1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * This module enables machines with Intel VT-x extensions to run virtual 6 * machines without emulation or binary translation. 7 * 8 * MMU support 9 * 10 * Copyright (C) 2006 Qumranet, Inc. 11 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 12 * 13 * Authors: 14 * Yaniv Kamay <yaniv@qumranet.com> 15 * Avi Kivity <avi@qumranet.com> 16 */ 17 18 #include "irq.h" 19 #include "ioapic.h" 20 #include "mmu.h" 21 #include "mmu_internal.h" 22 #include "x86.h" 23 #include "kvm_cache_regs.h" 24 #include "kvm_emulate.h" 25 #include "cpuid.h" 26 27 #include <linux/kvm_host.h> 28 #include <linux/types.h> 29 #include <linux/string.h> 30 #include <linux/mm.h> 31 #include <linux/highmem.h> 32 #include <linux/moduleparam.h> 33 #include <linux/export.h> 34 #include <linux/swap.h> 35 #include <linux/hugetlb.h> 36 #include <linux/compiler.h> 37 #include <linux/srcu.h> 38 #include <linux/slab.h> 39 #include <linux/sched/signal.h> 40 #include <linux/uaccess.h> 41 #include <linux/hash.h> 42 #include <linux/kern_levels.h> 43 #include <linux/kthread.h> 44 45 #include <asm/page.h> 46 #include <asm/memtype.h> 47 #include <asm/cmpxchg.h> 48 #include <asm/e820/api.h> 49 #include <asm/io.h> 50 #include <asm/vmx.h> 51 #include <asm/kvm_page_track.h> 52 #include "trace.h" 53 54 extern bool itlb_multihit_kvm_mitigation; 55 56 static int __read_mostly nx_huge_pages = -1; 57 #ifdef CONFIG_PREEMPT_RT 58 /* Recovery can cause latency spikes, disable it for PREEMPT_RT. */ 59 static uint __read_mostly nx_huge_pages_recovery_ratio = 0; 60 #else 61 static uint __read_mostly nx_huge_pages_recovery_ratio = 60; 62 #endif 63 64 static int set_nx_huge_pages(const char *val, const struct kernel_param *kp); 65 static int set_nx_huge_pages_recovery_ratio(const char *val, const struct kernel_param *kp); 66 67 static struct kernel_param_ops nx_huge_pages_ops = { 68 .set = set_nx_huge_pages, 69 .get = param_get_bool, 70 }; 71 72 static struct kernel_param_ops nx_huge_pages_recovery_ratio_ops = { 73 .set = set_nx_huge_pages_recovery_ratio, 74 .get = param_get_uint, 75 }; 76 77 module_param_cb(nx_huge_pages, &nx_huge_pages_ops, &nx_huge_pages, 0644); 78 __MODULE_PARM_TYPE(nx_huge_pages, "bool"); 79 module_param_cb(nx_huge_pages_recovery_ratio, &nx_huge_pages_recovery_ratio_ops, 80 &nx_huge_pages_recovery_ratio, 0644); 81 __MODULE_PARM_TYPE(nx_huge_pages_recovery_ratio, "uint"); 82 83 static bool __read_mostly force_flush_and_sync_on_reuse; 84 module_param_named(flush_on_reuse, force_flush_and_sync_on_reuse, bool, 0644); 85 86 /* 87 * When setting this variable to true it enables Two-Dimensional-Paging 88 * where the hardware walks 2 page tables: 89 * 1. the guest-virtual to guest-physical 90 * 2. while doing 1. it walks guest-physical to host-physical 91 * If the hardware supports that we don't need to do shadow paging. 92 */ 93 bool tdp_enabled = false; 94 95 static int max_huge_page_level __read_mostly; 96 static int max_tdp_level __read_mostly; 97 98 enum { 99 AUDIT_PRE_PAGE_FAULT, 100 AUDIT_POST_PAGE_FAULT, 101 AUDIT_PRE_PTE_WRITE, 102 AUDIT_POST_PTE_WRITE, 103 AUDIT_PRE_SYNC, 104 AUDIT_POST_SYNC 105 }; 106 107 #undef MMU_DEBUG 108 109 #ifdef MMU_DEBUG 110 static bool dbg = 0; 111 module_param(dbg, bool, 0644); 112 113 #define pgprintk(x...) do { if (dbg) printk(x); } while (0) 114 #define rmap_printk(x...) do { if (dbg) printk(x); } while (0) 115 #define MMU_WARN_ON(x) WARN_ON(x) 116 #else 117 #define pgprintk(x...) do { } while (0) 118 #define rmap_printk(x...) do { } while (0) 119 #define MMU_WARN_ON(x) do { } while (0) 120 #endif 121 122 #define PTE_PREFETCH_NUM 8 123 124 #define PT_FIRST_AVAIL_BITS_SHIFT 10 125 #define PT64_SECOND_AVAIL_BITS_SHIFT 54 126 127 /* 128 * The mask used to denote special SPTEs, which can be either MMIO SPTEs or 129 * Access Tracking SPTEs. 130 */ 131 #define SPTE_SPECIAL_MASK (3ULL << 52) 132 #define SPTE_AD_ENABLED_MASK (0ULL << 52) 133 #define SPTE_AD_DISABLED_MASK (1ULL << 52) 134 #define SPTE_AD_WRPROT_ONLY_MASK (2ULL << 52) 135 #define SPTE_MMIO_MASK (3ULL << 52) 136 137 #define PT64_LEVEL_BITS 9 138 139 #define PT64_LEVEL_SHIFT(level) \ 140 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS) 141 142 #define PT64_INDEX(address, level)\ 143 (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1)) 144 145 146 #define PT32_LEVEL_BITS 10 147 148 #define PT32_LEVEL_SHIFT(level) \ 149 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS) 150 151 #define PT32_LVL_OFFSET_MASK(level) \ 152 (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \ 153 * PT32_LEVEL_BITS))) - 1)) 154 155 #define PT32_INDEX(address, level)\ 156 (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1)) 157 158 159 #ifdef CONFIG_DYNAMIC_PHYSICAL_MASK 160 #define PT64_BASE_ADDR_MASK (physical_mask & ~(u64)(PAGE_SIZE-1)) 161 #else 162 #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1)) 163 #endif 164 #define PT64_LVL_ADDR_MASK(level) \ 165 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \ 166 * PT64_LEVEL_BITS))) - 1)) 167 #define PT64_LVL_OFFSET_MASK(level) \ 168 (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \ 169 * PT64_LEVEL_BITS))) - 1)) 170 171 #define PT32_BASE_ADDR_MASK PAGE_MASK 172 #define PT32_DIR_BASE_ADDR_MASK \ 173 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1)) 174 #define PT32_LVL_ADDR_MASK(level) \ 175 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \ 176 * PT32_LEVEL_BITS))) - 1)) 177 178 #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | shadow_user_mask \ 179 | shadow_x_mask | shadow_nx_mask | shadow_me_mask) 180 181 #define ACC_EXEC_MASK 1 182 #define ACC_WRITE_MASK PT_WRITABLE_MASK 183 #define ACC_USER_MASK PT_USER_MASK 184 #define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK) 185 186 /* The mask for the R/X bits in EPT PTEs */ 187 #define PT64_EPT_READABLE_MASK 0x1ull 188 #define PT64_EPT_EXECUTABLE_MASK 0x4ull 189 190 #include <trace/events/kvm.h> 191 192 #define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT) 193 #define SPTE_MMU_WRITEABLE (1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1)) 194 195 #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level) 196 197 /* make pte_list_desc fit well in cache line */ 198 #define PTE_LIST_EXT 3 199 200 /* 201 * Return values of handle_mmio_page_fault and mmu.page_fault: 202 * RET_PF_RETRY: let CPU fault again on the address. 203 * RET_PF_EMULATE: mmio page fault, emulate the instruction directly. 204 * 205 * For handle_mmio_page_fault only: 206 * RET_PF_INVALID: the spte is invalid, let the real page fault path update it. 207 */ 208 enum { 209 RET_PF_RETRY = 0, 210 RET_PF_EMULATE = 1, 211 RET_PF_INVALID = 2, 212 }; 213 214 struct pte_list_desc { 215 u64 *sptes[PTE_LIST_EXT]; 216 struct pte_list_desc *more; 217 }; 218 219 struct kvm_shadow_walk_iterator { 220 u64 addr; 221 hpa_t shadow_addr; 222 u64 *sptep; 223 int level; 224 unsigned index; 225 }; 226 227 #define for_each_shadow_entry_using_root(_vcpu, _root, _addr, _walker) \ 228 for (shadow_walk_init_using_root(&(_walker), (_vcpu), \ 229 (_root), (_addr)); \ 230 shadow_walk_okay(&(_walker)); \ 231 shadow_walk_next(&(_walker))) 232 233 #define for_each_shadow_entry(_vcpu, _addr, _walker) \ 234 for (shadow_walk_init(&(_walker), _vcpu, _addr); \ 235 shadow_walk_okay(&(_walker)); \ 236 shadow_walk_next(&(_walker))) 237 238 #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte) \ 239 for (shadow_walk_init(&(_walker), _vcpu, _addr); \ 240 shadow_walk_okay(&(_walker)) && \ 241 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; }); \ 242 __shadow_walk_next(&(_walker), spte)) 243 244 static struct kmem_cache *pte_list_desc_cache; 245 static struct kmem_cache *mmu_page_header_cache; 246 static struct percpu_counter kvm_total_used_mmu_pages; 247 248 static u64 __read_mostly shadow_nx_mask; 249 static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */ 250 static u64 __read_mostly shadow_user_mask; 251 static u64 __read_mostly shadow_accessed_mask; 252 static u64 __read_mostly shadow_dirty_mask; 253 static u64 __read_mostly shadow_mmio_value; 254 static u64 __read_mostly shadow_mmio_access_mask; 255 static u64 __read_mostly shadow_present_mask; 256 static u64 __read_mostly shadow_me_mask; 257 258 /* 259 * SPTEs used by MMUs without A/D bits are marked with SPTE_AD_DISABLED_MASK; 260 * shadow_acc_track_mask is the set of bits to be cleared in non-accessed 261 * pages. 262 */ 263 static u64 __read_mostly shadow_acc_track_mask; 264 265 /* 266 * The mask/shift to use for saving the original R/X bits when marking the PTE 267 * as not-present for access tracking purposes. We do not save the W bit as the 268 * PTEs being access tracked also need to be dirty tracked, so the W bit will be 269 * restored only when a write is attempted to the page. 270 */ 271 static const u64 shadow_acc_track_saved_bits_mask = PT64_EPT_READABLE_MASK | 272 PT64_EPT_EXECUTABLE_MASK; 273 static const u64 shadow_acc_track_saved_bits_shift = PT64_SECOND_AVAIL_BITS_SHIFT; 274 275 /* 276 * This mask must be set on all non-zero Non-Present or Reserved SPTEs in order 277 * to guard against L1TF attacks. 278 */ 279 static u64 __read_mostly shadow_nonpresent_or_rsvd_mask; 280 281 /* 282 * The number of high-order 1 bits to use in the mask above. 283 */ 284 static const u64 shadow_nonpresent_or_rsvd_mask_len = 5; 285 286 /* 287 * In some cases, we need to preserve the GFN of a non-present or reserved 288 * SPTE when we usurp the upper five bits of the physical address space to 289 * defend against L1TF, e.g. for MMIO SPTEs. To preserve the GFN, we'll 290 * shift bits of the GFN that overlap with shadow_nonpresent_or_rsvd_mask 291 * left into the reserved bits, i.e. the GFN in the SPTE will be split into 292 * high and low parts. This mask covers the lower bits of the GFN. 293 */ 294 static u64 __read_mostly shadow_nonpresent_or_rsvd_lower_gfn_mask; 295 296 /* 297 * The number of non-reserved physical address bits irrespective of features 298 * that repurpose legal bits, e.g. MKTME. 299 */ 300 static u8 __read_mostly shadow_phys_bits; 301 302 static void mmu_spte_set(u64 *sptep, u64 spte); 303 static bool is_executable_pte(u64 spte); 304 static union kvm_mmu_page_role 305 kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu); 306 307 #define CREATE_TRACE_POINTS 308 #include "mmutrace.h" 309 310 311 static inline bool kvm_available_flush_tlb_with_range(void) 312 { 313 return kvm_x86_ops.tlb_remote_flush_with_range; 314 } 315 316 static void kvm_flush_remote_tlbs_with_range(struct kvm *kvm, 317 struct kvm_tlb_range *range) 318 { 319 int ret = -ENOTSUPP; 320 321 if (range && kvm_x86_ops.tlb_remote_flush_with_range) 322 ret = kvm_x86_ops.tlb_remote_flush_with_range(kvm, range); 323 324 if (ret) 325 kvm_flush_remote_tlbs(kvm); 326 } 327 328 static void kvm_flush_remote_tlbs_with_address(struct kvm *kvm, 329 u64 start_gfn, u64 pages) 330 { 331 struct kvm_tlb_range range; 332 333 range.start_gfn = start_gfn; 334 range.pages = pages; 335 336 kvm_flush_remote_tlbs_with_range(kvm, &range); 337 } 338 339 void kvm_mmu_set_mmio_spte_mask(u64 mmio_value, u64 access_mask) 340 { 341 BUG_ON((u64)(unsigned)access_mask != access_mask); 342 WARN_ON(mmio_value & (shadow_nonpresent_or_rsvd_mask << shadow_nonpresent_or_rsvd_mask_len)); 343 WARN_ON(mmio_value & shadow_nonpresent_or_rsvd_lower_gfn_mask); 344 shadow_mmio_value = mmio_value | SPTE_MMIO_MASK; 345 shadow_mmio_access_mask = access_mask; 346 } 347 EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask); 348 349 static bool is_mmio_spte(u64 spte) 350 { 351 return (spte & SPTE_SPECIAL_MASK) == SPTE_MMIO_MASK; 352 } 353 354 static inline bool sp_ad_disabled(struct kvm_mmu_page *sp) 355 { 356 return sp->role.ad_disabled; 357 } 358 359 static inline bool kvm_vcpu_ad_need_write_protect(struct kvm_vcpu *vcpu) 360 { 361 /* 362 * When using the EPT page-modification log, the GPAs in the log 363 * would come from L2 rather than L1. Therefore, we need to rely 364 * on write protection to record dirty pages. This also bypasses 365 * PML, since writes now result in a vmexit. 366 */ 367 return vcpu->arch.mmu == &vcpu->arch.guest_mmu; 368 } 369 370 static inline bool spte_ad_enabled(u64 spte) 371 { 372 MMU_WARN_ON(is_mmio_spte(spte)); 373 return (spte & SPTE_SPECIAL_MASK) != SPTE_AD_DISABLED_MASK; 374 } 375 376 static inline bool spte_ad_need_write_protect(u64 spte) 377 { 378 MMU_WARN_ON(is_mmio_spte(spte)); 379 return (spte & SPTE_SPECIAL_MASK) != SPTE_AD_ENABLED_MASK; 380 } 381 382 static bool is_nx_huge_page_enabled(void) 383 { 384 return READ_ONCE(nx_huge_pages); 385 } 386 387 static inline u64 spte_shadow_accessed_mask(u64 spte) 388 { 389 MMU_WARN_ON(is_mmio_spte(spte)); 390 return spte_ad_enabled(spte) ? shadow_accessed_mask : 0; 391 } 392 393 static inline u64 spte_shadow_dirty_mask(u64 spte) 394 { 395 MMU_WARN_ON(is_mmio_spte(spte)); 396 return spte_ad_enabled(spte) ? shadow_dirty_mask : 0; 397 } 398 399 static inline bool is_access_track_spte(u64 spte) 400 { 401 return !spte_ad_enabled(spte) && (spte & shadow_acc_track_mask) == 0; 402 } 403 404 /* 405 * Due to limited space in PTEs, the MMIO generation is a 19 bit subset of 406 * the memslots generation and is derived as follows: 407 * 408 * Bits 0-8 of the MMIO generation are propagated to spte bits 3-11 409 * Bits 9-18 of the MMIO generation are propagated to spte bits 52-61 410 * 411 * The KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS flag is intentionally not included in 412 * the MMIO generation number, as doing so would require stealing a bit from 413 * the "real" generation number and thus effectively halve the maximum number 414 * of MMIO generations that can be handled before encountering a wrap (which 415 * requires a full MMU zap). The flag is instead explicitly queried when 416 * checking for MMIO spte cache hits. 417 */ 418 #define MMIO_SPTE_GEN_MASK GENMASK_ULL(17, 0) 419 420 #define MMIO_SPTE_GEN_LOW_START 3 421 #define MMIO_SPTE_GEN_LOW_END 11 422 #define MMIO_SPTE_GEN_LOW_MASK GENMASK_ULL(MMIO_SPTE_GEN_LOW_END, \ 423 MMIO_SPTE_GEN_LOW_START) 424 425 #define MMIO_SPTE_GEN_HIGH_START PT64_SECOND_AVAIL_BITS_SHIFT 426 #define MMIO_SPTE_GEN_HIGH_END 62 427 #define MMIO_SPTE_GEN_HIGH_MASK GENMASK_ULL(MMIO_SPTE_GEN_HIGH_END, \ 428 MMIO_SPTE_GEN_HIGH_START) 429 430 static u64 generation_mmio_spte_mask(u64 gen) 431 { 432 u64 mask; 433 434 WARN_ON(gen & ~MMIO_SPTE_GEN_MASK); 435 BUILD_BUG_ON((MMIO_SPTE_GEN_HIGH_MASK | MMIO_SPTE_GEN_LOW_MASK) & SPTE_SPECIAL_MASK); 436 437 mask = (gen << MMIO_SPTE_GEN_LOW_START) & MMIO_SPTE_GEN_LOW_MASK; 438 mask |= (gen << MMIO_SPTE_GEN_HIGH_START) & MMIO_SPTE_GEN_HIGH_MASK; 439 return mask; 440 } 441 442 static u64 get_mmio_spte_generation(u64 spte) 443 { 444 u64 gen; 445 446 gen = (spte & MMIO_SPTE_GEN_LOW_MASK) >> MMIO_SPTE_GEN_LOW_START; 447 gen |= (spte & MMIO_SPTE_GEN_HIGH_MASK) >> MMIO_SPTE_GEN_HIGH_START; 448 return gen; 449 } 450 451 static u64 make_mmio_spte(struct kvm_vcpu *vcpu, u64 gfn, unsigned int access) 452 { 453 454 u64 gen = kvm_vcpu_memslots(vcpu)->generation & MMIO_SPTE_GEN_MASK; 455 u64 mask = generation_mmio_spte_mask(gen); 456 u64 gpa = gfn << PAGE_SHIFT; 457 458 access &= shadow_mmio_access_mask; 459 mask |= shadow_mmio_value | access; 460 mask |= gpa | shadow_nonpresent_or_rsvd_mask; 461 mask |= (gpa & shadow_nonpresent_or_rsvd_mask) 462 << shadow_nonpresent_or_rsvd_mask_len; 463 464 return mask; 465 } 466 467 static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn, 468 unsigned int access) 469 { 470 u64 mask = make_mmio_spte(vcpu, gfn, access); 471 unsigned int gen = get_mmio_spte_generation(mask); 472 473 access = mask & ACC_ALL; 474 475 trace_mark_mmio_spte(sptep, gfn, access, gen); 476 mmu_spte_set(sptep, mask); 477 } 478 479 static gfn_t get_mmio_spte_gfn(u64 spte) 480 { 481 u64 gpa = spte & shadow_nonpresent_or_rsvd_lower_gfn_mask; 482 483 gpa |= (spte >> shadow_nonpresent_or_rsvd_mask_len) 484 & shadow_nonpresent_or_rsvd_mask; 485 486 return gpa >> PAGE_SHIFT; 487 } 488 489 static unsigned get_mmio_spte_access(u64 spte) 490 { 491 return spte & shadow_mmio_access_mask; 492 } 493 494 static bool set_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn, 495 kvm_pfn_t pfn, unsigned int access) 496 { 497 if (unlikely(is_noslot_pfn(pfn))) { 498 mark_mmio_spte(vcpu, sptep, gfn, access); 499 return true; 500 } 501 502 return false; 503 } 504 505 static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte) 506 { 507 u64 kvm_gen, spte_gen, gen; 508 509 gen = kvm_vcpu_memslots(vcpu)->generation; 510 if (unlikely(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS)) 511 return false; 512 513 kvm_gen = gen & MMIO_SPTE_GEN_MASK; 514 spte_gen = get_mmio_spte_generation(spte); 515 516 trace_check_mmio_spte(spte, kvm_gen, spte_gen); 517 return likely(kvm_gen == spte_gen); 518 } 519 520 static gpa_t translate_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access, 521 struct x86_exception *exception) 522 { 523 /* Check if guest physical address doesn't exceed guest maximum */ 524 if (kvm_mmu_is_illegal_gpa(vcpu, gpa)) { 525 exception->error_code |= PFERR_RSVD_MASK; 526 return UNMAPPED_GVA; 527 } 528 529 return gpa; 530 } 531 532 /* 533 * Sets the shadow PTE masks used by the MMU. 534 * 535 * Assumptions: 536 * - Setting either @accessed_mask or @dirty_mask requires setting both 537 * - At least one of @accessed_mask or @acc_track_mask must be set 538 */ 539 void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask, 540 u64 dirty_mask, u64 nx_mask, u64 x_mask, u64 p_mask, 541 u64 acc_track_mask, u64 me_mask) 542 { 543 BUG_ON(!dirty_mask != !accessed_mask); 544 BUG_ON(!accessed_mask && !acc_track_mask); 545 BUG_ON(acc_track_mask & SPTE_SPECIAL_MASK); 546 547 shadow_user_mask = user_mask; 548 shadow_accessed_mask = accessed_mask; 549 shadow_dirty_mask = dirty_mask; 550 shadow_nx_mask = nx_mask; 551 shadow_x_mask = x_mask; 552 shadow_present_mask = p_mask; 553 shadow_acc_track_mask = acc_track_mask; 554 shadow_me_mask = me_mask; 555 } 556 EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes); 557 558 static u8 kvm_get_shadow_phys_bits(void) 559 { 560 /* 561 * boot_cpu_data.x86_phys_bits is reduced when MKTME or SME are detected 562 * in CPU detection code, but the processor treats those reduced bits as 563 * 'keyID' thus they are not reserved bits. Therefore KVM needs to look at 564 * the physical address bits reported by CPUID. 565 */ 566 if (likely(boot_cpu_data.extended_cpuid_level >= 0x80000008)) 567 return cpuid_eax(0x80000008) & 0xff; 568 569 /* 570 * Quite weird to have VMX or SVM but not MAXPHYADDR; probably a VM with 571 * custom CPUID. Proceed with whatever the kernel found since these features 572 * aren't virtualizable (SME/SEV also require CPUIDs higher than 0x80000008). 573 */ 574 return boot_cpu_data.x86_phys_bits; 575 } 576 577 static void kvm_mmu_reset_all_pte_masks(void) 578 { 579 u8 low_phys_bits; 580 581 shadow_user_mask = 0; 582 shadow_accessed_mask = 0; 583 shadow_dirty_mask = 0; 584 shadow_nx_mask = 0; 585 shadow_x_mask = 0; 586 shadow_present_mask = 0; 587 shadow_acc_track_mask = 0; 588 589 shadow_phys_bits = kvm_get_shadow_phys_bits(); 590 591 /* 592 * If the CPU has 46 or less physical address bits, then set an 593 * appropriate mask to guard against L1TF attacks. Otherwise, it is 594 * assumed that the CPU is not vulnerable to L1TF. 595 * 596 * Some Intel CPUs address the L1 cache using more PA bits than are 597 * reported by CPUID. Use the PA width of the L1 cache when possible 598 * to achieve more effective mitigation, e.g. if system RAM overlaps 599 * the most significant bits of legal physical address space. 600 */ 601 shadow_nonpresent_or_rsvd_mask = 0; 602 low_phys_bits = boot_cpu_data.x86_phys_bits; 603 if (boot_cpu_has_bug(X86_BUG_L1TF) && 604 !WARN_ON_ONCE(boot_cpu_data.x86_cache_bits >= 605 52 - shadow_nonpresent_or_rsvd_mask_len)) { 606 low_phys_bits = boot_cpu_data.x86_cache_bits 607 - shadow_nonpresent_or_rsvd_mask_len; 608 shadow_nonpresent_or_rsvd_mask = 609 rsvd_bits(low_phys_bits, boot_cpu_data.x86_cache_bits - 1); 610 } 611 612 shadow_nonpresent_or_rsvd_lower_gfn_mask = 613 GENMASK_ULL(low_phys_bits - 1, PAGE_SHIFT); 614 } 615 616 static int is_cpuid_PSE36(void) 617 { 618 return 1; 619 } 620 621 static int is_nx(struct kvm_vcpu *vcpu) 622 { 623 return vcpu->arch.efer & EFER_NX; 624 } 625 626 static int is_shadow_present_pte(u64 pte) 627 { 628 return (pte != 0) && !is_mmio_spte(pte); 629 } 630 631 static int is_large_pte(u64 pte) 632 { 633 return pte & PT_PAGE_SIZE_MASK; 634 } 635 636 static int is_last_spte(u64 pte, int level) 637 { 638 if (level == PG_LEVEL_4K) 639 return 1; 640 if (is_large_pte(pte)) 641 return 1; 642 return 0; 643 } 644 645 static bool is_executable_pte(u64 spte) 646 { 647 return (spte & (shadow_x_mask | shadow_nx_mask)) == shadow_x_mask; 648 } 649 650 static kvm_pfn_t spte_to_pfn(u64 pte) 651 { 652 return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT; 653 } 654 655 static gfn_t pse36_gfn_delta(u32 gpte) 656 { 657 int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT; 658 659 return (gpte & PT32_DIR_PSE36_MASK) << shift; 660 } 661 662 #ifdef CONFIG_X86_64 663 static void __set_spte(u64 *sptep, u64 spte) 664 { 665 WRITE_ONCE(*sptep, spte); 666 } 667 668 static void __update_clear_spte_fast(u64 *sptep, u64 spte) 669 { 670 WRITE_ONCE(*sptep, spte); 671 } 672 673 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte) 674 { 675 return xchg(sptep, spte); 676 } 677 678 static u64 __get_spte_lockless(u64 *sptep) 679 { 680 return READ_ONCE(*sptep); 681 } 682 #else 683 union split_spte { 684 struct { 685 u32 spte_low; 686 u32 spte_high; 687 }; 688 u64 spte; 689 }; 690 691 static void count_spte_clear(u64 *sptep, u64 spte) 692 { 693 struct kvm_mmu_page *sp = sptep_to_sp(sptep); 694 695 if (is_shadow_present_pte(spte)) 696 return; 697 698 /* Ensure the spte is completely set before we increase the count */ 699 smp_wmb(); 700 sp->clear_spte_count++; 701 } 702 703 static void __set_spte(u64 *sptep, u64 spte) 704 { 705 union split_spte *ssptep, sspte; 706 707 ssptep = (union split_spte *)sptep; 708 sspte = (union split_spte)spte; 709 710 ssptep->spte_high = sspte.spte_high; 711 712 /* 713 * If we map the spte from nonpresent to present, We should store 714 * the high bits firstly, then set present bit, so cpu can not 715 * fetch this spte while we are setting the spte. 716 */ 717 smp_wmb(); 718 719 WRITE_ONCE(ssptep->spte_low, sspte.spte_low); 720 } 721 722 static void __update_clear_spte_fast(u64 *sptep, u64 spte) 723 { 724 union split_spte *ssptep, sspte; 725 726 ssptep = (union split_spte *)sptep; 727 sspte = (union split_spte)spte; 728 729 WRITE_ONCE(ssptep->spte_low, sspte.spte_low); 730 731 /* 732 * If we map the spte from present to nonpresent, we should clear 733 * present bit firstly to avoid vcpu fetch the old high bits. 734 */ 735 smp_wmb(); 736 737 ssptep->spte_high = sspte.spte_high; 738 count_spte_clear(sptep, spte); 739 } 740 741 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte) 742 { 743 union split_spte *ssptep, sspte, orig; 744 745 ssptep = (union split_spte *)sptep; 746 sspte = (union split_spte)spte; 747 748 /* xchg acts as a barrier before the setting of the high bits */ 749 orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low); 750 orig.spte_high = ssptep->spte_high; 751 ssptep->spte_high = sspte.spte_high; 752 count_spte_clear(sptep, spte); 753 754 return orig.spte; 755 } 756 757 /* 758 * The idea using the light way get the spte on x86_32 guest is from 759 * gup_get_pte (mm/gup.c). 760 * 761 * An spte tlb flush may be pending, because kvm_set_pte_rmapp 762 * coalesces them and we are running out of the MMU lock. Therefore 763 * we need to protect against in-progress updates of the spte. 764 * 765 * Reading the spte while an update is in progress may get the old value 766 * for the high part of the spte. The race is fine for a present->non-present 767 * change (because the high part of the spte is ignored for non-present spte), 768 * but for a present->present change we must reread the spte. 769 * 770 * All such changes are done in two steps (present->non-present and 771 * non-present->present), hence it is enough to count the number of 772 * present->non-present updates: if it changed while reading the spte, 773 * we might have hit the race. This is done using clear_spte_count. 