xref: /openbmc/linux/arch/x86/kvm/mmu/mmu.c (revision f5ad1c74)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This module enables machines with Intel VT-x extensions to run virtual
6  * machines without emulation or binary translation.
7  *
8  * MMU support
9  *
10  * Copyright (C) 2006 Qumranet, Inc.
11  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
12  *
13  * Authors:
14  *   Yaniv Kamay  <yaniv@qumranet.com>
15  *   Avi Kivity   <avi@qumranet.com>
16  */
17 
18 #include "irq.h"
19 #include "ioapic.h"
20 #include "mmu.h"
21 #include "mmu_internal.h"
22 #include "tdp_mmu.h"
23 #include "x86.h"
24 #include "kvm_cache_regs.h"
25 #include "kvm_emulate.h"
26 #include "cpuid.h"
27 #include "spte.h"
28 
29 #include <linux/kvm_host.h>
30 #include <linux/types.h>
31 #include <linux/string.h>
32 #include <linux/mm.h>
33 #include <linux/highmem.h>
34 #include <linux/moduleparam.h>
35 #include <linux/export.h>
36 #include <linux/swap.h>
37 #include <linux/hugetlb.h>
38 #include <linux/compiler.h>
39 #include <linux/srcu.h>
40 #include <linux/slab.h>
41 #include <linux/sched/signal.h>
42 #include <linux/uaccess.h>
43 #include <linux/hash.h>
44 #include <linux/kern_levels.h>
45 #include <linux/kthread.h>
46 
47 #include <asm/page.h>
48 #include <asm/memtype.h>
49 #include <asm/cmpxchg.h>
50 #include <asm/io.h>
51 #include <asm/vmx.h>
52 #include <asm/kvm_page_track.h>
53 #include "trace.h"
54 
55 extern bool itlb_multihit_kvm_mitigation;
56 
57 static int __read_mostly nx_huge_pages = -1;
58 #ifdef CONFIG_PREEMPT_RT
59 /* Recovery can cause latency spikes, disable it for PREEMPT_RT.  */
60 static uint __read_mostly nx_huge_pages_recovery_ratio = 0;
61 #else
62 static uint __read_mostly nx_huge_pages_recovery_ratio = 60;
63 #endif
64 
65 static int set_nx_huge_pages(const char *val, const struct kernel_param *kp);
66 static int set_nx_huge_pages_recovery_ratio(const char *val, const struct kernel_param *kp);
67 
68 static const struct kernel_param_ops nx_huge_pages_ops = {
69 	.set = set_nx_huge_pages,
70 	.get = param_get_bool,
71 };
72 
73 static const struct kernel_param_ops nx_huge_pages_recovery_ratio_ops = {
74 	.set = set_nx_huge_pages_recovery_ratio,
75 	.get = param_get_uint,
76 };
77 
78 module_param_cb(nx_huge_pages, &nx_huge_pages_ops, &nx_huge_pages, 0644);
79 __MODULE_PARM_TYPE(nx_huge_pages, "bool");
80 module_param_cb(nx_huge_pages_recovery_ratio, &nx_huge_pages_recovery_ratio_ops,
81 		&nx_huge_pages_recovery_ratio, 0644);
82 __MODULE_PARM_TYPE(nx_huge_pages_recovery_ratio, "uint");
83 
84 static bool __read_mostly force_flush_and_sync_on_reuse;
85 module_param_named(flush_on_reuse, force_flush_and_sync_on_reuse, bool, 0644);
86 
87 /*
88  * When setting this variable to true it enables Two-Dimensional-Paging
89  * where the hardware walks 2 page tables:
90  * 1. the guest-virtual to guest-physical
91  * 2. while doing 1. it walks guest-physical to host-physical
92  * If the hardware supports that we don't need to do shadow paging.
93  */
94 bool tdp_enabled = false;
95 
96 static int max_huge_page_level __read_mostly;
97 static int max_tdp_level __read_mostly;
98 
99 enum {
100 	AUDIT_PRE_PAGE_FAULT,
101 	AUDIT_POST_PAGE_FAULT,
102 	AUDIT_PRE_PTE_WRITE,
103 	AUDIT_POST_PTE_WRITE,
104 	AUDIT_PRE_SYNC,
105 	AUDIT_POST_SYNC
106 };
107 
108 #ifdef MMU_DEBUG
109 bool dbg = 0;
110 module_param(dbg, bool, 0644);
111 #endif
112 
113 #define PTE_PREFETCH_NUM		8
114 
115 #define PT32_LEVEL_BITS 10
116 
117 #define PT32_LEVEL_SHIFT(level) \
118 		(PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
119 
120 #define PT32_LVL_OFFSET_MASK(level) \
121 	(PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
122 						* PT32_LEVEL_BITS))) - 1))
123 
124 #define PT32_INDEX(address, level)\
125 	(((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
126 
127 
128 #define PT32_BASE_ADDR_MASK PAGE_MASK
129 #define PT32_DIR_BASE_ADDR_MASK \
130 	(PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
131 #define PT32_LVL_ADDR_MASK(level) \
132 	(PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
133 					    * PT32_LEVEL_BITS))) - 1))
134 
135 #include <trace/events/kvm.h>
136 
137 /* make pte_list_desc fit well in cache line */
138 #define PTE_LIST_EXT 3
139 
140 struct pte_list_desc {
141 	u64 *sptes[PTE_LIST_EXT];
142 	struct pte_list_desc *more;
143 };
144 
145 struct kvm_shadow_walk_iterator {
146 	u64 addr;
147 	hpa_t shadow_addr;
148 	u64 *sptep;
149 	int level;
150 	unsigned index;
151 };
152 
153 #define for_each_shadow_entry_using_root(_vcpu, _root, _addr, _walker)     \
154 	for (shadow_walk_init_using_root(&(_walker), (_vcpu),              \
155 					 (_root), (_addr));                \
156 	     shadow_walk_okay(&(_walker));			           \
157 	     shadow_walk_next(&(_walker)))
158 
159 #define for_each_shadow_entry(_vcpu, _addr, _walker)            \
160 	for (shadow_walk_init(&(_walker), _vcpu, _addr);	\
161 	     shadow_walk_okay(&(_walker));			\
162 	     shadow_walk_next(&(_walker)))
163 
164 #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte)	\
165 	for (shadow_walk_init(&(_walker), _vcpu, _addr);		\
166 	     shadow_walk_okay(&(_walker)) &&				\
167 		({ spte = mmu_spte_get_lockless(_walker.sptep); 1; });	\
168 	     __shadow_walk_next(&(_walker), spte))
169 
170 static struct kmem_cache *pte_list_desc_cache;
171 struct kmem_cache *mmu_page_header_cache;
172 static struct percpu_counter kvm_total_used_mmu_pages;
173 
174 static void mmu_spte_set(u64 *sptep, u64 spte);
175 static union kvm_mmu_page_role
176 kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu);
177 
178 #define CREATE_TRACE_POINTS
179 #include "mmutrace.h"
180 
181 
182 static inline bool kvm_available_flush_tlb_with_range(void)
183 {
184 	return kvm_x86_ops.tlb_remote_flush_with_range;
185 }
186 
187 static void kvm_flush_remote_tlbs_with_range(struct kvm *kvm,
188 		struct kvm_tlb_range *range)
189 {
190 	int ret = -ENOTSUPP;
191 
192 	if (range && kvm_x86_ops.tlb_remote_flush_with_range)
193 		ret = kvm_x86_ops.tlb_remote_flush_with_range(kvm, range);
194 
195 	if (ret)
196 		kvm_flush_remote_tlbs(kvm);
197 }
198 
199 void kvm_flush_remote_tlbs_with_address(struct kvm *kvm,
200 		u64 start_gfn, u64 pages)
201 {
202 	struct kvm_tlb_range range;
203 
204 	range.start_gfn = start_gfn;
205 	range.pages = pages;
206 
207 	kvm_flush_remote_tlbs_with_range(kvm, &range);
208 }
209 
210 bool is_nx_huge_page_enabled(void)
211 {
212 	return READ_ONCE(nx_huge_pages);
213 }
214 
215 static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn,
216 			   unsigned int access)
217 {
218 	u64 mask = make_mmio_spte(vcpu, gfn, access);
219 
220 	trace_mark_mmio_spte(sptep, gfn, mask);
221 	mmu_spte_set(sptep, mask);
222 }
223 
224 static gfn_t get_mmio_spte_gfn(u64 spte)
225 {
226 	u64 gpa = spte & shadow_nonpresent_or_rsvd_lower_gfn_mask;
227 
228 	gpa |= (spte >> SHADOW_NONPRESENT_OR_RSVD_MASK_LEN)
229 	       & shadow_nonpresent_or_rsvd_mask;
230 
231 	return gpa >> PAGE_SHIFT;
232 }
233 
234 static unsigned get_mmio_spte_access(u64 spte)
235 {
236 	return spte & shadow_mmio_access_mask;
237 }
238 
239 static bool set_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
240 			  kvm_pfn_t pfn, unsigned int access)
241 {
242 	if (unlikely(is_noslot_pfn(pfn))) {
243 		mark_mmio_spte(vcpu, sptep, gfn, access);
244 		return true;
245 	}
246 
247 	return false;
248 }
249 
250 static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte)
251 {
252 	u64 kvm_gen, spte_gen, gen;
253 
254 	gen = kvm_vcpu_memslots(vcpu)->generation;
255 	if (unlikely(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS))
256 		return false;
257 
258 	kvm_gen = gen & MMIO_SPTE_GEN_MASK;
259 	spte_gen = get_mmio_spte_generation(spte);
260 
261 	trace_check_mmio_spte(spte, kvm_gen, spte_gen);
262 	return likely(kvm_gen == spte_gen);
263 }
264 
265 static gpa_t translate_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
266                                   struct x86_exception *exception)
267 {
268 	/* Check if guest physical address doesn't exceed guest maximum */
269 	if (kvm_vcpu_is_illegal_gpa(vcpu, gpa)) {
270 		exception->error_code |= PFERR_RSVD_MASK;
271 		return UNMAPPED_GVA;
272 	}
273 
274         return gpa;
275 }
276 
277 static int is_cpuid_PSE36(void)
278 {
279 	return 1;
280 }
281 
282 static int is_nx(struct kvm_vcpu *vcpu)
283 {
284 	return vcpu->arch.efer & EFER_NX;
285 }
286 
287 static gfn_t pse36_gfn_delta(u32 gpte)
288 {
289 	int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
290 
291 	return (gpte & PT32_DIR_PSE36_MASK) << shift;
292 }
293 
294 #ifdef CONFIG_X86_64
295 static void __set_spte(u64 *sptep, u64 spte)
296 {
297 	WRITE_ONCE(*sptep, spte);
298 }
299 
300 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
301 {
302 	WRITE_ONCE(*sptep, spte);
303 }
304 
305 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
306 {
307 	return xchg(sptep, spte);
308 }
309 
310 static u64 __get_spte_lockless(u64 *sptep)
311 {
312 	return READ_ONCE(*sptep);
313 }
314 #else
315 union split_spte {
316 	struct {
317 		u32 spte_low;
318 		u32 spte_high;
319 	};
320 	u64 spte;
321 };
322 
323 static void count_spte_clear(u64 *sptep, u64 spte)
324 {
325 	struct kvm_mmu_page *sp =  sptep_to_sp(sptep);
326 
327 	if (is_shadow_present_pte(spte))
328 		return;
329 
330 	/* Ensure the spte is completely set before we increase the count */
331 	smp_wmb();
332 	sp->clear_spte_count++;
333 }
334 
335 static void __set_spte(u64 *sptep, u64 spte)
336 {
337 	union split_spte *ssptep, sspte;
338 
339 	ssptep = (union split_spte *)sptep;
340 	sspte = (union split_spte)spte;
341 
342 	ssptep->spte_high = sspte.spte_high;
343 
344 	/*
345 	 * If we map the spte from nonpresent to present, We should store
346 	 * the high bits firstly, then set present bit, so cpu can not
347 	 * fetch this spte while we are setting the spte.
348 	 */
349 	smp_wmb();
350 
351 	WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
352 }
353 
354 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
355 {
356 	union split_spte *ssptep, sspte;
357 
358 	ssptep = (union split_spte *)sptep;
359 	sspte = (union split_spte)spte;
360 
361 	WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
362 
363 	/*
364 	 * If we map the spte from present to nonpresent, we should clear
365 	 * present bit firstly to avoid vcpu fetch the old high bits.
366 	 */
367 	smp_wmb();
368 
369 	ssptep->spte_high = sspte.spte_high;
370 	count_spte_clear(sptep, spte);
371 }
372 
373 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
374 {
375 	union split_spte *ssptep, sspte, orig;
376 
377 	ssptep = (union split_spte *)sptep;
378 	sspte = (union split_spte)spte;
379 
380 	/* xchg acts as a barrier before the setting of the high bits */
381 	orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
382 	orig.spte_high = ssptep->spte_high;
383 	ssptep->spte_high = sspte.spte_high;
384 	count_spte_clear(sptep, spte);
385 
386 	return orig.spte;
387 }
388 
389 /*
390  * The idea using the light way get the spte on x86_32 guest is from
391  * gup_get_pte (mm/gup.c).
392  *
393  * An spte tlb flush may be pending, because kvm_set_pte_rmapp
394  * coalesces them and we are running out of the MMU lock.  Therefore
395  * we need to protect against in-progress updates of the spte.
396  *
397  * Reading the spte while an update is in progress may get the old value
398  * for the high part of the spte.  The race is fine for a present->non-present
399  * change (because the high part of the spte is ignored for non-present spte),
400  * but for a present->present change we must reread the spte.
401  *
402  * All such changes are done in two steps (present->non-present and
403  * non-present->present), hence it is enough to count the number of
404  * present->non-present updates: if it changed while reading the spte,
405  * we might have hit the race.  This is done using clear_spte_count.
406  */
407 static u64 __get_spte_lockless(u64 *sptep)
408 {
409 	struct kvm_mmu_page *sp =  sptep_to_sp(sptep);
410 	union split_spte spte, *orig = (union split_spte *)sptep;
411 	int count;
412 
413 retry:
414 	count = sp->clear_spte_count;
415 	smp_rmb();
416 
417 	spte.spte_low = orig->spte_low;
418 	smp_rmb();
419 
420 	spte.spte_high = orig->spte_high;
421 	smp_rmb();
422 
423 	if (unlikely(spte.spte_low != orig->spte_low ||
424 	      count != sp->clear_spte_count))
425 		goto retry;
426 
427 	return spte.spte;
428 }
429 #endif
430 
431 static bool spte_has_volatile_bits(u64 spte)
432 {
433 	if (!is_shadow_present_pte(spte))
434 		return false;
435 
436 	/*
437 	 * Always atomically update spte if it can be updated
438 	 * out of mmu-lock, it can ensure dirty bit is not lost,
439 	 * also, it can help us to get a stable is_writable_pte()
440 	 * to ensure tlb flush is not missed.
441 	 */
442 	if (spte_can_locklessly_be_made_writable(spte) ||
443 	    is_access_track_spte(spte))
444 		return true;
445 
446 	if (spte_ad_enabled(spte)) {
447 		if ((spte & shadow_accessed_mask) == 0 ||
448 	    	    (is_writable_pte(spte) && (spte & shadow_dirty_mask) == 0))
449 			return true;
450 	}
451 
452 	return false;
453 }
454 
455 /* Rules for using mmu_spte_set:
456  * Set the sptep from nonpresent to present.
457  * Note: the sptep being assigned *must* be either not present
458  * or in a state where the hardware will not attempt to update
459  * the spte.
460  */
461 static void mmu_spte_set(u64 *sptep, u64 new_spte)
462 {
463 	WARN_ON(is_shadow_present_pte(*sptep));
464 	__set_spte(sptep, new_spte);
465 }
466 
467 /*
468  * Update the SPTE (excluding the PFN), but do not track changes in its
469  * accessed/dirty status.
470  */
471 static u64 mmu_spte_update_no_track(u64 *sptep, u64 new_spte)
472 {
473 	u64 old_spte = *sptep;
474 
475 	WARN_ON(!is_shadow_present_pte(new_spte));
476 
477 	if (!is_shadow_present_pte(old_spte)) {
478 		mmu_spte_set(sptep, new_spte);
479 		return old_spte;
480 	}
481 
482 	if (!spte_has_volatile_bits(old_spte))
483 		__update_clear_spte_fast(sptep, new_spte);
484 	else
485 		old_spte = __update_clear_spte_slow(sptep, new_spte);
486 
487 	WARN_ON(spte_to_pfn(old_spte) != spte_to_pfn(new_spte));
488 
489 	return old_spte;
490 }
491 
492 /* Rules for using mmu_spte_update:
493  * Update the state bits, it means the mapped pfn is not changed.
494  *
495  * Whenever we overwrite a writable spte with a read-only one we
496  * should flush remote TLBs. Otherwise rmap_write_protect
497  * will find a read-only spte, even though the writable spte
498  * might be cached on a CPU's TLB, the return value indicates this
499  * case.
500  *
501  * Returns true if the TLB needs to be flushed
502  */
503 static bool mmu_spte_update(u64 *sptep, u64 new_spte)
504 {
505 	bool flush = false;
506 	u64 old_spte = mmu_spte_update_no_track(sptep, new_spte);
507 
508 	if (!is_shadow_present_pte(old_spte))
509 		return false;
510 
511 	/*
512 	 * For the spte updated out of mmu-lock is safe, since
513 	 * we always atomically update it, see the comments in
514 	 * spte_has_volatile_bits().
515 	 */
516 	if (spte_can_locklessly_be_made_writable(old_spte) &&
517 	      !is_writable_pte(new_spte))
518 		flush = true;
519 
520 	/*
521 	 * Flush TLB when accessed/dirty states are changed in the page tables,
522 	 * to guarantee consistency between TLB and page tables.
523 	 */
524 
525 	if (is_accessed_spte(old_spte) && !is_accessed_spte(new_spte)) {
526 		flush = true;
527 		kvm_set_pfn_accessed(spte_to_pfn(old_spte));
528 	}
529 
530 	if (is_dirty_spte(old_spte) && !is_dirty_spte(new_spte)) {
531 		flush = true;
532 		kvm_set_pfn_dirty(spte_to_pfn(old_spte));
533 	}
534 
535 	return flush;
536 }
537 
538 /*
539  * Rules for using mmu_spte_clear_track_bits:
540  * It sets the sptep from present to nonpresent, and track the
541  * state bits, it is used to clear the last level sptep.
542  * Returns non-zero if the PTE was previously valid.
543  */
544 static int mmu_spte_clear_track_bits(u64 *sptep)
545 {
546 	kvm_pfn_t pfn;
547 	u64 old_spte = *sptep;
548 
549 	if (!spte_has_volatile_bits(old_spte))
550 		__update_clear_spte_fast(sptep, 0ull);
551 	else
552 		old_spte = __update_clear_spte_slow(sptep, 0ull);
553 
554 	if (!is_shadow_present_pte(old_spte))
555 		return 0;
556 
557 	pfn = spte_to_pfn(old_spte);
558 
559 	/*
560 	 * KVM does not hold the refcount of the page used by
561 	 * kvm mmu, before reclaiming the page, we should
562 	 * unmap it from mmu first.
563 	 */
564 	WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn)));
565 
566 	if (is_accessed_spte(old_spte))
567 		kvm_set_pfn_accessed(pfn);
568 
569 	if (is_dirty_spte(old_spte))
570 		kvm_set_pfn_dirty(pfn);
571 
572 	return 1;
573 }
574 
575 /*
576  * Rules for using mmu_spte_clear_no_track:
577  * Directly clear spte without caring the state bits of sptep,
578  * it is used to set the upper level spte.
579  */
580 static void mmu_spte_clear_no_track(u64 *sptep)
581 {
582 	__update_clear_spte_fast(sptep, 0ull);
583 }
584 
585 static u64 mmu_spte_get_lockless(u64 *sptep)
586 {
587 	return __get_spte_lockless(sptep);
588 }
589 
590 /* Restore an acc-track PTE back to a regular PTE */
591 static u64 restore_acc_track_spte(u64 spte)
592 {
593 	u64 new_spte = spte;
594 	u64 saved_bits = (spte >> SHADOW_ACC_TRACK_SAVED_BITS_SHIFT)
595 			 & SHADOW_ACC_TRACK_SAVED_BITS_MASK;
596 
597 	WARN_ON_ONCE(spte_ad_enabled(spte));
598 	WARN_ON_ONCE(!is_access_track_spte(spte));
599 
600 	new_spte &= ~shadow_acc_track_mask;
601 	new_spte &= ~(SHADOW_ACC_TRACK_SAVED_BITS_MASK <<
602 		      SHADOW_ACC_TRACK_SAVED_BITS_SHIFT);
603 	new_spte |= saved_bits;
604 
605 	return new_spte;
606 }
607 
608 /* Returns the Accessed status of the PTE and resets it at the same time. */
609 static bool mmu_spte_age(u64 *sptep)
610 {
611 	u64 spte = mmu_spte_get_lockless(sptep);
612 
613 	if (!is_accessed_spte(spte))
614 		return false;
615 
616 	if (spte_ad_enabled(spte)) {
617 		clear_bit((ffs(shadow_accessed_mask) - 1),
618 			  (unsigned long *)sptep);
619 	} else {
620 		/*
621 		 * Capture the dirty status of the page, so that it doesn't get
622 		 * lost when the SPTE is marked for access tracking.
623 		 */
624 		if (is_writable_pte(spte))
625 			kvm_set_pfn_dirty(spte_to_pfn(spte));
626 
627 		spte = mark_spte_for_access_track(spte);
628 		mmu_spte_update_no_track(sptep, spte);
629 	}
630 
631 	return true;
632 }
633 
634 static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
635 {
636 	/*
637 	 * Prevent page table teardown by making any free-er wait during
638 	 * kvm_flush_remote_tlbs() IPI to all active vcpus.
639 	 */
640 	local_irq_disable();
641 
642 	/*
643 	 * Make sure a following spte read is not reordered ahead of the write
644 	 * to vcpu->mode.
645 	 */
646 	smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES);
647 }
648 
649 static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
650 {
651 	/*
652 	 * Make sure the write to vcpu->mode is not reordered in front of
653 	 * reads to sptes.  If it does, kvm_mmu_commit_zap_page() can see us
654 	 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
655 	 */
656 	smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE);
657 	local_irq_enable();
658 }
659 
660 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu, bool maybe_indirect)
661 {
662 	int r;
663 
664 	/* 1 rmap, 1 parent PTE per level, and the prefetched rmaps. */
665 	r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
666 				       1 + PT64_ROOT_MAX_LEVEL + PTE_PREFETCH_NUM);
667 	if (r)
668 		return r;
669 	r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_shadow_page_cache,
670 				       PT64_ROOT_MAX_LEVEL);
671 	if (r)
672 		return r;
673 	if (maybe_indirect) {
674 		r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_gfn_array_cache,
675 					       PT64_ROOT_MAX_LEVEL);
676 		if (r)
677 			return r;
678 	}
679 	return kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
680 					  PT64_ROOT_MAX_LEVEL);
681 }
682 
683 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
684 {
685 	kvm_mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache);
686 	kvm_mmu_free_memory_cache(&vcpu->arch.mmu_shadow_page_cache);
687 	kvm_mmu_free_memory_cache(&vcpu->arch.mmu_gfn_array_cache);
688 	kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache);
689 }
690 
691 static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
692 {
693 	return kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
694 }
695 
696 static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
697 {
698 	kmem_cache_free(pte_list_desc_cache, pte_list_desc);
699 }
700 
701 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
702 {
703 	if (!sp->role.direct)
704 		return sp->gfns[index];
705 
706 	return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
707 }
708 
709 static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
710 {
711 	if (!sp->role.direct) {
712 		sp->gfns[index] = gfn;
713 		return;
714 	}
715 
716 	if (WARN_ON(gfn != kvm_mmu_page_get_gfn(sp, index)))
717 		pr_err_ratelimited("gfn mismatch under direct page %llx "
718 				   "(expected %llx, got %llx)\n",
719 				   sp->gfn,
720 				   kvm_mmu_page_get_gfn(sp, index), gfn);
721 }
722 
723 /*
724  * Return the pointer to the large page information for a given gfn,
725  * handling slots that are not large page aligned.
726  */
727 static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
728 					      struct kvm_memory_slot *slot,
729 					      int level)
730 {
731 	unsigned long idx;
732 
733 	idx = gfn_to_index(gfn, slot->base_gfn, level);
734 	return &slot->arch.lpage_info[level - 2][idx];
735 }
736 
737 static void update_gfn_disallow_lpage_count(struct kvm_memory_slot *slot,
738 					    gfn_t gfn, int count)
739 {
740 	struct kvm_lpage_info *linfo;
741 	int i;
742 
743 	for (i = PG_LEVEL_2M; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) {
744 		linfo = lpage_info_slot(gfn, slot, i);
745 		linfo->disallow_lpage += count;
746 		WARN_ON(linfo->disallow_lpage < 0);
747 	}
748 }
749 
750 void kvm_mmu_gfn_disallow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
751 {
752 	update_gfn_disallow_lpage_count(slot, gfn, 1);
753 }
754 
755 void kvm_mmu_gfn_allow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
756 {
757 	update_gfn_disallow_lpage_count(slot, gfn, -1);
758 }
759 
760 static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
761 {
762 	struct kvm_memslots *slots;
763 	struct kvm_memory_slot *slot;
764 	gfn_t gfn;
765 
766 	kvm->arch.indirect_shadow_pages++;
767 	gfn = sp->gfn;
768 	slots = kvm_memslots_for_spte_role(kvm, sp->role);
769 	slot = __gfn_to_memslot(slots, gfn);
770 
771 	/* the non-leaf shadow pages are keeping readonly. */
772 	if (sp->role.level > PG_LEVEL_4K)
773 		return kvm_slot_page_track_add_page(kvm, slot, gfn,
774 						    KVM_PAGE_TRACK_WRITE);
775 
776 	kvm_mmu_gfn_disallow_lpage(slot, gfn);
777 }
778 
779 void account_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp)
780 {
781 	if (sp->lpage_disallowed)
782 		return;
783 
784 	++kvm->stat.nx_lpage_splits;
785 	list_add_tail(&sp->lpage_disallowed_link,
786 		      &kvm->arch.lpage_disallowed_mmu_pages);
787 	sp->lpage_disallowed = true;
788 }
789 
790 static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
791 {
792 	struct kvm_memslots *slots;
793 	struct kvm_memory_slot *slot;
794 	gfn_t gfn;
795 
796 	kvm->arch.indirect_shadow_pages--;
797 	gfn = sp->gfn;
798 	slots = kvm_memslots_for_spte_role(kvm, sp->role);
799 	slot = __gfn_to_memslot(slots, gfn);
800 	if (sp->role.level > PG_LEVEL_4K)
801 		return kvm_slot_page_track_remove_page(kvm, slot, gfn,
802 						       KVM_PAGE_TRACK_WRITE);
803 
804 	kvm_mmu_gfn_allow_lpage(slot, gfn);
805 }
806 
807 void unaccount_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp)
808 {
809 	--kvm->stat.nx_lpage_splits;
810 	sp->lpage_disallowed = false;
811 	list_del(&sp->lpage_disallowed_link);
812 }
813 
814 static struct kvm_memory_slot *
815 gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
816 			    bool no_dirty_log)
817 {
818 	struct kvm_memory_slot *slot;
819 
820 	slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
821 	if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
822 		return NULL;
823 	if (no_dirty_log && slot->dirty_bitmap)
824 		return NULL;
825 
826 	return slot;
827 }
828 
829 /*
830  * About rmap_head encoding:
831  *
832  * If the bit zero of rmap_head->val is clear, then it points to the only spte
833  * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct
834  * pte_list_desc containing more mappings.
835  */
836 
837 /*
838  * Returns the number of pointers in the rmap chain, not counting the new one.
