1 /* SPDX-License-Identifier: GPL-2.0-only */ 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * This module enables machines with Intel VT-x extensions to run virtual 6 * machines without emulation or binary translation. 7 * 8 * MMU support 9 * 10 * Copyright (C) 2006 Qumranet, Inc. 11 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 12 * 13 * Authors: 14 * Yaniv Kamay <yaniv@qumranet.com> 15 * Avi Kivity <avi@qumranet.com> 16 */ 17 18 /* 19 * We need the mmu code to access both 32-bit and 64-bit guest ptes, 20 * so the code in this file is compiled twice, once per pte size. 21 */ 22 23 #if PTTYPE == 64 24 #define pt_element_t u64 25 #define guest_walker guest_walker64 26 #define FNAME(name) paging##64_##name 27 #define PT_BASE_ADDR_MASK GUEST_PT64_BASE_ADDR_MASK 28 #define PT_LVL_ADDR_MASK(lvl) PT64_LVL_ADDR_MASK(lvl) 29 #define PT_LVL_OFFSET_MASK(lvl) PT64_LVL_OFFSET_MASK(lvl) 30 #define PT_INDEX(addr, level) PT64_INDEX(addr, level) 31 #define PT_LEVEL_BITS PT64_LEVEL_BITS 32 #define PT_GUEST_DIRTY_SHIFT PT_DIRTY_SHIFT 33 #define PT_GUEST_ACCESSED_SHIFT PT_ACCESSED_SHIFT 34 #define PT_HAVE_ACCESSED_DIRTY(mmu) true 35 #ifdef CONFIG_X86_64 36 #define PT_MAX_FULL_LEVELS PT64_ROOT_MAX_LEVEL 37 #define CMPXCHG "cmpxchgq" 38 #else 39 #define PT_MAX_FULL_LEVELS 2 40 #endif 41 #elif PTTYPE == 32 42 #define pt_element_t u32 43 #define guest_walker guest_walker32 44 #define FNAME(name) paging##32_##name 45 #define PT_BASE_ADDR_MASK PT32_BASE_ADDR_MASK 46 #define PT_LVL_ADDR_MASK(lvl) PT32_LVL_ADDR_MASK(lvl) 47 #define PT_LVL_OFFSET_MASK(lvl) PT32_LVL_OFFSET_MASK(lvl) 48 #define PT_INDEX(addr, level) PT32_INDEX(addr, level) 49 #define PT_LEVEL_BITS PT32_LEVEL_BITS 50 #define PT_MAX_FULL_LEVELS 2 51 #define PT_GUEST_DIRTY_SHIFT PT_DIRTY_SHIFT 52 #define PT_GUEST_ACCESSED_SHIFT PT_ACCESSED_SHIFT 53 #define PT_HAVE_ACCESSED_DIRTY(mmu) true 54 #define CMPXCHG "cmpxchgl" 55 #elif PTTYPE == PTTYPE_EPT 56 #define pt_element_t u64 57 #define guest_walker guest_walkerEPT 58 #define FNAME(name) ept_##name 59 #define PT_BASE_ADDR_MASK GUEST_PT64_BASE_ADDR_MASK 60 #define PT_LVL_ADDR_MASK(lvl) PT64_LVL_ADDR_MASK(lvl) 61 #define PT_LVL_OFFSET_MASK(lvl) PT64_LVL_OFFSET_MASK(lvl) 62 #define PT_INDEX(addr, level) PT64_INDEX(addr, level) 63 #define PT_LEVEL_BITS PT64_LEVEL_BITS 64 #define PT_GUEST_DIRTY_SHIFT 9 65 #define PT_GUEST_ACCESSED_SHIFT 8 66 #define PT_HAVE_ACCESSED_DIRTY(mmu) ((mmu)->ept_ad) 67 #ifdef CONFIG_X86_64 68 #define CMPXCHG "cmpxchgq" 69 #endif 70 #define PT_MAX_FULL_LEVELS PT64_ROOT_MAX_LEVEL 71 #else 72 #error Invalid PTTYPE value 73 #endif 74 75 #define PT_GUEST_DIRTY_MASK (1 << PT_GUEST_DIRTY_SHIFT) 76 #define PT_GUEST_ACCESSED_MASK (1 << PT_GUEST_ACCESSED_SHIFT) 77 78 #define gpte_to_gfn_lvl FNAME(gpte_to_gfn_lvl) 79 #define gpte_to_gfn(pte) gpte_to_gfn_lvl((pte), PG_LEVEL_4K) 80 81 /* 82 * The guest_walker structure emulates the behavior of the hardware page 83 * table walker. 84 */ 85 struct guest_walker { 86 int level; 87 unsigned max_level; 88 gfn_t table_gfn[PT_MAX_FULL_LEVELS]; 89 pt_element_t ptes[PT_MAX_FULL_LEVELS]; 90 pt_element_t prefetch_ptes[PTE_PREFETCH_NUM]; 91 gpa_t pte_gpa[PT_MAX_FULL_LEVELS]; 92 pt_element_t __user *ptep_user[PT_MAX_FULL_LEVELS]; 93 bool pte_writable[PT_MAX_FULL_LEVELS]; 94 unsigned int pt_access[PT_MAX_FULL_LEVELS]; 95 unsigned int pte_access; 96 gfn_t gfn; 97 struct x86_exception fault; 98 }; 99 100 static gfn_t gpte_to_gfn_lvl(pt_element_t gpte, int lvl) 101 { 102 return (gpte & PT_LVL_ADDR_MASK(lvl)) >> PAGE_SHIFT; 103 } 104 105 static inline void FNAME(protect_clean_gpte)(struct kvm_mmu *mmu, unsigned *access, 106 unsigned gpte) 107 { 108 unsigned mask; 109 110 /* dirty bit is not supported, so no need to track it */ 111 if (!PT_HAVE_ACCESSED_DIRTY(mmu)) 112 return; 113 114 BUILD_BUG_ON(PT_WRITABLE_MASK != ACC_WRITE_MASK); 115 116 mask = (unsigned)~ACC_WRITE_MASK; 117 /* Allow write access to dirty gptes */ 118 mask |= (gpte >> (PT_GUEST_DIRTY_SHIFT - PT_WRITABLE_SHIFT)) & 119 PT_WRITABLE_MASK; 120 *access &= mask; 121 } 122 123 static inline int FNAME(is_present_gpte)(unsigned long pte) 124 { 125 #if PTTYPE != PTTYPE_EPT 126 return pte & PT_PRESENT_MASK; 127 #else 128 return pte & 7; 129 #endif 130 } 131 132 static bool FNAME(is_bad_mt_xwr)(struct rsvd_bits_validate *rsvd_check, u64 gpte) 133 { 134 #if PTTYPE != PTTYPE_EPT 135 return false; 