xref: /openbmc/linux/arch/x86/kvm/mmu/paging_tmpl.h (revision 19b438592238b3b40c3f945bb5f9c4ca971c0c45)
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This module enables machines with Intel VT-x extensions to run virtual
6  * machines without emulation or binary translation.
7  *
8  * MMU support
9  *
10  * Copyright (C) 2006 Qumranet, Inc.
11  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
12  *
13  * Authors:
14  *   Yaniv Kamay  <yaniv@qumranet.com>
15  *   Avi Kivity   <avi@qumranet.com>
16  */
17 
18 /*
19  * We need the mmu code to access both 32-bit and 64-bit guest ptes,
20  * so the code in this file is compiled twice, once per pte size.
21  */
22 
23 #if PTTYPE == 64
24 	#define pt_element_t u64
25 	#define guest_walker guest_walker64
26 	#define FNAME(name) paging##64_##name
27 	#define PT_BASE_ADDR_MASK PT64_BASE_ADDR_MASK
28 	#define PT_LVL_ADDR_MASK(lvl) PT64_LVL_ADDR_MASK(lvl)
29 	#define PT_LVL_OFFSET_MASK(lvl) PT64_LVL_OFFSET_MASK(lvl)
30 	#define PT_INDEX(addr, level) PT64_INDEX(addr, level)
31 	#define PT_LEVEL_BITS PT64_LEVEL_BITS
32 	#define PT_GUEST_DIRTY_SHIFT PT_DIRTY_SHIFT
33 	#define PT_GUEST_ACCESSED_SHIFT PT_ACCESSED_SHIFT
34 	#define PT_HAVE_ACCESSED_DIRTY(mmu) true
35 	#ifdef CONFIG_X86_64
36 	#define PT_MAX_FULL_LEVELS PT64_ROOT_MAX_LEVEL
37 	#define CMPXCHG cmpxchg
38 	#else
39 	#define CMPXCHG cmpxchg64
40 	#define PT_MAX_FULL_LEVELS 2
41 	#endif
42 #elif PTTYPE == 32
43 	#define pt_element_t u32
44 	#define guest_walker guest_walker32
45 	#define FNAME(name) paging##32_##name
46 	#define PT_BASE_ADDR_MASK PT32_BASE_ADDR_MASK
47 	#define PT_LVL_ADDR_MASK(lvl) PT32_LVL_ADDR_MASK(lvl)
48 	#define PT_LVL_OFFSET_MASK(lvl) PT32_LVL_OFFSET_MASK(lvl)
49 	#define PT_INDEX(addr, level) PT32_INDEX(addr, level)
50 	#define PT_LEVEL_BITS PT32_LEVEL_BITS
51 	#define PT_MAX_FULL_LEVELS 2
52 	#define PT_GUEST_DIRTY_SHIFT PT_DIRTY_SHIFT
53 	#define PT_GUEST_ACCESSED_SHIFT PT_ACCESSED_SHIFT
54 	#define PT_HAVE_ACCESSED_DIRTY(mmu) true
55 	#define CMPXCHG cmpxchg
56 #elif PTTYPE == PTTYPE_EPT
57 	#define pt_element_t u64
58 	#define guest_walker guest_walkerEPT
59 	#define FNAME(name) ept_##name
60 	#define PT_BASE_ADDR_MASK PT64_BASE_ADDR_MASK
61 	#define PT_LVL_ADDR_MASK(lvl) PT64_LVL_ADDR_MASK(lvl)
62 	#define PT_LVL_OFFSET_MASK(lvl) PT64_LVL_OFFSET_MASK(lvl)
63 	#define PT_INDEX(addr, level) PT64_INDEX(addr, level)
64 	#define PT_LEVEL_BITS PT64_LEVEL_BITS
65 	#define PT_GUEST_DIRTY_SHIFT 9
66 	#define PT_GUEST_ACCESSED_SHIFT 8
67 	#define PT_HAVE_ACCESSED_DIRTY(mmu) ((mmu)->ept_ad)
68 	#define CMPXCHG cmpxchg64
69 	#define PT_MAX_FULL_LEVELS PT64_ROOT_MAX_LEVEL
70 #else
71 	#error Invalid PTTYPE value
72 #endif
73 
74 #define PT_GUEST_DIRTY_MASK    (1 << PT_GUEST_DIRTY_SHIFT)
75 #define PT_GUEST_ACCESSED_MASK (1 << PT_GUEST_ACCESSED_SHIFT)
76 
77 #define gpte_to_gfn_lvl FNAME(gpte_to_gfn_lvl)
78 #define gpte_to_gfn(pte) gpte_to_gfn_lvl((pte), PG_LEVEL_4K)
79 
80 /*
81  * The guest_walker structure emulates the behavior of the hardware page
82  * table walker.