774 */ 775 static u64 __get_spte_lockless(u64 *sptep) 776 { 777 struct kvm_mmu_page *sp = sptep_to_sp(sptep); 778 union split_spte spte, *orig = (union split_spte *)sptep; 779 int count; 780 781 retry: 782 count = sp->clear_spte_count; 783 smp_rmb(); 784 785 spte.spte_low = orig->spte_low; 786 smp_rmb(); 787 788 spte.spte_high = orig->spte_high; 789 smp_rmb(); 790 791 if (unlikely(spte.spte_low != orig->spte_low || 792 count != sp->clear_spte_count)) 793 goto retry; 794 795 return spte.spte; 796 } 797 #endif 798 799 static bool spte_can_locklessly_be_made_writable(u64 spte) 800 { 801 return (spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE)) == 802 (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE); 803 } 804 805 static bool spte_has_volatile_bits(u64 spte) 806 { 807 if (!is_shadow_present_pte(spte)) 808 return false; 809 810 /* 811 * Always atomically update spte if it can be updated 812 * out of mmu-lock, it can ensure dirty bit is not lost, 813 * also, it can help us to get a stable is_writable_pte() 814 * to ensure tlb flush is not missed. 815 */ 816 if (spte_can_locklessly_be_made_writable(spte) || 817 is_access_track_spte(spte)) 818 return true; 819 820 if (spte_ad_enabled(spte)) { 821 if ((spte & shadow_accessed_mask) == 0 || 822 (is_writable_pte(spte) && (spte & shadow_dirty_mask) == 0)) 823 return true; 824 } 825 826 return false; 827 } 828 829 static bool is_accessed_spte(u64 spte) 830 { 831 u64 accessed_mask = spte_shadow_accessed_mask(spte); 832 833 return accessed_mask ? spte & accessed_mask 834 : !is_access_track_spte(spte); 835 } 836 837 static bool is_dirty_spte(u64 spte) 838 { 839 u64 dirty_mask = spte_shadow_dirty_mask(spte); 840 841 return dirty_mask ? spte & dirty_mask : spte & PT_WRITABLE_MASK; 842 } 843 844 /* Rules for using mmu_spte_set: 845 * Set the sptep from nonpresent to present. 846 * Note: the sptep being assigned *must* be either not present 847 * or in a state where the hardware will not attempt to update 848 * the spte. 849 */ 850 static void mmu_spte_set(u64 *sptep, u64 new_spte) 851 { 852 WARN_ON(is_shadow_present_pte(*sptep)); 853 __set_spte(sptep, new_spte); 854 } 855 856 /* 857 * Update the SPTE (excluding the PFN), but do not track changes in its 858 * accessed/dirty status. 859 */ 860 static u64 mmu_spte_update_no_track(u64 *sptep, u64 new_spte) 861 { 862 u64 old_spte = *sptep; 863 864 WARN_ON(!is_shadow_present_pte(new_spte)); 865 866 if (!is_shadow_present_pte(old_spte)) { 867 mmu_spte_set(sptep, new_spte); 868 return old_spte; 869 } 870 871 if (!spte_has_volatile_bits(old_spte)) 872 __update_clear_spte_fast(sptep, new_spte); 873 else 874 old_spte = __update_clear_spte_slow(sptep, new_spte); 875 876 WARN_ON(spte_to_pfn(old_spte) != spte_to_pfn(new_spte)); 877 878 return old_spte; 879 } 880 881 /* Rules for using mmu_spte_update: 882 * Update the state bits, it means the mapped pfn is not changed. 883 * 884 * Whenever we overwrite a writable spte with a read-only one we 885 * should flush remote TLBs. Otherwise rmap_write_protect 886 * will find a read-only spte, even though the writable spte 887 * might be cached on a CPU's TLB, the return value indicates this 888 * case. 889 * 890 * Returns true if the TLB needs to be flushed 891 */ 892 static bool mmu_spte_update(u64 *sptep, u64 new_spte) 893 { 894 bool flush = false; 895 u64 old_spte = mmu_spte_update_no_track(sptep, new_spte); 896 897 if (!is_shadow_present_pte(old_spte)) 898 return false; 899 900 /* 901 * For the spte updated out of mmu-lock is safe, since 902 * we always atomically update it, see the comments in 903 * spte_has_volatile_bits(). 904 */ 905 if (spte_can_locklessly_be_made_writable(old_spte) && 906 !is_writable_pte(new_spte)) 907 flush = true; 908 909 /* 910 * Flush TLB when accessed/dirty states are changed in the page tables, 911 * to guarantee consistency between TLB and page tables. 912 */ 913 914 if (is_accessed_spte(old_spte) && !is_accessed_spte(new_spte)) { 915 flush = true; 916 kvm_set_pfn_accessed(spte_to_pfn(old_spte)); 917 } 918 919 if (is_dirty_spte(old_spte) && !is_dirty_spte(new_spte)) { 920 flush = true; 921 kvm_set_pfn_dirty(spte_to_pfn(old_spte)); 922 } 923 924 return flush; 925 } 926 927 /* 928 * Rules for using mmu_spte_clear_track_bits: 929 * It sets the sptep from present to nonpresent, and track the 930 * state bits, it is used to clear the last level sptep. 931 * Returns non-zero if the PTE was previously valid. 932 */ 933 static int mmu_spte_clear_track_bits(u64 *sptep) 934 { 935 kvm_pfn_t pfn; 936 u64 old_spte = *sptep; 937 938 if (!spte_has_volatile_bits(old_spte)) 939 __update_clear_spte_fast(sptep, 0ull); 940 else 941 old_spte = __update_clear_spte_slow(sptep, 0ull); 942 943 if (!is_shadow_present_pte(old_spte)) 944 return 0; 945 946 pfn = spte_to_pfn(old_spte); 947 948 /* 949 * KVM does not hold the refcount of the page used by 950 * kvm mmu, before reclaiming the page, we should 951 * unmap it from mmu first. 952 */ 953 WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn))); 954 955 if (is_accessed_spte(old_spte)) 956 kvm_set_pfn_accessed(pfn); 957 958 if (is_dirty_spte(old_spte)) 959 kvm_set_pfn_dirty(pfn); 960 961 return 1; 962 } 963 964 /* 965 * Rules for using mmu_spte_clear_no_track: 966 * Directly clear spte without caring the state bits of sptep, 967 * it is used to set the upper level spte. 968 */ 969 static void mmu_spte_clear_no_track(u64 *sptep) 970 { 971 __update_clear_spte_fast(sptep, 0ull); 972 } 973 974 static u64 mmu_spte_get_lockless(u64 *sptep) 975 { 976 return __get_spte_lockless(sptep); 977 } 978 979 static u64 mark_spte_for_access_track(u64 spte) 980 { 981 if (spte_ad_enabled(spte)) 982 return spte & ~shadow_accessed_mask; 983 984 if (is_access_track_spte(spte)) 985 return spte; 986 987 /* 988 * Making an Access Tracking PTE will result in removal of write access 989 * from the PTE. So, verify that we will be able to restore the write 990 * access in the fast page fault path later on. 991 */ 992 WARN_ONCE((spte & PT_WRITABLE_MASK) && 993 !spte_can_locklessly_be_made_writable(spte), 994 "kvm: Writable SPTE is not locklessly dirty-trackable\n"); 995 996 WARN_ONCE(spte & (shadow_acc_track_saved_bits_mask << 997 shadow_acc_track_saved_bits_shift), 998 "kvm: Access Tracking saved bit locations are not zero\n"); 999 1000 spte |= (spte & shadow_acc_track_saved_bits_mask) << 1001 shadow_acc_track_saved_bits_shift; 1002 spte &= ~shadow_acc_track_mask; 1003 1004 return spte; 1005 } 1006 1007 /* Restore an acc-track PTE back to a regular PTE */ 1008 static u64 restore_acc_track_spte(u64 spte) 1009 { 1010 u64 new_spte = spte; 1011 u64 saved_bits = (spte >> shadow_acc_track_saved_bits_shift) 1012 & shadow_acc_track_saved_bits_mask; 1013 1014 WARN_ON_ONCE(spte_ad_enabled(spte)); 1015 WARN_ON_ONCE(!is_access_track_spte(spte)); 1016 1017 new_spte &= ~shadow_acc_track_mask; 1018 new_spte &= ~(shadow_acc_track_saved_bits_mask << 1019 shadow_acc_track_saved_bits_shift); 1020 new_spte |= saved_bits; 1021 1022 return new_spte; 1023 } 1024 1025 /* Returns the Accessed status of the PTE and resets it at the same time. */ 1026 static bool mmu_spte_age(u64 *sptep) 1027 { 1028 u64 spte = mmu_spte_get_lockless(sptep); 1029 1030 if (!is_accessed_spte(spte)) 1031 return false; 1032 1033 if (spte_ad_enabled(spte)) { 1034 clear_bit((ffs(shadow_accessed_mask) - 1), 1035 (unsigned long *)sptep); 1036 } else { 1037 /* 1038 * Capture the dirty status of the page, so that it doesn't get 1039 * lost when the SPTE is marked for access tracking. 1040 */ 1041 if (is_writable_pte(spte)) 1042 kvm_set_pfn_dirty(spte_to_pfn(spte)); 1043 1044 spte = mark_spte_for_access_track(spte); 1045 mmu_spte_update_no_track(sptep, spte); 1046 } 1047 1048 return true; 1049 } 1050 1051 static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu) 1052 { 1053 /* 1054 * Prevent page table teardown by making any free-er wait during 1055 * kvm_flush_remote_tlbs() IPI to all active vcpus. 1056 */ 1057 local_irq_disable(); 1058 1059 /* 1060 * Make sure a following spte read is not reordered ahead of the write 1061 * to vcpu->mode. 1062 */ 1063 smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES); 1064 } 1065 1066 static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu) 1067 { 1068 /* 1069 * Make sure the write to vcpu->mode is not reordered in front of 1070 * reads to sptes. If it does, kvm_mmu_commit_zap_page() can see us 1071 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table. 1072 */ 1073 smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE); 1074 local_irq_enable(); 1075 } 1076 1077 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu, bool maybe_indirect) 1078 { 1079 int r; 1080 1081 /* 1 rmap, 1 parent PTE per level, and the prefetched rmaps. */ 1082 r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache, 1083 1 + PT64_ROOT_MAX_LEVEL + PTE_PREFETCH_NUM); 1084 if (r) 1085 return r; 1086 r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_shadow_page_cache, 1087 PT64_ROOT_MAX_LEVEL); 1088 if (r) 1089 return r; 1090 if (maybe_indirect) { 1091 r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_gfn_array_cache, 1092 PT64_ROOT_MAX_LEVEL); 1093 if (r) 1094 return r; 1095 } 1096 return kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache, 1097 PT64_ROOT_MAX_LEVEL); 1098 } 1099 1100 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu) 1101 { 1102 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache); 1103 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_shadow_page_cache); 1104 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_gfn_array_cache); 1105 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache); 1106 } 1107 1108 static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu) 1109 { 1110 return kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache); 1111 } 1112 1113 static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc) 1114 { 1115 kmem_cache_free(pte_list_desc_cache, pte_list_desc); 1116 } 1117 1118 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index) 1119 { 1120 if (!sp->role.direct) 1121 return sp->gfns[index]; 1122 1123 return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS)); 1124 } 1125 1126 static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn) 1127 { 1128 if (!sp->role.direct) { 1129 sp->gfns[index] = gfn; 1130 return; 1131 } 1132 1133 if (WARN_ON(gfn != kvm_mmu_page_get_gfn(sp, index))) 1134 pr_err_ratelimited("gfn mismatch under direct page %llx " 1135 "(expected %llx, got %llx)\n", 1136 sp->gfn, 1137 kvm_mmu_page_get_gfn(sp, index), gfn); 1138 } 1139 1140 /* 1141 * Return the pointer to the large page information for a given gfn, 1142 * handling slots that are not large page aligned. 1143 */ 1144 static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn, 1145 struct kvm_memory_slot *slot, 1146 int level) 1147 { 1148 unsigned long idx; 1149 1150 idx = gfn_to_index(gfn, slot->base_gfn, level); 1151 return &slot->arch.lpage_info[level - 2][idx]; 1152 } 1153 1154 static void update_gfn_disallow_lpage_count(struct kvm_memory_slot *slot, 1155 gfn_t gfn, int count) 1156 { 1157 struct kvm_lpage_info *linfo; 1158 int i; 1159 1160 for (i = PG_LEVEL_2M; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) { 1161 linfo = lpage_info_slot(gfn, slot, i); 1162 linfo->disallow_lpage += count; 1163 WARN_ON(linfo->disallow_lpage < 0); 1164 } 1165 } 1166 1167 void kvm_mmu_gfn_disallow_lpage(struct kvm_memory_slot *slot, gfn_t gfn) 1168 { 1169 update_gfn_disallow_lpage_count(slot, gfn, 1); 1170 } 1171 1172 void kvm_mmu_gfn_allow_lpage(struct kvm_memory_slot *slot, gfn_t gfn) 1173 { 1174 update_gfn_disallow_lpage_count(slot, gfn, -1); 1175 } 1176 1177 static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp) 1178 { 1179 struct kvm_memslots *slots; 1180 struct kvm_memory_slot *slot; 1181 gfn_t gfn; 1182 1183 kvm->arch.indirect_shadow_pages++; 1184 gfn = sp->gfn; 1185 slots = kvm_memslots_for_spte_role(kvm, sp->role); 1186 slot = __gfn_to_memslot(slots, gfn); 1187 1188 /* the non-leaf shadow pages are keeping readonly. */ 1189 if (sp->role.level > PG_LEVEL_4K) 1190 return kvm_slot_page_track_add_page(kvm, slot, gfn, 1191 KVM_PAGE_TRACK_WRITE); 1192 1193 kvm_mmu_gfn_disallow_lpage(slot, gfn); 1194 } 1195 1196 static void account_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp) 1197 { 1198 if (sp->lpage_disallowed) 1199 return; 1200 1201 ++kvm->stat.nx_lpage_splits; 1202 list_add_tail(&sp->lpage_disallowed_link, 1203 &kvm->arch.lpage_disallowed_mmu_pages); 1204 sp->lpage_disallowed = true; 1205 } 1206 1207 static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp) 1208 { 1209 struct kvm_memslots *slots; 1210 struct kvm_memory_slot *slot; 1211 gfn_t gfn; 1212 1213 kvm->arch.indirect_shadow_pages--; 1214 gfn = sp->gfn; 1215 slots = kvm_memslots_for_spte_role(kvm, sp->role); 1216 slot = __gfn_to_memslot(slots, gfn); 1217 if (sp->role.level > PG_LEVEL_4K) 1218 return kvm_slot_page_track_remove_page(kvm, slot, gfn, 1219 KVM_PAGE_TRACK_WRITE); 1220 1221 kvm_mmu_gfn_allow_lpage(slot, gfn); 1222 } 1223 1224 static void unaccount_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp) 1225 { 1226 --kvm->stat.nx_lpage_splits; 1227 sp->lpage_disallowed = false; 1228 list_del(&sp->lpage_disallowed_link); 1229 } 1230 1231 static struct kvm_memory_slot * 1232 gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn, 1233 bool no_dirty_log) 1234 { 1235 struct kvm_memory_slot *slot; 1236 1237 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 1238 if (!slot || slot->flags & KVM_MEMSLOT_INVALID) 1239 return NULL; 1240 if (no_dirty_log && slot->dirty_bitmap) 1241 return NULL; 1242 1243 return slot; 1244 } 1245 1246 /* 1247 * About rmap_head encoding: 1248 * 1249 * If the bit zero of rmap_head->val is clear, then it points to the only spte 1250 * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct 1251 * pte_list_desc containing more mappings. 1252 */ 1253 1254 /* 1255 * Returns the number of pointers in the rmap chain, not counting the new one. 1256 */ 1257 static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte, 1258 struct kvm_rmap_head *rmap_head) 1259 { 1260 struct pte_list_desc *desc; 1261 int i, count = 0; 1262 1263 if (!rmap_head->val) { 1264 rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte); 1265 rmap_head->val = (unsigned long)spte; 1266 } else if (!(rmap_head->val & 1)) { 1267 rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte); 1268 desc = mmu_alloc_pte_list_desc(vcpu); 1269 desc->sptes[0] = (u64 *)rmap_head->val; 1270 desc->sptes[1] = spte; 1271 rmap_head->val = (unsigned long)desc | 1; 1272 ++count; 1273 } else { 1274 rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte); 1275 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul); 1276 while (desc->sptes[PTE_LIST_EXT-1] && desc->more) { 1277 desc = desc->more; 1278 count += PTE_LIST_EXT; 1279 } 1280 if (desc->sptes[PTE_LIST_EXT-1]) { 1281 desc->more = mmu_alloc_pte_list_desc(vcpu); 1282 desc = desc->more; 1283 } 1284 for (i = 0; desc->sptes[i]; ++i) 1285 ++count; 1286 desc->sptes[i] = spte; 1287 } 1288 return count; 1289 } 1290 1291 static void 1292 pte_list_desc_remove_entry(struct kvm_rmap_head *rmap_head, 1293 struct pte_list_desc *desc, int i, 1294 struct pte_list_desc *prev_desc) 1295 { 1296 int j; 1297 1298 for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j) 1299 ; 1300 desc->sptes[i] = desc->sptes[j]; 1301 desc->sptes[j] = NULL; 1302 if (j != 0) 1303 return; 1304 if (!prev_desc && !desc->more) 1305 rmap_head->val = 0; 1306 else 1307 if (prev_desc) 1308 prev_desc->more = desc->more; 1309 else 1310 rmap_head->val = (unsigned long)desc->more | 1; 1311 mmu_free_pte_list_desc(desc); 1312 } 1313 1314 static void __pte_list_remove(u64 *spte, struct kvm_rmap_head *rmap_head) 1315 { 1316 struct pte_list_desc *desc; 1317 struct pte_list_desc *prev_desc; 1318 int i; 1319 1320 if (!rmap_head->val) { 1321 pr_err("%s: %p 0->BUG\n", __func__, spte); 1322 BUG(); 1323 } else if (!(rmap_head->val & 1)) { 1324 rmap_printk("%s: %p 1->0\n", __func__, spte); 1325 if ((u64 *)rmap_head->val != spte) { 1326 pr_err("%s: %p 1->BUG\n", __func__, spte); 1327 BUG(); 1328 } 1329 rmap_head->val = 0; 1330 } else { 1331 rmap_printk("%s: %p many->many\n", __func__, spte); 1332 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul); 1333 prev_desc = NULL; 1334 while (desc) { 1335 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i) { 1336 if (desc->sptes[i] == spte) { 1337 pte_list_desc_remove_entry(rmap_head, 1338 desc, i, prev_desc); 1339 return; 1340 } 1341 } 1342 prev_desc = desc; 1343 desc = desc->more; 1344 } 1345 pr_err("%s: %p many->many\n", __func__, spte); 1346 BUG(); 1347 } 1348 } 1349 1350 static void pte_list_remove(struct kvm_rmap_head *rmap_head, u64 *sptep) 1351 { 1352 mmu_spte_clear_track_bits(sptep); 1353 __pte_list_remove(sptep, rmap_head); 1354 } 1355 1356 static struct kvm_rmap_head *__gfn_to_rmap(gfn_t gfn, int level, 1357 struct kvm_memory_slot *slot) 1358 { 1359 unsigned long idx; 1360 1361 idx = gfn_to_index(gfn, slot->base_gfn, level); 1362 return &slot->arch.rmap[level - PG_LEVEL_4K][idx]; 1363 } 1364 1365 static struct kvm_rmap_head *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, 1366 struct kvm_mmu_page *sp) 1367 { 1368 struct kvm_memslots *slots; 1369 struct kvm_memory_slot *slot; 1370 1371 slots = kvm_memslots_for_spte_role(kvm, sp->role); 1372 slot = __gfn_to_memslot(slots, gfn); 1373 return __gfn_to_rmap(gfn, sp->role.level, slot); 1374 } 1375 1376 static bool rmap_can_add(struct kvm_vcpu *vcpu) 1377 { 1378 struct kvm_mmu_memory_cache *mc; 1379 1380 mc = &vcpu->arch.mmu_pte_list_desc_cache; 1381 return kvm_mmu_memory_cache_nr_free_objects(mc); 1382 } 1383 1384 static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn) 1385 { 1386 struct kvm_mmu_page *sp; 1387 struct kvm_rmap_head *rmap_head; 1388 1389 sp = sptep_to_sp(spte); 1390 kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn); 1391 rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp); 1392 return pte_list_add(vcpu, spte, rmap_head); 1393 } 1394 1395 static void rmap_remove(struct kvm *kvm, u64 *spte) 1396 { 1397 struct kvm_mmu_page *sp; 1398 gfn_t gfn; 1399 struct kvm_rmap_head *rmap_head; 1400 1401 sp = sptep_to_sp(spte); 1402 gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt); 1403 rmap_head = gfn_to_rmap(kvm, gfn, sp); 1404 __pte_list_remove(spte, rmap_head); 1405 } 1406 1407 /* 1408 * Used by the following functions to iterate through the sptes linked by a 1409 * rmap. All fields are private and not assumed to be used outside. 1410 */ 1411 struct rmap_iterator { 1412 /* private fields */ 1413 struct pte_list_desc *desc; /* holds the sptep if not NULL */ 1414 int pos; /* index of the sptep */ 1415 }; 1416 1417 /* 1418 * Iteration must be started by this function. This should also be used after 1419 * removing/dropping sptes from the rmap link because in such cases the 1420 * information in the iterator may not be valid. 1421 * 1422 * Returns sptep if found, NULL otherwise. 1423 */ 1424 static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head, 1425 struct rmap_iterator *iter) 1426 { 1427 u64 *sptep; 1428 1429 if (!rmap_head->val) 1430 return NULL; 1431 1432 if (!(rmap_head->val & 1)) { 1433 iter->desc = NULL; 1434 sptep = (u64 *)rmap_head->val; 1435 goto out; 1436 } 1437 1438 iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul); 1439 iter->pos = 0; 1440 sptep = iter->desc->sptes[iter->pos]; 1441 out: 1442 BUG_ON(!is_shadow_present_pte(*sptep)); 1443 return sptep; 1444 } 1445 1446 /* 1447 * Must be used with a valid iterator: e.g. after rmap_get_first(). 1448 * 1449 * Returns sptep if found, NULL otherwise. 1450 */ 1451 static u64 *rmap_get_next(struct rmap_iterator *iter) 1452 { 1453 u64 *sptep; 1454 1455 if (iter->desc) { 1456 if (iter->pos < PTE_LIST_EXT - 1) { 1457 ++iter->pos; 1458 sptep = iter->desc->sptes[iter->pos]; 1459 if (sptep) 1460 goto out; 1461 } 1462 1463 iter->desc = iter->desc->more; 1464 1465 if (iter->desc) { 1466 iter->pos = 0; 1467 /* desc->sptes[0] cannot be NULL */ 1468 sptep = iter->desc->sptes[iter->pos]; 1469 goto out; 1470 } 1471 } 1472 1473 return NULL; 1474 out: 1475 BUG_ON(!is_shadow_present_pte(*sptep)); 1476 return sptep; 1477 } 1478 1479 #define for_each_rmap_spte(_rmap_head_, _iter_, _spte_) \ 1480 for (_spte_ = rmap_get_first(_rmap_head_, _iter_); \ 1481 _spte_; _spte_ = rmap_get_next(_iter_)) 1482 1483 static void drop_spte(struct kvm *kvm, u64 *sptep) 1484 { 1485 if (mmu_spte_clear_track_bits(sptep)) 1486 rmap_remove(kvm, sptep); 1487 } 1488 1489 1490 static bool __drop_large_spte(struct kvm *kvm, u64 *sptep) 1491 { 1492 if (is_large_pte(*sptep)) { 1493 WARN_ON(sptep_to_sp(sptep)->role.level == PG_LEVEL_4K); 1494 drop_spte(kvm, sptep); 1495 --kvm->stat.lpages; 1496 return true; 1497 } 1498 1499 return false; 1500 } 1501 1502 static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep) 1503 { 1504 if (__drop_large_spte(vcpu->kvm, sptep)) { 1505 struct kvm_mmu_page *sp = sptep_to_sp(sptep); 1506 1507 kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn, 1508 KVM_PAGES_PER_HPAGE(sp->role.level)); 1509 } 1510 } 1511 1512 /* 1513 * Write-protect on the specified @sptep, @pt_protect indicates whether 1514 * spte write-protection is caused by protecting shadow page table. 1515 * 1516 * Note: write protection is difference between dirty logging and spte 1517 * protection: 1518 * - for dirty logging, the spte can be set to writable at anytime if 1519 * its dirty bitmap is properly set. 1520 * - for spte protection, the spte can be writable only after unsync-ing 1521 * shadow page. 1522 * 1523 * Return true if tlb need be flushed. 1524 */ 1525 static bool spte_write_protect(u64 *sptep, bool pt_protect) 1526 { 1527 u64 spte = *sptep; 1528 1529 if (!is_writable_pte(spte) && 1530 !(pt_protect && spte_can_locklessly_be_made_writable(spte))) 1531 return false; 1532 1533 rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep); 1534 1535 if (pt_protect) 1536 spte &= ~SPTE_MMU_WRITEABLE; 1537 spte = spte & ~PT_WRITABLE_MASK; 1538 1539 return mmu_spte_update(sptep, spte); 1540 } 1541 1542 static bool __rmap_write_protect(struct kvm *kvm, 1543 struct kvm_rmap_head *rmap_head, 1544 bool pt_protect) 1545 { 1546 u64 *sptep; 1547 struct rmap_iterator iter; 1548 bool flush = false; 1549 1550 for_each_rmap_spte(rmap_head, &iter, sptep) 1551 flush |= spte_write_protect(sptep, pt_protect); 1552 1553 return flush; 1554 } 1555 1556 static bool spte_clear_dirty(u64 *sptep) 1557 { 1558 u64 spte = *sptep; 1559 1560 rmap_printk("rmap_clear_dirty: spte %p %llx\n", sptep, *sptep); 1561 1562 MMU_WARN_ON(!spte_ad_enabled(spte)); 1563 spte &= ~shadow_dirty_mask; 1564 return mmu_spte_update(sptep, spte); 1565 } 1566 1567 static bool spte_wrprot_for_clear_dirty(u64 *sptep) 1568 { 1569 bool was_writable = test_and_clear_bit(PT_WRITABLE_SHIFT, 1570 (unsigned long *)sptep); 1571 if (was_writable && !spte_ad_enabled(*sptep)) 1572 kvm_set_pfn_dirty(spte_to_pfn(*sptep)); 1573 1574 return was_writable; 1575 } 1576 1577 /* 1578 * Gets the GFN ready for another round of dirty logging by clearing the 1579 * - D bit on ad-enabled SPTEs, and 1580 * - W bit on ad-disabled SPTEs. 1581 * Returns true iff any D or W bits were cleared. 1582 */ 1583 static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head) 1584 { 1585 u64 *sptep; 1586 struct rmap_iterator iter; 1587 bool flush = false; 1588 1589 for_each_rmap_spte(rmap_head, &iter, sptep) 1590 if (spte_ad_need_write_protect(*sptep)) 1591 flush |= spte_wrprot_for_clear_dirty(sptep); 1592 else 1593 flush |= spte_clear_dirty(sptep); 1594 1595 return flush; 1596 } 1597 1598 static bool spte_set_dirty(u64 *sptep) 1599 { 1600 u64 spte = *sptep; 1601 1602 rmap_printk("rmap_set_dirty: spte %p %llx\n", sptep, *sptep); 1603 1604 /* 1605 * Similar to the !kvm_x86_ops.slot_disable_log_dirty case, 1606 * do not bother adding back write access to pages marked 1607 * SPTE_AD_WRPROT_ONLY_MASK. 1608 */ 1609 spte |= shadow_dirty_mask; 1610 1611 return mmu_spte_update(sptep, spte); 1612 } 1613 1614 static bool __rmap_set_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head) 1615 { 1616 u64 *sptep; 1617 struct rmap_iterator iter; 1618 bool flush = false; 1619 1620 for_each_rmap_spte(rmap_head, &iter, sptep) 1621 if (spte_ad_enabled(*sptep)) 1622 flush |= spte_set_dirty(sptep); 1623 1624 return flush; 1625 } 1626 1627 /** 1628 * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages 1629 * @kvm: kvm instance 1630 * @slot: slot to protect 1631 * @gfn_offset: start of the BITS_PER_LONG pages we care about 1632 * @mask: indicates which pages we should protect 1633 * 1634 * Used when we do not need to care about huge page mappings: e.g. during dirty 1635 * logging we do not have any such mappings. 