xref: /openbmc/linux/arch/x86/kvm/mmu/paging_tmpl.h (revision f94059f8)
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This module enables machines with Intel VT-x extensions to run virtual
6  * machines without emulation or binary translation.
7  *
8  * MMU support
9  *
10  * Copyright (C) 2006 Qumranet, Inc.
11  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
12  *
13  * Authors:
14  *   Yaniv Kamay  <yaniv@qumranet.com>
15  *   Avi Kivity   <avi@qumranet.com>
16  */
17 
18 /*
19  * We need the mmu code to access both 32-bit and 64-bit guest ptes,
20  * so the code in this file is compiled twice, once per pte size.
21  */
22 
23 #if PTTYPE == 64
24 	#define pt_element_t u64
25 	#define guest_walker guest_walker64
26 	#define FNAME(name) paging##64_##name
27 	#define PT_BASE_ADDR_MASK GUEST_PT64_BASE_ADDR_MASK
28 	#define PT_LVL_ADDR_MASK(lvl) PT64_LVL_ADDR_MASK(lvl)
29 	#define PT_LVL_OFFSET_MASK(lvl) PT64_LVL_OFFSET_MASK(lvl)
30 	#define PT_INDEX(addr, level) PT64_INDEX(addr, level)
31 	#define PT_LEVEL_BITS PT64_LEVEL_BITS
32 	#define PT_GUEST_DIRTY_SHIFT PT_DIRTY_SHIFT
33 	#define PT_GUEST_ACCESSED_SHIFT PT_ACCESSED_SHIFT
34 	#define PT_HAVE_ACCESSED_DIRTY(mmu) true
35 	#ifdef CONFIG_X86_64
36 	#define PT_MAX_FULL_LEVELS PT64_ROOT_MAX_LEVEL
37 	#define CMPXCHG "cmpxchgq"
38 	#else
39 	#define PT_MAX_FULL_LEVELS 2
40 	#endif
41 #elif PTTYPE == 32
42 	#define pt_element_t u32
43 	#define guest_walker guest_walker32
44 	#define FNAME(name) paging##32_##name
45 	#define PT_BASE_ADDR_MASK PT32_BASE_ADDR_MASK
46 	#define PT_LVL_ADDR_MASK(lvl) PT32_LVL_ADDR_MASK(lvl)
47 	#define PT_LVL_OFFSET_MASK(lvl) PT32_LVL_OFFSET_MASK(lvl)
48 	#define PT_INDEX(addr, level) PT32_INDEX(addr, level)
49 	#define PT_LEVEL_BITS PT32_LEVEL_BITS
50 	#define PT_MAX_FULL_LEVELS 2
51 	#define PT_GUEST_DIRTY_SHIFT PT_DIRTY_SHIFT
52 	#define PT_GUEST_ACCESSED_SHIFT PT_ACCESSED_SHIFT
53 	#define PT_HAVE_ACCESSED_DIRTY(mmu) true
54 	#define CMPXCHG "cmpxchgl"
55 #elif PTTYPE == PTTYPE_EPT
56 	#define pt_element_t u64
57 	#define guest_walker guest_walkerEPT
58 	#define FNAME(name) ept_##name
59 	#define PT_BASE_ADDR_MASK GUEST_PT64_BASE_ADDR_MASK
60 	#define PT_LVL_ADDR_MASK(lvl) PT64_LVL_ADDR_MASK(lvl)
61 	#define PT_LVL_OFFSET_MASK(lvl) PT64_LVL_OFFSET_MASK(lvl)
62 	#define PT_INDEX(addr, level) PT64_INDEX(addr, level)
63 	#define PT_LEVEL_BITS PT64_LEVEL_BITS
64 	#define PT_GUEST_DIRTY_SHIFT 9
65 	#define PT_GUEST_ACCESSED_SHIFT 8
66 	#define PT_HAVE_ACCESSED_DIRTY(mmu) (!(mmu)->cpu_role.base.ad_disabled)
67 	#ifdef CONFIG_X86_64
68 	#define CMPXCHG "cmpxchgq"
69 	#endif
70 	#define PT_MAX_FULL_LEVELS PT64_ROOT_MAX_LEVEL
71 #else
72 	#error Invalid PTTYPE value
73 #endif
74 
75 #define PT_GUEST_DIRTY_MASK    (1 << PT_GUEST_DIRTY_SHIFT)
76 #define PT_GUEST_ACCESSED_MASK (1 << PT_GUEST_ACCESSED_SHIFT)
77 
78 #define gpte_to_gfn_lvl FNAME(gpte_to_gfn_lvl)
79 #define gpte_to_gfn(pte) gpte_to_gfn_lvl((pte), PG_LEVEL_4K)
80 
81 /*
82  * The guest_walker structure emulates the behavior of the hardware page
83  * table walker.
