1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * This module enables machines with Intel VT-x extensions to run virtual 6 * machines without emulation or binary translation. 7 * 8 * MMU support 9 * 10 * Copyright (C) 2006 Qumranet, Inc. 11 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 12 * 13 * Authors: 14 * Yaniv Kamay <yaniv@qumranet.com> 15 * Avi Kivity <avi@qumranet.com> 16 */ 17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 18 19 #include "irq.h" 20 #include "ioapic.h" 21 #include "mmu.h" 22 #include "mmu_internal.h" 23 #include "tdp_mmu.h" 24 #include "x86.h" 25 #include "kvm_cache_regs.h" 26 #include "smm.h" 27 #include "kvm_emulate.h" 28 #include "cpuid.h" 29 #include "spte.h" 30 31 #include <linux/kvm_host.h> 32 #include <linux/types.h> 33 #include <linux/string.h> 34 #include <linux/mm.h> 35 #include <linux/highmem.h> 36 #include <linux/moduleparam.h> 37 #include <linux/export.h> 38 #include <linux/swap.h> 39 #include <linux/hugetlb.h> 40 #include <linux/compiler.h> 41 #include <linux/srcu.h> 42 #include <linux/slab.h> 43 #include <linux/sched/signal.h> 44 #include <linux/uaccess.h> 45 #include <linux/hash.h> 46 #include <linux/kern_levels.h> 47 #include <linux/kstrtox.h> 48 #include <linux/kthread.h> 49 50 #include <asm/page.h> 51 #include <asm/memtype.h> 52 #include <asm/cmpxchg.h> 53 #include <asm/io.h> 54 #include <asm/set_memory.h> 55 #include <asm/vmx.h> 56 #include <asm/kvm_page_track.h> 57 #include "trace.h" 58 59 extern bool itlb_multihit_kvm_mitigation; 60 61 int __read_mostly nx_huge_pages = -1; 62 static uint __read_mostly nx_huge_pages_recovery_period_ms; 63 #ifdef CONFIG_PREEMPT_RT 64 /* Recovery can cause latency spikes, disable it for PREEMPT_RT. */ 65 static uint __read_mostly nx_huge_pages_recovery_ratio = 0; 66 #else 67 static uint __read_mostly nx_huge_pages_recovery_ratio = 60; 68 #endif 69 70 static int set_nx_huge_pages(const char *val, const struct kernel_param *kp); 71 static int set_nx_huge_pages_recovery_param(const char *val, const struct kernel_param *kp); 72 73 static const struct kernel_param_ops nx_huge_pages_ops = { 74 .set = set_nx_huge_pages, 75 .get = param_get_bool, 76 }; 77 78 static const struct kernel_param_ops nx_huge_pages_recovery_param_ops = { 79 .set = set_nx_huge_pages_recovery_param, 80 .get = param_get_uint, 81 }; 82 83 module_param_cb(nx_huge_pages, &nx_huge_pages_ops, &nx_huge_pages, 0644); 84 __MODULE_PARM_TYPE(nx_huge_pages, "bool"); 85 module_param_cb(nx_huge_pages_recovery_ratio, &nx_huge_pages_recovery_param_ops, 86 &nx_huge_pages_recovery_ratio, 0644); 87 __MODULE_PARM_TYPE(nx_huge_pages_recovery_ratio, "uint"); 88 module_param_cb(nx_huge_pages_recovery_period_ms, &nx_huge_pages_recovery_param_ops, 89 &nx_huge_pages_recovery_period_ms, 0644); 90 __MODULE_PARM_TYPE(nx_huge_pages_recovery_period_ms, "uint"); 91 92 static bool __read_mostly force_flush_and_sync_on_reuse; 93 module_param_named(flush_on_reuse, force_flush_and_sync_on_reuse, bool, 0644); 94 95 /* 96 * When setting this variable to true it enables Two-Dimensional-Paging 97 * where the hardware walks 2 page tables: 98 * 1. the guest-virtual to guest-physical 99 * 2. while doing 1. it walks guest-physical to host-physical 100 * If the hardware supports that we don't need to do shadow paging. 101 */ 102 bool tdp_enabled = false; 103 104 static bool __ro_after_init tdp_mmu_allowed; 105 106 #ifdef CONFIG_X86_64 107 bool __read_mostly tdp_mmu_enabled = true; 108 module_param_named(tdp_mmu, tdp_mmu_enabled, bool, 0444); 109 #endif 110 111 static int max_huge_page_level __read_mostly; 112 static int tdp_root_level __read_mostly; 113 static int max_tdp_level __read_mostly; 114 115 #ifdef MMU_DEBUG 116 bool dbg = 0; 117 module_param(dbg, bool, 0644); 118 #endif 119 120 #define PTE_PREFETCH_NUM 8 121 122 #include <trace/events/kvm.h> 123 124 /* make pte_list_desc fit well in cache lines */ 125 #define PTE_LIST_EXT 14 126 127 /* 128 * struct pte_list_desc is the core data structure used to implement a custom 129 * list for tracking a set of related SPTEs, e.g. all the SPTEs that map a 130 * given GFN when used in the context of rmaps. Using a custom list allows KVM 131 * to optimize for the common case where many GFNs will have at most a handful 132 * of SPTEs pointing at them, i.e. allows packing multiple SPTEs into a small 133 * memory footprint, which in turn improves runtime performance by exploiting 134 * cache locality. 135 * 136 * A list is comprised of one or more pte_list_desc objects (descriptors). 137 * Each individual descriptor stores up to PTE_LIST_EXT SPTEs. If a descriptor 138 * is full and a new SPTEs needs to be added, a new descriptor is allocated and 139 * becomes the head of the list. This means that by definitions, all tail 140 * descriptors are full. 141 * 142 * Note, the meta data fields are deliberately placed at the start of the 143 * structure to optimize the cacheline layout; accessing the descriptor will 144 * touch only a single cacheline so long as @spte_count<=6 (or if only the 145 * descriptors metadata is accessed). 146 */ 147 struct pte_list_desc { 148 struct pte_list_desc *more; 149 /* The number of PTEs stored in _this_ descriptor. */ 150 u32 spte_count; 151 /* The number of PTEs stored in all tails of this descriptor. */ 152 u32 tail_count; 153 u64 *sptes[PTE_LIST_EXT]; 154 }; 155 156 struct kvm_shadow_walk_iterator { 157 u64 addr; 158 hpa_t shadow_addr; 159 u64 *sptep; 160 int level; 161 unsigned index; 162 }; 163 164 #define for_each_shadow_entry_using_root(_vcpu, _root, _addr, _walker) \ 165 for (shadow_walk_init_using_root(&(_walker), (_vcpu), \ 166 (_root), (_addr)); \ 167 shadow_walk_okay(&(_walker)); \ 168 shadow_walk_next(&(_walker))) 169 170 #define for_each_shadow_entry(_vcpu, _addr, _walker) \ 171 for (shadow_walk_init(&(_walker), _vcpu, _addr); \ 172 shadow_walk_okay(&(_walker)); \ 173 shadow_walk_next(&(_walker))) 174 175 #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte) \ 176 for (shadow_walk_init(&(_walker), _vcpu, _addr); \ 177 shadow_walk_okay(&(_walker)) && \ 178 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; }); \ 179 __shadow_walk_next(&(_walker), spte)) 180 181 static struct kmem_cache *pte_list_desc_cache; 182 struct kmem_cache *mmu_page_header_cache; 183 static struct percpu_counter kvm_total_used_mmu_pages; 184 185 static void mmu_spte_set(u64 *sptep, u64 spte); 186 187 struct kvm_mmu_role_regs { 188 const unsigned long cr0; 189 const unsigned long cr4; 190 const u64 efer; 191 }; 192 193 #define CREATE_TRACE_POINTS 194 #include "mmutrace.h" 195 196 /* 197 * Yes, lot's of underscores. They're a hint that you probably shouldn't be 198 * reading from the role_regs. Once the root_role is constructed, it becomes 199 * the single source of truth for the MMU's state. 200 */ 201 #define BUILD_MMU_ROLE_REGS_ACCESSOR(reg, name, flag) \ 202 static inline bool __maybe_unused \ 203 ____is_##reg##_##name(const struct kvm_mmu_role_regs *regs) \ 204 { \ 205 return !!(regs->reg & flag); \ 206 } 207 BUILD_MMU_ROLE_REGS_ACCESSOR(cr0, pg, X86_CR0_PG); 208 BUILD_MMU_ROLE_REGS_ACCESSOR(cr0, wp, X86_CR0_WP); 209 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pse, X86_CR4_PSE); 210 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pae, X86_CR4_PAE); 211 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, smep, X86_CR4_SMEP); 212 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, smap, X86_CR4_SMAP); 213 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pke, X86_CR4_PKE); 214 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, la57, X86_CR4_LA57); 215 BUILD_MMU_ROLE_REGS_ACCESSOR(efer, nx, EFER_NX); 216 BUILD_MMU_ROLE_REGS_ACCESSOR(efer, lma, EFER_LMA); 217 218 /* 219 * The MMU itself (with a valid role) is the single source of truth for the 220 * MMU. Do not use the regs used to build the MMU/role, nor the vCPU. The 221 * regs don't account for dependencies, e.g. clearing CR4 bits if CR0.PG=1, 222 * and the vCPU may be incorrect/irrelevant. 223 */ 224 #define BUILD_MMU_ROLE_ACCESSOR(base_or_ext, reg, name) \ 225 static inline bool __maybe_unused is_##reg##_##name(struct kvm_mmu *mmu) \ 226 { \ 227 return !!(mmu->cpu_role. base_or_ext . reg##_##name); \ 228 } 229 BUILD_MMU_ROLE_ACCESSOR(base, cr0, wp); 230 BUILD_MMU_ROLE_ACCESSOR(ext, cr4, pse); 231 BUILD_MMU_ROLE_ACCESSOR(ext, cr4, smep); 232 BUILD_MMU_ROLE_ACCESSOR(ext, cr4, smap); 233 BUILD_MMU_ROLE_ACCESSOR(ext, cr4, pke); 234 BUILD_MMU_ROLE_ACCESSOR(ext, cr4, la57); 235 BUILD_MMU_ROLE_ACCESSOR(base, efer, nx); 236 BUILD_MMU_ROLE_ACCESSOR(ext, efer, lma); 237 238 static inline bool is_cr0_pg(struct kvm_mmu *mmu) 239 { 240 return mmu->cpu_role.base.level > 0; 241 } 242 243 static inline bool is_cr4_pae(struct kvm_mmu *mmu) 244 { 245 return !mmu->cpu_role.base.has_4_byte_gpte; 246 } 247 248 static struct kvm_mmu_role_regs vcpu_to_role_regs(struct kvm_vcpu *vcpu) 249 { 250 struct kvm_mmu_role_regs regs = { 251 .cr0 = kvm_read_cr0_bits(vcpu, KVM_MMU_CR0_ROLE_BITS), 252 .cr4 = kvm_read_cr4_bits(vcpu, KVM_MMU_CR4_ROLE_BITS), 253 .efer = vcpu->arch.efer, 254 }; 255 256 return regs; 257 } 258 259 static unsigned long get_guest_cr3(struct kvm_vcpu *vcpu) 260 { 261 return kvm_read_cr3(vcpu); 262 } 263 264 static inline unsigned long kvm_mmu_get_guest_pgd(struct kvm_vcpu *vcpu, 265 struct kvm_mmu *mmu) 266 { 267 if (IS_ENABLED(CONFIG_RETPOLINE) && mmu->get_guest_pgd == get_guest_cr3) 268 return kvm_read_cr3(vcpu); 269 270 return mmu->get_guest_pgd(vcpu); 271 } 272 273 static inline bool kvm_available_flush_remote_tlbs_range(void) 274 { 275 return kvm_x86_ops.flush_remote_tlbs_range; 276 } 277 278 void kvm_flush_remote_tlbs_range(struct kvm *kvm, gfn_t start_gfn, 279 gfn_t nr_pages) 280 { 281 int ret = -EOPNOTSUPP; 282 283 if (kvm_x86_ops.flush_remote_tlbs_range) 284 ret = static_call(kvm_x86_flush_remote_tlbs_range)(kvm, start_gfn, 285 nr_pages); 286 if (ret) 287 kvm_flush_remote_tlbs(kvm); 288 } 289 290 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index); 291 292 /* Flush the range of guest memory mapped by the given SPTE. */ 293 static void kvm_flush_remote_tlbs_sptep(struct kvm *kvm, u64 *sptep) 294 { 295 struct kvm_mmu_page *sp = sptep_to_sp(sptep); 296 gfn_t gfn = kvm_mmu_page_get_gfn(sp, spte_index(sptep)); 297 298 kvm_flush_remote_tlbs_gfn(kvm, gfn, sp->role.level); 299 } 300 301 static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn, 302 unsigned int access) 303 { 304 u64 spte = make_mmio_spte(vcpu, gfn, access); 305 306 trace_mark_mmio_spte(sptep, gfn, spte); 307 mmu_spte_set(sptep, spte); 308 } 309 310 static gfn_t get_mmio_spte_gfn(u64 spte) 311 { 312 u64 gpa = spte & shadow_nonpresent_or_rsvd_lower_gfn_mask; 313 314 gpa |= (spte >> SHADOW_NONPRESENT_OR_RSVD_MASK_LEN) 315 & shadow_nonpresent_or_rsvd_mask; 316 317 return gpa >> PAGE_SHIFT; 318 } 319 320 static unsigned get_mmio_spte_access(u64 spte) 321 { 322 return spte & shadow_mmio_access_mask; 323 } 324 325 static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte) 326 { 327 u64 kvm_gen, spte_gen, gen; 328 329 gen = kvm_vcpu_memslots(vcpu)->generation; 330 if (unlikely(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS)) 331 return false; 332 333 kvm_gen = gen & MMIO_SPTE_GEN_MASK; 334 spte_gen = get_mmio_spte_generation(spte); 335 336 trace_check_mmio_spte(spte, kvm_gen, spte_gen); 337 return likely(kvm_gen == spte_gen); 338 } 339 340 static int is_cpuid_PSE36(void) 341 { 342 return 1; 343 } 344 345 #ifdef CONFIG_X86_64 346 static void __set_spte(u64 *sptep, u64 spte) 347 { 348 WRITE_ONCE(*sptep, spte); 349 } 350 351 static void __update_clear_spte_fast(u64 *sptep, u64 spte) 352 { 353 WRITE_ONCE(*sptep, spte); 354 } 355 356 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte) 357 { 358 return xchg(sptep, spte); 359 } 360 361 static u64 __get_spte_lockless(u64 *sptep) 362 { 363 return READ_ONCE(*sptep); 364 } 365 #else 366 union split_spte { 367 struct { 368 u32 spte_low; 369 u32 spte_high; 370 }; 371 u64 spte; 372 }; 373 374 static void count_spte_clear(u64 *sptep, u64 spte) 375 { 376 struct kvm_mmu_page *sp = sptep_to_sp(sptep); 377 378 if (is_shadow_present_pte(spte)) 379 return; 380 381 /* Ensure the spte is completely set before we increase the count */ 382 smp_wmb(); 383 sp->clear_spte_count++; 384 } 385 386 static void __set_spte(u64 *sptep, u64 spte) 387 { 388 union split_spte *ssptep, sspte; 389 390 ssptep = (union split_spte *)sptep; 391 sspte = (union split_spte)spte; 392 393 ssptep->spte_high = sspte.spte_high; 394 395 /* 396 * If we map the spte from nonpresent to present, We should store 397 * the high bits firstly, then set present bit, so cpu can not 398 * fetch this spte while we are setting the spte. 399 */ 400 smp_wmb(); 401 402 WRITE_ONCE(ssptep->spte_low, sspte.spte_low); 403 } 404 405 static void __update_clear_spte_fast(u64 *sptep, u64 spte) 406 { 407 union split_spte *ssptep, sspte; 408 409 ssptep = (union split_spte *)sptep; 410 sspte = (union split_spte)spte; 411 412 WRITE_ONCE(ssptep->spte_low, sspte.spte_low); 413 414 /* 415 * If we map the spte from present to nonpresent, we should clear 416 * present bit firstly to avoid vcpu fetch the old high bits. 417 */ 418 smp_wmb(); 419 420 ssptep->spte_high = sspte.spte_high; 421 count_spte_clear(sptep, spte); 422 } 423 424 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte) 425 { 426 union split_spte *ssptep, sspte, orig; 427 428 ssptep = (union split_spte *)sptep; 429 sspte = (union split_spte)spte; 430 431 /* xchg acts as a barrier before the setting of the high bits */ 432 orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low); 433 orig.spte_high = ssptep->spte_high; 434 ssptep->spte_high = sspte.spte_high; 435 count_spte_clear(sptep, spte); 436 437 return orig.spte; 438 } 439 440 /* 441 * The idea using the light way get the spte on x86_32 guest is from 442 * gup_get_pte (mm/gup.c). 443 * 444 * An spte tlb flush may be pending, because kvm_set_pte_rmap 445 * coalesces them and we are running out of the MMU lock. Therefore 446 * we need to protect against in-progress updates of the spte. 447 * 448 * Reading the spte while an update is in progress may get the old value 449 * for the high part of the spte. The race is fine for a present->non-present 450 * change (because the high part of the spte is ignored for non-present spte), 451 * but for a present->present change we must reread the spte. 452 * 453 * All such changes are done in two steps (present->non-present and 454 * non-present->present), hence it is enough to count the number of 455 * present->non-present updates: if it changed while reading the spte, 456 * we might have hit the race. This is done using clear_spte_count. 457 */ 458 static u64 __get_spte_lockless(u64 *sptep) 459 { 460 struct kvm_mmu_page *sp = sptep_to_sp(sptep); 461 union split_spte spte, *orig = (union split_spte *)sptep; 462 int count; 463 464 retry: 465 count = sp->clear_spte_count; 466 smp_rmb(); 467 468 spte.spte_low = orig->spte_low; 469 smp_rmb(); 470 471 spte.spte_high = orig->spte_high; 472 smp_rmb(); 473 474 if (unlikely(spte.spte_low != orig->spte_low || 475 count != sp->clear_spte_count)) 476 goto retry; 477 478 return spte.spte; 479 } 480 #endif 481 482 /* Rules for using mmu_spte_set: 483 * Set the sptep from nonpresent to present. 484 * Note: the sptep being assigned *must* be either not present 485 * or in a state where the hardware will not attempt to update 486 * the spte. 487 */ 488 static void mmu_spte_set(u64 *sptep, u64 new_spte) 489 { 490 WARN_ON(is_shadow_present_pte(*sptep)); 491 __set_spte(sptep, new_spte); 492 } 493 494 /* 495 * Update the SPTE (excluding the PFN), but do not track changes in its 496 * accessed/dirty status. 497 */ 498 static u64 mmu_spte_update_no_track(u64 *sptep, u64 new_spte) 499 { 500 u64 old_spte = *sptep; 501 502 WARN_ON(!is_shadow_present_pte(new_spte)); 503 check_spte_writable_invariants(new_spte); 504 505 if (!is_shadow_present_pte(old_spte)) { 506 mmu_spte_set(sptep, new_spte); 507 return old_spte; 508 } 509 510 if (!spte_has_volatile_bits(old_spte)) 511 __update_clear_spte_fast(sptep, new_spte); 512 else 513 old_spte = __update_clear_spte_slow(sptep, new_spte); 514 515 WARN_ON(spte_to_pfn(old_spte) != spte_to_pfn(new_spte)); 516 517 return old_spte; 518 } 519 520 /* Rules for using mmu_spte_update: 521 * Update the state bits, it means the mapped pfn is not changed. 522 * 523 * Whenever an MMU-writable SPTE is overwritten with a read-only SPTE, remote 524 * TLBs must be flushed. Otherwise rmap_write_protect will find a read-only 525 * spte, even though the writable spte might be cached on a CPU's TLB. 526 * 527 * Returns true if the TLB needs to be flushed 528 */ 529 static bool mmu_spte_update(u64 *sptep, u64 new_spte) 530 { 531 bool flush = false; 532 u64 old_spte = mmu_spte_update_no_track(sptep, new_spte); 533 534 if (!is_shadow_present_pte(old_spte)) 535 return false; 536 537 /* 538 * For the spte updated out of mmu-lock is safe, since 539 * we always atomically update it, see the comments in 540 * spte_has_volatile_bits(). 541 */ 542 if (is_mmu_writable_spte(old_spte) && 543 !is_writable_pte(new_spte)) 544 flush = true; 545 546 /* 547 * Flush TLB when accessed/dirty states are changed in the page tables, 548 * to guarantee consistency between TLB and page tables. 549 */ 550 551 if (is_accessed_spte(old_spte) && !is_accessed_spte(new_spte)) { 552 flush = true; 553 kvm_set_pfn_accessed(spte_to_pfn(old_spte)); 554 } 555 556 if (is_dirty_spte(old_spte) && !is_dirty_spte(new_spte)) { 557 flush = true; 558 kvm_set_pfn_dirty(spte_to_pfn(old_spte)); 559 } 560 561 return flush; 562 } 563 564 /* 565 * Rules for using mmu_spte_clear_track_bits: 566 * It sets the sptep from present to nonpresent, and track the 567 * state bits, it is used to clear the last level sptep. 568 * Returns the old PTE. 569 */ 570 static u64 mmu_spte_clear_track_bits(struct kvm *kvm, u64 *sptep) 571 { 572 kvm_pfn_t pfn; 573 u64 old_spte = *sptep; 574 int level = sptep_to_sp(sptep)->role.level; 575 struct page *page; 576 577 if (!is_shadow_present_pte(old_spte) || 578 !spte_has_volatile_bits(old_spte)) 579 __update_clear_spte_fast(sptep, 0ull); 580 else 581 old_spte = __update_clear_spte_slow(sptep, 0ull); 582 583 if (!is_shadow_present_pte(old_spte)) 584 return old_spte; 585 586 kvm_update_page_stats(kvm, level, -1); 587 588 pfn = spte_to_pfn(old_spte); 589 590 /* 591 * KVM doesn't hold a reference to any pages mapped into the guest, and 592 * instead uses the mmu_notifier to ensure that KVM unmaps any pages 593 * before they are reclaimed. Sanity check that, if the pfn is backed 594 * by a refcounted page, the refcount is elevated. 595 */ 596 page = kvm_pfn_to_refcounted_page(pfn); 597 WARN_ON(page && !page_count(page)); 598 599 if (is_accessed_spte(old_spte)) 600 kvm_set_pfn_accessed(pfn); 601 602 if (is_dirty_spte(old_spte)) 603 kvm_set_pfn_dirty(pfn); 604 605 return old_spte; 606 } 607 608 /* 609 * Rules for using mmu_spte_clear_no_track: 610 * Directly clear spte without caring the state bits of sptep, 611 * it is used to set the upper level spte. 612 */ 613 static void mmu_spte_clear_no_track(u64 *sptep) 614 { 615 __update_clear_spte_fast(sptep, 0ull); 616 } 617 618 static u64 mmu_spte_get_lockless(u64 *sptep) 619 { 620 return __get_spte_lockless(sptep); 621 } 622 623 /* Returns the Accessed status of the PTE and resets it at the same time. */ 624 static bool mmu_spte_age(u64 *sptep) 625 { 626 u64 spte = mmu_spte_get_lockless(sptep); 627 628 if (!is_accessed_spte(spte)) 629 return false; 630 631 if (spte_ad_enabled(spte)) { 632 clear_bit((ffs(shadow_accessed_mask) - 1), 633 (unsigned long *)sptep); 634 } else { 635 /* 636 * Capture the dirty status of the page, so that it doesn't get 637 * lost when the SPTE is marked for access tracking. 638 */ 639 if (is_writable_pte(spte)) 640 kvm_set_pfn_dirty(spte_to_pfn(spte)); 641 642 spte = mark_spte_for_access_track(spte); 643 mmu_spte_update_no_track(sptep, spte); 644 } 645 646 return true; 647 } 648 649 static inline bool is_tdp_mmu_active(struct kvm_vcpu *vcpu) 650 { 651 return tdp_mmu_enabled && vcpu->arch.mmu->root_role.direct; 652 } 653 654 static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu) 655 { 656 if (is_tdp_mmu_active(vcpu)) { 657 kvm_tdp_mmu_walk_lockless_begin(); 658 } else { 659 /* 660 * Prevent page table teardown by making any free-er wait during 661 * kvm_flush_remote_tlbs() IPI to all active vcpus. 662 */ 663 local_irq_disable(); 664 665 /* 666 * Make sure a following spte read is not reordered ahead of the write 667 * to vcpu->mode. 668 */ 669 smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES); 670 } 671 } 672 673 static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu) 674 { 675 if (is_tdp_mmu_active(vcpu)) { 676 kvm_tdp_mmu_walk_lockless_end(); 677 } else { 678 /* 679 * Make sure the write to vcpu->mode is not reordered in front of 680 * reads to sptes. If it does, kvm_mmu_commit_zap_page() can see us 681 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table. 682 */ 683 smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE); 684 local_irq_enable(); 685 } 686 } 687 688 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu, bool maybe_indirect) 689 { 690 int r; 691 692 /* 1 rmap, 1 parent PTE per level, and the prefetched rmaps. */ 693 r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache, 694 1 + PT64_ROOT_MAX_LEVEL + PTE_PREFETCH_NUM); 695 if (r) 696 return r; 697 r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_shadow_page_cache, 698 PT64_ROOT_MAX_LEVEL); 699 if (r) 700 return r; 701 if (maybe_indirect) { 702 r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_shadowed_info_cache, 703 PT64_ROOT_MAX_LEVEL); 704 if (r) 705 return r; 706 } 707 return kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache, 708 PT64_ROOT_MAX_LEVEL); 709 } 710 711 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu) 712 { 713 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache); 714 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_shadow_page_cache); 715 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_shadowed_info_cache); 716 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache); 717 } 718 719 static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc) 720 { 721 kmem_cache_free(pte_list_desc_cache, pte_list_desc); 722 } 723 724 static bool sp_has_gptes(struct kvm_mmu_page *sp); 725 726 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index) 727 { 728 if (sp->role.passthrough) 729 return sp->gfn; 730 731 if (!sp->role.direct) 732 return sp->shadowed_translation[index] >> PAGE_SHIFT; 733 734 return sp->gfn + (index << ((sp->role.level - 1) * SPTE_LEVEL_BITS)); 735 } 736 737 /* 738 * For leaf SPTEs, fetch the *guest* access permissions being shadowed. Note 739 * that the SPTE itself may have a more constrained access permissions that 740 * what the guest enforces. For example, a guest may create an executable 741 * huge PTE but KVM may disallow execution to mitigate iTLB multihit. 742 */ 743 static u32 kvm_mmu_page_get_access(struct kvm_mmu_page *sp, int index) 744 { 745 if (sp_has_gptes(sp)) 746 return sp->shadowed_translation[index] & ACC_ALL; 747 748 /* 749 * For direct MMUs (e.g. TDP or non-paging guests) or passthrough SPs, 750 * KVM is not shadowing any guest page tables, so the "guest access 751 * permissions" are just ACC_ALL. 752 * 753 * For direct SPs in indirect MMUs (shadow paging), i.e. when KVM 754 * is shadowing a guest huge page with small pages, the guest access 755 * permissions being shadowed are the access permissions of the huge 756 * page. 757 * 758 * In both cases, sp->role.access contains the correct access bits. 759 */ 760 return sp->role.access; 761 } 762 763 static void kvm_mmu_page_set_translation(struct kvm_mmu_page *sp, int index, 764 gfn_t gfn, unsigned int access) 765 { 766 if (sp_has_gptes(sp)) { 767 sp->shadowed_translation[index] = (gfn << PAGE_SHIFT) | access; 768 return; 769 } 770 771 WARN_ONCE(access != kvm_mmu_page_get_access(sp, index), 772 "access mismatch under %s page %llx (expected %u, got %u)\n", 773 sp->role.passthrough ? "passthrough" : "direct", 774 sp->gfn, kvm_mmu_page_get_access(sp, index), access); 775 776 WARN_ONCE(gfn != kvm_mmu_page_get_gfn(sp, index), 777 "gfn mismatch under %s page %llx (expected %llx, got %llx)\n", 778 sp->role.passthrough ? "passthrough" : "direct", 779 sp->gfn, kvm_mmu_page_get_gfn(sp, index), gfn); 780 } 781 782 static void kvm_mmu_page_set_access(struct kvm_mmu_page *sp, int index, 783 unsigned int access) 784 { 785 gfn_t gfn = kvm_mmu_page_get_gfn(sp, index); 786 787 kvm_mmu_page_set_translation(sp, index, gfn, access); 788 } 789 790 /* 791 * Return the pointer to the large page information for a given gfn, 792 * handling slots that are not large page aligned. 793 */ 794 static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn, 795 const struct kvm_memory_slot *slot, int level) 796 { 797 unsigned long idx; 798 799 idx = gfn_to_index(gfn, slot->base_gfn, level); 800 return &slot->arch.lpage_info[level - 2][idx]; 801 } 802 803 static void update_gfn_disallow_lpage_count(const struct kvm_memory_slot *slot, 804 gfn_t gfn, int count) 805 { 806 struct kvm_lpage_info *linfo; 807 int i; 808 809 for (i = PG_LEVEL_2M; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) { 810 linfo = lpage_info_slot(gfn, slot, i); 811 linfo->disallow_lpage += count; 812 WARN_ON(linfo->disallow_lpage < 0); 813 } 814 } 815 816 void kvm_mmu_gfn_disallow_lpage(const struct kvm_memory_slot *slot, gfn_t gfn) 817 { 818 update_gfn_disallow_lpage_count(slot, gfn, 1); 819 } 820 821 void kvm_mmu_gfn_allow_lpage(const struct kvm_memory_slot *slot, gfn_t gfn) 822 { 823 update_gfn_disallow_lpage_count(slot, gfn, -1); 824 } 825 826 static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp) 827 { 828 struct kvm_memslots *slots; 829 struct kvm_memory_slot *slot; 830 gfn_t gfn; 831 832 kvm->arch.indirect_shadow_pages++; 833 gfn = sp->gfn; 834 slots = kvm_memslots_for_spte_role(kvm, sp->role); 835 slot = __gfn_to_memslot(slots, gfn); 836 837 /* the non-leaf shadow pages are keeping readonly. */ 838 if (sp->role.level > PG_LEVEL_4K) 839 return kvm_slot_page_track_add_page(kvm, slot, gfn, 840 KVM_PAGE_TRACK_WRITE); 841 842 kvm_mmu_gfn_disallow_lpage(slot, gfn); 843 844 if (kvm_mmu_slot_gfn_write_protect(kvm, slot, gfn, PG_LEVEL_4K)) 845 kvm_flush_remote_tlbs_gfn(kvm, gfn, PG_LEVEL_4K); 846 } 847 848 void track_possible_nx_huge_page(struct kvm *kvm, struct kvm_mmu_page *sp) 849 { 850 /* 851 * If it's possible to replace the shadow page with an NX huge page, 852 * i.e. if the shadow page is the only thing currently preventing KVM 853 * from using a huge page, add the shadow page to the list of "to be 854 * zapped for NX recovery" pages. Note, the shadow page can already be 855 * on the list if KVM is reusing an existing shadow page, i.e. if KVM 856 * links a shadow page at multiple points. 857 */ 858 if (!list_empty(&sp->possible_nx_huge_page_link)) 859 return; 860 861 ++kvm->stat.nx_lpage_splits; 862 list_add_tail(&sp->possible_nx_huge_page_link, 863 &kvm->arch.possible_nx_huge_pages); 864 } 865 866 static void account_nx_huge_page(struct kvm *kvm, struct kvm_mmu_page *sp, 867 bool nx_huge_page_possible) 868 { 869 sp->nx_huge_page_disallowed = true; 870 871 if (nx_huge_page_possible) 872 track_possible_nx_huge_page(kvm, sp); 873 } 874 875 static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp) 876 { 877 struct kvm_memslots *slots; 878 struct kvm_memory_slot *slot; 879 gfn_t gfn; 880 881 kvm->arch.indirect_shadow_pages--; 882 gfn = sp->gfn; 883 slots = kvm_memslots_for_spte_role(kvm, sp->role); 884 slot = __gfn_to_memslot(slots, gfn); 885 if (sp->role.level > PG_LEVEL_4K) 886 return kvm_slot_page_track_remove_page(kvm, slot, gfn, 887 KVM_PAGE_TRACK_WRITE); 888 889 kvm_mmu_gfn_allow_lpage(slot, gfn); 890 } 891 892 void untrack_possible_nx_huge_page(struct kvm *kvm, struct kvm_mmu_page *sp) 893 { 894 if (list_empty(&sp->possible_nx_huge_page_link)) 895 return; 896 897 --kvm->stat.nx_lpage_splits; 898 list_del_init(&sp->possible_nx_huge_page_link); 899 } 900 901 static void unaccount_nx_huge_page(struct kvm *kvm, struct kvm_mmu_page *sp) 902 { 903 sp->nx_huge_page_disallowed = false; 904 905 untrack_possible_nx_huge_page(kvm, sp); 906 } 907 908 static struct kvm_memory_slot *gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, 909 gfn_t gfn, 910 bool no_dirty_log) 911 { 912 struct kvm_memory_slot *slot; 913 914 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 915 if (!slot || slot->flags & KVM_MEMSLOT_INVALID) 916 return NULL; 917 if (no_dirty_log && kvm_slot_dirty_track_enabled(slot)) 918 return NULL; 919 920 return slot; 921 } 922 923 /* 924 * About rmap_head encoding: 925 * 926 * If the bit zero of rmap_head->val is clear, then it points to the only spte 927 * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct 928 * pte_list_desc containing more mappings. 