1 /* SPDX-License-Identifier: GPL-2.0-only */ 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * This module enables machines with Intel VT-x extensions to run virtual 6 * machines without emulation or binary translation. 7 * 8 * MMU support 9 * 10 * Copyright (C) 2006 Qumranet, Inc. 11 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 12 * 13 * Authors: 14 * Yaniv Kamay <yaniv@qumranet.com> 15 * Avi Kivity <avi@qumranet.com> 16 */ 17 18 /* 19 * We need the mmu code to access both 32-bit and 64-bit guest ptes, 20 * so the code in this file is compiled twice, once per pte size. 21 */ 22 23 #if PTTYPE == 64 24 #define pt_element_t u64 25 #define guest_walker guest_walker64 26 #define FNAME(name) paging##64_##name 27 #define PT_BASE_ADDR_MASK PT64_BASE_ADDR_MASK 28 #define PT_LVL_ADDR_MASK(lvl) PT64_LVL_ADDR_MASK(lvl) 29 #define PT_LVL_OFFSET_MASK(lvl) PT64_LVL_OFFSET_MASK(lvl) 30 #define PT_INDEX(addr, level) PT64_INDEX(addr, level) 31 #define PT_LEVEL_BITS PT64_LEVEL_BITS 32 #define PT_GUEST_DIRTY_SHIFT PT_DIRTY_SHIFT 33 #define PT_GUEST_ACCESSED_SHIFT PT_ACCESSED_SHIFT 34 #define PT_HAVE_ACCESSED_DIRTY(mmu) true 35 #ifdef CONFIG_X86_64 36 #define PT_MAX_FULL_LEVELS 4 37 #define CMPXCHG cmpxchg 38 #else 39 #define CMPXCHG cmpxchg64 40 #define PT_MAX_FULL_LEVELS 2 41 #endif 42 #elif PTTYPE == 32 43 #define pt_element_t u32 44 #define guest_walker guest_walker32 45 #define FNAME(name) paging##32_##name 46 #define PT_BASE_ADDR_MASK PT32_BASE_ADDR_MASK 47 #define PT_LVL_ADDR_MASK(lvl) PT32_LVL_ADDR_MASK(lvl) 48 #define PT_LVL_OFFSET_MASK(lvl) PT32_LVL_OFFSET_MASK(lvl) 49 #define PT_INDEX(addr, level) PT32_INDEX(addr, level) 50 #define PT_LEVEL_BITS PT32_LEVEL_BITS 51 #define PT_MAX_FULL_LEVELS 2 52 #define PT_GUEST_DIRTY_SHIFT PT_DIRTY_SHIFT 53 #define PT_GUEST_ACCESSED_SHIFT PT_ACCESSED_SHIFT 54 #define PT_HAVE_ACCESSED_DIRTY(mmu) true 55 #define CMPXCHG cmpxchg 56 #elif PTTYPE == PTTYPE_EPT 57 #define pt_element_t u64 58 #define guest_walker guest_walkerEPT 59 #define FNAME(name) ept_##name 60 #define PT_BASE_ADDR_MASK PT64_BASE_ADDR_MASK 61 #define PT_LVL_ADDR_MASK(lvl) PT64_LVL_ADDR_MASK(lvl) 62 #define PT_LVL_OFFSET_MASK(lvl) PT64_LVL_OFFSET_MASK(lvl) 63 #define PT_INDEX(addr, level) PT64_INDEX(addr, level) 64 #define PT_LEVEL_BITS PT64_LEVEL_BITS 65 #define PT_GUEST_DIRTY_SHIFT 9 66 #define PT_GUEST_ACCESSED_SHIFT 8 67 #define PT_HAVE_ACCESSED_DIRTY(mmu) ((mmu)->ept_ad) 68 #define CMPXCHG cmpxchg64 69 #define PT_MAX_FULL_LEVELS 4 70 #else 71 #error Invalid PTTYPE value 72 #endif 73 74 #define PT_GUEST_DIRTY_MASK (1 << PT_GUEST_DIRTY_SHIFT) 75 #define PT_GUEST_ACCESSED_MASK (1 << PT_GUEST_ACCESSED_SHIFT) 76 77 #define gpte_to_gfn_lvl FNAME(gpte_to_gfn_lvl) 78 #define gpte_to_gfn(pte) gpte_to_gfn_lvl((pte), PT_PAGE_TABLE_LEVEL) 79 80 /* 81 * The guest_walker structure emulates the behavior of the hardware page 82 * table walker. 83 */ 84 struct guest_walker { 85 int level; 86 unsigned max_level; 87 gfn_t table_gfn[PT_MAX_FULL_LEVELS]; 88 pt_element_t ptes[PT_MAX_FULL_LEVELS]; 89 pt_element_t prefetch_ptes[PTE_PREFETCH_NUM]; 90 gpa_t pte_gpa[PT_MAX_FULL_LEVELS]; 91 pt_element_t __user *ptep_user[PT_MAX_FULL_LEVELS]; 92 bool pte_writable[PT_MAX_FULL_LEVELS]; 93 unsigned pt_access; 94 unsigned pte_access; 95 gfn_t gfn; 96 struct x86_exception fault; 97 }; 98 99 static gfn_t gpte_to_gfn_lvl(pt_element_t gpte, int lvl) 100 { 101 return (gpte & PT_LVL_ADDR_MASK(lvl)) >> PAGE_SHIFT; 102 } 103 104 static inline void FNAME(protect_clean_gpte)(struct kvm_mmu *mmu, unsigned *access, 105 unsigned gpte) 106 { 107 unsigned mask; 108 109 /* dirty bit is not supported, so no need to track it */ 110 if (!PT_HAVE_ACCESSED_DIRTY(mmu)) 111 return; 112 113 BUILD_BUG_ON(PT_WRITABLE_MASK != ACC_WRITE_MASK); 114 115 mask = (unsigned)~ACC_WRITE_MASK; 116 /* Allow write access to dirty gptes */ 117 mask |= (gpte >> (PT_GUEST_DIRTY_SHIFT - PT_WRITABLE_SHIFT)) & 118 PT_WRITABLE_MASK; 119 *access &= mask; 120 } 121 122 static inline int FNAME(is_present_gpte)(unsigned long pte) 123 { 124 #if PTTYPE != PTTYPE_EPT 125 return pte & PT_PRESENT_MASK; 126 #else 127 return pte & 7; 128 #endif 129 } 130 131 static bool FNAME(is_bad_mt_xwr)(struct rsvd_bits_validate *rsvd_check, u64 gpte) 