1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * This module enables machines with Intel VT-x extensions to run virtual 6 * machines without emulation or binary translation. 7 * 8 * MMU support 9 * 10 * Copyright (C) 2006 Qumranet, Inc. 11 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 12 * 13 * Authors: 14 * Yaniv Kamay <yaniv@qumranet.com> 15 * Avi Kivity <avi@qumranet.com> 16 */ 17 18 #include "irq.h" 19 #include "ioapic.h" 20 #include "mmu.h" 21 #include "mmu_internal.h" 22 #include "tdp_mmu.h" 23 #include "x86.h" 24 #include "kvm_cache_regs.h" 25 #include "kvm_emulate.h" 26 #include "cpuid.h" 27 #include "spte.h" 28 29 #include <linux/kvm_host.h> 30 #include <linux/types.h> 31 #include <linux/string.h> 32 #include <linux/mm.h> 33 #include <linux/highmem.h> 34 #include <linux/moduleparam.h> 35 #include <linux/export.h> 36 #include <linux/swap.h> 37 #include <linux/hugetlb.h> 38 #include <linux/compiler.h> 39 #include <linux/srcu.h> 40 #include <linux/slab.h> 41 #include <linux/sched/signal.h> 42 #include <linux/uaccess.h> 43 #include <linux/hash.h> 44 #include <linux/kern_levels.h> 45 #include <linux/kthread.h> 46 47 #include <asm/page.h> 48 #include <asm/memtype.h> 49 #include <asm/cmpxchg.h> 50 #include <asm/io.h> 51 #include <asm/set_memory.h> 52 #include <asm/vmx.h> 53 #include <asm/kvm_page_track.h> 54 #include "trace.h" 55 56 #include "paging.h" 57 58 extern bool itlb_multihit_kvm_mitigation; 59 60 int __read_mostly nx_huge_pages = -1; 61 static uint __read_mostly nx_huge_pages_recovery_period_ms; 62 #ifdef CONFIG_PREEMPT_RT 63 /* Recovery can cause latency spikes, disable it for PREEMPT_RT. */ 64 static uint __read_mostly nx_huge_pages_recovery_ratio = 0; 65 #else 66 static uint __read_mostly nx_huge_pages_recovery_ratio = 60; 67 #endif 68 69 static int set_nx_huge_pages(const char *val, const struct kernel_param *kp); 70 static int set_nx_huge_pages_recovery_param(const char *val, const struct kernel_param *kp); 71 72 static const struct kernel_param_ops nx_huge_pages_ops = { 73 .set = set_nx_huge_pages, 74 .get = param_get_bool, 75 }; 76 77 static const struct kernel_param_ops nx_huge_pages_recovery_param_ops = { 78 .set = set_nx_huge_pages_recovery_param, 79 .get = param_get_uint, 80 }; 81 82 module_param_cb(nx_huge_pages, &nx_huge_pages_ops, &nx_huge_pages, 0644); 83 __MODULE_PARM_TYPE(nx_huge_pages, "bool"); 84 module_param_cb(nx_huge_pages_recovery_ratio, &nx_huge_pages_recovery_param_ops, 85 &nx_huge_pages_recovery_ratio, 0644); 86 __MODULE_PARM_TYPE(nx_huge_pages_recovery_ratio, "uint"); 87 module_param_cb(nx_huge_pages_recovery_period_ms, &nx_huge_pages_recovery_param_ops, 88 &nx_huge_pages_recovery_period_ms, 0644); 89 __MODULE_PARM_TYPE(nx_huge_pages_recovery_period_ms, "uint"); 90 91 static bool __read_mostly force_flush_and_sync_on_reuse; 92 module_param_named(flush_on_reuse, force_flush_and_sync_on_reuse, bool, 0644); 93 94 /* 95 * When setting this variable to true it enables Two-Dimensional-Paging 96 * where the hardware walks 2 page tables: 97 * 1. the guest-virtual to guest-physical 98 * 2. while doing 1. it walks guest-physical to host-physical 99 * If the hardware supports that we don't need to do shadow paging. 100 */ 101 bool tdp_enabled = false; 102 103 static int max_huge_page_level __read_mostly; 104 static int tdp_root_level __read_mostly; 105 static int max_tdp_level __read_mostly; 106 107 #ifdef MMU_DEBUG 108 bool dbg = 0; 109 module_param(dbg, bool, 0644); 110 #endif 111 112 #define PTE_PREFETCH_NUM 8 113 114 #define PT32_LEVEL_BITS 10 115 116 #define PT32_LEVEL_SHIFT(level) \ 117 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS) 118 119 #define PT32_LVL_OFFSET_MASK(level) \ 120 (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \ 121 * PT32_LEVEL_BITS))) - 1)) 122 123 #define PT32_INDEX(address, level)\ 124 (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1)) 125 126 127 #define PT32_BASE_ADDR_MASK PAGE_MASK 128 #define PT32_DIR_BASE_ADDR_MASK \ 129 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1)) 130 #define PT32_LVL_ADDR_MASK(level) \ 131 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \ 132 * PT32_LEVEL_BITS))) - 1)) 133 134 #include <trace/events/kvm.h> 135 136 /* make pte_list_desc fit well in cache lines */ 137 #define PTE_LIST_EXT 14 138 139 /* 140 * Slight optimization of cacheline layout, by putting `more' and `spte_count' 141 * at the start; then accessing it will only use one single cacheline for 142 * either full (entries==PTE_LIST_EXT) case or entries<=6. 143 */ 144 struct pte_list_desc { 145 struct pte_list_desc *more; 146 /* 147 * Stores number of entries stored in the pte_list_desc. No need to be 148 * u64 but just for easier alignment. When PTE_LIST_EXT, means full. 149 */ 150 u64 spte_count; 151 u64 *sptes[PTE_LIST_EXT]; 152 }; 153 154 struct kvm_shadow_walk_iterator { 155 u64 addr; 156 hpa_t shadow_addr; 157 u64 *sptep; 158 int level; 159 unsigned index; 160 }; 161 162 #define for_each_shadow_entry_using_root(_vcpu, _root, _addr, _walker) \ 163 for (shadow_walk_init_using_root(&(_walker), (_vcpu), \ 164 (_root), (_addr)); \ 165 shadow_walk_okay(&(_walker)); \ 166 shadow_walk_next(&(_walker))) 167 168 #define for_each_shadow_entry(_vcpu, _addr, _walker) \ 169 for (shadow_walk_init(&(_walker), _vcpu, _addr); \ 170 shadow_walk_okay(&(_walker)); \ 171 shadow_walk_next(&(_walker))) 172 173 #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte) \ 174 for (shadow_walk_init(&(_walker), _vcpu, _addr); \ 175 shadow_walk_okay(&(_walker)) && \ 176 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; }); \ 177 __shadow_walk_next(&(_walker), spte)) 178 179 static struct kmem_cache *pte_list_desc_cache; 180 struct kmem_cache *mmu_page_header_cache; 181 static struct percpu_counter kvm_total_used_mmu_pages; 182 183 static void mmu_spte_set(u64 *sptep, u64 spte); 184 185 struct kvm_mmu_role_regs { 186 const unsigned long cr0; 187 const unsigned long cr4; 188 const u64 efer; 189 }; 190 191 #define CREATE_TRACE_POINTS 192 #include "mmutrace.h" 193 194 /* 195 * Yes, lot's of underscores. They're a hint that you probably shouldn't be 196 * reading from the role_regs. Once the mmu_role is constructed, it becomes 197 * the single source of truth for the MMU's state. 198 */ 199 #define BUILD_MMU_ROLE_REGS_ACCESSOR(reg, name, flag) \ 200 static inline bool __maybe_unused ____is_##reg##_##name(struct kvm_mmu_role_regs *regs)\ 201 { \ 202 return !!(regs->reg & flag); \ 203 } 204 BUILD_MMU_ROLE_REGS_ACCESSOR(cr0, pg, X86_CR0_PG); 205 BUILD_MMU_ROLE_REGS_ACCESSOR(cr0, wp, X86_CR0_WP); 206 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pse, X86_CR4_PSE); 207 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pae, X86_CR4_PAE); 208 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, smep, X86_CR4_SMEP); 209 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, smap, X86_CR4_SMAP); 210 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pke, X86_CR4_PKE); 211 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, la57, X86_CR4_LA57); 212 BUILD_MMU_ROLE_REGS_ACCESSOR(efer, nx, EFER_NX); 213 BUILD_MMU_ROLE_REGS_ACCESSOR(efer, lma, EFER_LMA); 214 215 /* 216 * The MMU itself (with a valid role) is the single source of truth for the 217 * MMU. Do not use the regs used to build the MMU/role, nor the vCPU. The 218 * regs don't account for dependencies, e.g. clearing CR4 bits if CR0.PG=1, 219 * and the vCPU may be incorrect/irrelevant. 220 */ 221 #define BUILD_MMU_ROLE_ACCESSOR(base_or_ext, reg, name) \ 222 static inline bool __maybe_unused is_##reg##_##name(struct kvm_mmu *mmu) \ 223 { \ 224 return !!(mmu->mmu_role. base_or_ext . reg##_##name); \ 225 } 226 BUILD_MMU_ROLE_ACCESSOR(ext, cr0, pg); 227 BUILD_MMU_ROLE_ACCESSOR(base, cr0, wp); 228 BUILD_MMU_ROLE_ACCESSOR(ext, cr4, pse); 229 BUILD_MMU_ROLE_ACCESSOR(ext, cr4, pae); 230 BUILD_MMU_ROLE_ACCESSOR(ext, cr4, smep); 231 BUILD_MMU_ROLE_ACCESSOR(ext, cr4, smap); 232 BUILD_MMU_ROLE_ACCESSOR(ext, cr4, pke); 233 BUILD_MMU_ROLE_ACCESSOR(ext, cr4, la57); 234 BUILD_MMU_ROLE_ACCESSOR(base, efer, nx); 235 236 static struct kvm_mmu_role_regs vcpu_to_role_regs(struct kvm_vcpu *vcpu) 237 { 238 struct kvm_mmu_role_regs regs = { 239 .cr0 = kvm_read_cr0_bits(vcpu, KVM_MMU_CR0_ROLE_BITS), 240 .cr4 = kvm_read_cr4_bits(vcpu, KVM_MMU_CR4_ROLE_BITS), 241 .efer = vcpu->arch.efer, 242 }; 243 244 return regs; 245 } 246 247 static int role_regs_to_root_level(struct kvm_mmu_role_regs *regs) 248 { 249 if (!____is_cr0_pg(regs)) 250 return 0; 251 else if (____is_efer_lma(regs)) 252 return ____is_cr4_la57(regs) ? PT64_ROOT_5LEVEL : 253 PT64_ROOT_4LEVEL; 254 else if (____is_cr4_pae(regs)) 255 return PT32E_ROOT_LEVEL; 256 else 257 return PT32_ROOT_LEVEL; 258 } 259 260 static inline bool kvm_available_flush_tlb_with_range(void) 261 { 262 return kvm_x86_ops.tlb_remote_flush_with_range; 263 } 264 265 static void kvm_flush_remote_tlbs_with_range(struct kvm *kvm, 266 struct kvm_tlb_range *range) 267 { 268 int ret = -ENOTSUPP; 269 270 if (range && kvm_x86_ops.tlb_remote_flush_with_range) 271 ret = static_call(kvm_x86_tlb_remote_flush_with_range)(kvm, range); 272 273 if (ret) 274 kvm_flush_remote_tlbs(kvm); 275 } 276 277 void kvm_flush_remote_tlbs_with_address(struct kvm *kvm, 278 u64 start_gfn, u64 pages) 279 { 280 struct kvm_tlb_range range; 281 282 range.start_gfn = start_gfn; 283 range.pages = pages; 284 285 kvm_flush_remote_tlbs_with_range(kvm, &range); 286 } 287 288 static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn, 289 unsigned int access) 290 { 291 u64 spte = make_mmio_spte(vcpu, gfn, access); 292 293 trace_mark_mmio_spte(sptep, gfn, spte); 294 mmu_spte_set(sptep, spte); 295 } 296 297 static gfn_t get_mmio_spte_gfn(u64 spte) 298 { 299 u64 gpa = spte & shadow_nonpresent_or_rsvd_lower_gfn_mask; 300 301 gpa |= (spte >> SHADOW_NONPRESENT_OR_RSVD_MASK_LEN) 302 & shadow_nonpresent_or_rsvd_mask; 303 304 return gpa >> PAGE_SHIFT; 305 } 306 307 static unsigned get_mmio_spte_access(u64 spte) 308 { 309 return spte & shadow_mmio_access_mask; 310 } 311 312 static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte) 313 { 314 u64 kvm_gen, spte_gen, gen; 315 316 gen = kvm_vcpu_memslots(vcpu)->generation; 317 if (unlikely(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS)) 318 return false; 319 320 kvm_gen = gen & MMIO_SPTE_GEN_MASK; 321 spte_gen = get_mmio_spte_generation(spte); 322 323 trace_check_mmio_spte(spte, kvm_gen, spte_gen); 324 return likely(kvm_gen == spte_gen); 325 } 326 327 static int is_cpuid_PSE36(void) 328 { 329 return 1; 330 } 331 332 static gfn_t pse36_gfn_delta(u32 gpte) 333 { 334 int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT; 335 336 return (gpte & PT32_DIR_PSE36_MASK) << shift; 337 } 338 339 #ifdef CONFIG_X86_64 340 static void __set_spte(u64 *sptep, u64 spte) 341 { 342 WRITE_ONCE(*sptep, spte); 343 } 344 345 static void __update_clear_spte_fast(u64 *sptep, u64 spte) 346 { 347 WRITE_ONCE(*sptep, spte); 348 } 349 350 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte) 351 { 352 return xchg(sptep, spte); 353 } 354 355 static u64 __get_spte_lockless(u64 *sptep) 356 { 357 return READ_ONCE(*sptep); 358 } 359 #else 360 union split_spte { 361 struct { 362 u32 spte_low; 363 u32 spte_high; 364 }; 365 u64 spte; 366 }; 367 368 static void count_spte_clear(u64 *sptep, u64 spte) 369 { 370 struct kvm_mmu_page *sp = sptep_to_sp(sptep); 371 372 if (is_shadow_present_pte(spte)) 373 return; 374 375 /* Ensure the spte is completely set before we increase the count */ 376 smp_wmb(); 377 sp->clear_spte_count++; 378 } 379 380 static void __set_spte(u64 *sptep, u64 spte) 381 { 382 union split_spte *ssptep, sspte; 383 384 ssptep = (union split_spte *)sptep; 385 sspte = (union split_spte)spte; 386 387 ssptep->spte_high = sspte.spte_high; 388 389 /* 390 * If we map the spte from nonpresent to present, We should store 391 * the high bits firstly, then set present bit, so cpu can not 392 * fetch this spte while we are setting the spte. 393 */ 394 smp_wmb(); 395 396 WRITE_ONCE(ssptep->spte_low, sspte.spte_low); 397 } 398 399 static void __update_clear_spte_fast(u64 *sptep, u64 spte) 400 { 401 union split_spte *ssptep, sspte; 402 403 ssptep = (union split_spte *)sptep; 404 sspte = (union split_spte)spte; 405 406 WRITE_ONCE(ssptep->spte_low, sspte.spte_low); 407 408 /* 409 * If we map the spte from present to nonpresent, we should clear 410 * present bit firstly to avoid vcpu fetch the old high bits. 411 */ 412 smp_wmb(); 413 414 ssptep->spte_high = sspte.spte_high; 415 count_spte_clear(sptep, spte); 416 } 417 418 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte) 419 { 420 union split_spte *ssptep, sspte, orig; 421 422 ssptep = (union split_spte *)sptep; 423 sspte = (union split_spte)spte; 424 425 /* xchg acts as a barrier before the setting of the high bits */ 426 orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low); 427 orig.spte_high = ssptep->spte_high; 428 ssptep->spte_high = sspte.spte_high; 429 count_spte_clear(sptep, spte); 430 431 return orig.spte; 432 } 433 434 /* 435 * The idea using the light way get the spte on x86_32 guest is from 436 * gup_get_pte (mm/gup.c). 437 * 438 * An spte tlb flush may be pending, because kvm_set_pte_rmapp 439 * coalesces them and we are running out of the MMU lock. Therefore 440 * we need to protect against in-progress updates of the spte. 441 * 442 * Reading the spte while an update is in progress may get the old value 443 * for the high part of the spte. The race is fine for a present->non-present 444 * change (because the high part of the spte is ignored for non-present spte), 445 * but for a present->present change we must reread the spte. 446 * 447 * All such changes are done in two steps (present->non-present and 448 * non-present->present), hence it is enough to count the number of 449 * present->non-present updates: if it changed while reading the spte, 450 * we might have hit the race. This is done using clear_spte_count. 451 */ 452 static u64 __get_spte_lockless(u64 *sptep) 453 { 454 struct kvm_mmu_page *sp = sptep_to_sp(sptep); 455 union split_spte spte, *orig = (union split_spte *)sptep; 456 int count; 457 458 retry: 459 count = sp->clear_spte_count; 460 smp_rmb(); 461 462 spte.spte_low = orig->spte_low; 463 smp_rmb(); 464 465 spte.spte_high = orig->spte_high; 466 smp_rmb(); 467 468 if (unlikely(spte.spte_low != orig->spte_low || 469 count != sp->clear_spte_count)) 470 goto retry; 471 472 return spte.spte; 473 } 474 #endif 475 476 /* Rules for using mmu_spte_set: 477 * Set the sptep from nonpresent to present. 478 * Note: the sptep being assigned *must* be either not present 479 * or in a state where the hardware will not attempt to update 480 * the spte. 481 */ 482 static void mmu_spte_set(u64 *sptep, u64 new_spte) 483 { 484 WARN_ON(is_shadow_present_pte(*sptep)); 485 __set_spte(sptep, new_spte); 486 } 487 488 /* 489 * Update the SPTE (excluding the PFN), but do not track changes in its 490 * accessed/dirty status. 491 */ 492 static u64 mmu_spte_update_no_track(u64 *sptep, u64 new_spte) 493 { 494 u64 old_spte = *sptep; 495 496 WARN_ON(!is_shadow_present_pte(new_spte)); 497 check_spte_writable_invariants(new_spte); 498 499 if (!is_shadow_present_pte(old_spte)) { 500 mmu_spte_set(sptep, new_spte); 501 return old_spte; 502 } 503 504 if (!spte_has_volatile_bits(old_spte)) 505 __update_clear_spte_fast(sptep, new_spte); 506 else 507 old_spte = __update_clear_spte_slow(sptep, new_spte); 508 509 WARN_ON(spte_to_pfn(old_spte) != spte_to_pfn(new_spte)); 510 511 return old_spte; 512 } 513 514 /* Rules for using mmu_spte_update: 515 * Update the state bits, it means the mapped pfn is not changed. 516 * 517 * Whenever an MMU-writable SPTE is overwritten with a read-only SPTE, remote 518 * TLBs must be flushed. Otherwise rmap_write_protect will find a read-only 519 * spte, even though the writable spte might be cached on a CPU's TLB. 520 * 521 * Returns true if the TLB needs to be flushed 522 */ 523 static bool mmu_spte_update(u64 *sptep, u64 new_spte) 524 { 525 bool flush = false; 526 u64 old_spte = mmu_spte_update_no_track(sptep, new_spte); 527 528 if (!is_shadow_present_pte(old_spte)) 529 return false; 530 531 /* 532 * For the spte updated out of mmu-lock is safe, since 533 * we always atomically update it, see the comments in 534 * spte_has_volatile_bits(). 535 */ 536 if (is_mmu_writable_spte(old_spte) && 537 !is_writable_pte(new_spte)) 538 flush = true; 539 540 /* 541 * Flush TLB when accessed/dirty states are changed in the page tables, 542 * to guarantee consistency between TLB and page tables. 543 */ 544 545 if (is_accessed_spte(old_spte) && !is_accessed_spte(new_spte)) { 546 flush = true; 547 kvm_set_pfn_accessed(spte_to_pfn(old_spte)); 548 } 549 550 if (is_dirty_spte(old_spte) && !is_dirty_spte(new_spte)) { 551 flush = true; 552 kvm_set_pfn_dirty(spte_to_pfn(old_spte)); 553 } 554 555 return flush; 556 } 557 558 /* 559 * Rules for using mmu_spte_clear_track_bits: 560 * It sets the sptep from present to nonpresent, and track the 561 * state bits, it is used to clear the last level sptep. 562 * Returns the old PTE. 563 */ 564 static int mmu_spte_clear_track_bits(struct kvm *kvm, u64 *sptep) 565 { 566 kvm_pfn_t pfn; 567 u64 old_spte = *sptep; 568 int level = sptep_to_sp(sptep)->role.level; 569 570 if (!is_shadow_present_pte(old_spte) || 571 !spte_has_volatile_bits(old_spte)) 572 __update_clear_spte_fast(sptep, 0ull); 573 else 574 old_spte = __update_clear_spte_slow(sptep, 0ull); 575 576 if (!is_shadow_present_pte(old_spte)) 577 return old_spte; 578 579 kvm_update_page_stats(kvm, level, -1); 580 581 pfn = spte_to_pfn(old_spte); 582 583 /* 584 * KVM does not hold the refcount of the page used by 585 * kvm mmu, before reclaiming the page, we should 586 * unmap it from mmu first. 587 */ 588 WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn))); 589 590 if (is_accessed_spte(old_spte)) 591 kvm_set_pfn_accessed(pfn); 592 593 if (is_dirty_spte(old_spte)) 594 kvm_set_pfn_dirty(pfn); 595 596 return old_spte; 597 } 598 599 /* 600 * Rules for using mmu_spte_clear_no_track: 601 * Directly clear spte without caring the state bits of sptep, 602 * it is used to set the upper level spte. 603 */ 604 static void mmu_spte_clear_no_track(u64 *sptep) 605 { 606 __update_clear_spte_fast(sptep, 0ull); 607 } 608 609 static u64 mmu_spte_get_lockless(u64 *sptep) 610 { 611 return __get_spte_lockless(sptep); 612 } 613 614 /* Returns the Accessed status of the PTE and resets it at the same time. */ 615 static bool mmu_spte_age(u64 *sptep) 616 { 617 u64 spte = mmu_spte_get_lockless(sptep); 618 619 if (!is_accessed_spte(spte)) 620 return false; 621 622 if (spte_ad_enabled(spte)) { 623 clear_bit((ffs(shadow_accessed_mask) - 1), 624 (unsigned long *)sptep); 625 } else { 626 /* 627 * Capture the dirty status of the page, so that it doesn't get 628 * lost when the SPTE is marked for access tracking. 629 */ 630 if (is_writable_pte(spte)) 631 kvm_set_pfn_dirty(spte_to_pfn(spte)); 632 633 spte = mark_spte_for_access_track(spte); 634 mmu_spte_update_no_track(sptep, spte); 635 } 636 637 return true; 638 } 639 640 static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu) 641 { 642 if (is_tdp_mmu(vcpu->arch.mmu)) { 643 kvm_tdp_mmu_walk_lockless_begin(); 644 } else { 645 /* 646 * Prevent page table teardown by making any free-er wait during 647 * kvm_flush_remote_tlbs() IPI to all active vcpus. 648 */ 649 local_irq_disable(); 650 651 /* 652 * Make sure a following spte read is not reordered ahead of the write 653 * to vcpu->mode. 654 */ 655 smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES); 656 } 657 } 658 659 static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu) 660 { 661 if (is_tdp_mmu(vcpu->arch.mmu)) { 662 kvm_tdp_mmu_walk_lockless_end(); 663 } else { 664 /* 665 * Make sure the write to vcpu->mode is not reordered in front of 666 * reads to sptes. If it does, kvm_mmu_commit_zap_page() can see us 667 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table. 668 */ 669 smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE); 670 local_irq_enable(); 671 } 672 } 673 674 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu, bool maybe_indirect) 675 { 676 int r; 677 678 /* 1 rmap, 1 parent PTE per level, and the prefetched rmaps. */ 679 r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache, 680 1 + PT64_ROOT_MAX_LEVEL + PTE_PREFETCH_NUM); 681 if (r) 682 return r; 683 r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_shadow_page_cache, 684 PT64_ROOT_MAX_LEVEL); 685 if (r) 686 return r; 687 if (maybe_indirect) { 688 r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_gfn_array_cache, 689 PT64_ROOT_MAX_LEVEL); 690 if (r) 691 return r; 692 } 693 return kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache, 694 PT64_ROOT_MAX_LEVEL); 695 } 696 697 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu) 698 { 699 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache); 700 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_shadow_page_cache); 701 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_gfn_array_cache); 702 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache); 703 } 704 705 static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu) 706 { 707 return kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache); 708 } 709 710 static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc) 711 { 712 kmem_cache_free(pte_list_desc_cache, pte_list_desc); 713 } 714 715 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index) 716 { 717 if (!sp->role.direct) 718 return sp->gfns[index]; 719 720 return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS)); 721 } 722 723 static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn) 724 { 725 if (!sp->role.direct) { 726 sp->gfns[index] = gfn; 727 return; 728 } 729 730 if (WARN_ON(gfn != kvm_mmu_page_get_gfn(sp, index))) 731 pr_err_ratelimited("gfn mismatch under direct page %llx " 732 "(expected %llx, got %llx)\n", 733 sp->gfn, 734 kvm_mmu_page_get_gfn(sp, index), gfn); 735 } 736 737 /* 738 * Return the pointer to the large page information for a given gfn, 739 * handling slots that are not large page aligned. 740 */ 741 static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn, 742 const struct kvm_memory_slot *slot, int level) 743 { 744 unsigned long idx; 745 746 idx = gfn_to_index(gfn, slot->base_gfn, level); 747 return &slot->arch.lpage_info[level - 2][idx]; 748 } 749 750 static void update_gfn_disallow_lpage_count(const struct kvm_memory_slot *slot, 751 gfn_t gfn, int count) 752 { 753 struct kvm_lpage_info *linfo; 754 int i; 755 756 for (i = PG_LEVEL_2M; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) { 757 linfo = lpage_info_slot(gfn, slot, i); 758 linfo->disallow_lpage += count; 759 WARN_ON(linfo->disallow_lpage < 0); 760 } 761 } 762 763 void kvm_mmu_gfn_disallow_lpage(const struct kvm_memory_slot *slot, gfn_t gfn) 764 { 765 update_gfn_disallow_lpage_count(slot, gfn, 1); 766 } 767 768 void kvm_mmu_gfn_allow_lpage(const struct kvm_memory_slot *slot, gfn_t gfn) 769 { 770 update_gfn_disallow_lpage_count(slot, gfn, -1); 771 } 772 773 static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp) 774 { 775 struct kvm_memslots *slots; 776 struct kvm_memory_slot *slot; 777 gfn_t gfn; 778 779 kvm->arch.indirect_shadow_pages++; 780 gfn = sp->gfn; 781 slots = kvm_memslots_for_spte_role(kvm, sp->role); 782 slot = __gfn_to_memslot(slots, gfn); 783 784 /* the non-leaf shadow pages are keeping readonly. */ 785 if (sp->role.level > PG_LEVEL_4K) 786 return kvm_slot_page_track_add_page(kvm, slot, gfn, 787 KVM_PAGE_TRACK_WRITE); 788 789 kvm_mmu_gfn_disallow_lpage(slot, gfn); 790 } 791 792 void account_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp) 793 { 794 if (sp->lpage_disallowed) 795 return; 796 797 ++kvm->stat.nx_lpage_splits; 798 list_add_tail(&sp->lpage_disallowed_link, 799 &kvm->arch.lpage_disallowed_mmu_pages); 800 sp->lpage_disallowed = true; 801 } 802 803 static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp) 804 { 805 struct kvm_memslots *slots; 806 struct kvm_memory_slot *slot; 807 gfn_t gfn; 808 809 kvm->arch.indirect_shadow_pages--; 810 gfn = sp->gfn; 811 slots = kvm_memslots_for_spte_role(kvm, sp->role); 812 slot = __gfn_to_memslot(slots, gfn); 813 if (sp->role.level > PG_LEVEL_4K) 814 return kvm_slot_page_track_remove_page(kvm, slot, gfn, 815 KVM_PAGE_TRACK_WRITE); 816 817 kvm_mmu_gfn_allow_lpage(slot, gfn); 818 } 819 820 void unaccount_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp) 821 { 822 --kvm->stat.nx_lpage_splits; 823 sp->lpage_disallowed = false; 824 list_del(&sp->lpage_disallowed_link); 825 } 826 827 static struct kvm_memory_slot * 828 gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn, 829 bool no_dirty_log) 830 { 831 struct kvm_memory_slot *slot; 832 833 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 834 if (!slot || slot->flags & KVM_MEMSLOT_INVALID) 835 return NULL; 836 if (no_dirty_log && kvm_slot_dirty_track_enabled(slot)) 837 return NULL; 838 839 return slot; 840 } 841 842 /* 843 * About rmap_head encoding: 844 * 845 * If the bit zero of rmap_head->val is clear, then it points to the only spte 846 * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct 847 * pte_list_desc containing more mappings. 