1636 */ 1637 static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm, 1638 struct kvm_memory_slot *slot, 1639 gfn_t gfn_offset, unsigned long mask) 1640 { 1641 struct kvm_rmap_head *rmap_head; 1642 1643 while (mask) { 1644 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask), 1645 PG_LEVEL_4K, slot); 1646 __rmap_write_protect(kvm, rmap_head, false); 1647 1648 /* clear the first set bit */ 1649 mask &= mask - 1; 1650 } 1651 } 1652 1653 /** 1654 * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages, or write 1655 * protect the page if the D-bit isn't supported. 1656 * @kvm: kvm instance 1657 * @slot: slot to clear D-bit 1658 * @gfn_offset: start of the BITS_PER_LONG pages we care about 1659 * @mask: indicates which pages we should clear D-bit 1660 * 1661 * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap. 1662 */ 1663 void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm, 1664 struct kvm_memory_slot *slot, 1665 gfn_t gfn_offset, unsigned long mask) 1666 { 1667 struct kvm_rmap_head *rmap_head; 1668 1669 while (mask) { 1670 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask), 1671 PG_LEVEL_4K, slot); 1672 __rmap_clear_dirty(kvm, rmap_head); 1673 1674 /* clear the first set bit */ 1675 mask &= mask - 1; 1676 } 1677 } 1678 EXPORT_SYMBOL_GPL(kvm_mmu_clear_dirty_pt_masked); 1679 1680 /** 1681 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected 1682 * PT level pages. 1683 * 1684 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to 1685 * enable dirty logging for them. 1686 * 1687 * Used when we do not need to care about huge page mappings: e.g. during dirty 1688 * logging we do not have any such mappings. 1689 */ 1690 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm, 1691 struct kvm_memory_slot *slot, 1692 gfn_t gfn_offset, unsigned long mask) 1693 { 1694 if (kvm_x86_ops.enable_log_dirty_pt_masked) 1695 kvm_x86_ops.enable_log_dirty_pt_masked(kvm, slot, gfn_offset, 1696 mask); 1697 else 1698 kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask); 1699 } 1700 1701 bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm, 1702 struct kvm_memory_slot *slot, u64 gfn) 1703 { 1704 struct kvm_rmap_head *rmap_head; 1705 int i; 1706 bool write_protected = false; 1707 1708 for (i = PG_LEVEL_4K; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) { 1709 rmap_head = __gfn_to_rmap(gfn, i, slot); 1710 write_protected |= __rmap_write_protect(kvm, rmap_head, true); 1711 } 1712 1713 return write_protected; 1714 } 1715 1716 static bool rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn) 1717 { 1718 struct kvm_memory_slot *slot; 1719 1720 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 1721 return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn); 1722 } 1723 1724 static bool kvm_zap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head) 1725 { 1726 u64 *sptep; 1727 struct rmap_iterator iter; 1728 bool flush = false; 1729 1730 while ((sptep = rmap_get_first(rmap_head, &iter))) { 1731 rmap_printk("%s: spte %p %llx.\n", __func__, sptep, *sptep); 1732 1733 pte_list_remove(rmap_head, sptep); 1734 flush = true; 1735 } 1736 1737 return flush; 1738 } 1739 1740 static int kvm_unmap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head, 1741 struct kvm_memory_slot *slot, gfn_t gfn, int level, 1742 unsigned long data) 1743 { 1744 return kvm_zap_rmapp(kvm, rmap_head); 1745 } 1746 1747 static int kvm_set_pte_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head, 1748 struct kvm_memory_slot *slot, gfn_t gfn, int level, 1749 unsigned long data) 1750 { 1751 u64 *sptep; 1752 struct rmap_iterator iter; 1753 int need_flush = 0; 1754 u64 new_spte; 1755 pte_t *ptep = (pte_t *)data; 1756 kvm_pfn_t new_pfn; 1757 1758 WARN_ON(pte_huge(*ptep)); 1759 new_pfn = pte_pfn(*ptep); 1760 1761 restart: 1762 for_each_rmap_spte(rmap_head, &iter, sptep) { 1763 rmap_printk("kvm_set_pte_rmapp: spte %p %llx gfn %llx (%d)\n", 1764 sptep, *sptep, gfn, level); 1765 1766 need_flush = 1; 1767 1768 if (pte_write(*ptep)) { 1769 pte_list_remove(rmap_head, sptep); 1770 goto restart; 1771 } else { 1772 new_spte = *sptep & ~PT64_BASE_ADDR_MASK; 1773 new_spte |= (u64)new_pfn << PAGE_SHIFT; 1774 1775 new_spte &= ~PT_WRITABLE_MASK; 1776 new_spte &= ~SPTE_HOST_WRITEABLE; 1777 1778 new_spte = mark_spte_for_access_track(new_spte); 1779 1780 mmu_spte_clear_track_bits(sptep); 1781 mmu_spte_set(sptep, new_spte); 1782 } 1783 } 1784 1785 if (need_flush && kvm_available_flush_tlb_with_range()) { 1786 kvm_flush_remote_tlbs_with_address(kvm, gfn, 1); 1787 return 0; 1788 } 1789 1790 return need_flush; 1791 } 1792 1793 struct slot_rmap_walk_iterator { 1794 /* input fields. */ 1795 struct kvm_memory_slot *slot; 1796 gfn_t start_gfn; 1797 gfn_t end_gfn; 1798 int start_level; 1799 int end_level; 1800 1801 /* output fields. */ 1802 gfn_t gfn; 1803 struct kvm_rmap_head *rmap; 1804 int level; 1805 1806 /* private field. */ 1807 struct kvm_rmap_head *end_rmap; 1808 }; 1809 1810 static void 1811 rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level) 1812 { 1813 iterator->level = level; 1814 iterator->gfn = iterator->start_gfn; 1815 iterator->rmap = __gfn_to_rmap(iterator->gfn, level, iterator->slot); 1816 iterator->end_rmap = __gfn_to_rmap(iterator->end_gfn, level, 1817 iterator->slot); 1818 } 1819 1820 static void 1821 slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator, 1822 struct kvm_memory_slot *slot, int start_level, 1823 int end_level, gfn_t start_gfn, gfn_t end_gfn) 1824 { 1825 iterator->slot = slot; 1826 iterator->start_level = start_level; 1827 iterator->end_level = end_level; 1828 iterator->start_gfn = start_gfn; 1829 iterator->end_gfn = end_gfn; 1830 1831 rmap_walk_init_level(iterator, iterator->start_level); 1832 } 1833 1834 static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator) 1835 { 1836 return !!iterator->rmap; 1837 } 1838 1839 static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator) 1840 { 1841 if (++iterator->rmap <= iterator->end_rmap) { 1842 iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level)); 1843 return; 1844 } 1845 1846 if (++iterator->level > iterator->end_level) { 1847 iterator->rmap = NULL; 1848 return; 1849 } 1850 1851 rmap_walk_init_level(iterator, iterator->level); 1852 } 1853 1854 #define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_, \ 1855 _start_gfn, _end_gfn, _iter_) \ 1856 for (slot_rmap_walk_init(_iter_, _slot_, _start_level_, \ 1857 _end_level_, _start_gfn, _end_gfn); \ 1858 slot_rmap_walk_okay(_iter_); \ 1859 slot_rmap_walk_next(_iter_)) 1860 1861 static int kvm_handle_hva_range(struct kvm *kvm, 1862 unsigned long start, 1863 unsigned long end, 1864 unsigned long data, 1865 int (*handler)(struct kvm *kvm, 1866 struct kvm_rmap_head *rmap_head, 1867 struct kvm_memory_slot *slot, 1868 gfn_t gfn, 1869 int level, 1870 unsigned long data)) 1871 { 1872 struct kvm_memslots *slots; 1873 struct kvm_memory_slot *memslot; 1874 struct slot_rmap_walk_iterator iterator; 1875 int ret = 0; 1876 int i; 1877 1878 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { 1879 slots = __kvm_memslots(kvm, i); 1880 kvm_for_each_memslot(memslot, slots) { 1881 unsigned long hva_start, hva_end; 1882 gfn_t gfn_start, gfn_end; 1883 1884 hva_start = max(start, memslot->userspace_addr); 1885 hva_end = min(end, memslot->userspace_addr + 1886 (memslot->npages << PAGE_SHIFT)); 1887 if (hva_start >= hva_end) 1888 continue; 1889 /* 1890 * {gfn(page) | page intersects with [hva_start, hva_end)} = 1891 * {gfn_start, gfn_start+1, ..., gfn_end-1}. 1892 */ 1893 gfn_start = hva_to_gfn_memslot(hva_start, memslot); 1894 gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot); 1895 1896 for_each_slot_rmap_range(memslot, PG_LEVEL_4K, 1897 KVM_MAX_HUGEPAGE_LEVEL, 1898 gfn_start, gfn_end - 1, 1899 &iterator) 1900 ret |= handler(kvm, iterator.rmap, memslot, 1901 iterator.gfn, iterator.level, data); 1902 } 1903 } 1904 1905 return ret; 1906 } 1907 1908 static int kvm_handle_hva(struct kvm *kvm, unsigned long hva, 1909 unsigned long data, 1910 int (*handler)(struct kvm *kvm, 1911 struct kvm_rmap_head *rmap_head, 1912 struct kvm_memory_slot *slot, 1913 gfn_t gfn, int level, 1914 unsigned long data)) 1915 { 1916 return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler); 1917 } 1918 1919 int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end, 1920 unsigned flags) 1921 { 1922 return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp); 1923 } 1924 1925 int kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte) 1926 { 1927 return kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp); 1928 } 1929 1930 static int kvm_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head, 1931 struct kvm_memory_slot *slot, gfn_t gfn, int level, 1932 unsigned long data) 1933 { 1934 u64 *sptep; 1935 struct rmap_iterator iter; 1936 int young = 0; 1937 1938 for_each_rmap_spte(rmap_head, &iter, sptep) 1939 young |= mmu_spte_age(sptep); 1940 1941 trace_kvm_age_page(gfn, level, slot, young); 1942 return young; 1943 } 1944 1945 static int kvm_test_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head, 1946 struct kvm_memory_slot *slot, gfn_t gfn, 1947 int level, unsigned long data) 1948 { 1949 u64 *sptep; 1950 struct rmap_iterator iter; 1951 1952 for_each_rmap_spte(rmap_head, &iter, sptep) 1953 if (is_accessed_spte(*sptep)) 1954 return 1; 1955 return 0; 1956 } 1957 1958 #define RMAP_RECYCLE_THRESHOLD 1000 1959 1960 static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn) 1961 { 1962 struct kvm_rmap_head *rmap_head; 1963 struct kvm_mmu_page *sp; 1964 1965 sp = sptep_to_sp(spte); 1966 1967 rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp); 1968 1969 kvm_unmap_rmapp(vcpu->kvm, rmap_head, NULL, gfn, sp->role.level, 0); 1970 kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn, 1971 KVM_PAGES_PER_HPAGE(sp->role.level)); 1972 } 1973 1974 int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end) 1975 { 1976 return kvm_handle_hva_range(kvm, start, end, 0, kvm_age_rmapp); 1977 } 1978 1979 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva) 1980 { 1981 return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp); 1982 } 1983 1984 #ifdef MMU_DEBUG 1985 static int is_empty_shadow_page(u64 *spt) 1986 { 1987 u64 *pos; 1988 u64 *end; 1989 1990 for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++) 1991 if (is_shadow_present_pte(*pos)) { 1992 printk(KERN_ERR "%s: %p %llx\n", __func__, 1993 pos, *pos); 1994 return 0; 1995 } 1996 return 1; 1997 } 1998 #endif 1999 2000 /* 2001 * This value is the sum of all of the kvm instances's 2002 * kvm->arch.n_used_mmu_pages values. We need a global, 2003 * aggregate version in order to make the slab shrinker 2004 * faster 2005 */ 2006 static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, unsigned long nr) 2007 { 2008 kvm->arch.n_used_mmu_pages += nr; 2009 percpu_counter_add(&kvm_total_used_mmu_pages, nr); 2010 } 2011 2012 static void kvm_mmu_free_page(struct kvm_mmu_page *sp) 2013 { 2014 MMU_WARN_ON(!is_empty_shadow_page(sp->spt)); 2015 hlist_del(&sp->hash_link); 2016 list_del(&sp->link); 2017 free_page((unsigned long)sp->spt); 2018 if (!sp->role.direct) 2019 free_page((unsigned long)sp->gfns); 2020 kmem_cache_free(mmu_page_header_cache, sp); 2021 } 2022 2023 static unsigned kvm_page_table_hashfn(gfn_t gfn) 2024 { 2025 return hash_64(gfn, KVM_MMU_HASH_SHIFT); 2026 } 2027 2028 static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu, 2029 struct kvm_mmu_page *sp, u64 *parent_pte) 2030 { 2031 if (!parent_pte) 2032 return; 2033 2034 pte_list_add(vcpu, parent_pte, &sp->parent_ptes); 2035 } 2036 2037 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp, 2038 u64 *parent_pte) 2039 { 2040 __pte_list_remove(parent_pte, &sp->parent_ptes); 2041 } 2042 2043 static void drop_parent_pte(struct kvm_mmu_page *sp, 2044 u64 *parent_pte) 2045 { 2046 mmu_page_remove_parent_pte(sp, parent_pte); 2047 mmu_spte_clear_no_track(parent_pte); 2048 } 2049 2050 static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu, int direct) 2051 { 2052 struct kvm_mmu_page *sp; 2053 2054 sp = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache); 2055 sp->spt = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_shadow_page_cache); 2056 if (!direct) 2057 sp->gfns = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_gfn_array_cache); 2058 set_page_private(virt_to_page(sp->spt), (unsigned long)sp); 2059 2060 /* 2061 * active_mmu_pages must be a FIFO list, as kvm_zap_obsolete_pages() 2062 * depends on valid pages being added to the head of the list. See 2063 * comments in kvm_zap_obsolete_pages(). 2064 */ 2065 sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen; 2066 list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages); 2067 kvm_mod_used_mmu_pages(vcpu->kvm, +1); 2068 return sp; 2069 } 2070 2071 static void mark_unsync(u64 *spte); 2072 static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp) 2073 { 2074 u64 *sptep; 2075 struct rmap_iterator iter; 2076 2077 for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) { 2078 mark_unsync(sptep); 2079 } 2080 } 2081 2082 static void mark_unsync(u64 *spte) 2083 { 2084 struct kvm_mmu_page *sp; 2085 unsigned int index; 2086 2087 sp = sptep_to_sp(spte); 2088 index = spte - sp->spt; 2089 if (__test_and_set_bit(index, sp->unsync_child_bitmap)) 2090 return; 2091 if (sp->unsync_children++) 2092 return; 2093 kvm_mmu_mark_parents_unsync(sp); 2094 } 2095 2096 static int nonpaging_sync_page(struct kvm_vcpu *vcpu, 2097 struct kvm_mmu_page *sp) 2098 { 2099 return 0; 2100 } 2101 2102 static void nonpaging_update_pte(struct kvm_vcpu *vcpu, 2103 struct kvm_mmu_page *sp, u64 *spte, 2104 const void *pte) 2105 { 2106 WARN_ON(1); 2107 } 2108 2109 #define KVM_PAGE_ARRAY_NR 16 2110 2111 struct kvm_mmu_pages { 2112 struct mmu_page_and_offset { 2113 struct kvm_mmu_page *sp; 2114 unsigned int idx; 2115 } page[KVM_PAGE_ARRAY_NR]; 2116 unsigned int nr; 2117 }; 2118 2119 static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp, 2120 int idx) 2121 { 2122 int i; 2123 2124 if (sp->unsync) 2125 for (i=0; i < pvec->nr; i++) 2126 if (pvec->page[i].sp == sp) 2127 return 0; 2128 2129 pvec->page[pvec->nr].sp = sp; 2130 pvec->page[pvec->nr].idx = idx; 2131 pvec->nr++; 2132 return (pvec->nr == KVM_PAGE_ARRAY_NR); 2133 } 2134 2135 static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx) 2136 { 2137 --sp->unsync_children; 2138 WARN_ON((int)sp->unsync_children < 0); 2139 __clear_bit(idx, sp->unsync_child_bitmap); 2140 } 2141 2142 static int __mmu_unsync_walk(struct kvm_mmu_page *sp, 2143 struct kvm_mmu_pages *pvec) 2144 { 2145 int i, ret, nr_unsync_leaf = 0; 2146 2147 for_each_set_bit(i, sp->unsync_child_bitmap, 512) { 2148 struct kvm_mmu_page *child; 2149 u64 ent = sp->spt[i]; 2150 2151 if (!is_shadow_present_pte(ent) || is_large_pte(ent)) { 2152 clear_unsync_child_bit(sp, i); 2153 continue; 2154 } 2155 2156 child = to_shadow_page(ent & PT64_BASE_ADDR_MASK); 2157 2158 if (child->unsync_children) { 2159 if (mmu_pages_add(pvec, child, i)) 2160 return -ENOSPC; 2161 2162 ret = __mmu_unsync_walk(child, pvec); 2163 if (!ret) { 2164 clear_unsync_child_bit(sp, i); 2165 continue; 2166 } else if (ret > 0) { 2167 nr_unsync_leaf += ret; 2168 } else 2169 return ret; 2170 } else if (child->unsync) { 2171 nr_unsync_leaf++; 2172 if (mmu_pages_add(pvec, child, i)) 2173 return -ENOSPC; 2174 } else 2175 clear_unsync_child_bit(sp, i); 2176 } 2177 2178 return nr_unsync_leaf; 2179 } 2180 2181 #define INVALID_INDEX (-1) 2182 2183 static int mmu_unsync_walk(struct kvm_mmu_page *sp, 2184 struct kvm_mmu_pages *pvec) 2185 { 2186 pvec->nr = 0; 2187 if (!sp->unsync_children) 2188 return 0; 2189 2190 mmu_pages_add(pvec, sp, INVALID_INDEX); 2191 return __mmu_unsync_walk(sp, pvec); 2192 } 2193 2194 static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp) 2195 { 2196 WARN_ON(!sp->unsync); 2197 trace_kvm_mmu_sync_page(sp); 2198 sp->unsync = 0; 2199 --kvm->stat.mmu_unsync; 2200 } 2201 2202 static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp, 2203 struct list_head *invalid_list); 2204 static void kvm_mmu_commit_zap_page(struct kvm *kvm, 2205 struct list_head *invalid_list); 2206 2207 #define for_each_valid_sp(_kvm, _sp, _list) \ 2208 hlist_for_each_entry(_sp, _list, hash_link) \ 2209 if (is_obsolete_sp((_kvm), (_sp))) { \ 2210 } else 2211 2212 #define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn) \ 2213 for_each_valid_sp(_kvm, _sp, \ 2214 &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)]) \ 2215 if ((_sp)->gfn != (_gfn) || (_sp)->role.direct) {} else 2216 2217 static inline bool is_ept_sp(struct kvm_mmu_page *sp) 2218 { 2219 return sp->role.cr0_wp && sp->role.smap_andnot_wp; 2220 } 2221 2222 /* @sp->gfn should be write-protected at the call site */ 2223 static bool __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp, 2224 struct list_head *invalid_list) 2225 { 2226 if ((!is_ept_sp(sp) && sp->role.gpte_is_8_bytes != !!is_pae(vcpu)) || 2227 vcpu->arch.mmu->sync_page(vcpu, sp) == 0) { 2228 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list); 2229 return false; 2230 } 2231 2232 return true; 2233 } 2234 2235 static bool kvm_mmu_remote_flush_or_zap(struct kvm *kvm, 2236 struct list_head *invalid_list, 2237 bool remote_flush) 2238 { 2239 if (!remote_flush && list_empty(invalid_list)) 2240 return false; 2241 2242 if (!list_empty(invalid_list)) 2243 kvm_mmu_commit_zap_page(kvm, invalid_list); 2244 else 2245 kvm_flush_remote_tlbs(kvm); 2246 return true; 2247 } 2248 2249 static void kvm_mmu_flush_or_zap(struct kvm_vcpu *vcpu, 2250 struct list_head *invalid_list, 2251 bool remote_flush, bool local_flush) 2252 { 2253 if (kvm_mmu_remote_flush_or_zap(vcpu->kvm, invalid_list, remote_flush)) 2254 return; 2255 2256 if (local_flush) 2257 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 2258 } 2259 2260 #ifdef CONFIG_KVM_MMU_AUDIT 2261 #include "mmu_audit.c" 2262 #else 2263 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { } 2264 static void mmu_audit_disable(void) { } 2265 #endif 2266 2267 static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp) 2268 { 2269 return sp->role.invalid || 2270 unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen); 2271 } 2272 2273 static bool kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp, 2274 struct list_head *invalid_list) 2275 { 2276 kvm_unlink_unsync_page(vcpu->kvm, sp); 2277 return __kvm_sync_page(vcpu, sp, invalid_list); 2278 } 2279 2280 /* @gfn should be write-protected at the call site */ 2281 static bool kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn, 2282 struct list_head *invalid_list) 2283 { 2284 struct kvm_mmu_page *s; 2285 bool ret = false; 2286 2287 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) { 2288 if (!s->unsync) 2289 continue; 2290 2291 WARN_ON(s->role.level != PG_LEVEL_4K); 2292 ret |= kvm_sync_page(vcpu, s, invalid_list); 2293 } 2294 2295 return ret; 2296 } 2297 2298 struct mmu_page_path { 2299 struct kvm_mmu_page *parent[PT64_ROOT_MAX_LEVEL]; 2300 unsigned int idx[PT64_ROOT_MAX_LEVEL]; 2301 }; 2302 2303 #define for_each_sp(pvec, sp, parents, i) \ 2304 for (i = mmu_pages_first(&pvec, &parents); \ 2305 i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \ 2306 i = mmu_pages_next(&pvec, &parents, i)) 2307 2308 static int mmu_pages_next(struct kvm_mmu_pages *pvec, 2309 struct mmu_page_path *parents, 2310 int i) 2311 { 2312 int n; 2313 2314 for (n = i+1; n < pvec->nr; n++) { 2315 struct kvm_mmu_page *sp = pvec->page[n].sp; 2316 unsigned idx = pvec->page[n].idx; 2317 int level = sp->role.level; 2318 2319 parents->idx[level-1] = idx; 2320 if (level == PG_LEVEL_4K) 2321 break; 2322 2323 parents->parent[level-2] = sp; 2324 } 2325 2326 return n; 2327 } 2328 2329 static int mmu_pages_first(struct kvm_mmu_pages *pvec, 2330 struct mmu_page_path *parents) 2331 { 2332 struct kvm_mmu_page *sp; 2333 int level; 2334 2335 if (pvec->nr == 0) 2336 return 0; 2337 2338 WARN_ON(pvec->page[0].idx != INVALID_INDEX); 2339 2340 sp = pvec->page[0].sp; 2341 level = sp->role.level; 2342 WARN_ON(level == PG_LEVEL_4K); 2343 2344 parents->parent[level-2] = sp; 2345 2346 /* Also set up a sentinel. Further entries in pvec are all 2347 * children of sp, so this element is never overwritten. 2348 */ 2349 parents->parent[level-1] = NULL; 2350 return mmu_pages_next(pvec, parents, 0); 2351 } 2352 2353 static void mmu_pages_clear_parents(struct mmu_page_path *parents) 2354 { 2355 struct kvm_mmu_page *sp; 2356 unsigned int level = 0; 2357 2358 do { 2359 unsigned int idx = parents->idx[level]; 2360 sp = parents->parent[level]; 2361 if (!sp) 2362 return; 2363 2364 WARN_ON(idx == INVALID_INDEX); 2365 clear_unsync_child_bit(sp, idx); 2366 level++; 2367 } while (!sp->unsync_children); 2368 } 2369 2370 static void mmu_sync_children(struct kvm_vcpu *vcpu, 2371 struct kvm_mmu_page *parent) 2372 { 2373 int i; 2374 struct kvm_mmu_page *sp; 2375 struct mmu_page_path parents; 2376 struct kvm_mmu_pages pages; 2377 LIST_HEAD(invalid_list); 2378 bool flush = false; 2379 2380 while (mmu_unsync_walk(parent, &pages)) { 2381 bool protected = false; 2382 2383 for_each_sp(pages, sp, parents, i) 2384 protected |= rmap_write_protect(vcpu, sp->gfn); 2385 2386 if (protected) { 2387 kvm_flush_remote_tlbs(vcpu->kvm); 2388 flush = false; 2389 } 2390 2391 for_each_sp(pages, sp, parents, i) { 2392 flush |= kvm_sync_page(vcpu, sp, &invalid_list); 2393 mmu_pages_clear_parents(&parents); 2394 } 2395 if (need_resched() || spin_needbreak(&vcpu->kvm->mmu_lock)) { 2396 kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush); 2397 cond_resched_lock(&vcpu->kvm->mmu_lock); 2398 flush = false; 2399 } 2400 } 2401 2402 kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush); 2403 } 2404 2405 static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp) 2406 { 2407 atomic_set(&sp->write_flooding_count, 0); 2408 } 2409 2410 static void clear_sp_write_flooding_count(u64 *spte) 2411 { 2412 __clear_sp_write_flooding_count(sptep_to_sp(spte)); 2413 } 2414 2415 static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu, 2416 gfn_t gfn, 2417 gva_t gaddr, 2418 unsigned level, 2419 int direct, 2420 unsigned int access) 2421 { 2422 bool direct_mmu = vcpu->arch.mmu->direct_map; 2423 union kvm_mmu_page_role role; 2424 struct hlist_head *sp_list; 2425 unsigned quadrant; 2426 struct kvm_mmu_page *sp; 2427 bool need_sync = false; 2428 bool flush = false; 2429 int collisions = 0; 2430 LIST_HEAD(invalid_list); 2431 2432 role = vcpu->arch.mmu->mmu_role.base; 2433 role.level = level; 2434 role.direct = direct; 2435 if (role.direct) 2436 role.gpte_is_8_bytes = true; 2437 role.access = access; 2438 if (!direct_mmu && vcpu->arch.mmu->root_level <= PT32_ROOT_LEVEL) { 2439 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level)); 2440 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1; 2441 role.quadrant = quadrant; 2442 } 2443 2444 sp_list = &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]; 2445 for_each_valid_sp(vcpu->kvm, sp, sp_list) { 2446 if (sp->gfn != gfn) { 2447 collisions++; 2448 continue; 2449 } 2450 2451 if (!need_sync && sp->unsync) 2452 need_sync = true; 2453 2454 if (sp->role.word != role.word) 2455 continue; 2456 2457 if (direct_mmu) 2458 goto trace_get_page; 2459 2460 if (sp->unsync) { 2461 /* The page is good, but __kvm_sync_page might still end 2462 * up zapping it. If so, break in order to rebuild it. 2463 */ 2464 if (!__kvm_sync_page(vcpu, sp, &invalid_list)) 2465 break; 2466 2467 WARN_ON(!list_empty(&invalid_list)); 2468 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 2469 } 2470 2471 if (sp->unsync_children) 2472 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 2473 2474 __clear_sp_write_flooding_count(sp); 2475 2476 trace_get_page: 2477 trace_kvm_mmu_get_page(sp, false); 2478 goto out; 2479 } 2480 2481 ++vcpu->kvm->stat.mmu_cache_miss; 2482 2483 sp = kvm_mmu_alloc_page(vcpu, direct); 2484 2485 sp->gfn = gfn; 2486 sp->role = role; 2487 hlist_add_head(&sp->hash_link, sp_list); 2488 if (!direct) { 2489 /* 2490 * we should do write protection before syncing pages 2491 * otherwise the content of the synced shadow page may 2492 * be inconsistent with guest page table. 