1 /* SPDX-License-Identifier: GPL-2.0-only */ 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * This module enables machines with Intel VT-x extensions to run virtual 6 * machines without emulation or binary translation. 7 * 8 * MMU support 9 * 10 * Copyright (C) 2006 Qumranet, Inc. 11 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 12 * 13 * Authors: 14 * Yaniv Kamay <yaniv@qumranet.com> 15 * Avi Kivity <avi@qumranet.com> 16 */ 17 18 /* 19 * The MMU needs to be able to access/walk 32-bit and 64-bit guest page tables, 20 * as well as guest EPT tables, so the code in this file is compiled thrice, 21 * once per guest PTE type. The per-type defines are #undef'd at the end. 22 */ 23 24 #if PTTYPE == 64 25 #define pt_element_t u64 26 #define guest_walker guest_walker64 27 #define FNAME(name) paging##64_##name 28 #define PT_LEVEL_BITS 9 29 #define PT_GUEST_DIRTY_SHIFT PT_DIRTY_SHIFT 30 #define PT_GUEST_ACCESSED_SHIFT PT_ACCESSED_SHIFT 31 #define PT_HAVE_ACCESSED_DIRTY(mmu) true 32 #ifdef CONFIG_X86_64 33 #define PT_MAX_FULL_LEVELS PT64_ROOT_MAX_LEVEL 34 #else 35 #define PT_MAX_FULL_LEVELS 2 36 #endif 37 #elif PTTYPE == 32 38 #define pt_element_t u32 39 #define guest_walker guest_walker32 40 #define FNAME(name) paging##32_##name 41 #define PT_LEVEL_BITS 10 42 #define PT_MAX_FULL_LEVELS 2 43 #define PT_GUEST_DIRTY_SHIFT PT_DIRTY_SHIFT 44 #define PT_GUEST_ACCESSED_SHIFT PT_ACCESSED_SHIFT 45 #define PT_HAVE_ACCESSED_DIRTY(mmu) true 46 47 #define PT32_DIR_PSE36_SIZE 4 48 #define PT32_DIR_PSE36_SHIFT 13 49 #define PT32_DIR_PSE36_MASK \ 50 (((1ULL << PT32_DIR_PSE36_SIZE) - 1) << PT32_DIR_PSE36_SHIFT) 51 #elif PTTYPE == PTTYPE_EPT 52 #define pt_element_t u64 53 #define guest_walker guest_walkerEPT 54 #define FNAME(name) ept_##name 55 #define PT_LEVEL_BITS 9 56 #define PT_GUEST_DIRTY_SHIFT 9 57 #define PT_GUEST_ACCESSED_SHIFT 8 58 #define PT_HAVE_ACCESSED_DIRTY(mmu) (!(mmu)->cpu_role.base.ad_disabled) 59 #define PT_MAX_FULL_LEVELS PT64_ROOT_MAX_LEVEL 60 #else 61 #error Invalid PTTYPE value 62 #endif 63 64 /* Common logic, but per-type values. These also need to be undefined. */ 65 #define PT_BASE_ADDR_MASK ((pt_element_t)(((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))) 66 #define PT_LVL_ADDR_MASK(lvl) __PT_LVL_ADDR_MASK(PT_BASE_ADDR_MASK, lvl, PT_LEVEL_BITS) 67 #define PT_LVL_OFFSET_MASK(lvl) __PT_LVL_OFFSET_MASK(PT_BASE_ADDR_MASK, lvl, PT_LEVEL_BITS) 68 #define PT_INDEX(addr, lvl) __PT_INDEX(addr, lvl, PT_LEVEL_BITS) 69 70 #define PT_GUEST_DIRTY_MASK (1 << PT_GUEST_DIRTY_SHIFT) 71 #define PT_GUEST_ACCESSED_MASK (1 << PT_GUEST_ACCESSED_SHIFT) 72 73 #define gpte_to_gfn_lvl FNAME(gpte_to_gfn_lvl) 74 #define gpte_to_gfn(pte) gpte_to_gfn_lvl((pte), PG_LEVEL_4K) 75 76 /* 77 * The guest_walker structure emulates the behavior of the hardware page 78 * table walker. 79 */ 80 struct guest_walker { 81 int level; 82 unsigned max_level; 83 gfn_t table_gfn[PT_MAX_FULL_LEVELS]; 84 pt_element_t ptes[PT_MAX_FULL_LEVELS]; 85 pt_element_t prefetch_ptes[PTE_PREFETCH_NUM]; 86 gpa_t pte_gpa[PT_MAX_FULL_LEVELS]; 87 pt_element_t __user *ptep_user[PT_MAX_FULL_LEVELS]; 88 bool pte_writable[PT_MAX_FULL_LEVELS]; 89 unsigned int pt_access[PT_MAX_FULL_LEVELS]; 90 unsigned int pte_access; 91 gfn_t gfn; 92 struct x86_exception fault; 93 }; 94 95 #if PTTYPE == 32 96 static inline gfn_t pse36_gfn_delta(u32 gpte) 97 { 98 int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT; 99 100 return (gpte & PT32_DIR_PSE36_MASK) << shift; 101 } 102 #endif 103 104 static gfn_t gpte_to_gfn_lvl(pt_element_t gpte, int lvl) 105 { 106 return (gpte & PT_LVL_ADDR_MASK(lvl)) >> PAGE_SHIFT; 107 } 108 109 static inline void FNAME(protect_clean_gpte)(struct kvm_mmu *mmu, unsigned *access, 110 unsigned gpte) 111 { 112 unsigned mask; 113 114 /* dirty bit is not supported, so no need to track it */ 115 if (!PT_HAVE_ACCESSED_DIRTY(mmu)) 116 return; 117 118 BUILD_BUG_ON(PT_WRITABLE_MASK != ACC_WRITE_MASK); 119 120 mask = (unsigned)~ACC_WRITE_MASK; 121 /* Allow write access to dirty gptes */ 122 mask |= (gpte >> (PT_GUEST_DIRTY_SHIFT - PT_WRITABLE_SHIFT)) & 123 PT_WRITABLE_MASK; 124 *access &= mask; 125 } 126 127 static inline int FNAME(is_present_gpte)(unsigned long pte) 128 { 129 #if PTTYPE != PTTYPE_EPT 130 return pte & PT_PRESENT_MASK; 131 #else 132 return pte & 7; 133 #endif 134 } 135 136 static bool FNAME(is_bad_mt_xwr)(struct rsvd_bits_validate *rsvd_check, u64 gpte) 137 { 138 #if PTTYPE != PTTYPE_EPT 139 return false; 140 #else 141 return __is_bad_mt_xwr(rsvd_check, gpte); 142 #endif 143 } 144 145 static bool FNAME(is_rsvd_bits_set)(struct kvm_mmu *mmu, u64 gpte, int level) 146 { 147 return __is_rsvd_bits_set(&mmu->guest_rsvd_check, gpte, level) || 148 FNAME(is_bad_mt_xwr)(&mmu->guest_rsvd_check, gpte); 149 } 150 151 static bool FNAME(prefetch_invalid_gpte)(struct kvm_vcpu *vcpu, 152 struct kvm_mmu_page *sp, u64 *spte, 153 u64 gpte) 154 { 155 if (!FNAME(is_present_gpte)(gpte)) 156 goto no_present; 157 158 /* Prefetch only accessed entries (unless A/D bits are disabled). */ 159 if (PT_HAVE_ACCESSED_DIRTY(vcpu->arch.mmu) && 160 !(gpte & PT_GUEST_ACCESSED_MASK)) 161 goto no_present; 162 163 if (FNAME(is_rsvd_bits_set)(vcpu->arch.mmu, gpte, PG_LEVEL_4K)) 164 goto no_present; 165 166 return false; 167 168 no_present: 169 drop_spte(vcpu->kvm, spte); 170 return true; 171 } 172 173 /* 174 * For PTTYPE_EPT, a page table can be executable but not readable 175 * on supported processors. Therefore, set_spte does not automatically 176 * set bit 0 if execute only is supported. Here, we repurpose ACC_USER_MASK 177 * to signify readability since it isn't used in the EPT case 178 */ 179 static inline unsigned FNAME(gpte_access)(u64 gpte) 180 { 181 unsigned access; 182 #if PTTYPE == PTTYPE_EPT 183 access = ((gpte & VMX_EPT_WRITABLE_MASK) ? ACC_WRITE_MASK : 0) | 184 ((gpte & VMX_EPT_EXECUTABLE_MASK) ? ACC_EXEC_MASK : 0) | 185 ((gpte & VMX_EPT_READABLE_MASK) ? ACC_USER_MASK : 0); 186 #else 187 BUILD_BUG_ON(ACC_EXEC_MASK != PT_PRESENT_MASK); 188 BUILD_BUG_ON(ACC_EXEC_MASK != 1); 189 access = gpte & (PT_WRITABLE_MASK | PT_USER_MASK | PT_PRESENT_MASK); 190 /* Combine NX with P (which is set here) to get ACC_EXEC_MASK. */ 191 access ^= (gpte >> PT64_NX_SHIFT); 192 #endif 193 194 return access; 195 } 196 197 static int FNAME(update_accessed_dirty_bits)(struct kvm_vcpu *vcpu, 198 struct kvm_mmu *mmu, 199 struct guest_walker *walker, 200 gpa_t addr, int write_fault) 201 { 202 unsigned level, index; 203 pt_element_t pte, orig_pte; 204 pt_element_t __user *ptep_user; 205 gfn_t table_gfn; 206 int ret; 207 208 /* dirty/accessed bits are not supported, so no need to update them */ 209 if (!PT_HAVE_ACCESSED_DIRTY(mmu)) 210 return 0; 211 212 for (level = walker->max_level; level >= walker->level; --level) { 213 pte = orig_pte = walker->ptes[level - 1]; 214 table_gfn = walker->table_gfn[level - 1]; 215 ptep_user = walker->ptep_user[level - 1]; 216 index = offset_in_page(ptep_user) / sizeof(pt_element_t); 217 if (!(pte & PT_GUEST_ACCESSED_MASK)) { 218 trace_kvm_mmu_set_accessed_bit(table_gfn, index, sizeof(pte)); 219 pte |= PT_GUEST_ACCESSED_MASK; 220 } 221 if (level == walker->level && write_fault && 222 !(pte & PT_GUEST_DIRTY_MASK)) { 223 trace_kvm_mmu_set_dirty_bit(table_gfn, index, sizeof(pte)); 224 #if PTTYPE == PTTYPE_EPT 225 if (kvm_x86_ops.nested_ops->write_log_dirty(vcpu, addr)) 226 return -EINVAL; 227 #endif 228 pte |= PT_GUEST_DIRTY_MASK; 229 } 230 if (pte == orig_pte) 231 continue; 232 233 /* 234 * If the slot is read-only, simply do not process the accessed 235 * and dirty bits. This is the correct thing to do if the slot 236 * is ROM, and page tables in read-as-ROM/write-as-MMIO slots 237 * are only supported if the accessed and dirty bits are already 238 * set in the ROM (so that MMIO writes are never needed). 