84  */
85 struct guest_walker {
86 	int level;
87 	unsigned max_level;
88 	gfn_t table_gfn[PT_MAX_FULL_LEVELS];
89 	pt_element_t ptes[PT_MAX_FULL_LEVELS];
90 	pt_element_t prefetch_ptes[PTE_PREFETCH_NUM];
91 	gpa_t pte_gpa[PT_MAX_FULL_LEVELS];
92 	pt_element_t __user *ptep_user[PT_MAX_FULL_LEVELS];
93 	bool pte_writable[PT_MAX_FULL_LEVELS];
94 	unsigned int pt_access[PT_MAX_FULL_LEVELS];
95 	unsigned int pte_access;
96 	gfn_t gfn;
97 	struct x86_exception fault;
98 };
99 
100 static gfn_t gpte_to_gfn_lvl(pt_element_t gpte, int lvl)
101 {
102 	return (gpte & PT_LVL_ADDR_MASK(lvl)) >> PAGE_SHIFT;
103 }
104 
105 static inline void FNAME(protect_clean_gpte)(struct kvm_mmu *mmu, unsigned *access,
106 					     unsigned gpte)
107 {
108 	unsigned mask;
109 
110 	/* dirty bit is not supported, so no need to track it */
111 	if (!PT_HAVE_ACCESSED_DIRTY(mmu))
112 		return;
113 
114 	BUILD_BUG_ON(PT_WRITABLE_MASK != ACC_WRITE_MASK);
115 
116 	mask = (unsigned)~ACC_WRITE_MASK;
117 	/* Allow write access to dirty gptes */
118 	mask |= (gpte >> (PT_GUEST_DIRTY_SHIFT - PT_WRITABLE_SHIFT)) &
119 		PT_WRITABLE_MASK;
120 	*access &= mask;
121 }
122 
123 static inline int FNAME(is_present_gpte)(unsigned long pte)
124 {
125 #if PTTYPE != PTTYPE_EPT
126 	return pte & PT_PRESENT_MASK;
127 #else
128 	return pte & 7;
129 #endif
130 }
131 
132 static bool FNAME(is_bad_mt_xwr)(struct rsvd_bits_validate *rsvd_check, u64 gpte)
133 {
134 #if PTTYPE != PTTYPE_EPT
135 	return false;
136 #else
137 	return __is_bad_mt_xwr(rsvd_check, gpte);
138 #endif
139 }
140 
141 static bool FNAME(is_rsvd_bits_set)(struct kvm_mmu *mmu, u64 gpte, int level)
142 {
143 	return __is_rsvd_bits_set(&mmu->guest_rsvd_check, gpte, level) ||
144 	       FNAME(is_bad_mt_xwr)(&mmu->guest_rsvd_check, gpte);
145 }
146 
147 static bool FNAME(prefetch_invalid_gpte)(struct kvm_vcpu *vcpu,
148 				  struct kvm_mmu_page *sp, u64 *spte,
149 				  u64 gpte)
150 {
151 	if (!FNAME(is_present_gpte)(gpte))
152 		goto no_present;
153 
154 	/* Prefetch only accessed entries (unless A/D bits are disabled). */
155 	if (PT_HAVE_ACCESSED_DIRTY(vcpu->arch.mmu) &&
156 	    !(gpte & PT_GUEST_ACCESSED_MASK))
157 		goto no_present;
158 
159 	if (FNAME(is_rsvd_bits_set)(vcpu->arch.mmu, gpte, PG_LEVEL_4K))
160 		goto no_present;
161 
162 	return false;
163 
164 no_present:
165 	drop_spte(vcpu->kvm, spte);
166 	return true;
167 }
168 
169 /*
170  * For PTTYPE_EPT, a page table can be executable but not readable
171  * on supported processors. Therefore, set_spte does not automatically
172  * set bit 0 if execute only is supported. Here, we repurpose ACC_USER_MASK
173  * to signify readability since it isn't used in the EPT case
174  */
175 static inline unsigned FNAME(gpte_access)(u64 gpte)
176 {
177 	unsigned access;
178 #if PTTYPE == PTTYPE_EPT
179 	access = ((gpte & VMX_EPT_WRITABLE_MASK) ? ACC_WRITE_MASK : 0) |
180 		((gpte & VMX_EPT_EXECUTABLE_MASK) ? ACC_EXEC_MASK : 0) |
181 		((gpte & VMX_EPT_READABLE_MASK) ? ACC_USER_MASK : 0);
182 #else
183 	BUILD_BUG_ON(ACC_EXEC_MASK != PT_PRESENT_MASK);
184 	BUILD_BUG_ON(ACC_EXEC_MASK != 1);
185 	access = gpte & (PT_WRITABLE_MASK | PT_USER_MASK | PT_PRESENT_MASK);
186 	/* Combine NX with P (which is set here) to get ACC_EXEC_MASK.  */
187 	access ^= (gpte >> PT64_NX_SHIFT);
188 #endif
189 
190 	return access;
191 }
192 
193 static int FNAME(update_accessed_dirty_bits)(struct kvm_vcpu *vcpu,
194 					     struct kvm_mmu *mmu,
195 					     struct guest_walker *walker,
196 					     gpa_t addr, int write_fault)
197 {
198 	unsigned level, index;
199 	pt_element_t pte, orig_pte;
200 	pt_element_t __user *ptep_user;
201 	gfn_t table_gfn;
202 	int ret;
203 
204 	/* dirty/accessed bits are not supported, so no need to update them */
205 	if (!PT_HAVE_ACCESSED_DIRTY(mmu))
206 		return 0;
207 
208 	for (level = walker->max_level; level >= walker->level; --level) {
209 		pte = orig_pte = walker->ptes[level - 1];
210 		table_gfn = walker->table_gfn[level - 1];
211 		ptep_user = walker->ptep_user[level - 1];
212 		index = offset_in_page(ptep_user) / sizeof(pt_element_t);
213 		if (!(pte & PT_GUEST_ACCESSED_MASK)) {
214 			trace_kvm_mmu_set_accessed_bit(table_gfn, index, sizeof(pte));
215 			pte |= PT_GUEST_ACCESSED_MASK;
216 		}
217 		if (level == walker->level && write_fault &&
218 				!(pte & PT_GUEST_DIRTY_MASK)) {
219 			trace_kvm_mmu_set_dirty_bit(table_gfn, index, sizeof(pte));
220 #if PTTYPE == PTTYPE_EPT
221 			if (kvm_x86_ops.nested_ops->write_log_dirty(vcpu, addr))
222 				return -EINVAL;
223 #endif
224 			pte |= PT_GUEST_DIRTY_MASK;
225 		}
226 		if (pte == orig_pte)
227 			continue;
228 
229 		/*
230 		 * If the slot is read-only, simply do not process the accessed
231 		 * and dirty bits.  This is the correct thing to do if the slot
232 		 * is ROM, and page tables in read-as-ROM/write-as-MMIO slots
233 		 * are only supported if the accessed and dirty bits are already
234 		 * set in the ROM (so that MMIO writes are never needed).
235 		 *
236 		 * Note that NPT does not allow this at all and faults, since
237 		 * it always wants nested page table entries for the guest
238 		 * page tables to be writable.  And EPT works but will simply
239 		 * overwrite the read-only memory to set the accessed and dirty
240 		 * bits.