136 #else 137 return __is_bad_mt_xwr(rsvd_check, gpte); 138 #endif 139 } 140 141 static bool FNAME(is_rsvd_bits_set)(struct kvm_mmu *mmu, u64 gpte, int level) 142 { 143 return __is_rsvd_bits_set(&mmu->guest_rsvd_check, gpte, level) || 144 FNAME(is_bad_mt_xwr)(&mmu->guest_rsvd_check, gpte); 145 } 146 147 static int FNAME(cmpxchg_gpte)(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, 148 pt_element_t __user *ptep_user, unsigned index, 149 pt_element_t orig_pte, pt_element_t new_pte) 150 { 151 signed char r; 152 153 if (!user_access_begin(ptep_user, sizeof(pt_element_t))) 154 return -EFAULT; 155 156 #ifdef CMPXCHG 157 asm volatile("1:" LOCK_PREFIX CMPXCHG " %[new], %[ptr]\n" 158 "setnz %b[r]\n" 159 "2:" 160 _ASM_EXTABLE_TYPE_REG(1b, 2b, EX_TYPE_EFAULT_REG, %k[r]) 161 : [ptr] "+m" (*ptep_user), 162 [old] "+a" (orig_pte), 163 [r] "=q" (r) 164 : [new] "r" (new_pte) 165 : "memory"); 166 #else 167 asm volatile("1:" LOCK_PREFIX "cmpxchg8b %[ptr]\n" 168 "setnz %b[r]\n" 169 "2:" 170 _ASM_EXTABLE_TYPE_REG(1b, 2b, EX_TYPE_EFAULT_REG, %k[r]) 171 : [ptr] "+m" (*ptep_user), 172 [old] "+A" (orig_pte), 173 [r] "=q" (r) 174 : [new_lo] "b" ((u32)new_pte), 175 [new_hi] "c" ((u32)(new_pte >> 32)) 176 : "memory"); 177 #endif 178 179 user_access_end(); 180 return r; 181 } 182 183 static bool FNAME(prefetch_invalid_gpte)(struct kvm_vcpu *vcpu, 184 struct kvm_mmu_page *sp, u64 *spte, 185 u64 gpte) 186 { 187 if (!FNAME(is_present_gpte)(gpte)) 188 goto no_present; 189 190 /* if accessed bit is not supported prefetch non accessed gpte */ 191 if (PT_HAVE_ACCESSED_DIRTY(vcpu->arch.mmu) && 192 !(gpte & PT_GUEST_ACCESSED_MASK)) 193 goto no_present; 194 195 if (FNAME(is_rsvd_bits_set)(vcpu->arch.mmu, gpte, PG_LEVEL_4K)) 196 goto no_present; 197 198 return false; 199 200 no_present: 201 drop_spte(vcpu->kvm, spte); 202 return true; 203 } 204 205 /* 206 * For PTTYPE_EPT, a page table can be executable but not readable 207 * on supported processors. Therefore, set_spte does not automatically 208 * set bit 0 if execute only is supported. Here, we repurpose ACC_USER_MASK 209 * to signify readability since it isn't used in the EPT case 210 */ 211 static inline unsigned FNAME(gpte_access)(u64 gpte) 212 { 213 unsigned access; 214 #if PTTYPE == PTTYPE_EPT 215 access = ((gpte & VMX_EPT_WRITABLE_MASK) ? ACC_WRITE_MASK : 0) | 216 ((gpte & VMX_EPT_EXECUTABLE_MASK) ? ACC_EXEC_MASK : 0) | 217 ((gpte & VMX_EPT_READABLE_MASK) ? ACC_USER_MASK : 0); 218 #else 219 BUILD_BUG_ON(ACC_EXEC_MASK != PT_PRESENT_MASK); 220 BUILD_BUG_ON(ACC_EXEC_MASK != 1); 221 access = gpte & (PT_WRITABLE_MASK | PT_USER_MASK | PT_PRESENT_MASK); 222 /* Combine NX with P (which is set here) to get ACC_EXEC_MASK. */ 223 access ^= (gpte >> PT64_NX_SHIFT); 224 #endif 225 226 return access; 227 } 228 229 static int FNAME(update_accessed_dirty_bits)(struct kvm_vcpu *vcpu, 230 struct kvm_mmu *mmu, 231 struct guest_walker *walker, 232 gpa_t addr, int write_fault) 233 { 234 unsigned level, index; 235 pt_element_t pte, orig_pte; 236 pt_element_t __user *ptep_user; 237 gfn_t table_gfn; 238 int ret; 239 240 /* dirty/accessed bits are not supported, so no need to update them */ 241 if (!PT_HAVE_ACCESSED_DIRTY(mmu)) 242 return 0; 243 244 for (level = walker->max_level; level >= walker->level; --level) { 245 pte = orig_pte = walker->ptes[level - 1]; 246 table_gfn = walker->table_gfn[level - 1]; 247 ptep_user = walker->ptep_user[level - 1]; 248 index = offset_in_page(ptep_user) / sizeof(pt_element_t); 249 if (!(pte & PT_GUEST_ACCESSED_MASK)) { 250 trace_kvm_mmu_set_accessed_bit(table_gfn, index, sizeof(pte)); 251 pte |= PT_GUEST_ACCESSED_MASK; 252 } 253 if (level == walker->level && write_fault && 254 !(pte & PT_GUEST_DIRTY_MASK)) { 255 trace_kvm_mmu_set_dirty_bit(table_gfn, index, sizeof(pte)); 256 #if PTTYPE == PTTYPE_EPT 257 if (kvm_x86_ops.nested_ops->write_log_dirty(vcpu, addr)) 258 return -EINVAL; 259 #endif 260 pte |= PT_GUEST_DIRTY_MASK; 261 } 262 if (pte == orig_pte) 263 continue; 264 265 /* 266 * If the slot is read-only, simply do not process the accessed 267 * and dirty bits. This is the correct thing to do if the slot 268 * is ROM, and page tables in read-as-ROM/write-as-MMIO slots 269 * are only supported if the accessed and dirty bits are already 270 * set in the ROM (so that MMIO writes are never needed). 