1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * This module enables machines with Intel VT-x extensions to run virtual 6 * machines without emulation or binary translation. 7 * 8 * MMU support 9 * 10 * Copyright (C) 2006 Qumranet, Inc. 11 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 12 * 13 * Authors: 14 * Yaniv Kamay <yaniv@qumranet.com> 15 * Avi Kivity <avi@qumranet.com> 16 */ 17 18 #include "irq.h" 19 #include "ioapic.h" 20 #include "mmu.h" 21 #include "mmu_internal.h" 22 #include "tdp_mmu.h" 23 #include "x86.h" 24 #include "kvm_cache_regs.h" 25 #include "kvm_emulate.h" 26 #include "cpuid.h" 27 #include "spte.h" 28 29 #include <linux/kvm_host.h> 30 #include <linux/types.h> 31 #include <linux/string.h> 32 #include <linux/mm.h> 33 #include <linux/highmem.h> 34 #include <linux/moduleparam.h> 35 #include <linux/export.h> 36 #include <linux/swap.h> 37 #include <linux/hugetlb.h> 38 #include <linux/compiler.h> 39 #include <linux/srcu.h> 40 #include <linux/slab.h> 41 #include <linux/sched/signal.h> 42 #include <linux/uaccess.h> 43 #include <linux/hash.h> 44 #include <linux/kern_levels.h> 45 #include <linux/kthread.h> 46 47 #include <asm/page.h> 48 #include <asm/memtype.h> 49 #include <asm/cmpxchg.h> 50 #include <asm/io.h> 51 #include <asm/set_memory.h> 52 #include <asm/vmx.h> 53 #include <asm/kvm_page_track.h> 54 #include "trace.h" 55 56 #include "paging.h" 57 58 extern bool itlb_multihit_kvm_mitigation; 59 60 int __read_mostly nx_huge_pages = -1; 61 static uint __read_mostly nx_huge_pages_recovery_period_ms; 62 #ifdef CONFIG_PREEMPT_RT 63 /* Recovery can cause latency spikes, disable it for PREEMPT_RT. */ 64 static uint __read_mostly nx_huge_pages_recovery_ratio = 0; 65 #else 66 static uint __read_mostly nx_huge_pages_recovery_ratio = 60; 67 #endif 68 69 static int set_nx_huge_pages(const char *val, const struct kernel_param *kp); 70 static int set_nx_huge_pages_recovery_param(const char *val, const struct kernel_param *kp); 71 72 static const struct kernel_param_ops nx_huge_pages_ops = { 73 .set = set_nx_huge_pages, 74 .get = param_get_bool, 75 }; 76 77 static const struct kernel_param_ops nx_huge_pages_recovery_param_ops = { 78 .set = set_nx_huge_pages_recovery_param, 79 .get = param_get_uint, 80 }; 81 82 module_param_cb(nx_huge_pages, &nx_huge_pages_ops, &nx_huge_pages, 0644); 83 __MODULE_PARM_TYPE(nx_huge_pages, "bool"); 84 module_param_cb(nx_huge_pages_recovery_ratio, &nx_huge_pages_recovery_param_ops, 85 &nx_huge_pages_recovery_ratio, 0644); 86 __MODULE_PARM_TYPE(nx_huge_pages_recovery_ratio, "uint"); 87 module_param_cb(nx_huge_pages_recovery_period_ms, &nx_huge_pages_recovery_param_ops, 88 &nx_huge_pages_recovery_period_ms, 0644); 89 __MODULE_PARM_TYPE(nx_huge_pages_recovery_period_ms, "uint"); 90 91 static bool __read_mostly force_flush_and_sync_on_reuse; 92 module_param_named(flush_on_reuse, force_flush_and_sync_on_reuse, bool, 0644); 93 94 /* 95 * When setting this variable to true it enables Two-Dimensional-Paging 96 * where the hardware walks 2 page tables: 97 * 1. the guest-virtual to guest-physical 98 * 2. while doing 1. it walks guest-physical to host-physical 99 * If the hardware supports that we don't need to do shadow paging. 100 */ 101 bool tdp_enabled = false; 102 103 static int max_huge_page_level __read_mostly; 104 static int tdp_root_level __read_mostly; 105 static int max_tdp_level __read_mostly; 106 107 enum { 108 AUDIT_PRE_PAGE_FAULT, 109 AUDIT_POST_PAGE_FAULT, 110 AUDIT_PRE_PTE_WRITE, 111 AUDIT_POST_PTE_WRITE, 112 AUDIT_PRE_SYNC, 113 AUDIT_POST_SYNC 114 }; 115 116 #ifdef MMU_DEBUG 117 bool dbg = 0; 118 module_param(dbg, bool, 0644); 119 #endif 120 121 #define PTE_PREFETCH_NUM 8 122 123 #define PT32_LEVEL_BITS 10 124 125 #define PT32_LEVEL_SHIFT(level) \ 126 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS) 127 128 #define PT32_LVL_OFFSET_MASK(level) \ 129 (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \ 130 * PT32_LEVEL_BITS))) - 1)) 131 132 #define PT32_INDEX(address, level)\ 133 (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1)) 134 135 136 #define PT32_BASE_ADDR_MASK PAGE_MASK 137 #define PT32_DIR_BASE_ADDR_MASK \ 138 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1)) 139 #define PT32_LVL_ADDR_MASK(level) \ 140 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \ 141 * PT32_LEVEL_BITS))) - 1)) 142 143 #include <trace/events/kvm.h> 144 145 /* make pte_list_desc fit well in cache lines */ 146 #define PTE_LIST_EXT 14 147 148 /* 149 * Slight optimization of cacheline layout, by putting `more' and `spte_count' 150 * at the start; then accessing it will only use one single cacheline for 151 * either full (entries==PTE_LIST_EXT) case or entries<=6. 152 */ 153 struct pte_list_desc { 154 struct pte_list_desc *more; 155 /* 156 * Stores number of entries stored in the pte_list_desc. No need to be 157 * u64 but just for easier alignment. When PTE_LIST_EXT, means full. 158 */ 159 u64 spte_count; 160 u64 *sptes[PTE_LIST_EXT]; 161 }; 162 163 struct kvm_shadow_walk_iterator { 164 u64 addr; 165 hpa_t shadow_addr; 166 u64 *sptep; 167 int level; 168 unsigned index; 169 }; 170 171 #define for_each_shadow_entry_using_root(_vcpu, _root, _addr, _walker) \ 172 for (shadow_walk_init_using_root(&(_walker), (_vcpu), \ 173 (_root), (_addr)); \ 174 shadow_walk_okay(&(_walker)); \ 175 shadow_walk_next(&(_walker))) 176 177 #define for_each_shadow_entry(_vcpu, _addr, _walker) \ 178 for (shadow_walk_init(&(_walker), _vcpu, _addr); \ 179 shadow_walk_okay(&(_walker)); \ 180 shadow_walk_next(&(_walker))) 181 182 #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte) \ 183 for (shadow_walk_init(&(_walker), _vcpu, _addr); \ 184 shadow_walk_okay(&(_walker)) && \ 185 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; }); \ 186 __shadow_walk_next(&(_walker), spte)) 187 188 static struct kmem_cache *pte_list_desc_cache; 189 struct kmem_cache *mmu_page_header_cache; 190 static struct percpu_counter kvm_total_used_mmu_pages; 191 192 static void mmu_spte_set(u64 *sptep, u64 spte); 193 static union kvm_mmu_page_role 194 kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu); 195 196 struct kvm_mmu_role_regs { 197 const unsigned long cr0; 198 const unsigned long cr4; 199 const u64 efer; 200 }; 201 202 #define CREATE_TRACE_POINTS 203 #include "mmutrace.h" 204 205 /* 206 * Yes, lot's of underscores. They're a hint that you probably shouldn't be 207 * reading from the role_regs. Once the mmu_role is constructed, it becomes 208 * the single source of truth for the MMU's state. 209 */ 210 #define BUILD_MMU_ROLE_REGS_ACCESSOR(reg, name, flag) \ 211 static inline bool __maybe_unused ____is_##reg##_##name(struct kvm_mmu_role_regs *regs)\ 212 { \ 213 return !!(regs->reg & flag); \ 214 } 215 BUILD_MMU_ROLE_REGS_ACCESSOR(cr0, pg, X86_CR0_PG); 216 BUILD_MMU_ROLE_REGS_ACCESSOR(cr0, wp, X86_CR0_WP); 217 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pse, X86_CR4_PSE); 218 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pae, X86_CR4_PAE); 219 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, smep, X86_CR4_SMEP); 220 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, smap, X86_CR4_SMAP); 221 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pke, X86_CR4_PKE); 222 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, la57, X86_CR4_LA57); 223 BUILD_MMU_ROLE_REGS_ACCESSOR(efer, nx, EFER_NX); 224 BUILD_MMU_ROLE_REGS_ACCESSOR(efer, lma, EFER_LMA); 225 226 /* 227 * The MMU itself (with a valid role) is the single source of truth for the 228 * MMU. Do not use the regs used to build the MMU/role, nor the vCPU. The 229 * regs don't account for dependencies, e.g. clearing CR4 bits if CR0.PG=1, 230 * and the vCPU may be incorrect/irrelevant. 231 */ 232 #define BUILD_MMU_ROLE_ACCESSOR(base_or_ext, reg, name) \ 233 static inline bool __maybe_unused is_##reg##_##name(struct kvm_mmu *mmu) \ 234 { \ 235 return !!