xref: /openbmc/linux/arch/x86/kvm/mmu/mmu.c (revision e368cd72)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This module enables machines with Intel VT-x extensions to run virtual
6  * machines without emulation or binary translation.
7  *
8  * MMU support
9  *
10  * Copyright (C) 2006 Qumranet, Inc.
11  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
12  *
13  * Authors:
14  *   Yaniv Kamay  <yaniv@qumranet.com>
15  *   Avi Kivity   <avi@qumranet.com>
16  */
17 
18 #include "irq.h"
19 #include "ioapic.h"
20 #include "mmu.h"
21 #include "mmu_internal.h"
22 #include "tdp_mmu.h"
23 #include "x86.h"
24 #include "kvm_cache_regs.h"
25 #include "kvm_emulate.h"
26 #include "cpuid.h"
27 #include "spte.h"
28 
29 #include <linux/kvm_host.h>
30 #include <linux/types.h>
31 #include <linux/string.h>
32 #include <linux/mm.h>
33 #include <linux/highmem.h>
34 #include <linux/moduleparam.h>
35 #include <linux/export.h>
36 #include <linux/swap.h>
37 #include <linux/hugetlb.h>
38 #include <linux/compiler.h>
39 #include <linux/srcu.h>
40 #include <linux/slab.h>
41 #include <linux/sched/signal.h>
42 #include <linux/uaccess.h>
43 #include <linux/hash.h>
44 #include <linux/kern_levels.h>
45 #include <linux/kthread.h>
46 
47 #include <asm/page.h>
48 #include <asm/memtype.h>
49 #include <asm/cmpxchg.h>
50 #include <asm/io.h>
51 #include <asm/set_memory.h>
52 #include <asm/vmx.h>
53 #include <asm/kvm_page_track.h>
54 #include "trace.h"
55 
56 #include "paging.h"
57 
58 extern bool itlb_multihit_kvm_mitigation;
59 
60 int __read_mostly nx_huge_pages = -1;
61 #ifdef CONFIG_PREEMPT_RT
62 /* Recovery can cause latency spikes, disable it for PREEMPT_RT.  */
63 static uint __read_mostly nx_huge_pages_recovery_ratio = 0;
64 #else
65 static uint __read_mostly nx_huge_pages_recovery_ratio = 60;
66 #endif
67 
68 static int set_nx_huge_pages(const char *val, const struct kernel_param *kp);
69 static int set_nx_huge_pages_recovery_ratio(const char *val, const struct kernel_param *kp);
70 
71 static const struct kernel_param_ops nx_huge_pages_ops = {
72 	.set = set_nx_huge_pages,
73 	.get = param_get_bool,
74 };
75 
76 static const struct kernel_param_ops nx_huge_pages_recovery_ratio_ops = {
77 	.set = set_nx_huge_pages_recovery_ratio,
78 	.get = param_get_uint,
79 };
80 
81 module_param_cb(nx_huge_pages, &nx_huge_pages_ops, &nx_huge_pages, 0644);
82 __MODULE_PARM_TYPE(nx_huge_pages, "bool");
83 module_param_cb(nx_huge_pages_recovery_ratio, &nx_huge_pages_recovery_ratio_ops,
84 		&nx_huge_pages_recovery_ratio, 0644);
85 __MODULE_PARM_TYPE(nx_huge_pages_recovery_ratio, "uint");
86 
87 static bool __read_mostly force_flush_and_sync_on_reuse;
88 module_param_named(flush_on_reuse, force_flush_and_sync_on_reuse, bool, 0644);
89 
90 /*
91  * When setting this variable to true it enables Two-Dimensional-Paging
92  * where the hardware walks 2 page tables:
93  * 1. the guest-virtual to guest-physical
94  * 2. while doing 1. it walks guest-physical to host-physical
95  * If the hardware supports that we don't need to do shadow paging.
96  */
97 bool tdp_enabled = false;
98 
99 static int max_huge_page_level __read_mostly;
100 static int max_tdp_level __read_mostly;
101 
102 enum {
103 	AUDIT_PRE_PAGE_FAULT,
104 	AUDIT_POST_PAGE_FAULT,
105 	AUDIT_PRE_PTE_WRITE,
106 	AUDIT_POST_PTE_WRITE,
107 	AUDIT_PRE_SYNC,
108 	AUDIT_POST_SYNC
109 };
110 
111 #ifdef MMU_DEBUG
112 bool dbg = 0;
113 module_param(dbg, bool, 0644);
114 #endif
115 
116 #define PTE_PREFETCH_NUM		8
117 
118 #define PT32_LEVEL_BITS 10
119 
120 #define PT32_LEVEL_SHIFT(level) \
121 		(PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
122 
123 #define PT32_LVL_OFFSET_MASK(level) \
124 	(PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
125 						* PT32_LEVEL_BITS))) - 1))
126 
127 #define PT32_INDEX(address, level)\
128 	(((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
129 
130 
131 #define PT32_BASE_ADDR_MASK PAGE_MASK
132 #define PT32_DIR_BASE_ADDR_MASK \
133 	(PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
134 #define PT32_LVL_ADDR_MASK(level) \
135 	(PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
136 					    * PT32_LEVEL_BITS))) - 1))
137 
138 #include <trace/events/kvm.h>
139 
140 /* make pte_list_desc fit well in cache line */
141 #define PTE_LIST_EXT 3
142 
143 struct pte_list_desc {
144 	u64 *sptes[PTE_LIST_EXT];
145 	struct pte_list_desc *more;
146 };
147 
148 struct kvm_shadow_walk_iterator {
149 	u64 addr;
150 	hpa_t shadow_addr;
151 	u64 *sptep;
152 	int level;
153 	unsigned index;
154 };
155 
156 #define for_each_shadow_entry_using_root(_vcpu, _root, _addr, _walker)     \
157 	for (shadow_walk_init_using_root(&(_walker), (_vcpu),              \
158 					 (_root), (_addr));                \
159 	     shadow_walk_okay(&(_walker));			           \
160 	     shadow_walk_next(&(_walker)))
161 
162 #define for_each_shadow_entry(_vcpu, _addr, _walker)            \
163 	for (shadow_walk_init(&(_walker), _vcpu, _addr);	\
164 	     shadow_walk_okay(&(_walker));			\
165 	     shadow_walk_next(&(_walker)))
166 
167 #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte)	\
168 	for (shadow_walk_init(&(_walker), _vcpu, _addr);		\
169 	     shadow_walk_okay(&(_walker)) &&				\
170 		({ spte = mmu_spte_get_lockless(_walker.sptep); 1; });	\
171 	     __shadow_walk_next(&(_walker), spte))
172 
173 static struct kmem_cache *pte_list_desc_cache;
174 struct kmem_cache *mmu_page_header_cache;
175 static struct percpu_counter kvm_total_used_mmu_pages;
176 
177 static void mmu_spte_set(u64 *sptep, u64 spte);
178 static union kvm_mmu_page_role
179 kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu);
180 
181 struct kvm_mmu_role_regs {
182 	const unsigned long cr0;
183 	const unsigned long cr4;
184 	const u64 efer;
185 };
186 
187 #define CREATE_TRACE_POINTS
188 #include "mmutrace.h"
189 
190 /*
191  * Yes, lot's of underscores.  They're a hint that you probably shouldn't be
192  * reading from the role_regs.  Once the mmu_role is constructed, it becomes
193  * the single source of truth for the MMU's state.
194  */
195 #define BUILD_MMU_ROLE_REGS_ACCESSOR(reg, name, flag)			\
196 static inline bool ____is_##reg##_##name(struct kvm_mmu_role_regs *regs)\
197 {									\
198 	return !!(regs->reg & flag);					\
199 }
200 BUILD_MMU_ROLE_REGS_ACCESSOR(cr0, pg, X86_CR0_PG);
201 BUILD_MMU_ROLE_REGS_ACCESSOR(cr0, wp, X86_CR0_WP);
202 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pse, X86_CR4_PSE);
203 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pae, X86_CR4_PAE);
204 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, smep, X86_CR4_SMEP);
205 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, smap, X86_CR4_SMAP);
206 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pke, X86_CR4_PKE);
207 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, la57, X86_CR4_LA57);
208 BUILD_MMU_ROLE_REGS_ACCESSOR(efer, nx, EFER_NX);
209 BUILD_MMU_ROLE_REGS_ACCESSOR(efer, lma, EFER_LMA);
210 
211 /*
212  * The MMU itself (with a valid role) is the single source of truth for the
213  * MMU.  Do not use the regs used to build the MMU/role, nor the vCPU.  The
214  * regs don't account for dependencies, e.g. clearing CR4 bits if CR0.PG=1,
215  * and the vCPU may be incorrect/irrelevant.
216  */
217 #define BUILD_MMU_ROLE_ACCESSOR(base_or_ext, reg, name)		\
218 static inline bool is_##reg##_##name(struct kvm_mmu *mmu)	\
219 {								\
220 	return !!(mmu->mmu_role. base_or_ext . reg##_##name);	\
221 }
222 BUILD_MMU_ROLE_ACCESSOR(ext,  cr0, pg);
223 BUILD_MMU_ROLE_ACCESSOR(base, cr0, wp);
224 BUILD_MMU_ROLE_ACCESSOR(ext,  cr4, pse);
225 BUILD_MMU_ROLE_ACCESSOR(ext,  cr4, pae);
226 BUILD_MMU_ROLE_ACCESSOR(ext,  cr4, smep);
227 BUILD_MMU_ROLE_ACCESSOR(ext,  cr4, smap);
228 BUILD_MMU_ROLE_ACCESSOR(ext,  cr4, pke);
229 BUILD_MMU_ROLE_ACCESSOR(ext,  cr4, la57);
230 BUILD_MMU_ROLE_ACCESSOR(base, efer, nx);
231 
232 static struct kvm_mmu_role_regs vcpu_to_role_regs(struct kvm_vcpu *vcpu)
233 {
234 	struct kvm_mmu_role_regs regs = {
235 		.cr0 = kvm_read_cr0_bits(vcpu, KVM_MMU_CR0_ROLE_BITS),
236 		.cr4 = kvm_read_cr4_bits(vcpu, KVM_MMU_CR4_ROLE_BITS),
237 		.efer = vcpu->arch.efer,
238 	};
239 
240 	return regs;
241 }
242 
243 static int role_regs_to_root_level(struct kvm_mmu_role_regs *regs)
244 {
245 	if (!____is_cr0_pg(regs))
246 		return 0;
247 	else if (____is_efer_lma(regs))
248 		return ____is_cr4_la57(regs) ? PT64_ROOT_5LEVEL :
249 					       PT64_ROOT_4LEVEL;
250 	else if (____is_cr4_pae(regs))
251 		return PT32E_ROOT_LEVEL;
252 	else
253 		return PT32_ROOT_LEVEL;
254 }
255 
256 static inline bool kvm_available_flush_tlb_with_range(void)
257 {
258 	return kvm_x86_ops.tlb_remote_flush_with_range;
259 }
260 
261 static void kvm_flush_remote_tlbs_with_range(struct kvm *kvm,
262 		struct kvm_tlb_range *range)
263 {
264 	int ret = -ENOTSUPP;
265 
266 	if (range && kvm_x86_ops.tlb_remote_flush_with_range)
267 		ret = static_call(kvm_x86_tlb_remote_flush_with_range)(kvm, range);
268 
269 	if (ret)
270 		kvm_flush_remote_tlbs(kvm);
271 }
272 
273 void kvm_flush_remote_tlbs_with_address(struct kvm *kvm,
274 		u64 start_gfn, u64 pages)
275 {
276 	struct kvm_tlb_range range;
277 
278 	range.start_gfn = start_gfn;
279 	range.pages = pages;
280 
281 	kvm_flush_remote_tlbs_with_range(kvm, &range);
282 }
283 
284 static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn,
285 			   unsigned int access)
286 {
287 	u64 spte = make_mmio_spte(vcpu, gfn, access);
288 
289 	trace_mark_mmio_spte(sptep, gfn, spte);
290 	mmu_spte_set(sptep, spte);
291 }
292 
293 static gfn_t get_mmio_spte_gfn(u64 spte)
294 {
295 	u64 gpa = spte & shadow_nonpresent_or_rsvd_lower_gfn_mask;
296 
297 	gpa |= (spte >> SHADOW_NONPRESENT_OR_RSVD_MASK_LEN)
298 	       & shadow_nonpresent_or_rsvd_mask;
299 
300 	return gpa >> PAGE_SHIFT;
301 }
302 
303 static unsigned get_mmio_spte_access(u64 spte)
304 {
305 	return spte & shadow_mmio_access_mask;
306 }
307 
308 static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte)
309 {
310 	u64 kvm_gen, spte_gen, gen;
311 
312 	gen = kvm_vcpu_memslots(vcpu)->generation;
313 	if (unlikely(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS))
314 		return false;
315 
316 	kvm_gen = gen & MMIO_SPTE_GEN_MASK;
317 	spte_gen = get_mmio_spte_generation(spte);
318 
319 	trace_check_mmio_spte(spte, kvm_gen, spte_gen);
320 	return likely(kvm_gen == spte_gen);
321 }
322 
323 static gpa_t translate_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
324                                   struct x86_exception *exception)
325 {
326 	/* Check if guest physical address doesn't exceed guest maximum */
327 	if (kvm_vcpu_is_illegal_gpa(vcpu, gpa)) {
328 		exception->error_code |= PFERR_RSVD_MASK;
329 		return UNMAPPED_GVA;
330 	}
331 
332         return gpa;
333 }
334 
335 static int is_cpuid_PSE36(void)
336 {
337 	return 1;
338 }
339 
340 static gfn_t pse36_gfn_delta(u32 gpte)
341 {
342 	int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
343 
344 	return (gpte & PT32_DIR_PSE36_MASK) << shift;
345 }
346 
347 #ifdef CONFIG_X86_64
348 static void __set_spte(u64 *sptep, u64 spte)
349 {
350 	WRITE_ONCE(*sptep, spte);
351 }
352 
353 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
354 {
355 	WRITE_ONCE(*sptep, spte);
356 }
357 
358 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
359 {
360 	return xchg(sptep, spte);
361 }
362 
363 static u64 __get_spte_lockless(u64 *sptep)
364 {
365 	return READ_ONCE(*sptep);
366 }
367 #else
368 union split_spte {
369 	struct {
370 		u32 spte_low;
371 		u32 spte_high;
372 	};
373 	u64 spte;
374 };
375 
376 static void count_spte_clear(u64 *sptep, u64 spte)
377 {
378 	struct kvm_mmu_page *sp =  sptep_to_sp(sptep);
379 
380 	if (is_shadow_present_pte(spte))
381 		return;
382 
383 	/* Ensure the spte is completely set before we increase the count */
384 	smp_wmb();
385 	sp->clear_spte_count++;
386 }
387 
388 static void __set_spte(u64 *sptep, u64 spte)
389 {
390 	union split_spte *ssptep, sspte;
391 
392 	ssptep = (union split_spte *)sptep;
393 	sspte = (union split_spte)spte;
394 
395 	ssptep->spte_high = sspte.spte_high;
396 
397 	/*
398 	 * If we map the spte from nonpresent to present, We should store
399 	 * the high bits firstly, then set present bit, so cpu can not
400 	 * fetch this spte while we are setting the spte.
401 	 */
402 	smp_wmb();
403 
404 	WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
405 }
406 
407 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
408 {
409 	union split_spte *ssptep, sspte;
410 
411 	ssptep = (union split_spte *)sptep;
412 	sspte = (union split_spte)spte;
413 
414 	WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
415 
416 	/*
417 	 * If we map the spte from present to nonpresent, we should clear
418 	 * present bit firstly to avoid vcpu fetch the old high bits.
419 	 */
420 	smp_wmb();
421 
422 	ssptep->spte_high = sspte.spte_high;
423 	count_spte_clear(sptep, spte);
424 }
425 
426 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
427 {
428 	union split_spte *ssptep, sspte, orig;
429 
430 	ssptep = (union split_spte *)sptep;
431 	sspte = (union split_spte)spte;
432 
433 	/* xchg acts as a barrier before the setting of the high bits */
434 	orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
435 	orig.spte_high = ssptep->spte_high;
436 	ssptep->spte_high = sspte.spte_high;
437 	count_spte_clear(sptep, spte);
438 
439 	return orig.spte;
440 }
441 
442 /*
443  * The idea using the light way get the spte on x86_32 guest is from
444  * gup_get_pte (mm/gup.c).
445  *
446  * An spte tlb flush may be pending, because kvm_set_pte_rmapp
447  * coalesces them and we are running out of the MMU lock.  Therefore
448  * we need to protect against in-progress updates of the spte.
449  *
450  * Reading the spte while an update is in progress may get the old value
451  * for the high part of the spte.  The race is fine for a present->non-present
452  * change (because the high part of the spte is ignored for non-present spte),
453  * but for a present->present change we must reread the spte.
454  *
455  * All such changes are done in two steps (present->non-present and
456  * non-present->present), hence it is enough to count the number of
457  * present->non-present updates: if it changed while reading the spte,
458  * we might have hit the race.  This is done using clear_spte_count.
459  */
460 static u64 __get_spte_lockless(u64 *sptep)
461 {
462 	struct kvm_mmu_page *sp =  sptep_to_sp(sptep);
463 	union split_spte spte, *orig = (union split_spte *)sptep;
464 	int count;
465 
466 retry:
467 	count = sp->clear_spte_count;
468 	smp_rmb();
469 
470 	spte.spte_low = orig->spte_low;
471 	smp_rmb();
472 
473 	spte.spte_high = orig->spte_high;
474 	smp_rmb();
475 
476 	if (unlikely(spte.spte_low != orig->spte_low ||
477 	      count != sp->clear_spte_count))
478 		goto retry;
479 
480 	return spte.spte;
481 }
482 #endif
483 
484 static bool spte_has_volatile_bits(u64 spte)
485 {
486 	if (!is_shadow_present_pte(spte))
487 		return false;
488 
489 	/*
490 	 * Always atomically update spte if it can be updated
491 	 * out of mmu-lock, it can ensure dirty bit is not lost,
492 	 * also, it can help us to get a stable is_writable_pte()
493 	 * to ensure tlb flush is not missed.
494 	 */
495 	if (spte_can_locklessly_be_made_writable(spte) ||
496 	    is_access_track_spte(spte))
497 		return true;
498 
499 	if (spte_ad_enabled(spte)) {
500 		if ((spte & shadow_accessed_mask) == 0 ||
501 	    	    (is_writable_pte(spte) && (spte & shadow_dirty_mask) == 0))
502 			return true;
503 	}
504 
505 	return false;
506 }
507 
508 /* Rules for using mmu_spte_set:
509  * Set the sptep from nonpresent to present.
510  * Note: the sptep being assigned *must* be either not present
511  * or in a state where the hardware will not attempt to update
512  * the spte.
513  */
514 static void mmu_spte_set(u64 *sptep, u64 new_spte)
515 {
516 	WARN_ON(is_shadow_present_pte(*sptep));
517 	__set_spte(sptep, new_spte);
518 }
519 
520 /*
521  * Update the SPTE (excluding the PFN), but do not track changes in its
522  * accessed/dirty status.
523  */
524 static u64 mmu_spte_update_no_track(u64 *sptep, u64 new_spte)
525 {
526 	u64 old_spte = *sptep;
527 
528 	WARN_ON(!is_shadow_present_pte(new_spte));
529 
530 	if (!is_shadow_present_pte(old_spte)) {
531 		mmu_spte_set(sptep, new_spte);
532 		return old_spte;
533 	}
534 
535 	if (!spte_has_volatile_bits(old_spte))
536 		__update_clear_spte_fast(sptep, new_spte);
537 	else
538 		old_spte = __update_clear_spte_slow(sptep, new_spte);
539 
540 	WARN_ON(spte_to_pfn(old_spte) != spte_to_pfn(new_spte));
541 
542 	return old_spte;
543 }
544 
545 /* Rules for using mmu_spte_update:
546  * Update the state bits, it means the mapped pfn is not changed.
547  *
548  * Whenever we overwrite a writable spte with a read-only one we
549  * should flush remote TLBs. Otherwise rmap_write_protect
550  * will find a read-only spte, even though the writable spte
551  * might be cached on a CPU's TLB, the return value indicates this
552  * case.
553  *
554  * Returns true if the TLB needs to be flushed
555  */
556 static bool mmu_spte_update(u64 *sptep, u64 new_spte)
557 {
558 	bool flush = false;
559 	u64 old_spte = mmu_spte_update_no_track(sptep, new_spte);
560 
561 	if (!is_shadow_present_pte(old_spte))
562 		return false;
563 
564 	/*
565 	 * For the spte updated out of mmu-lock is safe, since
566 	 * we always atomically update it, see the comments in
567 	 * spte_has_volatile_bits().
568 	 */
569 	if (spte_can_locklessly_be_made_writable(old_spte) &&
570 	      !is_writable_pte(new_spte))
571 		flush = true;
572 
573 	/*
574 	 * Flush TLB when accessed/dirty states are changed in the page tables,
575 	 * to guarantee consistency between TLB and page tables.
576 	 */
577 
578 	if (is_accessed_spte(old_spte) && !is_accessed_spte(new_spte)) {
579 		flush = true;
580 		kvm_set_pfn_accessed(spte_to_pfn(old_spte));
581 	}
582 
583 	if (is_dirty_spte(old_spte) && !is_dirty_spte(new_spte)) {
584 		flush = true;
585 		kvm_set_pfn_dirty(spte_to_pfn(old_spte));
586 	}
587 
588 	return flush;
589 }
590 
591 /*
592  * Rules for using mmu_spte_clear_track_bits:
593  * It sets the sptep from present to nonpresent, and track the
594  * state bits, it is used to clear the last level sptep.
595  * Returns non-zero if the PTE was previously valid.
596  */
597 static int mmu_spte_clear_track_bits(u64 *sptep)
598 {
599 	kvm_pfn_t pfn;
600 	u64 old_spte = *sptep;
601 
602 	if (!spte_has_volatile_bits(old_spte))
603 		__update_clear_spte_fast(sptep, 0ull);
604 	else
605 		old_spte = __update_clear_spte_slow(sptep, 0ull);
606 
607 	if (!is_shadow_present_pte(old_spte))
608 		return 0;
609 
610 	pfn = spte_to_pfn(old_spte);
611 
612 	/*
613 	 * KVM does not hold the refcount of the page used by
614 	 * kvm mmu, before reclaiming the page, we should
615 	 * unmap it from mmu first.
616 	 */
617 	WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn)));
618 
619 	if (is_accessed_spte(old_spte))
620 		kvm_set_pfn_accessed(pfn);
621 
622 	if (is_dirty_spte(old_spte))
623 		kvm_set_pfn_dirty(pfn);
624 
625 	return 1;
626 }
627 
628 /*
629  * Rules for using mmu_spte_clear_no_track:
630  * Directly clear spte without caring the state bits of sptep,
631  * it is used to set the upper level spte.
632  */
633 static void mmu_spte_clear_no_track(u64 *sptep)
634 {
635 	__update_clear_spte_fast(sptep, 0ull);
636 }
637 
638 static u64 mmu_spte_get_lockless(u64 *sptep)
639 {
640 	return __get_spte_lockless(sptep);
641 }
642 
643 /* Restore an acc-track PTE back to a regular PTE */
644 static u64 restore_acc_track_spte(u64 spte)
645 {
646 	u64 new_spte = spte;
647 	u64 saved_bits = (spte >> SHADOW_ACC_TRACK_SAVED_BITS_SHIFT)
648 			 & SHADOW_ACC_TRACK_SAVED_BITS_MASK;
649 
650 	WARN_ON_ONCE(spte_ad_enabled(spte));
651 	WARN_ON_ONCE(!is_access_track_spte(spte));
652 
653 	new_spte &= ~shadow_acc_track_mask;
654 	new_spte &= ~(SHADOW_ACC_TRACK_SAVED_BITS_MASK <<
655 		      SHADOW_ACC_TRACK_SAVED_BITS_SHIFT);
656 	new_spte |= saved_bits;
657 
658 	return new_spte;
659 }
660 
661 /* Returns the Accessed status of the PTE and resets it at the same time. */
662 static bool mmu_spte_age(u64 *sptep)
663 {
664 	u64 spte = mmu_spte_get_lockless(sptep);
665 
666 	if (!is_accessed_spte(spte))
667 		return false;
668 
669 	if (spte_ad_enabled(spte)) {
670 		clear_bit((ffs(shadow_accessed_mask) - 1),
671 			  (unsigned long *)sptep);
672 	} else {
673 		/*
674 		 * Capture the dirty status of the page, so that it doesn't get
675 		 * lost when the SPTE is marked for access tracking.
676 		 */
677 		if (is_writable_pte(spte))
678 			kvm_set_pfn_dirty(spte_to_pfn(spte));
679 
680 		spte = mark_spte_for_access_track(spte);
681 		mmu_spte_update_no_track(sptep, spte);
682 	}
683 
684 	return true;
685 }
686 
687 static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
688 {
689 	/*
690 	 * Prevent page table teardown by making any free-er wait during
691 	 * kvm_flush_remote_tlbs() IPI to all active vcpus.
692 	 */
693 	local_irq_disable();
694 
695 	/*
696 	 * Make sure a following spte read is not reordered ahead of the write
697 	 * to vcpu->mode.
698 	 */
699 	smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES);
700 }
701 
702 static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
703 {
704 	/*
705 	 * Make sure the write to vcpu->mode is not reordered in front of
706 	 * reads to sptes.  If it does, kvm_mmu_commit_zap_page() can see us
707 	 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
708 	 */
709 	smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE);
710 	local_irq_enable();
711 }
712 
713 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu, bool maybe_indirect)
714 {
715 	int r;
716 
717 	/* 1 rmap, 1 parent PTE per level, and the prefetched rmaps. */
718 	r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
719 				       1 + PT64_ROOT_MAX_LEVEL + PTE_PREFETCH_NUM);
720 	if (r)
721 		return r;
722 	r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_shadow_page_cache,
723 				       PT64_ROOT_MAX_LEVEL);
724 	if (r)
725 		return r;
726 	if (maybe_indirect) {
727 		r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_gfn_array_cache,
728 					       PT64_ROOT_MAX_LEVEL);
729 		if (r)
730 			return r;
731 	}
732 	return kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
733 					  PT64_ROOT_MAX_LEVEL);
734 }
735 
736 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
737 {
738 	kvm_mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache);
739 	kvm_mmu_free_memory_cache(&vcpu->arch.mmu_shadow_page_cache);
740 	kvm_mmu_free_memory_cache(&vcpu->arch.mmu_gfn_array_cache);
741 	kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache);
742 }
743 
744 static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
745 {
746 	return kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
747 }
748 
749 static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
750 {
751 	kmem_cache_free(pte_list_desc_cache, pte_list_desc);
752 }
753 
754 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
755 {
756 	if (!sp->role.direct)
757 		return sp->gfns[index];
758 
759 	return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
760 }
761 
762 static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
763 {
764 	if (!sp->role.direct) {
765 		sp->gfns[index] = gfn;
766 		return;
767 	}
768 
769 	if (WARN_ON(gfn != kvm_mmu_page_get_gfn(sp, index)))
770 		pr_err_ratelimited("gfn mismatch under direct page %llx "
771 				   "(expected %llx, got %llx)\n",
772 				   sp->gfn,
773 				   kvm_mmu_page_get_gfn(sp, index), gfn);
774 }
775 
776 /*
777  * Return the pointer to the large page information for a given gfn,
778  * handling slots that are not large page aligned.