271 * 272 * Note that NPT does not allow this at all and faults, since 273 * it always wants nested page table entries for the guest 274 * page tables to be writable. And EPT works but will simply 275 * overwrite the read-only memory to set the accessed and dirty 276 * bits. 277 */ 278 if (unlikely(!walker->pte_writable[level - 1])) 279 continue; 280 281 ret = FNAME(cmpxchg_gpte)(vcpu, mmu, ptep_user, index, orig_pte, pte); 282 if (ret) 283 return ret; 284 285 kvm_vcpu_mark_page_dirty(vcpu, table_gfn); 286 walker->ptes[level - 1] = pte; 287 } 288 return 0; 289 } 290 291 static inline unsigned FNAME(gpte_pkeys)(struct kvm_vcpu *vcpu, u64 gpte) 292 { 293 unsigned pkeys = 0; 294 #if PTTYPE == 64 295 pte_t pte = {.pte = gpte}; 296 297 pkeys = pte_flags_pkey(pte_flags(pte)); 298 #endif 299 return pkeys; 300 } 301 302 static inline bool FNAME(is_last_gpte)(struct kvm_mmu *mmu, 303 unsigned int level, unsigned int gpte) 304 { 305 /* 306 * For EPT and PAE paging (both variants), bit 7 is either reserved at 307 * all level or indicates a huge page (ignoring CR3/EPTP). In either 308 * case, bit 7 being set terminates the walk. 309 */ 310 #if PTTYPE == 32 311 /* 312 * 32-bit paging requires special handling because bit 7 is ignored if 313 * CR4.PSE=0, not reserved. Clear bit 7 in the gpte if the level is 314 * greater than the last level for which bit 7 is the PAGE_SIZE bit. 315 * 316 * The RHS has bit 7 set iff level < (2 + PSE). If it is clear, bit 7 317 * is not reserved and does not indicate a large page at this level, 318 * so clear PT_PAGE_SIZE_MASK in gpte if that is the case. 319 */ 320 gpte &= level - (PT32_ROOT_LEVEL + mmu->mmu_role.ext.cr4_pse); 321 #endif 322 /* 323 * PG_LEVEL_4K always terminates. The RHS has bit 7 set 324 * iff level <= PG_LEVEL_4K, which for our purpose means 325 * level == PG_LEVEL_4K; set PT_PAGE_SIZE_MASK in gpte then. 326 */ 327 gpte |= level - PG_LEVEL_4K - 1; 328 329 return gpte & PT_PAGE_SIZE_MASK; 330 } 331 /* 332 * Fetch a guest pte for a guest virtual address, or for an L2's GPA. 333 */ 334 static int FNAME(walk_addr_generic)(struct guest_walker *walker, 335 struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, 336 gpa_t addr, u64 access) 337 { 338 int ret; 339 pt_element_t pte; 340 pt_element_t __user *ptep_user; 341 gfn_t table_gfn; 342 u64 pt_access, pte_access; 343 unsigned index, accessed_dirty, pte_pkey; 344 u64 nested_access; 345 gpa_t pte_gpa; 346 bool have_ad; 347 int offset; 348 u64 walk_nx_mask = 0; 349 const int write_fault = access & PFERR_WRITE_MASK; 350 const int user_fault = access & PFERR_USER_MASK; 351 const int fetch_fault = access & PFERR_FETCH_MASK; 352 u16 errcode = 0; 353 gpa_t real_gpa; 354 gfn_t gfn; 355 356 trace_kvm_mmu_pagetable_walk(addr, access); 357 retry_walk: 358 walker->level = mmu->root_level; 359 pte = mmu->get_guest_pgd(vcpu); 360 have_ad = PT_HAVE_ACCESSED_DIRTY(mmu); 361 362 #if PTTYPE == 64 363 walk_nx_mask = 1ULL << PT64_NX_SHIFT; 364 if (walker->level == PT32E_ROOT_LEVEL) { 365 pte = mmu->get_pdptr(vcpu, (addr >> 30) & 3); 366 trace_kvm_mmu_paging_element(pte, walker->level); 367 if (!FNAME(is_present_gpte)(pte)) 368 goto error; 369 --walker->level; 370 } 371 #endif 372 walker->max_level = walker->level; 373 ASSERT(!(is_long_mode(vcpu) && !is_pae(vcpu))); 374 375 /* 376 * FIXME: on Intel processors, loads of the PDPTE registers for PAE paging 377 * by the MOV to CR instruction are treated as reads and do not cause the 378 * processor to set the dirty flag in any EPT paging-structure entry. 379 */ 380 nested_access = (have_ad ? PFERR_WRITE_MASK : 0) | PFERR_USER_MASK; 381 382 pte_access = ~0; 383 ++walker->level; 384 385 do { 386 unsigned long host_addr; 387 388 pt_access = pte_access; 389 --walker->level; 390 391 index = PT_INDEX(addr, walker->level); 392 table_gfn = gpte_to_gfn(pte); 393 offset = index * sizeof(pt_element_t); 394 pte_gpa = gfn_to_gpa(table_gfn) + offset; 395 396 BUG_ON(walker->level < 1); 397 walker->table_gfn[walker->level - 1] = table_gfn; 398 walker->pte_gpa[walker->level - 1] = pte_gpa; 399 400 real_gpa = kvm_translate_gpa(vcpu, mmu, gfn_to_gpa(table_gfn), 401 nested_access, &walker->fault); 402 403 /* 404 * FIXME: This can happen if emulation (for of an INS/OUTS 405 * instruction) triggers a nested page fault. The exit 406 * qualification / exit info field will incorrectly have 407 * "guest page access" as the nested page fault's cause, 408 * instead of "guest page structure access". To fix this, 409 * the x86_exception struct should be augmented with enough 410 * information to fix the exit_qualification or exit_info_1 411 * fields. 