(mmu->mmu_role. base_or_ext . reg##_##name); \ 236 } 237 BUILD_MMU_ROLE_ACCESSOR(ext, cr0, pg); 238 BUILD_MMU_ROLE_ACCESSOR(base, cr0, wp); 239 BUILD_MMU_ROLE_ACCESSOR(ext, cr4, pse); 240 BUILD_MMU_ROLE_ACCESSOR(ext, cr4, pae); 241 BUILD_MMU_ROLE_ACCESSOR(ext, cr4, smep); 242 BUILD_MMU_ROLE_ACCESSOR(ext, cr4, smap); 243 BUILD_MMU_ROLE_ACCESSOR(ext, cr4, pke); 244 BUILD_MMU_ROLE_ACCESSOR(ext, cr4, la57); 245 BUILD_MMU_ROLE_ACCESSOR(base, efer, nx); 246 247 static struct kvm_mmu_role_regs vcpu_to_role_regs(struct kvm_vcpu *vcpu) 248 { 249 struct kvm_mmu_role_regs regs = { 250 .cr0 = kvm_read_cr0_bits(vcpu, KVM_MMU_CR0_ROLE_BITS), 251 .cr4 = kvm_read_cr4_bits(vcpu, KVM_MMU_CR4_ROLE_BITS), 252 .efer = vcpu->arch.efer, 253 }; 254 255 return regs; 256 } 257 258 static int role_regs_to_root_level(struct kvm_mmu_role_regs *regs) 259 { 260 if (!____is_cr0_pg(regs)) 261 return 0; 262 else if (____is_efer_lma(regs)) 263 return ____is_cr4_la57(regs) ? PT64_ROOT_5LEVEL : 264 PT64_ROOT_4LEVEL; 265 else if (____is_cr4_pae(regs)) 266 return PT32E_ROOT_LEVEL; 267 else 268 return PT32_ROOT_LEVEL; 269 } 270 271 static inline bool kvm_available_flush_tlb_with_range(void) 272 { 273 return kvm_x86_ops.tlb_remote_flush_with_range; 274 } 275 276 static void kvm_flush_remote_tlbs_with_range(struct kvm *kvm, 277 struct kvm_tlb_range *range) 278 { 279 int ret = -ENOTSUPP; 280 281 if (range && kvm_x86_ops.tlb_remote_flush_with_range) 282 ret = static_call(kvm_x86_tlb_remote_flush_with_range)(kvm, range); 283 284 if (ret) 285 kvm_flush_remote_tlbs(kvm); 286 } 287 288 void kvm_flush_remote_tlbs_with_address(struct kvm *kvm, 289 u64 start_gfn, u64 pages) 290 { 291 struct kvm_tlb_range range; 292 293 range.start_gfn = start_gfn; 294 range.pages = pages; 295 296 kvm_flush_remote_tlbs_with_range(kvm, &range); 297 } 298 299 static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn, 300 unsigned int access) 301 { 302 u64 spte = make_mmio_spte(vcpu, gfn, access); 303 304 trace_mark_mmio_spte(sptep, gfn, spte); 305 mmu_spte_set(sptep, spte); 306 } 307 308 static gfn_t get_mmio_spte_gfn(u64 spte) 309 { 310 u64 gpa = spte & shadow_nonpresent_or_rsvd_lower_gfn_mask; 311 312 gpa |= (spte >> SHADOW_NONPRESENT_OR_RSVD_MASK_LEN) 313 & shadow_nonpresent_or_rsvd_mask; 314 315 return gpa >> PAGE_SHIFT; 316 } 317 318 static unsigned get_mmio_spte_access(u64 spte) 319 { 320 return spte & shadow_mmio_access_mask; 321 } 322 323 static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte) 324 { 325 u64 kvm_gen, spte_gen, gen; 326 327 gen = kvm_vcpu_memslots(vcpu)->generation; 328 if (unlikely(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS)) 329 return false; 330 331 kvm_gen = gen & MMIO_SPTE_GEN_MASK; 332 spte_gen = get_mmio_spte_generation(spte); 333 334 trace_check_mmio_spte(spte, kvm_gen, spte_gen); 335 return likely(kvm_gen == spte_gen); 336 } 337 338 static gpa_t translate_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access, 339 struct x86_exception *exception) 340 { 341 return gpa; 342 } 343 344 static int is_cpuid_PSE36(void) 345 { 346 return 1; 347 } 348 349 static gfn_t pse36_gfn_delta(u32 gpte) 350 { 351 int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT; 352 353 return (gpte & PT32_DIR_PSE36_MASK) << shift; 354 } 355 356 #ifdef CONFIG_X86_64 357 static void __set_spte(u64 *sptep, u64 spte) 358 { 359 WRITE_ONCE(*sptep, spte); 360 } 361 362 static void __update_clear_spte_fast(u64 *sptep, u64 spte) 363 { 364 WRITE_ONCE(*sptep, spte); 365 } 366 367 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte) 368 { 369 return xchg(sptep, spte); 370 } 371 372 static u64 __get_spte_lockless(u64 *sptep) 373 { 374 return READ_ONCE(*sptep); 375 } 376 #else 377 union split_spte { 378 struct { 379 u32 spte_low; 380 u32 spte_high; 381 }; 382 u64 spte; 383 }; 384 385 static void count_spte_clear(u64 *sptep, u64 spte) 386 { 387 struct kvm_mmu_page *sp = sptep_to_sp(sptep); 388 389 if (is_shadow_present_pte(spte)) 390 return; 391 392 /* Ensure the spte is completely set before we increase the count */ 393 smp_wmb(); 394 sp->clear_spte_count++; 395 } 396 397 static void __set_spte(u64 *sptep, u64 spte) 398 { 399 union split_spte *ssptep, sspte; 400 401 ssptep = (union split_spte *)sptep; 402 sspte = (union split_spte)spte; 403 404 ssptep->spte_high = sspte.spte_high; 405 406 /* 407 * If we map the spte from nonpresent to present, We should store 408 * the high bits firstly, then set present bit, so cpu can not 409 * fetch this spte while we are setting the spte. 410 */ 411 smp_wmb(); 412 413 WRITE_ONCE(ssptep->spte_low, sspte.spte_low); 414 } 415 416 static void __update_clear_spte_fast(u64 *sptep, u64 spte) 417 { 418 union split_spte *ssptep, sspte; 419 420 ssptep = (union split_spte *)sptep; 421 sspte = (union split_spte)spte; 422 423 WRITE_ONCE(ssptep->spte_low, sspte.spte_low); 424 425 /* 426 * If we map the spte from present to nonpresent, we should clear 427 * present bit firstly to avoid vcpu fetch the old high bits. 428 */ 429 smp_wmb(); 430 431 ssptep->spte_high = sspte.spte_high; 432 count_spte_clear(sptep, spte); 433 } 434 435 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte) 436 { 437 union split_spte *ssptep, sspte, orig; 438 439 ssptep = (union split_spte *)sptep; 440 sspte = (union split_spte)spte; 441 442 /* xchg acts as a barrier before the setting of the high bits */ 443 orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low); 444 orig.spte_high = ssptep->spte_high; 445 ssptep->spte_high = sspte.spte_high; 446 count_spte_clear(sptep, spte); 447 448 return orig.spte; 449 } 450 451 /* 452 * The idea using the light way get the spte on x86_32 guest is from 453 * gup_get_pte (mm/gup.c). 454 * 455 * An spte tlb flush may be pending, because kvm_set_pte_rmapp 456 * coalesces them and we are running out of the MMU lock. Therefore 457 * we need to protect against in-progress updates of the spte. 458 * 459 * Reading the spte while an update is in progress may get the old value 460 * for the high part of the spte. The race is fine for a present->non-present 461 * change (because the high part of the spte is ignored for non-present spte), 462 * but for a present->present change we must reread the spte. 463 * 464 * All such changes are done in two steps (present->non-present and 465 * non-present->present), hence it is enough to count the number of 466 * present->non-present updates: if it changed while reading the spte, 467 * we might have hit the race. This is done using clear_spte_count. 468 */ 469 static u64 __get_spte_lockless(u64 *sptep) 470 { 471 struct kvm_mmu_page *sp = sptep_to_sp(sptep); 472 union split_spte spte, *orig = (union split_spte *)sptep; 473 int count; 474 475 retry: 476 count = sp->clear_spte_count; 477 smp_rmb(); 478 479 spte.spte_low = orig->spte_low; 480 smp_rmb(); 481 482 spte.spte_high = orig->spte_high; 483 smp_rmb(); 484 485 if (unlikely(spte.spte_low != orig->spte_low || 486 count != sp->clear_spte_count)) 487 goto retry; 488 489 return spte.spte; 490 } 491 #endif 492 493 static bool spte_has_volatile_bits(u64 spte) 494 { 495 if (!is_shadow_present_pte(spte)) 496 return false; 497 498 /* 499 * Always atomically update spte if it can be updated 500 * out of mmu-lock, it can ensure dirty bit is not lost, 501 * also, it can help us to get a stable is_writable_pte() 502 * to ensure tlb flush is not missed. 503 */ 504 if (spte_can_locklessly_be_made_writable(spte) || 505 is_access_track_spte(spte)) 506 return true; 507 508 if (spte_ad_enabled(spte)) { 509 if ((spte & shadow_accessed_mask) == 0 || 510 (is_writable_pte(spte) && (spte & shadow_dirty_mask) == 0)) 511 return true; 512 } 513 514 return false; 515 } 516 517 /* Rules for using mmu_spte_set: 518 * Set the sptep from nonpresent to present. 