779  */
780 static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
781 		const struct kvm_memory_slot *slot, int level)
782 {
783 	unsigned long idx;
784 
785 	idx = gfn_to_index(gfn, slot->base_gfn, level);
786 	return &slot->arch.lpage_info[level - 2][idx];
787 }
788 
789 static void update_gfn_disallow_lpage_count(struct kvm_memory_slot *slot,
790 					    gfn_t gfn, int count)
791 {
792 	struct kvm_lpage_info *linfo;
793 	int i;
794 
795 	for (i = PG_LEVEL_2M; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) {
796 		linfo = lpage_info_slot(gfn, slot, i);
797 		linfo->disallow_lpage += count;
798 		WARN_ON(linfo->disallow_lpage < 0);
799 	}
800 }
801 
802 void kvm_mmu_gfn_disallow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
803 {
804 	update_gfn_disallow_lpage_count(slot, gfn, 1);
805 }
806 
807 void kvm_mmu_gfn_allow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
808 {
809 	update_gfn_disallow_lpage_count(slot, gfn, -1);
810 }
811 
812 static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
813 {
814 	struct kvm_memslots *slots;
815 	struct kvm_memory_slot *slot;
816 	gfn_t gfn;
817 
818 	kvm->arch.indirect_shadow_pages++;
819 	gfn = sp->gfn;
820 	slots = kvm_memslots_for_spte_role(kvm, sp->role);
821 	slot = __gfn_to_memslot(slots, gfn);
822 
823 	/* the non-leaf shadow pages are keeping readonly. */
824 	if (sp->role.level > PG_LEVEL_4K)
825 		return kvm_slot_page_track_add_page(kvm, slot, gfn,
826 						    KVM_PAGE_TRACK_WRITE);
827 
828 	kvm_mmu_gfn_disallow_lpage(slot, gfn);
829 }
830 
831 void account_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp)
832 {
833 	if (sp->lpage_disallowed)
834 		return;
835 
836 	++kvm->stat.nx_lpage_splits;
837 	list_add_tail(&sp->lpage_disallowed_link,
838 		      &kvm->arch.lpage_disallowed_mmu_pages);
839 	sp->lpage_disallowed = true;
840 }
841 
842 static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
843 {
844 	struct kvm_memslots *slots;
845 	struct kvm_memory_slot *slot;
846 	gfn_t gfn;
847 
848 	kvm->arch.indirect_shadow_pages--;
849 	gfn = sp->gfn;
850 	slots = kvm_memslots_for_spte_role(kvm, sp->role);
851 	slot = __gfn_to_memslot(slots, gfn);
852 	if (sp->role.level > PG_LEVEL_4K)
853 		return kvm_slot_page_track_remove_page(kvm, slot, gfn,
854 						       KVM_PAGE_TRACK_WRITE);
855 
856 	kvm_mmu_gfn_allow_lpage(slot, gfn);
857 }
858 
859 void unaccount_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp)
860 {
861 	--kvm->stat.nx_lpage_splits;
862 	sp->lpage_disallowed = false;
863 	list_del(&sp->lpage_disallowed_link);
864 }
865 
866 static struct kvm_memory_slot *
867 gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
868 			    bool no_dirty_log)
869 {
870 	struct kvm_memory_slot *slot;
871 
872 	slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
873 	if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
874 		return NULL;
875 	if (no_dirty_log && kvm_slot_dirty_track_enabled(slot))
876 		return NULL;
877 
878 	return slot;
879 }
880 
881 /*
882  * About rmap_head encoding:
883  *
884  * If the bit zero of rmap_head->val is clear, then it points to the only spte
885  * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct
886  * pte_list_desc containing more mappings.
887  */
888 
889 /*
890  * Returns the number of pointers in the rmap chain, not counting the new one.
891  */
892 static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
893 			struct kvm_rmap_head *rmap_head)
894 {
895 	struct pte_list_desc *desc;
896 	int i, count = 0;
897 
898 	if (!rmap_head->val) {
899 		rmap_printk("%p %llx 0->1\n", spte, *spte);
900 		rmap_head->val = (unsigned long)spte;
901 	} else if (!(rmap_head->val & 1)) {
902 		rmap_printk("%p %llx 1->many\n", spte, *spte);
903 		desc = mmu_alloc_pte_list_desc(vcpu);
904 		desc->sptes[0] = (u64 *)rmap_head->val;
905 		desc->sptes[1] = spte;
906 		rmap_head->val = (unsigned long)desc | 1;
907 		++count;
908 	} else {
909 		rmap_printk("%p %llx many->many\n", spte, *spte);
910 		desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
911 		while (desc->sptes[PTE_LIST_EXT-1]) {
912 			count += PTE_LIST_EXT;
913 
914 			if (!desc->more) {
915 				desc->more = mmu_alloc_pte_list_desc(vcpu);
916 				desc = desc->more;
917 				break;
918 			}
919 			desc = desc->more;
920 		}
921 		for (i = 0; desc->sptes[i]; ++i)
922 			++count;
923 		desc->sptes[i] = spte;
924 	}
925 	return count;
926 }
927 
928 static void
929 pte_list_desc_remove_entry(struct kvm_rmap_head *rmap_head,
930 			   struct pte_list_desc *desc, int i,
931 			   struct pte_list_desc *prev_desc)
932 {
933 	int j;
934 
935 	for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
936 		;
937 	desc->sptes[i] = desc->sptes[j];
938 	desc->sptes[j] = NULL;
939 	if (j != 0)
940 		return;
941 	if (!prev_desc && !desc->more)
942 		rmap_head->val = 0;
943 	else
944 		if (prev_desc)
945 			prev_desc->more = desc->more;
946 		else
947 			rmap_head->val = (unsigned long)desc->more | 1;
948 	mmu_free_pte_list_desc(desc);
949 }
950 
951 static void __pte_list_remove(u64 *spte, struct kvm_rmap_head *rmap_head)
952 {
953 	struct pte_list_desc *desc;
954 	struct pte_list_desc *prev_desc;
955 	int i;
956 
957 	if (!rmap_head->val) {
958 		pr_err("%s: %p 0->BUG\n", __func__, spte);
959 		BUG();
960 	} else if (!(rmap_head->val & 1)) {
961 		rmap_printk("%p 1->0\n", spte);
962 		if ((u64 *)rmap_head->val != spte) {
963 			pr_err("%s:  %p 1->BUG\n", __func__, spte);
964 			BUG();
965 		}
966 		rmap_head->val = 0;
967 	} else {
968 		rmap_printk("%p many->many\n", spte);
969 		desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
970 		prev_desc = NULL;
971 		while (desc) {
972 			for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i) {
973 				if (desc->sptes[i] == spte) {
974 					pte_list_desc_remove_entry(rmap_head,
975 							desc, i, prev_desc);
976 					return;
977 				}
978 			}
979 			prev_desc = desc;
980 			desc = desc->more;
981 		}
982 		pr_err("%s: %p many->many\n", __func__, spte);
983 		BUG();
984 	}
985 }
986 
987 static void pte_list_remove(struct kvm_rmap_head *rmap_head, u64 *sptep)
988 {
989 	mmu_spte_clear_track_bits(sptep);
990 	__pte_list_remove(sptep, rmap_head);
991 }
992 
993 static struct kvm_rmap_head *__gfn_to_rmap(gfn_t gfn, int level,
994 					   struct kvm_memory_slot *slot)
995 {
996 	unsigned long idx;
997 
998 	idx = gfn_to_index(gfn, slot->base_gfn, level);
999 	return &slot->arch.rmap[level - PG_LEVEL_4K][idx];
1000 }
1001 
1002 static struct kvm_rmap_head *gfn_to_rmap(struct kvm *kvm, gfn_t gfn,
1003 					 struct kvm_mmu_page *sp)
1004 {
1005 	struct kvm_memslots *slots;
1006 	struct kvm_memory_slot *slot;
1007 
1008 	slots = kvm_memslots_for_spte_role(kvm, sp->role);
1009 	slot = __gfn_to_memslot(slots, gfn);
1010 	return __gfn_to_rmap(gfn, sp->role.level, slot);
1011 }
1012 
1013 static bool rmap_can_add(struct kvm_vcpu *vcpu)
1014 {
1015 	struct kvm_mmu_memory_cache *mc;
1016 
1017 	mc = &vcpu->arch.mmu_pte_list_desc_cache;
1018 	return kvm_mmu_memory_cache_nr_free_objects(mc);
1019 }
1020 
1021 static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1022 {
1023 	struct kvm_mmu_page *sp;
1024 	struct kvm_rmap_head *rmap_head;
1025 
1026 	sp = sptep_to_sp(spte);
1027 	kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
1028 	rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
1029 	return pte_list_add(vcpu, spte, rmap_head);
1030 }
1031 
1032 static void rmap_remove(struct kvm *kvm, u64 *spte)
1033 {
1034 	struct kvm_mmu_page *sp;
1035 	gfn_t gfn;
1036 	struct kvm_rmap_head *rmap_head;
1037 
1038 	sp = sptep_to_sp(spte);
1039 	gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
1040 	rmap_head = gfn_to_rmap(kvm, gfn, sp);
1041 	__pte_list_remove(spte, rmap_head);
1042 }
1043 
1044 /*
1045  * Used by the following functions to iterate through the sptes linked by a
1046  * rmap.  All fields are private and not assumed to be used outside.
1047  */
1048 struct rmap_iterator {
1049 	/* private fields */
1050 	struct pte_list_desc *desc;	/* holds the sptep if not NULL */
1051 	int pos;			/* index of the sptep */
1052 };
1053 
1054 /*
1055  * Iteration must be started by this function.  This should also be used after
1056  * removing/dropping sptes from the rmap link because in such cases the
1057  * information in the iterator may not be valid.
1058  *
1059  * Returns sptep if found, NULL otherwise.
1060  */
1061 static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head,
1062 			   struct rmap_iterator *iter)
1063 {
1064 	u64 *sptep;
1065 
1066 	if (!rmap_head->val)
1067 		return NULL;
1068 
1069 	if (!(rmap_head->val & 1)) {
1070 		iter->desc = NULL;
1071 		sptep = (u64 *)rmap_head->val;
1072 		goto out;
1073 	}
1074 
1075 	iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1076 	iter->pos = 0;
1077 	sptep = iter->desc->sptes[iter->pos];
1078 out:
1079 	BUG_ON(!is_shadow_present_pte(*sptep));
1080 	return sptep;
1081 }
1082 
1083 /*
1084  * Must be used with a valid iterator: e.g. after rmap_get_first().
1085  *
1086  * Returns sptep if found, NULL otherwise.
1087  */
1088 static u64 *rmap_get_next(struct rmap_iterator *iter)
1089 {
1090 	u64 *sptep;
1091 
1092 	if (iter->desc) {
1093 		if (iter->pos < PTE_LIST_EXT - 1) {
1094 			++iter->pos;
1095 			sptep = iter->desc->sptes[iter->pos];
1096 			if (sptep)
1097 				goto out;
1098 		}
1099 
1100 		iter->desc = iter->desc->more;
1101 
1102 		if (iter->desc) {
1103 			iter->pos = 0;
1104 			/* desc->sptes[0] cannot be NULL */
1105 			sptep = iter->desc->sptes[iter->pos];
1106 			goto out;
1107 		}
1108 	}
1109 
1110 	return NULL;
1111 out:
1112 	BUG_ON(!is_shadow_present_pte(*sptep));
1113 	return sptep;
1114 }
1115 
1116 #define for_each_rmap_spte(_rmap_head_, _iter_, _spte_)			\
1117 	for (_spte_ = rmap_get_first(_rmap_head_, _iter_);		\
1118 	     _spte_; _spte_ = rmap_get_next(_iter_))
1119 
1120 static void drop_spte(struct kvm *kvm, u64 *sptep)
1121 {
1122 	if (mmu_spte_clear_track_bits(sptep))
1123 		rmap_remove(kvm, sptep);
1124 }
1125 
1126 
1127 static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
1128 {
1129 	if (is_large_pte(*sptep)) {
1130 		WARN_ON(sptep_to_sp(sptep)->role.level == PG_LEVEL_4K);
1131 		drop_spte(kvm, sptep);
1132 		--kvm->stat.lpages;
1133 		return true;
1134 	}
1135 
1136 	return false;
1137 }
1138 
1139 static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1140 {
1141 	if (__drop_large_spte(vcpu->kvm, sptep)) {
1142 		struct kvm_mmu_page *sp = sptep_to_sp(sptep);
1143 
1144 		kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn,
1145 			KVM_PAGES_PER_HPAGE(sp->role.level));
1146 	}
1147 }
1148 
1149 /*
1150  * Write-protect on the specified @sptep, @pt_protect indicates whether
1151  * spte write-protection is caused by protecting shadow page table.
1152  *
1153  * Note: write protection is difference between dirty logging and spte
1154  * protection:
1155  * - for dirty logging, the spte can be set to writable at anytime if
1156  *   its dirty bitmap is properly set.
1157  * - for spte protection, the spte can be writable only after unsync-ing
1158  *   shadow page.
1159  *
1160  * Return true if tlb need be flushed.
1161  */
1162 static bool spte_write_protect(u64 *sptep, bool pt_protect)
1163 {
1164 	u64 spte = *sptep;
1165 
1166 	if (!is_writable_pte(spte) &&
1167 	      !(pt_protect && spte_can_locklessly_be_made_writable(spte)))
1168 		return false;
1169 
1170 	rmap_printk("spte %p %llx\n", sptep, *sptep);
1171 
1172 	if (pt_protect)
1173 		spte &= ~shadow_mmu_writable_mask;
1174 	spte = spte & ~PT_WRITABLE_MASK;
1175 
1176 	return mmu_spte_update(sptep, spte);
1177 }
1178 
1179 static bool __rmap_write_protect(struct kvm *kvm,
1180 				 struct kvm_rmap_head *rmap_head,
1181 				 bool pt_protect)
1182 {
1183 	u64 *sptep;
1184 	struct rmap_iterator iter;
1185 	bool flush = false;
1186 
1187 	for_each_rmap_spte(rmap_head, &iter, sptep)
1188 		flush |= spte_write_protect(sptep, pt_protect);
1189 
1190 	return flush;
1191 }
1192 
1193 static bool spte_clear_dirty(u64 *sptep)
1194 {
1195 	u64 spte = *sptep;
1196 
1197 	rmap_printk("spte %p %llx\n", sptep, *sptep);
1198 
1199 	MMU_WARN_ON(!spte_ad_enabled(spte));
1200 	spte &= ~shadow_dirty_mask;
1201 	return mmu_spte_update(sptep, spte);
1202 }
1203 
1204 static bool spte_wrprot_for_clear_dirty(u64 *sptep)
1205 {
1206 	bool was_writable = test_and_clear_bit(PT_WRITABLE_SHIFT,
1207 					       (unsigned long *)sptep);
1208 	if (was_writable && !spte_ad_enabled(*sptep))
1209 		kvm_set_pfn_dirty(spte_to_pfn(*sptep));
1210 
1211 	return was_writable;
1212 }
1213 
1214 /*
1215  * Gets the GFN ready for another round of dirty logging by clearing the
1216  *	- D bit on ad-enabled SPTEs, and
1217  *	- W bit on ad-disabled SPTEs.
1218  * Returns true iff any D or W bits were cleared.
1219  */
1220 static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1221 			       struct kvm_memory_slot *slot)
1222 {
1223 	u64 *sptep;
1224 	struct rmap_iterator iter;
1225 	bool flush = false;
1226 
1227 	for_each_rmap_spte(rmap_head, &iter, sptep)
1228 		if (spte_ad_need_write_protect(*sptep))
1229 			flush |= spte_wrprot_for_clear_dirty(sptep);
1230 		else
1231 			flush |= spte_clear_dirty(sptep);
1232 
1233 	return flush;
1234 }
1235 
1236 /**
1237  * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1238  * @kvm: kvm instance
1239  * @slot: slot to protect
1240  * @gfn_offset: start of the BITS_PER_LONG pages we care about
1241  * @mask: indicates which pages we should protect
1242  *
1243  * Used when we do not need to care about huge page mappings.
1244  */
1245 static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1246 				     struct kvm_memory_slot *slot,
1247 				     gfn_t gfn_offset, unsigned long mask)
1248 {
1249 	struct kvm_rmap_head *rmap_head;
1250 
1251 	if (is_tdp_mmu_enabled(kvm))
1252 		kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot,
1253 				slot->base_gfn + gfn_offset, mask, true);
1254 
1255 	if (!kvm_memslots_have_rmaps(kvm))
1256 		return;
1257 
1258 	while (mask) {
1259 		rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1260 					  PG_LEVEL_4K, slot);
1261 		__rmap_write_protect(kvm, rmap_head, false);
1262 
1263 		/* clear the first set bit */
1264 		mask &= mask - 1;
1265 	}
1266 }
1267 
1268 /**
1269  * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages, or write
1270  * protect the page if the D-bit isn't supported.
1271  * @kvm: kvm instance
1272  * @slot: slot to clear D-bit
1273  * @gfn_offset: start of the BITS_PER_LONG pages we care about
1274  * @mask: indicates which pages we should clear D-bit
1275  *
1276  * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap.
1277  */
1278 static void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
1279 					 struct kvm_memory_slot *slot,
1280 					 gfn_t gfn_offset, unsigned long mask)
1281 {
1282 	struct kvm_rmap_head *rmap_head;
1283 
1284 	if (is_tdp_mmu_enabled(kvm))
1285 		kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot,
1286 				slot->base_gfn + gfn_offset, mask, false);
1287 
1288 	if (!kvm_memslots_have_rmaps(kvm))
1289 		return;
1290 
1291 	while (mask) {
1292 		rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1293 					  PG_LEVEL_4K, slot);
1294 		__rmap_clear_dirty(kvm, rmap_head, slot);
1295 
1296 		/* clear the first set bit */
1297 		mask &= mask - 1;
1298 	}
1299 }
1300 
1301 /**
1302  * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
1303  * PT level pages.
1304  *
1305  * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
1306  * enable dirty logging for them.
1307  *
1308  * We need to care about huge page mappings: e.g. during dirty logging we may
1309  * have such mappings.
1310  */
1311 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1312 				struct kvm_memory_slot *slot,
1313 				gfn_t gfn_offset, unsigned long mask)
1314 {
1315 	/*
1316 	 * Huge pages are NOT write protected when we start dirty logging in
1317 	 * initially-all-set mode; must write protect them here so that they
1318 	 * are split to 4K on the first write.
1319 	 *
1320 	 * The gfn_offset is guaranteed to be aligned to 64, but the base_gfn
1321 	 * of memslot has no such restriction, so the range can cross two large
1322 	 * pages.
1323 	 */
1324 	if (kvm_dirty_log_manual_protect_and_init_set(kvm)) {
1325 		gfn_t start = slot->base_gfn + gfn_offset + __ffs(mask);
1326 		gfn_t end = slot->base_gfn + gfn_offset + __fls(mask);
1327 
1328 		kvm_mmu_slot_gfn_write_protect(kvm, slot, start, PG_LEVEL_2M);
1329 
1330 		/* Cross two large pages? */
1331 		if (ALIGN(start << PAGE_SHIFT, PMD_SIZE) !=
1332 		    ALIGN(end << PAGE_SHIFT, PMD_SIZE))
1333 			kvm_mmu_slot_gfn_write_protect(kvm, slot, end,
1334 						       PG_LEVEL_2M);
1335 	}
1336 
1337 	/* Now handle 4K PTEs.  */
1338 	if (kvm_x86_ops.cpu_dirty_log_size)
1339 		kvm_mmu_clear_dirty_pt_masked(kvm, slot, gfn_offset, mask);
1340 	else
1341 		kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
1342 }
1343 
1344 int kvm_cpu_dirty_log_size(void)
1345 {
1346 	return kvm_x86_ops.cpu_dirty_log_size;
1347 }
1348 
1349 bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
1350 				    struct kvm_memory_slot *slot, u64 gfn,
1351 				    int min_level)
1352 {
1353 	struct kvm_rmap_head *rmap_head;
1354 	int i;
1355 	bool write_protected = false;
1356 
1357 	if (kvm_memslots_have_rmaps(kvm)) {
1358 		for (i = min_level; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) {
1359 			rmap_head = __gfn_to_rmap(gfn, i, slot);
1360 			write_protected |= __rmap_write_protect(kvm, rmap_head, true);
1361 		}
1362 	}
1363 
1364 	if (is_tdp_mmu_enabled(kvm))
1365 		write_protected |=
1366 			kvm_tdp_mmu_write_protect_gfn(kvm, slot, gfn, min_level);
1367 
1368 	return write_protected;
1369 }
1370 
1371 static bool rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn)
1372 {
1373 	struct kvm_memory_slot *slot;
1374 
1375 	slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1376 	return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn, PG_LEVEL_4K);
1377 }
1378 
1379 static bool kvm_zap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1380 			  struct kvm_memory_slot *slot)
1381 {
1382 	u64 *sptep;
1383 	struct rmap_iterator iter;
1384 	bool flush = false;
1385 
1386 	while ((sptep = rmap_get_first(rmap_head, &iter))) {
1387 		rmap_printk("spte %p %llx.\n", sptep, *sptep);
1388 
1389 		pte_list_remove(rmap_head, sptep);
1390 		flush = true;
1391 	}
1392 
1393 	return flush;
1394 }
1395 
1396 static bool kvm_unmap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1397 			    struct kvm_memory_slot *slot, gfn_t gfn, int level,
1398 			    pte_t unused)
1399 {
1400 	return kvm_zap_rmapp(kvm, rmap_head, slot);
1401 }
1402 
1403 static bool kvm_set_pte_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1404 			      struct kvm_memory_slot *slot, gfn_t gfn, int level,
1405 			      pte_t pte)
1406 {
1407 	u64 *sptep;
1408 	struct rmap_iterator iter;
1409 	int need_flush = 0;
1410 	u64 new_spte;
1411 	kvm_pfn_t new_pfn;
1412 
1413 	WARN_ON(pte_huge(pte));
1414 	new_pfn = pte_pfn(pte);
1415 
1416 restart:
1417 	for_each_rmap_spte(rmap_head, &iter, sptep) {
1418 		rmap_printk("spte %p %llx gfn %llx (%d)\n",
1419 			    sptep, *sptep, gfn, level);
1420 
1421 		need_flush = 1;
1422 
1423 		if (pte_write(pte)) {
1424 			pte_list_remove(rmap_head, sptep);
1425 			goto restart;
1426 		} else {
1427 			new_spte = kvm_mmu_changed_pte_notifier_make_spte(
1428 					*sptep, new_pfn);
1429 
1430 			mmu_spte_clear_track_bits(sptep);
1431 			mmu_spte_set(sptep, new_spte);
1432 		}
1433 	}
1434 
1435 	if (need_flush && kvm_available_flush_tlb_with_range()) {
1436 		kvm_flush_remote_tlbs_with_address(kvm, gfn, 1);
1437 		return 0;
1438 	}
1439 
1440 	return need_flush;
1441 }
1442 
1443 struct slot_rmap_walk_iterator {
1444 	/* input fields. */
1445 	struct kvm_memory_slot *slot;
1446 	gfn_t start_gfn;
1447 	gfn_t end_gfn;
1448 	int start_level;
1449 	int end_level;
1450 
1451 	/* output fields. */
1452 	gfn_t gfn;
1453 	struct kvm_rmap_head *rmap;
1454 	int level;
1455 
1456 	/* private field. */
1457 	struct kvm_rmap_head *end_rmap;
1458 };
1459 
1460 static void
1461 rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level)
1462 {
1463 	iterator->level = level;
1464 	iterator->gfn = iterator->start_gfn;
1465 	iterator->rmap = __gfn_to_rmap(iterator->gfn, level, iterator->slot);
1466 	iterator->end_rmap = __gfn_to_rmap(iterator->end_gfn, level,
1467 					   iterator->slot);
1468 }
1469 
1470 static void
1471 slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator,
1472 		    struct kvm_memory_slot *slot, int start_level,
1473 		    int end_level, gfn_t start_gfn, gfn_t end_gfn)
1474 {
1475 	iterator->slot = slot;
1476 	iterator->start_level = start_level;
1477 	iterator->end_level = end_level;
1478 	iterator->start_gfn = start_gfn;
1479 	iterator->end_gfn = end_gfn;
1480 
1481 	rmap_walk_init_level(iterator, iterator->start_level);
1482 }
1483 
1484 static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator)
1485 {
1486 	return !!iterator->rmap;
1487 }
1488 
1489 static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
1490 {
1491 	if (++iterator->rmap <= iterator->end_rmap) {
1492 		iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level));
1493 		return;
1494 	}
1495 
1496 	if (++iterator->level > iterator->end_level) {
1497 		iterator->rmap = NULL;
1498 		return;
1499 	}
1500 
1501 	rmap_walk_init_level(iterator, iterator->level);
1502 }
1503 
1504 #define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_,	\
1505 	   _start_gfn, _end_gfn, _iter_)				\
1506 	for (slot_rmap_walk_init(_iter_, _slot_, _start_level_,		\
1507 				 _end_level_, _start_gfn, _end_gfn);	\
1508 	     slot_rmap_walk_okay(_iter_);				\
1509 	     slot_rmap_walk_next(_iter_))
1510 
1511 typedef bool (*rmap_handler_t)(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1512 			       struct kvm_memory_slot *slot, gfn_t gfn,
1513 			       int level, pte_t pte);
1514 
1515 static __always_inline bool kvm_handle_gfn_range(struct kvm *kvm,
1516 						 struct kvm_gfn_range *range,
1517 						 rmap_handler_t handler)
1518 {
1519 	struct slot_rmap_walk_iterator iterator;
1520 	bool ret = false;
1521 
1522 	for_each_slot_rmap_range(range->slot, PG_LEVEL_4K, KVM_MAX_HUGEPAGE_LEVEL,
1523 				 range->start, range->end - 1, &iterator)
1524 		ret |= handler(kvm, iterator.rmap, range->slot, iterator.gfn,
1525 			       iterator.level, range->pte);
1526 
1527 	return ret;
1528 }
1529 
1530 bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range)
1531 {
1532 	bool flush = false;
1533 
1534 	if (kvm_memslots_have_rmaps(kvm))
1535 		flush = kvm_handle_gfn_range(kvm, range, kvm_unmap_rmapp);
1536 
1537 	if (is_tdp_mmu_enabled(kvm))
1538 		flush |= kvm_tdp_mmu_unmap_gfn_range(kvm, range, flush);
1539 
1540 	return flush;
1541 }
1542 
1543 bool kvm_set_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
1544 {
1545 	bool flush = false;
1546 
1547 	if (kvm_memslots_have_rmaps(kvm))
1548 		flush = kvm_handle_gfn_range(kvm, range, kvm_set_pte_rmapp);
1549 
1550 	if (is_tdp_mmu_enabled(kvm))
1551 		flush |= kvm_tdp_mmu_set_spte_gfn(kvm, range);
1552 
1553 	return flush;
1554 }
1555 
1556 static bool kvm_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1557 			  struct kvm_memory_slot *slot, gfn_t gfn, int level,
1558 			  pte_t unused)
1559 {
1560 	u64 *sptep;
1561 	struct rmap_iterator iter;
1562 	int young = 0;
1563 
1564 	for_each_rmap_spte(rmap_head, &iter, sptep)
1565 		young |= mmu_spte_age(sptep);
1566 
1567 	return young;
1568 }
1569 
1570 static bool kvm_test_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1571 			       struct kvm_memory_slot *slot, gfn_t gfn,
1572 			       int level, pte_t unused)
1573 {
1574 	u64 *sptep;
1575 	struct rmap_iterator iter;
1576 
1577 	for_each_rmap_spte(rmap_head, &iter, sptep)
1578 		if (is_accessed_spte(*sptep))
1579 			return 1;
1580 	return 0;
1581 }
1582 
1583 #define RMAP_RECYCLE_THRESHOLD 1000
1584 
1585 static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1586 {
1587 	struct kvm_rmap_head *rmap_head;
1588 	struct kvm_mmu_page *sp;
1589 
1590 	sp = sptep_to_sp(spte);
1591 
1592 	rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
1593 
1594 	kvm_unmap_rmapp(vcpu->kvm, rmap_head, NULL, gfn, sp->role.level, __pte(0));
1595 	kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn,
1596 			KVM_PAGES_PER_HPAGE(sp->role.level));
1597 }
1598 
1599 bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
1600 {
1601 	bool young = false;
1602 
1603 	if (kvm_memslots_have_rmaps(kvm))
1604 		young = kvm_handle_gfn_range(kvm, range, kvm_age_rmapp);
1605 
1606 	if (is_tdp_mmu_enabled(kvm))
1607 		young |= kvm_tdp_mmu_age_gfn_range(kvm, range);
1608 
1609 	return young;
1610 }
1611 
1612 bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
1613 {
1614 	bool young = false;
1615 
1616 	if (kvm_memslots_have_rmaps(kvm))
1617 		young = kvm_handle_gfn_range(kvm, range, kvm_test_age_rmapp);
1618 
1619 	if (is_tdp_mmu_enabled(kvm))
1620 		young |= kvm_tdp_mmu_test_age_gfn(kvm, range);
1621 
1622 	return young;
1623 }
1624 
1625 #ifdef MMU_DEBUG
1626 static int is_empty_shadow_page(u64 *spt)
1627 {
1628 	u64 *pos;
1629 	u64 *end;
1630 
1631 	for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
1632 		if (is_shadow_present_pte(*pos)) {
1633 			printk(KERN_ERR "%s: %p %llx\n", __func__,
1634 			       pos, *pos);
1635 			return 0;
1636 		}
1637 	return 1;
1638 }
1639 #endif
1640 
1641 /*
1642  * This value is the sum of all of the kvm instances's
1643  * kvm->arch.n_used_mmu_pages values.  We need a global,
1644  * aggregate version in order to make the slab shrinker
1645  * faster
1646  */
1647 static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, long nr)
1648 {
1649 	kvm->arch.n_used_mmu_pages += nr;
1650 	percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1651 }
1652 
1653 static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
1654 {
1655 	MMU_WARN_ON(!is_empty_shadow_page(sp->spt));
1656 	hlist_del(&sp->hash_link);
1657 	list_del(&sp->link);
1658 	free_page((unsigned long)sp->spt);
1659 	if (!sp->role.direct)
1660 		free_page((unsigned long)sp->gfns);
1661 	kmem_cache_free(mmu_page_header_cache, sp);
1662 }
1663 
1664 static unsigned kvm_page_table_hashfn(gfn_t gfn)
1665 {
1666 	return hash_64(gfn, KVM_MMU_HASH_SHIFT);
1667 }
1668 
1669 static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
1670 				    struct kvm_mmu_page *sp, u64 *parent_pte)
1671 {
1672 	if (!parent_pte)
1673 		return;
1674 
1675 	pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
1676 }
1677 
1678 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
1679 				       u64 *parent_pte)
1680 {
1681 	__pte_list_remove(parent_pte, &sp->parent_ptes);
1682 }
1683 
1684 static void drop_parent_pte(struct kvm_mmu_page *sp,
1685 			    u64 *parent_pte)
1686 {
1687 	mmu_page_remove_parent_pte(sp, parent_pte);
1688 	mmu_spte_clear_no_track(parent_pte);
1689 }
1690 
1691 static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu, int direct)
1692 {
1693 	struct kvm_mmu_page *sp;
1694 
1695 	sp = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
1696 	sp->spt = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_shadow_page_cache);
1697 	if (!direct)
1698 		sp->gfns = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_gfn_array_cache);
1699 	set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
1700 
1701 	/*
1702 	 * active_mmu_pages must be a FIFO list, as kvm_zap_obsolete_pages()
1703 	 * depends on valid pages being added to the head of the list.  See
1704 	 * comments in kvm_zap_obsolete_pages().