848 */ 849 850 /* 851 * Returns the number of pointers in the rmap chain, not counting the new one. 852 */ 853 static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte, 854 struct kvm_rmap_head *rmap_head) 855 { 856 struct pte_list_desc *desc; 857 int count = 0; 858 859 if (!rmap_head->val) { 860 rmap_printk("%p %llx 0->1\n", spte, *spte); 861 rmap_head->val = (unsigned long)spte; 862 } else if (!(rmap_head->val & 1)) { 863 rmap_printk("%p %llx 1->many\n", spte, *spte); 864 desc = mmu_alloc_pte_list_desc(vcpu); 865 desc->sptes[0] = (u64 *)rmap_head->val; 866 desc->sptes[1] = spte; 867 desc->spte_count = 2; 868 rmap_head->val = (unsigned long)desc | 1; 869 ++count; 870 } else { 871 rmap_printk("%p %llx many->many\n", spte, *spte); 872 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul); 873 while (desc->spte_count == PTE_LIST_EXT) { 874 count += PTE_LIST_EXT; 875 if (!desc->more) { 876 desc->more = mmu_alloc_pte_list_desc(vcpu); 877 desc = desc->more; 878 desc->spte_count = 0; 879 break; 880 } 881 desc = desc->more; 882 } 883 count += desc->spte_count; 884 desc->sptes[desc->spte_count++] = spte; 885 } 886 return count; 887 } 888 889 static void 890 pte_list_desc_remove_entry(struct kvm_rmap_head *rmap_head, 891 struct pte_list_desc *desc, int i, 892 struct pte_list_desc *prev_desc) 893 { 894 int j = desc->spte_count - 1; 895 896 desc->sptes[i] = desc->sptes[j]; 897 desc->sptes[j] = NULL; 898 desc->spte_count--; 899 if (desc->spte_count) 900 return; 901 if (!prev_desc && !desc->more) 902 rmap_head->val = 0; 903 else 904 if (prev_desc) 905 prev_desc->more = desc->more; 906 else 907 rmap_head->val = (unsigned long)desc->more | 1; 908 mmu_free_pte_list_desc(desc); 909 } 910 911 static void __pte_list_remove(u64 *spte, struct kvm_rmap_head *rmap_head) 912 { 913 struct pte_list_desc *desc; 914 struct pte_list_desc *prev_desc; 915 int i; 916 917 if (!rmap_head->val) { 918 pr_err("%s: %p 0->BUG\n", __func__, spte); 919 BUG(); 920 } else if (!(rmap_head->val & 1)) { 921 rmap_printk("%p 1->0\n", spte); 922 if ((u64 *)rmap_head->val != spte) { 923 pr_err("%s: %p 1->BUG\n", __func__, spte); 924 BUG(); 925 } 926 rmap_head->val = 0; 927 } else { 928 rmap_printk("%p many->many\n", spte); 929 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul); 930 prev_desc = NULL; 931 while (desc) { 932 for (i = 0; i < desc->spte_count; ++i) { 933 if (desc->sptes[i] == spte) { 934 pte_list_desc_remove_entry(rmap_head, 935 desc, i, prev_desc); 936 return; 937 } 938 } 939 prev_desc = desc; 940 desc = desc->more; 941 } 942 pr_err("%s: %p many->many\n", __func__, spte); 943 BUG(); 944 } 945 } 946 947 static void pte_list_remove(struct kvm *kvm, struct kvm_rmap_head *rmap_head, 948 u64 *sptep) 949 { 950 mmu_spte_clear_track_bits(kvm, sptep); 951 __pte_list_remove(sptep, rmap_head); 952 } 953 954 /* Return true if rmap existed, false otherwise */ 955 static bool pte_list_destroy(struct kvm *kvm, struct kvm_rmap_head *rmap_head) 956 { 957 struct pte_list_desc *desc, *next; 958 int i; 959 960 if (!rmap_head->val) 961 return false; 962 963 if (!(rmap_head->val & 1)) { 964 mmu_spte_clear_track_bits(kvm, (u64 *)rmap_head->val); 965 goto out; 966 } 967 968 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul); 969 970 for (; desc; desc = next) { 971 for (i = 0; i < desc->spte_count; i++) 972 mmu_spte_clear_track_bits(kvm, desc->sptes[i]); 973 next = desc->more; 974 mmu_free_pte_list_desc(desc); 975 } 976 out: 977 /* rmap_head is meaningless now, remember to reset it */ 978 rmap_head->val = 0; 979 return true; 980 } 981 982 unsigned int pte_list_count(struct kvm_rmap_head *rmap_head) 983 { 984 struct pte_list_desc *desc; 985 unsigned int count = 0; 986 987 if (!rmap_head->val) 988 return 0; 989 else if (!(rmap_head->val & 1)) 990 return 1; 991 992 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul); 993 994 while (desc) { 995 count += desc->spte_count; 996 desc = desc->more; 997 } 998 999 return count; 1000 } 1001 1002 static struct kvm_rmap_head *gfn_to_rmap(gfn_t gfn, int level, 1003 const struct kvm_memory_slot *slot) 1004 { 1005 unsigned long idx; 1006 1007 idx = gfn_to_index(gfn, slot->base_gfn, level); 1008 return &slot->arch.rmap[level - PG_LEVEL_4K][idx]; 1009 } 1010 1011 static bool rmap_can_add(struct kvm_vcpu *vcpu) 1012 { 1013 struct kvm_mmu_memory_cache *mc; 1014 1015 mc = &vcpu->arch.mmu_pte_list_desc_cache; 1016 return kvm_mmu_memory_cache_nr_free_objects(mc); 1017 } 1018 1019 static void rmap_remove(struct kvm *kvm, u64 *spte) 1020 { 1021 struct kvm_memslots *slots; 1022 struct kvm_memory_slot *slot; 1023 struct kvm_mmu_page *sp; 1024 gfn_t gfn; 1025 struct kvm_rmap_head *rmap_head; 1026 1027 sp = sptep_to_sp(spte); 1028 gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt); 1029 1030 /* 1031 * Unlike rmap_add, rmap_remove does not run in the context of a vCPU 1032 * so we have to determine which memslots to use based on context 1033 * information in sp->role. 1034 */ 1035 slots = kvm_memslots_for_spte_role(kvm, sp->role); 1036 1037 slot = __gfn_to_memslot(slots, gfn); 1038 rmap_head = gfn_to_rmap(gfn, sp->role.level, slot); 1039 1040 __pte_list_remove(spte, rmap_head); 1041 } 1042 1043 /* 1044 * Used by the following functions to iterate through the sptes linked by a 1045 * rmap. All fields are private and not assumed to be used outside. 1046 */ 1047 struct rmap_iterator { 1048 /* private fields */ 1049 struct pte_list_desc *desc; /* holds the sptep if not NULL */ 1050 int pos; /* index of the sptep */ 1051 }; 1052 1053 /* 1054 * Iteration must be started by this function. This should also be used after 1055 * removing/dropping sptes from the rmap link because in such cases the 1056 * information in the iterator may not be valid. 1057 * 1058 * Returns sptep if found, NULL otherwise. 1059 */ 1060 static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head, 1061 struct rmap_iterator *iter) 1062 { 1063 u64 *sptep; 1064 1065 if (!rmap_head->val) 1066 return NULL; 1067 1068 if (!(rmap_head->val & 1)) { 1069 iter->desc = NULL; 1070 sptep = (u64 *)rmap_head->val; 1071 goto out; 1072 } 1073 1074 iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul); 1075 iter->pos = 0; 1076 sptep = iter->desc->sptes[iter->pos]; 1077 out: 1078 BUG_ON(!is_shadow_present_pte(*sptep)); 1079 return sptep; 1080 } 1081 1082 /* 1083 * Must be used with a valid iterator: e.g. after rmap_get_first(). 1084 * 1085 * Returns sptep if found, NULL otherwise. 1086 */ 1087 static u64 *rmap_get_next(struct rmap_iterator *iter) 1088 { 1089 u64 *sptep; 1090 1091 if (iter->desc) { 1092 if (iter->pos < PTE_LIST_EXT - 1) { 1093 ++iter->pos; 1094 sptep = iter->desc->sptes[iter->pos]; 1095 if (sptep) 1096 goto out; 1097 } 1098 1099 iter->desc = iter->desc->more; 1100 1101 if (iter->desc) { 1102 iter->pos = 0; 1103 /* desc->sptes[0] cannot be NULL */ 1104 sptep = iter->desc->sptes[iter->pos]; 1105 goto out; 1106 } 1107 } 1108 1109 return NULL; 1110 out: 1111 BUG_ON(!is_shadow_present_pte(*sptep)); 1112 return sptep; 1113 } 1114 1115 #define for_each_rmap_spte(_rmap_head_, _iter_, _spte_) \ 1116 for (_spte_ = rmap_get_first(_rmap_head_, _iter_); \ 1117 _spte_; _spte_ = rmap_get_next(_iter_)) 1118 1119 static void drop_spte(struct kvm *kvm, u64 *sptep) 1120 { 1121 u64 old_spte = mmu_spte_clear_track_bits(kvm, sptep); 1122 1123 if (is_shadow_present_pte(old_spte)) 1124 rmap_remove(kvm, sptep); 1125 } 1126 1127 1128 static bool __drop_large_spte(struct kvm *kvm, u64 *sptep) 1129 { 1130 if (is_large_pte(*sptep)) { 1131 WARN_ON(sptep_to_sp(sptep)->role.level == PG_LEVEL_4K); 1132 drop_spte(kvm, sptep); 1133 return true; 1134 } 1135 1136 return false; 1137 } 1138 1139 static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep) 1140 { 1141 if (__drop_large_spte(vcpu->kvm, sptep)) { 1142 struct kvm_mmu_page *sp = sptep_to_sp(sptep); 1143 1144 kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn, 1145 KVM_PAGES_PER_HPAGE(sp->role.level)); 1146 } 1147 } 1148 1149 /* 1150 * Write-protect on the specified @sptep, @pt_protect indicates whether 1151 * spte write-protection is caused by protecting shadow page table. 1152 * 1153 * Note: write protection is difference between dirty logging and spte 1154 * protection: 1155 * - for dirty logging, the spte can be set to writable at anytime if 1156 * its dirty bitmap is properly set. 1157 * - for spte protection, the spte can be writable only after unsync-ing 1158 * shadow page. 1159 * 1160 * Return true if tlb need be flushed. 1161 */ 1162 static bool spte_write_protect(u64 *sptep, bool pt_protect) 1163 { 1164 u64 spte = *sptep; 1165 1166 if (!is_writable_pte(spte) && 1167 !(pt_protect && is_mmu_writable_spte(spte))) 1168 return false; 1169 1170 rmap_printk("spte %p %llx\n", sptep, *sptep); 1171 1172 if (pt_protect) 1173 spte &= ~shadow_mmu_writable_mask; 1174 spte = spte & ~PT_WRITABLE_MASK; 1175 1176 return mmu_spte_update(sptep, spte); 1177 } 1178 1179 static bool rmap_write_protect(struct kvm_rmap_head *rmap_head, 1180 bool pt_protect) 1181 { 1182 u64 *sptep; 1183 struct rmap_iterator iter; 1184 bool flush = false; 1185 1186 for_each_rmap_spte(rmap_head, &iter, sptep) 1187 flush |= spte_write_protect(sptep, pt_protect); 1188 1189 return flush; 1190 } 1191 1192 static bool spte_clear_dirty(u64 *sptep) 1193 { 1194 u64 spte = *sptep; 1195 1196 rmap_printk("spte %p %llx\n", sptep, *sptep); 1197 1198 MMU_WARN_ON(!spte_ad_enabled(spte)); 1199 spte &= ~shadow_dirty_mask; 1200 return mmu_spte_update(sptep, spte); 1201 } 1202 1203 static bool spte_wrprot_for_clear_dirty(u64 *sptep) 1204 { 1205 bool was_writable = test_and_clear_bit(PT_WRITABLE_SHIFT, 1206 (unsigned long *)sptep); 1207 if (was_writable && !spte_ad_enabled(*sptep)) 1208 kvm_set_pfn_dirty(spte_to_pfn(*sptep)); 1209 1210 return was_writable; 1211 } 1212 1213 /* 1214 * Gets the GFN ready for another round of dirty logging by clearing the 1215 * - D bit on ad-enabled SPTEs, and 1216 * - W bit on ad-disabled SPTEs. 1217 * Returns true iff any D or W bits were cleared. 1218 */ 1219 static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head, 1220 const struct kvm_memory_slot *slot) 1221 { 1222 u64 *sptep; 1223 struct rmap_iterator iter; 1224 bool flush = false; 1225 1226 for_each_rmap_spte(rmap_head, &iter, sptep) 1227 if (spte_ad_need_write_protect(*sptep)) 1228 flush |= spte_wrprot_for_clear_dirty(sptep); 1229 else 1230 flush |= spte_clear_dirty(sptep); 1231 1232 return flush; 1233 } 1234 1235 /** 1236 * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages 1237 * @kvm: kvm instance 1238 * @slot: slot to protect 1239 * @gfn_offset: start of the BITS_PER_LONG pages we care about 1240 * @mask: indicates which pages we should protect 1241 * 1242 * Used when we do not need to care about huge page mappings. 1243 */ 1244 static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm, 1245 struct kvm_memory_slot *slot, 1246 gfn_t gfn_offset, unsigned long mask) 1247 { 1248 struct kvm_rmap_head *rmap_head; 1249 1250 if (is_tdp_mmu_enabled(kvm)) 1251 kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot, 1252 slot->base_gfn + gfn_offset, mask, true); 1253 1254 if (!kvm_memslots_have_rmaps(kvm)) 1255 return; 1256 1257 while (mask) { 1258 rmap_head = gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask), 1259 PG_LEVEL_4K, slot); 1260 rmap_write_protect(rmap_head, false); 1261 1262 /* clear the first set bit */ 1263 mask &= mask - 1; 1264 } 1265 } 1266 1267 /** 1268 * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages, or write 1269 * protect the page if the D-bit isn't supported. 1270 * @kvm: kvm instance 1271 * @slot: slot to clear D-bit 1272 * @gfn_offset: start of the BITS_PER_LONG pages we care about 1273 * @mask: indicates which pages we should clear D-bit 1274 * 1275 * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap. 1276 */ 1277 static void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm, 1278 struct kvm_memory_slot *slot, 1279 gfn_t gfn_offset, unsigned long mask) 1280 { 1281 struct kvm_rmap_head *rmap_head; 1282 1283 if (is_tdp_mmu_enabled(kvm)) 1284 kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot, 1285 slot->base_gfn + gfn_offset, mask, false); 1286 1287 if (!kvm_memslots_have_rmaps(kvm)) 1288 return; 1289 1290 while (mask) { 1291 rmap_head = gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask), 1292 PG_LEVEL_4K, slot); 1293 __rmap_clear_dirty(kvm, rmap_head, slot); 1294 1295 /* clear the first set bit */ 1296 mask &= mask - 1; 1297 } 1298 } 1299 1300 /** 1301 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected 1302 * PT level pages. 1303 * 1304 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to 1305 * enable dirty logging for them. 1306 * 1307 * We need to care about huge page mappings: e.g. during dirty logging we may 1308 * have such mappings. 1309 */ 1310 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm, 1311 struct kvm_memory_slot *slot, 1312 gfn_t gfn_offset, unsigned long mask) 1313 { 1314 /* 1315 * Huge pages are NOT write protected when we start dirty logging in 1316 * initially-all-set mode; must write protect them here so that they 1317 * are split to 4K on the first write. 1318 * 1319 * The gfn_offset is guaranteed to be aligned to 64, but the base_gfn 1320 * of memslot has no such restriction, so the range can cross two large 1321 * pages. 1322 */ 1323 if (kvm_dirty_log_manual_protect_and_init_set(kvm)) { 1324 gfn_t start = slot->base_gfn + gfn_offset + __ffs(mask); 1325 gfn_t end = slot->base_gfn + gfn_offset + __fls(mask); 1326 1327 if (READ_ONCE(eager_page_split)) 1328 kvm_mmu_try_split_huge_pages(kvm, slot, start, end, PG_LEVEL_4K); 1329 1330 kvm_mmu_slot_gfn_write_protect(kvm, slot, start, PG_LEVEL_2M); 1331 1332 /* Cross two large pages? */ 1333 if (ALIGN(start << PAGE_SHIFT, PMD_SIZE) != 1334 ALIGN(end << PAGE_SHIFT, PMD_SIZE)) 1335 kvm_mmu_slot_gfn_write_protect(kvm, slot, end, 1336 PG_LEVEL_2M); 1337 } 1338 1339 /* Now handle 4K PTEs. */ 1340 if (kvm_x86_ops.cpu_dirty_log_size) 1341 kvm_mmu_clear_dirty_pt_masked(kvm, slot, gfn_offset, mask); 1342 else 1343 kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask); 1344 } 1345 1346 int kvm_cpu_dirty_log_size(void) 1347 { 1348 return kvm_x86_ops.cpu_dirty_log_size; 1349 } 1350 1351 bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm, 1352 struct kvm_memory_slot *slot, u64 gfn, 1353 int min_level) 1354 { 1355 struct kvm_rmap_head *rmap_head; 1356 int i; 1357 bool write_protected = false; 1358 1359 if (kvm_memslots_have_rmaps(kvm)) { 1360 for (i = min_level; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) { 1361 rmap_head = gfn_to_rmap(gfn, i, slot); 1362 write_protected |= rmap_write_protect(rmap_head, true); 1363 } 1364 } 1365 1366 if (is_tdp_mmu_enabled(kvm)) 1367 write_protected |= 1368 kvm_tdp_mmu_write_protect_gfn(kvm, slot, gfn, min_level); 1369 1370 return write_protected; 1371 } 1372 1373 static bool kvm_vcpu_write_protect_gfn(struct kvm_vcpu *vcpu, u64 gfn) 1374 { 1375 struct kvm_memory_slot *slot; 1376 1377 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 1378 return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn, PG_LEVEL_4K); 1379 } 1380 1381 static bool kvm_zap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head, 1382 const struct kvm_memory_slot *slot) 1383 { 1384 return pte_list_destroy(kvm, rmap_head); 1385 } 1386 1387 static bool kvm_unmap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head, 1388 struct kvm_memory_slot *slot, gfn_t gfn, int level, 1389 pte_t unused) 1390 { 1391 return kvm_zap_rmapp(kvm, rmap_head, slot); 1392 } 1393 1394 static bool kvm_set_pte_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head, 1395 struct kvm_memory_slot *slot, gfn_t gfn, int level, 1396 pte_t pte) 1397 { 1398 u64 *sptep; 1399 struct rmap_iterator iter; 1400 bool need_flush = false; 1401 u64 new_spte; 1402 kvm_pfn_t new_pfn; 1403 1404 WARN_ON(pte_huge(pte)); 1405 new_pfn = pte_pfn(pte); 1406 1407 restart: 1408 for_each_rmap_spte(rmap_head, &iter, sptep) { 1409 rmap_printk("spte %p %llx gfn %llx (%d)\n", 1410 sptep, *sptep, gfn, level); 1411 1412 need_flush = true; 1413 1414 if (pte_write(pte)) { 1415 pte_list_remove(kvm, rmap_head, sptep); 1416 goto restart; 1417 } else { 1418 new_spte = kvm_mmu_changed_pte_notifier_make_spte( 1419 *sptep, new_pfn); 1420 1421 mmu_spte_clear_track_bits(kvm, sptep); 1422 mmu_spte_set(sptep, new_spte); 1423 } 1424 } 1425 1426 if (need_flush && kvm_available_flush_tlb_with_range()) { 1427 kvm_flush_remote_tlbs_with_address(kvm, gfn, 1); 1428 return false; 1429 } 1430 1431 return need_flush; 1432 } 1433 1434 struct slot_rmap_walk_iterator { 1435 /* input fields. */ 1436 const struct kvm_memory_slot *slot; 1437 gfn_t start_gfn; 1438 gfn_t end_gfn; 1439 int start_level; 1440 int end_level; 1441 1442 /* output fields. */ 1443 gfn_t gfn; 1444 struct kvm_rmap_head *rmap; 1445 int level; 1446 1447 /* private field. */ 1448 struct kvm_rmap_head *end_rmap; 1449 }; 1450 1451 static void 1452 rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level) 1453 { 1454 iterator->level = level; 1455 iterator->gfn = iterator->start_gfn; 1456 iterator->rmap = gfn_to_rmap(iterator->gfn, level, iterator->slot); 1457 iterator->end_rmap = gfn_to_rmap(iterator->end_gfn, level, iterator->slot); 1458 } 1459 1460 static void 1461 slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator, 1462 const struct kvm_memory_slot *slot, int start_level, 1463 int end_level, gfn_t start_gfn, gfn_t end_gfn) 1464 { 1465 iterator->slot = slot; 1466 iterator->start_level = start_level; 1467 iterator->end_level = end_level; 1468 iterator->start_gfn = start_gfn; 1469 iterator->end_gfn = end_gfn; 1470 1471 rmap_walk_init_level(iterator, iterator->start_level); 1472 } 1473 1474 static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator) 1475 { 1476 return !!iterator->rmap; 1477 } 1478 1479 static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator) 1480 { 1481 if (++iterator->rmap <= iterator->end_rmap) { 1482 iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level)); 1483 return; 1484 } 1485 1486 if (++iterator->level > iterator->end_level) { 1487 iterator->rmap = NULL; 1488 return; 1489 } 1490 1491 rmap_walk_init_level(iterator, iterator->level); 1492 } 1493 1494 #define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_, \ 1495 _start_gfn, _end_gfn, _iter_) \ 1496 for (slot_rmap_walk_init(_iter_, _slot_, _start_level_, \ 1497 _end_level_, _start_gfn, _end_gfn); \ 1498 slot_rmap_walk_okay(_iter_); \ 1499 slot_rmap_walk_next(_iter_)) 1500 1501 typedef bool (*rmap_handler_t)(struct kvm *kvm, struct kvm_rmap_head *rmap_head, 1502 struct kvm_memory_slot *slot, gfn_t gfn, 1503 int level, pte_t pte); 1504 1505 static __always_inline bool kvm_handle_gfn_range(struct kvm *kvm, 1506 struct kvm_gfn_range *range, 1507 rmap_handler_t handler) 1508 { 1509 struct slot_rmap_walk_iterator iterator; 1510 bool ret = false; 1511 1512 for_each_slot_rmap_range(range->slot, PG_LEVEL_4K, KVM_MAX_HUGEPAGE_LEVEL, 1513 range->start, range->end - 1, &iterator) 1514 ret |= handler(kvm, iterator.rmap, range->slot, iterator.gfn, 1515 iterator.level, range->pte); 1516 1517 return ret; 1518 } 1519 1520 bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range) 1521 { 1522 bool flush = false; 1523 1524 if (kvm_memslots_have_rmaps(kvm)) 1525 flush = kvm_handle_gfn_range(kvm, range, kvm_unmap_rmapp); 1526 1527 if (is_tdp_mmu_enabled(kvm)) 1528 flush = kvm_tdp_mmu_unmap_gfn_range(kvm, range, flush); 1529 1530 return flush; 1531 } 1532 1533 bool kvm_set_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range) 1534 { 1535 bool flush = false; 1536 1537 if (kvm_memslots_have_rmaps(kvm)) 1538 flush = kvm_handle_gfn_range(kvm, range, kvm_set_pte_rmapp); 1539 1540 if (is_tdp_mmu_enabled(kvm)) 1541 flush |= kvm_tdp_mmu_set_spte_gfn(kvm, range); 1542 1543 return flush; 1544 } 1545 1546 static bool kvm_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head, 1547 struct kvm_memory_slot *slot, gfn_t gfn, int level, 1548 pte_t unused) 1549 { 1550 u64 *sptep; 1551 struct rmap_iterator iter; 1552 int young = 0; 1553 1554 for_each_rmap_spte(rmap_head, &iter, sptep) 1555 young |= mmu_spte_age(sptep); 1556 1557 return young; 1558 } 1559 1560 static bool kvm_test_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head, 1561 struct kvm_memory_slot *slot, gfn_t gfn, 1562 int level, pte_t unused) 1563 { 1564 u64 *sptep; 1565 struct rmap_iterator iter; 1566 1567 for_each_rmap_spte(rmap_head, &iter, sptep) 1568 if (is_accessed_spte(*sptep)) 1569 return true; 1570 return false; 1571 } 1572 1573 #define RMAP_RECYCLE_THRESHOLD 1000 1574 1575 static void rmap_add(struct kvm_vcpu *vcpu, struct kvm_memory_slot *slot, 1576 u64 *spte, gfn_t gfn) 1577 { 1578 struct kvm_mmu_page *sp; 1579 struct kvm_rmap_head *rmap_head; 1580 int rmap_count; 1581 1582 sp = sptep_to_sp(spte); 1583 kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn); 1584 rmap_head = gfn_to_rmap(gfn, sp->role.level, slot); 1585 rmap_count = pte_list_add(vcpu, spte, rmap_head); 1586 1587 if (rmap_count > RMAP_RECYCLE_THRESHOLD) { 1588 kvm_unmap_rmapp(vcpu->kvm, rmap_head, NULL, gfn, sp->role.level, __pte(0)); 1589 kvm_flush_remote_tlbs_with_address( 1590 vcpu->kvm, sp->gfn, KVM_PAGES_PER_HPAGE(sp->role.level)); 1591 } 1592 } 1593 1594 bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range) 1595 { 1596 bool young = false; 1597 1598 if (kvm_memslots_have_rmaps(kvm)) 1599 young = kvm_handle_gfn_range(kvm, range, kvm_age_rmapp); 1600 1601 if (is_tdp_mmu_enabled(kvm)) 1602 young |= kvm_tdp_mmu_age_gfn_range(kvm, range); 1603 1604 return young; 1605 } 1606 1607 bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range) 1608 { 1609 bool young = false; 1610 1611 if (kvm_memslots_have_rmaps(kvm)) 1612 young = kvm_handle_gfn_range(kvm, range, kvm_test_age_rmapp); 1613 1614 if (is_tdp_mmu_enabled(kvm)) 1615 young |= kvm_tdp_mmu_test_age_gfn(kvm, range); 1616 1617 return young; 1618 } 1619 1620 #ifdef MMU_DEBUG 1621 static int is_empty_shadow_page(u64 *spt) 1622 { 1623 u64 *pos; 1624 u64 *end; 1625 1626 for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++) 1627 if (is_shadow_present_pte(*pos)) { 1628 printk(KERN_ERR "%s: %p %llx\n", __func__, 1629 pos, *pos); 1630 return 0; 1631 } 1632 return 1; 1633 } 1634 #endif 1635 1636 /* 1637 * This value is the sum of all of the kvm instances's 1638 * kvm->arch.n_used_mmu_pages values. We need a global, 1639 * aggregate version in order to make the slab shrinker 1640 * faster 1641 */ 1642 static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, long nr) 1643 { 1644 kvm->arch.n_used_mmu_pages += nr; 1645 percpu_counter_add(&kvm_total_used_mmu_pages, nr); 1646 } 1647 1648 static void kvm_mmu_free_page(struct kvm_mmu_page *sp) 1649 { 1650 MMU_WARN_ON(!is_empty_shadow_page(sp->spt)); 1651 hlist_del(&sp->hash_link); 1652 list_del(&sp->link); 1653 free_page((unsigned long)sp->spt); 1654 if (!sp->role.direct) 1655 free_page((unsigned long)sp->gfns); 1656 kmem_cache_free(mmu_page_header_cache, sp); 1657 } 1658 1659 static unsigned kvm_page_table_hashfn(gfn_t gfn) 1660 { 1661 return hash_64(gfn, KVM_MMU_HASH_SHIFT); 1662 } 1663 1664 static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu, 1665 struct kvm_mmu_page *sp, u64 *parent_pte) 1666 { 1667 if (!parent_pte) 1668 return; 1669 1670 pte_list_add(vcpu, parent_pte, &sp->parent_ptes); 1671 } 1672 1673 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp, 1674 u64 *parent_pte) 1675 { 1676 __pte_list_remove(parent_pte, &sp->parent_ptes); 1677 } 1678 1679 static void drop_parent_pte(struct kvm_mmu_page *sp, 1680 u64 *parent_pte) 1681 { 1682 mmu_page_remove_parent_pte(sp, parent_pte); 1683 mmu_spte_clear_no_track(parent_pte); 1684 } 1685 1686 static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu, int direct) 1687 { 1688 struct kvm_mmu_page *sp; 1689 1690 sp = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache); 1691 sp->spt = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_shadow_page_cache); 1692 if (!direct) 1693 sp->gfns = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_gfn_array_cache); 1694 set_page_private(virt_to_page(sp->spt), (unsigned long)sp); 1695 1696 /* 1697 * active_mmu_pages must be a FIFO list, as kvm_zap_obsolete_pages() 1698 * depends on valid pages being added to the head of the list. See 1699 * comments in kvm_zap_obsolete_pages(). 