132 { 133 #if PTTYPE != PTTYPE_EPT 134 return false; 135 #else 136 return __is_bad_mt_xwr(rsvd_check, gpte); 137 #endif 138 } 139 140 static bool FNAME(is_rsvd_bits_set)(struct kvm_mmu *mmu, u64 gpte, int level) 141 { 142 return __is_rsvd_bits_set(&mmu->guest_rsvd_check, gpte, level) || 143 FNAME(is_bad_mt_xwr)(&mmu->guest_rsvd_check, gpte); 144 } 145 146 static int FNAME(cmpxchg_gpte)(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, 147 pt_element_t __user *ptep_user, unsigned index, 148 pt_element_t orig_pte, pt_element_t new_pte) 149 { 150 int npages; 151 pt_element_t ret; 152 pt_element_t *table; 153 struct page *page; 154 155 npages = get_user_pages_fast((unsigned long)ptep_user, 1, FOLL_WRITE, &page); 156 if (likely(npages == 1)) { 157 table = kmap_atomic(page); 158 ret = CMPXCHG(&table[index], orig_pte, new_pte); 159 kunmap_atomic(table); 160 161 kvm_release_page_dirty(page); 162 } else { 163 struct vm_area_struct *vma; 164 unsigned long vaddr = (unsigned long)ptep_user & PAGE_MASK; 165 unsigned long pfn; 166 unsigned long paddr; 167 168 down_read(¤t->mm->mmap_sem); 169 vma = find_vma_intersection(current->mm, vaddr, vaddr + PAGE_SIZE); 170 if (!vma || !(vma->vm_flags & VM_PFNMAP)) { 171 up_read(¤t->mm->mmap_sem); 172 return -EFAULT; 173 } 174 pfn = ((vaddr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff; 175 paddr = pfn << PAGE_SHIFT; 176 table = memremap(paddr, PAGE_SIZE, MEMREMAP_WB); 177 if (!table) { 178 up_read(¤t->mm->mmap_sem); 179 return -EFAULT; 180 } 181 ret = CMPXCHG(&table[index], orig_pte, new_pte); 182 memunmap(table); 183 up_read(¤t->mm->mmap_sem); 184 } 185 186 return (ret != orig_pte); 187 } 188 189 static bool FNAME(prefetch_invalid_gpte)(struct kvm_vcpu *vcpu, 190 struct kvm_mmu_page *sp, u64 *spte, 191 u64 gpte) 192 { 193 if (!FNAME(is_present_gpte)(gpte)) 194 goto no_present; 195 196 /* if accessed bit is not supported prefetch non accessed gpte */ 197 if (PT_HAVE_ACCESSED_DIRTY(vcpu->arch.mmu) && 198 !(gpte & PT_GUEST_ACCESSED_MASK)) 199 goto no_present; 200 201 if (FNAME(is_rsvd_bits_set)(vcpu->arch.mmu, gpte, PT_PAGE_TABLE_LEVEL)) 202 goto no_present; 203 204 return false; 205 206 no_present: 207 drop_spte(vcpu->kvm, spte); 208 return true; 209 } 210 211 /* 212 * For PTTYPE_EPT, a page table can be executable but not readable 213 * on supported processors. Therefore, set_spte does not automatically 214 * set bit 0 if execute only is supported. Here, we repurpose ACC_USER_MASK 215 * to signify readability since it isn't used in the EPT case 216 */ 217 static inline unsigned FNAME(gpte_access)(u64 gpte) 218 { 219 unsigned access; 220 #if PTTYPE == PTTYPE_EPT 221 access = ((gpte & VMX_EPT_WRITABLE_MASK) ? ACC_WRITE_MASK : 0) | 222 ((gpte & VMX_EPT_EXECUTABLE_MASK) ? ACC_EXEC_MASK : 0) | 223 ((gpte & VMX_EPT_READABLE_MASK) ? ACC_USER_MASK : 0); 224 #else 225 BUILD_BUG_ON(ACC_EXEC_MASK != PT_PRESENT_MASK); 226 BUILD_BUG_ON(ACC_EXEC_MASK != 1); 227 access = gpte & (PT_WRITABLE_MASK | PT_USER_MASK | PT_PRESENT_MASK); 228 /* Combine NX with P (which is set here) to get ACC_EXEC_MASK. */ 229 access ^= (gpte >> PT64_NX_SHIFT); 230 #endif 231 232 return access; 233 } 234 235 static int FNAME(update_accessed_dirty_bits)(struct kvm_vcpu *vcpu, 236 struct kvm_mmu *mmu, 237 struct guest_walker *walker, 238 int write_fault) 239 { 240 unsigned level, index; 241 pt_element_t pte, orig_pte; 242 pt_element_t __user *ptep_user; 243 gfn_t table_gfn; 244 int ret; 245 246 /* dirty/accessed bits are not supported, so no need to update them */ 247 if (!PT_HAVE_ACCESSED_DIRTY(mmu)) 248 return 0; 249 250 for (level = walker->max_level; level >= walker->level; --level) { 251 pte = orig_pte = walker->ptes[level - 1]; 252 table_gfn = walker->table_gfn[level - 1]; 253 ptep_user = walker->ptep_user[level - 1]; 254 index = offset_in_page(ptep_user) / sizeof(pt_element_t); 255 if (!(pte & PT_GUEST_ACCESSED_MASK)) { 256 trace_kvm_mmu_set_accessed_bit(table_gfn, index, sizeof(pte)); 257 pte |= PT_GUEST_ACCESSED_MASK; 258 } 259 if (level == walker->level && write_fault && 260 !