519 * Note: the sptep being assigned *must* be either not present 520 * or in a state where the hardware will not attempt to update 521 * the spte. 522 */ 523 static void mmu_spte_set(u64 *sptep, u64 new_spte) 524 { 525 WARN_ON(is_shadow_present_pte(*sptep)); 526 __set_spte(sptep, new_spte); 527 } 528 529 /* 530 * Update the SPTE (excluding the PFN), but do not track changes in its 531 * accessed/dirty status. 532 */ 533 static u64 mmu_spte_update_no_track(u64 *sptep, u64 new_spte) 534 { 535 u64 old_spte = *sptep; 536 537 WARN_ON(!is_shadow_present_pte(new_spte)); 538 539 if (!is_shadow_present_pte(old_spte)) { 540 mmu_spte_set(sptep, new_spte); 541 return old_spte; 542 } 543 544 if (!spte_has_volatile_bits(old_spte)) 545 __update_clear_spte_fast(sptep, new_spte); 546 else 547 old_spte = __update_clear_spte_slow(sptep, new_spte); 548 549 WARN_ON(spte_to_pfn(old_spte) != spte_to_pfn(new_spte)); 550 551 return old_spte; 552 } 553 554 /* Rules for using mmu_spte_update: 555 * Update the state bits, it means the mapped pfn is not changed. 556 * 557 * Whenever we overwrite a writable spte with a read-only one we 558 * should flush remote TLBs. Otherwise rmap_write_protect 559 * will find a read-only spte, even though the writable spte 560 * might be cached on a CPU's TLB, the return value indicates this 561 * case. 562 * 563 * Returns true if the TLB needs to be flushed 564 */ 565 static bool mmu_spte_update(u64 *sptep, u64 new_spte) 566 { 567 bool flush = false; 568 u64 old_spte = mmu_spte_update_no_track(sptep, new_spte); 569 570 if (!is_shadow_present_pte(old_spte)) 571 return false; 572 573 /* 574 * For the spte updated out of mmu-lock is safe, since 575 * we always atomically update it, see the comments in 576 * spte_has_volatile_bits(). 577 */ 578 if (spte_can_locklessly_be_made_writable(old_spte) && 579 !is_writable_pte(new_spte)) 580 flush = true; 581 582 /* 583 * Flush TLB when accessed/dirty states are changed in the page tables, 584 * to guarantee consistency between TLB and page tables. 585 */ 586 587 if (is_accessed_spte(old_spte) && !is_accessed_spte(new_spte)) { 588 flush = true; 589 kvm_set_pfn_accessed(spte_to_pfn(old_spte)); 590 } 591 592 if (is_dirty_spte(old_spte) && !is_dirty_spte(new_spte)) { 593 flush = true; 594 kvm_set_pfn_dirty(spte_to_pfn(old_spte)); 595 } 596 597 return flush; 598 } 599 600 /* 601 * Rules for using mmu_spte_clear_track_bits: 602 * It sets the sptep from present to nonpresent, and track the 603 * state bits, it is used to clear the last level sptep. 604 * Returns the old PTE. 605 */ 606 static int mmu_spte_clear_track_bits(struct kvm *kvm, u64 *sptep) 607 { 608 kvm_pfn_t pfn; 609 u64 old_spte = *sptep; 610 int level = sptep_to_sp(sptep)->role.level; 611 612 if (!spte_has_volatile_bits(old_spte)) 613 __update_clear_spte_fast(sptep, 0ull); 614 else 615 old_spte = __update_clear_spte_slow(sptep, 0ull); 616 617 if (!is_shadow_present_pte(old_spte)) 618 return old_spte; 619 620 kvm_update_page_stats(kvm, level, -1); 621 622 pfn = spte_to_pfn(old_spte); 623 624 /* 625 * KVM does not hold the refcount of the page used by 626 * kvm mmu, before reclaiming the page, we should 627 * unmap it from mmu first. 628 */ 629 WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn))); 630 631 if (is_accessed_spte(old_spte)) 632 kvm_set_pfn_accessed(pfn); 633 634 if (is_dirty_spte(old_spte)) 635 kvm_set_pfn_dirty(pfn); 636 637 return old_spte; 638 } 639 640 /* 641 * Rules for using mmu_spte_clear_no_track: 642 * Directly clear spte without caring the state bits of sptep, 643 * it is used to set the upper level spte. 644 */ 645 static void mmu_spte_clear_no_track(u64 *sptep) 646 { 647 __update_clear_spte_fast(sptep, 0ull); 648 } 649 650 static u64 mmu_spte_get_lockless(u64 *sptep) 651 { 652 return __get_spte_lockless(sptep); 653 } 654 655 /* Restore an acc-track PTE back to a regular PTE */ 656 static u64 restore_acc_track_spte(u64 spte) 657 { 658 u64 new_spte = spte; 659 u64 saved_bits = (spte >> SHADOW_ACC_TRACK_SAVED_BITS_SHIFT) 660 & SHADOW_ACC_TRACK_SAVED_BITS_MASK; 661 662 WARN_ON_ONCE(spte_ad_enabled(spte)); 663 WARN_ON_ONCE(!is_access_track_spte(spte)); 664 665 new_spte &= ~shadow_acc_track_mask; 666 new_spte &= ~(SHADOW_ACC_TRACK_SAVED_BITS_MASK << 667 SHADOW_ACC_TRACK_SAVED_BITS_SHIFT); 668 new_spte |= saved_bits; 669 670 return new_spte; 671 } 672 673 /* Returns the Accessed status of the PTE and resets it at the same time. */ 674 static bool mmu_spte_age(u64 *sptep) 675 { 676 u64 spte = mmu_spte_get_lockless(sptep); 677 678 if (!is_accessed_spte(spte)) 679 return false; 680 681 if (spte_ad_enabled(spte)) { 682 clear_bit((ffs(shadow_accessed_mask) - 1), 683 (unsigned long *)sptep); 684 } else { 685 /* 686 * Capture the dirty status of the page, so that it doesn't get 687 * lost when the SPTE is marked for access tracking. 688 */ 689 if (is_writable_pte(spte)) 690 kvm_set_pfn_dirty(spte_to_pfn(spte)); 691 692 spte = mark_spte_for_access_track(spte); 693 mmu_spte_update_no_track(sptep, spte); 694 } 695 696 return true; 697 } 698 699 static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu) 700 { 701 if (is_tdp_mmu(vcpu->arch.mmu)) { 702 kvm_tdp_mmu_walk_lockless_begin(); 703 } else { 704 /* 705 * Prevent page table teardown by making any free-er wait during 706 * kvm_flush_remote_tlbs() IPI to all active vcpus. 707 */ 708 local_irq_disable(); 709 710 /* 711 * Make sure a following spte read is not reordered ahead of the write 712 * to vcpu->mode. 713 */ 714 smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES); 715 } 716 } 717 718 static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu) 719 { 720 if (is_tdp_mmu(vcpu->arch.mmu)) { 721 kvm_tdp_mmu_walk_lockless_end(); 722 } else { 723 /* 724 * Make sure the write to vcpu->mode is not reordered in front of 725 * reads to sptes. If it does, kvm_mmu_commit_zap_page() can see us 726 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table. 727 */ 728 smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE); 729 local_irq_enable(); 730 } 731 } 732 733 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu, bool maybe_indirect) 734 { 735 int r; 736 737 /* 1 rmap, 1 parent PTE per level, and the prefetched rmaps. */ 738 r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache, 739 1 + PT64_ROOT_MAX_LEVEL + PTE_PREFETCH_NUM); 740 if (r) 741 return r; 742 r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_shadow_page_cache, 743 PT64_ROOT_MAX_LEVEL); 744 if (r) 745 return r; 746 if (maybe_indirect) { 747 r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_gfn_array_cache, 748 PT64_ROOT_MAX_LEVEL); 749 if (r) 750 return r; 751 } 752 return kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache, 753 PT64_ROOT_MAX_LEVEL); 754 } 755 756 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu) 757 { 758 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache); 759 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_shadow_page_cache); 760 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_gfn_array_cache); 761 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache); 762 } 763 764 static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu) 765 { 766 return kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache); 767 } 768 769 static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc) 770 { 771 kmem_cache_free(pte_list_desc_cache, pte_list_desc); 772 } 773 774 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index) 775 { 776 if (!sp->role.direct) 777 return sp->gfns[index]; 778 779 return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS)); 780 } 781 782 static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn) 783 { 784 if (!sp->role.direct) { 785 sp->gfns[index] = gfn; 786 return; 787 } 788 789 if (WARN_ON(gfn != kvm_mmu_page_get_gfn(sp, index))) 790 pr_err_ratelimited("gfn mismatch under direct page %llx " 791 "(expected %llx, got %llx)\n", 792 sp->gfn, 793 kvm_mmu_page_get_gfn(sp, index), gfn); 794 } 795 796 /* 797 * Return the pointer to the large page information for a given gfn, 798 * handling slots that are not large page aligned. 