1 /* SPDX-License-Identifier: GPL-2.0-only */ 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * This module enables machines with Intel VT-x extensions to run virtual 6 * machines without emulation or binary translation. 7 * 8 * MMU support 9 * 10 * Copyright (C) 2006 Qumranet, Inc. 11 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 12 * 13 * Authors: 14 * Yaniv Kamay <yaniv@qumranet.com> 15 * Avi Kivity <avi@qumranet.com> 16 */ 17 18 /* 19 * We need the mmu code to access both 32-bit and 64-bit guest ptes, 20 * so the code in this file is compiled twice, once per pte size. 21 */ 22 23 #if PTTYPE == 64 24 #define pt_element_t u64 25 #define guest_walker guest_walker64 26 #define FNAME(name) paging##64_##name 27 #define PT_BASE_ADDR_MASK GUEST_PT64_BASE_ADDR_MASK 28 #define PT_LVL_ADDR_MASK(lvl) PT64_LVL_ADDR_MASK(lvl) 29 #define PT_LVL_OFFSET_MASK(lvl) PT64_LVL_OFFSET_MASK(lvl) 30 #define PT_INDEX(addr, level) PT64_INDEX(addr, level) 31 #define PT_LEVEL_BITS PT64_LEVEL_BITS 32 #define PT_GUEST_DIRTY_SHIFT PT_DIRTY_SHIFT 33 #define PT_GUEST_ACCESSED_SHIFT PT_ACCESSED_SHIFT 34 #define PT_HAVE_ACCESSED_DIRTY(mmu) true 35 #ifdef CONFIG_X86_64 36 #define PT_MAX_FULL_LEVELS PT64_ROOT_MAX_LEVEL 37 #define CMPXCHG cmpxchg 38 #else 39 #define CMPXCHG cmpxchg64 40 #define PT_MAX_FULL_LEVELS 2 41 #endif 42 #elif PTTYPE == 32 43 #define pt_element_t u32 44 #define guest_walker guest_walker32 45 #define FNAME(name) paging##32_##name 46 #define PT_BASE_ADDR_MASK PT32_BASE_ADDR_MASK 47 #define PT_LVL_ADDR_MASK(lvl) PT32_LVL_ADDR_MASK(lvl) 48 #define PT_LVL_OFFSET_MASK(lvl) PT32_LVL_OFFSET_MASK(lvl) 49 #define PT_INDEX(addr, level) PT32_INDEX(addr, level) 50 #define PT_LEVEL_BITS PT32_LEVEL_BITS 51 #define PT_MAX_FULL_LEVELS 2 52 #define PT_GUEST_DIRTY_SHIFT PT_DIRTY_SHIFT 53 #define PT_GUEST_ACCESSED_SHIFT PT_ACCESSED_SHIFT 54 #define PT_HAVE_ACCESSED_DIRTY(mmu) true 55 #define CMPXCHG cmpxchg 56 #elif PTTYPE == PTTYPE_EPT 57 #define pt_element_t u64 58 #define guest_walker guest_walkerEPT 59 #define FNAME(name) ept_##name 60 #define PT_BASE_ADDR_MASK GUEST_PT64_BASE_ADDR_MASK 61 #define PT_LVL_ADDR_MASK(lvl) PT64_LVL_ADDR_MASK(lvl) 62 #define PT_LVL_OFFSET_MASK(lvl) PT64_LVL_OFFSET_MASK(lvl) 63 #define PT_INDEX(addr, level) PT64_INDEX(addr, level) 64 #define PT_LEVEL_BITS PT64_LEVEL_BITS 65 #define PT_GUEST_DIRTY_SHIFT 9 66 #define PT_GUEST_ACCESSED_SHIFT 8 67 #define PT_HAVE_ACCESSED_DIRTY(mmu) ((mmu)->ept_ad) 68 #define CMPXCHG cmpxchg64 69 #define PT_MAX_FULL_LEVELS PT64_ROOT_MAX_LEVEL 70 #else 71 #error Invalid PTTYPE value 72 #endif 73 74 #define PT_GUEST_DIRTY_MASK (1 << PT_GUEST_DIRTY_SHIFT) 75 #define PT_GUEST_ACCESSED_MASK (1 << PT_GUEST_ACCESSED_SHIFT) 76 77 #define gpte_to_gfn_lvl FNAME(gpte_to_gfn_lvl) 78 #define gpte_to_gfn(pte) gpte_to_gfn_lvl((pte), PG_LEVEL_4K) 79 80 /* 81 * The guest_walker structure emulates the behavior of the hardware page 82 * table walker. 83 */ 84 struct guest_walker { 85 int level; 86 unsigned max_level; 87 gfn_t table_gfn[PT_MAX_FULL_LEVELS]; 88 pt_element_t ptes[PT_MAX_FULL_LEVELS]; 89 pt_element_t prefetch_ptes[PTE_PREFETCH_NUM]; 90 gpa_t pte_gpa[PT_MAX_FULL_LEVELS]; 91 pt_element_t __user *ptep_user[PT_MAX_FULL_LEVELS]; 92 bool pte_writable[PT_MAX_FULL_LEVELS]; 93 unsigned int pt_access[PT_MAX_FULL_LEVELS]; 94 unsigned int pte_access; 95 gfn_t gfn; 96 struct x86_exception fault; 97 }; 98 99 static gfn_t gpte_to_gfn_lvl(pt_element_t gpte, int lvl) 100 { 101 return (gpte & PT_LVL_ADDR_MASK(lvl)) >> PAGE_SHIFT; 102 } 103 104 static inline void FNAME(protect_clean_gpte)(struct kvm_mmu *mmu, unsigned *access, 105 unsigned gpte) 106 { 107 unsigned mask; 108 109 /* dirty bit is not supported, so no need to track it */ 110 if (!PT_HAVE_ACCESSED_DIRTY(mmu)) 111 return; 112 113 BUILD_BUG_ON(PT_WRITABLE_MASK != ACC_WRITE_MASK); 114 115 mask = (unsigned)~ACC_WRITE_MASK; 116 /* Allow write access to dirty gptes */ 117 mask |= (gpte >> (PT_GUEST_DIRTY_SHIFT - PT_WRITABLE_SHIFT)) & 118 PT_WRITABLE_MASK; 119 *access &= mask; 120 } 121 122 static inline int FNAME(is_present_gpte)(unsigned long pte) 123 { 124 #if PTTYPE != PTTYPE_EPT 125 return pte & PT_PRESENT_MASK; 126 #else 127 return pte & 7; 128 #endif 129 } 130 131 static bool FNAME(is_bad_mt_xwr)(struct rsvd_bits_validate *rsvd_check, u64 gpte) 132 { 133 #if PTTYPE != PTTYPE_EPT 134 return false; 135 #else 136 return __is_bad_mt_xwr(rsvd_check, gpte); 137 #endif 