929 */ 930 931 /* 932 * Returns the number of pointers in the rmap chain, not counting the new one. 933 */ 934 static int pte_list_add(struct kvm_mmu_memory_cache *cache, u64 *spte, 935 struct kvm_rmap_head *rmap_head) 936 { 937 struct pte_list_desc *desc; 938 int count = 0; 939 940 if (!rmap_head->val) { 941 rmap_printk("%p %llx 0->1\n", spte, *spte); 942 rmap_head->val = (unsigned long)spte; 943 } else if (!(rmap_head->val & 1)) { 944 rmap_printk("%p %llx 1->many\n", spte, *spte); 945 desc = kvm_mmu_memory_cache_alloc(cache); 946 desc->sptes[0] = (u64 *)rmap_head->val; 947 desc->sptes[1] = spte; 948 desc->spte_count = 2; 949 desc->tail_count = 0; 950 rmap_head->val = (unsigned long)desc | 1; 951 ++count; 952 } else { 953 rmap_printk("%p %llx many->many\n", spte, *spte); 954 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul); 955 count = desc->tail_count + desc->spte_count; 956 957 /* 958 * If the previous head is full, allocate a new head descriptor 959 * as tail descriptors are always kept full. 960 */ 961 if (desc->spte_count == PTE_LIST_EXT) { 962 desc = kvm_mmu_memory_cache_alloc(cache); 963 desc->more = (struct pte_list_desc *)(rmap_head->val & ~1ul); 964 desc->spte_count = 0; 965 desc->tail_count = count; 966 rmap_head->val = (unsigned long)desc | 1; 967 } 968 desc->sptes[desc->spte_count++] = spte; 969 } 970 return count; 971 } 972 973 static void pte_list_desc_remove_entry(struct kvm_rmap_head *rmap_head, 974 struct pte_list_desc *desc, int i) 975 { 976 struct pte_list_desc *head_desc = (struct pte_list_desc *)(rmap_head->val & ~1ul); 977 int j = head_desc->spte_count - 1; 978 979 /* 980 * The head descriptor should never be empty. A new head is added only 981 * when adding an entry and the previous head is full, and heads are 982 * removed (this flow) when they become empty. 983 */ 984 BUG_ON(j < 0); 985 986 /* 987 * Replace the to-be-freed SPTE with the last valid entry from the head 988 * descriptor to ensure that tail descriptors are full at all times. 989 * Note, this also means that tail_count is stable for each descriptor. 990 */ 991 desc->sptes[i] = head_desc->sptes[j]; 992 head_desc->sptes[j] = NULL; 993 head_desc->spte_count--; 994 if (head_desc->spte_count) 995 return; 996 997 /* 998 * The head descriptor is empty. If there are no tail descriptors, 999 * nullify the rmap head to mark the list as emtpy, else point the rmap 1000 * head at the next descriptor, i.e. the new head. 1001 */ 1002 if (!head_desc->more) 1003 rmap_head->val = 0; 1004 else 1005 rmap_head->val = (unsigned long)head_desc->more | 1; 1006 mmu_free_pte_list_desc(head_desc); 1007 } 1008 1009 static void pte_list_remove(u64 *spte, struct kvm_rmap_head *rmap_head) 1010 { 1011 struct pte_list_desc *desc; 1012 int i; 1013 1014 if (!rmap_head->val) { 1015 pr_err("%s: %p 0->BUG\n", __func__, spte); 1016 BUG(); 1017 } else if (!(rmap_head->val & 1)) { 1018 rmap_printk("%p 1->0\n", spte); 1019 if ((u64 *)rmap_head->val != spte) { 1020 pr_err("%s: %p 1->BUG\n", __func__, spte); 1021 BUG(); 1022 } 1023 rmap_head->val = 0; 1024 } else { 1025 rmap_printk("%p many->many\n", spte); 1026 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul); 1027 while (desc) { 1028 for (i = 0; i < desc->spte_count; ++i) { 1029 if (desc->sptes[i] == spte) { 1030 pte_list_desc_remove_entry(rmap_head, desc, i); 1031 return; 1032 } 1033 } 1034 desc = desc->more; 1035 } 1036 pr_err("%s: %p many->many\n", __func__, spte); 1037 BUG(); 1038 } 1039 } 1040 1041 static void kvm_zap_one_rmap_spte(struct kvm *kvm, 1042 struct kvm_rmap_head *rmap_head, u64 *sptep) 1043 { 1044 mmu_spte_clear_track_bits(kvm, sptep); 1045 pte_list_remove(sptep, rmap_head); 1046 } 1047 1048 /* Return true if at least one SPTE was zapped, false otherwise */ 1049 static bool kvm_zap_all_rmap_sptes(struct kvm *kvm, 1050 struct kvm_rmap_head *rmap_head) 1051 { 1052 struct pte_list_desc *desc, *next; 1053 int i; 1054 1055 if (!rmap_head->val) 1056 return false; 1057 1058 if (!(rmap_head->val & 1)) { 1059 mmu_spte_clear_track_bits(kvm, (u64 *)rmap_head->val); 1060 goto out; 1061 } 1062 1063 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul); 1064 1065 for (; desc; desc = next) { 1066 for (i = 0; i < desc->spte_count; i++) 1067 mmu_spte_clear_track_bits(kvm, desc->sptes[i]); 1068 next = desc->more; 1069 mmu_free_pte_list_desc(desc); 1070 } 1071 out: 1072 /* rmap_head is meaningless now, remember to reset it */ 1073 rmap_head->val = 0; 1074 return true; 1075 } 1076 1077 unsigned int pte_list_count(struct kvm_rmap_head *rmap_head) 1078 { 1079 struct pte_list_desc *desc; 1080 1081 if (!rmap_head->val) 1082 return 0; 1083 else if (!(rmap_head->val & 1)) 1084 return 1; 1085 1086 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul); 1087 return desc->tail_count + desc->spte_count; 1088 } 1089 1090 static struct kvm_rmap_head *gfn_to_rmap(gfn_t gfn, int level, 1091 const struct kvm_memory_slot *slot) 1092 { 1093 unsigned long idx; 1094 1095 idx = gfn_to_index(gfn, slot->base_gfn, level); 1096 return &slot->arch.rmap[level - PG_LEVEL_4K][idx]; 1097 } 1098 1099 static void rmap_remove(struct kvm *kvm, u64 *spte) 1100 { 1101 struct kvm_memslots *slots; 1102 struct kvm_memory_slot *slot; 1103 struct kvm_mmu_page *sp; 1104 gfn_t gfn; 1105 struct kvm_rmap_head *rmap_head; 1106 1107 sp = sptep_to_sp(spte); 1108 gfn = kvm_mmu_page_get_gfn(sp, spte_index(spte)); 1109 1110 /* 1111 * Unlike rmap_add, rmap_remove does not run in the context of a vCPU 1112 * so we have to determine which memslots to use based on context 1113 * information in sp->role. 1114 */ 1115 slots = kvm_memslots_for_spte_role(kvm, sp->role); 1116 1117 slot = __gfn_to_memslot(slots, gfn); 1118 rmap_head = gfn_to_rmap(gfn, sp->role.level, slot); 1119 1120 pte_list_remove(spte, rmap_head); 1121 } 1122 1123 /* 1124 * Used by the following functions to iterate through the sptes linked by a 1125 * rmap. All fields are private and not assumed to be used outside. 1126 */ 1127 struct rmap_iterator { 1128 /* private fields */ 1129 struct pte_list_desc *desc; /* holds the sptep if not NULL */ 1130 int pos; /* index of the sptep */ 1131 }; 1132 1133 /* 1134 * Iteration must be started by this function. This should also be used after 1135 * removing/dropping sptes from the rmap link because in such cases the 1136 * information in the iterator may not be valid. 1137 * 1138 * Returns sptep if found, NULL otherwise. 1139 */ 1140 static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head, 1141 struct rmap_iterator *iter) 1142 { 1143 u64 *sptep; 1144 1145 if (!rmap_head->val) 1146 return NULL; 1147 1148 if (!(rmap_head->val & 1)) { 1149 iter->desc = NULL; 1150 sptep = (u64 *)rmap_head->val; 1151 goto out; 1152 } 1153 1154 iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul); 1155 iter->pos = 0; 1156 sptep = iter->desc->sptes[iter->pos]; 1157 out: 1158 BUG_ON(!is_shadow_present_pte(*sptep)); 1159 return sptep; 1160 } 1161 1162 /* 1163 * Must be used with a valid iterator: e.g. after rmap_get_first(). 1164 * 1165 * Returns sptep if found, NULL otherwise. 1166 */ 1167 static u64 *rmap_get_next(struct rmap_iterator *iter) 1168 { 1169 u64 *sptep; 1170 1171 if (iter->desc) { 1172 if (iter->pos < PTE_LIST_EXT - 1) { 1173 ++iter->pos; 1174 sptep = iter->desc->sptes[iter->pos]; 1175 if (sptep) 1176 goto out; 1177 } 1178 1179 iter->desc = iter->desc->more; 1180 1181 if (iter->desc) { 1182 iter->pos = 0; 1183 /* desc->sptes[0] cannot be NULL */ 1184 sptep = iter->desc->sptes[iter->pos]; 1185 goto out; 1186 } 1187 } 1188 1189 return NULL; 1190 out: 1191 BUG_ON(!is_shadow_present_pte(*sptep)); 1192 return sptep; 1193 } 1194 1195 #define for_each_rmap_spte(_rmap_head_, _iter_, _spte_) \ 1196 for (_spte_ = rmap_get_first(_rmap_head_, _iter_); \ 1197 _spte_; _spte_ = rmap_get_next(_iter_)) 1198 1199 static void drop_spte(struct kvm *kvm, u64 *sptep) 1200 { 1201 u64 old_spte = mmu_spte_clear_track_bits(kvm, sptep); 1202 1203 if (is_shadow_present_pte(old_spte)) 1204 rmap_remove(kvm, sptep); 1205 } 1206 1207 static void drop_large_spte(struct kvm *kvm, u64 *sptep, bool flush) 1208 { 1209 struct kvm_mmu_page *sp; 1210 1211 sp = sptep_to_sp(sptep); 1212 WARN_ON(sp->role.level == PG_LEVEL_4K); 1213 1214 drop_spte(kvm, sptep); 1215 1216 if (flush) 1217 kvm_flush_remote_tlbs_sptep(kvm, sptep); 1218 } 1219 1220 /* 1221 * Write-protect on the specified @sptep, @pt_protect indicates whether 1222 * spte write-protection is caused by protecting shadow page table. 1223 * 1224 * Note: write protection is difference between dirty logging and spte 1225 * protection: 1226 * - for dirty logging, the spte can be set to writable at anytime if 1227 * its dirty bitmap is properly set. 1228 * - for spte protection, the spte can be writable only after unsync-ing 1229 * shadow page. 1230 * 1231 * Return true if tlb need be flushed. 1232 */ 1233 static bool spte_write_protect(u64 *sptep, bool pt_protect) 1234 { 1235 u64 spte = *sptep; 1236 1237 if (!is_writable_pte(spte) && 1238 !(pt_protect && is_mmu_writable_spte(spte))) 1239 return false; 1240 1241 rmap_printk("spte %p %llx\n", sptep, *sptep); 1242 1243 if (pt_protect) 1244 spte &= ~shadow_mmu_writable_mask; 1245 spte = spte & ~PT_WRITABLE_MASK; 1246 1247 return mmu_spte_update(sptep, spte); 1248 } 1249 1250 static bool rmap_write_protect(struct kvm_rmap_head *rmap_head, 1251 bool pt_protect) 1252 { 1253 u64 *sptep; 1254 struct rmap_iterator iter; 1255 bool flush = false; 1256 1257 for_each_rmap_spte(rmap_head, &iter, sptep) 1258 flush |= spte_write_protect(sptep, pt_protect); 1259 1260 return flush; 1261 } 1262 1263 static bool spte_clear_dirty(u64 *sptep) 1264 { 1265 u64 spte = *sptep; 1266 1267 rmap_printk("spte %p %llx\n", sptep, *sptep); 1268 1269 MMU_WARN_ON(!spte_ad_enabled(spte)); 1270 spte &= ~shadow_dirty_mask; 1271 return mmu_spte_update(sptep, spte); 1272 } 1273 1274 static bool spte_wrprot_for_clear_dirty(u64 *sptep) 1275 { 1276 bool was_writable = test_and_clear_bit(PT_WRITABLE_SHIFT, 1277 (unsigned long *)sptep); 1278 if (was_writable && !spte_ad_enabled(*sptep)) 1279 kvm_set_pfn_dirty(spte_to_pfn(*sptep)); 1280 1281 return was_writable; 1282 } 1283 1284 /* 1285 * Gets the GFN ready for another round of dirty logging by clearing the 1286 * - D bit on ad-enabled SPTEs, and 1287 * - W bit on ad-disabled SPTEs. 1288 * Returns true iff any D or W bits were cleared. 1289 */ 1290 static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head, 1291 const struct kvm_memory_slot *slot) 1292 { 1293 u64 *sptep; 1294 struct rmap_iterator iter; 1295 bool flush = false; 1296 1297 for_each_rmap_spte(rmap_head, &iter, sptep) 1298 if (spte_ad_need_write_protect(*sptep)) 1299 flush |= spte_wrprot_for_clear_dirty(sptep); 1300 else 1301 flush |= spte_clear_dirty(sptep); 1302 1303 return flush; 1304 } 1305 1306 /** 1307 * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages 1308 * @kvm: kvm instance 1309 * @slot: slot to protect 1310 * @gfn_offset: start of the BITS_PER_LONG pages we care about 1311 * @mask: indicates which pages we should protect 1312 * 1313 * Used when we do not need to care about huge page mappings. 1314 */ 1315 static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm, 1316 struct kvm_memory_slot *slot, 1317 gfn_t gfn_offset, unsigned long mask) 1318 { 1319 struct kvm_rmap_head *rmap_head; 1320 1321 if (tdp_mmu_enabled) 1322 kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot, 1323 slot->base_gfn + gfn_offset, mask, true); 1324 1325 if (!kvm_memslots_have_rmaps(kvm)) 1326 return; 1327 1328 while (mask) { 1329 rmap_head = gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask), 1330 PG_LEVEL_4K, slot); 1331 rmap_write_protect(rmap_head, false); 1332 1333 /* clear the first set bit */ 1334 mask &= mask - 1; 1335 } 1336 } 1337 1338 /** 1339 * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages, or write 1340 * protect the page if the D-bit isn't supported. 1341 * @kvm: kvm instance 1342 * @slot: slot to clear D-bit 1343 * @gfn_offset: start of the BITS_PER_LONG pages we care about 1344 * @mask: indicates which pages we should clear D-bit 1345 * 1346 * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap. 1347 */ 1348 static void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm, 1349 struct kvm_memory_slot *slot, 1350 gfn_t gfn_offset, unsigned long mask) 1351 { 1352 struct kvm_rmap_head *rmap_head; 1353 1354 if (tdp_mmu_enabled) 1355 kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot, 1356 slot->base_gfn + gfn_offset, mask, false); 1357 1358 if (!kvm_memslots_have_rmaps(kvm)) 1359 return; 1360 1361 while (mask) { 1362 rmap_head = gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask), 1363 PG_LEVEL_4K, slot); 1364 __rmap_clear_dirty(kvm, rmap_head, slot); 1365 1366 /* clear the first set bit */ 1367 mask &= mask - 1; 1368 } 1369 } 1370 1371 /** 1372 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected 1373 * PT level pages. 1374 * 1375 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to 1376 * enable dirty logging for them. 1377 * 1378 * We need to care about huge page mappings: e.g. during dirty logging we may 1379 * have such mappings. 1380 */ 1381 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm, 1382 struct kvm_memory_slot *slot, 1383 gfn_t gfn_offset, unsigned long mask) 1384 { 1385 /* 1386 * Huge pages are NOT write protected when we start dirty logging in 1387 * initially-all-set mode; must write protect them here so that they 1388 * are split to 4K on the first write. 1389 * 1390 * The gfn_offset is guaranteed to be aligned to 64, but the base_gfn 1391 * of memslot has no such restriction, so the range can cross two large 1392 * pages. 1393 */ 1394 if (kvm_dirty_log_manual_protect_and_init_set(kvm)) { 1395 gfn_t start = slot->base_gfn + gfn_offset + __ffs(mask); 1396 gfn_t end = slot->base_gfn + gfn_offset + __fls(mask); 1397 1398 if (READ_ONCE(eager_page_split)) 1399 kvm_mmu_try_split_huge_pages(kvm, slot, start, end, PG_LEVEL_4K); 1400 1401 kvm_mmu_slot_gfn_write_protect(kvm, slot, start, PG_LEVEL_2M); 1402 1403 /* Cross two large pages? */ 1404 if (ALIGN(start << PAGE_SHIFT, PMD_SIZE) != 1405 ALIGN(end << PAGE_SHIFT, PMD_SIZE)) 1406 kvm_mmu_slot_gfn_write_protect(kvm, slot, end, 1407 PG_LEVEL_2M); 1408 } 1409 1410 /* Now handle 4K PTEs. */ 1411 if (kvm_x86_ops.cpu_dirty_log_size) 1412 kvm_mmu_clear_dirty_pt_masked(kvm, slot, gfn_offset, mask); 1413 else 1414 kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask); 1415 } 1416 1417 int kvm_cpu_dirty_log_size(void) 1418 { 1419 return kvm_x86_ops.cpu_dirty_log_size; 1420 } 1421 1422 bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm, 1423 struct kvm_memory_slot *slot, u64 gfn, 1424 int min_level) 1425 { 1426 struct kvm_rmap_head *rmap_head; 1427 int i; 1428 bool write_protected = false; 1429 1430 if (kvm_memslots_have_rmaps(kvm)) { 1431 for (i = min_level; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) { 1432 rmap_head = gfn_to_rmap(gfn, i, slot); 1433 write_protected |= rmap_write_protect(rmap_head, true); 1434 } 1435 } 1436 1437 if (tdp_mmu_enabled) 1438 write_protected |= 1439 kvm_tdp_mmu_write_protect_gfn(kvm, slot, gfn, min_level); 1440 1441 return write_protected; 1442 } 1443 1444 static bool kvm_vcpu_write_protect_gfn(struct kvm_vcpu *vcpu, u64 gfn) 1445 { 1446 struct kvm_memory_slot *slot; 1447 1448 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 1449 return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn, PG_LEVEL_4K); 1450 } 1451 1452 static bool __kvm_zap_rmap(struct kvm *kvm, struct kvm_rmap_head *rmap_head, 1453 const struct kvm_memory_slot *slot) 1454 { 1455 return kvm_zap_all_rmap_sptes(kvm, rmap_head); 1456 } 1457 1458 static bool kvm_zap_rmap(struct kvm *kvm, struct kvm_rmap_head *rmap_head, 1459 struct kvm_memory_slot *slot, gfn_t gfn, int level, 1460 pte_t unused) 1461 { 1462 return __kvm_zap_rmap(kvm, rmap_head, slot); 1463 } 1464 1465 static bool kvm_set_pte_rmap(struct kvm *kvm, struct kvm_rmap_head *rmap_head, 1466 struct kvm_memory_slot *slot, gfn_t gfn, int level, 1467 pte_t pte) 1468 { 1469 u64 *sptep; 1470 struct rmap_iterator iter; 1471 bool need_flush = false; 1472 u64 new_spte; 1473 kvm_pfn_t new_pfn; 1474 1475 WARN_ON(pte_huge(pte)); 1476 new_pfn = pte_pfn(pte); 1477 1478 restart: 1479 for_each_rmap_spte(rmap_head, &iter, sptep) { 1480 rmap_printk("spte %p %llx gfn %llx (%d)\n", 1481 sptep, *sptep, gfn, level); 1482 1483 need_flush = true; 1484 1485 if (pte_write(pte)) { 1486 kvm_zap_one_rmap_spte(kvm, rmap_head, sptep); 1487 goto restart; 1488 } else { 1489 new_spte = kvm_mmu_changed_pte_notifier_make_spte( 1490 *sptep, new_pfn); 1491 1492 mmu_spte_clear_track_bits(kvm, sptep); 1493 mmu_spte_set(sptep, new_spte); 1494 } 1495 } 1496 1497 if (need_flush && kvm_available_flush_remote_tlbs_range()) { 1498 kvm_flush_remote_tlbs_gfn(kvm, gfn, level); 1499 return false; 1500 } 1501 1502 return need_flush; 1503 } 1504 1505 struct slot_rmap_walk_iterator { 1506 /* input fields. */ 1507 const struct kvm_memory_slot *slot; 1508 gfn_t start_gfn; 1509 gfn_t end_gfn; 1510 int start_level; 1511 int end_level; 1512 1513 /* output fields. */ 1514 gfn_t gfn; 1515 struct kvm_rmap_head *rmap; 1516 int level; 1517 1518 /* private field. */ 1519 struct kvm_rmap_head *end_rmap; 1520 }; 1521 1522 static void rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, 1523 int level) 1524 { 1525 iterator->level = level; 1526 iterator->gfn = iterator->start_gfn; 1527 iterator->rmap = gfn_to_rmap(iterator->gfn, level, iterator->slot); 1528 iterator->end_rmap = gfn_to_rmap(iterator->end_gfn, level, iterator->slot); 1529 } 1530 1531 static void slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator, 1532 const struct kvm_memory_slot *slot, 1533 int start_level, int end_level, 1534 gfn_t start_gfn, gfn_t end_gfn) 1535 { 1536 iterator->slot = slot; 1537 iterator->start_level = start_level; 1538 iterator->end_level = end_level; 1539 iterator->start_gfn = start_gfn; 1540 iterator->end_gfn = end_gfn; 1541 1542 rmap_walk_init_level(iterator, iterator->start_level); 1543 } 1544 1545 static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator) 1546 { 1547 return !!iterator->rmap; 1548 } 1549 1550 static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator) 1551 { 1552 while (++iterator->rmap <= iterator->end_rmap) { 1553 iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level)); 1554 1555 if (iterator->rmap->val) 1556 return; 1557 } 1558 1559 if (++iterator->level > iterator->end_level) { 1560 iterator->rmap = NULL; 1561 return; 1562 } 1563 1564 rmap_walk_init_level(iterator, iterator->level); 1565 } 1566 1567 #define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_, \ 1568 _start_gfn, _end_gfn, _iter_) \ 1569 for (slot_rmap_walk_init(_iter_, _slot_, _start_level_, \ 1570 _end_level_, _start_gfn, _end_gfn); \ 1571 slot_rmap_walk_okay(_iter_); \ 1572 slot_rmap_walk_next(_iter_)) 1573 1574 typedef bool (*rmap_handler_t)(struct kvm *kvm, struct kvm_rmap_head *rmap_head, 1575 struct kvm_memory_slot *slot, gfn_t gfn, 1576 int level, pte_t pte); 1577 1578 static __always_inline bool kvm_handle_gfn_range(struct kvm *kvm, 1579 struct kvm_gfn_range *range, 1580 rmap_handler_t handler) 1581 { 1582 struct slot_rmap_walk_iterator iterator; 1583 bool ret = false; 1584 1585 for_each_slot_rmap_range(range->slot, PG_LEVEL_4K, KVM_MAX_HUGEPAGE_LEVEL, 1586 range->start, range->end - 1, &iterator) 1587 ret |= handler(kvm, iterator.rmap, range->slot, iterator.gfn, 1588 iterator.level, range->pte); 1589 1590 return ret; 1591 } 1592 1593 bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range) 1594 { 1595 bool flush = false; 1596 1597 if (kvm_memslots_have_rmaps(kvm)) 1598 flush = kvm_handle_gfn_range(kvm, range, kvm_zap_rmap); 1599 1600 if (tdp_mmu_enabled) 1601 flush = kvm_tdp_mmu_unmap_gfn_range(kvm, range, flush); 1602 1603 return flush; 1604 } 1605 1606 bool kvm_set_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range) 1607 { 1608 bool flush = false; 1609 1610 if (kvm_memslots_have_rmaps(kvm)) 1611 flush = kvm_handle_gfn_range(kvm, range, kvm_set_pte_rmap); 1612 1613 if (tdp_mmu_enabled) 1614 flush |= kvm_tdp_mmu_set_spte_gfn(kvm, range); 1615 1616 return flush; 1617 } 1618 1619 static bool kvm_age_rmap(struct kvm *kvm, struct kvm_rmap_head *rmap_head, 1620 struct kvm_memory_slot *slot, gfn_t gfn, int level, 1621 pte_t unused) 1622 { 1623 u64 *sptep; 1624 struct rmap_iterator iter; 1625 int young = 0; 1626 1627 for_each_rmap_spte(rmap_head, &iter, sptep) 1628 young |= mmu_spte_age(sptep); 1629 1630 return young; 1631 } 1632 1633 static bool kvm_test_age_rmap(struct kvm *kvm, struct kvm_rmap_head *rmap_head, 1634 struct kvm_memory_slot *slot, gfn_t gfn, 1635 int level, pte_t unused) 1636 { 1637 u64 *sptep; 1638 struct rmap_iterator iter; 1639 1640 for_each_rmap_spte(rmap_head, &iter, sptep) 1641 if (is_accessed_spte(*sptep)) 1642 return true; 1643 return false; 1644 } 1645 1646 #define RMAP_RECYCLE_THRESHOLD 1000 1647 1648 static void __rmap_add(struct kvm *kvm, 1649 struct kvm_mmu_memory_cache *cache, 1650 const struct kvm_memory_slot *slot, 1651 u64 *spte, gfn_t gfn, unsigned int access) 1652 { 1653 struct kvm_mmu_page *sp; 1654 struct kvm_rmap_head *rmap_head; 1655 int rmap_count; 1656 1657 sp = sptep_to_sp(spte); 1658 kvm_mmu_page_set_translation(sp, spte_index(spte), gfn, access); 1659 kvm_update_page_stats(kvm, sp->role.level, 1); 1660 1661 rmap_head = gfn_to_rmap(gfn, sp->role.level, slot); 1662 rmap_count = pte_list_add(cache, spte, rmap_head); 1663 1664 if (rmap_count > kvm->stat.max_mmu_rmap_size) 1665 kvm->stat.max_mmu_rmap_size = rmap_count; 1666 if (rmap_count > RMAP_RECYCLE_THRESHOLD) { 1667 kvm_zap_all_rmap_sptes(kvm, rmap_head); 1668 kvm_flush_remote_tlbs_gfn(kvm, gfn, sp->role.level); 1669 } 1670 } 1671 1672 static void rmap_add(struct kvm_vcpu *vcpu, const struct kvm_memory_slot *slot, 1673 u64 *spte, gfn_t gfn, unsigned int access) 1674 { 1675 struct kvm_mmu_memory_cache *cache = &vcpu->arch.mmu_pte_list_desc_cache; 1676 1677 __rmap_add(vcpu->kvm, cache, slot, spte, gfn, access); 1678 } 1679 1680 bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range) 1681 { 1682 bool young = false; 1683 1684 if (kvm_memslots_have_rmaps(kvm)) 1685 young = kvm_handle_gfn_range(kvm, range, kvm_age_rmap); 1686 1687 if (tdp_mmu_enabled) 1688 young |= kvm_tdp_mmu_age_gfn_range(kvm, range); 1689 1690 return young; 1691 } 1692 1693 bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range) 1694 { 1695 bool young = false; 1696 1697 if (kvm_memslots_have_rmaps(kvm)) 1698 young = kvm_handle_gfn_range(kvm, range, kvm_test_age_rmap); 1699 1700 if (tdp_mmu_enabled) 1701 young |= kvm_tdp_mmu_test_age_gfn(kvm, range); 1702 1703 return young; 1704 } 1705 1706 #ifdef MMU_DEBUG 1707 static int is_empty_shadow_page(u64 *spt) 1708 { 1709 u64 *pos; 1710 u64 *end; 1711 1712 for (pos = spt, end = pos + SPTE_ENT_PER_PAGE; pos != end; pos++) 1713 if (is_shadow_present_pte(*pos)) { 1714 printk(KERN_ERR "%s: %p %llx\n", __func__, 1715 pos, *pos); 1716 return 0; 1717 } 1718 return 1; 1719 } 1720 #endif 1721 1722 /* 1723 * This value is the sum of all of the kvm instances's 1724 * kvm->arch.n_used_mmu_pages values. We need a global, 1725 * aggregate version in order to make the slab shrinker 1726 * faster 1727 */ 1728 static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, long nr) 1729 { 1730 kvm->arch.n_used_mmu_pages += nr; 1731 percpu_counter_add(&kvm_total_used_mmu_pages, nr); 1732 } 1733 1734 static void kvm_account_mmu_page(struct kvm *kvm, struct kvm_mmu_page *sp) 1735 { 1736 kvm_mod_used_mmu_pages(kvm, +1); 1737 kvm_account_pgtable_pages((void *)sp->spt, +1); 1738 } 1739 1740 static void kvm_unaccount_mmu_page(struct kvm *kvm, struct kvm_mmu_page *sp) 1741 { 1742 kvm_mod_used_mmu_pages(kvm, -1); 1743 kvm_account_pgtable_pages((void *)sp->spt, -1); 1744 } 1745 1746 static void kvm_mmu_free_shadow_page(struct kvm_mmu_page *sp) 1747 { 1748 MMU_WARN_ON(!is_empty_shadow_page(sp->spt)); 1749 hlist_del(&sp->hash_link); 1750 list_del(&sp->link); 1751 free_page((unsigned long)sp->spt); 1752 if (!sp->role.direct) 1753 free_page((unsigned long)sp->shadowed_translation); 1754 kmem_cache_free(mmu_page_header_cache, sp); 1755 } 1756 1757 static unsigned kvm_page_table_hashfn(gfn_t gfn) 1758 { 1759 return hash_64(gfn, KVM_MMU_HASH_SHIFT); 1760 } 1761 1762 static void mmu_page_add_parent_pte(struct kvm_mmu_memory_cache *cache, 1763 struct kvm_mmu_page *sp, u64 *parent_pte) 1764 { 1765 if (!parent_pte) 1766 return; 1767 1768 pte_list_add(cache, parent_pte, &sp->parent_ptes); 1769 } 1770 1771 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp, 1772 u64 *parent_pte) 1773 { 1774 pte_list_remove(parent_pte, &sp->parent_ptes); 1775 } 1776 1777 static void drop_parent_pte(struct kvm_mmu_page *sp, 1778 u64 *parent_pte) 1779 { 1780 mmu_page_remove_parent_pte(sp, parent_pte); 1781 mmu_spte_clear_no_track(parent_pte); 1782 } 1783 1784 static void mark_unsync(u64 *spte); 1785 static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp) 1786 { 1787 u64 *sptep; 1788 struct rmap_iterator iter; 1789 1790 for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) { 1791 mark_unsync(sptep); 1792 } 1793 } 1794 1795 static void mark_unsync(u64 *spte) 1796 { 1797 struct kvm_mmu_page *sp; 1798 1799 sp = sptep_to_sp(spte); 1800 if (__test_and_set_bit(spte_index(spte), sp->unsync_child_bitmap)) 1801 return; 1802 if (sp->unsync_children++) 1803 return; 1804 kvm_mmu_mark_parents_unsync(sp); 1805 } 1806 1807 #define KVM_PAGE_ARRAY_NR 16 1808 1809 struct kvm_mmu_pages { 1810 struct mmu_page_and_offset { 1811 struct kvm_mmu_page *sp; 1812 unsigned int idx; 1813 } page[KVM_PAGE_ARRAY_NR]; 1814 unsigned int nr; 1815 }; 1816 1817 static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp, 1818 int idx) 1819 { 1820 int i; 1821 1822 if (sp->unsync) 1823 for (i=0; i < pvec->nr; i++) 1824 if (pvec->page[i].sp == sp) 1825 return 0; 1826 1827 pvec->page[pvec->nr].sp = sp; 1828 pvec->page[pvec->nr].idx = idx; 1829 pvec->nr++; 1830 return (pvec->nr == KVM_PAGE_ARRAY_NR); 1831 } 1832 1833 static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx) 1834 { 1835 --sp->unsync_children; 1836 WARN_ON((int)sp->unsync_children < 0); 1837 __clear_bit(idx, sp->unsync_child_bitmap); 1838 } 1839 1840 static int __mmu_unsync_walk(struct kvm_mmu_page *sp, 1841 struct kvm_mmu_pages *pvec) 1842 { 1843 int i, ret, nr_unsync_leaf = 0; 1844 1845 for_each_set_bit(i, sp->unsync_child_bitmap, 512) { 1846 struct kvm_mmu_page *child; 1847 u64 ent = sp->spt[i]; 1848 1849 if (!is_shadow_present_pte(ent) || is_large_pte(ent)) { 1850 clear_unsync_child_bit(sp, i); 1851 continue; 1852 } 1853 1854 child = spte_to_child_sp(ent); 1855 1856 if (child->unsync_children) { 1857 if (mmu_pages_add(pvec, child, i)) 1858 return -ENOSPC; 1859 1860 ret = __mmu_unsync_walk(child, pvec); 1861 if (!ret) { 1862 clear_unsync_child_bit(sp, i); 1863 continue; 1864 } else if (ret > 0) { 1865 nr_unsync_leaf += ret; 1866 } else 1867 return ret; 1868 } else if (child->unsync) { 1869 nr_unsync_leaf++; 1870 if (mmu_pages_add(pvec, child, i)) 1871 return -ENOSPC; 1872 } else 1873 clear_unsync_child_bit(sp, i); 1874 } 1875 1876 return nr_unsync_leaf; 1877 } 1878 1879 #define INVALID_INDEX (-1) 1880 1881 static int mmu_unsync_walk(struct kvm_mmu_page *sp, 1882 struct kvm_mmu_pages *pvec) 1883 { 1884 pvec->nr = 0; 1885 if (!sp->unsync_children) 1886 return 0; 1887 1888 mmu_pages_add(pvec, sp, INVALID_INDEX); 1889 return __mmu_unsync_walk(sp, pvec); 1890 } 1891 1892 static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp) 1893 { 1894 WARN_ON(!sp->unsync); 1895 trace_kvm_mmu_sync_page(sp); 1896 sp->unsync = 0; 1897 --kvm->stat.mmu_unsync; 1898 } 1899 1900 static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp, 1901 struct list_head *invalid_list); 1902 static void kvm_mmu_commit_zap_page(struct kvm *kvm, 1903 struct list_head *invalid_list); 1904 1905 static bool sp_has_gptes(struct kvm_mmu_page *sp) 1906 { 1907 if (sp->role.direct) 1908 return false; 1909 1910 if (sp->role.passthrough) 1911 return false; 1912 1913 return true; 1914 } 1915 1916 #define for_each_valid_sp(_kvm, _sp, _list) \ 1917 hlist_for_each_entry(_sp, _list, hash_link) \ 1918 if (is_obsolete_sp((_kvm), (_sp))) { \ 1919 } else 1920 1921 #define for_each_gfn_valid_sp_with_gptes(_kvm, _sp, _gfn) \ 1922 for_each_valid_sp(_kvm, _sp, \ 1923 &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)]) \ 1924 if ((_sp)->gfn != (_gfn) || !sp_has_gptes(_sp)) {} else 1925 1926 static bool kvm_sync_page_check(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp) 1927 { 1928 union kvm_mmu_page_role root_role = vcpu->arch.mmu->root_role; 1929 1930 /* 1931 * Ignore various flags when verifying that it's safe to sync a shadow 1932 * page using the current MMU context. 