839  */
840 static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
841 			struct kvm_rmap_head *rmap_head)
842 {
843 	struct pte_list_desc *desc;
844 	int i, count = 0;
845 
846 	if (!rmap_head->val) {
847 		rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
848 		rmap_head->val = (unsigned long)spte;
849 	} else if (!(rmap_head->val & 1)) {
850 		rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
851 		desc = mmu_alloc_pte_list_desc(vcpu);
852 		desc->sptes[0] = (u64 *)rmap_head->val;
853 		desc->sptes[1] = spte;
854 		rmap_head->val = (unsigned long)desc | 1;
855 		++count;
856 	} else {
857 		rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
858 		desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
859 		while (desc->sptes[PTE_LIST_EXT-1]) {
860 			count += PTE_LIST_EXT;
861 
862 			if (!desc->more) {
863 				desc->more = mmu_alloc_pte_list_desc(vcpu);
864 				desc = desc->more;
865 				break;
866 			}
867 			desc = desc->more;
868 		}
869 		for (i = 0; desc->sptes[i]; ++i)
870 			++count;
871 		desc->sptes[i] = spte;
872 	}
873 	return count;
874 }
875 
876 static void
877 pte_list_desc_remove_entry(struct kvm_rmap_head *rmap_head,
878 			   struct pte_list_desc *desc, int i,
879 			   struct pte_list_desc *prev_desc)
880 {
881 	int j;
882 
883 	for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
884 		;
885 	desc->sptes[i] = desc->sptes[j];
886 	desc->sptes[j] = NULL;
887 	if (j != 0)
888 		return;
889 	if (!prev_desc && !desc->more)
890 		rmap_head->val = 0;
891 	else
892 		if (prev_desc)
893 			prev_desc->more = desc->more;
894 		else
895 			rmap_head->val = (unsigned long)desc->more | 1;
896 	mmu_free_pte_list_desc(desc);
897 }
898 
899 static void __pte_list_remove(u64 *spte, struct kvm_rmap_head *rmap_head)
900 {
901 	struct pte_list_desc *desc;
902 	struct pte_list_desc *prev_desc;
903 	int i;
904 
905 	if (!rmap_head->val) {
906 		pr_err("%s: %p 0->BUG\n", __func__, spte);
907 		BUG();
908 	} else if (!(rmap_head->val & 1)) {
909 		rmap_printk("%s:  %p 1->0\n", __func__, spte);
910 		if ((u64 *)rmap_head->val != spte) {
911 			pr_err("%s:  %p 1->BUG\n", __func__, spte);
912 			BUG();
913 		}
914 		rmap_head->val = 0;
915 	} else {
916 		rmap_printk("%s:  %p many->many\n", __func__, spte);
917 		desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
918 		prev_desc = NULL;
919 		while (desc) {
920 			for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i) {
921 				if (desc->sptes[i] == spte) {
922 					pte_list_desc_remove_entry(rmap_head,
923 							desc, i, prev_desc);
924 					return;
925 				}
926 			}
927 			prev_desc = desc;
928 			desc = desc->more;
929 		}
930 		pr_err("%s: %p many->many\n", __func__, spte);
931 		BUG();
932 	}
933 }
934 
935 static void pte_list_remove(struct kvm_rmap_head *rmap_head, u64 *sptep)
936 {
937 	mmu_spte_clear_track_bits(sptep);
938 	__pte_list_remove(sptep, rmap_head);
939 }
940 
941 static struct kvm_rmap_head *__gfn_to_rmap(gfn_t gfn, int level,
942 					   struct kvm_memory_slot *slot)
943 {
944 	unsigned long idx;
945 
946 	idx = gfn_to_index(gfn, slot->base_gfn, level);
947 	return &slot->arch.rmap[level - PG_LEVEL_4K][idx];
948 }
949 
950 static struct kvm_rmap_head *gfn_to_rmap(struct kvm *kvm, gfn_t gfn,
951 					 struct kvm_mmu_page *sp)
952 {
953 	struct kvm_memslots *slots;
954 	struct kvm_memory_slot *slot;
955 
956 	slots = kvm_memslots_for_spte_role(kvm, sp->role);
957 	slot = __gfn_to_memslot(slots, gfn);
958 	return __gfn_to_rmap(gfn, sp->role.level, slot);
959 }
960 
961 static bool rmap_can_add(struct kvm_vcpu *vcpu)
962 {
963 	struct kvm_mmu_memory_cache *mc;
964 
965 	mc = &vcpu->arch.mmu_pte_list_desc_cache;
966 	return kvm_mmu_memory_cache_nr_free_objects(mc);
967 }
968 
969 static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
970 {
971 	struct kvm_mmu_page *sp;
972 	struct kvm_rmap_head *rmap_head;
973 
974 	sp = sptep_to_sp(spte);
975 	kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
976 	rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
977 	return pte_list_add(vcpu, spte, rmap_head);
978 }
979 
980 static void rmap_remove(struct kvm *kvm, u64 *spte)
981 {
982 	struct kvm_mmu_page *sp;
983 	gfn_t gfn;
984 	struct kvm_rmap_head *rmap_head;
985 
986 	sp = sptep_to_sp(spte);
987 	gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
988 	rmap_head = gfn_to_rmap(kvm, gfn, sp);
989 	__pte_list_remove(spte, rmap_head);
990 }
991 
992 /*
993  * Used by the following functions to iterate through the sptes linked by a
994  * rmap.  All fields are private and not assumed to be used outside.
995  */
996 struct rmap_iterator {
997 	/* private fields */
998 	struct pte_list_desc *desc;	/* holds the sptep if not NULL */
999 	int pos;			/* index of the sptep */
1000 };
1001 
1002 /*
1003  * Iteration must be started by this function.  This should also be used after
1004  * removing/dropping sptes from the rmap link because in such cases the
1005  * information in the iterator may not be valid.
1006  *
1007  * Returns sptep if found, NULL otherwise.
1008  */
1009 static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head,
1010 			   struct rmap_iterator *iter)
1011 {
1012 	u64 *sptep;
1013 
1014 	if (!rmap_head->val)
1015 		return NULL;
1016 
1017 	if (!(rmap_head->val & 1)) {
1018 		iter->desc = NULL;
1019 		sptep = (u64 *)rmap_head->val;
1020 		goto out;
1021 	}
1022 
1023 	iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1024 	iter->pos = 0;
1025 	sptep = iter->desc->sptes[iter->pos];
1026 out:
1027 	BUG_ON(!is_shadow_present_pte(*sptep));
1028 	return sptep;
1029 }
1030 
1031 /*
1032  * Must be used with a valid iterator: e.g. after rmap_get_first().
1033  *
1034  * Returns sptep if found, NULL otherwise.
1035  */
1036 static u64 *rmap_get_next(struct rmap_iterator *iter)
1037 {
1038 	u64 *sptep;
1039 
1040 	if (iter->desc) {
1041 		if (iter->pos < PTE_LIST_EXT - 1) {
1042 			++iter->pos;
1043 			sptep = iter->desc->sptes[iter->pos];
1044 			if (sptep)
1045 				goto out;
1046 		}
1047 
1048 		iter->desc = iter->desc->more;
1049 
1050 		if (iter->desc) {
1051 			iter->pos = 0;
1052 			/* desc->sptes[0] cannot be NULL */
1053 			sptep = iter->desc->sptes[iter->pos];
1054 			goto out;
1055 		}
1056 	}
1057 
1058 	return NULL;
1059 out:
1060 	BUG_ON(!is_shadow_present_pte(*sptep));
1061 	return sptep;
1062 }
1063 
1064 #define for_each_rmap_spte(_rmap_head_, _iter_, _spte_)			\
1065 	for (_spte_ = rmap_get_first(_rmap_head_, _iter_);		\
1066 	     _spte_; _spte_ = rmap_get_next(_iter_))
1067 
1068 static void drop_spte(struct kvm *kvm, u64 *sptep)
1069 {
1070 	if (mmu_spte_clear_track_bits(sptep))
1071 		rmap_remove(kvm, sptep);
1072 }
1073 
1074 
1075 static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
1076 {
1077 	if (is_large_pte(*sptep)) {
1078 		WARN_ON(sptep_to_sp(sptep)->role.level == PG_LEVEL_4K);
1079 		drop_spte(kvm, sptep);
1080 		--kvm->stat.lpages;
1081 		return true;
1082 	}
1083 
1084 	return false;
1085 }
1086 
1087 static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1088 {
1089 	if (__drop_large_spte(vcpu->kvm, sptep)) {
1090 		struct kvm_mmu_page *sp = sptep_to_sp(sptep);
1091 
1092 		kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn,
1093 			KVM_PAGES_PER_HPAGE(sp->role.level));
1094 	}
1095 }
1096 
1097 /*
1098  * Write-protect on the specified @sptep, @pt_protect indicates whether
1099  * spte write-protection is caused by protecting shadow page table.
1100  *
1101  * Note: write protection is difference between dirty logging and spte
1102  * protection:
1103  * - for dirty logging, the spte can be set to writable at anytime if
1104  *   its dirty bitmap is properly set.
1105  * - for spte protection, the spte can be writable only after unsync-ing
1106  *   shadow page.
1107  *
1108  * Return true if tlb need be flushed.
1109  */
1110 static bool spte_write_protect(u64 *sptep, bool pt_protect)
1111 {
1112 	u64 spte = *sptep;
1113 
1114 	if (!is_writable_pte(spte) &&
1115 	      !(pt_protect && spte_can_locklessly_be_made_writable(spte)))
1116 		return false;
1117 
1118 	rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);
1119 
1120 	if (pt_protect)
1121 		spte &= ~SPTE_MMU_WRITEABLE;
1122 	spte = spte & ~PT_WRITABLE_MASK;
1123 
1124 	return mmu_spte_update(sptep, spte);
1125 }
1126 
1127 static bool __rmap_write_protect(struct kvm *kvm,
1128 				 struct kvm_rmap_head *rmap_head,
1129 				 bool pt_protect)
1130 {
1131 	u64 *sptep;
1132 	struct rmap_iterator iter;
1133 	bool flush = false;
1134 
1135 	for_each_rmap_spte(rmap_head, &iter, sptep)
1136 		flush |= spte_write_protect(sptep, pt_protect);
1137 
1138 	return flush;
1139 }
1140 
1141 static bool spte_clear_dirty(u64 *sptep)
1142 {
1143 	u64 spte = *sptep;
1144 
1145 	rmap_printk("rmap_clear_dirty: spte %p %llx\n", sptep, *sptep);
1146 
1147 	MMU_WARN_ON(!spte_ad_enabled(spte));
1148 	spte &= ~shadow_dirty_mask;
1149 	return mmu_spte_update(sptep, spte);
1150 }
1151 
1152 static bool spte_wrprot_for_clear_dirty(u64 *sptep)
1153 {
1154 	bool was_writable = test_and_clear_bit(PT_WRITABLE_SHIFT,
1155 					       (unsigned long *)sptep);
1156 	if (was_writable && !spte_ad_enabled(*sptep))
1157 		kvm_set_pfn_dirty(spte_to_pfn(*sptep));
1158 
1159 	return was_writable;
1160 }
1161 
1162 /*
1163  * Gets the GFN ready for another round of dirty logging by clearing the
1164  *	- D bit on ad-enabled SPTEs, and
1165  *	- W bit on ad-disabled SPTEs.
1166  * Returns true iff any D or W bits were cleared.
1167  */
1168 static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1169 {
1170 	u64 *sptep;
1171 	struct rmap_iterator iter;
1172 	bool flush = false;
1173 
1174 	for_each_rmap_spte(rmap_head, &iter, sptep)
1175 		if (spte_ad_need_write_protect(*sptep))
1176 			flush |= spte_wrprot_for_clear_dirty(sptep);
1177 		else
1178 			flush |= spte_clear_dirty(sptep);
1179 
1180 	return flush;
1181 }
1182 
1183 static bool spte_set_dirty(u64 *sptep)
1184 {
1185 	u64 spte = *sptep;
1186 
1187 	rmap_printk("rmap_set_dirty: spte %p %llx\n", sptep, *sptep);
1188 
1189 	/*
1190 	 * Similar to the !kvm_x86_ops.slot_disable_log_dirty case,
1191 	 * do not bother adding back write access to pages marked
1192 	 * SPTE_AD_WRPROT_ONLY_MASK.
1193 	 */
1194 	spte |= shadow_dirty_mask;
1195 
1196 	return mmu_spte_update(sptep, spte);
1197 }
1198 
1199 static bool __rmap_set_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1200 {
1201 	u64 *sptep;
1202 	struct rmap_iterator iter;
1203 	bool flush = false;
1204 
1205 	for_each_rmap_spte(rmap_head, &iter, sptep)
1206 		if (spte_ad_enabled(*sptep))
1207 			flush |= spte_set_dirty(sptep);
1208 
1209 	return flush;
1210 }
1211 
1212 /**
1213  * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1214  * @kvm: kvm instance
1215  * @slot: slot to protect
1216  * @gfn_offset: start of the BITS_PER_LONG pages we care about
1217  * @mask: indicates which pages we should protect
1218  *
1219  * Used when we do not need to care about huge page mappings: e.g. during dirty
1220  * logging we do not have any such mappings.
1221  */
1222 static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1223 				     struct kvm_memory_slot *slot,
1224 				     gfn_t gfn_offset, unsigned long mask)
1225 {
1226 	struct kvm_rmap_head *rmap_head;
1227 
1228 	if (kvm->arch.tdp_mmu_enabled)
1229 		kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot,
1230 				slot->base_gfn + gfn_offset, mask, true);
1231 	while (mask) {
1232 		rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1233 					  PG_LEVEL_4K, slot);
1234 		__rmap_write_protect(kvm, rmap_head, false);
1235 
1236 		/* clear the first set bit */
1237 		mask &= mask - 1;
1238 	}
1239 }
1240 
1241 /**
1242  * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages, or write
1243  * protect the page if the D-bit isn't supported.
1244  * @kvm: kvm instance
1245  * @slot: slot to clear D-bit
1246  * @gfn_offset: start of the BITS_PER_LONG pages we care about
1247  * @mask: indicates which pages we should clear D-bit
1248  *
1249  * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap.
1250  */
1251 void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
1252 				     struct kvm_memory_slot *slot,
1253 				     gfn_t gfn_offset, unsigned long mask)
1254 {
1255 	struct kvm_rmap_head *rmap_head;
1256 
1257 	if (kvm->arch.tdp_mmu_enabled)
1258 		kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot,
1259 				slot->base_gfn + gfn_offset, mask, false);
1260 	while (mask) {
1261 		rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1262 					  PG_LEVEL_4K, slot);
1263 		__rmap_clear_dirty(kvm, rmap_head);
1264 
1265 		/* clear the first set bit */
1266 		mask &= mask - 1;
1267 	}
1268 }
1269 EXPORT_SYMBOL_GPL(kvm_mmu_clear_dirty_pt_masked);
1270 
1271 /**
1272  * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
1273  * PT level pages.
1274  *
1275  * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
1276  * enable dirty logging for them.
1277  *
1278  * Used when we do not need to care about huge page mappings: e.g. during dirty
1279  * logging we do not have any such mappings.
1280  */
1281 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1282 				struct kvm_memory_slot *slot,
1283 				gfn_t gfn_offset, unsigned long mask)
1284 {
1285 	if (kvm_x86_ops.enable_log_dirty_pt_masked)
1286 		kvm_x86_ops.enable_log_dirty_pt_masked(kvm, slot, gfn_offset,
1287 				mask);
1288 	else
1289 		kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
1290 }
1291 
1292 bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
1293 				    struct kvm_memory_slot *slot, u64 gfn)
1294 {
1295 	struct kvm_rmap_head *rmap_head;
1296 	int i;
1297 	bool write_protected = false;
1298 
1299 	for (i = PG_LEVEL_4K; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) {
1300 		rmap_head = __gfn_to_rmap(gfn, i, slot);
1301 		write_protected |= __rmap_write_protect(kvm, rmap_head, true);
1302 	}
1303 
1304 	if (kvm->arch.tdp_mmu_enabled)
1305 		write_protected |=
1306 			kvm_tdp_mmu_write_protect_gfn(kvm, slot, gfn);
1307 
1308 	return write_protected;
1309 }
1310 
1311 static bool rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn)
1312 {
1313 	struct kvm_memory_slot *slot;
1314 
1315 	slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1316 	return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn);
1317 }
1318 
1319 static bool kvm_zap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1320 {
1321 	u64 *sptep;
1322 	struct rmap_iterator iter;
1323 	bool flush = false;
1324 
1325 	while ((sptep = rmap_get_first(rmap_head, &iter))) {
1326 		rmap_printk("%s: spte %p %llx.\n", __func__, sptep, *sptep);
1327 
1328 		pte_list_remove(rmap_head, sptep);
1329 		flush = true;
1330 	}
1331 
1332 	return flush;
1333 }
1334 
1335 static int kvm_unmap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1336 			   struct kvm_memory_slot *slot, gfn_t gfn, int level,
1337 			   unsigned long data)
1338 {
1339 	return kvm_zap_rmapp(kvm, rmap_head);
1340 }
1341 
1342 static int kvm_set_pte_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1343 			     struct kvm_memory_slot *slot, gfn_t gfn, int level,
1344 			     unsigned long data)
1345 {
1346 	u64 *sptep;
1347 	struct rmap_iterator iter;
1348 	int need_flush = 0;
1349 	u64 new_spte;
1350 	pte_t *ptep = (pte_t *)data;
1351 	kvm_pfn_t new_pfn;
1352 
1353 	WARN_ON(pte_huge(*ptep));
1354 	new_pfn = pte_pfn(*ptep);
1355 
1356 restart:
1357 	for_each_rmap_spte(rmap_head, &iter, sptep) {
1358 		rmap_printk("kvm_set_pte_rmapp: spte %p %llx gfn %llx (%d)\n",
1359 			    sptep, *sptep, gfn, level);
1360 
1361 		need_flush = 1;
1362 
1363 		if (pte_write(*ptep)) {
1364 			pte_list_remove(rmap_head, sptep);
1365 			goto restart;
1366 		} else {
1367 			new_spte = kvm_mmu_changed_pte_notifier_make_spte(
1368 					*sptep, new_pfn);
1369 
1370 			mmu_spte_clear_track_bits(sptep);
1371 			mmu_spte_set(sptep, new_spte);
1372 		}
1373 	}
1374 
1375 	if (need_flush && kvm_available_flush_tlb_with_range()) {
1376 		kvm_flush_remote_tlbs_with_address(kvm, gfn, 1);
1377 		return 0;
1378 	}
1379 
1380 	return need_flush;
1381 }
1382 
1383 struct slot_rmap_walk_iterator {
1384 	/* input fields. */
1385 	struct kvm_memory_slot *slot;
1386 	gfn_t start_gfn;
1387 	gfn_t end_gfn;
1388 	int start_level;
1389 	int end_level;
1390 
1391 	/* output fields. */
1392 	gfn_t gfn;
1393 	struct kvm_rmap_head *rmap;
1394 	int level;
1395 
1396 	/* private field. */
1397 	struct kvm_rmap_head *end_rmap;
1398 };
1399 
1400 static void
1401 rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level)
1402 {
1403 	iterator->level = level;
1404 	iterator->gfn = iterator->start_gfn;
1405 	iterator->rmap = __gfn_to_rmap(iterator->gfn, level, iterator->slot);
1406 	iterator->end_rmap = __gfn_to_rmap(iterator->end_gfn, level,
1407 					   iterator->slot);
1408 }
1409 
1410 static void
1411 slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator,
1412 		    struct kvm_memory_slot *slot, int start_level,
1413 		    int end_level, gfn_t start_gfn, gfn_t end_gfn)
1414 {
1415 	iterator->slot = slot;
1416 	iterator->start_level = start_level;
1417 	iterator->end_level = end_level;
1418 	iterator->start_gfn = start_gfn;
1419 	iterator->end_gfn = end_gfn;
1420 
1421 	rmap_walk_init_level(iterator, iterator->start_level);
1422 }
1423 
1424 static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator)
1425 {
1426 	return !!iterator->rmap;
1427 }
1428 
1429 static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
1430 {
1431 	if (++iterator->rmap <= iterator->end_rmap) {
1432 		iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level));
1433 		return;
1434 	}
1435 
1436 	if (++iterator->level > iterator->end_level) {
1437 		iterator->rmap = NULL;
1438 		return;
1439 	}
1440 
1441 	rmap_walk_init_level(iterator, iterator->level);
1442 }
1443 
1444 #define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_,	\
1445 	   _start_gfn, _end_gfn, _iter_)				\
1446 	for (slot_rmap_walk_init(_iter_, _slot_, _start_level_,		\
1447 				 _end_level_, _start_gfn, _end_gfn);	\
1448 	     slot_rmap_walk_okay(_iter_);				\
1449 	     slot_rmap_walk_next(_iter_))
1450 
1451 static int kvm_handle_hva_range(struct kvm *kvm,
1452 				unsigned long start,
1453 				unsigned long end,
1454 				unsigned long data,
1455 				int (*handler)(struct kvm *kvm,
1456 					       struct kvm_rmap_head *rmap_head,
1457 					       struct kvm_memory_slot *slot,
1458 					       gfn_t gfn,
1459 					       int level,
1460 					       unsigned long data))
1461 {
1462 	struct kvm_memslots *slots;
1463 	struct kvm_memory_slot *memslot;
1464 	struct slot_rmap_walk_iterator iterator;
1465 	int ret = 0;
1466 	int i;
1467 
1468 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
1469 		slots = __kvm_memslots(kvm, i);
1470 		kvm_for_each_memslot(memslot, slots) {
1471 			unsigned long hva_start, hva_end;
1472 			gfn_t gfn_start, gfn_end;
1473 
1474 			hva_start = max(start, memslot->userspace_addr);
1475 			hva_end = min(end, memslot->userspace_addr +
1476 				      (memslot->npages << PAGE_SHIFT));
1477 			if (hva_start >= hva_end)
1478 				continue;
1479 			/*
1480 			 * {gfn(page) | page intersects with [hva_start, hva_end)} =
1481 			 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
1482 			 */
1483 			gfn_start = hva_to_gfn_memslot(hva_start, memslot);
1484 			gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
1485 
1486 			for_each_slot_rmap_range(memslot, PG_LEVEL_4K,
1487 						 KVM_MAX_HUGEPAGE_LEVEL,
1488 						 gfn_start, gfn_end - 1,
1489 						 &iterator)
1490 				ret |= handler(kvm, iterator.rmap, memslot,
1491 					       iterator.gfn, iterator.level, data);
1492 		}
1493 	}
1494 
1495 	return ret;
1496 }
1497 
1498 static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
1499 			  unsigned long data,
1500 			  int (*handler)(struct kvm *kvm,
1501 					 struct kvm_rmap_head *rmap_head,
1502 					 struct kvm_memory_slot *slot,
1503 					 gfn_t gfn, int level,
1504 					 unsigned long data))
1505 {
1506 	return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
1507 }
1508 
1509 int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end,
1510 			unsigned flags)
1511 {
1512 	int r;
1513 
1514 	r = kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
1515 
1516 	if (kvm->arch.tdp_mmu_enabled)
1517 		r |= kvm_tdp_mmu_zap_hva_range(kvm, start, end);
1518 
1519 	return r;
1520 }
1521 
1522 int kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1523 {
1524 	int r;
1525 
1526 	r = kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
1527 
1528 	if (kvm->arch.tdp_mmu_enabled)
1529 		r |= kvm_tdp_mmu_set_spte_hva(kvm, hva, &pte);
1530 
1531 	return r;
1532 }
1533 
1534 static int kvm_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1535 			 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1536 			 unsigned long data)
1537 {
1538 	u64 *sptep;
1539 	struct rmap_iterator iter;
1540 	int young = 0;
1541 
1542 	for_each_rmap_spte(rmap_head, &iter, sptep)
1543 		young |= mmu_spte_age(sptep);
1544 
1545 	trace_kvm_age_page(gfn, level, slot, young);
1546 	return young;
1547 }
1548 
1549 static int kvm_test_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1550 			      struct kvm_memory_slot *slot, gfn_t gfn,
1551 			      int level, unsigned long data)
1552 {
1553 	u64 *sptep;
1554 	struct rmap_iterator iter;
1555 
1556 	for_each_rmap_spte(rmap_head, &iter, sptep)
1557 		if (is_accessed_spte(*sptep))
1558 			return 1;
1559 	return 0;
1560 }
1561 
1562 #define RMAP_RECYCLE_THRESHOLD 1000
1563 
1564 static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1565 {
1566 	struct kvm_rmap_head *rmap_head;
1567 	struct kvm_mmu_page *sp;
1568 
1569 	sp = sptep_to_sp(spte);
1570 
1571 	rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
1572 
1573 	kvm_unmap_rmapp(vcpu->kvm, rmap_head, NULL, gfn, sp->role.level, 0);
1574 	kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn,
1575 			KVM_PAGES_PER_HPAGE(sp->role.level));
1576 }
1577 
1578 int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
1579 {
1580 	int young = false;
1581 
1582 	young = kvm_handle_hva_range(kvm, start, end, 0, kvm_age_rmapp);
1583 	if (kvm->arch.tdp_mmu_enabled)
1584 		young |= kvm_tdp_mmu_age_hva_range(kvm, start, end);
1585 
1586 	return young;
1587 }
1588 
1589 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1590 {
1591 	int young = false;
1592 
1593 	young = kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
1594 	if (kvm->arch.tdp_mmu_enabled)
1595 		young |= kvm_tdp_mmu_test_age_hva(kvm, hva);
1596 
1597 	return young;
1598 }
1599 
1600 #ifdef MMU_DEBUG
1601 static int is_empty_shadow_page(u64 *spt)
1602 {
1603 	u64 *pos;
1604 	u64 *end;
1605 
1606 	for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
1607 		if (is_shadow_present_pte(*pos)) {
1608 			printk(KERN_ERR "%s: %p %llx\n", __func__,
1609 			       pos, *pos);
1610 			return 0;
1611 		}
1612 	return 1;
1613 }
1614 #endif
1615 
1616 /*
1617  * This value is the sum of all of the kvm instances's
1618  * kvm->arch.n_used_mmu_pages values.  We need a global,
1619  * aggregate version in order to make the slab shrinker
1620  * faster
1621  */
1622 static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, unsigned long nr)
1623 {
1624 	kvm->arch.n_used_mmu_pages += nr;
1625 	percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1626 }
1627 
1628 static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
1629 {
1630 	MMU_WARN_ON(!is_empty_shadow_page(sp->spt));
1631 	hlist_del(&sp->hash_link);
1632 	list_del(&sp->link);
1633 	free_page((unsigned long)sp->spt);
1634 	if (!sp->role.direct)
1635 		free_page((unsigned long)sp->gfns);
1636 	kmem_cache_free(mmu_page_header_cache, sp);
1637 }
1638 
1639 static unsigned kvm_page_table_hashfn(gfn_t gfn)
1640 {
1641 	return hash_64(gfn, KVM_MMU_HASH_SHIFT);
1642 }
1643 
1644 static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
1645 				    struct kvm_mmu_page *sp, u64 *parent_pte)
1646 {
1647 	if (!parent_pte)
1648 		return;
1649 
1650 	pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
1651 }
1652 
1653 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
1654 				       u64 *parent_pte)
1655 {
1656 	__pte_list_remove(parent_pte, &sp->parent_ptes);
1657 }
1658 
1659 static void drop_parent_pte(struct kvm_mmu_page *sp,
1660 			    u64 *parent_pte)
1661 {
1662 	mmu_page_remove_parent_pte(sp, parent_pte);
1663 	mmu_spte_clear_no_track(parent_pte);
1664 }
1665 
1666 static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu, int direct)
1667 {
1668 	struct kvm_mmu_page *sp;
1669 
1670 	sp = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
1671 	sp->spt = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_shadow_page_cache);
1672 	if (!direct)
1673 		sp->gfns = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_gfn_array_cache);
1674 	set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
1675 
1676 	/*
1677 	 * active_mmu_pages must be a FIFO list, as kvm_zap_obsolete_pages()
1678 	 * depends on valid pages being added to the head of the list.  See
1679 	 * comments in kvm_zap_obsolete_pages().