2493 */ 2494 account_shadowed(vcpu->kvm, sp); 2495 if (level == PG_LEVEL_4K && rmap_write_protect(vcpu, gfn)) 2496 kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn, 1); 2497 2498 if (level > PG_LEVEL_4K && need_sync) 2499 flush |= kvm_sync_pages(vcpu, gfn, &invalid_list); 2500 } 2501 trace_kvm_mmu_get_page(sp, true); 2502 2503 kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush); 2504 out: 2505 if (collisions > vcpu->kvm->stat.max_mmu_page_hash_collisions) 2506 vcpu->kvm->stat.max_mmu_page_hash_collisions = collisions; 2507 return sp; 2508 } 2509 2510 static void shadow_walk_init_using_root(struct kvm_shadow_walk_iterator *iterator, 2511 struct kvm_vcpu *vcpu, hpa_t root, 2512 u64 addr) 2513 { 2514 iterator->addr = addr; 2515 iterator->shadow_addr = root; 2516 iterator->level = vcpu->arch.mmu->shadow_root_level; 2517 2518 if (iterator->level == PT64_ROOT_4LEVEL && 2519 vcpu->arch.mmu->root_level < PT64_ROOT_4LEVEL && 2520 !vcpu->arch.mmu->direct_map) 2521 --iterator->level; 2522 2523 if (iterator->level == PT32E_ROOT_LEVEL) { 2524 /* 2525 * prev_root is currently only used for 64-bit hosts. So only 2526 * the active root_hpa is valid here. 2527 */ 2528 BUG_ON(root != vcpu->arch.mmu->root_hpa); 2529 2530 iterator->shadow_addr 2531 = vcpu->arch.mmu->pae_root[(addr >> 30) & 3]; 2532 iterator->shadow_addr &= PT64_BASE_ADDR_MASK; 2533 --iterator->level; 2534 if (!iterator->shadow_addr) 2535 iterator->level = 0; 2536 } 2537 } 2538 2539 static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator, 2540 struct kvm_vcpu *vcpu, u64 addr) 2541 { 2542 shadow_walk_init_using_root(iterator, vcpu, vcpu->arch.mmu->root_hpa, 2543 addr); 2544 } 2545 2546 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator) 2547 { 2548 if (iterator->level < PG_LEVEL_4K) 2549 return false; 2550 2551 iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level); 2552 iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index; 2553 return true; 2554 } 2555 2556 static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator, 2557 u64 spte) 2558 { 2559 if (is_last_spte(spte, iterator->level)) { 2560 iterator->level = 0; 2561 return; 2562 } 2563 2564 iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK; 2565 --iterator->level; 2566 } 2567 2568 static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator) 2569 { 2570 __shadow_walk_next(iterator, *iterator->sptep); 2571 } 2572 2573 static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep, 2574 struct kvm_mmu_page *sp) 2575 { 2576 u64 spte; 2577 2578 BUILD_BUG_ON(VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK); 2579 2580 spte = __pa(sp->spt) | shadow_present_mask | PT_WRITABLE_MASK | 2581 shadow_user_mask | shadow_x_mask | shadow_me_mask; 2582 2583 if (sp_ad_disabled(sp)) 2584 spte |= SPTE_AD_DISABLED_MASK; 2585 else 2586 spte |= shadow_accessed_mask; 2587 2588 mmu_spte_set(sptep, spte); 2589 2590 mmu_page_add_parent_pte(vcpu, sp, sptep); 2591 2592 if (sp->unsync_children || sp->unsync) 2593 mark_unsync(sptep); 2594 } 2595 2596 static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep, 2597 unsigned direct_access) 2598 { 2599 if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) { 2600 struct kvm_mmu_page *child; 2601 2602 /* 2603 * For the direct sp, if the guest pte's dirty bit 2604 * changed form clean to dirty, it will corrupt the 2605 * sp's access: allow writable in the read-only sp, 2606 * so we should update the spte at this point to get 2607 * a new sp with the correct access. 2608 */ 2609 child = to_shadow_page(*sptep & PT64_BASE_ADDR_MASK); 2610 if (child->role.access == direct_access) 2611 return; 2612 2613 drop_parent_pte(child, sptep); 2614 kvm_flush_remote_tlbs_with_address(vcpu->kvm, child->gfn, 1); 2615 } 2616 } 2617 2618 static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp, 2619 u64 *spte) 2620 { 2621 u64 pte; 2622 struct kvm_mmu_page *child; 2623 2624 pte = *spte; 2625 if (is_shadow_present_pte(pte)) { 2626 if (is_last_spte(pte, sp->role.level)) { 2627 drop_spte(kvm, spte); 2628 if (is_large_pte(pte)) 2629 --kvm->stat.lpages; 2630 } else { 2631 child = to_shadow_page(pte & PT64_BASE_ADDR_MASK); 2632 drop_parent_pte(child, spte); 2633 } 2634 return true; 2635 } 2636 2637 if (is_mmio_spte(pte)) 2638 mmu_spte_clear_no_track(spte); 2639 2640 return false; 2641 } 2642 2643 static void kvm_mmu_page_unlink_children(struct kvm *kvm, 2644 struct kvm_mmu_page *sp) 2645 { 2646 unsigned i; 2647 2648 for (i = 0; i < PT64_ENT_PER_PAGE; ++i) 2649 mmu_page_zap_pte(kvm, sp, sp->spt + i); 2650 } 2651 2652 static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp) 2653 { 2654 u64 *sptep; 2655 struct rmap_iterator iter; 2656 2657 while ((sptep = rmap_get_first(&sp->parent_ptes, &iter))) 2658 drop_parent_pte(sp, sptep); 2659 } 2660 2661 static int mmu_zap_unsync_children(struct kvm *kvm, 2662 struct kvm_mmu_page *parent, 2663 struct list_head *invalid_list) 2664 { 2665 int i, zapped = 0; 2666 struct mmu_page_path parents; 2667 struct kvm_mmu_pages pages; 2668 2669 if (parent->role.level == PG_LEVEL_4K) 2670 return 0; 2671 2672 while (mmu_unsync_walk(parent, &pages)) { 2673 struct kvm_mmu_page *sp; 2674 2675 for_each_sp(pages, sp, parents, i) { 2676 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list); 2677 mmu_pages_clear_parents(&parents); 2678 zapped++; 2679 } 2680 } 2681 2682 return zapped; 2683 } 2684 2685 static bool __kvm_mmu_prepare_zap_page(struct kvm *kvm, 2686 struct kvm_mmu_page *sp, 2687 struct list_head *invalid_list, 2688 int *nr_zapped) 2689 { 2690 bool list_unstable; 2691 2692 trace_kvm_mmu_prepare_zap_page(sp); 2693 ++kvm->stat.mmu_shadow_zapped; 2694 *nr_zapped = mmu_zap_unsync_children(kvm, sp, invalid_list); 2695 kvm_mmu_page_unlink_children(kvm, sp); 2696 kvm_mmu_unlink_parents(kvm, sp); 2697 2698 /* Zapping children means active_mmu_pages has become unstable. */ 2699 list_unstable = *nr_zapped; 2700 2701 if (!sp->role.invalid && !sp->role.direct) 2702 unaccount_shadowed(kvm, sp); 2703 2704 if (sp->unsync) 2705 kvm_unlink_unsync_page(kvm, sp); 2706 if (!sp->root_count) { 2707 /* Count self */ 2708 (*nr_zapped)++; 2709 2710 /* 2711 * Already invalid pages (previously active roots) are not on 2712 * the active page list. See list_del() in the "else" case of 2713 * !sp->root_count. 2714 */ 2715 if (sp->role.invalid) 2716 list_add(&sp->link, invalid_list); 2717 else 2718 list_move(&sp->link, invalid_list); 2719 kvm_mod_used_mmu_pages(kvm, -1); 2720 } else { 2721 /* 2722 * Remove the active root from the active page list, the root 2723 * will be explicitly freed when the root_count hits zero. 2724 */ 2725 list_del(&sp->link); 2726 2727 /* 2728 * Obsolete pages cannot be used on any vCPUs, see the comment 2729 * in kvm_mmu_zap_all_fast(). Note, is_obsolete_sp() also 2730 * treats invalid shadow pages as being obsolete. 2731 */ 2732 if (!is_obsolete_sp(kvm, sp)) 2733 kvm_reload_remote_mmus(kvm); 2734 } 2735 2736 if (sp->lpage_disallowed) 2737 unaccount_huge_nx_page(kvm, sp); 2738 2739 sp->role.invalid = 1; 2740 return list_unstable; 2741 } 2742 2743 static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp, 2744 struct list_head *invalid_list) 2745 { 2746 int nr_zapped; 2747 2748 __kvm_mmu_prepare_zap_page(kvm, sp, invalid_list, &nr_zapped); 2749 return nr_zapped; 2750 } 2751 2752 static void kvm_mmu_commit_zap_page(struct kvm *kvm, 2753 struct list_head *invalid_list) 2754 { 2755 struct kvm_mmu_page *sp, *nsp; 2756 2757 if (list_empty(invalid_list)) 2758 return; 2759 2760 /* 2761 * We need to make sure everyone sees our modifications to 2762 * the page tables and see changes to vcpu->mode here. The barrier 2763 * in the kvm_flush_remote_tlbs() achieves this. This pairs 2764 * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end. 2765 * 2766 * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit 2767 * guest mode and/or lockless shadow page table walks. 2768 */ 2769 kvm_flush_remote_tlbs(kvm); 2770 2771 list_for_each_entry_safe(sp, nsp, invalid_list, link) { 2772 WARN_ON(!sp->role.invalid || sp->root_count); 2773 kvm_mmu_free_page(sp); 2774 } 2775 } 2776 2777 static unsigned long kvm_mmu_zap_oldest_mmu_pages(struct kvm *kvm, 2778 unsigned long nr_to_zap) 2779 { 2780 unsigned long total_zapped = 0; 2781 struct kvm_mmu_page *sp, *tmp; 2782 LIST_HEAD(invalid_list); 2783 bool unstable; 2784 int nr_zapped; 2785 2786 if (list_empty(&kvm->arch.active_mmu_pages)) 2787 return 0; 2788 2789 restart: 2790 list_for_each_entry_safe(sp, tmp, &kvm->arch.active_mmu_pages, link) { 2791 /* 2792 * Don't zap active root pages, the page itself can't be freed 2793 * and zapping it will just force vCPUs to realloc and reload. 2794 */ 2795 if (sp->root_count) 2796 continue; 2797 2798 unstable = __kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list, 2799 &nr_zapped); 2800 total_zapped += nr_zapped; 2801 if (total_zapped >= nr_to_zap) 2802 break; 2803 2804 if (unstable) 2805 goto restart; 2806 } 2807 2808 kvm_mmu_commit_zap_page(kvm, &invalid_list); 2809 2810 kvm->stat.mmu_recycled += total_zapped; 2811 return total_zapped; 2812 } 2813 2814 static inline unsigned long kvm_mmu_available_pages(struct kvm *kvm) 2815 { 2816 if (kvm->arch.n_max_mmu_pages > kvm->arch.n_used_mmu_pages) 2817 return kvm->arch.n_max_mmu_pages - 2818 kvm->arch.n_used_mmu_pages; 2819 2820 return 0; 2821 } 2822 2823 static int make_mmu_pages_available(struct kvm_vcpu *vcpu) 2824 { 2825 unsigned long avail = kvm_mmu_available_pages(vcpu->kvm); 2826 2827 if (likely(avail >= KVM_MIN_FREE_MMU_PAGES)) 2828 return 0; 2829 2830 kvm_mmu_zap_oldest_mmu_pages(vcpu->kvm, KVM_REFILL_PAGES - avail); 2831 2832 if (!kvm_mmu_available_pages(vcpu->kvm)) 2833 return -ENOSPC; 2834 return 0; 2835 } 2836 2837 /* 2838 * Changing the number of mmu pages allocated to the vm 2839 * Note: if goal_nr_mmu_pages is too small, you will get dead lock 2840 */ 2841 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long goal_nr_mmu_pages) 2842 { 2843 spin_lock(&kvm->mmu_lock); 2844 2845 if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) { 2846 kvm_mmu_zap_oldest_mmu_pages(kvm, kvm->arch.n_used_mmu_pages - 2847 goal_nr_mmu_pages); 2848 2849 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages; 2850 } 2851 2852 kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages; 2853 2854 spin_unlock(&kvm->mmu_lock); 2855 } 2856 2857 int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn) 2858 { 2859 struct kvm_mmu_page *sp; 2860 LIST_HEAD(invalid_list); 2861 int r; 2862 2863 pgprintk("%s: looking for gfn %llx\n", __func__, gfn); 2864 r = 0; 2865 spin_lock(&kvm->mmu_lock); 2866 for_each_gfn_indirect_valid_sp(kvm, sp, gfn) { 2867 pgprintk("%s: gfn %llx role %x\n", __func__, gfn, 2868 sp->role.word); 2869 r = 1; 2870 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list); 2871 } 2872 kvm_mmu_commit_zap_page(kvm, &invalid_list); 2873 spin_unlock(&kvm->mmu_lock); 2874 2875 return r; 2876 } 2877 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page); 2878 2879 static void kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp) 2880 { 2881 trace_kvm_mmu_unsync_page(sp); 2882 ++vcpu->kvm->stat.mmu_unsync; 2883 sp->unsync = 1; 2884 2885 kvm_mmu_mark_parents_unsync(sp); 2886 } 2887 2888 static bool mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn, 2889 bool can_unsync) 2890 { 2891 struct kvm_mmu_page *sp; 2892 2893 if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE)) 2894 return true; 2895 2896 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) { 2897 if (!can_unsync) 2898 return true; 2899 2900 if (sp->unsync) 2901 continue; 2902 2903 WARN_ON(sp->role.level != PG_LEVEL_4K); 2904 kvm_unsync_page(vcpu, sp); 2905 } 2906 2907 /* 2908 * We need to ensure that the marking of unsync pages is visible 2909 * before the SPTE is updated to allow writes because 2910 * kvm_mmu_sync_roots() checks the unsync flags without holding 2911 * the MMU lock and so can race with this. If the SPTE was updated 2912 * before the page had been marked as unsync-ed, something like the 2913 * following could happen: 2914 * 2915 * CPU 1 CPU 2 2916 * --------------------------------------------------------------------- 2917 * 1.2 Host updates SPTE 2918 * to be writable 2919 * 2.1 Guest writes a GPTE for GVA X. 2920 * (GPTE being in the guest page table shadowed 2921 * by the SP from CPU 1.) 2922 * This reads SPTE during the page table walk. 2923 * Since SPTE.W is read as 1, there is no 2924 * fault. 2925 * 2926 * 2.2 Guest issues TLB flush. 2927 * That causes a VM Exit. 2928 * 2929 * 2.3 kvm_mmu_sync_pages() reads sp->unsync. 2930 * Since it is false, so it just returns. 2931 * 2932 * 2.4 Guest accesses GVA X. 2933 * Since the mapping in the SP was not updated, 2934 * so the old mapping for GVA X incorrectly 2935 * gets used. 2936 * 1.1 Host marks SP 2937 * as unsync 2938 * (sp->unsync = true) 2939 * 2940 * The write barrier below ensures that 1.1 happens before 1.2 and thus 2941 * the situation in 2.4 does not arise. The implicit barrier in 2.2 2942 * pairs with this write barrier. 2943 */ 2944 smp_wmb(); 2945 2946 return false; 2947 } 2948 2949 static bool kvm_is_mmio_pfn(kvm_pfn_t pfn) 2950 { 2951 if (pfn_valid(pfn)) 2952 return !is_zero_pfn(pfn) && PageReserved(pfn_to_page(pfn)) && 2953 /* 2954 * Some reserved pages, such as those from NVDIMM 2955 * DAX devices, are not for MMIO, and can be mapped 2956 * with cached memory type for better performance. 2957 * However, the above check misconceives those pages 2958 * as MMIO, and results in KVM mapping them with UC 2959 * memory type, which would hurt the performance. 2960 * Therefore, we check the host memory type in addition 2961 * and only treat UC/UC-/WC pages as MMIO. 2962 */ 2963 (!pat_enabled() || pat_pfn_immune_to_uc_mtrr(pfn)); 2964 2965 return !e820__mapped_raw_any(pfn_to_hpa(pfn), 2966 pfn_to_hpa(pfn + 1) - 1, 2967 E820_TYPE_RAM); 2968 } 2969 2970 /* Bits which may be returned by set_spte() */ 2971 #define SET_SPTE_WRITE_PROTECTED_PT BIT(0) 2972 #define SET_SPTE_NEED_REMOTE_TLB_FLUSH BIT(1) 2973 2974 static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep, 2975 unsigned int pte_access, int level, 2976 gfn_t gfn, kvm_pfn_t pfn, bool speculative, 2977 bool can_unsync, bool host_writable) 2978 { 2979 u64 spte = 0; 2980 int ret = 0; 2981 struct kvm_mmu_page *sp; 2982 2983 if (set_mmio_spte(vcpu, sptep, gfn, pfn, pte_access)) 2984 return 0; 2985 2986 sp = sptep_to_sp(sptep); 2987 if (sp_ad_disabled(sp)) 2988 spte |= SPTE_AD_DISABLED_MASK; 2989 else if (kvm_vcpu_ad_need_write_protect(vcpu)) 2990 spte |= SPTE_AD_WRPROT_ONLY_MASK; 2991 2992 /* 2993 * For the EPT case, shadow_present_mask is 0 if hardware 2994 * supports exec-only page table entries. In that case, 2995 * ACC_USER_MASK and shadow_user_mask are used to represent 2996 * read access. See FNAME(gpte_access) in paging_tmpl.h. 2997 */ 2998 spte |= shadow_present_mask; 2999 if (!speculative) 3000 spte |= spte_shadow_accessed_mask(spte); 3001 3002 if (level > PG_LEVEL_4K && (pte_access & ACC_EXEC_MASK) && 3003 is_nx_huge_page_enabled()) { 3004 pte_access &= ~ACC_EXEC_MASK; 3005 } 3006 3007 if (pte_access & ACC_EXEC_MASK) 3008 spte |= shadow_x_mask; 3009 else 3010 spte |= shadow_nx_mask; 3011 3012 if (pte_access & ACC_USER_MASK) 3013 spte |= shadow_user_mask; 3014 3015 if (level > PG_LEVEL_4K) 3016 spte |= PT_PAGE_SIZE_MASK; 3017 if (tdp_enabled) 3018 spte |= kvm_x86_ops.get_mt_mask(vcpu, gfn, 3019 kvm_is_mmio_pfn(pfn)); 3020 3021 if (host_writable) 3022 spte |= SPTE_HOST_WRITEABLE; 3023 else 3024 pte_access &= ~ACC_WRITE_MASK; 3025 3026 if (!kvm_is_mmio_pfn(pfn)) 3027 spte |= shadow_me_mask; 3028 3029 spte |= (u64)pfn << PAGE_SHIFT; 3030 3031 if (pte_access & ACC_WRITE_MASK) { 3032 spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE; 3033 3034 /* 3035 * Optimization: for pte sync, if spte was writable the hash 3036 * lookup is unnecessary (and expensive). Write protection 3037 * is responsibility of mmu_get_page / kvm_sync_page. 3038 * Same reasoning can be applied to dirty page accounting. 3039 */ 3040 if (!can_unsync && is_writable_pte(*sptep)) 3041 goto set_pte; 3042 3043 if (mmu_need_write_protect(vcpu, gfn, can_unsync)) { 3044 pgprintk("%s: found shadow page for %llx, marking ro\n", 3045 __func__, gfn); 3046 ret |= SET_SPTE_WRITE_PROTECTED_PT; 3047 pte_access &= ~ACC_WRITE_MASK; 3048 spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE); 3049 } 3050 } 3051 3052 if (pte_access & ACC_WRITE_MASK) { 3053 kvm_vcpu_mark_page_dirty(vcpu, gfn); 3054 spte |= spte_shadow_dirty_mask(spte); 3055 } 3056 3057 if (speculative) 3058 spte = mark_spte_for_access_track(spte); 3059 3060 set_pte: 3061 if (mmu_spte_update(sptep, spte)) 3062 ret |= SET_SPTE_NEED_REMOTE_TLB_FLUSH; 3063 return ret; 3064 } 3065 3066 static int mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep, 3067 unsigned int pte_access, int write_fault, int level, 3068 gfn_t gfn, kvm_pfn_t pfn, bool speculative, 3069 bool host_writable) 3070 { 3071 int was_rmapped = 0; 3072 int rmap_count; 3073 int set_spte_ret; 3074 int ret = RET_PF_RETRY; 3075 bool flush = false; 3076 3077 pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__, 3078 *sptep, write_fault, gfn); 3079 3080 if (is_shadow_present_pte(*sptep)) { 3081 /* 3082 * If we overwrite a PTE page pointer with a 2MB PMD, unlink 3083 * the parent of the now unreachable PTE. 3084 */ 3085 if (level > PG_LEVEL_4K && !is_large_pte(*sptep)) { 3086 struct kvm_mmu_page *child; 3087 u64 pte = *sptep; 3088 3089 child = to_shadow_page(pte & PT64_BASE_ADDR_MASK); 3090 drop_parent_pte(child, sptep); 3091 flush = true; 3092 } else if (pfn != spte_to_pfn(*sptep)) { 3093 pgprintk("hfn old %llx new %llx\n", 3094 spte_to_pfn(*sptep), pfn); 3095 drop_spte(vcpu->kvm, sptep); 3096 flush = true; 3097 } else 3098 was_rmapped = 1; 3099 } 3100 3101 set_spte_ret = set_spte(vcpu, sptep, pte_access, level, gfn, pfn, 3102 speculative, true, host_writable); 3103 if (set_spte_ret & SET_SPTE_WRITE_PROTECTED_PT) { 3104 if (write_fault) 3105 ret = RET_PF_EMULATE; 3106 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 3107 } 3108 3109 if (set_spte_ret & SET_SPTE_NEED_REMOTE_TLB_FLUSH || flush) 3110 kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn, 3111 KVM_PAGES_PER_HPAGE(level)); 3112 3113 if (unlikely(is_mmio_spte(*sptep))) 3114 ret = RET_PF_EMULATE; 3115 3116 pgprintk("%s: setting spte %llx\n", __func__, *sptep); 3117 trace_kvm_mmu_set_spte(level, gfn, sptep); 3118 if (!was_rmapped && is_large_pte(*sptep)) 3119 ++vcpu->kvm->stat.lpages; 3120 3121 if (is_shadow_present_pte(*sptep)) { 3122 if (!was_rmapped) { 3123 rmap_count = rmap_add(vcpu, sptep, gfn); 3124 if (rmap_count > RMAP_RECYCLE_THRESHOLD) 3125 rmap_recycle(vcpu, sptep, gfn); 3126 } 3127 } 3128 3129 return ret; 3130 } 3131 3132 static kvm_pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn, 3133 bool no_dirty_log) 3134 { 3135 struct kvm_memory_slot *slot; 3136 3137 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log); 3138 if (!slot) 3139 return KVM_PFN_ERR_FAULT; 3140 3141 return gfn_to_pfn_memslot_atomic(slot, gfn); 3142 } 3143 3144 static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu, 3145 struct kvm_mmu_page *sp, 3146 u64 *start, u64 *end) 3147 { 3148 struct page *pages[PTE_PREFETCH_NUM]; 3149 struct kvm_memory_slot *slot; 3150 unsigned int access = sp->role.access; 3151 int i, ret; 3152 gfn_t gfn; 3153 3154 gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt); 3155 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK); 3156 if (!slot) 3157 return -1; 3158 3159 ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start); 3160 if (ret <= 0) 3161 return -1; 3162 3163 for (i = 0; i < ret; i++, gfn++, start++) { 3164 mmu_set_spte(vcpu, start, access, 0, sp->role.level, gfn, 3165 page_to_pfn(pages[i]), true, true); 3166 put_page(pages[i]); 3167 } 3168 3169 return 0; 3170 } 3171 3172 static void __direct_pte_prefetch(struct kvm_vcpu *vcpu, 3173 struct kvm_mmu_page *sp, u64 *sptep) 3174 { 3175 u64 *spte, *start = NULL; 3176 int i; 3177 3178 WARN_ON(!sp->role.direct); 3179 3180 i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1); 3181 spte = sp->spt + i; 3182 3183 for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) { 3184 if (is_shadow_present_pte(*spte) || spte == sptep) { 3185 if (!start) 3186 continue; 3187 if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0) 3188 break; 3189 start = NULL; 3190 } else if (!start) 3191 start = spte; 3192 } 3193 } 3194 3195 static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep) 3196 { 3197 struct kvm_mmu_page *sp; 3198 3199 sp = sptep_to_sp(sptep); 3200 3201 /* 3202 * Without accessed bits, there's no way to distinguish between 3203 * actually accessed translations and prefetched, so disable pte 3204 * prefetch if accessed bits aren't available. 3205 */ 3206 if (sp_ad_disabled(sp)) 3207 return; 3208 3209 if (sp->role.level > PG_LEVEL_4K) 3210 return; 3211 3212 __direct_pte_prefetch(vcpu, sp, sptep); 3213 } 3214 3215 static int host_pfn_mapping_level(struct kvm_vcpu *vcpu, gfn_t gfn, 3216 kvm_pfn_t pfn, struct kvm_memory_slot *slot) 3217 { 3218 unsigned long hva; 3219 pte_t *pte; 3220 int level; 3221 3222 if (!PageCompound(pfn_to_page(pfn)) && !kvm_is_zone_device_pfn(pfn)) 3223 return PG_LEVEL_4K; 3224 3225 /* 3226 * Note, using the already-retrieved memslot and __gfn_to_hva_memslot() 3227 * is not solely for performance, it's also necessary to avoid the 3228 * "writable" check in __gfn_to_hva_many(), which will always fail on 3229 * read-only memslots due to gfn_to_hva() assuming writes. Earlier 3230 * page fault steps have already verified the guest isn't writing a 3231 * read-only memslot. 3232 */ 3233 hva = __gfn_to_hva_memslot(slot, gfn); 3234 3235 pte = lookup_address_in_mm(vcpu->kvm->mm, hva, &level); 3236 if (unlikely(!pte)) 3237 return PG_LEVEL_4K; 3238 3239 return level; 3240 } 3241 3242 static int kvm_mmu_hugepage_adjust(struct kvm_vcpu *vcpu, gfn_t gfn, 3243 int max_level, kvm_pfn_t *pfnp) 3244 { 3245 struct kvm_memory_slot *slot; 3246 struct kvm_lpage_info *linfo; 3247 kvm_pfn_t pfn = *pfnp; 3248 kvm_pfn_t mask; 3249 int level; 3250 3251 if (unlikely(max_level == PG_LEVEL_4K)) 3252 return PG_LEVEL_4K; 3253 3254 if (is_error_noslot_pfn(pfn) || kvm_is_reserved_pfn(pfn)) 3255 return PG_LEVEL_4K; 3256 3257 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, true); 3258 if (!slot) 3259 return PG_LEVEL_4K; 3260 3261 max_level = min(max_level, max_huge_page_level); 3262 for ( ; max_level > PG_LEVEL_4K; max_level--) { 3263 linfo = lpage_info_slot(gfn, slot, max_level); 3264 if (!linfo->disallow_lpage) 3265 break; 3266 } 3267 3268 if (max_level == PG_LEVEL_4K) 3269 return PG_LEVEL_4K; 3270 3271 level = host_pfn_mapping_level(vcpu, gfn, pfn, slot); 3272 if (level == PG_LEVEL_4K) 3273 return level; 3274 3275 level = min(level, max_level); 3276 3277 /* 3278 * mmu_notifier_retry() was successful and mmu_lock is held, so 3279 * the pmd can't be split from under us. 3280 */ 3281 mask = KVM_PAGES_PER_HPAGE(level) - 1; 3282 VM_BUG_ON((gfn & mask) != (pfn & mask)); 3283 *pfnp = pfn & ~mask; 3284 3285 return level; 3286 } 3287 3288 static void disallowed_hugepage_adjust(struct kvm_shadow_walk_iterator it, 3289 gfn_t gfn, kvm_pfn_t *pfnp, int *levelp) 3290 { 3291 int level = *levelp; 3292 u64 spte = *it.sptep; 3293 3294 if (it.level == level && level > PG_LEVEL_4K && 3295 is_nx_huge_page_enabled() && 3296 is_shadow_present_pte(spte) && 3297 !is_large_pte(spte)) { 3298 /* 3299 * A small SPTE exists for this pfn, but FNAME(fetch) 3300 * and __direct_map would like to create a large PTE 3301 * instead: just force them to go down another level, 3302 * patching back for them into pfn the next 9 bits of 3303 * the address. 3304 */ 3305 u64 page_mask = KVM_PAGES_PER_HPAGE(level) - KVM_PAGES_PER_HPAGE(level - 1); 3306 *pfnp |= gfn & page_mask; 3307 (*levelp)--; 3308 } 3309 } 3310 3311 static int __direct_map(struct kvm_vcpu *vcpu, gpa_t gpa, int write, 3312 int map_writable, int max_level, kvm_pfn_t pfn, 3313 bool prefault, bool account_disallowed_nx_lpage) 3314 { 3315 struct kvm_shadow_walk_iterator it; 3316 struct kvm_mmu_page *sp; 3317 int level, ret; 3318 gfn_t gfn = gpa >> PAGE_SHIFT; 3319 gfn_t base_gfn = gfn; 3320 3321 if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa))) 3322 return RET_PF_RETRY; 3323 3324 level = kvm_mmu_hugepage_adjust(vcpu, gfn, max_level, &pfn); 3325 3326 trace_kvm_mmu_spte_requested(gpa, level, pfn); 3327 for_each_shadow_entry(vcpu, gpa, it) { 3328 /* 3329 * We cannot overwrite existing page tables with an NX 3330 * large page, as the leaf could be executable. 