138 } 139 140 static bool FNAME(is_rsvd_bits_set)(struct kvm_mmu *mmu, u64 gpte, int level) 141 { 142 return __is_rsvd_bits_set(&mmu->guest_rsvd_check, gpte, level) || 143 FNAME(is_bad_mt_xwr)(&mmu->guest_rsvd_check, gpte); 144 } 145 146 static int FNAME(cmpxchg_gpte)(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, 147 pt_element_t __user *ptep_user, unsigned index, 148 pt_element_t orig_pte, pt_element_t new_pte) 149 { 150 int npages; 151 pt_element_t ret; 152 pt_element_t *table; 153 struct page *page; 154 155 npages = get_user_pages_fast((unsigned long)ptep_user, 1, FOLL_WRITE, &page); 156 if (likely(npages == 1)) { 157 table = kmap_atomic(page); 158 ret = CMPXCHG(&table[index], orig_pte, new_pte); 159 kunmap_atomic(table); 160 161 kvm_release_page_dirty(page); 162 } else { 163 struct vm_area_struct *vma; 164 unsigned long vaddr = (unsigned long)ptep_user & PAGE_MASK; 165 unsigned long pfn; 166 unsigned long paddr; 167 168 mmap_read_lock(current->mm); 169 vma = find_vma_intersection(current->mm, vaddr, vaddr + PAGE_SIZE); 170 if (!vma || !(vma->vm_flags & VM_PFNMAP)) { 171 mmap_read_unlock(current->mm); 172 return -EFAULT; 173 } 174 pfn = ((vaddr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff; 175 paddr = pfn << PAGE_SHIFT; 176 table = memremap(paddr, PAGE_SIZE, MEMREMAP_WB); 177 if (!table) { 178 mmap_read_unlock(current->mm); 179 return -EFAULT; 180 } 181 ret = CMPXCHG(&table[index], orig_pte, new_pte); 182 memunmap(table); 183 mmap_read_unlock(current->mm); 184 } 185 186 return (ret != orig_pte); 187 } 188 189 static bool FNAME(prefetch_invalid_gpte)(struct kvm_vcpu *vcpu, 190 struct kvm_mmu_page *sp, u64 *spte, 191 u64 gpte) 192 { 193 if (!FNAME(is_present_gpte)(gpte)) 194 goto no_present; 195 196 /* if accessed bit is not supported prefetch non accessed gpte */ 197 if (PT_HAVE_ACCESSED_DIRTY(vcpu->arch.mmu) && 198 !(gpte & PT_GUEST_ACCESSED_MASK)) 199 goto no_present; 200 201 if (FNAME(is_rsvd_bits_set)(vcpu->arch.mmu, gpte, PG_LEVEL_4K)) 202 goto no_present; 203 204 return false; 205 206 no_present: 207 drop_spte(vcpu->kvm, spte); 208 return true; 209 } 210 211 /* 212 * For PTTYPE_EPT, a page table can be executable but not readable 213 * on supported processors. Therefore, set_spte does not automatically 214 * set bit 0 if execute only is supported. Here, we repurpose ACC_USER_MASK 215 * to signify readability since it isn't used in the EPT case 216 */ 217 static inline unsigned FNAME(gpte_access)(u64 gpte) 218 { 219 unsigned access; 220 #if PTTYPE == PTTYPE_EPT 221 access = ((gpte & VMX_EPT_WRITABLE_MASK) ? ACC_WRITE_MASK : 0) | 222 ((gpte & VMX_EPT_EXECUTABLE_MASK) ? ACC_EXEC_MASK : 0) | 223 ((gpte & VMX_EPT_READABLE_MASK) ? ACC_USER_MASK : 0); 224 #else 225 BUILD_BUG_ON(ACC_EXEC_MASK != PT_PRESENT_MASK); 226 BUILD_BUG_ON(ACC_EXEC_MASK != 1); 227 access = gpte & (PT_WRITABLE_MASK | PT_USER_MASK | PT_PRESENT_MASK); 228 /* Combine NX with P (which is set here) to get ACC_EXEC_MASK. */ 229 access ^= (gpte >> PT64_NX_SHIFT); 230 #endif 231 232 return access; 233 } 234 235 static int FNAME(update_accessed_dirty_bits)(struct kvm_vcpu *vcpu, 236 struct kvm_mmu *mmu, 237 struct guest_walker *walker, 238 gpa_t addr, int write_fault) 239 { 240 unsigned level, index; 241 pt_element_t pte, orig_pte; 242 pt_element_t __user *ptep_user; 243 gfn_t table_gfn; 244 int ret; 245 246 /* dirty/accessed bits are not supported, so no need to update them */ 247 if (!PT_HAVE_ACCESSED_DIRTY(mmu)) 248 return 0; 249 250 for (level = walker->max_level; level >= walker->level; --level) { 251 pte = orig_pte = walker->ptes[level - 1]; 252 table_gfn = walker->table_gfn[level - 1]; 253 ptep_user = walker->ptep_user[level - 1]; 254 index = offset_in_page(ptep_user) / sizeof(pt_element_t); 255 if (!(pte & PT_GUEST_ACCESSED_MASK)) { 256 trace_kvm_mmu_set_accessed_bit(table_gfn, index, sizeof(pte)); 257 pte |= PT_GUEST_ACCESSED_MASK; 258 } 259 if (level == walker->level && write_fault && 260 !(pte & PT_GUEST_DIRTY_MASK)) { 261 trace_kvm_mmu_set_dirty_bit(table_gfn, index, sizeof(pte)); 262 #if PTTYPE == PTTYPE_EPT 263 if (kvm_x86_ops.nested_ops->write_log_dirty(vcpu, addr)) 264 return -EINVAL; 265 #endif 266 pte |= PT_GUEST_DIRTY_MASK; 267 } 268 if (pte == orig_pte) 269 continue; 270 271 /* 272 * If the slot is read-only, simply do not process the accessed 273 * and dirty bits. This is the correct thing to do if the slot 274 * is ROM, and page tables in read-as-ROM/write-as-MMIO slots 275 * are only supported if the accessed and dirty bits are already 276 * set in the ROM (so that MMIO writes are never needed). 