799 */ 800 static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn, 801 const struct kvm_memory_slot *slot, int level) 802 { 803 unsigned long idx; 804 805 idx = gfn_to_index(gfn, slot->base_gfn, level); 806 return &slot->arch.lpage_info[level - 2][idx]; 807 } 808 809 static void update_gfn_disallow_lpage_count(const struct kvm_memory_slot *slot, 810 gfn_t gfn, int count) 811 { 812 struct kvm_lpage_info *linfo; 813 int i; 814 815 for (i = PG_LEVEL_2M; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) { 816 linfo = lpage_info_slot(gfn, slot, i); 817 linfo->disallow_lpage += count; 818 WARN_ON(linfo->disallow_lpage < 0); 819 } 820 } 821 822 void kvm_mmu_gfn_disallow_lpage(const struct kvm_memory_slot *slot, gfn_t gfn) 823 { 824 update_gfn_disallow_lpage_count(slot, gfn, 1); 825 } 826 827 void kvm_mmu_gfn_allow_lpage(const struct kvm_memory_slot *slot, gfn_t gfn) 828 { 829 update_gfn_disallow_lpage_count(slot, gfn, -1); 830 } 831 832 static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp) 833 { 834 struct kvm_memslots *slots; 835 struct kvm_memory_slot *slot; 836 gfn_t gfn; 837 838 kvm->arch.indirect_shadow_pages++; 839 gfn = sp->gfn; 840 slots = kvm_memslots_for_spte_role(kvm, sp->role); 841 slot = __gfn_to_memslot(slots, gfn); 842 843 /* the non-leaf shadow pages are keeping readonly. */ 844 if (sp->role.level > PG_LEVEL_4K) 845 return kvm_slot_page_track_add_page(kvm, slot, gfn, 846 KVM_PAGE_TRACK_WRITE); 847 848 kvm_mmu_gfn_disallow_lpage(slot, gfn); 849 } 850 851 void account_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp) 852 { 853 if (sp->lpage_disallowed) 854 return; 855 856 ++kvm->stat.nx_lpage_splits; 857 list_add_tail(&sp->lpage_disallowed_link, 858 &kvm->arch.lpage_disallowed_mmu_pages); 859 sp->lpage_disallowed = true; 860 } 861 862 static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp) 863 { 864 struct kvm_memslots *slots; 865 struct kvm_memory_slot *slot; 866 gfn_t gfn; 867 868 kvm->arch.indirect_shadow_pages--; 869 gfn = sp->gfn; 870 slots = kvm_memslots_for_spte_role(kvm, sp->role); 871 slot = __gfn_to_memslot(slots, gfn); 872 if (sp->role.level > PG_LEVEL_4K) 873 return kvm_slot_page_track_remove_page(kvm, slot, gfn, 874 KVM_PAGE_TRACK_WRITE); 875 876 kvm_mmu_gfn_allow_lpage(slot, gfn); 877 } 878 879 void unaccount_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp) 880 { 881 --kvm->stat.nx_lpage_splits; 882 sp->lpage_disallowed = false; 883 list_del(&sp->lpage_disallowed_link); 884 } 885 886 static struct kvm_memory_slot * 887 gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn, 888 bool no_dirty_log) 889 { 890 struct kvm_memory_slot *slot; 891 892 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 893 if (!slot || slot->flags & KVM_MEMSLOT_INVALID) 894 return NULL; 895 if (no_dirty_log && kvm_slot_dirty_track_enabled(slot)) 896 return NULL; 897 898 return slot; 899 } 900 901 /* 902 * About rmap_head encoding: 903 * 904 * If the bit zero of rmap_head->val is clear, then it points to the only spte 905 * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct 906 * pte_list_desc containing more mappings. 907 */ 908 909 /* 910 * Returns the number of pointers in the rmap chain, not counting the new one. 911 */ 912 static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte, 913 struct kvm_rmap_head *rmap_head) 914 { 915 struct pte_list_desc *desc; 916 int count = 0; 917 918 if (!rmap_head->val) { 919 rmap_printk("%p %llx 0->1\n", spte, *spte); 920 rmap_head->val = (unsigned long)spte; 921 } else if (!(rmap_head->val & 1)) { 922 rmap_printk("%p %llx 1->many\n", spte, *spte); 923 desc = mmu_alloc_pte_list_desc(vcpu); 924 desc->sptes[0] = (u64 *)rmap_head->val; 925 desc->sptes[1] = spte; 926 desc->spte_count = 2; 927 rmap_head->val = (unsigned long)desc | 1; 928 ++count; 929 } else { 930 rmap_printk("%p %llx many->many\n", spte, *spte); 931 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul); 932 while (desc->spte_count == PTE_LIST_EXT) { 933 count += PTE_LIST_EXT; 934 if (!desc->more) { 935 desc->more = mmu_alloc_pte_list_desc(vcpu); 936 desc = desc->more; 937 desc->spte_count = 0; 938 break; 939 } 940 desc = desc->more; 941 } 942 count += desc->spte_count; 943 desc->sptes[desc->spte_count++] = spte; 944 } 945 return count; 946 } 947 948 static void 949 pte_list_desc_remove_entry(struct kvm_rmap_head *rmap_head, 950 struct pte_list_desc *desc, int i, 951 struct pte_list_desc *prev_desc) 952 { 953 int j = desc->spte_count - 1; 954 955 desc->sptes[i] = desc->sptes[j]; 956 desc->sptes[j] = NULL; 957 desc->spte_count--; 958 if (desc->spte_count) 959 return; 960 if (!prev_desc && !desc->more) 961 rmap_head->val = 0; 962 else 963 if (prev_desc) 964 prev_desc->more = desc->more; 965 else 966 rmap_head->val = (unsigned long)desc->more | 1; 967 mmu_free_pte_list_desc(desc); 968 } 969 970 static void __pte_list_remove(u64 *spte, struct kvm_rmap_head *rmap_head) 971 { 972 struct pte_list_desc *desc; 973 struct pte_list_desc *prev_desc; 974 int i; 975 976 if (!rmap_head->val) { 977 pr_err("%s: %p 0->BUG\n", __func__, spte); 978 BUG(); 979 } else if (!(rmap_head->val & 1)) { 980 rmap_printk("%p 1->0\n", spte); 981 if ((u64 *)rmap_head->val != spte) { 982 pr_err("%s: %p 1->BUG\n", __func__, spte); 983 BUG(); 984 } 985 rmap_head->val = 0; 986 } else { 987 rmap_printk("%p many->many\n", spte); 988 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul); 989 prev_desc = NULL; 990 while (desc) { 991 for (i = 0; i < desc->spte_count; ++i) { 992 if (desc->sptes[i] == spte) { 993 pte_list_desc_remove_entry(rmap_head, 994 desc, i, prev_desc); 995 return; 996 } 997 } 998 prev_desc = desc; 999 desc = desc->more; 1000 } 1001 pr_err("%s: %p many->many\n", __func__, spte); 1002 BUG(); 1003 } 1004 } 1005 1006 static void pte_list_remove(struct kvm *kvm, struct kvm_rmap_head *rmap_head, 1007 u64 *sptep) 1008 { 1009 mmu_spte_clear_track_bits(kvm, sptep); 1010 __pte_list_remove(sptep, rmap_head); 1011 } 1012 1013 /* Return true if rmap existed, false otherwise */ 1014 static bool pte_list_destroy(struct kvm *kvm, struct kvm_rmap_head *rmap_head) 1015 { 1016 struct pte_list_desc *desc, *next; 1017 int i; 1018 1019 if (!rmap_head->val) 1020 return false; 1021 1022 if (!(rmap_head->val & 1)) { 1023 mmu_spte_clear_track_bits(kvm, (u64 *)rmap_head->val); 1024 goto out; 1025 } 1026 1027 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul); 1028 1029 for (; desc; desc = next) { 1030 for (i = 0; i < desc->spte_count; i++) 1031 mmu_spte_clear_track_bits(kvm, desc->sptes[i]); 1032 next = desc->more; 1033 mmu_free_pte_list_desc(desc); 1034 } 1035 out: 1036 /* rmap_head is meaningless now, remember to reset it */ 1037 rmap_head->val = 0; 1038 return true; 1039 } 1040 1041 unsigned int pte_list_count(struct kvm_rmap_head *rmap_head) 1042 { 1043 struct pte_list_desc *desc; 1044 unsigned int count = 0; 1045 1046 if (!rmap_head->val) 1047 return 0; 1048 else if (!