3331 */ 3332 disallowed_hugepage_adjust(it, gfn, &pfn, &level); 3333 3334 base_gfn = gfn & ~(KVM_PAGES_PER_HPAGE(it.level) - 1); 3335 if (it.level == level) 3336 break; 3337 3338 drop_large_spte(vcpu, it.sptep); 3339 if (!is_shadow_present_pte(*it.sptep)) { 3340 sp = kvm_mmu_get_page(vcpu, base_gfn, it.addr, 3341 it.level - 1, true, ACC_ALL); 3342 3343 link_shadow_page(vcpu, it.sptep, sp); 3344 if (account_disallowed_nx_lpage) 3345 account_huge_nx_page(vcpu->kvm, sp); 3346 } 3347 } 3348 3349 ret = mmu_set_spte(vcpu, it.sptep, ACC_ALL, 3350 write, level, base_gfn, pfn, prefault, 3351 map_writable); 3352 direct_pte_prefetch(vcpu, it.sptep); 3353 ++vcpu->stat.pf_fixed; 3354 return ret; 3355 } 3356 3357 static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk) 3358 { 3359 send_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, PAGE_SHIFT, tsk); 3360 } 3361 3362 static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, kvm_pfn_t pfn) 3363 { 3364 /* 3365 * Do not cache the mmio info caused by writing the readonly gfn 3366 * into the spte otherwise read access on readonly gfn also can 3367 * caused mmio page fault and treat it as mmio access. 3368 */ 3369 if (pfn == KVM_PFN_ERR_RO_FAULT) 3370 return RET_PF_EMULATE; 3371 3372 if (pfn == KVM_PFN_ERR_HWPOISON) { 3373 kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current); 3374 return RET_PF_RETRY; 3375 } 3376 3377 return -EFAULT; 3378 } 3379 3380 static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn, 3381 kvm_pfn_t pfn, unsigned int access, 3382 int *ret_val) 3383 { 3384 /* The pfn is invalid, report the error! */ 3385 if (unlikely(is_error_pfn(pfn))) { 3386 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn); 3387 return true; 3388 } 3389 3390 if (unlikely(is_noslot_pfn(pfn))) 3391 vcpu_cache_mmio_info(vcpu, gva, gfn, 3392 access & shadow_mmio_access_mask); 3393 3394 return false; 3395 } 3396 3397 static bool page_fault_can_be_fast(u32 error_code) 3398 { 3399 /* 3400 * Do not fix the mmio spte with invalid generation number which 3401 * need to be updated by slow page fault path. 3402 */ 3403 if (unlikely(error_code & PFERR_RSVD_MASK)) 3404 return false; 3405 3406 /* See if the page fault is due to an NX violation */ 3407 if (unlikely(((error_code & (PFERR_FETCH_MASK | PFERR_PRESENT_MASK)) 3408 == (PFERR_FETCH_MASK | PFERR_PRESENT_MASK)))) 3409 return false; 3410 3411 /* 3412 * #PF can be fast if: 3413 * 1. The shadow page table entry is not present, which could mean that 3414 * the fault is potentially caused by access tracking (if enabled). 3415 * 2. The shadow page table entry is present and the fault 3416 * is caused by write-protect, that means we just need change the W 3417 * bit of the spte which can be done out of mmu-lock. 3418 * 3419 * However, if access tracking is disabled we know that a non-present 3420 * page must be a genuine page fault where we have to create a new SPTE. 3421 * So, if access tracking is disabled, we return true only for write 3422 * accesses to a present page. 3423 */ 3424 3425 return shadow_acc_track_mask != 0 || 3426 ((error_code & (PFERR_WRITE_MASK | PFERR_PRESENT_MASK)) 3427 == (PFERR_WRITE_MASK | PFERR_PRESENT_MASK)); 3428 } 3429 3430 /* 3431 * Returns true if the SPTE was fixed successfully. Otherwise, 3432 * someone else modified the SPTE from its original value. 3433 */ 3434 static bool 3435 fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp, 3436 u64 *sptep, u64 old_spte, u64 new_spte) 3437 { 3438 gfn_t gfn; 3439 3440 WARN_ON(!sp->role.direct); 3441 3442 /* 3443 * Theoretically we could also set dirty bit (and flush TLB) here in 3444 * order to eliminate unnecessary PML logging. See comments in 3445 * set_spte. But fast_page_fault is very unlikely to happen with PML 3446 * enabled, so we do not do this. This might result in the same GPA 3447 * to be logged in PML buffer again when the write really happens, and 3448 * eventually to be called by mark_page_dirty twice. But it's also no 3449 * harm. This also avoids the TLB flush needed after setting dirty bit 3450 * so non-PML cases won't be impacted. 3451 * 3452 * Compare with set_spte where instead shadow_dirty_mask is set. 3453 */ 3454 if (cmpxchg64(sptep, old_spte, new_spte) != old_spte) 3455 return false; 3456 3457 if (is_writable_pte(new_spte) && !is_writable_pte(old_spte)) { 3458 /* 3459 * The gfn of direct spte is stable since it is 3460 * calculated by sp->gfn. 3461 */ 3462 gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt); 3463 kvm_vcpu_mark_page_dirty(vcpu, gfn); 3464 } 3465 3466 return true; 3467 } 3468 3469 static bool is_access_allowed(u32 fault_err_code, u64 spte) 3470 { 3471 if (fault_err_code & PFERR_FETCH_MASK) 3472 return is_executable_pte(spte); 3473 3474 if (fault_err_code & PFERR_WRITE_MASK) 3475 return is_writable_pte(spte); 3476 3477 /* Fault was on Read access */ 3478 return spte & PT_PRESENT_MASK; 3479 } 3480 3481 /* 3482 * Return value: 3483 * - true: let the vcpu to access on the same address again. 3484 * - false: let the real page fault path to fix it. 3485 */ 3486 static bool fast_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, 3487 u32 error_code) 3488 { 3489 struct kvm_shadow_walk_iterator iterator; 3490 struct kvm_mmu_page *sp; 3491 bool fault_handled = false; 3492 u64 spte = 0ull; 3493 uint retry_count = 0; 3494 3495 if (!page_fault_can_be_fast(error_code)) 3496 return false; 3497 3498 walk_shadow_page_lockless_begin(vcpu); 3499 3500 do { 3501 u64 new_spte; 3502 3503 for_each_shadow_entry_lockless(vcpu, cr2_or_gpa, iterator, spte) 3504 if (!is_shadow_present_pte(spte)) 3505 break; 3506 3507 sp = sptep_to_sp(iterator.sptep); 3508 if (!is_last_spte(spte, sp->role.level)) 3509 break; 3510 3511 /* 3512 * Check whether the memory access that caused the fault would 3513 * still cause it if it were to be performed right now. If not, 3514 * then this is a spurious fault caused by TLB lazily flushed, 3515 * or some other CPU has already fixed the PTE after the 3516 * current CPU took the fault. 3517 * 3518 * Need not check the access of upper level table entries since 3519 * they are always ACC_ALL. 3520 */ 3521 if (is_access_allowed(error_code, spte)) { 3522 fault_handled = true; 3523 break; 3524 } 3525 3526 new_spte = spte; 3527 3528 if (is_access_track_spte(spte)) 3529 new_spte = restore_acc_track_spte(new_spte); 3530 3531 /* 3532 * Currently, to simplify the code, write-protection can 3533 * be removed in the fast path only if the SPTE was 3534 * write-protected for dirty-logging or access tracking. 3535 */ 3536 if ((error_code & PFERR_WRITE_MASK) && 3537 spte_can_locklessly_be_made_writable(spte)) { 3538 new_spte |= PT_WRITABLE_MASK; 3539 3540 /* 3541 * Do not fix write-permission on the large spte. Since 3542 * we only dirty the first page into the dirty-bitmap in 3543 * fast_pf_fix_direct_spte(), other pages are missed 3544 * if its slot has dirty logging enabled. 3545 * 3546 * Instead, we let the slow page fault path create a 3547 * normal spte to fix the access. 3548 * 3549 * See the comments in kvm_arch_commit_memory_region(). 3550 */ 3551 if (sp->role.level > PG_LEVEL_4K) 3552 break; 3553 } 3554 3555 /* Verify that the fault can be handled in the fast path */ 3556 if (new_spte == spte || 3557 !is_access_allowed(error_code, new_spte)) 3558 break; 3559 3560 /* 3561 * Currently, fast page fault only works for direct mapping 3562 * since the gfn is not stable for indirect shadow page. See 3563 * Documentation/virt/kvm/locking.rst to get more detail. 3564 */ 3565 fault_handled = fast_pf_fix_direct_spte(vcpu, sp, 3566 iterator.sptep, spte, 3567 new_spte); 3568 if (fault_handled) 3569 break; 3570 3571 if (++retry_count > 4) { 3572 printk_once(KERN_WARNING 3573 "kvm: Fast #PF retrying more than 4 times.\n"); 3574 break; 3575 } 3576 3577 } while (true); 3578 3579 trace_fast_page_fault(vcpu, cr2_or_gpa, error_code, iterator.sptep, 3580 spte, fault_handled); 3581 walk_shadow_page_lockless_end(vcpu); 3582 3583 return fault_handled; 3584 } 3585 3586 static void mmu_free_root_page(struct kvm *kvm, hpa_t *root_hpa, 3587 struct list_head *invalid_list) 3588 { 3589 struct kvm_mmu_page *sp; 3590 3591 if (!VALID_PAGE(*root_hpa)) 3592 return; 3593 3594 sp = to_shadow_page(*root_hpa & PT64_BASE_ADDR_MASK); 3595 --sp->root_count; 3596 if (!sp->root_count && sp->role.invalid) 3597 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list); 3598 3599 *root_hpa = INVALID_PAGE; 3600 } 3601 3602 /* roots_to_free must be some combination of the KVM_MMU_ROOT_* flags */ 3603 void kvm_mmu_free_roots(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, 3604 ulong roots_to_free) 3605 { 3606 int i; 3607 LIST_HEAD(invalid_list); 3608 bool free_active_root = roots_to_free & KVM_MMU_ROOT_CURRENT; 3609 3610 BUILD_BUG_ON(KVM_MMU_NUM_PREV_ROOTS >= BITS_PER_LONG); 3611 3612 /* Before acquiring the MMU lock, see if we need to do any real work. */ 3613 if (!(free_active_root && VALID_PAGE(mmu->root_hpa))) { 3614 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 3615 if ((roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) && 3616 VALID_PAGE(mmu->prev_roots[i].hpa)) 3617 break; 3618 3619 if (i == KVM_MMU_NUM_PREV_ROOTS) 3620 return; 3621 } 3622 3623 spin_lock(&vcpu->kvm->mmu_lock); 3624 3625 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 3626 if (roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) 3627 mmu_free_root_page(vcpu->kvm, &mmu->prev_roots[i].hpa, 3628 &invalid_list); 3629 3630 if (free_active_root) { 3631 if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL && 3632 (mmu->root_level >= PT64_ROOT_4LEVEL || mmu->direct_map)) { 3633 mmu_free_root_page(vcpu->kvm, &mmu->root_hpa, 3634 &invalid_list); 3635 } else { 3636 for (i = 0; i < 4; ++i) 3637 if (mmu->pae_root[i] != 0) 3638 mmu_free_root_page(vcpu->kvm, 3639 &mmu->pae_root[i], 3640 &invalid_list); 3641 mmu->root_hpa = INVALID_PAGE; 3642 } 3643 mmu->root_pgd = 0; 3644 } 3645 3646 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list); 3647 spin_unlock(&vcpu->kvm->mmu_lock); 3648 } 3649 EXPORT_SYMBOL_GPL(kvm_mmu_free_roots); 3650 3651 static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn) 3652 { 3653 int ret = 0; 3654 3655 if (!kvm_vcpu_is_visible_gfn(vcpu, root_gfn)) { 3656 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 3657 ret = 1; 3658 } 3659 3660 return ret; 3661 } 3662 3663 static hpa_t mmu_alloc_root(struct kvm_vcpu *vcpu, gfn_t gfn, gva_t gva, 3664 u8 level, bool direct) 3665 { 3666 struct kvm_mmu_page *sp; 3667 3668 spin_lock(&vcpu->kvm->mmu_lock); 3669 3670 if (make_mmu_pages_available(vcpu)) { 3671 spin_unlock(&vcpu->kvm->mmu_lock); 3672 return INVALID_PAGE; 3673 } 3674 sp = kvm_mmu_get_page(vcpu, gfn, gva, level, direct, ACC_ALL); 3675 ++sp->root_count; 3676 3677 spin_unlock(&vcpu->kvm->mmu_lock); 3678 return __pa(sp->spt); 3679 } 3680 3681 static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu) 3682 { 3683 u8 shadow_root_level = vcpu->arch.mmu->shadow_root_level; 3684 hpa_t root; 3685 unsigned i; 3686 3687 if (shadow_root_level >= PT64_ROOT_4LEVEL) { 3688 root = mmu_alloc_root(vcpu, 0, 0, shadow_root_level, true); 3689 if (!VALID_PAGE(root)) 3690 return -ENOSPC; 3691 vcpu->arch.mmu->root_hpa = root; 3692 } else if (shadow_root_level == PT32E_ROOT_LEVEL) { 3693 for (i = 0; i < 4; ++i) { 3694 MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu->pae_root[i])); 3695 3696 root = mmu_alloc_root(vcpu, i << (30 - PAGE_SHIFT), 3697 i << 30, PT32_ROOT_LEVEL, true); 3698 if (!VALID_PAGE(root)) 3699 return -ENOSPC; 3700 vcpu->arch.mmu->pae_root[i] = root | PT_PRESENT_MASK; 3701 } 3702 vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->pae_root); 3703 } else 3704 BUG(); 3705 3706 /* root_pgd is ignored for direct MMUs. */ 3707 vcpu->arch.mmu->root_pgd = 0; 3708 3709 return 0; 3710 } 3711 3712 static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu) 3713 { 3714 u64 pdptr, pm_mask; 3715 gfn_t root_gfn, root_pgd; 3716 hpa_t root; 3717 int i; 3718 3719 root_pgd = vcpu->arch.mmu->get_guest_pgd(vcpu); 3720 root_gfn = root_pgd >> PAGE_SHIFT; 3721 3722 if (mmu_check_root(vcpu, root_gfn)) 3723 return 1; 3724 3725 /* 3726 * Do we shadow a long mode page table? If so we need to 3727 * write-protect the guests page table root. 3728 */ 3729 if (vcpu->arch.mmu->root_level >= PT64_ROOT_4LEVEL) { 3730 MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu->root_hpa)); 3731 3732 root = mmu_alloc_root(vcpu, root_gfn, 0, 3733 vcpu->arch.mmu->shadow_root_level, false); 3734 if (!VALID_PAGE(root)) 3735 return -ENOSPC; 3736 vcpu->arch.mmu->root_hpa = root; 3737 goto set_root_pgd; 3738 } 3739 3740 /* 3741 * We shadow a 32 bit page table. This may be a legacy 2-level 3742 * or a PAE 3-level page table. In either case we need to be aware that 3743 * the shadow page table may be a PAE or a long mode page table. 3744 */ 3745 pm_mask = PT_PRESENT_MASK; 3746 if (vcpu->arch.mmu->shadow_root_level == PT64_ROOT_4LEVEL) 3747 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK; 3748 3749 for (i = 0; i < 4; ++i) { 3750 MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu->pae_root[i])); 3751 if (vcpu->arch.mmu->root_level == PT32E_ROOT_LEVEL) { 3752 pdptr = vcpu->arch.mmu->get_pdptr(vcpu, i); 3753 if (!(pdptr & PT_PRESENT_MASK)) { 3754 vcpu->arch.mmu->pae_root[i] = 0; 3755 continue; 3756 } 3757 root_gfn = pdptr >> PAGE_SHIFT; 3758 if (mmu_check_root(vcpu, root_gfn)) 3759 return 1; 3760 } 3761 3762 root = mmu_alloc_root(vcpu, root_gfn, i << 30, 3763 PT32_ROOT_LEVEL, false); 3764 if (!VALID_PAGE(root)) 3765 return -ENOSPC; 3766 vcpu->arch.mmu->pae_root[i] = root | pm_mask; 3767 } 3768 vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->pae_root); 3769 3770 /* 3771 * If we shadow a 32 bit page table with a long mode page 3772 * table we enter this path. 3773 */ 3774 if (vcpu->arch.mmu->shadow_root_level == PT64_ROOT_4LEVEL) { 3775 if (vcpu->arch.mmu->lm_root == NULL) { 3776 /* 3777 * The additional page necessary for this is only 3778 * allocated on demand. 3779 */ 3780 3781 u64 *lm_root; 3782 3783 lm_root = (void*)get_zeroed_page(GFP_KERNEL_ACCOUNT); 3784 if (lm_root == NULL) 3785 return 1; 3786 3787 lm_root[0] = __pa(vcpu->arch.mmu->pae_root) | pm_mask; 3788 3789 vcpu->arch.mmu->lm_root = lm_root; 3790 } 3791 3792 vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->lm_root); 3793 } 3794 3795 set_root_pgd: 3796 vcpu->arch.mmu->root_pgd = root_pgd; 3797 3798 return 0; 3799 } 3800 3801 static int mmu_alloc_roots(struct kvm_vcpu *vcpu) 3802 { 3803 if (vcpu->arch.mmu->direct_map) 3804 return mmu_alloc_direct_roots(vcpu); 3805 else 3806 return mmu_alloc_shadow_roots(vcpu); 3807 } 3808 3809 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu) 3810 { 3811 int i; 3812 struct kvm_mmu_page *sp; 3813 3814 if (vcpu->arch.mmu->direct_map) 3815 return; 3816 3817 if (!VALID_PAGE(vcpu->arch.mmu->root_hpa)) 3818 return; 3819 3820 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY); 3821 3822 if (vcpu->arch.mmu->root_level >= PT64_ROOT_4LEVEL) { 3823 hpa_t root = vcpu->arch.mmu->root_hpa; 3824 sp = to_shadow_page(root); 3825 3826 /* 3827 * Even if another CPU was marking the SP as unsync-ed 3828 * simultaneously, any guest page table changes are not 3829 * guaranteed to be visible anyway until this VCPU issues a TLB 3830 * flush strictly after those changes are made. We only need to 3831 * ensure that the other CPU sets these flags before any actual 3832 * changes to the page tables are made. The comments in 3833 * mmu_need_write_protect() describe what could go wrong if this 3834 * requirement isn't satisfied. 3835 */ 3836 if (!smp_load_acquire(&sp->unsync) && 3837 !smp_load_acquire(&sp->unsync_children)) 3838 return; 3839 3840 spin_lock(&vcpu->kvm->mmu_lock); 3841 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC); 3842 3843 mmu_sync_children(vcpu, sp); 3844 3845 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC); 3846 spin_unlock(&vcpu->kvm->mmu_lock); 3847 return; 3848 } 3849 3850 spin_lock(&vcpu->kvm->mmu_lock); 3851 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC); 3852 3853 for (i = 0; i < 4; ++i) { 3854 hpa_t root = vcpu->arch.mmu->pae_root[i]; 3855 3856 if (root && VALID_PAGE(root)) { 3857 root &= PT64_BASE_ADDR_MASK; 3858 sp = to_shadow_page(root); 3859 mmu_sync_children(vcpu, sp); 3860 } 3861 } 3862 3863 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC); 3864 spin_unlock(&vcpu->kvm->mmu_lock); 3865 } 3866 EXPORT_SYMBOL_GPL(kvm_mmu_sync_roots); 3867 3868 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gpa_t vaddr, 3869 u32 access, struct x86_exception *exception) 3870 { 3871 if (exception) 3872 exception->error_code = 0; 3873 return vaddr; 3874 } 3875 3876 static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gpa_t vaddr, 3877 u32 access, 3878 struct x86_exception *exception) 3879 { 3880 if (exception) 3881 exception->error_code = 0; 3882 return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception); 3883 } 3884 3885 static bool 3886 __is_rsvd_bits_set(struct rsvd_bits_validate *rsvd_check, u64 pte, int level) 3887 { 3888 int bit7 = (pte >> 7) & 1; 3889 3890 return pte & rsvd_check->rsvd_bits_mask[bit7][level-1]; 3891 } 3892 3893 static bool __is_bad_mt_xwr(struct rsvd_bits_validate *rsvd_check, u64 pte) 3894 { 3895 return rsvd_check->bad_mt_xwr & BIT_ULL(pte & 0x3f); 3896 } 3897 3898 static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct) 3899 { 3900 /* 3901 * A nested guest cannot use the MMIO cache if it is using nested 3902 * page tables, because cr2 is a nGPA while the cache stores GPAs. 3903 */ 3904 if (mmu_is_nested(vcpu)) 3905 return false; 3906 3907 if (direct) 3908 return vcpu_match_mmio_gpa(vcpu, addr); 3909 3910 return vcpu_match_mmio_gva(vcpu, addr); 3911 } 3912 3913 /* return true if reserved bit is detected on spte. */ 3914 static bool 3915 walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep) 3916 { 3917 struct kvm_shadow_walk_iterator iterator; 3918 u64 sptes[PT64_ROOT_MAX_LEVEL], spte = 0ull; 3919 struct rsvd_bits_validate *rsvd_check; 3920 int root, leaf; 3921 bool reserved = false; 3922 3923 rsvd_check = &vcpu->arch.mmu->shadow_zero_check; 3924 3925 walk_shadow_page_lockless_begin(vcpu); 3926 3927 for (shadow_walk_init(&iterator, vcpu, addr), 3928 leaf = root = iterator.level; 3929 shadow_walk_okay(&iterator); 3930 __shadow_walk_next(&iterator, spte)) { 3931 spte = mmu_spte_get_lockless(iterator.sptep); 3932 3933 sptes[leaf - 1] = spte; 3934 leaf--; 3935 3936 if (!is_shadow_present_pte(spte)) 3937 break; 3938 3939 /* 3940 * Use a bitwise-OR instead of a logical-OR to aggregate the 3941 * reserved bit and EPT's invalid memtype/XWR checks to avoid 3942 * adding a Jcc in the loop. 3943 */ 3944 reserved |= __is_bad_mt_xwr(rsvd_check, spte) | 3945 __is_rsvd_bits_set(rsvd_check, spte, iterator.level); 3946 } 3947 3948 walk_shadow_page_lockless_end(vcpu); 3949 3950 if (reserved) { 3951 pr_err("%s: detect reserved bits on spte, addr 0x%llx, dump hierarchy:\n", 3952 __func__, addr); 3953 while (root > leaf) { 3954 pr_err("------ spte 0x%llx level %d.\n", 3955 sptes[root - 1], root); 3956 root--; 3957 } 3958 } 3959 3960 *sptep = spte; 3961 return reserved; 3962 } 3963 3964 static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct) 3965 { 3966 u64 spte; 3967 bool reserved; 3968 3969 if (mmio_info_in_cache(vcpu, addr, direct)) 3970 return RET_PF_EMULATE; 3971 3972 reserved = walk_shadow_page_get_mmio_spte(vcpu, addr, &spte); 3973 if (WARN_ON(reserved)) 3974 return -EINVAL; 3975 3976 if (is_mmio_spte(spte)) { 3977 gfn_t gfn = get_mmio_spte_gfn(spte); 3978 unsigned int access = get_mmio_spte_access(spte); 3979 3980 if (!check_mmio_spte(vcpu, spte)) 3981 return RET_PF_INVALID; 3982 3983 if (direct) 3984 addr = 0; 3985 3986 trace_handle_mmio_page_fault(addr, gfn, access); 3987 vcpu_cache_mmio_info(vcpu, addr, gfn, access); 3988 return RET_PF_EMULATE; 3989 } 3990 3991 /* 3992 * If the page table is zapped by other cpus, let CPU fault again on 3993 * the address. 3994 */ 3995 return RET_PF_RETRY; 3996 } 3997 3998 static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu, 3999 u32 error_code, gfn_t gfn) 4000 { 4001 if (unlikely(error_code & PFERR_RSVD_MASK)) 4002 return false; 4003 4004 if (!(error_code & PFERR_PRESENT_MASK) || 4005 !(error_code & PFERR_WRITE_MASK)) 4006 return false; 4007 4008 /* 4009 * guest is writing the page which is write tracked which can 4010 * not be fixed by page fault handler. 4011 */ 4012 if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE)) 4013 return true; 4014 4015 return false; 4016 } 4017 4018 static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr) 4019 { 4020 struct kvm_shadow_walk_iterator iterator; 4021 u64 spte; 4022 4023 walk_shadow_page_lockless_begin(vcpu); 4024 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) { 4025 clear_sp_write_flooding_count(iterator.sptep); 4026 if (!is_shadow_present_pte(spte)) 4027 break; 4028 } 4029 walk_shadow_page_lockless_end(vcpu); 4030 } 4031 4032 static bool kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, 4033 gfn_t gfn) 4034 { 4035 struct kvm_arch_async_pf arch; 4036 4037 arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id; 4038 arch.gfn = gfn; 4039 arch.direct_map = vcpu->arch.mmu->direct_map; 4040 arch.cr3 = vcpu->arch.mmu->get_guest_pgd(vcpu); 4041 4042 return kvm_setup_async_pf(vcpu, cr2_or_gpa, 4043 kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch); 4044 } 4045 4046 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn, 4047 gpa_t cr2_or_gpa, kvm_pfn_t *pfn, bool write, 4048 bool *writable) 4049 { 4050 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 4051 bool async; 4052 4053 /* Don't expose private memslots to L2. */ 4054 if (is_guest_mode(vcpu) && !kvm_is_visible_memslot(slot)) { 4055 *pfn = KVM_PFN_NOSLOT; 4056 *writable = false; 4057 return false; 4058 } 4059 4060 async = false; 4061 *pfn = __gfn_to_pfn_memslot(slot, gfn, false, &async, write, writable); 4062 if (!async) 4063 return false; /* *pfn has correct page already */ 4064 4065 if (!prefault && kvm_can_do_async_pf(vcpu)) { 4066 trace_kvm_try_async_get_page(cr2_or_gpa, gfn); 4067 if (kvm_find_async_pf_gfn(vcpu, gfn)) { 4068 trace_kvm_async_pf_doublefault(cr2_or_gpa, gfn); 4069 kvm_make_request(KVM_REQ_APF_HALT, vcpu); 4070 return true; 4071 } else if (kvm_arch_setup_async_pf(vcpu, cr2_or_gpa, gfn)) 4072 return true; 4073 } 4074 4075 *pfn = __gfn_to_pfn_memslot(slot, gfn, false, NULL, write, writable); 4076 return false; 4077 } 4078 4079 static int direct_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code, 4080 bool prefault, int max_level, bool is_tdp) 4081 { 4082 bool write = error_code & PFERR_WRITE_MASK; 4083 bool exec = error_code & PFERR_FETCH_MASK; 4084 bool lpage_disallowed = exec && is_nx_huge_page_enabled(); 4085 bool map_writable; 4086 4087 gfn_t gfn = gpa >> PAGE_SHIFT; 4088 unsigned long mmu_seq; 4089 kvm_pfn_t pfn; 4090 int r; 4091 4092 if (page_fault_handle_page_track(vcpu, error_code, gfn)) 4093 return RET_PF_EMULATE; 4094 4095 if (fast_page_fault(vcpu, gpa, error_code)) 4096 return RET_PF_RETRY; 4097 4098 r = mmu_topup_memory_caches(vcpu, false); 4099 if (r) 4100 return r; 4101 4102 if (lpage_disallowed) 4103 max_level = PG_LEVEL_4K; 4104 4105 mmu_seq = vcpu->kvm->mmu_notifier_seq; 4106 smp_rmb(); 4107 4108 if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable)) 4109 return RET_PF_RETRY; 4110 4111 if (handle_abnormal_pfn(vcpu, is_tdp ? 