xref: /openbmc/linux/arch/x86/kvm/mmu/spte.c (revision 09de5cd2)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * Macros and functions to access KVM PTEs (also known as SPTEs)
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright 2020 Red Hat, Inc. and/or its affiliates.
9  */
10 
11 
12 #include <linux/kvm_host.h>
13 #include "mmu.h"
14 #include "mmu_internal.h"
15 #include "x86.h"
16 #include "spte.h"
17 
18 #include <asm/e820/api.h>
19 #include <asm/memtype.h>
20 #include <asm/vmx.h>
21 
22 static bool __read_mostly enable_mmio_caching = true;
23 module_param_named(mmio_caching, enable_mmio_caching, bool, 0444);
24 
25 u64 __read_mostly shadow_host_writable_mask;
26 u64 __read_mostly shadow_mmu_writable_mask;
27 u64 __read_mostly shadow_nx_mask;
28 u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
29 u64 __read_mostly shadow_user_mask;
30 u64 __read_mostly shadow_accessed_mask;
31 u64 __read_mostly shadow_dirty_mask;
32 u64 __read_mostly shadow_mmio_value;
33 u64 __read_mostly shadow_mmio_mask;
34 u64 __read_mostly shadow_mmio_access_mask;
35 u64 __read_mostly shadow_present_mask;
36 u64 __read_mostly shadow_me_mask;
37 u64 __read_mostly shadow_acc_track_mask;
38 
39 u64 __read_mostly shadow_nonpresent_or_rsvd_mask;
40 u64 __read_mostly shadow_nonpresent_or_rsvd_lower_gfn_mask;
41 
42 u8 __read_mostly shadow_phys_bits;
43 
44 static u64 generation_mmio_spte_mask(u64 gen)
45 {
46 	u64 mask;
47 
48 	WARN_ON(gen & ~MMIO_SPTE_GEN_MASK);
49 
50 	mask = (gen << MMIO_SPTE_GEN_LOW_SHIFT) & MMIO_SPTE_GEN_LOW_MASK;
51 	mask |= (gen << MMIO_SPTE_GEN_HIGH_SHIFT) & MMIO_SPTE_GEN_HIGH_MASK;
52 	return mask;
53 }
54 
55 u64 make_mmio_spte(struct kvm_vcpu *vcpu, u64 gfn, unsigned int access)
56 {
57 	u64 gen = kvm_vcpu_memslots(vcpu)->generation & MMIO_SPTE_GEN_MASK;
58 	u64 spte = generation_mmio_spte_mask(gen);
59 	u64 gpa = gfn << PAGE_SHIFT;
60 
61 	WARN_ON_ONCE(!shadow_mmio_value);
62 
63 	access &= shadow_mmio_access_mask;
64 	spte |= shadow_mmio_value | access;
65 	spte |= gpa | shadow_nonpresent_or_rsvd_mask;
66 	spte |= (gpa & shadow_nonpresent_or_rsvd_mask)
67 		<< SHADOW_NONPRESENT_OR_RSVD_MASK_LEN;
68 
69 	return spte;
70 }
71 
72 static bool kvm_is_mmio_pfn(kvm_pfn_t pfn)
73 {
74 	if (pfn_valid(pfn))
75 		return !is_zero_pfn(pfn) && PageReserved(pfn_to_page(pfn)) &&
76 			/*
77 			 * Some reserved pages, such as those from NVDIMM
78 			 * DAX devices, are not for MMIO, and can be mapped
79 			 * with cached memory type for better performance.
80 			 * However, the above check misconceives those pages
81 			 * as MMIO, and results in KVM mapping them with UC
82 			 * memory type, which would hurt the performance.
83 			 * Therefore, we check the host memory type in addition
84 			 * and only treat UC/UC-/WC pages as MMIO.