(rmap_head->val & 1)) 1049 return 1; 1050 1051 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul); 1052 1053 while (desc) { 1054 count += desc->spte_count; 1055 desc = desc->more; 1056 } 1057 1058 return count; 1059 } 1060 1061 static struct kvm_rmap_head *gfn_to_rmap(gfn_t gfn, int level, 1062 const struct kvm_memory_slot *slot) 1063 { 1064 unsigned long idx; 1065 1066 idx = gfn_to_index(gfn, slot->base_gfn, level); 1067 return &slot->arch.rmap[level - PG_LEVEL_4K][idx]; 1068 } 1069 1070 static bool rmap_can_add(struct kvm_vcpu *vcpu) 1071 { 1072 struct kvm_mmu_memory_cache *mc; 1073 1074 mc = &vcpu->arch.mmu_pte_list_desc_cache; 1075 return kvm_mmu_memory_cache_nr_free_objects(mc); 1076 } 1077 1078 static void rmap_remove(struct kvm *kvm, u64 *spte) 1079 { 1080 struct kvm_memslots *slots; 1081 struct kvm_memory_slot *slot; 1082 struct kvm_mmu_page *sp; 1083 gfn_t gfn; 1084 struct kvm_rmap_head *rmap_head; 1085 1086 sp = sptep_to_sp(spte); 1087 gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt); 1088 1089 /* 1090 * Unlike rmap_add, rmap_remove does not run in the context of a vCPU 1091 * so we have to determine which memslots to use based on context 1092 * information in sp->role. 1093 */ 1094 slots = kvm_memslots_for_spte_role(kvm, sp->role); 1095 1096 slot = __gfn_to_memslot(slots, gfn); 1097 rmap_head = gfn_to_rmap(gfn, sp->role.level, slot); 1098 1099 __pte_list_remove(spte, rmap_head); 1100 } 1101 1102 /* 1103 * Used by the following functions to iterate through the sptes linked by a 1104 * rmap. All fields are private and not assumed to be used outside. 1105 */ 1106 struct rmap_iterator { 1107 /* private fields */ 1108 struct pte_list_desc *desc; /* holds the sptep if not NULL */ 1109 int pos; /* index of the sptep */ 1110 }; 1111 1112 /* 1113 * Iteration must be started by this function. This should also be used after 1114 * removing/dropping sptes from the rmap link because in such cases the 1115 * information in the iterator may not be valid. 1116 * 1117 * Returns sptep if found, NULL otherwise. 1118 */ 1119 static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head, 1120 struct rmap_iterator *iter) 1121 { 1122 u64 *sptep; 1123 1124 if (!rmap_head->val) 1125 return NULL; 1126 1127 if (!(rmap_head->val & 1)) { 1128 iter->desc = NULL; 1129 sptep = (u64 *)rmap_head->val; 1130 goto out; 1131 } 1132 1133 iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul); 1134 iter->pos = 0; 1135 sptep = iter->desc->sptes[iter->pos]; 1136 out: 1137 BUG_ON(!is_shadow_present_pte(*sptep)); 1138 return sptep; 1139 } 1140 1141 /* 1142 * Must be used with a valid iterator: e.g. after rmap_get_first(). 1143 * 1144 * Returns sptep if found, NULL otherwise. 1145 */ 1146 static u64 *rmap_get_next(struct rmap_iterator *iter) 1147 { 1148 u64 *sptep; 1149 1150 if (iter->desc) { 1151 if (iter->pos < PTE_LIST_EXT - 1) { 1152 ++iter->pos; 1153 sptep = iter->desc->sptes[iter->pos]; 1154 if (sptep) 1155 goto out; 1156 } 1157 1158 iter->desc = iter->desc->more; 1159 1160 if (iter->desc) { 1161 iter->pos = 0; 1162 /* desc->sptes[0] cannot be NULL */ 1163 sptep = iter->desc->sptes[iter->pos]; 1164 goto out; 1165 } 1166 } 1167 1168 return NULL; 1169 out: 1170 BUG_ON(!is_shadow_present_pte(*sptep)); 1171 return sptep; 1172 } 1173 1174 #define for_each_rmap_spte(_rmap_head_, _iter_, _spte_) \ 1175 for (_spte_ = rmap_get_first(_rmap_head_, _iter_); \ 1176 _spte_; _spte_ = rmap_get_next(_iter_)) 1177 1178 static void drop_spte(struct kvm *kvm, u64 *sptep) 1179 { 1180 u64 old_spte = mmu_spte_clear_track_bits(kvm, sptep); 1181 1182 if (is_shadow_present_pte(old_spte)) 1183 rmap_remove(kvm, sptep); 1184 } 1185 1186 1187 static bool __drop_large_spte(struct kvm *kvm, u64 *sptep) 1188 { 1189 if (is_large_pte(*sptep)) { 1190 WARN_ON(sptep_to_sp(sptep)->role.level == PG_LEVEL_4K); 1191 drop_spte(kvm, sptep); 1192 return true; 1193 } 1194 1195 return false; 1196 } 1197 1198 static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep) 1199 { 1200 if (__drop_large_spte(vcpu->kvm, sptep)) { 1201 struct kvm_mmu_page *sp = sptep_to_sp(sptep); 1202 1203 kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn, 1204 KVM_PAGES_PER_HPAGE(sp->role.level)); 1205 } 1206 } 1207 1208 /* 1209 * Write-protect on the specified @sptep, @pt_protect indicates whether 1210 * spte write-protection is caused by protecting shadow page table. 1211 * 1212 * Note: write protection is difference between dirty logging and spte 1213 * protection: 1214 * - for dirty logging, the spte can be set to writable at anytime if 1215 * its dirty bitmap is properly set. 1216 * - for spte protection, the spte can be writable only after unsync-ing 1217 * shadow page. 1218 * 1219 * Return true if tlb need be flushed. 1220 */ 1221 static bool spte_write_protect(u64 *sptep, bool pt_protect) 1222 { 1223 u64 spte = *sptep; 1224 1225 if (!is_writable_pte(spte) && 1226 !(pt_protect && spte_can_locklessly_be_made_writable(spte))) 1227 return false; 1228 1229 rmap_printk("spte %p %llx\n", sptep, *sptep); 1230 1231 if (pt_protect) 1232 spte &= ~shadow_mmu_writable_mask; 1233 spte = spte & ~PT_WRITABLE_MASK; 1234 1235 return mmu_spte_update(sptep, spte); 1236 } 1237 1238 static bool __rmap_write_protect(struct kvm *kvm, 1239 struct kvm_rmap_head *rmap_head, 1240 bool pt_protect) 1241 { 1242 u64 *sptep; 1243 struct rmap_iterator iter; 1244 bool flush = false; 1245 1246 for_each_rmap_spte(rmap_head, &iter, sptep) 1247 flush |= spte_write_protect(sptep, pt_protect); 1248 1249 return flush; 1250 } 1251 1252 static bool spte_clear_dirty(u64 *sptep) 1253 { 1254 u64 spte = *sptep; 1255 1256 rmap_printk("spte %p %llx\n", sptep, *sptep); 1257 1258 MMU_WARN_ON(!spte_ad_enabled(spte)); 1259 spte &= ~shadow_dirty_mask; 1260 return mmu_spte_update(sptep, spte); 1261 } 1262 1263 static bool spte_wrprot_for_clear_dirty(u64 *sptep) 1264 { 1265 bool was_writable = test_and_clear_bit(PT_WRITABLE_SHIFT, 1266 (unsigned long *)sptep); 1267 if (was_writable && !spte_ad_enabled(*sptep)) 1268 kvm_set_pfn_dirty(spte_to_pfn(*sptep)); 1269 1270 return was_writable; 1271 } 1272 1273 /* 1274 * Gets the GFN ready for another round of dirty logging by clearing the 1275 * - D bit on ad-enabled SPTEs, and 1276 * - W bit on ad-disabled SPTEs. 1277 * Returns true iff any D or W bits were cleared. 1278 */ 1279 static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head, 1280 const struct kvm_memory_slot *slot) 1281 { 1282 u64 *sptep; 1283 struct rmap_iterator iter; 1284 bool flush = false; 1285 1286 for_each_rmap_spte(rmap_head, &iter, sptep) 1287 if (spte_ad_need_write_protect(*sptep)) 1288 flush |= spte_wrprot_for_clear_dirty(sptep); 1289 else 1290 flush |= spte_clear_dirty(sptep); 1291 1292 return flush; 1293 } 1294 1295 /** 1296 * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages 1297 * @kvm: kvm instance 1298 * @slot: slot to protect 1299 * @gfn_offset: start of the BITS_PER_LONG pages we care about 1300 * @mask: indicates which pages we should protect 1301 * 1302 * Used when we do not need to care about huge page mappings. 1303 */ 1304 static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm, 1305 struct kvm_memory_slot *slot, 1306 gfn_t gfn_offset, unsigned long mask) 1307 { 1308 struct kvm_rmap_head *rmap_head; 1309 1310 if (is_tdp_mmu_enabled(kvm)) 1311 kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot, 1312 slot->base_gfn + gfn_offset, mask, true); 1313 1314 if (!kvm_memslots_have_rmaps(kvm)) 1315 return; 1316 1317 while (mask) { 1318 rmap_head = gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask), 1319 PG_LEVEL_4K, slot); 1320 __rmap_write_protect(kvm, rmap_head, false); 1321 1322 /* clear the first set bit */ 1323 mask &= mask - 1; 1324 } 1325 } 1326 1327 /** 1328 * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages, or write 1329 * protect the page if the D-bit isn't supported. 1330 * @kvm: kvm instance 1331 * @slot: slot to clear D-bit 1332 * @gfn_offset: start of the BITS_PER_LONG pages we care about 1333 * @mask: indicates which pages we should clear D-bit 1334 * 1335 * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap. 1336 */ 1337 static void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm, 1338 struct kvm_memory_slot *slot, 1339 gfn_t gfn_offset, unsigned long mask) 1340 { 1341 struct kvm_rmap_head *rmap_head; 1342 1343 if (is_tdp_mmu_enabled(kvm)) 1344 kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot, 1345 slot->base_gfn + gfn_offset, mask, false); 1346 1347 if (!kvm_memslots_have_rmaps(kvm)) 1348 return; 1349 1350 while (mask) { 1351 rmap_head = gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask), 1352 PG_LEVEL_4K, slot); 1353 __rmap_clear_dirty(kvm, rmap_head, slot); 1354 1355 /* clear the first set bit */ 1356 mask &= mask - 1; 1357 } 1358 } 1359 1360 /** 1361 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected 1362 * PT level pages. 