1680 	 */
1681 	sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
1682 	list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
1683 	kvm_mod_used_mmu_pages(vcpu->kvm, +1);
1684 	return sp;
1685 }
1686 
1687 static void mark_unsync(u64 *spte);
1688 static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
1689 {
1690 	u64 *sptep;
1691 	struct rmap_iterator iter;
1692 
1693 	for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) {
1694 		mark_unsync(sptep);
1695 	}
1696 }
1697 
1698 static void mark_unsync(u64 *spte)
1699 {
1700 	struct kvm_mmu_page *sp;
1701 	unsigned int index;
1702 
1703 	sp = sptep_to_sp(spte);
1704 	index = spte - sp->spt;
1705 	if (__test_and_set_bit(index, sp->unsync_child_bitmap))
1706 		return;
1707 	if (sp->unsync_children++)
1708 		return;
1709 	kvm_mmu_mark_parents_unsync(sp);
1710 }
1711 
1712 static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
1713 			       struct kvm_mmu_page *sp)
1714 {
1715 	return 0;
1716 }
1717 
1718 static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
1719 				 struct kvm_mmu_page *sp, u64 *spte,
1720 				 const void *pte)
1721 {
1722 	WARN_ON(1);
1723 }
1724 
1725 #define KVM_PAGE_ARRAY_NR 16
1726 
1727 struct kvm_mmu_pages {
1728 	struct mmu_page_and_offset {
1729 		struct kvm_mmu_page *sp;
1730 		unsigned int idx;
1731 	} page[KVM_PAGE_ARRAY_NR];
1732 	unsigned int nr;
1733 };
1734 
1735 static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
1736 			 int idx)
1737 {
1738 	int i;
1739 
1740 	if (sp->unsync)
1741 		for (i=0; i < pvec->nr; i++)
1742 			if (pvec->page[i].sp == sp)
1743 				return 0;
1744 
1745 	pvec->page[pvec->nr].sp = sp;
1746 	pvec->page[pvec->nr].idx = idx;
1747 	pvec->nr++;
1748 	return (pvec->nr == KVM_PAGE_ARRAY_NR);
1749 }
1750 
1751 static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx)
1752 {
1753 	--sp->unsync_children;
1754 	WARN_ON((int)sp->unsync_children < 0);
1755 	__clear_bit(idx, sp->unsync_child_bitmap);
1756 }
1757 
1758 static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
1759 			   struct kvm_mmu_pages *pvec)
1760 {
1761 	int i, ret, nr_unsync_leaf = 0;
1762 
1763 	for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
1764 		struct kvm_mmu_page *child;
1765 		u64 ent = sp->spt[i];
1766 
1767 		if (!is_shadow_present_pte(ent) || is_large_pte(ent)) {
1768 			clear_unsync_child_bit(sp, i);
1769 			continue;
1770 		}
1771 
1772 		child = to_shadow_page(ent & PT64_BASE_ADDR_MASK);
1773 
1774 		if (child->unsync_children) {
1775 			if (mmu_pages_add(pvec, child, i))
1776 				return -ENOSPC;
1777 
1778 			ret = __mmu_unsync_walk(child, pvec);
1779 			if (!ret) {
1780 				clear_unsync_child_bit(sp, i);
1781 				continue;
1782 			} else if (ret > 0) {
1783 				nr_unsync_leaf += ret;
1784 			} else
1785 				return ret;
1786 		} else if (child->unsync) {
1787 			nr_unsync_leaf++;
1788 			if (mmu_pages_add(pvec, child, i))
1789 				return -ENOSPC;
1790 		} else
1791 			clear_unsync_child_bit(sp, i);
1792 	}
1793 
1794 	return nr_unsync_leaf;
1795 }
1796 
1797 #define INVALID_INDEX (-1)
1798 
1799 static int mmu_unsync_walk(struct kvm_mmu_page *sp,
1800 			   struct kvm_mmu_pages *pvec)
1801 {
1802 	pvec->nr = 0;
1803 	if (!sp->unsync_children)
1804 		return 0;
1805 
1806 	mmu_pages_add(pvec, sp, INVALID_INDEX);
1807 	return __mmu_unsync_walk(sp, pvec);
1808 }
1809 
1810 static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1811 {
1812 	WARN_ON(!sp->unsync);
1813 	trace_kvm_mmu_sync_page(sp);
1814 	sp->unsync = 0;
1815 	--kvm->stat.mmu_unsync;
1816 }
1817 
1818 static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1819 				     struct list_head *invalid_list);
1820 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1821 				    struct list_head *invalid_list);
1822 
1823 #define for_each_valid_sp(_kvm, _sp, _list)				\
1824 	hlist_for_each_entry(_sp, _list, hash_link)			\
1825 		if (is_obsolete_sp((_kvm), (_sp))) {			\
1826 		} else
1827 
1828 #define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn)			\
1829 	for_each_valid_sp(_kvm, _sp,					\
1830 	  &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)])	\
1831 		if ((_sp)->gfn != (_gfn) || (_sp)->role.direct) {} else
1832 
1833 static inline bool is_ept_sp(struct kvm_mmu_page *sp)
1834 {
1835 	return sp->role.cr0_wp && sp->role.smap_andnot_wp;
1836 }
1837 
1838 /* @sp->gfn should be write-protected at the call site */
1839 static bool __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1840 			    struct list_head *invalid_list)
1841 {
1842 	if ((!is_ept_sp(sp) && sp->role.gpte_is_8_bytes != !!is_pae(vcpu)) ||
1843 	    vcpu->arch.mmu->sync_page(vcpu, sp) == 0) {
1844 		kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1845 		return false;
1846 	}
1847 
1848 	return true;
1849 }
1850 
1851 static bool kvm_mmu_remote_flush_or_zap(struct kvm *kvm,
1852 					struct list_head *invalid_list,
1853 					bool remote_flush)
1854 {
1855 	if (!remote_flush && list_empty(invalid_list))
1856 		return false;
1857 
1858 	if (!list_empty(invalid_list))
1859 		kvm_mmu_commit_zap_page(kvm, invalid_list);
1860 	else
1861 		kvm_flush_remote_tlbs(kvm);
1862 	return true;
1863 }
1864 
1865 static void kvm_mmu_flush_or_zap(struct kvm_vcpu *vcpu,
1866 				 struct list_head *invalid_list,
1867 				 bool remote_flush, bool local_flush)
1868 {
1869 	if (kvm_mmu_remote_flush_or_zap(vcpu->kvm, invalid_list, remote_flush))
1870 		return;
1871 
1872 	if (local_flush)
1873 		kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1874 }
1875 
1876 #ifdef CONFIG_KVM_MMU_AUDIT
1877 #include "mmu_audit.c"
1878 #else
1879 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
1880 static void mmu_audit_disable(void) { }
1881 #endif
1882 
1883 static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
1884 {
1885 	return sp->role.invalid ||
1886 	       unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
1887 }
1888 
1889 static bool kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1890 			 struct list_head *invalid_list)
1891 {
1892 	kvm_unlink_unsync_page(vcpu->kvm, sp);
1893 	return __kvm_sync_page(vcpu, sp, invalid_list);
1894 }
1895 
1896 /* @gfn should be write-protected at the call site */
1897 static bool kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn,
1898 			   struct list_head *invalid_list)
1899 {
1900 	struct kvm_mmu_page *s;
1901 	bool ret = false;
1902 
1903 	for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
1904 		if (!s->unsync)
1905 			continue;
1906 
1907 		WARN_ON(s->role.level != PG_LEVEL_4K);
1908 		ret |= kvm_sync_page(vcpu, s, invalid_list);
1909 	}
1910 
1911 	return ret;
1912 }
1913 
1914 struct mmu_page_path {
1915 	struct kvm_mmu_page *parent[PT64_ROOT_MAX_LEVEL];
1916 	unsigned int idx[PT64_ROOT_MAX_LEVEL];
1917 };
1918 
1919 #define for_each_sp(pvec, sp, parents, i)			\
1920 		for (i = mmu_pages_first(&pvec, &parents);	\
1921 			i < pvec.nr && ({ sp = pvec.page[i].sp; 1;});	\
1922 			i = mmu_pages_next(&pvec, &parents, i))
1923 
1924 static int mmu_pages_next(struct kvm_mmu_pages *pvec,
1925 			  struct mmu_page_path *parents,
1926 			  int i)
1927 {
1928 	int n;
1929 
1930 	for (n = i+1; n < pvec->nr; n++) {
1931 		struct kvm_mmu_page *sp = pvec->page[n].sp;
1932 		unsigned idx = pvec->page[n].idx;
1933 		int level = sp->role.level;
1934 
1935 		parents->idx[level-1] = idx;
1936 		if (level == PG_LEVEL_4K)
1937 			break;
1938 
1939 		parents->parent[level-2] = sp;
1940 	}
1941 
1942 	return n;
1943 }
1944 
1945 static int mmu_pages_first(struct kvm_mmu_pages *pvec,
1946 			   struct mmu_page_path *parents)
1947 {
1948 	struct kvm_mmu_page *sp;
1949 	int level;
1950 
1951 	if (pvec->nr == 0)
1952 		return 0;
1953 
1954 	WARN_ON(pvec->page[0].idx != INVALID_INDEX);
1955 
1956 	sp = pvec->page[0].sp;
1957 	level = sp->role.level;
1958 	WARN_ON(level == PG_LEVEL_4K);
1959 
1960 	parents->parent[level-2] = sp;
1961 
1962 	/* Also set up a sentinel.  Further entries in pvec are all
1963 	 * children of sp, so this element is never overwritten.
1964 	 */
1965 	parents->parent[level-1] = NULL;
1966 	return mmu_pages_next(pvec, parents, 0);
1967 }
1968 
1969 static void mmu_pages_clear_parents(struct mmu_page_path *parents)
1970 {
1971 	struct kvm_mmu_page *sp;
1972 	unsigned int level = 0;
1973 
1974 	do {
1975 		unsigned int idx = parents->idx[level];
1976 		sp = parents->parent[level];
1977 		if (!sp)
1978 			return;
1979 
1980 		WARN_ON(idx == INVALID_INDEX);
1981 		clear_unsync_child_bit(sp, idx);
1982 		level++;
1983 	} while (!sp->unsync_children);
1984 }
1985 
1986 static void mmu_sync_children(struct kvm_vcpu *vcpu,
1987 			      struct kvm_mmu_page *parent)
1988 {
1989 	int i;
1990 	struct kvm_mmu_page *sp;
1991 	struct mmu_page_path parents;
1992 	struct kvm_mmu_pages pages;
1993 	LIST_HEAD(invalid_list);
1994 	bool flush = false;
1995 
1996 	while (mmu_unsync_walk(parent, &pages)) {
1997 		bool protected = false;
1998 
1999 		for_each_sp(pages, sp, parents, i)
2000 			protected |= rmap_write_protect(vcpu, sp->gfn);
2001 
2002 		if (protected) {
2003 			kvm_flush_remote_tlbs(vcpu->kvm);
2004 			flush = false;
2005 		}
2006 
2007 		for_each_sp(pages, sp, parents, i) {
2008 			flush |= kvm_sync_page(vcpu, sp, &invalid_list);
2009 			mmu_pages_clear_parents(&parents);
2010 		}
2011 		if (need_resched() || spin_needbreak(&vcpu->kvm->mmu_lock)) {
2012 			kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2013 			cond_resched_lock(&vcpu->kvm->mmu_lock);
2014 			flush = false;
2015 		}
2016 	}
2017 
2018 	kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2019 }
2020 
2021 static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
2022 {
2023 	atomic_set(&sp->write_flooding_count,  0);
2024 }
2025 
2026 static void clear_sp_write_flooding_count(u64 *spte)
2027 {
2028 	__clear_sp_write_flooding_count(sptep_to_sp(spte));
2029 }
2030 
2031 static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
2032 					     gfn_t gfn,
2033 					     gva_t gaddr,
2034 					     unsigned level,
2035 					     int direct,
2036 					     unsigned int access)
2037 {
2038 	bool direct_mmu = vcpu->arch.mmu->direct_map;
2039 	union kvm_mmu_page_role role;
2040 	struct hlist_head *sp_list;
2041 	unsigned quadrant;
2042 	struct kvm_mmu_page *sp;
2043 	bool need_sync = false;
2044 	bool flush = false;
2045 	int collisions = 0;
2046 	LIST_HEAD(invalid_list);
2047 
2048 	role = vcpu->arch.mmu->mmu_role.base;
2049 	role.level = level;
2050 	role.direct = direct;
2051 	if (role.direct)
2052 		role.gpte_is_8_bytes = true;
2053 	role.access = access;
2054 	if (!direct_mmu && vcpu->arch.mmu->root_level <= PT32_ROOT_LEVEL) {
2055 		quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
2056 		quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
2057 		role.quadrant = quadrant;
2058 	}
2059 
2060 	sp_list = &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)];
2061 	for_each_valid_sp(vcpu->kvm, sp, sp_list) {
2062 		if (sp->gfn != gfn) {
2063 			collisions++;
2064 			continue;
2065 		}
2066 
2067 		if (!need_sync && sp->unsync)
2068 			need_sync = true;
2069 
2070 		if (sp->role.word != role.word)
2071 			continue;
2072 
2073 		if (direct_mmu)
2074 			goto trace_get_page;
2075 
2076 		if (sp->unsync) {
2077 			/* The page is good, but __kvm_sync_page might still end
2078 			 * up zapping it.  If so, break in order to rebuild it.
2079 			 */
2080 			if (!__kvm_sync_page(vcpu, sp, &invalid_list))
2081 				break;
2082 
2083 			WARN_ON(!list_empty(&invalid_list));
2084 			kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
2085 		}
2086 
2087 		if (sp->unsync_children)
2088 			kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
2089 
2090 		__clear_sp_write_flooding_count(sp);
2091 
2092 trace_get_page:
2093 		trace_kvm_mmu_get_page(sp, false);
2094 		goto out;
2095 	}
2096 
2097 	++vcpu->kvm->stat.mmu_cache_miss;
2098 
2099 	sp = kvm_mmu_alloc_page(vcpu, direct);
2100 
2101 	sp->gfn = gfn;
2102 	sp->role = role;
2103 	hlist_add_head(&sp->hash_link, sp_list);
2104 	if (!direct) {
2105 		/*
2106 		 * we should do write protection before syncing pages
2107 		 * otherwise the content of the synced shadow page may
2108 		 * be inconsistent with guest page table.
2109 		 */
2110 		account_shadowed(vcpu->kvm, sp);
2111 		if (level == PG_LEVEL_4K && rmap_write_protect(vcpu, gfn))
2112 			kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn, 1);
2113 
2114 		if (level > PG_LEVEL_4K && need_sync)
2115 			flush |= kvm_sync_pages(vcpu, gfn, &invalid_list);
2116 	}
2117 	trace_kvm_mmu_get_page(sp, true);
2118 
2119 	kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2120 out:
2121 	if (collisions > vcpu->kvm->stat.max_mmu_page_hash_collisions)
2122 		vcpu->kvm->stat.max_mmu_page_hash_collisions = collisions;
2123 	return sp;
2124 }
2125 
2126 static void shadow_walk_init_using_root(struct kvm_shadow_walk_iterator *iterator,
2127 					struct kvm_vcpu *vcpu, hpa_t root,
2128 					u64 addr)
2129 {
2130 	iterator->addr = addr;
2131 	iterator->shadow_addr = root;
2132 	iterator->level = vcpu->arch.mmu->shadow_root_level;
2133 
2134 	if (iterator->level == PT64_ROOT_4LEVEL &&
2135 	    vcpu->arch.mmu->root_level < PT64_ROOT_4LEVEL &&
2136 	    !vcpu->arch.mmu->direct_map)
2137 		--iterator->level;
2138 
2139 	if (iterator->level == PT32E_ROOT_LEVEL) {
2140 		/*
2141 		 * prev_root is currently only used for 64-bit hosts. So only
2142 		 * the active root_hpa is valid here.
2143 		 */
2144 		BUG_ON(root != vcpu->arch.mmu->root_hpa);
2145 
2146 		iterator->shadow_addr
2147 			= vcpu->arch.mmu->pae_root[(addr >> 30) & 3];
2148 		iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
2149 		--iterator->level;
2150 		if (!iterator->shadow_addr)
2151 			iterator->level = 0;
2152 	}
2153 }
2154 
2155 static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
2156 			     struct kvm_vcpu *vcpu, u64 addr)
2157 {
2158 	shadow_walk_init_using_root(iterator, vcpu, vcpu->arch.mmu->root_hpa,
2159 				    addr);
2160 }
2161 
2162 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
2163 {
2164 	if (iterator->level < PG_LEVEL_4K)
2165 		return false;
2166 
2167 	iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
2168 	iterator->sptep	= ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
2169 	return true;
2170 }
2171 
2172 static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
2173 			       u64 spte)
2174 {
2175 	if (is_last_spte(spte, iterator->level)) {
2176 		iterator->level = 0;
2177 		return;
2178 	}
2179 
2180 	iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2181 	--iterator->level;
2182 }
2183 
2184 static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
2185 {
2186 	__shadow_walk_next(iterator, *iterator->sptep);
2187 }
2188 
2189 static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep,
2190 			     struct kvm_mmu_page *sp)
2191 {
2192 	u64 spte;
2193 
2194 	BUILD_BUG_ON(VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);
2195 
2196 	spte = make_nonleaf_spte(sp->spt, sp_ad_disabled(sp));
2197 
2198 	mmu_spte_set(sptep, spte);
2199 
2200 	mmu_page_add_parent_pte(vcpu, sp, sptep);
2201 
2202 	if (sp->unsync_children || sp->unsync)
2203 		mark_unsync(sptep);
2204 }
2205 
2206 static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2207 				   unsigned direct_access)
2208 {
2209 	if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
2210 		struct kvm_mmu_page *child;
2211 
2212 		/*
2213 		 * For the direct sp, if the guest pte's dirty bit
2214 		 * changed form clean to dirty, it will corrupt the
2215 		 * sp's access: allow writable in the read-only sp,
2216 		 * so we should update the spte at this point to get
2217 		 * a new sp with the correct access.
2218 		 */
2219 		child = to_shadow_page(*sptep & PT64_BASE_ADDR_MASK);
2220 		if (child->role.access == direct_access)
2221 			return;
2222 
2223 		drop_parent_pte(child, sptep);
2224 		kvm_flush_remote_tlbs_with_address(vcpu->kvm, child->gfn, 1);
2225 	}
2226 }
2227 
2228 /* Returns the number of zapped non-leaf child shadow pages. */
2229 static int mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
2230 			    u64 *spte, struct list_head *invalid_list)
2231 {
2232 	u64 pte;
2233 	struct kvm_mmu_page *child;
2234 
2235 	pte = *spte;
2236 	if (is_shadow_present_pte(pte)) {
2237 		if (is_last_spte(pte, sp->role.level)) {
2238 			drop_spte(kvm, spte);
2239 			if (is_large_pte(pte))
2240 				--kvm->stat.lpages;
2241 		} else {
2242 			child = to_shadow_page(pte & PT64_BASE_ADDR_MASK);
2243 			drop_parent_pte(child, spte);
2244 
2245 			/*
2246 			 * Recursively zap nested TDP SPs, parentless SPs are
2247 			 * unlikely to be used again in the near future.  This
2248 			 * avoids retaining a large number of stale nested SPs.
2249 			 */
2250 			if (tdp_enabled && invalid_list &&
2251 			    child->role.guest_mode && !child->parent_ptes.val)
2252 				return kvm_mmu_prepare_zap_page(kvm, child,
2253 								invalid_list);
2254 		}
2255 	} else if (is_mmio_spte(pte)) {
2256 		mmu_spte_clear_no_track(spte);
2257 	}
2258 	return 0;
2259 }
2260 
2261 static int kvm_mmu_page_unlink_children(struct kvm *kvm,
2262 					struct kvm_mmu_page *sp,
2263 					struct list_head *invalid_list)
2264 {
2265 	int zapped = 0;
2266 	unsigned i;
2267 
2268 	for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2269 		zapped += mmu_page_zap_pte(kvm, sp, sp->spt + i, invalid_list);
2270 
2271 	return zapped;
2272 }
2273 
2274 static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
2275 {
2276 	u64 *sptep;
2277 	struct rmap_iterator iter;
2278 
2279 	while ((sptep = rmap_get_first(&sp->parent_ptes, &iter)))
2280 		drop_parent_pte(sp, sptep);
2281 }
2282 
2283 static int mmu_zap_unsync_children(struct kvm *kvm,
2284 				   struct kvm_mmu_page *parent,
2285 				   struct list_head *invalid_list)
2286 {
2287 	int i, zapped = 0;
2288 	struct mmu_page_path parents;
2289 	struct kvm_mmu_pages pages;
2290 
2291 	if (parent->role.level == PG_LEVEL_4K)
2292 		return 0;
2293 
2294 	while (mmu_unsync_walk(parent, &pages)) {
2295 		struct kvm_mmu_page *sp;
2296 
2297 		for_each_sp(pages, sp, parents, i) {
2298 			kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2299 			mmu_pages_clear_parents(&parents);
2300 			zapped++;
2301 		}
2302 	}
2303 
2304 	return zapped;
2305 }
2306 
2307 static bool __kvm_mmu_prepare_zap_page(struct kvm *kvm,
2308 				       struct kvm_mmu_page *sp,
2309 				       struct list_head *invalid_list,
2310 				       int *nr_zapped)
2311 {
2312 	bool list_unstable;
2313 
2314 	trace_kvm_mmu_prepare_zap_page(sp);
2315 	++kvm->stat.mmu_shadow_zapped;
2316 	*nr_zapped = mmu_zap_unsync_children(kvm, sp, invalid_list);
2317 	*nr_zapped += kvm_mmu_page_unlink_children(kvm, sp, invalid_list);
2318 	kvm_mmu_unlink_parents(kvm, sp);
2319 
2320 	/* Zapping children means active_mmu_pages has become unstable. */
2321 	list_unstable = *nr_zapped;
2322 
2323 	if (!sp->role.invalid && !sp->role.direct)
2324 		unaccount_shadowed(kvm, sp);
2325 
2326 	if (sp->unsync)
2327 		kvm_unlink_unsync_page(kvm, sp);
2328 	if (!sp->root_count) {
2329 		/* Count self */
2330 		(*nr_zapped)++;
2331 
2332 		/*
2333 		 * Already invalid pages (previously active roots) are not on
2334 		 * the active page list.  See list_del() in the "else" case of
2335 		 * !sp->root_count.
2336 		 */
2337 		if (sp->role.invalid)
2338 			list_add(&sp->link, invalid_list);
2339 		else
2340 			list_move(&sp->link, invalid_list);
2341 		kvm_mod_used_mmu_pages(kvm, -1);
2342 	} else {
2343 		/*
2344 		 * Remove the active root from the active page list, the root
2345 		 * will be explicitly freed when the root_count hits zero.
2346 		 */
2347 		list_del(&sp->link);
2348 
2349 		/*
2350 		 * Obsolete pages cannot be used on any vCPUs, see the comment
2351 		 * in kvm_mmu_zap_all_fast().  Note, is_obsolete_sp() also
2352 		 * treats invalid shadow pages as being obsolete.
2353 		 */
2354 		if (!is_obsolete_sp(kvm, sp))
2355 			kvm_reload_remote_mmus(kvm);
2356 	}
2357 
2358 	if (sp->lpage_disallowed)
2359 		unaccount_huge_nx_page(kvm, sp);
2360 
2361 	sp->role.invalid = 1;
2362 	return list_unstable;
2363 }
2364 
2365 static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2366 				     struct list_head *invalid_list)
2367 {
2368 	int nr_zapped;
2369 
2370 	__kvm_mmu_prepare_zap_page(kvm, sp, invalid_list, &nr_zapped);
2371 	return nr_zapped;
2372 }
2373 
2374 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2375 				    struct list_head *invalid_list)
2376 {
2377 	struct kvm_mmu_page *sp, *nsp;
2378 
2379 	if (list_empty(invalid_list))
2380 		return;
2381 
2382 	/*
2383 	 * We need to make sure everyone sees our modifications to
2384 	 * the page tables and see changes to vcpu->mode here. The barrier
2385 	 * in the kvm_flush_remote_tlbs() achieves this. This pairs
2386 	 * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end.
2387 	 *
2388 	 * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit
2389 	 * guest mode and/or lockless shadow page table walks.
2390 	 */
2391 	kvm_flush_remote_tlbs(kvm);
2392 
2393 	list_for_each_entry_safe(sp, nsp, invalid_list, link) {
2394 		WARN_ON(!sp->role.invalid || sp->root_count);
2395 		kvm_mmu_free_page(sp);
2396 	}
2397 }
2398 
2399 static unsigned long kvm_mmu_zap_oldest_mmu_pages(struct kvm *kvm,
2400 						  unsigned long nr_to_zap)
2401 {
2402 	unsigned long total_zapped = 0;
2403 	struct kvm_mmu_page *sp, *tmp;
2404 	LIST_HEAD(invalid_list);
2405 	bool unstable;
2406 	int nr_zapped;
2407 
2408 	if (list_empty(&kvm->arch.active_mmu_pages))
2409 		return 0;
2410 
2411 restart:
2412 	list_for_each_entry_safe(sp, tmp, &kvm->arch.active_mmu_pages, link) {
2413 		/*
2414 		 * Don't zap active root pages, the page itself can't be freed
2415 		 * and zapping it will just force vCPUs to realloc and reload.
2416 		 */
2417 		if (sp->root_count)
2418 			continue;
2419 
2420 		unstable = __kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list,
2421 						      &nr_zapped);
2422 		total_zapped += nr_zapped;
2423 		if (total_zapped >= nr_to_zap)
2424 			break;
2425 
2426 		if (unstable)
2427 			goto restart;
2428 	}
2429 
2430 	kvm_mmu_commit_zap_page(kvm, &invalid_list);
2431 
2432 	kvm->stat.mmu_recycled += total_zapped;
2433 	return total_zapped;
2434 }
2435 
2436 static inline unsigned long kvm_mmu_available_pages(struct kvm *kvm)
2437 {
2438 	if (kvm->arch.n_max_mmu_pages > kvm->arch.n_used_mmu_pages)
2439 		return kvm->arch.n_max_mmu_pages -
2440 			kvm->arch.n_used_mmu_pages;
2441 
2442 	return 0;
2443 }
2444 
2445 static int make_mmu_pages_available(struct kvm_vcpu *vcpu)
2446 {
2447 	unsigned long avail = kvm_mmu_available_pages(vcpu->kvm);
2448 
2449 	if (likely(avail >= KVM_MIN_FREE_MMU_PAGES))
2450 		return 0;
2451 
2452 	kvm_mmu_zap_oldest_mmu_pages(vcpu->kvm, KVM_REFILL_PAGES - avail);
2453 
2454 	if (!kvm_mmu_available_pages(vcpu->kvm))
2455 		return -ENOSPC;
2456 	return 0;
2457 }
2458 
2459 /*
2460  * Changing the number of mmu pages allocated to the vm
2461  * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2462  */
2463 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long goal_nr_mmu_pages)
2464 {
2465 	spin_lock(&kvm->mmu_lock);
2466 
2467 	if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2468 		kvm_mmu_zap_oldest_mmu_pages(kvm, kvm->arch.n_used_mmu_pages -
2469 						  goal_nr_mmu_pages);
2470 
2471 		goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2472 	}
2473 
2474 	kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2475 
2476 	spin_unlock(&kvm->mmu_lock);
2477 }
2478 
2479 int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2480 {
2481 	struct kvm_mmu_page *sp;
2482 	LIST_HEAD(invalid_list);
2483 	int r;
2484 
2485 	pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
2486 	r = 0;
2487 	spin_lock(&kvm->mmu_lock);
2488 	for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
2489 		pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
2490 			 sp->role.word);
2491 		r = 1;
2492 		kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2493 	}
2494 	kvm_mmu_commit_zap_page(kvm, &invalid_list);
2495 	spin_unlock(&kvm->mmu_lock);
2496 
2497 	return r;
2498 }
2499 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
2500 
2501 static void kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2502 {
2503 	trace_kvm_mmu_unsync_page(sp);
2504 	++vcpu->kvm->stat.mmu_unsync;
2505 	sp->unsync = 1;
2506 
2507 	kvm_mmu_mark_parents_unsync(sp);
2508 }
2509 
2510 bool mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
2511 			    bool can_unsync)
2512 {
2513 	struct kvm_mmu_page *sp;
2514 
2515 	if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
2516 		return true;
2517 
2518 	for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
2519 		if (!can_unsync)
2520 			return true;
2521 
2522 		if (sp->unsync)
2523 			continue;
2524 
2525 		WARN_ON(sp->role.level != PG_LEVEL_4K);
2526 		kvm_unsync_page(vcpu, sp);
2527 	}
2528 
2529 	/*
2530 	 * We need to ensure that the marking of unsync pages is visible
2531 	 * before the SPTE is updated to allow writes because
2532 	 * kvm_mmu_sync_roots() checks the unsync flags without holding
2533 	 * the MMU lock and so can race with this. If the SPTE was updated
2534 	 * before the page had been marked as unsync-ed, something like the
2535 	 * following could happen:
2536 	 *
2537 	 * CPU 1                    CPU 2
2538 	 * ---------------------------------------------------------------------
2539 	 * 1.2 Host updates SPTE
2540 	 *     to be writable
2541 	 *                      2.1 Guest writes a GPTE for GVA X.