85 			 */
86 			(!pat_enabled() || pat_pfn_immune_to_uc_mtrr(pfn));
87 
88 	return !e820__mapped_raw_any(pfn_to_hpa(pfn),
89 				     pfn_to_hpa(pfn + 1) - 1,
90 				     E820_TYPE_RAM);
91 }
92 
93 bool make_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
94 	       const struct kvm_memory_slot *slot,
95 	       unsigned int pte_access, gfn_t gfn, kvm_pfn_t pfn,
96 	       u64 old_spte, bool prefetch, bool can_unsync,
97 	       bool host_writable, u64 *new_spte)
98 {
99 	int level = sp->role.level;
100 	u64 spte = SPTE_MMU_PRESENT_MASK;
101 	bool wrprot = false;
102 
103 	if (sp->role.ad_disabled)
104 		spte |= SPTE_TDP_AD_DISABLED_MASK;
105 	else if (kvm_mmu_page_ad_need_write_protect(sp))
106 		spte |= SPTE_TDP_AD_WRPROT_ONLY_MASK;
107 
108 	/*
109 	 * For the EPT case, shadow_present_mask is 0 if hardware
110 	 * supports exec-only page table entries.  In that case,
111 	 * ACC_USER_MASK and shadow_user_mask are used to represent
112 	 * read access.  See FNAME(gpte_access) in paging_tmpl.h.
113 	 */
114 	spte |= shadow_present_mask;
115 	if (!prefetch)
116 		spte |= spte_shadow_accessed_mask(spte);
117 
118 	if (level > PG_LEVEL_4K && (pte_access & ACC_EXEC_MASK) &&
119 	    is_nx_huge_page_enabled()) {
120 		pte_access &= ~ACC_EXEC_MASK;
121 	}
122 
123 	if (pte_access & ACC_EXEC_MASK)
124 		spte |= shadow_x_mask;
125 	else
126 		spte |= shadow_nx_mask;
127 
128 	if (pte_access & ACC_USER_MASK)
129 		spte |= shadow_user_mask;
130 
131 	if (level > PG_LEVEL_4K)
132 		spte |= PT_PAGE_SIZE_MASK;
133 	if (tdp_enabled)
134 		spte |= static_call(kvm_x86_get_mt_mask)(vcpu, gfn,
135 			kvm_is_mmio_pfn(pfn));
136 
137 	if (host_writable)
138 		spte |= shadow_host_writable_mask;
139 	else
140 		pte_access &= ~ACC_WRITE_MASK;
141 
142 	if (!kvm_is_mmio_pfn(pfn))
143 		spte |= shadow_me_mask;
144 
145 	spte |= (u64)pfn << PAGE_SHIFT;
146 
147 	if (pte_access & ACC_WRITE_MASK) {
148 		spte |= PT_WRITABLE_MASK | shadow_mmu_writable_mask;
149 
150 		/*
151 		 * Optimization: for pte sync, if spte was writable the hash
152 		 * lookup is unnecessary (and expensive). Write protection
153 		 * is responsibility of kvm_mmu_get_page / kvm_mmu_sync_roots.
154 		 * Same reasoning can be applied to dirty page accounting.
155 		 */
156 		if (is_writable_pte(old_spte))
157 			goto out;
158 
159 		/*
160 		 * Unsync shadow pages that are reachable by the new, writable
161 		 * SPTE.  Write-protect the SPTE if the page can't be unsync'd,
162 		 * e.g. it's write-tracked (upper-level SPs) or has one or more
163 		 * shadow pages and unsync'ing pages is not allowed.