1363 * 1364 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to 1365 * enable dirty logging for them. 1366 * 1367 * We need to care about huge page mappings: e.g. during dirty logging we may 1368 * have such mappings. 1369 */ 1370 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm, 1371 struct kvm_memory_slot *slot, 1372 gfn_t gfn_offset, unsigned long mask) 1373 { 1374 /* 1375 * Huge pages are NOT write protected when we start dirty logging in 1376 * initially-all-set mode; must write protect them here so that they 1377 * are split to 4K on the first write. 1378 * 1379 * The gfn_offset is guaranteed to be aligned to 64, but the base_gfn 1380 * of memslot has no such restriction, so the range can cross two large 1381 * pages. 1382 */ 1383 if (kvm_dirty_log_manual_protect_and_init_set(kvm)) { 1384 gfn_t start = slot->base_gfn + gfn_offset + __ffs(mask); 1385 gfn_t end = slot->base_gfn + gfn_offset + __fls(mask); 1386 1387 kvm_mmu_slot_gfn_write_protect(kvm, slot, start, PG_LEVEL_2M); 1388 1389 /* Cross two large pages? */ 1390 if (ALIGN(start << PAGE_SHIFT, PMD_SIZE) != 1391 ALIGN(end << PAGE_SHIFT, PMD_SIZE)) 1392 kvm_mmu_slot_gfn_write_protect(kvm, slot, end, 1393 PG_LEVEL_2M); 1394 } 1395 1396 /* Now handle 4K PTEs. */ 1397 if (kvm_x86_ops.cpu_dirty_log_size) 1398 kvm_mmu_clear_dirty_pt_masked(kvm, slot, gfn_offset, mask); 1399 else 1400 kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask); 1401 } 1402 1403 int kvm_cpu_dirty_log_size(void) 1404 { 1405 return kvm_x86_ops.cpu_dirty_log_size; 1406 } 1407 1408 bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm, 1409 struct kvm_memory_slot *slot, u64 gfn, 1410 int min_level) 1411 { 1412 struct kvm_rmap_head *rmap_head; 1413 int i; 1414 bool write_protected = false; 1415 1416 if (kvm_memslots_have_rmaps(kvm)) { 1417 for (i = min_level; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) { 1418 rmap_head = gfn_to_rmap(gfn, i, slot); 1419 write_protected |= __rmap_write_protect(kvm, rmap_head, true); 1420 } 1421 } 1422 1423 if (is_tdp_mmu_enabled(kvm)) 1424 write_protected |= 1425 kvm_tdp_mmu_write_protect_gfn(kvm, slot, gfn, min_level); 1426 1427 return write_protected; 1428 } 1429 1430 static bool rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn) 1431 { 1432 struct kvm_memory_slot *slot; 1433 1434 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 1435 return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn, PG_LEVEL_4K); 1436 } 1437 1438 static bool kvm_zap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head, 1439 const struct kvm_memory_slot *slot) 1440 { 1441 return pte_list_destroy(kvm, rmap_head); 1442 } 1443 1444 static bool kvm_unmap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head, 1445 struct kvm_memory_slot *slot, gfn_t gfn, int level, 1446 pte_t unused) 1447 { 1448 return kvm_zap_rmapp(kvm, rmap_head, slot); 1449 } 1450 1451 static bool kvm_set_pte_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head, 1452 struct kvm_memory_slot *slot, gfn_t gfn, int level, 1453 pte_t pte) 1454 { 1455 u64 *sptep; 1456 struct rmap_iterator iter; 1457 int need_flush = 0; 1458 u64 new_spte; 1459 kvm_pfn_t new_pfn; 1460 1461 WARN_ON(pte_huge(pte)); 1462 new_pfn = pte_pfn(pte); 1463 1464 restart: 1465 for_each_rmap_spte(rmap_head, &iter, sptep) { 1466 rmap_printk("spte %p %llx gfn %llx (%d)\n", 1467 sptep, *sptep, gfn, level); 1468 1469 need_flush = 1; 1470 1471 if (pte_write(pte)) { 1472 pte_list_remove(kvm, rmap_head, sptep); 1473 goto restart; 1474 } else { 1475 new_spte = kvm_mmu_changed_pte_notifier_make_spte( 1476 *sptep, new_pfn); 1477 1478 mmu_spte_clear_track_bits(kvm, sptep); 1479 mmu_spte_set(sptep, new_spte); 1480 } 1481 } 1482 1483 if (need_flush && kvm_available_flush_tlb_with_range()) { 1484 kvm_flush_remote_tlbs_with_address(kvm, gfn, 1); 1485 return 0; 1486 } 1487 1488 return need_flush; 1489 } 1490 1491 struct slot_rmap_walk_iterator { 1492 /* input fields. */ 1493 const struct kvm_memory_slot *slot; 1494 gfn_t start_gfn; 1495 gfn_t end_gfn; 1496 int start_level; 1497 int end_level; 1498 1499 /* output fields. */ 1500 gfn_t gfn; 1501 struct kvm_rmap_head *rmap; 1502 int level; 1503 1504 /* private field. */ 1505 struct kvm_rmap_head *end_rmap; 1506 }; 1507 1508 static void 1509 rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level) 1510 { 1511 iterator->level = level; 1512 iterator->gfn = iterator->start_gfn; 1513 iterator->rmap = gfn_to_rmap(iterator->gfn, level, iterator->slot); 1514 iterator->end_rmap = gfn_to_rmap(iterator->end_gfn, level, iterator->slot); 1515 } 1516 1517 static void 1518 slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator, 1519 const struct kvm_memory_slot *slot, int start_level, 1520 int end_level, gfn_t start_gfn, gfn_t end_gfn) 1521 { 1522 iterator->slot = slot; 1523 iterator->start_level = start_level; 1524 iterator->end_level = end_level; 1525 iterator->start_gfn = start_gfn; 1526 iterator->end_gfn = end_gfn; 1527 1528 rmap_walk_init_level(iterator, iterator->start_level); 1529 } 1530 1531 static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator) 1532 { 1533 return !!iterator->rmap; 1534 } 1535 1536 static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator) 1537 { 1538 if (++iterator->rmap <= iterator->end_rmap) { 1539 iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level)); 1540 return; 1541 } 1542 1543 if (++iterator->level > iterator->end_level) { 1544 iterator->rmap = NULL; 1545 return; 1546 } 1547 1548 rmap_walk_init_level(iterator, iterator->level); 1549 } 1550 1551 #define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_, \ 1552 _start_gfn, _end_gfn, _iter_) \ 1553 for (slot_rmap_walk_init(_iter_, _slot_, _start_level_, \ 1554 _end_level_, _start_gfn, _end_gfn); \ 1555 slot_rmap_walk_okay(_iter_); \ 1556 slot_rmap_walk_next(_iter_)) 1557 1558 typedef bool (*rmap_handler_t)(struct kvm *kvm, struct kvm_rmap_head *rmap_head, 1559 struct kvm_memory_slot *slot, gfn_t gfn, 1560 int level, pte_t pte); 1561 1562 static __always_inline bool kvm_handle_gfn_range(struct kvm *kvm, 1563 struct kvm_gfn_range *range, 1564 rmap_handler_t handler) 1565 { 1566 struct slot_rmap_walk_iterator iterator; 1567 bool ret = false; 1568 1569 for_each_slot_rmap_range(range->slot, PG_LEVEL_4K, KVM_MAX_HUGEPAGE_LEVEL, 1570 range->start, range->end - 1, &iterator) 1571 ret |= handler(kvm, iterator.rmap, range->slot, iterator.gfn, 1572 iterator.level, range->pte); 1573 1574 return ret; 1575 } 1576 1577 bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range) 1578 { 1579 bool flush = false; 1580 1581 if (kvm_memslots_have_rmaps(kvm)) 1582 flush = kvm_handle_gfn_range(kvm, range, kvm_unmap_rmapp); 1583 1584 if (is_tdp_mmu_enabled(kvm)) 1585 flush = kvm_tdp_mmu_unmap_gfn_range(kvm, range, flush); 1586 1587 return flush; 1588 } 1589 1590 bool kvm_set_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range) 1591 { 1592 bool flush = false; 1593 1594 if (kvm_memslots_have_rmaps(kvm)) 1595 flush = kvm_handle_gfn_range(kvm, range, kvm_set_pte_rmapp); 1596 1597 if (is_tdp_mmu_enabled(kvm)) 1598 flush |= kvm_tdp_mmu_set_spte_gfn(kvm, range); 1599 1600 return flush; 1601 } 1602 1603 static bool kvm_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head, 1604 struct kvm_memory_slot *slot, gfn_t gfn, int level, 1605 pte_t unused) 1606 { 1607 u64 *sptep; 1608 struct rmap_iterator iter; 1609 int young = 0; 1610 1611 for_each_rmap_spte(rmap_head, &iter, sptep) 1612 