1700 */ 1701 sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen; 1702 list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages); 1703 kvm_mod_used_mmu_pages(vcpu->kvm, +1); 1704 return sp; 1705 } 1706 1707 static void mark_unsync(u64 *spte); 1708 static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp) 1709 { 1710 u64 *sptep; 1711 struct rmap_iterator iter; 1712 1713 for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) { 1714 mark_unsync(sptep); 1715 } 1716 } 1717 1718 static void mark_unsync(u64 *spte) 1719 { 1720 struct kvm_mmu_page *sp; 1721 unsigned int index; 1722 1723 sp = sptep_to_sp(spte); 1724 index = spte - sp->spt; 1725 if (__test_and_set_bit(index, sp->unsync_child_bitmap)) 1726 return; 1727 if (sp->unsync_children++) 1728 return; 1729 kvm_mmu_mark_parents_unsync(sp); 1730 } 1731 1732 static int nonpaging_sync_page(struct kvm_vcpu *vcpu, 1733 struct kvm_mmu_page *sp) 1734 { 1735 return -1; 1736 } 1737 1738 #define KVM_PAGE_ARRAY_NR 16 1739 1740 struct kvm_mmu_pages { 1741 struct mmu_page_and_offset { 1742 struct kvm_mmu_page *sp; 1743 unsigned int idx; 1744 } page[KVM_PAGE_ARRAY_NR]; 1745 unsigned int nr; 1746 }; 1747 1748 static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp, 1749 int idx) 1750 { 1751 int i; 1752 1753 if (sp->unsync) 1754 for (i=0; i < pvec->nr; i++) 1755 if (pvec->page[i].sp == sp) 1756 return 0; 1757 1758 pvec->page[pvec->nr].sp = sp; 1759 pvec->page[pvec->nr].idx = idx; 1760 pvec->nr++; 1761 return (pvec->nr == KVM_PAGE_ARRAY_NR); 1762 } 1763 1764 static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx) 1765 { 1766 --sp->unsync_children; 1767 WARN_ON((int)sp->unsync_children < 0); 1768 __clear_bit(idx, sp->unsync_child_bitmap); 1769 } 1770 1771 static int __mmu_unsync_walk(struct kvm_mmu_page *sp, 1772 struct kvm_mmu_pages *pvec) 1773 { 1774 int i, ret, nr_unsync_leaf = 0; 1775 1776 for_each_set_bit(i, sp->unsync_child_bitmap, 512) { 1777 struct kvm_mmu_page *child; 1778 u64 ent = sp->spt[i]; 1779 1780 if (!is_shadow_present_pte(ent) || is_large_pte(ent)) { 1781 clear_unsync_child_bit(sp, i); 1782 continue; 1783 } 1784 1785 child = to_shadow_page(ent & PT64_BASE_ADDR_MASK); 1786 1787 if (child->unsync_children) { 1788 if (mmu_pages_add(pvec, child, i)) 1789 return -ENOSPC; 1790 1791 ret = __mmu_unsync_walk(child, pvec); 1792 if (!ret) { 1793 clear_unsync_child_bit(sp, i); 1794 continue; 1795 } else if (ret > 0) { 1796 nr_unsync_leaf += ret; 1797 } else 1798 return ret; 1799 } else if (child->unsync) { 1800 nr_unsync_leaf++; 1801 if (mmu_pages_add(pvec, child, i)) 1802 return -ENOSPC; 1803 } else 1804 clear_unsync_child_bit(sp, i); 1805 } 1806 1807 return nr_unsync_leaf; 1808 } 1809 1810 #define INVALID_INDEX (-1) 1811 1812 static int mmu_unsync_walk(struct kvm_mmu_page *sp, 1813 struct kvm_mmu_pages *pvec) 1814 { 1815 pvec->nr = 0; 1816 if (!sp->unsync_children) 1817 return 0; 1818 1819 mmu_pages_add(pvec, sp, INVALID_INDEX); 1820 return __mmu_unsync_walk(sp, pvec); 1821 } 1822 1823 static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp) 1824 { 1825 WARN_ON(!sp->unsync); 1826 trace_kvm_mmu_sync_page(sp); 1827 sp->unsync = 0; 1828 --kvm->stat.mmu_unsync; 1829 } 1830 1831 static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp, 1832 struct list_head *invalid_list); 1833 static void kvm_mmu_commit_zap_page(struct kvm *kvm, 1834 struct list_head *invalid_list); 1835 1836 #define for_each_valid_sp(_kvm, _sp, _list) \ 1837 hlist_for_each_entry(_sp, _list, hash_link) \ 1838 if (is_obsolete_sp((_kvm), (_sp))) { \ 1839 } else 1840 1841 #define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn) \ 1842 for_each_valid_sp(_kvm, _sp, \ 1843 &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)]) \ 1844 if ((_sp)->gfn != (_gfn) || (_sp)->role.direct) {} else 1845 1846 static bool kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp, 1847 struct list_head *invalid_list) 1848 { 1849 int ret = vcpu->arch.mmu->sync_page(vcpu, sp); 1850 1851 if (ret < 0) { 1852 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list); 1853 return false; 1854 } 1855 1856 return !!ret; 1857 } 1858 1859 static bool kvm_mmu_remote_flush_or_zap(struct kvm *kvm, 1860 struct list_head *invalid_list, 1861 bool remote_flush) 1862 { 1863 if (!remote_flush && list_empty(invalid_list)) 1864 return false; 1865 1866 if (!list_empty(invalid_list)) 1867 kvm_mmu_commit_zap_page(kvm, invalid_list); 1868 else 1869 kvm_flush_remote_tlbs(kvm); 1870 return true; 1871 } 1872 1873 static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp) 1874 { 1875 if (sp->role.invalid) 1876 return true; 1877 1878 /* TDP MMU pages due not use the MMU generation. */ 1879 return !sp->tdp_mmu_page && 1880 unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen); 1881 } 1882 1883 struct mmu_page_path { 1884 struct kvm_mmu_page *parent[PT64_ROOT_MAX_LEVEL]; 1885 unsigned int idx[PT64_ROOT_MAX_LEVEL]; 1886 }; 1887 1888 #define for_each_sp(pvec, sp, parents, i) \ 1889 for (i = mmu_pages_first(&pvec, &parents); \ 1890 i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \ 1891 i = mmu_pages_next(&pvec, &parents, i)) 1892 1893 static int mmu_pages_next(struct kvm_mmu_pages *pvec, 1894 struct mmu_page_path *parents, 1895 int i) 1896 { 1897 int n; 1898 1899 for (n = i+1; n < pvec->nr; n++) { 1900 struct kvm_mmu_page *sp = pvec->page[n].sp; 1901 unsigned idx = pvec->page[n].idx; 1902 int level = sp->role.level; 1903 1904 parents->idx[level-1] = idx; 1905 if (level == PG_LEVEL_4K) 1906 break; 1907 1908 parents->parent[level-2] = sp; 1909 } 1910 1911 return n; 1912 } 1913 1914 static int mmu_pages_first(struct kvm_mmu_pages *pvec, 1915 struct mmu_page_path *parents) 1916 { 1917 struct kvm_mmu_page *sp; 1918 int level; 1919 1920 if (pvec->nr == 0) 1921 return 0; 1922 1923 WARN_ON(pvec->page[0].idx != INVALID_INDEX); 1924 1925 sp = pvec->page[0].sp; 1926 level = sp->role.level; 1927 WARN_ON(level == PG_LEVEL_4K); 1928 1929 parents->parent[level-2] = sp; 1930 1931 /* Also set up a sentinel. Further entries in pvec are all 1932 * children of sp, so this element is never overwritten. 1933 */ 1934 parents->parent[level-1] = NULL; 1935 return mmu_pages_next(pvec, parents, 0); 1936 } 1937 1938 static void mmu_pages_clear_parents(struct mmu_page_path *parents) 1939 { 1940 struct kvm_mmu_page *sp; 1941 unsigned int level = 0; 1942 1943 do { 1944 unsigned int idx = parents->idx[level]; 1945 sp = parents->parent[level]; 1946 if (!sp) 1947 return; 1948 1949 WARN_ON(idx == INVALID_INDEX); 1950 clear_unsync_child_bit(sp, idx); 1951 level++; 1952 } while (!sp->unsync_children); 1953 } 1954 1955 static int mmu_sync_children(struct kvm_vcpu *vcpu, 1956 struct kvm_mmu_page *parent, bool can_yield) 1957 { 1958 int i; 1959 struct kvm_mmu_page *sp; 1960 struct mmu_page_path parents; 1961 struct kvm_mmu_pages pages; 1962 LIST_HEAD(invalid_list); 1963 bool flush = false; 1964 1965 while (mmu_unsync_walk(parent, &pages)) { 1966 bool protected = false; 1967 1968 for_each_sp(pages, sp, parents, i) 1969 protected |= kvm_vcpu_write_protect_gfn(vcpu, sp->gfn); 1970 1971 if (protected) { 1972 kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, true); 1973 flush = false; 1974 } 1975 1976 for_each_sp(pages, sp, parents, i) { 1977 kvm_unlink_unsync_page(vcpu->kvm, sp); 1978 flush |= kvm_sync_page(vcpu, sp, &invalid_list); 1979 mmu_pages_clear_parents(&parents); 1980 } 1981 if (need_resched() || rwlock_needbreak(&vcpu->kvm->mmu_lock)) { 1982 kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, flush); 1983 if (!can_yield) { 1984 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu); 1985 return -EINTR; 1986 } 1987 1988 cond_resched_rwlock_write(&vcpu->kvm->mmu_lock); 1989 flush = false; 1990 } 1991 } 1992 1993 kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, flush); 1994 return 0; 1995 } 1996 1997 static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp) 1998 { 1999 atomic_set(&sp->write_flooding_count, 0); 2000 } 2001 2002 static void clear_sp_write_flooding_count(u64 *spte) 2003 { 2004 __clear_sp_write_flooding_count(sptep_to_sp(spte)); 2005 } 2006 2007 static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu, 2008 gfn_t gfn, 2009 gva_t gaddr, 2010 unsigned level, 2011 int direct, 2012 unsigned int access) 2013 { 2014 bool direct_mmu = vcpu->arch.mmu->direct_map; 2015 union kvm_mmu_page_role role; 2016 struct hlist_head *sp_list; 2017 unsigned quadrant; 2018 struct kvm_mmu_page *sp; 2019 int collisions = 0; 2020 LIST_HEAD(invalid_list); 2021 2022 role = vcpu->arch.mmu->mmu_role.base; 2023 role.level = level; 2024 role.direct = direct; 2025 role.access = access; 2026 if (role.has_4_byte_gpte) { 2027 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level)); 2028 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1; 2029 role.quadrant = quadrant; 2030 } 2031 2032 sp_list = &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]; 2033 for_each_valid_sp(vcpu->kvm, sp, sp_list) { 2034 if (sp->gfn != gfn) { 2035 collisions++; 2036 continue; 2037 } 2038 2039 if (sp->role.word != role.word) { 2040 /* 2041 * If the guest is creating an upper-level page, zap 2042 * unsync pages for the same gfn. While it's possible 2043 * the guest is using recursive page tables, in all 2044 * likelihood the guest has stopped using the unsync 2045 * page and is installing a completely unrelated page. 2046 * Unsync pages must not be left as is, because the new 2047 * upper-level page will be write-protected. 2048 */ 2049 if (level > PG_LEVEL_4K && sp->unsync) 2050 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, 2051 &invalid_list); 2052 continue; 2053 } 2054 2055 if (direct_mmu) 2056 goto trace_get_page; 2057 2058 if (sp->unsync) { 2059 /* 2060 * The page is good, but is stale. kvm_sync_page does 2061 * get the latest guest state, but (unlike mmu_unsync_children) 2062 * it doesn't write-protect the page or mark it synchronized! 2063 * This way the validity of the mapping is ensured, but the 2064 * overhead of write protection is not incurred until the 2065 * guest invalidates the TLB mapping. This allows multiple 2066 * SPs for a single gfn to be unsync. 2067 * 2068 * If the sync fails, the page is zapped. If so, break 2069 * in order to rebuild it. 2070 */ 2071 if (!kvm_sync_page(vcpu, sp, &invalid_list)) 2072 break; 2073 2074 WARN_ON(!list_empty(&invalid_list)); 2075 kvm_flush_remote_tlbs(vcpu->kvm); 2076 } 2077 2078 __clear_sp_write_flooding_count(sp); 2079 2080 trace_get_page: 2081 trace_kvm_mmu_get_page(sp, false); 2082 goto out; 2083 } 2084 2085 ++vcpu->kvm->stat.mmu_cache_miss; 2086 2087 sp = kvm_mmu_alloc_page(vcpu, direct); 2088 2089 sp->gfn = gfn; 2090 sp->role = role; 2091 hlist_add_head(&sp->hash_link, sp_list); 2092 if (!direct) { 2093 account_shadowed(vcpu->kvm, sp); 2094 if (level == PG_LEVEL_4K && kvm_vcpu_write_protect_gfn(vcpu, gfn)) 2095 kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn, 1); 2096 } 2097 trace_kvm_mmu_get_page(sp, true); 2098 out: 2099 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list); 2100 2101 if (collisions > vcpu->kvm->stat.max_mmu_page_hash_collisions) 2102 vcpu->kvm->stat.max_mmu_page_hash_collisions = collisions; 2103 return sp; 2104 } 2105 2106 static void shadow_walk_init_using_root(struct kvm_shadow_walk_iterator *iterator, 2107 struct kvm_vcpu *vcpu, hpa_t root, 2108 u64 addr) 2109 { 2110 iterator->addr = addr; 2111 iterator->shadow_addr = root; 2112 iterator->level = vcpu->arch.mmu->shadow_root_level; 2113 2114 if (iterator->level >= PT64_ROOT_4LEVEL && 2115 vcpu->arch.mmu->root_level < PT64_ROOT_4LEVEL && 2116 !vcpu->arch.mmu->direct_map) 2117 iterator->level = PT32E_ROOT_LEVEL; 2118 2119 if (iterator->level == PT32E_ROOT_LEVEL) { 2120 /* 2121 * prev_root is currently only used for 64-bit hosts. So only 2122 * the active root_hpa is valid here. 2123 */ 2124 BUG_ON(root != vcpu->arch.mmu->root.hpa); 2125 2126 iterator->shadow_addr 2127 = vcpu->arch.mmu->pae_root[(addr >> 30) & 3]; 2128 iterator->shadow_addr &= PT64_BASE_ADDR_MASK; 2129 --iterator->level; 2130 if (!iterator->shadow_addr) 2131 iterator->level = 0; 2132 } 2133 } 2134 2135 static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator, 2136 struct kvm_vcpu *vcpu, u64 addr) 2137 { 2138 shadow_walk_init_using_root(iterator, vcpu, vcpu->arch.mmu->root.hpa, 2139 addr); 2140 } 2141 2142 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator) 2143 { 2144 if (iterator->level < PG_LEVEL_4K) 2145 return false; 2146 2147 iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level); 2148 iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index; 2149 return true; 2150 } 2151 2152 static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator, 2153 u64 spte) 2154 { 2155 if (!is_shadow_present_pte(spte) || is_last_spte(spte, iterator->level)) { 2156 iterator->level = 0; 2157 return; 2158 } 2159 2160 iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK; 2161 --iterator->level; 2162 } 2163 2164 static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator) 2165 { 2166 __shadow_walk_next(iterator, *iterator->sptep); 2167 } 2168 2169 static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep, 2170 struct kvm_mmu_page *sp) 2171 { 2172 u64 spte; 2173 2174 BUILD_BUG_ON(VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK); 2175 2176 spte = make_nonleaf_spte(sp->spt, sp_ad_disabled(sp)); 2177 2178 mmu_spte_set(sptep, spte); 2179 2180 mmu_page_add_parent_pte(vcpu, sp, sptep); 2181 2182 if (sp->unsync_children || sp->unsync) 2183 mark_unsync(sptep); 2184 } 2185 2186 static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep, 2187 unsigned direct_access) 2188 { 2189 if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) { 2190 struct kvm_mmu_page *child; 2191 2192 /* 2193 * For the direct sp, if the guest pte's dirty bit 2194 * changed form clean to dirty, it will corrupt the 2195 * sp's access: allow writable in the read-only sp, 2196 * so we should update the spte at this point to get 2197 * a new sp with the correct access. 2198 */ 2199 child = to_shadow_page(*sptep & PT64_BASE_ADDR_MASK); 2200 if (child->role.access == direct_access) 2201 return; 2202 2203 drop_parent_pte(child, sptep); 2204 kvm_flush_remote_tlbs_with_address(vcpu->kvm, child->gfn, 1); 2205 } 2206 } 2207 2208 /* Returns the number of zapped non-leaf child shadow pages. */ 2209 static int mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp, 2210 u64 *spte, struct list_head *invalid_list) 2211 { 2212 u64 pte; 2213 struct kvm_mmu_page *child; 2214 2215 pte = *spte; 2216 if (is_shadow_present_pte(pte)) { 2217 if (is_last_spte(pte, sp->role.level)) { 2218 drop_spte(kvm, spte); 2219 } else { 2220 child = to_shadow_page(pte & PT64_BASE_ADDR_MASK); 2221 drop_parent_pte(child, spte); 2222 2223 /* 2224 * Recursively zap nested TDP SPs, parentless SPs are 2225 * unlikely to be used again in the near future. This 2226 * avoids retaining a large number of stale nested SPs. 2227 */ 2228 if (tdp_enabled && invalid_list && 2229 child->role.guest_mode && !child->parent_ptes.val) 2230 return kvm_mmu_prepare_zap_page(kvm, child, 2231 invalid_list); 2232 } 2233 } else if (is_mmio_spte(pte)) { 2234 mmu_spte_clear_no_track(spte); 2235 } 2236 return 0; 2237 } 2238 2239 static int kvm_mmu_page_unlink_children(struct kvm *kvm, 2240 struct kvm_mmu_page *sp, 2241 struct list_head *invalid_list) 2242 { 2243 int zapped = 0; 2244 unsigned i; 2245 2246 for (i = 0; i < PT64_ENT_PER_PAGE; ++i) 2247 zapped += mmu_page_zap_pte(kvm, sp, sp->spt + i, invalid_list); 2248 2249 return zapped; 2250 } 2251 2252 static void kvm_mmu_unlink_parents(struct kvm_mmu_page *sp) 2253 { 2254 u64 *sptep; 2255 struct rmap_iterator iter; 2256 2257 while ((sptep = rmap_get_first(&sp->parent_ptes, &iter))) 2258 drop_parent_pte(sp, sptep); 2259 } 2260 2261 static int mmu_zap_unsync_children(struct kvm *kvm, 2262 struct kvm_mmu_page *parent, 2263 struct list_head *invalid_list) 2264 { 2265 int i, zapped = 0; 2266 struct mmu_page_path parents; 2267 struct kvm_mmu_pages pages; 2268 2269 if (parent->role.level == PG_LEVEL_4K) 2270 return 0; 2271 2272 while (mmu_unsync_walk(parent, &pages)) { 2273 struct kvm_mmu_page *sp; 2274 2275 for_each_sp(pages, sp, parents, i) { 2276 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list); 2277 mmu_pages_clear_parents(&parents); 2278 zapped++; 2279 } 2280 } 2281 2282 return zapped; 2283 } 2284 2285 static bool __kvm_mmu_prepare_zap_page(struct kvm *kvm, 2286 struct kvm_mmu_page *sp, 2287 struct list_head *invalid_list, 2288 int *nr_zapped) 2289 { 2290 bool list_unstable, zapped_root = false; 2291 2292 trace_kvm_mmu_prepare_zap_page(sp); 2293 ++kvm->stat.mmu_shadow_zapped; 2294 *nr_zapped = mmu_zap_unsync_children(kvm, sp, invalid_list); 2295 *nr_zapped += kvm_mmu_page_unlink_children(kvm, sp, invalid_list); 2296 kvm_mmu_unlink_parents(sp); 2297 2298 /* Zapping children means active_mmu_pages has become unstable. */ 2299 list_unstable = *nr_zapped; 2300 2301 if (!sp->role.invalid && !sp->role.direct) 2302 unaccount_shadowed(kvm, sp); 2303 2304 if (sp->unsync) 2305 kvm_unlink_unsync_page(kvm, sp); 2306 if (!sp->root_count) { 2307 /* Count self */ 2308 (*nr_zapped)++; 2309 2310 /* 2311 * Already invalid pages (previously active roots) are not on 2312 * the active page list. See list_del() in the "else" case of 2313 * !sp->root_count. 2314 */ 2315 if (sp->role.invalid) 2316 list_add(&sp->link, invalid_list); 2317 else 2318 list_move(&sp->link, invalid_list); 2319 kvm_mod_used_mmu_pages(kvm, -1); 2320 } else { 2321 /* 2322 * Remove the active root from the active page list, the root 2323 * will be explicitly freed when the root_count hits zero. 2324 */ 2325 list_del(&sp->link); 2326 2327 /* 2328 * Obsolete pages cannot be used on any vCPUs, see the comment 2329 * in kvm_mmu_zap_all_fast(). Note, is_obsolete_sp() also 2330 * treats invalid shadow pages as being obsolete. 2331 */ 2332 zapped_root = !is_obsolete_sp(kvm, sp); 2333 } 2334 2335 if (sp->lpage_disallowed) 2336 unaccount_huge_nx_page(kvm, sp); 2337 2338 sp->role.invalid = 1; 2339 2340 /* 2341 * Make the request to free obsolete roots after marking the root 2342 * invalid, otherwise other vCPUs may not see it as invalid. 2343 */ 2344 if (zapped_root) 2345 kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_FREE_OBSOLETE_ROOTS); 2346 return list_unstable; 2347 } 2348 2349 static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp, 2350 struct list_head *invalid_list) 2351 { 2352 int nr_zapped; 2353 2354 __kvm_mmu_prepare_zap_page(kvm, sp, invalid_list, &nr_zapped); 2355 return nr_zapped; 2356 } 2357 2358 static void kvm_mmu_commit_zap_page(struct kvm *kvm, 2359 struct list_head *invalid_list) 2360 { 2361 struct kvm_mmu_page *sp, *nsp; 2362 2363 if (list_empty(invalid_list)) 2364 return; 2365 2366 /* 2367 * We need to make sure everyone sees our modifications to 2368 * the page tables and see changes to vcpu->mode here. The barrier 2369 * in the kvm_flush_remote_tlbs() achieves this. This pairs 2370 * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end. 2371 * 2372 * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit 2373 * guest mode and/or lockless shadow page table walks. 2374 */ 2375 kvm_flush_remote_tlbs(kvm); 2376 2377 list_for_each_entry_safe(sp, nsp, invalid_list, link) { 2378 WARN_ON(!sp->role.invalid || sp->root_count); 2379 kvm_mmu_free_page(sp); 2380 } 2381 } 2382 2383 static unsigned long kvm_mmu_zap_oldest_mmu_pages(struct kvm *kvm, 2384 unsigned long nr_to_zap) 2385 { 2386 unsigned long total_zapped = 0; 2387 struct kvm_mmu_page *sp, *tmp; 2388 LIST_HEAD(invalid_list); 2389 bool unstable; 2390 int nr_zapped; 2391 2392 if (list_empty(&kvm->arch.active_mmu_pages)) 2393 return 0; 2394 2395 restart: 2396 list_for_each_entry_safe_reverse(sp, tmp, &kvm->arch.active_mmu_pages, link) { 2397 /* 2398 * Don't zap active root pages, the page itself can't be freed 2399 * and zapping it will just force vCPUs to realloc and reload. 2400 */ 2401 if (sp->root_count) 2402 continue; 2403 2404 unstable = __kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list, 2405 &nr_zapped); 2406 total_zapped += nr_zapped; 2407 if (total_zapped >= nr_to_zap) 2408 break; 2409 2410 if (unstable) 2411 goto restart; 2412 } 2413 2414 kvm_mmu_commit_zap_page(kvm, &invalid_list); 2415 2416 kvm->stat.mmu_recycled += total_zapped; 2417 return total_zapped; 2418 } 2419 2420 static inline unsigned long kvm_mmu_available_pages(struct kvm *kvm) 2421 { 2422 if (kvm->arch.n_max_mmu_pages > kvm->arch.n_used_mmu_pages) 2423 return kvm->arch.n_max_mmu_pages - 2424 kvm->arch.n_used_mmu_pages; 2425 2426 return 0; 2427 } 2428 2429 static int make_mmu_pages_available(struct kvm_vcpu *vcpu) 2430 { 2431 unsigned long avail = kvm_mmu_available_pages(vcpu->kvm); 2432 2433 if (likely(avail >= KVM_MIN_FREE_MMU_PAGES)) 2434 return 0; 2435 2436 kvm_mmu_zap_oldest_mmu_pages(vcpu->kvm, KVM_REFILL_PAGES - avail); 2437 2438 /* 2439 * Note, this check is intentionally soft, it only guarantees that one 2440 * page is available, while the caller may end up allocating as many as 2441 * four pages, e.g. for PAE roots or for 5-level paging. Temporarily 2442 * exceeding the (arbitrary by default) limit will not harm the host, 2443 * being too aggressive may unnecessarily kill the guest, and getting an 2444 * exact count is far more trouble than it's worth, especially in the 2445 * page fault paths. 2446 */ 2447 if (!kvm_mmu_available_pages(vcpu->kvm)) 2448 return -ENOSPC; 2449 return 0; 2450 } 2451 2452 /* 2453 * Changing the number of mmu pages allocated to the vm 2454 * Note: if goal_nr_mmu_pages is too small, you will get dead lock 2455 */ 2456 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long goal_nr_mmu_pages) 2457 { 2458 write_lock(&kvm->mmu_lock); 2459 2460 if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) { 2461 kvm_mmu_zap_oldest_mmu_pages(kvm, kvm->arch.n_used_mmu_pages - 2462 goal_nr_mmu_pages); 2463 2464 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages; 2465 } 2466 2467 kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages; 2468 2469 write_unlock(&kvm->mmu_lock); 2470 } 2471 2472 int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn) 2473 { 2474 struct kvm_mmu_page *sp; 2475 LIST_HEAD(invalid_list); 2476 int r; 2477 2478 pgprintk("%s: looking for gfn %llx\n", __func__, gfn); 2479 r = 0; 2480 write_lock(&kvm->mmu_lock); 2481 for_each_gfn_indirect_valid_sp(kvm, sp, gfn) { 2482 pgprintk("%s: gfn %llx role %x\n", __func__, gfn, 2483 sp->role.word); 2484 r = 1; 2485 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list); 2486 } 2487 kvm_mmu_commit_zap_page(kvm, &invalid_list); 2488 write_unlock(&kvm->mmu_lock); 2489 2490 return r; 2491 } 2492 2493 static int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva) 2494 { 2495 gpa_t gpa; 2496 int r; 2497 2498 if (vcpu->arch.mmu->direct_map) 2499 return 0; 2500 2501 gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL); 2502 2503 r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT); 2504 2505 return r; 2506 } 2507 2508 static void kvm_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp) 2509 { 2510 trace_kvm_mmu_unsync_page(sp); 2511 ++kvm->stat.mmu_unsync; 2512 sp->unsync = 1; 2513 2514 kvm_mmu_mark_parents_unsync(sp); 2515 } 2516 2517 /* 2518 * Attempt to unsync any shadow pages that can be reached by the specified gfn, 2519 * KVM is creating a writable mapping for said gfn. Returns 0 if all pages 2520 * were marked unsync (or if there is no shadow page), -EPERM if the SPTE must 2521 * be write-protected. 2522 */ 2523 int mmu_try_to_unsync_pages(struct kvm *kvm, const struct kvm_memory_slot *slot, 2524 gfn_t gfn, bool can_unsync, bool prefetch) 2525 { 2526 struct kvm_mmu_page *sp; 2527 bool locked = false; 2528 2529 /* 2530 * Force write-protection if the page is being tracked. Note, the page 2531 * track machinery is used to write-protect upper-level shadow pages, 2532 * i.e. this guards the role.level == 4K assertion below! 2533 */ 2534 if (kvm_slot_page_track_is_active(kvm, slot, gfn, KVM_PAGE_TRACK_WRITE)) 2535 return -EPERM; 2536 2537 /* 2538 * The page is not write-tracked, mark existing shadow pages unsync 2539 * unless KVM is synchronizing an unsync SP (can_unsync = false). In 2540 * that case, KVM must complete emulation of the guest TLB flush before 2541 * allowing shadow pages to become unsync (writable by the guest). 2542 */ 2543 for_each_gfn_indirect_valid_sp(kvm, sp, gfn) { 2544 if (!can_unsync) 2545 return -EPERM; 2546 2547 if (sp->unsync) 2548 continue; 2549 2550 if (prefetch) 2551 return -EEXIST; 2552 2553 /* 2554 * TDP MMU page faults require an additional spinlock as they 2555 * run with mmu_lock held for read, not write, and the unsync 2556 * logic is not thread safe. Take the spinklock regardless of 2557 * the MMU type to avoid extra conditionals/parameters, there's 2558 * no meaningful penalty if mmu_lock is held for write. 2559 */ 2560 if (!locked) { 2561 locked = true; 2562 spin_lock(&kvm->arch.mmu_unsync_pages_lock); 2563 2564 /* 2565 * Recheck after taking the spinlock, a different vCPU 2566 * may have since marked the page unsync. A false 2567 * positive on the unprotected check above is not 2568 * possible as clearing sp->unsync _must_ hold mmu_lock 2569 * for write, i.e. unsync cannot transition from 0->1 2570 * while this CPU holds mmu_lock for read (or write). 