2542 	 *                          (GPTE being in the guest page table shadowed
2543 	 *                           by the SP from CPU 1.)
2544 	 *                          This reads SPTE during the page table walk.
2545 	 *                          Since SPTE.W is read as 1, there is no
2546 	 *                          fault.
2547 	 *
2548 	 *                      2.2 Guest issues TLB flush.
2549 	 *                          That causes a VM Exit.
2550 	 *
2551 	 *                      2.3 kvm_mmu_sync_pages() reads sp->unsync.
2552 	 *                          Since it is false, so it just returns.
2553 	 *
2554 	 *                      2.4 Guest accesses GVA X.
2555 	 *                          Since the mapping in the SP was not updated,
2556 	 *                          so the old mapping for GVA X incorrectly
2557 	 *                          gets used.
2558 	 * 1.1 Host marks SP
2559 	 *     as unsync
2560 	 *     (sp->unsync = true)
2561 	 *
2562 	 * The write barrier below ensures that 1.1 happens before 1.2 and thus
2563 	 * the situation in 2.4 does not arise. The implicit barrier in 2.2
2564 	 * pairs with this write barrier.
2565 	 */
2566 	smp_wmb();
2567 
2568 	return false;
2569 }
2570 
2571 static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2572 		    unsigned int pte_access, int level,
2573 		    gfn_t gfn, kvm_pfn_t pfn, bool speculative,
2574 		    bool can_unsync, bool host_writable)
2575 {
2576 	u64 spte;
2577 	struct kvm_mmu_page *sp;
2578 	int ret;
2579 
2580 	if (set_mmio_spte(vcpu, sptep, gfn, pfn, pte_access))
2581 		return 0;
2582 
2583 	sp = sptep_to_sp(sptep);
2584 
2585 	ret = make_spte(vcpu, pte_access, level, gfn, pfn, *sptep, speculative,
2586 			can_unsync, host_writable, sp_ad_disabled(sp), &spte);
2587 
2588 	if (spte & PT_WRITABLE_MASK)
2589 		kvm_vcpu_mark_page_dirty(vcpu, gfn);
2590 
2591 	if (*sptep == spte)
2592 		ret |= SET_SPTE_SPURIOUS;
2593 	else if (mmu_spte_update(sptep, spte))
2594 		ret |= SET_SPTE_NEED_REMOTE_TLB_FLUSH;
2595 	return ret;
2596 }
2597 
2598 static int mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2599 			unsigned int pte_access, bool write_fault, int level,
2600 			gfn_t gfn, kvm_pfn_t pfn, bool speculative,
2601 			bool host_writable)
2602 {
2603 	int was_rmapped = 0;
2604 	int rmap_count;
2605 	int set_spte_ret;
2606 	int ret = RET_PF_FIXED;
2607 	bool flush = false;
2608 
2609 	pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
2610 		 *sptep, write_fault, gfn);
2611 
2612 	if (is_shadow_present_pte(*sptep)) {
2613 		/*
2614 		 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2615 		 * the parent of the now unreachable PTE.
2616 		 */
2617 		if (level > PG_LEVEL_4K && !is_large_pte(*sptep)) {
2618 			struct kvm_mmu_page *child;
2619 			u64 pte = *sptep;
2620 
2621 			child = to_shadow_page(pte & PT64_BASE_ADDR_MASK);
2622 			drop_parent_pte(child, sptep);
2623 			flush = true;
2624 		} else if (pfn != spte_to_pfn(*sptep)) {
2625 			pgprintk("hfn old %llx new %llx\n",
2626 				 spte_to_pfn(*sptep), pfn);
2627 			drop_spte(vcpu->kvm, sptep);
2628 			flush = true;
2629 		} else
2630 			was_rmapped = 1;
2631 	}
2632 
2633 	set_spte_ret = set_spte(vcpu, sptep, pte_access, level, gfn, pfn,
2634 				speculative, true, host_writable);
2635 	if (set_spte_ret & SET_SPTE_WRITE_PROTECTED_PT) {
2636 		if (write_fault)
2637 			ret = RET_PF_EMULATE;
2638 		kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
2639 	}
2640 
2641 	if (set_spte_ret & SET_SPTE_NEED_REMOTE_TLB_FLUSH || flush)
2642 		kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn,
2643 				KVM_PAGES_PER_HPAGE(level));
2644 
2645 	if (unlikely(is_mmio_spte(*sptep)))
2646 		ret = RET_PF_EMULATE;
2647 
2648 	/*
2649 	 * The fault is fully spurious if and only if the new SPTE and old SPTE
2650 	 * are identical, and emulation is not required.
2651 	 */
2652 	if ((set_spte_ret & SET_SPTE_SPURIOUS) && ret == RET_PF_FIXED) {
2653 		WARN_ON_ONCE(!was_rmapped);
2654 		return RET_PF_SPURIOUS;
2655 	}
2656 
2657 	pgprintk("%s: setting spte %llx\n", __func__, *sptep);
2658 	trace_kvm_mmu_set_spte(level, gfn, sptep);
2659 	if (!was_rmapped && is_large_pte(*sptep))
2660 		++vcpu->kvm->stat.lpages;
2661 
2662 	if (is_shadow_present_pte(*sptep)) {
2663 		if (!was_rmapped) {
2664 			rmap_count = rmap_add(vcpu, sptep, gfn);
2665 			if (rmap_count > RMAP_RECYCLE_THRESHOLD)
2666 				rmap_recycle(vcpu, sptep, gfn);
2667 		}
2668 	}
2669 
2670 	return ret;
2671 }
2672 
2673 static kvm_pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
2674 				     bool no_dirty_log)
2675 {
2676 	struct kvm_memory_slot *slot;
2677 
2678 	slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
2679 	if (!slot)
2680 		return KVM_PFN_ERR_FAULT;
2681 
2682 	return gfn_to_pfn_memslot_atomic(slot, gfn);
2683 }
2684 
2685 static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2686 				    struct kvm_mmu_page *sp,
2687 				    u64 *start, u64 *end)
2688 {
2689 	struct page *pages[PTE_PREFETCH_NUM];
2690 	struct kvm_memory_slot *slot;
2691 	unsigned int access = sp->role.access;
2692 	int i, ret;
2693 	gfn_t gfn;
2694 
2695 	gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
2696 	slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK);
2697 	if (!slot)
2698 		return -1;
2699 
2700 	ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start);
2701 	if (ret <= 0)
2702 		return -1;
2703 
2704 	for (i = 0; i < ret; i++, gfn++, start++) {
2705 		mmu_set_spte(vcpu, start, access, false, sp->role.level, gfn,
2706 			     page_to_pfn(pages[i]), true, true);
2707 		put_page(pages[i]);
2708 	}
2709 
2710 	return 0;
2711 }
2712 
2713 static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
2714 				  struct kvm_mmu_page *sp, u64 *sptep)
2715 {
2716 	u64 *spte, *start = NULL;
2717 	int i;
2718 
2719 	WARN_ON(!sp->role.direct);
2720 
2721 	i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
2722 	spte = sp->spt + i;
2723 
2724 	for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
2725 		if (is_shadow_present_pte(*spte) || spte == sptep) {
2726 			if (!start)
2727 				continue;
2728 			if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2729 				break;
2730 			start = NULL;
2731 		} else if (!start)
2732 			start = spte;
2733 	}
2734 }
2735 
2736 static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
2737 {
2738 	struct kvm_mmu_page *sp;
2739 
2740 	sp = sptep_to_sp(sptep);
2741 
2742 	/*
2743 	 * Without accessed bits, there's no way to distinguish between
2744 	 * actually accessed translations and prefetched, so disable pte
2745 	 * prefetch if accessed bits aren't available.
2746 	 */
2747 	if (sp_ad_disabled(sp))
2748 		return;
2749 
2750 	if (sp->role.level > PG_LEVEL_4K)
2751 		return;
2752 
2753 	__direct_pte_prefetch(vcpu, sp, sptep);
2754 }
2755 
2756 static int host_pfn_mapping_level(struct kvm_vcpu *vcpu, gfn_t gfn,
2757 				  kvm_pfn_t pfn, struct kvm_memory_slot *slot)
2758 {
2759 	unsigned long hva;
2760 	pte_t *pte;
2761 	int level;
2762 
2763 	if (!PageCompound(pfn_to_page(pfn)) && !kvm_is_zone_device_pfn(pfn))
2764 		return PG_LEVEL_4K;
2765 
2766 	/*
2767 	 * Note, using the already-retrieved memslot and __gfn_to_hva_memslot()
2768 	 * is not solely for performance, it's also necessary to avoid the
2769 	 * "writable" check in __gfn_to_hva_many(), which will always fail on
2770 	 * read-only memslots due to gfn_to_hva() assuming writes.  Earlier
2771 	 * page fault steps have already verified the guest isn't writing a
2772 	 * read-only memslot.
2773 	 */
2774 	hva = __gfn_to_hva_memslot(slot, gfn);
2775 
2776 	pte = lookup_address_in_mm(vcpu->kvm->mm, hva, &level);
2777 	if (unlikely(!pte))
2778 		return PG_LEVEL_4K;
2779 
2780 	return level;
2781 }
2782 
2783 int kvm_mmu_hugepage_adjust(struct kvm_vcpu *vcpu, gfn_t gfn,
2784 			    int max_level, kvm_pfn_t *pfnp,
2785 			    bool huge_page_disallowed, int *req_level)
2786 {
2787 	struct kvm_memory_slot *slot;
2788 	struct kvm_lpage_info *linfo;
2789 	kvm_pfn_t pfn = *pfnp;
2790 	kvm_pfn_t mask;
2791 	int level;
2792 
2793 	*req_level = PG_LEVEL_4K;
2794 
2795 	if (unlikely(max_level == PG_LEVEL_4K))
2796 		return PG_LEVEL_4K;
2797 
2798 	if (is_error_noslot_pfn(pfn) || kvm_is_reserved_pfn(pfn))
2799 		return PG_LEVEL_4K;
2800 
2801 	slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, true);
2802 	if (!slot)
2803 		return PG_LEVEL_4K;
2804 
2805 	max_level = min(max_level, max_huge_page_level);
2806 	for ( ; max_level > PG_LEVEL_4K; max_level--) {
2807 		linfo = lpage_info_slot(gfn, slot, max_level);
2808 		if (!linfo->disallow_lpage)
2809 			break;
2810 	}
2811 
2812 	if (max_level == PG_LEVEL_4K)
2813 		return PG_LEVEL_4K;
2814 
2815 	level = host_pfn_mapping_level(vcpu, gfn, pfn, slot);
2816 	if (level == PG_LEVEL_4K)
2817 		return level;
2818 
2819 	*req_level = level = min(level, max_level);
2820 
2821 	/*
2822 	 * Enforce the iTLB multihit workaround after capturing the requested
2823 	 * level, which will be used to do precise, accurate accounting.
2824 	 */
2825 	if (huge_page_disallowed)
2826 		return PG_LEVEL_4K;
2827 
2828 	/*
2829 	 * mmu_notifier_retry() was successful and mmu_lock is held, so
2830 	 * the pmd can't be split from under us.
2831 	 */
2832 	mask = KVM_PAGES_PER_HPAGE(level) - 1;
2833 	VM_BUG_ON((gfn & mask) != (pfn & mask));
2834 	*pfnp = pfn & ~mask;
2835 
2836 	return level;
2837 }
2838 
2839 void disallowed_hugepage_adjust(u64 spte, gfn_t gfn, int cur_level,
2840 				kvm_pfn_t *pfnp, int *goal_levelp)
2841 {
2842 	int level = *goal_levelp;
2843 
2844 	if (cur_level == level && level > PG_LEVEL_4K &&
2845 	    is_shadow_present_pte(spte) &&
2846 	    !is_large_pte(spte)) {
2847 		/*
2848 		 * A small SPTE exists for this pfn, but FNAME(fetch)
2849 		 * and __direct_map would like to create a large PTE
2850 		 * instead: just force them to go down another level,
2851 		 * patching back for them into pfn the next 9 bits of
2852 		 * the address.
2853 		 */
2854 		u64 page_mask = KVM_PAGES_PER_HPAGE(level) -
2855 				KVM_PAGES_PER_HPAGE(level - 1);
2856 		*pfnp |= gfn & page_mask;
2857 		(*goal_levelp)--;
2858 	}
2859 }
2860 
2861 static int __direct_map(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
2862 			int map_writable, int max_level, kvm_pfn_t pfn,
2863 			bool prefault, bool is_tdp)
2864 {
2865 	bool nx_huge_page_workaround_enabled = is_nx_huge_page_enabled();
2866 	bool write = error_code & PFERR_WRITE_MASK;
2867 	bool exec = error_code & PFERR_FETCH_MASK;
2868 	bool huge_page_disallowed = exec && nx_huge_page_workaround_enabled;
2869 	struct kvm_shadow_walk_iterator it;
2870 	struct kvm_mmu_page *sp;
2871 	int level, req_level, ret;
2872 	gfn_t gfn = gpa >> PAGE_SHIFT;
2873 	gfn_t base_gfn = gfn;
2874 
2875 	if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa)))
2876 		return RET_PF_RETRY;
2877 
2878 	level = kvm_mmu_hugepage_adjust(vcpu, gfn, max_level, &pfn,
2879 					huge_page_disallowed, &req_level);
2880 
2881 	trace_kvm_mmu_spte_requested(gpa, level, pfn);
2882 	for_each_shadow_entry(vcpu, gpa, it) {
2883 		/*
2884 		 * We cannot overwrite existing page tables with an NX
2885 		 * large page, as the leaf could be executable.
2886 		 */
2887 		if (nx_huge_page_workaround_enabled)
2888 			disallowed_hugepage_adjust(*it.sptep, gfn, it.level,
2889 						   &pfn, &level);
2890 
2891 		base_gfn = gfn & ~(KVM_PAGES_PER_HPAGE(it.level) - 1);
2892 		if (it.level == level)
2893 			break;
2894 
2895 		drop_large_spte(vcpu, it.sptep);
2896 		if (!is_shadow_present_pte(*it.sptep)) {
2897 			sp = kvm_mmu_get_page(vcpu, base_gfn, it.addr,
2898 					      it.level - 1, true, ACC_ALL);
2899 
2900 			link_shadow_page(vcpu, it.sptep, sp);
2901 			if (is_tdp && huge_page_disallowed &&
2902 			    req_level >= it.level)
2903 				account_huge_nx_page(vcpu->kvm, sp);
2904 		}
2905 	}
2906 
2907 	ret = mmu_set_spte(vcpu, it.sptep, ACC_ALL,
2908 			   write, level, base_gfn, pfn, prefault,
2909 			   map_writable);
2910 	if (ret == RET_PF_SPURIOUS)
2911 		return ret;
2912 
2913 	direct_pte_prefetch(vcpu, it.sptep);
2914 	++vcpu->stat.pf_fixed;
2915 	return ret;
2916 }
2917 
2918 static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
2919 {
2920 	send_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, PAGE_SHIFT, tsk);
2921 }
2922 
2923 static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, kvm_pfn_t pfn)
2924 {
2925 	/*
2926 	 * Do not cache the mmio info caused by writing the readonly gfn
2927 	 * into the spte otherwise read access on readonly gfn also can
2928 	 * caused mmio page fault and treat it as mmio access.
2929 	 */
2930 	if (pfn == KVM_PFN_ERR_RO_FAULT)
2931 		return RET_PF_EMULATE;
2932 
2933 	if (pfn == KVM_PFN_ERR_HWPOISON) {
2934 		kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current);
2935 		return RET_PF_RETRY;
2936 	}
2937 
2938 	return -EFAULT;
2939 }
2940 
2941 static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
2942 				kvm_pfn_t pfn, unsigned int access,
2943 				int *ret_val)
2944 {
2945 	/* The pfn is invalid, report the error! */
2946 	if (unlikely(is_error_pfn(pfn))) {
2947 		*ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
2948 		return true;
2949 	}
2950 
2951 	if (unlikely(is_noslot_pfn(pfn)))
2952 		vcpu_cache_mmio_info(vcpu, gva, gfn,
2953 				     access & shadow_mmio_access_mask);
2954 
2955 	return false;
2956 }
2957 
2958 static bool page_fault_can_be_fast(u32 error_code)
2959 {
2960 	/*
2961 	 * Do not fix the mmio spte with invalid generation number which
2962 	 * need to be updated by slow page fault path.
2963 	 */
2964 	if (unlikely(error_code & PFERR_RSVD_MASK))
2965 		return false;
2966 
2967 	/* See if the page fault is due to an NX violation */
2968 	if (unlikely(((error_code & (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))
2969 		      == (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))))
2970 		return false;
2971 
2972 	/*
2973 	 * #PF can be fast if:
2974 	 * 1. The shadow page table entry is not present, which could mean that
2975 	 *    the fault is potentially caused by access tracking (if enabled).
2976 	 * 2. The shadow page table entry is present and the fault
2977 	 *    is caused by write-protect, that means we just need change the W
2978 	 *    bit of the spte which can be done out of mmu-lock.
2979 	 *
2980 	 * However, if access tracking is disabled we know that a non-present
2981 	 * page must be a genuine page fault where we have to create a new SPTE.
2982 	 * So, if access tracking is disabled, we return true only for write
2983 	 * accesses to a present page.
2984 	 */
2985 
2986 	return shadow_acc_track_mask != 0 ||
2987 	       ((error_code & (PFERR_WRITE_MASK | PFERR_PRESENT_MASK))
2988 		== (PFERR_WRITE_MASK | PFERR_PRESENT_MASK));
2989 }
2990 
2991 /*
2992  * Returns true if the SPTE was fixed successfully. Otherwise,
2993  * someone else modified the SPTE from its original value.
2994  */
2995 static bool
2996 fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
2997 			u64 *sptep, u64 old_spte, u64 new_spte)
2998 {
2999 	gfn_t gfn;
3000 
3001 	WARN_ON(!sp->role.direct);
3002 
3003 	/*
3004 	 * Theoretically we could also set dirty bit (and flush TLB) here in
3005 	 * order to eliminate unnecessary PML logging. See comments in
3006 	 * set_spte. But fast_page_fault is very unlikely to happen with PML
3007 	 * enabled, so we do not do this. This might result in the same GPA
3008 	 * to be logged in PML buffer again when the write really happens, and
3009 	 * eventually to be called by mark_page_dirty twice. But it's also no
3010 	 * harm. This also avoids the TLB flush needed after setting dirty bit
3011 	 * so non-PML cases won't be impacted.
3012 	 *
3013 	 * Compare with set_spte where instead shadow_dirty_mask is set.
3014 	 */
3015 	if (cmpxchg64(sptep, old_spte, new_spte) != old_spte)
3016 		return false;
3017 
3018 	if (is_writable_pte(new_spte) && !is_writable_pte(old_spte)) {
3019 		/*
3020 		 * The gfn of direct spte is stable since it is
3021 		 * calculated by sp->gfn.
3022 		 */
3023 		gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
3024 		kvm_vcpu_mark_page_dirty(vcpu, gfn);
3025 	}
3026 
3027 	return true;
3028 }
3029 
3030 static bool is_access_allowed(u32 fault_err_code, u64 spte)
3031 {
3032 	if (fault_err_code & PFERR_FETCH_MASK)
3033 		return is_executable_pte(spte);
3034 
3035 	if (fault_err_code & PFERR_WRITE_MASK)
3036 		return is_writable_pte(spte);
3037 
3038 	/* Fault was on Read access */
3039 	return spte & PT_PRESENT_MASK;
3040 }
3041 
3042 /*
3043  * Returns one of RET_PF_INVALID, RET_PF_FIXED or RET_PF_SPURIOUS.
3044  */
3045 static int fast_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
3046 			   u32 error_code)
3047 {
3048 	struct kvm_shadow_walk_iterator iterator;
3049 	struct kvm_mmu_page *sp;
3050 	int ret = RET_PF_INVALID;
3051 	u64 spte = 0ull;
3052 	uint retry_count = 0;
3053 
3054 	if (!page_fault_can_be_fast(error_code))
3055 		return ret;
3056 
3057 	walk_shadow_page_lockless_begin(vcpu);
3058 
3059 	do {
3060 		u64 new_spte;
3061 
3062 		for_each_shadow_entry_lockless(vcpu, cr2_or_gpa, iterator, spte)
3063 			if (!is_shadow_present_pte(spte))
3064 				break;
3065 
3066 		sp = sptep_to_sp(iterator.sptep);
3067 		if (!is_last_spte(spte, sp->role.level))
3068 			break;
3069 
3070 		/*
3071 		 * Check whether the memory access that caused the fault would
3072 		 * still cause it if it were to be performed right now. If not,
3073 		 * then this is a spurious fault caused by TLB lazily flushed,
3074 		 * or some other CPU has already fixed the PTE after the
3075 		 * current CPU took the fault.
3076 		 *
3077 		 * Need not check the access of upper level table entries since
3078 		 * they are always ACC_ALL.
3079 		 */
3080 		if (is_access_allowed(error_code, spte)) {
3081 			ret = RET_PF_SPURIOUS;
3082 			break;
3083 		}
3084 
3085 		new_spte = spte;
3086 
3087 		if (is_access_track_spte(spte))
3088 			new_spte = restore_acc_track_spte(new_spte);
3089 
3090 		/*
3091 		 * Currently, to simplify the code, write-protection can
3092 		 * be removed in the fast path only if the SPTE was
3093 		 * write-protected for dirty-logging or access tracking.
3094 		 */
3095 		if ((error_code & PFERR_WRITE_MASK) &&
3096 		    spte_can_locklessly_be_made_writable(spte)) {
3097 			new_spte |= PT_WRITABLE_MASK;
3098 
3099 			/*
3100 			 * Do not fix write-permission on the large spte.  Since
3101 			 * we only dirty the first page into the dirty-bitmap in
3102 			 * fast_pf_fix_direct_spte(), other pages are missed
3103 			 * if its slot has dirty logging enabled.
3104 			 *
3105 			 * Instead, we let the slow page fault path create a
3106 			 * normal spte to fix the access.
3107 			 *
3108 			 * See the comments in kvm_arch_commit_memory_region().
3109 			 */
3110 			if (sp->role.level > PG_LEVEL_4K)
3111 				break;
3112 		}
3113 
3114 		/* Verify that the fault can be handled in the fast path */
3115 		if (new_spte == spte ||
3116 		    !is_access_allowed(error_code, new_spte))
3117 			break;
3118 
3119 		/*
3120 		 * Currently, fast page fault only works for direct mapping
3121 		 * since the gfn is not stable for indirect shadow page. See
3122 		 * Documentation/virt/kvm/locking.rst to get more detail.
3123 		 */
3124 		if (fast_pf_fix_direct_spte(vcpu, sp, iterator.sptep, spte,
3125 					    new_spte)) {
3126 			ret = RET_PF_FIXED;
3127 			break;
3128 		}
3129 
3130 		if (++retry_count > 4) {
3131 			printk_once(KERN_WARNING
3132 				"kvm: Fast #PF retrying more than 4 times.\n");
3133 			break;
3134 		}
3135 
3136 	} while (true);
3137 
3138 	trace_fast_page_fault(vcpu, cr2_or_gpa, error_code, iterator.sptep,
3139 			      spte, ret);
3140 	walk_shadow_page_lockless_end(vcpu);
3141 
3142 	return ret;
3143 }
3144 
3145 static void mmu_free_root_page(struct kvm *kvm, hpa_t *root_hpa,
3146 			       struct list_head *invalid_list)
3147 {
3148 	struct kvm_mmu_page *sp;
3149 
3150 	if (!VALID_PAGE(*root_hpa))
3151 		return;
3152 
3153 	sp = to_shadow_page(*root_hpa & PT64_BASE_ADDR_MASK);
3154 
3155 	if (kvm_mmu_put_root(kvm, sp)) {
3156 		if (sp->tdp_mmu_page)
3157 			kvm_tdp_mmu_free_root(kvm, sp);
3158 		else if (sp->role.invalid)
3159 			kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
3160 	}
3161 
3162 	*root_hpa = INVALID_PAGE;
3163 }
3164 
3165 /* roots_to_free must be some combination of the KVM_MMU_ROOT_* flags */
3166 void kvm_mmu_free_roots(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
3167 			ulong roots_to_free)
3168 {
3169 	struct kvm *kvm = vcpu->kvm;
3170 	int i;
3171 	LIST_HEAD(invalid_list);
3172 	bool free_active_root = roots_to_free & KVM_MMU_ROOT_CURRENT;
3173 
3174 	BUILD_BUG_ON(KVM_MMU_NUM_PREV_ROOTS >= BITS_PER_LONG);
3175 
3176 	/* Before acquiring the MMU lock, see if we need to do any real work. */
3177 	if (!(free_active_root && VALID_PAGE(mmu->root_hpa))) {
3178 		for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
3179 			if ((roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) &&
3180 			    VALID_PAGE(mmu->prev_roots[i].hpa))
3181 				break;
3182 
3183 		if (i == KVM_MMU_NUM_PREV_ROOTS)
3184 			return;
3185 	}
3186 
3187 	spin_lock(&kvm->mmu_lock);
3188 
3189 	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
3190 		if (roots_to_free & KVM_MMU_ROOT_PREVIOUS(i))
3191 			mmu_free_root_page(kvm, &mmu->prev_roots[i].hpa,
3192 					   &invalid_list);
3193 
3194 	if (free_active_root) {
3195 		if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
3196 		    (mmu->root_level >= PT64_ROOT_4LEVEL || mmu->direct_map)) {
3197 			mmu_free_root_page(kvm, &mmu->root_hpa, &invalid_list);
3198 		} else {
3199 			for (i = 0; i < 4; ++i)
3200 				if (mmu->pae_root[i] != 0)
3201 					mmu_free_root_page(kvm,
3202 							   &mmu->pae_root[i],
3203 							   &invalid_list);
3204 			mmu->root_hpa = INVALID_PAGE;
3205 		}
3206 		mmu->root_pgd = 0;
3207 	}
3208 
3209 	kvm_mmu_commit_zap_page(kvm, &invalid_list);
3210 	spin_unlock(&kvm->mmu_lock);
3211 }
3212 EXPORT_SYMBOL_GPL(kvm_mmu_free_roots);
3213 
3214 static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
3215 {
3216 	int ret = 0;
3217 
3218 	if (!kvm_vcpu_is_visible_gfn(vcpu, root_gfn)) {
3219 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3220 		ret = 1;
3221 	}
3222 
3223 	return ret;
3224 }
3225 
3226 static hpa_t mmu_alloc_root(struct kvm_vcpu *vcpu, gfn_t gfn, gva_t gva,
3227 			    u8 level, bool direct)
3228 {
3229 	struct kvm_mmu_page *sp;
3230 
3231 	spin_lock(&vcpu->kvm->mmu_lock);
3232 
3233 	if (make_mmu_pages_available(vcpu)) {
3234 		spin_unlock(&vcpu->kvm->mmu_lock);
3235 		return INVALID_PAGE;
3236 	}
3237 	sp = kvm_mmu_get_page(vcpu, gfn, gva, level, direct, ACC_ALL);
3238 	++sp->root_count;
3239 
3240 	spin_unlock(&vcpu->kvm->mmu_lock);
3241 	return __pa(sp->spt);
3242 }
3243 
3244 static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
3245 {
3246 	u8 shadow_root_level = vcpu->arch.mmu->shadow_root_level;
3247 	hpa_t root;
3248 	unsigned i;
3249 
3250 	if (vcpu->kvm->arch.tdp_mmu_enabled) {
3251 		root = kvm_tdp_mmu_get_vcpu_root_hpa(vcpu);
3252 
3253 		if (!VALID_PAGE(root))
3254 			return -ENOSPC;
3255 		vcpu->arch.mmu->root_hpa = root;
3256 	} else if (shadow_root_level >= PT64_ROOT_4LEVEL) {
3257 		root = mmu_alloc_root(vcpu, 0, 0, shadow_root_level,
3258 				      true);
3259 
3260 		if (!VALID_PAGE(root))
3261 			return -ENOSPC;
3262 		vcpu->arch.mmu->root_hpa = root;
3263 	} else if (shadow_root_level == PT32E_ROOT_LEVEL) {
3264 		for (i = 0; i < 4; ++i) {
3265 			MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu->pae_root[i]));
3266 
3267 			root = mmu_alloc_root(vcpu, i << (30 - PAGE_SHIFT),
3268 					      i << 30, PT32_ROOT_LEVEL, true);
3269 			if (!VALID_PAGE(root))
3270 				return -ENOSPC;
3271 			vcpu->arch.mmu->pae_root[i] = root | PT_PRESENT_MASK;
3272 		}
3273 		vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->pae_root);
3274 	} else
3275 		BUG();
3276 
3277 	/* root_pgd is ignored for direct MMUs. */
3278 	vcpu->arch.mmu->root_pgd = 0;
3279 
3280 	return 0;
3281 }
3282 
3283 static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
3284 {
3285 	u64 pdptr, pm_mask;
3286 	gfn_t root_gfn, root_pgd;
3287 	hpa_t root;
3288 	int i;
3289 
3290 	root_pgd = vcpu->arch.mmu->get_guest_pgd(vcpu);
3291 	root_gfn = root_pgd >> PAGE_SHIFT;
3292 
3293 	if (mmu_check_root(vcpu, root_gfn))
3294 		return 1;
3295 
3296 	/*
3297 	 * Do we shadow a long mode page table? If so we need to
3298 	 * write-protect the guests page table root.