239 * 240 * Note that NPT does not allow this at all and faults, since 241 * it always wants nested page table entries for the guest 242 * page tables to be writable. And EPT works but will simply 243 * overwrite the read-only memory to set the accessed and dirty 244 * bits. 245 */ 246 if (unlikely(!walker->pte_writable[level - 1])) 247 continue; 248 249 ret = __try_cmpxchg_user(ptep_user, &orig_pte, pte, fault); 250 if (ret) 251 return ret; 252 253 kvm_vcpu_mark_page_dirty(vcpu, table_gfn); 254 walker->ptes[level - 1] = pte; 255 } 256 return 0; 257 } 258 259 static inline unsigned FNAME(gpte_pkeys)(struct kvm_vcpu *vcpu, u64 gpte) 260 { 261 unsigned pkeys = 0; 262 #if PTTYPE == 64 263 pte_t pte = {.pte = gpte}; 264 265 pkeys = pte_flags_pkey(pte_flags(pte)); 266 #endif 267 return pkeys; 268 } 269 270 static inline bool FNAME(is_last_gpte)(struct kvm_mmu *mmu, 271 unsigned int level, unsigned int gpte) 272 { 273 /* 274 * For EPT and PAE paging (both variants), bit 7 is either reserved at 275 * all level or indicates a huge page (ignoring CR3/EPTP). In either 276 * case, bit 7 being set terminates the walk. 277 */ 278 #if PTTYPE == 32 279 /* 280 * 32-bit paging requires special handling because bit 7 is ignored if 281 * CR4.PSE=0, not reserved. Clear bit 7 in the gpte if the level is 282 * greater than the last level for which bit 7 is the PAGE_SIZE bit. 283 * 284 * The RHS has bit 7 set iff level < (2 + PSE). If it is clear, bit 7 285 * is not reserved and does not indicate a large page at this level, 286 * so clear PT_PAGE_SIZE_MASK in gpte if that is the case. 287 */ 288 gpte &= level - (PT32_ROOT_LEVEL + mmu->cpu_role.ext.cr4_pse); 289 #endif 290 /* 291 * PG_LEVEL_4K always terminates. The RHS has bit 7 set 292 * iff level <= PG_LEVEL_4K, which for our purpose means 293 * level == PG_LEVEL_4K; set PT_PAGE_SIZE_MASK in gpte then. 294 */ 295 gpte |= level - PG_LEVEL_4K - 1; 296 297 return gpte & PT_PAGE_SIZE_MASK; 298 } 299 /* 300 * Fetch a guest pte for a guest virtual address, or for an L2's GPA. 301 */ 302 static int FNAME(walk_addr_generic)(struct guest_walker *walker, 303 struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, 304 gpa_t addr, u64 access) 305 { 306 int ret; 307 pt_element_t pte; 308 pt_element_t __user *ptep_user; 309 gfn_t table_gfn; 310 u64 pt_access, pte_access; 311 unsigned index, accessed_dirty, pte_pkey; 312 u64 nested_access; 313 gpa_t pte_gpa; 314 bool have_ad; 315 int offset; 316 u64 walk_nx_mask = 0; 317 const int write_fault = access & PFERR_WRITE_MASK; 318 const int user_fault = access & PFERR_USER_MASK; 319 const int fetch_fault = access & PFERR_FETCH_MASK; 320 u16 errcode = 0; 321 gpa_t real_gpa; 322 gfn_t gfn; 323 324 trace_kvm_mmu_pagetable_walk(addr, access); 325 retry_walk: 326 walker->level = mmu->cpu_role.base.level; 327 pte = kvm_mmu_get_guest_pgd(vcpu, mmu); 328 have_ad = PT_HAVE_ACCESSED_DIRTY(mmu); 329 330 #if PTTYPE == 64 331 walk_nx_mask = 1ULL << PT64_NX_SHIFT; 332 if (walker->level == PT32E_ROOT_LEVEL) { 333 pte = mmu->get_pdptr(vcpu, (addr >> 30) & 3); 334 trace_kvm_mmu_paging_element(pte, walker->level); 335 if (!FNAME(is_present_gpte)(pte)) 336 goto error; 337 --walker->level; 338 } 339 #endif 340 walker->max_level = walker->level; 341 ASSERT(!(is_long_mode(vcpu) && !is_pae(vcpu))); 342 343 /* 344 * FIXME: on Intel processors, loads of the PDPTE registers for PAE paging 345 * by the MOV to CR instruction are treated as reads and do not cause the 346 * processor to set the dirty flag in any EPT paging-structure entry. 