277 * 278 * Note that NPT does not allow this at all and faults, since 279 * it always wants nested page table entries for the guest 280 * page tables to be writable. And EPT works but will simply 281 * overwrite the read-only memory to set the accessed and dirty 282 * bits. 283 */ 284 if (unlikely(!walker->pte_writable[level - 1])) 285 continue; 286 287 ret = FNAME(cmpxchg_gpte)(vcpu, mmu, ptep_user, index, orig_pte, pte); 288 if (ret) 289 return ret; 290 291 kvm_vcpu_mark_page_dirty(vcpu, table_gfn); 292 walker->ptes[level - 1] = pte; 293 } 294 return 0; 295 } 296 297 static inline unsigned FNAME(gpte_pkeys)(struct kvm_vcpu *vcpu, u64 gpte) 298 { 299 unsigned pkeys = 0; 300 #if PTTYPE == 64 301 pte_t pte = {.pte = gpte}; 302 303 pkeys = pte_flags_pkey(pte_flags(pte)); 304 #endif 305 return pkeys; 306 } 307 308 static inline bool FNAME(is_last_gpte)(struct kvm_mmu *mmu, 309 unsigned int level, unsigned int gpte) 310 { 311 /* 312 * For EPT and PAE paging (both variants), bit 7 is either reserved at 313 * all level or indicates a huge page (ignoring CR3/EPTP). In either 314 * case, bit 7 being set terminates the walk. 315 */ 316 #if PTTYPE == 32 317 /* 318 * 32-bit paging requires special handling because bit 7 is ignored if 319 * CR4.PSE=0, not reserved. Clear bit 7 in the gpte if the level is 320 * greater than the last level for which bit 7 is the PAGE_SIZE bit. 321 * 322 * The RHS has bit 7 set iff level < (2 + PSE). If it is clear, bit 7 323 * is not reserved and does not indicate a large page at this level, 324 * so clear PT_PAGE_SIZE_MASK in gpte if that is the case. 325 */ 326 gpte &= level - (PT32_ROOT_LEVEL + mmu->mmu_role.ext.cr4_pse); 327 #endif 328 /* 329 * PG_LEVEL_4K always terminates. The RHS has bit 7 set 330 * iff level <= PG_LEVEL_4K, which for our purpose means 331 * level == PG_LEVEL_4K; set PT_PAGE_SIZE_MASK in gpte then. 332 */ 333 gpte |= level - PG_LEVEL_4K - 1; 334 335 return gpte & PT_PAGE_SIZE_MASK; 336 } 337 /* 338 * Fetch a guest pte for a guest virtual address, or for an L2's GPA. 339 */ 340 static int FNAME(walk_addr_generic)(struct guest_walker *walker, 341 struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, 342 gpa_t addr, u32 access) 343 { 344 int ret; 345 pt_element_t pte; 346 pt_element_t __user *ptep_user; 347 gfn_t table_gfn; 348 u64 pt_access, pte_access; 349 unsigned index, accessed_dirty, pte_pkey; 350 unsigned nested_access; 351 gpa_t pte_gpa; 352 bool have_ad; 353 int offset; 354 u64 walk_nx_mask = 0; 355 const int write_fault = access & PFERR_WRITE_MASK; 356 const int user_fault = access & PFERR_USER_MASK; 357 const int fetch_fault = access & PFERR_FETCH_MASK; 358 u16 errcode = 0; 359 gpa_t real_gpa; 360 gfn_t gfn; 361 362 trace_kvm_mmu_pagetable_walk(addr, access); 363 retry_walk: 364 walker->level = mmu->root_level; 365 pte = mmu->get_guest_pgd(vcpu); 366 have_ad = PT_HAVE_ACCESSED_DIRTY(mmu); 367 368 #if PTTYPE == 64 369 walk_nx_mask = 1ULL << PT64_NX_SHIFT; 370 if (walker->level == PT32E_ROOT_LEVEL) { 371 pte = mmu->get_pdptr(vcpu, (addr >> 30) & 3); 372 trace_kvm_mmu_paging_element(pte, walker->level); 373 if (!FNAME(is_present_gpte)(pte)) 374 goto error; 375 --walker->level; 376 } 377 #endif 378 walker->max_level = walker->level; 379 ASSERT(!(is_long_mode(vcpu) && !is_pae(vcpu))); 380 381 /* 382 * FIXME: on Intel processors, loads of the PDPTE registers for PAE paging 383 * by the MOV to CR instruction are treated as reads and do not cause the 384 * processor to set the dirty flag in any EPT paging-structure entry. 385 */ 386 nested_access = (have_ad ? PFERR_WRITE_MASK : 0) | PFERR_USER_MASK; 387 388 pte_access = ~0; 389 ++walker->level; 390 391 do { 392 unsigned long host_addr; 393 394 pt_access = pte_access; 395 --walker->level; 396 397 index = PT_INDEX(addr, walker->level); 398 table_gfn = gpte_to_gfn(pte); 399 offset = index * sizeof(pt_element_t); 400 pte_gpa = gfn_to_gpa(table_gfn) + offset; 401 402 BUG_ON(walker->level < 1); 403 walker->table_gfn[walker->level - 1] = table_gfn; 404 walker->pte_gpa[walker->level - 1] = pte_gpa; 405 406 real_gpa = kvm_translate_gpa(vcpu, mmu, gfn_to_gpa(table_gfn), 407 nested_access, &walker->fault); 408 409 /* 410 * FIXME: This can happen if emulation (for of an INS/OUTS 411 * instruction) triggers a nested page fault. The exit 412 * qualification / exit info field will incorrectly have 413 * "guest page access" as the nested page fault's cause, 414 * instead of "guest page structure access". To fix this, 415 * the x86_exception struct should be augmented with enough 416 * information to fix the exit_qualification or exit_info_1 417 * fields. 