(pte & PT_GUEST_DIRTY_MASK)) { 261 trace_kvm_mmu_set_dirty_bit(table_gfn, index, sizeof(pte)); 262 #if PTTYPE == PTTYPE_EPT 263 if (kvm_arch_write_log_dirty(vcpu)) 264 return -EINVAL; 265 #endif 266 pte |= PT_GUEST_DIRTY_MASK; 267 } 268 if (pte == orig_pte) 269 continue; 270 271 /* 272 * If the slot is read-only, simply do not process the accessed 273 * and dirty bits. This is the correct thing to do if the slot 274 * is ROM, and page tables in read-as-ROM/write-as-MMIO slots 275 * are only supported if the accessed and dirty bits are already 276 * set in the ROM (so that MMIO writes are never needed). 277 * 278 * Note that NPT does not allow this at all and faults, since 279 * it always wants nested page table entries for the guest 280 * page tables to be writable. And EPT works but will simply 281 * overwrite the read-only memory to set the accessed and dirty 282 * bits. 283 */ 284 if (unlikely(!walker->pte_writable[level - 1])) 285 continue; 286 287 ret = FNAME(cmpxchg_gpte)(vcpu, mmu, ptep_user, index, orig_pte, pte); 288 if (ret) 289 return ret; 290 291 kvm_vcpu_mark_page_dirty(vcpu, table_gfn); 292 walker->ptes[level - 1] = pte; 293 } 294 return 0; 295 } 296 297 static inline unsigned FNAME(gpte_pkeys)(struct kvm_vcpu *vcpu, u64 gpte) 298 { 299 unsigned pkeys = 0; 300 #if PTTYPE == 64 301 pte_t pte = {.pte = gpte}; 302 303 pkeys = pte_flags_pkey(pte_flags(pte)); 304 #endif 305 return pkeys; 306 } 307 308 /* 309 * Fetch a guest pte for a guest virtual address, or for an L2's GPA. 310 */ 311 static int FNAME(walk_addr_generic)(struct guest_walker *walker, 312 struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, 313 gpa_t addr, u32 access) 314 { 315 int ret; 316 pt_element_t pte; 317 pt_element_t __user *uninitialized_var(ptep_user); 318 gfn_t table_gfn; 319 u64 pt_access, pte_access; 320 unsigned index, accessed_dirty, pte_pkey; 321 unsigned nested_access; 322 gpa_t pte_gpa; 323 bool have_ad; 324 int offset; 325 u64 walk_nx_mask = 0; 326 const int write_fault = access & PFERR_WRITE_MASK; 327 const int user_fault = access & PFERR_USER_MASK; 328 const int fetch_fault = access & PFERR_FETCH_MASK; 329 u16 errcode = 0; 330 gpa_t real_gpa; 331 gfn_t gfn; 332 333 trace_kvm_mmu_pagetable_walk(addr, access); 334 retry_walk: 335 walker->level = mmu->root_level; 336 pte = mmu->get_cr3(vcpu); 337 have_ad = PT_HAVE_ACCESSED_DIRTY(mmu); 338 339 #if PTTYPE == 64 340 walk_nx_mask = 1ULL << PT64_NX_SHIFT; 341 if (walker->level == PT32E_ROOT_LEVEL) { 342 pte = mmu->get_pdptr(vcpu, (addr >> 30) & 3); 343 trace_kvm_mmu_paging_element(pte, walker->level); 344 if (!FNAME(is_present_gpte)(pte)) 345 goto error; 346 --walker->level; 347 } 348 #endif 349 walker->max_level = walker->level; 350 ASSERT(!(is_long_mode(vcpu) && !is_pae(vcpu))); 351 352 /* 353 * FIXME: on Intel processors, loads of the PDPTE registers for PAE paging 354 * by the MOV to CR instruction are treated as reads and do not cause the 355 * processor to set the dirty flag in any EPT paging-structure entry. 356 */ 357 nested_access = (have_ad ? PFERR_WRITE_MASK : 0) | PFERR_USER_MASK; 358 359 pte_access = ~0; 360 ++walker->level; 361 362 do { 363 gfn_t real_gfn; 364 unsigned long host_addr; 365 366 pt_access = pte_access; 367 --walker->level; 368 369 index = PT_INDEX(addr, walker->level); 370 table_gfn = gpte_to_gfn(pte); 371 offset = index * sizeof(pt_element_t); 372 pte_gpa = gfn_to_gpa(table_gfn) + offset; 373 374 BUG_ON(walker->level < 1); 375 walker->table_gfn[walker->level - 1] = table_gfn; 376 walker->pte_gpa[walker->level - 1] = pte_gpa; 377 378 real_gfn = mmu->translate_gpa(vcpu, gfn_to_gpa(table_gfn), 379 nested_access, 380 &walker->fault); 381 382 /* 383 * FIXME: This can happen if emulation (for of an INS/OUTS 384 * instruction) triggers a nested page fault. The exit 385 * qualification / exit info field will incorrectly have 386 * "guest page access" as the nested page fault's cause, 387 * instead of "guest page structure access". To fix this, 388 * the x86_exception struct should be augmented with enough 389 * information to fix the exit_qualification or exit_info_1 390 * fields. 