412 */ 413 if (unlikely(real_gpa == UNMAPPED_GVA)) 414 return 0; 415 416 host_addr = kvm_vcpu_gfn_to_hva_prot(vcpu, gpa_to_gfn(real_gpa), 417 &walker->pte_writable[walker->level - 1]); 418 if (unlikely(kvm_is_error_hva(host_addr))) 419 goto error; 420 421 ptep_user = (pt_element_t __user *)((void *)host_addr + offset); 422 if (unlikely(__get_user(pte, ptep_user))) 423 goto error; 424 walker->ptep_user[walker->level - 1] = ptep_user; 425 426 trace_kvm_mmu_paging_element(pte, walker->level); 427 428 /* 429 * Inverting the NX it lets us AND it like other 430 * permission bits. 431 */ 432 pte_access = pt_access & (pte ^ walk_nx_mask); 433 434 if (unlikely(!FNAME(is_present_gpte)(pte))) 435 goto error; 436 437 if (unlikely(FNAME(is_rsvd_bits_set)(mmu, pte, walker->level))) { 438 errcode = PFERR_RSVD_MASK | PFERR_PRESENT_MASK; 439 goto error; 440 } 441 442 walker->ptes[walker->level - 1] = pte; 443 444 /* Convert to ACC_*_MASK flags for struct guest_walker. */ 445 walker->pt_access[walker->level - 1] = FNAME(gpte_access)(pt_access ^ walk_nx_mask); 446 } while (!FNAME(is_last_gpte)(mmu, walker->level, pte)); 447 448 pte_pkey = FNAME(gpte_pkeys)(vcpu, pte); 449 accessed_dirty = have_ad ? pte_access & PT_GUEST_ACCESSED_MASK : 0; 450 451 /* Convert to ACC_*_MASK flags for struct guest_walker. */ 452 walker->pte_access = FNAME(gpte_access)(pte_access ^ walk_nx_mask); 453 errcode = permission_fault(vcpu, mmu, walker->pte_access, pte_pkey, access); 454 if (unlikely(errcode)) 455 goto error; 456 457 gfn = gpte_to_gfn_lvl(pte, walker->level); 458 gfn += (addr & PT_LVL_OFFSET_MASK(walker->level)) >> PAGE_SHIFT; 459 460 if (PTTYPE == 32 && walker->level > PG_LEVEL_4K && is_cpuid_PSE36()) 461 gfn += pse36_gfn_delta(pte); 462 463 real_gpa = kvm_translate_gpa(vcpu, mmu, gfn_to_gpa(gfn), access, &walker->fault); 464 if (real_gpa == UNMAPPED_GVA) 465 return 0; 466 467 walker->gfn = real_gpa >> PAGE_SHIFT; 468 469 if (!write_fault) 470 FNAME(protect_clean_gpte)(mmu, &walker->pte_access, pte); 471 else 472 /* 473 * On a write fault, fold the dirty bit into accessed_dirty. 474 * For modes without A/D bits support accessed_dirty will be 475 * always clear. 476 */ 477 accessed_dirty &= pte >> 478 (PT_GUEST_DIRTY_SHIFT - PT_GUEST_ACCESSED_SHIFT); 479 480 if (unlikely(!accessed_dirty)) { 481 ret = FNAME(update_accessed_dirty_bits)(vcpu, mmu, walker, 482 addr, write_fault); 483 if (unlikely(ret < 0)) 484 goto error; 485 else if (ret) 486 goto retry_walk; 487 } 488 489 pgprintk("%s: pte %llx pte_access %x pt_access %x\n", 490 __func__, (u64)pte, walker->pte_access, 491 walker->pt_access[walker->level - 1]); 492 return 1; 493 494 error: 495 errcode |= write_fault | user_fault; 496 if (fetch_fault && (is_efer_nx(mmu) || is_cr4_smep(mmu))) 497 errcode |= PFERR_FETCH_MASK; 498 499 walker->fault.vector = PF_VECTOR; 500 walker->fault.error_code_valid = true; 501 walker->fault.error_code = errcode; 502 503 #if PTTYPE == PTTYPE_EPT 504 /* 505 * Use PFERR_RSVD_MASK in error_code to to tell if EPT 506 * misconfiguration requires to be injected. The detection is 507 * done by is_rsvd_bits_set() above. 508 * 509 * We set up the value of exit_qualification to inject: 510 * [2:0] - Derive from the access bits. The exit_qualification might be 511 * out of date if it is serving an EPT misconfiguration. 512 * [5:3] - Calculated by the page walk of the guest EPT page tables 513 * [7:8] - Derived from [7:8] of real exit_qualification 514 * 515 * The other bits are set to 0. 516 */ 517 if (!(errcode & PFERR_RSVD_MASK)) { 518 vcpu->arch.exit_qualification &= 0x180; 519 if (write_fault) 520 vcpu->arch.exit_qualification |= EPT_VIOLATION_ACC_WRITE; 521 if (user_fault) 522 vcpu->arch.exit_qualification |= EPT_VIOLATION_ACC_READ; 523 if (fetch_fault) 524 vcpu->arch.exit_qualification |= EPT_VIOLATION_ACC_INSTR; 525 vcpu->arch.exit_qualification |= (pte_access & 0x7) << 3; 526 } 527 #endif 528 walker->fault.address = addr; 529 walker->fault.nested_page_fault = mmu != vcpu->arch.walk_mmu; 530 walker->fault.async_page_fault = false; 531 532 trace_kvm_mmu_walker_error(walker->fault.error_code); 533 return 0; 534 } 535 536 static int FNAME(walk_addr)(struct