0 : gpa, gfn, pfn, ACC_ALL, &r)) 4112 return r; 4113 4114 r = RET_PF_RETRY; 4115 spin_lock(&vcpu->kvm->mmu_lock); 4116 if (mmu_notifier_retry(vcpu->kvm, mmu_seq)) 4117 goto out_unlock; 4118 r = make_mmu_pages_available(vcpu); 4119 if (r) 4120 goto out_unlock; 4121 r = __direct_map(vcpu, gpa, write, map_writable, max_level, pfn, 4122 prefault, is_tdp && lpage_disallowed); 4123 4124 out_unlock: 4125 spin_unlock(&vcpu->kvm->mmu_lock); 4126 kvm_release_pfn_clean(pfn); 4127 return r; 4128 } 4129 4130 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa, 4131 u32 error_code, bool prefault) 4132 { 4133 pgprintk("%s: gva %lx error %x\n", __func__, gpa, error_code); 4134 4135 /* This path builds a PAE pagetable, we can map 2mb pages at maximum. */ 4136 return direct_page_fault(vcpu, gpa & PAGE_MASK, error_code, prefault, 4137 PG_LEVEL_2M, false); 4138 } 4139 4140 int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code, 4141 u64 fault_address, char *insn, int insn_len) 4142 { 4143 int r = 1; 4144 u32 flags = vcpu->arch.apf.host_apf_flags; 4145 4146 #ifndef CONFIG_X86_64 4147 /* A 64-bit CR2 should be impossible on 32-bit KVM. */ 4148 if (WARN_ON_ONCE(fault_address >> 32)) 4149 return -EFAULT; 4150 #endif 4151 4152 vcpu->arch.l1tf_flush_l1d = true; 4153 if (!flags) { 4154 trace_kvm_page_fault(fault_address, error_code); 4155 4156 if (kvm_event_needs_reinjection(vcpu)) 4157 kvm_mmu_unprotect_page_virt(vcpu, fault_address); 4158 r = kvm_mmu_page_fault(vcpu, fault_address, error_code, insn, 4159 insn_len); 4160 } else if (flags & KVM_PV_REASON_PAGE_NOT_PRESENT) { 4161 vcpu->arch.apf.host_apf_flags = 0; 4162 local_irq_disable(); 4163 kvm_async_pf_task_wait_schedule(fault_address); 4164 local_irq_enable(); 4165 } else { 4166 WARN_ONCE(1, "Unexpected host async PF flags: %x\n", flags); 4167 } 4168 4169 return r; 4170 } 4171 EXPORT_SYMBOL_GPL(kvm_handle_page_fault); 4172 4173 int kvm_tdp_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code, 4174 bool prefault) 4175 { 4176 int max_level; 4177 4178 for (max_level = KVM_MAX_HUGEPAGE_LEVEL; 4179 max_level > PG_LEVEL_4K; 4180 max_level--) { 4181 int page_num = KVM_PAGES_PER_HPAGE(max_level); 4182 gfn_t base = (gpa >> PAGE_SHIFT) & ~(page_num - 1); 4183 4184 if (kvm_mtrr_check_gfn_range_consistency(vcpu, base, page_num)) 4185 break; 4186 } 4187 4188 return direct_page_fault(vcpu, gpa, error_code, prefault, 4189 max_level, true); 4190 } 4191 4192 static void nonpaging_init_context(struct kvm_vcpu *vcpu, 4193 struct kvm_mmu *context) 4194 { 4195 context->page_fault = nonpaging_page_fault; 4196 context->gva_to_gpa = nonpaging_gva_to_gpa; 4197 context->sync_page = nonpaging_sync_page; 4198 context->invlpg = NULL; 4199 context->update_pte = nonpaging_update_pte; 4200 context->root_level = 0; 4201 context->shadow_root_level = PT32E_ROOT_LEVEL; 4202 context->direct_map = true; 4203 context->nx = false; 4204 } 4205 4206 static inline bool is_root_usable(struct kvm_mmu_root_info *root, gpa_t pgd, 4207 union kvm_mmu_page_role role) 4208 { 4209 return (role.direct || pgd == root->pgd) && 4210 VALID_PAGE(root->hpa) && to_shadow_page(root->hpa) && 4211 role.word == to_shadow_page(root->hpa)->role.word; 4212 } 4213 4214 /* 4215 * Find out if a previously cached root matching the new pgd/role is available. 4216 * The current root is also inserted into the cache. 4217 * If a matching root was found, it is assigned to kvm_mmu->root_hpa and true is 4218 * returned. 4219 * Otherwise, the LRU root from the cache is assigned to kvm_mmu->root_hpa and 4220 * false is returned. This root should now be freed by the caller. 4221 */ 4222 static bool cached_root_available(struct kvm_vcpu *vcpu, gpa_t new_pgd, 4223 union kvm_mmu_page_role new_role) 4224 { 4225 uint i; 4226 struct kvm_mmu_root_info root; 4227 struct kvm_mmu *mmu = vcpu->arch.mmu; 4228 4229 root.pgd = mmu->root_pgd; 4230 root.hpa = mmu->root_hpa; 4231 4232 if (is_root_usable(&root, new_pgd, new_role)) 4233 return true; 4234 4235 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) { 4236 swap(root, mmu->prev_roots[i]); 4237 4238 if (is_root_usable(&root, new_pgd, new_role)) 4239 break; 4240 } 4241 4242 mmu->root_hpa = root.hpa; 4243 mmu->root_pgd = root.pgd; 4244 4245 return i < KVM_MMU_NUM_PREV_ROOTS; 4246 } 4247 4248 static bool fast_pgd_switch(struct kvm_vcpu *vcpu, gpa_t new_pgd, 4249 union kvm_mmu_page_role new_role) 4250 { 4251 struct kvm_mmu *mmu = vcpu->arch.mmu; 4252 4253 /* 4254 * For now, limit the fast switch to 64-bit hosts+VMs in order to avoid 4255 * having to deal with PDPTEs. We may add support for 32-bit hosts/VMs 4256 * later if necessary. 4257 */ 4258 if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL && 4259 mmu->root_level >= PT64_ROOT_4LEVEL) 4260 return cached_root_available(vcpu, new_pgd, new_role); 4261 4262 return false; 4263 } 4264 4265 static void __kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd, 4266 union kvm_mmu_page_role new_role, 4267 bool skip_tlb_flush, bool skip_mmu_sync) 4268 { 4269 if (!fast_pgd_switch(vcpu, new_pgd, new_role)) { 4270 kvm_mmu_free_roots(vcpu, vcpu->arch.mmu, KVM_MMU_ROOT_CURRENT); 4271 return; 4272 } 4273 4274 /* 4275 * It's possible that the cached previous root page is obsolete because 4276 * of a change in the MMU generation number. However, changing the 4277 * generation number is accompanied by KVM_REQ_MMU_RELOAD, which will 4278 * free the root set here and allocate a new one. 4279 */ 4280 kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu); 4281 4282 if (!skip_mmu_sync || force_flush_and_sync_on_reuse) 4283 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu); 4284 if (!skip_tlb_flush || force_flush_and_sync_on_reuse) 4285 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 4286 4287 /* 4288 * The last MMIO access's GVA and GPA are cached in the VCPU. When 4289 * switching to a new CR3, that GVA->GPA mapping may no longer be 4290 * valid. So clear any cached MMIO info even when we don't need to sync 4291 * the shadow page tables. 4292 */ 4293 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY); 4294 4295 __clear_sp_write_flooding_count(to_shadow_page(vcpu->arch.mmu->root_hpa)); 4296 } 4297 4298 void kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd, bool skip_tlb_flush, 4299 bool skip_mmu_sync) 4300 { 4301 __kvm_mmu_new_pgd(vcpu, new_pgd, kvm_mmu_calc_root_page_role(vcpu), 4302 skip_tlb_flush, skip_mmu_sync); 4303 } 4304 EXPORT_SYMBOL_GPL(kvm_mmu_new_pgd); 4305 4306 static unsigned long get_cr3(struct kvm_vcpu *vcpu) 4307 { 4308 return kvm_read_cr3(vcpu); 4309 } 4310 4311 static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn, 4312 unsigned int access, int *nr_present) 4313 { 4314 if (unlikely(is_mmio_spte(*sptep))) { 4315 if (gfn != get_mmio_spte_gfn(*sptep)) { 4316 mmu_spte_clear_no_track(sptep); 4317 return true; 4318 } 4319 4320 (*nr_present)++; 4321 mark_mmio_spte(vcpu, sptep, gfn, access); 4322 return true; 4323 } 4324 4325 return false; 4326 } 4327 4328 static inline bool is_last_gpte(struct kvm_mmu *mmu, 4329 unsigned level, unsigned gpte) 4330 { 4331 /* 4332 * The RHS has bit 7 set iff level < mmu->last_nonleaf_level. 4333 * If it is clear, there are no large pages at this level, so clear 4334 * PT_PAGE_SIZE_MASK in gpte if that is the case. 4335 */ 4336 gpte &= level - mmu->last_nonleaf_level; 4337 4338 /* 4339 * PG_LEVEL_4K always terminates. The RHS has bit 7 set 4340 * iff level <= PG_LEVEL_4K, which for our purpose means 4341 * level == PG_LEVEL_4K; set PT_PAGE_SIZE_MASK in gpte then. 4342 */ 4343 gpte |= level - PG_LEVEL_4K - 1; 4344 4345 return gpte & PT_PAGE_SIZE_MASK; 4346 } 4347 4348 #define PTTYPE_EPT 18 /* arbitrary */ 4349 #define PTTYPE PTTYPE_EPT 4350 #include "paging_tmpl.h" 4351 #undef PTTYPE 4352 4353 #define PTTYPE 64 4354 #include "paging_tmpl.h" 4355 #undef PTTYPE 4356 4357 #define PTTYPE 32 4358 #include "paging_tmpl.h" 4359 #undef PTTYPE 4360 4361 static void 4362 __reset_rsvds_bits_mask(struct kvm_vcpu *vcpu, 4363 struct rsvd_bits_validate *rsvd_check, 4364 int maxphyaddr, int level, bool nx, bool gbpages, 4365 bool pse, bool amd) 4366 { 4367 u64 exb_bit_rsvd = 0; 4368 u64 gbpages_bit_rsvd = 0; 4369 u64 nonleaf_bit8_rsvd = 0; 4370 4371 rsvd_check->bad_mt_xwr = 0; 4372 4373 if (!nx) 4374 exb_bit_rsvd = rsvd_bits(63, 63); 4375 if (!gbpages) 4376 gbpages_bit_rsvd = rsvd_bits(7, 7); 4377 4378 /* 4379 * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for 4380 * leaf entries) on AMD CPUs only. 4381 */ 4382 if (amd) 4383 nonleaf_bit8_rsvd = rsvd_bits(8, 8); 4384 4385 switch (level) { 4386 case PT32_ROOT_LEVEL: 4387 /* no rsvd bits for 2 level 4K page table entries */ 4388 rsvd_check->rsvd_bits_mask[0][1] = 0; 4389 rsvd_check->rsvd_bits_mask[0][0] = 0; 4390 rsvd_check->rsvd_bits_mask[1][0] = 4391 rsvd_check->rsvd_bits_mask[0][0]; 4392 4393 if (!pse) { 4394 rsvd_check->rsvd_bits_mask[1][1] = 0; 4395 break; 4396 } 4397 4398 if (is_cpuid_PSE36()) 4399 /* 36bits PSE 4MB page */ 4400 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21); 4401 else 4402 /* 32 bits PSE 4MB page */ 4403 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21); 4404 break; 4405 case PT32E_ROOT_LEVEL: 4406 rsvd_check->rsvd_bits_mask[0][2] = 4407 rsvd_bits(maxphyaddr, 63) | 4408 rsvd_bits(5, 8) | rsvd_bits(1, 2); /* PDPTE */ 4409 rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd | 4410 rsvd_bits(maxphyaddr, 62); /* PDE */ 4411 rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd | 4412 rsvd_bits(maxphyaddr, 62); /* PTE */ 4413 rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd | 4414 rsvd_bits(maxphyaddr, 62) | 4415 rsvd_bits(13, 20); /* large page */ 4416 rsvd_check->rsvd_bits_mask[1][0] = 4417 rsvd_check->rsvd_bits_mask[0][0]; 4418 break; 4419 case PT64_ROOT_5LEVEL: 4420 rsvd_check->rsvd_bits_mask[0][4] = exb_bit_rsvd | 4421 nonleaf_bit8_rsvd | rsvd_bits(7, 7) | 4422 rsvd_bits(maxphyaddr, 51); 4423 rsvd_check->rsvd_bits_mask[1][4] = 4424 rsvd_check->rsvd_bits_mask[0][4]; 4425 fallthrough; 4426 case PT64_ROOT_4LEVEL: 4427 rsvd_check->rsvd_bits_mask[0][3] = exb_bit_rsvd | 4428 nonleaf_bit8_rsvd | rsvd_bits(7, 7) | 4429 rsvd_bits(maxphyaddr, 51); 4430 rsvd_check->rsvd_bits_mask[0][2] = exb_bit_rsvd | 4431 gbpages_bit_rsvd | 4432 rsvd_bits(maxphyaddr, 51); 4433 rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd | 4434 rsvd_bits(maxphyaddr, 51); 4435 rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd | 4436 rsvd_bits(maxphyaddr, 51); 4437 rsvd_check->rsvd_bits_mask[1][3] = 4438 rsvd_check->rsvd_bits_mask[0][3]; 4439 rsvd_check->rsvd_bits_mask[1][2] = exb_bit_rsvd | 4440 gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51) | 4441 rsvd_bits(13, 29); 4442 rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd | 4443 rsvd_bits(maxphyaddr, 51) | 4444 rsvd_bits(13, 20); /* large page */ 4445 rsvd_check->rsvd_bits_mask[1][0] = 4446 rsvd_check->rsvd_bits_mask[0][0]; 4447 break; 4448 } 4449 } 4450 4451 static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu, 4452 struct kvm_mmu *context) 4453 { 4454 __reset_rsvds_bits_mask(vcpu, &context->guest_rsvd_check, 4455 cpuid_maxphyaddr(vcpu), context->root_level, 4456 context->nx, 4457 guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES), 4458 is_pse(vcpu), 4459 guest_cpuid_is_amd_or_hygon(vcpu)); 4460 } 4461 4462 static void 4463 __reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check, 4464 int maxphyaddr, bool execonly) 4465 { 4466 u64 bad_mt_xwr; 4467 4468 rsvd_check->rsvd_bits_mask[0][4] = 4469 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7); 4470 rsvd_check->rsvd_bits_mask[0][3] = 4471 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7); 4472 rsvd_check->rsvd_bits_mask[0][2] = 4473 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6); 4474 rsvd_check->rsvd_bits_mask[0][1] = 4475 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6); 4476 rsvd_check->rsvd_bits_mask[0][0] = rsvd_bits(maxphyaddr, 51); 4477 4478 /* large page */ 4479 rsvd_check->rsvd_bits_mask[1][4] = rsvd_check->rsvd_bits_mask[0][4]; 4480 rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3]; 4481 rsvd_check->rsvd_bits_mask[1][2] = 4482 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 29); 4483 rsvd_check->rsvd_bits_mask[1][1] = 4484 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 20); 4485 rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0]; 4486 4487 bad_mt_xwr = 0xFFull << (2 * 8); /* bits 3..5 must not be 2 */ 4488 bad_mt_xwr |= 0xFFull << (3 * 8); /* bits 3..5 must not be 3 */ 4489 bad_mt_xwr |= 0xFFull << (7 * 8); /* bits 3..5 must not be 7 */ 4490 bad_mt_xwr |= REPEAT_BYTE(1ull << 2); /* bits 0..2 must not be 010 */ 4491 bad_mt_xwr |= REPEAT_BYTE(1ull << 6); /* bits 0..2 must not be 110 */ 4492 if (!execonly) { 4493 /* bits 0..2 must not be 100 unless VMX capabilities allow it */ 4494 bad_mt_xwr |= REPEAT_BYTE(1ull << 4); 4495 } 4496 rsvd_check->bad_mt_xwr = bad_mt_xwr; 4497 } 4498 4499 static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu, 4500 struct kvm_mmu *context, bool execonly) 4501 { 4502 __reset_rsvds_bits_mask_ept(&context->guest_rsvd_check, 4503 cpuid_maxphyaddr(vcpu), execonly); 4504 } 4505 4506 /* 4507 * the page table on host is the shadow page table for the page 4508 * table in guest or amd nested guest, its mmu features completely 4509 * follow the features in guest. 4510 */ 4511 void 4512 reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, struct kvm_mmu *context) 4513 { 4514 bool uses_nx = context->nx || 4515 context->mmu_role.base.smep_andnot_wp; 4516 struct rsvd_bits_validate *shadow_zero_check; 4517 int i; 4518 4519 /* 4520 * Passing "true" to the last argument is okay; it adds a check 4521 * on bit 8 of the SPTEs which KVM doesn't use anyway. 4522 */ 4523 shadow_zero_check = &context->shadow_zero_check; 4524 __reset_rsvds_bits_mask(vcpu, shadow_zero_check, 4525 shadow_phys_bits, 4526 context->shadow_root_level, uses_nx, 4527 guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES), 4528 is_pse(vcpu), true); 4529 4530 if (!shadow_me_mask) 4531 return; 4532 4533 for (i = context->shadow_root_level; --i >= 0;) { 4534 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask; 4535 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask; 4536 } 4537 4538 } 4539 EXPORT_SYMBOL_GPL(reset_shadow_zero_bits_mask); 4540 4541 static inline bool boot_cpu_is_amd(void) 4542 { 4543 WARN_ON_ONCE(!tdp_enabled); 4544 return shadow_x_mask == 0; 4545 } 4546 4547 /* 4548 * the direct page table on host, use as much mmu features as 4549 * possible, however, kvm currently does not do execution-protection. 4550 */ 4551 static void 4552 reset_tdp_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, 4553 struct kvm_mmu *context) 4554 { 4555 struct rsvd_bits_validate *shadow_zero_check; 4556 int i; 4557 4558 shadow_zero_check = &context->shadow_zero_check; 4559 4560 if (boot_cpu_is_amd()) 4561 __reset_rsvds_bits_mask(vcpu, shadow_zero_check, 4562 shadow_phys_bits, 4563 context->shadow_root_level, false, 4564 boot_cpu_has(X86_FEATURE_GBPAGES), 4565 true, true); 4566 else 4567 __reset_rsvds_bits_mask_ept(shadow_zero_check, 4568 shadow_phys_bits, 4569 false); 4570 4571 if (!shadow_me_mask) 4572 return; 4573 4574 for (i = context->shadow_root_level; --i >= 0;) { 4575 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask; 4576 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask; 4577 } 4578 } 4579 4580 /* 4581 * as the comments in reset_shadow_zero_bits_mask() except it 4582 * is the shadow page table for intel nested guest. 4583 */ 4584 static void 4585 reset_ept_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, 4586 struct kvm_mmu *context, bool execonly) 4587 { 4588 __reset_rsvds_bits_mask_ept(&context->shadow_zero_check, 4589 shadow_phys_bits, execonly); 4590 } 4591 4592 #define BYTE_MASK(access) \ 4593 ((1 & (access) ? 2 : 0) | \ 4594 (2 & (access) ? 4 : 0) | \ 4595 (3 & (access) ? 8 : 0) | \ 4596 (4 & (access) ? 16 : 0) | \ 4597 (5 & (access) ? 32 : 0) | \ 4598 (6 & (access) ? 64 : 0) | \ 4599 (7 & (access) ? 128 : 0)) 4600 4601 4602 static void update_permission_bitmask(struct kvm_vcpu *vcpu, 4603 struct kvm_mmu *mmu, bool ept) 4604 { 4605 unsigned byte; 4606 4607 const u8 x = BYTE_MASK(ACC_EXEC_MASK); 4608 const u8 w = BYTE_MASK(ACC_WRITE_MASK); 4609 const u8 u = BYTE_MASK(ACC_USER_MASK); 4610 4611 bool cr4_smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP) != 0; 4612 bool cr4_smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP) != 0; 4613 bool cr0_wp = is_write_protection(vcpu); 4614 4615 for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) { 4616 unsigned pfec = byte << 1; 4617 4618 /* 4619 * Each "*f" variable has a 1 bit for each UWX value 4620 * that causes a fault with the given PFEC. 4621 */ 4622 4623 /* Faults from writes to non-writable pages */ 4624 u8 wf = (pfec & PFERR_WRITE_MASK) ? (u8)~w : 0; 4625 /* Faults from user mode accesses to supervisor pages */ 4626 u8 uf = (pfec & PFERR_USER_MASK) ? (u8)~u : 0; 4627 /* Faults from fetches of non-executable pages*/ 4628 u8 ff = (pfec & PFERR_FETCH_MASK) ? (u8)~x : 0; 4629 /* Faults from kernel mode fetches of user pages */ 4630 u8 smepf = 0; 4631 /* Faults from kernel mode accesses of user pages */ 4632 u8 smapf = 0; 4633 4634 if (!ept) { 4635 /* Faults from kernel mode accesses to user pages */ 4636 u8 kf = (pfec & PFERR_USER_MASK) ? 0 : u; 4637 4638 /* Not really needed: !nx will cause pte.nx to fault */ 4639 if (!mmu->nx) 4640 ff = 0; 4641 4642 /* Allow supervisor writes if !cr0.wp */ 4643 if (!cr0_wp) 4644 wf = (pfec & PFERR_USER_MASK) ? wf : 0; 4645 4646 /* Disallow supervisor fetches of user code if cr4.smep */ 4647 if (cr4_smep) 4648 smepf = (pfec & PFERR_FETCH_MASK) ? kf : 0; 4649 4650 /* 4651 * SMAP:kernel-mode data accesses from user-mode 4652 * mappings should fault. A fault is considered 4653 * as a SMAP violation if all of the following 4654 * conditions are true: 4655 * - X86_CR4_SMAP is set in CR4 4656 * - A user page is accessed 4657 * - The access is not a fetch 4658 * - Page fault in kernel mode 4659 * - if CPL = 3 or X86_EFLAGS_AC is clear 4660 * 4661 * Here, we cover the first three conditions. 4662 * The fourth is computed dynamically in permission_fault(); 4663 * PFERR_RSVD_MASK bit will be set in PFEC if the access is 4664 * *not* subject to SMAP restrictions. 4665 */ 4666 if (cr4_smap) 4667 smapf = (pfec & (PFERR_RSVD_MASK|PFERR_FETCH_MASK)) ? 0 : kf; 4668 } 4669 4670 mmu->permissions[byte] = ff | uf | wf | smepf | smapf; 4671 } 4672 } 4673 4674 /* 4675 * PKU is an additional mechanism by which the paging controls access to 4676 * user-mode addresses based on the value in the PKRU register. Protection 4677 * key violations are reported through a bit in the page fault error code. 4678 * Unlike other bits of the error code, the PK bit is not known at the 4679 * call site of e.g. gva_to_gpa; it must be computed directly in 4680 * permission_fault based on two bits of PKRU, on some machine state (CR4, 4681 * CR0, EFER, CPL), and on other bits of the error code and the page tables. 4682 * 4683 * In particular the following conditions come from the error code, the 4684 * page tables and the machine state: 4685 * - PK is always zero unless CR4.PKE=1 and EFER.LMA=1 4686 * - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch) 4687 * - PK is always zero if U=0 in the page tables 4688 * - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access. 4689 * 4690 * The PKRU bitmask caches the result of these four conditions. The error 4691 * code (minus the P bit) and the page table's U bit form an index into the 4692 * PKRU bitmask. Two bits of the PKRU bitmask are then extracted and ANDed 4693 * with the two bits of the PKRU register corresponding to the protection key. 4694 * For the first three conditions above the bits will be 00, thus masking 4695 * away both AD and WD. For all reads or if the last condition holds, WD 4696 * only will be masked away. 4697 */ 4698 static void update_pkru_bitmask(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, 4699 bool ept) 4700 { 4701 unsigned bit; 4702 bool wp; 4703 4704 if (ept) { 4705 mmu->pkru_mask = 0; 4706 return; 4707 } 4708 4709 /* PKEY is enabled only if CR4.PKE and EFER.LMA are both set. */ 4710 if (!kvm_read_cr4_bits(vcpu, X86_CR4_PKE) || !is_long_mode(vcpu)) { 4711 mmu->pkru_mask = 0; 4712 return; 4713 } 4714 4715 wp = is_write_protection(vcpu); 4716 4717 for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) { 4718 unsigned pfec, pkey_bits; 4719 bool check_pkey, check_write, ff, uf, wf, pte_user; 4720 4721 pfec = bit << 1; 4722 ff = pfec & PFERR_FETCH_MASK; 4723 uf = pfec & PFERR_USER_MASK; 4724 wf = pfec & PFERR_WRITE_MASK; 4725 4726 /* PFEC.RSVD is replaced by ACC_USER_MASK. */ 4727 pte_user = pfec & PFERR_RSVD_MASK; 4728 4729 /* 4730 * Only need to check the access which is not an 4731 * instruction fetch and is to a user page. 4732 */ 4733 check_pkey = (!ff && pte_user); 4734 /* 4735 * write access is controlled by PKRU if it is a 4736 * user access or CR0.WP = 1. 4737 */ 4738 check_write = check_pkey && wf && (uf || wp); 4739 4740 /* PKRU.AD stops both read and write access. */ 4741 pkey_bits = !!check_pkey; 4742 /* PKRU.WD stops write access. */ 4743 pkey_bits |= (!!check_write) << 1; 4744 4745 mmu->pkru_mask |= (pkey_bits & 3) << pfec; 4746 } 4747 } 4748 4749 static void update_last_nonleaf_level(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu) 4750 { 4751 unsigned root_level = mmu->root_level; 4752 4753 mmu->last_nonleaf_level = root_level; 4754 if (root_level == PT32_ROOT_LEVEL && is_pse(vcpu)) 4755 mmu->last_nonleaf_level++; 4756 } 4757 4758 static void paging64_init_context_common(struct kvm_vcpu *vcpu, 4759 struct kvm_mmu *context, 4760 int level) 4761 { 4762 context->nx = is_nx(vcpu); 4763 context->root_level = level; 4764 4765 reset_rsvds_bits_mask(vcpu, context); 4766 update_permission_bitmask(vcpu, context, false); 4767 update_pkru_bitmask(vcpu, context, false); 4768 update_last_nonleaf_level(vcpu, context); 4769 4770 MMU_WARN_ON(!is_pae(vcpu)); 4771 context->page_fault = paging64_page_fault; 4772 context->gva_to_gpa = paging64_gva_to_gpa; 4773 context->sync_page = paging64_sync_page; 4774 context->invlpg = paging64_invlpg; 4775 context->update_pte = paging64_update_pte; 4776 context->shadow_root_level = level; 4777 context->direct_map = false; 4778 } 4779 4780 static void paging64_init_context(struct kvm_vcpu *vcpu, 4781 struct kvm_mmu *context) 4782 { 4783 int root_level = is_la57_mode(vcpu) ? 4784 PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL; 4785 4786 paging64_init_context_common(vcpu, context, root_level); 4787 } 4788 4789 static void paging32_init_context(struct kvm_vcpu *vcpu, 4790 struct kvm_mmu *context) 4791 { 4792 context->nx = false; 4793 context->root_level = PT32_ROOT_LEVEL; 4794 4795 reset_rsvds_bits_mask(vcpu, context); 4796 update_permission_bitmask(vcpu, context, false); 4797 update_pkru_bitmask(vcpu, context, false); 4798 update_last_nonleaf_level(vcpu, context); 4799 4800 context->page_fault = paging32_page_fault; 4801 context->gva_to_gpa = paging32_gva_to_gpa; 4802 context->sync_page = paging32_sync_page; 4803 context->invlpg = paging32_invlpg; 4804 context->update_pte = paging32_update_pte; 4805 context->shadow_root_level = PT32E_ROOT_LEVEL; 4806 context->direct_map = false; 4807 } 4808 4809 static void paging32E_init_context(struct kvm_vcpu *vcpu, 4810 struct kvm_mmu *context) 4811 { 4812 paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL); 4813 } 4814 4815 static union kvm_mmu_extended_role kvm_calc_mmu_role_ext(struct kvm_vcpu *vcpu) 4816 { 4817 union kvm_mmu_extended_role ext = {0}; 4818 4819 ext.cr0_pg = !!is_paging(vcpu); 4820 ext.cr4_pae = !!is_pae(vcpu); 4821 ext.cr4_smep = !!kvm_read_cr4_bits(vcpu, X86_CR4_SMEP); 4822 ext.cr4_smap = !!kvm_read_cr4_bits(vcpu, X86_CR4_SMAP); 4823 ext.cr4_pse = !!is_pse(vcpu); 4824 ext.cr4_pke = !!kvm_read_cr4_bits(vcpu, X86_CR4_PKE); 4825 ext.maxphyaddr = cpuid_maxphyaddr(vcpu); 4826 4827 ext.valid = 1; 4828 4829 return ext; 4830 } 4831 4832 static union kvm_mmu_role kvm_calc_mmu_role_common(struct kvm_vcpu *vcpu, 4833 bool base_only) 4834 { 4835 union kvm_mmu_role role = {0}; 4836 4837 role.base.access = ACC_ALL; 4838 role.base.nxe = !!is_nx(vcpu); 4839 role.base.cr0_wp = is_write_protection(vcpu); 4840 role.base.smm = is_smm(vcpu); 4841 role.base.guest_mode = is_guest_mode(vcpu); 4842 4843 if (base_only) 4844 return role; 4845 4846 role.ext = kvm_calc_mmu_role_ext(vcpu); 4847 4848 return role; 4849 } 4850 4851 static inline int kvm_mmu_get_tdp_level(struct kvm_vcpu *vcpu) 4852 { 4853 /* Use 5-level TDP if and only if it's useful/necessary. */ 4854 if (max_tdp_level == 5 && cpuid_maxphyaddr(vcpu) <= 48) 4855 return 4; 4856 4857 return max_tdp_level; 4858 } 4859 4860 static union kvm_mmu_role 4861 kvm_calc_tdp_mmu_root_page_role(struct kvm_vcpu *vcpu, bool base_only) 4862 { 4863 union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, base_only); 4864 4865 role.base.ad_disabled = (shadow_accessed_mask == 0); 4866 role.base.level = kvm_mmu_get_tdp_level(vcpu); 4867 role.base.direct = true; 4868 role.base.gpte_is_8_bytes = true; 4869 4870 return role; 4871 } 4872 4873 static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu) 4874 { 4875 struct kvm_mmu *context = &vcpu->arch.root_mmu; 4876 union kvm_mmu_role new_role = 4877 kvm_calc_tdp_mmu_root_page_role(vcpu, false); 4878 4879 if (new_role.as_u64 == context->mmu_role.as_u64) 4880 return; 4881 4882 context->mmu_role.as_u64 = new_role.as_u64; 4883 context->page_fault = kvm_tdp_page_fault; 4884 context->sync_page = nonpaging_sync_page; 4885 context->invlpg = NULL; 4886 context->update_pte = nonpaging_update_pte; 4887 context->shadow_root_level = kvm_mmu_get_tdp_level(vcpu); 4888 context->direct_map = true; 4889 context->get_guest_pgd = get_cr3; 4890 context->get_pdptr = kvm_pdptr_read; 4891 context->inject_page_fault = kvm_inject_page_fault; 4892 4893 if (!is_paging(vcpu)) { 4894 context->nx = false; 4895 context->gva_to_gpa = nonpaging_gva_to_gpa; 4896 context->root_level = 0; 4897 } else if (is_long_mode(vcpu)) { 4898 context->nx = is_nx(vcpu); 4899 context->root_level = is_la57_mode(vcpu) ? 