418 */ 419 if (unlikely(real_gpa == UNMAPPED_GVA)) 420 return 0; 421 422 host_addr = kvm_vcpu_gfn_to_hva_prot(vcpu, gpa_to_gfn(real_gpa), 423 &walker->pte_writable[walker->level - 1]); 424 if (unlikely(kvm_is_error_hva(host_addr))) 425 goto error; 426 427 ptep_user = (pt_element_t __user *)((void *)host_addr + offset); 428 if (unlikely(__get_user(pte, ptep_user))) 429 goto error; 430 walker->ptep_user[walker->level - 1] = ptep_user; 431 432 trace_kvm_mmu_paging_element(pte, walker->level); 433 434 /* 435 * Inverting the NX it lets us AND it like other 436 * permission bits. 437 */ 438 pte_access = pt_access & (pte ^ walk_nx_mask); 439 440 if (unlikely(!FNAME(is_present_gpte)(pte))) 441 goto error; 442 443 if (unlikely(FNAME(is_rsvd_bits_set)(mmu, pte, walker->level))) { 444 errcode = PFERR_RSVD_MASK | PFERR_PRESENT_MASK; 445 goto error; 446 } 447 448 walker->ptes[walker->level - 1] = pte; 449 450 /* Convert to ACC_*_MASK flags for struct guest_walker. */ 451 walker->pt_access[walker->level - 1] = FNAME(gpte_access)(pt_access ^ walk_nx_mask); 452 } while (!FNAME(is_last_gpte)(mmu, walker->level, pte)); 453 454 pte_pkey = FNAME(gpte_pkeys)(vcpu, pte); 455 accessed_dirty = have_ad ? pte_access & PT_GUEST_ACCESSED_MASK : 0; 456 457 /* Convert to ACC_*_MASK flags for struct guest_walker. */ 458 walker->pte_access = FNAME(gpte_access)(pte_access ^ walk_nx_mask); 459 errcode = permission_fault(vcpu, mmu, walker->pte_access, pte_pkey, access); 460 if (unlikely(errcode)) 461 goto error; 462 463 gfn = gpte_to_gfn_lvl(pte, walker->level); 464 gfn += (addr & PT_LVL_OFFSET_MASK(walker->level)) >> PAGE_SHIFT; 465 466 if (PTTYPE == 32 && walker->level > PG_LEVEL_4K && is_cpuid_PSE36()) 467 gfn += pse36_gfn_delta(pte); 468 469 real_gpa = kvm_translate_gpa(vcpu, mmu, gfn_to_gpa(gfn), access, &walker->fault); 470 if (real_gpa == UNMAPPED_GVA) 471 return 0; 472 473 walker->gfn = real_gpa >> PAGE_SHIFT; 474 475 if (!write_fault) 476 FNAME(protect_clean_gpte)(mmu, &walker->pte_access, pte); 477 else 478 /* 479 * On a write fault, fold the dirty bit into accessed_dirty. 480 * For modes without A/D bits support accessed_dirty will be 481 * always clear. 482 */ 483 accessed_dirty &= pte >> 484 (PT_GUEST_DIRTY_SHIFT - PT_GUEST_ACCESSED_SHIFT); 485 486 if (unlikely(!accessed_dirty)) { 487 ret = FNAME(update_accessed_dirty_bits)(vcpu, mmu, walker, 488 addr, write_fault); 489 if (unlikely(ret < 0)) 490 goto error; 491 else if (ret) 492 goto retry_walk; 493 } 494 495 pgprintk("%s: pte %llx pte_access %x pt_access %x\n", 496 __func__, (u64)pte, walker->pte_access, 497 walker->pt_access[walker->level - 1]); 498 return 1; 499 500 error: 501 errcode |= write_fault | user_fault; 502 if (fetch_fault && (is_efer_nx(mmu) || is_cr4_smep(mmu))) 503 errcode |= PFERR_FETCH_MASK; 504 505 walker->fault.vector = PF_VECTOR; 506 walker->fault.error_code_valid = true; 507 walker->fault.error_code = errcode; 508 509 #if PTTYPE == PTTYPE_EPT 510 /* 511 * Use PFERR_RSVD_MASK in error_code to to tell if EPT 512 * misconfiguration requires to be injected. The detection is 513 * done by is_rsvd_bits_set() above. 514 * 515 * We set up the value of exit_qualification to inject: 516 * [2:0] - Derive from the access bits. The exit_qualification might be 517 * out of date if it is serving an EPT misconfiguration. 518 * [5:3] - Calculated by the page walk of the guest EPT page tables 519 * [7:8] - Derived from [7:8] of real exit_qualification 520 * 521 * The other bits are set to 0. 522 */ 523 if (!