347 */ 348 nested_access = (have_ad ? PFERR_WRITE_MASK : 0) | PFERR_USER_MASK; 349 350 pte_access = ~0; 351 ++walker->level; 352 353 do { 354 unsigned long host_addr; 355 356 pt_access = pte_access; 357 --walker->level; 358 359 index = PT_INDEX(addr, walker->level); 360 table_gfn = gpte_to_gfn(pte); 361 offset = index * sizeof(pt_element_t); 362 pte_gpa = gfn_to_gpa(table_gfn) + offset; 363 364 BUG_ON(walker->level < 1); 365 walker->table_gfn[walker->level - 1] = table_gfn; 366 walker->pte_gpa[walker->level - 1] = pte_gpa; 367 368 real_gpa = kvm_translate_gpa(vcpu, mmu, gfn_to_gpa(table_gfn), 369 nested_access, &walker->fault); 370 371 /* 372 * FIXME: This can happen if emulation (for of an INS/OUTS 373 * instruction) triggers a nested page fault. The exit 374 * qualification / exit info field will incorrectly have 375 * "guest page access" as the nested page fault's cause, 376 * instead of "guest page structure access". To fix this, 377 * the x86_exception struct should be augmented with enough 378 * information to fix the exit_qualification or exit_info_1 379 * fields. 380 */ 381 if (unlikely(real_gpa == INVALID_GPA)) 382 return 0; 383 384 host_addr = kvm_vcpu_gfn_to_hva_prot(vcpu, gpa_to_gfn(real_gpa), 385 &walker->pte_writable[walker->level - 1]); 386 if (unlikely(kvm_is_error_hva(host_addr))) 387 goto error; 388 389 ptep_user = (pt_element_t __user *)((void *)host_addr + offset); 390 if (unlikely(__get_user(pte, ptep_user))) 391 goto error; 392 walker->ptep_user[walker->level - 1] = ptep_user; 393 394 trace_kvm_mmu_paging_element(pte, walker->level); 395 396 /* 397 * Inverting the NX it lets us AND it like other 398 * permission bits. 399 */ 400 pte_access = pt_access & (pte ^ walk_nx_mask); 401 402 if (unlikely(!FNAME(is_present_gpte)(pte))) 403 goto error; 404 405 if (unlikely(FNAME(is_rsvd_bits_set)(mmu, pte, walker->level))) { 406 errcode = PFERR_RSVD_MASK | PFERR_PRESENT_MASK; 407 goto error; 408 } 409 410 walker->ptes[walker->level - 1] = pte; 411 412 /* Convert to ACC_*_MASK flags for struct guest_walker. */ 413 walker->pt_access[walker->level - 1] = FNAME(gpte_access)(pt_access ^ walk_nx_mask); 414 } while (!FNAME(is_last_gpte)(mmu, walker->level, pte)); 415 416 pte_pkey = FNAME(gpte_pkeys)(vcpu, pte); 417 accessed_dirty = have_ad ? pte_access & PT_GUEST_ACCESSED_MASK : 0; 418 419 /* Convert to ACC_*_MASK flags for struct guest_walker. */ 420 walker->pte_access = FNAME(gpte_access)(pte_access ^ walk_nx_mask); 421 errcode = permission_fault(vcpu, mmu, walker->pte_access, pte_pkey, access); 422 if (unlikely(errcode)) 423 goto error; 424 425 gfn = gpte_to_gfn_lvl(pte, walker->level); 426 gfn += (addr & PT_LVL_OFFSET_MASK(walker->level)) >> PAGE_SHIFT; 427 428 #if PTTYPE == 32 429 if (walker->level > PG_LEVEL_4K && is_cpuid_PSE36()) 430 gfn += pse36_gfn_delta(pte); 431 #endif 432 433 real_gpa = kvm_translate_gpa(vcpu, mmu, gfn_to_gpa(gfn), access, &walker->fault); 434 if (real_gpa == INVALID_GPA) 435 return 0; 436 437 walker->gfn = real_gpa >> PAGE_SHIFT; 438 439 if (!write_fault) 440 FNAME(protect_clean_gpte)(mmu, &walker->pte_access, pte); 441 else 442 /* 443 * On a write fault, fold the dirty bit into accessed_dirty. 444 * For modes without A/D bits support accessed_dirty will be 445 * always clear. 446 */ 447 accessed_dirty &= pte >> 448 (PT_GUEST_DIRTY_SHIFT - PT_GUEST_ACCESSED_SHIFT); 449 450 if (unlikely(!accessed_dirty)) { 451 ret = FNAME(update_accessed_dirty_bits)(vcpu, mmu, walker, 452 addr, write_fault); 453 if (unlikely(ret < 0)) 454 goto error; 455 else if (ret) 456 goto retry_walk; 457 } 458 459 pgprintk("%s: pte %llx pte_access %x pt_access %x\n", 460 __func__, (u64)pte, walker->pte_access, 461 walker->pt_access[walker->level - 1]); 462 return 1; 463 464 error: 465 errcode |= write_fault | user_fault; 466 if (fetch_fault && (is_efer_nx(mmu) || is_cr4_smep(mmu))) 467 errcode |= PFERR_FETCH_MASK; 468 469 walker->fault.vector = PF_VECTOR; 470 walker->fault.error_code_valid = true; 471 walker->fault.error_code = errcode; 472 473 #if PTTYPE == PTTYPE_EPT 474 /* 475 * Use PFERR_RSVD_MASK in error_code to tell if EPT 476 * misconfiguration requires to be injected. The detection is 477 * done by is_rsvd_bits_set() above. 