4900 PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL; 4901 reset_rsvds_bits_mask(vcpu, context); 4902 context->gva_to_gpa = paging64_gva_to_gpa; 4903 } else if (is_pae(vcpu)) { 4904 context->nx = is_nx(vcpu); 4905 context->root_level = PT32E_ROOT_LEVEL; 4906 reset_rsvds_bits_mask(vcpu, context); 4907 context->gva_to_gpa = paging64_gva_to_gpa; 4908 } else { 4909 context->nx = false; 4910 context->root_level = PT32_ROOT_LEVEL; 4911 reset_rsvds_bits_mask(vcpu, context); 4912 context->gva_to_gpa = paging32_gva_to_gpa; 4913 } 4914 4915 update_permission_bitmask(vcpu, context, false); 4916 update_pkru_bitmask(vcpu, context, false); 4917 update_last_nonleaf_level(vcpu, context); 4918 reset_tdp_shadow_zero_bits_mask(vcpu, context); 4919 } 4920 4921 static union kvm_mmu_role 4922 kvm_calc_shadow_root_page_role_common(struct kvm_vcpu *vcpu, bool base_only) 4923 { 4924 union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, base_only); 4925 4926 role.base.smep_andnot_wp = role.ext.cr4_smep && 4927 !is_write_protection(vcpu); 4928 role.base.smap_andnot_wp = role.ext.cr4_smap && 4929 !is_write_protection(vcpu); 4930 role.base.gpte_is_8_bytes = !!is_pae(vcpu); 4931 4932 return role; 4933 } 4934 4935 static union kvm_mmu_role 4936 kvm_calc_shadow_mmu_root_page_role(struct kvm_vcpu *vcpu, bool base_only) 4937 { 4938 union kvm_mmu_role role = 4939 kvm_calc_shadow_root_page_role_common(vcpu, base_only); 4940 4941 role.base.direct = !is_paging(vcpu); 4942 4943 if (!is_long_mode(vcpu)) 4944 role.base.level = PT32E_ROOT_LEVEL; 4945 else if (is_la57_mode(vcpu)) 4946 role.base.level = PT64_ROOT_5LEVEL; 4947 else 4948 role.base.level = PT64_ROOT_4LEVEL; 4949 4950 return role; 4951 } 4952 4953 static void shadow_mmu_init_context(struct kvm_vcpu *vcpu, struct kvm_mmu *context, 4954 u32 cr0, u32 cr4, u32 efer, 4955 union kvm_mmu_role new_role) 4956 { 4957 if (!(cr0 & X86_CR0_PG)) 4958 nonpaging_init_context(vcpu, context); 4959 else if (efer & EFER_LMA) 4960 paging64_init_context(vcpu, context); 4961 else if (cr4 & X86_CR4_PAE) 4962 paging32E_init_context(vcpu, context); 4963 else 4964 paging32_init_context(vcpu, context); 4965 4966 context->mmu_role.as_u64 = new_role.as_u64; 4967 reset_shadow_zero_bits_mask(vcpu, context); 4968 } 4969 4970 static void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, u32 cr0, u32 cr4, u32 efer) 4971 { 4972 struct kvm_mmu *context = &vcpu->arch.root_mmu; 4973 union kvm_mmu_role new_role = 4974 kvm_calc_shadow_mmu_root_page_role(vcpu, false); 4975 4976 if (new_role.as_u64 != context->mmu_role.as_u64) 4977 shadow_mmu_init_context(vcpu, context, cr0, cr4, efer, new_role); 4978 } 4979 4980 static union kvm_mmu_role 4981 kvm_calc_shadow_npt_root_page_role(struct kvm_vcpu *vcpu) 4982 { 4983 union kvm_mmu_role role = 4984 kvm_calc_shadow_root_page_role_common(vcpu, false); 4985 4986 role.base.direct = false; 4987 role.base.level = kvm_mmu_get_tdp_level(vcpu); 4988 4989 return role; 4990 } 4991 4992 void kvm_init_shadow_npt_mmu(struct kvm_vcpu *vcpu, u32 cr0, u32 cr4, u32 efer, 4993 gpa_t nested_cr3) 4994 { 4995 struct kvm_mmu *context = &vcpu->arch.guest_mmu; 4996 union kvm_mmu_role new_role = kvm_calc_shadow_npt_root_page_role(vcpu); 4997 4998 context->shadow_root_level = new_role.base.level; 4999 5000 __kvm_mmu_new_pgd(vcpu, nested_cr3, new_role.base, false, false); 5001 5002 if (new_role.as_u64 != context->mmu_role.as_u64) 5003 shadow_mmu_init_context(vcpu, context, cr0, cr4, efer, new_role); 5004 } 5005 EXPORT_SYMBOL_GPL(kvm_init_shadow_npt_mmu); 5006 5007 static union kvm_mmu_role 5008 kvm_calc_shadow_ept_root_page_role(struct kvm_vcpu *vcpu, bool accessed_dirty, 5009 bool execonly, u8 level) 5010 { 5011 union kvm_mmu_role role = {0}; 5012 5013 /* SMM flag is inherited from root_mmu */ 5014 role.base.smm = vcpu->arch.root_mmu.mmu_role.base.smm; 5015 5016 role.base.level = level; 5017 role.base.gpte_is_8_bytes = true; 5018 role.base.direct = false; 5019 role.base.ad_disabled = !accessed_dirty; 5020 role.base.guest_mode = true; 5021 role.base.access = ACC_ALL; 5022 5023 /* 5024 * WP=1 and NOT_WP=1 is an impossible combination, use WP and the 5025 * SMAP variation to denote shadow EPT entries. 5026 */ 5027 role.base.cr0_wp = true; 5028 role.base.smap_andnot_wp = true; 5029 5030 role.ext = kvm_calc_mmu_role_ext(vcpu); 5031 role.ext.execonly = execonly; 5032 5033 return role; 5034 } 5035 5036 void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly, 5037 bool accessed_dirty, gpa_t new_eptp) 5038 { 5039 struct kvm_mmu *context = &vcpu->arch.guest_mmu; 5040 u8 level = vmx_eptp_page_walk_level(new_eptp); 5041 union kvm_mmu_role new_role = 5042 kvm_calc_shadow_ept_root_page_role(vcpu, accessed_dirty, 5043 execonly, level); 5044 5045 __kvm_mmu_new_pgd(vcpu, new_eptp, new_role.base, true, true); 5046 5047 if (new_role.as_u64 == context->mmu_role.as_u64) 5048 return; 5049 5050 context->shadow_root_level = level; 5051 5052 context->nx = true; 5053 context->ept_ad = accessed_dirty; 5054 context->page_fault = ept_page_fault; 5055 context->gva_to_gpa = ept_gva_to_gpa; 5056 context->sync_page = ept_sync_page; 5057 context->invlpg = ept_invlpg; 5058 context->update_pte = ept_update_pte; 5059 context->root_level = level; 5060 context->direct_map = false; 5061 context->mmu_role.as_u64 = new_role.as_u64; 5062 5063 update_permission_bitmask(vcpu, context, true); 5064 update_pkru_bitmask(vcpu, context, true); 5065 update_last_nonleaf_level(vcpu, context); 5066 reset_rsvds_bits_mask_ept(vcpu, context, execonly); 5067 reset_ept_shadow_zero_bits_mask(vcpu, context, execonly); 5068 } 5069 EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu); 5070 5071 static void init_kvm_softmmu(struct kvm_vcpu *vcpu) 5072 { 5073 struct kvm_mmu *context = &vcpu->arch.root_mmu; 5074 5075 kvm_init_shadow_mmu(vcpu, 5076 kvm_read_cr0_bits(vcpu, X86_CR0_PG), 5077 kvm_read_cr4_bits(vcpu, X86_CR4_PAE), 5078 vcpu->arch.efer); 5079 5080 context->get_guest_pgd = get_cr3; 5081 context->get_pdptr = kvm_pdptr_read; 5082 context->inject_page_fault = kvm_inject_page_fault; 5083 } 5084 5085 static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu) 5086 { 5087 union kvm_mmu_role new_role = kvm_calc_mmu_role_common(vcpu, false); 5088 struct kvm_mmu *g_context = &vcpu->arch.nested_mmu; 5089 5090 if (new_role.as_u64 == g_context->mmu_role.as_u64) 5091 return; 5092 5093 g_context->mmu_role.as_u64 = new_role.as_u64; 5094 g_context->get_guest_pgd = get_cr3; 5095 g_context->get_pdptr = kvm_pdptr_read; 5096 g_context->inject_page_fault = kvm_inject_page_fault; 5097 5098 /* 5099 * L2 page tables are never shadowed, so there is no need to sync 5100 * SPTEs. 5101 */ 5102 g_context->invlpg = NULL; 5103 5104 /* 5105 * Note that arch.mmu->gva_to_gpa translates l2_gpa to l1_gpa using 5106 * L1's nested page tables (e.g. EPT12). The nested translation 5107 * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using 5108 * L2's page tables as the first level of translation and L1's 5109 * nested page tables as the second level of translation. Basically 5110 * the gva_to_gpa functions between mmu and nested_mmu are swapped. 5111 */ 5112 if (!is_paging(vcpu)) { 5113 g_context->nx = false; 5114 g_context->root_level = 0; 5115 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested; 5116 } else if (is_long_mode(vcpu)) { 5117 g_context->nx = is_nx(vcpu); 5118 g_context->root_level = is_la57_mode(vcpu) ? 5119 PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL; 5120 reset_rsvds_bits_mask(vcpu, g_context); 5121 g_context->gva_to_gpa = paging64_gva_to_gpa_nested; 5122 } else if (is_pae(vcpu)) { 5123 g_context->nx = is_nx(vcpu); 5124 g_context->root_level = PT32E_ROOT_LEVEL; 5125 reset_rsvds_bits_mask(vcpu, g_context); 5126 g_context->gva_to_gpa = paging64_gva_to_gpa_nested; 5127 } else { 5128 g_context->nx = false; 5129 g_context->root_level = PT32_ROOT_LEVEL; 5130 reset_rsvds_bits_mask(vcpu, g_context); 5131 g_context->gva_to_gpa = paging32_gva_to_gpa_nested; 5132 } 5133 5134 update_permission_bitmask(vcpu, g_context, false); 5135 update_pkru_bitmask(vcpu, g_context, false); 5136 update_last_nonleaf_level(vcpu, g_context); 5137 } 5138 5139 void kvm_init_mmu(struct kvm_vcpu *vcpu, bool reset_roots) 5140 { 5141 if (reset_roots) { 5142 uint i; 5143 5144 vcpu->arch.mmu->root_hpa = INVALID_PAGE; 5145 5146 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 5147 vcpu->arch.mmu->prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID; 5148 } 5149 5150 if (mmu_is_nested(vcpu)) 5151 init_kvm_nested_mmu(vcpu); 5152 else if (tdp_enabled) 5153 init_kvm_tdp_mmu(vcpu); 5154 else 5155 init_kvm_softmmu(vcpu); 5156 } 5157 EXPORT_SYMBOL_GPL(kvm_init_mmu); 5158 5159 static union kvm_mmu_page_role 5160 kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu) 5161 { 5162 union kvm_mmu_role role; 5163 5164 if (tdp_enabled) 5165 role = kvm_calc_tdp_mmu_root_page_role(vcpu, true); 5166 else 5167 role = kvm_calc_shadow_mmu_root_page_role(vcpu, true); 5168 5169 return role.base; 5170 } 5171 5172 void kvm_mmu_reset_context(struct kvm_vcpu *vcpu) 5173 { 5174 kvm_mmu_unload(vcpu); 5175 kvm_init_mmu(vcpu, true); 5176 } 5177 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context); 5178 5179 int kvm_mmu_load(struct kvm_vcpu *vcpu) 5180 { 5181 int r; 5182 5183 r = mmu_topup_memory_caches(vcpu, !vcpu->arch.mmu->direct_map); 5184 if (r) 5185 goto out; 5186 r = mmu_alloc_roots(vcpu); 5187 kvm_mmu_sync_roots(vcpu); 5188 if (r) 5189 goto out; 5190 kvm_mmu_load_pgd(vcpu); 5191 kvm_x86_ops.tlb_flush_current(vcpu); 5192 out: 5193 return r; 5194 } 5195 EXPORT_SYMBOL_GPL(kvm_mmu_load); 5196 5197 void kvm_mmu_unload(struct kvm_vcpu *vcpu) 5198 { 5199 kvm_mmu_free_roots(vcpu, &vcpu->arch.root_mmu, KVM_MMU_ROOTS_ALL); 5200 WARN_ON(VALID_PAGE(vcpu->arch.root_mmu.root_hpa)); 5201 kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL); 5202 WARN_ON(VALID_PAGE(vcpu->arch.guest_mmu.root_hpa)); 5203 } 5204 EXPORT_SYMBOL_GPL(kvm_mmu_unload); 5205 5206 static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu, 5207 struct kvm_mmu_page *sp, u64 *spte, 5208 const void *new) 5209 { 5210 if (sp->role.level != PG_LEVEL_4K) { 5211 ++vcpu->kvm->stat.mmu_pde_zapped; 5212 return; 5213 } 5214 5215 ++vcpu->kvm->stat.mmu_pte_updated; 5216 vcpu->arch.mmu->update_pte(vcpu, sp, spte, new); 5217 } 5218 5219 static bool need_remote_flush(u64 old, u64 new) 5220 { 5221 if (!is_shadow_present_pte(old)) 5222 return false; 5223 if (!is_shadow_present_pte(new)) 5224 return true; 5225 if ((old ^ new) & PT64_BASE_ADDR_MASK) 5226 return true; 5227 old ^= shadow_nx_mask; 5228 new ^= shadow_nx_mask; 5229 return (old & ~new & PT64_PERM_MASK) != 0; 5230 } 5231 5232 static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa, 5233 int *bytes) 5234 { 5235 u64 gentry = 0; 5236 int r; 5237 5238 /* 5239 * Assume that the pte write on a page table of the same type 5240 * as the current vcpu paging mode since we update the sptes only 5241 * when they have the same mode. 5242 */ 5243 if (is_pae(vcpu) && *bytes == 4) { 5244 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */ 5245 *gpa &= ~(gpa_t)7; 5246 *bytes = 8; 5247 } 5248 5249 if (*bytes == 4 || *bytes == 8) { 5250 r = kvm_vcpu_read_guest_atomic(vcpu, *gpa, &gentry, *bytes); 5251 if (r) 5252 gentry = 0; 5253 } 5254 5255 return gentry; 5256 } 5257 5258 /* 5259 * If we're seeing too many writes to a page, it may no longer be a page table, 5260 * or we may be forking, in which case it is better to unmap the page. 5261 */ 5262 static bool detect_write_flooding(struct kvm_mmu_page *sp) 5263 { 5264 /* 5265 * Skip write-flooding detected for the sp whose level is 1, because 5266 * it can become unsync, then the guest page is not write-protected. 5267 */ 5268 if (sp->role.level == PG_LEVEL_4K) 5269 return false; 5270 5271 atomic_inc(&sp->write_flooding_count); 5272 return atomic_read(&sp->write_flooding_count) >= 3; 5273 } 5274 5275 /* 5276 * Misaligned accesses are too much trouble to fix up; also, they usually 5277 * indicate a page is not used as a page table. 5278 */ 5279 static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa, 5280 int bytes) 5281 { 5282 unsigned offset, pte_size, misaligned; 5283 5284 pgprintk("misaligned: gpa %llx bytes %d role %x\n", 5285 gpa, bytes, sp->role.word); 5286 5287 offset = offset_in_page(gpa); 5288 pte_size = sp->role.gpte_is_8_bytes ? 8 : 4; 5289 5290 /* 5291 * Sometimes, the OS only writes the last one bytes to update status 5292 * bits, for example, in linux, andb instruction is used in clear_bit(). 5293 */ 5294 if (!(offset & (pte_size - 1)) && bytes == 1) 5295 return false; 5296 5297 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1); 5298 misaligned |= bytes < 4; 5299 5300 return misaligned; 5301 } 5302 5303 static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte) 5304 { 5305 unsigned page_offset, quadrant; 5306 u64 *spte; 5307 int level; 5308 5309 page_offset = offset_in_page(gpa); 5310 level = sp->role.level; 5311 *nspte = 1; 5312 if (!sp->role.gpte_is_8_bytes) { 5313 page_offset <<= 1; /* 32->64 */ 5314 /* 5315 * A 32-bit pde maps 4MB while the shadow pdes map 5316 * only 2MB. So we need to double the offset again 5317 * and zap two pdes instead of one. 5318 */ 5319 if (level == PT32_ROOT_LEVEL) { 5320 page_offset &= ~7; /* kill rounding error */ 5321 page_offset <<= 1; 5322 *nspte = 2; 5323 } 5324 quadrant = page_offset >> PAGE_SHIFT; 5325 page_offset &= ~PAGE_MASK; 5326 if (quadrant != sp->role.quadrant) 5327 return NULL; 5328 } 5329 5330 spte = &sp->spt[page_offset / sizeof(*spte)]; 5331 return spte; 5332 } 5333 5334 /* 5335 * Ignore various flags when determining if a SPTE can be immediately 5336 * overwritten for the current MMU. 5337 * - level: explicitly checked in mmu_pte_write_new_pte(), and will never 5338 * match the current MMU role, as MMU's level tracks the root level. 5339 * - access: updated based on the new guest PTE 5340 * - quadrant: handled by get_written_sptes() 5341 * - invalid: always false (loop only walks valid shadow pages) 5342 */ 5343 static const union kvm_mmu_page_role role_ign = { 5344 .level = 0xf, 5345 .access = 0x7, 5346 .quadrant = 0x3, 5347 .invalid = 0x1, 5348 }; 5349 5350 static void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa, 5351 const u8 *new, int bytes, 5352 struct kvm_page_track_notifier_node *node) 5353 { 5354 gfn_t gfn = gpa >> PAGE_SHIFT; 5355 struct kvm_mmu_page *sp; 5356 LIST_HEAD(invalid_list); 5357 u64 entry, gentry, *spte; 5358 int npte; 5359 bool remote_flush, local_flush; 5360 5361 /* 5362 * If we don't have indirect shadow pages, it means no page is 5363 * write-protected, so we can exit simply. 5364 */ 5365 if (!READ_ONCE(vcpu->kvm->arch.indirect_shadow_pages)) 5366 return; 5367 5368 remote_flush = local_flush = false; 5369 5370 pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes); 5371 5372 /* 5373 * No need to care whether allocation memory is successful 5374 * or not since pte prefetch is skiped if it does not have 5375 * enough objects in the cache. 5376 */ 5377 mmu_topup_memory_caches(vcpu, true); 5378 5379 spin_lock(&vcpu->kvm->mmu_lock); 5380 5381 gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, &bytes); 5382 5383 ++vcpu->kvm->stat.mmu_pte_write; 5384 kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE); 5385 5386 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) { 5387 if (detect_write_misaligned(sp, gpa, bytes) || 5388 detect_write_flooding(sp)) { 5389 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list); 5390 ++vcpu->kvm->stat.mmu_flooded; 5391 continue; 5392 } 5393 5394 spte = get_written_sptes(sp, gpa, &npte); 5395 if (!spte) 5396 continue; 5397 5398 local_flush = true; 5399 while (npte--) { 5400 u32 base_role = vcpu->arch.mmu->mmu_role.base.word; 5401 5402 entry = *spte; 5403 mmu_page_zap_pte(vcpu->kvm, sp, spte); 5404 if (gentry && 5405 !((sp->role.word ^ base_role) & ~role_ign.word) && 5406 rmap_can_add(vcpu)) 5407 mmu_pte_write_new_pte(vcpu, sp, spte, &gentry); 5408 if (need_remote_flush(entry, *spte)) 5409 remote_flush = true; 5410 ++spte; 5411 } 5412 } 5413 kvm_mmu_flush_or_zap(vcpu, &invalid_list, remote_flush, local_flush); 5414 kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE); 5415 spin_unlock(&vcpu->kvm->mmu_lock); 5416 } 5417 5418 int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva) 5419 { 5420 gpa_t gpa; 5421 int r; 5422 5423 if (vcpu->arch.mmu->direct_map) 5424 return 0; 5425 5426 gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL); 5427 5428 r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT); 5429 5430 return r; 5431 } 5432 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt); 5433 5434 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 error_code, 5435 void *insn, int insn_len) 5436 { 5437 int r, emulation_type = EMULTYPE_PF; 5438 bool direct = vcpu->arch.mmu->direct_map; 5439 5440 if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa))) 5441 return RET_PF_RETRY; 5442 5443 r = RET_PF_INVALID; 5444 if (unlikely(error_code & PFERR_RSVD_MASK)) { 5445 r = handle_mmio_page_fault(vcpu, cr2_or_gpa, direct); 5446 if (r == RET_PF_EMULATE) 5447 goto emulate; 5448 } 5449 5450 if (r == RET_PF_INVALID) { 5451 r = kvm_mmu_do_page_fault(vcpu, cr2_or_gpa, 5452 lower_32_bits(error_code), false); 5453 WARN_ON(r == RET_PF_INVALID); 5454 } 5455 5456 if (r == RET_PF_RETRY) 5457 return 1; 5458 if (r < 0) 5459 return r; 5460 5461 /* 5462 * Before emulating the instruction, check if the error code 5463 * was due to a RO violation while translating the guest page. 5464 * This can occur when using nested virtualization with nested 5465 * paging in both guests. If true, we simply unprotect the page 5466 * and resume the guest. 5467 */ 5468 if (vcpu->arch.mmu->direct_map && 5469 (error_code & PFERR_NESTED_GUEST_PAGE) == PFERR_NESTED_GUEST_PAGE) { 5470 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(cr2_or_gpa)); 5471 return 1; 5472 } 5473 5474 /* 5475 * vcpu->arch.mmu.page_fault returned RET_PF_EMULATE, but we can still 5476 * optimistically try to just unprotect the page and let the processor 5477 * re-execute the instruction that caused the page fault. Do not allow 5478 * retrying MMIO emulation, as it's not only pointless but could also 5479 * cause us to enter an infinite loop because the processor will keep 5480 * faulting on the non-existent MMIO address. Retrying an instruction 5481 * from a nested guest is also pointless and dangerous as we are only 5482 * explicitly shadowing L1's page tables, i.e. unprotecting something 5483 * for L1 isn't going to magically fix whatever issue cause L2 to fail. 5484 */ 5485 if (!mmio_info_in_cache(vcpu, cr2_or_gpa, direct) && !is_guest_mode(vcpu)) 5486 emulation_type |= EMULTYPE_ALLOW_RETRY_PF; 5487 emulate: 5488 /* 5489 * On AMD platforms, under certain conditions insn_len may be zero on #NPF. 5490 * This can happen if a guest gets a page-fault on data access but the HW 5491 * table walker is not able to read the instruction page (e.g instruction 5492 * page is not present in memory). In those cases we simply restart the 5493 * guest, with the exception of AMD Erratum 1096 which is unrecoverable. 5494 */ 5495 if (unlikely(insn && !insn_len)) { 5496 if (!kvm_x86_ops.need_emulation_on_page_fault(vcpu)) 5497 return 1; 5498 } 5499 5500 return x86_emulate_instruction(vcpu, cr2_or_gpa, emulation_type, insn, 5501 insn_len); 5502 } 5503 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault); 5504 5505 void kvm_mmu_invalidate_gva(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, 5506 gva_t gva, hpa_t root_hpa) 5507 { 5508 int i; 5509 5510 /* It's actually a GPA for vcpu->arch.guest_mmu. */ 5511 if (mmu != &vcpu->arch.guest_mmu) { 5512 /* INVLPG on a non-canonical address is a NOP according to the SDM. */ 5513 if (is_noncanonical_address(gva, vcpu)) 5514 return; 5515 5516 kvm_x86_ops.tlb_flush_gva(vcpu, gva); 5517 } 5518 5519 if (!mmu->invlpg) 5520 return; 5521 5522 if (root_hpa == INVALID_PAGE) { 5523 mmu->invlpg(vcpu, gva, mmu->root_hpa); 5524 5525 /* 5526 * INVLPG is required to invalidate any global mappings for the VA, 5527 * irrespective of PCID. Since it would take us roughly similar amount 5528 * of work to determine whether any of the prev_root mappings of the VA 5529 * is marked global, or to just sync it blindly, so we might as well 5530 * just always sync it. 5531 * 5532 * Mappings not reachable via the current cr3 or the prev_roots will be 5533 * synced when switching to that cr3, so nothing needs to be done here 5534 * for them. 5535 */ 5536 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 5537 if (VALID_PAGE(mmu->prev_roots[i].hpa)) 5538 mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa); 5539 } else { 5540 mmu->invlpg(vcpu, gva, root_hpa); 5541 } 5542 } 5543 EXPORT_SYMBOL_GPL(kvm_mmu_invalidate_gva); 5544 5545 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva) 5546 { 5547 kvm_mmu_invalidate_gva(vcpu, vcpu->arch.mmu, gva, INVALID_PAGE); 5548 ++vcpu->stat.invlpg; 5549 } 5550 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg); 5551 5552 5553 void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid) 5554 { 5555 struct kvm_mmu *mmu = vcpu->arch.mmu; 5556 bool tlb_flush = false; 5557 uint i; 5558 5559 if (pcid == kvm_get_active_pcid(vcpu)) { 5560 mmu->invlpg(vcpu, gva, mmu->root_hpa); 5561 tlb_flush = true; 5562 } 5563 5564 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) { 5565 if (VALID_PAGE(mmu->prev_roots[i].hpa) && 5566 pcid == kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd)) { 5567 mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa); 5568 tlb_flush = true; 5569 } 5570 } 5571 5572 if (tlb_flush) 5573 kvm_x86_ops.tlb_flush_gva(vcpu, gva); 5574 5575 ++vcpu->stat.invlpg; 5576 5577 /* 5578 * Mappings not reachable via the current cr3 or the prev_roots will be 5579 * synced when switching to that cr3, so nothing needs to be done here 5580 * for them. 5581 */ 5582 } 5583 EXPORT_SYMBOL_GPL(kvm_mmu_invpcid_gva); 5584 5585 void kvm_configure_mmu(bool enable_tdp, int tdp_max_root_level, 5586 int tdp_huge_page_level) 5587 { 5588 tdp_enabled = enable_tdp; 5589 max_tdp_level = tdp_max_root_level; 5590 5591 /* 5592 * max_huge_page_level reflects KVM's MMU capabilities irrespective 5593 * of kernel support, e.g. KVM may be capable of using 1GB pages when 5594 * the kernel is not. But, KVM never creates a page size greater than 5595 * what is used by the kernel for any given HVA, i.e. the kernel's 5596 * capabilities are ultimately consulted by kvm_mmu_hugepage_adjust(). 