1705 	 */
1706 	sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
1707 	list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
1708 	kvm_mod_used_mmu_pages(vcpu->kvm, +1);
1709 	return sp;
1710 }
1711 
1712 static void mark_unsync(u64 *spte);
1713 static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
1714 {
1715 	u64 *sptep;
1716 	struct rmap_iterator iter;
1717 
1718 	for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) {
1719 		mark_unsync(sptep);
1720 	}
1721 }
1722 
1723 static void mark_unsync(u64 *spte)
1724 {
1725 	struct kvm_mmu_page *sp;
1726 	unsigned int index;
1727 
1728 	sp = sptep_to_sp(spte);
1729 	index = spte - sp->spt;
1730 	if (__test_and_set_bit(index, sp->unsync_child_bitmap))
1731 		return;
1732 	if (sp->unsync_children++)
1733 		return;
1734 	kvm_mmu_mark_parents_unsync(sp);
1735 }
1736 
1737 static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
1738 			       struct kvm_mmu_page *sp)
1739 {
1740 	return 0;
1741 }
1742 
1743 #define KVM_PAGE_ARRAY_NR 16
1744 
1745 struct kvm_mmu_pages {
1746 	struct mmu_page_and_offset {
1747 		struct kvm_mmu_page *sp;
1748 		unsigned int idx;
1749 	} page[KVM_PAGE_ARRAY_NR];
1750 	unsigned int nr;
1751 };
1752 
1753 static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
1754 			 int idx)
1755 {
1756 	int i;
1757 
1758 	if (sp->unsync)
1759 		for (i=0; i < pvec->nr; i++)
1760 			if (pvec->page[i].sp == sp)
1761 				return 0;
1762 
1763 	pvec->page[pvec->nr].sp = sp;
1764 	pvec->page[pvec->nr].idx = idx;
1765 	pvec->nr++;
1766 	return (pvec->nr == KVM_PAGE_ARRAY_NR);
1767 }
1768 
1769 static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx)
1770 {
1771 	--sp->unsync_children;
1772 	WARN_ON((int)sp->unsync_children < 0);
1773 	__clear_bit(idx, sp->unsync_child_bitmap);
1774 }
1775 
1776 static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
1777 			   struct kvm_mmu_pages *pvec)
1778 {
1779 	int i, ret, nr_unsync_leaf = 0;
1780 
1781 	for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
1782 		struct kvm_mmu_page *child;
1783 		u64 ent = sp->spt[i];
1784 
1785 		if (!is_shadow_present_pte(ent) || is_large_pte(ent)) {
1786 			clear_unsync_child_bit(sp, i);
1787 			continue;
1788 		}
1789 
1790 		child = to_shadow_page(ent & PT64_BASE_ADDR_MASK);
1791 
1792 		if (child->unsync_children) {
1793 			if (mmu_pages_add(pvec, child, i))
1794 				return -ENOSPC;
1795 
1796 			ret = __mmu_unsync_walk(child, pvec);
1797 			if (!ret) {
1798 				clear_unsync_child_bit(sp, i);
1799 				continue;
1800 			} else if (ret > 0) {
1801 				nr_unsync_leaf += ret;
1802 			} else
1803 				return ret;
1804 		} else if (child->unsync) {
1805 			nr_unsync_leaf++;
1806 			if (mmu_pages_add(pvec, child, i))
1807 				return -ENOSPC;
1808 		} else
1809 			clear_unsync_child_bit(sp, i);
1810 	}
1811 
1812 	return nr_unsync_leaf;
1813 }
1814 
1815 #define INVALID_INDEX (-1)
1816 
1817 static int mmu_unsync_walk(struct kvm_mmu_page *sp,
1818 			   struct kvm_mmu_pages *pvec)
1819 {
1820 	pvec->nr = 0;
1821 	if (!sp->unsync_children)
1822 		return 0;
1823 
1824 	mmu_pages_add(pvec, sp, INVALID_INDEX);
1825 	return __mmu_unsync_walk(sp, pvec);
1826 }
1827 
1828 static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1829 {
1830 	WARN_ON(!sp->unsync);
1831 	trace_kvm_mmu_sync_page(sp);
1832 	sp->unsync = 0;
1833 	--kvm->stat.mmu_unsync;
1834 }
1835 
1836 static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1837 				     struct list_head *invalid_list);
1838 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1839 				    struct list_head *invalid_list);
1840 
1841 #define for_each_valid_sp(_kvm, _sp, _list)				\
1842 	hlist_for_each_entry(_sp, _list, hash_link)			\
1843 		if (is_obsolete_sp((_kvm), (_sp))) {			\
1844 		} else
1845 
1846 #define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn)			\
1847 	for_each_valid_sp(_kvm, _sp,					\
1848 	  &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)])	\
1849 		if ((_sp)->gfn != (_gfn) || (_sp)->role.direct) {} else
1850 
1851 static bool kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1852 			 struct list_head *invalid_list)
1853 {
1854 	if (vcpu->arch.mmu->sync_page(vcpu, sp) == 0) {
1855 		kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1856 		return false;
1857 	}
1858 
1859 	return true;
1860 }
1861 
1862 static bool kvm_mmu_remote_flush_or_zap(struct kvm *kvm,
1863 					struct list_head *invalid_list,
1864 					bool remote_flush)
1865 {
1866 	if (!remote_flush && list_empty(invalid_list))
1867 		return false;
1868 
1869 	if (!list_empty(invalid_list))
1870 		kvm_mmu_commit_zap_page(kvm, invalid_list);
1871 	else
1872 		kvm_flush_remote_tlbs(kvm);
1873 	return true;
1874 }
1875 
1876 static void kvm_mmu_flush_or_zap(struct kvm_vcpu *vcpu,
1877 				 struct list_head *invalid_list,
1878 				 bool remote_flush, bool local_flush)
1879 {
1880 	if (kvm_mmu_remote_flush_or_zap(vcpu->kvm, invalid_list, remote_flush))
1881 		return;
1882 
1883 	if (local_flush)
1884 		kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1885 }
1886 
1887 #ifdef CONFIG_KVM_MMU_AUDIT
1888 #include "mmu_audit.c"
1889 #else
1890 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
1891 static void mmu_audit_disable(void) { }
1892 #endif
1893 
1894 static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
1895 {
1896 	return sp->role.invalid ||
1897 	       unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
1898 }
1899 
1900 struct mmu_page_path {
1901 	struct kvm_mmu_page *parent[PT64_ROOT_MAX_LEVEL];
1902 	unsigned int idx[PT64_ROOT_MAX_LEVEL];
1903 };
1904 
1905 #define for_each_sp(pvec, sp, parents, i)			\
1906 		for (i = mmu_pages_first(&pvec, &parents);	\
1907 			i < pvec.nr && ({ sp = pvec.page[i].sp; 1;});	\
1908 			i = mmu_pages_next(&pvec, &parents, i))
1909 
1910 static int mmu_pages_next(struct kvm_mmu_pages *pvec,
1911 			  struct mmu_page_path *parents,
1912 			  int i)
1913 {
1914 	int n;
1915 
1916 	for (n = i+1; n < pvec->nr; n++) {
1917 		struct kvm_mmu_page *sp = pvec->page[n].sp;
1918 		unsigned idx = pvec->page[n].idx;
1919 		int level = sp->role.level;
1920 
1921 		parents->idx[level-1] = idx;
1922 		if (level == PG_LEVEL_4K)
1923 			break;
1924 
1925 		parents->parent[level-2] = sp;
1926 	}
1927 
1928 	return n;
1929 }
1930 
1931 static int mmu_pages_first(struct kvm_mmu_pages *pvec,
1932 			   struct mmu_page_path *parents)
1933 {
1934 	struct kvm_mmu_page *sp;
1935 	int level;
1936 
1937 	if (pvec->nr == 0)
1938 		return 0;
1939 
1940 	WARN_ON(pvec->page[0].idx != INVALID_INDEX);
1941 
1942 	sp = pvec->page[0].sp;
1943 	level = sp->role.level;
1944 	WARN_ON(level == PG_LEVEL_4K);
1945 
1946 	parents->parent[level-2] = sp;
1947 
1948 	/* Also set up a sentinel.  Further entries in pvec are all
1949 	 * children of sp, so this element is never overwritten.
1950 	 */
1951 	parents->parent[level-1] = NULL;
1952 	return mmu_pages_next(pvec, parents, 0);
1953 }
1954 
1955 static void mmu_pages_clear_parents(struct mmu_page_path *parents)
1956 {
1957 	struct kvm_mmu_page *sp;
1958 	unsigned int level = 0;
1959 
1960 	do {
1961 		unsigned int idx = parents->idx[level];
1962 		sp = parents->parent[level];
1963 		if (!sp)
1964 			return;
1965 
1966 		WARN_ON(idx == INVALID_INDEX);
1967 		clear_unsync_child_bit(sp, idx);
1968 		level++;
1969 	} while (!sp->unsync_children);
1970 }
1971 
1972 static void mmu_sync_children(struct kvm_vcpu *vcpu,
1973 			      struct kvm_mmu_page *parent)
1974 {
1975 	int i;
1976 	struct kvm_mmu_page *sp;
1977 	struct mmu_page_path parents;
1978 	struct kvm_mmu_pages pages;
1979 	LIST_HEAD(invalid_list);
1980 	bool flush = false;
1981 
1982 	while (mmu_unsync_walk(parent, &pages)) {
1983 		bool protected = false;
1984 
1985 		for_each_sp(pages, sp, parents, i)
1986 			protected |= rmap_write_protect(vcpu, sp->gfn);
1987 
1988 		if (protected) {
1989 			kvm_flush_remote_tlbs(vcpu->kvm);
1990 			flush = false;
1991 		}
1992 
1993 		for_each_sp(pages, sp, parents, i) {
1994 			kvm_unlink_unsync_page(vcpu->kvm, sp);
1995 			flush |= kvm_sync_page(vcpu, sp, &invalid_list);
1996 			mmu_pages_clear_parents(&parents);
1997 		}
1998 		if (need_resched() || rwlock_needbreak(&vcpu->kvm->mmu_lock)) {
1999 			kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2000 			cond_resched_rwlock_write(&vcpu->kvm->mmu_lock);
2001 			flush = false;
2002 		}
2003 	}
2004 
2005 	kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2006 }
2007 
2008 static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
2009 {
2010 	atomic_set(&sp->write_flooding_count,  0);
2011 }
2012 
2013 static void clear_sp_write_flooding_count(u64 *spte)
2014 {
2015 	__clear_sp_write_flooding_count(sptep_to_sp(spte));
2016 }
2017 
2018 static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
2019 					     gfn_t gfn,
2020 					     gva_t gaddr,
2021 					     unsigned level,
2022 					     int direct,
2023 					     unsigned int access)
2024 {
2025 	bool direct_mmu = vcpu->arch.mmu->direct_map;
2026 	union kvm_mmu_page_role role;
2027 	struct hlist_head *sp_list;
2028 	unsigned quadrant;
2029 	struct kvm_mmu_page *sp;
2030 	int collisions = 0;
2031 	LIST_HEAD(invalid_list);
2032 
2033 	role = vcpu->arch.mmu->mmu_role.base;
2034 	role.level = level;
2035 	role.direct = direct;
2036 	if (role.direct)
2037 		role.gpte_is_8_bytes = true;
2038 	role.access = access;
2039 	if (!direct_mmu && vcpu->arch.mmu->root_level <= PT32_ROOT_LEVEL) {
2040 		quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
2041 		quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
2042 		role.quadrant = quadrant;
2043 	}
2044 
2045 	sp_list = &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)];
2046 	for_each_valid_sp(vcpu->kvm, sp, sp_list) {
2047 		if (sp->gfn != gfn) {
2048 			collisions++;
2049 			continue;
2050 		}
2051 
2052 		if (sp->role.word != role.word) {
2053 			/*
2054 			 * If the guest is creating an upper-level page, zap
2055 			 * unsync pages for the same gfn.  While it's possible
2056 			 * the guest is using recursive page tables, in all
2057 			 * likelihood the guest has stopped using the unsync
2058 			 * page and is installing a completely unrelated page.
2059 			 * Unsync pages must not be left as is, because the new
2060 			 * upper-level page will be write-protected.
2061 			 */
2062 			if (level > PG_LEVEL_4K && sp->unsync)
2063 				kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
2064 							 &invalid_list);
2065 			continue;
2066 		}
2067 
2068 		if (direct_mmu)
2069 			goto trace_get_page;
2070 
2071 		if (sp->unsync) {
2072 			/*
2073 			 * The page is good, but is stale.  kvm_sync_page does
2074 			 * get the latest guest state, but (unlike mmu_unsync_children)
2075 			 * it doesn't write-protect the page or mark it synchronized!
2076 			 * This way the validity of the mapping is ensured, but the
2077 			 * overhead of write protection is not incurred until the
2078 			 * guest invalidates the TLB mapping.  This allows multiple
2079 			 * SPs for a single gfn to be unsync.
2080 			 *
2081 			 * If the sync fails, the page is zapped.  If so, break
2082 			 * in order to rebuild it.
2083 			 */
2084 			if (!kvm_sync_page(vcpu, sp, &invalid_list))
2085 				break;
2086 
2087 			WARN_ON(!list_empty(&invalid_list));
2088 			kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
2089 		}
2090 
2091 		if (sp->unsync_children)
2092 			kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
2093 
2094 		__clear_sp_write_flooding_count(sp);
2095 
2096 trace_get_page:
2097 		trace_kvm_mmu_get_page(sp, false);
2098 		goto out;
2099 	}
2100 
2101 	++vcpu->kvm->stat.mmu_cache_miss;
2102 
2103 	sp = kvm_mmu_alloc_page(vcpu, direct);
2104 
2105 	sp->gfn = gfn;
2106 	sp->role = role;
2107 	hlist_add_head(&sp->hash_link, sp_list);
2108 	if (!direct) {
2109 		account_shadowed(vcpu->kvm, sp);
2110 		if (level == PG_LEVEL_4K && rmap_write_protect(vcpu, gfn))
2111 			kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn, 1);
2112 	}
2113 	trace_kvm_mmu_get_page(sp, true);
2114 out:
2115 	kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2116 
2117 	if (collisions > vcpu->kvm->stat.max_mmu_page_hash_collisions)
2118 		vcpu->kvm->stat.max_mmu_page_hash_collisions = collisions;
2119 	return sp;
2120 }
2121 
2122 static void shadow_walk_init_using_root(struct kvm_shadow_walk_iterator *iterator,
2123 					struct kvm_vcpu *vcpu, hpa_t root,
2124 					u64 addr)
2125 {
2126 	iterator->addr = addr;
2127 	iterator->shadow_addr = root;
2128 	iterator->level = vcpu->arch.mmu->shadow_root_level;
2129 
2130 	if (iterator->level == PT64_ROOT_4LEVEL &&
2131 	    vcpu->arch.mmu->root_level < PT64_ROOT_4LEVEL &&
2132 	    !vcpu->arch.mmu->direct_map)
2133 		--iterator->level;
2134 
2135 	if (iterator->level == PT32E_ROOT_LEVEL) {
2136 		/*
2137 		 * prev_root is currently only used for 64-bit hosts. So only
2138 		 * the active root_hpa is valid here.
2139 		 */
2140 		BUG_ON(root != vcpu->arch.mmu->root_hpa);
2141 
2142 		iterator->shadow_addr
2143 			= vcpu->arch.mmu->pae_root[(addr >> 30) & 3];
2144 		iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
2145 		--iterator->level;
2146 		if (!iterator->shadow_addr)
2147 			iterator->level = 0;
2148 	}
2149 }
2150 
2151 static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
2152 			     struct kvm_vcpu *vcpu, u64 addr)
2153 {
2154 	shadow_walk_init_using_root(iterator, vcpu, vcpu->arch.mmu->root_hpa,
2155 				    addr);
2156 }
2157 
2158 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
2159 {
2160 	if (iterator->level < PG_LEVEL_4K)
2161 		return false;
2162 
2163 	iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
2164 	iterator->sptep	= ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
2165 	return true;
2166 }
2167 
2168 static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
2169 			       u64 spte)
2170 {
2171 	if (is_last_spte(spte, iterator->level)) {
2172 		iterator->level = 0;
2173 		return;
2174 	}
2175 
2176 	iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2177 	--iterator->level;
2178 }
2179 
2180 static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
2181 {
2182 	__shadow_walk_next(iterator, *iterator->sptep);
2183 }
2184 
2185 static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep,
2186 			     struct kvm_mmu_page *sp)
2187 {
2188 	u64 spte;
2189 
2190 	BUILD_BUG_ON(VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);
2191 
2192 	spte = make_nonleaf_spte(sp->spt, sp_ad_disabled(sp));
2193 
2194 	mmu_spte_set(sptep, spte);
2195 
2196 	mmu_page_add_parent_pte(vcpu, sp, sptep);
2197 
2198 	if (sp->unsync_children || sp->unsync)
2199 		mark_unsync(sptep);
2200 }
2201 
2202 static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2203 				   unsigned direct_access)
2204 {
2205 	if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
2206 		struct kvm_mmu_page *child;
2207 
2208 		/*
2209 		 * For the direct sp, if the guest pte's dirty bit
2210 		 * changed form clean to dirty, it will corrupt the
2211 		 * sp's access: allow writable in the read-only sp,
2212 		 * so we should update the spte at this point to get
2213 		 * a new sp with the correct access.
2214 		 */
2215 		child = to_shadow_page(*sptep & PT64_BASE_ADDR_MASK);
2216 		if (child->role.access == direct_access)
2217 			return;
2218 
2219 		drop_parent_pte(child, sptep);
2220 		kvm_flush_remote_tlbs_with_address(vcpu->kvm, child->gfn, 1);
2221 	}
2222 }
2223 
2224 /* Returns the number of zapped non-leaf child shadow pages. */
2225 static int mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
2226 			    u64 *spte, struct list_head *invalid_list)
2227 {
2228 	u64 pte;
2229 	struct kvm_mmu_page *child;
2230 
2231 	pte = *spte;
2232 	if (is_shadow_present_pte(pte)) {
2233 		if (is_last_spte(pte, sp->role.level)) {
2234 			drop_spte(kvm, spte);
2235 			if (is_large_pte(pte))
2236 				--kvm->stat.lpages;
2237 		} else {
2238 			child = to_shadow_page(pte & PT64_BASE_ADDR_MASK);
2239 			drop_parent_pte(child, spte);
2240 
2241 			/*
2242 			 * Recursively zap nested TDP SPs, parentless SPs are
2243 			 * unlikely to be used again in the near future.  This
2244 			 * avoids retaining a large number of stale nested SPs.
2245 			 */
2246 			if (tdp_enabled && invalid_list &&
2247 			    child->role.guest_mode && !child->parent_ptes.val)
2248 				return kvm_mmu_prepare_zap_page(kvm, child,
2249 								invalid_list);
2250 		}
2251 	} else if (is_mmio_spte(pte)) {
2252 		mmu_spte_clear_no_track(spte);
2253 	}
2254 	return 0;
2255 }
2256 
2257 static int kvm_mmu_page_unlink_children(struct kvm *kvm,
2258 					struct kvm_mmu_page *sp,
2259 					struct list_head *invalid_list)
2260 {
2261 	int zapped = 0;
2262 	unsigned i;
2263 
2264 	for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2265 		zapped += mmu_page_zap_pte(kvm, sp, sp->spt + i, invalid_list);
2266 
2267 	return zapped;
2268 }
2269 
2270 static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
2271 {
2272 	u64 *sptep;
2273 	struct rmap_iterator iter;
2274 
2275 	while ((sptep = rmap_get_first(&sp->parent_ptes, &iter)))
2276 		drop_parent_pte(sp, sptep);
2277 }
2278 
2279 static int mmu_zap_unsync_children(struct kvm *kvm,
2280 				   struct kvm_mmu_page *parent,
2281 				   struct list_head *invalid_list)
2282 {
2283 	int i, zapped = 0;
2284 	struct mmu_page_path parents;
2285 	struct kvm_mmu_pages pages;
2286 
2287 	if (parent->role.level == PG_LEVEL_4K)
2288 		return 0;
2289 
2290 	while (mmu_unsync_walk(parent, &pages)) {
2291 		struct kvm_mmu_page *sp;
2292 
2293 		for_each_sp(pages, sp, parents, i) {
2294 			kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2295 			mmu_pages_clear_parents(&parents);
2296 			zapped++;
2297 		}
2298 	}
2299 
2300 	return zapped;
2301 }
2302 
2303 static bool __kvm_mmu_prepare_zap_page(struct kvm *kvm,
2304 				       struct kvm_mmu_page *sp,
2305 				       struct list_head *invalid_list,
2306 				       int *nr_zapped)
2307 {
2308 	bool list_unstable;
2309 
2310 	trace_kvm_mmu_prepare_zap_page(sp);
2311 	++kvm->stat.mmu_shadow_zapped;
2312 	*nr_zapped = mmu_zap_unsync_children(kvm, sp, invalid_list);
2313 	*nr_zapped += kvm_mmu_page_unlink_children(kvm, sp, invalid_list);
2314 	kvm_mmu_unlink_parents(kvm, sp);
2315 
2316 	/* Zapping children means active_mmu_pages has become unstable. */
2317 	list_unstable = *nr_zapped;
2318 
2319 	if (!sp->role.invalid && !sp->role.direct)
2320 		unaccount_shadowed(kvm, sp);
2321 
2322 	if (sp->unsync)
2323 		kvm_unlink_unsync_page(kvm, sp);
2324 	if (!sp->root_count) {
2325 		/* Count self */
2326 		(*nr_zapped)++;
2327 
2328 		/*
2329 		 * Already invalid pages (previously active roots) are not on
2330 		 * the active page list.  See list_del() in the "else" case of
2331 		 * !sp->root_count.
2332 		 */
2333 		if (sp->role.invalid)
2334 			list_add(&sp->link, invalid_list);
2335 		else
2336 			list_move(&sp->link, invalid_list);
2337 		kvm_mod_used_mmu_pages(kvm, -1);
2338 	} else {
2339 		/*
2340 		 * Remove the active root from the active page list, the root
2341 		 * will be explicitly freed when the root_count hits zero.
2342 		 */
2343 		list_del(&sp->link);
2344 
2345 		/*
2346 		 * Obsolete pages cannot be used on any vCPUs, see the comment
2347 		 * in kvm_mmu_zap_all_fast().  Note, is_obsolete_sp() also
2348 		 * treats invalid shadow pages as being obsolete.
2349 		 */
2350 		if (!is_obsolete_sp(kvm, sp))
2351 			kvm_reload_remote_mmus(kvm);
2352 	}
2353 
2354 	if (sp->lpage_disallowed)
2355 		unaccount_huge_nx_page(kvm, sp);
2356 
2357 	sp->role.invalid = 1;
2358 	return list_unstable;
2359 }
2360 
2361 static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2362 				     struct list_head *invalid_list)
2363 {
2364 	int nr_zapped;
2365 
2366 	__kvm_mmu_prepare_zap_page(kvm, sp, invalid_list, &nr_zapped);
2367 	return nr_zapped;
2368 }
2369 
2370 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2371 				    struct list_head *invalid_list)
2372 {
2373 	struct kvm_mmu_page *sp, *nsp;
2374 
2375 	if (list_empty(invalid_list))
2376 		return;
2377 
2378 	/*
2379 	 * We need to make sure everyone sees our modifications to
2380 	 * the page tables and see changes to vcpu->mode here. The barrier
2381 	 * in the kvm_flush_remote_tlbs() achieves this. This pairs
2382 	 * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end.
2383 	 *
2384 	 * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit
2385 	 * guest mode and/or lockless shadow page table walks.
2386 	 */
2387 	kvm_flush_remote_tlbs(kvm);
2388 
2389 	list_for_each_entry_safe(sp, nsp, invalid_list, link) {
2390 		WARN_ON(!sp->role.invalid || sp->root_count);
2391 		kvm_mmu_free_page(sp);
2392 	}
2393 }
2394 
2395 static unsigned long kvm_mmu_zap_oldest_mmu_pages(struct kvm *kvm,
2396 						  unsigned long nr_to_zap)
2397 {
2398 	unsigned long total_zapped = 0;
2399 	struct kvm_mmu_page *sp, *tmp;
2400 	LIST_HEAD(invalid_list);
2401 	bool unstable;
2402 	int nr_zapped;
2403 
2404 	if (list_empty(&kvm->arch.active_mmu_pages))
2405 		return 0;
2406 
2407 restart:
2408 	list_for_each_entry_safe_reverse(sp, tmp, &kvm->arch.active_mmu_pages, link) {
2409 		/*
2410 		 * Don't zap active root pages, the page itself can't be freed
2411 		 * and zapping it will just force vCPUs to realloc and reload.
2412 		 */
2413 		if (sp->root_count)
2414 			continue;
2415 
2416 		unstable = __kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list,
2417 						      &nr_zapped);
2418 		total_zapped += nr_zapped;
2419 		if (total_zapped >= nr_to_zap)
2420 			break;
2421 
2422 		if (unstable)
2423 			goto restart;
2424 	}
2425 
2426 	kvm_mmu_commit_zap_page(kvm, &invalid_list);
2427 
2428 	kvm->stat.mmu_recycled += total_zapped;
2429 	return total_zapped;
2430 }
2431 
2432 static inline unsigned long kvm_mmu_available_pages(struct kvm *kvm)
2433 {
2434 	if (kvm->arch.n_max_mmu_pages > kvm->arch.n_used_mmu_pages)
2435 		return kvm->arch.n_max_mmu_pages -
2436 			kvm->arch.n_used_mmu_pages;
2437 
2438 	return 0;
2439 }
2440 
2441 static int make_mmu_pages_available(struct kvm_vcpu *vcpu)
2442 {
2443 	unsigned long avail = kvm_mmu_available_pages(vcpu->kvm);
2444 
2445 	if (likely(avail >= KVM_MIN_FREE_MMU_PAGES))
2446 		return 0;
2447 
2448 	kvm_mmu_zap_oldest_mmu_pages(vcpu->kvm, KVM_REFILL_PAGES - avail);
2449 
2450 	/*
2451 	 * Note, this check is intentionally soft, it only guarantees that one
2452 	 * page is available, while the caller may end up allocating as many as
2453 	 * four pages, e.g. for PAE roots or for 5-level paging.  Temporarily
2454 	 * exceeding the (arbitrary by default) limit will not harm the host,
2455 	 * being too aggressive may unnecessarily kill the guest, and getting an
2456 	 * exact count is far more trouble than it's worth, especially in the
2457 	 * page fault paths.
2458 	 */
2459 	if (!kvm_mmu_available_pages(vcpu->kvm))
2460 		return -ENOSPC;
2461 	return 0;
2462 }
2463 
2464 /*
2465  * Changing the number of mmu pages allocated to the vm
2466  * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2467  */
2468 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long goal_nr_mmu_pages)
2469 {
2470 	write_lock(&kvm->mmu_lock);
2471 
2472 	if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2473 		kvm_mmu_zap_oldest_mmu_pages(kvm, kvm->arch.n_used_mmu_pages -
2474 						  goal_nr_mmu_pages);
2475 
2476 		goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2477 	}
2478 
2479 	kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2480 
2481 	write_unlock(&kvm->mmu_lock);
2482 }
2483 
2484 int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2485 {
2486 	struct kvm_mmu_page *sp;
2487 	LIST_HEAD(invalid_list);
2488 	int r;
2489 
2490 	pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
2491 	r = 0;
2492 	write_lock(&kvm->mmu_lock);
2493 	for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
2494 		pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
2495 			 sp->role.word);
2496 		r = 1;
2497 		kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2498 	}
2499 	kvm_mmu_commit_zap_page(kvm, &invalid_list);
2500 	write_unlock(&kvm->mmu_lock);
2501 
2502 	return r;
2503 }
2504 
2505 static int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
2506 {
2507 	gpa_t gpa;
2508 	int r;
2509 
2510 	if (vcpu->arch.mmu->direct_map)
2511 		return 0;
2512 
2513 	gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
2514 
2515 	r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
2516 
2517 	return r;
2518 }
2519 
2520 static void kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2521 {
2522 	trace_kvm_mmu_unsync_page(sp);
2523 	++vcpu->kvm->stat.mmu_unsync;
2524 	sp->unsync = 1;
2525 
2526 	kvm_mmu_mark_parents_unsync(sp);
2527 }
2528 
2529 /*
2530  * Attempt to unsync any shadow pages that can be reached by the specified gfn,
2531  * KVM is creating a writable mapping for said gfn.  Returns 0 if all pages
2532  * were marked unsync (or if there is no shadow page), -EPERM if the SPTE must
2533  * be write-protected.