478 * 479 * We set up the value of exit_qualification to inject: 480 * [2:0] - Derive from the access bits. The exit_qualification might be 481 * out of date if it is serving an EPT misconfiguration. 482 * [5:3] - Calculated by the page walk of the guest EPT page tables 483 * [7:8] - Derived from [7:8] of real exit_qualification 484 * 485 * The other bits are set to 0. 486 */ 487 if (!(errcode & PFERR_RSVD_MASK)) { 488 vcpu->arch.exit_qualification &= (EPT_VIOLATION_GVA_IS_VALID | 489 EPT_VIOLATION_GVA_TRANSLATED); 490 if (write_fault) 491 vcpu->arch.exit_qualification |= EPT_VIOLATION_ACC_WRITE; 492 if (user_fault) 493 vcpu->arch.exit_qualification |= EPT_VIOLATION_ACC_READ; 494 if (fetch_fault) 495 vcpu->arch.exit_qualification |= EPT_VIOLATION_ACC_INSTR; 496 497 /* 498 * Note, pte_access holds the raw RWX bits from the EPTE, not 499 * ACC_*_MASK flags! 500 */ 501 vcpu->arch.exit_qualification |= (pte_access & VMX_EPT_RWX_MASK) << 502 EPT_VIOLATION_RWX_SHIFT; 503 } 504 #endif 505 walker->fault.address = addr; 506 walker->fault.nested_page_fault = mmu != vcpu->arch.walk_mmu; 507 walker->fault.async_page_fault = false; 508 509 trace_kvm_mmu_walker_error(walker->fault.error_code); 510 return 0; 511 } 512 513 static int FNAME(walk_addr)(struct guest_walker *walker, 514 struct kvm_vcpu *vcpu, gpa_t addr, u64 access) 515 { 516 return FNAME(walk_addr_generic)(walker, vcpu, vcpu->arch.mmu, addr, 517 access); 518 } 519 520 static bool 521 FNAME(prefetch_gpte)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp, 522 u64 *spte, pt_element_t gpte) 523 { 524 struct kvm_memory_slot *slot; 525 unsigned pte_access; 526 gfn_t gfn; 527 kvm_pfn_t pfn; 528 529 if (FNAME(prefetch_invalid_gpte)(vcpu, sp, spte, gpte)) 530 return false; 531 532 pgprintk("%s: gpte %llx spte %p\n", __func__, (u64)gpte, spte); 533 534 gfn = gpte_to_gfn(gpte); 535 pte_access = sp->role.access & FNAME(gpte_access)(gpte); 536 FNAME(protect_clean_gpte)(vcpu->arch.mmu, &pte_access, gpte); 537 538 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, pte_access & ACC_WRITE_MASK); 539 if (!slot) 540 return false; 541 542 pfn = gfn_to_pfn_memslot_atomic(slot, gfn); 543 if (is_error_pfn(pfn)) 544 return false; 545 546 mmu_set_spte(vcpu, slot, spte, pte_access, gfn, pfn, NULL); 547 kvm_release_pfn_clean(pfn); 548 return true; 549 } 550 551 static bool FNAME(gpte_changed)(struct kvm_vcpu *vcpu, 552 struct guest_walker *gw, int level) 553 { 554 pt_element_t curr_pte; 555 gpa_t base_gpa, pte_gpa = gw->pte_gpa[level - 1]; 556 u64 mask; 557 int r, index; 558 559 if (level == PG_LEVEL_4K) { 560 mask = PTE_PREFETCH_NUM * sizeof(pt_element_t) - 1; 561 base_gpa = pte_gpa & ~mask; 562 index = (pte_gpa - base_gpa) / sizeof(pt_element_t); 563 564 r = kvm_vcpu_read_guest_atomic(vcpu, base_gpa, 565 gw->prefetch_ptes, sizeof(gw->prefetch_ptes)); 566 curr_pte = gw->prefetch_ptes[index]; 567 } else 568 r = kvm_vcpu_read_guest_atomic(vcpu, pte_gpa, 569 &curr_pte, sizeof(curr_pte)); 570 571 return r || curr_pte != gw->ptes[level - 1]; 572 } 573 574 static void FNAME(pte_prefetch)(struct kvm_vcpu *vcpu, struct guest_walker *gw, 575 u64 *sptep) 576 { 577 struct kvm_mmu_page *sp; 578 pt_element_t *gptep = gw->prefetch_ptes; 579 u64 *spte; 580 int i; 581 582 sp = sptep_to_sp(sptep); 583 584 if (sp->role.level > PG_LEVEL_4K) 585 return; 586 587 /* 588 * If addresses are being invalidated, skip prefetching to avoid 589 * accidentally prefetching those addresses. 