2571 */ 2572 if (READ_ONCE(sp->unsync)) 2573 continue; 2574 } 2575 2576 WARN_ON(sp->role.level != PG_LEVEL_4K); 2577 kvm_unsync_page(kvm, sp); 2578 } 2579 if (locked) 2580 spin_unlock(&kvm->arch.mmu_unsync_pages_lock); 2581 2582 /* 2583 * We need to ensure that the marking of unsync pages is visible 2584 * before the SPTE is updated to allow writes because 2585 * kvm_mmu_sync_roots() checks the unsync flags without holding 2586 * the MMU lock and so can race with this. If the SPTE was updated 2587 * before the page had been marked as unsync-ed, something like the 2588 * following could happen: 2589 * 2590 * CPU 1 CPU 2 2591 * --------------------------------------------------------------------- 2592 * 1.2 Host updates SPTE 2593 * to be writable 2594 * 2.1 Guest writes a GPTE for GVA X. 2595 * (GPTE being in the guest page table shadowed 2596 * by the SP from CPU 1.) 2597 * This reads SPTE during the page table walk. 2598 * Since SPTE.W is read as 1, there is no 2599 * fault. 2600 * 2601 * 2.2 Guest issues TLB flush. 2602 * That causes a VM Exit. 2603 * 2604 * 2.3 Walking of unsync pages sees sp->unsync is 2605 * false and skips the page. 2606 * 2607 * 2.4 Guest accesses GVA X. 2608 * Since the mapping in the SP was not updated, 2609 * so the old mapping for GVA X incorrectly 2610 * gets used. 2611 * 1.1 Host marks SP 2612 * as unsync 2613 * (sp->unsync = true) 2614 * 2615 * The write barrier below ensures that 1.1 happens before 1.2 and thus 2616 * the situation in 2.4 does not arise. It pairs with the read barrier 2617 * in is_unsync_root(), placed between 2.1's load of SPTE.W and 2.3. 2618 */ 2619 smp_wmb(); 2620 2621 return 0; 2622 } 2623 2624 static int mmu_set_spte(struct kvm_vcpu *vcpu, struct kvm_memory_slot *slot, 2625 u64 *sptep, unsigned int pte_access, gfn_t gfn, 2626 kvm_pfn_t pfn, struct kvm_page_fault *fault) 2627 { 2628 struct kvm_mmu_page *sp = sptep_to_sp(sptep); 2629 int level = sp->role.level; 2630 int was_rmapped = 0; 2631 int ret = RET_PF_FIXED; 2632 bool flush = false; 2633 bool wrprot; 2634 u64 spte; 2635 2636 /* Prefetching always gets a writable pfn. */ 2637 bool host_writable = !fault || fault->map_writable; 2638 bool prefetch = !fault || fault->prefetch; 2639 bool write_fault = fault && fault->write; 2640 2641 pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__, 2642 *sptep, write_fault, gfn); 2643 2644 if (unlikely(is_noslot_pfn(pfn))) { 2645 mark_mmio_spte(vcpu, sptep, gfn, pte_access); 2646 return RET_PF_EMULATE; 2647 } 2648 2649 if (is_shadow_present_pte(*sptep)) { 2650 /* 2651 * If we overwrite a PTE page pointer with a 2MB PMD, unlink 2652 * the parent of the now unreachable PTE. 2653 */ 2654 if (level > PG_LEVEL_4K && !is_large_pte(*sptep)) { 2655 struct kvm_mmu_page *child; 2656 u64 pte = *sptep; 2657 2658 child = to_shadow_page(pte & PT64_BASE_ADDR_MASK); 2659 drop_parent_pte(child, sptep); 2660 flush = true; 2661 } else if (pfn != spte_to_pfn(*sptep)) { 2662 pgprintk("hfn old %llx new %llx\n", 2663 spte_to_pfn(*sptep), pfn); 2664 drop_spte(vcpu->kvm, sptep); 2665 flush = true; 2666 } else 2667 was_rmapped = 1; 2668 } 2669 2670 wrprot = make_spte(vcpu, sp, slot, pte_access, gfn, pfn, *sptep, prefetch, 2671 true, host_writable, &spte); 2672 2673 if (*sptep == spte) { 2674 ret = RET_PF_SPURIOUS; 2675 } else { 2676 flush |= mmu_spte_update(sptep, spte); 2677 trace_kvm_mmu_set_spte(level, gfn, sptep); 2678 } 2679 2680 if (wrprot) { 2681 if (write_fault) 2682 ret = RET_PF_EMULATE; 2683 } 2684 2685 if (flush) 2686 kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn, 2687 KVM_PAGES_PER_HPAGE(level)); 2688 2689 pgprintk("%s: setting spte %llx\n", __func__, *sptep); 2690 2691 if (!was_rmapped) { 2692 WARN_ON_ONCE(ret == RET_PF_SPURIOUS); 2693 kvm_update_page_stats(vcpu->kvm, level, 1); 2694 rmap_add(vcpu, slot, sptep, gfn); 2695 } 2696 2697 return ret; 2698 } 2699 2700 static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu, 2701 struct kvm_mmu_page *sp, 2702 u64 *start, u64 *end) 2703 { 2704 struct page *pages[PTE_PREFETCH_NUM]; 2705 struct kvm_memory_slot *slot; 2706 unsigned int access = sp->role.access; 2707 int i, ret; 2708 gfn_t gfn; 2709 2710 gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt); 2711 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK); 2712 if (!slot) 2713 return -1; 2714 2715 ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start); 2716 if (ret <= 0) 2717 return -1; 2718 2719 for (i = 0; i < ret; i++, gfn++, start++) { 2720 mmu_set_spte(vcpu, slot, start, access, gfn, 2721 page_to_pfn(pages[i]), NULL); 2722 put_page(pages[i]); 2723 } 2724 2725 return 0; 2726 } 2727 2728 static void __direct_pte_prefetch(struct kvm_vcpu *vcpu, 2729 struct kvm_mmu_page *sp, u64 *sptep) 2730 { 2731 u64 *spte, *start = NULL; 2732 int i; 2733 2734 WARN_ON(!sp->role.direct); 2735 2736 i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1); 2737 spte = sp->spt + i; 2738 2739 for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) { 2740 if (is_shadow_present_pte(*spte) || spte == sptep) { 2741 if (!start) 2742 continue; 2743 if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0) 2744 return; 2745 start = NULL; 2746 } else if (!start) 2747 start = spte; 2748 } 2749 if (start) 2750 direct_pte_prefetch_many(vcpu, sp, start, spte); 2751 } 2752 2753 static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep) 2754 { 2755 struct kvm_mmu_page *sp; 2756 2757 sp = sptep_to_sp(sptep); 2758 2759 /* 2760 * Without accessed bits, there's no way to distinguish between 2761 * actually accessed translations and prefetched, so disable pte 2762 * prefetch if accessed bits aren't available. 2763 */ 2764 if (sp_ad_disabled(sp)) 2765 return; 2766 2767 if (sp->role.level > PG_LEVEL_4K) 2768 return; 2769 2770 /* 2771 * If addresses are being invalidated, skip prefetching to avoid 2772 * accidentally prefetching those addresses. 2773 */ 2774 if (unlikely(vcpu->kvm->mmu_notifier_count)) 2775 return; 2776 2777 __direct_pte_prefetch(vcpu, sp, sptep); 2778 } 2779 2780 static int host_pfn_mapping_level(struct kvm *kvm, gfn_t gfn, kvm_pfn_t pfn, 2781 const struct kvm_memory_slot *slot) 2782 { 2783 unsigned long hva; 2784 unsigned long flags; 2785 int level = PG_LEVEL_4K; 2786 pgd_t pgd; 2787 p4d_t p4d; 2788 pud_t pud; 2789 pmd_t pmd; 2790 2791 if (!PageCompound(pfn_to_page(pfn)) && !kvm_is_zone_device_pfn(pfn)) 2792 return PG_LEVEL_4K; 2793 2794 /* 2795 * Note, using the already-retrieved memslot and __gfn_to_hva_memslot() 2796 * is not solely for performance, it's also necessary to avoid the 2797 * "writable" check in __gfn_to_hva_many(), which will always fail on 2798 * read-only memslots due to gfn_to_hva() assuming writes. Earlier 2799 * page fault steps have already verified the guest isn't writing a 2800 * read-only memslot. 2801 */ 2802 hva = __gfn_to_hva_memslot(slot, gfn); 2803 2804 /* 2805 * Lookup the mapping level in the current mm. The information 2806 * may become stale soon, but it is safe to use as long as 2807 * 1) mmu_notifier_retry was checked after taking mmu_lock, and 2808 * 2) mmu_lock is taken now. 2809 * 2810 * We still need to disable IRQs to prevent concurrent tear down 2811 * of page tables. 2812 */ 2813 local_irq_save(flags); 2814 2815 pgd = READ_ONCE(*pgd_offset(kvm->mm, hva)); 2816 if (pgd_none(pgd)) 2817 goto out; 2818 2819 p4d = READ_ONCE(*p4d_offset(&pgd, hva)); 2820 if (p4d_none(p4d) || !p4d_present(p4d)) 2821 goto out; 2822 2823 pud = READ_ONCE(*pud_offset(&p4d, hva)); 2824 if (pud_none(pud) || !pud_present(pud)) 2825 goto out; 2826 2827 if (pud_large(pud)) { 2828 level = PG_LEVEL_1G; 2829 goto out; 2830 } 2831 2832 pmd = READ_ONCE(*pmd_offset(&pud, hva)); 2833 if (pmd_none(pmd) || !pmd_present(pmd)) 2834 goto out; 2835 2836 if (pmd_large(pmd)) 2837 level = PG_LEVEL_2M; 2838 2839 out: 2840 local_irq_restore(flags); 2841 return level; 2842 } 2843 2844 int kvm_mmu_max_mapping_level(struct kvm *kvm, 2845 const struct kvm_memory_slot *slot, gfn_t gfn, 2846 kvm_pfn_t pfn, int max_level) 2847 { 2848 struct kvm_lpage_info *linfo; 2849 int host_level; 2850 2851 max_level = min(max_level, max_huge_page_level); 2852 for ( ; max_level > PG_LEVEL_4K; max_level--) { 2853 linfo = lpage_info_slot(gfn, slot, max_level); 2854 if (!linfo->disallow_lpage) 2855 break; 2856 } 2857 2858 if (max_level == PG_LEVEL_4K) 2859 return PG_LEVEL_4K; 2860 2861 host_level = host_pfn_mapping_level(kvm, gfn, pfn, slot); 2862 return min(host_level, max_level); 2863 } 2864 2865 void kvm_mmu_hugepage_adjust(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault) 2866 { 2867 struct kvm_memory_slot *slot = fault->slot; 2868 kvm_pfn_t mask; 2869 2870 fault->huge_page_disallowed = fault->exec && fault->nx_huge_page_workaround_enabled; 2871 2872 if (unlikely(fault->max_level == PG_LEVEL_4K)) 2873 return; 2874 2875 if (is_error_noslot_pfn(fault->pfn) || kvm_is_reserved_pfn(fault->pfn)) 2876 return; 2877 2878 if (kvm_slot_dirty_track_enabled(slot)) 2879 return; 2880 2881 /* 2882 * Enforce the iTLB multihit workaround after capturing the requested 2883 * level, which will be used to do precise, accurate accounting. 2884 */ 2885 fault->req_level = kvm_mmu_max_mapping_level(vcpu->kvm, slot, 2886 fault->gfn, fault->pfn, 2887 fault->max_level); 2888 if (fault->req_level == PG_LEVEL_4K || fault->huge_page_disallowed) 2889 return; 2890 2891 /* 2892 * mmu_notifier_retry() was successful and mmu_lock is held, so 2893 * the pmd can't be split from under us. 2894 */ 2895 fault->goal_level = fault->req_level; 2896 mask = KVM_PAGES_PER_HPAGE(fault->goal_level) - 1; 2897 VM_BUG_ON((fault->gfn & mask) != (fault->pfn & mask)); 2898 fault->pfn &= ~mask; 2899 } 2900 2901 void disallowed_hugepage_adjust(struct kvm_page_fault *fault, u64 spte, int cur_level) 2902 { 2903 if (cur_level > PG_LEVEL_4K && 2904 cur_level == fault->goal_level && 2905 is_shadow_present_pte(spte) && 2906 !is_large_pte(spte)) { 2907 /* 2908 * A small SPTE exists for this pfn, but FNAME(fetch) 2909 * and __direct_map would like to create a large PTE 2910 * instead: just force them to go down another level, 2911 * patching back for them into pfn the next 9 bits of 2912 * the address. 2913 */ 2914 u64 page_mask = KVM_PAGES_PER_HPAGE(cur_level) - 2915 KVM_PAGES_PER_HPAGE(cur_level - 1); 2916 fault->pfn |= fault->gfn & page_mask; 2917 fault->goal_level--; 2918 } 2919 } 2920 2921 static int __direct_map(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault) 2922 { 2923 struct kvm_shadow_walk_iterator it; 2924 struct kvm_mmu_page *sp; 2925 int ret; 2926 gfn_t base_gfn = fault->gfn; 2927 2928 kvm_mmu_hugepage_adjust(vcpu, fault); 2929 2930 trace_kvm_mmu_spte_requested(fault); 2931 for_each_shadow_entry(vcpu, fault->addr, it) { 2932 /* 2933 * We cannot overwrite existing page tables with an NX 2934 * large page, as the leaf could be executable. 2935 */ 2936 if (fault->nx_huge_page_workaround_enabled) 2937 disallowed_hugepage_adjust(fault, *it.sptep, it.level); 2938 2939 base_gfn = fault->gfn & ~(KVM_PAGES_PER_HPAGE(it.level) - 1); 2940 if (it.level == fault->goal_level) 2941 break; 2942 2943 drop_large_spte(vcpu, it.sptep); 2944 if (is_shadow_present_pte(*it.sptep)) 2945 continue; 2946 2947 sp = kvm_mmu_get_page(vcpu, base_gfn, it.addr, 2948 it.level - 1, true, ACC_ALL); 2949 2950 link_shadow_page(vcpu, it.sptep, sp); 2951 if (fault->is_tdp && fault->huge_page_disallowed && 2952 fault->req_level >= it.level) 2953 account_huge_nx_page(vcpu->kvm, sp); 2954 } 2955 2956 if (WARN_ON_ONCE(it.level != fault->goal_level)) 2957 return -EFAULT; 2958 2959 ret = mmu_set_spte(vcpu, fault->slot, it.sptep, ACC_ALL, 2960 base_gfn, fault->pfn, fault); 2961 if (ret == RET_PF_SPURIOUS) 2962 return ret; 2963 2964 direct_pte_prefetch(vcpu, it.sptep); 2965 ++vcpu->stat.pf_fixed; 2966 return ret; 2967 } 2968 2969 static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk) 2970 { 2971 send_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, PAGE_SHIFT, tsk); 2972 } 2973 2974 static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, kvm_pfn_t pfn) 2975 { 2976 /* 2977 * Do not cache the mmio info caused by writing the readonly gfn 2978 * into the spte otherwise read access on readonly gfn also can 2979 * caused mmio page fault and treat it as mmio access. 2980 */ 2981 if (pfn == KVM_PFN_ERR_RO_FAULT) 2982 return RET_PF_EMULATE; 2983 2984 if (pfn == KVM_PFN_ERR_HWPOISON) { 2985 kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current); 2986 return RET_PF_RETRY; 2987 } 2988 2989 return -EFAULT; 2990 } 2991 2992 static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault, 2993 unsigned int access, int *ret_val) 2994 { 2995 /* The pfn is invalid, report the error! */ 2996 if (unlikely(is_error_pfn(fault->pfn))) { 2997 *ret_val = kvm_handle_bad_page(vcpu, fault->gfn, fault->pfn); 2998 return true; 2999 } 3000 3001 if (unlikely(!fault->slot)) { 3002 gva_t gva = fault->is_tdp ? 0 : fault->addr; 3003 3004 vcpu_cache_mmio_info(vcpu, gva, fault->gfn, 3005 access & shadow_mmio_access_mask); 3006 /* 3007 * If MMIO caching is disabled, emulate immediately without 3008 * touching the shadow page tables as attempting to install an 3009 * MMIO SPTE will just be an expensive nop. Do not cache MMIO 3010 * whose gfn is greater than host.MAXPHYADDR, any guest that 3011 * generates such gfns is running nested and is being tricked 3012 * by L0 userspace (you can observe gfn > L1.MAXPHYADDR if 3013 * and only if L1's MAXPHYADDR is inaccurate with respect to 3014 * the hardware's). 3015 */ 3016 if (unlikely(!shadow_mmio_value) || 3017 unlikely(fault->gfn > kvm_mmu_max_gfn())) { 3018 *ret_val = RET_PF_EMULATE; 3019 return true; 3020 } 3021 } 3022 3023 return false; 3024 } 3025 3026 static bool page_fault_can_be_fast(struct kvm_page_fault *fault) 3027 { 3028 /* 3029 * Do not fix the mmio spte with invalid generation number which 3030 * need to be updated by slow page fault path. 3031 */ 3032 if (fault->rsvd) 3033 return false; 3034 3035 /* See if the page fault is due to an NX violation */ 3036 if (unlikely(fault->exec && fault->present)) 3037 return false; 3038 3039 /* 3040 * #PF can be fast if: 3041 * 1. The shadow page table entry is not present, which could mean that 3042 * the fault is potentially caused by access tracking (if enabled). 3043 * 2. The shadow page table entry is present and the fault 3044 * is caused by write-protect, that means we just need change the W 3045 * bit of the spte which can be done out of mmu-lock. 3046 * 3047 * However, if access tracking is disabled we know that a non-present 3048 * page must be a genuine page fault where we have to create a new SPTE. 3049 * So, if access tracking is disabled, we return true only for write 3050 * accesses to a present page. 3051 */ 3052 3053 return shadow_acc_track_mask != 0 || (fault->write && fault->present); 3054 } 3055 3056 /* 3057 * Returns true if the SPTE was fixed successfully. Otherwise, 3058 * someone else modified the SPTE from its original value. 3059 */ 3060 static bool 3061 fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault, 3062 u64 *sptep, u64 old_spte, u64 new_spte) 3063 { 3064 /* 3065 * Theoretically we could also set dirty bit (and flush TLB) here in 3066 * order to eliminate unnecessary PML logging. See comments in 3067 * set_spte. But fast_page_fault is very unlikely to happen with PML 3068 * enabled, so we do not do this. This might result in the same GPA 3069 * to be logged in PML buffer again when the write really happens, and 3070 * eventually to be called by mark_page_dirty twice. But it's also no 3071 * harm. This also avoids the TLB flush needed after setting dirty bit 3072 * so non-PML cases won't be impacted. 3073 * 3074 * Compare with set_spte where instead shadow_dirty_mask is set. 3075 */ 3076 if (cmpxchg64(sptep, old_spte, new_spte) != old_spte) 3077 return false; 3078 3079 if (is_writable_pte(new_spte) && !is_writable_pte(old_spte)) 3080 mark_page_dirty_in_slot(vcpu->kvm, fault->slot, fault->gfn); 3081 3082 return true; 3083 } 3084 3085 static bool is_access_allowed(struct kvm_page_fault *fault, u64 spte) 3086 { 3087 if (fault->exec) 3088 return is_executable_pte(spte); 3089 3090 if (fault->write) 3091 return is_writable_pte(spte); 3092 3093 /* Fault was on Read access */ 3094 return spte & PT_PRESENT_MASK; 3095 } 3096 3097 /* 3098 * Returns the last level spte pointer of the shadow page walk for the given 3099 * gpa, and sets *spte to the spte value. This spte may be non-preset. If no 3100 * walk could be performed, returns NULL and *spte does not contain valid data. 3101 * 3102 * Contract: 3103 * - Must be called between walk_shadow_page_lockless_{begin,end}. 3104 * - The returned sptep must not be used after walk_shadow_page_lockless_end. 3105 */ 3106 static u64 *fast_pf_get_last_sptep(struct kvm_vcpu *vcpu, gpa_t gpa, u64 *spte) 3107 { 3108 struct kvm_shadow_walk_iterator iterator; 3109 u64 old_spte; 3110 u64 *sptep = NULL; 3111 3112 for_each_shadow_entry_lockless(vcpu, gpa, iterator, old_spte) { 3113 sptep = iterator.sptep; 3114 *spte = old_spte; 3115 } 3116 3117 return sptep; 3118 } 3119 3120 /* 3121 * Returns one of RET_PF_INVALID, RET_PF_FIXED or RET_PF_SPURIOUS. 3122 */ 3123 static int fast_page_fault(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault) 3124 { 3125 struct kvm_mmu_page *sp; 3126 int ret = RET_PF_INVALID; 3127 u64 spte = 0ull; 3128 u64 *sptep = NULL; 3129 uint retry_count = 0; 3130 3131 if (!page_fault_can_be_fast(fault)) 3132 return ret; 3133 3134 walk_shadow_page_lockless_begin(vcpu); 3135 3136 do { 3137 u64 new_spte; 3138 3139 if (is_tdp_mmu(vcpu->arch.mmu)) 3140 sptep = kvm_tdp_mmu_fast_pf_get_last_sptep(vcpu, fault->addr, &spte); 3141 else 3142 sptep = fast_pf_get_last_sptep(vcpu, fault->addr, &spte); 3143 3144 if (!is_shadow_present_pte(spte)) 3145 break; 3146 3147 sp = sptep_to_sp(sptep); 3148 if (!is_last_spte(spte, sp->role.level)) 3149 break; 3150 3151 /* 3152 * Check whether the memory access that caused the fault would 3153 * still cause it if it were to be performed right now. If not, 3154 * then this is a spurious fault caused by TLB lazily flushed, 3155 * or some other CPU has already fixed the PTE after the 3156 * current CPU took the fault. 3157 * 3158 * Need not check the access of upper level table entries since 3159 * they are always ACC_ALL. 3160 */ 3161 if (is_access_allowed(fault, spte)) { 3162 ret = RET_PF_SPURIOUS; 3163 break; 3164 } 3165 3166 new_spte = spte; 3167 3168 if (is_access_track_spte(spte)) 3169 new_spte = restore_acc_track_spte(new_spte); 3170 3171 /* 3172 * Currently, to simplify the code, write-protection can 3173 * be removed in the fast path only if the SPTE was 3174 * write-protected for dirty-logging or access tracking. 3175 */ 3176 if (fault->write && is_mmu_writable_spte(spte)) { 3177 new_spte |= PT_WRITABLE_MASK; 3178 3179 /* 3180 * Do not fix write-permission on the large spte when 3181 * dirty logging is enabled. Since we only dirty the 3182 * first page into the dirty-bitmap in 3183 * fast_pf_fix_direct_spte(), other pages are missed 3184 * if its slot has dirty logging enabled. 3185 * 3186 * Instead, we let the slow page fault path create a 3187 * normal spte to fix the access. 3188 */ 3189 if (sp->role.level > PG_LEVEL_4K && 3190 kvm_slot_dirty_track_enabled(fault->slot)) 3191 break; 3192 } 3193 3194 /* Verify that the fault can be handled in the fast path */ 3195 if (new_spte == spte || 3196 !is_access_allowed(fault, new_spte)) 3197 break; 3198 3199 /* 3200 * Currently, fast page fault only works for direct mapping 3201 * since the gfn is not stable for indirect shadow page. See 3202 * Documentation/virt/kvm/locking.rst to get more detail. 3203 */ 3204 if (fast_pf_fix_direct_spte(vcpu, fault, sptep, spte, new_spte)) { 3205 ret = RET_PF_FIXED; 3206 break; 3207 } 3208 3209 if (++retry_count > 4) { 3210 printk_once(KERN_WARNING 3211 "kvm: Fast #PF retrying more than 4 times.\n"); 3212 break; 3213 } 3214 3215 } while (true); 3216 3217 trace_fast_page_fault(vcpu, fault, sptep, spte, ret); 3218 walk_shadow_page_lockless_end(vcpu); 3219 3220 return ret; 3221 } 3222 3223 static void mmu_free_root_page(struct kvm *kvm, hpa_t *root_hpa, 3224 struct list_head *invalid_list) 3225 { 3226 struct kvm_mmu_page *sp; 3227 3228 if (!VALID_PAGE(*root_hpa)) 3229 return; 3230 3231 sp = to_shadow_page(*root_hpa & PT64_BASE_ADDR_MASK); 3232 if (WARN_ON(!sp)) 3233 return; 3234 3235 if (is_tdp_mmu_page(sp)) 3236 kvm_tdp_mmu_put_root(kvm, sp, false); 3237 else if (!--sp->root_count && sp->role.invalid) 3238 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list); 3239 3240 *root_hpa = INVALID_PAGE; 3241 } 3242 3243 /* roots_to_free must be some combination of the KVM_MMU_ROOT_* flags */ 3244 void kvm_mmu_free_roots(struct kvm *kvm, struct kvm_mmu *mmu, 3245 ulong roots_to_free) 3246 { 3247 int i; 3248 LIST_HEAD(invalid_list); 3249 bool free_active_root; 3250 3251 BUILD_BUG_ON(KVM_MMU_NUM_PREV_ROOTS >= BITS_PER_LONG); 3252 3253 /* Before acquiring the MMU lock, see if we need to do any real work. */ 3254 free_active_root = (roots_to_free & KVM_MMU_ROOT_CURRENT) 3255 && VALID_PAGE(mmu->root.hpa); 3256 3257 if (!free_active_root) { 3258 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 3259 if ((roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) && 3260 VALID_PAGE(mmu->prev_roots[i].hpa)) 3261 break; 3262 3263 if (i == KVM_MMU_NUM_PREV_ROOTS) 3264 return; 3265 } 3266 3267 write_lock(&kvm->mmu_lock); 3268 3269 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 3270 if (roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) 3271 mmu_free_root_page(kvm, &mmu->prev_roots[i].hpa, 3272 &invalid_list); 3273 3274 if (free_active_root) { 3275 if (to_shadow_page(mmu->root.hpa)) { 3276 mmu_free_root_page(kvm, &mmu->root.hpa, &invalid_list); 3277 } else if (mmu->pae_root) { 3278 for (i = 0; i < 4; ++i) { 3279 if (!IS_VALID_PAE_ROOT(mmu->pae_root[i])) 3280 continue; 3281 3282 mmu_free_root_page(kvm, &mmu->pae_root[i], 3283 &invalid_list); 3284 mmu->pae_root[i] = INVALID_PAE_ROOT; 3285 } 3286 } 3287 mmu->root.hpa = INVALID_PAGE; 3288 mmu->root.pgd = 0; 3289 } 3290 3291 kvm_mmu_commit_zap_page(kvm, &invalid_list); 3292 write_unlock(&kvm->mmu_lock); 3293 } 3294 EXPORT_SYMBOL_GPL(kvm_mmu_free_roots); 3295 3296 void kvm_mmu_free_guest_mode_roots(struct kvm *kvm, struct kvm_mmu *mmu) 3297 { 3298 unsigned long roots_to_free = 0; 3299 hpa_t root_hpa; 3300 int i; 3301 3302 /* 3303 * This should not be called while L2 is active, L2 can't invalidate 3304 * _only_ its own roots, e.g. INVVPID unconditionally exits. 3305 */ 3306 WARN_ON_ONCE(mmu->mmu_role.base.guest_mode); 3307 3308 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) { 3309 root_hpa = mmu->prev_roots[i].hpa; 3310 if (!VALID_PAGE(root_hpa)) 3311 continue; 3312 3313 if (!to_shadow_page(root_hpa) || 3314 to_shadow_page(root_hpa)->role.guest_mode) 3315 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i); 3316 } 3317 3318 kvm_mmu_free_roots(kvm, mmu, roots_to_free); 3319 } 3320 EXPORT_SYMBOL_GPL(kvm_mmu_free_guest_mode_roots); 3321 3322 3323 static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn) 3324 { 3325 int ret = 0; 3326 3327 if (!kvm_vcpu_is_visible_gfn(vcpu, root_gfn)) { 3328 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 3329 ret = 1; 3330 } 3331 3332 return ret; 3333 } 3334 3335 static hpa_t mmu_alloc_root(struct kvm_vcpu *vcpu, gfn_t gfn, gva_t gva, 3336 u8 level, bool direct) 3337 { 3338 struct kvm_mmu_page *sp; 3339 3340 sp = kvm_mmu_get_page(vcpu, gfn, gva, level, direct, ACC_ALL); 3341 ++sp->root_count; 3342 3343 return __pa(sp->spt); 3344 } 3345 3346 static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu) 3347 { 3348 struct kvm_mmu *mmu = vcpu->arch.mmu; 3349 u8 shadow_root_level = mmu->shadow_root_level; 3350 hpa_t root; 3351 unsigned i; 3352 int r; 3353 3354 write_lock(&vcpu->kvm->mmu_lock); 3355 r = make_mmu_pages_available(vcpu); 3356 if (r < 0) 3357 goto out_unlock; 3358 3359 if (is_tdp_mmu_enabled(vcpu->kvm)) { 3360 root = kvm_tdp_mmu_get_vcpu_root_hpa(vcpu); 3361 mmu->root.hpa = root; 3362 } else if (shadow_root_level >= PT64_ROOT_4LEVEL) { 3363 root = mmu_alloc_root(vcpu, 0, 0, shadow_root_level, true); 3364 mmu->root.hpa = root; 3365 } else if (shadow_root_level == PT32E_ROOT_LEVEL) { 3366 if (WARN_ON_ONCE(!mmu->pae_root)) { 3367 r = -EIO; 3368 goto out_unlock; 3369 } 3370 3371 for (i = 0; i < 4; ++i) { 3372 WARN_ON_ONCE(IS_VALID_PAE_ROOT(mmu->pae_root[i])); 3373 3374 root = mmu_alloc_root(vcpu, i << (30 - PAGE_SHIFT), 3375 i << 30, PT32_ROOT_LEVEL, true); 3376 mmu->pae_root[i] = root | PT_PRESENT_MASK | 3377 shadow_me_mask; 3378 } 3379 mmu->root.hpa = __pa(mmu->pae_root); 3380 } else { 3381 WARN_ONCE(1, "Bad TDP root level = %d\n", shadow_root_level); 3382 r = -EIO; 3383 goto out_unlock; 3384 } 3385 3386 /* root.pgd is ignored for direct MMUs. */ 3387 mmu->root.pgd = 0; 3388 out_unlock: 3389 write_unlock(&vcpu->kvm->mmu_lock); 3390 return r; 3391 } 3392 3393 static int mmu_first_shadow_root_alloc(struct kvm *kvm) 3394 { 3395 struct kvm_memslots *slots; 3396 struct kvm_memory_slot *slot; 3397 int r = 0, i, bkt; 3398 3399 /* 3400 * Check if this is the first shadow root being allocated before 3401 * taking the lock. 3402 */ 3403 if (kvm_shadow_root_allocated(kvm)) 3404 return 0; 3405 3406 mutex_lock(&kvm->slots_arch_lock); 3407 3408 /* Recheck, under the lock, whether this is the first shadow root. */ 3409 if (kvm_shadow_root_allocated(kvm)) 3410 goto out_unlock; 3411 3412 /* 3413 * Check if anything actually needs to be allocated, e.g. all metadata 3414 * will be allocated upfront if TDP is disabled. 