5597 */ 5598 if (tdp_enabled) 5599 max_huge_page_level = tdp_huge_page_level; 5600 else if (boot_cpu_has(X86_FEATURE_GBPAGES)) 5601 max_huge_page_level = PG_LEVEL_1G; 5602 else 5603 max_huge_page_level = PG_LEVEL_2M; 5604 } 5605 EXPORT_SYMBOL_GPL(kvm_configure_mmu); 5606 5607 /* The return value indicates if tlb flush on all vcpus is needed. */ 5608 typedef bool (*slot_level_handler) (struct kvm *kvm, struct kvm_rmap_head *rmap_head); 5609 5610 /* The caller should hold mmu-lock before calling this function. */ 5611 static __always_inline bool 5612 slot_handle_level_range(struct kvm *kvm, struct kvm_memory_slot *memslot, 5613 slot_level_handler fn, int start_level, int end_level, 5614 gfn_t start_gfn, gfn_t end_gfn, bool lock_flush_tlb) 5615 { 5616 struct slot_rmap_walk_iterator iterator; 5617 bool flush = false; 5618 5619 for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn, 5620 end_gfn, &iterator) { 5621 if (iterator.rmap) 5622 flush |= fn(kvm, iterator.rmap); 5623 5624 if (need_resched() || spin_needbreak(&kvm->mmu_lock)) { 5625 if (flush && lock_flush_tlb) { 5626 kvm_flush_remote_tlbs_with_address(kvm, 5627 start_gfn, 5628 iterator.gfn - start_gfn + 1); 5629 flush = false; 5630 } 5631 cond_resched_lock(&kvm->mmu_lock); 5632 } 5633 } 5634 5635 if (flush && lock_flush_tlb) { 5636 kvm_flush_remote_tlbs_with_address(kvm, start_gfn, 5637 end_gfn - start_gfn + 1); 5638 flush = false; 5639 } 5640 5641 return flush; 5642 } 5643 5644 static __always_inline bool 5645 slot_handle_level(struct kvm *kvm, struct kvm_memory_slot *memslot, 5646 slot_level_handler fn, int start_level, int end_level, 5647 bool lock_flush_tlb) 5648 { 5649 return slot_handle_level_range(kvm, memslot, fn, start_level, 5650 end_level, memslot->base_gfn, 5651 memslot->base_gfn + memslot->npages - 1, 5652 lock_flush_tlb); 5653 } 5654 5655 static __always_inline bool 5656 slot_handle_all_level(struct kvm *kvm, struct kvm_memory_slot *memslot, 5657 slot_level_handler fn, bool lock_flush_tlb) 5658 { 5659 return slot_handle_level(kvm, memslot, fn, PG_LEVEL_4K, 5660 KVM_MAX_HUGEPAGE_LEVEL, lock_flush_tlb); 5661 } 5662 5663 static __always_inline bool 5664 slot_handle_large_level(struct kvm *kvm, struct kvm_memory_slot *memslot, 5665 slot_level_handler fn, bool lock_flush_tlb) 5666 { 5667 return slot_handle_level(kvm, memslot, fn, PG_LEVEL_4K + 1, 5668 KVM_MAX_HUGEPAGE_LEVEL, lock_flush_tlb); 5669 } 5670 5671 static __always_inline bool 5672 slot_handle_leaf(struct kvm *kvm, struct kvm_memory_slot *memslot, 5673 slot_level_handler fn, bool lock_flush_tlb) 5674 { 5675 return slot_handle_level(kvm, memslot, fn, PG_LEVEL_4K, 5676 PG_LEVEL_4K, lock_flush_tlb); 5677 } 5678 5679 static void free_mmu_pages(struct kvm_mmu *mmu) 5680 { 5681 free_page((unsigned long)mmu->pae_root); 5682 free_page((unsigned long)mmu->lm_root); 5683 } 5684 5685 static int alloc_mmu_pages(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu) 5686 { 5687 struct page *page; 5688 int i; 5689 5690 /* 5691 * When using PAE paging, the four PDPTEs are treated as 'root' pages, 5692 * while the PDP table is a per-vCPU construct that's allocated at MMU 5693 * creation. When emulating 32-bit mode, cr3 is only 32 bits even on 5694 * x86_64. Therefore we need to allocate the PDP table in the first 5695 * 4GB of memory, which happens to fit the DMA32 zone. Except for 5696 * SVM's 32-bit NPT support, TDP paging doesn't use PAE paging and can 5697 * skip allocating the PDP table. 5698 */ 5699 if (tdp_enabled && kvm_mmu_get_tdp_level(vcpu) > PT32E_ROOT_LEVEL) 5700 return 0; 5701 5702 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_DMA32); 5703 if (!page) 5704 return -ENOMEM; 5705 5706 mmu->pae_root = page_address(page); 5707 for (i = 0; i < 4; ++i) 5708 mmu->pae_root[i] = INVALID_PAGE; 5709 5710 return 0; 5711 } 5712 5713 int kvm_mmu_create(struct kvm_vcpu *vcpu) 5714 { 5715 uint i; 5716 int ret; 5717 5718 vcpu->arch.mmu_pte_list_desc_cache.kmem_cache = pte_list_desc_cache; 5719 vcpu->arch.mmu_pte_list_desc_cache.gfp_zero = __GFP_ZERO; 5720 5721 vcpu->arch.mmu_page_header_cache.kmem_cache = mmu_page_header_cache; 5722 vcpu->arch.mmu_page_header_cache.gfp_zero = __GFP_ZERO; 5723 5724 vcpu->arch.mmu_shadow_page_cache.gfp_zero = __GFP_ZERO; 5725 5726 vcpu->arch.mmu = &vcpu->arch.root_mmu; 5727 vcpu->arch.walk_mmu = &vcpu->arch.root_mmu; 5728 5729 vcpu->arch.root_mmu.root_hpa = INVALID_PAGE; 5730 vcpu->arch.root_mmu.root_pgd = 0; 5731 vcpu->arch.root_mmu.translate_gpa = translate_gpa; 5732 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 5733 vcpu->arch.root_mmu.prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID; 5734 5735 vcpu->arch.guest_mmu.root_hpa = INVALID_PAGE; 5736 vcpu->arch.guest_mmu.root_pgd = 0; 5737 vcpu->arch.guest_mmu.translate_gpa = translate_gpa; 5738 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 5739 vcpu->arch.guest_mmu.prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID; 5740 5741 vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa; 5742 5743 ret = alloc_mmu_pages(vcpu, &vcpu->arch.guest_mmu); 5744 if (ret) 5745 return ret; 5746 5747 ret = alloc_mmu_pages(vcpu, &vcpu->arch.root_mmu); 5748 if (ret) 5749 goto fail_allocate_root; 5750 5751 return ret; 5752 fail_allocate_root: 5753 free_mmu_pages(&vcpu->arch.guest_mmu); 5754 return ret; 5755 } 5756 5757 #define BATCH_ZAP_PAGES 10 5758 static void kvm_zap_obsolete_pages(struct kvm *kvm) 5759 { 5760 struct kvm_mmu_page *sp, *node; 5761 int nr_zapped, batch = 0; 5762 5763 restart: 5764 list_for_each_entry_safe_reverse(sp, node, 5765 &kvm->arch.active_mmu_pages, link) { 5766 /* 5767 * No obsolete valid page exists before a newly created page 5768 * since active_mmu_pages is a FIFO list. 5769 */ 5770 if (!is_obsolete_sp(kvm, sp)) 5771 break; 5772 5773 /* 5774 * Invalid pages should never land back on the list of active 5775 * pages. Skip the bogus page, otherwise we'll get stuck in an 5776 * infinite loop if the page gets put back on the list (again). 5777 */ 5778 if (WARN_ON(sp->role.invalid)) 5779 continue; 5780 5781 /* 5782 * No need to flush the TLB since we're only zapping shadow 5783 * pages with an obsolete generation number and all vCPUS have 5784 * loaded a new root, i.e. the shadow pages being zapped cannot 5785 * be in active use by the guest. 5786 */ 5787 if (batch >= BATCH_ZAP_PAGES && 5788 cond_resched_lock(&kvm->mmu_lock)) { 5789 batch = 0; 5790 goto restart; 5791 } 5792 5793 if (__kvm_mmu_prepare_zap_page(kvm, sp, 5794 &kvm->arch.zapped_obsolete_pages, &nr_zapped)) { 5795 batch += nr_zapped; 5796 goto restart; 5797 } 5798 } 5799 5800 /* 5801 * Trigger a remote TLB flush before freeing the page tables to ensure 5802 * KVM is not in the middle of a lockless shadow page table walk, which 5803 * may reference the pages. 5804 */ 5805 kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages); 5806 } 5807 5808 /* 5809 * Fast invalidate all shadow pages and use lock-break technique 5810 * to zap obsolete pages. 5811 * 5812 * It's required when memslot is being deleted or VM is being 5813 * destroyed, in these cases, we should ensure that KVM MMU does 5814 * not use any resource of the being-deleted slot or all slots 5815 * after calling the function. 5816 */ 5817 static void kvm_mmu_zap_all_fast(struct kvm *kvm) 5818 { 5819 lockdep_assert_held(&kvm->slots_lock); 5820 5821 spin_lock(&kvm->mmu_lock); 5822 trace_kvm_mmu_zap_all_fast(kvm); 5823 5824 /* 5825 * Toggle mmu_valid_gen between '0' and '1'. Because slots_lock is 5826 * held for the entire duration of zapping obsolete pages, it's 5827 * impossible for there to be multiple invalid generations associated 5828 * with *valid* shadow pages at any given time, i.e. there is exactly 5829 * one valid generation and (at most) one invalid generation. 5830 */ 5831 kvm->arch.mmu_valid_gen = kvm->arch.mmu_valid_gen ? 0 : 1; 5832 5833 /* 5834 * Notify all vcpus to reload its shadow page table and flush TLB. 5835 * Then all vcpus will switch to new shadow page table with the new 5836 * mmu_valid_gen. 5837 * 5838 * Note: we need to do this under the protection of mmu_lock, 5839 * otherwise, vcpu would purge shadow page but miss tlb flush. 5840 */ 5841 kvm_reload_remote_mmus(kvm); 5842 5843 kvm_zap_obsolete_pages(kvm); 5844 spin_unlock(&kvm->mmu_lock); 5845 } 5846 5847 static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm) 5848 { 5849 return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages)); 5850 } 5851 5852 static void kvm_mmu_invalidate_zap_pages_in_memslot(struct kvm *kvm, 5853 struct kvm_memory_slot *slot, 5854 struct kvm_page_track_notifier_node *node) 5855 { 5856 kvm_mmu_zap_all_fast(kvm); 5857 } 5858 5859 void kvm_mmu_init_vm(struct kvm *kvm) 5860 { 5861 struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker; 5862 5863 node->track_write = kvm_mmu_pte_write; 5864 node->track_flush_slot = kvm_mmu_invalidate_zap_pages_in_memslot; 5865 kvm_page_track_register_notifier(kvm, node); 5866 } 5867 5868 void kvm_mmu_uninit_vm(struct kvm *kvm) 5869 { 5870 struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker; 5871 5872 kvm_page_track_unregister_notifier(kvm, node); 5873 } 5874 5875 void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end) 5876 { 5877 struct kvm_memslots *slots; 5878 struct kvm_memory_slot *memslot; 5879 int i; 5880 5881 spin_lock(&kvm->mmu_lock); 5882 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { 5883 slots = __kvm_memslots(kvm, i); 5884 kvm_for_each_memslot(memslot, slots) { 5885 gfn_t start, end; 5886 5887 start = max(gfn_start, memslot->base_gfn); 5888 end = min(gfn_end, memslot->base_gfn + memslot->npages); 5889 if (start >= end) 5890 continue; 5891 5892 slot_handle_level_range(kvm, memslot, kvm_zap_rmapp, 5893 PG_LEVEL_4K, 5894 KVM_MAX_HUGEPAGE_LEVEL, 5895 start, end - 1, true); 5896 } 5897 } 5898 5899 spin_unlock(&kvm->mmu_lock); 5900 } 5901 5902 static bool slot_rmap_write_protect(struct kvm *kvm, 5903 struct kvm_rmap_head *rmap_head) 5904 { 5905 return __rmap_write_protect(kvm, rmap_head, false); 5906 } 5907 5908 void kvm_mmu_slot_remove_write_access(struct kvm *kvm, 5909 struct kvm_memory_slot *memslot, 5910 int start_level) 5911 { 5912 bool flush; 5913 5914 spin_lock(&kvm->mmu_lock); 5915 flush = slot_handle_level(kvm, memslot, slot_rmap_write_protect, 5916 start_level, KVM_MAX_HUGEPAGE_LEVEL, false); 5917 spin_unlock(&kvm->mmu_lock); 5918 5919 /* 5920 * We can flush all the TLBs out of the mmu lock without TLB 5921 * corruption since we just change the spte from writable to 5922 * readonly so that we only need to care the case of changing 5923 * spte from present to present (changing the spte from present 5924 * to nonpresent will flush all the TLBs immediately), in other 5925 * words, the only case we care is mmu_spte_update() where we 5926 * have checked SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE 5927 * instead of PT_WRITABLE_MASK, that means it does not depend 5928 * on PT_WRITABLE_MASK anymore. 5929 */ 5930 if (flush) 5931 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot); 5932 } 5933 5934 static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm, 5935 struct kvm_rmap_head *rmap_head) 5936 { 5937 u64 *sptep; 5938 struct rmap_iterator iter; 5939 int need_tlb_flush = 0; 5940 kvm_pfn_t pfn; 5941 struct kvm_mmu_page *sp; 5942 5943 restart: 5944 for_each_rmap_spte(rmap_head, &iter, sptep) { 5945 sp = sptep_to_sp(sptep); 5946 pfn = spte_to_pfn(*sptep); 5947 5948 /* 5949 * We cannot do huge page mapping for indirect shadow pages, 5950 * which are found on the last rmap (level = 1) when not using 5951 * tdp; such shadow pages are synced with the page table in 5952 * the guest, and the guest page table is using 4K page size 5953 * mapping if the indirect sp has level = 1. 5954 */ 5955 if (sp->role.direct && !kvm_is_reserved_pfn(pfn) && 5956 (kvm_is_zone_device_pfn(pfn) || 5957 PageCompound(pfn_to_page(pfn)))) { 5958 pte_list_remove(rmap_head, sptep); 5959 5960 if (kvm_available_flush_tlb_with_range()) 5961 kvm_flush_remote_tlbs_with_address(kvm, sp->gfn, 5962 KVM_PAGES_PER_HPAGE(sp->role.level)); 5963 else 5964 need_tlb_flush = 1; 5965 5966 goto restart; 5967 } 5968 } 5969 5970 return need_tlb_flush; 5971 } 5972 5973 void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm, 5974 const struct kvm_memory_slot *memslot) 5975 { 5976 /* FIXME: const-ify all uses of struct kvm_memory_slot. */ 5977 spin_lock(&kvm->mmu_lock); 5978 slot_handle_leaf(kvm, (struct kvm_memory_slot *)memslot, 5979 kvm_mmu_zap_collapsible_spte, true); 5980 spin_unlock(&kvm->mmu_lock); 5981 } 5982 5983 void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm, 5984 struct kvm_memory_slot *memslot) 5985 { 5986 /* 5987 * All current use cases for flushing the TLBs for a specific memslot 5988 * are related to dirty logging, and do the TLB flush out of mmu_lock. 5989 * The interaction between the various operations on memslot must be 5990 * serialized by slots_locks to ensure the TLB flush from one operation 5991 * is observed by any other operation on the same memslot. 5992 */ 5993 lockdep_assert_held(&kvm->slots_lock); 5994 kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn, 5995 memslot->npages); 5996 } 5997 5998 void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm, 5999 struct kvm_memory_slot *memslot) 6000 { 6001 bool flush; 6002 6003 spin_lock(&kvm->mmu_lock); 6004 flush = slot_handle_leaf(kvm, memslot, __rmap_clear_dirty, false); 6005 spin_unlock(&kvm->mmu_lock); 6006 6007 /* 6008 * It's also safe to flush TLBs out of mmu lock here as currently this 6009 * function is only used for dirty logging, in which case flushing TLB 6010 * out of mmu lock also guarantees no dirty pages will be lost in 6011 * dirty_bitmap. 6012 */ 6013 if (flush) 6014 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot); 6015 } 6016 EXPORT_SYMBOL_GPL(kvm_mmu_slot_leaf_clear_dirty); 6017 6018 void kvm_mmu_slot_largepage_remove_write_access(struct kvm *kvm, 6019 struct kvm_memory_slot *memslot) 6020 { 6021 bool flush; 6022 6023 spin_lock(&kvm->mmu_lock); 6024 flush = slot_handle_large_level(kvm, memslot, slot_rmap_write_protect, 6025 false); 6026 spin_unlock(&kvm->mmu_lock); 6027 6028 if (flush) 6029 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot); 6030 } 6031 EXPORT_SYMBOL_GPL(kvm_mmu_slot_largepage_remove_write_access); 6032 6033 void kvm_mmu_slot_set_dirty(struct kvm *kvm, 6034 struct kvm_memory_slot *memslot) 6035 { 6036 bool flush; 6037 6038 spin_lock(&kvm->mmu_lock); 6039 flush = slot_handle_all_level(kvm, memslot, __rmap_set_dirty, false); 6040 spin_unlock(&kvm->mmu_lock); 6041 6042 if (flush) 6043 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot); 6044 } 6045 EXPORT_SYMBOL_GPL(kvm_mmu_slot_set_dirty); 6046 6047 void kvm_mmu_zap_all(struct kvm *kvm) 6048 { 6049 struct kvm_mmu_page *sp, *node; 6050 LIST_HEAD(invalid_list); 6051 int ign; 6052 6053 spin_lock(&kvm->mmu_lock); 6054 restart: 6055 list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link) { 6056 if (WARN_ON(sp->role.invalid)) 6057 continue; 6058 if (__kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list, &ign)) 6059 goto restart; 6060 if (cond_resched_lock(&kvm->mmu_lock)) 6061 goto restart; 6062 } 6063 6064 kvm_mmu_commit_zap_page(kvm, &invalid_list); 6065 spin_unlock(&kvm->mmu_lock); 6066 } 6067 6068 void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen) 6069 { 6070 WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS); 6071 6072 gen &= MMIO_SPTE_GEN_MASK; 6073 6074 /* 6075 * Generation numbers are incremented in multiples of the number of 6076 * address spaces in order to provide unique generations across all 6077 * address spaces. Strip what is effectively the address space 6078 * modifier prior to checking for a wrap of the MMIO generation so 6079 * that a wrap in any address space is detected. 6080 */ 6081 gen &= ~((u64)KVM_ADDRESS_SPACE_NUM - 1); 6082 6083 /* 6084 * The very rare case: if the MMIO generation number has wrapped, 6085 * zap all shadow pages. 6086 */ 6087 if (unlikely(gen == 0)) { 6088 kvm_debug_ratelimited("kvm: zapping shadow pages for mmio generation wraparound\n"); 6089 kvm_mmu_zap_all_fast(kvm); 6090 } 6091 } 6092 6093 static unsigned long 6094 mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc) 6095 { 6096 struct kvm *kvm; 6097 int nr_to_scan = sc->nr_to_scan; 6098 unsigned long freed = 0; 6099 6100 mutex_lock(&kvm_lock); 6101 6102 list_for_each_entry(kvm, &vm_list, vm_list) { 6103 int idx; 6104 LIST_HEAD(invalid_list); 6105 6106 /* 6107 * Never scan more than sc->nr_to_scan VM instances. 6108 * Will not hit this condition practically since we do not try 6109 * to shrink more than one VM and it is very unlikely to see 6110 * !n_used_mmu_pages so many times. 6111 */ 6112 if (!nr_to_scan--) 6113 break; 6114 /* 6115 * n_used_mmu_pages is accessed without holding kvm->mmu_lock 6116 * here. We may skip a VM instance errorneosly, but we do not 6117 * want to shrink a VM that only started to populate its MMU 6118 * anyway. 6119 */ 6120 if (!kvm->arch.n_used_mmu_pages && 6121 !kvm_has_zapped_obsolete_pages(kvm)) 6122 continue; 6123 6124 idx = srcu_read_lock(&kvm->srcu); 6125 spin_lock(&kvm->mmu_lock); 6126 6127 if (kvm_has_zapped_obsolete_pages(kvm)) { 6128 kvm_mmu_commit_zap_page(kvm, 6129 &kvm->arch.zapped_obsolete_pages); 6130 goto unlock; 6131 } 6132 6133 freed = kvm_mmu_zap_oldest_mmu_pages(kvm, sc->nr_to_scan); 6134 6135 unlock: 6136 spin_unlock(&kvm->mmu_lock); 6137 srcu_read_unlock(&kvm->srcu, idx); 6138 6139 /* 6140 * unfair on small ones 6141 * per-vm shrinkers cry out 6142 * sadness comes quickly 6143 */ 6144 list_move_tail(&kvm->vm_list, &vm_list); 6145 break; 6146 } 6147 6148 mutex_unlock(&kvm_lock); 6149 return freed; 6150 } 6151 6152 static unsigned long 6153 mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc) 6154 { 6155 return percpu_counter_read_positive(&kvm_total_used_mmu_pages); 6156 } 6157 6158 static struct shrinker mmu_shrinker = { 6159 .count_objects = mmu_shrink_count, 6160 .scan_objects = mmu_shrink_scan, 6161 .seeks = DEFAULT_SEEKS * 10, 6162 }; 6163 6164 static void mmu_destroy_caches(void) 6165 { 6166 kmem_cache_destroy(pte_list_desc_cache); 6167 kmem_cache_destroy(mmu_page_header_cache); 6168 } 6169 6170 static void kvm_set_mmio_spte_mask(void) 6171 { 6172 u64 mask; 6173 6174 /* 6175 * Set a reserved PA bit in MMIO SPTEs to generate page faults with 6176 * PFEC.RSVD=1 on MMIO accesses. 64-bit PTEs (PAE, x86-64, and EPT 6177 * paging) support a maximum of 52 bits of PA, i.e. if the CPU supports 6178 * 52-bit physical addresses then there are no reserved PA bits in the 6179 * PTEs and so the reserved PA approach must be disabled. 6180 */ 6181 if (shadow_phys_bits < 52) 6182 mask = BIT_ULL(51) | PT_PRESENT_MASK; 6183 else 6184 mask = 0; 6185 6186 kvm_mmu_set_mmio_spte_mask(mask, ACC_WRITE_MASK | ACC_USER_MASK); 6187 } 6188 6189 static bool get_nx_auto_mode(void) 6190 { 6191 /* Return true when CPU has the bug, and mitigations are ON */ 6192 return boot_cpu_has_bug(X86_BUG_ITLB_MULTIHIT) && !cpu_mitigations_off(); 6193 } 6194 6195 static void __set_nx_huge_pages(bool val) 6196 { 6197 nx_huge_pages = itlb_multihit_kvm_mitigation = val; 6198 } 6199 6200 static int set_nx_huge_pages(const char *val, const struct kernel_param *kp) 6201 { 6202 bool old_val = nx_huge_pages; 6203 bool new_val; 6204 6205 /* In "auto" mode deploy workaround only if CPU has the bug. */ 6206 if (sysfs_streq(val, "off")) 6207 new_val = 0; 6208 else if (sysfs_streq(val, "force")) 6209 new_val = 1; 6210 else if (sysfs_streq(val, "auto")) 6211 new_val = get_nx_auto_mode(); 6212 else if (strtobool(val, &new_val) < 0) 6213 return -EINVAL; 6214 6215 __set_nx_huge_pages(new_val); 6216 6217 if (new_val != old_val) { 6218 struct kvm *kvm; 6219 6220 mutex_lock(&kvm_lock); 6221 6222 list_for_each_entry(kvm, &vm_list, vm_list) { 6223 mutex_lock(&kvm->slots_lock); 6224 kvm_mmu_zap_all_fast(kvm); 6225 mutex_unlock(&kvm->slots_lock); 6226 6227 wake_up_process(kvm->arch.nx_lpage_recovery_thread); 6228 } 6229 mutex_unlock(&kvm_lock); 6230 } 6231 6232 return 0; 6233 } 6234 6235 int kvm_mmu_module_init(void) 6236 { 6237 int ret = -ENOMEM; 6238 6239 if (nx_huge_pages == -1) 6240 __set_nx_huge_pages(get_nx_auto_mode()); 6241 6242 /* 6243 * MMU roles use union aliasing which is, generally speaking, an 6244 * undefined behavior. However, we supposedly know how compilers behave 6245 * and the current status quo is unlikely to change. Guardians below are 6246 * supposed to let us know if the assumption becomes false. 6247 */ 6248 BUILD_BUG_ON(sizeof(union kvm_mmu_page_role) != sizeof(u32)); 6249 BUILD_BUG_ON(sizeof(union kvm_mmu_extended_role) != sizeof(u32)); 6250 BUILD_BUG_ON(sizeof(union kvm_mmu_role) != sizeof(u64)); 6251 6252 kvm_mmu_reset_all_pte_masks(); 6253 6254 kvm_set_mmio_spte_mask(); 6255 6256 pte_list_desc_cache = kmem_cache_create("pte_list_desc", 6257 sizeof(struct pte_list_desc), 6258 0, SLAB_ACCOUNT, NULL); 6259 if (!pte_list_desc_cache) 6260 goto out; 6261 6262 mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header", 6263 sizeof(struct kvm_mmu_page), 6264 0, SLAB_ACCOUNT, NULL); 6265 if (!mmu_page_header_cache) 6266 goto out; 6267 6268 if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL)) 6269 goto out; 6270 6271 ret = register_shrinker(&mmu_shrinker); 6272 if (ret) 6273 goto out; 6274 6275 return 0; 6276 6277 out: 6278 mmu_destroy_caches(); 6279 return ret; 6280 } 6281 6282 /* 6283 * Calculate mmu pages needed for kvm. 6284 */ 6285 unsigned long kvm_mmu_calculate_default_mmu_pages(struct kvm *kvm) 6286 { 6287 unsigned long nr_mmu_pages; 6288 unsigned long nr_pages = 0; 6289 struct kvm_memslots *slots; 6290 struct kvm_memory_slot *memslot; 6291 int i; 6292 6293 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { 6294 slots = __kvm_memslots(kvm, i); 6295 6296 kvm_for_each_memslot(memslot, slots) 6297 nr_pages += memslot->npages; 6298 } 6299 6300 nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000; 6301 nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES); 6302 6303 return nr_mmu_pages; 6304 } 6305 6306 void kvm_mmu_destroy(struct kvm_vcpu *vcpu) 6307 { 6308 kvm_mmu_unload(vcpu); 6309 free_mmu_pages(&vcpu->arch.root_mmu); 6310 free_mmu_pages(&vcpu->arch.guest_mmu); 6311 mmu_free_memory_caches(vcpu); 6312 } 6313 6314 void kvm_mmu_module_exit(void) 6315 { 6316 mmu_destroy_caches(); 6317 percpu_counter_destroy(&kvm_total_used_mmu_pages); 6318 unregister_shrinker(&mmu_shrinker); 6319 mmu_audit_disable(); 6320 } 6321 6322 static int set_nx_huge_pages_recovery_ratio(const char *val, const struct kernel_param *kp) 6323 { 6324 unsigned int old_val; 6325 int err; 6326 6327 old_val = nx_huge_pages_recovery_ratio; 6328 err = param_set_uint(val, kp); 6329 if (err) 6330 return err; 6331 6332 if (READ_ONCE(nx_huge_pages) && 6333 !old_val && nx_huge_pages_recovery_ratio) { 6334 struct kvm *kvm; 6335 6336 mutex_lock(&kvm_lock); 6337 6338 list_for_each_entry(kvm, &vm_list, vm_list) 6339 wake_up_process(kvm->arch.nx_lpage_recovery_thread); 6340 6341 mutex_unlock(&kvm_lock); 6342 } 6343 6344 return err; 6345 } 6346 6347 static void kvm_recover_nx_lpages(struct kvm *kvm) 6348 { 6349 int rcu_idx; 6350 struct kvm_mmu_page *sp; 6351 unsigned int ratio; 6352 LIST_HEAD(invalid_list); 6353 ulong to_zap; 6354 6355 rcu_idx = srcu_read_lock(&kvm->srcu); 6356 spin_lock(&kvm->mmu_lock); 6357 6358 ratio = READ_ONCE(nx_huge_pages_recovery_ratio); 6359 to_zap = ratio ? DIV_ROUND_UP(kvm->stat.nx_lpage_splits, ratio) : 0; 6360 while (to_zap && !list_empty(&kvm->arch.lpage_disallowed_mmu_pages)) { 6361 /* 6362 * We use a separate list instead of just using active_mmu_pages 6363 * because the number of lpage_disallowed pages is expected to 6364 * be relatively small compared to the total. 6365 */ 6366 sp = list_first_entry(&kvm->arch.lpage_disallowed_mmu_pages, 6367 struct kvm_mmu_page, 6368 lpage_disallowed_link); 6369 WARN_ON_ONCE(!sp->lpage_disallowed); 6370 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list); 6371 WARN_ON_ONCE(sp->lpage_disallowed); 6372 6373 if (!--to_zap || need_resched() || spin_needbreak(&kvm->mmu_lock)) { 6374 kvm_mmu_commit_zap_page(kvm, &invalid_list); 6375 if (to_zap) 6376 cond_resched_lock(&kvm->mmu_lock); 6377 } 6378 } 6379 6380 spin_unlock(&kvm->mmu_lock); 6381 srcu_read_unlock(&kvm->srcu, rcu_idx); 6382 } 6383 6384 static long get_nx_lpage_recovery_timeout(u64 start_time) 6385 { 6386 return READ_ONCE(nx_huge_pages) && READ_ONCE(nx_huge_pages_recovery_ratio) 6387 ? start_time + 60 * HZ - get_jiffies_64() 6388 : MAX_SCHEDULE_TIMEOUT; 6389 } 6390 6391 static int kvm_nx_lpage_recovery_worker(struct kvm *kvm, uintptr_t data) 6392 { 6393 u64 start_time; 6394 long remaining_time; 6395 6396 while (true) { 6397 start_time = get_jiffies_64(); 6398 remaining_time = get_nx_lpage_recovery_timeout(start_time); 6399 6400 set_current_state(TASK_INTERRUPTIBLE); 6401 while (!kthread_should_stop() && remaining_time > 0) { 6402 schedule_timeout(remaining_time); 6403 remaining_time = get_nx_lpage_recovery_timeout(start_time); 6404 set_current_state(TASK_INTERRUPTIBLE); 6405 } 6406 6407 set_current_state(TASK_RUNNING); 6408 6409 if (kthread_should_stop()) 6410 return 0; 6411 6412 kvm_recover_nx_lpages(kvm); 6413 } 6414 } 6415 6416 int kvm_mmu_post_init_vm(struct kvm *kvm) 6417 { 6418 int err; 6419 6420 err = kvm_vm_create_worker_thread(kvm, kvm_nx_lpage_recovery_worker, 0, 6421 "kvm-nx-lpage-recovery", 6422 &kvm->arch.nx_lpage_recovery_thread); 6423 if (!err) 6424 kthread_unpark(kvm->arch.nx_lpage_recovery_thread); 6425 6426 return err; 6427 } 6428 6429 void kvm_mmu_pre_destroy_vm(struct kvm *kvm) 6430 { 6431 if (kvm->arch.nx_lpage_recovery_thread) 6432 kthread_stop(kvm->arch.nx_lpage_recovery_thread); 6433 } 6434