(errcode & PFERR_RSVD_MASK)) { 524 vcpu->arch.exit_qualification &= 0x180; 525 if (write_fault) 526 vcpu->arch.exit_qualification |= EPT_VIOLATION_ACC_WRITE; 527 if (user_fault) 528 vcpu->arch.exit_qualification |= EPT_VIOLATION_ACC_READ; 529 if (fetch_fault) 530 vcpu->arch.exit_qualification |= EPT_VIOLATION_ACC_INSTR; 531 vcpu->arch.exit_qualification |= (pte_access & 0x7) << 3; 532 } 533 #endif 534 walker->fault.address = addr; 535 walker->fault.nested_page_fault = mmu != vcpu->arch.walk_mmu; 536 walker->fault.async_page_fault = false; 537 538 trace_kvm_mmu_walker_error(walker->fault.error_code); 539 return 0; 540 } 541 542 static int FNAME(walk_addr)(struct guest_walker *walker, 543 struct kvm_vcpu *vcpu, gpa_t addr, u32 access) 544 { 545 return FNAME(walk_addr_generic)(walker, vcpu, vcpu->arch.mmu, addr, 546 access); 547 } 548 549 static bool 550 FNAME(prefetch_gpte)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp, 551 u64 *spte, pt_element_t gpte, bool no_dirty_log) 552 { 553 struct kvm_memory_slot *slot; 554 unsigned pte_access; 555 gfn_t gfn; 556 kvm_pfn_t pfn; 557 558 if (FNAME(prefetch_invalid_gpte)(vcpu, sp, spte, gpte)) 559 return false; 560 561 pgprintk("%s: gpte %llx spte %p\n", __func__, (u64)gpte, spte); 562 563 gfn = gpte_to_gfn(gpte); 564 pte_access = sp->role.access & FNAME(gpte_access)(gpte); 565 FNAME(protect_clean_gpte)(vcpu->arch.mmu, &pte_access, gpte); 566 567 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, 568 no_dirty_log && (pte_access & ACC_WRITE_MASK)); 569 if (!slot) 570 return false; 571 572 pfn = gfn_to_pfn_memslot_atomic(slot, gfn); 573 if (is_error_pfn(pfn)) 574 return false; 575 576 mmu_set_spte(vcpu, slot, spte, pte_access, gfn, pfn, NULL); 577 kvm_release_pfn_clean(pfn); 578 return true; 579 } 580 581 static bool FNAME(gpte_changed)(struct kvm_vcpu *vcpu, 582 struct guest_walker *gw, int level) 583 { 584 pt_element_t curr_pte; 585 gpa_t base_gpa, pte_gpa = gw->pte_gpa[level - 1]; 586 u64 mask; 587 int r, index; 588 589 if (level == PG_LEVEL_4K) { 590 mask = PTE_PREFETCH_NUM * sizeof(pt_element_t) - 1; 591 base_gpa = pte_gpa & ~mask; 592 index = (pte_gpa - base_gpa) / sizeof(pt_element_t); 593 594 r = kvm_vcpu_read_guest_atomic(vcpu, base_gpa, 595 gw->prefetch_ptes, sizeof(gw->prefetch_ptes)); 596 curr_pte = gw->prefetch_ptes[index]; 597 } else 598 r = kvm_vcpu_read_guest_atomic(vcpu, pte_gpa, 599 &curr_pte, sizeof(curr_pte)); 600 601 return r || curr_pte != gw->ptes[level - 1]; 602 } 603 604 static void FNAME(pte_prefetch)(struct kvm_vcpu *vcpu, struct guest_walker *gw, 605 u64 *sptep) 606 { 607 struct kvm_mmu_page *sp; 608 pt_element_t *gptep = gw->prefetch_ptes; 609 u64 *spte; 610 int i; 611 612 sp = sptep_to_sp(sptep); 613 614 if (sp->role.level > PG_LEVEL_4K) 615 return; 616 617 /* 618 * If addresses are being invalidated, skip prefetching to avoid 619 * accidentally prefetching those addresses. 620 */ 621 if (unlikely(vcpu->kvm->mmu_notifier_count)) 622 return; 623 624 if (sp->role.direct) 625 return __direct_pte_prefetch(vcpu, sp, sptep); 626 627 i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1); 628 spte = sp->spt + i; 629 630 for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) { 631 if (spte == sptep) 632 continue; 633 634 if (is_shadow_present_pte(*spte)) 635 continue; 636 637 if (!FNAME(prefetch_gpte)(vcpu, sp, spte, gptep[i], true)) 638 break; 639 } 640 } 641 642 /* 643 * Fetch a shadow pte for a specific level in the paging hierarchy. 644 * If the guest tries to write a write-protected page, we need to 645 * emulate this operation, return 1 to indicate this case. 646 */ 647 static int FNAME(fetch)(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault, 648 struct guest_walker *gw) 649 { 650 struct kvm_mmu_page *sp = NULL; 651 struct kvm_shadow_walk_iterator it; 652 unsigned int direct_access, access; 653 int top_level, ret; 654 gfn_t base_gfn = fault->gfn; 655 656 WARN_ON_ONCE(gw->gfn != base_gfn); 657 direct_access = gw->pte_access; 658 659 top_level = vcpu->arch.mmu->root_level; 660 if (top_level == PT32E_ROOT_LEVEL) 661 top_level = PT32_ROOT_LEVEL; 662 /* 663 * Verify that the top-level gpte is still there. Since the page 664 * is a root page, it is either write protected (and cannot be 665 * changed from now on) or it is invalid (in which case, we don't 666 * really care if it changes underneath us after this point). 667 */ 668 if (FNAME(gpte_changed)(vcpu, gw, top_level)) 669 goto out_gpte_changed; 670 671 if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa))) 672 goto out_gpte_changed; 673 674 for (shadow_walk_init(&it, vcpu, fault->addr); 675 shadow_walk_okay(&it) && it.level > gw->level; 676 shadow_walk_next(&it)) { 677 gfn_t table_gfn; 678 679 clear_sp_write_flooding_count(it.sptep); 680 drop_large_spte(vcpu, it.sptep); 681 682 sp = NULL; 683 if (!is_shadow_present_pte(*it.sptep)) { 684 table_gfn = gw->table_gfn[it.level - 2]; 685 access = gw->pt_access[it.level - 2]; 686 sp = kvm_mmu_get_page(vcpu, table_gfn, fault->addr, 687 it.level-1, false, access); 688 /* 689 * We must synchronize the pagetable before linking it 690 * because the guest doesn't need to flush tlb when 691 * the gpte is changed from non-present to present. 