3415 */ 3416 if (kvm_memslots_have_rmaps(kvm) && 3417 kvm_page_track_write_tracking_enabled(kvm)) 3418 goto out_success; 3419 3420 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { 3421 slots = __kvm_memslots(kvm, i); 3422 kvm_for_each_memslot(slot, bkt, slots) { 3423 /* 3424 * Both of these functions are no-ops if the target is 3425 * already allocated, so unconditionally calling both 3426 * is safe. Intentionally do NOT free allocations on 3427 * failure to avoid having to track which allocations 3428 * were made now versus when the memslot was created. 3429 * The metadata is guaranteed to be freed when the slot 3430 * is freed, and will be kept/used if userspace retries 3431 * KVM_RUN instead of killing the VM. 3432 */ 3433 r = memslot_rmap_alloc(slot, slot->npages); 3434 if (r) 3435 goto out_unlock; 3436 r = kvm_page_track_write_tracking_alloc(slot); 3437 if (r) 3438 goto out_unlock; 3439 } 3440 } 3441 3442 /* 3443 * Ensure that shadow_root_allocated becomes true strictly after 3444 * all the related pointers are set. 3445 */ 3446 out_success: 3447 smp_store_release(&kvm->arch.shadow_root_allocated, true); 3448 3449 out_unlock: 3450 mutex_unlock(&kvm->slots_arch_lock); 3451 return r; 3452 } 3453 3454 static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu) 3455 { 3456 struct kvm_mmu *mmu = vcpu->arch.mmu; 3457 u64 pdptrs[4], pm_mask; 3458 gfn_t root_gfn, root_pgd; 3459 hpa_t root; 3460 unsigned i; 3461 int r; 3462 3463 root_pgd = mmu->get_guest_pgd(vcpu); 3464 root_gfn = root_pgd >> PAGE_SHIFT; 3465 3466 if (mmu_check_root(vcpu, root_gfn)) 3467 return 1; 3468 3469 /* 3470 * On SVM, reading PDPTRs might access guest memory, which might fault 3471 * and thus might sleep. Grab the PDPTRs before acquiring mmu_lock. 3472 */ 3473 if (mmu->root_level == PT32E_ROOT_LEVEL) { 3474 for (i = 0; i < 4; ++i) { 3475 pdptrs[i] = mmu->get_pdptr(vcpu, i); 3476 if (!(pdptrs[i] & PT_PRESENT_MASK)) 3477 continue; 3478 3479 if (mmu_check_root(vcpu, pdptrs[i] >> PAGE_SHIFT)) 3480 return 1; 3481 } 3482 } 3483 3484 r = mmu_first_shadow_root_alloc(vcpu->kvm); 3485 if (r) 3486 return r; 3487 3488 write_lock(&vcpu->kvm->mmu_lock); 3489 r = make_mmu_pages_available(vcpu); 3490 if (r < 0) 3491 goto out_unlock; 3492 3493 /* 3494 * Do we shadow a long mode page table? If so we need to 3495 * write-protect the guests page table root. 3496 */ 3497 if (mmu->root_level >= PT64_ROOT_4LEVEL) { 3498 root = mmu_alloc_root(vcpu, root_gfn, 0, 3499 mmu->shadow_root_level, false); 3500 mmu->root.hpa = root; 3501 goto set_root_pgd; 3502 } 3503 3504 if (WARN_ON_ONCE(!mmu->pae_root)) { 3505 r = -EIO; 3506 goto out_unlock; 3507 } 3508 3509 /* 3510 * We shadow a 32 bit page table. This may be a legacy 2-level 3511 * or a PAE 3-level page table. In either case we need to be aware that 3512 * the shadow page table may be a PAE or a long mode page table. 3513 */ 3514 pm_mask = PT_PRESENT_MASK | shadow_me_mask; 3515 if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL) { 3516 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK; 3517 3518 if (WARN_ON_ONCE(!mmu->pml4_root)) { 3519 r = -EIO; 3520 goto out_unlock; 3521 } 3522 mmu->pml4_root[0] = __pa(mmu->pae_root) | pm_mask; 3523 3524 if (mmu->shadow_root_level == PT64_ROOT_5LEVEL) { 3525 if (WARN_ON_ONCE(!mmu->pml5_root)) { 3526 r = -EIO; 3527 goto out_unlock; 3528 } 3529 mmu->pml5_root[0] = __pa(mmu->pml4_root) | pm_mask; 3530 } 3531 } 3532 3533 for (i = 0; i < 4; ++i) { 3534 WARN_ON_ONCE(IS_VALID_PAE_ROOT(mmu->pae_root[i])); 3535 3536 if (mmu->root_level == PT32E_ROOT_LEVEL) { 3537 if (!(pdptrs[i] & PT_PRESENT_MASK)) { 3538 mmu->pae_root[i] = INVALID_PAE_ROOT; 3539 continue; 3540 } 3541 root_gfn = pdptrs[i] >> PAGE_SHIFT; 3542 } 3543 3544 root = mmu_alloc_root(vcpu, root_gfn, i << 30, 3545 PT32_ROOT_LEVEL, false); 3546 mmu->pae_root[i] = root | pm_mask; 3547 } 3548 3549 if (mmu->shadow_root_level == PT64_ROOT_5LEVEL) 3550 mmu->root.hpa = __pa(mmu->pml5_root); 3551 else if (mmu->shadow_root_level == PT64_ROOT_4LEVEL) 3552 mmu->root.hpa = __pa(mmu->pml4_root); 3553 else 3554 mmu->root.hpa = __pa(mmu->pae_root); 3555 3556 set_root_pgd: 3557 mmu->root.pgd = root_pgd; 3558 out_unlock: 3559 write_unlock(&vcpu->kvm->mmu_lock); 3560 3561 return r; 3562 } 3563 3564 static int mmu_alloc_special_roots(struct kvm_vcpu *vcpu) 3565 { 3566 struct kvm_mmu *mmu = vcpu->arch.mmu; 3567 bool need_pml5 = mmu->shadow_root_level > PT64_ROOT_4LEVEL; 3568 u64 *pml5_root = NULL; 3569 u64 *pml4_root = NULL; 3570 u64 *pae_root; 3571 3572 /* 3573 * When shadowing 32-bit or PAE NPT with 64-bit NPT, the PML4 and PDP 3574 * tables are allocated and initialized at root creation as there is no 3575 * equivalent level in the guest's NPT to shadow. Allocate the tables 3576 * on demand, as running a 32-bit L1 VMM on 64-bit KVM is very rare. 3577 */ 3578 if (mmu->direct_map || mmu->root_level >= PT64_ROOT_4LEVEL || 3579 mmu->shadow_root_level < PT64_ROOT_4LEVEL) 3580 return 0; 3581 3582 /* 3583 * NPT, the only paging mode that uses this horror, uses a fixed number 3584 * of levels for the shadow page tables, e.g. all MMUs are 4-level or 3585 * all MMus are 5-level. Thus, this can safely require that pml5_root 3586 * is allocated if the other roots are valid and pml5 is needed, as any 3587 * prior MMU would also have required pml5. 3588 */ 3589 if (mmu->pae_root && mmu->pml4_root && (!need_pml5 || mmu->pml5_root)) 3590 return 0; 3591 3592 /* 3593 * The special roots should always be allocated in concert. Yell and 3594 * bail if KVM ends up in a state where only one of the roots is valid. 3595 */ 3596 if (WARN_ON_ONCE(!tdp_enabled || mmu->pae_root || mmu->pml4_root || 3597 (need_pml5 && mmu->pml5_root))) 3598 return -EIO; 3599 3600 /* 3601 * Unlike 32-bit NPT, the PDP table doesn't need to be in low mem, and 3602 * doesn't need to be decrypted. 3603 */ 3604 pae_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT); 3605 if (!pae_root) 3606 return -ENOMEM; 3607 3608 #ifdef CONFIG_X86_64 3609 pml4_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT); 3610 if (!pml4_root) 3611 goto err_pml4; 3612 3613 if (need_pml5) { 3614 pml5_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT); 3615 if (!pml5_root) 3616 goto err_pml5; 3617 } 3618 #endif 3619 3620 mmu->pae_root = pae_root; 3621 mmu->pml4_root = pml4_root; 3622 mmu->pml5_root = pml5_root; 3623 3624 return 0; 3625 3626 #ifdef CONFIG_X86_64 3627 err_pml5: 3628 free_page((unsigned long)pml4_root); 3629 err_pml4: 3630 free_page((unsigned long)pae_root); 3631 return -ENOMEM; 3632 #endif 3633 } 3634 3635 static bool is_unsync_root(hpa_t root) 3636 { 3637 struct kvm_mmu_page *sp; 3638 3639 if (!VALID_PAGE(root)) 3640 return false; 3641 3642 /* 3643 * The read barrier orders the CPU's read of SPTE.W during the page table 3644 * walk before the reads of sp->unsync/sp->unsync_children here. 3645 * 3646 * Even if another CPU was marking the SP as unsync-ed simultaneously, 3647 * any guest page table changes are not guaranteed to be visible anyway 3648 * until this VCPU issues a TLB flush strictly after those changes are 3649 * made. We only need to ensure that the other CPU sets these flags 3650 * before any actual changes to the page tables are made. The comments 3651 * in mmu_try_to_unsync_pages() describe what could go wrong if this 3652 * requirement isn't satisfied. 3653 */ 3654 smp_rmb(); 3655 sp = to_shadow_page(root); 3656 3657 /* 3658 * PAE roots (somewhat arbitrarily) aren't backed by shadow pages, the 3659 * PDPTEs for a given PAE root need to be synchronized individually. 3660 */ 3661 if (WARN_ON_ONCE(!sp)) 3662 return false; 3663 3664 if (sp->unsync || sp->unsync_children) 3665 return true; 3666 3667 return false; 3668 } 3669 3670 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu) 3671 { 3672 int i; 3673 struct kvm_mmu_page *sp; 3674 3675 if (vcpu->arch.mmu->direct_map) 3676 return; 3677 3678 if (!VALID_PAGE(vcpu->arch.mmu->root.hpa)) 3679 return; 3680 3681 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY); 3682 3683 if (vcpu->arch.mmu->root_level >= PT64_ROOT_4LEVEL) { 3684 hpa_t root = vcpu->arch.mmu->root.hpa; 3685 sp = to_shadow_page(root); 3686 3687 if (!is_unsync_root(root)) 3688 return; 3689 3690 write_lock(&vcpu->kvm->mmu_lock); 3691 mmu_sync_children(vcpu, sp, true); 3692 write_unlock(&vcpu->kvm->mmu_lock); 3693 return; 3694 } 3695 3696 write_lock(&vcpu->kvm->mmu_lock); 3697 3698 for (i = 0; i < 4; ++i) { 3699 hpa_t root = vcpu->arch.mmu->pae_root[i]; 3700 3701 if (IS_VALID_PAE_ROOT(root)) { 3702 root &= PT64_BASE_ADDR_MASK; 3703 sp = to_shadow_page(root); 3704 mmu_sync_children(vcpu, sp, true); 3705 } 3706 } 3707 3708 write_unlock(&vcpu->kvm->mmu_lock); 3709 } 3710 3711 void kvm_mmu_sync_prev_roots(struct kvm_vcpu *vcpu) 3712 { 3713 unsigned long roots_to_free = 0; 3714 int i; 3715 3716 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 3717 if (is_unsync_root(vcpu->arch.mmu->prev_roots[i].hpa)) 3718 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i); 3719 3720 /* sync prev_roots by simply freeing them */ 3721 kvm_mmu_free_roots(vcpu->kvm, vcpu->arch.mmu, roots_to_free); 3722 } 3723 3724 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, 3725 gpa_t vaddr, u64 access, 3726 struct x86_exception *exception) 3727 { 3728 if (exception) 3729 exception->error_code = 0; 3730 return kvm_translate_gpa(vcpu, mmu, vaddr, access, exception); 3731 } 3732 3733 static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct) 3734 { 3735 /* 3736 * A nested guest cannot use the MMIO cache if it is using nested 3737 * page tables, because cr2 is a nGPA while the cache stores GPAs. 3738 */ 3739 if (mmu_is_nested(vcpu)) 3740 return false; 3741 3742 if (direct) 3743 return vcpu_match_mmio_gpa(vcpu, addr); 3744 3745 return vcpu_match_mmio_gva(vcpu, addr); 3746 } 3747 3748 /* 3749 * Return the level of the lowest level SPTE added to sptes. 3750 * That SPTE may be non-present. 3751 * 3752 * Must be called between walk_shadow_page_lockless_{begin,end}. 3753 */ 3754 static int get_walk(struct kvm_vcpu *vcpu, u64 addr, u64 *sptes, int *root_level) 3755 { 3756 struct kvm_shadow_walk_iterator iterator; 3757 int leaf = -1; 3758 u64 spte; 3759 3760 for (shadow_walk_init(&iterator, vcpu, addr), 3761 *root_level = iterator.level; 3762 shadow_walk_okay(&iterator); 3763 __shadow_walk_next(&iterator, spte)) { 3764 leaf = iterator.level; 3765 spte = mmu_spte_get_lockless(iterator.sptep); 3766 3767 sptes[leaf] = spte; 3768 } 3769 3770 return leaf; 3771 } 3772 3773 /* return true if reserved bit(s) are detected on a valid, non-MMIO SPTE. */ 3774 static bool get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep) 3775 { 3776 u64 sptes[PT64_ROOT_MAX_LEVEL + 1]; 3777 struct rsvd_bits_validate *rsvd_check; 3778 int root, leaf, level; 3779 bool reserved = false; 3780 3781 walk_shadow_page_lockless_begin(vcpu); 3782 3783 if (is_tdp_mmu(vcpu->arch.mmu)) 3784 leaf = kvm_tdp_mmu_get_walk(vcpu, addr, sptes, &root); 3785 else 3786 leaf = get_walk(vcpu, addr, sptes, &root); 3787 3788 walk_shadow_page_lockless_end(vcpu); 3789 3790 if (unlikely(leaf < 0)) { 3791 *sptep = 0ull; 3792 return reserved; 3793 } 3794 3795 *sptep = sptes[leaf]; 3796 3797 /* 3798 * Skip reserved bits checks on the terminal leaf if it's not a valid 3799 * SPTE. Note, this also (intentionally) skips MMIO SPTEs, which, by 3800 * design, always have reserved bits set. The purpose of the checks is 3801 * to detect reserved bits on non-MMIO SPTEs. i.e. buggy SPTEs. 3802 */ 3803 if (!is_shadow_present_pte(sptes[leaf])) 3804 leaf++; 3805 3806 rsvd_check = &vcpu->arch.mmu->shadow_zero_check; 3807 3808 for (level = root; level >= leaf; level--) 3809 reserved |= is_rsvd_spte(rsvd_check, sptes[level], level); 3810 3811 if (reserved) { 3812 pr_err("%s: reserved bits set on MMU-present spte, addr 0x%llx, hierarchy:\n", 3813 __func__, addr); 3814 for (level = root; level >= leaf; level--) 3815 pr_err("------ spte = 0x%llx level = %d, rsvd bits = 0x%llx", 3816 sptes[level], level, 3817 get_rsvd_bits(rsvd_check, sptes[level], level)); 3818 } 3819 3820 return reserved; 3821 } 3822 3823 static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct) 3824 { 3825 u64 spte; 3826 bool reserved; 3827 3828 if (mmio_info_in_cache(vcpu, addr, direct)) 3829 return RET_PF_EMULATE; 3830 3831 reserved = get_mmio_spte(vcpu, addr, &spte); 3832 if (WARN_ON(reserved)) 3833 return -EINVAL; 3834 3835 if (is_mmio_spte(spte)) { 3836 gfn_t gfn = get_mmio_spte_gfn(spte); 3837 unsigned int access = get_mmio_spte_access(spte); 3838 3839 if (!check_mmio_spte(vcpu, spte)) 3840 return RET_PF_INVALID; 3841 3842 if (direct) 3843 addr = 0; 3844 3845 trace_handle_mmio_page_fault(addr, gfn, access); 3846 vcpu_cache_mmio_info(vcpu, addr, gfn, access); 3847 return RET_PF_EMULATE; 3848 } 3849 3850 /* 3851 * If the page table is zapped by other cpus, let CPU fault again on 3852 * the address. 3853 */ 3854 return RET_PF_RETRY; 3855 } 3856 3857 static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu, 3858 struct kvm_page_fault *fault) 3859 { 3860 if (unlikely(fault->rsvd)) 3861 return false; 3862 3863 if (!fault->present || !fault->write) 3864 return false; 3865 3866 /* 3867 * guest is writing the page which is write tracked which can 3868 * not be fixed by page fault handler. 3869 */ 3870 if (kvm_slot_page_track_is_active(vcpu->kvm, fault->slot, fault->gfn, KVM_PAGE_TRACK_WRITE)) 3871 return true; 3872 3873 return false; 3874 } 3875 3876 static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr) 3877 { 3878 struct kvm_shadow_walk_iterator iterator; 3879 u64 spte; 3880 3881 walk_shadow_page_lockless_begin(vcpu); 3882 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) 3883 clear_sp_write_flooding_count(iterator.sptep); 3884 walk_shadow_page_lockless_end(vcpu); 3885 } 3886 3887 static u32 alloc_apf_token(struct kvm_vcpu *vcpu) 3888 { 3889 /* make sure the token value is not 0 */ 3890 u32 id = vcpu->arch.apf.id; 3891 3892 if (id << 12 == 0) 3893 vcpu->arch.apf.id = 1; 3894 3895 return (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id; 3896 } 3897 3898 static bool kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, 3899 gfn_t gfn) 3900 { 3901 struct kvm_arch_async_pf arch; 3902 3903 arch.token = alloc_apf_token(vcpu); 3904 arch.gfn = gfn; 3905 arch.direct_map = vcpu->arch.mmu->direct_map; 3906 arch.cr3 = vcpu->arch.mmu->get_guest_pgd(vcpu); 3907 3908 return kvm_setup_async_pf(vcpu, cr2_or_gpa, 3909 kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch); 3910 } 3911 3912 static bool kvm_faultin_pfn(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault, int *r) 3913 { 3914 struct kvm_memory_slot *slot = fault->slot; 3915 bool async; 3916 3917 /* 3918 * Retry the page fault if the gfn hit a memslot that is being deleted 3919 * or moved. This ensures any existing SPTEs for the old memslot will 3920 * be zapped before KVM inserts a new MMIO SPTE for the gfn. 3921 */ 3922 if (slot && (slot->flags & KVM_MEMSLOT_INVALID)) 3923 goto out_retry; 3924 3925 if (!kvm_is_visible_memslot(slot)) { 3926 /* Don't expose private memslots to L2. */ 3927 if (is_guest_mode(vcpu)) { 3928 fault->slot = NULL; 3929 fault->pfn = KVM_PFN_NOSLOT; 3930 fault->map_writable = false; 3931 return false; 3932 } 3933 /* 3934 * If the APIC access page exists but is disabled, go directly 3935 * to emulation without caching the MMIO access or creating a 3936 * MMIO SPTE. That way the cache doesn't need to be purged 3937 * when the AVIC is re-enabled. 3938 */ 3939 if (slot && slot->id == APIC_ACCESS_PAGE_PRIVATE_MEMSLOT && 3940 !kvm_apicv_activated(vcpu->kvm)) { 3941 *r = RET_PF_EMULATE; 3942 return true; 3943 } 3944 } 3945 3946 async = false; 3947 fault->pfn = __gfn_to_pfn_memslot(slot, fault->gfn, false, &async, 3948 fault->write, &fault->map_writable, 3949 &fault->hva); 3950 if (!async) 3951 return false; /* *pfn has correct page already */ 3952 3953 if (!fault->prefetch && kvm_can_do_async_pf(vcpu)) { 3954 trace_kvm_try_async_get_page(fault->addr, fault->gfn); 3955 if (kvm_find_async_pf_gfn(vcpu, fault->gfn)) { 3956 trace_kvm_async_pf_doublefault(fault->addr, fault->gfn); 3957 kvm_make_request(KVM_REQ_APF_HALT, vcpu); 3958 goto out_retry; 3959 } else if (kvm_arch_setup_async_pf(vcpu, fault->addr, fault->gfn)) 3960 goto out_retry; 3961 } 3962 3963 fault->pfn = __gfn_to_pfn_memslot(slot, fault->gfn, false, NULL, 3964 fault->write, &fault->map_writable, 3965 &fault->hva); 3966 return false; 3967 3968 out_retry: 3969 *r = RET_PF_RETRY; 3970 return true; 3971 } 3972 3973 /* 3974 * Returns true if the page fault is stale and needs to be retried, i.e. if the 3975 * root was invalidated by a memslot update or a relevant mmu_notifier fired. 3976 */ 3977 static bool is_page_fault_stale(struct kvm_vcpu *vcpu, 3978 struct kvm_page_fault *fault, int mmu_seq) 3979 { 3980 struct kvm_mmu_page *sp = to_shadow_page(vcpu->arch.mmu->root.hpa); 3981 3982 /* Special roots, e.g. pae_root, are not backed by shadow pages. */ 3983 if (sp && is_obsolete_sp(vcpu->kvm, sp)) 3984 return true; 3985 3986 /* 3987 * Roots without an associated shadow page are considered invalid if 3988 * there is a pending request to free obsolete roots. The request is 3989 * only a hint that the current root _may_ be obsolete and needs to be 3990 * reloaded, e.g. if the guest frees a PGD that KVM is tracking as a 3991 * previous root, then __kvm_mmu_prepare_zap_page() signals all vCPUs 3992 * to reload even if no vCPU is actively using the root. 3993 */ 3994 if (!sp && kvm_test_request(KVM_REQ_MMU_FREE_OBSOLETE_ROOTS, vcpu)) 3995 return true; 3996 3997 return fault->slot && 3998 mmu_notifier_retry_hva(vcpu->kvm, mmu_seq, fault->hva); 3999 } 4000 4001 static int direct_page_fault(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault) 4002 { 4003 bool is_tdp_mmu_fault = is_tdp_mmu(vcpu->arch.mmu); 4004 4005 unsigned long mmu_seq; 4006 int r; 4007 4008 fault->gfn = fault->addr >> PAGE_SHIFT; 4009 fault->slot = kvm_vcpu_gfn_to_memslot(vcpu, fault->gfn); 4010 4011 if (page_fault_handle_page_track(vcpu, fault)) 4012 return RET_PF_EMULATE; 4013 4014 r = fast_page_fault(vcpu, fault); 4015 if (r != RET_PF_INVALID) 4016 return r; 4017 4018 r = mmu_topup_memory_caches(vcpu, false); 4019 if (r) 4020 return r; 4021 4022 mmu_seq = vcpu->kvm->mmu_notifier_seq; 4023 smp_rmb(); 4024 4025 if (kvm_faultin_pfn(vcpu, fault, &r)) 4026 return r; 4027 4028 if (handle_abnormal_pfn(vcpu, fault, ACC_ALL, &r)) 4029 return r; 4030 4031 r = RET_PF_RETRY; 4032 4033 if (is_tdp_mmu_fault) 4034 read_lock(&vcpu->kvm->mmu_lock); 4035 else 4036 write_lock(&vcpu->kvm->mmu_lock); 4037 4038 if (is_page_fault_stale(vcpu, fault, mmu_seq)) 4039 goto out_unlock; 4040 4041 r = make_mmu_pages_available(vcpu); 4042 if (r) 4043 goto out_unlock; 4044 4045 if (is_tdp_mmu_fault) 4046 r = kvm_tdp_mmu_map(vcpu, fault); 4047 else 4048 r = __direct_map(vcpu, fault); 4049 4050 out_unlock: 4051 if (is_tdp_mmu_fault) 4052 read_unlock(&vcpu->kvm->mmu_lock); 4053 else 4054 write_unlock(&vcpu->kvm->mmu_lock); 4055 kvm_release_pfn_clean(fault->pfn); 4056 return r; 4057 } 4058 4059 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, 4060 struct kvm_page_fault *fault) 4061 { 4062 pgprintk("%s: gva %lx error %x\n", __func__, fault->addr, fault->error_code); 4063 4064 /* This path builds a PAE pagetable, we can map 2mb pages at maximum. */ 4065 fault->max_level = PG_LEVEL_2M; 4066 return direct_page_fault(vcpu, fault); 4067 } 4068 4069 int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code, 4070 u64 fault_address, char *insn, int insn_len) 4071 { 4072 int r = 1; 4073 u32 flags = vcpu->arch.apf.host_apf_flags; 4074 4075 #ifndef CONFIG_X86_64 4076 /* A 64-bit CR2 should be impossible on 32-bit KVM. */ 4077 if (WARN_ON_ONCE(fault_address >> 32)) 4078 return -EFAULT; 4079 #endif 4080 4081 vcpu->arch.l1tf_flush_l1d = true; 4082 if (!flags) { 4083 trace_kvm_page_fault(fault_address, error_code); 4084 4085 if (kvm_event_needs_reinjection(vcpu)) 4086 kvm_mmu_unprotect_page_virt(vcpu, fault_address); 4087 r = kvm_mmu_page_fault(vcpu, fault_address, error_code, insn, 4088 insn_len); 4089 } else if (flags & KVM_PV_REASON_PAGE_NOT_PRESENT) { 4090 vcpu->arch.apf.host_apf_flags = 0; 4091 local_irq_disable(); 4092 kvm_async_pf_task_wait_schedule(fault_address); 4093 local_irq_enable(); 4094 } else { 4095 WARN_ONCE(1, "Unexpected host async PF flags: %x\n", flags); 4096 } 4097 4098 return r; 4099 } 4100 EXPORT_SYMBOL_GPL(kvm_handle_page_fault); 4101 4102 int kvm_tdp_page_fault(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault) 4103 { 4104 while (fault->max_level > PG_LEVEL_4K) { 4105 int page_num = KVM_PAGES_PER_HPAGE(fault->max_level); 4106 gfn_t base = (fault->addr >> PAGE_SHIFT) & ~(page_num - 1); 4107 4108 if (kvm_mtrr_check_gfn_range_consistency(vcpu, base, page_num)) 4109 break; 4110 4111 --fault->max_level; 4112 } 4113 4114 return direct_page_fault(vcpu, fault); 4115 } 4116 4117 static void nonpaging_init_context(struct kvm_mmu *context) 4118 { 4119 context->page_fault = nonpaging_page_fault; 4120 context->gva_to_gpa = nonpaging_gva_to_gpa; 4121 context->sync_page = nonpaging_sync_page; 4122 context->invlpg = NULL; 4123 context->direct_map = true; 4124 } 4125 4126 static inline bool is_root_usable(struct kvm_mmu_root_info *root, gpa_t pgd, 4127 union kvm_mmu_page_role role) 4128 { 4129 return (role.direct || pgd == root->pgd) && 4130 VALID_PAGE(root->hpa) && 4131 role.word == to_shadow_page(root->hpa)->role.word; 4132 } 4133 4134 /* 4135 * Find out if a previously cached root matching the new pgd/role is available, 4136 * and insert the current root as the MRU in the cache. 4137 * If a matching root is found, it is assigned to kvm_mmu->root and 4138 * true is returned. 4139 * If no match is found, kvm_mmu->root is left invalid, the LRU root is 4140 * evicted to make room for the current root, and false is returned. 4141 */ 4142 static bool cached_root_find_and_keep_current(struct kvm *kvm, struct kvm_mmu *mmu, 4143 gpa_t new_pgd, 4144 union kvm_mmu_page_role new_role) 4145 { 4146 uint i; 4147 4148 if (is_root_usable(&mmu->root, new_pgd, new_role)) 4149 return true; 4150 4151 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) { 4152 /* 4153 * The swaps end up rotating the cache like this: 4154 * C 0 1 2 3 (on entry to the function) 4155 * 0 C 1 2 3 4156 * 1 C 0 2 3 4157 * 2 C 0 1 3 4158 * 3 C 0 1 2 (on exit from the loop) 4159 */ 4160 swap(mmu->root, mmu->prev_roots[i]); 4161 if (is_root_usable(&mmu->root, new_pgd, new_role)) 4162 return true; 4163 } 4164 4165 kvm_mmu_free_roots(kvm, mmu, KVM_MMU_ROOT_CURRENT); 4166 return false; 4167 } 4168 4169 /* 4170 * Find out if a previously cached root matching the new pgd/role is available. 4171 * On entry, mmu->root is invalid. 4172 * If a matching root is found, it is assigned to kvm_mmu->root, the LRU entry 4173 * of the cache becomes invalid, and true is returned. 4174 * If no match is found, kvm_mmu->root is left invalid and false is returned. 4175 */ 4176 static bool cached_root_find_without_current(struct kvm *kvm, struct kvm_mmu *mmu, 4177 gpa_t new_pgd, 4178 union kvm_mmu_page_role new_role) 4179 { 4180 uint i; 4181 4182 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 4183 if (is_root_usable(&mmu->prev_roots[i], new_pgd, new_role)) 4184 goto hit; 4185 4186 return false; 4187 4188 hit: 4189 swap(mmu->root, mmu->prev_roots[i]); 4190 /* Bubble up the remaining roots. */ 4191 for (; i < KVM_MMU_NUM_PREV_ROOTS - 1; i++) 4192 mmu->prev_roots[i] = mmu->prev_roots[i + 1]; 4193 mmu->prev_roots[i].hpa = INVALID_PAGE; 4194 return true; 4195 } 4196 4197 static bool fast_pgd_switch(struct kvm *kvm, struct kvm_mmu *mmu, 4198 gpa_t new_pgd, union kvm_mmu_page_role new_role) 4199 { 4200 /* 4201 * For now, limit the caching to 64-bit hosts+VMs in order to avoid 4202 * having to deal with PDPTEs. We may add support for 32-bit hosts/VMs 4203 * later if necessary. 