391 */ 392 if (unlikely(real_gfn == UNMAPPED_GVA)) 393 return 0; 394 395 real_gfn = gpa_to_gfn(real_gfn); 396 397 host_addr = kvm_vcpu_gfn_to_hva_prot(vcpu, real_gfn, 398 &walker->pte_writable[walker->level - 1]); 399 if (unlikely(kvm_is_error_hva(host_addr))) 400 goto error; 401 402 ptep_user = (pt_element_t __user *)((void *)host_addr + offset); 403 if (unlikely(__copy_from_user(&pte, ptep_user, sizeof(pte)))) 404 goto error; 405 walker->ptep_user[walker->level - 1] = ptep_user; 406 407 trace_kvm_mmu_paging_element(pte, walker->level); 408 409 /* 410 * Inverting the NX it lets us AND it like other 411 * permission bits. 412 */ 413 pte_access = pt_access & (pte ^ walk_nx_mask); 414 415 if (unlikely(!FNAME(is_present_gpte)(pte))) 416 goto error; 417 418 if (unlikely(FNAME(is_rsvd_bits_set)(mmu, pte, walker->level))) { 419 errcode = PFERR_RSVD_MASK | PFERR_PRESENT_MASK; 420 goto error; 421 } 422 423 walker->ptes[walker->level - 1] = pte; 424 } while (!is_last_gpte(mmu, walker->level, pte)); 425 426 pte_pkey = FNAME(gpte_pkeys)(vcpu, pte); 427 accessed_dirty = have_ad ? pte_access & PT_GUEST_ACCESSED_MASK : 0; 428 429 /* Convert to ACC_*_MASK flags for struct guest_walker. */ 430 walker->pt_access = FNAME(gpte_access)(pt_access ^ walk_nx_mask); 431 walker->pte_access = FNAME(gpte_access)(pte_access ^ walk_nx_mask); 432 errcode = permission_fault(vcpu, mmu, walker->pte_access, pte_pkey, access); 433 if (unlikely(errcode)) 434 goto error; 435 436 gfn = gpte_to_gfn_lvl(pte, walker->level); 437 gfn += (addr & PT_LVL_OFFSET_MASK(walker->level)) >> PAGE_SHIFT; 438 439 if (PTTYPE == 32 && walker->level == PT_DIRECTORY_LEVEL && is_cpuid_PSE36()) 440 gfn += pse36_gfn_delta(pte); 441 442 real_gpa = mmu->translate_gpa(vcpu, gfn_to_gpa(gfn), access, &walker->fault); 443 if (real_gpa == UNMAPPED_GVA) 444 return 0; 445 446 walker->gfn = real_gpa >> PAGE_SHIFT; 447 448 if (!write_fault) 449 FNAME(protect_clean_gpte)(mmu, &walker->pte_access, pte); 450 else 451 /* 452 * On a write fault, fold the dirty bit into accessed_dirty. 453 * For modes without A/D bits support accessed_dirty will be 454 * always clear. 455 */ 456 accessed_dirty &= pte >> 457 (PT_GUEST_DIRTY_SHIFT - PT_GUEST_ACCESSED_SHIFT); 458 459 if (unlikely(!accessed_dirty)) { 460 ret = FNAME(update_accessed_dirty_bits)(vcpu, mmu, walker, write_fault); 461 if (unlikely(ret < 0)) 462 goto error; 463 else if (ret) 464 goto retry_walk; 465 } 466 467 pgprintk("%s: pte %llx pte_access %x pt_access %x\n", 468 __func__, (u64)pte, walker->pte_access, walker->pt_access); 469 return 1; 470 471 error: 472 errcode |= write_fault | user_fault; 473 if (fetch_fault && (mmu->nx || 474 kvm_read_cr4_bits(vcpu, X86_CR4_SMEP))) 475 errcode |= PFERR_FETCH_MASK; 476 477 walker->fault.vector = PF_VECTOR; 478 walker->fault.error_code_valid = true; 479 walker->fault.error_code = errcode; 480 481 #if PTTYPE == PTTYPE_EPT 482 /* 483 * Use PFERR_RSVD_MASK in error_code to to tell if EPT 484 * misconfiguration requires to be injected. The detection is 485 * done by is_rsvd_bits_set() above. 486 * 487 * We set up the value of exit_qualification to inject: 488 * [2:0] - Derive from the access bits. The exit_qualification might be 489 * out of date if it is serving an EPT misconfiguration. 490 * [5:3] - Calculated by the page walk of the guest EPT page tables 491 * [7:8] - Derived from [7:8] of real exit_qualification 492 * 493 * The other bits are set to 0. 494 */ 495 if (!(errcode & PFERR_RSVD_MASK)) { 496 vcpu->arch.exit_qualification &= 0x180; 497 if (write_fault) 498 vcpu->arch.exit_qualification |= EPT_VIOLATION_ACC_WRITE; 499 if (user_fault) 500 vcpu->arch.exit_qualification |= EPT_VIOLATION_ACC_READ; 501 if (fetch_fault) 502 vcpu->arch.exit_qualification |= EPT_VIOLATION_ACC_INSTR; 503 vcpu->arch.exit_qualification |= (pte_access & 0x7) << 3; 504 } 505 #endif 506 walker->fault.address = addr; 507 walker->fault.nested_page_fault = mmu != vcpu->arch.walk_mmu; 508 509 trace_kvm_mmu_walker_error(walker->fault.error_code); 510 return 0; 511 } 512 513 static int FNAME(walk_addr)(struct guest_walker *walker, 514 struct kvm_vcpu *vcpu, gpa_t addr, u32 access) 515 { 516 return FNAME(walk_addr_generic)(walker, vcpu, vcpu->arch.mmu, addr, 517 access); 518 } 519 520 #if PTTYPE != PTTYPE_EPT 521 static int FNAME(walk_addr_nested)(struct guest_walker *walker, 522 struct kvm_vcpu *vcpu, gva_t addr, 523 u32 access) 524 { 525 return FNAME(walk_addr_generic)(walker, vcpu, &vcpu->arch.nested_mmu, 526 addr, access); 527 } 528 #endif 529 530 