590 */ 591 if (unlikely(vcpu->kvm->mmu_invalidate_in_progress)) 592 return; 593 594 if (sp->role.direct) 595 return __direct_pte_prefetch(vcpu, sp, sptep); 596 597 i = spte_index(sptep) & ~(PTE_PREFETCH_NUM - 1); 598 spte = sp->spt + i; 599 600 for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) { 601 if (spte == sptep) 602 continue; 603 604 if (is_shadow_present_pte(*spte)) 605 continue; 606 607 if (!FNAME(prefetch_gpte)(vcpu, sp, spte, gptep[i])) 608 break; 609 } 610 } 611 612 /* 613 * Fetch a shadow pte for a specific level in the paging hierarchy. 614 * If the guest tries to write a write-protected page, we need to 615 * emulate this operation, return 1 to indicate this case. 616 */ 617 static int FNAME(fetch)(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault, 618 struct guest_walker *gw) 619 { 620 struct kvm_mmu_page *sp = NULL; 621 struct kvm_shadow_walk_iterator it; 622 unsigned int direct_access, access; 623 int top_level, ret; 624 gfn_t base_gfn = fault->gfn; 625 626 WARN_ON_ONCE(gw->gfn != base_gfn); 627 direct_access = gw->pte_access; 628 629 top_level = vcpu->arch.mmu->cpu_role.base.level; 630 if (top_level == PT32E_ROOT_LEVEL) 631 top_level = PT32_ROOT_LEVEL; 632 /* 633 * Verify that the top-level gpte is still there. Since the page 634 * is a root page, it is either write protected (and cannot be 635 * changed from now on) or it is invalid (in which case, we don't 636 * really care if it changes underneath us after this point). 637 */ 638 if (FNAME(gpte_changed)(vcpu, gw, top_level)) 639 goto out_gpte_changed; 640 641 if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root.hpa))) 642 goto out_gpte_changed; 643 644 for_each_shadow_entry(vcpu, fault->addr, it) { 645 gfn_t table_gfn; 646 647 clear_sp_write_flooding_count(it.sptep); 648 if (it.level == gw->level) 649 break; 650 651 table_gfn = gw->table_gfn[it.level - 2]; 652 access = gw->pt_access[it.level - 2]; 653 sp = kvm_mmu_get_child_sp(vcpu, it.sptep, table_gfn, 654 false, access); 655 656 if (sp != ERR_PTR(-EEXIST)) { 657 /* 658 * We must synchronize the pagetable before linking it 659 * because the guest doesn't need to flush tlb when 660 * the gpte is changed from non-present to present. 661 * Otherwise, the guest may use the wrong mapping. 662 * 663 * For PG_LEVEL_4K, kvm_mmu_get_page() has already 664 * synchronized it transiently via kvm_sync_page(). 665 * 666 * For higher level pagetable, we synchronize it via 667 * the slower mmu_sync_children(). If it needs to 668 * break, some progress has been made; return 669 * RET_PF_RETRY and retry on the next #PF. 670 * KVM_REQ_MMU_SYNC is not necessary but it 671 * expedites the process. 672 */ 673 if (sp->unsync_children && 674 mmu_sync_children(vcpu, sp, false)) 675 return RET_PF_RETRY; 676 } 677 678 /* 679 * Verify that the gpte in the page we've just write 680 * protected is still there. 681 */ 682 if (FNAME(gpte_changed)(vcpu, gw, it.level - 1)) 683 goto out_gpte_changed; 684 685 if (sp != ERR_PTR(-EEXIST)) 686 link_shadow_page(vcpu, it.sptep, sp); 687 688 if (fault->write && table_gfn == fault->gfn) 689 fault->write_fault_to_shadow_pgtable = true; 690 } 691 692 /* 693 * Adjust the hugepage size _after_ resolving indirect shadow pages. 694 * KVM doesn't support mapping hugepages into the guest for gfns that 695 * are being shadowed by KVM, i.e. allocating a new shadow page may 696 * affect the allowed hugepage size. 697 */ 698 kvm_mmu_hugepage_adjust(vcpu, fault); 699 700 trace_kvm_mmu_spte_requested(fault); 701 702 for (; shadow_walk_okay(&it); shadow_walk_next(&it)) { 703 /* 704 * We cannot overwrite existing page tables with an NX 705 * large page, as the leaf could be executable. 