692 * Otherwise, the guest may use the wrong mapping. 693 * 694 * For PG_LEVEL_4K, kvm_mmu_get_page() has already 695 * synchronized it transiently via kvm_sync_page(). 696 * 697 * For higher level pagetable, we synchronize it via 698 * the slower mmu_sync_children(). If it needs to 699 * break, some progress has been made; return 700 * RET_PF_RETRY and retry on the next #PF. 701 * KVM_REQ_MMU_SYNC is not necessary but it 702 * expedites the process. 703 */ 704 if (sp->unsync_children && 705 mmu_sync_children(vcpu, sp, false)) 706 return RET_PF_RETRY; 707 } 708 709 /* 710 * Verify that the gpte in the page we've just write 711 * protected is still there. 712 */ 713 if (FNAME(gpte_changed)(vcpu, gw, it.level - 1)) 714 goto out_gpte_changed; 715 716 if (sp) 717 link_shadow_page(vcpu, it.sptep, sp); 718 } 719 720 kvm_mmu_hugepage_adjust(vcpu, fault); 721 722 trace_kvm_mmu_spte_requested(fault); 723 724 for (; shadow_walk_okay(&it); shadow_walk_next(&it)) { 725 clear_sp_write_flooding_count(it.sptep); 726 727 /* 728 * We cannot overwrite existing page tables with an NX 729 * large page, as the leaf could be executable. 730 */ 731 if (fault->nx_huge_page_workaround_enabled) 732 disallowed_hugepage_adjust(fault, *it.sptep, it.level); 733 734 base_gfn = fault->gfn & ~(KVM_PAGES_PER_HPAGE(it.level) - 1); 735 if (it.level == fault->goal_level) 736 break; 737 738 validate_direct_spte(vcpu, it.sptep, direct_access); 739 740 drop_large_spte(vcpu, it.sptep); 741 742 if (!is_shadow_present_pte(*it.sptep)) { 743 sp = kvm_mmu_get_page(vcpu, base_gfn, fault->addr, 744 it.level - 1, true, direct_access); 745 link_shadow_page(vcpu, it.sptep, sp); 746 if (fault->huge_page_disallowed && 747 fault->req_level >= it.level) 748 account_huge_nx_page(vcpu->kvm, sp); 749 } 750 } 751 752 if (WARN_ON_ONCE(it.level != fault->goal_level)) 753 return -EFAULT; 754 755 ret = mmu_set_spte(vcpu, fault->slot, it.sptep, gw->pte_access, 756 base_gfn, fault->pfn, fault); 757 if (ret == RET_PF_SPURIOUS) 758 return ret; 759 760 FNAME(pte_prefetch)(vcpu, gw, it.sptep); 761 ++vcpu->stat.pf_fixed; 762 return ret; 763 764 out_gpte_changed: 765 return RET_PF_RETRY; 766 } 767 768 /* 769 * To see whether the mapped gfn can write its page table in the current 770 * mapping. 771 * 772 * It is the helper function of FNAME(page_fault). When guest uses large page 773 * size to map the writable gfn which is used as current page table, we should 774 * force kvm to use small page size to map it because new shadow page will be 775 * created when kvm establishes shadow page table that stop kvm using large 776 * page size. Do it early can avoid unnecessary #PF and emulation. 777 * 778 * @write_fault_to_shadow_pgtable will return true if the fault gfn is 779 * currently used as its page table. 780 * 781 * Note: the PDPT page table is not checked for PAE-32 bit guest. It is ok 782 * since the PDPT is always shadowed, that means, we can not use large page 783 * size to map the gfn which is used as PDPT. 784 */ 785 static bool 786 FNAME(is_self_change_mapping)(struct kvm_vcpu *vcpu, 787 struct guest_walker *walker, bool user_fault, 788 bool *write_fault_to_shadow_pgtable) 789 { 790 int level; 791 gfn_t mask = ~(KVM_PAGES_PER_HPAGE(walker->level) - 1); 792 bool self_changed = false; 793 794 if (!(walker->pte_access & ACC_WRITE_MASK || 795 (!is_cr0_wp(vcpu->arch.mmu) && !user_fault))) 796 return false; 797 798 for (level = walker->level; level <= walker->max_level; level++) { 799 gfn_t gfn = walker->gfn ^ walker->table_gfn[level - 1]; 800 801 self_changed |= !(gfn & mask); 802 *write_fault_to_shadow_pgtable |= !gfn; 803 } 804 805 return self_changed; 806 } 807 808 /* 809 * Page fault handler. There are several causes for a page fault: 810 * - there is no shadow pte for the guest pte 811 * - write access through a shadow pte marked read only so that we can set 812 * the dirty bit 813 * - write access to a shadow pte marked read only so we can update the page 814 * dirty bitmap, when userspace requests it 815 * - mmio access; in this case we will never install a present shadow pte 816 * - normal guest page fault due to the guest pte marked not present, not 817 * writable, or not executable 818 * 819 * Returns: 1 if we need to emulate the instruction, 0 otherwise, or 820 * a negative value on error. 