83  */
84 struct guest_walker {
85 	int level;
86 	unsigned max_level;
87 	gfn_t table_gfn[PT_MAX_FULL_LEVELS];
88 	pt_element_t ptes[PT_MAX_FULL_LEVELS];
89 	pt_element_t prefetch_ptes[PTE_PREFETCH_NUM];
90 	gpa_t pte_gpa[PT_MAX_FULL_LEVELS];
91 	pt_element_t __user *ptep_user[PT_MAX_FULL_LEVELS];
92 	bool pte_writable[PT_MAX_FULL_LEVELS];
93 	unsigned int pt_access[PT_MAX_FULL_LEVELS];
94 	unsigned int pte_access;
95 	gfn_t gfn;
96 	struct x86_exception fault;
97 };
98 
99 static gfn_t gpte_to_gfn_lvl(pt_element_t gpte, int lvl)
100 {
101 	return (gpte & PT_LVL_ADDR_MASK(lvl)) >> PAGE_SHIFT;
102 }
103 
104 static inline void FNAME(protect_clean_gpte)(struct kvm_mmu *mmu, unsigned *access,
105 					     unsigned gpte)
106 {
107 	unsigned mask;
108 
109 	/* dirty bit is not supported, so no need to track it */
110 	if (!PT_HAVE_ACCESSED_DIRTY(mmu))
111 		return;
112 
113 	BUILD_BUG_ON(PT_WRITABLE_MASK != ACC_WRITE_MASK);
114 
115 	mask = (unsigned)~ACC_WRITE_MASK;
116 	/* Allow write access to dirty gptes */
117 	mask |= (gpte >> (PT_GUEST_DIRTY_SHIFT - PT_WRITABLE_SHIFT)) &
118 		PT_WRITABLE_MASK;
119 	*access &= mask;
120 }
121 
122 static inline int FNAME(is_present_gpte)(unsigned long pte)
123 {
124 #if PTTYPE != PTTYPE_EPT
125 	return pte & PT_PRESENT_MASK;
126 #else
127 	return pte & 7;
128 #endif
129 }
130 
131 static bool FNAME(is_bad_mt_xwr)(struct rsvd_bits_validate *rsvd_check, u64 gpte)
132 {
133 #if PTTYPE != PTTYPE_EPT
134 	return false;
135 #else
136 	return __is_bad_mt_xwr(rsvd_check, gpte);
137 #endif
138 }
139 
140 static bool FNAME(is_rsvd_bits_set)(struct kvm_mmu *mmu, u64 gpte, int level)
141 {
142 	return __is_rsvd_bits_set(&mmu->guest_rsvd_check, gpte, level) ||
143 	       FNAME(is_bad_mt_xwr)(&mmu->guest_rsvd_check, gpte);
144 }
145 
146 static int FNAME(cmpxchg_gpte)(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
147 			       pt_element_t __user *ptep_user, unsigned index,
148 			       pt_element_t orig_pte, pt_element_t new_pte)
149 {
150 	int npages;
151 	pt_element_t ret;
152 	pt_element_t *table;
153 	struct page *page;
154 
155 	npages = get_user_pages_fast((unsigned long)ptep_user, 1, FOLL_WRITE, &page);
156 	if (likely(npages == 1)) {
157 		table = kmap_atomic(page);
158 		ret = CMPXCHG(&table[index], orig_pte, new_pte);
159 		kunmap_atomic(table);
160 
161 		kvm_release_page_dirty(page);
162 	} else {
163 		struct vm_area_struct *vma;
164 		unsigned long vaddr = (unsigned long)ptep_user & PAGE_MASK;
165 		unsigned long pfn;
166 		unsigned long paddr;
167 
168 		mmap_read_lock(current->mm);
169 		vma = find_vma_intersection(current->mm, vaddr, vaddr + PAGE_SIZE);
170 		if (!vma || !(vma->vm_flags & VM_PFNMAP)) {
171 			mmap_read_unlock(current->mm);
172 			return -EFAULT;
173 		}
174 		pfn = ((vaddr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
175 		paddr = pfn << PAGE_SHIFT;
176 		table = memremap(paddr, PAGE_SIZE, MEMREMAP_WB);
177 		if (!table) {
178 			mmap_read_unlock(current->mm);
179 			return -EFAULT;
180 		}
181 		ret = CMPXCHG(&table[index], orig_pte, new_pte);
182 		memunmap(table);
183 		mmap_read_unlock(current->mm);
184 	}
185 
186 	return (ret != orig_pte);
187 }
188 
189 static bool FNAME(prefetch_invalid_gpte)(struct kvm_vcpu *vcpu,
190 				  struct kvm_mmu_page *sp, u64 *spte,
191 				  u64 gpte)
192 {
193 	if (!FNAME(is_present_gpte)(gpte))
194 		goto no_present;
195 
196 	/* if accessed bit is not supported prefetch non accessed gpte */
197 	if (PT_HAVE_ACCESSED_DIRTY(vcpu->arch.mmu) &&
198 	    !(gpte & PT_GUEST_ACCESSED_MASK))
199 		goto no_present;
200 
201 	if (FNAME(is_rsvd_bits_set)(vcpu->arch.mmu, gpte, PG_LEVEL_4K))
202 		goto no_present;
203 
204 	return false;
205 
206 no_present:
207 	drop_spte(vcpu->kvm, spte);
208 	return true;
209 }
210 
211 /*
212  * For PTTYPE_EPT, a page table can be executable but not readable
213  * on supported processors. Therefore, set_spte does not automatically
214  * set bit 0 if execute only is supported. Here, we repurpose ACC_USER_MASK
215  * to signify readability since it isn't used in the EPT case
216  */
217 static inline unsigned FNAME(gpte_access)(u64 gpte)
218 {
219 	unsigned access;
220 #if PTTYPE == PTTYPE_EPT
221 	access = ((gpte & VMX_EPT_WRITABLE_MASK) ? ACC_WRITE_MASK : 0) |
222 		((gpte & VMX_EPT_EXECUTABLE_MASK) ? ACC_EXEC_MASK : 0) |
223 		((gpte & VMX_EPT_READABLE_MASK) ? ACC_USER_MASK : 0);
224 #else
225 	BUILD_BUG_ON(ACC_EXEC_MASK != PT_PRESENT_MASK);
226 	BUILD_BUG_ON(ACC_EXEC_MASK != 1);
227 	access = gpte & (PT_WRITABLE_MASK | PT_USER_MASK | PT_PRESENT_MASK);
228 	/* Combine NX with P (which is set here) to get ACC_EXEC_MASK.  */
229 	access ^= (gpte >> PT64_NX_SHIFT);
230 #endif
231 
232 	return access;
233 }
234 
235 static int FNAME(update_accessed_dirty_bits)(struct kvm_vcpu *vcpu,
236 					     struct kvm_mmu *mmu,
237 					     struct guest_walker *walker,
238 					     gpa_t addr, int write_fault)
239 {
240 	unsigned level, index;
241 	pt_element_t pte, orig_pte;
242 	pt_element_t __user *ptep_user;
243 	gfn_t table_gfn;
244 	int ret;
245 
246 	/* dirty/accessed bits are not supported, so no need to update them */
247 	if (!PT_HAVE_ACCESSED_DIRTY(mmu))
248 		return 0;
249 
250 	for (level = walker->max_level; level >= walker->level; --level) {
251 		pte = orig_pte = walker->ptes[level - 1];
252 		table_gfn = walker->table_gfn[level - 1];
253 		ptep_user = walker->ptep_user[level - 1];
254 		index = offset_in_page(ptep_user) / sizeof(pt_element_t);
255 		if (!(pte & PT_GUEST_ACCESSED_MASK)) {
256 			trace_kvm_mmu_set_accessed_bit(table_gfn, index, sizeof(pte));
257 			pte |= PT_GUEST_ACCESSED_MASK;
258 		}
259 		if (level == walker->level && write_fault &&
260 				!(pte & PT_GUEST_DIRTY_MASK)) {
261 			trace_kvm_mmu_set_dirty_bit(table_gfn, index, sizeof(pte));
262 #if PTTYPE == PTTYPE_EPT
263 			if (kvm_x86_ops.nested_ops->write_log_dirty(vcpu, addr))
264 				return -EINVAL;
265 #endif
266 			pte |= PT_GUEST_DIRTY_MASK;
267 		}
268 		if (pte == orig_pte)
269 			continue;
270 
271 		/*
272 		 * If the slot is read-only, simply do not process the accessed
273 		 * and dirty bits.  This is the correct thing to do if the slot
274 		 * is ROM, and page tables in read-as-ROM/write-as-MMIO slots
275 		 * are only supported if the accessed and dirty bits are already
276 		 * set in the ROM (so that MMIO writes are never needed).