static bool 531 FNAME(prefetch_gpte)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp, 532 u64 *spte, pt_element_t gpte, bool no_dirty_log) 533 { 534 unsigned pte_access; 535 gfn_t gfn; 536 kvm_pfn_t pfn; 537 538 if (FNAME(prefetch_invalid_gpte)(vcpu, sp, spte, gpte)) 539 return false; 540 541 pgprintk("%s: gpte %llx spte %p\n", __func__, (u64)gpte, spte); 542 543 gfn = gpte_to_gfn(gpte); 544 pte_access = sp->role.access & FNAME(gpte_access)(gpte); 545 FNAME(protect_clean_gpte)(vcpu->arch.mmu, &pte_access, gpte); 546 pfn = pte_prefetch_gfn_to_pfn(vcpu, gfn, 547 no_dirty_log && (pte_access & ACC_WRITE_MASK)); 548 if (is_error_pfn(pfn)) 549 return false; 550 551 /* 552 * we call mmu_set_spte() with host_writable = true because 553 * pte_prefetch_gfn_to_pfn always gets a writable pfn. 554 */ 555 mmu_set_spte(vcpu, spte, pte_access, 0, PT_PAGE_TABLE_LEVEL, gfn, pfn, 556 true, true); 557 558 kvm_release_pfn_clean(pfn); 559 return true; 560 } 561 562 static void FNAME(update_pte)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp, 563 u64 *spte, const void *pte) 564 { 565 pt_element_t gpte = *(const pt_element_t *)pte; 566 567 FNAME(prefetch_gpte)(vcpu, sp, spte, gpte, false); 568 } 569 570 static bool FNAME(gpte_changed)(struct kvm_vcpu *vcpu, 571 struct guest_walker *gw, int level) 572 { 573 pt_element_t curr_pte; 574 gpa_t base_gpa, pte_gpa = gw->pte_gpa[level - 1]; 575 u64 mask; 576 int r, index; 577 578 if (level == PT_PAGE_TABLE_LEVEL) { 579 mask = PTE_PREFETCH_NUM * sizeof(pt_element_t) - 1; 580 base_gpa = pte_gpa & ~mask; 581 index = (pte_gpa - base_gpa) / sizeof(pt_element_t); 582 583 r = kvm_vcpu_read_guest_atomic(vcpu, base_gpa, 584 gw->prefetch_ptes, sizeof(gw->prefetch_ptes)); 585 curr_pte = gw->prefetch_ptes[index]; 586 } else 587 r = kvm_vcpu_read_guest_atomic(vcpu, pte_gpa, 588 &curr_pte, sizeof(curr_pte)); 589 590 return r || curr_pte != gw->ptes[level - 1]; 591 } 592 593 static void FNAME(pte_prefetch)(struct kvm_vcpu *vcpu, struct guest_walker *gw, 594 u64 *sptep) 595 { 596 struct kvm_mmu_page *sp; 597 pt_element_t *gptep = gw->prefetch_ptes; 598 u64 *spte; 599 int i; 600 601 sp = page_header(__pa(sptep)); 602 603 if (sp->role.level > PT_PAGE_TABLE_LEVEL) 604 return; 605 606 if (sp->role.direct) 607 return __direct_pte_prefetch(vcpu, sp, sptep); 608 609 i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1); 610 spte = sp->spt + i; 611 612 for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) { 613 if (spte == sptep) 614 continue; 615 616 if (is_shadow_present_pte(*spte)) 617 continue; 618 619 if (!FNAME(prefetch_gpte)(vcpu, sp, spte, gptep[i], true)) 620 break; 621 } 622 } 623 624 /* 625 * Fetch a shadow pte for a specific level in the paging hierarchy. 626 * If the guest tries to write a write-protected page, we need to 627 * emulate this operation, return 1 to indicate this case. 628 */ 629 static int FNAME(fetch)(struct kvm_vcpu *vcpu, gpa_t addr, 630 struct guest_walker *gw, 631 int write_fault, int max_level, 632 kvm_pfn_t pfn, bool map_writable, bool prefault, 633 bool lpage_disallowed) 634 { 635 struct kvm_mmu_page *sp = NULL; 636 struct kvm_shadow_walk_iterator it; 637 unsigned direct_access, access = gw->pt_access; 638 int top_level, hlevel, ret; 639 gfn_t base_gfn = gw->gfn; 640 641 direct_access = gw->pte_access; 642 643 top_level = vcpu->arch.mmu->root_level; 644 if (top_level == PT32E_ROOT_LEVEL) 645 top_level = PT32_ROOT_LEVEL; 646 /* 647 * Verify that the top-level gpte is still there. Since the page 648 * is a root page, it is either write protected (and cannot be 649 * changed from now on) or it is invalid (in which case, we don't 650 * really care if it changes underneath us after this point). 651 */ 652 if (FNAME(gpte_changed)(vcpu, gw, top_level)) 653 goto out_gpte_changed; 654 655 if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa))) 656 goto out_gpte_changed; 657 658 for (shadow_walk_init(&it, vcpu, addr); 659 shadow_walk_okay(&it) && it.level > gw->level; 660 shadow_walk_next(&it)) { 661 gfn_t table_gfn; 662 663 clear_sp_write_flooding_count(it.sptep); 664 drop_large_spte(vcpu, it.sptep); 665 666 sp = NULL; 667 if (!is_shadow_present_pte(*it.sptep)) { 668 table_gfn = gw->table_gfn[it.level - 2]; 669 sp = kvm_mmu_get_page(vcpu, table_gfn, addr, it.level-1, 670 false, access); 671 } 672 673 /* 674 * Verify that the gpte in the page we've just write 675 * protected is still there. 