164 		 */
165 		if (mmu_try_to_unsync_pages(vcpu->kvm, slot, gfn, can_unsync, prefetch)) {
166 			pgprintk("%s: found shadow page for %llx, marking ro\n",
167 				 __func__, gfn);
168 			wrprot = true;
169 			pte_access &= ~ACC_WRITE_MASK;
170 			spte &= ~(PT_WRITABLE_MASK | shadow_mmu_writable_mask);
171 		}
172 	}
173 
174 	if (pte_access & ACC_WRITE_MASK)
175 		spte |= spte_shadow_dirty_mask(spte);
176 
177 out:
178 	if (prefetch)
179 		spte = mark_spte_for_access_track(spte);
180 
181 	WARN_ONCE(is_rsvd_spte(&vcpu->arch.mmu->shadow_zero_check, spte, level),
182 		  "spte = 0x%llx, level = %d, rsvd bits = 0x%llx", spte, level,
183 		  get_rsvd_bits(&vcpu->arch.mmu->shadow_zero_check, spte, level));
184 
185 	if ((spte & PT_WRITABLE_MASK) && kvm_slot_dirty_track_enabled(slot)) {
186 		/* Enforced by kvm_mmu_hugepage_adjust. */
187 		WARN_ON(level > PG_LEVEL_4K);
188 		mark_page_dirty_in_slot(vcpu->kvm, slot, gfn);
189 	}
190 
191 	*new_spte = spte;
192 	return wrprot;
193 }
194 
195 static u64 make_spte_executable(u64 spte)
196 {
197 	bool is_access_track = is_access_track_spte(spte);
198 
199 	if (is_access_track)
200 		spte = restore_acc_track_spte(spte);
201 
202 	spte &= ~shadow_nx_mask;
203 	spte |= shadow_x_mask;
204 
205 	if (is_access_track)
206 		spte = mark_spte_for_access_track(spte);
207 
208 	return spte;
209 }
210 
211 /*
212  * Construct an SPTE that maps a sub-page of the given huge page SPTE where
213  * `index` identifies which sub-page.
214  *
215  * This is used during huge page splitting to build the SPTEs that make up the
216  * new page table.
217  */
218 u64 make_huge_page_split_spte(u64 huge_spte, int huge_level, int index)
219 {
220 	u64 child_spte;
221 	int child_level;
222 
223 	if (WARN_ON_ONCE(!is_shadow_present_pte(huge_spte)))
224 		return 0;
225 
226 	if (WARN_ON_ONCE(!is_large_pte(huge_spte)))
227 		return 0;
228 
229 	child_spte = huge_spte;
230 	child_level = huge_level - 1;
231 
232 	/*
233 	 * The child_spte already has the base address of the huge page being
234 	 * split. So we just have to OR in the offset to the page at the next
235 	 * lower level for the given index.
236 	 */
237 	child_spte |= (index * KVM_PAGES_PER_HPAGE(child_level)) << PAGE_SHIFT;
238 
239 	if (child_level == PG_LEVEL_4K) {
240 		child_spte &= ~PT_PAGE_SIZE_MASK;
241 
242 		/*
243 		 * When splitting to a 4K page, mark the page executable as the
244 		 * NX hugepage mitigation no longer applies.
245 		 */
246 		if (is_nx_huge_page_enabled())
247 			child_spte = make_spte_executable(child_spte);
248 	}
249 
250 	return child_spte;
251 }
252 
253 
254 u64 make_nonleaf_spte(u64 *child_pt, bool ad_disabled)
255 {
256 	u64 spte = SPTE_MMU_PRESENT_MASK;
257 
258 	spte |= __pa(child_pt) | shadow_present_mask | PT_WRITABLE_MASK |
259 		shadow_user_mask | shadow_x_mask | shadow_me_mask;
260 
261 	if (ad_disabled)
262 		spte |= SPTE_TDP_AD_DISABLED_MASK;
263 	else
264 		spte |= shadow_accessed_mask;
265 
266 	return spte;
267 }
268 
269 u64 kvm_mmu_changed_pte_notifier_make_spte(u64 old_spte, kvm_pfn_t new_pfn)
270 {
271 	u64 new_spte;
272 
273 	new_spte = old_spte & ~PT64_BASE_ADDR_MASK;
274 	new_spte |= (u64)new_pfn << PAGE_SHIFT;
275 
276 	new_spte &= ~PT_WRITABLE_MASK;
277 	new_spte &= ~shadow_host_writable_mask;
278 	new_spte &= ~shadow_mmu_writable_mask;
279 
280 	new_spte = mark_spte_for_access_track(new_spte);
281 
282 	return new_spte;
283 }
284 
285 static u8 kvm_get_shadow_phys_bits(void)
286 {
287 	/*
288 	 * boot_cpu_data.x86_phys_bits is reduced when MKTME or SME are detected
289 	 * in CPU detection code, but the processor treats those reduced bits as
290 	 * 'keyID' thus they are not reserved bits. Therefore KVM needs to look at
291 	 * the physical address bits reported by CPUID.