821 */ 822 static int FNAME(page_fault)(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault) 823 { 824 struct guest_walker walker; 825 int r; 826 unsigned long mmu_seq; 827 bool is_self_change_mapping; 828 829 pgprintk("%s: addr %lx err %x\n", __func__, fault->addr, fault->error_code); 830 WARN_ON_ONCE(fault->is_tdp); 831 832 /* 833 * Look up the guest pte for the faulting address. 834 * If PFEC.RSVD is set, this is a shadow page fault. 835 * The bit needs to be cleared before walking guest page tables. 836 */ 837 r = FNAME(walk_addr)(&walker, vcpu, fault->addr, 838 fault->error_code & ~PFERR_RSVD_MASK); 839 840 /* 841 * The page is not mapped by the guest. Let the guest handle it. 842 */ 843 if (!r) { 844 pgprintk("%s: guest page fault\n", __func__); 845 if (!fault->prefetch) 846 kvm_inject_emulated_page_fault(vcpu, &walker.fault); 847 848 return RET_PF_RETRY; 849 } 850 851 fault->gfn = walker.gfn; 852 fault->slot = kvm_vcpu_gfn_to_memslot(vcpu, fault->gfn); 853 854 if (page_fault_handle_page_track(vcpu, fault)) { 855 shadow_page_table_clear_flood(vcpu, fault->addr); 856 return RET_PF_EMULATE; 857 } 858 859 r = mmu_topup_memory_caches(vcpu, true); 860 if (r) 861 return r; 862 863 vcpu->arch.write_fault_to_shadow_pgtable = false; 864 865 is_self_change_mapping = FNAME(is_self_change_mapping)(vcpu, 866 &walker, fault->user, &vcpu->arch.write_fault_to_shadow_pgtable); 867 868 if (is_self_change_mapping) 869 fault->max_level = PG_LEVEL_4K; 870 else 871 fault->max_level = walker.level; 872 873 mmu_seq = vcpu->kvm->mmu_notifier_seq; 874 smp_rmb(); 875 876 if (kvm_faultin_pfn(vcpu, fault, &r)) 877 return r; 878 879 if (handle_abnormal_pfn(vcpu, fault, walker.pte_access, &r)) 880 return r; 881 882 /* 883 * Do not change pte_access if the pfn is a mmio page, otherwise 884 * we will cache the incorrect access into mmio spte. 885 */ 886 if (fault->write && !(walker.pte_access & ACC_WRITE_MASK) && 887 !is_cr0_wp(vcpu->arch.mmu) && !fault->user && fault->slot) { 888 walker.pte_access |= ACC_WRITE_MASK; 889 walker.pte_access &= ~ACC_USER_MASK; 890 891 /* 892 * If we converted a user page to a kernel page, 893 * so that the kernel can write to it when cr0.wp=0, 894 * then we should prevent the kernel from executing it 895 * if SMEP is enabled. 896 */ 897 if (is_cr4_smep(vcpu->arch.mmu)) 898 walker.pte_access &= ~ACC_EXEC_MASK; 899 } 900 901 r = RET_PF_RETRY; 902 write_lock(&vcpu->kvm->mmu_lock); 903 904 if (is_page_fault_stale(vcpu, fault, mmu_seq)) 905 goto out_unlock; 906 907 kvm_mmu_audit(vcpu, AUDIT_PRE_PAGE_FAULT); 908 r = make_mmu_pages_available(vcpu); 909 if (r) 910 goto out_unlock; 911 r = FNAME(fetch)(vcpu, fault, &walker); 912 kvm_mmu_audit(vcpu, AUDIT_POST_PAGE_FAULT); 913 914 out_unlock: 915 write_unlock(&vcpu->kvm->mmu_lock); 916 kvm_release_pfn_clean(fault->pfn); 917 return r; 918 } 919 920 static gpa_t FNAME(get_level1_sp_gpa)(struct kvm_mmu_page *sp) 921 { 922 int offset = 0; 923 924 WARN_ON(sp->role.level != PG_LEVEL_4K); 925 926 if (PTTYPE == 32) 927 offset = sp->role.quadrant << PT64_LEVEL_BITS; 928 929 return gfn_to_gpa(sp->gfn) + offset * sizeof(pt_element_t); 930 } 931 932 static void FNAME(invlpg)(struct kvm_vcpu *vcpu, gva_t gva, hpa_t root_hpa) 933 { 934 struct kvm_shadow_walk_iterator iterator; 935 struct kvm_mmu_page *sp; 936 u64 old_spte; 937 int level; 938 u64 *sptep; 939 940 vcpu_clear_mmio_info(vcpu, gva); 941 942 /* 943 * No need to check return value here, rmap_can_add() can 944 * help us to skip pte prefetch later. 945 */ 946 mmu_topup_memory_caches(vcpu, true); 947 948 if (!VALID_PAGE(root_hpa)) { 949 WARN_ON(1); 950 return; 951 } 952 953 write_lock(&vcpu->kvm->mmu_lock); 954 for_each_shadow_entry_using_root(vcpu, root_hpa, gva, iterator) { 955 level = iterator.level; 956 sptep = iterator.sptep; 957 958 sp = sptep_to_sp(sptep); 959 old_spte = *sptep; 960 if (is_last_spte(old_spte, level)) { 961 pt_element_t gpte; 962 gpa_t pte_gpa; 963 964 if (!sp->unsync) 965 break; 966 967 pte_gpa = FNAME(get_level1_sp_gpa)(sp); 968 pte_gpa += (sptep - sp->spt) * sizeof(pt_element_t); 969 970 mmu_page_zap_pte(vcpu->kvm, sp, sptep, NULL); 971 if (is_shadow_present_pte(old_spte)) 972 kvm_flush_remote_tlbs_with_address(vcpu->kvm, 973 sp->gfn, KVM_PAGES_PER_HPAGE(sp->role.level)); 974 975 if (!rmap_can_add(vcpu)) 