241 		 */
242 		if (unlikely(!walker->pte_writable[level - 1]))
243 			continue;
244 
245 		ret = __try_cmpxchg_user(ptep_user, &orig_pte, pte, fault);
246 		if (ret)
247 			return ret;
248 
249 		kvm_vcpu_mark_page_dirty(vcpu, table_gfn);
250 		walker->ptes[level - 1] = pte;
251 	}
252 	return 0;
253 }
254 
255 static inline unsigned FNAME(gpte_pkeys)(struct kvm_vcpu *vcpu, u64 gpte)
256 {
257 	unsigned pkeys = 0;
258 #if PTTYPE == 64
259 	pte_t pte = {.pte = gpte};
260 
261 	pkeys = pte_flags_pkey(pte_flags(pte));
262 #endif
263 	return pkeys;
264 }
265 
266 static inline bool FNAME(is_last_gpte)(struct kvm_mmu *mmu,
267 				       unsigned int level, unsigned int gpte)
268 {
269 	/*
270 	 * For EPT and PAE paging (both variants), bit 7 is either reserved at
271 	 * all level or indicates a huge page (ignoring CR3/EPTP).  In either
272 	 * case, bit 7 being set terminates the walk.
273 	 */
274 #if PTTYPE == 32
275 	/*
276 	 * 32-bit paging requires special handling because bit 7 is ignored if
277 	 * CR4.PSE=0, not reserved.  Clear bit 7 in the gpte if the level is
278 	 * greater than the last level for which bit 7 is the PAGE_SIZE bit.
279 	 *
280 	 * The RHS has bit 7 set iff level < (2 + PSE).  If it is clear, bit 7
281 	 * is not reserved and does not indicate a large page at this level,
282 	 * so clear PT_PAGE_SIZE_MASK in gpte if that is the case.
283 	 */
284 	gpte &= level - (PT32_ROOT_LEVEL + mmu->cpu_role.ext.cr4_pse);
285 #endif
286 	/*
287 	 * PG_LEVEL_4K always terminates.  The RHS has bit 7 set
288 	 * iff level <= PG_LEVEL_4K, which for our purpose means
289 	 * level == PG_LEVEL_4K; set PT_PAGE_SIZE_MASK in gpte then.
290 	 */
291 	gpte |= level - PG_LEVEL_4K - 1;
292 
293 	return gpte & PT_PAGE_SIZE_MASK;
294 }
295 /*
296  * Fetch a guest pte for a guest virtual address, or for an L2's GPA.
297  */
298 static int FNAME(walk_addr_generic)(struct guest_walker *walker,
299 				    struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
300 				    gpa_t addr, u64 access)
301 {
302 	int ret;
303 	pt_element_t pte;
304 	pt_element_t __user *ptep_user;
305 	gfn_t table_gfn;
306 	u64 pt_access, pte_access;
307 	unsigned index, accessed_dirty, pte_pkey;
308 	u64 nested_access;
309 	gpa_t pte_gpa;
310 	bool have_ad;
311 	int offset;
312 	u64 walk_nx_mask = 0;
313 	const int write_fault = access & PFERR_WRITE_MASK;
314 	const int user_fault  = access & PFERR_USER_MASK;
315 	const int fetch_fault = access & PFERR_FETCH_MASK;
316 	u16 errcode = 0;
317 	gpa_t real_gpa;
318 	gfn_t gfn;
319 
320 	trace_kvm_mmu_pagetable_walk(addr, access);
321 retry_walk:
322 	walker->level = mmu->cpu_role.base.level;
323 	pte           = mmu->get_guest_pgd(vcpu);
324 	have_ad       = PT_HAVE_ACCESSED_DIRTY(mmu);
325 
326 #if PTTYPE == 64
327 	walk_nx_mask = 1ULL << PT64_NX_SHIFT;
328 	if (walker->level == PT32E_ROOT_LEVEL) {
329 		pte = mmu->get_pdptr(vcpu, (addr >> 30) & 3);
330 		trace_kvm_mmu_paging_element(pte, walker->level);
331 		if (!FNAME(is_present_gpte)(pte))
332 			goto error;
333 		--walker->level;
334 	}
335 #endif
336 	walker->max_level = walker->level;
337 	ASSERT(!(is_long_mode(vcpu) && !is_pae(vcpu)));
338 
339 	/*
340 	 * FIXME: on Intel processors, loads of the PDPTE registers for PAE paging
341 	 * by the MOV to CR instruction are treated as reads and do not cause the
342 	 * processor to set the dirty flag in any EPT paging-structure entry.
343 	 */
344 	nested_access = (have_ad ? PFERR_WRITE_MASK : 0) | PFERR_USER_MASK;
345 
346 	pte_access = ~0;
347 	++walker->level;
348 
349 	do {
350 		unsigned long host_addr;
351 
352 		pt_access = pte_access;
353 		--walker->level;
354 
355 		index = PT_INDEX(addr, walker->level);
356 		table_gfn = gpte_to_gfn(pte);
357 		offset    = index * sizeof(pt_element_t);
358 		pte_gpa   = gfn_to_gpa(table_gfn) + offset;
359 
360 		BUG_ON(walker->level < 1);
361 		walker->table_gfn[walker->level - 1] = table_gfn;
362 		walker->pte_gpa[walker->level - 1] = pte_gpa;
363 
364 		real_gpa = kvm_translate_gpa(vcpu, mmu, gfn_to_gpa(table_gfn),
365 					     nested_access, &walker->fault);
366 
367 		/*
368 		 * FIXME: This can happen if emulation (for of an INS/OUTS
369 		 * instruction) triggers a nested page fault.  The exit
370 		 * qualification / exit info field will incorrectly have
371 		 * "guest page access" as the nested page fault's cause,
372 		 * instead of "guest page structure access".  To fix this,
373 		 * the x86_exception struct should be augmented with enough
374 		 * information to fix the exit_qualification or exit_info_1
375 		 * fields.