2534  */
2535 int mmu_try_to_unsync_pages(struct kvm_vcpu *vcpu, gfn_t gfn, bool can_unsync)
2536 {
2537 	struct kvm_mmu_page *sp;
2538 	bool locked = false;
2539 
2540 	/*
2541 	 * Force write-protection if the page is being tracked.  Note, the page
2542 	 * track machinery is used to write-protect upper-level shadow pages,
2543 	 * i.e. this guards the role.level == 4K assertion below!
2544 	 */
2545 	if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
2546 		return -EPERM;
2547 
2548 	/*
2549 	 * The page is not write-tracked, mark existing shadow pages unsync
2550 	 * unless KVM is synchronizing an unsync SP (can_unsync = false).  In
2551 	 * that case, KVM must complete emulation of the guest TLB flush before
2552 	 * allowing shadow pages to become unsync (writable by the guest).
2553 	 */
2554 	for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
2555 		if (!can_unsync)
2556 			return -EPERM;
2557 
2558 		if (sp->unsync)
2559 			continue;
2560 
2561 		/*
2562 		 * TDP MMU page faults require an additional spinlock as they
2563 		 * run with mmu_lock held for read, not write, and the unsync
2564 		 * logic is not thread safe.  Take the spinklock regardless of
2565 		 * the MMU type to avoid extra conditionals/parameters, there's
2566 		 * no meaningful penalty if mmu_lock is held for write.
2567 		 */
2568 		if (!locked) {
2569 			locked = true;
2570 			spin_lock(&vcpu->kvm->arch.mmu_unsync_pages_lock);
2571 
2572 			/*
2573 			 * Recheck after taking the spinlock, a different vCPU
2574 			 * may have since marked the page unsync.  A false
2575 			 * positive on the unprotected check above is not
2576 			 * possible as clearing sp->unsync _must_ hold mmu_lock
2577 			 * for write, i.e. unsync cannot transition from 0->1
2578 			 * while this CPU holds mmu_lock for read (or write).
2579 			 */
2580 			if (READ_ONCE(sp->unsync))
2581 				continue;
2582 		}
2583 
2584 		WARN_ON(sp->role.level != PG_LEVEL_4K);
2585 		kvm_unsync_page(vcpu, sp);
2586 	}
2587 	if (locked)
2588 		spin_unlock(&vcpu->kvm->arch.mmu_unsync_pages_lock);
2589 
2590 	/*
2591 	 * We need to ensure that the marking of unsync pages is visible
2592 	 * before the SPTE is updated to allow writes because
2593 	 * kvm_mmu_sync_roots() checks the unsync flags without holding
2594 	 * the MMU lock and so can race with this. If the SPTE was updated
2595 	 * before the page had been marked as unsync-ed, something like the
2596 	 * following could happen:
2597 	 *
2598 	 * CPU 1                    CPU 2
2599 	 * ---------------------------------------------------------------------
2600 	 * 1.2 Host updates SPTE
2601 	 *     to be writable
2602 	 *                      2.1 Guest writes a GPTE for GVA X.
2603 	 *                          (GPTE being in the guest page table shadowed
2604 	 *                           by the SP from CPU 1.)
2605 	 *                          This reads SPTE during the page table walk.
2606 	 *                          Since SPTE.W is read as 1, there is no
2607 	 *                          fault.
2608 	 *
2609 	 *                      2.2 Guest issues TLB flush.
2610 	 *                          That causes a VM Exit.
2611 	 *
2612 	 *                      2.3 Walking of unsync pages sees sp->unsync is
2613 	 *                          false and skips the page.
2614 	 *
2615 	 *                      2.4 Guest accesses GVA X.
2616 	 *                          Since the mapping in the SP was not updated,
2617 	 *                          so the old mapping for GVA X incorrectly
2618 	 *                          gets used.
2619 	 * 1.1 Host marks SP
2620 	 *     as unsync
2621 	 *     (sp->unsync = true)
2622 	 *
2623 	 * The write barrier below ensures that 1.1 happens before 1.2 and thus
2624 	 * the situation in 2.4 does not arise. The implicit barrier in 2.2
2625 	 * pairs with this write barrier.
2626 	 */
2627 	smp_wmb();
2628 
2629 	return 0;
2630 }
2631 
2632 static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2633 		    unsigned int pte_access, int level,
2634 		    gfn_t gfn, kvm_pfn_t pfn, bool speculative,
2635 		    bool can_unsync, bool host_writable)
2636 {
2637 	u64 spte;
2638 	struct kvm_mmu_page *sp;
2639 	int ret;
2640 
2641 	sp = sptep_to_sp(sptep);
2642 
2643 	ret = make_spte(vcpu, pte_access, level, gfn, pfn, *sptep, speculative,
2644 			can_unsync, host_writable, sp_ad_disabled(sp), &spte);
2645 
2646 	if (spte & PT_WRITABLE_MASK)
2647 		kvm_vcpu_mark_page_dirty(vcpu, gfn);
2648 
2649 	if (*sptep == spte)
2650 		ret |= SET_SPTE_SPURIOUS;
2651 	else if (mmu_spte_update(sptep, spte))
2652 		ret |= SET_SPTE_NEED_REMOTE_TLB_FLUSH;
2653 	return ret;
2654 }
2655 
2656 static int mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2657 			unsigned int pte_access, bool write_fault, int level,
2658 			gfn_t gfn, kvm_pfn_t pfn, bool speculative,
2659 			bool host_writable)
2660 {
2661 	int was_rmapped = 0;
2662 	int rmap_count;
2663 	int set_spte_ret;
2664 	int ret = RET_PF_FIXED;
2665 	bool flush = false;
2666 
2667 	pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
2668 		 *sptep, write_fault, gfn);
2669 
2670 	if (unlikely(is_noslot_pfn(pfn))) {
2671 		mark_mmio_spte(vcpu, sptep, gfn, pte_access);
2672 		return RET_PF_EMULATE;
2673 	}
2674 
2675 	if (is_shadow_present_pte(*sptep)) {
2676 		/*
2677 		 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2678 		 * the parent of the now unreachable PTE.
2679 		 */
2680 		if (level > PG_LEVEL_4K && !is_large_pte(*sptep)) {
2681 			struct kvm_mmu_page *child;
2682 			u64 pte = *sptep;
2683 
2684 			child = to_shadow_page(pte & PT64_BASE_ADDR_MASK);
2685 			drop_parent_pte(child, sptep);
2686 			flush = true;
2687 		} else if (pfn != spte_to_pfn(*sptep)) {
2688 			pgprintk("hfn old %llx new %llx\n",
2689 				 spte_to_pfn(*sptep), pfn);
2690 			drop_spte(vcpu->kvm, sptep);
2691 			flush = true;
2692 		} else
2693 			was_rmapped = 1;
2694 	}
2695 
2696 	set_spte_ret = set_spte(vcpu, sptep, pte_access, level, gfn, pfn,
2697 				speculative, true, host_writable);
2698 	if (set_spte_ret & SET_SPTE_WRITE_PROTECTED_PT) {
2699 		if (write_fault)
2700 			ret = RET_PF_EMULATE;
2701 		kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
2702 	}
2703 
2704 	if (set_spte_ret & SET_SPTE_NEED_REMOTE_TLB_FLUSH || flush)
2705 		kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn,
2706 				KVM_PAGES_PER_HPAGE(level));
2707 
2708 	/*
2709 	 * The fault is fully spurious if and only if the new SPTE and old SPTE
2710 	 * are identical, and emulation is not required.
2711 	 */
2712 	if ((set_spte_ret & SET_SPTE_SPURIOUS) && ret == RET_PF_FIXED) {
2713 		WARN_ON_ONCE(!was_rmapped);
2714 		return RET_PF_SPURIOUS;
2715 	}
2716 
2717 	pgprintk("%s: setting spte %llx\n", __func__, *sptep);
2718 	trace_kvm_mmu_set_spte(level, gfn, sptep);
2719 	if (!was_rmapped && is_large_pte(*sptep))
2720 		++vcpu->kvm->stat.lpages;
2721 
2722 	if (is_shadow_present_pte(*sptep)) {
2723 		if (!was_rmapped) {
2724 			rmap_count = rmap_add(vcpu, sptep, gfn);
2725 			if (rmap_count > RMAP_RECYCLE_THRESHOLD)
2726 				rmap_recycle(vcpu, sptep, gfn);
2727 		}
2728 	}
2729 
2730 	return ret;
2731 }
2732 
2733 static kvm_pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
2734 				     bool no_dirty_log)
2735 {
2736 	struct kvm_memory_slot *slot;
2737 
2738 	slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
2739 	if (!slot)
2740 		return KVM_PFN_ERR_FAULT;
2741 
2742 	return gfn_to_pfn_memslot_atomic(slot, gfn);
2743 }
2744 
2745 static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2746 				    struct kvm_mmu_page *sp,
2747 				    u64 *start, u64 *end)
2748 {
2749 	struct page *pages[PTE_PREFETCH_NUM];
2750 	struct kvm_memory_slot *slot;
2751 	unsigned int access = sp->role.access;
2752 	int i, ret;
2753 	gfn_t gfn;
2754 
2755 	gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
2756 	slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK);
2757 	if (!slot)
2758 		return -1;
2759 
2760 	ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start);
2761 	if (ret <= 0)
2762 		return -1;
2763 
2764 	for (i = 0; i < ret; i++, gfn++, start++) {
2765 		mmu_set_spte(vcpu, start, access, false, sp->role.level, gfn,
2766 			     page_to_pfn(pages[i]), true, true);
2767 		put_page(pages[i]);
2768 	}
2769 
2770 	return 0;
2771 }
2772 
2773 static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
2774 				  struct kvm_mmu_page *sp, u64 *sptep)
2775 {
2776 	u64 *spte, *start = NULL;
2777 	int i;
2778 
2779 	WARN_ON(!sp->role.direct);
2780 
2781 	i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
2782 	spte = sp->spt + i;
2783 
2784 	for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
2785 		if (is_shadow_present_pte(*spte) || spte == sptep) {
2786 			if (!start)
2787 				continue;
2788 			if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2789 				break;
2790 			start = NULL;
2791 		} else if (!start)
2792 			start = spte;
2793 	}
2794 }
2795 
2796 static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
2797 {
2798 	struct kvm_mmu_page *sp;
2799 
2800 	sp = sptep_to_sp(sptep);
2801 
2802 	/*
2803 	 * Without accessed bits, there's no way to distinguish between
2804 	 * actually accessed translations and prefetched, so disable pte
2805 	 * prefetch if accessed bits aren't available.
2806 	 */
2807 	if (sp_ad_disabled(sp))
2808 		return;
2809 
2810 	if (sp->role.level > PG_LEVEL_4K)
2811 		return;
2812 
2813 	/*
2814 	 * If addresses are being invalidated, skip prefetching to avoid
2815 	 * accidentally prefetching those addresses.
2816 	 */
2817 	if (unlikely(vcpu->kvm->mmu_notifier_count))
2818 		return;
2819 
2820 	__direct_pte_prefetch(vcpu, sp, sptep);
2821 }
2822 
2823 static int host_pfn_mapping_level(struct kvm *kvm, gfn_t gfn, kvm_pfn_t pfn,
2824 				  const struct kvm_memory_slot *slot)
2825 {
2826 	unsigned long hva;
2827 	pte_t *pte;
2828 	int level;
2829 
2830 	if (!PageCompound(pfn_to_page(pfn)) && !kvm_is_zone_device_pfn(pfn))
2831 		return PG_LEVEL_4K;
2832 
2833 	/*
2834 	 * Note, using the already-retrieved memslot and __gfn_to_hva_memslot()
2835 	 * is not solely for performance, it's also necessary to avoid the
2836 	 * "writable" check in __gfn_to_hva_many(), which will always fail on
2837 	 * read-only memslots due to gfn_to_hva() assuming writes.  Earlier
2838 	 * page fault steps have already verified the guest isn't writing a
2839 	 * read-only memslot.
2840 	 */
2841 	hva = __gfn_to_hva_memslot(slot, gfn);
2842 
2843 	pte = lookup_address_in_mm(kvm->mm, hva, &level);
2844 	if (unlikely(!pte))
2845 		return PG_LEVEL_4K;
2846 
2847 	return level;
2848 }
2849 
2850 int kvm_mmu_max_mapping_level(struct kvm *kvm,
2851 			      const struct kvm_memory_slot *slot, gfn_t gfn,
2852 			      kvm_pfn_t pfn, int max_level)
2853 {
2854 	struct kvm_lpage_info *linfo;
2855 
2856 	max_level = min(max_level, max_huge_page_level);
2857 	for ( ; max_level > PG_LEVEL_4K; max_level--) {
2858 		linfo = lpage_info_slot(gfn, slot, max_level);
2859 		if (!linfo->disallow_lpage)
2860 			break;
2861 	}
2862 
2863 	if (max_level == PG_LEVEL_4K)
2864 		return PG_LEVEL_4K;
2865 
2866 	return host_pfn_mapping_level(kvm, gfn, pfn, slot);
2867 }
2868 
2869 int kvm_mmu_hugepage_adjust(struct kvm_vcpu *vcpu, gfn_t gfn,
2870 			    int max_level, kvm_pfn_t *pfnp,
2871 			    bool huge_page_disallowed, int *req_level)
2872 {
2873 	struct kvm_memory_slot *slot;
2874 	kvm_pfn_t pfn = *pfnp;
2875 	kvm_pfn_t mask;
2876 	int level;
2877 
2878 	*req_level = PG_LEVEL_4K;
2879 
2880 	if (unlikely(max_level == PG_LEVEL_4K))
2881 		return PG_LEVEL_4K;
2882 
2883 	if (is_error_noslot_pfn(pfn) || kvm_is_reserved_pfn(pfn))
2884 		return PG_LEVEL_4K;
2885 
2886 	slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, true);
2887 	if (!slot)
2888 		return PG_LEVEL_4K;
2889 
2890 	level = kvm_mmu_max_mapping_level(vcpu->kvm, slot, gfn, pfn, max_level);
2891 	if (level == PG_LEVEL_4K)
2892 		return level;
2893 
2894 	*req_level = level = min(level, max_level);
2895 
2896 	/*
2897 	 * Enforce the iTLB multihit workaround after capturing the requested
2898 	 * level, which will be used to do precise, accurate accounting.
2899 	 */
2900 	if (huge_page_disallowed)
2901 		return PG_LEVEL_4K;
2902 
2903 	/*
2904 	 * mmu_notifier_retry() was successful and mmu_lock is held, so
2905 	 * the pmd can't be split from under us.
2906 	 */
2907 	mask = KVM_PAGES_PER_HPAGE(level) - 1;
2908 	VM_BUG_ON((gfn & mask) != (pfn & mask));
2909 	*pfnp = pfn & ~mask;
2910 
2911 	return level;
2912 }
2913 
2914 void disallowed_hugepage_adjust(u64 spte, gfn_t gfn, int cur_level,
2915 				kvm_pfn_t *pfnp, int *goal_levelp)
2916 {
2917 	int level = *goal_levelp;
2918 
2919 	if (cur_level == level && level > PG_LEVEL_4K &&
2920 	    is_shadow_present_pte(spte) &&
2921 	    !is_large_pte(spte)) {
2922 		/*
2923 		 * A small SPTE exists for this pfn, but FNAME(fetch)
2924 		 * and __direct_map would like to create a large PTE
2925 		 * instead: just force them to go down another level,
2926 		 * patching back for them into pfn the next 9 bits of
2927 		 * the address.
2928 		 */
2929 		u64 page_mask = KVM_PAGES_PER_HPAGE(level) -
2930 				KVM_PAGES_PER_HPAGE(level - 1);
2931 		*pfnp |= gfn & page_mask;
2932 		(*goal_levelp)--;
2933 	}
2934 }
2935 
2936 static int __direct_map(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
2937 			int map_writable, int max_level, kvm_pfn_t pfn,
2938 			bool prefault, bool is_tdp)
2939 {
2940 	bool nx_huge_page_workaround_enabled = is_nx_huge_page_enabled();
2941 	bool write = error_code & PFERR_WRITE_MASK;
2942 	bool exec = error_code & PFERR_FETCH_MASK;
2943 	bool huge_page_disallowed = exec && nx_huge_page_workaround_enabled;
2944 	struct kvm_shadow_walk_iterator it;
2945 	struct kvm_mmu_page *sp;
2946 	int level, req_level, ret;
2947 	gfn_t gfn = gpa >> PAGE_SHIFT;
2948 	gfn_t base_gfn = gfn;
2949 
2950 	level = kvm_mmu_hugepage_adjust(vcpu, gfn, max_level, &pfn,
2951 					huge_page_disallowed, &req_level);
2952 
2953 	trace_kvm_mmu_spte_requested(gpa, level, pfn);
2954 	for_each_shadow_entry(vcpu, gpa, it) {
2955 		/*
2956 		 * We cannot overwrite existing page tables with an NX
2957 		 * large page, as the leaf could be executable.
2958 		 */
2959 		if (nx_huge_page_workaround_enabled)
2960 			disallowed_hugepage_adjust(*it.sptep, gfn, it.level,
2961 						   &pfn, &level);
2962 
2963 		base_gfn = gfn & ~(KVM_PAGES_PER_HPAGE(it.level) - 1);
2964 		if (it.level == level)
2965 			break;
2966 
2967 		drop_large_spte(vcpu, it.sptep);
2968 		if (!is_shadow_present_pte(*it.sptep)) {
2969 			sp = kvm_mmu_get_page(vcpu, base_gfn, it.addr,
2970 					      it.level - 1, true, ACC_ALL);
2971 
2972 			link_shadow_page(vcpu, it.sptep, sp);
2973 			if (is_tdp && huge_page_disallowed &&
2974 			    req_level >= it.level)
2975 				account_huge_nx_page(vcpu->kvm, sp);
2976 		}
2977 	}
2978 
2979 	ret = mmu_set_spte(vcpu, it.sptep, ACC_ALL,
2980 			   write, level, base_gfn, pfn, prefault,
2981 			   map_writable);
2982 	if (ret == RET_PF_SPURIOUS)
2983 		return ret;
2984 
2985 	direct_pte_prefetch(vcpu, it.sptep);
2986 	++vcpu->stat.pf_fixed;
2987 	return ret;
2988 }
2989 
2990 static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
2991 {
2992 	send_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, PAGE_SHIFT, tsk);
2993 }
2994 
2995 static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, kvm_pfn_t pfn)
2996 {
2997 	/*
2998 	 * Do not cache the mmio info caused by writing the readonly gfn
2999 	 * into the spte otherwise read access on readonly gfn also can
3000 	 * caused mmio page fault and treat it as mmio access.
3001 	 */
3002 	if (pfn == KVM_PFN_ERR_RO_FAULT)
3003 		return RET_PF_EMULATE;
3004 
3005 	if (pfn == KVM_PFN_ERR_HWPOISON) {
3006 		kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current);
3007 		return RET_PF_RETRY;
3008 	}
3009 
3010 	return -EFAULT;
3011 }
3012 
3013 static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
3014 				kvm_pfn_t pfn, unsigned int access,
3015 				int *ret_val)
3016 {
3017 	/* The pfn is invalid, report the error! */
3018 	if (unlikely(is_error_pfn(pfn))) {
3019 		*ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
3020 		return true;
3021 	}
3022 
3023 	if (unlikely(is_noslot_pfn(pfn))) {
3024 		vcpu_cache_mmio_info(vcpu, gva, gfn,
3025 				     access & shadow_mmio_access_mask);
3026 		/*
3027 		 * If MMIO caching is disabled, emulate immediately without
3028 		 * touching the shadow page tables as attempting to install an
3029 		 * MMIO SPTE will just be an expensive nop.
3030 		 */
3031 		if (unlikely(!shadow_mmio_value)) {
3032 			*ret_val = RET_PF_EMULATE;
3033 			return true;
3034 		}
3035 	}
3036 
3037 	return false;
3038 }
3039 
3040 static bool page_fault_can_be_fast(u32 error_code)
3041 {
3042 	/*
3043 	 * Do not fix the mmio spte with invalid generation number which
3044 	 * need to be updated by slow page fault path.
3045 	 */
3046 	if (unlikely(error_code & PFERR_RSVD_MASK))
3047 		return false;
3048 
3049 	/* See if the page fault is due to an NX violation */
3050 	if (unlikely(((error_code & (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))
3051 		      == (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))))
3052 		return false;
3053 
3054 	/*
3055 	 * #PF can be fast if:
3056 	 * 1. The shadow page table entry is not present, which could mean that
3057 	 *    the fault is potentially caused by access tracking (if enabled).
3058 	 * 2. The shadow page table entry is present and the fault
3059 	 *    is caused by write-protect, that means we just need change the W
3060 	 *    bit of the spte which can be done out of mmu-lock.
3061 	 *
3062 	 * However, if access tracking is disabled we know that a non-present
3063 	 * page must be a genuine page fault where we have to create a new SPTE.
3064 	 * So, if access tracking is disabled, we return true only for write
3065 	 * accesses to a present page.
3066 	 */
3067 
3068 	return shadow_acc_track_mask != 0 ||
3069 	       ((error_code & (PFERR_WRITE_MASK | PFERR_PRESENT_MASK))
3070 		== (PFERR_WRITE_MASK | PFERR_PRESENT_MASK));
3071 }
3072 
3073 /*
3074  * Returns true if the SPTE was fixed successfully. Otherwise,
3075  * someone else modified the SPTE from its original value.
3076  */
3077 static bool
3078 fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
3079 			u64 *sptep, u64 old_spte, u64 new_spte)
3080 {
3081 	gfn_t gfn;
3082 
3083 	WARN_ON(!sp->role.direct);
3084 
3085 	/*
3086 	 * Theoretically we could also set dirty bit (and flush TLB) here in
3087 	 * order to eliminate unnecessary PML logging. See comments in
3088 	 * set_spte. But fast_page_fault is very unlikely to happen with PML
3089 	 * enabled, so we do not do this. This might result in the same GPA
3090 	 * to be logged in PML buffer again when the write really happens, and
3091 	 * eventually to be called by mark_page_dirty twice. But it's also no
3092 	 * harm. This also avoids the TLB flush needed after setting dirty bit
3093 	 * so non-PML cases won't be impacted.
3094 	 *
3095 	 * Compare with set_spte where instead shadow_dirty_mask is set.
3096 	 */
3097 	if (cmpxchg64(sptep, old_spte, new_spte) != old_spte)
3098 		return false;
3099 
3100 	if (is_writable_pte(new_spte) && !is_writable_pte(old_spte)) {
3101 		/*
3102 		 * The gfn of direct spte is stable since it is
3103 		 * calculated by sp->gfn.
3104 		 */
3105 		gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
3106 		kvm_vcpu_mark_page_dirty(vcpu, gfn);
3107 	}
3108 
3109 	return true;
3110 }
3111 
3112 static bool is_access_allowed(u32 fault_err_code, u64 spte)
3113 {
3114 	if (fault_err_code & PFERR_FETCH_MASK)
3115 		return is_executable_pte(spte);
3116 
3117 	if (fault_err_code & PFERR_WRITE_MASK)
3118 		return is_writable_pte(spte);
3119 
3120 	/* Fault was on Read access */
3121 	return spte & PT_PRESENT_MASK;
3122 }
3123 
3124 /*
3125  * Returns one of RET_PF_INVALID, RET_PF_FIXED or RET_PF_SPURIOUS.
3126  */
3127 static int fast_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
3128 			   u32 error_code)
3129 {
3130 	struct kvm_shadow_walk_iterator iterator;
3131 	struct kvm_mmu_page *sp;
3132 	int ret = RET_PF_INVALID;
3133 	u64 spte = 0ull;
3134 	uint retry_count = 0;
3135 
3136 	if (!page_fault_can_be_fast(error_code))
3137 		return ret;
3138 
3139 	walk_shadow_page_lockless_begin(vcpu);
3140 
3141 	do {
3142 		u64 new_spte;
3143 
3144 		for_each_shadow_entry_lockless(vcpu, cr2_or_gpa, iterator, spte)
3145 			if (!is_shadow_present_pte(spte))
3146 				break;
3147 
3148 		if (!is_shadow_present_pte(spte))
3149 			break;
3150 
3151 		sp = sptep_to_sp(iterator.sptep);
3152 		if (!is_last_spte(spte, sp->role.level))
3153 			break;
3154 
3155 		/*
3156 		 * Check whether the memory access that caused the fault would
3157 		 * still cause it if it were to be performed right now. If not,
3158 		 * then this is a spurious fault caused by TLB lazily flushed,
3159 		 * or some other CPU has already fixed the PTE after the
3160 		 * current CPU took the fault.
3161 		 *
3162 		 * Need not check the access of upper level table entries since
3163 		 * they are always ACC_ALL.
3164 		 */
3165 		if (is_access_allowed(error_code, spte)) {
3166 			ret = RET_PF_SPURIOUS;
3167 			break;
3168 		}
3169 
3170 		new_spte = spte;
3171 
3172 		if (is_access_track_spte(spte))
3173 			new_spte = restore_acc_track_spte(new_spte);
3174 
3175 		/*
3176 		 * Currently, to simplify the code, write-protection can
3177 		 * be removed in the fast path only if the SPTE was
3178 		 * write-protected for dirty-logging or access tracking.
3179 		 */
3180 		if ((error_code & PFERR_WRITE_MASK) &&
3181 		    spte_can_locklessly_be_made_writable(spte)) {
3182 			new_spte |= PT_WRITABLE_MASK;
3183 
3184 			/*
3185 			 * Do not fix write-permission on the large spte.  Since
3186 			 * we only dirty the first page into the dirty-bitmap in
3187 			 * fast_pf_fix_direct_spte(), other pages are missed
3188 			 * if its slot has dirty logging enabled.
3189 			 *
3190 			 * Instead, we let the slow page fault path create a
3191 			 * normal spte to fix the access.
3192 			 *
3193 			 * See the comments in kvm_arch_commit_memory_region().
3194 			 */
3195 			if (sp->role.level > PG_LEVEL_4K)
3196 				break;
3197 		}
3198 
3199 		/* Verify that the fault can be handled in the fast path */
3200 		if (new_spte == spte ||
3201 		    !is_access_allowed(error_code, new_spte))
3202 			break;
3203 
3204 		/*
3205 		 * Currently, fast page fault only works for direct mapping
3206 		 * since the gfn is not stable for indirect shadow page. See
3207 		 * Documentation/virt/kvm/locking.rst to get more detail.
3208 		 */
3209 		if (fast_pf_fix_direct_spte(vcpu, sp, iterator.sptep, spte,
3210 					    new_spte)) {
3211 			ret = RET_PF_FIXED;
3212 			break;
3213 		}
3214 
3215 		if (++retry_count > 4) {
3216 			printk_once(KERN_WARNING
3217 				"kvm: Fast #PF retrying more than 4 times.\n");
3218 			break;
3219 		}
3220 
3221 	} while (true);
3222 
3223 	trace_fast_page_fault(vcpu, cr2_or_gpa, error_code, iterator.sptep,
3224 			      spte, ret);
3225 	walk_shadow_page_lockless_end(vcpu);
3226 
3227 	return ret;
3228 }
3229 
3230 static void mmu_free_root_page(struct kvm *kvm, hpa_t *root_hpa,
3231 			       struct list_head *invalid_list)
3232 {
3233 	struct kvm_mmu_page *sp;
3234 
3235 	if (!VALID_PAGE(*root_hpa))
3236 		return;
3237 
3238 	sp = to_shadow_page(*root_hpa & PT64_BASE_ADDR_MASK);
3239 
3240 	if (is_tdp_mmu_page(sp))
3241 		kvm_tdp_mmu_put_root(kvm, sp, false);
3242 	else if (!--sp->root_count && sp->role.invalid)
3243 		kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
3244 
3245 	*root_hpa = INVALID_PAGE;
3246 }
3247 
3248 /* roots_to_free must be some combination of the KVM_MMU_ROOT_* flags */
3249 void kvm_mmu_free_roots(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
3250 			ulong roots_to_free)
3251 {
3252 	struct kvm *kvm = vcpu->kvm;
3253 	int i;
3254 	LIST_HEAD(invalid_list);
3255 	bool free_active_root = roots_to_free & KVM_MMU_ROOT_CURRENT;
3256 
3257 	BUILD_BUG_ON(KVM_MMU_NUM_PREV_ROOTS >= BITS_PER_LONG);
3258 
3259 	/* Before acquiring the MMU lock, see if we need to do any real work. */
3260 	if (!(free_active_root && VALID_PAGE(mmu->root_hpa))) {
3261 		for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
3262 			if ((roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) &&
3263 			    VALID_PAGE(mmu->prev_roots[i].hpa))
3264 				break;
3265 
3266 		if (i == KVM_MMU_NUM_PREV_ROOTS)
3267 			return;
3268 	}
3269 
3270 	write_lock(&kvm->mmu_lock);
3271 
3272 	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
3273 		if (roots_to_free & KVM_MMU_ROOT_PREVIOUS(i))
3274 			mmu_free_root_page(kvm, &mmu->prev_roots[i].hpa,
3275 					   &invalid_list);
3276 
3277 	if (free_active_root) {
3278 		if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
3279 		    (mmu->root_level >= PT64_ROOT_4LEVEL || mmu->direct_map)) {
3280 			mmu_free_root_page(kvm, &mmu->root_hpa, &invalid_list);
3281 		} else if (mmu->pae_root) {
3282 			for (i = 0; i < 4; ++i) {
3283 				if (!IS_VALID_PAE_ROOT(mmu->pae_root[i]))
3284 					continue;
3285 
3286 				mmu_free_root_page(kvm, &mmu->pae_root[i],
3287 						   &invalid_list);
3288 				mmu->pae_root[i] = INVALID_PAE_ROOT;
3289 			}
3290 		}
3291 		mmu->root_hpa = INVALID_PAGE;
3292 		mmu->root_pgd = 0;
3293 	}
3294 
3295 	kvm_mmu_commit_zap_page(kvm, &invalid_list);
3296 	write_unlock(&kvm->mmu_lock);
3297 }
3298 EXPORT_SYMBOL_GPL(kvm_mmu_free_roots);
3299 
3300 void kvm_mmu_free_guest_mode_roots(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
3301 {
3302 	unsigned long roots_to_free = 0;
3303 	hpa_t root_hpa;
3304 	int i;
3305 
3306 	/*
3307 	 * This should not be called while L2 is active, L2 can't invalidate
3308 	 * _only_ its own roots, e.g. INVVPID unconditionally exits.