706 */ 707 if (fault->nx_huge_page_workaround_enabled) 708 disallowed_hugepage_adjust(fault, *it.sptep, it.level); 709 710 base_gfn = gfn_round_for_level(fault->gfn, it.level); 711 if (it.level == fault->goal_level) 712 break; 713 714 validate_direct_spte(vcpu, it.sptep, direct_access); 715 716 sp = kvm_mmu_get_child_sp(vcpu, it.sptep, base_gfn, 717 true, direct_access); 718 if (sp == ERR_PTR(-EEXIST)) 719 continue; 720 721 link_shadow_page(vcpu, it.sptep, sp); 722 if (fault->huge_page_disallowed) 723 account_nx_huge_page(vcpu->kvm, sp, 724 fault->req_level >= it.level); 725 } 726 727 if (WARN_ON_ONCE(it.level != fault->goal_level)) 728 return -EFAULT; 729 730 ret = mmu_set_spte(vcpu, fault->slot, it.sptep, gw->pte_access, 731 base_gfn, fault->pfn, fault); 732 if (ret == RET_PF_SPURIOUS) 733 return ret; 734 735 FNAME(pte_prefetch)(vcpu, gw, it.sptep); 736 return ret; 737 738 out_gpte_changed: 739 return RET_PF_RETRY; 740 } 741 742 /* 743 * Page fault handler. There are several causes for a page fault: 744 * - there is no shadow pte for the guest pte 745 * - write access through a shadow pte marked read only so that we can set 746 * the dirty bit 747 * - write access to a shadow pte marked read only so we can update the page 748 * dirty bitmap, when userspace requests it 749 * - mmio access; in this case we will never install a present shadow pte 750 * - normal guest page fault due to the guest pte marked not present, not 751 * writable, or not executable 752 * 753 * Returns: 1 if we need to emulate the instruction, 0 otherwise, or 754 * a negative value on error. 755 */ 756 static int FNAME(page_fault)(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault) 757 { 758 struct guest_walker walker; 759 int r; 760 761 pgprintk("%s: addr %lx err %x\n", __func__, fault->addr, fault->error_code); 762 WARN_ON_ONCE(fault->is_tdp); 763 764 /* 765 * Look up the guest pte for the faulting address. 766 * If PFEC.RSVD is set, this is a shadow page fault. 767 * The bit needs to be cleared before walking guest page tables. 768 */ 769 r = FNAME(walk_addr)(&walker, vcpu, fault->addr, 770 fault->error_code & ~PFERR_RSVD_MASK); 771 772 /* 773 * The page is not mapped by the guest. Let the guest handle it. 774 */ 775 if (!r) { 776 pgprintk("%s: guest page fault\n", __func__); 777 if (!fault->prefetch) 778 kvm_inject_emulated_page_fault(vcpu, &walker.fault); 779 780 return RET_PF_RETRY; 781 } 782 783 fault->gfn = walker.gfn; 784 fault->max_level = walker.level; 785 fault->slot = kvm_vcpu_gfn_to_memslot(vcpu, fault->gfn); 786 787 if (page_fault_handle_page_track(vcpu, fault)) { 788 shadow_page_table_clear_flood(vcpu, fault->addr); 789 return RET_PF_EMULATE; 790 } 791 792 r = mmu_topup_memory_caches(vcpu, true); 793 if (r) 794 return r; 795 796 r = kvm_faultin_pfn(vcpu, fault, walker.pte_access); 797 if (r != RET_PF_CONTINUE) 798 return r; 799 800 /* 801 * Do not change pte_access if the pfn is a mmio page, otherwise 802 * we will cache the incorrect access into mmio spte. 803 */ 804 if (fault->write && !(walker.pte_access & ACC_WRITE_MASK) && 805 !is_cr0_wp(vcpu->arch.mmu) && !fault->user && fault->slot) { 806 walker.pte_access |= ACC_WRITE_MASK; 807 walker.pte_access &= ~ACC_USER_MASK; 808 809 /* 810 * If we converted a user page to a kernel page, 811 * so that the kernel can write to it when cr0.wp=0, 812 * then we should prevent the kernel from executing it 813 * if SMEP is enabled. 814 */ 815 if (is_cr4_smep(vcpu->arch.mmu)) 816 walker.pte_access &= ~ACC_EXEC_MASK; 817 } 818 819 r = RET_PF_RETRY; 820 write_lock(&vcpu->kvm->mmu_lock); 821 822 if (is_page_fault_stale(vcpu, fault)) 823 goto out_unlock; 824 825 r = make_mmu_pages_available(vcpu); 826 if (r) 827 goto out_unlock; 828 r = FNAME(fetch)(vcpu, fault, &walker); 829 830 out_unlock: 831 write_unlock(&vcpu->kvm->mmu_lock); 832 kvm_release_pfn_clean(fault->pfn); 833 return r; 834 } 835 836 static gpa_t FNAME(get_level1_sp_gpa)(struct kvm_mmu_page *sp) 837 { 838 int offset = 0; 839 840 WARN_ON(sp->role.level != PG_LEVEL_4K); 841 842 if (PTTYPE == 32) 843 offset = sp->role.quadrant << SPTE_LEVEL_BITS; 844 845 return