376 		 */
377 		if (unlikely(real_gpa == UNMAPPED_GVA))
378 			return 0;
379 
380 		host_addr = kvm_vcpu_gfn_to_hva_prot(vcpu, gpa_to_gfn(real_gpa),
381 					    &walker->pte_writable[walker->level - 1]);
382 		if (unlikely(kvm_is_error_hva(host_addr)))
383 			goto error;
384 
385 		ptep_user = (pt_element_t __user *)((void *)host_addr + offset);
386 		if (unlikely(__get_user(pte, ptep_user)))
387 			goto error;
388 		walker->ptep_user[walker->level - 1] = ptep_user;
389 
390 		trace_kvm_mmu_paging_element(pte, walker->level);
391 
392 		/*
393 		 * Inverting the NX it lets us AND it like other
394 		 * permission bits.
395 		 */
396 		pte_access = pt_access & (pte ^ walk_nx_mask);
397 
398 		if (unlikely(!FNAME(is_present_gpte)(pte)))
399 			goto error;
400 
401 		if (unlikely(FNAME(is_rsvd_bits_set)(mmu, pte, walker->level))) {
402 			errcode = PFERR_RSVD_MASK | PFERR_PRESENT_MASK;
403 			goto error;
404 		}
405 
406 		walker->ptes[walker->level - 1] = pte;
407 
408 		/* Convert to ACC_*_MASK flags for struct guest_walker.  */
409 		walker->pt_access[walker->level - 1] = FNAME(gpte_access)(pt_access ^ walk_nx_mask);
410 	} while (!FNAME(is_last_gpte)(mmu, walker->level, pte));
411 
412 	pte_pkey = FNAME(gpte_pkeys)(vcpu, pte);
413 	accessed_dirty = have_ad ? pte_access & PT_GUEST_ACCESSED_MASK : 0;
414 
415 	/* Convert to ACC_*_MASK flags for struct guest_walker.  */
416 	walker->pte_access = FNAME(gpte_access)(pte_access ^ walk_nx_mask);
417 	errcode = permission_fault(vcpu, mmu, walker->pte_access, pte_pkey, access);
418 	if (unlikely(errcode))
419 		goto error;
420 
421 	gfn = gpte_to_gfn_lvl(pte, walker->level);
422 	gfn += (addr & PT_LVL_OFFSET_MASK(walker->level)) >> PAGE_SHIFT;
423 
424 	if (PTTYPE == 32 && walker->level > PG_LEVEL_4K && is_cpuid_PSE36())
425 		gfn += pse36_gfn_delta(pte);
426 
427 	real_gpa = kvm_translate_gpa(vcpu, mmu, gfn_to_gpa(gfn), access, &walker->fault);
428 	if (real_gpa == UNMAPPED_GVA)
429 		return 0;
430 
431 	walker->gfn = real_gpa >> PAGE_SHIFT;
432 
433 	if (!write_fault)
434 		FNAME(protect_clean_gpte)(mmu, &walker->pte_access, pte);
435 	else
436 		/*
437 		 * On a write fault, fold the dirty bit into accessed_dirty.
438 		 * For modes without A/D bits support accessed_dirty will be
439 		 * always clear.
440 		 */
441 		accessed_dirty &= pte >>
442 			(PT_GUEST_DIRTY_SHIFT - PT_GUEST_ACCESSED_SHIFT);
443 
444 	if (unlikely(!accessed_dirty)) {
445 		ret = FNAME(update_accessed_dirty_bits)(vcpu, mmu, walker,
446 							addr, write_fault);
447 		if (unlikely(ret < 0))
448 			goto error;
449 		else if (ret)
450 			goto retry_walk;
451 	}
452 
453 	pgprintk("%s: pte %llx pte_access %x pt_access %x\n",
454 		 __func__, (u64)pte, walker->pte_access,
455 		 walker->pt_access[walker->level - 1]);
456 	return 1;
457 
458 error:
459 	errcode |= write_fault | user_fault;
460 	if (fetch_fault && (is_efer_nx(mmu) || is_cr4_smep(mmu)))
461 		errcode |= PFERR_FETCH_MASK;
462 
463 	walker->fault.vector = PF_VECTOR;
464 	walker->fault.error_code_valid = true;
465 	walker->fault.error_code = errcode;
466 
467 #if PTTYPE == PTTYPE_EPT
468 	/*
469 	 * Use PFERR_RSVD_MASK in error_code to to tell if EPT
470 	 * misconfiguration requires to be injected. The detection is
471 	 * done by is_rsvd_bits_set() above.
472 	 *
473 	 * We set up the value of exit_qualification to inject:
474 	 * [2:0] - Derive from the access bits. The exit_qualification might be
475 	 *         out of date if it is serving an EPT misconfiguration.
476 	 * [5:3] - Calculated by the page walk of the guest EPT page tables
477 	 * [7:8] - Derived from [7:8] of real exit_qualification
478 	 *
479 	 * The other bits are set to 0.
480 	 */
481 	if (!(errcode & PFERR_RSVD_MASK)) {
482 		vcpu->arch.exit_qualification &= (EPT_VIOLATION_GVA_IS_VALID |
483 						  EPT_VIOLATION_GVA_TRANSLATED);
484 		if (write_fault)
485 			vcpu->arch.exit_qualification |= EPT_VIOLATION_ACC_WRITE;
486 		if (user_fault)
487 			vcpu->arch.exit_qualification |= EPT_VIOLATION_ACC_READ;
488 		if (fetch_fault)
489 			vcpu->arch.exit_qualification |= EPT_VIOLATION_ACC_INSTR;
490 
491 		/*
492 		 * Note, pte_access holds the raw RWX bits from the EPTE, not
493 		 * ACC_*_MASK flags!