4204 */ 4205 if (VALID_PAGE(mmu->root.hpa) && !to_shadow_page(mmu->root.hpa)) 4206 kvm_mmu_free_roots(kvm, mmu, KVM_MMU_ROOT_CURRENT); 4207 4208 if (VALID_PAGE(mmu->root.hpa)) 4209 return cached_root_find_and_keep_current(kvm, mmu, new_pgd, new_role); 4210 else 4211 return cached_root_find_without_current(kvm, mmu, new_pgd, new_role); 4212 } 4213 4214 void kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd) 4215 { 4216 struct kvm_mmu *mmu = vcpu->arch.mmu; 4217 union kvm_mmu_page_role new_role = mmu->mmu_role.base; 4218 4219 if (!fast_pgd_switch(vcpu->kvm, mmu, new_pgd, new_role)) { 4220 /* kvm_mmu_ensure_valid_pgd will set up a new root. */ 4221 return; 4222 } 4223 4224 /* 4225 * It's possible that the cached previous root page is obsolete because 4226 * of a change in the MMU generation number. However, changing the 4227 * generation number is accompanied by KVM_REQ_MMU_FREE_OBSOLETE_ROOTS, 4228 * which will free the root set here and allocate a new one. 4229 */ 4230 kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu); 4231 4232 if (force_flush_and_sync_on_reuse) { 4233 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu); 4234 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 4235 } 4236 4237 /* 4238 * The last MMIO access's GVA and GPA are cached in the VCPU. When 4239 * switching to a new CR3, that GVA->GPA mapping may no longer be 4240 * valid. So clear any cached MMIO info even when we don't need to sync 4241 * the shadow page tables. 4242 */ 4243 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY); 4244 4245 /* 4246 * If this is a direct root page, it doesn't have a write flooding 4247 * count. Otherwise, clear the write flooding count. 4248 */ 4249 if (!new_role.direct) 4250 __clear_sp_write_flooding_count( 4251 to_shadow_page(vcpu->arch.mmu->root.hpa)); 4252 } 4253 EXPORT_SYMBOL_GPL(kvm_mmu_new_pgd); 4254 4255 static unsigned long get_cr3(struct kvm_vcpu *vcpu) 4256 { 4257 return kvm_read_cr3(vcpu); 4258 } 4259 4260 static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn, 4261 unsigned int access) 4262 { 4263 if (unlikely(is_mmio_spte(*sptep))) { 4264 if (gfn != get_mmio_spte_gfn(*sptep)) { 4265 mmu_spte_clear_no_track(sptep); 4266 return true; 4267 } 4268 4269 mark_mmio_spte(vcpu, sptep, gfn, access); 4270 return true; 4271 } 4272 4273 return false; 4274 } 4275 4276 #define PTTYPE_EPT 18 /* arbitrary */ 4277 #define PTTYPE PTTYPE_EPT 4278 #include "paging_tmpl.h" 4279 #undef PTTYPE 4280 4281 #define PTTYPE 64 4282 #include "paging_tmpl.h" 4283 #undef PTTYPE 4284 4285 #define PTTYPE 32 4286 #include "paging_tmpl.h" 4287 #undef PTTYPE 4288 4289 static void 4290 __reset_rsvds_bits_mask(struct rsvd_bits_validate *rsvd_check, 4291 u64 pa_bits_rsvd, int level, bool nx, bool gbpages, 4292 bool pse, bool amd) 4293 { 4294 u64 gbpages_bit_rsvd = 0; 4295 u64 nonleaf_bit8_rsvd = 0; 4296 u64 high_bits_rsvd; 4297 4298 rsvd_check->bad_mt_xwr = 0; 4299 4300 if (!gbpages) 4301 gbpages_bit_rsvd = rsvd_bits(7, 7); 4302 4303 if (level == PT32E_ROOT_LEVEL) 4304 high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 62); 4305 else 4306 high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 51); 4307 4308 /* Note, NX doesn't exist in PDPTEs, this is handled below. */ 4309 if (!nx) 4310 high_bits_rsvd |= rsvd_bits(63, 63); 4311 4312 /* 4313 * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for 4314 * leaf entries) on AMD CPUs only. 4315 */ 4316 if (amd) 4317 nonleaf_bit8_rsvd = rsvd_bits(8, 8); 4318 4319 switch (level) { 4320 case PT32_ROOT_LEVEL: 4321 /* no rsvd bits for 2 level 4K page table entries */ 4322 rsvd_check->rsvd_bits_mask[0][1] = 0; 4323 rsvd_check->rsvd_bits_mask[0][0] = 0; 4324 rsvd_check->rsvd_bits_mask[1][0] = 4325 rsvd_check->rsvd_bits_mask[0][0]; 4326 4327 if (!pse) { 4328 rsvd_check->rsvd_bits_mask[1][1] = 0; 4329 break; 4330 } 4331 4332 if (is_cpuid_PSE36()) 4333 /* 36bits PSE 4MB page */ 4334 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21); 4335 else 4336 /* 32 bits PSE 4MB page */ 4337 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21); 4338 break; 4339 case PT32E_ROOT_LEVEL: 4340 rsvd_check->rsvd_bits_mask[0][2] = rsvd_bits(63, 63) | 4341 high_bits_rsvd | 4342 rsvd_bits(5, 8) | 4343 rsvd_bits(1, 2); /* PDPTE */ 4344 rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd; /* PDE */ 4345 rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd; /* PTE */ 4346 rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd | 4347 rsvd_bits(13, 20); /* large page */ 4348 rsvd_check->rsvd_bits_mask[1][0] = 4349 rsvd_check->rsvd_bits_mask[0][0]; 4350 break; 4351 case PT64_ROOT_5LEVEL: 4352 rsvd_check->rsvd_bits_mask[0][4] = high_bits_rsvd | 4353 nonleaf_bit8_rsvd | 4354 rsvd_bits(7, 7); 4355 rsvd_check->rsvd_bits_mask[1][4] = 4356 rsvd_check->rsvd_bits_mask[0][4]; 4357 fallthrough; 4358 case PT64_ROOT_4LEVEL: 4359 rsvd_check->rsvd_bits_mask[0][3] = high_bits_rsvd | 4360 nonleaf_bit8_rsvd | 4361 rsvd_bits(7, 7); 4362 rsvd_check->rsvd_bits_mask[0][2] = high_bits_rsvd | 4363 gbpages_bit_rsvd; 4364 rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd; 4365 rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd; 4366 rsvd_check->rsvd_bits_mask[1][3] = 4367 rsvd_check->rsvd_bits_mask[0][3]; 4368 rsvd_check->rsvd_bits_mask[1][2] = high_bits_rsvd | 4369 gbpages_bit_rsvd | 4370 rsvd_bits(13, 29); 4371 rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd | 4372 rsvd_bits(13, 20); /* large page */ 4373 rsvd_check->rsvd_bits_mask[1][0] = 4374 rsvd_check->rsvd_bits_mask[0][0]; 4375 break; 4376 } 4377 } 4378 4379 static bool guest_can_use_gbpages(struct kvm_vcpu *vcpu) 4380 { 4381 /* 4382 * If TDP is enabled, let the guest use GBPAGES if they're supported in 4383 * hardware. The hardware page walker doesn't let KVM disable GBPAGES, 4384 * i.e. won't treat them as reserved, and KVM doesn't redo the GVA->GPA 4385 * walk for performance and complexity reasons. Not to mention KVM 4386 * _can't_ solve the problem because GVA->GPA walks aren't visible to 4387 * KVM once a TDP translation is installed. Mimic hardware behavior so 4388 * that KVM's is at least consistent, i.e. doesn't randomly inject #PF. 4389 */ 4390 return tdp_enabled ? boot_cpu_has(X86_FEATURE_GBPAGES) : 4391 guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES); 4392 } 4393 4394 static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu, 4395 struct kvm_mmu *context) 4396 { 4397 __reset_rsvds_bits_mask(&context->guest_rsvd_check, 4398 vcpu->arch.reserved_gpa_bits, 4399 context->root_level, is_efer_nx(context), 4400 guest_can_use_gbpages(vcpu), 4401 is_cr4_pse(context), 4402 guest_cpuid_is_amd_or_hygon(vcpu)); 4403 } 4404 4405 static void 4406 __reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check, 4407 u64 pa_bits_rsvd, bool execonly, int huge_page_level) 4408 { 4409 u64 high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 51); 4410 u64 large_1g_rsvd = 0, large_2m_rsvd = 0; 4411 u64 bad_mt_xwr; 4412 4413 if (huge_page_level < PG_LEVEL_1G) 4414 large_1g_rsvd = rsvd_bits(7, 7); 4415 if (huge_page_level < PG_LEVEL_2M) 4416 large_2m_rsvd = rsvd_bits(7, 7); 4417 4418 rsvd_check->rsvd_bits_mask[0][4] = high_bits_rsvd | rsvd_bits(3, 7); 4419 rsvd_check->rsvd_bits_mask[0][3] = high_bits_rsvd | rsvd_bits(3, 7); 4420 rsvd_check->rsvd_bits_mask[0][2] = high_bits_rsvd | rsvd_bits(3, 6) | large_1g_rsvd; 4421 rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd | rsvd_bits(3, 6) | large_2m_rsvd; 4422 rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd; 4423 4424 /* large page */ 4425 rsvd_check->rsvd_bits_mask[1][4] = rsvd_check->rsvd_bits_mask[0][4]; 4426 rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3]; 4427 rsvd_check->rsvd_bits_mask[1][2] = high_bits_rsvd | rsvd_bits(12, 29) | large_1g_rsvd; 4428 rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd | rsvd_bits(12, 20) | large_2m_rsvd; 4429 rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0]; 4430 4431 bad_mt_xwr = 0xFFull << (2 * 8); /* bits 3..5 must not be 2 */ 4432 bad_mt_xwr |= 0xFFull << (3 * 8); /* bits 3..5 must not be 3 */ 4433 bad_mt_xwr |= 0xFFull << (7 * 8); /* bits 3..5 must not be 7 */ 4434 bad_mt_xwr |= REPEAT_BYTE(1ull << 2); /* bits 0..2 must not be 010 */ 4435 bad_mt_xwr |= REPEAT_BYTE(1ull << 6); /* bits 0..2 must not be 110 */ 4436 if (!execonly) { 4437 /* bits 0..2 must not be 100 unless VMX capabilities allow it */ 4438 bad_mt_xwr |= REPEAT_BYTE(1ull << 4); 4439 } 4440 rsvd_check->bad_mt_xwr = bad_mt_xwr; 4441 } 4442 4443 static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu, 4444 struct kvm_mmu *context, bool execonly, int huge_page_level) 4445 { 4446 __reset_rsvds_bits_mask_ept(&context->guest_rsvd_check, 4447 vcpu->arch.reserved_gpa_bits, execonly, 4448 huge_page_level); 4449 } 4450 4451 static inline u64 reserved_hpa_bits(void) 4452 { 4453 return rsvd_bits(shadow_phys_bits, 63); 4454 } 4455 4456 /* 4457 * the page table on host is the shadow page table for the page 4458 * table in guest or amd nested guest, its mmu features completely 4459 * follow the features in guest. 4460 */ 4461 static void reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, 4462 struct kvm_mmu *context) 4463 { 4464 /* 4465 * KVM uses NX when TDP is disabled to handle a variety of scenarios, 4466 * notably for huge SPTEs if iTLB multi-hit mitigation is enabled and 4467 * to generate correct permissions for CR0.WP=0/CR4.SMEP=1/EFER.NX=0. 4468 * The iTLB multi-hit workaround can be toggled at any time, so assume 4469 * NX can be used by any non-nested shadow MMU to avoid having to reset 4470 * MMU contexts. Note, KVM forces EFER.NX=1 when TDP is disabled. 4471 */ 4472 bool uses_nx = is_efer_nx(context) || !tdp_enabled; 4473 4474 /* @amd adds a check on bit of SPTEs, which KVM shouldn't use anyways. */ 4475 bool is_amd = true; 4476 /* KVM doesn't use 2-level page tables for the shadow MMU. */ 4477 bool is_pse = false; 4478 struct rsvd_bits_validate *shadow_zero_check; 4479 int i; 4480 4481 WARN_ON_ONCE(context->shadow_root_level < PT32E_ROOT_LEVEL); 4482 4483 shadow_zero_check = &context->shadow_zero_check; 4484 __reset_rsvds_bits_mask(shadow_zero_check, reserved_hpa_bits(), 4485 context->shadow_root_level, uses_nx, 4486 guest_can_use_gbpages(vcpu), is_pse, is_amd); 4487 4488 if (!shadow_me_mask) 4489 return; 4490 4491 for (i = context->shadow_root_level; --i >= 0;) { 4492 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask; 4493 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask; 4494 } 4495 4496 } 4497 4498 static inline bool boot_cpu_is_amd(void) 4499 { 4500 WARN_ON_ONCE(!tdp_enabled); 4501 return shadow_x_mask == 0; 4502 } 4503 4504 /* 4505 * the direct page table on host, use as much mmu features as 4506 * possible, however, kvm currently does not do execution-protection. 4507 */ 4508 static void 4509 reset_tdp_shadow_zero_bits_mask(struct kvm_mmu *context) 4510 { 4511 struct rsvd_bits_validate *shadow_zero_check; 4512 int i; 4513 4514 shadow_zero_check = &context->shadow_zero_check; 4515 4516 if (boot_cpu_is_amd()) 4517 __reset_rsvds_bits_mask(shadow_zero_check, reserved_hpa_bits(), 4518 context->shadow_root_level, false, 4519 boot_cpu_has(X86_FEATURE_GBPAGES), 4520 false, true); 4521 else 4522 __reset_rsvds_bits_mask_ept(shadow_zero_check, 4523 reserved_hpa_bits(), false, 4524 max_huge_page_level); 4525 4526 if (!shadow_me_mask) 4527 return; 4528 4529 for (i = context->shadow_root_level; --i >= 0;) { 4530 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask; 4531 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask; 4532 } 4533 } 4534 4535 /* 4536 * as the comments in reset_shadow_zero_bits_mask() except it 4537 * is the shadow page table for intel nested guest. 4538 */ 4539 static void 4540 reset_ept_shadow_zero_bits_mask(struct kvm_mmu *context, bool execonly) 4541 { 4542 __reset_rsvds_bits_mask_ept(&context->shadow_zero_check, 4543 reserved_hpa_bits(), execonly, 4544 max_huge_page_level); 4545 } 4546 4547 #define BYTE_MASK(access) \ 4548 ((1 & (access) ? 2 : 0) | \ 4549 (2 & (access) ? 4 : 0) | \ 4550 (3 & (access) ? 8 : 0) | \ 4551 (4 & (access) ? 16 : 0) | \ 4552 (5 & (access) ? 32 : 0) | \ 4553 (6 & (access) ? 64 : 0) | \ 4554 (7 & (access) ? 128 : 0)) 4555 4556 4557 static void update_permission_bitmask(struct kvm_mmu *mmu, bool ept) 4558 { 4559 unsigned byte; 4560 4561 const u8 x = BYTE_MASK(ACC_EXEC_MASK); 4562 const u8 w = BYTE_MASK(ACC_WRITE_MASK); 4563 const u8 u = BYTE_MASK(ACC_USER_MASK); 4564 4565 bool cr4_smep = is_cr4_smep(mmu); 4566 bool cr4_smap = is_cr4_smap(mmu); 4567 bool cr0_wp = is_cr0_wp(mmu); 4568 bool efer_nx = is_efer_nx(mmu); 4569 4570 for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) { 4571 unsigned pfec = byte << 1; 4572 4573 /* 4574 * Each "*f" variable has a 1 bit for each UWX value 4575 * that causes a fault with the given PFEC. 4576 */ 4577 4578 /* Faults from writes to non-writable pages */ 4579 u8 wf = (pfec & PFERR_WRITE_MASK) ? (u8)~w : 0; 4580 /* Faults from user mode accesses to supervisor pages */ 4581 u8 uf = (pfec & PFERR_USER_MASK) ? (u8)~u : 0; 4582 /* Faults from fetches of non-executable pages*/ 4583 u8 ff = (pfec & PFERR_FETCH_MASK) ? (u8)~x : 0; 4584 /* Faults from kernel mode fetches of user pages */ 4585 u8 smepf = 0; 4586 /* Faults from kernel mode accesses of user pages */ 4587 u8 smapf = 0; 4588 4589 if (!ept) { 4590 /* Faults from kernel mode accesses to user pages */ 4591 u8 kf = (pfec & PFERR_USER_MASK) ? 0 : u; 4592 4593 /* Not really needed: !nx will cause pte.nx to fault */ 4594 if (!efer_nx) 4595 ff = 0; 4596 4597 /* Allow supervisor writes if !cr0.wp */ 4598 if (!cr0_wp) 4599 wf = (pfec & PFERR_USER_MASK) ? wf : 0; 4600 4601 /* Disallow supervisor fetches of user code if cr4.smep */ 4602 if (cr4_smep) 4603 smepf = (pfec & PFERR_FETCH_MASK) ? kf : 0; 4604 4605 /* 4606 * SMAP:kernel-mode data accesses from user-mode 4607 * mappings should fault. A fault is considered 4608 * as a SMAP violation if all of the following 4609 * conditions are true: 4610 * - X86_CR4_SMAP is set in CR4 4611 * - A user page is accessed 4612 * - The access is not a fetch 4613 * - The access is supervisor mode 4614 * - If implicit supervisor access or X86_EFLAGS_AC is clear 4615 * 4616 * Here, we cover the first four conditions. 4617 * The fifth is computed dynamically in permission_fault(); 4618 * PFERR_RSVD_MASK bit will be set in PFEC if the access is 4619 * *not* subject to SMAP restrictions. 4620 */ 4621 if (cr4_smap) 4622 smapf = (pfec & (PFERR_RSVD_MASK|PFERR_FETCH_MASK)) ? 0 : kf; 4623 } 4624 4625 mmu->permissions[byte] = ff | uf | wf | smepf | smapf; 4626 } 4627 } 4628 4629 /* 4630 * PKU is an additional mechanism by which the paging controls access to 4631 * user-mode addresses based on the value in the PKRU register. Protection 4632 * key violations are reported through a bit in the page fault error code. 4633 * Unlike other bits of the error code, the PK bit is not known at the 4634 * call site of e.g. gva_to_gpa; it must be computed directly in 4635 * permission_fault based on two bits of PKRU, on some machine state (CR4, 4636 * CR0, EFER, CPL), and on other bits of the error code and the page tables. 4637 * 4638 * In particular the following conditions come from the error code, the 4639 * page tables and the machine state: 4640 * - PK is always zero unless CR4.PKE=1 and EFER.LMA=1 4641 * - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch) 4642 * - PK is always zero if U=0 in the page tables 4643 * - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access. 4644 * 4645 * The PKRU bitmask caches the result of these four conditions. The error 4646 * code (minus the P bit) and the page table's U bit form an index into the 4647 * PKRU bitmask. Two bits of the PKRU bitmask are then extracted and ANDed 4648 * with the two bits of the PKRU register corresponding to the protection key. 4649 * For the first three conditions above the bits will be 00, thus masking 4650 * away both AD and WD. For all reads or if the last condition holds, WD 4651 * only will be masked away. 4652 */ 4653 static void update_pkru_bitmask(struct kvm_mmu *mmu) 4654 { 4655 unsigned bit; 4656 bool wp; 4657 4658 mmu->pkru_mask = 0; 4659 4660 if (!is_cr4_pke(mmu)) 4661 return; 4662 4663 wp = is_cr0_wp(mmu); 4664 4665 for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) { 4666 unsigned pfec, pkey_bits; 4667 bool check_pkey, check_write, ff, uf, wf, pte_user; 4668 4669 pfec = bit << 1; 4670 ff = pfec & PFERR_FETCH_MASK; 4671 uf = pfec & PFERR_USER_MASK; 4672 wf = pfec & PFERR_WRITE_MASK; 4673 4674 /* PFEC.RSVD is replaced by ACC_USER_MASK. */ 4675 pte_user = pfec & PFERR_RSVD_MASK; 4676 4677 /* 4678 * Only need to check the access which is not an 4679 * instruction fetch and is to a user page. 4680 */ 4681 check_pkey = (!ff && pte_user); 4682 /* 4683 * write access is controlled by PKRU if it is a 4684 * user access or CR0.WP = 1. 4685 */ 4686 check_write = check_pkey && wf && (uf || wp); 4687 4688 /* PKRU.AD stops both read and write access. */ 4689 pkey_bits = !!check_pkey; 4690 /* PKRU.WD stops write access. */ 4691 pkey_bits |= (!!check_write) << 1; 4692 4693 mmu->pkru_mask |= (pkey_bits & 3) << pfec; 4694 } 4695 } 4696 4697 static void reset_guest_paging_metadata(struct kvm_vcpu *vcpu, 4698 struct kvm_mmu *mmu) 4699 { 4700 if (!is_cr0_pg(mmu)) 4701 return; 4702 4703 reset_rsvds_bits_mask(vcpu, mmu); 4704 update_permission_bitmask(mmu, false); 4705 update_pkru_bitmask(mmu); 4706 } 4707 4708 static void paging64_init_context(struct kvm_mmu *context) 4709 { 4710 context->page_fault = paging64_page_fault; 4711 context->gva_to_gpa = paging64_gva_to_gpa; 4712 context->sync_page = paging64_sync_page; 4713 context->invlpg = paging64_invlpg; 4714 context->direct_map = false; 4715 } 4716 4717 static void paging32_init_context(struct kvm_mmu *context) 4718 { 4719 context->page_fault = paging32_page_fault; 4720 context->gva_to_gpa = paging32_gva_to_gpa; 4721 context->sync_page = paging32_sync_page; 4722 context->invlpg = paging32_invlpg; 4723 context->direct_map = false; 4724 } 4725 4726 static union kvm_mmu_extended_role kvm_calc_mmu_role_ext(struct kvm_vcpu *vcpu, 4727 struct kvm_mmu_role_regs *regs) 4728 { 4729 union kvm_mmu_extended_role ext = {0}; 4730 4731 if (____is_cr0_pg(regs)) { 4732 ext.cr0_pg = 1; 4733 ext.cr4_pae = ____is_cr4_pae(regs); 4734 ext.cr4_smep = ____is_cr4_smep(regs); 4735 ext.cr4_smap = ____is_cr4_smap(regs); 4736 ext.cr4_pse = ____is_cr4_pse(regs); 4737 4738 /* PKEY and LA57 are active iff long mode is active. */ 4739 ext.cr4_pke = ____is_efer_lma(regs) && ____is_cr4_pke(regs); 4740 ext.cr4_la57 = ____is_efer_lma(regs) && ____is_cr4_la57(regs); 4741 ext.efer_lma = ____is_efer_lma(regs); 4742 } 4743 4744 ext.valid = 1; 4745 4746 return ext; 4747 } 4748 4749 static union kvm_mmu_role kvm_calc_mmu_role_common(struct kvm_vcpu *vcpu, 4750 struct kvm_mmu_role_regs *regs, 4751 bool base_only) 4752 { 4753 union kvm_mmu_role role = {0}; 4754 4755 role.base.access = ACC_ALL; 4756 if (____is_cr0_pg(regs)) { 4757 role.base.efer_nx = ____is_efer_nx(regs); 4758 role.base.cr0_wp = ____is_cr0_wp(regs); 4759 } 4760 role.base.smm = is_smm(vcpu); 4761 role.base.guest_mode = is_guest_mode(vcpu); 4762 4763 if (base_only) 4764 return role; 4765 4766 role.ext = kvm_calc_mmu_role_ext(vcpu, regs); 4767 4768 return role; 4769 } 4770 4771 static inline int kvm_mmu_get_tdp_level(struct kvm_vcpu *vcpu) 4772 { 4773 /* tdp_root_level is architecture forced level, use it if nonzero */ 4774 if (tdp_root_level) 4775 return tdp_root_level; 4776 4777 /* Use 5-level TDP if and only if it's useful/necessary. */ 4778 if (max_tdp_level == 5 && cpuid_maxphyaddr(vcpu) <= 48) 4779 return 4; 4780 4781 return max_tdp_level; 4782 } 4783 4784 static union kvm_mmu_role 4785 kvm_calc_tdp_mmu_root_page_role(struct kvm_vcpu *vcpu, 4786 struct kvm_mmu_role_regs *regs, bool base_only) 4787 { 4788 union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, regs, base_only); 4789 4790 role.base.ad_disabled = (shadow_accessed_mask == 0); 4791 role.base.level = kvm_mmu_get_tdp_level(vcpu); 4792 role.base.direct = true; 4793 role.base.has_4_byte_gpte = false; 4794 4795 return role; 4796 } 4797 4798 static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu) 4799 { 4800 struct kvm_mmu *context = &vcpu->arch.root_mmu; 4801 struct kvm_mmu_role_regs regs = vcpu_to_role_regs(vcpu); 4802 union kvm_mmu_role new_role = 4803 kvm_calc_tdp_mmu_root_page_role(vcpu, ®s, false); 4804 4805 if (new_role.as_u64 == context->mmu_role.as_u64) 4806 return; 4807 4808 context->mmu_role.as_u64 = new_role.as_u64; 4809 context->page_fault = kvm_tdp_page_fault; 4810 context->sync_page = nonpaging_sync_page; 4811 context->invlpg = NULL; 4812 context->shadow_root_level = kvm_mmu_get_tdp_level(vcpu); 4813 context->direct_map = true; 4814 context->get_guest_pgd = get_cr3; 4815 context->get_pdptr = kvm_pdptr_read; 4816 context->inject_page_fault = kvm_inject_page_fault; 4817 context->root_level = role_regs_to_root_level(®s); 4818 4819 if (!is_cr0_pg(context)) 4820 context->gva_to_gpa = nonpaging_gva_to_gpa; 4821 else if (is_cr4_pae(context)) 4822 context->gva_to_gpa = paging64_gva_to_gpa; 4823 else 4824 context->gva_to_gpa = paging32_gva_to_gpa; 4825 4826 reset_guest_paging_metadata(vcpu, context); 4827 reset_tdp_shadow_zero_bits_mask(context); 4828 } 4829 4830 static union kvm_mmu_role 4831 kvm_calc_shadow_root_page_role_common(struct kvm_vcpu *vcpu, 4832 struct kvm_mmu_role_regs *regs, bool base_only) 4833 { 4834 union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, regs, base_only); 4835 4836 role.base.smep_andnot_wp = role.ext.cr4_smep && !____is_cr0_wp(regs); 4837 role.base.smap_andnot_wp = role.ext.cr4_smap && !____is_cr0_wp(regs); 4838 role.base.has_4_byte_gpte = ____is_cr0_pg(regs) && !____is_cr4_pae(regs); 4839 4840 return role; 4841 } 4842 4843 static union kvm_mmu_role 4844 kvm_calc_shadow_mmu_root_page_role(struct kvm_vcpu *vcpu, 4845 struct kvm_mmu_role_regs *regs, bool base_only) 4846 { 4847 union kvm_mmu_role role = 4848 kvm_calc_shadow_root_page_role_common(vcpu, regs, base_only); 4849 4850 role.base.direct = !____is_cr0_pg(regs); 4851 4852 if (!____is_efer_lma(regs)) 4853 role.base.level = PT32E_ROOT_LEVEL; 4854 else if (____is_cr4_la57(regs)) 4855 role.base.level = PT64_ROOT_5LEVEL; 4856 else 4857 role.base.level = PT64_ROOT_4LEVEL; 4858 4859 return role; 4860 } 4861 4862 static void shadow_mmu_init_context(struct kvm_vcpu *vcpu, struct kvm_mmu *context, 4863 struct kvm_mmu_role_regs *regs, 4864 union kvm_mmu_role new_role) 4865 { 4866 if (new_role.as_u64 == context->mmu_role.as_u64) 4867 return; 4868 4869 context->mmu_role.as_u64 = new_role.as_u64; 4870 4871 if (!is_cr0_pg(context)) 4872 nonpaging_init_context(context); 4873 else if (is_cr4_pae(context)) 4874 paging64_init_context(context); 4875 else 4876 paging32_init_context(context); 4877 context->root_level = role_regs_to_root_level(regs); 4878 4879 reset_guest_paging_metadata(vcpu, context); 4880 context->shadow_root_level = new_role.base.level; 4881 4882 reset_shadow_zero_bits_mask(vcpu, context); 4883 } 4884 4885 static void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, 4886 struct kvm_mmu_role_regs *regs) 4887 { 4888 struct kvm_mmu *context = &vcpu->arch.root_mmu; 4889 union kvm_mmu_role new_role = 4890 kvm_calc_shadow_mmu_root_page_role(vcpu, regs, false); 4891 4892 shadow_mmu_init_context(vcpu, context, regs, new_role); 4893 } 4894 4895 static union kvm_mmu_role 4896 kvm_calc_shadow_npt_root_page_role(struct kvm_vcpu *vcpu, 4897 struct kvm_mmu_role_regs *regs) 4898 { 4899 union kvm_mmu_role role = 4900 kvm_calc_shadow_root_page_role_common(vcpu, regs, false); 4901 4902 role.base.direct = false; 4903 role.base.level = kvm_mmu_get_tdp_level(vcpu); 4904 4905 return role; 4906 } 4907 4908 void kvm_init_shadow_npt_mmu(struct kvm_vcpu *vcpu, unsigned long cr0, 4909 unsigned long cr4, u64 efer, gpa_t nested_cr3) 4910 { 4911 struct kvm_mmu *context = &vcpu->arch.guest_mmu; 4912 struct kvm_mmu_role_regs regs = { 4913 .cr0 = cr0, 4914 .cr4 = cr4 & ~X86_CR4_PKE, 4915 .efer = efer, 4916 }; 4917 union kvm_mmu_role new_role; 4918 4919 new_role = kvm_calc_shadow_npt_root_page_role(vcpu, ®s); 4920 4921 shadow_mmu_init_context(vcpu, context, ®s, new_role); 4922 kvm_mmu_new_pgd(vcpu, nested_cr3); 4923 } 4924 EXPORT_SYMBOL_GPL(kvm_init_shadow_npt_mmu); 4925 4926 static union kvm_mmu_role 4927 kvm_calc_shadow_ept_root_page_role(struct kvm_vcpu *vcpu, bool accessed_dirty, 4928 bool execonly, u8 level) 4929 { 4930 union kvm_mmu_role role = {0}; 4931 4932 /* SMM flag is inherited from root_mmu */ 4933 role.base.smm = vcpu->arch.root_mmu.mmu_role.base.smm; 4934 4935 role.base.level = level; 4936 role.base.has_4_byte_gpte = false; 4937 role.base.direct = false; 4938 role.base.ad_disabled = !accessed_dirty; 4939 role.base.guest_mode = true; 4940 role.base.access = ACC_ALL; 4941 4942 /* EPT, and thus nested EPT, does not consume CR0, CR4, nor EFER. */ 4943 role.ext.word = 0; 4944 role.ext.execonly = execonly; 4945 role.ext.valid = 1; 4946 4947 return role; 4948 } 4949 4950 void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly, 4951 int huge_page_level, bool accessed_dirty, 4952 gpa_t new_eptp) 4953 { 4954 struct kvm_mmu *context = &vcpu->arch.guest_mmu; 4955 u8 level = vmx_eptp_page_walk_level(new_eptp); 4956 union kvm_mmu_role new_role = 4957 kvm_calc_shadow_ept_root_page_role(vcpu, accessed_dirty, 4958 execonly, level); 4959 4960 if (new_role.as_u64 != context->mmu_role.as_u64) { 4961 context->mmu_role.as_u64 = new_role.as_u64; 4962 4963 context->shadow_root_level = level; 4964 4965 context->ept_ad = accessed_dirty; 4966 context->page_fault = ept_page_fault; 4967 context->gva_to_gpa = ept_gva_to_gpa; 4968 context->sync_page = ept_sync_page; 4969 context->invlpg = ept_invlpg; 4970 context->root_level = level; 4971 context->direct_map = false; 4972 update_permission_bitmask(context, true); 4973 context->pkru_mask = 0; 4974 reset_rsvds_bits_mask_ept(vcpu, context, execonly, huge_page_level); 4975 reset_ept_shadow_zero_bits_mask(context, execonly); 4976 } 4977 4978 kvm_mmu_new_pgd(vcpu, new_eptp); 4979 } 4980 EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu); 4981 4982 static void init_kvm_softmmu(struct kvm_vcpu *vcpu) 4983 { 4984 struct kvm_mmu *context = &vcpu->arch.root_mmu; 4985 struct kvm_mmu_role_regs regs = vcpu_to_role_regs(vcpu); 4986 4987 kvm_init_shadow_mmu(vcpu, ®s); 4988 4989 context->get_guest_pgd = get_cr3; 4990 context->get_pdptr = kvm_pdptr_read; 4991 context->inject_page_fault = kvm_inject_page_fault; 4992 } 4993 4994 static union kvm_mmu_role 4995 kvm_calc_nested_mmu_role(struct kvm_vcpu *vcpu, struct kvm_mmu_role_regs *regs) 4996 { 4997 union kvm_mmu_role role; 4998 4999 role = kvm_calc_shadow_root_page_role_common(vcpu, regs, false); 5000 5001 /* 5002 * Nested MMUs are used only for walking L2's gva->gpa, they never have 5003 * shadow pages of their own and so "direct" has no meaning. Set it 5004 * to "true" to try to detect bogus usage of the nested MMU. 5005 */ 5006 role.base.direct = true; 5007 role.base.level = role_regs_to_root_level(regs); 5008 return role; 5009 } 5010 5011 static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu) 5012 { 5013 struct kvm_mmu_role_regs regs = vcpu_to_role_regs(vcpu); 5014 union kvm_mmu_role new_role = kvm_calc_nested_mmu_role(vcpu, ®s); 5015 struct kvm_mmu *g_context = &vcpu->arch.nested_mmu; 5016 5017 if (new_role.as_u64 == g_context->mmu_role.as_u64) 5018 return; 5019 5020 g_context->mmu_role.as_u64 = new_role.as_u64; 5021 g_context->get_guest_pgd = get_cr3; 5022 g_context->get_pdptr = kvm_pdptr_read; 5023 g_context->inject_page_fault = kvm_inject_page_fault; 5024 g_context->root_level = new_role.base.level; 5025 5026 /* 5027 * L2 page tables are never shadowed, so there is no need to sync 5028 * SPTEs. 