3299 	 */
3300 	if (vcpu->arch.mmu->root_level >= PT64_ROOT_4LEVEL) {
3301 		MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu->root_hpa));
3302 
3303 		root = mmu_alloc_root(vcpu, root_gfn, 0,
3304 				      vcpu->arch.mmu->shadow_root_level, false);
3305 		if (!VALID_PAGE(root))
3306 			return -ENOSPC;
3307 		vcpu->arch.mmu->root_hpa = root;
3308 		goto set_root_pgd;
3309 	}
3310 
3311 	/*
3312 	 * We shadow a 32 bit page table. This may be a legacy 2-level
3313 	 * or a PAE 3-level page table. In either case we need to be aware that
3314 	 * the shadow page table may be a PAE or a long mode page table.
3315 	 */
3316 	pm_mask = PT_PRESENT_MASK;
3317 	if (vcpu->arch.mmu->shadow_root_level == PT64_ROOT_4LEVEL)
3318 		pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
3319 
3320 	for (i = 0; i < 4; ++i) {
3321 		MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu->pae_root[i]));
3322 		if (vcpu->arch.mmu->root_level == PT32E_ROOT_LEVEL) {
3323 			pdptr = vcpu->arch.mmu->get_pdptr(vcpu, i);
3324 			if (!(pdptr & PT_PRESENT_MASK)) {
3325 				vcpu->arch.mmu->pae_root[i] = 0;
3326 				continue;
3327 			}
3328 			root_gfn = pdptr >> PAGE_SHIFT;
3329 			if (mmu_check_root(vcpu, root_gfn))
3330 				return 1;
3331 		}
3332 
3333 		root = mmu_alloc_root(vcpu, root_gfn, i << 30,
3334 				      PT32_ROOT_LEVEL, false);
3335 		if (!VALID_PAGE(root))
3336 			return -ENOSPC;
3337 		vcpu->arch.mmu->pae_root[i] = root | pm_mask;
3338 	}
3339 	vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->pae_root);
3340 
3341 	/*
3342 	 * If we shadow a 32 bit page table with a long mode page
3343 	 * table we enter this path.
3344 	 */
3345 	if (vcpu->arch.mmu->shadow_root_level == PT64_ROOT_4LEVEL) {
3346 		if (vcpu->arch.mmu->lm_root == NULL) {
3347 			/*
3348 			 * The additional page necessary for this is only
3349 			 * allocated on demand.
3350 			 */
3351 
3352 			u64 *lm_root;
3353 
3354 			lm_root = (void*)get_zeroed_page(GFP_KERNEL_ACCOUNT);
3355 			if (lm_root == NULL)
3356 				return 1;
3357 
3358 			lm_root[0] = __pa(vcpu->arch.mmu->pae_root) | pm_mask;
3359 
3360 			vcpu->arch.mmu->lm_root = lm_root;
3361 		}
3362 
3363 		vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->lm_root);
3364 	}
3365 
3366 set_root_pgd:
3367 	vcpu->arch.mmu->root_pgd = root_pgd;
3368 
3369 	return 0;
3370 }
3371 
3372 static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
3373 {
3374 	if (vcpu->arch.mmu->direct_map)
3375 		return mmu_alloc_direct_roots(vcpu);
3376 	else
3377 		return mmu_alloc_shadow_roots(vcpu);
3378 }
3379 
3380 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3381 {
3382 	int i;
3383 	struct kvm_mmu_page *sp;
3384 
3385 	if (vcpu->arch.mmu->direct_map)
3386 		return;
3387 
3388 	if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
3389 		return;
3390 
3391 	vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
3392 
3393 	if (vcpu->arch.mmu->root_level >= PT64_ROOT_4LEVEL) {
3394 		hpa_t root = vcpu->arch.mmu->root_hpa;
3395 		sp = to_shadow_page(root);
3396 
3397 		/*
3398 		 * Even if another CPU was marking the SP as unsync-ed
3399 		 * simultaneously, any guest page table changes are not
3400 		 * guaranteed to be visible anyway until this VCPU issues a TLB
3401 		 * flush strictly after those changes are made. We only need to
3402 		 * ensure that the other CPU sets these flags before any actual
3403 		 * changes to the page tables are made. The comments in
3404 		 * mmu_need_write_protect() describe what could go wrong if this
3405 		 * requirement isn't satisfied.
3406 		 */
3407 		if (!smp_load_acquire(&sp->unsync) &&
3408 		    !smp_load_acquire(&sp->unsync_children))
3409 			return;
3410 
3411 		spin_lock(&vcpu->kvm->mmu_lock);
3412 		kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3413 
3414 		mmu_sync_children(vcpu, sp);
3415 
3416 		kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3417 		spin_unlock(&vcpu->kvm->mmu_lock);
3418 		return;
3419 	}
3420 
3421 	spin_lock(&vcpu->kvm->mmu_lock);
3422 	kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3423 
3424 	for (i = 0; i < 4; ++i) {
3425 		hpa_t root = vcpu->arch.mmu->pae_root[i];
3426 
3427 		if (root && VALID_PAGE(root)) {
3428 			root &= PT64_BASE_ADDR_MASK;
3429 			sp = to_shadow_page(root);
3430 			mmu_sync_children(vcpu, sp);
3431 		}
3432 	}
3433 
3434 	kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3435 	spin_unlock(&vcpu->kvm->mmu_lock);
3436 }
3437 EXPORT_SYMBOL_GPL(kvm_mmu_sync_roots);
3438 
3439 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gpa_t vaddr,
3440 				  u32 access, struct x86_exception *exception)
3441 {
3442 	if (exception)
3443 		exception->error_code = 0;
3444 	return vaddr;
3445 }
3446 
3447 static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gpa_t vaddr,
3448 					 u32 access,
3449 					 struct x86_exception *exception)
3450 {
3451 	if (exception)
3452 		exception->error_code = 0;
3453 	return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception);
3454 }
3455 
3456 static bool
3457 __is_rsvd_bits_set(struct rsvd_bits_validate *rsvd_check, u64 pte, int level)
3458 {
3459 	int bit7 = (pte >> 7) & 1;
3460 
3461 	return pte & rsvd_check->rsvd_bits_mask[bit7][level-1];
3462 }
3463 
3464 static bool __is_bad_mt_xwr(struct rsvd_bits_validate *rsvd_check, u64 pte)
3465 {
3466 	return rsvd_check->bad_mt_xwr & BIT_ULL(pte & 0x3f);
3467 }
3468 
3469 static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3470 {
3471 	/*
3472 	 * A nested guest cannot use the MMIO cache if it is using nested
3473 	 * page tables, because cr2 is a nGPA while the cache stores GPAs.
3474 	 */
3475 	if (mmu_is_nested(vcpu))
3476 		return false;
3477 
3478 	if (direct)
3479 		return vcpu_match_mmio_gpa(vcpu, addr);
3480 
3481 	return vcpu_match_mmio_gva(vcpu, addr);
3482 }
3483 
3484 /*
3485  * Return the level of the lowest level SPTE added to sptes.
3486  * That SPTE may be non-present.
3487  */
3488 static int get_walk(struct kvm_vcpu *vcpu, u64 addr, u64 *sptes)
3489 {
3490 	struct kvm_shadow_walk_iterator iterator;
3491 	int leaf = vcpu->arch.mmu->root_level;
3492 	u64 spte;
3493 
3494 
3495 	walk_shadow_page_lockless_begin(vcpu);
3496 
3497 	for (shadow_walk_init(&iterator, vcpu, addr);
3498 	     shadow_walk_okay(&iterator);
3499 	     __shadow_walk_next(&iterator, spte)) {
3500 		leaf = iterator.level;
3501 		spte = mmu_spte_get_lockless(iterator.sptep);
3502 
3503 		sptes[leaf - 1] = spte;
3504 
3505 		if (!is_shadow_present_pte(spte))
3506 			break;
3507 
3508 	}
3509 
3510 	walk_shadow_page_lockless_end(vcpu);
3511 
3512 	return leaf;
3513 }
3514 
3515 /* return true if reserved bit is detected on spte. */
3516 static bool get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep)
3517 {
3518 	u64 sptes[PT64_ROOT_MAX_LEVEL];
3519 	struct rsvd_bits_validate *rsvd_check;
3520 	int root = vcpu->arch.mmu->shadow_root_level;
3521 	int leaf;
3522 	int level;
3523 	bool reserved = false;
3524 
3525 	if (!VALID_PAGE(vcpu->arch.mmu->root_hpa)) {
3526 		*sptep = 0ull;
3527 		return reserved;
3528 	}
3529 
3530 	if (is_tdp_mmu_root(vcpu->kvm, vcpu->arch.mmu->root_hpa))
3531 		leaf = kvm_tdp_mmu_get_walk(vcpu, addr, sptes);
3532 	else
3533 		leaf = get_walk(vcpu, addr, sptes);
3534 
3535 	rsvd_check = &vcpu->arch.mmu->shadow_zero_check;
3536 
3537 	for (level = root; level >= leaf; level--) {
3538 		if (!is_shadow_present_pte(sptes[level - 1]))
3539 			break;
3540 		/*
3541 		 * Use a bitwise-OR instead of a logical-OR to aggregate the
3542 		 * reserved bit and EPT's invalid memtype/XWR checks to avoid
3543 		 * adding a Jcc in the loop.
3544 		 */
3545 		reserved |= __is_bad_mt_xwr(rsvd_check, sptes[level - 1]) |
3546 			    __is_rsvd_bits_set(rsvd_check, sptes[level - 1],
3547 					       level);
3548 	}
3549 
3550 	if (reserved) {
3551 		pr_err("%s: detect reserved bits on spte, addr 0x%llx, dump hierarchy:\n",
3552 		       __func__, addr);
3553 		for (level = root; level >= leaf; level--)
3554 			pr_err("------ spte 0x%llx level %d.\n",
3555 			       sptes[level - 1], level);
3556 	}
3557 
3558 	*sptep = sptes[leaf - 1];
3559 
3560 	return reserved;
3561 }
3562 
3563 static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3564 {
3565 	u64 spte;
3566 	bool reserved;
3567 
3568 	if (mmio_info_in_cache(vcpu, addr, direct))
3569 		return RET_PF_EMULATE;
3570 
3571 	reserved = get_mmio_spte(vcpu, addr, &spte);
3572 	if (WARN_ON(reserved))
3573 		return -EINVAL;
3574 
3575 	if (is_mmio_spte(spte)) {
3576 		gfn_t gfn = get_mmio_spte_gfn(spte);
3577 		unsigned int access = get_mmio_spte_access(spte);
3578 
3579 		if (!check_mmio_spte(vcpu, spte))
3580 			return RET_PF_INVALID;
3581 
3582 		if (direct)
3583 			addr = 0;
3584 
3585 		trace_handle_mmio_page_fault(addr, gfn, access);
3586 		vcpu_cache_mmio_info(vcpu, addr, gfn, access);
3587 		return RET_PF_EMULATE;
3588 	}
3589 
3590 	/*
3591 	 * If the page table is zapped by other cpus, let CPU fault again on
3592 	 * the address.
3593 	 */
3594 	return RET_PF_RETRY;
3595 }
3596 
3597 static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu,
3598 					 u32 error_code, gfn_t gfn)
3599 {
3600 	if (unlikely(error_code & PFERR_RSVD_MASK))
3601 		return false;
3602 
3603 	if (!(error_code & PFERR_PRESENT_MASK) ||
3604 	      !(error_code & PFERR_WRITE_MASK))
3605 		return false;
3606 
3607 	/*
3608 	 * guest is writing the page which is write tracked which can
3609 	 * not be fixed by page fault handler.
3610 	 */
3611 	if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
3612 		return true;
3613 
3614 	return false;
3615 }
3616 
3617 static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr)
3618 {
3619 	struct kvm_shadow_walk_iterator iterator;
3620 	u64 spte;
3621 
3622 	walk_shadow_page_lockless_begin(vcpu);
3623 	for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
3624 		clear_sp_write_flooding_count(iterator.sptep);
3625 		if (!is_shadow_present_pte(spte))
3626 			break;
3627 	}
3628 	walk_shadow_page_lockless_end(vcpu);
3629 }
3630 
3631 static bool kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
3632 				    gfn_t gfn)
3633 {
3634 	struct kvm_arch_async_pf arch;
3635 
3636 	arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
3637 	arch.gfn = gfn;
3638 	arch.direct_map = vcpu->arch.mmu->direct_map;
3639 	arch.cr3 = vcpu->arch.mmu->get_guest_pgd(vcpu);
3640 
3641 	return kvm_setup_async_pf(vcpu, cr2_or_gpa,
3642 				  kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch);
3643 }
3644 
3645 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
3646 			 gpa_t cr2_or_gpa, kvm_pfn_t *pfn, bool write,
3647 			 bool *writable)
3648 {
3649 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3650 	bool async;
3651 
3652 	/* Don't expose private memslots to L2. */
3653 	if (is_guest_mode(vcpu) && !kvm_is_visible_memslot(slot)) {
3654 		*pfn = KVM_PFN_NOSLOT;
3655 		*writable = false;
3656 		return false;
3657 	}
3658 
3659 	async = false;
3660 	*pfn = __gfn_to_pfn_memslot(slot, gfn, false, &async, write, writable);
3661 	if (!async)
3662 		return false; /* *pfn has correct page already */
3663 
3664 	if (!prefault && kvm_can_do_async_pf(vcpu)) {
3665 		trace_kvm_try_async_get_page(cr2_or_gpa, gfn);
3666 		if (kvm_find_async_pf_gfn(vcpu, gfn)) {
3667 			trace_kvm_async_pf_doublefault(cr2_or_gpa, gfn);
3668 			kvm_make_request(KVM_REQ_APF_HALT, vcpu);
3669 			return true;
3670 		} else if (kvm_arch_setup_async_pf(vcpu, cr2_or_gpa, gfn))
3671 			return true;
3672 	}
3673 
3674 	*pfn = __gfn_to_pfn_memslot(slot, gfn, false, NULL, write, writable);
3675 	return false;
3676 }
3677 
3678 static int direct_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
3679 			     bool prefault, int max_level, bool is_tdp)
3680 {
3681 	bool write = error_code & PFERR_WRITE_MASK;
3682 	bool map_writable;
3683 
3684 	gfn_t gfn = gpa >> PAGE_SHIFT;
3685 	unsigned long mmu_seq;
3686 	kvm_pfn_t pfn;
3687 	int r;
3688 
3689 	if (page_fault_handle_page_track(vcpu, error_code, gfn))
3690 		return RET_PF_EMULATE;
3691 
3692 	if (!is_tdp_mmu_root(vcpu->kvm, vcpu->arch.mmu->root_hpa)) {
3693 		r = fast_page_fault(vcpu, gpa, error_code);
3694 		if (r != RET_PF_INVALID)
3695 			return r;
3696 	}
3697 
3698 	r = mmu_topup_memory_caches(vcpu, false);
3699 	if (r)
3700 		return r;
3701 
3702 	mmu_seq = vcpu->kvm->mmu_notifier_seq;
3703 	smp_rmb();
3704 
3705 	if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
3706 		return RET_PF_RETRY;
3707 
3708 	if (handle_abnormal_pfn(vcpu, is_tdp ? 0 : gpa, gfn, pfn, ACC_ALL, &r))
3709 		return r;
3710 
3711 	r = RET_PF_RETRY;
3712 	spin_lock(&vcpu->kvm->mmu_lock);
3713 	if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
3714 		goto out_unlock;
3715 	r = make_mmu_pages_available(vcpu);
3716 	if (r)
3717 		goto out_unlock;
3718 
3719 	if (is_tdp_mmu_root(vcpu->kvm, vcpu->arch.mmu->root_hpa))
3720 		r = kvm_tdp_mmu_map(vcpu, gpa, error_code, map_writable, max_level,
3721 				    pfn, prefault);
3722 	else
3723 		r = __direct_map(vcpu, gpa, error_code, map_writable, max_level, pfn,
3724 				 prefault, is_tdp);
3725 
3726 out_unlock:
3727 	spin_unlock(&vcpu->kvm->mmu_lock);
3728 	kvm_release_pfn_clean(pfn);
3729 	return r;
3730 }
3731 
3732 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa,
3733 				u32 error_code, bool prefault)
3734 {
3735 	pgprintk("%s: gva %lx error %x\n", __func__, gpa, error_code);
3736 
3737 	/* This path builds a PAE pagetable, we can map 2mb pages at maximum. */
3738 	return direct_page_fault(vcpu, gpa & PAGE_MASK, error_code, prefault,
3739 				 PG_LEVEL_2M, false);
3740 }
3741 
3742 int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code,
3743 				u64 fault_address, char *insn, int insn_len)
3744 {
3745 	int r = 1;
3746 	u32 flags = vcpu->arch.apf.host_apf_flags;
3747 
3748 #ifndef CONFIG_X86_64
3749 	/* A 64-bit CR2 should be impossible on 32-bit KVM. */
3750 	if (WARN_ON_ONCE(fault_address >> 32))
3751 		return -EFAULT;
3752 #endif
3753 
3754 	vcpu->arch.l1tf_flush_l1d = true;
3755 	if (!flags) {
3756 		trace_kvm_page_fault(fault_address, error_code);
3757 
3758 		if (kvm_event_needs_reinjection(vcpu))
3759 			kvm_mmu_unprotect_page_virt(vcpu, fault_address);
3760 		r = kvm_mmu_page_fault(vcpu, fault_address, error_code, insn,
3761 				insn_len);
3762 	} else if (flags & KVM_PV_REASON_PAGE_NOT_PRESENT) {
3763 		vcpu->arch.apf.host_apf_flags = 0;
3764 		local_irq_disable();
3765 		kvm_async_pf_task_wait_schedule(fault_address);
3766 		local_irq_enable();
3767 	} else {
3768 		WARN_ONCE(1, "Unexpected host async PF flags: %x\n", flags);
3769 	}
3770 
3771 	return r;
3772 }
3773 EXPORT_SYMBOL_GPL(kvm_handle_page_fault);
3774 
3775 int kvm_tdp_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
3776 		       bool prefault)
3777 {
3778 	int max_level;
3779 
3780 	for (max_level = KVM_MAX_HUGEPAGE_LEVEL;
3781 	     max_level > PG_LEVEL_4K;
3782 	     max_level--) {
3783 		int page_num = KVM_PAGES_PER_HPAGE(max_level);
3784 		gfn_t base = (gpa >> PAGE_SHIFT) & ~(page_num - 1);
3785 
3786 		if (kvm_mtrr_check_gfn_range_consistency(vcpu, base, page_num))
3787 			break;
3788 	}
3789 
3790 	return direct_page_fault(vcpu, gpa, error_code, prefault,
3791 				 max_level, true);
3792 }
3793 
3794 static void nonpaging_init_context(struct kvm_vcpu *vcpu,
3795 				   struct kvm_mmu *context)
3796 {
3797 	context->page_fault = nonpaging_page_fault;
3798 	context->gva_to_gpa = nonpaging_gva_to_gpa;
3799 	context->sync_page = nonpaging_sync_page;
3800 	context->invlpg = NULL;
3801 	context->update_pte = nonpaging_update_pte;
3802 	context->root_level = 0;
3803 	context->shadow_root_level = PT32E_ROOT_LEVEL;
3804 	context->direct_map = true;
3805 	context->nx = false;
3806 }
3807 
3808 static inline bool is_root_usable(struct kvm_mmu_root_info *root, gpa_t pgd,
3809 				  union kvm_mmu_page_role role)
3810 {
3811 	return (role.direct || pgd == root->pgd) &&
3812 	       VALID_PAGE(root->hpa) && to_shadow_page(root->hpa) &&
3813 	       role.word == to_shadow_page(root->hpa)->role.word;
3814 }
3815 
3816 /*
3817  * Find out if a previously cached root matching the new pgd/role is available.
3818  * The current root is also inserted into the cache.
3819  * If a matching root was found, it is assigned to kvm_mmu->root_hpa and true is
3820  * returned.
3821  * Otherwise, the LRU root from the cache is assigned to kvm_mmu->root_hpa and
3822  * false is returned. This root should now be freed by the caller.
3823  */
3824 static bool cached_root_available(struct kvm_vcpu *vcpu, gpa_t new_pgd,
3825 				  union kvm_mmu_page_role new_role)
3826 {
3827 	uint i;
3828 	struct kvm_mmu_root_info root;
3829 	struct kvm_mmu *mmu = vcpu->arch.mmu;
3830 
3831 	root.pgd = mmu->root_pgd;
3832 	root.hpa = mmu->root_hpa;
3833 
3834 	if (is_root_usable(&root, new_pgd, new_role))
3835 		return true;
3836 
3837 	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
3838 		swap(root, mmu->prev_roots[i]);
3839 
3840 		if (is_root_usable(&root, new_pgd, new_role))
3841 			break;
3842 	}
3843 
3844 	mmu->root_hpa = root.hpa;
3845 	mmu->root_pgd = root.pgd;
3846 
3847 	return i < KVM_MMU_NUM_PREV_ROOTS;
3848 }
3849 
3850 static bool fast_pgd_switch(struct kvm_vcpu *vcpu, gpa_t new_pgd,
3851 			    union kvm_mmu_page_role new_role)
3852 {
3853 	struct kvm_mmu *mmu = vcpu->arch.mmu;
3854 
3855 	/*
3856 	 * For now, limit the fast switch to 64-bit hosts+VMs in order to avoid
3857 	 * having to deal with PDPTEs. We may add support for 32-bit hosts/VMs
3858 	 * later if necessary.
3859 	 */
3860 	if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
3861 	    mmu->root_level >= PT64_ROOT_4LEVEL)
3862 		return cached_root_available(vcpu, new_pgd, new_role);
3863 
3864 	return false;
3865 }
3866 
3867 static void __kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd,
3868 			      union kvm_mmu_page_role new_role,
3869 			      bool skip_tlb_flush, bool skip_mmu_sync)
3870 {
3871 	if (!fast_pgd_switch(vcpu, new_pgd, new_role)) {
3872 		kvm_mmu_free_roots(vcpu, vcpu->arch.mmu, KVM_MMU_ROOT_CURRENT);
3873 		return;
3874 	}
3875 
3876 	/*
3877 	 * It's possible that the cached previous root page is obsolete because
3878 	 * of a change in the MMU generation number. However, changing the
3879 	 * generation number is accompanied by KVM_REQ_MMU_RELOAD, which will
3880 	 * free the root set here and allocate a new one.
3881 	 */
3882 	kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu);
3883 
3884 	if (!skip_mmu_sync || force_flush_and_sync_on_reuse)
3885 		kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
3886 	if (!skip_tlb_flush || force_flush_and_sync_on_reuse)
3887 		kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
3888 
3889 	/*
3890 	 * The last MMIO access's GVA and GPA are cached in the VCPU. When
3891 	 * switching to a new CR3, that GVA->GPA mapping may no longer be
3892 	 * valid. So clear any cached MMIO info even when we don't need to sync
3893 	 * the shadow page tables.
3894 	 */
3895 	vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
3896 
3897 	/*
3898 	 * If this is a direct root page, it doesn't have a write flooding
3899 	 * count. Otherwise, clear the write flooding count.
3900 	 */
3901 	if (!new_role.direct)
3902 		__clear_sp_write_flooding_count(
3903 				to_shadow_page(vcpu->arch.mmu->root_hpa));
3904 }
3905 
3906 void kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd, bool skip_tlb_flush,
3907 		     bool skip_mmu_sync)
3908 {
3909 	__kvm_mmu_new_pgd(vcpu, new_pgd, kvm_mmu_calc_root_page_role(vcpu),
3910 			  skip_tlb_flush, skip_mmu_sync);
3911 }
3912 EXPORT_SYMBOL_GPL(kvm_mmu_new_pgd);
3913 
3914 static unsigned long get_cr3(struct kvm_vcpu *vcpu)
3915 {
3916 	return kvm_read_cr3(vcpu);
3917 }
3918 
3919 static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
3920 			   unsigned int access, int *nr_present)
3921 {
3922 	if (unlikely(is_mmio_spte(*sptep))) {
3923 		if (gfn != get_mmio_spte_gfn(*sptep)) {
3924 			mmu_spte_clear_no_track(sptep);
3925 			return true;
3926 		}
3927 
3928 		(*nr_present)++;
3929 		mark_mmio_spte(vcpu, sptep, gfn, access);
3930 		return true;
3931 	}
3932 
3933 	return false;
3934 }
3935 
3936 static inline bool is_last_gpte(struct kvm_mmu *mmu,
3937 				unsigned level, unsigned gpte)
3938 {
3939 	/*
3940 	 * The RHS has bit 7 set iff level < mmu->last_nonleaf_level.
3941 	 * If it is clear, there are no large pages at this level, so clear
3942 	 * PT_PAGE_SIZE_MASK in gpte if that is the case.
3943 	 */
3944 	gpte &= level - mmu->last_nonleaf_level;
3945 
3946 	/*
3947 	 * PG_LEVEL_4K always terminates.  The RHS has bit 7 set
3948 	 * iff level <= PG_LEVEL_4K, which for our purpose means
3949 	 * level == PG_LEVEL_4K; set PT_PAGE_SIZE_MASK in gpte then.