676 */ 677 if (FNAME(gpte_changed)(vcpu, gw, it.level - 1)) 678 goto out_gpte_changed; 679 680 if (sp) 681 link_shadow_page(vcpu, it.sptep, sp); 682 } 683 684 hlevel = kvm_mmu_hugepage_adjust(vcpu, gw->gfn, max_level, &pfn); 685 686 trace_kvm_mmu_spte_requested(addr, gw->level, pfn); 687 688 for (; shadow_walk_okay(&it); shadow_walk_next(&it)) { 689 clear_sp_write_flooding_count(it.sptep); 690 691 /* 692 * We cannot overwrite existing page tables with an NX 693 * large page, as the leaf could be executable. 694 */ 695 disallowed_hugepage_adjust(it, gw->gfn, &pfn, &hlevel); 696 697 base_gfn = gw->gfn & ~(KVM_PAGES_PER_HPAGE(it.level) - 1); 698 if (it.level == hlevel) 699 break; 700 701 validate_direct_spte(vcpu, it.sptep, direct_access); 702 703 drop_large_spte(vcpu, it.sptep); 704 705 if (!is_shadow_present_pte(*it.sptep)) { 706 sp = kvm_mmu_get_page(vcpu, base_gfn, addr, 707 it.level - 1, true, direct_access); 708 link_shadow_page(vcpu, it.sptep, sp); 709 if (lpage_disallowed) 710 account_huge_nx_page(vcpu->kvm, sp); 711 } 712 } 713 714 ret = mmu_set_spte(vcpu, it.sptep, gw->pte_access, write_fault, 715 it.level, base_gfn, pfn, prefault, map_writable); 716 FNAME(pte_prefetch)(vcpu, gw, it.sptep); 717 ++vcpu->stat.pf_fixed; 718 return ret; 719 720 out_gpte_changed: 721 return RET_PF_RETRY; 722 } 723 724 /* 725 * To see whether the mapped gfn can write its page table in the current 726 * mapping. 727 * 728 * It is the helper function of FNAME(page_fault). When guest uses large page 729 * size to map the writable gfn which is used as current page table, we should 730 * force kvm to use small page size to map it because new shadow page will be 731 * created when kvm establishes shadow page table that stop kvm using large 732 * page size. Do it early can avoid unnecessary #PF and emulation. 733 * 734 * @write_fault_to_shadow_pgtable will return true if the fault gfn is 735 * currently used as its page table. 736 * 737 * Note: the PDPT page table is not checked for PAE-32 bit guest. It is ok 738 * since the PDPT is always shadowed, that means, we can not use large page 739 * size to map the gfn which is used as PDPT. 740 */ 741 static bool 742 FNAME(is_self_change_mapping)(struct kvm_vcpu *vcpu, 743 struct guest_walker *walker, int user_fault, 744 bool *write_fault_to_shadow_pgtable) 745 { 746 int level; 747 gfn_t mask = ~(KVM_PAGES_PER_HPAGE(walker->level) - 1); 748 bool self_changed = false; 749 750 if (!(walker->pte_access & ACC_WRITE_MASK || 751 (!is_write_protection(vcpu) && !user_fault))) 752 return false; 753 754 for (level = walker->level; level <= walker->max_level; level++) { 755 gfn_t gfn = walker->gfn ^ walker->table_gfn[level - 1]; 756 757 self_changed |= !(gfn & mask); 758 *write_fault_to_shadow_pgtable |= !gfn; 759 } 760 761 return self_changed; 762 } 763 764 /* 765 * Page fault handler. There are several causes for a page fault: 766 * - there is no shadow pte for the guest pte 767 * - write access through a shadow pte marked read only so that we can set 768 * the dirty bit 769 * - write access to a shadow pte marked read only so we can update the page 770 * dirty bitmap, when userspace requests it 771 * - mmio access; in this case we will never install a present shadow pte 772 * - normal guest page fault due to the guest pte marked not present, not 773 * writable, or not executable 774 * 775 * Returns: 1 if we need to emulate the instruction, 0 otherwise, or 776 * a negative value on error. 777 */ 778 static int FNAME(page_fault)(struct kvm_vcpu *vcpu, gpa_t addr, u32 error_code, 779 bool prefault) 780 { 781 int write_fault = error_code & PFERR_WRITE_MASK; 782 int user_fault = error_code & PFERR_USER_MASK; 783 struct guest_walker walker; 784 int r; 785 kvm_pfn_t pfn; 786 unsigned long mmu_seq; 787 bool map_writable, is_self_change_mapping; 788 bool lpage_disallowed = (error_code & PFERR_FETCH_MASK) && 789 is_nx_huge_page_enabled(); 790 int max_level; 791 792 pgprintk("%s: addr %lx err %x\n", __func__, addr, error_code); 793 794 r = mmu_topup_memory_caches(vcpu); 795 if (r) 796 return r; 797 798 /* 799 * If PFEC.RSVD is set, this is a shadow page fault. 