1933 * 1934 * - level: not part of the overall MMU role and will never match as the MMU's 1935 * level tracks the root level 1936 * - access: updated based on the new guest PTE 1937 * - quadrant: not part of the overall MMU role (similar to level) 1938 */ 1939 const union kvm_mmu_page_role sync_role_ign = { 1940 .level = 0xf, 1941 .access = 0x7, 1942 .quadrant = 0x3, 1943 .passthrough = 0x1, 1944 }; 1945 1946 /* 1947 * Direct pages can never be unsync, and KVM should never attempt to 1948 * sync a shadow page for a different MMU context, e.g. if the role 1949 * differs then the memslot lookup (SMM vs. non-SMM) will be bogus, the 1950 * reserved bits checks will be wrong, etc... 1951 */ 1952 if (WARN_ON_ONCE(sp->role.direct || !vcpu->arch.mmu->sync_spte || 1953 (sp->role.word ^ root_role.word) & ~sync_role_ign.word)) 1954 return false; 1955 1956 return true; 1957 } 1958 1959 static int kvm_sync_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp, int i) 1960 { 1961 if (!sp->spt[i]) 1962 return 0; 1963 1964 return vcpu->arch.mmu->sync_spte(vcpu, sp, i); 1965 } 1966 1967 static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp) 1968 { 1969 int flush = 0; 1970 int i; 1971 1972 if (!kvm_sync_page_check(vcpu, sp)) 1973 return -1; 1974 1975 for (i = 0; i < SPTE_ENT_PER_PAGE; i++) { 1976 int ret = kvm_sync_spte(vcpu, sp, i); 1977 1978 if (ret < -1) 1979 return -1; 1980 flush |= ret; 1981 } 1982 1983 /* 1984 * Note, any flush is purely for KVM's correctness, e.g. when dropping 1985 * an existing SPTE or clearing W/A/D bits to ensure an mmu_notifier 1986 * unmap or dirty logging event doesn't fail to flush. The guest is 1987 * responsible for flushing the TLB to ensure any changes in protection 1988 * bits are recognized, i.e. until the guest flushes or page faults on 1989 * a relevant address, KVM is architecturally allowed to let vCPUs use 1990 * cached translations with the old protection bits. 1991 */ 1992 return flush; 1993 } 1994 1995 static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp, 1996 struct list_head *invalid_list) 1997 { 1998 int ret = __kvm_sync_page(vcpu, sp); 1999 2000 if (ret < 0) 2001 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list); 2002 return ret; 2003 } 2004 2005 static bool kvm_mmu_remote_flush_or_zap(struct kvm *kvm, 2006 struct list_head *invalid_list, 2007 bool remote_flush) 2008 { 2009 if (!remote_flush && list_empty(invalid_list)) 2010 return false; 2011 2012 if (!list_empty(invalid_list)) 2013 kvm_mmu_commit_zap_page(kvm, invalid_list); 2014 else 2015 kvm_flush_remote_tlbs(kvm); 2016 return true; 2017 } 2018 2019 static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp) 2020 { 2021 if (sp->role.invalid) 2022 return true; 2023 2024 /* TDP MMU pages do not use the MMU generation. */ 2025 return !is_tdp_mmu_page(sp) && 2026 unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen); 2027 } 2028 2029 struct mmu_page_path { 2030 struct kvm_mmu_page *parent[PT64_ROOT_MAX_LEVEL]; 2031 unsigned int idx[PT64_ROOT_MAX_LEVEL]; 2032 }; 2033 2034 #define for_each_sp(pvec, sp, parents, i) \ 2035 for (i = mmu_pages_first(&pvec, &parents); \ 2036 i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \ 2037 i = mmu_pages_next(&pvec, &parents, i)) 2038 2039 static int mmu_pages_next(struct kvm_mmu_pages *pvec, 2040 struct mmu_page_path *parents, 2041 int i) 2042 { 2043 int n; 2044 2045 for (n = i+1; n < pvec->nr; n++) { 2046 struct kvm_mmu_page *sp = pvec->page[n].sp; 2047 unsigned idx = pvec->page[n].idx; 2048 int level = sp->role.level; 2049 2050 parents->idx[level-1] = idx; 2051 if (level == PG_LEVEL_4K) 2052 break; 2053 2054 parents->parent[level-2] = sp; 2055 } 2056 2057 return n; 2058 } 2059 2060 static int mmu_pages_first(struct kvm_mmu_pages *pvec, 2061 struct mmu_page_path *parents) 2062 { 2063 struct kvm_mmu_page *sp; 2064 int level; 2065 2066 if (pvec->nr == 0) 2067 return 0; 2068 2069 WARN_ON(pvec->page[0].idx != INVALID_INDEX); 2070 2071 sp = pvec->page[0].sp; 2072 level = sp->role.level; 2073 WARN_ON(level == PG_LEVEL_4K); 2074 2075 parents->parent[level-2] = sp; 2076 2077 /* Also set up a sentinel. Further entries in pvec are all 2078 * children of sp, so this element is never overwritten. 2079 */ 2080 parents->parent[level-1] = NULL; 2081 return mmu_pages_next(pvec, parents, 0); 2082 } 2083 2084 static void mmu_pages_clear_parents(struct mmu_page_path *parents) 2085 { 2086 struct kvm_mmu_page *sp; 2087 unsigned int level = 0; 2088 2089 do { 2090 unsigned int idx = parents->idx[level]; 2091 sp = parents->parent[level]; 2092 if (!sp) 2093 return; 2094 2095 WARN_ON(idx == INVALID_INDEX); 2096 clear_unsync_child_bit(sp, idx); 2097 level++; 2098 } while (!sp->unsync_children); 2099 } 2100 2101 static int mmu_sync_children(struct kvm_vcpu *vcpu, 2102 struct kvm_mmu_page *parent, bool can_yield) 2103 { 2104 int i; 2105 struct kvm_mmu_page *sp; 2106 struct mmu_page_path parents; 2107 struct kvm_mmu_pages pages; 2108 LIST_HEAD(invalid_list); 2109 bool flush = false; 2110 2111 while (mmu_unsync_walk(parent, &pages)) { 2112 bool protected = false; 2113 2114 for_each_sp(pages, sp, parents, i) 2115 protected |= kvm_vcpu_write_protect_gfn(vcpu, sp->gfn); 2116 2117 if (protected) { 2118 kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, true); 2119 flush = false; 2120 } 2121 2122 for_each_sp(pages, sp, parents, i) { 2123 kvm_unlink_unsync_page(vcpu->kvm, sp); 2124 flush |= kvm_sync_page(vcpu, sp, &invalid_list) > 0; 2125 mmu_pages_clear_parents(&parents); 2126 } 2127 if (need_resched() || rwlock_needbreak(&vcpu->kvm->mmu_lock)) { 2128 kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, flush); 2129 if (!can_yield) { 2130 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu); 2131 return -EINTR; 2132 } 2133 2134 cond_resched_rwlock_write(&vcpu->kvm->mmu_lock); 2135 flush = false; 2136 } 2137 } 2138 2139 kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, flush); 2140 return 0; 2141 } 2142 2143 static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp) 2144 { 2145 atomic_set(&sp->write_flooding_count, 0); 2146 } 2147 2148 static void clear_sp_write_flooding_count(u64 *spte) 2149 { 2150 __clear_sp_write_flooding_count(sptep_to_sp(spte)); 2151 } 2152 2153 /* 2154 * The vCPU is required when finding indirect shadow pages; the shadow 2155 * page may already exist and syncing it needs the vCPU pointer in 2156 * order to read guest page tables. Direct shadow pages are never 2157 * unsync, thus @vcpu can be NULL if @role.direct is true. 2158 */ 2159 static struct kvm_mmu_page *kvm_mmu_find_shadow_page(struct kvm *kvm, 2160 struct kvm_vcpu *vcpu, 2161 gfn_t gfn, 2162 struct hlist_head *sp_list, 2163 union kvm_mmu_page_role role) 2164 { 2165 struct kvm_mmu_page *sp; 2166 int ret; 2167 int collisions = 0; 2168 LIST_HEAD(invalid_list); 2169 2170 for_each_valid_sp(kvm, sp, sp_list) { 2171 if (sp->gfn != gfn) { 2172 collisions++; 2173 continue; 2174 } 2175 2176 if (sp->role.word != role.word) { 2177 /* 2178 * If the guest is creating an upper-level page, zap 2179 * unsync pages for the same gfn. While it's possible 2180 * the guest is using recursive page tables, in all 2181 * likelihood the guest has stopped using the unsync 2182 * page and is installing a completely unrelated page. 2183 * Unsync pages must not be left as is, because the new 2184 * upper-level page will be write-protected. 2185 */ 2186 if (role.level > PG_LEVEL_4K && sp->unsync) 2187 kvm_mmu_prepare_zap_page(kvm, sp, 2188 &invalid_list); 2189 continue; 2190 } 2191 2192 /* unsync and write-flooding only apply to indirect SPs. */ 2193 if (sp->role.direct) 2194 goto out; 2195 2196 if (sp->unsync) { 2197 if (KVM_BUG_ON(!vcpu, kvm)) 2198 break; 2199 2200 /* 2201 * The page is good, but is stale. kvm_sync_page does 2202 * get the latest guest state, but (unlike mmu_unsync_children) 2203 * it doesn't write-protect the page or mark it synchronized! 2204 * This way the validity of the mapping is ensured, but the 2205 * overhead of write protection is not incurred until the 2206 * guest invalidates the TLB mapping. This allows multiple 2207 * SPs for a single gfn to be unsync. 2208 * 2209 * If the sync fails, the page is zapped. If so, break 2210 * in order to rebuild it. 2211 */ 2212 ret = kvm_sync_page(vcpu, sp, &invalid_list); 2213 if (ret < 0) 2214 break; 2215 2216 WARN_ON(!list_empty(&invalid_list)); 2217 if (ret > 0) 2218 kvm_flush_remote_tlbs(kvm); 2219 } 2220 2221 __clear_sp_write_flooding_count(sp); 2222 2223 goto out; 2224 } 2225 2226 sp = NULL; 2227 ++kvm->stat.mmu_cache_miss; 2228 2229 out: 2230 kvm_mmu_commit_zap_page(kvm, &invalid_list); 2231 2232 if (collisions > kvm->stat.max_mmu_page_hash_collisions) 2233 kvm->stat.max_mmu_page_hash_collisions = collisions; 2234 return sp; 2235 } 2236 2237 /* Caches used when allocating a new shadow page. */ 2238 struct shadow_page_caches { 2239 struct kvm_mmu_memory_cache *page_header_cache; 2240 struct kvm_mmu_memory_cache *shadow_page_cache; 2241 struct kvm_mmu_memory_cache *shadowed_info_cache; 2242 }; 2243 2244 static struct kvm_mmu_page *kvm_mmu_alloc_shadow_page(struct kvm *kvm, 2245 struct shadow_page_caches *caches, 2246 gfn_t gfn, 2247 struct hlist_head *sp_list, 2248 union kvm_mmu_page_role role) 2249 { 2250 struct kvm_mmu_page *sp; 2251 2252 sp = kvm_mmu_memory_cache_alloc(caches->page_header_cache); 2253 sp->spt = kvm_mmu_memory_cache_alloc(caches->shadow_page_cache); 2254 if (!role.direct) 2255 sp->shadowed_translation = kvm_mmu_memory_cache_alloc(caches->shadowed_info_cache); 2256 2257 set_page_private(virt_to_page(sp->spt), (unsigned long)sp); 2258 2259 INIT_LIST_HEAD(&sp->possible_nx_huge_page_link); 2260 2261 /* 2262 * active_mmu_pages must be a FIFO list, as kvm_zap_obsolete_pages() 2263 * depends on valid pages being added to the head of the list. See 2264 * comments in kvm_zap_obsolete_pages(). 2265 */ 2266 sp->mmu_valid_gen = kvm->arch.mmu_valid_gen; 2267 list_add(&sp->link, &kvm->arch.active_mmu_pages); 2268 kvm_account_mmu_page(kvm, sp); 2269 2270 sp->gfn = gfn; 2271 sp->role = role; 2272 hlist_add_head(&sp->hash_link, sp_list); 2273 if (sp_has_gptes(sp)) 2274 account_shadowed(kvm, sp); 2275 2276 return sp; 2277 } 2278 2279 /* Note, @vcpu may be NULL if @role.direct is true; see kvm_mmu_find_shadow_page. */ 2280 static struct kvm_mmu_page *__kvm_mmu_get_shadow_page(struct kvm *kvm, 2281 struct kvm_vcpu *vcpu, 2282 struct shadow_page_caches *caches, 2283 gfn_t gfn, 2284 union kvm_mmu_page_role role) 2285 { 2286 struct hlist_head *sp_list; 2287 struct kvm_mmu_page *sp; 2288 bool created = false; 2289 2290 sp_list = &kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]; 2291 2292 sp = kvm_mmu_find_shadow_page(kvm, vcpu, gfn, sp_list, role); 2293 if (!sp) { 2294 created = true; 2295 sp = kvm_mmu_alloc_shadow_page(kvm, caches, gfn, sp_list, role); 2296 } 2297 2298 trace_kvm_mmu_get_page(sp, created); 2299 return sp; 2300 } 2301 2302 static struct kvm_mmu_page *kvm_mmu_get_shadow_page(struct kvm_vcpu *vcpu, 2303 gfn_t gfn, 2304 union kvm_mmu_page_role role) 2305 { 2306 struct shadow_page_caches caches = { 2307 .page_header_cache = &vcpu->arch.mmu_page_header_cache, 2308 .shadow_page_cache = &vcpu->arch.mmu_shadow_page_cache, 2309 .shadowed_info_cache = &vcpu->arch.mmu_shadowed_info_cache, 2310 }; 2311 2312 return __kvm_mmu_get_shadow_page(vcpu->kvm, vcpu, &caches, gfn, role); 2313 } 2314 2315 static union kvm_mmu_page_role kvm_mmu_child_role(u64 *sptep, bool direct, 2316 unsigned int access) 2317 { 2318 struct kvm_mmu_page *parent_sp = sptep_to_sp(sptep); 2319 union kvm_mmu_page_role role; 2320 2321 role = parent_sp->role; 2322 role.level--; 2323 role.access = access; 2324 role.direct = direct; 2325 role.passthrough = 0; 2326 2327 /* 2328 * If the guest has 4-byte PTEs then that means it's using 32-bit, 2329 * 2-level, non-PAE paging. KVM shadows such guests with PAE paging 2330 * (i.e. 8-byte PTEs). The difference in PTE size means that KVM must 2331 * shadow each guest page table with multiple shadow page tables, which 2332 * requires extra bookkeeping in the role. 2333 * 2334 * Specifically, to shadow the guest's page directory (which covers a 2335 * 4GiB address space), KVM uses 4 PAE page directories, each mapping 2336 * 1GiB of the address space. @role.quadrant encodes which quarter of 2337 * the address space each maps. 2338 * 2339 * To shadow the guest's page tables (which each map a 4MiB region), KVM 2340 * uses 2 PAE page tables, each mapping a 2MiB region. For these, 2341 * @role.quadrant encodes which half of the region they map. 2342 * 2343 * Concretely, a 4-byte PDE consumes bits 31:22, while an 8-byte PDE 2344 * consumes bits 29:21. To consume bits 31:30, KVM's uses 4 shadow 2345 * PDPTEs; those 4 PAE page directories are pre-allocated and their 2346 * quadrant is assigned in mmu_alloc_root(). A 4-byte PTE consumes 2347 * bits 21:12, while an 8-byte PTE consumes bits 20:12. To consume 2348 * bit 21 in the PTE (the child here), KVM propagates that bit to the 2349 * quadrant, i.e. sets quadrant to '0' or '1'. The parent 8-byte PDE 2350 * covers bit 21 (see above), thus the quadrant is calculated from the 2351 * _least_ significant bit of the PDE index. 2352 */ 2353 if (role.has_4_byte_gpte) { 2354 WARN_ON_ONCE(role.level != PG_LEVEL_4K); 2355 role.quadrant = spte_index(sptep) & 1; 2356 } 2357 2358 return role; 2359 } 2360 2361 static struct kvm_mmu_page *kvm_mmu_get_child_sp(struct kvm_vcpu *vcpu, 2362 u64 *sptep, gfn_t gfn, 2363 bool direct, unsigned int access) 2364 { 2365 union kvm_mmu_page_role role; 2366 2367 if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) 2368 return ERR_PTR(-EEXIST); 2369 2370 role = kvm_mmu_child_role(sptep, direct, access); 2371 return kvm_mmu_get_shadow_page(vcpu, gfn, role); 2372 } 2373 2374 static void shadow_walk_init_using_root(struct kvm_shadow_walk_iterator *iterator, 2375 struct kvm_vcpu *vcpu, hpa_t root, 2376 u64 addr) 2377 { 2378 iterator->addr = addr; 2379 iterator->shadow_addr = root; 2380 iterator->level = vcpu->arch.mmu->root_role.level; 2381 2382 if (iterator->level >= PT64_ROOT_4LEVEL && 2383 vcpu->arch.mmu->cpu_role.base.level < PT64_ROOT_4LEVEL && 2384 !vcpu->arch.mmu->root_role.direct) 2385 iterator->level = PT32E_ROOT_LEVEL; 2386 2387 if (iterator->level == PT32E_ROOT_LEVEL) { 2388 /* 2389 * prev_root is currently only used for 64-bit hosts. So only 2390 * the active root_hpa is valid here. 2391 */ 2392 BUG_ON(root != vcpu->arch.mmu->root.hpa); 2393 2394 iterator->shadow_addr 2395 = vcpu->arch.mmu->pae_root[(addr >> 30) & 3]; 2396 iterator->shadow_addr &= SPTE_BASE_ADDR_MASK; 2397 --iterator->level; 2398 if (!iterator->shadow_addr) 2399 iterator->level = 0; 2400 } 2401 } 2402 2403 static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator, 2404 struct kvm_vcpu *vcpu, u64 addr) 2405 { 2406 shadow_walk_init_using_root(iterator, vcpu, vcpu->arch.mmu->root.hpa, 2407 addr); 2408 } 2409 2410 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator) 2411 { 2412 if (iterator->level < PG_LEVEL_4K) 2413 return false; 2414 2415 iterator->index = SPTE_INDEX(iterator->addr, iterator->level); 2416 iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index; 2417 return true; 2418 } 2419 2420 static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator, 2421 u64 spte) 2422 { 2423 if (!is_shadow_present_pte(spte) || is_last_spte(spte, iterator->level)) { 2424 iterator->level = 0; 2425 return; 2426 } 2427 2428 iterator->shadow_addr = spte & SPTE_BASE_ADDR_MASK; 2429 --iterator->level; 2430 } 2431 2432 static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator) 2433 { 2434 __shadow_walk_next(iterator, *iterator->sptep); 2435 } 2436 2437 static void __link_shadow_page(struct kvm *kvm, 2438 struct kvm_mmu_memory_cache *cache, u64 *sptep, 2439 struct kvm_mmu_page *sp, bool flush) 2440 { 2441 u64 spte; 2442 2443 BUILD_BUG_ON(VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK); 2444 2445 /* 2446 * If an SPTE is present already, it must be a leaf and therefore 2447 * a large one. Drop it, and flush the TLB if needed, before 2448 * installing sp. 2449 */ 2450 if (is_shadow_present_pte(*sptep)) 2451 drop_large_spte(kvm, sptep, flush); 2452 2453 spte = make_nonleaf_spte(sp->spt, sp_ad_disabled(sp)); 2454 2455 mmu_spte_set(sptep, spte); 2456 2457 mmu_page_add_parent_pte(cache, sp, sptep); 2458 2459 /* 2460 * The non-direct sub-pagetable must be updated before linking. For 2461 * L1 sp, the pagetable is updated via kvm_sync_page() in 2462 * kvm_mmu_find_shadow_page() without write-protecting the gfn, 2463 * so sp->unsync can be true or false. For higher level non-direct 2464 * sp, the pagetable is updated/synced via mmu_sync_children() in 2465 * FNAME(fetch)(), so sp->unsync_children can only be false. 2466 * WARN_ON_ONCE() if anything happens unexpectedly. 2467 */ 2468 if (WARN_ON_ONCE(sp->unsync_children) || sp->unsync) 2469 mark_unsync(sptep); 2470 } 2471 2472 static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep, 2473 struct kvm_mmu_page *sp) 2474 { 2475 __link_shadow_page(vcpu->kvm, &vcpu->arch.mmu_pte_list_desc_cache, sptep, sp, true); 2476 } 2477 2478 static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep, 2479 unsigned direct_access) 2480 { 2481 if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) { 2482 struct kvm_mmu_page *child; 2483 2484 /* 2485 * For the direct sp, if the guest pte's dirty bit 2486 * changed form clean to dirty, it will corrupt the 2487 * sp's access: allow writable in the read-only sp, 2488 * so we should update the spte at this point to get 2489 * a new sp with the correct access. 2490 */ 2491 child = spte_to_child_sp(*sptep); 2492 if (child->role.access == direct_access) 2493 return; 2494 2495 drop_parent_pte(child, sptep); 2496 kvm_flush_remote_tlbs_sptep(vcpu->kvm, sptep); 2497 } 2498 } 2499 2500 /* Returns the number of zapped non-leaf child shadow pages. */ 2501 static int mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp, 2502 u64 *spte, struct list_head *invalid_list) 2503 { 2504 u64 pte; 2505 struct kvm_mmu_page *child; 2506 2507 pte = *spte; 2508 if (is_shadow_present_pte(pte)) { 2509 if (is_last_spte(pte, sp->role.level)) { 2510 drop_spte(kvm, spte); 2511 } else { 2512 child = spte_to_child_sp(pte); 2513 drop_parent_pte(child, spte); 2514 2515 /* 2516 * Recursively zap nested TDP SPs, parentless SPs are 2517 * unlikely to be used again in the near future. This 2518 * avoids retaining a large number of stale nested SPs. 2519 */ 2520 if (tdp_enabled && invalid_list && 2521 child->role.guest_mode && !child->parent_ptes.val) 2522 return kvm_mmu_prepare_zap_page(kvm, child, 2523 invalid_list); 2524 } 2525 } else if (is_mmio_spte(pte)) { 2526 mmu_spte_clear_no_track(spte); 2527 } 2528 return 0; 2529 } 2530 2531 static int kvm_mmu_page_unlink_children(struct kvm *kvm, 2532 struct kvm_mmu_page *sp, 2533 struct list_head *invalid_list) 2534 { 2535 int zapped = 0; 2536 unsigned i; 2537 2538 for (i = 0; i < SPTE_ENT_PER_PAGE; ++i) 2539 zapped += mmu_page_zap_pte(kvm, sp, sp->spt + i, invalid_list); 2540 2541 return zapped; 2542 } 2543 2544 static void kvm_mmu_unlink_parents(struct kvm_mmu_page *sp) 2545 { 2546 u64 *sptep; 2547 struct rmap_iterator iter; 2548 2549 while ((sptep = rmap_get_first(&sp->parent_ptes, &iter))) 2550 drop_parent_pte(sp, sptep); 2551 } 2552 2553 static int mmu_zap_unsync_children(struct kvm *kvm, 2554 struct kvm_mmu_page *parent, 2555 struct list_head *invalid_list) 2556 { 2557 int i, zapped = 0; 2558 struct mmu_page_path parents; 2559 struct kvm_mmu_pages pages; 2560 2561 if (parent->role.level == PG_LEVEL_4K) 2562 return 0; 2563 2564 while (mmu_unsync_walk(parent, &pages)) { 2565 struct kvm_mmu_page *sp; 2566 2567 for_each_sp(pages, sp, parents, i) { 2568 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list); 2569 mmu_pages_clear_parents(&parents); 2570 zapped++; 2571 } 2572 } 2573 2574 return zapped; 2575 } 2576 2577 static bool __kvm_mmu_prepare_zap_page(struct kvm *kvm, 2578 struct kvm_mmu_page *sp, 2579 struct list_head *invalid_list, 2580 int *nr_zapped) 2581 { 2582 bool list_unstable, zapped_root = false; 2583 2584 lockdep_assert_held_write(&kvm->mmu_lock); 2585 trace_kvm_mmu_prepare_zap_page(sp); 2586 ++kvm->stat.mmu_shadow_zapped; 2587 *nr_zapped = mmu_zap_unsync_children(kvm, sp, invalid_list); 2588 *nr_zapped += kvm_mmu_page_unlink_children(kvm, sp, invalid_list); 2589 kvm_mmu_unlink_parents(sp); 2590 2591 /* Zapping children means active_mmu_pages has become unstable. */ 2592 list_unstable = *nr_zapped; 2593 2594 if (!sp->role.invalid && sp_has_gptes(sp)) 2595 unaccount_shadowed(kvm, sp); 2596 2597 if (sp->unsync) 2598 kvm_unlink_unsync_page(kvm, sp); 2599 if (!sp->root_count) { 2600 /* Count self */ 2601 (*nr_zapped)++; 2602 2603 /* 2604 * Already invalid pages (previously active roots) are not on 2605 * the active page list. See list_del() in the "else" case of 2606 * !sp->root_count. 2607 */ 2608 if (sp->role.invalid) 2609 list_add(&sp->link, invalid_list); 2610 else 2611 list_move(&sp->link, invalid_list); 2612 kvm_unaccount_mmu_page(kvm, sp); 2613 } else { 2614 /* 2615 * Remove the active root from the active page list, the root 2616 * will be explicitly freed when the root_count hits zero. 2617 */ 2618 list_del(&sp->link); 2619 2620 /* 2621 * Obsolete pages cannot be used on any vCPUs, see the comment 2622 * in kvm_mmu_zap_all_fast(). Note, is_obsolete_sp() also 2623 * treats invalid shadow pages as being obsolete. 2624 */ 2625 zapped_root = !is_obsolete_sp(kvm, sp); 2626 } 2627 2628 if (sp->nx_huge_page_disallowed) 2629 unaccount_nx_huge_page(kvm, sp); 2630 2631 sp->role.invalid = 1; 2632 2633 /* 2634 * Make the request to free obsolete roots after marking the root 2635 * invalid, otherwise other vCPUs may not see it as invalid. 2636 */ 2637 if (zapped_root) 2638 kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_FREE_OBSOLETE_ROOTS); 2639 return list_unstable; 2640 } 2641 2642 static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp, 2643 struct list_head *invalid_list) 2644 { 2645 int nr_zapped; 2646 2647 __kvm_mmu_prepare_zap_page(kvm, sp, invalid_list, &nr_zapped); 2648 return nr_zapped; 2649 } 2650 2651 static void kvm_mmu_commit_zap_page(struct kvm *kvm, 2652 struct list_head *invalid_list) 2653 { 2654 struct kvm_mmu_page *sp, *nsp; 2655 2656 if (list_empty(invalid_list)) 2657 return; 2658 2659 /* 2660 * We need to make sure everyone sees our modifications to 2661 * the page tables and see changes to vcpu->mode here. The barrier 2662 * in the kvm_flush_remote_tlbs() achieves this. This pairs 2663 * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end. 2664 * 2665 * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit 2666 * guest mode and/or lockless shadow page table walks. 2667 */ 2668 kvm_flush_remote_tlbs(kvm); 2669 2670 list_for_each_entry_safe(sp, nsp, invalid_list, link) { 2671 WARN_ON(!sp->role.invalid || sp->root_count); 2672 kvm_mmu_free_shadow_page(sp); 2673 } 2674 } 2675 2676 static unsigned long kvm_mmu_zap_oldest_mmu_pages(struct kvm *kvm, 2677 unsigned long nr_to_zap) 2678 { 2679 unsigned long total_zapped = 0; 2680 struct kvm_mmu_page *sp, *tmp; 2681 LIST_HEAD(invalid_list); 2682 bool unstable; 2683 int nr_zapped; 2684 2685 if (list_empty(&kvm->arch.active_mmu_pages)) 2686 return 0; 2687 2688 restart: 2689 list_for_each_entry_safe_reverse(sp, tmp, &kvm->arch.active_mmu_pages, link) { 2690 /* 2691 * Don't zap active root pages, the page itself can't be freed 2692 * and zapping it will just force vCPUs to realloc and reload. 2693 */ 2694 if (sp->root_count) 2695 continue; 2696 2697 unstable = __kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list, 2698 &nr_zapped); 2699 total_zapped += nr_zapped; 2700 if (total_zapped >= nr_to_zap) 2701 break; 2702 2703 if (unstable) 2704 goto restart; 2705 } 2706 2707 kvm_mmu_commit_zap_page(kvm, &invalid_list); 2708 2709 kvm->stat.mmu_recycled += total_zapped; 2710 return total_zapped; 2711 } 2712 2713 static inline unsigned long kvm_mmu_available_pages(struct kvm *kvm) 2714 { 2715 if (kvm->arch.n_max_mmu_pages > kvm->arch.n_used_mmu_pages) 2716 return kvm->arch.n_max_mmu_pages - 2717 kvm->arch.n_used_mmu_pages; 2718 2719 return 0; 2720 } 2721 2722 static int make_mmu_pages_available(struct kvm_vcpu *vcpu) 2723 { 2724 unsigned long avail = kvm_mmu_available_pages(vcpu->kvm); 2725 2726 if (likely(avail >= KVM_MIN_FREE_MMU_PAGES)) 2727 return 0; 2728 2729 kvm_mmu_zap_oldest_mmu_pages(vcpu->kvm, KVM_REFILL_PAGES - avail); 2730 2731 /* 2732 * Note, this check is intentionally soft, it only guarantees that one 2733 * page is available, while the caller may end up allocating as many as 2734 * four pages, e.g. for PAE roots or for 5-level paging. Temporarily 2735 * exceeding the (arbitrary by default) limit will not harm the host, 2736 * being too aggressive may unnecessarily kill the guest, and getting an 2737 * exact count is far more trouble than it's worth, especially in the 2738 * page fault paths. 2739 */ 2740 if (!kvm_mmu_available_pages(vcpu->kvm)) 2741 return -ENOSPC; 2742 return 0; 2743 } 2744 2745 /* 2746 * Changing the number of mmu pages allocated to the vm 2747 * Note: if goal_nr_mmu_pages is too small, you will get dead lock 2748 */ 2749 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long goal_nr_mmu_pages) 2750 { 2751 write_lock(&kvm->mmu_lock); 2752 2753 if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) { 2754 kvm_mmu_zap_oldest_mmu_pages(kvm, kvm->arch.n_used_mmu_pages - 2755 goal_nr_mmu_pages); 2756 2757 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages; 2758 } 2759 2760 kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages; 2761 2762 write_unlock(&kvm->mmu_lock); 2763 } 2764 2765 int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn) 2766 { 2767 struct kvm_mmu_page *sp; 2768 LIST_HEAD(invalid_list); 2769 int r; 2770 2771 pgprintk("%s: looking for gfn %llx\n", __func__, gfn); 2772 r = 0; 2773 write_lock(&kvm->mmu_lock); 2774 for_each_gfn_valid_sp_with_gptes(kvm, sp, gfn) { 2775 pgprintk("%s: gfn %llx role %x\n", __func__, gfn, 2776 sp->role.word); 2777 r = 1; 2778 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list); 2779 } 2780 kvm_mmu_commit_zap_page(kvm, &invalid_list); 2781 write_unlock(&kvm->mmu_lock); 2782 2783 return r; 2784 } 2785 2786 static int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva) 2787 { 2788 gpa_t gpa; 2789 int r; 2790 2791 if (vcpu->arch.mmu->root_role.direct) 2792 return 0; 2793 2794 gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL); 2795 2796 r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT); 2797 2798 return r; 2799 } 2800 2801 static void kvm_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp) 2802 { 2803 trace_kvm_mmu_unsync_page(sp); 2804 ++kvm->stat.mmu_unsync; 2805 sp->unsync = 1; 2806 2807 kvm_mmu_mark_parents_unsync(sp); 2808 } 2809 2810 /* 2811 * Attempt to unsync any shadow pages that can be reached by the specified gfn, 2812 * KVM is creating a writable mapping for said gfn. Returns 0 if all pages 2813 * were marked unsync (or if there is no shadow page), -EPERM if the SPTE must 2814 * be write-protected. 