gfn_to_gpa(sp->gfn) + offset * sizeof(pt_element_t); 846 } 847 848 /* Note, @addr is a GPA when gva_to_gpa() translates an L2 GPA to an L1 GPA. */ 849 static gpa_t FNAME(gva_to_gpa)(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, 850 gpa_t addr, u64 access, 851 struct x86_exception *exception) 852 { 853 struct guest_walker walker; 854 gpa_t gpa = INVALID_GPA; 855 int r; 856 857 #ifndef CONFIG_X86_64 858 /* A 64-bit GVA should be impossible on 32-bit KVM. */ 859 WARN_ON_ONCE((addr >> 32) && mmu == vcpu->arch.walk_mmu); 860 #endif 861 862 r = FNAME(walk_addr_generic)(&walker, vcpu, mmu, addr, access); 863 864 if (r) { 865 gpa = gfn_to_gpa(walker.gfn); 866 gpa |= addr & ~PAGE_MASK; 867 } else if (exception) 868 *exception = walker.fault; 869 870 return gpa; 871 } 872 873 /* 874 * Using the information in sp->shadowed_translation (kvm_mmu_page_get_gfn()) is 875 * safe because: 876 * - The spte has a reference to the struct page, so the pfn for a given gfn 877 * can't change unless all sptes pointing to it are nuked first. 878 * 879 * Returns 880 * < 0: failed to sync spte 881 * 0: the spte is synced and no tlb flushing is required 882 * > 0: the spte is synced and tlb flushing is required 883 */ 884 static int FNAME(sync_spte)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp, int i) 885 { 886 bool host_writable; 887 gpa_t first_pte_gpa; 888 u64 *sptep, spte; 889 struct kvm_memory_slot *slot; 890 unsigned pte_access; 891 pt_element_t gpte; 892 gpa_t pte_gpa; 893 gfn_t gfn; 894 895 if (WARN_ON_ONCE(!sp->spt[i])) 896 return 0; 897 898 first_pte_gpa = FNAME(get_level1_sp_gpa)(sp); 899 pte_gpa = first_pte_gpa + i * sizeof(pt_element_t); 900 901 if (kvm_vcpu_read_guest_atomic(vcpu, pte_gpa, &gpte, 902 sizeof(pt_element_t))) 903 return -1; 904 905 if (FNAME(prefetch_invalid_gpte)(vcpu, sp, &sp->spt[i], gpte)) 906 return 1; 907 908 gfn = gpte_to_gfn(gpte); 909 pte_access = sp->role.access; 910 pte_access &= FNAME(gpte_access)(gpte); 911 FNAME(protect_clean_gpte)(vcpu->arch.mmu, &pte_access, gpte); 912 913 if (sync_mmio_spte(vcpu, &sp->spt[i], gfn, pte_access)) 914 return 0; 915 916 /* 917 * Drop the SPTE if the new protections would result in a RWX=0 918 * SPTE or if the gfn is changing. The RWX=0 case only affects 919 * EPT with execute-only support, i.e. EPT without an effective 920 * "present" bit, as all other paging modes will create a 921 * read-only SPTE if pte_access is zero. 922 */ 923 if ((!pte_access && !shadow_present_mask) || 924 gfn != kvm_mmu_page_get_gfn(sp, i)) { 925 drop_spte(vcpu->kvm, &sp->spt[i]); 926 return 1; 927 } 928 /* 929 * Do nothing if the permissions are unchanged. The existing SPTE is 930 * still, and prefetch_invalid_gpte() has verified that the A/D bits 931 * are set in the "new" gPTE, i.e. there is no danger of missing an A/D 932 * update due to A/D bits being set in the SPTE but not the gPTE. 933 */ 934 if (kvm_mmu_page_get_access(sp, i) == pte_access) 935 return 0; 936 937 /* Update the shadowed access bits in case they changed. */ 938 kvm_mmu_page_set_access(sp, i, pte_access); 939 940 sptep = &sp->spt[i]; 941 spte = *sptep; 942 host_writable = spte & shadow_host_writable_mask; 943 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 944 make_spte(vcpu, sp, slot, pte_access, gfn, 945 spte_to_pfn(spte), spte, true, false, 946 host_writable, &spte); 947 948 return mmu_spte_update(sptep, spte); 949 } 950 951 #undef pt_element_t 952 #undef guest_walker 953 #undef FNAME 954 #undef PT_BASE_ADDR_MASK 955 #undef PT_INDEX 956 #undef PT_LVL_ADDR_MASK 957 #undef PT_LVL_OFFSET_MASK 958 #undef PT_LEVEL_BITS 959 #undef PT_MAX_FULL_LEVELS 960 #undef gpte_to_gfn 961 #undef gpte_to_gfn_lvl 962 #undef PT_GUEST_ACCESSED_MASK 963 #undef PT_GUEST_DIRTY_MASK 964 #undef PT_GUEST_DIRTY_SHIFT 965 #undef PT_GUEST_ACCESSED_SHIFT 966 #undef PT_HAVE_ACCESSED_DIRTY 967