800 * The bit needs to be cleared before walking guest page tables. 801 */ 802 error_code &= ~PFERR_RSVD_MASK; 803 804 /* 805 * Look up the guest pte for the faulting address. 806 */ 807 r = FNAME(walk_addr)(&walker, vcpu, addr, error_code); 808 809 /* 810 * The page is not mapped by the guest. Let the guest handle it. 811 */ 812 if (!r) { 813 pgprintk("%s: guest page fault\n", __func__); 814 if (!prefault) 815 inject_page_fault(vcpu, &walker.fault); 816 817 return RET_PF_RETRY; 818 } 819 820 if (page_fault_handle_page_track(vcpu, error_code, walker.gfn)) { 821 shadow_page_table_clear_flood(vcpu, addr); 822 return RET_PF_EMULATE; 823 } 824 825 vcpu->arch.write_fault_to_shadow_pgtable = false; 826 827 is_self_change_mapping = FNAME(is_self_change_mapping)(vcpu, 828 &walker, user_fault, &vcpu->arch.write_fault_to_shadow_pgtable); 829 830 if (lpage_disallowed || is_self_change_mapping) 831 max_level = PT_PAGE_TABLE_LEVEL; 832 else 833 max_level = walker.level; 834 835 mmu_seq = vcpu->kvm->mmu_notifier_seq; 836 smp_rmb(); 837 838 if (try_async_pf(vcpu, prefault, walker.gfn, addr, &pfn, write_fault, 839 &map_writable)) 840 return RET_PF_RETRY; 841 842 if (handle_abnormal_pfn(vcpu, addr, walker.gfn, pfn, walker.pte_access, &r)) 843 return r; 844 845 /* 846 * Do not change pte_access if the pfn is a mmio page, otherwise 847 * we will cache the incorrect access into mmio spte. 848 */ 849 if (write_fault && !(walker.pte_access & ACC_WRITE_MASK) && 850 !is_write_protection(vcpu) && !user_fault && 851 !is_noslot_pfn(pfn)) { 852 walker.pte_access |= ACC_WRITE_MASK; 853 walker.pte_access &= ~ACC_USER_MASK; 854 855 /* 856 * If we converted a user page to a kernel page, 857 * so that the kernel can write to it when cr0.wp=0, 858 * then we should prevent the kernel from executing it 859 * if SMEP is enabled. 860 */ 861 if (kvm_read_cr4_bits(vcpu, X86_CR4_SMEP)) 862 walker.pte_access &= ~ACC_EXEC_MASK; 863 } 864 865 r = RET_PF_RETRY; 866 spin_lock(&vcpu->kvm->mmu_lock); 867 if (mmu_notifier_retry(vcpu->kvm, mmu_seq)) 868 goto out_unlock; 869 870 kvm_mmu_audit(vcpu, AUDIT_PRE_PAGE_FAULT); 871 if (make_mmu_pages_available(vcpu) < 0) 872 goto out_unlock; 873 r = FNAME(fetch)(vcpu, addr, &walker, write_fault, max_level, pfn, 874 map_writable, prefault, lpage_disallowed); 875 kvm_mmu_audit(vcpu, AUDIT_POST_PAGE_FAULT); 876 877 out_unlock: 878 spin_unlock(&vcpu->kvm->mmu_lock); 879 kvm_release_pfn_clean(pfn); 880 return r; 881 } 882 883 static gpa_t FNAME(get_level1_sp_gpa)(struct kvm_mmu_page *sp) 884 { 885 int offset = 0; 886 887 WARN_ON(sp->role.level != PT_PAGE_TABLE_LEVEL); 888 889 if (PTTYPE == 32) 890 offset = sp->role.quadrant << PT64_LEVEL_BITS; 891 892 return gfn_to_gpa(sp->gfn) + offset * sizeof(pt_element_t); 893 } 894 895 static void FNAME(invlpg)(struct kvm_vcpu *vcpu, gva_t gva, hpa_t root_hpa) 896 { 897 struct kvm_shadow_walk_iterator iterator; 898 struct kvm_mmu_page *sp; 899 int level; 900 u64 *sptep; 901 902 vcpu_clear_mmio_info(vcpu, gva); 903 904 /* 905 * No need to check return value here, rmap_can_add() can 906 * help us to skip pte prefetch later. 907 */ 908 mmu_topup_memory_caches(vcpu); 909 910 if (!VALID_PAGE(root_hpa)) { 911 WARN_ON(1); 912 return; 913 } 914 915 spin_lock(&vcpu->kvm->mmu_lock); 916 for_each_shadow_entry_using_root(vcpu, root_hpa, gva, iterator) { 917 level = iterator.level; 918 sptep = iterator.sptep; 919 920 sp = page_header(__pa(sptep)); 921 if (is_last_spte(*sptep, level)) { 922 pt_element_t gpte; 923 gpa_t pte_gpa; 924 925 if (!sp->unsync) 926 break; 927 928 pte_gpa = FNAME(get_level1_sp_gpa)(sp); 929 pte_gpa += (sptep - sp->spt) * sizeof(pt_element_t); 930 931 if (mmu_page_zap_pte(vcpu->kvm, sp, sptep)) 932 kvm_flush_remote_tlbs_with_address(vcpu->kvm, 933 sp->gfn, KVM_PAGES_PER_HPAGE(sp->role.level)); 934 935 if (!rmap_can_add(vcpu)) 936 break; 937 938 if (kvm_vcpu_read_guest_atomic(vcpu, pte_gpa, &gpte, 939 sizeof(pt_element_t))) 940 break; 941 942 FNAME(update_pte)(vcpu, sp, sptep, &gpte); 943 } 944 945 if (!is_shadow_present_pte(*sptep) || !sp->unsync_children) 946 break; 947 } 948 spin_unlock(&vcpu->kvm->mmu_lock); 949 } 950 951 /* Note, @addr is