2815 */ 2816 int mmu_try_to_unsync_pages(struct kvm *kvm, const struct kvm_memory_slot *slot, 2817 gfn_t gfn, bool can_unsync, bool prefetch) 2818 { 2819 struct kvm_mmu_page *sp; 2820 bool locked = false; 2821 2822 /* 2823 * Force write-protection if the page is being tracked. Note, the page 2824 * track machinery is used to write-protect upper-level shadow pages, 2825 * i.e. this guards the role.level == 4K assertion below! 2826 */ 2827 if (kvm_slot_page_track_is_active(kvm, slot, gfn, KVM_PAGE_TRACK_WRITE)) 2828 return -EPERM; 2829 2830 /* 2831 * The page is not write-tracked, mark existing shadow pages unsync 2832 * unless KVM is synchronizing an unsync SP (can_unsync = false). In 2833 * that case, KVM must complete emulation of the guest TLB flush before 2834 * allowing shadow pages to become unsync (writable by the guest). 2835 */ 2836 for_each_gfn_valid_sp_with_gptes(kvm, sp, gfn) { 2837 if (!can_unsync) 2838 return -EPERM; 2839 2840 if (sp->unsync) 2841 continue; 2842 2843 if (prefetch) 2844 return -EEXIST; 2845 2846 /* 2847 * TDP MMU page faults require an additional spinlock as they 2848 * run with mmu_lock held for read, not write, and the unsync 2849 * logic is not thread safe. Take the spinklock regardless of 2850 * the MMU type to avoid extra conditionals/parameters, there's 2851 * no meaningful penalty if mmu_lock is held for write. 2852 */ 2853 if (!locked) { 2854 locked = true; 2855 spin_lock(&kvm->arch.mmu_unsync_pages_lock); 2856 2857 /* 2858 * Recheck after taking the spinlock, a different vCPU 2859 * may have since marked the page unsync. A false 2860 * positive on the unprotected check above is not 2861 * possible as clearing sp->unsync _must_ hold mmu_lock 2862 * for write, i.e. unsync cannot transition from 0->1 2863 * while this CPU holds mmu_lock for read (or write). 2864 */ 2865 if (READ_ONCE(sp->unsync)) 2866 continue; 2867 } 2868 2869 WARN_ON(sp->role.level != PG_LEVEL_4K); 2870 kvm_unsync_page(kvm, sp); 2871 } 2872 if (locked) 2873 spin_unlock(&kvm->arch.mmu_unsync_pages_lock); 2874 2875 /* 2876 * We need to ensure that the marking of unsync pages is visible 2877 * before the SPTE is updated to allow writes because 2878 * kvm_mmu_sync_roots() checks the unsync flags without holding 2879 * the MMU lock and so can race with this. If the SPTE was updated 2880 * before the page had been marked as unsync-ed, something like the 2881 * following could happen: 2882 * 2883 * CPU 1 CPU 2 2884 * --------------------------------------------------------------------- 2885 * 1.2 Host updates SPTE 2886 * to be writable 2887 * 2.1 Guest writes a GPTE for GVA X. 2888 * (GPTE being in the guest page table shadowed 2889 * by the SP from CPU 1.) 2890 * This reads SPTE during the page table walk. 2891 * Since SPTE.W is read as 1, there is no 2892 * fault. 2893 * 2894 * 2.2 Guest issues TLB flush. 2895 * That causes a VM Exit. 2896 * 2897 * 2.3 Walking of unsync pages sees sp->unsync is 2898 * false and skips the page. 2899 * 2900 * 2.4 Guest accesses GVA X. 2901 * Since the mapping in the SP was not updated, 2902 * so the old mapping for GVA X incorrectly 2903 * gets used. 2904 * 1.1 Host marks SP 2905 * as unsync 2906 * (sp->unsync = true) 2907 * 2908 * The write barrier below ensures that 1.1 happens before 1.2 and thus 2909 * the situation in 2.4 does not arise. It pairs with the read barrier 2910 * in is_unsync_root(), placed between 2.1's load of SPTE.W and 2.3. 2911 */ 2912 smp_wmb(); 2913 2914 return 0; 2915 } 2916 2917 static int mmu_set_spte(struct kvm_vcpu *vcpu, struct kvm_memory_slot *slot, 2918 u64 *sptep, unsigned int pte_access, gfn_t gfn, 2919 kvm_pfn_t pfn, struct kvm_page_fault *fault) 2920 { 2921 struct kvm_mmu_page *sp = sptep_to_sp(sptep); 2922 int level = sp->role.level; 2923 int was_rmapped = 0; 2924 int ret = RET_PF_FIXED; 2925 bool flush = false; 2926 bool wrprot; 2927 u64 spte; 2928 2929 /* Prefetching always gets a writable pfn. */ 2930 bool host_writable = !fault || fault->map_writable; 2931 bool prefetch = !fault || fault->prefetch; 2932 bool write_fault = fault && fault->write; 2933 2934 pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__, 2935 *sptep, write_fault, gfn); 2936 2937 if (unlikely(is_noslot_pfn(pfn))) { 2938 vcpu->stat.pf_mmio_spte_created++; 2939 mark_mmio_spte(vcpu, sptep, gfn, pte_access); 2940 return RET_PF_EMULATE; 2941 } 2942 2943 if (is_shadow_present_pte(*sptep)) { 2944 /* 2945 * If we overwrite a PTE page pointer with a 2MB PMD, unlink 2946 * the parent of the now unreachable PTE. 2947 */ 2948 if (level > PG_LEVEL_4K && !is_large_pte(*sptep)) { 2949 struct kvm_mmu_page *child; 2950 u64 pte = *sptep; 2951 2952 child = spte_to_child_sp(pte); 2953 drop_parent_pte(child, sptep); 2954 flush = true; 2955 } else if (pfn != spte_to_pfn(*sptep)) { 2956 pgprintk("hfn old %llx new %llx\n", 2957 spte_to_pfn(*sptep), pfn); 2958 drop_spte(vcpu->kvm, sptep); 2959 flush = true; 2960 } else 2961 was_rmapped = 1; 2962 } 2963 2964 wrprot = make_spte(vcpu, sp, slot, pte_access, gfn, pfn, *sptep, prefetch, 2965 true, host_writable, &spte); 2966 2967 if (*sptep == spte) { 2968 ret = RET_PF_SPURIOUS; 2969 } else { 2970 flush |= mmu_spte_update(sptep, spte); 2971 trace_kvm_mmu_set_spte(level, gfn, sptep); 2972 } 2973 2974 if (wrprot) { 2975 if (write_fault) 2976 ret = RET_PF_EMULATE; 2977 } 2978 2979 if (flush) 2980 kvm_flush_remote_tlbs_gfn(vcpu->kvm, gfn, level); 2981 2982 pgprintk("%s: setting spte %llx\n", __func__, *sptep); 2983 2984 if (!was_rmapped) { 2985 WARN_ON_ONCE(ret == RET_PF_SPURIOUS); 2986 rmap_add(vcpu, slot, sptep, gfn, pte_access); 2987 } else { 2988 /* Already rmapped but the pte_access bits may have changed. */ 2989 kvm_mmu_page_set_access(sp, spte_index(sptep), pte_access); 2990 } 2991 2992 return ret; 2993 } 2994 2995 static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu, 2996 struct kvm_mmu_page *sp, 2997 u64 *start, u64 *end) 2998 { 2999 struct page *pages[PTE_PREFETCH_NUM]; 3000 struct kvm_memory_slot *slot; 3001 unsigned int access = sp->role.access; 3002 int i, ret; 3003 gfn_t gfn; 3004 3005 gfn = kvm_mmu_page_get_gfn(sp, spte_index(start)); 3006 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK); 3007 if (!slot) 3008 return -1; 3009 3010 ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start); 3011 if (ret <= 0) 3012 return -1; 3013 3014 for (i = 0; i < ret; i++, gfn++, start++) { 3015 mmu_set_spte(vcpu, slot, start, access, gfn, 3016 page_to_pfn(pages[i]), NULL); 3017 put_page(pages[i]); 3018 } 3019 3020 return 0; 3021 } 3022 3023 static void __direct_pte_prefetch(struct kvm_vcpu *vcpu, 3024 struct kvm_mmu_page *sp, u64 *sptep) 3025 { 3026 u64 *spte, *start = NULL; 3027 int i; 3028 3029 WARN_ON(!sp->role.direct); 3030 3031 i = spte_index(sptep) & ~(PTE_PREFETCH_NUM - 1); 3032 spte = sp->spt + i; 3033 3034 for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) { 3035 if (is_shadow_present_pte(*spte) || spte == sptep) { 3036 if (!start) 3037 continue; 3038 if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0) 3039 return; 3040 start = NULL; 3041 } else if (!start) 3042 start = spte; 3043 } 3044 if (start) 3045 direct_pte_prefetch_many(vcpu, sp, start, spte); 3046 } 3047 3048 static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep) 3049 { 3050 struct kvm_mmu_page *sp; 3051 3052 sp = sptep_to_sp(sptep); 3053 3054 /* 3055 * Without accessed bits, there's no way to distinguish between 3056 * actually accessed translations and prefetched, so disable pte 3057 * prefetch if accessed bits aren't available. 3058 */ 3059 if (sp_ad_disabled(sp)) 3060 return; 3061 3062 if (sp->role.level > PG_LEVEL_4K) 3063 return; 3064 3065 /* 3066 * If addresses are being invalidated, skip prefetching to avoid 3067 * accidentally prefetching those addresses. 3068 */ 3069 if (unlikely(vcpu->kvm->mmu_invalidate_in_progress)) 3070 return; 3071 3072 __direct_pte_prefetch(vcpu, sp, sptep); 3073 } 3074 3075 /* 3076 * Lookup the mapping level for @gfn in the current mm. 3077 * 3078 * WARNING! Use of host_pfn_mapping_level() requires the caller and the end 3079 * consumer to be tied into KVM's handlers for MMU notifier events! 3080 * 3081 * There are several ways to safely use this helper: 3082 * 3083 * - Check mmu_invalidate_retry_hva() after grabbing the mapping level, before 3084 * consuming it. In this case, mmu_lock doesn't need to be held during the 3085 * lookup, but it does need to be held while checking the MMU notifier. 3086 * 3087 * - Hold mmu_lock AND ensure there is no in-progress MMU notifier invalidation 3088 * event for the hva. This can be done by explicit checking the MMU notifier 3089 * or by ensuring that KVM already has a valid mapping that covers the hva. 3090 * 3091 * - Do not use the result to install new mappings, e.g. use the host mapping 3092 * level only to decide whether or not to zap an entry. In this case, it's 3093 * not required to hold mmu_lock (though it's highly likely the caller will 3094 * want to hold mmu_lock anyways, e.g. to modify SPTEs). 3095 * 3096 * Note! The lookup can still race with modifications to host page tables, but 3097 * the above "rules" ensure KVM will not _consume_ the result of the walk if a 3098 * race with the primary MMU occurs. 3099 */ 3100 static int host_pfn_mapping_level(struct kvm *kvm, gfn_t gfn, 3101 const struct kvm_memory_slot *slot) 3102 { 3103 int level = PG_LEVEL_4K; 3104 unsigned long hva; 3105 unsigned long flags; 3106 pgd_t pgd; 3107 p4d_t p4d; 3108 pud_t pud; 3109 pmd_t pmd; 3110 3111 /* 3112 * Note, using the already-retrieved memslot and __gfn_to_hva_memslot() 3113 * is not solely for performance, it's also necessary to avoid the 3114 * "writable" check in __gfn_to_hva_many(), which will always fail on 3115 * read-only memslots due to gfn_to_hva() assuming writes. Earlier 3116 * page fault steps have already verified the guest isn't writing a 3117 * read-only memslot. 3118 */ 3119 hva = __gfn_to_hva_memslot(slot, gfn); 3120 3121 /* 3122 * Disable IRQs to prevent concurrent tear down of host page tables, 3123 * e.g. if the primary MMU promotes a P*D to a huge page and then frees 3124 * the original page table. 3125 */ 3126 local_irq_save(flags); 3127 3128 /* 3129 * Read each entry once. As above, a non-leaf entry can be promoted to 3130 * a huge page _during_ this walk. Re-reading the entry could send the 3131 * walk into the weeks, e.g. p*d_large() returns false (sees the old 3132 * value) and then p*d_offset() walks into the target huge page instead 3133 * of the old page table (sees the new value). 3134 */ 3135 pgd = READ_ONCE(*pgd_offset(kvm->mm, hva)); 3136 if (pgd_none(pgd)) 3137 goto out; 3138 3139 p4d = READ_ONCE(*p4d_offset(&pgd, hva)); 3140 if (p4d_none(p4d) || !p4d_present(p4d)) 3141 goto out; 3142 3143 pud = READ_ONCE(*pud_offset(&p4d, hva)); 3144 if (pud_none(pud) || !pud_present(pud)) 3145 goto out; 3146 3147 if (pud_large(pud)) { 3148 level = PG_LEVEL_1G; 3149 goto out; 3150 } 3151 3152 pmd = READ_ONCE(*pmd_offset(&pud, hva)); 3153 if (pmd_none(pmd) || !pmd_present(pmd)) 3154 goto out; 3155 3156 if (pmd_large(pmd)) 3157 level = PG_LEVEL_2M; 3158 3159 out: 3160 local_irq_restore(flags); 3161 return level; 3162 } 3163 3164 int kvm_mmu_max_mapping_level(struct kvm *kvm, 3165 const struct kvm_memory_slot *slot, gfn_t gfn, 3166 int max_level) 3167 { 3168 struct kvm_lpage_info *linfo; 3169 int host_level; 3170 3171 max_level = min(max_level, max_huge_page_level); 3172 for ( ; max_level > PG_LEVEL_4K; max_level--) { 3173 linfo = lpage_info_slot(gfn, slot, max_level); 3174 if (!linfo->disallow_lpage) 3175 break; 3176 } 3177 3178 if (max_level == PG_LEVEL_4K) 3179 return PG_LEVEL_4K; 3180 3181 host_level = host_pfn_mapping_level(kvm, gfn, slot); 3182 return min(host_level, max_level); 3183 } 3184 3185 void kvm_mmu_hugepage_adjust(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault) 3186 { 3187 struct kvm_memory_slot *slot = fault->slot; 3188 kvm_pfn_t mask; 3189 3190 fault->huge_page_disallowed = fault->exec && fault->nx_huge_page_workaround_enabled; 3191 3192 if (unlikely(fault->max_level == PG_LEVEL_4K)) 3193 return; 3194 3195 if (is_error_noslot_pfn(fault->pfn)) 3196 return; 3197 3198 if (kvm_slot_dirty_track_enabled(slot)) 3199 return; 3200 3201 /* 3202 * Enforce the iTLB multihit workaround after capturing the requested 3203 * level, which will be used to do precise, accurate accounting. 3204 */ 3205 fault->req_level = kvm_mmu_max_mapping_level(vcpu->kvm, slot, 3206 fault->gfn, fault->max_level); 3207 if (fault->req_level == PG_LEVEL_4K || fault->huge_page_disallowed) 3208 return; 3209 3210 /* 3211 * mmu_invalidate_retry() was successful and mmu_lock is held, so 3212 * the pmd can't be split from under us. 3213 */ 3214 fault->goal_level = fault->req_level; 3215 mask = KVM_PAGES_PER_HPAGE(fault->goal_level) - 1; 3216 VM_BUG_ON((fault->gfn & mask) != (fault->pfn & mask)); 3217 fault->pfn &= ~mask; 3218 } 3219 3220 void disallowed_hugepage_adjust(struct kvm_page_fault *fault, u64 spte, int cur_level) 3221 { 3222 if (cur_level > PG_LEVEL_4K && 3223 cur_level == fault->goal_level && 3224 is_shadow_present_pte(spte) && 3225 !is_large_pte(spte) && 3226 spte_to_child_sp(spte)->nx_huge_page_disallowed) { 3227 /* 3228 * A small SPTE exists for this pfn, but FNAME(fetch), 3229 * direct_map(), or kvm_tdp_mmu_map() would like to create a 3230 * large PTE instead: just force them to go down another level, 3231 * patching back for them into pfn the next 9 bits of the 3232 * address. 3233 */ 3234 u64 page_mask = KVM_PAGES_PER_HPAGE(cur_level) - 3235 KVM_PAGES_PER_HPAGE(cur_level - 1); 3236 fault->pfn |= fault->gfn & page_mask; 3237 fault->goal_level--; 3238 } 3239 } 3240 3241 static int direct_map(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault) 3242 { 3243 struct kvm_shadow_walk_iterator it; 3244 struct kvm_mmu_page *sp; 3245 int ret; 3246 gfn_t base_gfn = fault->gfn; 3247 3248 kvm_mmu_hugepage_adjust(vcpu, fault); 3249 3250 trace_kvm_mmu_spte_requested(fault); 3251 for_each_shadow_entry(vcpu, fault->addr, it) { 3252 /* 3253 * We cannot overwrite existing page tables with an NX 3254 * large page, as the leaf could be executable. 3255 */ 3256 if (fault->nx_huge_page_workaround_enabled) 3257 disallowed_hugepage_adjust(fault, *it.sptep, it.level); 3258 3259 base_gfn = gfn_round_for_level(fault->gfn, it.level); 3260 if (it.level == fault->goal_level) 3261 break; 3262 3263 sp = kvm_mmu_get_child_sp(vcpu, it.sptep, base_gfn, true, ACC_ALL); 3264 if (sp == ERR_PTR(-EEXIST)) 3265 continue; 3266 3267 link_shadow_page(vcpu, it.sptep, sp); 3268 if (fault->huge_page_disallowed) 3269 account_nx_huge_page(vcpu->kvm, sp, 3270 fault->req_level >= it.level); 3271 } 3272 3273 if (WARN_ON_ONCE(it.level != fault->goal_level)) 3274 return -EFAULT; 3275 3276 ret = mmu_set_spte(vcpu, fault->slot, it.sptep, ACC_ALL, 3277 base_gfn, fault->pfn, fault); 3278 if (ret == RET_PF_SPURIOUS) 3279 return ret; 3280 3281 direct_pte_prefetch(vcpu, it.sptep); 3282 return ret; 3283 } 3284 3285 static void kvm_send_hwpoison_signal(struct kvm_memory_slot *slot, gfn_t gfn) 3286 { 3287 unsigned long hva = gfn_to_hva_memslot(slot, gfn); 3288 3289 send_sig_mceerr(BUS_MCEERR_AR, (void __user *)hva, PAGE_SHIFT, current); 3290 } 3291 3292 static int kvm_handle_error_pfn(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault) 3293 { 3294 if (is_sigpending_pfn(fault->pfn)) { 3295 kvm_handle_signal_exit(vcpu); 3296 return -EINTR; 3297 } 3298 3299 /* 3300 * Do not cache the mmio info caused by writing the readonly gfn 3301 * into the spte otherwise read access on readonly gfn also can 3302 * caused mmio page fault and treat it as mmio access. 3303 */ 3304 if (fault->pfn == KVM_PFN_ERR_RO_FAULT) 3305 return RET_PF_EMULATE; 3306 3307 if (fault->pfn == KVM_PFN_ERR_HWPOISON) { 3308 kvm_send_hwpoison_signal(fault->slot, fault->gfn); 3309 return RET_PF_RETRY; 3310 } 3311 3312 return -EFAULT; 3313 } 3314 3315 static int kvm_handle_noslot_fault(struct kvm_vcpu *vcpu, 3316 struct kvm_page_fault *fault, 3317 unsigned int access) 3318 { 3319 gva_t gva = fault->is_tdp ? 0 : fault->addr; 3320 3321 vcpu_cache_mmio_info(vcpu, gva, fault->gfn, 3322 access & shadow_mmio_access_mask); 3323 3324 /* 3325 * If MMIO caching is disabled, emulate immediately without 3326 * touching the shadow page tables as attempting to install an 3327 * MMIO SPTE will just be an expensive nop. 3328 */ 3329 if (unlikely(!enable_mmio_caching)) 3330 return RET_PF_EMULATE; 3331 3332 /* 3333 * Do not create an MMIO SPTE for a gfn greater than host.MAXPHYADDR, 3334 * any guest that generates such gfns is running nested and is being 3335 * tricked by L0 userspace (you can observe gfn > L1.MAXPHYADDR if and 3336 * only if L1's MAXPHYADDR is inaccurate with respect to the 3337 * hardware's). 3338 */ 3339 if (unlikely(fault->gfn > kvm_mmu_max_gfn())) 3340 return RET_PF_EMULATE; 3341 3342 return RET_PF_CONTINUE; 3343 } 3344 3345 static bool page_fault_can_be_fast(struct kvm_page_fault *fault) 3346 { 3347 /* 3348 * Page faults with reserved bits set, i.e. faults on MMIO SPTEs, only 3349 * reach the common page fault handler if the SPTE has an invalid MMIO 3350 * generation number. Refreshing the MMIO generation needs to go down 3351 * the slow path. Note, EPT Misconfigs do NOT set the PRESENT flag! 3352 */ 3353 if (fault->rsvd) 3354 return false; 3355 3356 /* 3357 * #PF can be fast if: 3358 * 3359 * 1. The shadow page table entry is not present and A/D bits are 3360 * disabled _by KVM_, which could mean that the fault is potentially 3361 * caused by access tracking (if enabled). If A/D bits are enabled 3362 * by KVM, but disabled by L1 for L2, KVM is forced to disable A/D 3363 * bits for L2 and employ access tracking, but the fast page fault 3364 * mechanism only supports direct MMUs. 3365 * 2. The shadow page table entry is present, the access is a write, 3366 * and no reserved bits are set (MMIO SPTEs cannot be "fixed"), i.e. 3367 * the fault was caused by a write-protection violation. If the 3368 * SPTE is MMU-writable (determined later), the fault can be fixed 3369 * by setting the Writable bit, which can be done out of mmu_lock. 3370 */ 3371 if (!fault->present) 3372 return !kvm_ad_enabled(); 3373 3374 /* 3375 * Note, instruction fetches and writes are mutually exclusive, ignore 3376 * the "exec" flag. 3377 */ 3378 return fault->write; 3379 } 3380 3381 /* 3382 * Returns true if the SPTE was fixed successfully. Otherwise, 3383 * someone else modified the SPTE from its original value. 3384 */ 3385 static bool fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, 3386 struct kvm_page_fault *fault, 3387 u64 *sptep, u64 old_spte, u64 new_spte) 3388 { 3389 /* 3390 * Theoretically we could also set dirty bit (and flush TLB) here in 3391 * order to eliminate unnecessary PML logging. See comments in 3392 * set_spte. But fast_page_fault is very unlikely to happen with PML 3393 * enabled, so we do not do this. This might result in the same GPA 3394 * to be logged in PML buffer again when the write really happens, and 3395 * eventually to be called by mark_page_dirty twice. But it's also no 3396 * harm. This also avoids the TLB flush needed after setting dirty bit 3397 * so non-PML cases won't be impacted. 3398 * 3399 * Compare with set_spte where instead shadow_dirty_mask is set. 3400 */ 3401 if (!try_cmpxchg64(sptep, &old_spte, new_spte)) 3402 return false; 3403 3404 if (is_writable_pte(new_spte) && !is_writable_pte(old_spte)) 3405 mark_page_dirty_in_slot(vcpu->kvm, fault->slot, fault->gfn); 3406 3407 return true; 3408 } 3409 3410 static bool is_access_allowed(struct kvm_page_fault *fault, u64 spte) 3411 { 3412 if (fault->exec) 3413 return is_executable_pte(spte); 3414 3415 if (fault->write) 3416 return is_writable_pte(spte); 3417 3418 /* Fault was on Read access */ 3419 return spte & PT_PRESENT_MASK; 3420 } 3421 3422 /* 3423 * Returns the last level spte pointer of the shadow page walk for the given 3424 * gpa, and sets *spte to the spte value. This spte may be non-preset. If no 3425 * walk could be performed, returns NULL and *spte does not contain valid data. 3426 * 3427 * Contract: 3428 * - Must be called between walk_shadow_page_lockless_{begin,end}. 3429 * - The returned sptep must not be used after walk_shadow_page_lockless_end. 3430 */ 3431 static u64 *fast_pf_get_last_sptep(struct kvm_vcpu *vcpu, gpa_t gpa, u64 *spte) 3432 { 3433 struct kvm_shadow_walk_iterator iterator; 3434 u64 old_spte; 3435 u64 *sptep = NULL; 3436 3437 for_each_shadow_entry_lockless(vcpu, gpa, iterator, old_spte) { 3438 sptep = iterator.sptep; 3439 *spte = old_spte; 3440 } 3441 3442 return sptep; 3443 } 3444 3445 /* 3446 * Returns one of RET_PF_INVALID, RET_PF_FIXED or RET_PF_SPURIOUS. 3447 */ 3448 static int fast_page_fault(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault) 3449 { 3450 struct kvm_mmu_page *sp; 3451 int ret = RET_PF_INVALID; 3452 u64 spte = 0ull; 3453 u64 *sptep = NULL; 3454 uint retry_count = 0; 3455 3456 if (!page_fault_can_be_fast(fault)) 3457 return ret; 3458 3459 walk_shadow_page_lockless_begin(vcpu); 3460 3461 do { 3462 u64 new_spte; 3463 3464 if (tdp_mmu_enabled) 3465 sptep = kvm_tdp_mmu_fast_pf_get_last_sptep(vcpu, fault->addr, &spte); 3466 else 3467 sptep = fast_pf_get_last_sptep(vcpu, fault->addr, &spte); 3468 3469 if (!is_shadow_present_pte(spte)) 3470 break; 3471 3472 sp = sptep_to_sp(sptep); 3473 if (!is_last_spte(spte, sp->role.level)) 3474 break; 3475 3476 /* 3477 * Check whether the memory access that caused the fault would 3478 * still cause it if it were to be performed right now. If not, 3479 * then this is a spurious fault caused by TLB lazily flushed, 3480 * or some other CPU has already fixed the PTE after the 3481 * current CPU took the fault. 3482 * 3483 * Need not check the access of upper level table entries since 3484 * they are always ACC_ALL. 3485 */ 3486 if (is_access_allowed(fault, spte)) { 3487 ret = RET_PF_SPURIOUS; 3488 break; 3489 } 3490 3491 new_spte = spte; 3492 3493 /* 3494 * KVM only supports fixing page faults outside of MMU lock for 3495 * direct MMUs, nested MMUs are always indirect, and KVM always 3496 * uses A/D bits for non-nested MMUs. Thus, if A/D bits are 3497 * enabled, the SPTE can't be an access-tracked SPTE. 3498 */ 3499 if (unlikely(!kvm_ad_enabled()) && is_access_track_spte(spte)) 3500 new_spte = restore_acc_track_spte(new_spte); 3501 3502 /* 3503 * To keep things simple, only SPTEs that are MMU-writable can 3504 * be made fully writable outside of mmu_lock, e.g. only SPTEs 3505 * that were write-protected for dirty-logging or access 3506 * tracking are handled here. Don't bother checking if the 3507 * SPTE is writable to prioritize running with A/D bits enabled. 3508 * The is_access_allowed() check above handles the common case 3509 * of the fault being spurious, and the SPTE is known to be 3510 * shadow-present, i.e. except for access tracking restoration 3511 * making the new SPTE writable, the check is wasteful. 3512 */ 3513 if (fault->write && is_mmu_writable_spte(spte)) { 3514 new_spte |= PT_WRITABLE_MASK; 3515 3516 /* 3517 * Do not fix write-permission on the large spte when 3518 * dirty logging is enabled. Since we only dirty the 3519 * first page into the dirty-bitmap in 3520 * fast_pf_fix_direct_spte(), other pages are missed 3521 * if its slot has dirty logging enabled. 3522 * 3523 * Instead, we let the slow page fault path create a 3524 * normal spte to fix the access. 3525 */ 3526 if (sp->role.level > PG_LEVEL_4K && 3527 kvm_slot_dirty_track_enabled(fault->slot)) 3528 break; 3529 } 3530 3531 /* Verify that the fault can be handled in the fast path */ 3532 if (new_spte == spte || 3533 !is_access_allowed(fault, new_spte)) 3534 break; 3535 3536 /* 3537 * Currently, fast page fault only works for direct mapping 3538 * since the gfn is not stable for indirect shadow page. See 3539 * Documentation/virt/kvm/locking.rst to get more detail. 3540 */ 3541 if (fast_pf_fix_direct_spte(vcpu, fault, sptep, spte, new_spte)) { 3542 ret = RET_PF_FIXED; 3543 break; 3544 } 3545 3546 if (++retry_count > 4) { 3547 pr_warn_once("Fast #PF retrying more than 4 times.\n"); 3548 break; 3549 } 3550 3551 } while (true); 3552 3553 trace_fast_page_fault(vcpu, fault, sptep, spte, ret); 3554 walk_shadow_page_lockless_end(vcpu); 3555 3556 if (ret != RET_PF_INVALID) 3557 vcpu->stat.pf_fast++; 3558 3559 return ret; 3560 } 3561 3562 static void mmu_free_root_page(struct kvm *kvm, hpa_t *root_hpa, 3563 struct list_head *invalid_list) 3564 { 3565 struct kvm_mmu_page *sp; 3566 3567 if (!VALID_PAGE(*root_hpa)) 3568 return; 3569 3570 /* 3571 * The "root" may be a special root, e.g. a PAE entry, treat it as a 3572 * SPTE to ensure any non-PA bits are dropped. 3573 */ 3574 sp = spte_to_child_sp(*root_hpa); 3575 if (WARN_ON(!sp)) 3576 return; 3577 3578 if (is_tdp_mmu_page(sp)) 3579 kvm_tdp_mmu_put_root(kvm, sp, false); 3580 else if (!--sp->root_count && sp->role.invalid) 3581 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list); 3582 3583 *root_hpa = INVALID_PAGE; 3584 } 3585 3586 /* roots_to_free must be some combination of the KVM_MMU_ROOT_* flags */ 3587 void kvm_mmu_free_roots(struct kvm *kvm, struct kvm_mmu *mmu, 3588 ulong roots_to_free) 3589 { 3590 int i; 3591 LIST_HEAD(invalid_list); 3592 bool free_active_root; 3593 3594 WARN_ON_ONCE(roots_to_free & ~KVM_MMU_ROOTS_ALL); 3595 3596 BUILD_BUG_ON(KVM_MMU_NUM_PREV_ROOTS >= BITS_PER_LONG); 3597 3598 /* Before acquiring the MMU lock, see if we need to do any real work. */ 3599 free_active_root = (roots_to_free & KVM_MMU_ROOT_CURRENT) 3600 && VALID_PAGE(mmu->root.hpa); 3601 3602 if (!free_active_root) { 3603 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 3604 if ((roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) && 3605 VALID_PAGE(mmu->prev_roots[i].hpa)) 3606 break; 3607 3608 if (i == KVM_MMU_NUM_PREV_ROOTS) 3609 return; 3610 } 3611 3612 write_lock(&kvm->mmu_lock); 3613 3614 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 3615 if (roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) 3616 mmu_free_root_page(kvm, &mmu->prev_roots[i].hpa, 3617 &invalid_list); 3618 3619 if (free_active_root) { 3620 if (to_shadow_page(mmu->root.hpa)) { 3621 mmu_free_root_page(kvm, &mmu->root.hpa, &invalid_list); 3622 } else if (mmu->pae_root) { 3623 for (i = 0; i < 4; ++i) { 3624 if (!IS_VALID_PAE_ROOT(mmu->pae_root[i])) 3625 continue; 3626 3627 mmu_free_root_page(kvm, &mmu->pae_root[i], 3628 &invalid_list); 3629 mmu->pae_root[i] = INVALID_PAE_ROOT; 3630 } 3631 } 3632 mmu->root.hpa = INVALID_PAGE; 3633 mmu->root.pgd = 0; 3634 } 3635 3636 kvm_mmu_commit_zap_page(kvm, &invalid_list); 3637 write_unlock(&kvm->mmu_lock); 3638 } 3639 EXPORT_SYMBOL_GPL(kvm_mmu_free_roots); 3640 3641 void kvm_mmu_free_guest_mode_roots(struct kvm *kvm, struct kvm_mmu *mmu) 3642 { 3643 unsigned long roots_to_free = 0; 3644 hpa_t root_hpa; 3645 int i; 3646 3647 /* 3648 * This should not be called while L2 is active, L2 can't invalidate 3649 * _only_ its own roots, e.g. INVVPID unconditionally exits. 