3309 	 */
3310 	WARN_ON_ONCE(mmu->mmu_role.base.guest_mode);
3311 
3312 	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
3313 		root_hpa = mmu->prev_roots[i].hpa;
3314 		if (!VALID_PAGE(root_hpa))
3315 			continue;
3316 
3317 		if (!to_shadow_page(root_hpa) ||
3318 			to_shadow_page(root_hpa)->role.guest_mode)
3319 			roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
3320 	}
3321 
3322 	kvm_mmu_free_roots(vcpu, mmu, roots_to_free);
3323 }
3324 EXPORT_SYMBOL_GPL(kvm_mmu_free_guest_mode_roots);
3325 
3326 
3327 static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
3328 {
3329 	int ret = 0;
3330 
3331 	if (!kvm_vcpu_is_visible_gfn(vcpu, root_gfn)) {
3332 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3333 		ret = 1;
3334 	}
3335 
3336 	return ret;
3337 }
3338 
3339 static hpa_t mmu_alloc_root(struct kvm_vcpu *vcpu, gfn_t gfn, gva_t gva,
3340 			    u8 level, bool direct)
3341 {
3342 	struct kvm_mmu_page *sp;
3343 
3344 	sp = kvm_mmu_get_page(vcpu, gfn, gva, level, direct, ACC_ALL);
3345 	++sp->root_count;
3346 
3347 	return __pa(sp->spt);
3348 }
3349 
3350 static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
3351 {
3352 	struct kvm_mmu *mmu = vcpu->arch.mmu;
3353 	u8 shadow_root_level = mmu->shadow_root_level;
3354 	hpa_t root;
3355 	unsigned i;
3356 	int r;
3357 
3358 	write_lock(&vcpu->kvm->mmu_lock);
3359 	r = make_mmu_pages_available(vcpu);
3360 	if (r < 0)
3361 		goto out_unlock;
3362 
3363 	if (is_tdp_mmu_enabled(vcpu->kvm)) {
3364 		root = kvm_tdp_mmu_get_vcpu_root_hpa(vcpu);
3365 		mmu->root_hpa = root;
3366 	} else if (shadow_root_level >= PT64_ROOT_4LEVEL) {
3367 		root = mmu_alloc_root(vcpu, 0, 0, shadow_root_level, true);
3368 		mmu->root_hpa = root;
3369 	} else if (shadow_root_level == PT32E_ROOT_LEVEL) {
3370 		if (WARN_ON_ONCE(!mmu->pae_root)) {
3371 			r = -EIO;
3372 			goto out_unlock;
3373 		}
3374 
3375 		for (i = 0; i < 4; ++i) {
3376 			WARN_ON_ONCE(IS_VALID_PAE_ROOT(mmu->pae_root[i]));
3377 
3378 			root = mmu_alloc_root(vcpu, i << (30 - PAGE_SHIFT),
3379 					      i << 30, PT32_ROOT_LEVEL, true);
3380 			mmu->pae_root[i] = root | PT_PRESENT_MASK |
3381 					   shadow_me_mask;
3382 		}
3383 		mmu->root_hpa = __pa(mmu->pae_root);
3384 	} else {
3385 		WARN_ONCE(1, "Bad TDP root level = %d\n", shadow_root_level);
3386 		r = -EIO;
3387 		goto out_unlock;
3388 	}
3389 
3390 	/* root_pgd is ignored for direct MMUs. */
3391 	mmu->root_pgd = 0;
3392 out_unlock:
3393 	write_unlock(&vcpu->kvm->mmu_lock);
3394 	return r;
3395 }
3396 
3397 static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
3398 {
3399 	struct kvm_mmu *mmu = vcpu->arch.mmu;
3400 	u64 pdptrs[4], pm_mask;
3401 	gfn_t root_gfn, root_pgd;
3402 	hpa_t root;
3403 	unsigned i;
3404 	int r;
3405 
3406 	root_pgd = mmu->get_guest_pgd(vcpu);
3407 	root_gfn = root_pgd >> PAGE_SHIFT;
3408 
3409 	if (mmu_check_root(vcpu, root_gfn))
3410 		return 1;
3411 
3412 	/*
3413 	 * On SVM, reading PDPTRs might access guest memory, which might fault
3414 	 * and thus might sleep.  Grab the PDPTRs before acquiring mmu_lock.
3415 	 */
3416 	if (mmu->root_level == PT32E_ROOT_LEVEL) {
3417 		for (i = 0; i < 4; ++i) {
3418 			pdptrs[i] = mmu->get_pdptr(vcpu, i);
3419 			if (!(pdptrs[i] & PT_PRESENT_MASK))
3420 				continue;
3421 
3422 			if (mmu_check_root(vcpu, pdptrs[i] >> PAGE_SHIFT))
3423 				return 1;
3424 		}
3425 	}
3426 
3427 	r = alloc_all_memslots_rmaps(vcpu->kvm);
3428 	if (r)
3429 		return r;
3430 
3431 	write_lock(&vcpu->kvm->mmu_lock);
3432 	r = make_mmu_pages_available(vcpu);
3433 	if (r < 0)
3434 		goto out_unlock;
3435 
3436 	/*
3437 	 * Do we shadow a long mode page table? If so we need to
3438 	 * write-protect the guests page table root.
3439 	 */
3440 	if (mmu->root_level >= PT64_ROOT_4LEVEL) {
3441 		root = mmu_alloc_root(vcpu, root_gfn, 0,
3442 				      mmu->shadow_root_level, false);
3443 		mmu->root_hpa = root;
3444 		goto set_root_pgd;
3445 	}
3446 
3447 	if (WARN_ON_ONCE(!mmu->pae_root)) {
3448 		r = -EIO;
3449 		goto out_unlock;
3450 	}
3451 
3452 	/*
3453 	 * We shadow a 32 bit page table. This may be a legacy 2-level
3454 	 * or a PAE 3-level page table. In either case we need to be aware that
3455 	 * the shadow page table may be a PAE or a long mode page table.
3456 	 */
3457 	pm_mask = PT_PRESENT_MASK | shadow_me_mask;
3458 	if (mmu->shadow_root_level == PT64_ROOT_4LEVEL) {
3459 		pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
3460 
3461 		if (WARN_ON_ONCE(!mmu->pml4_root)) {
3462 			r = -EIO;
3463 			goto out_unlock;
3464 		}
3465 
3466 		mmu->pml4_root[0] = __pa(mmu->pae_root) | pm_mask;
3467 	}
3468 
3469 	for (i = 0; i < 4; ++i) {
3470 		WARN_ON_ONCE(IS_VALID_PAE_ROOT(mmu->pae_root[i]));
3471 
3472 		if (mmu->root_level == PT32E_ROOT_LEVEL) {
3473 			if (!(pdptrs[i] & PT_PRESENT_MASK)) {
3474 				mmu->pae_root[i] = INVALID_PAE_ROOT;
3475 				continue;
3476 			}
3477 			root_gfn = pdptrs[i] >> PAGE_SHIFT;
3478 		}
3479 
3480 		root = mmu_alloc_root(vcpu, root_gfn, i << 30,
3481 				      PT32_ROOT_LEVEL, false);
3482 		mmu->pae_root[i] = root | pm_mask;
3483 	}
3484 
3485 	if (mmu->shadow_root_level == PT64_ROOT_4LEVEL)
3486 		mmu->root_hpa = __pa(mmu->pml4_root);
3487 	else
3488 		mmu->root_hpa = __pa(mmu->pae_root);
3489 
3490 set_root_pgd:
3491 	mmu->root_pgd = root_pgd;
3492 out_unlock:
3493 	write_unlock(&vcpu->kvm->mmu_lock);
3494 
3495 	return 0;
3496 }
3497 
3498 static int mmu_alloc_special_roots(struct kvm_vcpu *vcpu)
3499 {
3500 	struct kvm_mmu *mmu = vcpu->arch.mmu;
3501 	u64 *pml4_root, *pae_root;
3502 
3503 	/*
3504 	 * When shadowing 32-bit or PAE NPT with 64-bit NPT, the PML4 and PDP
3505 	 * tables are allocated and initialized at root creation as there is no
3506 	 * equivalent level in the guest's NPT to shadow.  Allocate the tables
3507 	 * on demand, as running a 32-bit L1 VMM on 64-bit KVM is very rare.
3508 	 */
3509 	if (mmu->direct_map || mmu->root_level >= PT64_ROOT_4LEVEL ||
3510 	    mmu->shadow_root_level < PT64_ROOT_4LEVEL)
3511 		return 0;
3512 
3513 	/*
3514 	 * This mess only works with 4-level paging and needs to be updated to
3515 	 * work with 5-level paging.
3516 	 */
3517 	if (WARN_ON_ONCE(mmu->shadow_root_level != PT64_ROOT_4LEVEL))
3518 		return -EIO;
3519 
3520 	if (mmu->pae_root && mmu->pml4_root)
3521 		return 0;
3522 
3523 	/*
3524 	 * The special roots should always be allocated in concert.  Yell and
3525 	 * bail if KVM ends up in a state where only one of the roots is valid.
3526 	 */
3527 	if (WARN_ON_ONCE(!tdp_enabled || mmu->pae_root || mmu->pml4_root))
3528 		return -EIO;
3529 
3530 	/*
3531 	 * Unlike 32-bit NPT, the PDP table doesn't need to be in low mem, and
3532 	 * doesn't need to be decrypted.
3533 	 */
3534 	pae_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT);
3535 	if (!pae_root)
3536 		return -ENOMEM;
3537 
3538 	pml4_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT);
3539 	if (!pml4_root) {
3540 		free_page((unsigned long)pae_root);
3541 		return -ENOMEM;
3542 	}
3543 
3544 	mmu->pae_root = pae_root;
3545 	mmu->pml4_root = pml4_root;
3546 
3547 	return 0;
3548 }
3549 
3550 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3551 {
3552 	int i;
3553 	struct kvm_mmu_page *sp;
3554 
3555 	if (vcpu->arch.mmu->direct_map)
3556 		return;
3557 
3558 	if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
3559 		return;
3560 
3561 	vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
3562 
3563 	if (vcpu->arch.mmu->root_level >= PT64_ROOT_4LEVEL) {
3564 		hpa_t root = vcpu->arch.mmu->root_hpa;
3565 		sp = to_shadow_page(root);
3566 
3567 		/*
3568 		 * Even if another CPU was marking the SP as unsync-ed
3569 		 * simultaneously, any guest page table changes are not
3570 		 * guaranteed to be visible anyway until this VCPU issues a TLB
3571 		 * flush strictly after those changes are made. We only need to
3572 		 * ensure that the other CPU sets these flags before any actual
3573 		 * changes to the page tables are made. The comments in
3574 		 * mmu_try_to_unsync_pages() describe what could go wrong if
3575 		 * this requirement isn't satisfied.
3576 		 */
3577 		if (!smp_load_acquire(&sp->unsync) &&
3578 		    !smp_load_acquire(&sp->unsync_children))
3579 			return;
3580 
3581 		write_lock(&vcpu->kvm->mmu_lock);
3582 		kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3583 
3584 		mmu_sync_children(vcpu, sp);
3585 
3586 		kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3587 		write_unlock(&vcpu->kvm->mmu_lock);
3588 		return;
3589 	}
3590 
3591 	write_lock(&vcpu->kvm->mmu_lock);
3592 	kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3593 
3594 	for (i = 0; i < 4; ++i) {
3595 		hpa_t root = vcpu->arch.mmu->pae_root[i];
3596 
3597 		if (IS_VALID_PAE_ROOT(root)) {
3598 			root &= PT64_BASE_ADDR_MASK;
3599 			sp = to_shadow_page(root);
3600 			mmu_sync_children(vcpu, sp);
3601 		}
3602 	}
3603 
3604 	kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3605 	write_unlock(&vcpu->kvm->mmu_lock);
3606 }
3607 
3608 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gpa_t vaddr,
3609 				  u32 access, struct x86_exception *exception)
3610 {
3611 	if (exception)
3612 		exception->error_code = 0;
3613 	return vaddr;
3614 }
3615 
3616 static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gpa_t vaddr,
3617 					 u32 access,
3618 					 struct x86_exception *exception)
3619 {
3620 	if (exception)
3621 		exception->error_code = 0;
3622 	return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception);
3623 }
3624 
3625 static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3626 {
3627 	/*
3628 	 * A nested guest cannot use the MMIO cache if it is using nested
3629 	 * page tables, because cr2 is a nGPA while the cache stores GPAs.
3630 	 */
3631 	if (mmu_is_nested(vcpu))
3632 		return false;
3633 
3634 	if (direct)
3635 		return vcpu_match_mmio_gpa(vcpu, addr);
3636 
3637 	return vcpu_match_mmio_gva(vcpu, addr);
3638 }
3639 
3640 /*
3641  * Return the level of the lowest level SPTE added to sptes.
3642  * That SPTE may be non-present.
3643  */
3644 static int get_walk(struct kvm_vcpu *vcpu, u64 addr, u64 *sptes, int *root_level)
3645 {
3646 	struct kvm_shadow_walk_iterator iterator;
3647 	int leaf = -1;
3648 	u64 spte;
3649 
3650 	walk_shadow_page_lockless_begin(vcpu);
3651 
3652 	for (shadow_walk_init(&iterator, vcpu, addr),
3653 	     *root_level = iterator.level;
3654 	     shadow_walk_okay(&iterator);
3655 	     __shadow_walk_next(&iterator, spte)) {
3656 		leaf = iterator.level;
3657 		spte = mmu_spte_get_lockless(iterator.sptep);
3658 
3659 		sptes[leaf] = spte;
3660 
3661 		if (!is_shadow_present_pte(spte))
3662 			break;
3663 	}
3664 
3665 	walk_shadow_page_lockless_end(vcpu);
3666 
3667 	return leaf;
3668 }
3669 
3670 /* return true if reserved bit(s) are detected on a valid, non-MMIO SPTE. */
3671 static bool get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep)
3672 {
3673 	u64 sptes[PT64_ROOT_MAX_LEVEL + 1];
3674 	struct rsvd_bits_validate *rsvd_check;
3675 	int root, leaf, level;
3676 	bool reserved = false;
3677 
3678 	if (is_tdp_mmu(vcpu->arch.mmu))
3679 		leaf = kvm_tdp_mmu_get_walk(vcpu, addr, sptes, &root);
3680 	else
3681 		leaf = get_walk(vcpu, addr, sptes, &root);
3682 
3683 	if (unlikely(leaf < 0)) {
3684 		*sptep = 0ull;
3685 		return reserved;
3686 	}
3687 
3688 	*sptep = sptes[leaf];
3689 
3690 	/*
3691 	 * Skip reserved bits checks on the terminal leaf if it's not a valid
3692 	 * SPTE.  Note, this also (intentionally) skips MMIO SPTEs, which, by
3693 	 * design, always have reserved bits set.  The purpose of the checks is
3694 	 * to detect reserved bits on non-MMIO SPTEs. i.e. buggy SPTEs.
3695 	 */
3696 	if (!is_shadow_present_pte(sptes[leaf]))
3697 		leaf++;
3698 
3699 	rsvd_check = &vcpu->arch.mmu->shadow_zero_check;
3700 
3701 	for (level = root; level >= leaf; level--)
3702 		reserved |= is_rsvd_spte(rsvd_check, sptes[level], level);
3703 
3704 	if (reserved) {
3705 		pr_err("%s: reserved bits set on MMU-present spte, addr 0x%llx, hierarchy:\n",
3706 		       __func__, addr);
3707 		for (level = root; level >= leaf; level--)
3708 			pr_err("------ spte = 0x%llx level = %d, rsvd bits = 0x%llx",
3709 			       sptes[level], level,
3710 			       get_rsvd_bits(rsvd_check, sptes[level], level));
3711 	}
3712 
3713 	return reserved;
3714 }
3715 
3716 static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3717 {
3718 	u64 spte;
3719 	bool reserved;
3720 
3721 	if (mmio_info_in_cache(vcpu, addr, direct))
3722 		return RET_PF_EMULATE;
3723 
3724 	reserved = get_mmio_spte(vcpu, addr, &spte);
3725 	if (WARN_ON(reserved))
3726 		return -EINVAL;
3727 
3728 	if (is_mmio_spte(spte)) {
3729 		gfn_t gfn = get_mmio_spte_gfn(spte);
3730 		unsigned int access = get_mmio_spte_access(spte);
3731 
3732 		if (!check_mmio_spte(vcpu, spte))
3733 			return RET_PF_INVALID;
3734 
3735 		if (direct)
3736 			addr = 0;
3737 
3738 		trace_handle_mmio_page_fault(addr, gfn, access);
3739 		vcpu_cache_mmio_info(vcpu, addr, gfn, access);
3740 		return RET_PF_EMULATE;
3741 	}
3742 
3743 	/*
3744 	 * If the page table is zapped by other cpus, let CPU fault again on
3745 	 * the address.
3746 	 */
3747 	return RET_PF_RETRY;
3748 }
3749 
3750 static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu,
3751 					 u32 error_code, gfn_t gfn)
3752 {
3753 	if (unlikely(error_code & PFERR_RSVD_MASK))
3754 		return false;
3755 
3756 	if (!(error_code & PFERR_PRESENT_MASK) ||
3757 	      !(error_code & PFERR_WRITE_MASK))
3758 		return false;
3759 
3760 	/*
3761 	 * guest is writing the page which is write tracked which can
3762 	 * not be fixed by page fault handler.
3763 	 */
3764 	if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
3765 		return true;
3766 
3767 	return false;
3768 }
3769 
3770 static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr)
3771 {
3772 	struct kvm_shadow_walk_iterator iterator;
3773 	u64 spte;
3774 
3775 	walk_shadow_page_lockless_begin(vcpu);
3776 	for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
3777 		clear_sp_write_flooding_count(iterator.sptep);
3778 		if (!is_shadow_present_pte(spte))
3779 			break;
3780 	}
3781 	walk_shadow_page_lockless_end(vcpu);
3782 }
3783 
3784 static bool kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
3785 				    gfn_t gfn)
3786 {
3787 	struct kvm_arch_async_pf arch;
3788 
3789 	arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
3790 	arch.gfn = gfn;
3791 	arch.direct_map = vcpu->arch.mmu->direct_map;
3792 	arch.cr3 = vcpu->arch.mmu->get_guest_pgd(vcpu);
3793 
3794 	return kvm_setup_async_pf(vcpu, cr2_or_gpa,
3795 				  kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch);
3796 }
3797 
3798 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
3799 			 gpa_t cr2_or_gpa, kvm_pfn_t *pfn, hva_t *hva,
3800 			 bool write, bool *writable)
3801 {
3802 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3803 	bool async;
3804 
3805 	/*
3806 	 * Retry the page fault if the gfn hit a memslot that is being deleted
3807 	 * or moved.  This ensures any existing SPTEs for the old memslot will
3808 	 * be zapped before KVM inserts a new MMIO SPTE for the gfn.
3809 	 */
3810 	if (slot && (slot->flags & KVM_MEMSLOT_INVALID))
3811 		return true;
3812 
3813 	/* Don't expose private memslots to L2. */
3814 	if (is_guest_mode(vcpu) && !kvm_is_visible_memslot(slot)) {
3815 		*pfn = KVM_PFN_NOSLOT;
3816 		*writable = false;
3817 		return false;
3818 	}
3819 
3820 	async = false;
3821 	*pfn = __gfn_to_pfn_memslot(slot, gfn, false, &async,
3822 				    write, writable, hva);
3823 	if (!async)
3824 		return false; /* *pfn has correct page already */
3825 
3826 	if (!prefault && kvm_can_do_async_pf(vcpu)) {
3827 		trace_kvm_try_async_get_page(cr2_or_gpa, gfn);
3828 		if (kvm_find_async_pf_gfn(vcpu, gfn)) {
3829 			trace_kvm_async_pf_doublefault(cr2_or_gpa, gfn);
3830 			kvm_make_request(KVM_REQ_APF_HALT, vcpu);
3831 			return true;
3832 		} else if (kvm_arch_setup_async_pf(vcpu, cr2_or_gpa, gfn))
3833 			return true;
3834 	}
3835 
3836 	*pfn = __gfn_to_pfn_memslot(slot, gfn, false, NULL,
3837 				    write, writable, hva);
3838 	return false;
3839 }
3840 
3841 static int direct_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
3842 			     bool prefault, int max_level, bool is_tdp)
3843 {
3844 	bool is_tdp_mmu_fault = is_tdp_mmu(vcpu->arch.mmu);
3845 	bool write = error_code & PFERR_WRITE_MASK;
3846 	bool map_writable;
3847 
3848 	gfn_t gfn = gpa >> PAGE_SHIFT;
3849 	unsigned long mmu_seq;
3850 	kvm_pfn_t pfn;
3851 	hva_t hva;
3852 	int r;
3853 
3854 	if (page_fault_handle_page_track(vcpu, error_code, gfn))
3855 		return RET_PF_EMULATE;
3856 
3857 	if (!is_tdp_mmu_fault) {
3858 		r = fast_page_fault(vcpu, gpa, error_code);
3859 		if (r != RET_PF_INVALID)
3860 			return r;
3861 	}
3862 
3863 	r = mmu_topup_memory_caches(vcpu, false);
3864 	if (r)
3865 		return r;
3866 
3867 	mmu_seq = vcpu->kvm->mmu_notifier_seq;
3868 	smp_rmb();
3869 
3870 	if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, &hva,
3871 			 write, &map_writable))
3872 		return RET_PF_RETRY;
3873 
3874 	if (handle_abnormal_pfn(vcpu, is_tdp ? 0 : gpa, gfn, pfn, ACC_ALL, &r))
3875 		return r;
3876 
3877 	r = RET_PF_RETRY;
3878 
3879 	if (is_tdp_mmu_fault)
3880 		read_lock(&vcpu->kvm->mmu_lock);
3881 	else
3882 		write_lock(&vcpu->kvm->mmu_lock);
3883 
3884 	if (!is_noslot_pfn(pfn) && mmu_notifier_retry_hva(vcpu->kvm, mmu_seq, hva))
3885 		goto out_unlock;
3886 	r = make_mmu_pages_available(vcpu);
3887 	if (r)
3888 		goto out_unlock;
3889 
3890 	if (is_tdp_mmu_fault)
3891 		r = kvm_tdp_mmu_map(vcpu, gpa, error_code, map_writable, max_level,
3892 				    pfn, prefault);
3893 	else
3894 		r = __direct_map(vcpu, gpa, error_code, map_writable, max_level, pfn,
3895 				 prefault, is_tdp);
3896 
3897 out_unlock:
3898 	if (is_tdp_mmu_fault)
3899 		read_unlock(&vcpu->kvm->mmu_lock);
3900 	else
3901 		write_unlock(&vcpu->kvm->mmu_lock);
3902 	kvm_release_pfn_clean(pfn);
3903 	return r;
3904 }
3905 
3906 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa,
3907 				u32 error_code, bool prefault)
3908 {
3909 	pgprintk("%s: gva %lx error %x\n", __func__, gpa, error_code);
3910 
3911 	/* This path builds a PAE pagetable, we can map 2mb pages at maximum. */
3912 	return direct_page_fault(vcpu, gpa & PAGE_MASK, error_code, prefault,
3913 				 PG_LEVEL_2M, false);
3914 }
3915 
3916 int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code,
3917 				u64 fault_address, char *insn, int insn_len)
3918 {
3919 	int r = 1;
3920 	u32 flags = vcpu->arch.apf.host_apf_flags;
3921 
3922 #ifndef CONFIG_X86_64
3923 	/* A 64-bit CR2 should be impossible on 32-bit KVM. */
3924 	if (WARN_ON_ONCE(fault_address >> 32))
3925 		return -EFAULT;
3926 #endif
3927 
3928 	vcpu->arch.l1tf_flush_l1d = true;
3929 	if (!flags) {
3930 		trace_kvm_page_fault(fault_address, error_code);
3931 
3932 		if (kvm_event_needs_reinjection(vcpu))
3933 			kvm_mmu_unprotect_page_virt(vcpu, fault_address);
3934 		r = kvm_mmu_page_fault(vcpu, fault_address, error_code, insn,
3935 				insn_len);
3936 	} else if (flags & KVM_PV_REASON_PAGE_NOT_PRESENT) {
3937 		vcpu->arch.apf.host_apf_flags = 0;
3938 		local_irq_disable();
3939 		kvm_async_pf_task_wait_schedule(fault_address);
3940 		local_irq_enable();
3941 	} else {
3942 		WARN_ONCE(1, "Unexpected host async PF flags: %x\n", flags);
3943 	}
3944 
3945 	return r;
3946 }
3947 EXPORT_SYMBOL_GPL(kvm_handle_page_fault);
3948 
3949 int kvm_tdp_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
3950 		       bool prefault)
3951 {
3952 	int max_level;
3953 
3954 	for (max_level = KVM_MAX_HUGEPAGE_LEVEL;
3955 	     max_level > PG_LEVEL_4K;
3956 	     max_level--) {
3957 		int page_num = KVM_PAGES_PER_HPAGE(max_level);
3958 		gfn_t base = (gpa >> PAGE_SHIFT) & ~(page_num - 1);
3959 
3960 		if (kvm_mtrr_check_gfn_range_consistency(vcpu, base, page_num))
3961 			break;
3962 	}
3963 
3964 	return direct_page_fault(vcpu, gpa, error_code, prefault,
3965 				 max_level, true);
3966 }
3967 
3968 static void nonpaging_init_context(struct kvm_mmu *context)
3969 {
3970 	context->page_fault = nonpaging_page_fault;
3971 	context->gva_to_gpa = nonpaging_gva_to_gpa;
3972 	context->sync_page = nonpaging_sync_page;
3973 	context->invlpg = NULL;
3974 	context->direct_map = true;
3975 }
3976 
3977 static inline bool is_root_usable(struct kvm_mmu_root_info *root, gpa_t pgd,
3978 				  union kvm_mmu_page_role role)
3979 {
3980 	return (role.direct || pgd == root->pgd) &&
3981 	       VALID_PAGE(root->hpa) && to_shadow_page(root->hpa) &&
3982 	       role.word == to_shadow_page(root->hpa)->role.word;
3983 }
3984 
3985 /*
3986  * Find out if a previously cached root matching the new pgd/role is available.
3987  * The current root is also inserted into the cache.
3988  * If a matching root was found, it is assigned to kvm_mmu->root_hpa and true is
3989  * returned.
3990  * Otherwise, the LRU root from the cache is assigned to kvm_mmu->root_hpa and
3991  * false is returned. This root should now be freed by the caller.
3992  */
3993 static bool cached_root_available(struct kvm_vcpu *vcpu, gpa_t new_pgd,
3994 				  union kvm_mmu_page_role new_role)
3995 {
3996 	uint i;
3997 	struct kvm_mmu_root_info root;
3998 	struct kvm_mmu *mmu = vcpu->arch.mmu;
3999 
4000 	root.pgd = mmu->root_pgd;
4001 	root.hpa = mmu->root_hpa;
4002 
4003 	if (is_root_usable(&root, new_pgd, new_role))
4004 		return true;
4005 
4006 	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
4007 		swap(root, mmu->prev_roots[i]);
4008 
4009 		if (is_root_usable(&root, new_pgd, new_role))
4010 			break;
4011 	}
4012 
4013 	mmu->root_hpa = root.hpa;
4014 	mmu->root_pgd = root.pgd;
4015 
4016 	return i < KVM_MMU_NUM_PREV_ROOTS;
4017 }
4018 
4019 static bool fast_pgd_switch(struct kvm_vcpu *vcpu, gpa_t new_pgd,
4020 			    union kvm_mmu_page_role new_role)
4021 {
4022 	struct kvm_mmu *mmu = vcpu->arch.mmu;
4023 
4024 	/*
4025 	 * For now, limit the fast switch to 64-bit hosts+VMs in order to avoid
4026 	 * having to deal with PDPTEs. We may add support for 32-bit hosts/VMs
4027 	 * later if necessary.