976 break; 977 978 if (kvm_vcpu_read_guest_atomic(vcpu, pte_gpa, &gpte, 979 sizeof(pt_element_t))) 980 break; 981 982 FNAME(prefetch_gpte)(vcpu, sp, sptep, gpte, false); 983 } 984 985 if (!sp->unsync_children) 986 break; 987 } 988 write_unlock(&vcpu->kvm->mmu_lock); 989 } 990 991 /* Note, @addr is a GPA when gva_to_gpa() translates an L2 GPA to an L1 GPA. */ 992 static gpa_t FNAME(gva_to_gpa)(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, 993 gpa_t addr, u32 access, 994 struct x86_exception *exception) 995 { 996 struct guest_walker walker; 997 gpa_t gpa = UNMAPPED_GVA; 998 int r; 999 1000 #ifndef CONFIG_X86_64 1001 /* A 64-bit GVA should be impossible on 32-bit KVM. */ 1002 WARN_ON_ONCE((addr >> 32) && mmu == vcpu->arch.walk_mmu); 1003 #endif 1004 1005 r = FNAME(walk_addr_generic)(&walker, vcpu, mmu, addr, access); 1006 1007 if (r) { 1008 gpa = gfn_to_gpa(walker.gfn); 1009 gpa |= addr & ~PAGE_MASK; 1010 } else if (exception) 1011 *exception = walker.fault; 1012 1013 return gpa; 1014 } 1015 1016 /* 1017 * Using the cached information from sp->gfns is safe because: 1018 * - The spte has a reference to the struct page, so the pfn for a given gfn 1019 * can't change unless all sptes pointing to it are nuked first. 1020 * 1021 * Returns 1022 * < 0: the sp should be zapped 1023 * 0: the sp is synced and no tlb flushing is required 1024 * > 0: the sp is synced and tlb flushing is required 1025 */ 1026 static int FNAME(sync_page)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp) 1027 { 1028 union kvm_mmu_page_role mmu_role = vcpu->arch.mmu->mmu_role.base; 1029 int i; 1030 bool host_writable; 1031 gpa_t first_pte_gpa; 1032 bool flush = false; 1033 1034 /* 1035 * Ignore various flags when verifying that it's safe to sync a shadow 1036 * page using the current MMU context. 1037 * 1038 * - level: not part of the overall MMU role and will never match as the MMU's 1039 * level tracks the root level 1040 * - access: updated based on the new guest PTE 1041 * - quadrant: not part of the overall MMU role (similar to level) 1042 */ 1043 const union kvm_mmu_page_role sync_role_ign = { 1044 .level = 0xf, 1045 .access = 0x7, 1046 .quadrant = 0x3, 1047 }; 1048 1049 /* 1050 * Direct pages can never be unsync, and KVM should never attempt to 1051 * sync a shadow page for a different MMU context, e.g. if the role 1052 * differs then the memslot lookup (SMM vs. non-SMM) will be bogus, the 1053 * reserved bits checks will be wrong, etc... 1054 */ 1055 if (WARN_ON_ONCE(sp->role.direct || 1056 (sp->role.word ^ mmu_role.word) & ~sync_role_ign.word)) 1057 return -1; 1058 1059 first_pte_gpa = FNAME(get_level1_sp_gpa)(sp); 1060 1061 for (i = 0; i < PT64_ENT_PER_PAGE; i++) { 1062 u64 *sptep, spte; 1063 struct kvm_memory_slot *slot; 1064 unsigned pte_access; 1065 pt_element_t gpte; 1066 gpa_t pte_gpa; 1067 gfn_t gfn; 1068 1069 if (!sp->spt[i]) 1070 continue; 1071 1072 pte_gpa = first_pte_gpa + i * sizeof(pt_element_t); 1073 1074 if (kvm_vcpu_read_guest_atomic(vcpu, pte_gpa, &gpte, 1075 sizeof(pt_element_t))) 1076 return -1; 1077 1078 if (FNAME(prefetch_invalid_gpte)(vcpu, sp, &sp->spt[i], gpte)) { 1079 flush = true; 1080 continue; 1081 } 1082 1083 gfn = gpte_to_gfn(gpte); 1084 pte_access = sp->role.access; 1085 pte_access &= FNAME(gpte_access)(gpte); 1086 FNAME(protect_clean_gpte)(vcpu->arch.mmu, &pte_access, gpte); 1087 1088 if (sync_mmio_spte(vcpu, &sp->spt[i], gfn, pte_access)) 1089 continue; 1090 1091 if (gfn != sp->gfns[i]) { 1092 drop_spte(vcpu->kvm, &sp->spt[i]); 1093 flush = true; 1094 continue; 1095 } 1096 1097 sptep = &sp->spt[i]; 1098 spte = *sptep; 1099 host_writable = spte & shadow_host_writable_mask; 1100 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 1101 make_spte(vcpu, sp, slot, pte_access, gfn, 1102 spte_to_pfn(spte), spte, true, false, 1103 host_writable, &spte); 1104 1105 flush |= mmu_spte_update(sptep, spte); 1106 } 1107 1108 return flush; 1109 } 1110 1111 #undef pt_element_t 1112 #undef guest_walker 1113 #undef FNAME 1114 #undef PT_BASE_ADDR_MASK 1115 #undef PT_INDEX 1116 #undef PT_LVL_ADDR_MASK 1117 #undef PT_LVL_OFFSET_MASK 1118 #undef PT_LEVEL_BITS 1119 #undef PT_MAX_FULL_LEVELS 1120 #undef gpte_to_gfn 1121 #undef gpte_to_gfn_lvl 1122 #undef CMPXCHG 1123 #undef PT_GUEST_ACCESSED_MASK 1124 #undef PT_GUEST_DIRTY_MASK 1125 #undef PT_GUEST_DIRTY_SHIFT 1126 #undef PT_GUEST_ACCESSED_SHIFT 1127 #undef PT_HAVE_ACCESSED_DIRTY 1128