494 		 */
495 		vcpu->arch.exit_qualification |= (pte_access & VMX_EPT_RWX_MASK) <<
496 						 EPT_VIOLATION_RWX_SHIFT;
497 	}
498 #endif
499 	walker->fault.address = addr;
500 	walker->fault.nested_page_fault = mmu != vcpu->arch.walk_mmu;
501 	walker->fault.async_page_fault = false;
502 
503 	trace_kvm_mmu_walker_error(walker->fault.error_code);
504 	return 0;
505 }
506 
507 static int FNAME(walk_addr)(struct guest_walker *walker,
508 			    struct kvm_vcpu *vcpu, gpa_t addr, u64 access)
509 {
510 	return FNAME(walk_addr_generic)(walker, vcpu, vcpu->arch.mmu, addr,
511 					access);
512 }
513 
514 static bool
515 FNAME(prefetch_gpte)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
516 		     u64 *spte, pt_element_t gpte, bool no_dirty_log)
517 {
518 	struct kvm_memory_slot *slot;
519 	unsigned pte_access;
520 	gfn_t gfn;
521 	kvm_pfn_t pfn;
522 
523 	if (FNAME(prefetch_invalid_gpte)(vcpu, sp, spte, gpte))
524 		return false;
525 
526 	pgprintk("%s: gpte %llx spte %p\n", __func__, (u64)gpte, spte);
527 
528 	gfn = gpte_to_gfn(gpte);
529 	pte_access = sp->role.access & FNAME(gpte_access)(gpte);
530 	FNAME(protect_clean_gpte)(vcpu->arch.mmu, &pte_access, gpte);
531 
532 	slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn,
533 			no_dirty_log && (pte_access & ACC_WRITE_MASK));
534 	if (!slot)
535 		return false;
536 
537 	pfn = gfn_to_pfn_memslot_atomic(slot, gfn);
538 	if (is_error_pfn(pfn))
539 		return false;
540 
541 	mmu_set_spte(vcpu, slot, spte, pte_access, gfn, pfn, NULL);
542 	kvm_release_pfn_clean(pfn);
543 	return true;
544 }
545 
546 static bool FNAME(gpte_changed)(struct kvm_vcpu *vcpu,
547 				struct guest_walker *gw, int level)
548 {
549 	pt_element_t curr_pte;
550 	gpa_t base_gpa, pte_gpa = gw->pte_gpa[level - 1];
551 	u64 mask;
552 	int r, index;
553 
554 	if (level == PG_LEVEL_4K) {
555 		mask = PTE_PREFETCH_NUM * sizeof(pt_element_t) - 1;
556 		base_gpa = pte_gpa & ~mask;
557 		index = (pte_gpa - base_gpa) / sizeof(pt_element_t);
558 
559 		r = kvm_vcpu_read_guest_atomic(vcpu, base_gpa,
560 				gw->prefetch_ptes, sizeof(gw->prefetch_ptes));
561 		curr_pte = gw->prefetch_ptes[index];
562 	} else
563 		r = kvm_vcpu_read_guest_atomic(vcpu, pte_gpa,
564 				  &curr_pte, sizeof(curr_pte));
565 
566 	return r || curr_pte != gw->ptes[level - 1];
567 }
568 
569 static void FNAME(pte_prefetch)(struct kvm_vcpu *vcpu, struct guest_walker *gw,
570 				u64 *sptep)
571 {
572 	struct kvm_mmu_page *sp;
573 	pt_element_t *gptep = gw->prefetch_ptes;
574 	u64 *spte;
575 	int i;
576 
577 	sp = sptep_to_sp(sptep);
578 
579 	if (sp->role.level > PG_LEVEL_4K)
580 		return;
581 
582 	/*
583 	 * If addresses are being invalidated, skip prefetching to avoid
584 	 * accidentally prefetching those addresses.
585 	 */
586 	if (unlikely(vcpu->kvm->mmu_notifier_count))
587 		return;
588 
589 	if (sp->role.direct)
590 		return __direct_pte_prefetch(vcpu, sp, sptep);
591 
592 	i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
593 	spte = sp->spt + i;
594 
595 	for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
596 		if (spte == sptep)
597 			continue;
598 
599 		if (is_shadow_present_pte(*spte))
600 			continue;
601 
602 		if (!FNAME(prefetch_gpte)(vcpu, sp, spte, gptep[i], true))
603 			break;
604 	}
605 }
606 
607 /*
608  * Fetch a shadow pte for a specific level in the paging hierarchy.
609  * If the guest tries to write a write-protected page, we need to
610  * emulate this operation, return 1 to indicate this case.
611  */
612 static int FNAME(fetch)(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault,
613 			 struct guest_walker *gw)
614 {
615 	struct kvm_mmu_page *sp = NULL;
616 	struct kvm_shadow_walk_iterator it;
617 	unsigned int direct_access, access;
618 	int top_level, ret;
619 	gfn_t base_gfn = fault->gfn;
620 
621 	WARN_ON_ONCE(gw->gfn != base_gfn);
622 	direct_access = gw->pte_access;
623 
624 	top_level = vcpu->arch.mmu->cpu_role.base.level;
625 	if (top_level == PT32E_ROOT_LEVEL)
626 		top_level = PT32_ROOT_LEVEL;
627 	/*
628 	 * Verify that the top-level gpte is still there.  Since the page
629 	 * is a root page, it is either write protected (and cannot be
630 	 * changed from now on) or it is invalid (in which case, we don't
631 	 * really care if it changes underneath us after this point).
632 	 */
633 	if (FNAME(gpte_changed)(vcpu, gw, top_level))
634 		goto out_gpte_changed;
635 
636 	if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root.hpa)))
637 		goto out_gpte_changed;
638 
639 	for (shadow_walk_init(&it, vcpu, fault->addr);
640 	     shadow_walk_okay(&it) && it.level > gw->level;
641 	     shadow_walk_next(&it)) {
642 		gfn_t table_gfn;
643 
644 		clear_sp_write_flooding_count(it.sptep);
645 		drop_large_spte(vcpu, it.sptep);
646 
647 		sp = NULL;
648 		if (!is_shadow_present_pte(*it.sptep)) {
649 			table_gfn = gw->table_gfn[it.level - 2];
650 			access = gw->pt_access[it.level - 2];
651 			sp = kvm_mmu_get_page(vcpu, table_gfn, fault->addr,
652 					      it.level-1, false, access);
653 			/*
654 			 * We must synchronize the pagetable before linking it
655 			 * because the guest doesn't need to flush tlb when
656 			 * the gpte is changed from non-present to present.