young |= mmu_spte_age(sptep); 1613 1614 return young; 1615 } 1616 1617 static bool kvm_test_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head, 1618 struct kvm_memory_slot *slot, gfn_t gfn, 1619 int level, pte_t unused) 1620 { 1621 u64 *sptep; 1622 struct rmap_iterator iter; 1623 1624 for_each_rmap_spte(rmap_head, &iter, sptep) 1625 if (is_accessed_spte(*sptep)) 1626 return 1; 1627 return 0; 1628 } 1629 1630 #define RMAP_RECYCLE_THRESHOLD 1000 1631 1632 static void rmap_add(struct kvm_vcpu *vcpu, struct kvm_memory_slot *slot, 1633 u64 *spte, gfn_t gfn) 1634 { 1635 struct kvm_mmu_page *sp; 1636 struct kvm_rmap_head *rmap_head; 1637 int rmap_count; 1638 1639 sp = sptep_to_sp(spte); 1640 kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn); 1641 rmap_head = gfn_to_rmap(gfn, sp->role.level, slot); 1642 rmap_count = pte_list_add(vcpu, spte, rmap_head); 1643 1644 if (rmap_count > RMAP_RECYCLE_THRESHOLD) { 1645 kvm_unmap_rmapp(vcpu->kvm, rmap_head, NULL, gfn, sp->role.level, __pte(0)); 1646 kvm_flush_remote_tlbs_with_address( 1647 vcpu->kvm, sp->gfn, KVM_PAGES_PER_HPAGE(sp->role.level)); 1648 } 1649 } 1650 1651 bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range) 1652 { 1653 bool young = false; 1654 1655 if (kvm_memslots_have_rmaps(kvm)) 1656 young = kvm_handle_gfn_range(kvm, range, kvm_age_rmapp); 1657 1658 if (is_tdp_mmu_enabled(kvm)) 1659 young |= kvm_tdp_mmu_age_gfn_range(kvm, range); 1660 1661 return young; 1662 } 1663 1664 bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range) 1665 { 1666 bool young = false; 1667 1668 if (kvm_memslots_have_rmaps(kvm)) 1669 young = kvm_handle_gfn_range(kvm, range, kvm_test_age_rmapp); 1670 1671 if (is_tdp_mmu_enabled(kvm)) 1672 young |= kvm_tdp_mmu_test_age_gfn(kvm, range); 1673 1674 return young; 1675 } 1676 1677 #ifdef MMU_DEBUG 1678 static int is_empty_shadow_page(u64 *spt) 1679 { 1680 u64 *pos; 1681 u64 *end; 1682 1683 for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++) 1684 if (is_shadow_present_pte(*pos)) { 1685 printk(KERN_ERR "%s: %p %llx\n", __func__, 1686 pos, *pos); 1687 return 0; 1688 } 1689 return 1; 1690 } 1691 #endif 1692 1693 /* 1694 * This value is the sum of all of the kvm instances's 1695 * kvm->arch.n_used_mmu_pages values. We need a global, 1696 * aggregate version in order to make the slab shrinker 1697 * faster 1698 */ 1699 static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, long nr) 1700 { 1701 kvm->arch.n_used_mmu_pages += nr; 1702 percpu_counter_add(&kvm_total_used_mmu_pages, nr); 1703 } 1704 1705 static void kvm_mmu_free_page(struct kvm_mmu_page *sp) 1706 { 1707 MMU_WARN_ON(!is_empty_shadow_page(sp->spt)); 1708 hlist_del(&sp->hash_link); 1709 list_del(&sp->link); 1710 free_page((unsigned long)sp->spt); 1711 if (!sp->role.direct) 1712 free_page((unsigned long)sp->gfns); 1713 kmem_cache_free(mmu_page_header_cache, sp); 1714 } 1715 1716 static unsigned kvm_page_table_hashfn(gfn_t gfn) 1717 { 1718 return hash_64(gfn, KVM_MMU_HASH_SHIFT); 1719 } 1720 1721 static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu, 1722 struct kvm_mmu_page *sp, u64 *parent_pte) 1723 { 1724 if (!parent_pte) 1725 return; 1726 1727 pte_list_add(vcpu, parent_pte, &sp->parent_ptes); 1728 } 1729 1730 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp, 1731 u64 *parent_pte) 1732 { 1733 __pte_list_remove(parent_pte, &sp->parent_ptes); 1734 } 1735 1736 static void drop_parent_pte(struct kvm_mmu_page *sp, 1737 u64 *parent_pte) 1738 { 1739 mmu_page_remove_parent_pte(sp, parent_pte); 1740 mmu_spte_clear_no_track(parent_pte); 1741 } 1742 1743 static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu, int direct) 1744 { 1745 struct kvm_mmu_page *sp; 1746 1747 sp = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache); 1748 sp->spt = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_shadow_page_cache); 1749 if (!direct) 1750 sp->gfns = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_gfn_array_cache); 1751 set_page_private(virt_to_page(sp->spt), (unsigned long)sp); 1752 1753 /* 1754 * active_mmu_pages must be a FIFO list, as kvm_zap_obsolete_pages() 1755 * depends on valid pages being added to the head of the list. See 1756 * comments in kvm_zap_obsolete_pages(). 1757 */ 1758 sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen; 1759 list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages); 1760 kvm_mod_used_mmu_pages(vcpu->kvm, +1); 1761 return sp; 1762 } 1763 1764 static void mark_unsync(u64 *spte); 1765 static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp) 1766 { 1767 u64 *sptep; 1768 struct rmap_iterator iter; 1769 1770 for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) { 1771 mark_unsync(sptep); 1772 } 1773 } 1774 1775 static void mark_unsync(u64 *spte) 1776 { 1777 struct kvm_mmu_page *sp; 1778 unsigned int index; 1779 1780 sp = sptep_to_sp(spte); 1781 index = spte - sp->spt; 1782 if (__test_and_set_bit(index, sp->unsync_child_bitmap)) 1783 return; 1784 if (sp->unsync_children++) 1785 return; 1786 kvm_mmu_mark_parents_unsync(sp); 1787 } 1788 1789 static int nonpaging_sync_page(struct kvm_vcpu *vcpu, 1790 struct kvm_mmu_page *sp) 1791 { 1792 return -1; 1793 } 1794 1795 #define KVM_PAGE_ARRAY_NR 16 1796 1797 struct kvm_mmu_pages { 1798 struct mmu_page_and_offset { 1799 struct kvm_mmu_page *sp; 1800 unsigned int idx; 1801 } page[KVM_PAGE_ARRAY_NR]; 1802 unsigned int nr; 1803 }; 1804 1805 static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp, 1806 int idx) 1807 { 1808 int i; 1809 1810 if (sp->unsync) 1811 for (i=0; i < pvec->nr; i++) 1812 if (pvec->page[i].sp == sp) 1813 return 0; 1814 1815 pvec->page[pvec->nr].sp = sp; 1816 pvec->page[pvec->nr].idx = idx; 1817 pvec->nr++; 1818 return (pvec->nr == KVM_PAGE_ARRAY_NR); 1819 } 1820 1821 static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx) 1822 { 1823 --sp->unsync_children; 1824 WARN_ON((int)sp->unsync_children < 0); 1825 __clear_bit(idx, sp->unsync_child_bitmap); 1826 } 1827 1828 static int __mmu_unsync_walk(struct kvm_mmu_page *sp, 1829 struct kvm_mmu_pages *pvec) 1830 { 1831 int i, ret, nr_unsync_leaf = 0; 1832 1833 for_each_set_bit(i, sp->unsync_child_bitmap, 512) { 1834 struct kvm_mmu_page *child; 1835 u64 ent = sp->spt[i]; 1836 1837 if (!is_shadow_present_pte(ent) || is_large_pte(ent)) { 1838 clear_unsync_child_bit(sp, i); 1839 continue; 1840 } 1841 1842 child = to_shadow_page(ent & PT64_BASE_ADDR_MASK); 1843 1844 if (child->unsync_children) { 1845 if (mmu_pages_add(pvec, child, i)) 1846 return -ENOSPC; 1847 1848 ret = __mmu_unsync_walk(child, pvec); 1849 if (!ret) { 1850 clear_unsync_child_bit(sp, i); 1851 continue; 1852 } else if (ret > 0) { 1853 nr_unsync_leaf += ret; 1854 } else 1855 return ret; 1856 } else if (child->unsync) { 1857 nr_unsync_leaf++; 1858 if (mmu_pages_add(pvec, child, i)) 1859 return -ENOSPC; 1860 } else 1861 clear_unsync_child_bit(sp, i); 1862 } 1863 1864 return nr_unsync_leaf; 1865 } 1866 1867 #define INVALID_INDEX (-1) 1868 1869 static int mmu_unsync_walk(struct kvm_mmu_page *sp, 1870 struct kvm_mmu_pages *pvec) 1871 { 1872 pvec->nr = 0; 1873 if (!sp->unsync_children) 1874 return 0; 1875 1876 mmu_pages_add(pvec, sp, INVALID_INDEX); 1877 return __mmu_unsync_walk(sp, pvec); 1878 } 1879 1880 static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp) 1881 { 1882 WARN_ON(!sp->unsync); 1883 trace_kvm_mmu_sync_page(sp); 1884 sp->unsync = 0; 1885 --kvm->stat.mmu_unsync; 1886 } 1887 1888 static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp, 1889 struct list_head *invalid_list); 1890 static void kvm_mmu_commit_zap_page(struct kvm *kvm, 1891 struct list_head *invalid_list); 1892 1893 #define for_each_valid_sp(_kvm, _sp, _list) \ 1894 hlist_for_each_entry(_sp, _list, hash_link) \ 1895 if (is_obsolete_sp((_kvm), (_sp))) { \ 1896 } else 1897 1898 #define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn) \ 