3950 	 */
3951 	gpte |= level - PG_LEVEL_4K - 1;
3952 
3953 	return gpte & PT_PAGE_SIZE_MASK;
3954 }
3955 
3956 #define PTTYPE_EPT 18 /* arbitrary */
3957 #define PTTYPE PTTYPE_EPT
3958 #include "paging_tmpl.h"
3959 #undef PTTYPE
3960 
3961 #define PTTYPE 64
3962 #include "paging_tmpl.h"
3963 #undef PTTYPE
3964 
3965 #define PTTYPE 32
3966 #include "paging_tmpl.h"
3967 #undef PTTYPE
3968 
3969 static void
3970 __reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
3971 			struct rsvd_bits_validate *rsvd_check,
3972 			int maxphyaddr, int level, bool nx, bool gbpages,
3973 			bool pse, bool amd)
3974 {
3975 	u64 exb_bit_rsvd = 0;
3976 	u64 gbpages_bit_rsvd = 0;
3977 	u64 nonleaf_bit8_rsvd = 0;
3978 
3979 	rsvd_check->bad_mt_xwr = 0;
3980 
3981 	if (!nx)
3982 		exb_bit_rsvd = rsvd_bits(63, 63);
3983 	if (!gbpages)
3984 		gbpages_bit_rsvd = rsvd_bits(7, 7);
3985 
3986 	/*
3987 	 * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
3988 	 * leaf entries) on AMD CPUs only.
3989 	 */
3990 	if (amd)
3991 		nonleaf_bit8_rsvd = rsvd_bits(8, 8);
3992 
3993 	switch (level) {
3994 	case PT32_ROOT_LEVEL:
3995 		/* no rsvd bits for 2 level 4K page table entries */
3996 		rsvd_check->rsvd_bits_mask[0][1] = 0;
3997 		rsvd_check->rsvd_bits_mask[0][0] = 0;
3998 		rsvd_check->rsvd_bits_mask[1][0] =
3999 			rsvd_check->rsvd_bits_mask[0][0];
4000 
4001 		if (!pse) {
4002 			rsvd_check->rsvd_bits_mask[1][1] = 0;
4003 			break;
4004 		}
4005 
4006 		if (is_cpuid_PSE36())
4007 			/* 36bits PSE 4MB page */
4008 			rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
4009 		else
4010 			/* 32 bits PSE 4MB page */
4011 			rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
4012 		break;
4013 	case PT32E_ROOT_LEVEL:
4014 		rsvd_check->rsvd_bits_mask[0][2] =
4015 			rsvd_bits(maxphyaddr, 63) |
4016 			rsvd_bits(5, 8) | rsvd_bits(1, 2);	/* PDPTE */
4017 		rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4018 			rsvd_bits(maxphyaddr, 62);	/* PDE */
4019 		rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
4020 			rsvd_bits(maxphyaddr, 62); 	/* PTE */
4021 		rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
4022 			rsvd_bits(maxphyaddr, 62) |
4023 			rsvd_bits(13, 20);		/* large page */
4024 		rsvd_check->rsvd_bits_mask[1][0] =
4025 			rsvd_check->rsvd_bits_mask[0][0];
4026 		break;
4027 	case PT64_ROOT_5LEVEL:
4028 		rsvd_check->rsvd_bits_mask[0][4] = exb_bit_rsvd |
4029 			nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
4030 			rsvd_bits(maxphyaddr, 51);
4031 		rsvd_check->rsvd_bits_mask[1][4] =
4032 			rsvd_check->rsvd_bits_mask[0][4];
4033 		fallthrough;
4034 	case PT64_ROOT_4LEVEL:
4035 		rsvd_check->rsvd_bits_mask[0][3] = exb_bit_rsvd |
4036 			nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
4037 			rsvd_bits(maxphyaddr, 51);
4038 		rsvd_check->rsvd_bits_mask[0][2] = exb_bit_rsvd |
4039 			gbpages_bit_rsvd |
4040 			rsvd_bits(maxphyaddr, 51);
4041 		rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4042 			rsvd_bits(maxphyaddr, 51);
4043 		rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
4044 			rsvd_bits(maxphyaddr, 51);
4045 		rsvd_check->rsvd_bits_mask[1][3] =
4046 			rsvd_check->rsvd_bits_mask[0][3];
4047 		rsvd_check->rsvd_bits_mask[1][2] = exb_bit_rsvd |
4048 			gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51) |
4049 			rsvd_bits(13, 29);
4050 		rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
4051 			rsvd_bits(maxphyaddr, 51) |
4052 			rsvd_bits(13, 20);		/* large page */
4053 		rsvd_check->rsvd_bits_mask[1][0] =
4054 			rsvd_check->rsvd_bits_mask[0][0];
4055 		break;
4056 	}
4057 }
4058 
4059 static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
4060 				  struct kvm_mmu *context)
4061 {
4062 	__reset_rsvds_bits_mask(vcpu, &context->guest_rsvd_check,
4063 				cpuid_maxphyaddr(vcpu), context->root_level,
4064 				context->nx,
4065 				guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
4066 				is_pse(vcpu),
4067 				guest_cpuid_is_amd_or_hygon(vcpu));
4068 }
4069 
4070 static void
4071 __reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check,
4072 			    int maxphyaddr, bool execonly)
4073 {
4074 	u64 bad_mt_xwr;
4075 
4076 	rsvd_check->rsvd_bits_mask[0][4] =
4077 		rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
4078 	rsvd_check->rsvd_bits_mask[0][3] =
4079 		rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
4080 	rsvd_check->rsvd_bits_mask[0][2] =
4081 		rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
4082 	rsvd_check->rsvd_bits_mask[0][1] =
4083 		rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
4084 	rsvd_check->rsvd_bits_mask[0][0] = rsvd_bits(maxphyaddr, 51);
4085 
4086 	/* large page */
4087 	rsvd_check->rsvd_bits_mask[1][4] = rsvd_check->rsvd_bits_mask[0][4];
4088 	rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3];
4089 	rsvd_check->rsvd_bits_mask[1][2] =
4090 		rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 29);
4091 	rsvd_check->rsvd_bits_mask[1][1] =
4092 		rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 20);
4093 	rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0];
4094 
4095 	bad_mt_xwr = 0xFFull << (2 * 8);	/* bits 3..5 must not be 2 */
4096 	bad_mt_xwr |= 0xFFull << (3 * 8);	/* bits 3..5 must not be 3 */
4097 	bad_mt_xwr |= 0xFFull << (7 * 8);	/* bits 3..5 must not be 7 */
4098 	bad_mt_xwr |= REPEAT_BYTE(1ull << 2);	/* bits 0..2 must not be 010 */
4099 	bad_mt_xwr |= REPEAT_BYTE(1ull << 6);	/* bits 0..2 must not be 110 */
4100 	if (!execonly) {
4101 		/* bits 0..2 must not be 100 unless VMX capabilities allow it */
4102 		bad_mt_xwr |= REPEAT_BYTE(1ull << 4);
4103 	}
4104 	rsvd_check->bad_mt_xwr = bad_mt_xwr;
4105 }
4106 
4107 static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
4108 		struct kvm_mmu *context, bool execonly)
4109 {
4110 	__reset_rsvds_bits_mask_ept(&context->guest_rsvd_check,
4111 				    cpuid_maxphyaddr(vcpu), execonly);
4112 }
4113 
4114 /*
4115  * the page table on host is the shadow page table for the page
4116  * table in guest or amd nested guest, its mmu features completely
4117  * follow the features in guest.
4118  */
4119 void
4120 reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
4121 {
4122 	bool uses_nx = context->nx ||
4123 		context->mmu_role.base.smep_andnot_wp;
4124 	struct rsvd_bits_validate *shadow_zero_check;
4125 	int i;
4126 
4127 	/*
4128 	 * Passing "true" to the last argument is okay; it adds a check
4129 	 * on bit 8 of the SPTEs which KVM doesn't use anyway.
4130 	 */
4131 	shadow_zero_check = &context->shadow_zero_check;
4132 	__reset_rsvds_bits_mask(vcpu, shadow_zero_check,
4133 				shadow_phys_bits,
4134 				context->shadow_root_level, uses_nx,
4135 				guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
4136 				is_pse(vcpu), true);
4137 
4138 	if (!shadow_me_mask)
4139 		return;
4140 
4141 	for (i = context->shadow_root_level; --i >= 0;) {
4142 		shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
4143 		shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
4144 	}
4145 
4146 }
4147 EXPORT_SYMBOL_GPL(reset_shadow_zero_bits_mask);
4148 
4149 static inline bool boot_cpu_is_amd(void)
4150 {
4151 	WARN_ON_ONCE(!tdp_enabled);
4152 	return shadow_x_mask == 0;
4153 }
4154 
4155 /*
4156  * the direct page table on host, use as much mmu features as
4157  * possible, however, kvm currently does not do execution-protection.
4158  */
4159 static void
4160 reset_tdp_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4161 				struct kvm_mmu *context)
4162 {
4163 	struct rsvd_bits_validate *shadow_zero_check;
4164 	int i;
4165 
4166 	shadow_zero_check = &context->shadow_zero_check;
4167 
4168 	if (boot_cpu_is_amd())
4169 		__reset_rsvds_bits_mask(vcpu, shadow_zero_check,
4170 					shadow_phys_bits,
4171 					context->shadow_root_level, false,
4172 					boot_cpu_has(X86_FEATURE_GBPAGES),
4173 					true, true);
4174 	else
4175 		__reset_rsvds_bits_mask_ept(shadow_zero_check,
4176 					    shadow_phys_bits,
4177 					    false);
4178 
4179 	if (!shadow_me_mask)
4180 		return;
4181 
4182 	for (i = context->shadow_root_level; --i >= 0;) {
4183 		shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
4184 		shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
4185 	}
4186 }
4187 
4188 /*
4189  * as the comments in reset_shadow_zero_bits_mask() except it
4190  * is the shadow page table for intel nested guest.
4191  */
4192 static void
4193 reset_ept_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4194 				struct kvm_mmu *context, bool execonly)
4195 {
4196 	__reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
4197 				    shadow_phys_bits, execonly);
4198 }
4199 
4200 #define BYTE_MASK(access) \
4201 	((1 & (access) ? 2 : 0) | \
4202 	 (2 & (access) ? 4 : 0) | \
4203 	 (3 & (access) ? 8 : 0) | \
4204 	 (4 & (access) ? 16 : 0) | \
4205 	 (5 & (access) ? 32 : 0) | \
4206 	 (6 & (access) ? 64 : 0) | \
4207 	 (7 & (access) ? 128 : 0))
4208 
4209 
4210 static void update_permission_bitmask(struct kvm_vcpu *vcpu,
4211 				      struct kvm_mmu *mmu, bool ept)
4212 {
4213 	unsigned byte;
4214 
4215 	const u8 x = BYTE_MASK(ACC_EXEC_MASK);
4216 	const u8 w = BYTE_MASK(ACC_WRITE_MASK);
4217 	const u8 u = BYTE_MASK(ACC_USER_MASK);
4218 
4219 	bool cr4_smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP) != 0;
4220 	bool cr4_smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP) != 0;
4221 	bool cr0_wp = is_write_protection(vcpu);
4222 
4223 	for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
4224 		unsigned pfec = byte << 1;
4225 
4226 		/*
4227 		 * Each "*f" variable has a 1 bit for each UWX value
4228 		 * that causes a fault with the given PFEC.
4229 		 */
4230 
4231 		/* Faults from writes to non-writable pages */
4232 		u8 wf = (pfec & PFERR_WRITE_MASK) ? (u8)~w : 0;
4233 		/* Faults from user mode accesses to supervisor pages */
4234 		u8 uf = (pfec & PFERR_USER_MASK) ? (u8)~u : 0;
4235 		/* Faults from fetches of non-executable pages*/
4236 		u8 ff = (pfec & PFERR_FETCH_MASK) ? (u8)~x : 0;
4237 		/* Faults from kernel mode fetches of user pages */
4238 		u8 smepf = 0;
4239 		/* Faults from kernel mode accesses of user pages */
4240 		u8 smapf = 0;
4241 
4242 		if (!ept) {
4243 			/* Faults from kernel mode accesses to user pages */
4244 			u8 kf = (pfec & PFERR_USER_MASK) ? 0 : u;
4245 
4246 			/* Not really needed: !nx will cause pte.nx to fault */
4247 			if (!mmu->nx)
4248 				ff = 0;
4249 
4250 			/* Allow supervisor writes if !cr0.wp */
4251 			if (!cr0_wp)
4252 				wf = (pfec & PFERR_USER_MASK) ? wf : 0;
4253 
4254 			/* Disallow supervisor fetches of user code if cr4.smep */
4255 			if (cr4_smep)
4256 				smepf = (pfec & PFERR_FETCH_MASK) ? kf : 0;
4257 
4258 			/*
4259 			 * SMAP:kernel-mode data accesses from user-mode
4260 			 * mappings should fault. A fault is considered
4261 			 * as a SMAP violation if all of the following
4262 			 * conditions are true:
4263 			 *   - X86_CR4_SMAP is set in CR4
4264 			 *   - A user page is accessed
4265 			 *   - The access is not a fetch
4266 			 *   - Page fault in kernel mode
4267 			 *   - if CPL = 3 or X86_EFLAGS_AC is clear
4268 			 *
4269 			 * Here, we cover the first three conditions.
4270 			 * The fourth is computed dynamically in permission_fault();
4271 			 * PFERR_RSVD_MASK bit will be set in PFEC if the access is
4272 			 * *not* subject to SMAP restrictions.
4273 			 */
4274 			if (cr4_smap)
4275 				smapf = (pfec & (PFERR_RSVD_MASK|PFERR_FETCH_MASK)) ? 0 : kf;
4276 		}
4277 
4278 		mmu->permissions[byte] = ff | uf | wf | smepf | smapf;
4279 	}
4280 }
4281 
4282 /*
4283 * PKU is an additional mechanism by which the paging controls access to
4284 * user-mode addresses based on the value in the PKRU register.  Protection
4285 * key violations are reported through a bit in the page fault error code.
4286 * Unlike other bits of the error code, the PK bit is not known at the
4287 * call site of e.g. gva_to_gpa; it must be computed directly in
4288 * permission_fault based on two bits of PKRU, on some machine state (CR4,
4289 * CR0, EFER, CPL), and on other bits of the error code and the page tables.
4290 *
4291 * In particular the following conditions come from the error code, the
4292 * page tables and the machine state:
4293 * - PK is always zero unless CR4.PKE=1 and EFER.LMA=1
4294 * - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch)
4295 * - PK is always zero if U=0 in the page tables
4296 * - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access.
4297 *
4298 * The PKRU bitmask caches the result of these four conditions.  The error
4299 * code (minus the P bit) and the page table's U bit form an index into the
4300 * PKRU bitmask.  Two bits of the PKRU bitmask are then extracted and ANDed
4301 * with the two bits of the PKRU register corresponding to the protection key.
4302 * For the first three conditions above the bits will be 00, thus masking
4303 * away both AD and WD.  For all reads or if the last condition holds, WD
4304 * only will be masked away.
4305 */
4306 static void update_pkru_bitmask(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
4307 				bool ept)
4308 {
4309 	unsigned bit;
4310 	bool wp;
4311 
4312 	if (ept) {
4313 		mmu->pkru_mask = 0;
4314 		return;
4315 	}
4316 
4317 	/* PKEY is enabled only if CR4.PKE and EFER.LMA are both set. */
4318 	if (!kvm_read_cr4_bits(vcpu, X86_CR4_PKE) || !is_long_mode(vcpu)) {
4319 		mmu->pkru_mask = 0;
4320 		return;
4321 	}
4322 
4323 	wp = is_write_protection(vcpu);
4324 
4325 	for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) {
4326 		unsigned pfec, pkey_bits;
4327 		bool check_pkey, check_write, ff, uf, wf, pte_user;
4328 
4329 		pfec = bit << 1;
4330 		ff = pfec & PFERR_FETCH_MASK;
4331 		uf = pfec & PFERR_USER_MASK;
4332 		wf = pfec & PFERR_WRITE_MASK;
4333 
4334 		/* PFEC.RSVD is replaced by ACC_USER_MASK. */
4335 		pte_user = pfec & PFERR_RSVD_MASK;
4336 
4337 		/*
4338 		 * Only need to check the access which is not an
4339 		 * instruction fetch and is to a user page.
4340 		 */
4341 		check_pkey = (!ff && pte_user);
4342 		/*
4343 		 * write access is controlled by PKRU if it is a
4344 		 * user access or CR0.WP = 1.
4345 		 */
4346 		check_write = check_pkey && wf && (uf || wp);
4347 
4348 		/* PKRU.AD stops both read and write access. */
4349 		pkey_bits = !!check_pkey;
4350 		/* PKRU.WD stops write access. */
4351 		pkey_bits |= (!!check_write) << 1;
4352 
4353 		mmu->pkru_mask |= (pkey_bits & 3) << pfec;
4354 	}
4355 }
4356 
4357 static void update_last_nonleaf_level(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
4358 {
4359 	unsigned root_level = mmu->root_level;
4360 
4361 	mmu->last_nonleaf_level = root_level;
4362 	if (root_level == PT32_ROOT_LEVEL && is_pse(vcpu))
4363 		mmu->last_nonleaf_level++;
4364 }
4365 
4366 static void paging64_init_context_common(struct kvm_vcpu *vcpu,
4367 					 struct kvm_mmu *context,
4368 					 int level)
4369 {
4370 	context->nx = is_nx(vcpu);
4371 	context->root_level = level;
4372 
4373 	reset_rsvds_bits_mask(vcpu, context);
4374 	update_permission_bitmask(vcpu, context, false);
4375 	update_pkru_bitmask(vcpu, context, false);
4376 	update_last_nonleaf_level(vcpu, context);
4377 
4378 	MMU_WARN_ON(!is_pae(vcpu));
4379 	context->page_fault = paging64_page_fault;
4380 	context->gva_to_gpa = paging64_gva_to_gpa;
4381 	context->sync_page = paging64_sync_page;
4382 	context->invlpg = paging64_invlpg;
4383 	context->update_pte = paging64_update_pte;
4384 	context->shadow_root_level = level;
4385 	context->direct_map = false;
4386 }
4387 
4388 static void paging64_init_context(struct kvm_vcpu *vcpu,
4389 				  struct kvm_mmu *context)
4390 {
4391 	int root_level = is_la57_mode(vcpu) ?
4392 			 PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4393 
4394 	paging64_init_context_common(vcpu, context, root_level);
4395 }
4396 
4397 static void paging32_init_context(struct kvm_vcpu *vcpu,
4398 				  struct kvm_mmu *context)
4399 {
4400 	context->nx = false;
4401 	context->root_level = PT32_ROOT_LEVEL;
4402 
4403 	reset_rsvds_bits_mask(vcpu, context);
4404 	update_permission_bitmask(vcpu, context, false);
4405 	update_pkru_bitmask(vcpu, context, false);
4406 	update_last_nonleaf_level(vcpu, context);
4407 
4408 	context->page_fault = paging32_page_fault;
4409 	context->gva_to_gpa = paging32_gva_to_gpa;
4410 	context->sync_page = paging32_sync_page;
4411 	context->invlpg = paging32_invlpg;
4412 	context->update_pte = paging32_update_pte;
4413 	context->shadow_root_level = PT32E_ROOT_LEVEL;
4414 	context->direct_map = false;
4415 }
4416 
4417 static void paging32E_init_context(struct kvm_vcpu *vcpu,
4418 				   struct kvm_mmu *context)
4419 {
4420 	paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
4421 }
4422 
4423 static union kvm_mmu_extended_role kvm_calc_mmu_role_ext(struct kvm_vcpu *vcpu)
4424 {
4425 	union kvm_mmu_extended_role ext = {0};
4426 
4427 	ext.cr0_pg = !!is_paging(vcpu);
4428 	ext.cr4_pae = !!is_pae(vcpu);
4429 	ext.cr4_smep = !!kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
4430 	ext.cr4_smap = !!kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
4431 	ext.cr4_pse = !!is_pse(vcpu);
4432 	ext.cr4_pke = !!kvm_read_cr4_bits(vcpu, X86_CR4_PKE);
4433 	ext.maxphyaddr = cpuid_maxphyaddr(vcpu);
4434 
4435 	ext.valid = 1;
4436 
4437 	return ext;
4438 }
4439 
4440 static union kvm_mmu_role kvm_calc_mmu_role_common(struct kvm_vcpu *vcpu,
4441 						   bool base_only)
4442 {
4443 	union kvm_mmu_role role = {0};
4444 
4445 	role.base.access = ACC_ALL;
4446 	role.base.nxe = !!is_nx(vcpu);
4447 	role.base.cr0_wp = is_write_protection(vcpu);
4448 	role.base.smm = is_smm(vcpu);
4449 	role.base.guest_mode = is_guest_mode(vcpu);
4450 
4451 	if (base_only)
4452 		return role;
4453 
4454 	role.ext = kvm_calc_mmu_role_ext(vcpu);
4455 
4456 	return role;
4457 }
4458 
4459 static inline int kvm_mmu_get_tdp_level(struct kvm_vcpu *vcpu)
4460 {
4461 	/* Use 5-level TDP if and only if it's useful/necessary. */
4462 	if (max_tdp_level == 5 && cpuid_maxphyaddr(vcpu) <= 48)
4463 		return 4;
4464 
4465 	return max_tdp_level;
4466 }
4467 
4468 static union kvm_mmu_role
4469 kvm_calc_tdp_mmu_root_page_role(struct kvm_vcpu *vcpu, bool base_only)
4470 {
4471 	union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, base_only);
4472 
4473 	role.base.ad_disabled = (shadow_accessed_mask == 0);
4474 	role.base.level = kvm_mmu_get_tdp_level(vcpu);
4475 	role.base.direct = true;
4476 	role.base.gpte_is_8_bytes = true;
4477 
4478 	return role;
4479 }
4480 
4481 static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
4482 {
4483 	struct kvm_mmu *context = &vcpu->arch.root_mmu;
4484 	union kvm_mmu_role new_role =
4485 		kvm_calc_tdp_mmu_root_page_role(vcpu, false);
4486 
4487 	if (new_role.as_u64 == context->mmu_role.as_u64)
4488 		return;
4489 
4490 	context->mmu_role.as_u64 = new_role.as_u64;
4491 	context->page_fault = kvm_tdp_page_fault;
4492 	context->sync_page = nonpaging_sync_page;
4493 	context->invlpg = NULL;
4494 	context->update_pte = nonpaging_update_pte;
4495 	context->shadow_root_level = kvm_mmu_get_tdp_level(vcpu);
4496 	context->direct_map = true;
4497 	context->get_guest_pgd = get_cr3;
4498 	context->get_pdptr = kvm_pdptr_read;
4499 	context->inject_page_fault = kvm_inject_page_fault;
4500 
4501 	if (!is_paging(vcpu)) {
4502 		context->nx = false;
4503 		context->gva_to_gpa = nonpaging_gva_to_gpa;
4504 		context->root_level = 0;
4505 	} else if (is_long_mode(vcpu)) {
4506 		context->nx = is_nx(vcpu);
4507 		context->root_level = is_la57_mode(vcpu) ?
4508 				PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4509 		reset_rsvds_bits_mask(vcpu, context);
4510 		context->gva_to_gpa = paging64_gva_to_gpa;
4511 	} else if (is_pae(vcpu)) {
4512 		context->nx = is_nx(vcpu);
4513 		context->root_level = PT32E_ROOT_LEVEL;
4514 		reset_rsvds_bits_mask(vcpu, context);
4515 		context->gva_to_gpa = paging64_gva_to_gpa;
4516 	} else {
4517 		context->nx = false;
4518 		context->root_level = PT32_ROOT_LEVEL;
4519 		reset_rsvds_bits_mask(vcpu, context);
4520 		context->gva_to_gpa = paging32_gva_to_gpa;
4521 	}
4522 
4523 	update_permission_bitmask(vcpu, context, false);
4524 	update_pkru_bitmask(vcpu, context, false);
4525 	update_last_nonleaf_level(vcpu, context);
4526 	reset_tdp_shadow_zero_bits_mask(vcpu, context);
4527 }
4528 
4529 static union kvm_mmu_role
4530 kvm_calc_shadow_root_page_role_common(struct kvm_vcpu *vcpu, bool base_only)
4531 {
4532 	union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, base_only);
4533 
4534 	role.base.smep_andnot_wp = role.ext.cr4_smep &&
4535 		!is_write_protection(vcpu);
4536 	role.base.smap_andnot_wp = role.ext.cr4_smap &&
4537 		!is_write_protection(vcpu);
4538 	role.base.gpte_is_8_bytes = !!is_pae(vcpu);
4539 
4540 	return role;
4541 }
4542 
4543 static union kvm_mmu_role
4544 kvm_calc_shadow_mmu_root_page_role(struct kvm_vcpu *vcpu, bool base_only)
4545 {
4546 	union kvm_mmu_role role =
4547 		kvm_calc_shadow_root_page_role_common(vcpu, base_only);
4548 
4549 	role.base.direct = !is_paging(vcpu);
4550 
4551 	if (!is_long_mode(vcpu))
4552 		role.base.level = PT32E_ROOT_LEVEL;
4553 	else if (is_la57_mode(vcpu))
4554 		role.base.level = PT64_ROOT_5LEVEL;
4555 	else
4556 		role.base.level = PT64_ROOT_4LEVEL;
4557 
4558 	return role;
4559 }
4560 
4561 static void shadow_mmu_init_context(struct kvm_vcpu *vcpu, struct kvm_mmu *context,
4562 				    u32 cr0, u32 cr4, u32 efer,
4563 				    union kvm_mmu_role new_role)
4564 {
4565 	if (!(cr0 & X86_CR0_PG))
4566 		nonpaging_init_context(vcpu, context);
4567 	else if (efer & EFER_LMA)
4568 		paging64_init_context(vcpu, context);
4569 	else if (cr4 & X86_CR4_PAE)
4570 		paging32E_init_context(vcpu, context);
4571 	else
4572 		paging32_init_context(vcpu, context);
4573 
4574 	context->mmu_role.as_u64 = new_role.as_u64;
4575 	reset_shadow_zero_bits_mask(vcpu, context);
4576 }
4577 
4578 static void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, u32 cr0, u32 cr4, u32 efer)
4579 {
4580 	struct kvm_mmu *context = &vcpu->arch.root_mmu;
4581 	union kvm_mmu_role new_role =
4582 		kvm_calc_shadow_mmu_root_page_role(vcpu, false);
4583 
4584 	if (new_role.as_u64 != context->mmu_role.as_u64)
4585 		shadow_mmu_init_context(vcpu, context, cr0, cr4, efer, new_role);
4586 }
4587 
4588 static union kvm_mmu_role
4589 kvm_calc_shadow_npt_root_page_role(struct kvm_vcpu *vcpu)
4590 {
4591 	union kvm_mmu_role role =
4592 		kvm_calc_shadow_root_page_role_common(vcpu, false);
4593 
4594 	role.base.direct = false;
4595 	role.base.level = kvm_mmu_get_tdp_level(vcpu);
4596 
4597 	return role;
4598 }
4599 
4600 void kvm_init_shadow_npt_mmu(struct kvm_vcpu *vcpu, u32 cr0, u32 cr4, u32 efer,
4601 			     gpa_t nested_cr3)
4602 {
4603 	struct kvm_mmu *context = &vcpu->arch.guest_mmu;
4604 	union kvm_mmu_role new_role = kvm_calc_shadow_npt_root_page_role(vcpu);
4605 
4606 	context->shadow_root_level = new_role.base.level;
4607 
4608 	__kvm_mmu_new_pgd(vcpu, nested_cr3, new_role.base, false, false);
4609 
4610 	if (new_role.as_u64 != context->mmu_role.as_u64)
4611 		shadow_mmu_init_context(vcpu, context, cr0, cr4, efer, new_role);
4612 }
4613 EXPORT_SYMBOL_GPL(kvm_init_shadow_npt_mmu);
4614 
4615 static union kvm_mmu_role
4616 kvm_calc_shadow_ept_root_page_role(struct kvm_vcpu *vcpu, bool accessed_dirty,
4617 				   bool execonly, u8 level)
4618 {
4619 	union kvm_mmu_role role = {0};
4620 
4621 	/* SMM flag is inherited from root_mmu */
4622 	role.base.smm = vcpu->arch.root_mmu.mmu_role.base.smm;
4623 
4624 	role.base.level = level;
4625 	role.base.gpte_is_8_bytes = true;
4626 	role.base.direct = false;
4627 	role.base.ad_disabled = !accessed_dirty;
4628 	role.base.guest_mode = true;
4629 	role.base.access = ACC_ALL;
4630 
4631 	/*
4632 	 * WP=1 and NOT_WP=1 is an impossible combination, use WP and the
4633 	 * SMAP variation to denote shadow EPT entries.