5029 */ 5030 g_context->invlpg = NULL; 5031 5032 /* 5033 * Note that arch.mmu->gva_to_gpa translates l2_gpa to l1_gpa using 5034 * L1's nested page tables (e.g. EPT12). The nested translation 5035 * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using 5036 * L2's page tables as the first level of translation and L1's 5037 * nested page tables as the second level of translation. Basically 5038 * the gva_to_gpa functions between mmu and nested_mmu are swapped. 5039 */ 5040 if (!is_paging(vcpu)) 5041 g_context->gva_to_gpa = nonpaging_gva_to_gpa; 5042 else if (is_long_mode(vcpu)) 5043 g_context->gva_to_gpa = paging64_gva_to_gpa; 5044 else if (is_pae(vcpu)) 5045 g_context->gva_to_gpa = paging64_gva_to_gpa; 5046 else 5047 g_context->gva_to_gpa = paging32_gva_to_gpa; 5048 5049 reset_guest_paging_metadata(vcpu, g_context); 5050 } 5051 5052 void kvm_init_mmu(struct kvm_vcpu *vcpu) 5053 { 5054 if (mmu_is_nested(vcpu)) 5055 init_kvm_nested_mmu(vcpu); 5056 else if (tdp_enabled) 5057 init_kvm_tdp_mmu(vcpu); 5058 else 5059 init_kvm_softmmu(vcpu); 5060 } 5061 EXPORT_SYMBOL_GPL(kvm_init_mmu); 5062 5063 void kvm_mmu_after_set_cpuid(struct kvm_vcpu *vcpu) 5064 { 5065 /* 5066 * Invalidate all MMU roles to force them to reinitialize as CPUID 5067 * information is factored into reserved bit calculations. 5068 * 5069 * Correctly handling multiple vCPU models with respect to paging and 5070 * physical address properties) in a single VM would require tracking 5071 * all relevant CPUID information in kvm_mmu_page_role. That is very 5072 * undesirable as it would increase the memory requirements for 5073 * gfn_track (see struct kvm_mmu_page_role comments). For now that 5074 * problem is swept under the rug; KVM's CPUID API is horrific and 5075 * it's all but impossible to solve it without introducing a new API. 5076 */ 5077 vcpu->arch.root_mmu.mmu_role.ext.valid = 0; 5078 vcpu->arch.guest_mmu.mmu_role.ext.valid = 0; 5079 vcpu->arch.nested_mmu.mmu_role.ext.valid = 0; 5080 kvm_mmu_reset_context(vcpu); 5081 5082 /* 5083 * Changing guest CPUID after KVM_RUN is forbidden, see the comment in 5084 * kvm_arch_vcpu_ioctl(). 5085 */ 5086 KVM_BUG_ON(vcpu->arch.last_vmentry_cpu != -1, vcpu->kvm); 5087 } 5088 5089 void kvm_mmu_reset_context(struct kvm_vcpu *vcpu) 5090 { 5091 kvm_mmu_unload(vcpu); 5092 kvm_init_mmu(vcpu); 5093 } 5094 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context); 5095 5096 int kvm_mmu_load(struct kvm_vcpu *vcpu) 5097 { 5098 int r; 5099 5100 r = mmu_topup_memory_caches(vcpu, !vcpu->arch.mmu->direct_map); 5101 if (r) 5102 goto out; 5103 r = mmu_alloc_special_roots(vcpu); 5104 if (r) 5105 goto out; 5106 if (vcpu->arch.mmu->direct_map) 5107 r = mmu_alloc_direct_roots(vcpu); 5108 else 5109 r = mmu_alloc_shadow_roots(vcpu); 5110 if (r) 5111 goto out; 5112 5113 kvm_mmu_sync_roots(vcpu); 5114 5115 kvm_mmu_load_pgd(vcpu); 5116 5117 /* 5118 * Flush any TLB entries for the new root, the provenance of the root 5119 * is unknown. Even if KVM ensures there are no stale TLB entries 5120 * for a freed root, in theory another hypervisor could have left 5121 * stale entries. Flushing on alloc also allows KVM to skip the TLB 5122 * flush when freeing a root (see kvm_tdp_mmu_put_root()). 5123 */ 5124 static_call(kvm_x86_flush_tlb_current)(vcpu); 5125 out: 5126 return r; 5127 } 5128 5129 void kvm_mmu_unload(struct kvm_vcpu *vcpu) 5130 { 5131 struct kvm *kvm = vcpu->kvm; 5132 5133 kvm_mmu_free_roots(kvm, &vcpu->arch.root_mmu, KVM_MMU_ROOTS_ALL); 5134 WARN_ON(VALID_PAGE(vcpu->arch.root_mmu.root.hpa)); 5135 kvm_mmu_free_roots(kvm, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL); 5136 WARN_ON(VALID_PAGE(vcpu->arch.guest_mmu.root.hpa)); 5137 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY); 5138 } 5139 5140 static bool is_obsolete_root(struct kvm *kvm, hpa_t root_hpa) 5141 { 5142 struct kvm_mmu_page *sp; 5143 5144 if (!VALID_PAGE(root_hpa)) 5145 return false; 5146 5147 /* 5148 * When freeing obsolete roots, treat roots as obsolete if they don't 5149 * have an associated shadow page. This does mean KVM will get false 5150 * positives and free roots that don't strictly need to be freed, but 5151 * such false positives are relatively rare: 5152 * 5153 * (a) only PAE paging and nested NPT has roots without shadow pages 5154 * (b) remote reloads due to a memslot update obsoletes _all_ roots 5155 * (c) KVM doesn't track previous roots for PAE paging, and the guest 5156 * is unlikely to zap an in-use PGD. 5157 */ 5158 sp = to_shadow_page(root_hpa); 5159 return !sp || is_obsolete_sp(kvm, sp); 5160 } 5161 5162 static void __kvm_mmu_free_obsolete_roots(struct kvm *kvm, struct kvm_mmu *mmu) 5163 { 5164 unsigned long roots_to_free = 0; 5165 int i; 5166 5167 if (is_obsolete_root(kvm, mmu->root.hpa)) 5168 roots_to_free |= KVM_MMU_ROOT_CURRENT; 5169 5170 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) { 5171 if (is_obsolete_root(kvm, mmu->root.hpa)) 5172 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i); 5173 } 5174 5175 if (roots_to_free) 5176 kvm_mmu_free_roots(kvm, mmu, roots_to_free); 5177 } 5178 5179 void kvm_mmu_free_obsolete_roots(struct kvm_vcpu *vcpu) 5180 { 5181 __kvm_mmu_free_obsolete_roots(vcpu->kvm, &vcpu->arch.root_mmu); 5182 __kvm_mmu_free_obsolete_roots(vcpu->kvm, &vcpu->arch.guest_mmu); 5183 } 5184 5185 static bool need_remote_flush(u64 old, u64 new) 5186 { 5187 if (!is_shadow_present_pte(old)) 5188 return false; 5189 if (!is_shadow_present_pte(new)) 5190 return true; 5191 if ((old ^ new) & PT64_BASE_ADDR_MASK) 5192 return true; 5193 old ^= shadow_nx_mask; 5194 new ^= shadow_nx_mask; 5195 return (old & ~new & PT64_PERM_MASK) != 0; 5196 } 5197 5198 static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa, 5199 int *bytes) 5200 { 5201 u64 gentry = 0; 5202 int r; 5203 5204 /* 5205 * Assume that the pte write on a page table of the same type 5206 * as the current vcpu paging mode since we update the sptes only 5207 * when they have the same mode. 5208 */ 5209 if (is_pae(vcpu) && *bytes == 4) { 5210 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */ 5211 *gpa &= ~(gpa_t)7; 5212 *bytes = 8; 5213 } 5214 5215 if (*bytes == 4 || *bytes == 8) { 5216 r = kvm_vcpu_read_guest_atomic(vcpu, *gpa, &gentry, *bytes); 5217 if (r) 5218 gentry = 0; 5219 } 5220 5221 return gentry; 5222 } 5223 5224 /* 5225 * If we're seeing too many writes to a page, it may no longer be a page table, 5226 * or we may be forking, in which case it is better to unmap the page. 5227 */ 5228 static bool detect_write_flooding(struct kvm_mmu_page *sp) 5229 { 5230 /* 5231 * Skip write-flooding detected for the sp whose level is 1, because 5232 * it can become unsync, then the guest page is not write-protected. 5233 */ 5234 if (sp->role.level == PG_LEVEL_4K) 5235 return false; 5236 5237 atomic_inc(&sp->write_flooding_count); 5238 return atomic_read(&sp->write_flooding_count) >= 3; 5239 } 5240 5241 /* 5242 * Misaligned accesses are too much trouble to fix up; also, they usually 5243 * indicate a page is not used as a page table. 5244 */ 5245 static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa, 5246 int bytes) 5247 { 5248 unsigned offset, pte_size, misaligned; 5249 5250 pgprintk("misaligned: gpa %llx bytes %d role %x\n", 5251 gpa, bytes, sp->role.word); 5252 5253 offset = offset_in_page(gpa); 5254 pte_size = sp->role.has_4_byte_gpte ? 4 : 8; 5255 5256 /* 5257 * Sometimes, the OS only writes the last one bytes to update status 5258 * bits, for example, in linux, andb instruction is used in clear_bit(). 5259 */ 5260 if (!(offset & (pte_size - 1)) && bytes == 1) 5261 return false; 5262 5263 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1); 5264 misaligned |= bytes < 4; 5265 5266 return misaligned; 5267 } 5268 5269 static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte) 5270 { 5271 unsigned page_offset, quadrant; 5272 u64 *spte; 5273 int level; 5274 5275 page_offset = offset_in_page(gpa); 5276 level = sp->role.level; 5277 *nspte = 1; 5278 if (sp->role.has_4_byte_gpte) { 5279 page_offset <<= 1; /* 32->64 */ 5280 /* 5281 * A 32-bit pde maps 4MB while the shadow pdes map 5282 * only 2MB. So we need to double the offset again 5283 * and zap two pdes instead of one. 5284 */ 5285 if (level == PT32_ROOT_LEVEL) { 5286 page_offset &= ~7; /* kill rounding error */ 5287 page_offset <<= 1; 5288 *nspte = 2; 5289 } 5290 quadrant = page_offset >> PAGE_SHIFT; 5291 page_offset &= ~PAGE_MASK; 5292 if (quadrant != sp->role.quadrant) 5293 return NULL; 5294 } 5295 5296 spte = &sp->spt[page_offset / sizeof(*spte)]; 5297 return spte; 5298 } 5299 5300 static void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa, 5301 const u8 *new, int bytes, 5302 struct kvm_page_track_notifier_node *node) 5303 { 5304 gfn_t gfn = gpa >> PAGE_SHIFT; 5305 struct kvm_mmu_page *sp; 5306 LIST_HEAD(invalid_list); 5307 u64 entry, gentry, *spte; 5308 int npte; 5309 bool flush = false; 5310 5311 /* 5312 * If we don't have indirect shadow pages, it means no page is 5313 * write-protected, so we can exit simply. 5314 */ 5315 if (!READ_ONCE(vcpu->kvm->arch.indirect_shadow_pages)) 5316 return; 5317 5318 pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes); 5319 5320 /* 5321 * No need to care whether allocation memory is successful 5322 * or not since pte prefetch is skipped if it does not have 5323 * enough objects in the cache. 5324 */ 5325 mmu_topup_memory_caches(vcpu, true); 5326 5327 write_lock(&vcpu->kvm->mmu_lock); 5328 5329 gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, &bytes); 5330 5331 ++vcpu->kvm->stat.mmu_pte_write; 5332 5333 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) { 5334 if (detect_write_misaligned(sp, gpa, bytes) || 5335 detect_write_flooding(sp)) { 5336 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list); 5337 ++vcpu->kvm->stat.mmu_flooded; 5338 continue; 5339 } 5340 5341 spte = get_written_sptes(sp, gpa, &npte); 5342 if (!spte) 5343 continue; 5344 5345 while (npte--) { 5346 entry = *spte; 5347 mmu_page_zap_pte(vcpu->kvm, sp, spte, NULL); 5348 if (gentry && sp->role.level != PG_LEVEL_4K) 5349 ++vcpu->kvm->stat.mmu_pde_zapped; 5350 if (need_remote_flush(entry, *spte)) 5351 flush = true; 5352 ++spte; 5353 } 5354 } 5355 kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, flush); 5356 write_unlock(&vcpu->kvm->mmu_lock); 5357 } 5358 5359 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 error_code, 5360 void *insn, int insn_len) 5361 { 5362 int r, emulation_type = EMULTYPE_PF; 5363 bool direct = vcpu->arch.mmu->direct_map; 5364 5365 if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root.hpa))) 5366 return RET_PF_RETRY; 5367 5368 r = RET_PF_INVALID; 5369 if (unlikely(error_code & PFERR_RSVD_MASK)) { 5370 r = handle_mmio_page_fault(vcpu, cr2_or_gpa, direct); 5371 if (r == RET_PF_EMULATE) 5372 goto emulate; 5373 } 5374 5375 if (r == RET_PF_INVALID) { 5376 r = kvm_mmu_do_page_fault(vcpu, cr2_or_gpa, 5377 lower_32_bits(error_code), false); 5378 if (KVM_BUG_ON(r == RET_PF_INVALID, vcpu->kvm)) 5379 return -EIO; 5380 } 5381 5382 if (r < 0) 5383 return r; 5384 if (r != RET_PF_EMULATE) 5385 return 1; 5386 5387 /* 5388 * Before emulating the instruction, check if the error code 5389 * was due to a RO violation while translating the guest page. 5390 * This can occur when using nested virtualization with nested 5391 * paging in both guests. If true, we simply unprotect the page 5392 * and resume the guest. 5393 */ 5394 if (vcpu->arch.mmu->direct_map && 5395 (error_code & PFERR_NESTED_GUEST_PAGE) == PFERR_NESTED_GUEST_PAGE) { 5396 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(cr2_or_gpa)); 5397 return 1; 5398 } 5399 5400 /* 5401 * vcpu->arch.mmu.page_fault returned RET_PF_EMULATE, but we can still 5402 * optimistically try to just unprotect the page and let the processor 5403 * re-execute the instruction that caused the page fault. Do not allow 5404 * retrying MMIO emulation, as it's not only pointless but could also 5405 * cause us to enter an infinite loop because the processor will keep 5406 * faulting on the non-existent MMIO address. Retrying an instruction 5407 * from a nested guest is also pointless and dangerous as we are only 5408 * explicitly shadowing L1's page tables, i.e. unprotecting something 5409 * for L1 isn't going to magically fix whatever issue cause L2 to fail. 5410 */ 5411 if (!mmio_info_in_cache(vcpu, cr2_or_gpa, direct) && !is_guest_mode(vcpu)) 5412 emulation_type |= EMULTYPE_ALLOW_RETRY_PF; 5413 emulate: 5414 return x86_emulate_instruction(vcpu, cr2_or_gpa, emulation_type, insn, 5415 insn_len); 5416 } 5417 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault); 5418 5419 void kvm_mmu_invalidate_gva(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, 5420 gva_t gva, hpa_t root_hpa) 5421 { 5422 int i; 5423 5424 /* It's actually a GPA for vcpu->arch.guest_mmu. */ 5425 if (mmu != &vcpu->arch.guest_mmu) { 5426 /* INVLPG on a non-canonical address is a NOP according to the SDM. */ 5427 if (is_noncanonical_address(gva, vcpu)) 5428 return; 5429 5430 static_call(kvm_x86_flush_tlb_gva)(vcpu, gva); 5431 } 5432 5433 if (!mmu->invlpg) 5434 return; 5435 5436 if (root_hpa == INVALID_PAGE) { 5437 mmu->invlpg(vcpu, gva, mmu->root.hpa); 5438 5439 /* 5440 * INVLPG is required to invalidate any global mappings for the VA, 5441 * irrespective of PCID. Since it would take us roughly similar amount 5442 * of work to determine whether any of the prev_root mappings of the VA 5443 * is marked global, or to just sync it blindly, so we might as well 5444 * just always sync it. 5445 * 5446 * Mappings not reachable via the current cr3 or the prev_roots will be 5447 * synced when switching to that cr3, so nothing needs to be done here 5448 * for them. 5449 */ 5450 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 5451 if (VALID_PAGE(mmu->prev_roots[i].hpa)) 5452 mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa); 5453 } else { 5454 mmu->invlpg(vcpu, gva, root_hpa); 5455 } 5456 } 5457 5458 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva) 5459 { 5460 kvm_mmu_invalidate_gva(vcpu, vcpu->arch.walk_mmu, gva, INVALID_PAGE); 5461 ++vcpu->stat.invlpg; 5462 } 5463 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg); 5464 5465 5466 void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid) 5467 { 5468 struct kvm_mmu *mmu = vcpu->arch.mmu; 5469 bool tlb_flush = false; 5470 uint i; 5471 5472 if (pcid == kvm_get_active_pcid(vcpu)) { 5473 if (mmu->invlpg) 5474 mmu->invlpg(vcpu, gva, mmu->root.hpa); 5475 tlb_flush = true; 5476 } 5477 5478 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) { 5479 if (VALID_PAGE(mmu->prev_roots[i].hpa) && 5480 pcid == kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd)) { 5481 if (mmu->invlpg) 5482 mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa); 5483 tlb_flush = true; 5484 } 5485 } 5486 5487 if (tlb_flush) 5488 static_call(kvm_x86_flush_tlb_gva)(vcpu, gva); 5489 5490 ++vcpu->stat.invlpg; 5491 5492 /* 5493 * Mappings not reachable via the current cr3 or the prev_roots will be 5494 * synced when switching to that cr3, so nothing needs to be done here 5495 * for them. 5496 */ 5497 } 5498 5499 void kvm_configure_mmu(bool enable_tdp, int tdp_forced_root_level, 5500 int tdp_max_root_level, int tdp_huge_page_level) 5501 { 5502 tdp_enabled = enable_tdp; 5503 tdp_root_level = tdp_forced_root_level; 5504 max_tdp_level = tdp_max_root_level; 5505 5506 /* 5507 * max_huge_page_level reflects KVM's MMU capabilities irrespective 5508 * of kernel support, e.g. KVM may be capable of using 1GB pages when 5509 * the kernel is not. But, KVM never creates a page size greater than 5510 * what is used by the kernel for any given HVA, i.e. the kernel's 5511 * capabilities are ultimately consulted by kvm_mmu_hugepage_adjust(). 5512 */ 5513 if (tdp_enabled) 5514 max_huge_page_level = tdp_huge_page_level; 5515 else if (boot_cpu_has(X86_FEATURE_GBPAGES)) 5516 max_huge_page_level = PG_LEVEL_1G; 5517 else 5518 max_huge_page_level = PG_LEVEL_2M; 5519 } 5520 EXPORT_SYMBOL_GPL(kvm_configure_mmu); 5521 5522 /* The return value indicates if tlb flush on all vcpus is needed. */ 5523 typedef bool (*slot_level_handler) (struct kvm *kvm, 5524 struct kvm_rmap_head *rmap_head, 5525 const struct kvm_memory_slot *slot); 5526 5527 /* The caller should hold mmu-lock before calling this function. */ 5528 static __always_inline bool 5529 slot_handle_level_range(struct kvm *kvm, const struct kvm_memory_slot *memslot, 5530 slot_level_handler fn, int start_level, int end_level, 5531 gfn_t start_gfn, gfn_t end_gfn, bool flush_on_yield, 5532 bool flush) 5533 { 5534 struct slot_rmap_walk_iterator iterator; 5535 5536 for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn, 5537 end_gfn, &iterator) { 5538 if (iterator.rmap) 5539 flush |= fn(kvm, iterator.rmap, memslot); 5540 5541 if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) { 5542 if (flush && flush_on_yield) { 5543 kvm_flush_remote_tlbs_with_address(kvm, 5544 start_gfn, 5545 iterator.gfn - start_gfn + 1); 5546 flush = false; 5547 } 5548 cond_resched_rwlock_write(&kvm->mmu_lock); 5549 } 5550 } 5551 5552 return flush; 5553 } 5554 5555 static __always_inline bool 5556 slot_handle_level(struct kvm *kvm, const struct kvm_memory_slot *memslot, 5557 slot_level_handler fn, int start_level, int end_level, 5558 bool flush_on_yield) 5559 { 5560 return slot_handle_level_range(kvm, memslot, fn, start_level, 5561 end_level, memslot->base_gfn, 5562 memslot->base_gfn + memslot->npages - 1, 5563 flush_on_yield, false); 5564 } 5565 5566 static __always_inline bool 5567 slot_handle_level_4k(struct kvm *kvm, const struct kvm_memory_slot *memslot, 5568 slot_level_handler fn, bool flush_on_yield) 5569 { 5570 return slot_handle_level(kvm, memslot, fn, PG_LEVEL_4K, 5571 PG_LEVEL_4K, flush_on_yield); 5572 } 5573 5574 static void free_mmu_pages(struct kvm_mmu *mmu) 5575 { 5576 if (!tdp_enabled && mmu->pae_root) 5577 set_memory_encrypted((unsigned long)mmu->pae_root, 1); 5578 free_page((unsigned long)mmu->pae_root); 5579 free_page((unsigned long)mmu->pml4_root); 5580 free_page((unsigned long)mmu->pml5_root); 5581 } 5582 5583 static int __kvm_mmu_create(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu) 5584 { 5585 struct page *page; 5586 int i; 5587 5588 mmu->root.hpa = INVALID_PAGE; 5589 mmu->root.pgd = 0; 5590 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 5591 mmu->prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID; 5592 5593 /* vcpu->arch.guest_mmu isn't used when !tdp_enabled. */ 5594 if (!tdp_enabled && mmu == &vcpu->arch.guest_mmu) 5595 return 0; 5596 5597 /* 5598 * When using PAE paging, the four PDPTEs are treated as 'root' pages, 5599 * while the PDP table is a per-vCPU construct that's allocated at MMU 5600 * creation. When emulating 32-bit mode, cr3 is only 32 bits even on 5601 * x86_64. Therefore we need to allocate the PDP table in the first 5602 * 4GB of memory, which happens to fit the DMA32 zone. TDP paging 5603 * generally doesn't use PAE paging and can skip allocating the PDP 5604 * table. The main exception, handled here, is SVM's 32-bit NPT. The 5605 * other exception is for shadowing L1's 32-bit or PAE NPT on 64-bit 5606 * KVM; that horror is handled on-demand by mmu_alloc_special_roots(). 5607 */ 5608 if (tdp_enabled && kvm_mmu_get_tdp_level(vcpu) > PT32E_ROOT_LEVEL) 5609 return 0; 5610 5611 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_DMA32); 5612 if (!page) 5613 return -ENOMEM; 5614 5615 mmu->pae_root = page_address(page); 5616 5617 /* 5618 * CR3 is only 32 bits when PAE paging is used, thus it's impossible to 5619 * get the CPU to treat the PDPTEs as encrypted. Decrypt the page so 5620 * that KVM's writes and the CPU's reads get along. Note, this is 5621 * only necessary when using shadow paging, as 64-bit NPT can get at 5622 * the C-bit even when shadowing 32-bit NPT, and SME isn't supported 5623 * by 32-bit kernels (when KVM itself uses 32-bit NPT). 5624 */ 5625 if (!tdp_enabled) 5626 set_memory_decrypted((unsigned long)mmu->pae_root, 1); 5627 else 5628 WARN_ON_ONCE(shadow_me_mask); 5629 5630 for (i = 0; i < 4; ++i) 5631 mmu->pae_root[i] = INVALID_PAE_ROOT; 5632 5633 return 0; 5634 } 5635 5636 int kvm_mmu_create(struct kvm_vcpu *vcpu) 5637 { 5638 int ret; 5639 5640 vcpu->arch.mmu_pte_list_desc_cache.kmem_cache = pte_list_desc_cache; 5641 vcpu->arch.mmu_pte_list_desc_cache.gfp_zero = __GFP_ZERO; 5642 5643 vcpu->arch.mmu_page_header_cache.kmem_cache = mmu_page_header_cache; 5644 vcpu->arch.mmu_page_header_cache.gfp_zero = __GFP_ZERO; 5645 5646 vcpu->arch.mmu_shadow_page_cache.gfp_zero = __GFP_ZERO; 5647 5648 vcpu->arch.mmu = &vcpu->arch.root_mmu; 5649 vcpu->arch.walk_mmu = &vcpu->arch.root_mmu; 5650 5651 ret = __kvm_mmu_create(vcpu, &vcpu->arch.guest_mmu); 5652 if (ret) 5653 return ret; 5654 5655 ret = __kvm_mmu_create(vcpu, &vcpu->arch.root_mmu); 5656 if (ret) 5657 goto fail_allocate_root; 5658 5659 return ret; 5660 fail_allocate_root: 5661 free_mmu_pages(&vcpu->arch.guest_mmu); 5662 return ret; 5663 } 5664 5665 #define BATCH_ZAP_PAGES 10 5666 static void kvm_zap_obsolete_pages(struct kvm *kvm) 5667 { 5668 struct kvm_mmu_page *sp, *node; 5669 int nr_zapped, batch = 0; 5670 bool unstable; 5671 5672 restart: 5673 list_for_each_entry_safe_reverse(sp, node, 5674 &kvm->arch.active_mmu_pages, link) { 5675 /* 5676 * No obsolete valid page exists before a newly created page 5677 * since active_mmu_pages is a FIFO list. 5678 */ 5679 if (!is_obsolete_sp(kvm, sp)) 5680 break; 5681 5682 /* 5683 * Invalid pages should never land back on the list of active 5684 * pages. Skip the bogus page, otherwise we'll get stuck in an 5685 * infinite loop if the page gets put back on the list (again). 5686 */ 5687 if (WARN_ON(sp->role.invalid)) 5688 continue; 5689 5690 /* 5691 * No need to flush the TLB since we're only zapping shadow 5692 * pages with an obsolete generation number and all vCPUS have 5693 * loaded a new root, i.e. the shadow pages being zapped cannot 5694 * be in active use by the guest. 5695 */ 5696 if (batch >= BATCH_ZAP_PAGES && 5697 cond_resched_rwlock_write(&kvm->mmu_lock)) { 5698 batch = 0; 5699 goto restart; 5700 } 5701 5702 unstable = __kvm_mmu_prepare_zap_page(kvm, sp, 5703 &kvm->arch.zapped_obsolete_pages, &nr_zapped); 5704 batch += nr_zapped; 5705 5706 if (unstable) 5707 goto restart; 5708 } 5709 5710 /* 5711 * Kick all vCPUs (via remote TLB flush) before freeing the page tables 5712 * to ensure KVM is not in the middle of a lockless shadow page table 5713 * walk, which may reference the pages. The remote TLB flush itself is 5714 * not required and is simply a convenient way to kick vCPUs as needed. 