3650 */ 3651 WARN_ON_ONCE(mmu->root_role.guest_mode); 3652 3653 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) { 3654 root_hpa = mmu->prev_roots[i].hpa; 3655 if (!VALID_PAGE(root_hpa)) 3656 continue; 3657 3658 if (!to_shadow_page(root_hpa) || 3659 to_shadow_page(root_hpa)->role.guest_mode) 3660 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i); 3661 } 3662 3663 kvm_mmu_free_roots(kvm, mmu, roots_to_free); 3664 } 3665 EXPORT_SYMBOL_GPL(kvm_mmu_free_guest_mode_roots); 3666 3667 3668 static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn) 3669 { 3670 int ret = 0; 3671 3672 if (!kvm_vcpu_is_visible_gfn(vcpu, root_gfn)) { 3673 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 3674 ret = 1; 3675 } 3676 3677 return ret; 3678 } 3679 3680 static hpa_t mmu_alloc_root(struct kvm_vcpu *vcpu, gfn_t gfn, int quadrant, 3681 u8 level) 3682 { 3683 union kvm_mmu_page_role role = vcpu->arch.mmu->root_role; 3684 struct kvm_mmu_page *sp; 3685 3686 role.level = level; 3687 role.quadrant = quadrant; 3688 3689 WARN_ON_ONCE(quadrant && !role.has_4_byte_gpte); 3690 WARN_ON_ONCE(role.direct && role.has_4_byte_gpte); 3691 3692 sp = kvm_mmu_get_shadow_page(vcpu, gfn, role); 3693 ++sp->root_count; 3694 3695 return __pa(sp->spt); 3696 } 3697 3698 static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu) 3699 { 3700 struct kvm_mmu *mmu = vcpu->arch.mmu; 3701 u8 shadow_root_level = mmu->root_role.level; 3702 hpa_t root; 3703 unsigned i; 3704 int r; 3705 3706 write_lock(&vcpu->kvm->mmu_lock); 3707 r = make_mmu_pages_available(vcpu); 3708 if (r < 0) 3709 goto out_unlock; 3710 3711 if (tdp_mmu_enabled) { 3712 root = kvm_tdp_mmu_get_vcpu_root_hpa(vcpu); 3713 mmu->root.hpa = root; 3714 } else if (shadow_root_level >= PT64_ROOT_4LEVEL) { 3715 root = mmu_alloc_root(vcpu, 0, 0, shadow_root_level); 3716 mmu->root.hpa = root; 3717 } else if (shadow_root_level == PT32E_ROOT_LEVEL) { 3718 if (WARN_ON_ONCE(!mmu->pae_root)) { 3719 r = -EIO; 3720 goto out_unlock; 3721 } 3722 3723 for (i = 0; i < 4; ++i) { 3724 WARN_ON_ONCE(IS_VALID_PAE_ROOT(mmu->pae_root[i])); 3725 3726 root = mmu_alloc_root(vcpu, i << (30 - PAGE_SHIFT), 0, 3727 PT32_ROOT_LEVEL); 3728 mmu->pae_root[i] = root | PT_PRESENT_MASK | 3729 shadow_me_value; 3730 } 3731 mmu->root.hpa = __pa(mmu->pae_root); 3732 } else { 3733 WARN_ONCE(1, "Bad TDP root level = %d\n", shadow_root_level); 3734 r = -EIO; 3735 goto out_unlock; 3736 } 3737 3738 /* root.pgd is ignored for direct MMUs. */ 3739 mmu->root.pgd = 0; 3740 out_unlock: 3741 write_unlock(&vcpu->kvm->mmu_lock); 3742 return r; 3743 } 3744 3745 static int mmu_first_shadow_root_alloc(struct kvm *kvm) 3746 { 3747 struct kvm_memslots *slots; 3748 struct kvm_memory_slot *slot; 3749 int r = 0, i, bkt; 3750 3751 /* 3752 * Check if this is the first shadow root being allocated before 3753 * taking the lock. 3754 */ 3755 if (kvm_shadow_root_allocated(kvm)) 3756 return 0; 3757 3758 mutex_lock(&kvm->slots_arch_lock); 3759 3760 /* Recheck, under the lock, whether this is the first shadow root. */ 3761 if (kvm_shadow_root_allocated(kvm)) 3762 goto out_unlock; 3763 3764 /* 3765 * Check if anything actually needs to be allocated, e.g. all metadata 3766 * will be allocated upfront if TDP is disabled. 3767 */ 3768 if (kvm_memslots_have_rmaps(kvm) && 3769 kvm_page_track_write_tracking_enabled(kvm)) 3770 goto out_success; 3771 3772 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { 3773 slots = __kvm_memslots(kvm, i); 3774 kvm_for_each_memslot(slot, bkt, slots) { 3775 /* 3776 * Both of these functions are no-ops if the target is 3777 * already allocated, so unconditionally calling both 3778 * is safe. Intentionally do NOT free allocations on 3779 * failure to avoid having to track which allocations 3780 * were made now versus when the memslot was created. 3781 * The metadata is guaranteed to be freed when the slot 3782 * is freed, and will be kept/used if userspace retries 3783 * KVM_RUN instead of killing the VM. 3784 */ 3785 r = memslot_rmap_alloc(slot, slot->npages); 3786 if (r) 3787 goto out_unlock; 3788 r = kvm_page_track_write_tracking_alloc(slot); 3789 if (r) 3790 goto out_unlock; 3791 } 3792 } 3793 3794 /* 3795 * Ensure that shadow_root_allocated becomes true strictly after 3796 * all the related pointers are set. 3797 */ 3798 out_success: 3799 smp_store_release(&kvm->arch.shadow_root_allocated, true); 3800 3801 out_unlock: 3802 mutex_unlock(&kvm->slots_arch_lock); 3803 return r; 3804 } 3805 3806 static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu) 3807 { 3808 struct kvm_mmu *mmu = vcpu->arch.mmu; 3809 u64 pdptrs[4], pm_mask; 3810 gfn_t root_gfn, root_pgd; 3811 int quadrant, i, r; 3812 hpa_t root; 3813 3814 root_pgd = kvm_mmu_get_guest_pgd(vcpu, mmu); 3815 root_gfn = root_pgd >> PAGE_SHIFT; 3816 3817 if (mmu_check_root(vcpu, root_gfn)) 3818 return 1; 3819 3820 /* 3821 * On SVM, reading PDPTRs might access guest memory, which might fault 3822 * and thus might sleep. Grab the PDPTRs before acquiring mmu_lock. 3823 */ 3824 if (mmu->cpu_role.base.level == PT32E_ROOT_LEVEL) { 3825 for (i = 0; i < 4; ++i) { 3826 pdptrs[i] = mmu->get_pdptr(vcpu, i); 3827 if (!(pdptrs[i] & PT_PRESENT_MASK)) 3828 continue; 3829 3830 if (mmu_check_root(vcpu, pdptrs[i] >> PAGE_SHIFT)) 3831 return 1; 3832 } 3833 } 3834 3835 r = mmu_first_shadow_root_alloc(vcpu->kvm); 3836 if (r) 3837 return r; 3838 3839 write_lock(&vcpu->kvm->mmu_lock); 3840 r = make_mmu_pages_available(vcpu); 3841 if (r < 0) 3842 goto out_unlock; 3843 3844 /* 3845 * Do we shadow a long mode page table? If so we need to 3846 * write-protect the guests page table root. 3847 */ 3848 if (mmu->cpu_role.base.level >= PT64_ROOT_4LEVEL) { 3849 root = mmu_alloc_root(vcpu, root_gfn, 0, 3850 mmu->root_role.level); 3851 mmu->root.hpa = root; 3852 goto set_root_pgd; 3853 } 3854 3855 if (WARN_ON_ONCE(!mmu->pae_root)) { 3856 r = -EIO; 3857 goto out_unlock; 3858 } 3859 3860 /* 3861 * We shadow a 32 bit page table. This may be a legacy 2-level 3862 * or a PAE 3-level page table. In either case we need to be aware that 3863 * the shadow page table may be a PAE or a long mode page table. 3864 */ 3865 pm_mask = PT_PRESENT_MASK | shadow_me_value; 3866 if (mmu->root_role.level >= PT64_ROOT_4LEVEL) { 3867 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK; 3868 3869 if (WARN_ON_ONCE(!mmu->pml4_root)) { 3870 r = -EIO; 3871 goto out_unlock; 3872 } 3873 mmu->pml4_root[0] = __pa(mmu->pae_root) | pm_mask; 3874 3875 if (mmu->root_role.level == PT64_ROOT_5LEVEL) { 3876 if (WARN_ON_ONCE(!mmu->pml5_root)) { 3877 r = -EIO; 3878 goto out_unlock; 3879 } 3880 mmu->pml5_root[0] = __pa(mmu->pml4_root) | pm_mask; 3881 } 3882 } 3883 3884 for (i = 0; i < 4; ++i) { 3885 WARN_ON_ONCE(IS_VALID_PAE_ROOT(mmu->pae_root[i])); 3886 3887 if (mmu->cpu_role.base.level == PT32E_ROOT_LEVEL) { 3888 if (!(pdptrs[i] & PT_PRESENT_MASK)) { 3889 mmu->pae_root[i] = INVALID_PAE_ROOT; 3890 continue; 3891 } 3892 root_gfn = pdptrs[i] >> PAGE_SHIFT; 3893 } 3894 3895 /* 3896 * If shadowing 32-bit non-PAE page tables, each PAE page 3897 * directory maps one quarter of the guest's non-PAE page 3898 * directory. Othwerise each PAE page direct shadows one guest 3899 * PAE page directory so that quadrant should be 0. 3900 */ 3901 quadrant = (mmu->cpu_role.base.level == PT32_ROOT_LEVEL) ? i : 0; 3902 3903 root = mmu_alloc_root(vcpu, root_gfn, quadrant, PT32_ROOT_LEVEL); 3904 mmu->pae_root[i] = root | pm_mask; 3905 } 3906 3907 if (mmu->root_role.level == PT64_ROOT_5LEVEL) 3908 mmu->root.hpa = __pa(mmu->pml5_root); 3909 else if (mmu->root_role.level == PT64_ROOT_4LEVEL) 3910 mmu->root.hpa = __pa(mmu->pml4_root); 3911 else 3912 mmu->root.hpa = __pa(mmu->pae_root); 3913 3914 set_root_pgd: 3915 mmu->root.pgd = root_pgd; 3916 out_unlock: 3917 write_unlock(&vcpu->kvm->mmu_lock); 3918 3919 return r; 3920 } 3921 3922 static int mmu_alloc_special_roots(struct kvm_vcpu *vcpu) 3923 { 3924 struct kvm_mmu *mmu = vcpu->arch.mmu; 3925 bool need_pml5 = mmu->root_role.level > PT64_ROOT_4LEVEL; 3926 u64 *pml5_root = NULL; 3927 u64 *pml4_root = NULL; 3928 u64 *pae_root; 3929 3930 /* 3931 * When shadowing 32-bit or PAE NPT with 64-bit NPT, the PML4 and PDP 3932 * tables are allocated and initialized at root creation as there is no 3933 * equivalent level in the guest's NPT to shadow. Allocate the tables 3934 * on demand, as running a 32-bit L1 VMM on 64-bit KVM is very rare. 3935 */ 3936 if (mmu->root_role.direct || 3937 mmu->cpu_role.base.level >= PT64_ROOT_4LEVEL || 3938 mmu->root_role.level < PT64_ROOT_4LEVEL) 3939 return 0; 3940 3941 /* 3942 * NPT, the only paging mode that uses this horror, uses a fixed number 3943 * of levels for the shadow page tables, e.g. all MMUs are 4-level or 3944 * all MMus are 5-level. Thus, this can safely require that pml5_root 3945 * is allocated if the other roots are valid and pml5 is needed, as any 3946 * prior MMU would also have required pml5. 3947 */ 3948 if (mmu->pae_root && mmu->pml4_root && (!need_pml5 || mmu->pml5_root)) 3949 return 0; 3950 3951 /* 3952 * The special roots should always be allocated in concert. Yell and 3953 * bail if KVM ends up in a state where only one of the roots is valid. 3954 */ 3955 if (WARN_ON_ONCE(!tdp_enabled || mmu->pae_root || mmu->pml4_root || 3956 (need_pml5 && mmu->pml5_root))) 3957 return -EIO; 3958 3959 /* 3960 * Unlike 32-bit NPT, the PDP table doesn't need to be in low mem, and 3961 * doesn't need to be decrypted. 3962 */ 3963 pae_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT); 3964 if (!pae_root) 3965 return -ENOMEM; 3966 3967 #ifdef CONFIG_X86_64 3968 pml4_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT); 3969 if (!pml4_root) 3970 goto err_pml4; 3971 3972 if (need_pml5) { 3973 pml5_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT); 3974 if (!pml5_root) 3975 goto err_pml5; 3976 } 3977 #endif 3978 3979 mmu->pae_root = pae_root; 3980 mmu->pml4_root = pml4_root; 3981 mmu->pml5_root = pml5_root; 3982 3983 return 0; 3984 3985 #ifdef CONFIG_X86_64 3986 err_pml5: 3987 free_page((unsigned long)pml4_root); 3988 err_pml4: 3989 free_page((unsigned long)pae_root); 3990 return -ENOMEM; 3991 #endif 3992 } 3993 3994 static bool is_unsync_root(hpa_t root) 3995 { 3996 struct kvm_mmu_page *sp; 3997 3998 if (!VALID_PAGE(root)) 3999 return false; 4000 4001 /* 4002 * The read barrier orders the CPU's read of SPTE.W during the page table 4003 * walk before the reads of sp->unsync/sp->unsync_children here. 4004 * 4005 * Even if another CPU was marking the SP as unsync-ed simultaneously, 4006 * any guest page table changes are not guaranteed to be visible anyway 4007 * until this VCPU issues a TLB flush strictly after those changes are 4008 * made. We only need to ensure that the other CPU sets these flags 4009 * before any actual changes to the page tables are made. The comments 4010 * in mmu_try_to_unsync_pages() describe what could go wrong if this 4011 * requirement isn't satisfied. 4012 */ 4013 smp_rmb(); 4014 sp = to_shadow_page(root); 4015 4016 /* 4017 * PAE roots (somewhat arbitrarily) aren't backed by shadow pages, the 4018 * PDPTEs for a given PAE root need to be synchronized individually. 4019 */ 4020 if (WARN_ON_ONCE(!sp)) 4021 return false; 4022 4023 if (sp->unsync || sp->unsync_children) 4024 return true; 4025 4026 return false; 4027 } 4028 4029 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu) 4030 { 4031 int i; 4032 struct kvm_mmu_page *sp; 4033 4034 if (vcpu->arch.mmu->root_role.direct) 4035 return; 4036 4037 if (!VALID_PAGE(vcpu->arch.mmu->root.hpa)) 4038 return; 4039 4040 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY); 4041 4042 if (vcpu->arch.mmu->cpu_role.base.level >= PT64_ROOT_4LEVEL) { 4043 hpa_t root = vcpu->arch.mmu->root.hpa; 4044 sp = to_shadow_page(root); 4045 4046 if (!is_unsync_root(root)) 4047 return; 4048 4049 write_lock(&vcpu->kvm->mmu_lock); 4050 mmu_sync_children(vcpu, sp, true); 4051 write_unlock(&vcpu->kvm->mmu_lock); 4052 return; 4053 } 4054 4055 write_lock(&vcpu->kvm->mmu_lock); 4056 4057 for (i = 0; i < 4; ++i) { 4058 hpa_t root = vcpu->arch.mmu->pae_root[i]; 4059 4060 if (IS_VALID_PAE_ROOT(root)) { 4061 sp = spte_to_child_sp(root); 4062 mmu_sync_children(vcpu, sp, true); 4063 } 4064 } 4065 4066 write_unlock(&vcpu->kvm->mmu_lock); 4067 } 4068 4069 void kvm_mmu_sync_prev_roots(struct kvm_vcpu *vcpu) 4070 { 4071 unsigned long roots_to_free = 0; 4072 int i; 4073 4074 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 4075 if (is_unsync_root(vcpu->arch.mmu->prev_roots[i].hpa)) 4076 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i); 4077 4078 /* sync prev_roots by simply freeing them */ 4079 kvm_mmu_free_roots(vcpu->kvm, vcpu->arch.mmu, roots_to_free); 4080 } 4081 4082 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, 4083 gpa_t vaddr, u64 access, 4084 struct x86_exception *exception) 4085 { 4086 if (exception) 4087 exception->error_code = 0; 4088 return kvm_translate_gpa(vcpu, mmu, vaddr, access, exception); 4089 } 4090 4091 static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct) 4092 { 4093 /* 4094 * A nested guest cannot use the MMIO cache if it is using nested 4095 * page tables, because cr2 is a nGPA while the cache stores GPAs. 4096 */ 4097 if (mmu_is_nested(vcpu)) 4098 return false; 4099 4100 if (direct) 4101 return vcpu_match_mmio_gpa(vcpu, addr); 4102 4103 return vcpu_match_mmio_gva(vcpu, addr); 4104 } 4105 4106 /* 4107 * Return the level of the lowest level SPTE added to sptes. 4108 * That SPTE may be non-present. 4109 * 4110 * Must be called between walk_shadow_page_lockless_{begin,end}. 4111 */ 4112 static int get_walk(struct kvm_vcpu *vcpu, u64 addr, u64 *sptes, int *root_level) 4113 { 4114 struct kvm_shadow_walk_iterator iterator; 4115 int leaf = -1; 4116 u64 spte; 4117 4118 for (shadow_walk_init(&iterator, vcpu, addr), 4119 *root_level = iterator.level; 4120 shadow_walk_okay(&iterator); 4121 __shadow_walk_next(&iterator, spte)) { 4122 leaf = iterator.level; 4123 spte = mmu_spte_get_lockless(iterator.sptep); 4124 4125 sptes[leaf] = spte; 4126 } 4127 4128 return leaf; 4129 } 4130 4131 /* return true if reserved bit(s) are detected on a valid, non-MMIO SPTE. */ 4132 static bool get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep) 4133 { 4134 u64 sptes[PT64_ROOT_MAX_LEVEL + 1]; 4135 struct rsvd_bits_validate *rsvd_check; 4136 int root, leaf, level; 4137 bool reserved = false; 4138 4139 walk_shadow_page_lockless_begin(vcpu); 4140 4141 if (is_tdp_mmu_active(vcpu)) 4142 leaf = kvm_tdp_mmu_get_walk(vcpu, addr, sptes, &root); 4143 else 4144 leaf = get_walk(vcpu, addr, sptes, &root); 4145 4146 walk_shadow_page_lockless_end(vcpu); 4147 4148 if (unlikely(leaf < 0)) { 4149 *sptep = 0ull; 4150 return reserved; 4151 } 4152 4153 *sptep = sptes[leaf]; 4154 4155 /* 4156 * Skip reserved bits checks on the terminal leaf if it's not a valid 4157 * SPTE. Note, this also (intentionally) skips MMIO SPTEs, which, by 4158 * design, always have reserved bits set. The purpose of the checks is 4159 * to detect reserved bits on non-MMIO SPTEs. i.e. buggy SPTEs. 4160 */ 4161 if (!is_shadow_present_pte(sptes[leaf])) 4162 leaf++; 4163 4164 rsvd_check = &vcpu->arch.mmu->shadow_zero_check; 4165 4166 for (level = root; level >= leaf; level--) 4167 reserved |= is_rsvd_spte(rsvd_check, sptes[level], level); 4168 4169 if (reserved) { 4170 pr_err("%s: reserved bits set on MMU-present spte, addr 0x%llx, hierarchy:\n", 4171 __func__, addr); 4172 for (level = root; level >= leaf; level--) 4173 pr_err("------ spte = 0x%llx level = %d, rsvd bits = 0x%llx", 4174 sptes[level], level, 4175 get_rsvd_bits(rsvd_check, sptes[level], level)); 4176 } 4177 4178 return reserved; 4179 } 4180 4181 static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct) 4182 { 4183 u64 spte; 4184 bool reserved; 4185 4186 if (mmio_info_in_cache(vcpu, addr, direct)) 4187 return RET_PF_EMULATE; 4188 4189 reserved = get_mmio_spte(vcpu, addr, &spte); 4190 if (WARN_ON(reserved)) 4191 return -EINVAL; 4192 4193 if (is_mmio_spte(spte)) { 4194 gfn_t gfn = get_mmio_spte_gfn(spte); 4195 unsigned int access = get_mmio_spte_access(spte); 4196 4197 if (!check_mmio_spte(vcpu, spte)) 4198 return RET_PF_INVALID; 4199 4200 if (direct) 4201 addr = 0; 4202 4203 trace_handle_mmio_page_fault(addr, gfn, access); 4204 vcpu_cache_mmio_info(vcpu, addr, gfn, access); 4205 return RET_PF_EMULATE; 4206 } 4207 4208 /* 4209 * If the page table is zapped by other cpus, let CPU fault again on 4210 * the address. 4211 */ 4212 return RET_PF_RETRY; 4213 } 4214 4215 static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu, 4216 struct kvm_page_fault *fault) 4217 { 4218 if (unlikely(fault->rsvd)) 4219 return false; 4220 4221 if (!fault->present || !fault->write) 4222 return false; 4223 4224 /* 4225 * guest is writing the page which is write tracked which can 4226 * not be fixed by page fault handler. 4227 */ 4228 if (kvm_slot_page_track_is_active(vcpu->kvm, fault->slot, fault->gfn, KVM_PAGE_TRACK_WRITE)) 4229 return true; 4230 4231 return false; 4232 } 4233 4234 static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr) 4235 { 4236 struct kvm_shadow_walk_iterator iterator; 4237 u64 spte; 4238 4239 walk_shadow_page_lockless_begin(vcpu); 4240 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) 4241 clear_sp_write_flooding_count(iterator.sptep); 4242 walk_shadow_page_lockless_end(vcpu); 4243 } 4244 4245 static u32 alloc_apf_token(struct kvm_vcpu *vcpu) 4246 { 4247 /* make sure the token value is not 0 */ 4248 u32 id = vcpu->arch.apf.id; 4249 4250 if (id << 12 == 0) 4251 vcpu->arch.apf.id = 1; 4252 4253 return (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id; 4254 } 4255 4256 static bool kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, 4257 gfn_t gfn) 4258 { 4259 struct kvm_arch_async_pf arch; 4260 4261 arch.token = alloc_apf_token(vcpu); 4262 arch.gfn = gfn; 4263 arch.direct_map = vcpu->arch.mmu->root_role.direct; 4264 arch.cr3 = kvm_mmu_get_guest_pgd(vcpu, vcpu->arch.mmu); 4265 4266 return kvm_setup_async_pf(vcpu, cr2_or_gpa, 4267 kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch); 4268 } 4269 4270 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work) 4271 { 4272 int r; 4273 4274 if ((vcpu->arch.mmu->root_role.direct != work->arch.direct_map) || 4275 work->wakeup_all) 4276 return; 4277 4278 r = kvm_mmu_reload(vcpu); 4279 if (unlikely(r)) 4280 return; 4281 4282 if (!vcpu->arch.mmu->root_role.direct && 4283 work->arch.cr3 != kvm_mmu_get_guest_pgd(vcpu, vcpu->arch.mmu)) 4284 return; 4285 4286 kvm_mmu_do_page_fault(vcpu, work->cr2_or_gpa, 0, true, NULL); 4287 } 4288 4289 static int __kvm_faultin_pfn(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault) 4290 { 4291 struct kvm_memory_slot *slot = fault->slot; 4292 bool async; 4293 4294 /* 4295 * Retry the page fault if the gfn hit a memslot that is being deleted 4296 * or moved. This ensures any existing SPTEs for the old memslot will 4297 * be zapped before KVM inserts a new MMIO SPTE for the gfn. 4298 */ 4299 if (slot && (slot->flags & KVM_MEMSLOT_INVALID)) 4300 return RET_PF_RETRY; 4301 4302 if (!kvm_is_visible_memslot(slot)) { 4303 /* Don't expose private memslots to L2. */ 4304 if (is_guest_mode(vcpu)) { 4305 fault->slot = NULL; 4306 fault->pfn = KVM_PFN_NOSLOT; 4307 fault->map_writable = false; 4308 return RET_PF_CONTINUE; 4309 } 4310 /* 4311 * If the APIC access page exists but is disabled, go directly 4312 * to emulation without caching the MMIO access or creating a 4313 * MMIO SPTE. That way the cache doesn't need to be purged 4314 * when the AVIC is re-enabled. 4315 */ 4316 if (slot && slot->id == APIC_ACCESS_PAGE_PRIVATE_MEMSLOT && 4317 !kvm_apicv_activated(vcpu->kvm)) 4318 return RET_PF_EMULATE; 4319 } 4320 4321 async = false; 4322 fault->pfn = __gfn_to_pfn_memslot(slot, fault->gfn, false, false, &async, 4323 fault->write, &fault->map_writable, 4324 &fault->hva); 4325 if (!async) 4326 return RET_PF_CONTINUE; /* *pfn has correct page already */ 4327 4328 if (!fault->prefetch && kvm_can_do_async_pf(vcpu)) { 4329 trace_kvm_try_async_get_page(fault->addr, fault->gfn); 4330 if (kvm_find_async_pf_gfn(vcpu, fault->gfn)) { 4331 trace_kvm_async_pf_repeated_fault(fault->addr, fault->gfn); 4332 kvm_make_request(KVM_REQ_APF_HALT, vcpu); 4333 return RET_PF_RETRY; 4334 } else if (kvm_arch_setup_async_pf(vcpu, fault->addr, fault->gfn)) { 4335 return RET_PF_RETRY; 4336 } 4337 } 4338 4339 /* 4340 * Allow gup to bail on pending non-fatal signals when it's also allowed 4341 * to wait for IO. Note, gup always bails if it is unable to quickly 4342 * get a page and a fatal signal, i.e. SIGKILL, is pending. 4343 */ 4344 fault->pfn = __gfn_to_pfn_memslot(slot, fault->gfn, false, true, NULL, 4345 fault->write, &fault->map_writable, 4346 &fault->hva); 4347 return RET_PF_CONTINUE; 4348 } 4349 4350 static int kvm_faultin_pfn(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault, 4351 unsigned int access) 4352 { 4353 int ret; 4354 4355 fault->mmu_seq = vcpu->kvm->mmu_invalidate_seq; 4356 smp_rmb(); 4357 4358 ret = __kvm_faultin_pfn(vcpu, fault); 4359 if (ret != RET_PF_CONTINUE) 4360 return ret; 4361 4362 if (unlikely(is_error_pfn(fault->pfn))) 4363 return kvm_handle_error_pfn(vcpu, fault); 4364 4365 if (unlikely(!fault->slot)) 4366 return kvm_handle_noslot_fault(vcpu, fault, access); 4367 4368 return RET_PF_CONTINUE; 4369 } 4370 4371 /* 4372 * Returns true if the page fault is stale and needs to be retried, i.e. if the 4373 * root was invalidated by a memslot update or a relevant mmu_notifier fired. 4374 */ 4375 static bool is_page_fault_stale(struct kvm_vcpu *vcpu, 4376 struct kvm_page_fault *fault) 4377 { 4378 struct kvm_mmu_page *sp = to_shadow_page(vcpu->arch.mmu->root.hpa); 4379 4380 /* Special roots, e.g. pae_root, are not backed by shadow pages. */ 4381 if (sp && is_obsolete_sp(vcpu->kvm, sp)) 4382 return true; 4383 4384 /* 4385 * Roots without an associated shadow page are considered invalid if 4386 * there is a pending request to free obsolete roots. The request is 4387 * only a hint that the current root _may_ be obsolete and needs to be 4388 * reloaded, e.g. if the guest frees a PGD that KVM is tracking as a 4389 * previous root, then __kvm_mmu_prepare_zap_page() signals all vCPUs 4390 * to reload even if no vCPU is actively using the root. 4391 */ 4392 if (!sp && kvm_test_request(KVM_REQ_MMU_FREE_OBSOLETE_ROOTS, vcpu)) 4393 return true; 4394 4395 return fault->slot && 4396 mmu_invalidate_retry_hva(vcpu->kvm, fault->mmu_seq, fault->hva); 4397 } 4398 4399 static int direct_page_fault(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault) 4400 { 4401 int r; 4402 4403 if (page_fault_handle_page_track(vcpu, fault)) 4404 return RET_PF_EMULATE; 4405 4406 r = fast_page_fault(vcpu, fault); 4407 if (r != RET_PF_INVALID) 4408 return r; 4409 4410 r = mmu_topup_memory_caches(vcpu, false); 4411 if (r) 4412 return r; 4413 4414 r = kvm_faultin_pfn(vcpu, fault, ACC_ALL); 4415 if (r != RET_PF_CONTINUE) 4416 return r; 4417 4418 r = RET_PF_RETRY; 4419 write_lock(&vcpu->kvm->mmu_lock); 4420 4421 if (is_page_fault_stale(vcpu, fault)) 4422 goto out_unlock; 4423 4424 r = make_mmu_pages_available(vcpu); 4425 if (r) 4426 goto out_unlock; 4427 4428 r = direct_map(vcpu, fault); 4429 4430 out_unlock: 4431 write_unlock(&vcpu->kvm->mmu_lock); 4432 kvm_release_pfn_clean(fault->pfn); 4433 return r; 4434 } 4435 4436 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, 4437 struct kvm_page_fault *fault) 4438 { 4439 pgprintk("%s: gva %lx error %x\n", __func__, fault->addr, fault->error_code); 4440 4441 /* This path builds a PAE pagetable, we can map 2mb pages at maximum. */ 4442 fault->max_level = PG_LEVEL_2M; 4443 return direct_page_fault(vcpu, fault); 4444 } 4445 4446 int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code, 4447 u64 fault_address, char *insn, int insn_len) 4448 { 4449 int r = 1; 4450 u32 flags = vcpu->arch.apf.host_apf_flags; 4451 4452 #ifndef CONFIG_X86_64 4453 /* A 64-bit CR2 should be impossible on 32-bit KVM. */ 4454 if (WARN_ON_ONCE(fault_address >> 32)) 4455 return -EFAULT; 4456 #endif 4457 4458 vcpu->arch.l1tf_flush_l1d = true; 4459 if (!flags) { 4460 trace_kvm_page_fault(vcpu, fault_address, error_code); 4461 4462 if (kvm_event_needs_reinjection(vcpu)) 4463 kvm_mmu_unprotect_page_virt(vcpu, fault_address); 4464 r = kvm_mmu_page_fault(vcpu, fault_address, error_code, insn, 4465 insn_len); 4466 } else if (flags & KVM_PV_REASON_PAGE_NOT_PRESENT) { 4467 vcpu->arch.apf.host_apf_flags = 0; 4468 local_irq_disable(); 4469 kvm_async_pf_task_wait_schedule(fault_address); 4470 local_irq_enable(); 4471 } else { 4472 WARN_ONCE(1, "Unexpected host async PF flags: %x\n", flags); 4473 } 4474 4475 return r; 4476 } 4477 EXPORT_SYMBOL_GPL(kvm_handle_page_fault); 4478 4479 #ifdef CONFIG_X86_64 4480 static int kvm_tdp_mmu_page_fault(struct kvm_vcpu *vcpu, 4481 struct kvm_page_fault *fault) 4482 { 4483 int r; 4484 4485 if (page_fault_handle_page_track(vcpu, fault)) 4486 return RET_PF_EMULATE; 4487 4488 r = fast_page_fault(vcpu, fault); 4489 if (r != RET_PF_INVALID) 4490 return r; 4491 4492 r = mmu_topup_memory_caches(vcpu, false); 4493 if (r) 4494 return r; 4495 4496 r = kvm_faultin_pfn(vcpu, fault, ACC_ALL); 4497 if (r != RET_PF_CONTINUE) 4498 return r; 4499 4500 r = RET_PF_RETRY; 4501 read_lock(&vcpu->kvm->mmu_lock); 4502 4503 if (is_page_fault_stale(vcpu, fault)) 4504 goto out_unlock; 4505 4506 r = kvm_tdp_mmu_map(vcpu, fault); 4507 4508 out_unlock: 4509 read_unlock(&vcpu->kvm->mmu_lock); 4510 kvm_release_pfn_clean(fault->pfn); 4511 return r; 4512 } 4513 #endif 4514 4515 int kvm_tdp_page_fault(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault) 4516 { 4517 /* 4518 * If the guest's MTRRs may be used to compute the "real" memtype, 4519 * restrict the mapping level to ensure KVM uses a consistent memtype 4520 * across the entire mapping. If the host MTRRs are ignored by TDP 4521 * (shadow_memtype_mask is non-zero), and the VM has non-coherent DMA 4522 * (DMA doesn't snoop CPU caches), KVM's ABI is to honor the memtype 4523 * from the guest's MTRRs so that guest accesses to memory that is 4524 * DMA'd aren't cached against the guest's wishes. 4525 * 4526 * Note, KVM may still ultimately ignore guest MTRRs for certain PFNs, 4527 * e.g. KVM will force UC memtype for host MMIO. 4528 */ 4529 if (shadow_memtype_mask && kvm_arch_has_noncoherent_dma(vcpu->kvm)) { 4530 for ( ; fault->max_level > PG_LEVEL_4K; --fault->max_level) { 4531 int page_num = KVM_PAGES_PER_HPAGE(fault->max_level); 4532 gfn_t base = gfn_round_for_level(fault->gfn, 4533 fault->max_level); 4534 4535 if (kvm_mtrr_check_gfn_range_consistency(vcpu, base, page_num)) 4536 break; 4537 } 4538 } 4539 4540 #ifdef CONFIG_X86_64 4541 if (tdp_mmu_enabled) 4542 return kvm_tdp_mmu_page_fault(vcpu, fault); 4543 #endif 4544 4545 return direct_page_fault(vcpu, fault); 4546 } 4547 4548 static void nonpaging_init_context(struct kvm_mmu *context) 4549 { 4550 context->page_fault = nonpaging_page_fault; 4551 context->gva_to_gpa = nonpaging_gva_to_gpa; 4552 context->sync_spte = NULL; 4553 } 4554 4555 static inline bool is_root_usable(struct kvm_mmu_root_info *root, gpa_t pgd, 4556 union kvm_mmu_page_role role) 4557 { 4558 return (role.direct || pgd == root->pgd) && 4559 VALID_PAGE(root->hpa) && 4560 role.word == to_shadow_page(root->hpa)->role.word; 4561 } 4562 4563 /* 4564 * Find out if a previously cached root matching the new pgd/role is available, 4565 * and insert the current root as the MRU in the cache. 4566 * If a matching root is found, it is assigned to kvm_mmu->root and 4567 * true is returned. 4568 * If no match is found, kvm_mmu->root is left invalid, the LRU root is 4569 * evicted to make room for the current root, and false is returned. 4570 */ 4571 static bool cached_root_find_and_keep_current(struct kvm *kvm, struct kvm_mmu *mmu, 4572 gpa_t new_pgd, 4573 union kvm_mmu_page_role new_role) 4574 { 4575 uint i; 4576 4577 if (is_root_usable(&mmu->root, new_pgd, new_role)) 4578 return true; 4579 4580 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) { 4581 /* 4582 * The swaps end up rotating the cache like this: 4583 * C 0 1 2 3 (on entry to the function) 4584 * 0 C 1 2 3 4585 * 1 C 0 2 3 4586 * 2 C 0 1 3 4587 * 3 C 0 1 2 (on exit from the loop) 4588 */ 4589 swap(mmu->root, mmu->prev_roots[i]); 4590 if (is_root_usable(&mmu->root, new_pgd, new_role)) 4591 return true; 4592 } 4593 4594 kvm_mmu_free_roots(kvm, mmu, KVM_MMU_ROOT_CURRENT); 4595 return false; 4596 } 4597 4598 /* 4599 * Find out if a previously cached root matching the new pgd/role is available. 4600 * On entry, mmu->root is invalid. 4601 * If a matching root is found, it is assigned to kvm_mmu->root, the LRU entry 4602 * of the cache becomes invalid, and true is returned. 4603 * If no match is found, kvm_mmu->root is left invalid and false is returned. 4604 */ 4605 static bool cached_root_find_without_current(struct kvm *kvm, struct kvm_mmu *mmu, 4606 gpa_t new_pgd, 4607 union kvm_mmu_page_role new_role) 4608 { 4609 uint i; 4610 4611 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 4612 if (is_root_usable(&mmu->prev_roots[i], new_pgd, new_role)) 4613 goto hit; 4614 4615 return false; 4616 4617 hit: 4618 swap(mmu->root, mmu->prev_roots[i]); 4619 /* Bubble up the remaining roots. */ 4620 for (; i < KVM_MMU_NUM_PREV_ROOTS - 1; i++) 4621 mmu->prev_roots[i] = mmu->prev_roots[i + 1]; 4622 mmu->prev_roots[i].hpa = INVALID_PAGE; 4623 return true; 4624 } 4625 4626 static bool fast_pgd_switch(struct kvm *kvm, struct kvm_mmu *mmu, 4627 gpa_t new_pgd, union kvm_mmu_page_role new_role) 4628 { 4629 /* 4630 * For now, limit the caching to 64-bit hosts+VMs in order to avoid 4631 * having to deal with PDPTEs. We may add support for 32-bit hosts/VMs 4632 * later if necessary. 