292 	 */
293 	if (likely(boot_cpu_data.extended_cpuid_level >= 0x80000008))
294 		return cpuid_eax(0x80000008) & 0xff;
295 
296 	/*
297 	 * Quite weird to have VMX or SVM but not MAXPHYADDR; probably a VM with
298 	 * custom CPUID.  Proceed with whatever the kernel found since these features
299 	 * aren't virtualizable (SME/SEV also require CPUIDs higher than 0x80000008).
300 	 */
301 	return boot_cpu_data.x86_phys_bits;
302 }
303 
304 u64 mark_spte_for_access_track(u64 spte)
305 {
306 	if (spte_ad_enabled(spte))
307 		return spte & ~shadow_accessed_mask;
308 
309 	if (is_access_track_spte(spte))
310 		return spte;
311 
312 	check_spte_writable_invariants(spte);
313 
314 	WARN_ONCE(spte & (SHADOW_ACC_TRACK_SAVED_BITS_MASK <<
315 			  SHADOW_ACC_TRACK_SAVED_BITS_SHIFT),
316 		  "kvm: Access Tracking saved bit locations are not zero\n");
317 
318 	spte |= (spte & SHADOW_ACC_TRACK_SAVED_BITS_MASK) <<
319 		SHADOW_ACC_TRACK_SAVED_BITS_SHIFT;
320 	spte &= ~shadow_acc_track_mask;
321 
322 	return spte;
323 }
324 
325 void kvm_mmu_set_mmio_spte_mask(u64 mmio_value, u64 mmio_mask, u64 access_mask)
326 {
327 	BUG_ON((u64)(unsigned)access_mask != access_mask);
328 	WARN_ON(mmio_value & shadow_nonpresent_or_rsvd_lower_gfn_mask);
329 
330 	if (!enable_mmio_caching)
331 		mmio_value = 0;
332 
333 	/*
334 	 * Disable MMIO caching if the MMIO value collides with the bits that
335 	 * are used to hold the relocated GFN when the L1TF mitigation is
336 	 * enabled.  This should never fire as there is no known hardware that
337 	 * can trigger this condition, e.g. SME/SEV CPUs that require a custom
338 	 * MMIO value are not susceptible to L1TF.
339 	 */
340 	if (WARN_ON(mmio_value & (shadow_nonpresent_or_rsvd_mask <<
341 				  SHADOW_NONPRESENT_OR_RSVD_MASK_LEN)))
342 		mmio_value = 0;
343 
344 	/*
345 	 * The masked MMIO value must obviously match itself and a removed SPTE
346 	 * must not get a false positive.  Removed SPTEs and MMIO SPTEs should
347 	 * never collide as MMIO must set some RWX bits, and removed SPTEs must
348 	 * not set any RWX bits.
349 	 */
350 	if (WARN_ON((mmio_value & mmio_mask) != mmio_value) ||
351 	    WARN_ON(mmio_value && (REMOVED_SPTE & mmio_mask) == mmio_value))
352 		mmio_value = 0;
353 
354 	shadow_mmio_value = mmio_value;
355 	shadow_mmio_mask  = mmio_mask;
356 	shadow_mmio_access_mask = access_mask;
357 }
358 EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
359 
360 void kvm_mmu_set_ept_masks(bool has_ad_bits, bool has_exec_only)
361 {
362 	shadow_user_mask	= VMX_EPT_READABLE_MASK;
363 	shadow_accessed_mask	= has_ad_bits ? VMX_EPT_ACCESS_BIT : 0ull;
364 	shadow_dirty_mask	= has_ad_bits ? VMX_EPT_DIRTY_BIT : 0ull;
365 	shadow_nx_mask		= 0ull;
366 	shadow_x_mask		= VMX_EPT_EXECUTABLE_MASK;
367 	shadow_present_mask	= has_exec_only ? 0ull : VMX_EPT_READABLE_MASK;
368 	shadow_acc_track_mask	= VMX_EPT_RWX_MASK;
369 	shadow_me_mask		= 0ull;
370 
371 	shadow_host_writable_mask = EPT_SPTE_HOST_WRITABLE;
372 	shadow_mmu_writable_mask  = EPT_SPTE_MMU_WRITABLE;
373 
374 	/*
375 	 * EPT Misconfigurations are generated if the value of bits 2:0
376 	 * of an EPT paging-structure entry is 110b (write/execute).