657 			 * Otherwise, the guest may use the wrong mapping.
658 			 *
659 			 * For PG_LEVEL_4K, kvm_mmu_get_page() has already
660 			 * synchronized it transiently via kvm_sync_page().
661 			 *
662 			 * For higher level pagetable, we synchronize it via
663 			 * the slower mmu_sync_children().  If it needs to
664 			 * break, some progress has been made; return
665 			 * RET_PF_RETRY and retry on the next #PF.
666 			 * KVM_REQ_MMU_SYNC is not necessary but it
667 			 * expedites the process.
668 			 */
669 			if (sp->unsync_children &&
670 			    mmu_sync_children(vcpu, sp, false))
671 				return RET_PF_RETRY;
672 		}
673 
674 		/*
675 		 * Verify that the gpte in the page we've just write
676 		 * protected is still there.
677 		 */
678 		if (FNAME(gpte_changed)(vcpu, gw, it.level - 1))
679 			goto out_gpte_changed;
680 
681 		if (sp)
682 			link_shadow_page(vcpu, it.sptep, sp);
683 	}
684 
685 	kvm_mmu_hugepage_adjust(vcpu, fault);
686 
687 	trace_kvm_mmu_spte_requested(fault);
688 
689 	for (; shadow_walk_okay(&it); shadow_walk_next(&it)) {
690 		clear_sp_write_flooding_count(it.sptep);
691 
692 		/*
693 		 * We cannot overwrite existing page tables with an NX
694 		 * large page, as the leaf could be executable.
695 		 */
696 		if (fault->nx_huge_page_workaround_enabled)
697 			disallowed_hugepage_adjust(fault, *it.sptep, it.level);
698 
699 		base_gfn = fault->gfn & ~(KVM_PAGES_PER_HPAGE(it.level) - 1);
700 		if (it.level == fault->goal_level)
701 			break;
702 
703 		validate_direct_spte(vcpu, it.sptep, direct_access);
704 
705 		drop_large_spte(vcpu, it.sptep);
706 
707 		if (!is_shadow_present_pte(*it.sptep)) {
708 			sp = kvm_mmu_get_page(vcpu, base_gfn, fault->addr,
709 					      it.level - 1, true, direct_access);
710 			link_shadow_page(vcpu, it.sptep, sp);
711 			if (fault->huge_page_disallowed &&
712 			    fault->req_level >= it.level)
713 				account_huge_nx_page(vcpu->kvm, sp);
714 		}
715 	}
716 
717 	if (WARN_ON_ONCE(it.level != fault->goal_level))
718 		return -EFAULT;
719 
720 	ret = mmu_set_spte(vcpu, fault->slot, it.sptep, gw->pte_access,
721 			   base_gfn, fault->pfn, fault);
722 	if (ret == RET_PF_SPURIOUS)
723 		return ret;
724 
725 	FNAME(pte_prefetch)(vcpu, gw, it.sptep);
726 	return ret;
727 
728 out_gpte_changed:
729 	return RET_PF_RETRY;
730 }
731 
732  /*
733  * To see whether the mapped gfn can write its page table in the current
734  * mapping.
735  *
736  * It is the helper function of FNAME(page_fault). When guest uses large page
737  * size to map the writable gfn which is used as current page table, we should
738  * force kvm to use small page size to map it because new shadow page will be
739  * created when kvm establishes shadow page table that stop kvm using large
740  * page size. Do it early can avoid unnecessary #PF and emulation.
741  *
742  * @write_fault_to_shadow_pgtable will return true if the fault gfn is
743  * currently used as its page table.
744  *
745  * Note: the PDPT page table is not checked for PAE-32 bit guest. It is ok
746  * since the PDPT is always shadowed, that means, we can not use large page
747  * size to map the gfn which is used as PDPT.
748  */
749 static bool
750 FNAME(is_self_change_mapping)(struct kvm_vcpu *vcpu,
751 			      struct guest_walker *walker, bool user_fault,
752 			      bool *write_fault_to_shadow_pgtable)
753 {
754 	int level;
755 	gfn_t mask = ~(KVM_PAGES_PER_HPAGE(walker->level) - 1);
756 	bool self_changed = false;
757 
758 	if (!(walker->pte_access & ACC_WRITE_MASK ||
759 	    (!is_cr0_wp(vcpu->arch.mmu) && !user_fault)))
760 		return false;
761 
762 	for (level = walker->level; level <= walker->max_level; level++) {
763 		gfn_t gfn = walker->gfn ^ walker->table_gfn[level - 1];
764 
765 		self_changed |= !(gfn & mask);
766 		*write_fault_to_shadow_pgtable |= !gfn;
767 	}
768 
769 	return self_changed;
770 }
771 
772 /*
773  * Page fault handler.  There are several causes for a page fault:
774  *   - there is no shadow pte for the guest pte
775  *   - write access through a shadow pte marked read only so that we can set
776  *     the dirty bit
777  *   - write access to a shadow pte marked read only so we can update the page
778  *     dirty bitmap, when userspace requests it
779  *   - mmio access; in this case we will never install a present shadow pte
780  *   - normal guest page fault due to the guest pte marked not present, not
781  *     writable, or not executable
782  *
783  *  Returns: 1 if we need to emulate the instruction, 0 otherwise, or
784  *           a negative value on error.
785  */
786 static int FNAME(page_fault)(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault)
787 {
788 	struct guest_walker walker;
789 	int r;
790 	unsigned long mmu_seq;
791 	bool is_self_change_mapping;
792 
793 	pgprintk("%s: addr %lx err %x\n", __func__, fault->addr, fault->error_code);
794 	WARN_ON_ONCE(fault->is_tdp);
795 
796 	/*
797 	 * Look up the guest pte for the faulting address.