guest_walker *walker, 537 struct kvm_vcpu *vcpu, gpa_t addr, u64 access) 538 { 539 return FNAME(walk_addr_generic)(walker, vcpu, vcpu->arch.mmu, addr, 540 access); 541 } 542 543 static bool 544 FNAME(prefetch_gpte)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp, 545 u64 *spte, pt_element_t gpte, bool no_dirty_log) 546 { 547 struct kvm_memory_slot *slot; 548 unsigned pte_access; 549 gfn_t gfn; 550 kvm_pfn_t pfn; 551 552 if (FNAME(prefetch_invalid_gpte)(vcpu, sp, spte, gpte)) 553 return false; 554 555 pgprintk("%s: gpte %llx spte %p\n", __func__, (u64)gpte, spte); 556 557 gfn = gpte_to_gfn(gpte); 558 pte_access = sp->role.access & FNAME(gpte_access)(gpte); 559 FNAME(protect_clean_gpte)(vcpu->arch.mmu, &pte_access, gpte); 560 561 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, 562 no_dirty_log && (pte_access & ACC_WRITE_MASK)); 563 if (!slot) 564 return false; 565 566 pfn = gfn_to_pfn_memslot_atomic(slot, gfn); 567 if (is_error_pfn(pfn)) 568 return false; 569 570 mmu_set_spte(vcpu, slot, spte, pte_access, gfn, pfn, NULL); 571 kvm_release_pfn_clean(pfn); 572 return true; 573 } 574 575 static bool FNAME(gpte_changed)(struct kvm_vcpu *vcpu, 576 struct guest_walker *gw, int level) 577 { 578 pt_element_t curr_pte; 579 gpa_t base_gpa, pte_gpa = gw->pte_gpa[level - 1]; 580 u64 mask; 581 int r, index; 582 583 if (level == PG_LEVEL_4K) { 584 mask = PTE_PREFETCH_NUM * sizeof(pt_element_t) - 1; 585 base_gpa = pte_gpa & ~mask; 586 index = (pte_gpa - base_gpa) / sizeof(pt_element_t); 587 588 r = kvm_vcpu_read_guest_atomic(vcpu, base_gpa, 589 gw->prefetch_ptes, sizeof(gw->prefetch_ptes)); 590 curr_pte = gw->prefetch_ptes[index]; 591 } else 592 r = kvm_vcpu_read_guest_atomic(vcpu, pte_gpa, 593 &curr_pte, sizeof(curr_pte)); 594 595 return r || curr_pte != gw->ptes[level - 1]; 596 } 597 598 static void FNAME(pte_prefetch)(struct kvm_vcpu *vcpu, struct guest_walker *gw, 599 u64 *sptep) 600 { 601 struct kvm_mmu_page *sp; 602 pt_element_t *gptep = gw->prefetch_ptes; 603 u64 *spte; 604 int i; 605 606 sp = sptep_to_sp(sptep); 607 608 if (sp->role.level > PG_LEVEL_4K) 609 return; 610 611 /* 612 * If addresses are being invalidated, skip prefetching to avoid 613 * accidentally prefetching those addresses. 614 */ 615 if (unlikely(vcpu->kvm->mmu_notifier_count)) 616 return; 617 618 if (sp->role.direct) 619 return __direct_pte_prefetch(vcpu, sp, sptep); 620 621 i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1); 622 spte = sp->spt + i; 623 624 for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) { 625 if (spte == sptep) 626 continue; 627 628 if (is_shadow_present_pte(*spte)) 629 continue; 630 631 if (!FNAME(prefetch_gpte)(vcpu, sp, spte, gptep[i], true)) 632 break; 633 } 634 } 635 636 /* 637 * Fetch a shadow pte for a specific level in the paging hierarchy. 638 * If the guest tries to write a write-protected page, we need to 639 * emulate this operation, return 1 to indicate this case. 640 */ 641 static int FNAME(fetch)(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault, 642 struct guest_walker *gw) 643 { 644 struct kvm_mmu_page *sp = NULL; 645 struct kvm_shadow_walk_iterator it; 646 unsigned int direct_access, access; 647 int top_level, ret; 648 gfn_t base_gfn = fault->gfn; 649 650 WARN_ON_ONCE(gw->gfn != base_gfn); 651 direct_access = gw->pte_access; 652 653 top_level = vcpu->arch.mmu->root_level; 654 if (top_level == PT32E_ROOT_LEVEL) 655 top_level = PT32_ROOT_LEVEL; 656 /* 657 * Verify that the top-level gpte is still there. Since the page 658 * is a root page, it is either write protected (and cannot be 659 * changed from now on) or it is invalid (in which case, we don't 660 * really care if it changes underneath us after this point). 661 */ 662 if (FNAME(gpte_changed)(vcpu, gw, top_level)) 663 goto out_gpte_changed; 664 665 if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root.hpa))) 666 goto out_gpte_changed; 667 668 for (shadow_walk_init(&it, vcpu, fault->addr); 669 shadow_walk_okay(&it) && it.level > gw->level; 670 shadow_walk_next(&it)) { 671 gfn_t table_gfn; 672 673 clear_sp_write_flooding_count(it.sptep); 674 drop_large_spte(vcpu, it.sptep); 675 676 sp = NULL; 677 if (!is_shadow_present_pte(*it.sptep)) { 678 table_gfn = gw->table_gfn[it.level - 2]; 679 access = gw->pt_access[it.level - 2]; 680 sp = kvm_mmu_get_page(vcpu, table_gfn, fault->addr, 681 it.level-1, false, access); 682 /* 683 * We must synchronize the pagetable before linking it 684 * because the guest doesn't need to flush tlb when 685 * the gpte is changed from non-present to present. 