377 	 */
378 	kvm_mmu_set_mmio_spte_mask(VMX_EPT_MISCONFIG_WX_VALUE,
379 				   VMX_EPT_RWX_MASK, 0);
380 }
381 EXPORT_SYMBOL_GPL(kvm_mmu_set_ept_masks);
382 
383 void kvm_mmu_reset_all_pte_masks(void)
384 {
385 	u8 low_phys_bits;
386 	u64 mask;
387 
388 	shadow_phys_bits = kvm_get_shadow_phys_bits();
389 
390 	/*
391 	 * If the CPU has 46 or less physical address bits, then set an
392 	 * appropriate mask to guard against L1TF attacks. Otherwise, it is
393 	 * assumed that the CPU is not vulnerable to L1TF.
394 	 *
395 	 * Some Intel CPUs address the L1 cache using more PA bits than are
396 	 * reported by CPUID. Use the PA width of the L1 cache when possible
397 	 * to achieve more effective mitigation, e.g. if system RAM overlaps
398 	 * the most significant bits of legal physical address space.
399 	 */
400 	shadow_nonpresent_or_rsvd_mask = 0;
401 	low_phys_bits = boot_cpu_data.x86_phys_bits;
402 	if (boot_cpu_has_bug(X86_BUG_L1TF) &&
403 	    !WARN_ON_ONCE(boot_cpu_data.x86_cache_bits >=
404 			  52 - SHADOW_NONPRESENT_OR_RSVD_MASK_LEN)) {
405 		low_phys_bits = boot_cpu_data.x86_cache_bits
406 			- SHADOW_NONPRESENT_OR_RSVD_MASK_LEN;
407 		shadow_nonpresent_or_rsvd_mask =
408 			rsvd_bits(low_phys_bits, boot_cpu_data.x86_cache_bits - 1);
409 	}
410 
411 	shadow_nonpresent_or_rsvd_lower_gfn_mask =
412 		GENMASK_ULL(low_phys_bits - 1, PAGE_SHIFT);
413 
414 	shadow_user_mask	= PT_USER_MASK;
415 	shadow_accessed_mask	= PT_ACCESSED_MASK;
416 	shadow_dirty_mask	= PT_DIRTY_MASK;
417 	shadow_nx_mask		= PT64_NX_MASK;
418 	shadow_x_mask		= 0;
419 	shadow_present_mask	= PT_PRESENT_MASK;
420 	shadow_acc_track_mask	= 0;
421 	shadow_me_mask		= sme_me_mask;
422 
423 	shadow_host_writable_mask = DEFAULT_SPTE_HOST_WRITABLE;
424 	shadow_mmu_writable_mask  = DEFAULT_SPTE_MMU_WRITABLE;
425 
426 	/*
427 	 * Set a reserved PA bit in MMIO SPTEs to generate page faults with
428 	 * PFEC.RSVD=1 on MMIO accesses.  64-bit PTEs (PAE, x86-64, and EPT
429 	 * paging) support a maximum of 52 bits of PA, i.e. if the CPU supports
430 	 * 52-bit physical addresses then there are no reserved PA bits in the
431 	 * PTEs and so the reserved PA approach must be disabled.
432 	 */
433 	if (shadow_phys_bits < 52)
434 		mask = BIT_ULL(51) | PT_PRESENT_MASK;
435 	else
436 		mask = 0;
437 
438 	kvm_mmu_set_mmio_spte_mask(mask, mask, ACC_WRITE_MASK | ACC_USER_MASK);
439 }
440