277 		 *
278 		 * Note that NPT does not allow this at all and faults, since
279 		 * it always wants nested page table entries for the guest
280 		 * page tables to be writable.  And EPT works but will simply
281 		 * overwrite the read-only memory to set the accessed and dirty
282 		 * bits.
283 		 */
284 		if (unlikely(!walker->pte_writable[level - 1]))
285 			continue;
286 
287 		ret = FNAME(cmpxchg_gpte)(vcpu, mmu, ptep_user, index, orig_pte, pte);
288 		if (ret)
289 			return ret;
290 
291 		kvm_vcpu_mark_page_dirty(vcpu, table_gfn);
292 		walker->ptes[level - 1] = pte;
293 	}
294 	return 0;
295 }
296 
297 static inline unsigned FNAME(gpte_pkeys)(struct kvm_vcpu *vcpu, u64 gpte)
298 {
299 	unsigned pkeys = 0;
300 #if PTTYPE == 64
301 	pte_t pte = {.pte = gpte};
302 
303 	pkeys = pte_flags_pkey(pte_flags(pte));
304 #endif
305 	return pkeys;
306 }
307 
308 static inline bool FNAME(is_last_gpte)(struct kvm_mmu *mmu,
309 				       unsigned int level, unsigned int gpte)
310 {
311 	/*
312 	 * For EPT and PAE paging (both variants), bit 7 is either reserved at
313 	 * all level or indicates a huge page (ignoring CR3/EPTP).  In either
314 	 * case, bit 7 being set terminates the walk.
315 	 */
316 #if PTTYPE == 32
317 	/*
318 	 * 32-bit paging requires special handling because bit 7 is ignored if
319 	 * CR4.PSE=0, not reserved.  Clear bit 7 in the gpte if the level is
320 	 * greater than the last level for which bit 7 is the PAGE_SIZE bit.
321 	 *
322 	 * The RHS has bit 7 set iff level < (2 + PSE).  If it is clear, bit 7
323 	 * is not reserved and does not indicate a large page at this level,
324 	 * so clear PT_PAGE_SIZE_MASK in gpte if that is the case.
325 	 */
326 	gpte &= level - (PT32_ROOT_LEVEL + mmu->mmu_role.ext.cr4_pse);
327 #endif
328 	/*
329 	 * PG_LEVEL_4K always terminates.  The RHS has bit 7 set
330 	 * iff level <= PG_LEVEL_4K, which for our purpose means
331 	 * level == PG_LEVEL_4K; set PT_PAGE_SIZE_MASK in gpte then.
332 	 */
333 	gpte |= level - PG_LEVEL_4K - 1;
334 
335 	return gpte & PT_PAGE_SIZE_MASK;
336 }
337 /*
338  * Fetch a guest pte for a guest virtual address, or for an L2's GPA.
339  */
340 static int FNAME(walk_addr_generic)(struct guest_walker *walker,
341 				    struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
342 				    gpa_t addr, u32 access)
343 {
344 	int ret;
345 	pt_element_t pte;
346 	pt_element_t __user *ptep_user;
347 	gfn_t table_gfn;
348 	u64 pt_access, pte_access;
349 	unsigned index, accessed_dirty, pte_pkey;
350 	unsigned nested_access;
351 	gpa_t pte_gpa;
352 	bool have_ad;
353 	int offset;
354 	u64 walk_nx_mask = 0;
355 	const int write_fault = access & PFERR_WRITE_MASK;
356 	const int user_fault  = access & PFERR_USER_MASK;
357 	const int fetch_fault = access & PFERR_FETCH_MASK;
358 	u16 errcode = 0;
359 	gpa_t real_gpa;
360 	gfn_t gfn;
361 
362 	trace_kvm_mmu_pagetable_walk(addr, access);
363 retry_walk:
364 	walker->level = mmu->root_level;
365 	pte           = mmu->get_guest_pgd(vcpu);
366 	have_ad       = PT_HAVE_ACCESSED_DIRTY(mmu);
367 
368 #if PTTYPE == 64
369 	walk_nx_mask = 1ULL << PT64_NX_SHIFT;
370 	if (walker->level == PT32E_ROOT_LEVEL) {
371 		pte = mmu->get_pdptr(vcpu, (addr >> 30) & 3);
372 		trace_kvm_mmu_paging_element(pte, walker->level);
373 		if (!FNAME(is_present_gpte)(pte))
374 			goto error;
375 		--walker->level;
376 	}
377 #endif
378 	walker->max_level = walker->level;
379 	ASSERT(!(is_long_mode(vcpu) && !is_pae(vcpu)));
380 
381 	/*
382 	 * FIXME: on Intel processors, loads of the PDPTE registers for PAE paging
383 	 * by the MOV to CR instruction are treated as reads and do not cause the
384 	 * processor to set the dirty flag in any EPT paging-structure entry.
385 	 */
386 	nested_access = (have_ad ? PFERR_WRITE_MASK : 0) | PFERR_USER_MASK;
387 
388 	pte_access = ~0;
389 	++walker->level;
390 
391 	do {
392 		unsigned long host_addr;
393 
394 		pt_access = pte_access;
395 		--walker->level;
396 
397 		index = PT_INDEX(addr, walker->level);
398 		table_gfn = gpte_to_gfn(pte);
399 		offset    = index * sizeof(pt_element_t);
400 		pte_gpa   = gfn_to_gpa(table_gfn) + offset;
401 
402 		BUG_ON(walker->level < 1);
403 		walker->table_gfn[walker->level - 1] = table_gfn;
404 		walker->pte_gpa[walker->level - 1] = pte_gpa;
405 
406 		real_gpa = mmu->translate_gpa(vcpu, gfn_to_gpa(table_gfn),
407 					      nested_access,
408 					      &walker->fault);
409 
410 		/*
411 		 * FIXME: This can happen if emulation (for of an INS/OUTS
412 		 * instruction) triggers a nested page fault.  The exit
413 		 * qualification / exit info field will incorrectly have
414 		 * "guest page access" as the nested page fault's cause,
415 		 * instead of "guest page structure access".  To fix this,
416 		 * the x86_exception struct should be augmented with enough
417 		 * information to fix the exit_qualification or exit_info_1
418 		 * fields.