4633 */ 4634 if (VALID_PAGE(mmu->root.hpa) && !to_shadow_page(mmu->root.hpa)) 4635 kvm_mmu_free_roots(kvm, mmu, KVM_MMU_ROOT_CURRENT); 4636 4637 if (VALID_PAGE(mmu->root.hpa)) 4638 return cached_root_find_and_keep_current(kvm, mmu, new_pgd, new_role); 4639 else 4640 return cached_root_find_without_current(kvm, mmu, new_pgd, new_role); 4641 } 4642 4643 void kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd) 4644 { 4645 struct kvm_mmu *mmu = vcpu->arch.mmu; 4646 union kvm_mmu_page_role new_role = mmu->root_role; 4647 4648 /* 4649 * Return immediately if no usable root was found, kvm_mmu_reload() 4650 * will establish a valid root prior to the next VM-Enter. 4651 */ 4652 if (!fast_pgd_switch(vcpu->kvm, mmu, new_pgd, new_role)) 4653 return; 4654 4655 /* 4656 * It's possible that the cached previous root page is obsolete because 4657 * of a change in the MMU generation number. However, changing the 4658 * generation number is accompanied by KVM_REQ_MMU_FREE_OBSOLETE_ROOTS, 4659 * which will free the root set here and allocate a new one. 4660 */ 4661 kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu); 4662 4663 if (force_flush_and_sync_on_reuse) { 4664 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu); 4665 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 4666 } 4667 4668 /* 4669 * The last MMIO access's GVA and GPA are cached in the VCPU. When 4670 * switching to a new CR3, that GVA->GPA mapping may no longer be 4671 * valid. So clear any cached MMIO info even when we don't need to sync 4672 * the shadow page tables. 4673 */ 4674 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY); 4675 4676 /* 4677 * If this is a direct root page, it doesn't have a write flooding 4678 * count. Otherwise, clear the write flooding count. 4679 */ 4680 if (!new_role.direct) 4681 __clear_sp_write_flooding_count( 4682 to_shadow_page(vcpu->arch.mmu->root.hpa)); 4683 } 4684 EXPORT_SYMBOL_GPL(kvm_mmu_new_pgd); 4685 4686 static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn, 4687 unsigned int access) 4688 { 4689 if (unlikely(is_mmio_spte(*sptep))) { 4690 if (gfn != get_mmio_spte_gfn(*sptep)) { 4691 mmu_spte_clear_no_track(sptep); 4692 return true; 4693 } 4694 4695 mark_mmio_spte(vcpu, sptep, gfn, access); 4696 return true; 4697 } 4698 4699 return false; 4700 } 4701 4702 #define PTTYPE_EPT 18 /* arbitrary */ 4703 #define PTTYPE PTTYPE_EPT 4704 #include "paging_tmpl.h" 4705 #undef PTTYPE 4706 4707 #define PTTYPE 64 4708 #include "paging_tmpl.h" 4709 #undef PTTYPE 4710 4711 #define PTTYPE 32 4712 #include "paging_tmpl.h" 4713 #undef PTTYPE 4714 4715 static void __reset_rsvds_bits_mask(struct rsvd_bits_validate *rsvd_check, 4716 u64 pa_bits_rsvd, int level, bool nx, 4717 bool gbpages, bool pse, bool amd) 4718 { 4719 u64 gbpages_bit_rsvd = 0; 4720 u64 nonleaf_bit8_rsvd = 0; 4721 u64 high_bits_rsvd; 4722 4723 rsvd_check->bad_mt_xwr = 0; 4724 4725 if (!gbpages) 4726 gbpages_bit_rsvd = rsvd_bits(7, 7); 4727 4728 if (level == PT32E_ROOT_LEVEL) 4729 high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 62); 4730 else 4731 high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 51); 4732 4733 /* Note, NX doesn't exist in PDPTEs, this is handled below. */ 4734 if (!nx) 4735 high_bits_rsvd |= rsvd_bits(63, 63); 4736 4737 /* 4738 * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for 4739 * leaf entries) on AMD CPUs only. 4740 */ 4741 if (amd) 4742 nonleaf_bit8_rsvd = rsvd_bits(8, 8); 4743 4744 switch (level) { 4745 case PT32_ROOT_LEVEL: 4746 /* no rsvd bits for 2 level 4K page table entries */ 4747 rsvd_check->rsvd_bits_mask[0][1] = 0; 4748 rsvd_check->rsvd_bits_mask[0][0] = 0; 4749 rsvd_check->rsvd_bits_mask[1][0] = 4750 rsvd_check->rsvd_bits_mask[0][0]; 4751 4752 if (!pse) { 4753 rsvd_check->rsvd_bits_mask[1][1] = 0; 4754 break; 4755 } 4756 4757 if (is_cpuid_PSE36()) 4758 /* 36bits PSE 4MB page */ 4759 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21); 4760 else 4761 /* 32 bits PSE 4MB page */ 4762 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21); 4763 break; 4764 case PT32E_ROOT_LEVEL: 4765 rsvd_check->rsvd_bits_mask[0][2] = rsvd_bits(63, 63) | 4766 high_bits_rsvd | 4767 rsvd_bits(5, 8) | 4768 rsvd_bits(1, 2); /* PDPTE */ 4769 rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd; /* PDE */ 4770 rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd; /* PTE */ 4771 rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd | 4772 rsvd_bits(13, 20); /* large page */ 4773 rsvd_check->rsvd_bits_mask[1][0] = 4774 rsvd_check->rsvd_bits_mask[0][0]; 4775 break; 4776 case PT64_ROOT_5LEVEL: 4777 rsvd_check->rsvd_bits_mask[0][4] = high_bits_rsvd | 4778 nonleaf_bit8_rsvd | 4779 rsvd_bits(7, 7); 4780 rsvd_check->rsvd_bits_mask[1][4] = 4781 rsvd_check->rsvd_bits_mask[0][4]; 4782 fallthrough; 4783 case PT64_ROOT_4LEVEL: 4784 rsvd_check->rsvd_bits_mask[0][3] = high_bits_rsvd | 4785 nonleaf_bit8_rsvd | 4786 rsvd_bits(7, 7); 4787 rsvd_check->rsvd_bits_mask[0][2] = high_bits_rsvd | 4788 gbpages_bit_rsvd; 4789 rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd; 4790 rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd; 4791 rsvd_check->rsvd_bits_mask[1][3] = 4792 rsvd_check->rsvd_bits_mask[0][3]; 4793 rsvd_check->rsvd_bits_mask[1][2] = high_bits_rsvd | 4794 gbpages_bit_rsvd | 4795 rsvd_bits(13, 29); 4796 rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd | 4797 rsvd_bits(13, 20); /* large page */ 4798 rsvd_check->rsvd_bits_mask[1][0] = 4799 rsvd_check->rsvd_bits_mask[0][0]; 4800 break; 4801 } 4802 } 4803 4804 static bool guest_can_use_gbpages(struct kvm_vcpu *vcpu) 4805 { 4806 /* 4807 * If TDP is enabled, let the guest use GBPAGES if they're supported in 4808 * hardware. The hardware page walker doesn't let KVM disable GBPAGES, 4809 * i.e. won't treat them as reserved, and KVM doesn't redo the GVA->GPA 4810 * walk for performance and complexity reasons. Not to mention KVM 4811 * _can't_ solve the problem because GVA->GPA walks aren't visible to 4812 * KVM once a TDP translation is installed. Mimic hardware behavior so 4813 * that KVM's is at least consistent, i.e. doesn't randomly inject #PF. 4814 */ 4815 return tdp_enabled ? boot_cpu_has(X86_FEATURE_GBPAGES) : 4816 guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES); 4817 } 4818 4819 static void reset_guest_rsvds_bits_mask(struct kvm_vcpu *vcpu, 4820 struct kvm_mmu *context) 4821 { 4822 __reset_rsvds_bits_mask(&context->guest_rsvd_check, 4823 vcpu->arch.reserved_gpa_bits, 4824 context->cpu_role.base.level, is_efer_nx(context), 4825 guest_can_use_gbpages(vcpu), 4826 is_cr4_pse(context), 4827 guest_cpuid_is_amd_or_hygon(vcpu)); 4828 } 4829 4830 static void __reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check, 4831 u64 pa_bits_rsvd, bool execonly, 4832 int huge_page_level) 4833 { 4834 u64 high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 51); 4835 u64 large_1g_rsvd = 0, large_2m_rsvd = 0; 4836 u64 bad_mt_xwr; 4837 4838 if (huge_page_level < PG_LEVEL_1G) 4839 large_1g_rsvd = rsvd_bits(7, 7); 4840 if (huge_page_level < PG_LEVEL_2M) 4841 large_2m_rsvd = rsvd_bits(7, 7); 4842 4843 rsvd_check->rsvd_bits_mask[0][4] = high_bits_rsvd | rsvd_bits(3, 7); 4844 rsvd_check->rsvd_bits_mask[0][3] = high_bits_rsvd | rsvd_bits(3, 7); 4845 rsvd_check->rsvd_bits_mask[0][2] = high_bits_rsvd | rsvd_bits(3, 6) | large_1g_rsvd; 4846 rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd | rsvd_bits(3, 6) | large_2m_rsvd; 4847 rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd; 4848 4849 /* large page */ 4850 rsvd_check->rsvd_bits_mask[1][4] = rsvd_check->rsvd_bits_mask[0][4]; 4851 rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3]; 4852 rsvd_check->rsvd_bits_mask[1][2] = high_bits_rsvd | rsvd_bits(12, 29) | large_1g_rsvd; 4853 rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd | rsvd_bits(12, 20) | large_2m_rsvd; 4854 rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0]; 4855 4856 bad_mt_xwr = 0xFFull << (2 * 8); /* bits 3..5 must not be 2 */ 4857 bad_mt_xwr |= 0xFFull << (3 * 8); /* bits 3..5 must not be 3 */ 4858 bad_mt_xwr |= 0xFFull << (7 * 8); /* bits 3..5 must not be 7 */ 4859 bad_mt_xwr |= REPEAT_BYTE(1ull << 2); /* bits 0..2 must not be 010 */ 4860 bad_mt_xwr |= REPEAT_BYTE(1ull << 6); /* bits 0..2 must not be 110 */ 4861 if (!execonly) { 4862 /* bits 0..2 must not be 100 unless VMX capabilities allow it */ 4863 bad_mt_xwr |= REPEAT_BYTE(1ull << 4); 4864 } 4865 rsvd_check->bad_mt_xwr = bad_mt_xwr; 4866 } 4867 4868 static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu, 4869 struct kvm_mmu *context, bool execonly, int huge_page_level) 4870 { 4871 __reset_rsvds_bits_mask_ept(&context->guest_rsvd_check, 4872 vcpu->arch.reserved_gpa_bits, execonly, 4873 huge_page_level); 4874 } 4875 4876 static inline u64 reserved_hpa_bits(void) 4877 { 4878 return rsvd_bits(shadow_phys_bits, 63); 4879 } 4880 4881 /* 4882 * the page table on host is the shadow page table for the page 4883 * table in guest or amd nested guest, its mmu features completely 4884 * follow the features in guest. 4885 */ 4886 static void reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, 4887 struct kvm_mmu *context) 4888 { 4889 /* @amd adds a check on bit of SPTEs, which KVM shouldn't use anyways. */ 4890 bool is_amd = true; 4891 /* KVM doesn't use 2-level page tables for the shadow MMU. */ 4892 bool is_pse = false; 4893 struct rsvd_bits_validate *shadow_zero_check; 4894 int i; 4895 4896 WARN_ON_ONCE(context->root_role.level < PT32E_ROOT_LEVEL); 4897 4898 shadow_zero_check = &context->shadow_zero_check; 4899 __reset_rsvds_bits_mask(shadow_zero_check, reserved_hpa_bits(), 4900 context->root_role.level, 4901 context->root_role.efer_nx, 4902 guest_can_use_gbpages(vcpu), is_pse, is_amd); 4903 4904 if (!shadow_me_mask) 4905 return; 4906 4907 for (i = context->root_role.level; --i >= 0;) { 4908 /* 4909 * So far shadow_me_value is a constant during KVM's life 4910 * time. Bits in shadow_me_value are allowed to be set. 4911 * Bits in shadow_me_mask but not in shadow_me_value are 4912 * not allowed to be set. 4913 */ 4914 shadow_zero_check->rsvd_bits_mask[0][i] |= shadow_me_mask; 4915 shadow_zero_check->rsvd_bits_mask[1][i] |= shadow_me_mask; 4916 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_value; 4917 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_value; 4918 } 4919 4920 } 4921 4922 static inline bool boot_cpu_is_amd(void) 4923 { 4924 WARN_ON_ONCE(!tdp_enabled); 4925 return shadow_x_mask == 0; 4926 } 4927 4928 /* 4929 * the direct page table on host, use as much mmu features as 4930 * possible, however, kvm currently does not do execution-protection. 4931 */ 4932 static void reset_tdp_shadow_zero_bits_mask(struct kvm_mmu *context) 4933 { 4934 struct rsvd_bits_validate *shadow_zero_check; 4935 int i; 4936 4937 shadow_zero_check = &context->shadow_zero_check; 4938 4939 if (boot_cpu_is_amd()) 4940 __reset_rsvds_bits_mask(shadow_zero_check, reserved_hpa_bits(), 4941 context->root_role.level, true, 4942 boot_cpu_has(X86_FEATURE_GBPAGES), 4943 false, true); 4944 else 4945 __reset_rsvds_bits_mask_ept(shadow_zero_check, 4946 reserved_hpa_bits(), false, 4947 max_huge_page_level); 4948 4949 if (!shadow_me_mask) 4950 return; 4951 4952 for (i = context->root_role.level; --i >= 0;) { 4953 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask; 4954 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask; 4955 } 4956 } 4957 4958 /* 4959 * as the comments in reset_shadow_zero_bits_mask() except it 4960 * is the shadow page table for intel nested guest. 4961 */ 4962 static void 4963 reset_ept_shadow_zero_bits_mask(struct kvm_mmu *context, bool execonly) 4964 { 4965 __reset_rsvds_bits_mask_ept(&context->shadow_zero_check, 4966 reserved_hpa_bits(), execonly, 4967 max_huge_page_level); 4968 } 4969 4970 #define BYTE_MASK(access) \ 4971 ((1 & (access) ? 2 : 0) | \ 4972 (2 & (access) ? 4 : 0) | \ 4973 (3 & (access) ? 8 : 0) | \ 4974 (4 & (access) ? 16 : 0) | \ 4975 (5 & (access) ? 32 : 0) | \ 4976 (6 & (access) ? 64 : 0) | \ 4977 (7 & (access) ? 128 : 0)) 4978 4979 4980 static void update_permission_bitmask(struct kvm_mmu *mmu, bool ept) 4981 { 4982 unsigned byte; 4983 4984 const u8 x = BYTE_MASK(ACC_EXEC_MASK); 4985 const u8 w = BYTE_MASK(ACC_WRITE_MASK); 4986 const u8 u = BYTE_MASK(ACC_USER_MASK); 4987 4988 bool cr4_smep = is_cr4_smep(mmu); 4989 bool cr4_smap = is_cr4_smap(mmu); 4990 bool cr0_wp = is_cr0_wp(mmu); 4991 bool efer_nx = is_efer_nx(mmu); 4992 4993 for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) { 4994 unsigned pfec = byte << 1; 4995 4996 /* 4997 * Each "*f" variable has a 1 bit for each UWX value 4998 * that causes a fault with the given PFEC. 4999 */ 5000 5001 /* Faults from writes to non-writable pages */ 5002 u8 wf = (pfec & PFERR_WRITE_MASK) ? (u8)~w : 0; 5003 /* Faults from user mode accesses to supervisor pages */ 5004 u8 uf = (pfec & PFERR_USER_MASK) ? (u8)~u : 0; 5005 /* Faults from fetches of non-executable pages*/ 5006 u8 ff = (pfec & PFERR_FETCH_MASK) ? (u8)~x : 0; 5007 /* Faults from kernel mode fetches of user pages */ 5008 u8 smepf = 0; 5009 /* Faults from kernel mode accesses of user pages */ 5010 u8 smapf = 0; 5011 5012 if (!ept) { 5013 /* Faults from kernel mode accesses to user pages */ 5014 u8 kf = (pfec & PFERR_USER_MASK) ? 0 : u; 5015 5016 /* Not really needed: !nx will cause pte.nx to fault */ 5017 if (!efer_nx) 5018 ff = 0; 5019 5020 /* Allow supervisor writes if !cr0.wp */ 5021 if (!cr0_wp) 5022 wf = (pfec & PFERR_USER_MASK) ? wf : 0; 5023 5024 /* Disallow supervisor fetches of user code if cr4.smep */ 5025 if (cr4_smep) 5026 smepf = (pfec & PFERR_FETCH_MASK) ? kf : 0; 5027 5028 /* 5029 * SMAP:kernel-mode data accesses from user-mode 5030 * mappings should fault. A fault is considered 5031 * as a SMAP violation if all of the following 5032 * conditions are true: 5033 * - X86_CR4_SMAP is set in CR4 5034 * - A user page is accessed 5035 * - The access is not a fetch 5036 * - The access is supervisor mode 5037 * - If implicit supervisor access or X86_EFLAGS_AC is clear 5038 * 5039 * Here, we cover the first four conditions. 5040 * The fifth is computed dynamically in permission_fault(); 5041 * PFERR_RSVD_MASK bit will be set in PFEC if the access is 5042 * *not* subject to SMAP restrictions. 5043 */ 5044 if (cr4_smap) 5045 smapf = (pfec & (PFERR_RSVD_MASK|PFERR_FETCH_MASK)) ? 0 : kf; 5046 } 5047 5048 mmu->permissions[byte] = ff | uf | wf | smepf | smapf; 5049 } 5050 } 5051 5052 /* 5053 * PKU is an additional mechanism by which the paging controls access to 5054 * user-mode addresses based on the value in the PKRU register. Protection 5055 * key violations are reported through a bit in the page fault error code. 5056 * Unlike other bits of the error code, the PK bit is not known at the 5057 * call site of e.g. gva_to_gpa; it must be computed directly in 5058 * permission_fault based on two bits of PKRU, on some machine state (CR4, 5059 * CR0, EFER, CPL), and on other bits of the error code and the page tables. 5060 * 5061 * In particular the following conditions come from the error code, the 5062 * page tables and the machine state: 5063 * - PK is always zero unless CR4.PKE=1 and EFER.LMA=1 5064 * - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch) 5065 * - PK is always zero if U=0 in the page tables 5066 * - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access. 5067 * 5068 * The PKRU bitmask caches the result of these four conditions. The error 5069 * code (minus the P bit) and the page table's U bit form an index into the 5070 * PKRU bitmask. Two bits of the PKRU bitmask are then extracted and ANDed 5071 * with the two bits of the PKRU register corresponding to the protection key. 5072 * For the first three conditions above the bits will be 00, thus masking 5073 * away both AD and WD. For all reads or if the last condition holds, WD 5074 * only will be masked away. 5075 */ 5076 static void update_pkru_bitmask(struct kvm_mmu *mmu) 5077 { 5078 unsigned bit; 5079 bool wp; 5080 5081 mmu->pkru_mask = 0; 5082 5083 if (!is_cr4_pke(mmu)) 5084 return; 5085 5086 wp = is_cr0_wp(mmu); 5087 5088 for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) { 5089 unsigned pfec, pkey_bits; 5090 bool check_pkey, check_write, ff, uf, wf, pte_user; 5091 5092 pfec = bit << 1; 5093 ff = pfec & PFERR_FETCH_MASK; 5094 uf = pfec & PFERR_USER_MASK; 5095 wf = pfec & PFERR_WRITE_MASK; 5096 5097 /* PFEC.RSVD is replaced by ACC_USER_MASK. */ 5098 pte_user = pfec & PFERR_RSVD_MASK; 5099 5100 /* 5101 * Only need to check the access which is not an 5102 * instruction fetch and is to a user page. 5103 */ 5104 check_pkey = (!ff && pte_user); 5105 /* 5106 * write access is controlled by PKRU if it is a 5107 * user access or CR0.WP = 1. 5108 */ 5109 check_write = check_pkey && wf && (uf || wp); 5110 5111 /* PKRU.AD stops both read and write access. */ 5112 pkey_bits = !!check_pkey; 5113 /* PKRU.WD stops write access. */ 5114 pkey_bits |= (!!check_write) << 1; 5115 5116 mmu->pkru_mask |= (pkey_bits & 3) << pfec; 5117 } 5118 } 5119 5120 static void reset_guest_paging_metadata(struct kvm_vcpu *vcpu, 5121 struct kvm_mmu *mmu) 5122 { 5123 if (!is_cr0_pg(mmu)) 5124 return; 5125 5126 reset_guest_rsvds_bits_mask(vcpu, mmu); 5127 update_permission_bitmask(mmu, false); 5128 update_pkru_bitmask(mmu); 5129 } 5130 5131 static void paging64_init_context(struct kvm_mmu *context) 5132 { 5133 context->page_fault = paging64_page_fault; 5134 context->gva_to_gpa = paging64_gva_to_gpa; 5135 context->sync_spte = paging64_sync_spte; 5136 } 5137 5138 static void paging32_init_context(struct kvm_mmu *context) 5139 { 5140 context->page_fault = paging32_page_fault; 5141 context->gva_to_gpa = paging32_gva_to_gpa; 5142 context->sync_spte = paging32_sync_spte; 5143 } 5144 5145 static union kvm_cpu_role kvm_calc_cpu_role(struct kvm_vcpu *vcpu, 5146 const struct kvm_mmu_role_regs *regs) 5147 { 5148 union kvm_cpu_role role = {0}; 5149 5150 role.base.access = ACC_ALL; 5151 role.base.smm = is_smm(vcpu); 5152 role.base.guest_mode = is_guest_mode(vcpu); 5153 role.ext.valid = 1; 5154 5155 if (!____is_cr0_pg(regs)) { 5156 role.base.direct = 1; 5157 return role; 5158 } 5159 5160 role.base.efer_nx = ____is_efer_nx(regs); 5161 role.base.cr0_wp = ____is_cr0_wp(regs); 5162 role.base.smep_andnot_wp = ____is_cr4_smep(regs) && !____is_cr0_wp(regs); 5163 role.base.smap_andnot_wp = ____is_cr4_smap(regs) && !____is_cr0_wp(regs); 5164 role.base.has_4_byte_gpte = !____is_cr4_pae(regs); 5165 5166 if (____is_efer_lma(regs)) 5167 role.base.level = ____is_cr4_la57(regs) ? PT64_ROOT_5LEVEL 5168 : PT64_ROOT_4LEVEL; 5169 else if (____is_cr4_pae(regs)) 5170 role.base.level = PT32E_ROOT_LEVEL; 5171 else 5172 role.base.level = PT32_ROOT_LEVEL; 5173 5174 role.ext.cr4_smep = ____is_cr4_smep(regs); 5175 role.ext.cr4_smap = ____is_cr4_smap(regs); 5176 role.ext.cr4_pse = ____is_cr4_pse(regs); 5177 5178 /* PKEY and LA57 are active iff long mode is active. */ 5179 role.ext.cr4_pke = ____is_efer_lma(regs) && ____is_cr4_pke(regs); 5180 role.ext.cr4_la57 = ____is_efer_lma(regs) && ____is_cr4_la57(regs); 5181 role.ext.efer_lma = ____is_efer_lma(regs); 5182 return role; 5183 } 5184 5185 void __kvm_mmu_refresh_passthrough_bits(struct kvm_vcpu *vcpu, 5186 struct kvm_mmu *mmu) 5187 { 5188 const bool cr0_wp = kvm_is_cr0_bit_set(vcpu, X86_CR0_WP); 5189 5190 BUILD_BUG_ON((KVM_MMU_CR0_ROLE_BITS & KVM_POSSIBLE_CR0_GUEST_BITS) != X86_CR0_WP); 5191 BUILD_BUG_ON((KVM_MMU_CR4_ROLE_BITS & KVM_POSSIBLE_CR4_GUEST_BITS)); 5192 5193 if (is_cr0_wp(mmu) == cr0_wp) 5194 return; 5195 5196 mmu->cpu_role.base.cr0_wp = cr0_wp; 5197 reset_guest_paging_metadata(vcpu, mmu); 5198 } 5199 5200 static inline int kvm_mmu_get_tdp_level(struct kvm_vcpu *vcpu) 5201 { 5202 /* tdp_root_level is architecture forced level, use it if nonzero */ 5203 if (tdp_root_level) 5204 return tdp_root_level; 5205 5206 /* Use 5-level TDP if and only if it's useful/necessary. */ 5207 if (max_tdp_level == 5 && cpuid_maxphyaddr(vcpu) <= 48) 5208 return 4; 5209 5210 return max_tdp_level; 5211 } 5212 5213 static union kvm_mmu_page_role 5214 kvm_calc_tdp_mmu_root_page_role(struct kvm_vcpu *vcpu, 5215 union kvm_cpu_role cpu_role) 5216 { 5217 union kvm_mmu_page_role role = {0}; 5218 5219 role.access = ACC_ALL; 5220 role.cr0_wp = true; 5221 role.efer_nx = true; 5222 role.smm = cpu_role.base.smm; 5223 role.guest_mode = cpu_role.base.guest_mode; 5224 role.ad_disabled = !kvm_ad_enabled(); 5225 role.level = kvm_mmu_get_tdp_level(vcpu); 5226 role.direct = true; 5227 role.has_4_byte_gpte = false; 5228 5229 return role; 5230 } 5231 5232 static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu, 5233 union kvm_cpu_role cpu_role) 5234 { 5235 struct kvm_mmu *context = &vcpu->arch.root_mmu; 5236 union kvm_mmu_page_role root_role = kvm_calc_tdp_mmu_root_page_role(vcpu, cpu_role); 5237 5238 if (cpu_role.as_u64 == context->cpu_role.as_u64 && 5239 root_role.word == context->root_role.word) 5240 return; 5241 5242 context->cpu_role.as_u64 = cpu_role.as_u64; 5243 context->root_role.word = root_role.word; 5244 context->page_fault = kvm_tdp_page_fault; 5245 context->sync_spte = NULL; 5246 context->get_guest_pgd = get_guest_cr3; 5247 context->get_pdptr = kvm_pdptr_read; 5248 context->inject_page_fault = kvm_inject_page_fault; 5249 5250 if (!is_cr0_pg(context)) 5251 context->gva_to_gpa = nonpaging_gva_to_gpa; 5252 else if (is_cr4_pae(context)) 5253 context->gva_to_gpa = paging64_gva_to_gpa; 5254 else 5255 context->gva_to_gpa = paging32_gva_to_gpa; 5256 5257 reset_guest_paging_metadata(vcpu, context); 5258 reset_tdp_shadow_zero_bits_mask(context); 5259 } 5260 5261 static void shadow_mmu_init_context(struct kvm_vcpu *vcpu, struct kvm_mmu *context, 5262 union kvm_cpu_role cpu_role, 5263 union kvm_mmu_page_role root_role) 5264 { 5265 if (cpu_role.as_u64 == context->cpu_role.as_u64 && 5266 root_role.word == context->root_role.word) 5267 return; 5268 5269 context->cpu_role.as_u64 = cpu_role.as_u64; 5270 context->root_role.word = root_role.word; 5271 5272 if (!is_cr0_pg(context)) 5273 nonpaging_init_context(context); 5274 else if (is_cr4_pae(context)) 5275 paging64_init_context(context); 5276 else 5277 paging32_init_context(context); 5278 5279 reset_guest_paging_metadata(vcpu, context); 5280 reset_shadow_zero_bits_mask(vcpu, context); 5281 } 5282 5283 static void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, 5284 union kvm_cpu_role cpu_role) 5285 { 5286 struct kvm_mmu *context = &vcpu->arch.root_mmu; 5287 union kvm_mmu_page_role root_role; 5288 5289 root_role = cpu_role.base; 5290 5291 /* KVM uses PAE paging whenever the guest isn't using 64-bit paging. */ 5292 root_role.level = max_t(u32, root_role.level, PT32E_ROOT_LEVEL); 5293 5294 /* 5295 * KVM forces EFER.NX=1 when TDP is disabled, reflect it in the MMU role. 5296 * KVM uses NX when TDP is disabled to handle a variety of scenarios, 5297 * notably for huge SPTEs if iTLB multi-hit mitigation is enabled and 5298 * to generate correct permissions for CR0.WP=0/CR4.SMEP=1/EFER.NX=0. 5299 * The iTLB multi-hit workaround can be toggled at any time, so assume 5300 * NX can be used by any non-nested shadow MMU to avoid having to reset 5301 * MMU contexts. 5302 */ 5303 root_role.efer_nx = true; 5304 5305 shadow_mmu_init_context(vcpu, context, cpu_role, root_role); 5306 } 5307 5308 void kvm_init_shadow_npt_mmu(struct kvm_vcpu *vcpu, unsigned long cr0, 5309 unsigned long cr4, u64 efer, gpa_t nested_cr3) 5310 { 5311 struct kvm_mmu *context = &vcpu->arch.guest_mmu; 5312 struct kvm_mmu_role_regs regs = { 5313 .cr0 = cr0, 5314 .cr4 = cr4 & ~X86_CR4_PKE, 5315 .efer = efer, 5316 }; 5317 union kvm_cpu_role cpu_role = kvm_calc_cpu_role(vcpu, ®s); 5318 union kvm_mmu_page_role root_role; 5319 5320 /* NPT requires CR0.PG=1. */ 5321 WARN_ON_ONCE(cpu_role.base.direct); 5322 5323 root_role = cpu_role.base; 5324 root_role.level = kvm_mmu_get_tdp_level(vcpu); 5325 if (root_role.level == PT64_ROOT_5LEVEL && 5326 cpu_role.base.level == PT64_ROOT_4LEVEL) 5327 root_role.passthrough = 1; 5328 5329 shadow_mmu_init_context(vcpu, context, cpu_role, root_role); 5330 kvm_mmu_new_pgd(vcpu, nested_cr3); 5331 } 5332 EXPORT_SYMBOL_GPL(kvm_init_shadow_npt_mmu); 5333 5334 static union kvm_cpu_role 5335 kvm_calc_shadow_ept_root_page_role(struct kvm_vcpu *vcpu, bool accessed_dirty, 5336 bool execonly, u8 level) 5337 { 5338 union kvm_cpu_role role = {0}; 5339 5340 /* 5341 * KVM does not support SMM transfer monitors, and consequently does not 5342 * support the "entry to SMM" control either. role.base.smm is always 0. 5343 */ 5344 WARN_ON_ONCE(is_smm(vcpu)); 5345 role.base.level = level; 5346 role.base.has_4_byte_gpte = false; 5347 role.base.direct = false; 5348 role.base.ad_disabled = !accessed_dirty; 5349 role.base.guest_mode = true; 5350 role.base.access = ACC_ALL; 5351 5352 role.ext.word = 0; 5353 role.ext.execonly = execonly; 5354 role.ext.valid = 1; 5355 5356 return role; 5357 } 5358 5359 void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly, 5360 int huge_page_level, bool accessed_dirty, 5361 gpa_t new_eptp) 5362 { 5363 struct kvm_mmu *context = &vcpu->arch.guest_mmu; 5364 u8 level = vmx_eptp_page_walk_level(new_eptp); 5365 union kvm_cpu_role new_mode = 5366 kvm_calc_shadow_ept_root_page_role(vcpu, accessed_dirty, 5367 execonly, level); 5368 5369 if (new_mode.as_u64 != context->cpu_role.as_u64) { 5370 /* EPT, and thus nested EPT, does not consume CR0, CR4, nor EFER. */ 5371 context->cpu_role.as_u64 = new_mode.as_u64; 5372 context->root_role.word = new_mode.base.word; 5373 5374 context->page_fault = ept_page_fault; 5375 context->gva_to_gpa = ept_gva_to_gpa; 5376 context->sync_spte = ept_sync_spte; 5377 5378 update_permission_bitmask(context, true); 5379 context->pkru_mask = 0; 5380 reset_rsvds_bits_mask_ept(vcpu, context, execonly, huge_page_level); 5381 reset_ept_shadow_zero_bits_mask(context, execonly); 5382 } 5383 5384 kvm_mmu_new_pgd(vcpu, new_eptp); 5385 } 5386 EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu); 5387 5388 static void init_kvm_softmmu(struct kvm_vcpu *vcpu, 5389 union kvm_cpu_role cpu_role) 5390 { 5391 struct kvm_mmu *context = &vcpu->arch.root_mmu; 5392 5393 kvm_init_shadow_mmu(vcpu, cpu_role); 5394 5395 context->get_guest_pgd = get_guest_cr3; 5396 context->get_pdptr = kvm_pdptr_read; 5397 context->inject_page_fault = kvm_inject_page_fault; 5398 } 5399 5400 static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu, 5401 union kvm_cpu_role new_mode) 5402 { 5403 struct kvm_mmu *g_context = &vcpu->arch.nested_mmu; 5404 5405 if (new_mode.as_u64 == g_context->cpu_role.as_u64) 5406 return; 5407 5408 g_context->cpu_role.as_u64 = new_mode.as_u64; 5409 g_context->get_guest_pgd = get_guest_cr3; 5410 g_context->get_pdptr = kvm_pdptr_read; 5411 g_context->inject_page_fault = kvm_inject_page_fault; 5412 5413 /* 5414 * L2 page tables are never shadowed, so there is no need to sync 5415 * SPTEs. 5416 */ 5417 g_context->sync_spte = NULL; 5418 5419 /* 5420 * Note that arch.mmu->gva_to_gpa translates l2_gpa to l1_gpa using 5421 * L1's nested page tables (e.g. EPT12). The nested translation 5422 * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using 5423 * L2's page tables as the first level of translation and L1's 5424 * nested page tables as the second level of translation. Basically 5425 * the gva_to_gpa functions between mmu and nested_mmu are swapped. 