686 * Otherwise, the guest may use the wrong mapping. 687 * 688 * For PG_LEVEL_4K, kvm_mmu_get_page() has already 689 * synchronized it transiently via kvm_sync_page(). 690 * 691 * For higher level pagetable, we synchronize it via 692 * the slower mmu_sync_children(). If it needs to 693 * break, some progress has been made; return 694 * RET_PF_RETRY and retry on the next #PF. 695 * KVM_REQ_MMU_SYNC is not necessary but it 696 * expedites the process. 697 */ 698 if (sp->unsync_children && 699 mmu_sync_children(vcpu, sp, false)) 700 return RET_PF_RETRY; 701 } 702 703 /* 704 * Verify that the gpte in the page we've just write 705 * protected is still there. 706 */ 707 if (FNAME(gpte_changed)(vcpu, gw, it.level - 1)) 708 goto out_gpte_changed; 709 710 if (sp) 711 link_shadow_page(vcpu, it.sptep, sp); 712 } 713 714 kvm_mmu_hugepage_adjust(vcpu, fault); 715 716 trace_kvm_mmu_spte_requested(fault); 717 718 for (; shadow_walk_okay(&it); shadow_walk_next(&it)) { 719 clear_sp_write_flooding_count(it.sptep); 720 721 /* 722 * We cannot overwrite existing page tables with an NX 723 * large page, as the leaf could be executable. 724 */ 725 if (fault->nx_huge_page_workaround_enabled) 726 disallowed_hugepage_adjust(fault, *it.sptep, it.level); 727 728 base_gfn = fault->gfn & ~(KVM_PAGES_PER_HPAGE(it.level) - 1); 729 if (it.level == fault->goal_level) 730 break; 731 732 validate_direct_spte(vcpu, it.sptep, direct_access); 733 734 drop_large_spte(vcpu, it.sptep); 735 736 if (!is_shadow_present_pte(*it.sptep)) { 737 sp = kvm_mmu_get_page(vcpu, base_gfn, fault->addr, 738 it.level - 1, true, direct_access); 739 link_shadow_page(vcpu, it.sptep, sp); 740 if (fault->huge_page_disallowed && 741 fault->req_level >= it.level) 742 account_huge_nx_page(vcpu->kvm, sp); 743 } 744 } 745 746 if (WARN_ON_ONCE(it.level != fault->goal_level)) 747 return -EFAULT; 748 749 ret = mmu_set_spte(vcpu, fault->slot, it.sptep, gw->pte_access, 750 base_gfn, fault->pfn, fault); 751 if (ret == RET_PF_SPURIOUS) 752 return ret; 753 754 FNAME(pte_prefetch)(vcpu, gw, it.sptep); 755 ++vcpu->stat.pf_fixed; 756 return ret; 757 758 out_gpte_changed: 759 return RET_PF_RETRY; 760 } 761 762 /* 763 * To see whether the mapped gfn can write its page table in the current 764 * mapping. 765 * 766 * It is the helper function of FNAME(page_fault). When guest uses large page 767 * size to map the writable gfn which is used as current page table, we should 768 * force kvm to use small page size to map it because new shadow page will be 769 * created when kvm establishes shadow page table that stop kvm using large 770 * page size. Do it early can avoid unnecessary #PF and emulation. 771 * 772 * @write_fault_to_shadow_pgtable will return true if the fault gfn is 773 * currently used as its page table. 774 * 775 * Note: the PDPT page table is not checked for PAE-32 bit guest. It is ok 776 * since the PDPT is always shadowed, that means, we can not use large page 777 * size to map the gfn which is used as PDPT. 778 */ 779 static bool 780 FNAME(is_self_change_mapping)(struct kvm_vcpu *vcpu, 781 struct guest_walker *walker, bool user_fault, 782 bool *write_fault_to_shadow_pgtable) 783 { 784 int level; 785 gfn_t mask = ~(KVM_PAGES_PER_HPAGE(walker->level) - 1); 786 bool self_changed = false; 787 788 if (!(walker->pte_access & ACC_WRITE_MASK || 789 (!is_cr0_wp(vcpu->arch.mmu) && !user_fault))) 790 return false; 791 792 for (level = walker->level; level <= walker->max_level; level++) { 793 gfn_t gfn = walker->gfn ^ walker->table_gfn[level - 1]; 794 795 self_changed |= !(gfn & mask); 796 *write_fault_to_shadow_pgtable |= !gfn; 797 } 798 799 return self_changed; 800 } 801 802 /* 803 * Page fault handler. There are several causes for a page fault: 804 * - there is no shadow pte for the guest pte 805 * - write access through a shadow pte marked read only so that we can set 806 * the dirty bit 807 * - write access to a shadow pte marked read only so we can update the page 808 * dirty bitmap, when userspace requests it 809 * - mmio access; in this case we will never install a present shadow pte 810 * - normal guest page fault due to the guest pte marked not present, not 811 * writable, or not executable 812 * 813 * Returns: 1 if we need to emulate the instruction, 0 otherwise, or 814 * a negative value on error. 