
465 	 * Some Intel CPUs address the L1 cache using more PA bits than are
466 	 * reported by CPUID. Use the PA width of the L1 cache when possible
467 	 * to achieve more effective mitigation, e.g. if system RAM overlaps
468 	 * the most significant bits of legal physical address space.
469 	 */
470 	shadow_nonpresent_or_rsvd_mask = 0;
471 	low_phys_bits = boot_cpu_data.x86_phys_bits;
472 	if (boot_cpu_has_bug(X86_BUG_L1TF) &&
473 	    !WARN_ON_ONCE(boot_cpu_data.x86_cache_bits >=
474 			  52 - SHADOW_NONPRESENT_OR_RSVD_MASK_LEN)) {
475 		low_phys_bits = boot_cpu_data.x86_cache_bits
476 			- SHADOW_NONPRESENT_OR_RSVD_MASK_LEN;
477 		shadow_nonpresent_or_rsvd_mask =
478 			rsvd_bits(low_phys_bits, boot_cpu_data.x86_cache_bits - 1);
479 	}
480 
481 	shadow_nonpresent_or_rsvd_lower_gfn_mask =
482 		GENMASK_ULL(low_phys_bits - 1, PAGE_SHIFT);
483 
484 	shadow_user_mask	= PT_USER_MASK;
485 	shadow_accessed_mask	= PT_ACCESSED_MASK;
486 	shadow_dirty_mask	= PT_DIRTY_MASK;
487 	shadow_nx_mask		= PT64_NX_MASK;
488 	shadow_x_mask		= 0;
489 	shadow_present_mask	= PT_PRESENT_MASK;
490 
491 	/*
492 	 * For shadow paging and NPT, KVM uses PAT entry '0' to encode WB
493 	 * memtype in the SPTEs, i.e. relies on host MTRRs to provide the
494 	 * correct memtype (WB is the "weakest" memtype).
495 	 */
496 	shadow_memtype_mask	= 0;
497 	shadow_acc_track_mask	= 0;
498 	shadow_me_mask		= 0;
499 	shadow_me_value		= 0;
500 
501 	shadow_host_writable_mask = DEFAULT_SPTE_HOST_WRITABLE;
502 	shadow_mmu_writable_mask  = DEFAULT_SPTE_MMU_WRITABLE;
503 
504 	/*
505 	 * Set a reserved PA bit in MMIO SPTEs to generate page faults with
506 	 * PFEC.RSVD=1 on MMIO accesses.  64-bit PTEs (PAE, x86-64, and EPT
507 	 * paging) support a maximum of 52 bits of PA, i.e. if the CPU supports
508 	 * 52-bit physical addresses then there are no reserved PA bits in the
509 	 * PTEs and so the reserved PA approach must be disabled.
510 	 */
511 	if (shadow_phys_bits < 52)
512 		mask = BIT_ULL(51) | PT_PRESENT_MASK;
513 	else
514 		mask = 0;
515 
516 	kvm_mmu_set_mmio_spte_mask(mask, mask, ACC_WRITE_MASK | ACC_USER_MASK);
517 }
518