5715 * KVM performs a local TLB flush when allocating a new root (see 5716 * kvm_mmu_load()), and the reload in the caller ensure no vCPUs are 5717 * running with an obsolete MMU. 5718 */ 5719 kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages); 5720 } 5721 5722 /* 5723 * Fast invalidate all shadow pages and use lock-break technique 5724 * to zap obsolete pages. 5725 * 5726 * It's required when memslot is being deleted or VM is being 5727 * destroyed, in these cases, we should ensure that KVM MMU does 5728 * not use any resource of the being-deleted slot or all slots 5729 * after calling the function. 5730 */ 5731 static void kvm_mmu_zap_all_fast(struct kvm *kvm) 5732 { 5733 lockdep_assert_held(&kvm->slots_lock); 5734 5735 write_lock(&kvm->mmu_lock); 5736 trace_kvm_mmu_zap_all_fast(kvm); 5737 5738 /* 5739 * Toggle mmu_valid_gen between '0' and '1'. Because slots_lock is 5740 * held for the entire duration of zapping obsolete pages, it's 5741 * impossible for there to be multiple invalid generations associated 5742 * with *valid* shadow pages at any given time, i.e. there is exactly 5743 * one valid generation and (at most) one invalid generation. 5744 */ 5745 kvm->arch.mmu_valid_gen = kvm->arch.mmu_valid_gen ? 0 : 1; 5746 5747 /* 5748 * In order to ensure all vCPUs drop their soon-to-be invalid roots, 5749 * invalidating TDP MMU roots must be done while holding mmu_lock for 5750 * write and in the same critical section as making the reload request, 5751 * e.g. before kvm_zap_obsolete_pages() could drop mmu_lock and yield. 5752 */ 5753 if (is_tdp_mmu_enabled(kvm)) 5754 kvm_tdp_mmu_invalidate_all_roots(kvm); 5755 5756 /* 5757 * Notify all vcpus to reload its shadow page table and flush TLB. 5758 * Then all vcpus will switch to new shadow page table with the new 5759 * mmu_valid_gen. 5760 * 5761 * Note: we need to do this under the protection of mmu_lock, 5762 * otherwise, vcpu would purge shadow page but miss tlb flush. 5763 */ 5764 kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_FREE_OBSOLETE_ROOTS); 5765 5766 kvm_zap_obsolete_pages(kvm); 5767 5768 write_unlock(&kvm->mmu_lock); 5769 5770 /* 5771 * Zap the invalidated TDP MMU roots, all SPTEs must be dropped before 5772 * returning to the caller, e.g. if the zap is in response to a memslot 5773 * deletion, mmu_notifier callbacks will be unable to reach the SPTEs 5774 * associated with the deleted memslot once the update completes, and 5775 * Deferring the zap until the final reference to the root is put would 5776 * lead to use-after-free. 5777 */ 5778 if (is_tdp_mmu_enabled(kvm)) 5779 kvm_tdp_mmu_zap_invalidated_roots(kvm); 5780 } 5781 5782 static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm) 5783 { 5784 return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages)); 5785 } 5786 5787 static void kvm_mmu_invalidate_zap_pages_in_memslot(struct kvm *kvm, 5788 struct kvm_memory_slot *slot, 5789 struct kvm_page_track_notifier_node *node) 5790 { 5791 kvm_mmu_zap_all_fast(kvm); 5792 } 5793 5794 int kvm_mmu_init_vm(struct kvm *kvm) 5795 { 5796 struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker; 5797 int r; 5798 5799 INIT_LIST_HEAD(&kvm->arch.active_mmu_pages); 5800 INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages); 5801 INIT_LIST_HEAD(&kvm->arch.lpage_disallowed_mmu_pages); 5802 spin_lock_init(&kvm->arch.mmu_unsync_pages_lock); 5803 5804 r = kvm_mmu_init_tdp_mmu(kvm); 5805 if (r < 0) 5806 return r; 5807 5808 node->track_write = kvm_mmu_pte_write; 5809 node->track_flush_slot = kvm_mmu_invalidate_zap_pages_in_memslot; 5810 kvm_page_track_register_notifier(kvm, node); 5811 return 0; 5812 } 5813 5814 void kvm_mmu_uninit_vm(struct kvm *kvm) 5815 { 5816 struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker; 5817 5818 kvm_page_track_unregister_notifier(kvm, node); 5819 5820 kvm_mmu_uninit_tdp_mmu(kvm); 5821 } 5822 5823 static bool __kvm_zap_rmaps(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end) 5824 { 5825 const struct kvm_memory_slot *memslot; 5826 struct kvm_memslots *slots; 5827 struct kvm_memslot_iter iter; 5828 bool flush = false; 5829 gfn_t start, end; 5830 int i; 5831 5832 if (!kvm_memslots_have_rmaps(kvm)) 5833 return flush; 5834 5835 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { 5836 slots = __kvm_memslots(kvm, i); 5837 5838 kvm_for_each_memslot_in_gfn_range(&iter, slots, gfn_start, gfn_end) { 5839 memslot = iter.slot; 5840 start = max(gfn_start, memslot->base_gfn); 5841 end = min(gfn_end, memslot->base_gfn + memslot->npages); 5842 if (WARN_ON_ONCE(start >= end)) 5843 continue; 5844 5845 flush = slot_handle_level_range(kvm, memslot, kvm_zap_rmapp, 5846 5847 PG_LEVEL_4K, KVM_MAX_HUGEPAGE_LEVEL, 5848 start, end - 1, true, flush); 5849 } 5850 } 5851 5852 return flush; 5853 } 5854 5855 /* 5856 * Invalidate (zap) SPTEs that cover GFNs from gfn_start and up to gfn_end 5857 * (not including it) 5858 */ 5859 void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end) 5860 { 5861 bool flush; 5862 int i; 5863 5864 if (WARN_ON_ONCE(gfn_end <= gfn_start)) 5865 return; 5866 5867 write_lock(&kvm->mmu_lock); 5868 5869 kvm_inc_notifier_count(kvm, gfn_start, gfn_end); 5870 5871 flush = __kvm_zap_rmaps(kvm, gfn_start, gfn_end); 5872 5873 if (is_tdp_mmu_enabled(kvm)) { 5874 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) 5875 flush = kvm_tdp_mmu_zap_leafs(kvm, i, gfn_start, 5876 gfn_end, true, flush); 5877 } 5878 5879 if (flush) 5880 kvm_flush_remote_tlbs_with_address(kvm, gfn_start, 5881 gfn_end - gfn_start); 5882 5883 kvm_dec_notifier_count(kvm, gfn_start, gfn_end); 5884 5885 write_unlock(&kvm->mmu_lock); 5886 } 5887 5888 static bool slot_rmap_write_protect(struct kvm *kvm, 5889 struct kvm_rmap_head *rmap_head, 5890 const struct kvm_memory_slot *slot) 5891 { 5892 return rmap_write_protect(rmap_head, false); 5893 } 5894 5895 void kvm_mmu_slot_remove_write_access(struct kvm *kvm, 5896 const struct kvm_memory_slot *memslot, 5897 int start_level) 5898 { 5899 bool flush = false; 5900 5901 if (kvm_memslots_have_rmaps(kvm)) { 5902 write_lock(&kvm->mmu_lock); 5903 flush = slot_handle_level(kvm, memslot, slot_rmap_write_protect, 5904 start_level, KVM_MAX_HUGEPAGE_LEVEL, 5905 false); 5906 write_unlock(&kvm->mmu_lock); 5907 } 5908 5909 if (is_tdp_mmu_enabled(kvm)) { 5910 read_lock(&kvm->mmu_lock); 5911 flush |= kvm_tdp_mmu_wrprot_slot(kvm, memslot, start_level); 5912 read_unlock(&kvm->mmu_lock); 5913 } 5914 5915 /* 5916 * Flush TLBs if any SPTEs had to be write-protected to ensure that 5917 * guest writes are reflected in the dirty bitmap before the memslot 5918 * update completes, i.e. before enabling dirty logging is visible to 5919 * userspace. 5920 * 5921 * Perform the TLB flush outside the mmu_lock to reduce the amount of 5922 * time the lock is held. However, this does mean that another CPU can 5923 * now grab mmu_lock and encounter a write-protected SPTE while CPUs 5924 * still have a writable mapping for the associated GFN in their TLB. 5925 * 5926 * This is safe but requires KVM to be careful when making decisions 5927 * based on the write-protection status of an SPTE. Specifically, KVM 5928 * also write-protects SPTEs to monitor changes to guest page tables 5929 * during shadow paging, and must guarantee no CPUs can write to those 5930 * page before the lock is dropped. As mentioned in the previous 5931 * paragraph, a write-protected SPTE is no guarantee that CPU cannot 5932 * perform writes. So to determine if a TLB flush is truly required, KVM 5933 * will clear a separate software-only bit (MMU-writable) and skip the 5934 * flush if-and-only-if this bit was already clear. 5935 * 5936 * See is_writable_pte() for more details. 5937 */ 5938 if (flush) 5939 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot); 5940 } 5941 5942 /* Must be called with the mmu_lock held in write-mode. */ 5943 void kvm_mmu_try_split_huge_pages(struct kvm *kvm, 5944 const struct kvm_memory_slot *memslot, 5945 u64 start, u64 end, 5946 int target_level) 5947 { 5948 if (is_tdp_mmu_enabled(kvm)) 5949 kvm_tdp_mmu_try_split_huge_pages(kvm, memslot, start, end, 5950 target_level, false); 5951 5952 /* 5953 * A TLB flush is unnecessary at this point for the same resons as in 5954 * kvm_mmu_slot_try_split_huge_pages(). 5955 */ 5956 } 5957 5958 void kvm_mmu_slot_try_split_huge_pages(struct kvm *kvm, 5959 const struct kvm_memory_slot *memslot, 5960 int target_level) 5961 { 5962 u64 start = memslot->base_gfn; 5963 u64 end = start + memslot->npages; 5964 5965 if (is_tdp_mmu_enabled(kvm)) { 5966 read_lock(&kvm->mmu_lock); 5967 kvm_tdp_mmu_try_split_huge_pages(kvm, memslot, start, end, target_level, true); 5968 read_unlock(&kvm->mmu_lock); 5969 } 5970 5971 /* 5972 * No TLB flush is necessary here. KVM will flush TLBs after 5973 * write-protecting and/or clearing dirty on the newly split SPTEs to 5974 * ensure that guest writes are reflected in the dirty log before the 5975 * ioctl to enable dirty logging on this memslot completes. Since the 5976 * split SPTEs retain the write and dirty bits of the huge SPTE, it is 5977 * safe for KVM to decide if a TLB flush is necessary based on the split 5978 * SPTEs. 5979 */ 5980 } 5981 5982 static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm, 5983 struct kvm_rmap_head *rmap_head, 5984 const struct kvm_memory_slot *slot) 5985 { 5986 u64 *sptep; 5987 struct rmap_iterator iter; 5988 int need_tlb_flush = 0; 5989 kvm_pfn_t pfn; 5990 struct kvm_mmu_page *sp; 5991 5992 restart: 5993 for_each_rmap_spte(rmap_head, &iter, sptep) { 5994 sp = sptep_to_sp(sptep); 5995 pfn = spte_to_pfn(*sptep); 5996 5997 /* 5998 * We cannot do huge page mapping for indirect shadow pages, 5999 * which are found on the last rmap (level = 1) when not using 6000 * tdp; such shadow pages are synced with the page table in 6001 * the guest, and the guest page table is using 4K page size 6002 * mapping if the indirect sp has level = 1. 6003 */ 6004 if (sp->role.direct && !kvm_is_reserved_pfn(pfn) && 6005 sp->role.level < kvm_mmu_max_mapping_level(kvm, slot, sp->gfn, 6006 pfn, PG_LEVEL_NUM)) { 6007 pte_list_remove(kvm, rmap_head, sptep); 6008 6009 if (kvm_available_flush_tlb_with_range()) 6010 kvm_flush_remote_tlbs_with_address(kvm, sp->gfn, 6011 KVM_PAGES_PER_HPAGE(sp->role.level)); 6012 else 6013 need_tlb_flush = 1; 6014 6015 goto restart; 6016 } 6017 } 6018 6019 return need_tlb_flush; 6020 } 6021 6022 void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm, 6023 const struct kvm_memory_slot *slot) 6024 { 6025 if (kvm_memslots_have_rmaps(kvm)) { 6026 write_lock(&kvm->mmu_lock); 6027 /* 6028 * Zap only 4k SPTEs since the legacy MMU only supports dirty 6029 * logging at a 4k granularity and never creates collapsible 6030 * 2m SPTEs during dirty logging. 6031 */ 6032 if (slot_handle_level_4k(kvm, slot, kvm_mmu_zap_collapsible_spte, true)) 6033 kvm_arch_flush_remote_tlbs_memslot(kvm, slot); 6034 write_unlock(&kvm->mmu_lock); 6035 } 6036 6037 if (is_tdp_mmu_enabled(kvm)) { 6038 read_lock(&kvm->mmu_lock); 6039 kvm_tdp_mmu_zap_collapsible_sptes(kvm, slot); 6040 read_unlock(&kvm->mmu_lock); 6041 } 6042 } 6043 6044 void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm, 6045 const struct kvm_memory_slot *memslot) 6046 { 6047 /* 6048 * All current use cases for flushing the TLBs for a specific memslot 6049 * related to dirty logging, and many do the TLB flush out of mmu_lock. 6050 * The interaction between the various operations on memslot must be 6051 * serialized by slots_locks to ensure the TLB flush from one operation 6052 * is observed by any other operation on the same memslot. 6053 */ 6054 lockdep_assert_held(&kvm->slots_lock); 6055 kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn, 6056 memslot->npages); 6057 } 6058 6059 void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm, 6060 const struct kvm_memory_slot *memslot) 6061 { 6062 bool flush = false; 6063 6064 if (kvm_memslots_have_rmaps(kvm)) { 6065 write_lock(&kvm->mmu_lock); 6066 /* 6067 * Clear dirty bits only on 4k SPTEs since the legacy MMU only 6068 * support dirty logging at a 4k granularity. 6069 */ 6070 flush = slot_handle_level_4k(kvm, memslot, __rmap_clear_dirty, false); 6071 write_unlock(&kvm->mmu_lock); 6072 } 6073 6074 if (is_tdp_mmu_enabled(kvm)) { 6075 read_lock(&kvm->mmu_lock); 6076 flush |= kvm_tdp_mmu_clear_dirty_slot(kvm, memslot); 6077 read_unlock(&kvm->mmu_lock); 6078 } 6079 6080 /* 6081 * It's also safe to flush TLBs out of mmu lock here as currently this 6082 * function is only used for dirty logging, in which case flushing TLB 6083 * out of mmu lock also guarantees no dirty pages will be lost in 6084 * dirty_bitmap. 6085 */ 6086 if (flush) 6087 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot); 6088 } 6089 6090 void kvm_mmu_zap_all(struct kvm *kvm) 6091 { 6092 struct kvm_mmu_page *sp, *node; 6093 LIST_HEAD(invalid_list); 6094 int ign; 6095 6096 write_lock(&kvm->mmu_lock); 6097 restart: 6098 list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link) { 6099 if (WARN_ON(sp->role.invalid)) 6100 continue; 6101 if (__kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list, &ign)) 6102 goto restart; 6103 if (cond_resched_rwlock_write(&kvm->mmu_lock)) 6104 goto restart; 6105 } 6106 6107 kvm_mmu_commit_zap_page(kvm, &invalid_list); 6108 6109 if (is_tdp_mmu_enabled(kvm)) 6110 kvm_tdp_mmu_zap_all(kvm); 6111 6112 write_unlock(&kvm->mmu_lock); 6113 } 6114 6115 void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen) 6116 { 6117 WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS); 6118 6119 gen &= MMIO_SPTE_GEN_MASK; 6120 6121 /* 6122 * Generation numbers are incremented in multiples of the number of 6123 * address spaces in order to provide unique generations across all 6124 * address spaces. Strip what is effectively the address space 6125 * modifier prior to checking for a wrap of the MMIO generation so 6126 * that a wrap in any address space is detected. 6127 */ 6128 gen &= ~((u64)KVM_ADDRESS_SPACE_NUM - 1); 6129 6130 /* 6131 * The very rare case: if the MMIO generation number has wrapped, 6132 * zap all shadow pages. 6133 */ 6134 if (unlikely(gen == 0)) { 6135 kvm_debug_ratelimited("kvm: zapping shadow pages for mmio generation wraparound\n"); 6136 kvm_mmu_zap_all_fast(kvm); 6137 } 6138 } 6139 6140 static unsigned long 6141 mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc) 6142 { 6143 struct kvm *kvm; 6144 int nr_to_scan = sc->nr_to_scan; 6145 unsigned long freed = 0; 6146 6147 mutex_lock(&kvm_lock); 6148 6149 list_for_each_entry(kvm, &vm_list, vm_list) { 6150 int idx; 6151 LIST_HEAD(invalid_list); 6152 6153 /* 6154 * Never scan more than sc->nr_to_scan VM instances. 6155 * Will not hit this condition practically since we do not try 6156 * to shrink more than one VM and it is very unlikely to see 6157 * !n_used_mmu_pages so many times. 6158 */ 6159 if (!nr_to_scan--) 6160 break; 6161 /* 6162 * n_used_mmu_pages is accessed without holding kvm->mmu_lock 6163 * here. We may skip a VM instance errorneosly, but we do not 6164 * want to shrink a VM that only started to populate its MMU 6165 * anyway. 6166 */ 6167 if (!kvm->arch.n_used_mmu_pages && 6168 !kvm_has_zapped_obsolete_pages(kvm)) 6169 continue; 6170 6171 idx = srcu_read_lock(&kvm->srcu); 6172 write_lock(&kvm->mmu_lock); 6173 6174 if (kvm_has_zapped_obsolete_pages(kvm)) { 6175 kvm_mmu_commit_zap_page(kvm, 6176 &kvm->arch.zapped_obsolete_pages); 6177 goto unlock; 6178 } 6179 6180 freed = kvm_mmu_zap_oldest_mmu_pages(kvm, sc->nr_to_scan); 6181 6182 unlock: 6183 write_unlock(&kvm->mmu_lock); 6184 srcu_read_unlock(&kvm->srcu, idx); 6185 6186 /* 6187 * unfair on small ones 6188 * per-vm shrinkers cry out 6189 * sadness comes quickly 6190 */ 6191 list_move_tail(&kvm->vm_list, &vm_list); 6192 break; 6193 } 6194 6195 mutex_unlock(&kvm_lock); 6196 return freed; 6197 } 6198 6199 static unsigned long 6200 mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc) 6201 { 6202 return percpu_counter_read_positive(&kvm_total_used_mmu_pages); 6203 } 6204 6205 static struct shrinker mmu_shrinker = { 6206 .count_objects = mmu_shrink_count, 6207 .scan_objects = mmu_shrink_scan, 6208 .seeks = DEFAULT_SEEKS * 10, 6209 }; 6210 6211 static void mmu_destroy_caches(void) 6212 { 6213 kmem_cache_destroy(pte_list_desc_cache); 6214 kmem_cache_destroy(mmu_page_header_cache); 6215 } 6216 6217 static bool get_nx_auto_mode(void) 6218 { 6219 /* Return true when CPU has the bug, and mitigations are ON */ 6220 return boot_cpu_has_bug(X86_BUG_ITLB_MULTIHIT) && !cpu_mitigations_off(); 6221 } 6222 6223 static void __set_nx_huge_pages(bool val) 6224 { 6225 nx_huge_pages = itlb_multihit_kvm_mitigation = val; 6226 } 6227 6228 static int set_nx_huge_pages(const char *val, const struct kernel_param *kp) 6229 { 6230 bool old_val = nx_huge_pages; 6231 bool new_val; 6232 6233 /* In "auto" mode deploy workaround only if CPU has the bug. */ 6234 if (sysfs_streq(val, "off")) 6235 new_val = 0; 6236 else if (sysfs_streq(val, "force")) 6237 new_val = 1; 6238 else if (sysfs_streq(val, "auto")) 6239 new_val = get_nx_auto_mode(); 6240 else if (strtobool(val, &new_val) < 0) 6241 return -EINVAL; 6242 6243 __set_nx_huge_pages(new_val); 6244 6245 if (new_val != old_val) { 6246 struct kvm *kvm; 6247 6248 mutex_lock(&kvm_lock); 6249 6250 list_for_each_entry(kvm, &vm_list, vm_list) { 6251 mutex_lock(&kvm->slots_lock); 6252 kvm_mmu_zap_all_fast(kvm); 6253 mutex_unlock(&kvm->slots_lock); 6254 6255 wake_up_process(kvm->arch.nx_lpage_recovery_thread); 6256 } 6257 mutex_unlock(&kvm_lock); 6258 } 6259 6260 return 0; 6261 } 6262 6263 /* 6264 * nx_huge_pages needs to be resolved to true/false when kvm.ko is loaded, as 6265 * its default value of -1 is technically undefined behavior for a boolean. 6266 */ 6267 void kvm_mmu_x86_module_init(void) 6268 { 6269 if (nx_huge_pages == -1) 6270 __set_nx_huge_pages(get_nx_auto_mode()); 6271 } 6272 6273 /* 6274 * The bulk of the MMU initialization is deferred until the vendor module is 6275 * loaded as many of the masks/values may be modified by VMX or SVM, i.e. need 6276 * to be reset when a potentially different vendor module is loaded. 6277 */ 6278 int kvm_mmu_vendor_module_init(void) 6279 { 6280 int ret = -ENOMEM; 6281 6282 /* 6283 * MMU roles use union aliasing which is, generally speaking, an 6284 * undefined behavior. However, we supposedly know how compilers behave 6285 * and the current status quo is unlikely to change. Guardians below are 6286 * supposed to let us know if the assumption becomes false. 6287 */ 6288 BUILD_BUG_ON(sizeof(union kvm_mmu_page_role) != sizeof(u32)); 6289 BUILD_BUG_ON(sizeof(union kvm_mmu_extended_role) != sizeof(u32)); 6290 BUILD_BUG_ON(sizeof(union kvm_mmu_role) != sizeof(u64)); 6291 6292 kvm_mmu_reset_all_pte_masks(); 6293 6294 pte_list_desc_cache = kmem_cache_create("pte_list_desc", 6295 sizeof(struct pte_list_desc), 6296 0, SLAB_ACCOUNT, NULL); 6297 if (!pte_list_desc_cache) 6298 goto out; 6299 6300 mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header", 6301 sizeof(struct kvm_mmu_page), 6302 0, SLAB_ACCOUNT, NULL); 6303 if (!mmu_page_header_cache) 6304 goto out; 6305 6306 if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL)) 6307 goto out; 6308 6309 ret = register_shrinker(&mmu_shrinker); 6310 if (ret) 6311 goto out; 6312 6313 return 0; 6314 6315 out: 6316 mmu_destroy_caches(); 6317 return ret; 6318 } 6319 6320 void kvm_mmu_destroy(struct kvm_vcpu *vcpu) 6321 { 6322 kvm_mmu_unload(vcpu); 6323 free_mmu_pages(&vcpu->arch.root_mmu); 6324 free_mmu_pages(&vcpu->arch.guest_mmu); 6325 mmu_free_memory_caches(vcpu); 6326 } 6327 6328 void kvm_mmu_vendor_module_exit(void) 6329 { 6330 mmu_destroy_caches(); 6331 percpu_counter_destroy(&kvm_total_used_mmu_pages); 6332 unregister_shrinker(&mmu_shrinker); 6333 } 6334 6335 /* 6336 * Calculate the effective recovery period, accounting for '0' meaning "let KVM 6337 * select a halving time of 1 hour". Returns true if recovery is enabled. 6338 */ 6339 static bool calc_nx_huge_pages_recovery_period(uint *period) 6340 { 6341 /* 6342 * Use READ_ONCE to get the params, this may be called outside of the 6343 * param setters, e.g. by the kthread to compute its next timeout. 6344 */ 6345 bool enabled = READ_ONCE(nx_huge_pages); 6346 uint ratio = READ_ONCE(nx_huge_pages_recovery_ratio); 6347 6348 if (!enabled || !ratio) 6349 return false; 6350 6351 *period = READ_ONCE(nx_huge_pages_recovery_period_ms); 6352 if (!*period) { 6353 /* Make sure the period is not less than one second. */ 6354 ratio = min(ratio, 3600u); 6355 *period = 60 * 60 * 1000 / ratio; 6356 } 6357 return true; 6358 } 6359 6360 static int set_nx_huge_pages_recovery_param(const char *val, const struct kernel_param *kp) 6361 { 6362 bool was_recovery_enabled, is_recovery_enabled; 6363 uint old_period, new_period; 6364 int err; 6365 6366 was_recovery_enabled = calc_nx_huge_pages_recovery_period(&old_period); 6367 6368 err = param_set_uint(val, kp); 6369 if (err) 6370 return err; 6371 6372 is_recovery_enabled = calc_nx_huge_pages_recovery_period(&new_period); 6373 6374 if (is_recovery_enabled && 6375 (!was_recovery_enabled || old_period > new_period)) { 6376 struct kvm *kvm; 6377 6378 mutex_lock(&kvm_lock); 6379 6380 list_for_each_entry(kvm, &vm_list, vm_list) 6381 wake_up_process(kvm->arch.nx_lpage_recovery_thread); 6382 6383 mutex_unlock(&kvm_lock); 6384 } 6385 6386 return err; 6387 } 6388 6389 static void kvm_recover_nx_lpages(struct kvm *kvm) 6390 { 6391 unsigned long nx_lpage_splits = kvm->stat.nx_lpage_splits; 6392 int rcu_idx; 6393 struct kvm_mmu_page *sp; 6394 unsigned int ratio; 6395 LIST_HEAD(invalid_list); 6396 bool flush = false; 6397 ulong to_zap; 6398 6399 rcu_idx = srcu_read_lock(&kvm->srcu); 6400 write_lock(&kvm->mmu_lock); 6401 6402 /* 6403 * Zapping TDP MMU shadow pages, including the remote TLB flush, must 6404 * be done under RCU protection, because the pages are freed via RCU 6405 * callback. 6406 */ 6407 rcu_read_lock(); 6408 6409 ratio = READ_ONCE(nx_huge_pages_recovery_ratio); 6410 to_zap = ratio ? DIV_ROUND_UP(nx_lpage_splits, ratio) : 0; 6411 for ( ; to_zap; --to_zap) { 6412 if (list_empty(&kvm->arch.lpage_disallowed_mmu_pages)) 6413 break; 6414 6415 /* 6416 * We use a separate list instead of just using active_mmu_pages 6417 * because the number of lpage_disallowed pages is expected to 6418 * be relatively small compared to the total. 6419 */ 6420 sp = list_first_entry(&kvm->arch.lpage_disallowed_mmu_pages, 6421 struct kvm_mmu_page, 6422 lpage_disallowed_link); 6423 WARN_ON_ONCE(!sp->lpage_disallowed); 6424 if (is_tdp_mmu_page(sp)) { 6425 flush |= kvm_tdp_mmu_zap_sp(kvm, sp); 6426 } else { 6427 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list); 6428 WARN_ON_ONCE(sp->lpage_disallowed); 6429 } 6430 6431 if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) { 6432 kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush); 6433 rcu_read_unlock(); 6434 6435 cond_resched_rwlock_write(&kvm->mmu_lock); 6436 flush = false; 6437 6438 rcu_read_lock(); 6439 } 6440 } 6441 kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush); 6442 6443 rcu_read_unlock(); 6444 6445 write_unlock(&kvm->mmu_lock); 6446 srcu_read_unlock(&kvm->srcu, rcu_idx); 6447 } 6448 6449 static long get_nx_lpage_recovery_timeout(u64 start_time) 6450 { 6451 bool enabled; 6452 uint period; 6453 6454 enabled = calc_nx_huge_pages_recovery_period(&period); 6455 6456 return enabled ? start_time + msecs_to_jiffies(period) - get_jiffies_64() 6457 : MAX_SCHEDULE_TIMEOUT; 6458 } 6459 6460 static int kvm_nx_lpage_recovery_worker(struct kvm *kvm, uintptr_t data) 6461 { 6462 u64 start_time; 6463 long remaining_time; 6464 6465 while (true) { 6466 start_time = get_jiffies_64(); 6467 remaining_time = get_nx_lpage_recovery_timeout(start_time); 6468 6469 set_current_state(TASK_INTERRUPTIBLE); 6470 while (!kthread_should_stop() && remaining_time > 0) { 6471 schedule_timeout(remaining_time); 6472 remaining_time = get_nx_lpage_recovery_timeout(start_time); 6473 set_current_state(TASK_INTERRUPTIBLE); 6474 } 6475 6476 set_current_state(TASK_RUNNING); 6477 6478 if (kthread_should_stop()) 6479 return 0; 6480 6481 kvm_recover_nx_lpages(kvm); 6482 } 6483 } 6484 6485 int kvm_mmu_post_init_vm(struct kvm *kvm) 6486 { 6487 int err; 6488 6489 err = kvm_vm_create_worker_thread(kvm, kvm_nx_lpage_recovery_worker, 0, 6490 "kvm-nx-lpage-recovery", 6491 &kvm->arch.nx_lpage_recovery_thread); 6492 if (!err) 6493 kthread_unpark(kvm->arch.nx_lpage_recovery_thread); 6494 6495 return err; 6496 } 6497 6498 void kvm_mmu_pre_destroy_vm(struct kvm *kvm) 6499 { 6500 if (kvm->arch.nx_lpage_recovery_thread) 6501 kthread_stop(kvm->arch.nx_lpage_recovery_thread); 6502 } 6503