815 */ 816 static int FNAME(page_fault)(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault) 817 { 818 struct guest_walker walker; 819 int r; 820 unsigned long mmu_seq; 821 bool is_self_change_mapping; 822 823 pgprintk("%s: addr %lx err %x\n", __func__, fault->addr, fault->error_code); 824 WARN_ON_ONCE(fault->is_tdp); 825 826 /* 827 * Look up the guest pte for the faulting address. 828 * If PFEC.RSVD is set, this is a shadow page fault. 829 * The bit needs to be cleared before walking guest page tables. 830 */ 831 r = FNAME(walk_addr)(&walker, vcpu, fault->addr, 832 fault->error_code & ~PFERR_RSVD_MASK); 833 834 /* 835 * The page is not mapped by the guest. Let the guest handle it. 836 */ 837 if (!r) { 838 pgprintk("%s: guest page fault\n", __func__); 839 if (!fault->prefetch) 840 kvm_inject_emulated_page_fault(vcpu, &walker.fault); 841 842 return RET_PF_RETRY; 843 } 844 845 fault->gfn = walker.gfn; 846 fault->slot = kvm_vcpu_gfn_to_memslot(vcpu, fault->gfn); 847 848 if (page_fault_handle_page_track(vcpu, fault)) { 849 shadow_page_table_clear_flood(vcpu, fault->addr); 850 return RET_PF_EMULATE; 851 } 852 853 r = mmu_topup_memory_caches(vcpu, true); 854 if (r) 855 return r; 856 857 vcpu->arch.write_fault_to_shadow_pgtable = false; 858 859 is_self_change_mapping = FNAME(is_self_change_mapping)(vcpu, 860 &walker, fault->user, &vcpu->arch.write_fault_to_shadow_pgtable); 861 862 if (is_self_change_mapping) 863 fault->max_level = PG_LEVEL_4K; 864 else 865 fault->max_level = walker.level; 866 867 mmu_seq = vcpu->kvm->mmu_notifier_seq; 868 smp_rmb(); 869 870 if (kvm_faultin_pfn(vcpu, fault, &r)) 871 return r; 872 873 if (handle_abnormal_pfn(vcpu, fault, walker.pte_access, &r)) 874 return r; 875 876 /* 877 * Do not change pte_access if the pfn is a mmio page, otherwise 878 * we will cache the incorrect access into mmio spte. 879 */ 880 if (fault->write && !(walker.pte_access & ACC_WRITE_MASK) && 881 !is_cr0_wp(vcpu->arch.mmu) && !fault->user && fault->slot) { 882 walker.pte_access |= ACC_WRITE_MASK; 883 walker.pte_access &= ~ACC_USER_MASK; 884 885 /* 886 * If we converted a user page to a kernel page, 887 * so that the kernel can write to it when cr0.wp=0, 888 * then we should prevent the kernel from executing it 889 * if SMEP is enabled. 890 */ 891 if (is_cr4_smep(vcpu->arch.mmu)) 892 walker.pte_access &= ~ACC_EXEC_MASK; 893 } 894 895 r = RET_PF_RETRY; 896 write_lock(&vcpu->kvm->mmu_lock); 897 898 if (is_page_fault_stale(vcpu, fault, mmu_seq)) 899 goto out_unlock; 900 901 r = make_mmu_pages_available(vcpu); 902 if (r) 903 goto out_unlock; 904 r = FNAME(fetch)(vcpu, fault, &walker); 905 906 out_unlock: 907 write_unlock(&vcpu->kvm->mmu_lock); 908 kvm_release_pfn_clean(fault->pfn); 909 return r; 910 } 911 912 static gpa_t FNAME(get_level1_sp_gpa)(struct kvm_mmu_page *sp) 913 { 914 int offset = 0; 915 916 WARN_ON(sp->role.level != PG_LEVEL_4K); 917 918 if (PTTYPE == 32) 919 offset = sp->role.quadrant << PT64_LEVEL_BITS; 920 921 return gfn_to_gpa(sp->gfn) + offset * sizeof(pt_element_t); 922 } 923 924 static void FNAME(invlpg)(struct kvm_vcpu *vcpu, gva_t gva, hpa_t root_hpa) 925 { 926 struct kvm_shadow_walk_iterator iterator; 927 struct kvm_mmu_page *sp; 928 u64 old_spte; 929 int level; 930 u64 *sptep; 931 932 vcpu_clear_mmio_info(vcpu, gva); 933 934 /* 935 * No need to check return value here, rmap_can_add() can 936 * help us to skip pte prefetch later. 937 */ 938 mmu_topup_memory_caches(vcpu, true); 939 940 if (!VALID_PAGE(root_hpa)) { 941 WARN_ON(1); 942 return; 943 } 944 945 write_lock(&vcpu->kvm->mmu_lock); 946 for_each_shadow_entry_using_root(vcpu, root_hpa, gva, iterator) { 947 level = iterator.level; 948 sptep = iterator.sptep; 949 950 sp = sptep_to_sp(sptep); 951 old_spte = *sptep; 952 if (is_last_spte(old_spte, level)) { 953 pt_element_t gpte; 954 gpa_t pte_gpa; 955 956 if (!sp->unsync) 957 break; 958 959 pte_gpa = FNAME(get_level1_sp_gpa)(sp); 960 pte_gpa += (sptep - sp->spt) * sizeof(pt_element_t); 961 962 mmu_page_zap_pte(vcpu->kvm, sp, sptep, NULL); 963 if (is_shadow_present_pte(old_spte)) 964 kvm_flush_remote_tlbs_with_address(vcpu->kvm, 965 sp->gfn, KVM_PAGES_PER_HPAGE(sp->role.level)); 966 967 if (!rmap_can_add(vcpu)) 968 break; 969 970 if (kvm_vcpu_read_guest_atomic(vcpu, pte_gpa, &gpte, 971 sizeof(pt_element_t))) 972 break; 973 974 FNAME(prefetch_gpte)(vcpu, sp, sptep, gpte, false); 975 } 976 977 if (!sp->unsync_children) 978 break; 979 } 980 write_unlock(&vcpu->kvm->mmu_lock); 981 } 982 983 /* Note, @addr is a GPA when gva_to_gpa() translates an L2 GPA to an L1 GPA. */ 984 static gpa_t FNAME(gva_to_gpa)(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, 985 gpa_t addr, u64 access, 986 struct x86_exception *exception) 987 { 988 struct guest_walker walker; 989 gpa_t gpa = UNMAPPED_GVA; 990 int r; 991 992 #ifndef CONFIG_X86_64 993 /* A 64-bit GVA should be impossible on 32-bit KVM. */ 994 WARN_ON_ONCE((addr >> 32) && mmu == vcpu->arch.walk_mmu); 995 #endif 996 997 r = FNAME(walk_addr_generic)(&walker, vcpu, mmu, addr, access); 998 999 if (r) { 1000 gpa = gfn_to_gpa(walker.gfn); 1001 gpa |= addr & ~PAGE_MASK; 1002 } else if (exception) 1003 *exception = walker.fault; 1004 1005 return gpa; 1006 } 1007 1008 /* 1009 * Using the cached information from sp->gfns is safe because: 1010 * - The spte has a reference to the struct page, so the pfn for a given gfn 1011 * can't change unless all sptes pointing to it are nuked first. 1012 * 1013 * Returns 1014 * < 0: the sp should be zapped 1015 * 0: the sp is synced and no tlb flushing is required 1016 * > 0: the sp is synced and tlb flushing is required 1017 */ 1018 static int FNAME(sync_page)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp) 1019 { 1020 union kvm_mmu_page_role mmu_role = vcpu->arch.mmu->mmu_role.base; 1021 int i; 1022 bool host_writable; 1023 gpa_t first_pte_gpa; 1024 bool flush = false; 1025 1026 /* 1027 * Ignore various flags when verifying that it's safe to sync a shadow 1028 * page using the current MMU context. 1029 * 1030 * - level: not part of the overall MMU role and will never match as the MMU's 1031 * level tracks the root level 1032 * - access: updated based on the new guest PTE 1033 * - quadrant: not part of the overall MMU role (similar to level) 1034 */ 1035 const union kvm_mmu_page_role sync_role_ign = { 1036 .level = 0xf, 1037 .access = 0x7, 1038 .quadrant = 0x3, 1039 }; 1040 1041 /* 1042 * Direct pages can never be unsync, and KVM should never attempt to 1043 * sync a shadow page for a different MMU context, e.g. if the role 1044 * differs then the memslot lookup (SMM vs. non-SMM) will be bogus, the 1045 * reserved bits checks will be wrong, etc... 1046 */ 1047 if (WARN_ON_ONCE(sp->role.direct || 1048 (sp->role.word ^ mmu_role.word) & ~sync_role_ign.word)) 1049 return -1; 1050 1051 first_pte_gpa = FNAME(get_level1_sp_gpa)(sp); 1052 1053 for (i = 0; i < PT64_ENT_PER_PAGE; i++) { 1054 u64 *sptep, spte; 1055 struct kvm_memory_slot *slot; 1056 unsigned pte_access; 1057 pt_element_t gpte; 1058 gpa_t pte_gpa; 1059 gfn_t gfn; 1060 1061 if (!sp->spt[i]) 1062 continue; 1063 1064 pte_gpa = first_pte_gpa + i * sizeof(pt_element_t); 1065 1066 if (kvm_vcpu_read_guest_atomic(vcpu, pte_gpa, &gpte, 1067 sizeof(pt_element_t))) 1068 return -1; 1069 1070 if (FNAME(prefetch_invalid_gpte)(vcpu, sp, &sp->spt[i], gpte)) { 1071 flush = true; 1072 continue; 1073 } 1074 1075 gfn = gpte_to_gfn(gpte); 1076 pte_access = sp->role.access; 1077 pte_access &= FNAME(gpte_access)(gpte); 1078 FNAME(protect_clean_gpte)(vcpu->arch.mmu, &pte_access, gpte); 1079 1080 if (sync_mmio_spte(vcpu, &sp->spt[i], gfn, pte_access)) 1081 continue; 1082 1083 if (gfn != sp->gfns[i]) { 1084 drop_spte(vcpu->kvm, &sp->spt[i]); 1085 flush = true; 1086 continue; 1087 } 1088 1089 sptep = &sp->spt[i]; 1090 spte = *sptep; 1091 host_writable = spte & shadow_host_writable_mask; 1092 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 1093 make_spte(vcpu, sp, slot, pte_access, gfn, 1094 spte_to_pfn(spte), spte, true, false, 1095 host_writable, &spte); 1096 1097 flush |= mmu_spte_update(sptep, spte); 1098 } 1099 1100 return flush; 1101 } 1102 1103 #undef pt_element_t 1104 #undef guest_walker 1105 #undef FNAME 1106 #undef PT_BASE_ADDR_MASK 1107 #undef PT_INDEX 1108 #undef PT_LVL_ADDR_MASK 1109 #undef PT_LVL_OFFSET_MASK 1110 #undef PT_LEVEL_BITS 1111 #undef PT_MAX_FULL_LEVELS 1112 #undef gpte_to_gfn 1113 #undef gpte_to_gfn_lvl 1114 #undef CMPXCHG 1115 #undef PT_GUEST_ACCESSED_MASK 1116 #undef PT_GUEST_DIRTY_MASK 1117 #undef PT_GUEST_DIRTY_SHIFT 1118 #undef PT_GUEST_ACCESSED_SHIFT 1119 #undef PT_HAVE_ACCESSED_DIRTY 1120