419 		 */
420 		if (unlikely(real_gpa == UNMAPPED_GVA))
421 			return 0;
422 
423 		host_addr = kvm_vcpu_gfn_to_hva_prot(vcpu, gpa_to_gfn(real_gpa),
424 					    &walker->pte_writable[walker->level - 1]);
425 		if (unlikely(kvm_is_error_hva(host_addr)))
426 			goto error;
427 
428 		ptep_user = (pt_element_t __user *)((void *)host_addr + offset);
429 		if (unlikely(__get_user(pte, ptep_user)))
430 			goto error;
431 		walker->ptep_user[walker->level - 1] = ptep_user;
432 
433 		trace_kvm_mmu_paging_element(pte, walker->level);
434 
435 		/*
436 		 * Inverting the NX it lets us AND it like other
437 		 * permission bits.
438 		 */
439 		pte_access = pt_access & (pte ^ walk_nx_mask);
440 
441 		if (unlikely(!FNAME(is_present_gpte)(pte)))
442 			goto error;
443 
444 		if (unlikely(FNAME(is_rsvd_bits_set)(mmu, pte, walker->level))) {
445 			errcode = PFERR_RSVD_MASK | PFERR_PRESENT_MASK;
446 			goto error;
447 		}
448 
449 		walker->ptes[walker->level - 1] = pte;
450 
451 		/* Convert to ACC_*_MASK flags for struct guest_walker.  */
452 		walker->pt_access[walker->level - 1] = FNAME(gpte_access)(pt_access ^ walk_nx_mask);
453 	} while (!FNAME(is_last_gpte)(mmu, walker->level, pte));
454 
455 	pte_pkey = FNAME(gpte_pkeys)(vcpu, pte);
456 	accessed_dirty = have_ad ? pte_access & PT_GUEST_ACCESSED_MASK : 0;
457 
458 	/* Convert to ACC_*_MASK flags for struct guest_walker.  */
459 	walker->pte_access = FNAME(gpte_access)(pte_access ^ walk_nx_mask);
460 	errcode = permission_fault(vcpu, mmu, walker->pte_access, pte_pkey, access);
461 	if (unlikely(errcode))
462 		goto error;
463 
464 	gfn = gpte_to_gfn_lvl(pte, walker->level);
465 	gfn += (addr & PT_LVL_OFFSET_MASK(walker->level)) >> PAGE_SHIFT;
466 
467 	if (PTTYPE == 32 && walker->level > PG_LEVEL_4K && is_cpuid_PSE36())
468 		gfn += pse36_gfn_delta(pte);
469 
470 	real_gpa = mmu->translate_gpa(vcpu, gfn_to_gpa(gfn), access, &walker->fault);
471 	if (real_gpa == UNMAPPED_GVA)
472 		return 0;
473 
474 	walker->gfn = real_gpa >> PAGE_SHIFT;
475 
476 	if (!write_fault)
477 		FNAME(protect_clean_gpte)(mmu, &walker->pte_access, pte);
478 	else
479 		/*
480 		 * On a write fault, fold the dirty bit into accessed_dirty.
481 		 * For modes without A/D bits support accessed_dirty will be
482 		 * always clear.
483 		 */
484 		accessed_dirty &= pte >>
485 			(PT_GUEST_DIRTY_SHIFT - PT_GUEST_ACCESSED_SHIFT);
486 
487 	if (unlikely(!accessed_dirty)) {
488 		ret = FNAME(update_accessed_dirty_bits)(vcpu, mmu, walker,
489 							addr, write_fault);
490 		if (unlikely(ret < 0))
491 			goto error;
492 		else if (ret)
493 			goto retry_walk;
494 	}
495 
496 	pgprintk("%s: pte %llx pte_access %x pt_access %x\n",
497 		 __func__, (u64)pte, walker->pte_access,
498 		 walker->pt_access[walker->level - 1]);
499 	return 1;
500 
501 error:
502 	errcode |= write_fault | user_fault;
503 	if (fetch_fault && (is_efer_nx(mmu) || is_cr4_smep(mmu)))
504 		errcode |= PFERR_FETCH_MASK;
505 
506 	walker->fault.vector = PF_VECTOR;
507 	walker->fault.error_code_valid = true;
508 	walker->fault.error_code = errcode;
509 
510 #if PTTYPE == PTTYPE_EPT
511 	/*
512 	 * Use PFERR_RSVD_MASK in error_code to to tell if EPT
513 	 * misconfiguration requires to be injected. The detection is
514 	 * done by is_rsvd_bits_set() above.
515 	 *
516 	 * We set up the value of exit_qualification to inject:
517 	 * [2:0] - Derive from the access bits. The exit_qualification might be
518 	 *         out of date if it is serving an EPT misconfiguration.
519 	 * [5:3] - Calculated by the page walk of the guest EPT page tables
520 	 * [7:8] - Derived from [7:8] of real exit_qualification
521 	 *
522 	 * The other bits are set to 0.