5426 */ 5427 if (!is_paging(vcpu)) 5428 g_context->gva_to_gpa = nonpaging_gva_to_gpa; 5429 else if (is_long_mode(vcpu)) 5430 g_context->gva_to_gpa = paging64_gva_to_gpa; 5431 else if (is_pae(vcpu)) 5432 g_context->gva_to_gpa = paging64_gva_to_gpa; 5433 else 5434 g_context->gva_to_gpa = paging32_gva_to_gpa; 5435 5436 reset_guest_paging_metadata(vcpu, g_context); 5437 } 5438 5439 void kvm_init_mmu(struct kvm_vcpu *vcpu) 5440 { 5441 struct kvm_mmu_role_regs regs = vcpu_to_role_regs(vcpu); 5442 union kvm_cpu_role cpu_role = kvm_calc_cpu_role(vcpu, ®s); 5443 5444 if (mmu_is_nested(vcpu)) 5445 init_kvm_nested_mmu(vcpu, cpu_role); 5446 else if (tdp_enabled) 5447 init_kvm_tdp_mmu(vcpu, cpu_role); 5448 else 5449 init_kvm_softmmu(vcpu, cpu_role); 5450 } 5451 EXPORT_SYMBOL_GPL(kvm_init_mmu); 5452 5453 void kvm_mmu_after_set_cpuid(struct kvm_vcpu *vcpu) 5454 { 5455 /* 5456 * Invalidate all MMU roles to force them to reinitialize as CPUID 5457 * information is factored into reserved bit calculations. 5458 * 5459 * Correctly handling multiple vCPU models with respect to paging and 5460 * physical address properties) in a single VM would require tracking 5461 * all relevant CPUID information in kvm_mmu_page_role. That is very 5462 * undesirable as it would increase the memory requirements for 5463 * gfn_track (see struct kvm_mmu_page_role comments). For now that 5464 * problem is swept under the rug; KVM's CPUID API is horrific and 5465 * it's all but impossible to solve it without introducing a new API. 5466 */ 5467 vcpu->arch.root_mmu.root_role.word = 0; 5468 vcpu->arch.guest_mmu.root_role.word = 0; 5469 vcpu->arch.nested_mmu.root_role.word = 0; 5470 vcpu->arch.root_mmu.cpu_role.ext.valid = 0; 5471 vcpu->arch.guest_mmu.cpu_role.ext.valid = 0; 5472 vcpu->arch.nested_mmu.cpu_role.ext.valid = 0; 5473 kvm_mmu_reset_context(vcpu); 5474 5475 /* 5476 * Changing guest CPUID after KVM_RUN is forbidden, see the comment in 5477 * kvm_arch_vcpu_ioctl(). 5478 */ 5479 KVM_BUG_ON(kvm_vcpu_has_run(vcpu), vcpu->kvm); 5480 } 5481 5482 void kvm_mmu_reset_context(struct kvm_vcpu *vcpu) 5483 { 5484 kvm_mmu_unload(vcpu); 5485 kvm_init_mmu(vcpu); 5486 } 5487 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context); 5488 5489 int kvm_mmu_load(struct kvm_vcpu *vcpu) 5490 { 5491 int r; 5492 5493 r = mmu_topup_memory_caches(vcpu, !vcpu->arch.mmu->root_role.direct); 5494 if (r) 5495 goto out; 5496 r = mmu_alloc_special_roots(vcpu); 5497 if (r) 5498 goto out; 5499 if (vcpu->arch.mmu->root_role.direct) 5500 r = mmu_alloc_direct_roots(vcpu); 5501 else 5502 r = mmu_alloc_shadow_roots(vcpu); 5503 if (r) 5504 goto out; 5505 5506 kvm_mmu_sync_roots(vcpu); 5507 5508 kvm_mmu_load_pgd(vcpu); 5509 5510 /* 5511 * Flush any TLB entries for the new root, the provenance of the root 5512 * is unknown. Even if KVM ensures there are no stale TLB entries 5513 * for a freed root, in theory another hypervisor could have left 5514 * stale entries. Flushing on alloc also allows KVM to skip the TLB 5515 * flush when freeing a root (see kvm_tdp_mmu_put_root()). 5516 */ 5517 static_call(kvm_x86_flush_tlb_current)(vcpu); 5518 out: 5519 return r; 5520 } 5521 5522 void kvm_mmu_unload(struct kvm_vcpu *vcpu) 5523 { 5524 struct kvm *kvm = vcpu->kvm; 5525 5526 kvm_mmu_free_roots(kvm, &vcpu->arch.root_mmu, KVM_MMU_ROOTS_ALL); 5527 WARN_ON(VALID_PAGE(vcpu->arch.root_mmu.root.hpa)); 5528 kvm_mmu_free_roots(kvm, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL); 5529 WARN_ON(VALID_PAGE(vcpu->arch.guest_mmu.root.hpa)); 5530 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY); 5531 } 5532 5533 static bool is_obsolete_root(struct kvm *kvm, hpa_t root_hpa) 5534 { 5535 struct kvm_mmu_page *sp; 5536 5537 if (!VALID_PAGE(root_hpa)) 5538 return false; 5539 5540 /* 5541 * When freeing obsolete roots, treat roots as obsolete if they don't 5542 * have an associated shadow page. This does mean KVM will get false 5543 * positives and free roots that don't strictly need to be freed, but 5544 * such false positives are relatively rare: 5545 * 5546 * (a) only PAE paging and nested NPT has roots without shadow pages 5547 * (b) remote reloads due to a memslot update obsoletes _all_ roots 5548 * (c) KVM doesn't track previous roots for PAE paging, and the guest 5549 * is unlikely to zap an in-use PGD. 5550 */ 5551 sp = to_shadow_page(root_hpa); 5552 return !sp || is_obsolete_sp(kvm, sp); 5553 } 5554 5555 static void __kvm_mmu_free_obsolete_roots(struct kvm *kvm, struct kvm_mmu *mmu) 5556 { 5557 unsigned long roots_to_free = 0; 5558 int i; 5559 5560 if (is_obsolete_root(kvm, mmu->root.hpa)) 5561 roots_to_free |= KVM_MMU_ROOT_CURRENT; 5562 5563 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) { 5564 if (is_obsolete_root(kvm, mmu->prev_roots[i].hpa)) 5565 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i); 5566 } 5567 5568 if (roots_to_free) 5569 kvm_mmu_free_roots(kvm, mmu, roots_to_free); 5570 } 5571 5572 void kvm_mmu_free_obsolete_roots(struct kvm_vcpu *vcpu) 5573 { 5574 __kvm_mmu_free_obsolete_roots(vcpu->kvm, &vcpu->arch.root_mmu); 5575 __kvm_mmu_free_obsolete_roots(vcpu->kvm, &vcpu->arch.guest_mmu); 5576 } 5577 5578 static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa, 5579 int *bytes) 5580 { 5581 u64 gentry = 0; 5582 int r; 5583 5584 /* 5585 * Assume that the pte write on a page table of the same type 5586 * as the current vcpu paging mode since we update the sptes only 5587 * when they have the same mode. 5588 */ 5589 if (is_pae(vcpu) && *bytes == 4) { 5590 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */ 5591 *gpa &= ~(gpa_t)7; 5592 *bytes = 8; 5593 } 5594 5595 if (*bytes == 4 || *bytes == 8) { 5596 r = kvm_vcpu_read_guest_atomic(vcpu, *gpa, &gentry, *bytes); 5597 if (r) 5598 gentry = 0; 5599 } 5600 5601 return gentry; 5602 } 5603 5604 /* 5605 * If we're seeing too many writes to a page, it may no longer be a page table, 5606 * or we may be forking, in which case it is better to unmap the page. 5607 */ 5608 static bool detect_write_flooding(struct kvm_mmu_page *sp) 5609 { 5610 /* 5611 * Skip write-flooding detected for the sp whose level is 1, because 5612 * it can become unsync, then the guest page is not write-protected. 5613 */ 5614 if (sp->role.level == PG_LEVEL_4K) 5615 return false; 5616 5617 atomic_inc(&sp->write_flooding_count); 5618 return atomic_read(&sp->write_flooding_count) >= 3; 5619 } 5620 5621 /* 5622 * Misaligned accesses are too much trouble to fix up; also, they usually 5623 * indicate a page is not used as a page table. 5624 */ 5625 static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa, 5626 int bytes) 5627 { 5628 unsigned offset, pte_size, misaligned; 5629 5630 pgprintk("misaligned: gpa %llx bytes %d role %x\n", 5631 gpa, bytes, sp->role.word); 5632 5633 offset = offset_in_page(gpa); 5634 pte_size = sp->role.has_4_byte_gpte ? 4 : 8; 5635 5636 /* 5637 * Sometimes, the OS only writes the last one bytes to update status 5638 * bits, for example, in linux, andb instruction is used in clear_bit(). 5639 */ 5640 if (!(offset & (pte_size - 1)) && bytes == 1) 5641 return false; 5642 5643 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1); 5644 misaligned |= bytes < 4; 5645 5646 return misaligned; 5647 } 5648 5649 static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte) 5650 { 5651 unsigned page_offset, quadrant; 5652 u64 *spte; 5653 int level; 5654 5655 page_offset = offset_in_page(gpa); 5656 level = sp->role.level; 5657 *nspte = 1; 5658 if (sp->role.has_4_byte_gpte) { 5659 page_offset <<= 1; /* 32->64 */ 5660 /* 5661 * A 32-bit pde maps 4MB while the shadow pdes map 5662 * only 2MB. So we need to double the offset again 5663 * and zap two pdes instead of one. 5664 */ 5665 if (level == PT32_ROOT_LEVEL) { 5666 page_offset &= ~7; /* kill rounding error */ 5667 page_offset <<= 1; 5668 *nspte = 2; 5669 } 5670 quadrant = page_offset >> PAGE_SHIFT; 5671 page_offset &= ~PAGE_MASK; 5672 if (quadrant != sp->role.quadrant) 5673 return NULL; 5674 } 5675 5676 spte = &sp->spt[page_offset / sizeof(*spte)]; 5677 return spte; 5678 } 5679 5680 static void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa, 5681 const u8 *new, int bytes, 5682 struct kvm_page_track_notifier_node *node) 5683 { 5684 gfn_t gfn = gpa >> PAGE_SHIFT; 5685 struct kvm_mmu_page *sp; 5686 LIST_HEAD(invalid_list); 5687 u64 entry, gentry, *spte; 5688 int npte; 5689 bool flush = false; 5690 5691 /* 5692 * If we don't have indirect shadow pages, it means no page is 5693 * write-protected, so we can exit simply. 5694 */ 5695 if (!READ_ONCE(vcpu->kvm->arch.indirect_shadow_pages)) 5696 return; 5697 5698 pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes); 5699 5700 write_lock(&vcpu->kvm->mmu_lock); 5701 5702 gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, &bytes); 5703 5704 ++vcpu->kvm->stat.mmu_pte_write; 5705 5706 for_each_gfn_valid_sp_with_gptes(vcpu->kvm, sp, gfn) { 5707 if (detect_write_misaligned(sp, gpa, bytes) || 5708 detect_write_flooding(sp)) { 5709 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list); 5710 ++vcpu->kvm->stat.mmu_flooded; 5711 continue; 5712 } 5713 5714 spte = get_written_sptes(sp, gpa, &npte); 5715 if (!spte) 5716 continue; 5717 5718 while (npte--) { 5719 entry = *spte; 5720 mmu_page_zap_pte(vcpu->kvm, sp, spte, NULL); 5721 if (gentry && sp->role.level != PG_LEVEL_4K) 5722 ++vcpu->kvm->stat.mmu_pde_zapped; 5723 if (is_shadow_present_pte(entry)) 5724 flush = true; 5725 ++spte; 5726 } 5727 } 5728 kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, flush); 5729 write_unlock(&vcpu->kvm->mmu_lock); 5730 } 5731 5732 int noinline kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 error_code, 5733 void *insn, int insn_len) 5734 { 5735 int r, emulation_type = EMULTYPE_PF; 5736 bool direct = vcpu->arch.mmu->root_role.direct; 5737 5738 if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root.hpa))) 5739 return RET_PF_RETRY; 5740 5741 r = RET_PF_INVALID; 5742 if (unlikely(error_code & PFERR_RSVD_MASK)) { 5743 r = handle_mmio_page_fault(vcpu, cr2_or_gpa, direct); 5744 if (r == RET_PF_EMULATE) 5745 goto emulate; 5746 } 5747 5748 if (r == RET_PF_INVALID) { 5749 r = kvm_mmu_do_page_fault(vcpu, cr2_or_gpa, 5750 lower_32_bits(error_code), false, 5751 &emulation_type); 5752 if (KVM_BUG_ON(r == RET_PF_INVALID, vcpu->kvm)) 5753 return -EIO; 5754 } 5755 5756 if (r < 0) 5757 return r; 5758 if (r != RET_PF_EMULATE) 5759 return 1; 5760 5761 /* 5762 * Before emulating the instruction, check if the error code 5763 * was due to a RO violation while translating the guest page. 5764 * This can occur when using nested virtualization with nested 5765 * paging in both guests. If true, we simply unprotect the page 5766 * and resume the guest. 5767 */ 5768 if (vcpu->arch.mmu->root_role.direct && 5769 (error_code & PFERR_NESTED_GUEST_PAGE) == PFERR_NESTED_GUEST_PAGE) { 5770 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(cr2_or_gpa)); 5771 return 1; 5772 } 5773 5774 /* 5775 * vcpu->arch.mmu.page_fault returned RET_PF_EMULATE, but we can still 5776 * optimistically try to just unprotect the page and let the processor 5777 * re-execute the instruction that caused the page fault. Do not allow 5778 * retrying MMIO emulation, as it's not only pointless but could also 5779 * cause us to enter an infinite loop because the processor will keep 5780 * faulting on the non-existent MMIO address. Retrying an instruction 5781 * from a nested guest is also pointless and dangerous as we are only 5782 * explicitly shadowing L1's page tables, i.e. unprotecting something 5783 * for L1 isn't going to magically fix whatever issue cause L2 to fail. 5784 */ 5785 if (!mmio_info_in_cache(vcpu, cr2_or_gpa, direct) && !is_guest_mode(vcpu)) 5786 emulation_type |= EMULTYPE_ALLOW_RETRY_PF; 5787 emulate: 5788 return x86_emulate_instruction(vcpu, cr2_or_gpa, emulation_type, insn, 5789 insn_len); 5790 } 5791 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault); 5792 5793 static void __kvm_mmu_invalidate_addr(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, 5794 u64 addr, hpa_t root_hpa) 5795 { 5796 struct kvm_shadow_walk_iterator iterator; 5797 5798 vcpu_clear_mmio_info(vcpu, addr); 5799 5800 if (!VALID_PAGE(root_hpa)) 5801 return; 5802 5803 write_lock(&vcpu->kvm->mmu_lock); 5804 for_each_shadow_entry_using_root(vcpu, root_hpa, addr, iterator) { 5805 struct kvm_mmu_page *sp = sptep_to_sp(iterator.sptep); 5806 5807 if (sp->unsync) { 5808 int ret = kvm_sync_spte(vcpu, sp, iterator.index); 5809 5810 if (ret < 0) 5811 mmu_page_zap_pte(vcpu->kvm, sp, iterator.sptep, NULL); 5812 if (ret) 5813 kvm_flush_remote_tlbs_sptep(vcpu->kvm, iterator.sptep); 5814 } 5815 5816 if (!sp->unsync_children) 5817 break; 5818 } 5819 write_unlock(&vcpu->kvm->mmu_lock); 5820 } 5821 5822 void kvm_mmu_invalidate_addr(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, 5823 u64 addr, unsigned long roots) 5824 { 5825 int i; 5826 5827 WARN_ON_ONCE(roots & ~KVM_MMU_ROOTS_ALL); 5828 5829 /* It's actually a GPA for vcpu->arch.guest_mmu. */ 5830 if (mmu != &vcpu->arch.guest_mmu) { 5831 /* INVLPG on a non-canonical address is a NOP according to the SDM. */ 5832 if (is_noncanonical_address(addr, vcpu)) 5833 return; 5834 5835 static_call(kvm_x86_flush_tlb_gva)(vcpu, addr); 5836 } 5837 5838 if (!mmu->sync_spte) 5839 return; 5840 5841 if (roots & KVM_MMU_ROOT_CURRENT) 5842 __kvm_mmu_invalidate_addr(vcpu, mmu, addr, mmu->root.hpa); 5843 5844 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) { 5845 if (roots & KVM_MMU_ROOT_PREVIOUS(i)) 5846 __kvm_mmu_invalidate_addr(vcpu, mmu, addr, mmu->prev_roots[i].hpa); 5847 } 5848 } 5849 EXPORT_SYMBOL_GPL(kvm_mmu_invalidate_addr); 5850 5851 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva) 5852 { 5853 /* 5854 * INVLPG is required to invalidate any global mappings for the VA, 5855 * irrespective of PCID. Blindly sync all roots as it would take 5856 * roughly the same amount of work/time to determine whether any of the 5857 * previous roots have a global mapping. 5858 * 5859 * Mappings not reachable via the current or previous cached roots will 5860 * be synced when switching to that new cr3, so nothing needs to be 5861 * done here for them. 5862 */ 5863 kvm_mmu_invalidate_addr(vcpu, vcpu->arch.walk_mmu, gva, KVM_MMU_ROOTS_ALL); 5864 ++vcpu->stat.invlpg; 5865 } 5866 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg); 5867 5868 5869 void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid) 5870 { 5871 struct kvm_mmu *mmu = vcpu->arch.mmu; 5872 unsigned long roots = 0; 5873 uint i; 5874 5875 if (pcid == kvm_get_active_pcid(vcpu)) 5876 roots |= KVM_MMU_ROOT_CURRENT; 5877 5878 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) { 5879 if (VALID_PAGE(mmu->prev_roots[i].hpa) && 5880 pcid == kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd)) 5881 roots |= KVM_MMU_ROOT_PREVIOUS(i); 5882 } 5883 5884 if (roots) 5885 kvm_mmu_invalidate_addr(vcpu, mmu, gva, roots); 5886 ++vcpu->stat.invlpg; 5887 5888 /* 5889 * Mappings not reachable via the current cr3 or the prev_roots will be 5890 * synced when switching to that cr3, so nothing needs to be done here 5891 * for them. 5892 */ 5893 } 5894 5895 void kvm_configure_mmu(bool enable_tdp, int tdp_forced_root_level, 5896 int tdp_max_root_level, int tdp_huge_page_level) 5897 { 5898 tdp_enabled = enable_tdp; 5899 tdp_root_level = tdp_forced_root_level; 5900 max_tdp_level = tdp_max_root_level; 5901 5902 #ifdef CONFIG_X86_64 5903 tdp_mmu_enabled = tdp_mmu_allowed && tdp_enabled; 5904 #endif 5905 /* 5906 * max_huge_page_level reflects KVM's MMU capabilities irrespective 5907 * of kernel support, e.g. KVM may be capable of using 1GB pages when 5908 * the kernel is not. But, KVM never creates a page size greater than 5909 * what is used by the kernel for any given HVA, i.e. the kernel's 5910 * capabilities are ultimately consulted by kvm_mmu_hugepage_adjust(). 5911 */ 5912 if (tdp_enabled) 5913 max_huge_page_level = tdp_huge_page_level; 5914 else if (boot_cpu_has(X86_FEATURE_GBPAGES)) 5915 max_huge_page_level = PG_LEVEL_1G; 5916 else 5917 max_huge_page_level = PG_LEVEL_2M; 5918 } 5919 EXPORT_SYMBOL_GPL(kvm_configure_mmu); 5920 5921 /* The return value indicates if tlb flush on all vcpus is needed. */ 5922 typedef bool (*slot_rmaps_handler) (struct kvm *kvm, 5923 struct kvm_rmap_head *rmap_head, 5924 const struct kvm_memory_slot *slot); 5925 5926 static __always_inline bool __walk_slot_rmaps(struct kvm *kvm, 5927 const struct kvm_memory_slot *slot, 5928 slot_rmaps_handler fn, 5929 int start_level, int end_level, 5930 gfn_t start_gfn, gfn_t end_gfn, 5931 bool flush_on_yield, bool flush) 5932 { 5933 struct slot_rmap_walk_iterator iterator; 5934 5935 lockdep_assert_held_write(&kvm->mmu_lock); 5936 5937 for_each_slot_rmap_range(slot, start_level, end_level, start_gfn, 5938 end_gfn, &iterator) { 5939 if (iterator.rmap) 5940 flush |= fn(kvm, iterator.rmap, slot); 5941 5942 if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) { 5943 if (flush && flush_on_yield) { 5944 kvm_flush_remote_tlbs_range(kvm, start_gfn, 5945 iterator.gfn - start_gfn + 1); 5946 flush = false; 5947 } 5948 cond_resched_rwlock_write(&kvm->mmu_lock); 5949 } 5950 } 5951 5952 return flush; 5953 } 5954 5955 static __always_inline bool walk_slot_rmaps(struct kvm *kvm, 5956 const struct kvm_memory_slot *slot, 5957 slot_rmaps_handler fn, 5958 int start_level, int end_level, 5959 bool flush_on_yield) 5960 { 5961 return __walk_slot_rmaps(kvm, slot, fn, start_level, end_level, 5962 slot->base_gfn, slot->base_gfn + slot->npages - 1, 5963 flush_on_yield, false); 5964 } 5965 5966 static __always_inline bool walk_slot_rmaps_4k(struct kvm *kvm, 5967 const struct kvm_memory_slot *slot, 5968 slot_rmaps_handler fn, 5969 bool flush_on_yield) 5970 { 5971 return walk_slot_rmaps(kvm, slot, fn, PG_LEVEL_4K, PG_LEVEL_4K, flush_on_yield); 5972 } 5973 5974 static void free_mmu_pages(struct kvm_mmu *mmu) 5975 { 5976 if (!tdp_enabled && mmu->pae_root) 5977 set_memory_encrypted((unsigned long)mmu->pae_root, 1); 5978 free_page((unsigned long)mmu->pae_root); 5979 free_page((unsigned long)mmu->pml4_root); 5980 free_page((unsigned long)mmu->pml5_root); 5981 } 5982 5983 static int __kvm_mmu_create(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu) 5984 { 5985 struct page *page; 5986 int i; 5987 5988 mmu->root.hpa = INVALID_PAGE; 5989 mmu->root.pgd = 0; 5990 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 5991 mmu->prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID; 5992 5993 /* vcpu->arch.guest_mmu isn't used when !tdp_enabled. */ 5994 if (!tdp_enabled && mmu == &vcpu->arch.guest_mmu) 5995 return 0; 5996 5997 /* 5998 * When using PAE paging, the four PDPTEs are treated as 'root' pages, 5999 * while the PDP table is a per-vCPU construct that's allocated at MMU 6000 * creation. When emulating 32-bit mode, cr3 is only 32 bits even on 6001 * x86_64. Therefore we need to allocate the PDP table in the first 6002 * 4GB of memory, which happens to fit the DMA32 zone. TDP paging 6003 * generally doesn't use PAE paging and can skip allocating the PDP 6004 * table. The main exception, handled here, is SVM's 32-bit NPT. The 6005 * other exception is for shadowing L1's 32-bit or PAE NPT on 64-bit 6006 * KVM; that horror is handled on-demand by mmu_alloc_special_roots(). 6007 */ 6008 if (tdp_enabled && kvm_mmu_get_tdp_level(vcpu) > PT32E_ROOT_LEVEL) 6009 return 0; 6010 6011 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_DMA32); 6012 if (!page) 6013 return -ENOMEM; 6014 6015 mmu->pae_root = page_address(page); 6016 6017 /* 6018 * CR3 is only 32 bits when PAE paging is used, thus it's impossible to 6019 * get the CPU to treat the PDPTEs as encrypted. Decrypt the page so 6020 * that KVM's writes and the CPU's reads get along. Note, this is 6021 * only necessary when using shadow paging, as 64-bit NPT can get at 6022 * the C-bit even when shadowing 32-bit NPT, and SME isn't supported 6023 * by 32-bit kernels (when KVM itself uses 32-bit NPT). 6024 */ 6025 if (!tdp_enabled) 6026 set_memory_decrypted((unsigned long)mmu->pae_root, 1); 6027 else 6028 WARN_ON_ONCE(shadow_me_value); 6029 6030 for (i = 0; i < 4; ++i) 6031 mmu->pae_root[i] = INVALID_PAE_ROOT; 6032 6033 return 0; 6034 } 6035 6036 int kvm_mmu_create(struct kvm_vcpu *vcpu) 6037 { 6038 int ret; 6039 6040 vcpu->arch.mmu_pte_list_desc_cache.kmem_cache = pte_list_desc_cache; 6041 vcpu->arch.mmu_pte_list_desc_cache.gfp_zero = __GFP_ZERO; 6042 6043 vcpu->arch.mmu_page_header_cache.kmem_cache = mmu_page_header_cache; 6044 vcpu->arch.mmu_page_header_cache.gfp_zero = __GFP_ZERO; 6045 6046 vcpu->arch.mmu_shadow_page_cache.gfp_zero = __GFP_ZERO; 6047 6048 vcpu->arch.mmu = &vcpu->arch.root_mmu; 6049 vcpu->arch.walk_mmu = &vcpu->arch.root_mmu; 6050 6051 ret = __kvm_mmu_create(vcpu, &vcpu->arch.guest_mmu); 6052 if (ret) 6053 return ret; 6054 6055 ret = __kvm_mmu_create(vcpu, &vcpu->arch.root_mmu); 6056 if (ret) 6057 goto fail_allocate_root; 6058 6059 return ret; 6060 fail_allocate_root: 6061 free_mmu_pages(&vcpu->arch.guest_mmu); 6062 return ret; 6063 } 6064 6065 #define BATCH_ZAP_PAGES 10 6066 static void kvm_zap_obsolete_pages(struct kvm *kvm) 6067 { 6068 struct kvm_mmu_page *sp, *node; 6069 int nr_zapped, batch = 0; 6070 bool unstable; 6071 6072 restart: 6073 list_for_each_entry_safe_reverse(sp, node, 6074 &kvm->arch.active_mmu_pages, link) { 6075 /* 6076 * No obsolete valid page exists before a newly created page 6077 * since active_mmu_pages is a FIFO list. 6078 */ 6079 if (!is_obsolete_sp(kvm, sp)) 6080 break; 6081 6082 /* 6083 * Invalid pages should never land back on the list of active 6084 * pages. Skip the bogus page, otherwise we'll get stuck in an 6085 * infinite loop if the page gets put back on the list (again). 6086 */ 6087 if (WARN_ON(sp->role.invalid)) 6088 continue; 6089 6090 /* 6091 * No need to flush the TLB since we're only zapping shadow 6092 * pages with an obsolete generation number and all vCPUS have 6093 * loaded a new root, i.e. the shadow pages being zapped cannot 6094 * be in active use by the guest. 6095 */ 6096 if (batch >= BATCH_ZAP_PAGES && 6097 cond_resched_rwlock_write(&kvm->mmu_lock)) { 6098 batch = 0; 6099 goto restart; 6100 } 6101 6102 unstable = __kvm_mmu_prepare_zap_page(kvm, sp, 6103 &kvm->arch.zapped_obsolete_pages, &nr_zapped); 6104 batch += nr_zapped; 6105 6106 if (unstable) 6107 goto restart; 6108 } 6109 6110 /* 6111 * Kick all vCPUs (via remote TLB flush) before freeing the page tables 6112 * to ensure KVM is not in the middle of a lockless shadow page table 6113 * walk, which may reference the pages. The remote TLB flush itself is 6114 * not required and is simply a convenient way to kick vCPUs as needed. 6115 * KVM performs a local TLB flush when allocating a new root (see 6116 * kvm_mmu_load()), and the reload in the caller ensure no vCPUs are 6117 * running with an obsolete MMU. 6118 */ 6119 kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages); 6120 } 6121 6122 /* 6123 * Fast invalidate all shadow pages and use lock-break technique 6124 * to zap obsolete pages. 6125 * 6126 * It's required when memslot is being deleted or VM is being 6127 * destroyed, in these cases, we should ensure that KVM MMU does 6128 * not use any resource of the being-deleted slot or all slots 6129 * after calling the function. 6130 */ 6131 static void kvm_mmu_zap_all_fast(struct kvm *kvm) 6132 { 6133 lockdep_assert_held(&kvm->slots_lock); 6134 6135 write_lock(&kvm->mmu_lock); 6136 trace_kvm_mmu_zap_all_fast(kvm); 6137 6138 /* 6139 * Toggle mmu_valid_gen between '0' and '1'. Because slots_lock is 6140 * held for the entire duration of zapping obsolete pages, it's 6141 * impossible for there to be multiple invalid generations associated 6142 * with *valid* shadow pages at any given time, i.e. there is exactly 6143 * one valid generation and (at most) one invalid generation. 6144 */ 6145 kvm->arch.mmu_valid_gen = kvm->arch.mmu_valid_gen ? 0 : 1; 6146 6147 /* 6148 * In order to ensure all vCPUs drop their soon-to-be invalid roots, 6149 * invalidating TDP MMU roots must be done while holding mmu_lock for 6150 * write and in the same critical section as making the reload request, 6151 * e.g. before kvm_zap_obsolete_pages() could drop mmu_lock and yield. 6152 */ 6153 if (tdp_mmu_enabled) 6154 kvm_tdp_mmu_invalidate_all_roots(kvm); 6155 6156 /* 6157 * Notify all vcpus to reload its shadow page table and flush TLB. 6158 * Then all vcpus will switch to new shadow page table with the new 6159 * mmu_valid_gen. 6160 * 6161 * Note: we need to do this under the protection of mmu_lock, 6162 * otherwise, vcpu would purge shadow page but miss tlb flush. 6163 */ 6164 kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_FREE_OBSOLETE_ROOTS); 6165 6166 kvm_zap_obsolete_pages(kvm); 6167 6168 write_unlock(&kvm->mmu_lock); 6169 6170 /* 6171 * Zap the invalidated TDP MMU roots, all SPTEs must be dropped before 6172 * returning to the caller, e.g. if the zap is in response to a memslot 6173 * deletion, mmu_notifier callbacks will be unable to reach the SPTEs 6174 * associated with the deleted memslot once the update completes, and 6175 * Deferring the zap until the final reference to the root is put would 6176 * lead to use-after-free. 6177 */ 6178 if (tdp_mmu_enabled) 6179 kvm_tdp_mmu_zap_invalidated_roots(kvm); 6180 } 6181 6182 static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm) 6183 { 6184 return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages)); 6185 } 6186 6187 static void kvm_mmu_invalidate_zap_pages_in_memslot(struct kvm *kvm, 6188 struct kvm_memory_slot *slot, 6189 struct kvm_page_track_notifier_node *node) 6190 { 6191 kvm_mmu_zap_all_fast(kvm); 6192 } 6193 6194 int kvm_mmu_init_vm(struct kvm *kvm) 6195 { 6196 struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker; 6197 int r; 6198 6199 INIT_LIST_HEAD(&kvm->arch.active_mmu_pages); 6200 INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages); 6201 INIT_LIST_HEAD(&kvm->arch.possible_nx_huge_pages); 6202 spin_lock_init(&kvm->arch.mmu_unsync_pages_lock); 6203 6204 if (tdp_mmu_enabled) { 6205 r = kvm_mmu_init_tdp_mmu(kvm); 6206 if (r < 0) 6207 return r; 6208 } 6209 6210 node->track_write = kvm_mmu_pte_write; 6211 node->track_flush_slot = kvm_mmu_invalidate_zap_pages_in_memslot; 6212 kvm_page_track_register_notifier(kvm, node); 6213 6214 kvm->arch.split_page_header_cache.kmem_cache = mmu_page_header_cache; 6215 kvm->arch.split_page_header_cache.gfp_zero = __GFP_ZERO; 6216 6217 kvm->arch.split_shadow_page_cache.gfp_zero = __GFP_ZERO; 6218 6219 kvm->arch.split_desc_cache.kmem_cache = pte_list_desc_cache; 6220 kvm->arch.split_desc_cache.gfp_zero = __GFP_ZERO; 6221 6222 return 0; 6223 } 6224 6225 static void mmu_free_vm_memory_caches(struct kvm *kvm) 6226 { 6227 kvm_mmu_free_memory_cache(&kvm->arch.split_desc_cache); 6228 kvm_mmu_free_memory_cache(&kvm->arch.split_page_header_cache); 6229 kvm_mmu_free_memory_cache(&kvm->arch.split_shadow_page_cache); 6230 } 6231 6232 void kvm_mmu_uninit_vm(struct kvm *kvm) 6233 { 6234 struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker; 6235 6236 kvm_page_track_unregister_notifier(kvm, node); 6237 6238 if (tdp_mmu_enabled) 6239 kvm_mmu_uninit_tdp_mmu(kvm); 6240 6241 mmu_free_vm_memory_caches(kvm); 6242 } 6243 6244 static bool kvm_rmap_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end) 6245 { 6246 const struct kvm_memory_slot *memslot; 6247 struct kvm_memslots *slots; 6248 struct kvm_memslot_iter iter; 6249 bool flush = false; 6250 gfn_t start, end; 6251 int i; 6252 6253 if (!kvm_memslots_have_rmaps(kvm)) 6254 return flush; 6255 6256 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { 6257 slots = __kvm_memslots(kvm, i); 6258 6259 kvm_for_each_memslot_in_gfn_range(&iter, slots, gfn_start, gfn_end) { 6260 memslot = iter.slot; 6261 start = max(gfn_start, memslot->base_gfn); 6262 end = min(gfn_end, memslot->base_gfn + memslot->npages); 6263 if (WARN_ON_ONCE(start >= end)) 6264 continue; 6265 6266 flush = __walk_slot_rmaps(kvm, memslot, __kvm_zap_rmap, 6267 PG_LEVEL_4K, KVM_MAX_HUGEPAGE_LEVEL, 6268 start, end - 1, true, flush); 6269 } 6270 } 6271 6272 return flush; 6273 } 6274 6275 /* 6276 * Invalidate (zap) SPTEs that cover GFNs from gfn_start and up to gfn_end 6277 * (not including it) 6278 */ 6279 void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end) 6280 { 6281 bool flush; 6282 int i; 6283 6284 if (WARN_ON_ONCE(gfn_end <= gfn_start)) 6285 return; 6286 6287 write_lock(&kvm->mmu_lock); 6288 6289 kvm_mmu_invalidate_begin(kvm, 0, -1ul); 6290 6291 flush = kvm_rmap_zap_gfn_range(kvm, gfn_start, gfn_end); 6292 6293 if (tdp_mmu_enabled) { 6294 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) 6295 flush = kvm_tdp_mmu_zap_leafs(kvm, i, gfn_start, 6296 gfn_end, true, flush); 6297 } 6298 6299 if (flush) 6300 kvm_flush_remote_tlbs_range(kvm, gfn_start, gfn_end - gfn_start); 6301 6302 kvm_mmu_invalidate_end(kvm, 0, -1ul); 6303 6304 write_unlock(&kvm->mmu_lock); 6305 } 6306 6307 static bool slot_rmap_write_protect(struct kvm *kvm, 6308 struct kvm_rmap_head *rmap_head, 6309 const struct kvm_memory_slot *slot) 6310 { 6311 return rmap_write_protect(rmap_head, false); 6312 } 6313 6314 void kvm_mmu_slot_remove_write_access(struct kvm *kvm, 6315 const struct kvm_memory_slot *memslot, 6316 int start_level) 6317 { 6318 if (kvm_memslots_have_rmaps(kvm)) { 6319 write_lock(&kvm->mmu_lock); 6320 walk_slot_rmaps(kvm, memslot, slot_rmap_write_protect, 6321 start_level, KVM_MAX_HUGEPAGE_LEVEL, false); 6322 write_unlock(&kvm->mmu_lock); 6323 } 6324 6325 if (tdp_mmu_enabled) { 6326 read_lock(&kvm->mmu_lock); 6327 kvm_tdp_mmu_wrprot_slot(kvm, memslot, start_level); 6328 read_unlock(&kvm->mmu_lock); 6329 } 6330 } 6331 6332 static inline bool need_topup(struct kvm_mmu_memory_cache *cache, int min) 6333 { 6334 return kvm_mmu_memory_cache_nr_free_objects(cache) < min; 6335 } 6336 6337 static bool need_topup_split_caches_or_resched(struct kvm *kvm) 6338 { 6339 if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) 6340 return true; 6341 6342 /* 6343 * In the worst case, SPLIT_DESC_CACHE_MIN_NR_OBJECTS descriptors are needed 6344 * to split a single huge page. Calculating how many are actually needed 6345 * is possible but not worth the complexity. 