a GPA when gva_to_gpa() translates an L2 GPA to an L1 GPA. */ 952 static gpa_t FNAME(gva_to_gpa)(struct kvm_vcpu *vcpu, gpa_t addr, u32 access, 953 struct x86_exception *exception) 954 { 955 struct guest_walker walker; 956 gpa_t gpa = UNMAPPED_GVA; 957 int r; 958 959 r = FNAME(walk_addr)(&walker, vcpu, addr, access); 960 961 if (r) { 962 gpa = gfn_to_gpa(walker.gfn); 963 gpa |= addr & ~PAGE_MASK; 964 } else if (exception) 965 *exception = walker.fault; 966 967 return gpa; 968 } 969 970 #if PTTYPE != PTTYPE_EPT 971 /* Note, gva_to_gpa_nested() is only used to translate L2 GVAs. */ 972 static gpa_t FNAME(gva_to_gpa_nested)(struct kvm_vcpu *vcpu, gpa_t vaddr, 973 u32 access, 974 struct x86_exception *exception) 975 { 976 struct guest_walker walker; 977 gpa_t gpa = UNMAPPED_GVA; 978 int r; 979 980 #ifndef CONFIG_X86_64 981 /* A 64-bit GVA should be impossible on 32-bit KVM. */ 982 WARN_ON_ONCE(vaddr >> 32); 983 #endif 984 985 r = FNAME(walk_addr_nested)(&walker, vcpu, vaddr, access); 986 987 if (r) { 988 gpa = gfn_to_gpa(walker.gfn); 989 gpa |= vaddr & ~PAGE_MASK; 990 } else if (exception) 991 *exception = walker.fault; 992 993 return gpa; 994 } 995 #endif 996 997 /* 998 * Using the cached information from sp->gfns is safe because: 999 * - The spte has a reference to the struct page, so the pfn for a given gfn 1000 * can't change unless all sptes pointing to it are nuked first. 1001 * 1002 * Note: 1003 * We should flush all tlbs if spte is dropped even though guest is 1004 * responsible for it. Since if we don't, kvm_mmu_notifier_invalidate_page 1005 * and kvm_mmu_notifier_invalidate_range_start detect the mapping page isn't 1006 * used by guest then tlbs are not flushed, so guest is allowed to access the 1007 * freed pages. 1008 * And we increase kvm->tlbs_dirty to delay tlbs flush in this case. 1009 */ 1010 static int FNAME(sync_page)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp) 1011 { 1012 int i, nr_present = 0; 1013 bool host_writable; 1014 gpa_t first_pte_gpa; 1015 int set_spte_ret = 0; 1016 1017 /* direct kvm_mmu_page can not be unsync. */ 1018 BUG_ON(sp->role.direct); 1019 1020 first_pte_gpa = FNAME(get_level1_sp_gpa)(sp); 1021 1022 for (i = 0; i < PT64_ENT_PER_PAGE; i++) { 1023 unsigned pte_access; 1024 pt_element_t gpte; 1025 gpa_t pte_gpa; 1026 gfn_t gfn; 1027 1028 if (!sp->spt[i]) 1029 continue; 1030 1031 pte_gpa = first_pte_gpa + i * sizeof(pt_element_t); 1032 1033 if (kvm_vcpu_read_guest_atomic(vcpu, pte_gpa, &gpte, 1034 sizeof(pt_element_t))) 1035 return 0; 1036 1037 if (FNAME(prefetch_invalid_gpte)(vcpu, sp, &sp->spt[i], gpte)) { 1038 /* 1039 * Update spte before increasing tlbs_dirty to make 1040 * sure no tlb flush is lost after spte is zapped; see 1041 * the comments in kvm_flush_remote_tlbs(). 1042 */ 1043 smp_wmb(); 1044 vcpu->kvm->tlbs_dirty++; 1045 continue; 1046 } 1047 1048 gfn = gpte_to_gfn(gpte); 1049 pte_access = sp->role.access; 1050 pte_access &= FNAME(gpte_access)(gpte); 1051 FNAME(protect_clean_gpte)(vcpu->arch.mmu, &pte_access, gpte); 1052 1053 if (sync_mmio_spte(vcpu, &sp->spt[i], gfn, pte_access, 1054 &nr_present)) 1055 continue; 1056 1057 if (gfn != sp->gfns[i]) { 1058 drop_spte(vcpu->kvm, &sp->spt[i]); 1059 /* 1060 * The same as above where we are doing 1061 * prefetch_invalid_gpte(). 1062 */ 1063 smp_wmb(); 1064 vcpu->kvm->tlbs_dirty++; 1065 continue; 1066 } 1067 1068 nr_present++; 1069 1070 host_writable = sp->spt[i] & SPTE_HOST_WRITEABLE; 1071 1072 set_spte_ret |= set_spte(vcpu, &sp->spt[i], 1073 pte_access, PT_PAGE_TABLE_LEVEL, 1074 gfn, spte_to_pfn(sp->spt[i]), 1075 true, false, host_writable); 1076 } 1077 1078 if (set_spte_ret & SET_SPTE_NEED_REMOTE_TLB_FLUSH) 1079 kvm_flush_remote_tlbs(vcpu->kvm); 1080 1081 return nr_present; 1082 } 1083 1084 #undef pt_element_t 1085 #undef guest_walker 1086 #undef FNAME 1087 #undef PT_BASE_ADDR_MASK 1088 #undef PT_INDEX 1089 #undef PT_LVL_ADDR_MASK 1090 #undef PT_LVL_OFFSET_MASK 1091 #undef PT_LEVEL_BITS 1092 #undef PT_MAX_FULL_LEVELS 1093 #undef gpte_to_gfn 1094 #undef gpte_to_gfn_lvl 1095 #undef CMPXCHG 1096 #undef PT_GUEST_ACCESSED_MASK 1097 #undef PT_GUEST_DIRTY_MASK 1098 #undef PT_GUEST_DIRTY_SHIFT 1099 #undef PT_GUEST_ACCESSED_SHIFT 1100 #undef PT_HAVE_ACCESSED_DIRTY 1101