523 	 */
524 	if (!(errcode & PFERR_RSVD_MASK)) {
525 		vcpu->arch.exit_qualification &= 0x180;
526 		if (write_fault)
527 			vcpu->arch.exit_qualification |= EPT_VIOLATION_ACC_WRITE;
528 		if (user_fault)
529 			vcpu->arch.exit_qualification |= EPT_VIOLATION_ACC_READ;
530 		if (fetch_fault)
531 			vcpu->arch.exit_qualification |= EPT_VIOLATION_ACC_INSTR;
532 		vcpu->arch.exit_qualification |= (pte_access & 0x7) << 3;
533 	}
534 #endif
535 	walker->fault.address = addr;
536 	walker->fault.nested_page_fault = mmu != vcpu->arch.walk_mmu;
537 	walker->fault.async_page_fault = false;
538 
539 	trace_kvm_mmu_walker_error(walker->fault.error_code);
540 	return 0;
541 }
542 
543 static int FNAME(walk_addr)(struct guest_walker *walker,
544 			    struct kvm_vcpu *vcpu, gpa_t addr, u32 access)
545 {
546 	return FNAME(walk_addr_generic)(walker, vcpu, vcpu->arch.mmu, addr,
547 					access);
548 }
549 
550 #if PTTYPE != PTTYPE_EPT
551 static int FNAME(walk_addr_nested)(struct guest_walker *walker,
552 				   struct kvm_vcpu *vcpu, gva_t addr,
553 				   u32 access)
554 {
555 	return FNAME(walk_addr_generic)(walker, vcpu, &vcpu->arch.nested_mmu,
556 					addr, access);
557 }
558 #endif
559 
560 static bool
561 FNAME(prefetch_gpte)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
562 		     u64 *spte, pt_element_t gpte, bool no_dirty_log)
563 {
564 	unsigned pte_access;
565 	gfn_t gfn;
566 	kvm_pfn_t pfn;
567 
568 	if (FNAME(prefetch_invalid_gpte)(vcpu, sp, spte, gpte))
569 		return false;
570 
571 	pgprintk("%s: gpte %llx spte %p\n", __func__, (u64)gpte, spte);
572 
573 	gfn = gpte_to_gfn(gpte);
574 	pte_access = sp->role.access & FNAME(gpte_access)(gpte);
575 	FNAME(protect_clean_gpte)(vcpu->arch.mmu, &pte_access, gpte);
576 	pfn = pte_prefetch_gfn_to_pfn(vcpu, gfn,
577 			no_dirty_log && (pte_access & ACC_WRITE_MASK));
578 	if (is_error_pfn(pfn))
579 		return false;
580 
581 	/*
582 	 * we call mmu_set_spte() with host_writable = true because
583 	 * pte_prefetch_gfn_to_pfn always gets a writable pfn.
584 	 */
585 	mmu_set_spte(vcpu, spte, pte_access, false, PG_LEVEL_4K, gfn, pfn,
586 		     true, true);
587 
588 	kvm_release_pfn_clean(pfn);
589 	return true;
590 }
591 
592 static void FNAME(update_pte)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
593 			      u64 *spte, const void *pte)
594 {
595 	pt_element_t gpte = *(const pt_element_t *)pte;
596 
597 	FNAME(prefetch_gpte)(vcpu, sp, spte, gpte, false);
598 }
599 
600 static bool FNAME(gpte_changed)(struct kvm_vcpu *vcpu,
601 				struct guest_walker *gw, int level)
602 {
603 	pt_element_t curr_pte;
604 	gpa_t base_gpa, pte_gpa = gw->pte_gpa[level - 1];
605 	u64 mask;
606 	int r, index;
607 
608 	if (level == PG_LEVEL_4K) {
609 		mask = PTE_PREFETCH_NUM * sizeof(pt_element_t) - 1;
610 		base_gpa = pte_gpa & ~mask;
611 		index = (pte_gpa - base_gpa) / sizeof(pt_element_t);
612 
613 		r = kvm_vcpu_read_guest_atomic(vcpu, base_gpa,
614 				gw->prefetch_ptes, sizeof(gw->prefetch_ptes));
615 		curr_pte = gw->prefetch_ptes[index];
616 	} else
617 		r = kvm_vcpu_read_guest_atomic(vcpu, pte_gpa,
618 				  &curr_pte, sizeof(curr_pte));
619 
620 	return r || curr_pte != gw->ptes[level - 1];
621 }
622 
623 static void FNAME(pte_prefetch)(struct kvm_vcpu *vcpu, struct guest_walker *gw,
624 				u64 *sptep)
625 {
626 	struct kvm_mmu_page *sp;
627 	pt_element_t *gptep = gw->prefetch_ptes;
628 	u64 *spte;
629 	int i;
630 
631 	sp = sptep_to_sp(sptep);
632 
633 	if (sp->role.level > PG_LEVEL_4K)
634 		return;
635 
636 	/*
637 	 * If addresses are being invalidated, skip prefetching to avoid
638 	 * accidentally prefetching those addresses.
639 	 */
640 	if (unlikely(vcpu->kvm->mmu_notifier_count))
641 		return;
642 
643 	if (sp->role.direct)
644 		return __direct_pte_prefetch(vcpu, sp, sptep);
645 
646 	i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
647 	spte = sp->spt + i;
648 
649 	for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
650 		if (spte == sptep)
651 			continue;
652 
653 		if (is_shadow_present_pte(*spte))
654 			continue;
655 
656 		if (!FNAME(prefetch_gpte)(vcpu, sp, spte, gptep[i], true))
657 			break;
658 	}
659 }
660 
661 /*
662  * Fetch a shadow pte for a specific level in the paging hierarchy.
663  * If the guest tries to write a write-protected page, we need to
664  * emulate this operation, return 1 to indicate this case.
665  */
666 static int FNAME(fetch)(struct kvm_vcpu *vcpu, gpa_t addr,
667 			 struct guest_walker *gw, u32 error_code,
668 			 int max_level, kvm_pfn_t pfn, bool map_writable,
669 			 bool prefault)
670 {
671 	bool nx_huge_page_workaround_enabled = is_nx_huge_page_enabled();
672 	bool write_fault = error_code & PFERR_WRITE_MASK;
673 	bool exec = error_code & PFERR_FETCH_MASK;
674 	bool huge_page_disallowed = exec && nx_huge_page_workaround_enabled;
675 	struct kvm_mmu_page *sp = NULL;
676 	struct kvm_shadow_walk_iterator it;
677 	unsigned int direct_access, access;
678 	int top_level, level, req_level, ret;
679 	gfn_t base_gfn = gw->gfn;
680 
681 	direct_access = gw->pte_access;
682 
683 	top_level = vcpu->arch.mmu->root_level;
684 	if (top_level == PT32E_ROOT_LEVEL)
685 		top_level = PT32_ROOT_LEVEL;
686 	/*
687 	 * Verify that the top-level gpte is still there.  Since the page
688 	 * is a root page, it is either write protected (and cannot be
689 	 * changed from now on) or it is invalid (in which case, we don't
690 	 * really care if it changes underneath us after this point).
691 	 */
692 	if (FNAME(gpte_changed)(vcpu, gw, top_level))
693 		goto out_gpte_changed;
694 
695 	if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa)))
696 		goto out_gpte_changed;
697 
698 	for (shadow_walk_init(&it, vcpu, addr);
699 	     shadow_walk_okay(&it) && it.level > gw->level;
700 	     shadow_walk_next(&it)) {
701 		gfn_t table_gfn;
702 
703 		clear_sp_write_flooding_count(it.sptep);
704 		drop_large_spte(vcpu, it.sptep);
705 
706 		sp = NULL;
707 		if (!is_shadow_present_pte(*it.sptep)) {
708 			table_gfn = gw->table_gfn[it.level - 2];
709 			access = gw->pt_access[it.level - 2];
710 			sp = kvm_mmu_get_page(vcpu, table_gfn, addr, it.level-1,
711 					      false, access);
712 		}
713 
714 		/*
715 		 * Verify that the gpte in the page we've just write
716 		 * protected is still there.