4028 	 */
4029 	if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
4030 	    mmu->root_level >= PT64_ROOT_4LEVEL)
4031 		return cached_root_available(vcpu, new_pgd, new_role);
4032 
4033 	return false;
4034 }
4035 
4036 static void __kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd,
4037 			      union kvm_mmu_page_role new_role)
4038 {
4039 	if (!fast_pgd_switch(vcpu, new_pgd, new_role)) {
4040 		kvm_mmu_free_roots(vcpu, vcpu->arch.mmu, KVM_MMU_ROOT_CURRENT);
4041 		return;
4042 	}
4043 
4044 	/*
4045 	 * It's possible that the cached previous root page is obsolete because
4046 	 * of a change in the MMU generation number. However, changing the
4047 	 * generation number is accompanied by KVM_REQ_MMU_RELOAD, which will
4048 	 * free the root set here and allocate a new one.
4049 	 */
4050 	kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu);
4051 
4052 	if (force_flush_and_sync_on_reuse) {
4053 		kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
4054 		kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
4055 	}
4056 
4057 	/*
4058 	 * The last MMIO access's GVA and GPA are cached in the VCPU. When
4059 	 * switching to a new CR3, that GVA->GPA mapping may no longer be
4060 	 * valid. So clear any cached MMIO info even when we don't need to sync
4061 	 * the shadow page tables.
4062 	 */
4063 	vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
4064 
4065 	/*
4066 	 * If this is a direct root page, it doesn't have a write flooding
4067 	 * count. Otherwise, clear the write flooding count.
4068 	 */
4069 	if (!new_role.direct)
4070 		__clear_sp_write_flooding_count(
4071 				to_shadow_page(vcpu->arch.mmu->root_hpa));
4072 }
4073 
4074 void kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd)
4075 {
4076 	__kvm_mmu_new_pgd(vcpu, new_pgd, kvm_mmu_calc_root_page_role(vcpu));
4077 }
4078 EXPORT_SYMBOL_GPL(kvm_mmu_new_pgd);
4079 
4080 static unsigned long get_cr3(struct kvm_vcpu *vcpu)
4081 {
4082 	return kvm_read_cr3(vcpu);
4083 }
4084 
4085 static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
4086 			   unsigned int access, int *nr_present)
4087 {
4088 	if (unlikely(is_mmio_spte(*sptep))) {
4089 		if (gfn != get_mmio_spte_gfn(*sptep)) {
4090 			mmu_spte_clear_no_track(sptep);
4091 			return true;
4092 		}
4093 
4094 		(*nr_present)++;
4095 		mark_mmio_spte(vcpu, sptep, gfn, access);
4096 		return true;
4097 	}
4098 
4099 	return false;
4100 }
4101 
4102 #define PTTYPE_EPT 18 /* arbitrary */
4103 #define PTTYPE PTTYPE_EPT
4104 #include "paging_tmpl.h"
4105 #undef PTTYPE
4106 
4107 #define PTTYPE 64
4108 #include "paging_tmpl.h"
4109 #undef PTTYPE
4110 
4111 #define PTTYPE 32
4112 #include "paging_tmpl.h"
4113 #undef PTTYPE
4114 
4115 static void
4116 __reset_rsvds_bits_mask(struct rsvd_bits_validate *rsvd_check,
4117 			u64 pa_bits_rsvd, int level, bool nx, bool gbpages,
4118 			bool pse, bool amd)
4119 {
4120 	u64 gbpages_bit_rsvd = 0;
4121 	u64 nonleaf_bit8_rsvd = 0;
4122 	u64 high_bits_rsvd;
4123 
4124 	rsvd_check->bad_mt_xwr = 0;
4125 
4126 	if (!gbpages)
4127 		gbpages_bit_rsvd = rsvd_bits(7, 7);
4128 
4129 	if (level == PT32E_ROOT_LEVEL)
4130 		high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 62);
4131 	else
4132 		high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 51);
4133 
4134 	/* Note, NX doesn't exist in PDPTEs, this is handled below. */
4135 	if (!nx)
4136 		high_bits_rsvd |= rsvd_bits(63, 63);
4137 
4138 	/*
4139 	 * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
4140 	 * leaf entries) on AMD CPUs only.
4141 	 */
4142 	if (amd)
4143 		nonleaf_bit8_rsvd = rsvd_bits(8, 8);
4144 
4145 	switch (level) {
4146 	case PT32_ROOT_LEVEL:
4147 		/* no rsvd bits for 2 level 4K page table entries */
4148 		rsvd_check->rsvd_bits_mask[0][1] = 0;
4149 		rsvd_check->rsvd_bits_mask[0][0] = 0;
4150 		rsvd_check->rsvd_bits_mask[1][0] =
4151 			rsvd_check->rsvd_bits_mask[0][0];
4152 
4153 		if (!pse) {
4154 			rsvd_check->rsvd_bits_mask[1][1] = 0;
4155 			break;
4156 		}
4157 
4158 		if (is_cpuid_PSE36())
4159 			/* 36bits PSE 4MB page */
4160 			rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
4161 		else
4162 			/* 32 bits PSE 4MB page */
4163 			rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
4164 		break;
4165 	case PT32E_ROOT_LEVEL:
4166 		rsvd_check->rsvd_bits_mask[0][2] = rsvd_bits(63, 63) |
4167 						   high_bits_rsvd |
4168 						   rsvd_bits(5, 8) |
4169 						   rsvd_bits(1, 2);	/* PDPTE */
4170 		rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd;	/* PDE */
4171 		rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd;	/* PTE */
4172 		rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd |
4173 						   rsvd_bits(13, 20);	/* large page */
4174 		rsvd_check->rsvd_bits_mask[1][0] =
4175 			rsvd_check->rsvd_bits_mask[0][0];
4176 		break;
4177 	case PT64_ROOT_5LEVEL:
4178 		rsvd_check->rsvd_bits_mask[0][4] = high_bits_rsvd |
4179 						   nonleaf_bit8_rsvd |
4180 						   rsvd_bits(7, 7);
4181 		rsvd_check->rsvd_bits_mask[1][4] =
4182 			rsvd_check->rsvd_bits_mask[0][4];
4183 		fallthrough;
4184 	case PT64_ROOT_4LEVEL:
4185 		rsvd_check->rsvd_bits_mask[0][3] = high_bits_rsvd |
4186 						   nonleaf_bit8_rsvd |
4187 						   rsvd_bits(7, 7);
4188 		rsvd_check->rsvd_bits_mask[0][2] = high_bits_rsvd |
4189 						   gbpages_bit_rsvd;
4190 		rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd;
4191 		rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd;
4192 		rsvd_check->rsvd_bits_mask[1][3] =
4193 			rsvd_check->rsvd_bits_mask[0][3];
4194 		rsvd_check->rsvd_bits_mask[1][2] = high_bits_rsvd |
4195 						   gbpages_bit_rsvd |
4196 						   rsvd_bits(13, 29);
4197 		rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd |
4198 						   rsvd_bits(13, 20); /* large page */
4199 		rsvd_check->rsvd_bits_mask[1][0] =
4200 			rsvd_check->rsvd_bits_mask[0][0];
4201 		break;
4202 	}
4203 }
4204 
4205 static bool guest_can_use_gbpages(struct kvm_vcpu *vcpu)
4206 {
4207 	/*
4208 	 * If TDP is enabled, let the guest use GBPAGES if they're supported in
4209 	 * hardware.  The hardware page walker doesn't let KVM disable GBPAGES,
4210 	 * i.e. won't treat them as reserved, and KVM doesn't redo the GVA->GPA
4211 	 * walk for performance and complexity reasons.  Not to mention KVM
4212 	 * _can't_ solve the problem because GVA->GPA walks aren't visible to
4213 	 * KVM once a TDP translation is installed.  Mimic hardware behavior so
4214 	 * that KVM's is at least consistent, i.e. doesn't randomly inject #PF.
4215 	 */
4216 	return tdp_enabled ? boot_cpu_has(X86_FEATURE_GBPAGES) :
4217 			     guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES);
4218 }
4219 
4220 static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
4221 				  struct kvm_mmu *context)
4222 {
4223 	__reset_rsvds_bits_mask(&context->guest_rsvd_check,
4224 				vcpu->arch.reserved_gpa_bits,
4225 				context->root_level, is_efer_nx(context),
4226 				guest_can_use_gbpages(vcpu),
4227 				is_cr4_pse(context),
4228 				guest_cpuid_is_amd_or_hygon(vcpu));
4229 }
4230 
4231 static void
4232 __reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check,
4233 			    u64 pa_bits_rsvd, bool execonly)
4234 {
4235 	u64 high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 51);
4236 	u64 bad_mt_xwr;
4237 
4238 	rsvd_check->rsvd_bits_mask[0][4] = high_bits_rsvd | rsvd_bits(3, 7);
4239 	rsvd_check->rsvd_bits_mask[0][3] = high_bits_rsvd | rsvd_bits(3, 7);
4240 	rsvd_check->rsvd_bits_mask[0][2] = high_bits_rsvd | rsvd_bits(3, 6);
4241 	rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd | rsvd_bits(3, 6);
4242 	rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd;
4243 
4244 	/* large page */
4245 	rsvd_check->rsvd_bits_mask[1][4] = rsvd_check->rsvd_bits_mask[0][4];
4246 	rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3];
4247 	rsvd_check->rsvd_bits_mask[1][2] = high_bits_rsvd | rsvd_bits(12, 29);
4248 	rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd | rsvd_bits(12, 20);
4249 	rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0];
4250 
4251 	bad_mt_xwr = 0xFFull << (2 * 8);	/* bits 3..5 must not be 2 */
4252 	bad_mt_xwr |= 0xFFull << (3 * 8);	/* bits 3..5 must not be 3 */
4253 	bad_mt_xwr |= 0xFFull << (7 * 8);	/* bits 3..5 must not be 7 */
4254 	bad_mt_xwr |= REPEAT_BYTE(1ull << 2);	/* bits 0..2 must not be 010 */
4255 	bad_mt_xwr |= REPEAT_BYTE(1ull << 6);	/* bits 0..2 must not be 110 */
4256 	if (!execonly) {
4257 		/* bits 0..2 must not be 100 unless VMX capabilities allow it */
4258 		bad_mt_xwr |= REPEAT_BYTE(1ull << 4);
4259 	}
4260 	rsvd_check->bad_mt_xwr = bad_mt_xwr;
4261 }
4262 
4263 static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
4264 		struct kvm_mmu *context, bool execonly)
4265 {
4266 	__reset_rsvds_bits_mask_ept(&context->guest_rsvd_check,
4267 				    vcpu->arch.reserved_gpa_bits, execonly);
4268 }
4269 
4270 static inline u64 reserved_hpa_bits(void)
4271 {
4272 	return rsvd_bits(shadow_phys_bits, 63);
4273 }
4274 
4275 /*
4276  * the page table on host is the shadow page table for the page
4277  * table in guest or amd nested guest, its mmu features completely
4278  * follow the features in guest.
4279  */
4280 static void reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4281 					struct kvm_mmu *context)
4282 {
4283 	/*
4284 	 * KVM uses NX when TDP is disabled to handle a variety of scenarios,
4285 	 * notably for huge SPTEs if iTLB multi-hit mitigation is enabled and
4286 	 * to generate correct permissions for CR0.WP=0/CR4.SMEP=1/EFER.NX=0.
4287 	 * The iTLB multi-hit workaround can be toggled at any time, so assume
4288 	 * NX can be used by any non-nested shadow MMU to avoid having to reset
4289 	 * MMU contexts.  Note, KVM forces EFER.NX=1 when TDP is disabled.
4290 	 */
4291 	bool uses_nx = is_efer_nx(context) || !tdp_enabled;
4292 
4293 	/* @amd adds a check on bit of SPTEs, which KVM shouldn't use anyways. */
4294 	bool is_amd = true;
4295 	/* KVM doesn't use 2-level page tables for the shadow MMU. */
4296 	bool is_pse = false;
4297 	struct rsvd_bits_validate *shadow_zero_check;
4298 	int i;
4299 
4300 	WARN_ON_ONCE(context->shadow_root_level < PT32E_ROOT_LEVEL);
4301 
4302 	shadow_zero_check = &context->shadow_zero_check;
4303 	__reset_rsvds_bits_mask(shadow_zero_check, reserved_hpa_bits(),
4304 				context->shadow_root_level, uses_nx,
4305 				guest_can_use_gbpages(vcpu), is_pse, is_amd);
4306 
4307 	if (!shadow_me_mask)
4308 		return;
4309 
4310 	for (i = context->shadow_root_level; --i >= 0;) {
4311 		shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
4312 		shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
4313 	}
4314 
4315 }
4316 
4317 static inline bool boot_cpu_is_amd(void)
4318 {
4319 	WARN_ON_ONCE(!tdp_enabled);
4320 	return shadow_x_mask == 0;
4321 }
4322 
4323 /*
4324  * the direct page table on host, use as much mmu features as
4325  * possible, however, kvm currently does not do execution-protection.
4326  */
4327 static void
4328 reset_tdp_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4329 				struct kvm_mmu *context)
4330 {
4331 	struct rsvd_bits_validate *shadow_zero_check;
4332 	int i;
4333 
4334 	shadow_zero_check = &context->shadow_zero_check;
4335 
4336 	if (boot_cpu_is_amd())
4337 		__reset_rsvds_bits_mask(shadow_zero_check, reserved_hpa_bits(),
4338 					context->shadow_root_level, false,
4339 					boot_cpu_has(X86_FEATURE_GBPAGES),
4340 					false, true);
4341 	else
4342 		__reset_rsvds_bits_mask_ept(shadow_zero_check,
4343 					    reserved_hpa_bits(), false);
4344 
4345 	if (!shadow_me_mask)
4346 		return;
4347 
4348 	for (i = context->shadow_root_level; --i >= 0;) {
4349 		shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
4350 		shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
4351 	}
4352 }
4353 
4354 /*
4355  * as the comments in reset_shadow_zero_bits_mask() except it
4356  * is the shadow page table for intel nested guest.
4357  */
4358 static void
4359 reset_ept_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4360 				struct kvm_mmu *context, bool execonly)
4361 {
4362 	__reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
4363 				    reserved_hpa_bits(), execonly);
4364 }
4365 
4366 #define BYTE_MASK(access) \
4367 	((1 & (access) ? 2 : 0) | \
4368 	 (2 & (access) ? 4 : 0) | \
4369 	 (3 & (access) ? 8 : 0) | \
4370 	 (4 & (access) ? 16 : 0) | \
4371 	 (5 & (access) ? 32 : 0) | \
4372 	 (6 & (access) ? 64 : 0) | \
4373 	 (7 & (access) ? 128 : 0))
4374 
4375 
4376 static void update_permission_bitmask(struct kvm_mmu *mmu, bool ept)
4377 {
4378 	unsigned byte;
4379 
4380 	const u8 x = BYTE_MASK(ACC_EXEC_MASK);
4381 	const u8 w = BYTE_MASK(ACC_WRITE_MASK);
4382 	const u8 u = BYTE_MASK(ACC_USER_MASK);
4383 
4384 	bool cr4_smep = is_cr4_smep(mmu);
4385 	bool cr4_smap = is_cr4_smap(mmu);
4386 	bool cr0_wp = is_cr0_wp(mmu);
4387 	bool efer_nx = is_efer_nx(mmu);
4388 
4389 	for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
4390 		unsigned pfec = byte << 1;
4391 
4392 		/*
4393 		 * Each "*f" variable has a 1 bit for each UWX value
4394 		 * that causes a fault with the given PFEC.
4395 		 */
4396 
4397 		/* Faults from writes to non-writable pages */
4398 		u8 wf = (pfec & PFERR_WRITE_MASK) ? (u8)~w : 0;
4399 		/* Faults from user mode accesses to supervisor pages */
4400 		u8 uf = (pfec & PFERR_USER_MASK) ? (u8)~u : 0;
4401 		/* Faults from fetches of non-executable pages*/
4402 		u8 ff = (pfec & PFERR_FETCH_MASK) ? (u8)~x : 0;
4403 		/* Faults from kernel mode fetches of user pages */
4404 		u8 smepf = 0;
4405 		/* Faults from kernel mode accesses of user pages */
4406 		u8 smapf = 0;
4407 
4408 		if (!ept) {
4409 			/* Faults from kernel mode accesses to user pages */
4410 			u8 kf = (pfec & PFERR_USER_MASK) ? 0 : u;
4411 
4412 			/* Not really needed: !nx will cause pte.nx to fault */
4413 			if (!efer_nx)
4414 				ff = 0;
4415 
4416 			/* Allow supervisor writes if !cr0.wp */
4417 			if (!cr0_wp)
4418 				wf = (pfec & PFERR_USER_MASK) ? wf : 0;
4419 
4420 			/* Disallow supervisor fetches of user code if cr4.smep */
4421 			if (cr4_smep)
4422 				smepf = (pfec & PFERR_FETCH_MASK) ? kf : 0;
4423 
4424 			/*
4425 			 * SMAP:kernel-mode data accesses from user-mode
4426 			 * mappings should fault. A fault is considered
4427 			 * as a SMAP violation if all of the following
4428 			 * conditions are true:
4429 			 *   - X86_CR4_SMAP is set in CR4
4430 			 *   - A user page is accessed
4431 			 *   - The access is not a fetch
4432 			 *   - Page fault in kernel mode
4433 			 *   - if CPL = 3 or X86_EFLAGS_AC is clear
4434 			 *
4435 			 * Here, we cover the first three conditions.
4436 			 * The fourth is computed dynamically in permission_fault();
4437 			 * PFERR_RSVD_MASK bit will be set in PFEC if the access is
4438 			 * *not* subject to SMAP restrictions.
4439 			 */
4440 			if (cr4_smap)
4441 				smapf = (pfec & (PFERR_RSVD_MASK|PFERR_FETCH_MASK)) ? 0 : kf;
4442 		}
4443 
4444 		mmu->permissions[byte] = ff | uf | wf | smepf | smapf;
4445 	}
4446 }
4447 
4448 /*
4449 * PKU is an additional mechanism by which the paging controls access to
4450 * user-mode addresses based on the value in the PKRU register.  Protection
4451 * key violations are reported through a bit in the page fault error code.
4452 * Unlike other bits of the error code, the PK bit is not known at the
4453 * call site of e.g. gva_to_gpa; it must be computed directly in
4454 * permission_fault based on two bits of PKRU, on some machine state (CR4,
4455 * CR0, EFER, CPL), and on other bits of the error code and the page tables.
4456 *
4457 * In particular the following conditions come from the error code, the
4458 * page tables and the machine state:
4459 * - PK is always zero unless CR4.PKE=1 and EFER.LMA=1
4460 * - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch)
4461 * - PK is always zero if U=0 in the page tables
4462 * - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access.
4463 *
4464 * The PKRU bitmask caches the result of these four conditions.  The error
4465 * code (minus the P bit) and the page table's U bit form an index into the
4466 * PKRU bitmask.  Two bits of the PKRU bitmask are then extracted and ANDed
4467 * with the two bits of the PKRU register corresponding to the protection key.
4468 * For the first three conditions above the bits will be 00, thus masking
4469 * away both AD and WD.  For all reads or if the last condition holds, WD
4470 * only will be masked away.
4471 */
4472 static void update_pkru_bitmask(struct kvm_mmu *mmu)
4473 {
4474 	unsigned bit;
4475 	bool wp;
4476 
4477 	if (!is_cr4_pke(mmu)) {
4478 		mmu->pkru_mask = 0;
4479 		return;
4480 	}
4481 
4482 	wp = is_cr0_wp(mmu);
4483 
4484 	for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) {
4485 		unsigned pfec, pkey_bits;
4486 		bool check_pkey, check_write, ff, uf, wf, pte_user;
4487 
4488 		pfec = bit << 1;
4489 		ff = pfec & PFERR_FETCH_MASK;
4490 		uf = pfec & PFERR_USER_MASK;
4491 		wf = pfec & PFERR_WRITE_MASK;
4492 
4493 		/* PFEC.RSVD is replaced by ACC_USER_MASK. */
4494 		pte_user = pfec & PFERR_RSVD_MASK;
4495 
4496 		/*
4497 		 * Only need to check the access which is not an
4498 		 * instruction fetch and is to a user page.
4499 		 */
4500 		check_pkey = (!ff && pte_user);
4501 		/*
4502 		 * write access is controlled by PKRU if it is a
4503 		 * user access or CR0.WP = 1.
4504 		 */
4505 		check_write = check_pkey && wf && (uf || wp);
4506 
4507 		/* PKRU.AD stops both read and write access. */
4508 		pkey_bits = !!check_pkey;
4509 		/* PKRU.WD stops write access. */
4510 		pkey_bits |= (!!check_write) << 1;
4511 
4512 		mmu->pkru_mask |= (pkey_bits & 3) << pfec;
4513 	}
4514 }
4515 
4516 static void reset_guest_paging_metadata(struct kvm_vcpu *vcpu,
4517 					struct kvm_mmu *mmu)
4518 {
4519 	if (!is_cr0_pg(mmu))
4520 		return;
4521 
4522 	reset_rsvds_bits_mask(vcpu, mmu);
4523 	update_permission_bitmask(mmu, false);
4524 	update_pkru_bitmask(mmu);
4525 }
4526 
4527 static void paging64_init_context(struct kvm_mmu *context)
4528 {
4529 	context->page_fault = paging64_page_fault;
4530 	context->gva_to_gpa = paging64_gva_to_gpa;
4531 	context->sync_page = paging64_sync_page;
4532 	context->invlpg = paging64_invlpg;
4533 	context->direct_map = false;
4534 }
4535 
4536 static void paging32_init_context(struct kvm_mmu *context)
4537 {
4538 	context->page_fault = paging32_page_fault;
4539 	context->gva_to_gpa = paging32_gva_to_gpa;
4540 	context->sync_page = paging32_sync_page;
4541 	context->invlpg = paging32_invlpg;
4542 	context->direct_map = false;
4543 }
4544 
4545 static union kvm_mmu_extended_role kvm_calc_mmu_role_ext(struct kvm_vcpu *vcpu,
4546 							 struct kvm_mmu_role_regs *regs)
4547 {
4548 	union kvm_mmu_extended_role ext = {0};
4549 
4550 	if (____is_cr0_pg(regs)) {
4551 		ext.cr0_pg = 1;
4552 		ext.cr4_pae = ____is_cr4_pae(regs);
4553 		ext.cr4_smep = ____is_cr4_smep(regs);
4554 		ext.cr4_smap = ____is_cr4_smap(regs);
4555 		ext.cr4_pse = ____is_cr4_pse(regs);
4556 
4557 		/* PKEY and LA57 are active iff long mode is active. */
4558 		ext.cr4_pke = ____is_efer_lma(regs) && ____is_cr4_pke(regs);
4559 		ext.cr4_la57 = ____is_efer_lma(regs) && ____is_cr4_la57(regs);
4560 	}
4561 
4562 	ext.valid = 1;
4563 
4564 	return ext;
4565 }
4566 
4567 static union kvm_mmu_role kvm_calc_mmu_role_common(struct kvm_vcpu *vcpu,
4568 						   struct kvm_mmu_role_regs *regs,
4569 						   bool base_only)
4570 {
4571 	union kvm_mmu_role role = {0};
4572 
4573 	role.base.access = ACC_ALL;
4574 	if (____is_cr0_pg(regs)) {
4575 		role.base.efer_nx = ____is_efer_nx(regs);
4576 		role.base.cr0_wp = ____is_cr0_wp(regs);
4577 	}
4578 	role.base.smm = is_smm(vcpu);
4579 	role.base.guest_mode = is_guest_mode(vcpu);
4580 
4581 	if (base_only)
4582 		return role;
4583 
4584 	role.ext = kvm_calc_mmu_role_ext(vcpu, regs);
4585 
4586 	return role;
4587 }
4588 
4589 static inline int kvm_mmu_get_tdp_level(struct kvm_vcpu *vcpu)
4590 {
4591 	/* Use 5-level TDP if and only if it's useful/necessary. */
4592 	if (max_tdp_level == 5 && cpuid_maxphyaddr(vcpu) <= 48)
4593 		return 4;
4594 
4595 	return max_tdp_level;
4596 }
4597 
4598 static union kvm_mmu_role
4599 kvm_calc_tdp_mmu_root_page_role(struct kvm_vcpu *vcpu,
4600 				struct kvm_mmu_role_regs *regs, bool base_only)
4601 {
4602 	union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, regs, base_only);
4603 
4604 	role.base.ad_disabled = (shadow_accessed_mask == 0);
4605 	role.base.level = kvm_mmu_get_tdp_level(vcpu);
4606 	role.base.direct = true;
4607 	role.base.gpte_is_8_bytes = true;
4608 
4609 	return role;
4610 }
4611 
4612 static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
4613 {
4614 	struct kvm_mmu *context = &vcpu->arch.root_mmu;
4615 	struct kvm_mmu_role_regs regs = vcpu_to_role_regs(vcpu);
4616 	union kvm_mmu_role new_role =
4617 		kvm_calc_tdp_mmu_root_page_role(vcpu, &regs, false);
4618 
4619 	if (new_role.as_u64 == context->mmu_role.as_u64)
4620 		return;
4621 
4622 	context->mmu_role.as_u64 = new_role.as_u64;
4623 	context->page_fault = kvm_tdp_page_fault;
4624 	context->sync_page = nonpaging_sync_page;
4625 	context->invlpg = NULL;
4626 	context->shadow_root_level = kvm_mmu_get_tdp_level(vcpu);
4627 	context->direct_map = true;
4628 	context->get_guest_pgd = get_cr3;
4629 	context->get_pdptr = kvm_pdptr_read;
4630 	context->inject_page_fault = kvm_inject_page_fault;
4631 	context->root_level = role_regs_to_root_level(&regs);
4632 
4633 	if (!is_cr0_pg(context))
4634 		context->gva_to_gpa = nonpaging_gva_to_gpa;
4635 	else if (is_cr4_pae(context))
4636 		context->gva_to_gpa = paging64_gva_to_gpa;
4637 	else
4638 		context->gva_to_gpa = paging32_gva_to_gpa;
4639 
4640 	reset_guest_paging_metadata(vcpu, context);
4641 	reset_tdp_shadow_zero_bits_mask(vcpu, context);
4642 }
4643 
4644 static union kvm_mmu_role
4645 kvm_calc_shadow_root_page_role_common(struct kvm_vcpu *vcpu,
4646 				      struct kvm_mmu_role_regs *regs, bool base_only)
4647 {
4648 	union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, regs, base_only);
4649 
4650 	role.base.smep_andnot_wp = role.ext.cr4_smep && !____is_cr0_wp(regs);
4651 	role.base.smap_andnot_wp = role.ext.cr4_smap && !____is_cr0_wp(regs);
4652 	role.base.gpte_is_8_bytes = ____is_cr0_pg(regs) && ____is_cr4_pae(regs);
4653 
4654 	return role;
4655 }
4656 
4657 static union kvm_mmu_role
4658 kvm_calc_shadow_mmu_root_page_role(struct kvm_vcpu *vcpu,
4659 				   struct kvm_mmu_role_regs *regs, bool base_only)
4660 {
4661 	union kvm_mmu_role role =
4662 		kvm_calc_shadow_root_page_role_common(vcpu, regs, base_only);
4663 
4664 	role.base.direct = !____is_cr0_pg(regs);
4665 
4666 	if (!____is_efer_lma(regs))
4667 		role.base.level = PT32E_ROOT_LEVEL;
4668 	else if (____is_cr4_la57(regs))
4669 		role.base.level = PT64_ROOT_5LEVEL;
4670 	else
4671 		role.base.level = PT64_ROOT_4LEVEL;
4672 
4673 	return role;
4674 }
4675 
4676 static void shadow_mmu_init_context(struct kvm_vcpu *vcpu, struct kvm_mmu *context,
4677 				    struct kvm_mmu_role_regs *regs,
4678 				    union kvm_mmu_role new_role)
4679 {
4680 	if (new_role.as_u64 == context->mmu_role.as_u64)
4681 		return;
4682 
4683 	context->mmu_role.as_u64 = new_role.as_u64;
4684 
4685 	if (!is_cr0_pg(context))
4686 		nonpaging_init_context(context);
4687 	else if (is_cr4_pae(context))
4688 		paging64_init_context(context);
4689 	else
4690 		paging32_init_context(context);
4691 	context->root_level = role_regs_to_root_level(regs);
4692 
4693 	reset_guest_paging_metadata(vcpu, context);
4694 	context->shadow_root_level = new_role.base.level;
4695 
4696 	reset_shadow_zero_bits_mask(vcpu, context);
4697 }
4698 
4699 static void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu,
4700 				struct kvm_mmu_role_regs *regs)
4701 {
4702 	struct kvm_mmu *context = &vcpu->arch.root_mmu;
4703 	union kvm_mmu_role new_role =
4704 		kvm_calc_shadow_mmu_root_page_role(vcpu, regs, false);
4705 
4706 	shadow_mmu_init_context(vcpu, context, regs, new_role);
4707 }
4708 
4709 static union kvm_mmu_role
4710 kvm_calc_shadow_npt_root_page_role(struct kvm_vcpu *vcpu,
4711 				   struct kvm_mmu_role_regs *regs)
4712 {
4713 	union kvm_mmu_role role =
4714 		kvm_calc_shadow_root_page_role_common(vcpu, regs, false);
4715 
4716 	role.base.direct = false;
4717 	role.base.level = kvm_mmu_get_tdp_level(vcpu);
4718 
4719 	return role;
4720 }
4721 
4722 void kvm_init_shadow_npt_mmu(struct kvm_vcpu *vcpu, unsigned long cr0,
4723 			     unsigned long cr4, u64 efer, gpa_t nested_cr3)
4724 {
4725 	struct kvm_mmu *context = &vcpu->arch.guest_mmu;
4726 	struct kvm_mmu_role_regs regs = {
4727 		.cr0 = cr0,
4728 		.cr4 = cr4,
4729 		.efer = efer,
4730 	};
4731 	union kvm_mmu_role new_role;
4732 
4733 	new_role = kvm_calc_shadow_npt_root_page_role(vcpu, &regs);
4734 
4735 	__kvm_mmu_new_pgd(vcpu, nested_cr3, new_role.base);
4736 
4737 	shadow_mmu_init_context(vcpu, context, &regs, new_role);
4738 }
4739 EXPORT_SYMBOL_GPL(kvm_init_shadow_npt_mmu);
4740 
4741 static union kvm_mmu_role
4742 kvm_calc_shadow_ept_root_page_role(struct kvm_vcpu *vcpu, bool accessed_dirty,
4743 				   bool execonly, u8 level)
4744 {
4745 	union kvm_mmu_role role = {0};
4746 
4747 	/* SMM flag is inherited from root_mmu */
4748 	role.base.smm = vcpu->arch.root_mmu.mmu_role.base.smm;
4749 
4750 	role.base.level = level;
4751 	role.base.gpte_is_8_bytes = true;
4752 	role.base.direct = false;
4753 	role.base.ad_disabled = !accessed_dirty;
4754 	role.base.guest_mode = true;
4755 	role.base.access = ACC_ALL;
4756 
4757 	/* EPT, and thus nested EPT, does not consume CR0, CR4, nor EFER. */
4758 	role.ext.word = 0;
4759 	role.ext.execonly = execonly;
4760 	role.ext.valid = 1;
4761 
4762 	return role;
4763 }
4764 
4765 void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly,
4766 			     bool accessed_dirty, gpa_t new_eptp)
4767 {
4768 	struct kvm_mmu *context = &vcpu->arch.guest_mmu;
4769 	u8 level = vmx_eptp_page_walk_level(new_eptp);
4770 	union kvm_mmu_role new_role =
4771 		kvm_calc_shadow_ept_root_page_role(vcpu, accessed_dirty,
4772 						   execonly, level);
4773 
4774 	__kvm_mmu_new_pgd(vcpu, new_eptp, new_role.base);
4775 
4776 	if (new_role.as_u64 == context->mmu_role.as_u64)
4777 		return;
4778 
4779 	context->mmu_role.as_u64 = new_role.as_u64;
4780 
4781 	context->shadow_root_level = level;
4782 
4783 	context->ept_ad = accessed_dirty;
4784 	context->page_fault = ept_page_fault;
4785 	context->gva_to_gpa = ept_gva_to_gpa;
4786 	context->sync_page = ept_sync_page;
4787 	context->invlpg = ept_invlpg;
4788 	context->root_level = level;
4789 	context->direct_map = false;
4790 
4791 	update_permission_bitmask(context, true);
4792 	update_pkru_bitmask(context);
4793 	reset_rsvds_bits_mask_ept(vcpu, context, execonly);
4794 	reset_ept_shadow_zero_bits_mask(vcpu, context, execonly);
4795 }
4796 EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);
4797 
4798 static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
4799 {
4800 	struct kvm_mmu *context = &vcpu->arch.root_mmu;
4801 	struct kvm_mmu_role_regs regs = vcpu_to_role_regs(vcpu);
4802 
4803 	kvm_init_shadow_mmu(vcpu, &regs);
4804 
4805 	context->get_guest_pgd     = get_cr3;
4806 	context->get_pdptr         = kvm_pdptr_read;
4807 	context->inject_page_fault = kvm_inject_page_fault;
4808 }
4809 
4810 static union kvm_mmu_role
4811 kvm_calc_nested_mmu_role(struct kvm_vcpu *vcpu, struct kvm_mmu_role_regs *regs)
4812 {
4813 	union kvm_mmu_role role;
4814 
4815 	role = kvm_calc_shadow_root_page_role_common(vcpu, regs, false);
4816 
4817 	/*
4818 	 * Nested MMUs are used only for walking L2's gva->gpa, they never have
4819 	 * shadow pages of their own and so "direct" has no meaning.   Set it
4820 	 * to "true" to try to detect bogus usage of the nested MMU.