6346 */ 6347 return need_topup(&kvm->arch.split_desc_cache, SPLIT_DESC_CACHE_MIN_NR_OBJECTS) || 6348 need_topup(&kvm->arch.split_page_header_cache, 1) || 6349 need_topup(&kvm->arch.split_shadow_page_cache, 1); 6350 } 6351 6352 static int topup_split_caches(struct kvm *kvm) 6353 { 6354 /* 6355 * Allocating rmap list entries when splitting huge pages for nested 6356 * MMUs is uncommon as KVM needs to use a list if and only if there is 6357 * more than one rmap entry for a gfn, i.e. requires an L1 gfn to be 6358 * aliased by multiple L2 gfns and/or from multiple nested roots with 6359 * different roles. Aliasing gfns when using TDP is atypical for VMMs; 6360 * a few gfns are often aliased during boot, e.g. when remapping BIOS, 6361 * but aliasing rarely occurs post-boot or for many gfns. If there is 6362 * only one rmap entry, rmap->val points directly at that one entry and 6363 * doesn't need to allocate a list. Buffer the cache by the default 6364 * capacity so that KVM doesn't have to drop mmu_lock to topup if KVM 6365 * encounters an aliased gfn or two. 6366 */ 6367 const int capacity = SPLIT_DESC_CACHE_MIN_NR_OBJECTS + 6368 KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE; 6369 int r; 6370 6371 lockdep_assert_held(&kvm->slots_lock); 6372 6373 r = __kvm_mmu_topup_memory_cache(&kvm->arch.split_desc_cache, capacity, 6374 SPLIT_DESC_CACHE_MIN_NR_OBJECTS); 6375 if (r) 6376 return r; 6377 6378 r = kvm_mmu_topup_memory_cache(&kvm->arch.split_page_header_cache, 1); 6379 if (r) 6380 return r; 6381 6382 return kvm_mmu_topup_memory_cache(&kvm->arch.split_shadow_page_cache, 1); 6383 } 6384 6385 static struct kvm_mmu_page *shadow_mmu_get_sp_for_split(struct kvm *kvm, u64 *huge_sptep) 6386 { 6387 struct kvm_mmu_page *huge_sp = sptep_to_sp(huge_sptep); 6388 struct shadow_page_caches caches = {}; 6389 union kvm_mmu_page_role role; 6390 unsigned int access; 6391 gfn_t gfn; 6392 6393 gfn = kvm_mmu_page_get_gfn(huge_sp, spte_index(huge_sptep)); 6394 access = kvm_mmu_page_get_access(huge_sp, spte_index(huge_sptep)); 6395 6396 /* 6397 * Note, huge page splitting always uses direct shadow pages, regardless 6398 * of whether the huge page itself is mapped by a direct or indirect 6399 * shadow page, since the huge page region itself is being directly 6400 * mapped with smaller pages. 6401 */ 6402 role = kvm_mmu_child_role(huge_sptep, /*direct=*/true, access); 6403 6404 /* Direct SPs do not require a shadowed_info_cache. */ 6405 caches.page_header_cache = &kvm->arch.split_page_header_cache; 6406 caches.shadow_page_cache = &kvm->arch.split_shadow_page_cache; 6407 6408 /* Safe to pass NULL for vCPU since requesting a direct SP. */ 6409 return __kvm_mmu_get_shadow_page(kvm, NULL, &caches, gfn, role); 6410 } 6411 6412 static void shadow_mmu_split_huge_page(struct kvm *kvm, 6413 const struct kvm_memory_slot *slot, 6414 u64 *huge_sptep) 6415 6416 { 6417 struct kvm_mmu_memory_cache *cache = &kvm->arch.split_desc_cache; 6418 u64 huge_spte = READ_ONCE(*huge_sptep); 6419 struct kvm_mmu_page *sp; 6420 bool flush = false; 6421 u64 *sptep, spte; 6422 gfn_t gfn; 6423 int index; 6424 6425 sp = shadow_mmu_get_sp_for_split(kvm, huge_sptep); 6426 6427 for (index = 0; index < SPTE_ENT_PER_PAGE; index++) { 6428 sptep = &sp->spt[index]; 6429 gfn = kvm_mmu_page_get_gfn(sp, index); 6430 6431 /* 6432 * The SP may already have populated SPTEs, e.g. if this huge 6433 * page is aliased by multiple sptes with the same access 6434 * permissions. These entries are guaranteed to map the same 6435 * gfn-to-pfn translation since the SP is direct, so no need to 6436 * modify them. 6437 * 6438 * However, if a given SPTE points to a lower level page table, 6439 * that lower level page table may only be partially populated. 6440 * Installing such SPTEs would effectively unmap a potion of the 6441 * huge page. Unmapping guest memory always requires a TLB flush 6442 * since a subsequent operation on the unmapped regions would 6443 * fail to detect the need to flush. 6444 */ 6445 if (is_shadow_present_pte(*sptep)) { 6446 flush |= !is_last_spte(*sptep, sp->role.level); 6447 continue; 6448 } 6449 6450 spte = make_huge_page_split_spte(kvm, huge_spte, sp->role, index); 6451 mmu_spte_set(sptep, spte); 6452 __rmap_add(kvm, cache, slot, sptep, gfn, sp->role.access); 6453 } 6454 6455 __link_shadow_page(kvm, cache, huge_sptep, sp, flush); 6456 } 6457 6458 static int shadow_mmu_try_split_huge_page(struct kvm *kvm, 6459 const struct kvm_memory_slot *slot, 6460 u64 *huge_sptep) 6461 { 6462 struct kvm_mmu_page *huge_sp = sptep_to_sp(huge_sptep); 6463 int level, r = 0; 6464 gfn_t gfn; 6465 u64 spte; 6466 6467 /* Grab information for the tracepoint before dropping the MMU lock. */ 6468 gfn = kvm_mmu_page_get_gfn(huge_sp, spte_index(huge_sptep)); 6469 level = huge_sp->role.level; 6470 spte = *huge_sptep; 6471 6472 if (kvm_mmu_available_pages(kvm) <= KVM_MIN_FREE_MMU_PAGES) { 6473 r = -ENOSPC; 6474 goto out; 6475 } 6476 6477 if (need_topup_split_caches_or_resched(kvm)) { 6478 write_unlock(&kvm->mmu_lock); 6479 cond_resched(); 6480 /* 6481 * If the topup succeeds, return -EAGAIN to indicate that the 6482 * rmap iterator should be restarted because the MMU lock was 6483 * dropped. 6484 */ 6485 r = topup_split_caches(kvm) ?: -EAGAIN; 6486 write_lock(&kvm->mmu_lock); 6487 goto out; 6488 } 6489 6490 shadow_mmu_split_huge_page(kvm, slot, huge_sptep); 6491 6492 out: 6493 trace_kvm_mmu_split_huge_page(gfn, spte, level, r); 6494 return r; 6495 } 6496 6497 static bool shadow_mmu_try_split_huge_pages(struct kvm *kvm, 6498 struct kvm_rmap_head *rmap_head, 6499 const struct kvm_memory_slot *slot) 6500 { 6501 struct rmap_iterator iter; 6502 struct kvm_mmu_page *sp; 6503 u64 *huge_sptep; 6504 int r; 6505 6506 restart: 6507 for_each_rmap_spte(rmap_head, &iter, huge_sptep) { 6508 sp = sptep_to_sp(huge_sptep); 6509 6510 /* TDP MMU is enabled, so rmap only contains nested MMU SPs. */ 6511 if (WARN_ON_ONCE(!sp->role.guest_mode)) 6512 continue; 6513 6514 /* The rmaps should never contain non-leaf SPTEs. */ 6515 if (WARN_ON_ONCE(!is_large_pte(*huge_sptep))) 6516 continue; 6517 6518 /* SPs with level >PG_LEVEL_4K should never by unsync. */ 6519 if (WARN_ON_ONCE(sp->unsync)) 6520 continue; 6521 6522 /* Don't bother splitting huge pages on invalid SPs. */ 6523 if (sp->role.invalid) 6524 continue; 6525 6526 r = shadow_mmu_try_split_huge_page(kvm, slot, huge_sptep); 6527 6528 /* 6529 * The split succeeded or needs to be retried because the MMU 6530 * lock was dropped. Either way, restart the iterator to get it 6531 * back into a consistent state. 6532 */ 6533 if (!r || r == -EAGAIN) 6534 goto restart; 6535 6536 /* The split failed and shouldn't be retried (e.g. -ENOMEM). */ 6537 break; 6538 } 6539 6540 return false; 6541 } 6542 6543 static void kvm_shadow_mmu_try_split_huge_pages(struct kvm *kvm, 6544 const struct kvm_memory_slot *slot, 6545 gfn_t start, gfn_t end, 6546 int target_level) 6547 { 6548 int level; 6549 6550 /* 6551 * Split huge pages starting with KVM_MAX_HUGEPAGE_LEVEL and working 6552 * down to the target level. This ensures pages are recursively split 6553 * all the way to the target level. There's no need to split pages 6554 * already at the target level. 6555 */ 6556 for (level = KVM_MAX_HUGEPAGE_LEVEL; level > target_level; level--) 6557 __walk_slot_rmaps(kvm, slot, shadow_mmu_try_split_huge_pages, 6558 level, level, start, end - 1, true, false); 6559 } 6560 6561 /* Must be called with the mmu_lock held in write-mode. */ 6562 void kvm_mmu_try_split_huge_pages(struct kvm *kvm, 6563 const struct kvm_memory_slot *memslot, 6564 u64 start, u64 end, 6565 int target_level) 6566 { 6567 if (!tdp_mmu_enabled) 6568 return; 6569 6570 if (kvm_memslots_have_rmaps(kvm)) 6571 kvm_shadow_mmu_try_split_huge_pages(kvm, memslot, start, end, target_level); 6572 6573 kvm_tdp_mmu_try_split_huge_pages(kvm, memslot, start, end, target_level, false); 6574 6575 /* 6576 * A TLB flush is unnecessary at this point for the same resons as in 6577 * kvm_mmu_slot_try_split_huge_pages(). 6578 */ 6579 } 6580 6581 void kvm_mmu_slot_try_split_huge_pages(struct kvm *kvm, 6582 const struct kvm_memory_slot *memslot, 6583 int target_level) 6584 { 6585 u64 start = memslot->base_gfn; 6586 u64 end = start + memslot->npages; 6587 6588 if (!tdp_mmu_enabled) 6589 return; 6590 6591 if (kvm_memslots_have_rmaps(kvm)) { 6592 write_lock(&kvm->mmu_lock); 6593 kvm_shadow_mmu_try_split_huge_pages(kvm, memslot, start, end, target_level); 6594 write_unlock(&kvm->mmu_lock); 6595 } 6596 6597 read_lock(&kvm->mmu_lock); 6598 kvm_tdp_mmu_try_split_huge_pages(kvm, memslot, start, end, target_level, true); 6599 read_unlock(&kvm->mmu_lock); 6600 6601 /* 6602 * No TLB flush is necessary here. KVM will flush TLBs after 6603 * write-protecting and/or clearing dirty on the newly split SPTEs to 6604 * ensure that guest writes are reflected in the dirty log before the 6605 * ioctl to enable dirty logging on this memslot completes. Since the 6606 * split SPTEs retain the write and dirty bits of the huge SPTE, it is 6607 * safe for KVM to decide if a TLB flush is necessary based on the split 6608 * SPTEs. 6609 */ 6610 } 6611 6612 static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm, 6613 struct kvm_rmap_head *rmap_head, 6614 const struct kvm_memory_slot *slot) 6615 { 6616 u64 *sptep; 6617 struct rmap_iterator iter; 6618 int need_tlb_flush = 0; 6619 struct kvm_mmu_page *sp; 6620 6621 restart: 6622 for_each_rmap_spte(rmap_head, &iter, sptep) { 6623 sp = sptep_to_sp(sptep); 6624 6625 /* 6626 * We cannot do huge page mapping for indirect shadow pages, 6627 * which are found on the last rmap (level = 1) when not using 6628 * tdp; such shadow pages are synced with the page table in 6629 * the guest, and the guest page table is using 4K page size 6630 * mapping if the indirect sp has level = 1. 6631 */ 6632 if (sp->role.direct && 6633 sp->role.level < kvm_mmu_max_mapping_level(kvm, slot, sp->gfn, 6634 PG_LEVEL_NUM)) { 6635 kvm_zap_one_rmap_spte(kvm, rmap_head, sptep); 6636 6637 if (kvm_available_flush_remote_tlbs_range()) 6638 kvm_flush_remote_tlbs_sptep(kvm, sptep); 6639 else 6640 need_tlb_flush = 1; 6641 6642 goto restart; 6643 } 6644 } 6645 6646 return need_tlb_flush; 6647 } 6648 6649 static void kvm_rmap_zap_collapsible_sptes(struct kvm *kvm, 6650 const struct kvm_memory_slot *slot) 6651 { 6652 /* 6653 * Note, use KVM_MAX_HUGEPAGE_LEVEL - 1 since there's no need to zap 6654 * pages that are already mapped at the maximum hugepage level. 6655 */ 6656 if (walk_slot_rmaps(kvm, slot, kvm_mmu_zap_collapsible_spte, 6657 PG_LEVEL_4K, KVM_MAX_HUGEPAGE_LEVEL - 1, true)) 6658 kvm_arch_flush_remote_tlbs_memslot(kvm, slot); 6659 } 6660 6661 void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm, 6662 const struct kvm_memory_slot *slot) 6663 { 6664 if (kvm_memslots_have_rmaps(kvm)) { 6665 write_lock(&kvm->mmu_lock); 6666 kvm_rmap_zap_collapsible_sptes(kvm, slot); 6667 write_unlock(&kvm->mmu_lock); 6668 } 6669 6670 if (tdp_mmu_enabled) { 6671 read_lock(&kvm->mmu_lock); 6672 kvm_tdp_mmu_zap_collapsible_sptes(kvm, slot); 6673 read_unlock(&kvm->mmu_lock); 6674 } 6675 } 6676 6677 void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm, 6678 const struct kvm_memory_slot *memslot) 6679 { 6680 /* 6681 * All current use cases for flushing the TLBs for a specific memslot 6682 * related to dirty logging, and many do the TLB flush out of mmu_lock. 6683 * The interaction between the various operations on memslot must be 6684 * serialized by slots_locks to ensure the TLB flush from one operation 6685 * is observed by any other operation on the same memslot. 6686 */ 6687 lockdep_assert_held(&kvm->slots_lock); 6688 kvm_flush_remote_tlbs_range(kvm, memslot->base_gfn, memslot->npages); 6689 } 6690 6691 void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm, 6692 const struct kvm_memory_slot *memslot) 6693 { 6694 if (kvm_memslots_have_rmaps(kvm)) { 6695 write_lock(&kvm->mmu_lock); 6696 /* 6697 * Clear dirty bits only on 4k SPTEs since the legacy MMU only 6698 * support dirty logging at a 4k granularity. 6699 */ 6700 walk_slot_rmaps_4k(kvm, memslot, __rmap_clear_dirty, false); 6701 write_unlock(&kvm->mmu_lock); 6702 } 6703 6704 if (tdp_mmu_enabled) { 6705 read_lock(&kvm->mmu_lock); 6706 kvm_tdp_mmu_clear_dirty_slot(kvm, memslot); 6707 read_unlock(&kvm->mmu_lock); 6708 } 6709 6710 /* 6711 * The caller will flush the TLBs after this function returns. 6712 * 6713 * It's also safe to flush TLBs out of mmu lock here as currently this 6714 * function is only used for dirty logging, in which case flushing TLB 6715 * out of mmu lock also guarantees no dirty pages will be lost in 6716 * dirty_bitmap. 6717 */ 6718 } 6719 6720 void kvm_mmu_zap_all(struct kvm *kvm) 6721 { 6722 struct kvm_mmu_page *sp, *node; 6723 LIST_HEAD(invalid_list); 6724 int ign; 6725 6726 write_lock(&kvm->mmu_lock); 6727 restart: 6728 list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link) { 6729 if (WARN_ON(sp->role.invalid)) 6730 continue; 6731 if (__kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list, &ign)) 6732 goto restart; 6733 if (cond_resched_rwlock_write(&kvm->mmu_lock)) 6734 goto restart; 6735 } 6736 6737 kvm_mmu_commit_zap_page(kvm, &invalid_list); 6738 6739 if (tdp_mmu_enabled) 6740 kvm_tdp_mmu_zap_all(kvm); 6741 6742 write_unlock(&kvm->mmu_lock); 6743 } 6744 6745 void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen) 6746 { 6747 WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS); 6748 6749 gen &= MMIO_SPTE_GEN_MASK; 6750 6751 /* 6752 * Generation numbers are incremented in multiples of the number of 6753 * address spaces in order to provide unique generations across all 6754 * address spaces. Strip what is effectively the address space 6755 * modifier prior to checking for a wrap of the MMIO generation so 6756 * that a wrap in any address space is detected. 6757 */ 6758 gen &= ~((u64)KVM_ADDRESS_SPACE_NUM - 1); 6759 6760 /* 6761 * The very rare case: if the MMIO generation number has wrapped, 6762 * zap all shadow pages. 6763 */ 6764 if (unlikely(gen == 0)) { 6765 kvm_debug_ratelimited("zapping shadow pages for mmio generation wraparound\n"); 6766 kvm_mmu_zap_all_fast(kvm); 6767 } 6768 } 6769 6770 static unsigned long mmu_shrink_scan(struct shrinker *shrink, 6771 struct shrink_control *sc) 6772 { 6773 struct kvm *kvm; 6774 int nr_to_scan = sc->nr_to_scan; 6775 unsigned long freed = 0; 6776 6777 mutex_lock(&kvm_lock); 6778 6779 list_for_each_entry(kvm, &vm_list, vm_list) { 6780 int idx; 6781 LIST_HEAD(invalid_list); 6782 6783 /* 6784 * Never scan more than sc->nr_to_scan VM instances. 6785 * Will not hit this condition practically since we do not try 6786 * to shrink more than one VM and it is very unlikely to see 6787 * !n_used_mmu_pages so many times. 6788 */ 6789 if (!nr_to_scan--) 6790 break; 6791 /* 6792 * n_used_mmu_pages is accessed without holding kvm->mmu_lock 6793 * here. We may skip a VM instance errorneosly, but we do not 6794 * want to shrink a VM that only started to populate its MMU 6795 * anyway. 6796 */ 6797 if (!kvm->arch.n_used_mmu_pages && 6798 !kvm_has_zapped_obsolete_pages(kvm)) 6799 continue; 6800 6801 idx = srcu_read_lock(&kvm->srcu); 6802 write_lock(&kvm->mmu_lock); 6803 6804 if (kvm_has_zapped_obsolete_pages(kvm)) { 6805 kvm_mmu_commit_zap_page(kvm, 6806 &kvm->arch.zapped_obsolete_pages); 6807 goto unlock; 6808 } 6809 6810 freed = kvm_mmu_zap_oldest_mmu_pages(kvm, sc->nr_to_scan); 6811 6812 unlock: 6813 write_unlock(&kvm->mmu_lock); 6814 srcu_read_unlock(&kvm->srcu, idx); 6815 6816 /* 6817 * unfair on small ones 6818 * per-vm shrinkers cry out 6819 * sadness comes quickly 6820 */ 6821 list_move_tail(&kvm->vm_list, &vm_list); 6822 break; 6823 } 6824 6825 mutex_unlock(&kvm_lock); 6826 return freed; 6827 } 6828 6829 static unsigned long mmu_shrink_count(struct shrinker *shrink, 6830 struct shrink_control *sc) 6831 { 6832 return percpu_counter_read_positive(&kvm_total_used_mmu_pages); 6833 } 6834 6835 static struct shrinker mmu_shrinker = { 6836 .count_objects = mmu_shrink_count, 6837 .scan_objects = mmu_shrink_scan, 6838 .seeks = DEFAULT_SEEKS * 10, 6839 }; 6840 6841 static void mmu_destroy_caches(void) 6842 { 6843 kmem_cache_destroy(pte_list_desc_cache); 6844 kmem_cache_destroy(mmu_page_header_cache); 6845 } 6846 6847 static bool get_nx_auto_mode(void) 6848 { 6849 /* Return true when CPU has the bug, and mitigations are ON */ 6850 return boot_cpu_has_bug(X86_BUG_ITLB_MULTIHIT) && !cpu_mitigations_off(); 6851 } 6852 6853 static void __set_nx_huge_pages(bool val) 6854 { 6855 nx_huge_pages = itlb_multihit_kvm_mitigation = val; 6856 } 6857 6858 static int set_nx_huge_pages(const char *val, const struct kernel_param *kp) 6859 { 6860 bool old_val = nx_huge_pages; 6861 bool new_val; 6862 6863 /* In "auto" mode deploy workaround only if CPU has the bug. */ 6864 if (sysfs_streq(val, "off")) 6865 new_val = 0; 6866 else if (sysfs_streq(val, "force")) 6867 new_val = 1; 6868 else if (sysfs_streq(val, "auto")) 6869 new_val = get_nx_auto_mode(); 6870 else if (kstrtobool(val, &new_val) < 0) 6871 return -EINVAL; 6872 6873 __set_nx_huge_pages(new_val); 6874 6875 if (new_val != old_val) { 6876 struct kvm *kvm; 6877 6878 mutex_lock(&kvm_lock); 6879 6880 list_for_each_entry(kvm, &vm_list, vm_list) { 6881 mutex_lock(&kvm->slots_lock); 6882 kvm_mmu_zap_all_fast(kvm); 6883 mutex_unlock(&kvm->slots_lock); 6884 6885 wake_up_process(kvm->arch.nx_huge_page_recovery_thread); 6886 } 6887 mutex_unlock(&kvm_lock); 6888 } 6889 6890 return 0; 6891 } 6892 6893 /* 6894 * nx_huge_pages needs to be resolved to true/false when kvm.ko is loaded, as 6895 * its default value of -1 is technically undefined behavior for a boolean. 6896 * Forward the module init call to SPTE code so that it too can handle module 6897 * params that need to be resolved/snapshot. 6898 */ 6899 void __init kvm_mmu_x86_module_init(void) 6900 { 6901 if (nx_huge_pages == -1) 6902 __set_nx_huge_pages(get_nx_auto_mode()); 6903 6904 /* 6905 * Snapshot userspace's desire to enable the TDP MMU. Whether or not the 6906 * TDP MMU is actually enabled is determined in kvm_configure_mmu() 6907 * when the vendor module is loaded. 6908 */ 6909 tdp_mmu_allowed = tdp_mmu_enabled; 6910 6911 kvm_mmu_spte_module_init(); 6912 } 6913 6914 /* 6915 * The bulk of the MMU initialization is deferred until the vendor module is 6916 * loaded as many of the masks/values may be modified by VMX or SVM, i.e. need 6917 * to be reset when a potentially different vendor module is loaded. 6918 */ 6919 int kvm_mmu_vendor_module_init(void) 6920 { 6921 int ret = -ENOMEM; 6922 6923 /* 6924 * MMU roles use union aliasing which is, generally speaking, an 6925 * undefined behavior. However, we supposedly know how compilers behave 6926 * and the current status quo is unlikely to change. Guardians below are 6927 * supposed to let us know if the assumption becomes false. 6928 */ 6929 BUILD_BUG_ON(sizeof(union kvm_mmu_page_role) != sizeof(u32)); 6930 BUILD_BUG_ON(sizeof(union kvm_mmu_extended_role) != sizeof(u32)); 6931 BUILD_BUG_ON(sizeof(union kvm_cpu_role) != sizeof(u64)); 6932 6933 kvm_mmu_reset_all_pte_masks(); 6934 6935 pte_list_desc_cache = kmem_cache_create("pte_list_desc", 6936 sizeof(struct pte_list_desc), 6937 0, SLAB_ACCOUNT, NULL); 6938 if (!pte_list_desc_cache) 6939 goto out; 6940 6941 mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header", 6942 sizeof(struct kvm_mmu_page), 6943 0, SLAB_ACCOUNT, NULL); 6944 if (!mmu_page_header_cache) 6945 goto out; 6946 6947 if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL)) 6948 goto out; 6949 6950 ret = register_shrinker(&mmu_shrinker, "x86-mmu"); 6951 if (ret) 6952 goto out_shrinker; 6953 6954 return 0; 6955 6956 out_shrinker: 6957 percpu_counter_destroy(&kvm_total_used_mmu_pages); 6958 out: 6959 mmu_destroy_caches(); 6960 return ret; 6961 } 6962 6963 void kvm_mmu_destroy(struct kvm_vcpu *vcpu) 6964 { 6965 kvm_mmu_unload(vcpu); 6966 free_mmu_pages(&vcpu->arch.root_mmu); 6967 free_mmu_pages(&vcpu->arch.guest_mmu); 6968 mmu_free_memory_caches(vcpu); 6969 } 6970 6971 void kvm_mmu_vendor_module_exit(void) 6972 { 6973 mmu_destroy_caches(); 6974 percpu_counter_destroy(&kvm_total_used_mmu_pages); 6975 unregister_shrinker(&mmu_shrinker); 6976 } 6977 6978 /* 6979 * Calculate the effective recovery period, accounting for '0' meaning "let KVM 6980 * select a halving time of 1 hour". Returns true if recovery is enabled. 6981 */ 6982 static bool calc_nx_huge_pages_recovery_period(uint *period) 6983 { 6984 /* 6985 * Use READ_ONCE to get the params, this may be called outside of the 6986 * param setters, e.g. by the kthread to compute its next timeout. 6987 */ 6988 bool enabled = READ_ONCE(nx_huge_pages); 6989 uint ratio = READ_ONCE(nx_huge_pages_recovery_ratio); 6990 6991 if (!enabled || !ratio) 6992 return false; 6993 6994 *period = READ_ONCE(nx_huge_pages_recovery_period_ms); 6995 if (!*period) { 6996 /* Make sure the period is not less than one second. */ 6997 ratio = min(ratio, 3600u); 6998 *period = 60 * 60 * 1000 / ratio; 6999 } 7000 return true; 7001 } 7002 7003 static int set_nx_huge_pages_recovery_param(const char *val, const struct kernel_param *kp) 7004 { 7005 bool was_recovery_enabled, is_recovery_enabled; 7006 uint old_period, new_period; 7007 int err; 7008 7009 was_recovery_enabled = calc_nx_huge_pages_recovery_period(&old_period); 7010 7011 err = param_set_uint(val, kp); 7012 if (err) 7013 return err; 7014 7015 is_recovery_enabled = calc_nx_huge_pages_recovery_period(&new_period); 7016 7017 if (is_recovery_enabled && 7018 (!was_recovery_enabled || old_period > new_period)) { 7019 struct kvm *kvm; 7020 7021 mutex_lock(&kvm_lock); 7022 7023 list_for_each_entry(kvm, &vm_list, vm_list) 7024 wake_up_process(kvm->arch.nx_huge_page_recovery_thread); 7025 7026 mutex_unlock(&kvm_lock); 7027 } 7028 7029 return err; 7030 } 7031 7032 static void kvm_recover_nx_huge_pages(struct kvm *kvm) 7033 { 7034 unsigned long nx_lpage_splits = kvm->stat.nx_lpage_splits; 7035 struct kvm_memory_slot *slot; 7036 int rcu_idx; 7037 struct kvm_mmu_page *sp; 7038 unsigned int ratio; 7039 LIST_HEAD(invalid_list); 7040 bool flush = false; 7041 ulong to_zap; 7042 7043 rcu_idx = srcu_read_lock(&kvm->srcu); 7044 write_lock(&kvm->mmu_lock); 7045 7046 /* 7047 * Zapping TDP MMU shadow pages, including the remote TLB flush, must 7048 * be done under RCU protection, because the pages are freed via RCU 7049 * callback. 7050 */ 7051 rcu_read_lock(); 7052 7053 ratio = READ_ONCE(nx_huge_pages_recovery_ratio); 7054 to_zap = ratio ? DIV_ROUND_UP(nx_lpage_splits, ratio) : 0; 7055 for ( ; to_zap; --to_zap) { 7056 if (list_empty(&kvm->arch.possible_nx_huge_pages)) 7057 break; 7058 7059 /* 7060 * We use a separate list instead of just using active_mmu_pages 7061 * because the number of shadow pages that be replaced with an 7062 * NX huge page is expected to be relatively small compared to 7063 * the total number of shadow pages. And because the TDP MMU 7064 * doesn't use active_mmu_pages. 7065 */ 7066 sp = list_first_entry(&kvm->arch.possible_nx_huge_pages, 7067 struct kvm_mmu_page, 7068 possible_nx_huge_page_link); 7069 WARN_ON_ONCE(!sp->nx_huge_page_disallowed); 7070 WARN_ON_ONCE(!sp->role.direct); 7071 7072 /* 7073 * Unaccount and do not attempt to recover any NX Huge Pages 7074 * that are being dirty tracked, as they would just be faulted 7075 * back in as 4KiB pages. The NX Huge Pages in this slot will be 7076 * recovered, along with all the other huge pages in the slot, 7077 * when dirty logging is disabled. 7078 * 7079 * Since gfn_to_memslot() is relatively expensive, it helps to 7080 * skip it if it the test cannot possibly return true. On the 7081 * other hand, if any memslot has logging enabled, chances are 7082 * good that all of them do, in which case unaccount_nx_huge_page() 7083 * is much cheaper than zapping the page. 7084 * 7085 * If a memslot update is in progress, reading an incorrect value 7086 * of kvm->nr_memslots_dirty_logging is not a problem: if it is 7087 * becoming zero, gfn_to_memslot() will be done unnecessarily; if 7088 * it is becoming nonzero, the page will be zapped unnecessarily. 7089 * Either way, this only affects efficiency in racy situations, 7090 * and not correctness. 7091 */ 7092 slot = NULL; 7093 if (atomic_read(&kvm->nr_memslots_dirty_logging)) { 7094 struct kvm_memslots *slots; 7095 7096 slots = kvm_memslots_for_spte_role(kvm, sp->role); 7097 slot = __gfn_to_memslot(slots, sp->gfn); 7098 WARN_ON_ONCE(!slot); 7099 } 7100 7101 if (slot && kvm_slot_dirty_track_enabled(slot)) 7102 unaccount_nx_huge_page(kvm, sp); 7103 else if (is_tdp_mmu_page(sp)) 7104 flush |= kvm_tdp_mmu_zap_sp(kvm, sp); 7105 else 7106 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list); 7107 WARN_ON_ONCE(sp->nx_huge_page_disallowed); 7108 7109 if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) { 7110 kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush); 7111 rcu_read_unlock(); 7112 7113 cond_resched_rwlock_write(&kvm->mmu_lock); 7114 flush = false; 7115 7116 rcu_read_lock(); 7117 } 7118 } 7119 kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush); 7120 7121 rcu_read_unlock(); 7122 7123 write_unlock(&kvm->mmu_lock); 7124 srcu_read_unlock(&kvm->srcu, rcu_idx); 7125 } 7126 7127 static long get_nx_huge_page_recovery_timeout(u64 start_time) 7128 { 7129 bool enabled; 7130 uint period; 7131 7132 enabled = calc_nx_huge_pages_recovery_period(&period); 7133 7134 return enabled ? start_time + msecs_to_jiffies(period) - get_jiffies_64() 7135 : MAX_SCHEDULE_TIMEOUT; 7136 } 7137 7138 static int kvm_nx_huge_page_recovery_worker(struct kvm *kvm, uintptr_t data) 7139 { 7140 u64 start_time; 7141 long remaining_time; 7142 7143 while (true) { 7144 start_time = get_jiffies_64(); 7145 remaining_time = get_nx_huge_page_recovery_timeout(start_time); 7146 7147 set_current_state(TASK_INTERRUPTIBLE); 7148 while (!kthread_should_stop() && remaining_time > 0) { 7149 schedule_timeout(remaining_time); 7150 remaining_time = get_nx_huge_page_recovery_timeout(start_time); 7151 set_current_state(TASK_INTERRUPTIBLE); 7152 } 7153 7154 set_current_state(TASK_RUNNING); 7155 7156 if (kthread_should_stop()) 7157 return 0; 7158 7159 kvm_recover_nx_huge_pages(kvm); 7160 } 7161 } 7162 7163 int kvm_mmu_post_init_vm(struct kvm *kvm) 7164 { 7165 int err; 7166 7167 err = kvm_vm_create_worker_thread(kvm, kvm_nx_huge_page_recovery_worker, 0, 7168 "kvm-nx-lpage-recovery", 7169 &kvm->arch.nx_huge_page_recovery_thread); 7170 if (!err) 7171 kthread_unpark(kvm->arch.nx_huge_page_recovery_thread); 7172 7173 return err; 7174 } 7175 7176 void kvm_mmu_pre_destroy_vm(struct kvm *kvm) 7177 { 7178 if (kvm->arch.nx_huge_page_recovery_thread) 7179 kthread_stop(kvm->arch.nx_huge_page_recovery_thread); 7180 } 7181