717 		 */
718 		if (FNAME(gpte_changed)(vcpu, gw, it.level - 1))
719 			goto out_gpte_changed;
720 
721 		if (sp)
722 			link_shadow_page(vcpu, it.sptep, sp);
723 	}
724 
725 	level = kvm_mmu_hugepage_adjust(vcpu, gw->gfn, max_level, &pfn,
726 					huge_page_disallowed, &req_level);
727 
728 	trace_kvm_mmu_spte_requested(addr, gw->level, pfn);
729 
730 	for (; shadow_walk_okay(&it); shadow_walk_next(&it)) {
731 		clear_sp_write_flooding_count(it.sptep);
732 
733 		/*
734 		 * We cannot overwrite existing page tables with an NX
735 		 * large page, as the leaf could be executable.
736 		 */
737 		if (nx_huge_page_workaround_enabled)
738 			disallowed_hugepage_adjust(*it.sptep, gw->gfn, it.level,
739 						   &pfn, &level);
740 
741 		base_gfn = gw->gfn & ~(KVM_PAGES_PER_HPAGE(it.level) - 1);
742 		if (it.level == level)
743 			break;
744 
745 		validate_direct_spte(vcpu, it.sptep, direct_access);
746 
747 		drop_large_spte(vcpu, it.sptep);
748 
749 		if (!is_shadow_present_pte(*it.sptep)) {
750 			sp = kvm_mmu_get_page(vcpu, base_gfn, addr,
751 					      it.level - 1, true, direct_access);
752 			link_shadow_page(vcpu, it.sptep, sp);
753 			if (huge_page_disallowed && req_level >= it.level)
754 				account_huge_nx_page(vcpu->kvm, sp);
755 		}
756 	}
757 
758 	ret = mmu_set_spte(vcpu, it.sptep, gw->pte_access, write_fault,
759 			   it.level, base_gfn, pfn, prefault, map_writable);
760 	if (ret == RET_PF_SPURIOUS)
761 		return ret;
762 
763 	FNAME(pte_prefetch)(vcpu, gw, it.sptep);
764 	++vcpu->stat.pf_fixed;
765 	return ret;
766 
767 out_gpte_changed:
768 	return RET_PF_RETRY;
769 }
770 
771  /*
772  * To see whether the mapped gfn can write its page table in the current
773  * mapping.
774  *
775  * It is the helper function of FNAME(page_fault). When guest uses large page
776  * size to map the writable gfn which is used as current page table, we should
777  * force kvm to use small page size to map it because new shadow page will be
778  * created when kvm establishes shadow page table that stop kvm using large
779  * page size. Do it early can avoid unnecessary #PF and emulation.
780  *
781  * @write_fault_to_shadow_pgtable will return true if the fault gfn is
782  * currently used as its page table.
783  *
784  * Note: the PDPT page table is not checked for PAE-32 bit guest. It is ok
785  * since the PDPT is always shadowed, that means, we can not use large page
786  * size to map the gfn which is used as PDPT.
787  */
788 static bool
789 FNAME(is_self_change_mapping)(struct kvm_vcpu *vcpu,
790 			      struct guest_walker *walker, bool user_fault,
791 			      bool *write_fault_to_shadow_pgtable)
792 {
793 	int level;
794 	gfn_t mask = ~(KVM_PAGES_PER_HPAGE(walker->level) - 1);
795 	bool self_changed = false;
796 
797 	if (!(walker->pte_access & ACC_WRITE_MASK ||
798 	    (!is_cr0_wp(vcpu->arch.mmu) && !user_fault)))
799 		return false;
800 
801 	for (level = walker->level; level <= walker->max_level; level++) {
802 		gfn_t gfn = walker->gfn ^ walker->table_gfn[level - 1];
803 
804 		self_changed |= !(gfn & mask);
805 		*write_fault_to_shadow_pgtable |= !gfn;
806 	}
807 
808 	return self_changed;
809 }
810 
811 /*
812  * Page fault handler.  There are several causes for a page fault:
813  *   - there is no shadow pte for the guest pte
814  *   - write access through a shadow pte marked read only so that we can set
815  *     the dirty bit
816  *   - write access to a shadow pte marked read only so we can update the page
817  *     dirty bitmap, when userspace requests it
818  *   - mmio access; in this case we will never install a present shadow pte
819  *   - normal guest page fault due to the guest pte marked not present, not
820  *     writable, or not executable
821  *
822  *  Returns: 1 if we need to emulate the instruction, 0 otherwise, or
823  *           a negative value on error.
824  */
825 static int FNAME(page_fault)(struct kvm_vcpu *vcpu, gpa_t addr, u32 error_code,
826 			     bool prefault)
827 {
828 	bool write_fault = error_code & PFERR_WRITE_MASK;
829 	bool user_fault = error_code & PFERR_USER_MASK;
830 	struct guest_walker walker;
831 	int r;
832 	kvm_pfn_t pfn;
833 	hva_t hva;
834 	unsigned long mmu_seq;
835 	bool map_writable, is_self_change_mapping;
836 	int max_level;
837 
838 	pgprintk("%s: addr %lx err %x\n", __func__, addr, error_code);
839 
840 	/*
841 	 * If PFEC.RSVD is set, this is a shadow page fault.
842 	 * The bit needs to be cleared before walking guest page tables.
843 	 */
844 	error_code &= ~PFERR_RSVD_MASK;
845 
846 	/*
847 	 * Look up the guest pte for the faulting address.
848 	 */
849 	r = FNAME(walk_addr)(&walker, vcpu, addr, error_code);
850 
851 	/*
852 	 * The page is not mapped by the guest.  Let the guest handle it.