798 	 * If PFEC.RSVD is set, this is a shadow page fault.
799 	 * The bit needs to be cleared before walking guest page tables.
800 	 */
801 	r = FNAME(walk_addr)(&walker, vcpu, fault->addr,
802 			     fault->error_code & ~PFERR_RSVD_MASK);
803 
804 	/*
805 	 * The page is not mapped by the guest.  Let the guest handle it.
806 	 */
807 	if (!r) {
808 		pgprintk("%s: guest page fault\n", __func__);
809 		if (!fault->prefetch)
810 			kvm_inject_emulated_page_fault(vcpu, &walker.fault);
811 
812 		return RET_PF_RETRY;
813 	}
814 
815 	fault->gfn = walker.gfn;
816 	fault->slot = kvm_vcpu_gfn_to_memslot(vcpu, fault->gfn);
817 
818 	if (page_fault_handle_page_track(vcpu, fault)) {
819 		shadow_page_table_clear_flood(vcpu, fault->addr);
820 		return RET_PF_EMULATE;
821 	}
822 
823 	r = mmu_topup_memory_caches(vcpu, true);
824 	if (r)
825 		return r;
826 
827 	vcpu->arch.write_fault_to_shadow_pgtable = false;
828 
829 	is_self_change_mapping = FNAME(is_self_change_mapping)(vcpu,
830 	      &walker, fault->user, &vcpu->arch.write_fault_to_shadow_pgtable);
831 
832 	if (is_self_change_mapping)
833 		fault->max_level = PG_LEVEL_4K;
834 	else
835 		fault->max_level = walker.level;
836 
837 	mmu_seq = vcpu->kvm->mmu_notifier_seq;
838 	smp_rmb();
839 
840 	r = kvm_faultin_pfn(vcpu, fault);
841 	if (r != RET_PF_CONTINUE)
842 		return r;
843 
844 	r = handle_abnormal_pfn(vcpu, fault, walker.pte_access);
845 	if (r != RET_PF_CONTINUE)
846 		return r;
847 
848 	/*
849 	 * Do not change pte_access if the pfn is a mmio page, otherwise
850 	 * we will cache the incorrect access into mmio spte.
851 	 */
852 	if (fault->write && !(walker.pte_access & ACC_WRITE_MASK) &&
853 	    !is_cr0_wp(vcpu->arch.mmu) && !fault->user && fault->slot) {
854 		walker.pte_access |= ACC_WRITE_MASK;
855 		walker.pte_access &= ~ACC_USER_MASK;
856 
857 		/*
858 		 * If we converted a user page to a kernel page,
859 		 * so that the kernel can write to it when cr0.wp=0,
860 		 * then we should prevent the kernel from executing it
861 		 * if SMEP is enabled.
862 		 */
863 		if (is_cr4_smep(vcpu->arch.mmu))
864 			walker.pte_access &= ~ACC_EXEC_MASK;
865 	}
866 
867 	r = RET_PF_RETRY;
868 	write_lock(&vcpu->kvm->mmu_lock);
869 
870 	if (is_page_fault_stale(vcpu, fault, mmu_seq))
871 		goto out_unlock;
872 
873 	r = make_mmu_pages_available(vcpu);
874 	if (r)
875 		goto out_unlock;
876 	r = FNAME(fetch)(vcpu, fault, &walker);
877 
878 out_unlock:
879 	write_unlock(&vcpu->kvm->mmu_lock);
880 	kvm_release_pfn_clean(fault->pfn);
881 	return r;
882 }
883 
884 static gpa_t FNAME(get_level1_sp_gpa)(struct kvm_mmu_page *sp)
885 {
886 	int offset = 0;
887 
888 	WARN_ON(sp->role.level != PG_LEVEL_4K);
889 
890 	if (PTTYPE == 32)
891 		offset = sp->role.quadrant << PT64_LEVEL_BITS;
892 
893 	return gfn_to_gpa(sp->gfn) + offset * sizeof(pt_element_t);
894 }
895 
896 static void FNAME(invlpg)(struct kvm_vcpu *vcpu, gva_t gva, hpa_t root_hpa)
897 {
898 	struct kvm_shadow_walk_iterator iterator;
899 	struct kvm_mmu_page *sp;
900 	u64 old_spte;
901 	int level;
902 	u64 *sptep;
903 
904 	vcpu_clear_mmio_info(vcpu, gva);
905 
906 	/*
907 	 * No need to check return value here, rmap_can_add() can
908 	 * help us to skip pte prefetch later.