4634 	 */
4635 	role.base.cr0_wp = true;
4636 	role.base.smap_andnot_wp = true;
4637 
4638 	role.ext = kvm_calc_mmu_role_ext(vcpu);
4639 	role.ext.execonly = execonly;
4640 
4641 	return role;
4642 }
4643 
4644 void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly,
4645 			     bool accessed_dirty, gpa_t new_eptp)
4646 {
4647 	struct kvm_mmu *context = &vcpu->arch.guest_mmu;
4648 	u8 level = vmx_eptp_page_walk_level(new_eptp);
4649 	union kvm_mmu_role new_role =
4650 		kvm_calc_shadow_ept_root_page_role(vcpu, accessed_dirty,
4651 						   execonly, level);
4652 
4653 	__kvm_mmu_new_pgd(vcpu, new_eptp, new_role.base, true, true);
4654 
4655 	if (new_role.as_u64 == context->mmu_role.as_u64)
4656 		return;
4657 
4658 	context->shadow_root_level = level;
4659 
4660 	context->nx = true;
4661 	context->ept_ad = accessed_dirty;
4662 	context->page_fault = ept_page_fault;
4663 	context->gva_to_gpa = ept_gva_to_gpa;
4664 	context->sync_page = ept_sync_page;
4665 	context->invlpg = ept_invlpg;
4666 	context->update_pte = ept_update_pte;
4667 	context->root_level = level;
4668 	context->direct_map = false;
4669 	context->mmu_role.as_u64 = new_role.as_u64;
4670 
4671 	update_permission_bitmask(vcpu, context, true);
4672 	update_pkru_bitmask(vcpu, context, true);
4673 	update_last_nonleaf_level(vcpu, context);
4674 	reset_rsvds_bits_mask_ept(vcpu, context, execonly);
4675 	reset_ept_shadow_zero_bits_mask(vcpu, context, execonly);
4676 }
4677 EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);
4678 
4679 static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
4680 {
4681 	struct kvm_mmu *context = &vcpu->arch.root_mmu;
4682 
4683 	kvm_init_shadow_mmu(vcpu,
4684 			    kvm_read_cr0_bits(vcpu, X86_CR0_PG),
4685 			    kvm_read_cr4_bits(vcpu, X86_CR4_PAE),
4686 			    vcpu->arch.efer);
4687 
4688 	context->get_guest_pgd     = get_cr3;
4689 	context->get_pdptr         = kvm_pdptr_read;
4690 	context->inject_page_fault = kvm_inject_page_fault;
4691 }
4692 
4693 static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
4694 {
4695 	union kvm_mmu_role new_role = kvm_calc_mmu_role_common(vcpu, false);
4696 	struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
4697 
4698 	if (new_role.as_u64 == g_context->mmu_role.as_u64)
4699 		return;
4700 
4701 	g_context->mmu_role.as_u64 = new_role.as_u64;
4702 	g_context->get_guest_pgd     = get_cr3;
4703 	g_context->get_pdptr         = kvm_pdptr_read;
4704 	g_context->inject_page_fault = kvm_inject_page_fault;
4705 
4706 	/*
4707 	 * L2 page tables are never shadowed, so there is no need to sync
4708 	 * SPTEs.
4709 	 */
4710 	g_context->invlpg            = NULL;
4711 
4712 	/*
4713 	 * Note that arch.mmu->gva_to_gpa translates l2_gpa to l1_gpa using
4714 	 * L1's nested page tables (e.g. EPT12). The nested translation
4715 	 * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using
4716 	 * L2's page tables as the first level of translation and L1's
4717 	 * nested page tables as the second level of translation. Basically
4718 	 * the gva_to_gpa functions between mmu and nested_mmu are swapped.
4719 	 */
4720 	if (!is_paging(vcpu)) {
4721 		g_context->nx = false;
4722 		g_context->root_level = 0;
4723 		g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
4724 	} else if (is_long_mode(vcpu)) {
4725 		g_context->nx = is_nx(vcpu);
4726 		g_context->root_level = is_la57_mode(vcpu) ?
4727 					PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4728 		reset_rsvds_bits_mask(vcpu, g_context);
4729 		g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4730 	} else if (is_pae(vcpu)) {
4731 		g_context->nx = is_nx(vcpu);
4732 		g_context->root_level = PT32E_ROOT_LEVEL;
4733 		reset_rsvds_bits_mask(vcpu, g_context);
4734 		g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4735 	} else {
4736 		g_context->nx = false;
4737 		g_context->root_level = PT32_ROOT_LEVEL;
4738 		reset_rsvds_bits_mask(vcpu, g_context);
4739 		g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
4740 	}
4741 
4742 	update_permission_bitmask(vcpu, g_context, false);
4743 	update_pkru_bitmask(vcpu, g_context, false);
4744 	update_last_nonleaf_level(vcpu, g_context);
4745 }
4746 
4747 void kvm_init_mmu(struct kvm_vcpu *vcpu, bool reset_roots)
4748 {
4749 	if (reset_roots) {
4750 		uint i;
4751 
4752 		vcpu->arch.mmu->root_hpa = INVALID_PAGE;
4753 
4754 		for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
4755 			vcpu->arch.mmu->prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
4756 	}
4757 
4758 	if (mmu_is_nested(vcpu))
4759 		init_kvm_nested_mmu(vcpu);
4760 	else if (tdp_enabled)
4761 		init_kvm_tdp_mmu(vcpu);
4762 	else
4763 		init_kvm_softmmu(vcpu);
4764 }
4765 EXPORT_SYMBOL_GPL(kvm_init_mmu);
4766 
4767 static union kvm_mmu_page_role
4768 kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu)
4769 {
4770 	union kvm_mmu_role role;
4771 
4772 	if (tdp_enabled)
4773 		role = kvm_calc_tdp_mmu_root_page_role(vcpu, true);
4774 	else
4775 		role = kvm_calc_shadow_mmu_root_page_role(vcpu, true);
4776 
4777 	return role.base;
4778 }
4779 
4780 void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
4781 {
4782 	kvm_mmu_unload(vcpu);
4783 	kvm_init_mmu(vcpu, true);
4784 }
4785 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
4786 
4787 int kvm_mmu_load(struct kvm_vcpu *vcpu)
4788 {
4789 	int r;
4790 
4791 	r = mmu_topup_memory_caches(vcpu, !vcpu->arch.mmu->direct_map);
4792 	if (r)
4793 		goto out;
4794 	r = mmu_alloc_roots(vcpu);
4795 	kvm_mmu_sync_roots(vcpu);
4796 	if (r)
4797 		goto out;
4798 	kvm_mmu_load_pgd(vcpu);
4799 	kvm_x86_ops.tlb_flush_current(vcpu);
4800 out:
4801 	return r;
4802 }
4803 EXPORT_SYMBOL_GPL(kvm_mmu_load);
4804 
4805 void kvm_mmu_unload(struct kvm_vcpu *vcpu)
4806 {
4807 	kvm_mmu_free_roots(vcpu, &vcpu->arch.root_mmu, KVM_MMU_ROOTS_ALL);
4808 	WARN_ON(VALID_PAGE(vcpu->arch.root_mmu.root_hpa));
4809 	kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
4810 	WARN_ON(VALID_PAGE(vcpu->arch.guest_mmu.root_hpa));
4811 }
4812 EXPORT_SYMBOL_GPL(kvm_mmu_unload);
4813 
4814 static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
4815 				  struct kvm_mmu_page *sp, u64 *spte,
4816 				  const void *new)
4817 {
4818 	if (sp->role.level != PG_LEVEL_4K) {
4819 		++vcpu->kvm->stat.mmu_pde_zapped;
4820 		return;
4821         }
4822 
4823 	++vcpu->kvm->stat.mmu_pte_updated;
4824 	vcpu->arch.mmu->update_pte(vcpu, sp, spte, new);
4825 }
4826 
4827 static bool need_remote_flush(u64 old, u64 new)
4828 {
4829 	if (!is_shadow_present_pte(old))
4830 		return false;
4831 	if (!is_shadow_present_pte(new))
4832 		return true;
4833 	if ((old ^ new) & PT64_BASE_ADDR_MASK)
4834 		return true;
4835 	old ^= shadow_nx_mask;
4836 	new ^= shadow_nx_mask;
4837 	return (old & ~new & PT64_PERM_MASK) != 0;
4838 }
4839 
4840 static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
4841 				    int *bytes)
4842 {
4843 	u64 gentry = 0;
4844 	int r;
4845 
4846 	/*
4847 	 * Assume that the pte write on a page table of the same type
4848 	 * as the current vcpu paging mode since we update the sptes only
4849 	 * when they have the same mode.
4850 	 */
4851 	if (is_pae(vcpu) && *bytes == 4) {
4852 		/* Handle a 32-bit guest writing two halves of a 64-bit gpte */
4853 		*gpa &= ~(gpa_t)7;
4854 		*bytes = 8;
4855 	}
4856 
4857 	if (*bytes == 4 || *bytes == 8) {
4858 		r = kvm_vcpu_read_guest_atomic(vcpu, *gpa, &gentry, *bytes);
4859 		if (r)
4860 			gentry = 0;
4861 	}
4862 
4863 	return gentry;
4864 }
4865 
4866 /*
4867  * If we're seeing too many writes to a page, it may no longer be a page table,
4868  * or we may be forking, in which case it is better to unmap the page.
4869  */
4870 static bool detect_write_flooding(struct kvm_mmu_page *sp)
4871 {
4872 	/*
4873 	 * Skip write-flooding detected for the sp whose level is 1, because
4874 	 * it can become unsync, then the guest page is not write-protected.
4875 	 */
4876 	if (sp->role.level == PG_LEVEL_4K)
4877 		return false;
4878 
4879 	atomic_inc(&sp->write_flooding_count);
4880 	return atomic_read(&sp->write_flooding_count) >= 3;
4881 }
4882 
4883 /*
4884  * Misaligned accesses are too much trouble to fix up; also, they usually
4885  * indicate a page is not used as a page table.
4886  */
4887 static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
4888 				    int bytes)
4889 {
4890 	unsigned offset, pte_size, misaligned;
4891 
4892 	pgprintk("misaligned: gpa %llx bytes %d role %x\n",
4893 		 gpa, bytes, sp->role.word);
4894 
4895 	offset = offset_in_page(gpa);
4896 	pte_size = sp->role.gpte_is_8_bytes ? 8 : 4;
4897 
4898 	/*
4899 	 * Sometimes, the OS only writes the last one bytes to update status
4900 	 * bits, for example, in linux, andb instruction is used in clear_bit().
4901 	 */
4902 	if (!(offset & (pte_size - 1)) && bytes == 1)
4903 		return false;
4904 
4905 	misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
4906 	misaligned |= bytes < 4;
4907 
4908 	return misaligned;
4909 }
4910 
4911 static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
4912 {
4913 	unsigned page_offset, quadrant;
4914 	u64 *spte;
4915 	int level;
4916 
4917 	page_offset = offset_in_page(gpa);
4918 	level = sp->role.level;
4919 	*nspte = 1;
4920 	if (!sp->role.gpte_is_8_bytes) {
4921 		page_offset <<= 1;	/* 32->64 */
4922 		/*
4923 		 * A 32-bit pde maps 4MB while the shadow pdes map
4924 		 * only 2MB.  So we need to double the offset again
4925 		 * and zap two pdes instead of one.
4926 		 */
4927 		if (level == PT32_ROOT_LEVEL) {
4928 			page_offset &= ~7; /* kill rounding error */
4929 			page_offset <<= 1;
4930 			*nspte = 2;
4931 		}
4932 		quadrant = page_offset >> PAGE_SHIFT;
4933 		page_offset &= ~PAGE_MASK;
4934 		if (quadrant != sp->role.quadrant)
4935 			return NULL;
4936 	}
4937 
4938 	spte = &sp->spt[page_offset / sizeof(*spte)];
4939 	return spte;
4940 }
4941 
4942 /*
4943  * Ignore various flags when determining if a SPTE can be immediately
4944  * overwritten for the current MMU.
4945  *  - level: explicitly checked in mmu_pte_write_new_pte(), and will never
4946  *    match the current MMU role, as MMU's level tracks the root level.
4947  *  - access: updated based on the new guest PTE
4948  *  - quadrant: handled by get_written_sptes()
4949  *  - invalid: always false (loop only walks valid shadow pages)
4950  */
4951 static const union kvm_mmu_page_role role_ign = {
4952 	.level = 0xf,
4953 	.access = 0x7,
4954 	.quadrant = 0x3,
4955 	.invalid = 0x1,
4956 };
4957 
4958 static void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
4959 			      const u8 *new, int bytes,
4960 			      struct kvm_page_track_notifier_node *node)
4961 {
4962 	gfn_t gfn = gpa >> PAGE_SHIFT;
4963 	struct kvm_mmu_page *sp;
4964 	LIST_HEAD(invalid_list);
4965 	u64 entry, gentry, *spte;
4966 	int npte;
4967 	bool remote_flush, local_flush;
4968 
4969 	/*
4970 	 * If we don't have indirect shadow pages, it means no page is
4971 	 * write-protected, so we can exit simply.
4972 	 */
4973 	if (!READ_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
4974 		return;
4975 
4976 	remote_flush = local_flush = false;
4977 
4978 	pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
4979 
4980 	/*
4981 	 * No need to care whether allocation memory is successful
4982 	 * or not since pte prefetch is skiped if it does not have
4983 	 * enough objects in the cache.
4984 	 */
4985 	mmu_topup_memory_caches(vcpu, true);
4986 
4987 	spin_lock(&vcpu->kvm->mmu_lock);
4988 
4989 	gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, &bytes);
4990 
4991 	++vcpu->kvm->stat.mmu_pte_write;
4992 	kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
4993 
4994 	for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
4995 		if (detect_write_misaligned(sp, gpa, bytes) ||
4996 		      detect_write_flooding(sp)) {
4997 			kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
4998 			++vcpu->kvm->stat.mmu_flooded;
4999 			continue;
5000 		}
5001 
5002 		spte = get_written_sptes(sp, gpa, &npte);
5003 		if (!spte)
5004 			continue;
5005 
5006 		local_flush = true;
5007 		while (npte--) {
5008 			u32 base_role = vcpu->arch.mmu->mmu_role.base.word;
5009 
5010 			entry = *spte;
5011 			mmu_page_zap_pte(vcpu->kvm, sp, spte, NULL);
5012 			if (gentry &&
5013 			    !((sp->role.word ^ base_role) & ~role_ign.word) &&
5014 			    rmap_can_add(vcpu))
5015 				mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
5016 			if (need_remote_flush(entry, *spte))
5017 				remote_flush = true;
5018 			++spte;
5019 		}
5020 	}
5021 	kvm_mmu_flush_or_zap(vcpu, &invalid_list, remote_flush, local_flush);
5022 	kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
5023 	spin_unlock(&vcpu->kvm->mmu_lock);
5024 }
5025 
5026 int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
5027 {
5028 	gpa_t gpa;
5029 	int r;
5030 
5031 	if (vcpu->arch.mmu->direct_map)
5032 		return 0;
5033 
5034 	gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
5035 
5036 	r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
5037 
5038 	return r;
5039 }
5040 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
5041 
5042 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 error_code,
5043 		       void *insn, int insn_len)
5044 {
5045 	int r, emulation_type = EMULTYPE_PF;
5046 	bool direct = vcpu->arch.mmu->direct_map;
5047 
5048 	if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa)))
5049 		return RET_PF_RETRY;
5050 
5051 	r = RET_PF_INVALID;
5052 	if (unlikely(error_code & PFERR_RSVD_MASK)) {
5053 		r = handle_mmio_page_fault(vcpu, cr2_or_gpa, direct);
5054 		if (r == RET_PF_EMULATE)
5055 			goto emulate;
5056 	}
5057 
5058 	if (r == RET_PF_INVALID) {
5059 		r = kvm_mmu_do_page_fault(vcpu, cr2_or_gpa,
5060 					  lower_32_bits(error_code), false);
5061 		if (WARN_ON_ONCE(r == RET_PF_INVALID))
5062 			return -EIO;
5063 	}
5064 
5065 	if (r < 0)
5066 		return r;
5067 	if (r != RET_PF_EMULATE)
5068 		return 1;
5069 
5070 	/*
5071 	 * Before emulating the instruction, check if the error code
5072 	 * was due to a RO violation while translating the guest page.
5073 	 * This can occur when using nested virtualization with nested
5074 	 * paging in both guests. If true, we simply unprotect the page
5075 	 * and resume the guest.
5076 	 */
5077 	if (vcpu->arch.mmu->direct_map &&
5078 	    (error_code & PFERR_NESTED_GUEST_PAGE) == PFERR_NESTED_GUEST_PAGE) {
5079 		kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(cr2_or_gpa));
5080 		return 1;
5081 	}
5082 
5083 	/*
5084 	 * vcpu->arch.mmu.page_fault returned RET_PF_EMULATE, but we can still
5085 	 * optimistically try to just unprotect the page and let the processor
5086 	 * re-execute the instruction that caused the page fault.  Do not allow
5087 	 * retrying MMIO emulation, as it's not only pointless but could also
5088 	 * cause us to enter an infinite loop because the processor will keep
5089 	 * faulting on the non-existent MMIO address.  Retrying an instruction
5090 	 * from a nested guest is also pointless and dangerous as we are only
5091 	 * explicitly shadowing L1's page tables, i.e. unprotecting something
5092 	 * for L1 isn't going to magically fix whatever issue cause L2 to fail.
5093 	 */
5094 	if (!mmio_info_in_cache(vcpu, cr2_or_gpa, direct) && !is_guest_mode(vcpu))
5095 		emulation_type |= EMULTYPE_ALLOW_RETRY_PF;
5096 emulate:
5097 	return x86_emulate_instruction(vcpu, cr2_or_gpa, emulation_type, insn,
5098 				       insn_len);
5099 }
5100 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
5101 
5102 void kvm_mmu_invalidate_gva(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
5103 			    gva_t gva, hpa_t root_hpa)
5104 {
5105 	int i;
5106 
5107 	/* It's actually a GPA for vcpu->arch.guest_mmu.  */
5108 	if (mmu != &vcpu->arch.guest_mmu) {
5109 		/* INVLPG on a non-canonical address is a NOP according to the SDM.  */
5110 		if (is_noncanonical_address(gva, vcpu))
5111 			return;
5112 
5113 		kvm_x86_ops.tlb_flush_gva(vcpu, gva);
5114 	}
5115 
5116 	if (!mmu->invlpg)
5117 		return;
5118 
5119 	if (root_hpa == INVALID_PAGE) {
5120 		mmu->invlpg(vcpu, gva, mmu->root_hpa);
5121 
5122 		/*
5123 		 * INVLPG is required to invalidate any global mappings for the VA,
5124 		 * irrespective of PCID. Since it would take us roughly similar amount
5125 		 * of work to determine whether any of the prev_root mappings of the VA
5126 		 * is marked global, or to just sync it blindly, so we might as well
5127 		 * just always sync it.
5128 		 *
5129 		 * Mappings not reachable via the current cr3 or the prev_roots will be
5130 		 * synced when switching to that cr3, so nothing needs to be done here
5131 		 * for them.
5132 		 */
5133 		for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5134 			if (VALID_PAGE(mmu->prev_roots[i].hpa))
5135 				mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
5136 	} else {
5137 		mmu->invlpg(vcpu, gva, root_hpa);
5138 	}
5139 }
5140 EXPORT_SYMBOL_GPL(kvm_mmu_invalidate_gva);
5141 
5142 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
5143 {
5144 	kvm_mmu_invalidate_gva(vcpu, vcpu->arch.mmu, gva, INVALID_PAGE);
5145 	++vcpu->stat.invlpg;
5146 }
5147 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
5148 
5149 
5150 void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid)
5151 {
5152 	struct kvm_mmu *mmu = vcpu->arch.mmu;
5153 	bool tlb_flush = false;
5154 	uint i;
5155 
5156 	if (pcid == kvm_get_active_pcid(vcpu)) {
5157 		mmu->invlpg(vcpu, gva, mmu->root_hpa);
5158 		tlb_flush = true;
5159 	}
5160 
5161 	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
5162 		if (VALID_PAGE(mmu->prev_roots[i].hpa) &&
5163 		    pcid == kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd)) {
5164 			mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
5165 			tlb_flush = true;
5166 		}
5167 	}
5168 
5169 	if (tlb_flush)
5170 		kvm_x86_ops.tlb_flush_gva(vcpu, gva);
5171 
5172 	++vcpu->stat.invlpg;
5173 
5174 	/*
5175 	 * Mappings not reachable via the current cr3 or the prev_roots will be
5176 	 * synced when switching to that cr3, so nothing needs to be done here
5177 	 * for them.
5178 	 */
5179 }
5180 EXPORT_SYMBOL_GPL(kvm_mmu_invpcid_gva);
5181 
5182 void kvm_configure_mmu(bool enable_tdp, int tdp_max_root_level,
5183 		       int tdp_huge_page_level)
5184 {
5185 	tdp_enabled = enable_tdp;
5186 	max_tdp_level = tdp_max_root_level;
5187 
5188 	/*
5189 	 * max_huge_page_level reflects KVM's MMU capabilities irrespective
5190 	 * of kernel support, e.g. KVM may be capable of using 1GB pages when
5191 	 * the kernel is not.  But, KVM never creates a page size greater than
5192 	 * what is used by the kernel for any given HVA, i.e. the kernel's
5193 	 * capabilities are ultimately consulted by kvm_mmu_hugepage_adjust().
5194 	 */
5195 	if (tdp_enabled)
5196 		max_huge_page_level = tdp_huge_page_level;
5197 	else if (boot_cpu_has(X86_FEATURE_GBPAGES))
5198 		max_huge_page_level = PG_LEVEL_1G;
5199 	else
5200 		max_huge_page_level = PG_LEVEL_2M;
5201 }
5202 EXPORT_SYMBOL_GPL(kvm_configure_mmu);
5203 
5204 /* The return value indicates if tlb flush on all vcpus is needed. */
5205 typedef bool (*slot_level_handler) (struct kvm *kvm, struct kvm_rmap_head *rmap_head);
5206 
5207 /* The caller should hold mmu-lock before calling this function. */
5208 static __always_inline bool
5209 slot_handle_level_range(struct kvm *kvm, struct kvm_memory_slot *memslot,
5210 			slot_level_handler fn, int start_level, int end_level,
5211 			gfn_t start_gfn, gfn_t end_gfn, bool lock_flush_tlb)
5212 {
5213 	struct slot_rmap_walk_iterator iterator;
5214 	bool flush = false;
5215 
5216 	for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn,
5217 			end_gfn, &iterator) {
5218 		if (iterator.rmap)
5219 			flush |= fn(kvm, iterator.rmap);
5220 
5221 		if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
5222 			if (flush && lock_flush_tlb) {
5223 				kvm_flush_remote_tlbs_with_address(kvm,
5224 						start_gfn,
5225 						iterator.gfn - start_gfn + 1);
5226 				flush = false;
5227 			}
5228 			cond_resched_lock(&kvm->mmu_lock);
5229 		}
5230 	}
5231 
5232 	if (flush && lock_flush_tlb) {
5233 		kvm_flush_remote_tlbs_with_address(kvm, start_gfn,
5234 						   end_gfn - start_gfn + 1);
5235 		flush = false;
5236 	}
5237 
5238 	return flush;
5239 }
5240 
5241 static __always_inline bool
5242 slot_handle_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5243 		  slot_level_handler fn, int start_level, int end_level,
5244 		  bool lock_flush_tlb)
5245 {
5246 	return slot_handle_level_range(kvm, memslot, fn, start_level,
5247 			end_level, memslot->base_gfn,
5248 			memslot->base_gfn + memslot->npages - 1,
5249 			lock_flush_tlb);
5250 }
5251 
5252 static __always_inline bool
5253 slot_handle_all_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5254 		      slot_level_handler fn, bool lock_flush_tlb)
5255 {
5256 	return slot_handle_level(kvm, memslot, fn, PG_LEVEL_4K,
5257 				 KVM_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
5258 }
5259 
5260 static __always_inline bool
5261 slot_handle_large_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5262 			slot_level_handler fn, bool lock_flush_tlb)
5263 {
5264 	return slot_handle_level(kvm, memslot, fn, PG_LEVEL_4K + 1,
5265 				 KVM_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
5266 }
5267 
5268 static __always_inline bool
5269 slot_handle_leaf(struct kvm *kvm, struct kvm_memory_slot *memslot,
5270 		 slot_level_handler fn, bool lock_flush_tlb)
5271 {
5272 	return slot_handle_level(kvm, memslot, fn, PG_LEVEL_4K,
5273 				 PG_LEVEL_4K, lock_flush_tlb);
5274 }
5275 
5276 static void free_mmu_pages(struct kvm_mmu *mmu)
5277 {
5278 	free_page((unsigned long)mmu->pae_root);
5279 	free_page((unsigned long)mmu->lm_root);
5280 }
5281 
5282 static int __kvm_mmu_create(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
5283 {
5284 	struct page *page;
5285 	int i;
5286 
5287 	mmu->root_hpa = INVALID_PAGE;
5288 	mmu->root_pgd = 0;
5289 	mmu->translate_gpa = translate_gpa;
5290 	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5291 		mmu->prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
5292 
5293 	/*
5294 	 * When using PAE paging, the four PDPTEs are treated as 'root' pages,
5295 	 * while the PDP table is a per-vCPU construct that's allocated at MMU
5296 	 * creation.  When emulating 32-bit mode, cr3 is only 32 bits even on
5297 	 * x86_64.  Therefore we need to allocate the PDP table in the first
5298 	 * 4GB of memory, which happens to fit the DMA32 zone.  Except for
5299 	 * SVM's 32-bit NPT support, TDP paging doesn't use PAE paging and can
5300 	 * skip allocating the PDP table.
5301 	 */
5302 	if (tdp_enabled && kvm_mmu_get_tdp_level(vcpu) > PT32E_ROOT_LEVEL)
5303 		return 0;
5304 
5305 	page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_DMA32);
5306 	if (!page)
5307 		return -ENOMEM;
5308 
5309 	mmu->pae_root = page_address(page);
5310 	for (i = 0; i < 4; ++i)
5311 		mmu->pae_root[i] = INVALID_PAGE;
5312 
5313 	return 0;
5314 }
5315 
5316 int kvm_mmu_create(struct kvm_vcpu *vcpu)
5317 {
5318 	int ret;
5319 
5320 	vcpu->arch.mmu_pte_list_desc_cache.kmem_cache = pte_list_desc_cache;
5321 	vcpu->arch.mmu_pte_list_desc_cache.gfp_zero = __GFP_ZERO;
5322 
5323 	vcpu->arch.mmu_page_header_cache.kmem_cache = mmu_page_header_cache;
5324 	vcpu->arch.mmu_page_header_cache.gfp_zero = __GFP_ZERO;
5325 
5326 	vcpu->arch.mmu_shadow_page_cache.gfp_zero = __GFP_ZERO;
5327 
5328 	vcpu->arch.mmu = &vcpu->arch.root_mmu;
5329 	vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
5330 
5331 	vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
5332 
5333 	ret = __kvm_mmu_create(vcpu, &vcpu->arch.guest_mmu);
5334 	if (ret)
5335 		return ret;
5336 
5337 	ret = __kvm_mmu_create(vcpu, &vcpu->arch.root_mmu);
5338 	if (ret)
5339 		goto fail_allocate_root;
5340 
5341 	return ret;
5342  fail_allocate_root:
5343 	free_mmu_pages(&vcpu->arch.guest_mmu);
5344 	return ret;
5345 }
5346 
5347 #define BATCH_ZAP_PAGES	10
5348 static void kvm_zap_obsolete_pages(struct kvm *kvm)
5349 {
5350 	struct kvm_mmu_page *sp, *node;
5351 	int nr_zapped, batch = 0;
5352 
5353 restart:
5354 	list_for_each_entry_safe_reverse(sp, node,
5355 	      &kvm->arch.active_mmu_pages, link) {
5356 		/*
5357 		 * No obsolete valid page exists before a newly created page
5358 		 * since active_mmu_pages is a FIFO list.