4821 	 */
4822 	role.base.direct = true;
4823 	role.base.level = role_regs_to_root_level(regs);
4824 	return role;
4825 }
4826 
4827 static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
4828 {
4829 	struct kvm_mmu_role_regs regs = vcpu_to_role_regs(vcpu);
4830 	union kvm_mmu_role new_role = kvm_calc_nested_mmu_role(vcpu, &regs);
4831 	struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
4832 
4833 	if (new_role.as_u64 == g_context->mmu_role.as_u64)
4834 		return;
4835 
4836 	g_context->mmu_role.as_u64 = new_role.as_u64;
4837 	g_context->get_guest_pgd     = get_cr3;
4838 	g_context->get_pdptr         = kvm_pdptr_read;
4839 	g_context->inject_page_fault = kvm_inject_page_fault;
4840 	g_context->root_level        = new_role.base.level;
4841 
4842 	/*
4843 	 * L2 page tables are never shadowed, so there is no need to sync
4844 	 * SPTEs.
4845 	 */
4846 	g_context->invlpg            = NULL;
4847 
4848 	/*
4849 	 * Note that arch.mmu->gva_to_gpa translates l2_gpa to l1_gpa using
4850 	 * L1's nested page tables (e.g. EPT12). The nested translation
4851 	 * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using
4852 	 * L2's page tables as the first level of translation and L1's
4853 	 * nested page tables as the second level of translation. Basically
4854 	 * the gva_to_gpa functions between mmu and nested_mmu are swapped.
4855 	 */
4856 	if (!is_paging(vcpu))
4857 		g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
4858 	else if (is_long_mode(vcpu))
4859 		g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4860 	else if (is_pae(vcpu))
4861 		g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4862 	else
4863 		g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
4864 
4865 	reset_guest_paging_metadata(vcpu, g_context);
4866 }
4867 
4868 void kvm_init_mmu(struct kvm_vcpu *vcpu)
4869 {
4870 	if (mmu_is_nested(vcpu))
4871 		init_kvm_nested_mmu(vcpu);
4872 	else if (tdp_enabled)
4873 		init_kvm_tdp_mmu(vcpu);
4874 	else
4875 		init_kvm_softmmu(vcpu);
4876 }
4877 EXPORT_SYMBOL_GPL(kvm_init_mmu);
4878 
4879 static union kvm_mmu_page_role
4880 kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu)
4881 {
4882 	struct kvm_mmu_role_regs regs = vcpu_to_role_regs(vcpu);
4883 	union kvm_mmu_role role;
4884 
4885 	if (tdp_enabled)
4886 		role = kvm_calc_tdp_mmu_root_page_role(vcpu, &regs, true);
4887 	else
4888 		role = kvm_calc_shadow_mmu_root_page_role(vcpu, &regs, true);
4889 
4890 	return role.base;
4891 }
4892 
4893 void kvm_mmu_after_set_cpuid(struct kvm_vcpu *vcpu)
4894 {
4895 	/*
4896 	 * Invalidate all MMU roles to force them to reinitialize as CPUID
4897 	 * information is factored into reserved bit calculations.
4898 	 */
4899 	vcpu->arch.root_mmu.mmu_role.ext.valid = 0;
4900 	vcpu->arch.guest_mmu.mmu_role.ext.valid = 0;
4901 	vcpu->arch.nested_mmu.mmu_role.ext.valid = 0;
4902 	kvm_mmu_reset_context(vcpu);
4903 
4904 	/*
4905 	 * KVM does not correctly handle changing guest CPUID after KVM_RUN, as
4906 	 * MAXPHYADDR, GBPAGES support, AMD reserved bit behavior, etc.. aren't
4907 	 * tracked in kvm_mmu_page_role.  As a result, KVM may miss guest page
4908 	 * faults due to reusing SPs/SPTEs.  Alert userspace, but otherwise
4909 	 * sweep the problem under the rug.
4910 	 *
4911 	 * KVM's horrific CPUID ABI makes the problem all but impossible to
4912 	 * solve, as correctly handling multiple vCPU models (with respect to
4913 	 * paging and physical address properties) in a single VM would require
4914 	 * tracking all relevant CPUID information in kvm_mmu_page_role.  That
4915 	 * is very undesirable as it would double the memory requirements for
4916 	 * gfn_track (see struct kvm_mmu_page_role comments), and in practice
4917 	 * no sane VMM mucks with the core vCPU model on the fly.
4918 	 */
4919 	if (vcpu->arch.last_vmentry_cpu != -1) {
4920 		pr_warn_ratelimited("KVM: KVM_SET_CPUID{,2} after KVM_RUN may cause guest instability\n");
4921 		pr_warn_ratelimited("KVM: KVM_SET_CPUID{,2} will fail after KVM_RUN starting with Linux 5.16\n");
4922 	}
4923 }
4924 
4925 void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
4926 {
4927 	kvm_mmu_unload(vcpu);
4928 	kvm_init_mmu(vcpu);
4929 }
4930 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
4931 
4932 int kvm_mmu_load(struct kvm_vcpu *vcpu)
4933 {
4934 	int r;
4935 
4936 	r = mmu_topup_memory_caches(vcpu, !vcpu->arch.mmu->direct_map);
4937 	if (r)
4938 		goto out;
4939 	r = mmu_alloc_special_roots(vcpu);
4940 	if (r)
4941 		goto out;
4942 	if (vcpu->arch.mmu->direct_map)
4943 		r = mmu_alloc_direct_roots(vcpu);
4944 	else
4945 		r = mmu_alloc_shadow_roots(vcpu);
4946 	if (r)
4947 		goto out;
4948 
4949 	kvm_mmu_sync_roots(vcpu);
4950 
4951 	kvm_mmu_load_pgd(vcpu);
4952 	static_call(kvm_x86_tlb_flush_current)(vcpu);
4953 out:
4954 	return r;
4955 }
4956 
4957 void kvm_mmu_unload(struct kvm_vcpu *vcpu)
4958 {
4959 	kvm_mmu_free_roots(vcpu, &vcpu->arch.root_mmu, KVM_MMU_ROOTS_ALL);
4960 	WARN_ON(VALID_PAGE(vcpu->arch.root_mmu.root_hpa));
4961 	kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
4962 	WARN_ON(VALID_PAGE(vcpu->arch.guest_mmu.root_hpa));
4963 }
4964 
4965 static bool need_remote_flush(u64 old, u64 new)
4966 {
4967 	if (!is_shadow_present_pte(old))
4968 		return false;
4969 	if (!is_shadow_present_pte(new))
4970 		return true;
4971 	if ((old ^ new) & PT64_BASE_ADDR_MASK)
4972 		return true;
4973 	old ^= shadow_nx_mask;
4974 	new ^= shadow_nx_mask;
4975 	return (old & ~new & PT64_PERM_MASK) != 0;
4976 }
4977 
4978 static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
4979 				    int *bytes)
4980 {
4981 	u64 gentry = 0;
4982 	int r;
4983 
4984 	/*
4985 	 * Assume that the pte write on a page table of the same type
4986 	 * as the current vcpu paging mode since we update the sptes only
4987 	 * when they have the same mode.
4988 	 */
4989 	if (is_pae(vcpu) && *bytes == 4) {
4990 		/* Handle a 32-bit guest writing two halves of a 64-bit gpte */
4991 		*gpa &= ~(gpa_t)7;
4992 		*bytes = 8;
4993 	}
4994 
4995 	if (*bytes == 4 || *bytes == 8) {
4996 		r = kvm_vcpu_read_guest_atomic(vcpu, *gpa, &gentry, *bytes);
4997 		if (r)
4998 			gentry = 0;
4999 	}
5000 
5001 	return gentry;
5002 }
5003 
5004 /*
5005  * If we're seeing too many writes to a page, it may no longer be a page table,
5006  * or we may be forking, in which case it is better to unmap the page.
5007  */
5008 static bool detect_write_flooding(struct kvm_mmu_page *sp)
5009 {
5010 	/*
5011 	 * Skip write-flooding detected for the sp whose level is 1, because
5012 	 * it can become unsync, then the guest page is not write-protected.
5013 	 */
5014 	if (sp->role.level == PG_LEVEL_4K)
5015 		return false;
5016 
5017 	atomic_inc(&sp->write_flooding_count);
5018 	return atomic_read(&sp->write_flooding_count) >= 3;
5019 }
5020 
5021 /*
5022  * Misaligned accesses are too much trouble to fix up; also, they usually
5023  * indicate a page is not used as a page table.
5024  */
5025 static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
5026 				    int bytes)
5027 {
5028 	unsigned offset, pte_size, misaligned;
5029 
5030 	pgprintk("misaligned: gpa %llx bytes %d role %x\n",
5031 		 gpa, bytes, sp->role.word);
5032 
5033 	offset = offset_in_page(gpa);
5034 	pte_size = sp->role.gpte_is_8_bytes ? 8 : 4;
5035 
5036 	/*
5037 	 * Sometimes, the OS only writes the last one bytes to update status
5038 	 * bits, for example, in linux, andb instruction is used in clear_bit().
5039 	 */
5040 	if (!(offset & (pte_size - 1)) && bytes == 1)
5041 		return false;
5042 
5043 	misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
5044 	misaligned |= bytes < 4;
5045 
5046 	return misaligned;
5047 }
5048 
5049 static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
5050 {
5051 	unsigned page_offset, quadrant;
5052 	u64 *spte;
5053 	int level;
5054 
5055 	page_offset = offset_in_page(gpa);
5056 	level = sp->role.level;
5057 	*nspte = 1;
5058 	if (!sp->role.gpte_is_8_bytes) {
5059 		page_offset <<= 1;	/* 32->64 */
5060 		/*
5061 		 * A 32-bit pde maps 4MB while the shadow pdes map
5062 		 * only 2MB.  So we need to double the offset again
5063 		 * and zap two pdes instead of one.
5064 		 */
5065 		if (level == PT32_ROOT_LEVEL) {
5066 			page_offset &= ~7; /* kill rounding error */
5067 			page_offset <<= 1;
5068 			*nspte = 2;
5069 		}
5070 		quadrant = page_offset >> PAGE_SHIFT;
5071 		page_offset &= ~PAGE_MASK;
5072 		if (quadrant != sp->role.quadrant)
5073 			return NULL;
5074 	}
5075 
5076 	spte = &sp->spt[page_offset / sizeof(*spte)];
5077 	return spte;
5078 }
5079 
5080 static void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
5081 			      const u8 *new, int bytes,
5082 			      struct kvm_page_track_notifier_node *node)
5083 {
5084 	gfn_t gfn = gpa >> PAGE_SHIFT;
5085 	struct kvm_mmu_page *sp;
5086 	LIST_HEAD(invalid_list);
5087 	u64 entry, gentry, *spte;
5088 	int npte;
5089 	bool remote_flush, local_flush;
5090 
5091 	/*
5092 	 * If we don't have indirect shadow pages, it means no page is
5093 	 * write-protected, so we can exit simply.
5094 	 */
5095 	if (!READ_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
5096 		return;
5097 
5098 	remote_flush = local_flush = false;
5099 
5100 	pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
5101 
5102 	/*
5103 	 * No need to care whether allocation memory is successful
5104 	 * or not since pte prefetch is skipped if it does not have
5105 	 * enough objects in the cache.
5106 	 */
5107 	mmu_topup_memory_caches(vcpu, true);
5108 
5109 	write_lock(&vcpu->kvm->mmu_lock);
5110 
5111 	gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, &bytes);
5112 
5113 	++vcpu->kvm->stat.mmu_pte_write;
5114 	kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
5115 
5116 	for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
5117 		if (detect_write_misaligned(sp, gpa, bytes) ||
5118 		      detect_write_flooding(sp)) {
5119 			kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
5120 			++vcpu->kvm->stat.mmu_flooded;
5121 			continue;
5122 		}
5123 
5124 		spte = get_written_sptes(sp, gpa, &npte);
5125 		if (!spte)
5126 			continue;
5127 
5128 		local_flush = true;
5129 		while (npte--) {
5130 			entry = *spte;
5131 			mmu_page_zap_pte(vcpu->kvm, sp, spte, NULL);
5132 			if (gentry && sp->role.level != PG_LEVEL_4K)
5133 				++vcpu->kvm->stat.mmu_pde_zapped;
5134 			if (need_remote_flush(entry, *spte))
5135 				remote_flush = true;
5136 			++spte;
5137 		}
5138 	}
5139 	kvm_mmu_flush_or_zap(vcpu, &invalid_list, remote_flush, local_flush);
5140 	kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
5141 	write_unlock(&vcpu->kvm->mmu_lock);
5142 }
5143 
5144 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 error_code,
5145 		       void *insn, int insn_len)
5146 {
5147 	int r, emulation_type = EMULTYPE_PF;
5148 	bool direct = vcpu->arch.mmu->direct_map;
5149 
5150 	if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa)))
5151 		return RET_PF_RETRY;
5152 
5153 	r = RET_PF_INVALID;
5154 	if (unlikely(error_code & PFERR_RSVD_MASK)) {
5155 		r = handle_mmio_page_fault(vcpu, cr2_or_gpa, direct);
5156 		if (r == RET_PF_EMULATE)
5157 			goto emulate;
5158 	}
5159 
5160 	if (r == RET_PF_INVALID) {
5161 		r = kvm_mmu_do_page_fault(vcpu, cr2_or_gpa,
5162 					  lower_32_bits(error_code), false);
5163 		if (WARN_ON_ONCE(r == RET_PF_INVALID))
5164 			return -EIO;
5165 	}
5166 
5167 	if (r < 0)
5168 		return r;
5169 	if (r != RET_PF_EMULATE)
5170 		return 1;
5171 
5172 	/*
5173 	 * Before emulating the instruction, check if the error code
5174 	 * was due to a RO violation while translating the guest page.
5175 	 * This can occur when using nested virtualization with nested
5176 	 * paging in both guests. If true, we simply unprotect the page
5177 	 * and resume the guest.
5178 	 */
5179 	if (vcpu->arch.mmu->direct_map &&
5180 	    (error_code & PFERR_NESTED_GUEST_PAGE) == PFERR_NESTED_GUEST_PAGE) {
5181 		kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(cr2_or_gpa));
5182 		return 1;
5183 	}
5184 
5185 	/*
5186 	 * vcpu->arch.mmu.page_fault returned RET_PF_EMULATE, but we can still
5187 	 * optimistically try to just unprotect the page and let the processor
5188 	 * re-execute the instruction that caused the page fault.  Do not allow
5189 	 * retrying MMIO emulation, as it's not only pointless but could also
5190 	 * cause us to enter an infinite loop because the processor will keep
5191 	 * faulting on the non-existent MMIO address.  Retrying an instruction
5192 	 * from a nested guest is also pointless and dangerous as we are only
5193 	 * explicitly shadowing L1's page tables, i.e. unprotecting something
5194 	 * for L1 isn't going to magically fix whatever issue cause L2 to fail.
5195 	 */
5196 	if (!mmio_info_in_cache(vcpu, cr2_or_gpa, direct) && !is_guest_mode(vcpu))
5197 		emulation_type |= EMULTYPE_ALLOW_RETRY_PF;
5198 emulate:
5199 	return x86_emulate_instruction(vcpu, cr2_or_gpa, emulation_type, insn,
5200 				       insn_len);
5201 }
5202 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
5203 
5204 void kvm_mmu_invalidate_gva(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
5205 			    gva_t gva, hpa_t root_hpa)
5206 {
5207 	int i;
5208 
5209 	/* It's actually a GPA for vcpu->arch.guest_mmu.  */
5210 	if (mmu != &vcpu->arch.guest_mmu) {
5211 		/* INVLPG on a non-canonical address is a NOP according to the SDM.  */
5212 		if (is_noncanonical_address(gva, vcpu))
5213 			return;
5214 
5215 		static_call(kvm_x86_tlb_flush_gva)(vcpu, gva);
5216 	}
5217 
5218 	if (!mmu->invlpg)
5219 		return;
5220 
5221 	if (root_hpa == INVALID_PAGE) {
5222 		mmu->invlpg(vcpu, gva, mmu->root_hpa);
5223 
5224 		/*
5225 		 * INVLPG is required to invalidate any global mappings for the VA,
5226 		 * irrespective of PCID. Since it would take us roughly similar amount
5227 		 * of work to determine whether any of the prev_root mappings of the VA
5228 		 * is marked global, or to just sync it blindly, so we might as well
5229 		 * just always sync it.
5230 		 *
5231 		 * Mappings not reachable via the current cr3 or the prev_roots will be
5232 		 * synced when switching to that cr3, so nothing needs to be done here
5233 		 * for them.
5234 		 */
5235 		for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5236 			if (VALID_PAGE(mmu->prev_roots[i].hpa))
5237 				mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
5238 	} else {
5239 		mmu->invlpg(vcpu, gva, root_hpa);
5240 	}
5241 }
5242 
5243 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
5244 {
5245 	kvm_mmu_invalidate_gva(vcpu, vcpu->arch.mmu, gva, INVALID_PAGE);
5246 	++vcpu->stat.invlpg;
5247 }
5248 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
5249 
5250 
5251 void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid)
5252 {
5253 	struct kvm_mmu *mmu = vcpu->arch.mmu;
5254 	bool tlb_flush = false;
5255 	uint i;
5256 
5257 	if (pcid == kvm_get_active_pcid(vcpu)) {
5258 		mmu->invlpg(vcpu, gva, mmu->root_hpa);
5259 		tlb_flush = true;
5260 	}
5261 
5262 	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
5263 		if (VALID_PAGE(mmu->prev_roots[i].hpa) &&
5264 		    pcid == kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd)) {
5265 			mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
5266 			tlb_flush = true;
5267 		}
5268 	}
5269 
5270 	if (tlb_flush)
5271 		static_call(kvm_x86_tlb_flush_gva)(vcpu, gva);
5272 
5273 	++vcpu->stat.invlpg;
5274 
5275 	/*
5276 	 * Mappings not reachable via the current cr3 or the prev_roots will be
5277 	 * synced when switching to that cr3, so nothing needs to be done here
5278 	 * for them.
5279 	 */
5280 }
5281 
5282 void kvm_configure_mmu(bool enable_tdp, int tdp_max_root_level,
5283 		       int tdp_huge_page_level)
5284 {
5285 	tdp_enabled = enable_tdp;
5286 	max_tdp_level = tdp_max_root_level;
5287 
5288 	/*
5289 	 * max_huge_page_level reflects KVM's MMU capabilities irrespective
5290 	 * of kernel support, e.g. KVM may be capable of using 1GB pages when
5291 	 * the kernel is not.  But, KVM never creates a page size greater than
5292 	 * what is used by the kernel for any given HVA, i.e. the kernel's
5293 	 * capabilities are ultimately consulted by kvm_mmu_hugepage_adjust().
5294 	 */
5295 	if (tdp_enabled)
5296 		max_huge_page_level = tdp_huge_page_level;
5297 	else if (boot_cpu_has(X86_FEATURE_GBPAGES))
5298 		max_huge_page_level = PG_LEVEL_1G;
5299 	else
5300 		max_huge_page_level = PG_LEVEL_2M;
5301 }
5302 EXPORT_SYMBOL_GPL(kvm_configure_mmu);
5303 
5304 /* The return value indicates if tlb flush on all vcpus is needed. */
5305 typedef bool (*slot_level_handler) (struct kvm *kvm, struct kvm_rmap_head *rmap_head,
5306 				    struct kvm_memory_slot *slot);
5307 
5308 /* The caller should hold mmu-lock before calling this function. */
5309 static __always_inline bool
5310 slot_handle_level_range(struct kvm *kvm, struct kvm_memory_slot *memslot,
5311 			slot_level_handler fn, int start_level, int end_level,
5312 			gfn_t start_gfn, gfn_t end_gfn, bool flush_on_yield,
5313 			bool flush)
5314 {
5315 	struct slot_rmap_walk_iterator iterator;
5316 
5317 	for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn,
5318 			end_gfn, &iterator) {
5319 		if (iterator.rmap)
5320 			flush |= fn(kvm, iterator.rmap, memslot);
5321 
5322 		if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) {
5323 			if (flush && flush_on_yield) {
5324 				kvm_flush_remote_tlbs_with_address(kvm,
5325 						start_gfn,
5326 						iterator.gfn - start_gfn + 1);
5327 				flush = false;
5328 			}
5329 			cond_resched_rwlock_write(&kvm->mmu_lock);
5330 		}
5331 	}
5332 
5333 	return flush;
5334 }
5335 
5336 static __always_inline bool
5337 slot_handle_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5338 		  slot_level_handler fn, int start_level, int end_level,
5339 		  bool flush_on_yield)
5340 {
5341 	return slot_handle_level_range(kvm, memslot, fn, start_level,
5342 			end_level, memslot->base_gfn,
5343 			memslot->base_gfn + memslot->npages - 1,
5344 			flush_on_yield, false);
5345 }
5346 
5347 static __always_inline bool
5348 slot_handle_leaf(struct kvm *kvm, struct kvm_memory_slot *memslot,
5349 		 slot_level_handler fn, bool flush_on_yield)
5350 {
5351 	return slot_handle_level(kvm, memslot, fn, PG_LEVEL_4K,
5352 				 PG_LEVEL_4K, flush_on_yield);
5353 }
5354 
5355 static void free_mmu_pages(struct kvm_mmu *mmu)
5356 {
5357 	if (!tdp_enabled && mmu->pae_root)
5358 		set_memory_encrypted((unsigned long)mmu->pae_root, 1);
5359 	free_page((unsigned long)mmu->pae_root);
5360 	free_page((unsigned long)mmu->pml4_root);
5361 }
5362 
5363 static int __kvm_mmu_create(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
5364 {
5365 	struct page *page;
5366 	int i;
5367 
5368 	mmu->root_hpa = INVALID_PAGE;
5369 	mmu->root_pgd = 0;
5370 	mmu->translate_gpa = translate_gpa;
5371 	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5372 		mmu->prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
5373 
5374 	/*
5375 	 * When using PAE paging, the four PDPTEs are treated as 'root' pages,
5376 	 * while the PDP table is a per-vCPU construct that's allocated at MMU
5377 	 * creation.  When emulating 32-bit mode, cr3 is only 32 bits even on
5378 	 * x86_64.  Therefore we need to allocate the PDP table in the first
5379 	 * 4GB of memory, which happens to fit the DMA32 zone.  TDP paging
5380 	 * generally doesn't use PAE paging and can skip allocating the PDP
5381 	 * table.  The main exception, handled here, is SVM's 32-bit NPT.  The
5382 	 * other exception is for shadowing L1's 32-bit or PAE NPT on 64-bit
5383 	 * KVM; that horror is handled on-demand by mmu_alloc_shadow_roots().
5384 	 */
5385 	if (tdp_enabled && kvm_mmu_get_tdp_level(vcpu) > PT32E_ROOT_LEVEL)
5386 		return 0;
5387 
5388 	page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_DMA32);
5389 	if (!page)
5390 		return -ENOMEM;
5391 
5392 	mmu->pae_root = page_address(page);
5393 
5394 	/*
5395 	 * CR3 is only 32 bits when PAE paging is used, thus it's impossible to
5396 	 * get the CPU to treat the PDPTEs as encrypted.  Decrypt the page so
5397 	 * that KVM's writes and the CPU's reads get along.  Note, this is
5398 	 * only necessary when using shadow paging, as 64-bit NPT can get at
5399 	 * the C-bit even when shadowing 32-bit NPT, and SME isn't supported
5400 	 * by 32-bit kernels (when KVM itself uses 32-bit NPT).