853 	 */
854 	if (!r) {
855 		pgprintk("%s: guest page fault\n", __func__);
856 		if (!prefault)
857 			kvm_inject_emulated_page_fault(vcpu, &walker.fault);
858 
859 		return RET_PF_RETRY;
860 	}
861 
862 	if (page_fault_handle_page_track(vcpu, error_code, walker.gfn)) {
863 		shadow_page_table_clear_flood(vcpu, addr);
864 		return RET_PF_EMULATE;
865 	}
866 
867 	r = mmu_topup_memory_caches(vcpu, true);
868 	if (r)
869 		return r;
870 
871 	vcpu->arch.write_fault_to_shadow_pgtable = false;
872 
873 	is_self_change_mapping = FNAME(is_self_change_mapping)(vcpu,
874 	      &walker, user_fault, &vcpu->arch.write_fault_to_shadow_pgtable);
875 
876 	if (is_self_change_mapping)
877 		max_level = PG_LEVEL_4K;
878 	else
879 		max_level = walker.level;
880 
881 	mmu_seq = vcpu->kvm->mmu_notifier_seq;
882 	smp_rmb();
883 
884 	if (try_async_pf(vcpu, prefault, walker.gfn, addr, &pfn, &hva,
885 			 write_fault, &map_writable))
886 		return RET_PF_RETRY;
887 
888 	if (handle_abnormal_pfn(vcpu, addr, walker.gfn, pfn, walker.pte_access, &r))
889 		return r;
890 
891 	/*
892 	 * Do not change pte_access if the pfn is a mmio page, otherwise
893 	 * we will cache the incorrect access into mmio spte.
894 	 */
895 	if (write_fault && !(walker.pte_access & ACC_WRITE_MASK) &&
896 	    !is_cr0_wp(vcpu->arch.mmu) && !user_fault && !is_noslot_pfn(pfn)) {
897 		walker.pte_access |= ACC_WRITE_MASK;
898 		walker.pte_access &= ~ACC_USER_MASK;
899 
900 		/*
901 		 * If we converted a user page to a kernel page,
902 		 * so that the kernel can write to it when cr0.wp=0,
903 		 * then we should prevent the kernel from executing it
904 		 * if SMEP is enabled.
905 		 */
906 		if (is_cr4_smep(vcpu->arch.mmu))
907 			walker.pte_access &= ~ACC_EXEC_MASK;
908 	}
909 
910 	r = RET_PF_RETRY;
911 	write_lock(&vcpu->kvm->mmu_lock);
912 	if (!is_noslot_pfn(pfn) && mmu_notifier_retry_hva(vcpu->kvm, mmu_seq, hva))
913 		goto out_unlock;
914 
915 	kvm_mmu_audit(vcpu, AUDIT_PRE_PAGE_FAULT);
916 	r = make_mmu_pages_available(vcpu);
917 	if (r)
918 		goto out_unlock;
919 	r = FNAME(fetch)(vcpu, addr, &walker, error_code, max_level, pfn,
920 			 map_writable, prefault);
921 	kvm_mmu_audit(vcpu, AUDIT_POST_PAGE_FAULT);
922 
923 out_unlock:
924 	write_unlock(&vcpu->kvm->mmu_lock);
925 	kvm_release_pfn_clean(pfn);
926 	return r;
927 }
928 
929 static gpa_t FNAME(get_level1_sp_gpa)(struct kvm_mmu_page *sp)
930 {
931 	int offset = 0;
932 
933 	WARN_ON(sp->role.level != PG_LEVEL_4K);
934 
935 	if (PTTYPE == 32)
936 		offset = sp->role.quadrant << PT64_LEVEL_BITS;
937 
938 	return gfn_to_gpa(sp->gfn) + offset * sizeof(pt_element_t);
939 }
940 
941 static void FNAME(invlpg)(struct kvm_vcpu *vcpu, gva_t gva, hpa_t root_hpa)
942 {
943 	struct kvm_shadow_walk_iterator iterator;
944 	struct kvm_mmu_page *sp;
945 	u64 old_spte;
946 	int level;
947 	u64 *sptep;
948 
949 	vcpu_clear_mmio_info(vcpu, gva);
950 
951 	/*
952 	 * No need to check return value here, rmap_can_add() can
953 	 * help us to skip pte prefetch later.
954 	 */
955 	mmu_topup_memory_caches(vcpu, true);
956 
957 	if (!VALID_PAGE(root_hpa)) {
958 		WARN_ON(1);
959 		return;
960 	}
961 
962 	write_lock(&vcpu->kvm->mmu_lock);
963 	for_each_shadow_entry_using_root(vcpu, root_hpa, gva, iterator) {
964 		level = iterator.level;
965 		sptep = iterator.sptep;
966 
967 		sp = sptep_to_sp(sptep);
968 		old_spte = *sptep;
969 		if (is_last_spte(old_spte, level)) {
970 			pt_element_t gpte;
971 			gpa_t pte_gpa;
972 
973 			if (!sp->unsync)
974 				break;
975 
976 			pte_gpa = FNAME(get_level1_sp_gpa)(sp);
977 			pte_gpa += (sptep - sp->spt) * sizeof(pt_element_t);
978 
979 			mmu_page_zap_pte(vcpu->kvm, sp, sptep, NULL);
980 			if (is_shadow_present_pte(old_spte))
981 				kvm_flush_remote_tlbs_with_address(vcpu->kvm,
982 					sp->gfn, KVM_PAGES_PER_HPAGE(sp->role.level));
983 
984 			if (!rmap_can_add(vcpu))
985 				break;
986 
987 			if (kvm_vcpu_read_guest_atomic(vcpu, pte_gpa, &gpte,
988 						       sizeof(pt_element_t)))
989 				break;
990 
991 			FNAME(update_pte)(vcpu, sp, sptep, &gpte);
992 		}
993 
994 		if (!is_shadow_present_pte(*sptep) || !sp->unsync_children)
995 			break;
996 	}
997 	write_unlock(&vcpu->kvm->mmu_lock);
998 }
999 
1000 /* Note, @addr is a GPA when gva_to_gpa() translates an L2 GPA to an L1 GPA. */
1001 static gpa_t FNAME(gva_to_gpa)(struct kvm_vcpu *vcpu, gpa_t addr, u32 access,
1002 			       struct x86_exception *exception)
1003 {
1004 	struct guest_walker walker;
1005 	gpa_t gpa = UNMAPPED_GVA;
1006 	int r;
1007 
1008 	r = FNAME(walk_addr)(&walker, vcpu, addr, access);
1009 
1010 	if (r) {
1011 		gpa = gfn_to_gpa(walker.gfn);
1012 		gpa |= addr & ~PAGE_MASK;
1013 	} else if (exception)
1014 		*exception = walker.fault;
1015 
1016 	return gpa;
1017 }
1018 
1019 #if PTTYPE != PTTYPE_EPT
1020 /* Note, gva_to_gpa_nested() is only used to translate L2 GVAs. */
1021 static gpa_t FNAME(gva_to_gpa_nested)(struct kvm_vcpu *vcpu, gpa_t vaddr,
1022 				      u32 access,
1023 				      struct x86_exception *exception)
1024 {
1025 	struct guest_walker walker;
1026 	gpa_t gpa = UNMAPPED_GVA;
1027 	int r;
1028 
1029 #ifndef CONFIG_X86_64
1030 	/* A 64-bit GVA should be impossible on 32-bit KVM. */
1031 	WARN_ON_ONCE(vaddr >> 32);
1032 #endif
1033 
1034 	r = FNAME(walk_addr_nested)(&walker, vcpu, vaddr, access);
1035 
1036 	if (r) {
1037 		gpa = gfn_to_gpa(walker.gfn);
1038 		gpa |= vaddr & ~PAGE_MASK;
1039 	} else if (exception)
1040 		*exception = walker.fault;
1041 
1042 	return gpa;
1043 }
1044 #endif
1045 
1046 /*
1047  * Using the cached information from sp->gfns is safe because:
1048  * - The spte has a reference to the struct page, so the pfn for a given gfn
1049  *   can't change unless all sptes pointing to it are nuked first.