5359 		 */
5360 		if (!is_obsolete_sp(kvm, sp))
5361 			break;
5362 
5363 		/*
5364 		 * Invalid pages should never land back on the list of active
5365 		 * pages.  Skip the bogus page, otherwise we'll get stuck in an
5366 		 * infinite loop if the page gets put back on the list (again).
5367 		 */
5368 		if (WARN_ON(sp->role.invalid))
5369 			continue;
5370 
5371 		/*
5372 		 * No need to flush the TLB since we're only zapping shadow
5373 		 * pages with an obsolete generation number and all vCPUS have
5374 		 * loaded a new root, i.e. the shadow pages being zapped cannot
5375 		 * be in active use by the guest.
5376 		 */
5377 		if (batch >= BATCH_ZAP_PAGES &&
5378 		    cond_resched_lock(&kvm->mmu_lock)) {
5379 			batch = 0;
5380 			goto restart;
5381 		}
5382 
5383 		if (__kvm_mmu_prepare_zap_page(kvm, sp,
5384 				&kvm->arch.zapped_obsolete_pages, &nr_zapped)) {
5385 			batch += nr_zapped;
5386 			goto restart;
5387 		}
5388 	}
5389 
5390 	/*
5391 	 * Trigger a remote TLB flush before freeing the page tables to ensure
5392 	 * KVM is not in the middle of a lockless shadow page table walk, which
5393 	 * may reference the pages.
5394 	 */
5395 	kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
5396 }
5397 
5398 /*
5399  * Fast invalidate all shadow pages and use lock-break technique
5400  * to zap obsolete pages.
5401  *
5402  * It's required when memslot is being deleted or VM is being
5403  * destroyed, in these cases, we should ensure that KVM MMU does
5404  * not use any resource of the being-deleted slot or all slots
5405  * after calling the function.
5406  */
5407 static void kvm_mmu_zap_all_fast(struct kvm *kvm)
5408 {
5409 	lockdep_assert_held(&kvm->slots_lock);
5410 
5411 	spin_lock(&kvm->mmu_lock);
5412 	trace_kvm_mmu_zap_all_fast(kvm);
5413 
5414 	/*
5415 	 * Toggle mmu_valid_gen between '0' and '1'.  Because slots_lock is
5416 	 * held for the entire duration of zapping obsolete pages, it's
5417 	 * impossible for there to be multiple invalid generations associated
5418 	 * with *valid* shadow pages at any given time, i.e. there is exactly
5419 	 * one valid generation and (at most) one invalid generation.
5420 	 */
5421 	kvm->arch.mmu_valid_gen = kvm->arch.mmu_valid_gen ? 0 : 1;
5422 
5423 	/*
5424 	 * Notify all vcpus to reload its shadow page table and flush TLB.
5425 	 * Then all vcpus will switch to new shadow page table with the new
5426 	 * mmu_valid_gen.
5427 	 *
5428 	 * Note: we need to do this under the protection of mmu_lock,
5429 	 * otherwise, vcpu would purge shadow page but miss tlb flush.
5430 	 */
5431 	kvm_reload_remote_mmus(kvm);
5432 
5433 	kvm_zap_obsolete_pages(kvm);
5434 
5435 	if (kvm->arch.tdp_mmu_enabled)
5436 		kvm_tdp_mmu_zap_all(kvm);
5437 
5438 	spin_unlock(&kvm->mmu_lock);
5439 }
5440 
5441 static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
5442 {
5443 	return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
5444 }
5445 
5446 static void kvm_mmu_invalidate_zap_pages_in_memslot(struct kvm *kvm,
5447 			struct kvm_memory_slot *slot,
5448 			struct kvm_page_track_notifier_node *node)
5449 {
5450 	kvm_mmu_zap_all_fast(kvm);
5451 }
5452 
5453 void kvm_mmu_init_vm(struct kvm *kvm)
5454 {
5455 	struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5456 
5457 	kvm_mmu_init_tdp_mmu(kvm);
5458 
5459 	node->track_write = kvm_mmu_pte_write;
5460 	node->track_flush_slot = kvm_mmu_invalidate_zap_pages_in_memslot;
5461 	kvm_page_track_register_notifier(kvm, node);
5462 }
5463 
5464 void kvm_mmu_uninit_vm(struct kvm *kvm)
5465 {
5466 	struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5467 
5468 	kvm_page_track_unregister_notifier(kvm, node);
5469 
5470 	kvm_mmu_uninit_tdp_mmu(kvm);
5471 }
5472 
5473 void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
5474 {
5475 	struct kvm_memslots *slots;
5476 	struct kvm_memory_slot *memslot;
5477 	int i;
5478 	bool flush;
5479 
5480 	spin_lock(&kvm->mmu_lock);
5481 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
5482 		slots = __kvm_memslots(kvm, i);
5483 		kvm_for_each_memslot(memslot, slots) {
5484 			gfn_t start, end;
5485 
5486 			start = max(gfn_start, memslot->base_gfn);
5487 			end = min(gfn_end, memslot->base_gfn + memslot->npages);
5488 			if (start >= end)
5489 				continue;
5490 
5491 			slot_handle_level_range(kvm, memslot, kvm_zap_rmapp,
5492 						PG_LEVEL_4K,
5493 						KVM_MAX_HUGEPAGE_LEVEL,
5494 						start, end - 1, true);
5495 		}
5496 	}
5497 
5498 	if (kvm->arch.tdp_mmu_enabled) {
5499 		flush = kvm_tdp_mmu_zap_gfn_range(kvm, gfn_start, gfn_end);
5500 		if (flush)
5501 			kvm_flush_remote_tlbs(kvm);
5502 	}
5503 
5504 	spin_unlock(&kvm->mmu_lock);
5505 }
5506 
5507 static bool slot_rmap_write_protect(struct kvm *kvm,
5508 				    struct kvm_rmap_head *rmap_head)
5509 {
5510 	return __rmap_write_protect(kvm, rmap_head, false);
5511 }
5512 
5513 void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
5514 				      struct kvm_memory_slot *memslot,
5515 				      int start_level)
5516 {
5517 	bool flush;
5518 
5519 	spin_lock(&kvm->mmu_lock);
5520 	flush = slot_handle_level(kvm, memslot, slot_rmap_write_protect,
5521 				start_level, KVM_MAX_HUGEPAGE_LEVEL, false);
5522 	if (kvm->arch.tdp_mmu_enabled)
5523 		flush |= kvm_tdp_mmu_wrprot_slot(kvm, memslot, PG_LEVEL_4K);
5524 	spin_unlock(&kvm->mmu_lock);
5525 
5526 	/*
5527 	 * We can flush all the TLBs out of the mmu lock without TLB
5528 	 * corruption since we just change the spte from writable to
5529 	 * readonly so that we only need to care the case of changing
5530 	 * spte from present to present (changing the spte from present
5531 	 * to nonpresent will flush all the TLBs immediately), in other
5532 	 * words, the only case we care is mmu_spte_update() where we
5533 	 * have checked SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE
5534 	 * instead of PT_WRITABLE_MASK, that means it does not depend
5535 	 * on PT_WRITABLE_MASK anymore.
5536 	 */
5537 	if (flush)
5538 		kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
5539 }
5540 
5541 static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
5542 					 struct kvm_rmap_head *rmap_head)
5543 {
5544 	u64 *sptep;
5545 	struct rmap_iterator iter;
5546 	int need_tlb_flush = 0;
5547 	kvm_pfn_t pfn;
5548 	struct kvm_mmu_page *sp;
5549 
5550 restart:
5551 	for_each_rmap_spte(rmap_head, &iter, sptep) {
5552 		sp = sptep_to_sp(sptep);
5553 		pfn = spte_to_pfn(*sptep);
5554 
5555 		/*
5556 		 * We cannot do huge page mapping for indirect shadow pages,
5557 		 * which are found on the last rmap (level = 1) when not using
5558 		 * tdp; such shadow pages are synced with the page table in
5559 		 * the guest, and the guest page table is using 4K page size
5560 		 * mapping if the indirect sp has level = 1.
5561 		 */
5562 		if (sp->role.direct && !kvm_is_reserved_pfn(pfn) &&
5563 		    (kvm_is_zone_device_pfn(pfn) ||
5564 		     PageCompound(pfn_to_page(pfn)))) {
5565 			pte_list_remove(rmap_head, sptep);
5566 
5567 			if (kvm_available_flush_tlb_with_range())
5568 				kvm_flush_remote_tlbs_with_address(kvm, sp->gfn,
5569 					KVM_PAGES_PER_HPAGE(sp->role.level));
5570 			else
5571 				need_tlb_flush = 1;
5572 
5573 			goto restart;
5574 		}
5575 	}
5576 
5577 	return need_tlb_flush;
5578 }
5579 
5580 void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
5581 				   const struct kvm_memory_slot *memslot)
5582 {
5583 	/* FIXME: const-ify all uses of struct kvm_memory_slot.  */
5584 	spin_lock(&kvm->mmu_lock);
5585 	slot_handle_leaf(kvm, (struct kvm_memory_slot *)memslot,
5586 			 kvm_mmu_zap_collapsible_spte, true);
5587 
5588 	if (kvm->arch.tdp_mmu_enabled)
5589 		kvm_tdp_mmu_zap_collapsible_sptes(kvm, memslot);
5590 	spin_unlock(&kvm->mmu_lock);
5591 }
5592 
5593 void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
5594 					struct kvm_memory_slot *memslot)
5595 {
5596 	/*
5597 	 * All current use cases for flushing the TLBs for a specific memslot
5598 	 * are related to dirty logging, and do the TLB flush out of mmu_lock.
5599 	 * The interaction between the various operations on memslot must be
5600 	 * serialized by slots_locks to ensure the TLB flush from one operation
5601 	 * is observed by any other operation on the same memslot.
5602 	 */
5603 	lockdep_assert_held(&kvm->slots_lock);
5604 	kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn,
5605 					   memslot->npages);
5606 }
5607 
5608 void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
5609 				   struct kvm_memory_slot *memslot)
5610 {
5611 	bool flush;
5612 
5613 	spin_lock(&kvm->mmu_lock);
5614 	flush = slot_handle_leaf(kvm, memslot, __rmap_clear_dirty, false);
5615 	if (kvm->arch.tdp_mmu_enabled)
5616 		flush |= kvm_tdp_mmu_clear_dirty_slot(kvm, memslot);
5617 	spin_unlock(&kvm->mmu_lock);
5618 
5619 	/*
5620 	 * It's also safe to flush TLBs out of mmu lock here as currently this
5621 	 * function is only used for dirty logging, in which case flushing TLB
5622 	 * out of mmu lock also guarantees no dirty pages will be lost in
5623 	 * dirty_bitmap.
5624 	 */
5625 	if (flush)
5626 		kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
5627 }
5628 EXPORT_SYMBOL_GPL(kvm_mmu_slot_leaf_clear_dirty);
5629 
5630 void kvm_mmu_slot_largepage_remove_write_access(struct kvm *kvm,
5631 					struct kvm_memory_slot *memslot)
5632 {
5633 	bool flush;
5634 
5635 	spin_lock(&kvm->mmu_lock);
5636 	flush = slot_handle_large_level(kvm, memslot, slot_rmap_write_protect,
5637 					false);
5638 	if (kvm->arch.tdp_mmu_enabled)
5639 		flush |= kvm_tdp_mmu_wrprot_slot(kvm, memslot, PG_LEVEL_2M);
5640 	spin_unlock(&kvm->mmu_lock);
5641 
5642 	if (flush)
5643 		kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
5644 }
5645 EXPORT_SYMBOL_GPL(kvm_mmu_slot_largepage_remove_write_access);
5646 
5647 void kvm_mmu_slot_set_dirty(struct kvm *kvm,
5648 			    struct kvm_memory_slot *memslot)
5649 {
5650 	bool flush;
5651 
5652 	spin_lock(&kvm->mmu_lock);
5653 	flush = slot_handle_all_level(kvm, memslot, __rmap_set_dirty, false);
5654 	if (kvm->arch.tdp_mmu_enabled)
5655 		flush |= kvm_tdp_mmu_slot_set_dirty(kvm, memslot);
5656 	spin_unlock(&kvm->mmu_lock);
5657 
5658 	if (flush)
5659 		kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
5660 }
5661 EXPORT_SYMBOL_GPL(kvm_mmu_slot_set_dirty);
5662 
5663 void kvm_mmu_zap_all(struct kvm *kvm)
5664 {
5665 	struct kvm_mmu_page *sp, *node;
5666 	LIST_HEAD(invalid_list);
5667 	int ign;
5668 
5669 	spin_lock(&kvm->mmu_lock);
5670 restart:
5671 	list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link) {
5672 		if (WARN_ON(sp->role.invalid))
5673 			continue;
5674 		if (__kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list, &ign))
5675 			goto restart;
5676 		if (cond_resched_lock(&kvm->mmu_lock))
5677 			goto restart;
5678 	}
5679 
5680 	kvm_mmu_commit_zap_page(kvm, &invalid_list);
5681 
5682 	if (kvm->arch.tdp_mmu_enabled)
5683 		kvm_tdp_mmu_zap_all(kvm);
5684 
5685 	spin_unlock(&kvm->mmu_lock);
5686 }
5687 
5688 void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen)
5689 {
5690 	WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
5691 
5692 	gen &= MMIO_SPTE_GEN_MASK;
5693 
5694 	/*
5695 	 * Generation numbers are incremented in multiples of the number of
5696 	 * address spaces in order to provide unique generations across all
5697 	 * address spaces.  Strip what is effectively the address space
5698 	 * modifier prior to checking for a wrap of the MMIO generation so
5699 	 * that a wrap in any address space is detected.
5700 	 */
5701 	gen &= ~((u64)KVM_ADDRESS_SPACE_NUM - 1);
5702 
5703 	/*
5704 	 * The very rare case: if the MMIO generation number has wrapped,
5705 	 * zap all shadow pages.
5706 	 */
5707 	if (unlikely(gen == 0)) {
5708 		kvm_debug_ratelimited("kvm: zapping shadow pages for mmio generation wraparound\n");
5709 		kvm_mmu_zap_all_fast(kvm);
5710 	}
5711 }
5712 
5713 static unsigned long
5714 mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
5715 {
5716 	struct kvm *kvm;
5717 	int nr_to_scan = sc->nr_to_scan;
5718 	unsigned long freed = 0;
5719 
5720 	mutex_lock(&kvm_lock);
5721 
5722 	list_for_each_entry(kvm, &vm_list, vm_list) {
5723 		int idx;
5724 		LIST_HEAD(invalid_list);
5725 
5726 		/*
5727 		 * Never scan more than sc->nr_to_scan VM instances.
5728 		 * Will not hit this condition practically since we do not try
5729 		 * to shrink more than one VM and it is very unlikely to see
5730 		 * !n_used_mmu_pages so many times.
5731 		 */
5732 		if (!nr_to_scan--)
5733 			break;
5734 		/*
5735 		 * n_used_mmu_pages is accessed without holding kvm->mmu_lock
5736 		 * here. We may skip a VM instance errorneosly, but we do not
5737 		 * want to shrink a VM that only started to populate its MMU
5738 		 * anyway.
5739 		 */
5740 		if (!kvm->arch.n_used_mmu_pages &&
5741 		    !kvm_has_zapped_obsolete_pages(kvm))
5742 			continue;
5743 
5744 		idx = srcu_read_lock(&kvm->srcu);
5745 		spin_lock(&kvm->mmu_lock);
5746 
5747 		if (kvm_has_zapped_obsolete_pages(kvm)) {
5748 			kvm_mmu_commit_zap_page(kvm,
5749 			      &kvm->arch.zapped_obsolete_pages);
5750 			goto unlock;
5751 		}
5752 
5753 		freed = kvm_mmu_zap_oldest_mmu_pages(kvm, sc->nr_to_scan);
5754 
5755 unlock:
5756 		spin_unlock(&kvm->mmu_lock);
5757 		srcu_read_unlock(&kvm->srcu, idx);
5758 
5759 		/*
5760 		 * unfair on small ones
5761 		 * per-vm shrinkers cry out
5762 		 * sadness comes quickly
5763 		 */
5764 		list_move_tail(&kvm->vm_list, &vm_list);
5765 		break;
5766 	}
5767 
5768 	mutex_unlock(&kvm_lock);
5769 	return freed;
5770 }
5771 
5772 static unsigned long
5773 mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
5774 {
5775 	return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
5776 }
5777 
5778 static struct shrinker mmu_shrinker = {
5779 	.count_objects = mmu_shrink_count,
5780 	.scan_objects = mmu_shrink_scan,
5781 	.seeks = DEFAULT_SEEKS * 10,
5782 };
5783 
5784 static void mmu_destroy_caches(void)
5785 {
5786 	kmem_cache_destroy(pte_list_desc_cache);
5787 	kmem_cache_destroy(mmu_page_header_cache);
5788 }
5789 
5790 static void kvm_set_mmio_spte_mask(void)
5791 {
5792 	u64 mask;
5793 
5794 	/*
5795 	 * Set a reserved PA bit in MMIO SPTEs to generate page faults with
5796 	 * PFEC.RSVD=1 on MMIO accesses.  64-bit PTEs (PAE, x86-64, and EPT
5797 	 * paging) support a maximum of 52 bits of PA, i.e. if the CPU supports
5798 	 * 52-bit physical addresses then there are no reserved PA bits in the
5799 	 * PTEs and so the reserved PA approach must be disabled.
5800 	 */
5801 	if (shadow_phys_bits < 52)
5802 		mask = BIT_ULL(51) | PT_PRESENT_MASK;
5803 	else
5804 		mask = 0;
5805 
5806 	kvm_mmu_set_mmio_spte_mask(mask, ACC_WRITE_MASK | ACC_USER_MASK);
5807 }
5808 
5809 static bool get_nx_auto_mode(void)
5810 {
5811 	/* Return true when CPU has the bug, and mitigations are ON */
5812 	return boot_cpu_has_bug(X86_BUG_ITLB_MULTIHIT) && !cpu_mitigations_off();
5813 }
5814 
5815 static void __set_nx_huge_pages(bool val)
5816 {
5817 	nx_huge_pages = itlb_multihit_kvm_mitigation = val;
5818 }
5819 
5820 static int set_nx_huge_pages(const char *val, const struct kernel_param *kp)
5821 {
5822 	bool old_val = nx_huge_pages;
5823 	bool new_val;
5824 
5825 	/* In "auto" mode deploy workaround only if CPU has the bug. */
5826 	if (sysfs_streq(val, "off"))
5827 		new_val = 0;
5828 	else if (sysfs_streq(val, "force"))
5829 		new_val = 1;
5830 	else if (sysfs_streq(val, "auto"))
5831 		new_val = get_nx_auto_mode();
5832 	else if (strtobool(val, &new_val) < 0)
5833 		return -EINVAL;
5834 
5835 	__set_nx_huge_pages(new_val);
5836 
5837 	if (new_val != old_val) {
5838 		struct kvm *kvm;
5839 
5840 		mutex_lock(&kvm_lock);
5841 
5842 		list_for_each_entry(kvm, &vm_list, vm_list) {
5843 			mutex_lock(&kvm->slots_lock);
5844 			kvm_mmu_zap_all_fast(kvm);
5845 			mutex_unlock(&kvm->slots_lock);
5846 
5847 			wake_up_process(kvm->arch.nx_lpage_recovery_thread);
5848 		}
5849 		mutex_unlock(&kvm_lock);
5850 	}
5851 
5852 	return 0;
5853 }
5854 
5855 int kvm_mmu_module_init(void)
5856 {
5857 	int ret = -ENOMEM;
5858 
5859 	if (nx_huge_pages == -1)
5860 		__set_nx_huge_pages(get_nx_auto_mode());
5861 
5862 	/*
5863 	 * MMU roles use union aliasing which is, generally speaking, an
5864 	 * undefined behavior. However, we supposedly know how compilers behave
5865 	 * and the current status quo is unlikely to change. Guardians below are
5866 	 * supposed to let us know if the assumption becomes false.
5867 	 */
5868 	BUILD_BUG_ON(sizeof(union kvm_mmu_page_role) != sizeof(u32));
5869 	BUILD_BUG_ON(sizeof(union kvm_mmu_extended_role) != sizeof(u32));
5870 	BUILD_BUG_ON(sizeof(union kvm_mmu_role) != sizeof(u64));
5871 
5872 	kvm_mmu_reset_all_pte_masks();
5873 
5874 	kvm_set_mmio_spte_mask();
5875 
5876 	pte_list_desc_cache = kmem_cache_create("pte_list_desc",
5877 					    sizeof(struct pte_list_desc),
5878 					    0, SLAB_ACCOUNT, NULL);
5879 	if (!pte_list_desc_cache)
5880 		goto out;
5881 
5882 	mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
5883 						  sizeof(struct kvm_mmu_page),
5884 						  0, SLAB_ACCOUNT, NULL);
5885 	if (!mmu_page_header_cache)
5886 		goto out;
5887 
5888 	if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
5889 		goto out;
5890 
5891 	ret = register_shrinker(&mmu_shrinker);
5892 	if (ret)
5893 		goto out;
5894 
5895 	return 0;
5896 
5897 out:
5898 	mmu_destroy_caches();
5899 	return ret;
5900 }
5901 
5902 /*
5903  * Calculate mmu pages needed for kvm.
5904  */
5905 unsigned long kvm_mmu_calculate_default_mmu_pages(struct kvm *kvm)
5906 {
5907 	unsigned long nr_mmu_pages;
5908 	unsigned long nr_pages = 0;
5909 	struct kvm_memslots *slots;
5910 	struct kvm_memory_slot *memslot;
5911 	int i;
5912 
5913 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
5914 		slots = __kvm_memslots(kvm, i);
5915 
5916 		kvm_for_each_memslot(memslot, slots)
5917 			nr_pages += memslot->npages;
5918 	}
5919 
5920 	nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
5921 	nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES);
5922 
5923 	return nr_mmu_pages;
5924 }
5925 
5926 void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
5927 {
5928 	kvm_mmu_unload(vcpu);
5929 	free_mmu_pages(&vcpu->arch.root_mmu);
5930 	free_mmu_pages(&vcpu->arch.guest_mmu);
5931 	mmu_free_memory_caches(vcpu);
5932 }
5933 
5934 void kvm_mmu_module_exit(void)
5935 {
5936 	mmu_destroy_caches();
5937 	percpu_counter_destroy(&kvm_total_used_mmu_pages);
5938 	unregister_shrinker(&mmu_shrinker);
5939 	mmu_audit_disable();
5940 }
5941 
5942 static int set_nx_huge_pages_recovery_ratio(const char *val, const struct kernel_param *kp)
5943 {
5944 	unsigned int old_val;
5945 	int err;
5946 
5947 	old_val = nx_huge_pages_recovery_ratio;
5948 	err = param_set_uint(val, kp);
5949 	if (err)
5950 		return err;
5951 
5952 	if (READ_ONCE(nx_huge_pages) &&
5953 	    !old_val && nx_huge_pages_recovery_ratio) {
5954 		struct kvm *kvm;
5955 
5956 		mutex_lock(&kvm_lock);
5957 
5958 		list_for_each_entry(kvm, &vm_list, vm_list)
5959 			wake_up_process(kvm->arch.nx_lpage_recovery_thread);
5960 
5961 		mutex_unlock(&kvm_lock);
5962 	}
5963 
5964 	return err;
5965 }
5966 
5967 static void kvm_recover_nx_lpages(struct kvm *kvm)
5968 {
5969 	int rcu_idx;
5970 	struct kvm_mmu_page *sp;
5971 	unsigned int ratio;
5972 	LIST_HEAD(invalid_list);
5973 	ulong to_zap;
5974 
5975 	rcu_idx = srcu_read_lock(&kvm->srcu);
5976 	spin_lock(&kvm->mmu_lock);
5977 
5978 	ratio = READ_ONCE(nx_huge_pages_recovery_ratio);
5979 	to_zap = ratio ? DIV_ROUND_UP(kvm->stat.nx_lpage_splits, ratio) : 0;
5980 	for ( ; to_zap; --to_zap) {
5981 		if (list_empty(&kvm->arch.lpage_disallowed_mmu_pages))
5982 			break;
5983 
5984 		/*
5985 		 * We use a separate list instead of just using active_mmu_pages
5986 		 * because the number of lpage_disallowed pages is expected to
5987 		 * be relatively small compared to the total.
5988 		 */
5989 		sp = list_first_entry(&kvm->arch.lpage_disallowed_mmu_pages,
5990 				      struct kvm_mmu_page,
5991 				      lpage_disallowed_link);
5992 		WARN_ON_ONCE(!sp->lpage_disallowed);
5993 		if (sp->tdp_mmu_page)
5994 			kvm_tdp_mmu_zap_gfn_range(kvm, sp->gfn,
5995 				sp->gfn + KVM_PAGES_PER_HPAGE(sp->role.level));
5996 		else {
5997 			kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
5998 			WARN_ON_ONCE(sp->lpage_disallowed);
5999 		}
6000 
6001 		if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
6002 			kvm_mmu_commit_zap_page(kvm, &invalid_list);
6003 			cond_resched_lock(&kvm->mmu_lock);
6004 		}
6005 	}
6006 	kvm_mmu_commit_zap_page(kvm, &invalid_list);
6007 
6008 	spin_unlock(&kvm->mmu_lock);
6009 	srcu_read_unlock(&kvm->srcu, rcu_idx);
6010 }
6011 
6012 static long get_nx_lpage_recovery_timeout(u64 start_time)
6013 {
6014 	return READ_ONCE(nx_huge_pages) && READ_ONCE(nx_huge_pages_recovery_ratio)
6015 		? start_time + 60 * HZ - get_jiffies_64()
6016 		: MAX_SCHEDULE_TIMEOUT;
6017 }
6018 
6019 static int kvm_nx_lpage_recovery_worker(struct kvm *kvm, uintptr_t data)
6020 {
6021 	u64 start_time;
6022 	long remaining_time;
6023 
6024 	while (true) {
6025 		start_time = get_jiffies_64();
6026 		remaining_time = get_nx_lpage_recovery_timeout(start_time);
6027 
6028 		set_current_state(TASK_INTERRUPTIBLE);
6029 		while (!kthread_should_stop() && remaining_time > 0) {
6030 			schedule_timeout(remaining_time);
6031 			remaining_time = get_nx_lpage_recovery_timeout(start_time);
6032 			set_current_state(TASK_INTERRUPTIBLE);
6033 		}
6034 
6035 		set_current_state(TASK_RUNNING);
6036 
6037 		if (kthread_should_stop())
6038 			return 0;
6039 
6040 		kvm_recover_nx_lpages(kvm);
6041 	}
6042 }
6043 
6044 int kvm_mmu_post_init_vm(struct kvm *kvm)
6045 {
6046 	int err;
6047 
6048 	err = kvm_vm_create_worker_thread(kvm, kvm_nx_lpage_recovery_worker, 0,
6049 					  "kvm-nx-lpage-recovery",
6050 					  &kvm->arch.nx_lpage_recovery_thread);
6051 	if (!err)
6052 		kthread_unpark(kvm->arch.nx_lpage_recovery_thread);
6053 
6054 	return err;
6055 }
6056 
6057 void kvm_mmu_pre_destroy_vm(struct kvm *kvm)
6058 {
6059 	if (kvm->arch.nx_lpage_recovery_thread)
6060 		kthread_stop(kvm->arch.nx_lpage_recovery_thread);
6061 }
6062