5401 	 */
5402 	if (!tdp_enabled)
5403 		set_memory_decrypted((unsigned long)mmu->pae_root, 1);
5404 	else
5405 		WARN_ON_ONCE(shadow_me_mask);
5406 
5407 	for (i = 0; i < 4; ++i)
5408 		mmu->pae_root[i] = INVALID_PAE_ROOT;
5409 
5410 	return 0;
5411 }
5412 
5413 int kvm_mmu_create(struct kvm_vcpu *vcpu)
5414 {
5415 	int ret;
5416 
5417 	vcpu->arch.mmu_pte_list_desc_cache.kmem_cache = pte_list_desc_cache;
5418 	vcpu->arch.mmu_pte_list_desc_cache.gfp_zero = __GFP_ZERO;
5419 
5420 	vcpu->arch.mmu_page_header_cache.kmem_cache = mmu_page_header_cache;
5421 	vcpu->arch.mmu_page_header_cache.gfp_zero = __GFP_ZERO;
5422 
5423 	vcpu->arch.mmu_shadow_page_cache.gfp_zero = __GFP_ZERO;
5424 
5425 	vcpu->arch.mmu = &vcpu->arch.root_mmu;
5426 	vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
5427 
5428 	vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
5429 
5430 	ret = __kvm_mmu_create(vcpu, &vcpu->arch.guest_mmu);
5431 	if (ret)
5432 		return ret;
5433 
5434 	ret = __kvm_mmu_create(vcpu, &vcpu->arch.root_mmu);
5435 	if (ret)
5436 		goto fail_allocate_root;
5437 
5438 	return ret;
5439  fail_allocate_root:
5440 	free_mmu_pages(&vcpu->arch.guest_mmu);
5441 	return ret;
5442 }
5443 
5444 #define BATCH_ZAP_PAGES	10
5445 static void kvm_zap_obsolete_pages(struct kvm *kvm)
5446 {
5447 	struct kvm_mmu_page *sp, *node;
5448 	int nr_zapped, batch = 0;
5449 
5450 restart:
5451 	list_for_each_entry_safe_reverse(sp, node,
5452 	      &kvm->arch.active_mmu_pages, link) {
5453 		/*
5454 		 * No obsolete valid page exists before a newly created page
5455 		 * since active_mmu_pages is a FIFO list.
5456 		 */
5457 		if (!is_obsolete_sp(kvm, sp))
5458 			break;
5459 
5460 		/*
5461 		 * Invalid pages should never land back on the list of active
5462 		 * pages.  Skip the bogus page, otherwise we'll get stuck in an
5463 		 * infinite loop if the page gets put back on the list (again).
5464 		 */
5465 		if (WARN_ON(sp->role.invalid))
5466 			continue;
5467 
5468 		/*
5469 		 * No need to flush the TLB since we're only zapping shadow
5470 		 * pages with an obsolete generation number and all vCPUS have
5471 		 * loaded a new root, i.e. the shadow pages being zapped cannot
5472 		 * be in active use by the guest.
5473 		 */
5474 		if (batch >= BATCH_ZAP_PAGES &&
5475 		    cond_resched_rwlock_write(&kvm->mmu_lock)) {
5476 			batch = 0;
5477 			goto restart;
5478 		}
5479 
5480 		if (__kvm_mmu_prepare_zap_page(kvm, sp,
5481 				&kvm->arch.zapped_obsolete_pages, &nr_zapped)) {
5482 			batch += nr_zapped;
5483 			goto restart;
5484 		}
5485 	}
5486 
5487 	/*
5488 	 * Trigger a remote TLB flush before freeing the page tables to ensure
5489 	 * KVM is not in the middle of a lockless shadow page table walk, which
5490 	 * may reference the pages.
5491 	 */
5492 	kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
5493 }
5494 
5495 /*
5496  * Fast invalidate all shadow pages and use lock-break technique
5497  * to zap obsolete pages.
5498  *
5499  * It's required when memslot is being deleted or VM is being
5500  * destroyed, in these cases, we should ensure that KVM MMU does
5501  * not use any resource of the being-deleted slot or all slots
5502  * after calling the function.
5503  */
5504 static void kvm_mmu_zap_all_fast(struct kvm *kvm)
5505 {
5506 	lockdep_assert_held(&kvm->slots_lock);
5507 
5508 	write_lock(&kvm->mmu_lock);
5509 	trace_kvm_mmu_zap_all_fast(kvm);
5510 
5511 	/*
5512 	 * Toggle mmu_valid_gen between '0' and '1'.  Because slots_lock is
5513 	 * held for the entire duration of zapping obsolete pages, it's
5514 	 * impossible for there to be multiple invalid generations associated
5515 	 * with *valid* shadow pages at any given time, i.e. there is exactly
5516 	 * one valid generation and (at most) one invalid generation.
5517 	 */
5518 	kvm->arch.mmu_valid_gen = kvm->arch.mmu_valid_gen ? 0 : 1;
5519 
5520 	/* In order to ensure all threads see this change when
5521 	 * handling the MMU reload signal, this must happen in the
5522 	 * same critical section as kvm_reload_remote_mmus, and
5523 	 * before kvm_zap_obsolete_pages as kvm_zap_obsolete_pages
5524 	 * could drop the MMU lock and yield.
5525 	 */
5526 	if (is_tdp_mmu_enabled(kvm))
5527 		kvm_tdp_mmu_invalidate_all_roots(kvm);
5528 
5529 	/*
5530 	 * Notify all vcpus to reload its shadow page table and flush TLB.
5531 	 * Then all vcpus will switch to new shadow page table with the new
5532 	 * mmu_valid_gen.
5533 	 *
5534 	 * Note: we need to do this under the protection of mmu_lock,
5535 	 * otherwise, vcpu would purge shadow page but miss tlb flush.
5536 	 */
5537 	kvm_reload_remote_mmus(kvm);
5538 
5539 	kvm_zap_obsolete_pages(kvm);
5540 
5541 	write_unlock(&kvm->mmu_lock);
5542 
5543 	if (is_tdp_mmu_enabled(kvm)) {
5544 		read_lock(&kvm->mmu_lock);
5545 		kvm_tdp_mmu_zap_invalidated_roots(kvm);
5546 		read_unlock(&kvm->mmu_lock);
5547 	}
5548 }
5549 
5550 static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
5551 {
5552 	return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
5553 }
5554 
5555 static void kvm_mmu_invalidate_zap_pages_in_memslot(struct kvm *kvm,
5556 			struct kvm_memory_slot *slot,
5557 			struct kvm_page_track_notifier_node *node)
5558 {
5559 	kvm_mmu_zap_all_fast(kvm);
5560 }
5561 
5562 void kvm_mmu_init_vm(struct kvm *kvm)
5563 {
5564 	struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5565 
5566 	spin_lock_init(&kvm->arch.mmu_unsync_pages_lock);
5567 
5568 	if (!kvm_mmu_init_tdp_mmu(kvm))
5569 		/*
5570 		 * No smp_load/store wrappers needed here as we are in
5571 		 * VM init and there cannot be any memslots / other threads
5572 		 * accessing this struct kvm yet.
5573 		 */
5574 		kvm->arch.memslots_have_rmaps = true;
5575 
5576 	node->track_write = kvm_mmu_pte_write;
5577 	node->track_flush_slot = kvm_mmu_invalidate_zap_pages_in_memslot;
5578 	kvm_page_track_register_notifier(kvm, node);
5579 }
5580 
5581 void kvm_mmu_uninit_vm(struct kvm *kvm)
5582 {
5583 	struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5584 
5585 	kvm_page_track_unregister_notifier(kvm, node);
5586 
5587 	kvm_mmu_uninit_tdp_mmu(kvm);
5588 }
5589 
5590 void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
5591 {
5592 	struct kvm_memslots *slots;
5593 	struct kvm_memory_slot *memslot;
5594 	int i;
5595 	bool flush = false;
5596 
5597 	if (kvm_memslots_have_rmaps(kvm)) {
5598 		write_lock(&kvm->mmu_lock);
5599 		for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
5600 			slots = __kvm_memslots(kvm, i);
5601 			kvm_for_each_memslot(memslot, slots) {
5602 				gfn_t start, end;
5603 
5604 				start = max(gfn_start, memslot->base_gfn);
5605 				end = min(gfn_end, memslot->base_gfn + memslot->npages);
5606 				if (start >= end)
5607 					continue;
5608 
5609 				flush = slot_handle_level_range(kvm, memslot,
5610 						kvm_zap_rmapp, PG_LEVEL_4K,
5611 						KVM_MAX_HUGEPAGE_LEVEL, start,
5612 						end - 1, true, flush);
5613 			}
5614 		}
5615 		if (flush)
5616 			kvm_flush_remote_tlbs_with_address(kvm, gfn_start, gfn_end);
5617 		write_unlock(&kvm->mmu_lock);
5618 	}
5619 
5620 	if (is_tdp_mmu_enabled(kvm)) {
5621 		flush = false;
5622 
5623 		read_lock(&kvm->mmu_lock);
5624 		for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
5625 			flush = kvm_tdp_mmu_zap_gfn_range(kvm, i, gfn_start,
5626 							  gfn_end, flush, true);
5627 		if (flush)
5628 			kvm_flush_remote_tlbs_with_address(kvm, gfn_start,
5629 							   gfn_end);
5630 
5631 		read_unlock(&kvm->mmu_lock);
5632 	}
5633 }
5634 
5635 static bool slot_rmap_write_protect(struct kvm *kvm,
5636 				    struct kvm_rmap_head *rmap_head,
5637 				    struct kvm_memory_slot *slot)
5638 {
5639 	return __rmap_write_protect(kvm, rmap_head, false);
5640 }
5641 
5642 void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
5643 				      struct kvm_memory_slot *memslot,
5644 				      int start_level)
5645 {
5646 	bool flush = false;
5647 
5648 	if (kvm_memslots_have_rmaps(kvm)) {
5649 		write_lock(&kvm->mmu_lock);
5650 		flush = slot_handle_level(kvm, memslot, slot_rmap_write_protect,
5651 					  start_level, KVM_MAX_HUGEPAGE_LEVEL,
5652 					  false);
5653 		write_unlock(&kvm->mmu_lock);
5654 	}
5655 
5656 	if (is_tdp_mmu_enabled(kvm)) {
5657 		read_lock(&kvm->mmu_lock);
5658 		flush |= kvm_tdp_mmu_wrprot_slot(kvm, memslot, start_level);
5659 		read_unlock(&kvm->mmu_lock);
5660 	}
5661 
5662 	/*
5663 	 * We can flush all the TLBs out of the mmu lock without TLB
5664 	 * corruption since we just change the spte from writable to
5665 	 * readonly so that we only need to care the case of changing
5666 	 * spte from present to present (changing the spte from present
5667 	 * to nonpresent will flush all the TLBs immediately), in other
5668 	 * words, the only case we care is mmu_spte_update() where we
5669 	 * have checked Host-writable | MMU-writable instead of
5670 	 * PT_WRITABLE_MASK, that means it does not depend on PT_WRITABLE_MASK
5671 	 * anymore.
5672 	 */
5673 	if (flush)
5674 		kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
5675 }
5676 
5677 static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
5678 					 struct kvm_rmap_head *rmap_head,
5679 					 struct kvm_memory_slot *slot)
5680 {
5681 	u64 *sptep;
5682 	struct rmap_iterator iter;
5683 	int need_tlb_flush = 0;
5684 	kvm_pfn_t pfn;
5685 	struct kvm_mmu_page *sp;
5686 
5687 restart:
5688 	for_each_rmap_spte(rmap_head, &iter, sptep) {
5689 		sp = sptep_to_sp(sptep);
5690 		pfn = spte_to_pfn(*sptep);
5691 
5692 		/*
5693 		 * We cannot do huge page mapping for indirect shadow pages,
5694 		 * which are found on the last rmap (level = 1) when not using
5695 		 * tdp; such shadow pages are synced with the page table in
5696 		 * the guest, and the guest page table is using 4K page size
5697 		 * mapping if the indirect sp has level = 1.
5698 		 */
5699 		if (sp->role.direct && !kvm_is_reserved_pfn(pfn) &&
5700 		    sp->role.level < kvm_mmu_max_mapping_level(kvm, slot, sp->gfn,
5701 							       pfn, PG_LEVEL_NUM)) {
5702 			pte_list_remove(rmap_head, sptep);
5703 
5704 			if (kvm_available_flush_tlb_with_range())
5705 				kvm_flush_remote_tlbs_with_address(kvm, sp->gfn,
5706 					KVM_PAGES_PER_HPAGE(sp->role.level));
5707 			else
5708 				need_tlb_flush = 1;
5709 
5710 			goto restart;
5711 		}
5712 	}
5713 
5714 	return need_tlb_flush;
5715 }
5716 
5717 void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
5718 				   const struct kvm_memory_slot *memslot)
5719 {
5720 	/* FIXME: const-ify all uses of struct kvm_memory_slot.  */
5721 	struct kvm_memory_slot *slot = (struct kvm_memory_slot *)memslot;
5722 	bool flush = false;
5723 
5724 	if (kvm_memslots_have_rmaps(kvm)) {
5725 		write_lock(&kvm->mmu_lock);
5726 		flush = slot_handle_leaf(kvm, slot, kvm_mmu_zap_collapsible_spte, true);
5727 		if (flush)
5728 			kvm_arch_flush_remote_tlbs_memslot(kvm, slot);
5729 		write_unlock(&kvm->mmu_lock);
5730 	}
5731 
5732 	if (is_tdp_mmu_enabled(kvm)) {
5733 		read_lock(&kvm->mmu_lock);
5734 		flush = kvm_tdp_mmu_zap_collapsible_sptes(kvm, slot, flush);
5735 		if (flush)
5736 			kvm_arch_flush_remote_tlbs_memslot(kvm, slot);
5737 		read_unlock(&kvm->mmu_lock);
5738 	}
5739 }
5740 
5741 void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
5742 					const struct kvm_memory_slot *memslot)
5743 {
5744 	/*
5745 	 * All current use cases for flushing the TLBs for a specific memslot
5746 	 * related to dirty logging, and many do the TLB flush out of mmu_lock.
5747 	 * The interaction between the various operations on memslot must be
5748 	 * serialized by slots_locks to ensure the TLB flush from one operation
5749 	 * is observed by any other operation on the same memslot.
5750 	 */
5751 	lockdep_assert_held(&kvm->slots_lock);
5752 	kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn,
5753 					   memslot->npages);
5754 }
5755 
5756 void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
5757 				   struct kvm_memory_slot *memslot)
5758 {
5759 	bool flush = false;
5760 
5761 	if (kvm_memslots_have_rmaps(kvm)) {
5762 		write_lock(&kvm->mmu_lock);
5763 		flush = slot_handle_leaf(kvm, memslot, __rmap_clear_dirty,
5764 					 false);
5765 		write_unlock(&kvm->mmu_lock);
5766 	}
5767 
5768 	if (is_tdp_mmu_enabled(kvm)) {
5769 		read_lock(&kvm->mmu_lock);
5770 		flush |= kvm_tdp_mmu_clear_dirty_slot(kvm, memslot);
5771 		read_unlock(&kvm->mmu_lock);
5772 	}
5773 
5774 	/*
5775 	 * It's also safe to flush TLBs out of mmu lock here as currently this
5776 	 * function is only used for dirty logging, in which case flushing TLB
5777 	 * out of mmu lock also guarantees no dirty pages will be lost in
5778 	 * dirty_bitmap.
5779 	 */
5780 	if (flush)
5781 		kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
5782 }
5783 
5784 void kvm_mmu_zap_all(struct kvm *kvm)
5785 {
5786 	struct kvm_mmu_page *sp, *node;
5787 	LIST_HEAD(invalid_list);
5788 	int ign;
5789 
5790 	write_lock(&kvm->mmu_lock);
5791 restart:
5792 	list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link) {
5793 		if (WARN_ON(sp->role.invalid))
5794 			continue;
5795 		if (__kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list, &ign))
5796 			goto restart;
5797 		if (cond_resched_rwlock_write(&kvm->mmu_lock))
5798 			goto restart;
5799 	}
5800 
5801 	kvm_mmu_commit_zap_page(kvm, &invalid_list);
5802 
5803 	if (is_tdp_mmu_enabled(kvm))
5804 		kvm_tdp_mmu_zap_all(kvm);
5805 
5806 	write_unlock(&kvm->mmu_lock);
5807 }
5808 
5809 void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen)
5810 {
5811 	WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
5812 
5813 	gen &= MMIO_SPTE_GEN_MASK;
5814 
5815 	/*
5816 	 * Generation numbers are incremented in multiples of the number of
5817 	 * address spaces in order to provide unique generations across all
5818 	 * address spaces.  Strip what is effectively the address space
5819 	 * modifier prior to checking for a wrap of the MMIO generation so
5820 	 * that a wrap in any address space is detected.
5821 	 */
5822 	gen &= ~((u64)KVM_ADDRESS_SPACE_NUM - 1);
5823 
5824 	/*
5825 	 * The very rare case: if the MMIO generation number has wrapped,
5826 	 * zap all shadow pages.
5827 	 */
5828 	if (unlikely(gen == 0)) {
5829 		kvm_debug_ratelimited("kvm: zapping shadow pages for mmio generation wraparound\n");
5830 		kvm_mmu_zap_all_fast(kvm);
5831 	}
5832 }
5833 
5834 static unsigned long
5835 mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
5836 {
5837 	struct kvm *kvm;
5838 	int nr_to_scan = sc->nr_to_scan;
5839 	unsigned long freed = 0;
5840 
5841 	mutex_lock(&kvm_lock);
5842 
5843 	list_for_each_entry(kvm, &vm_list, vm_list) {
5844 		int idx;
5845 		LIST_HEAD(invalid_list);
5846 
5847 		/*
5848 		 * Never scan more than sc->nr_to_scan VM instances.
5849 		 * Will not hit this condition practically since we do not try
5850 		 * to shrink more than one VM and it is very unlikely to see
5851 		 * !n_used_mmu_pages so many times.
5852 		 */
5853 		if (!nr_to_scan--)
5854 			break;
5855 		/*
5856 		 * n_used_mmu_pages is accessed without holding kvm->mmu_lock
5857 		 * here. We may skip a VM instance errorneosly, but we do not
5858 		 * want to shrink a VM that only started to populate its MMU
5859 		 * anyway.
5860 		 */
5861 		if (!kvm->arch.n_used_mmu_pages &&
5862 		    !kvm_has_zapped_obsolete_pages(kvm))
5863 			continue;
5864 
5865 		idx = srcu_read_lock(&kvm->srcu);
5866 		write_lock(&kvm->mmu_lock);
5867 
5868 		if (kvm_has_zapped_obsolete_pages(kvm)) {
5869 			kvm_mmu_commit_zap_page(kvm,
5870 			      &kvm->arch.zapped_obsolete_pages);
5871 			goto unlock;
5872 		}
5873 
5874 		freed = kvm_mmu_zap_oldest_mmu_pages(kvm, sc->nr_to_scan);
5875 
5876 unlock:
5877 		write_unlock(&kvm->mmu_lock);
5878 		srcu_read_unlock(&kvm->srcu, idx);
5879 
5880 		/*
5881 		 * unfair on small ones
5882 		 * per-vm shrinkers cry out
5883 		 * sadness comes quickly
5884 		 */
5885 		list_move_tail(&kvm->vm_list, &vm_list);
5886 		break;
5887 	}
5888 
5889 	mutex_unlock(&kvm_lock);
5890 	return freed;
5891 }
5892 
5893 static unsigned long
5894 mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
5895 {
5896 	return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
5897 }
5898 
5899 static struct shrinker mmu_shrinker = {
5900 	.count_objects = mmu_shrink_count,
5901 	.scan_objects = mmu_shrink_scan,
5902 	.seeks = DEFAULT_SEEKS * 10,
5903 };
5904 
5905 static void mmu_destroy_caches(void)
5906 {
5907 	kmem_cache_destroy(pte_list_desc_cache);
5908 	kmem_cache_destroy(mmu_page_header_cache);
5909 }
5910 
5911 static bool get_nx_auto_mode(void)
5912 {
5913 	/* Return true when CPU has the bug, and mitigations are ON */
5914 	return boot_cpu_has_bug(X86_BUG_ITLB_MULTIHIT) && !cpu_mitigations_off();
5915 }
5916 
5917 static void __set_nx_huge_pages(bool val)
5918 {
5919 	nx_huge_pages = itlb_multihit_kvm_mitigation = val;
5920 }
5921 
5922 static int set_nx_huge_pages(const char *val, const struct kernel_param *kp)
5923 {
5924 	bool old_val = nx_huge_pages;
5925 	bool new_val;
5926 
5927 	/* In "auto" mode deploy workaround only if CPU has the bug. */
5928 	if (sysfs_streq(val, "off"))
5929 		new_val = 0;
5930 	else if (sysfs_streq(val, "force"))
5931 		new_val = 1;
5932 	else if (sysfs_streq(val, "auto"))
5933 		new_val = get_nx_auto_mode();
5934 	else if (strtobool(val, &new_val) < 0)
5935 		return -EINVAL;
5936 
5937 	__set_nx_huge_pages(new_val);
5938 
5939 	if (new_val != old_val) {
5940 		struct kvm *kvm;
5941 
5942 		mutex_lock(&kvm_lock);
5943 
5944 		list_for_each_entry(kvm, &vm_list, vm_list) {
5945 			mutex_lock(&kvm->slots_lock);
5946 			kvm_mmu_zap_all_fast(kvm);
5947 			mutex_unlock(&kvm->slots_lock);
5948 
5949 			wake_up_process(kvm->arch.nx_lpage_recovery_thread);
5950 		}
5951 		mutex_unlock(&kvm_lock);
5952 	}
5953 
5954 	return 0;
5955 }
5956 
5957 int kvm_mmu_module_init(void)
5958 {
5959 	int ret = -ENOMEM;
5960 
5961 	if (nx_huge_pages == -1)
5962 		__set_nx_huge_pages(get_nx_auto_mode());
5963 
5964 	/*
5965 	 * MMU roles use union aliasing which is, generally speaking, an
5966 	 * undefined behavior. However, we supposedly know how compilers behave
5967 	 * and the current status quo is unlikely to change. Guardians below are
5968 	 * supposed to let us know if the assumption becomes false.
5969 	 */
5970 	BUILD_BUG_ON(sizeof(union kvm_mmu_page_role) != sizeof(u32));
5971 	BUILD_BUG_ON(sizeof(union kvm_mmu_extended_role) != sizeof(u32));
5972 	BUILD_BUG_ON(sizeof(union kvm_mmu_role) != sizeof(u64));
5973 
5974 	kvm_mmu_reset_all_pte_masks();
5975 
5976 	pte_list_desc_cache = kmem_cache_create("pte_list_desc",
5977 					    sizeof(struct pte_list_desc),
5978 					    0, SLAB_ACCOUNT, NULL);
5979 	if (!pte_list_desc_cache)
5980 		goto out;
5981 
5982 	mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
5983 						  sizeof(struct kvm_mmu_page),
5984 						  0, SLAB_ACCOUNT, NULL);
5985 	if (!mmu_page_header_cache)
5986 		goto out;
5987 
5988 	if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
5989 		goto out;
5990 
5991 	ret = register_shrinker(&mmu_shrinker);
5992 	if (ret)
5993 		goto out;
5994 
5995 	return 0;
5996 
5997 out:
5998 	mmu_destroy_caches();
5999 	return ret;
6000 }
6001 
6002 /*
6003  * Calculate mmu pages needed for kvm.
6004  */
6005 unsigned long kvm_mmu_calculate_default_mmu_pages(struct kvm *kvm)
6006 {
6007 	unsigned long nr_mmu_pages;
6008 	unsigned long nr_pages = 0;
6009 	struct kvm_memslots *slots;
6010 	struct kvm_memory_slot *memslot;
6011 	int i;
6012 
6013 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
6014 		slots = __kvm_memslots(kvm, i);
6015 
6016 		kvm_for_each_memslot(memslot, slots)
6017 			nr_pages += memslot->npages;
6018 	}
6019 
6020 	nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
6021 	nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES);
6022 
6023 	return nr_mmu_pages;
6024 }
6025 
6026 void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
6027 {
6028 	kvm_mmu_unload(vcpu);
6029 	free_mmu_pages(&vcpu->arch.root_mmu);
6030 	free_mmu_pages(&vcpu->arch.guest_mmu);
6031 	mmu_free_memory_caches(vcpu);
6032 }
6033 
6034 void kvm_mmu_module_exit(void)
6035 {
6036 	mmu_destroy_caches();
6037 	percpu_counter_destroy(&kvm_total_used_mmu_pages);
6038 	unregister_shrinker(&mmu_shrinker);
6039 	mmu_audit_disable();
6040 }
6041 
6042 static int set_nx_huge_pages_recovery_ratio(const char *val, const struct kernel_param *kp)
6043 {
6044 	unsigned int old_val;
6045 	int err;
6046 
6047 	old_val = nx_huge_pages_recovery_ratio;
6048 	err = param_set_uint(val, kp);
6049 	if (err)
6050 		return err;
6051 
6052 	if (READ_ONCE(nx_huge_pages) &&
6053 	    !old_val && nx_huge_pages_recovery_ratio) {
6054 		struct kvm *kvm;
6055 
6056 		mutex_lock(&kvm_lock);
6057 
6058 		list_for_each_entry(kvm, &vm_list, vm_list)
6059 			wake_up_process(kvm->arch.nx_lpage_recovery_thread);
6060 
6061 		mutex_unlock(&kvm_lock);
6062 	}
6063 
6064 	return err;
6065 }
6066 
6067 static void kvm_recover_nx_lpages(struct kvm *kvm)
6068 {
6069 	unsigned long nx_lpage_splits = kvm->stat.nx_lpage_splits;
6070 	int rcu_idx;
6071 	struct kvm_mmu_page *sp;
6072 	unsigned int ratio;
6073 	LIST_HEAD(invalid_list);
6074 	bool flush = false;
6075 	ulong to_zap;
6076 
6077 	rcu_idx = srcu_read_lock(&kvm->srcu);
6078 	write_lock(&kvm->mmu_lock);
6079 
6080 	ratio = READ_ONCE(nx_huge_pages_recovery_ratio);
6081 	to_zap = ratio ? DIV_ROUND_UP(nx_lpage_splits, ratio) : 0;
6082 	for ( ; to_zap; --to_zap) {
6083 		if (list_empty(&kvm->arch.lpage_disallowed_mmu_pages))
6084 			break;
6085 
6086 		/*
6087 		 * We use a separate list instead of just using active_mmu_pages
6088 		 * because the number of lpage_disallowed pages is expected to
6089 		 * be relatively small compared to the total.
6090 		 */
6091 		sp = list_first_entry(&kvm->arch.lpage_disallowed_mmu_pages,
6092 				      struct kvm_mmu_page,
6093 				      lpage_disallowed_link);
6094 		WARN_ON_ONCE(!sp->lpage_disallowed);
6095 		if (is_tdp_mmu_page(sp)) {
6096 			flush |= kvm_tdp_mmu_zap_sp(kvm, sp);
6097 		} else {
6098 			kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
6099 			WARN_ON_ONCE(sp->lpage_disallowed);
6100 		}
6101 
6102 		if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) {
6103 			kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush);
6104 			cond_resched_rwlock_write(&kvm->mmu_lock);
6105 			flush = false;
6106 		}
6107 	}
6108 	kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush);
6109 
6110 	write_unlock(&kvm->mmu_lock);
6111 	srcu_read_unlock(&kvm->srcu, rcu_idx);
6112 }
6113 
6114 static long get_nx_lpage_recovery_timeout(u64 start_time)
6115 {
6116 	return READ_ONCE(nx_huge_pages) && READ_ONCE(nx_huge_pages_recovery_ratio)
6117 		? start_time + 60 * HZ - get_jiffies_64()
6118 		: MAX_SCHEDULE_TIMEOUT;
6119 }
6120 
6121 static int kvm_nx_lpage_recovery_worker(struct kvm *kvm, uintptr_t data)
6122 {
6123 	u64 start_time;
6124 	long remaining_time;
6125 
6126 	while (true) {
6127 		start_time = get_jiffies_64();
6128 		remaining_time = get_nx_lpage_recovery_timeout(start_time);
6129 
6130 		set_current_state(TASK_INTERRUPTIBLE);
6131 		while (!kthread_should_stop() && remaining_time > 0) {
6132 			schedule_timeout(remaining_time);
6133 			remaining_time = get_nx_lpage_recovery_timeout(start_time);
6134 			set_current_state(TASK_INTERRUPTIBLE);
6135 		}
6136 
6137 		set_current_state(TASK_RUNNING);
6138 
6139 		if (kthread_should_stop())
6140 			return 0;
6141 
6142 		kvm_recover_nx_lpages(kvm);
6143 	}
6144 }
6145 
6146 int kvm_mmu_post_init_vm(struct kvm *kvm)
6147 {
6148 	int err;
6149 
6150 	err = kvm_vm_create_worker_thread(kvm, kvm_nx_lpage_recovery_worker, 0,
6151 					  "kvm-nx-lpage-recovery",
6152 					  &kvm->arch.nx_lpage_recovery_thread);
6153 	if (!err)
6154 		kthread_unpark(kvm->arch.nx_lpage_recovery_thread);
6155 
6156 	return err;
6157 }
6158 
6159 void kvm_mmu_pre_destroy_vm(struct kvm *kvm)
6160 {
6161 	if (kvm->arch.nx_lpage_recovery_thread)
6162 		kthread_stop(kvm->arch.nx_lpage_recovery_thread);
6163 }
6164