909 	 */
910 	mmu_topup_memory_caches(vcpu, true);
911 
912 	if (!VALID_PAGE(root_hpa)) {
913 		WARN_ON(1);
914 		return;
915 	}
916 
917 	write_lock(&vcpu->kvm->mmu_lock);
918 	for_each_shadow_entry_using_root(vcpu, root_hpa, gva, iterator) {
919 		level = iterator.level;
920 		sptep = iterator.sptep;
921 
922 		sp = sptep_to_sp(sptep);
923 		old_spte = *sptep;
924 		if (is_last_spte(old_spte, level)) {
925 			pt_element_t gpte;
926 			gpa_t pte_gpa;
927 
928 			if (!sp->unsync)
929 				break;
930 
931 			pte_gpa = FNAME(get_level1_sp_gpa)(sp);
932 			pte_gpa += (sptep - sp->spt) * sizeof(pt_element_t);
933 
934 			mmu_page_zap_pte(vcpu->kvm, sp, sptep, NULL);
935 			if (is_shadow_present_pte(old_spte))
936 				kvm_flush_remote_tlbs_with_address(vcpu->kvm,
937 					sp->gfn, KVM_PAGES_PER_HPAGE(sp->role.level));
938 
939 			if (!rmap_can_add(vcpu))
940 				break;
941 
942 			if (kvm_vcpu_read_guest_atomic(vcpu, pte_gpa, &gpte,
943 						       sizeof(pt_element_t)))
944 				break;
945 
946 			FNAME(prefetch_gpte)(vcpu, sp, sptep, gpte, false);
947 		}
948 
949 		if (!sp->unsync_children)
950 			break;
951 	}
952 	write_unlock(&vcpu->kvm->mmu_lock);
953 }
954 
955 /* Note, @addr is a GPA when gva_to_gpa() translates an L2 GPA to an L1 GPA. */
956 static gpa_t FNAME(gva_to_gpa)(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
957 			       gpa_t addr, u64 access,
958 			       struct x86_exception *exception)
959 {
960 	struct guest_walker walker;
961 	gpa_t gpa = UNMAPPED_GVA;
962 	int r;
963 
964 #ifndef CONFIG_X86_64
965 	/* A 64-bit GVA should be impossible on 32-bit KVM. */
966 	WARN_ON_ONCE((addr >> 32) && mmu == vcpu->arch.walk_mmu);
967 #endif
968 
969 	r = FNAME(walk_addr_generic)(&walker, vcpu, mmu, addr, access);
970 
971 	if (r) {
972 		gpa = gfn_to_gpa(walker.gfn);
973 		gpa |= addr & ~PAGE_MASK;
974 	} else if (exception)
975 		*exception = walker.fault;
976 
977 	return gpa;
978 }
979 
980 /*
981  * Using the cached information from sp->gfns is safe because:
982  * - The spte has a reference to the struct page, so the pfn for a given gfn
983  *   can't change unless all sptes pointing to it are nuked first.
984  *
985  * Returns
986  * < 0: the sp should be zapped
987  *   0: the sp is synced and no tlb flushing is required
988  * > 0: the sp is synced and tlb flushing is required
989  */
990 static int FNAME(sync_page)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
991 {
992 	union kvm_mmu_page_role root_role = vcpu->arch.mmu->root_role;
993 	int i;
994 	bool host_writable;
995 	gpa_t first_pte_gpa;
996 	bool flush = false;
997 
998 	/*
999 	 * Ignore various flags when verifying that it's safe to sync a shadow
1000 	 * page using the current MMU context.
1001 	 *
1002 	 *  - level: not part of the overall MMU role and will never match as the MMU's
1003 	 *           level tracks the root level
1004 	 *  - access: updated based on the new guest PTE
1005 	 *  - quadrant: not part of the overall MMU role (similar to level)
1006 	 */
1007 	const union kvm_mmu_page_role sync_role_ign = {
1008 		.level = 0xf,
1009 		.access = 0x7,
1010 		.quadrant = 0x3,
1011 		.passthrough = 0x1,
1012 	};
1013 
1014 	/*
1015 	 * Direct pages can never be unsync, and KVM should never attempt to
1016 	 * sync a shadow page for a different MMU context, e.g. if the role
1017 	 * differs then the memslot lookup (SMM vs. non-SMM) will be bogus, the
1018 	 * reserved bits checks will be wrong, etc...
1019 	 */
1020 	if (WARN_ON_ONCE(sp->role.direct ||
1021 			 (sp->role.word ^ root_role.word) & ~sync_role_ign.word))
1022 		return -1;
1023 
1024 	first_pte_gpa = FNAME(get_level1_sp_gpa)(sp);
1025 
1026 	for (i = 0; i < PT64_ENT_PER_PAGE; i++) {
1027 		u64 *sptep, spte;
1028 		struct kvm_memory_slot *slot;
1029 		unsigned pte_access;
1030 		pt_element_t gpte;
1031 		gpa_t pte_gpa;
1032 		gfn_t gfn;
1033 
1034 		if (!sp->spt[i])
1035 			continue;
1036 
1037 		pte_gpa = first_pte_gpa + i * sizeof(pt_element_t);
1038 
1039 		if (kvm_vcpu_read_guest_atomic(vcpu, pte_gpa, &gpte,
1040 					       sizeof(pt_element_t)))
1041 			return -1;
1042 
1043 		if (FNAME(prefetch_invalid_gpte)(vcpu, sp, &sp->spt[i], gpte)) {
1044 			flush = true;
1045 			continue;
1046 		}
1047 
1048 		gfn = gpte_to_gfn(gpte);
1049 		pte_access = sp->role.access;
1050 		pte_access &= FNAME(gpte_access)(gpte);
1051 		FNAME(protect_clean_gpte)(vcpu->arch.mmu, &pte_access, gpte);
1052 
1053 		if (sync_mmio_spte(vcpu, &sp->spt[i], gfn, pte_access))
1054 			continue;
1055 
1056 		if (gfn != sp->gfns[i]) {
1057 			drop_spte(vcpu->kvm, &sp->spt[i]);
1058 			flush = true;
1059 			continue;
1060 		}
1061 
1062 		sptep = &sp->spt[i];
1063 		spte = *sptep;
1064 		host_writable = spte & shadow_host_writable_mask;
1065 		slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1066 		make_spte(vcpu, sp, slot, pte_access, gfn,
1067 			  spte_to_pfn(spte), spte, true, false,
1068 			  host_writable, &spte);
1069 
1070 		flush |= mmu_spte_update(sptep, spte);
1071 	}
1072 
1073 	return flush;
1074 }
1075 
1076 #undef pt_element_t
1077 #undef guest_walker
1078 #undef FNAME
1079 #undef PT_BASE_ADDR_MASK
1080 #undef PT_INDEX
1081 #undef PT_LVL_ADDR_MASK
1082 #undef PT_LVL_OFFSET_MASK
1083 #undef PT_LEVEL_BITS
1084 #undef PT_MAX_FULL_LEVELS
1085 #undef gpte_to_gfn
1086 #undef gpte_to_gfn_lvl
1087 #undef CMPXCHG
1088 #undef PT_GUEST_ACCESSED_MASK
1089 #undef PT_GUEST_DIRTY_MASK
1090 #undef PT_GUEST_DIRTY_SHIFT
1091 #undef PT_GUEST_ACCESSED_SHIFT
1092 #undef PT_HAVE_ACCESSED_DIRTY
1093