1050  *
1051  * Note:
1052  *   We should flush all tlbs if spte is dropped even though guest is
1053  *   responsible for it. Since if we don't, kvm_mmu_notifier_invalidate_page
1054  *   and kvm_mmu_notifier_invalidate_range_start detect the mapping page isn't
1055  *   used by guest then tlbs are not flushed, so guest is allowed to access the
1056  *   freed pages.
1057  *   And we increase kvm->tlbs_dirty to delay tlbs flush in this case.
1058  */
1059 static int FNAME(sync_page)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
1060 {
1061 	union kvm_mmu_page_role mmu_role = vcpu->arch.mmu->mmu_role.base;
1062 	int i, nr_present = 0;
1063 	bool host_writable;
1064 	gpa_t first_pte_gpa;
1065 	int set_spte_ret = 0;
1066 
1067 	/*
1068 	 * Ignore various flags when verifying that it's safe to sync a shadow
1069 	 * page using the current MMU context.
1070 	 *
1071 	 *  - level: not part of the overall MMU role and will never match as the MMU's
1072 	 *           level tracks the root level
1073 	 *  - access: updated based on the new guest PTE
1074 	 *  - quadrant: not part of the overall MMU role (similar to level)
1075 	 */
1076 	const union kvm_mmu_page_role sync_role_ign = {
1077 		.level = 0xf,
1078 		.access = 0x7,
1079 		.quadrant = 0x3,
1080 	};
1081 
1082 	/*
1083 	 * Direct pages can never be unsync, and KVM should never attempt to
1084 	 * sync a shadow page for a different MMU context, e.g. if the role
1085 	 * differs then the memslot lookup (SMM vs. non-SMM) will be bogus, the
1086 	 * reserved bits checks will be wrong, etc...
1087 	 */
1088 	if (WARN_ON_ONCE(sp->role.direct ||
1089 			 (sp->role.word ^ mmu_role.word) & ~sync_role_ign.word))
1090 		return 0;
1091 
1092 	first_pte_gpa = FNAME(get_level1_sp_gpa)(sp);
1093 
1094 	for (i = 0; i < PT64_ENT_PER_PAGE; i++) {
1095 		unsigned pte_access;
1096 		pt_element_t gpte;
1097 		gpa_t pte_gpa;
1098 		gfn_t gfn;
1099 
1100 		if (!sp->spt[i])
1101 			continue;
1102 
1103 		pte_gpa = first_pte_gpa + i * sizeof(pt_element_t);
1104 
1105 		if (kvm_vcpu_read_guest_atomic(vcpu, pte_gpa, &gpte,
1106 					       sizeof(pt_element_t)))
1107 			return 0;
1108 
1109 		if (FNAME(prefetch_invalid_gpte)(vcpu, sp, &sp->spt[i], gpte)) {
1110 			/*
1111 			 * Update spte before increasing tlbs_dirty to make
1112 			 * sure no tlb flush is lost after spte is zapped; see
1113 			 * the comments in kvm_flush_remote_tlbs().
1114 			 */
1115 			smp_wmb();
1116 			vcpu->kvm->tlbs_dirty++;
1117 			continue;
1118 		}
1119 
1120 		gfn = gpte_to_gfn(gpte);
1121 		pte_access = sp->role.access;
1122 		pte_access &= FNAME(gpte_access)(gpte);
1123 		FNAME(protect_clean_gpte)(vcpu->arch.mmu, &pte_access, gpte);
1124 
1125 		if (sync_mmio_spte(vcpu, &sp->spt[i], gfn, pte_access,
1126 		      &nr_present))
1127 			continue;
1128 
1129 		if (gfn != sp->gfns[i]) {
1130 			drop_spte(vcpu->kvm, &sp->spt[i]);
1131 			/*
1132 			 * The same as above where we are doing
1133 			 * prefetch_invalid_gpte().
1134 			 */
1135 			smp_wmb();
1136 			vcpu->kvm->tlbs_dirty++;
1137 			continue;
1138 		}
1139 
1140 		nr_present++;
1141 
1142 		host_writable = sp->spt[i] & shadow_host_writable_mask;
1143 
1144 		set_spte_ret |= set_spte(vcpu, &sp->spt[i],
1145 					 pte_access, PG_LEVEL_4K,
1146 					 gfn, spte_to_pfn(sp->spt[i]),
1147 					 true, false, host_writable);
1148 	}
1149 
1150 	if (set_spte_ret & SET_SPTE_NEED_REMOTE_TLB_FLUSH)
1151 		kvm_flush_remote_tlbs(vcpu->kvm);
1152 
1153 	return nr_present;
1154 }
1155 
1156 #undef pt_element_t
1157 #undef guest_walker
1158 #undef FNAME
1159 #undef PT_BASE_ADDR_MASK
1160 #undef PT_INDEX
1161 #undef PT_LVL_ADDR_MASK
1162 #undef PT_LVL_OFFSET_MASK
1163 #undef PT_LEVEL_BITS
1164 #undef PT_MAX_FULL_LEVELS
1165 #undef gpte_to_gfn
1166 #undef gpte_to_gfn_lvl
1167 #undef CMPXCHG
1168 #undef PT_GUEST_ACCESSED_MASK
1169 #undef PT_GUEST_DIRTY_MASK
1170 #undef PT_GUEST_DIRTY_SHIFT
1171 #undef PT_GUEST_ACCESSED_SHIFT
1172 #undef PT_HAVE_ACCESSED_DIRTY
1173