1899 for_each_valid_sp(_kvm, _sp, \ 1900 &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)]) \ 1901 if ((_sp)->gfn != (_gfn) || (_sp)->role.direct) {} else 1902 1903 static bool kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp, 1904 struct list_head *invalid_list) 1905 { 1906 int ret = vcpu->arch.mmu->sync_page(vcpu, sp); 1907 1908 if (ret < 0) { 1909 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list); 1910 return false; 1911 } 1912 1913 return !!ret; 1914 } 1915 1916 static bool kvm_mmu_remote_flush_or_zap(struct kvm *kvm, 1917 struct list_head *invalid_list, 1918 bool remote_flush) 1919 { 1920 if (!remote_flush && list_empty(invalid_list)) 1921 return false; 1922 1923 if (!list_empty(invalid_list)) 1924 kvm_mmu_commit_zap_page(kvm, invalid_list); 1925 else 1926 kvm_flush_remote_tlbs(kvm); 1927 return true; 1928 } 1929 1930 #ifdef CONFIG_KVM_MMU_AUDIT 1931 #include "mmu_audit.c" 1932 #else 1933 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { } 1934 static void mmu_audit_disable(void) { } 1935 #endif 1936 1937 static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp) 1938 { 1939 return sp->role.invalid || 1940 unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen); 1941 } 1942 1943 struct mmu_page_path { 1944 struct kvm_mmu_page *parent[PT64_ROOT_MAX_LEVEL]; 1945 unsigned int idx[PT64_ROOT_MAX_LEVEL]; 1946 }; 1947 1948 #define for_each_sp(pvec, sp, parents, i) \ 1949 for (i = mmu_pages_first(&pvec, &parents); \ 1950 i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \ 1951 i = mmu_pages_next(&pvec, &parents, i)) 1952 1953 static int mmu_pages_next(struct kvm_mmu_pages *pvec, 1954 struct mmu_page_path *parents, 1955 int i) 1956 { 1957 int n; 1958 1959 for (n = i+1; n < pvec->nr; n++) { 1960 struct kvm_mmu_page *sp = pvec->page[n].sp; 1961 unsigned idx = pvec->page[n].idx; 1962 int level = sp->role.level; 1963 1964 parents->idx[level-1] = idx; 1965 if (level == PG_LEVEL_4K) 1966 break; 1967 1968 parents->parent[level-2] = sp; 1969 } 1970 1971 return n; 1972 } 1973 1974 static int mmu_pages_first(struct kvm_mmu_pages *pvec, 1975 struct mmu_page_path *parents) 1976 { 1977 struct kvm_mmu_page *sp; 1978 int level; 1979 1980 if (pvec->nr == 0) 1981 return 0; 1982 1983 WARN_ON(pvec->page[0].idx != INVALID_INDEX); 1984 1985 sp = pvec->page[0].sp; 1986 level = sp->role.level; 1987 WARN_ON(level == PG_LEVEL_4K); 1988 1989 parents->parent[level-2] = sp; 1990 1991 /* Also set up a sentinel. Further entries in pvec are all 1992 * children of sp, so this element is never overwritten. 1993 */ 1994 parents->parent[level-1] = NULL; 1995 return mmu_pages_next(pvec, parents, 0); 1996 } 1997 1998 static void mmu_pages_clear_parents(struct mmu_page_path *parents) 1999 { 2000 struct kvm_mmu_page *sp; 2001 unsigned int level = 0; 2002 2003 do { 2004 unsigned int idx = parents->idx[level]; 2005 sp = parents->parent[level]; 2006 if (!sp) 2007 return; 2008 2009 WARN_ON(idx == INVALID_INDEX); 2010 clear_unsync_child_bit(sp, idx); 2011 level++; 2012 } while (!sp->unsync_children); 2013 } 2014 2015 static int mmu_sync_children(struct kvm_vcpu *vcpu, 2016 struct kvm_mmu_page *parent, bool can_yield) 2017 { 2018 int i; 2019 struct kvm_mmu_page *sp; 2020 struct mmu_page_path parents; 2021 struct kvm_mmu_pages pages; 2022 LIST_HEAD(invalid_list); 2023 bool flush = false; 2024 2025 while (mmu_unsync_walk(parent, &pages)) { 2026 bool protected = false; 2027 2028 for_each_sp(pages, sp, parents, i) 2029 protected |= rmap_write_protect(vcpu, sp->gfn); 2030 2031 if (protected) { 2032 kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, true); 2033 flush = false; 2034 } 2035 2036 for_each_sp(pages, sp, parents, i) { 2037 kvm_unlink_unsync_page(vcpu->kvm, sp); 2038 flush |= kvm_sync_page(vcpu, sp, &invalid_list); 2039 mmu_pages_clear_parents(&parents); 2040 } 2041 if (need_resched() || rwlock_needbreak(&vcpu->kvm->mmu_lock)) { 2042 kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, flush); 2043 if (!can_yield) { 2044 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu); 2045 return -EINTR; 2046 } 2047 2048 cond_resched_rwlock_write(&vcpu->kvm->mmu_lock); 2049 flush = false; 2050 } 2051 } 2052 2053 kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, flush); 2054 return 0; 2055 } 2056 2057 static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp) 2058 { 2059 atomic_set(&sp->write_flooding_count, 0); 2060 } 2061 2062 static void clear_sp_write_flooding_count(u64 *spte) 2063 { 2064 __clear_sp_write_flooding_count(sptep_to_sp(spte)); 2065 } 2066 2067 static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu, 2068 gfn_t gfn, 2069 gva_t gaddr, 2070 unsigned level, 2071 int direct, 2072 unsigned int access) 2073 { 2074 bool direct_mmu = vcpu->arch.mmu->direct_map; 2075 union kvm_mmu_page_role role; 2076 struct hlist_head *sp_list; 2077 unsigned quadrant; 2078 struct kvm_mmu_page *sp; 2079 int collisions = 0; 2080 LIST_HEAD(invalid_list); 2081 2082 role = vcpu->arch.mmu->mmu_role.base; 2083 role.level = level; 2084 role.direct = direct; 2085 if (role.direct) 2086 role.gpte_is_8_bytes = true; 2087 role.access = access; 2088 if (!direct_mmu && vcpu->arch.mmu->root_level <= PT32_ROOT_LEVEL) { 2089 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level)); 2090 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1; 2091 role.quadrant = quadrant; 2092 } 2093 2094 sp_list = &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]; 2095 for_each_valid_sp(vcpu->kvm, sp, sp_list) { 2096 if (sp->gfn != gfn) { 2097 collisions++; 2098 continue; 2099 } 2100 2101 if (sp->role.word != role.word) { 2102 /* 2103 * If the guest is creating an upper-level page, zap 2104 * unsync pages for the same gfn. While it's possible 2105 * the guest is using recursive page tables, in all 2106 * likelihood the guest has stopped using the unsync 2107 * page and is installing a completely unrelated page. 2108 * Unsync pages must not be left as is, because the new 2109 * upper-level page will be write-protected. 2110 */ 2111 if (level > PG_LEVEL_4K && sp->unsync) 2112 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, 2113 &invalid_list); 2114 continue; 2115 } 2116 2117 if (direct_mmu) 2118 goto trace_get_page; 2119 2120 if (sp->unsync) { 2121 /* 2122 * The page is good, but is stale. kvm_sync_page does 2123 * get the latest guest state, but (unlike mmu_unsync_children) 2124 * it doesn't write-protect the page or mark it synchronized! 2125 * This way the validity of the mapping is ensured, but the 2126 * overhead of write protection is not incurred until the 2127 * guest invalidates the TLB mapping. This allows multiple 2128 * SPs for a single gfn to be unsync. 2129 * 2130 * If the sync fails, the page is zapped. If so, break 2131 * in order to rebuild it. 2132 */ 2133 if (!kvm_sync_page(vcpu, sp, &invalid_list)) 2134 break; 2135 2136 WARN_ON(!list_empty(&invalid_list)); 2137 kvm_flush_remote_tlbs(vcpu->kvm); 2138 } 2139 2140 __clear_sp_write_flooding_count(sp); 2141 2142 trace_get_page: 2143 trace_kvm_mmu_get_page(sp, false); 2144 goto out; 2145 } 2146 2147 ++vcpu->kvm->stat.mmu_cache_miss; 2148 2149 sp = kvm_mmu_alloc_page(vcpu, direct); 2150 2151 sp->gfn = gfn; 2152 sp->role = role; 2153 hlist_add_head(&sp->hash_link, sp_list); 2154 if (!direct) { 2155 account_shadowed(vcpu->kvm, sp); 2156 if (level == PG_LEVEL_4K && rmap_write_protect(vcpu, gfn)) 2157 kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn, 1); 2158 } 2159 trace_kvm_mmu_get_page(sp, true); 2160 out: 2161 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list); 2162 2163 if (collisions > vcpu->kvm->stat.max_mmu_page_hash_collisions) 2164 vcpu->kvm->stat.max_mmu_page_hash_collisions = collisions; 2165 return sp; 2166 } 2167 2168 static void shadow_walk_init_using_root(struct kvm_shadow_walk_iterator *iterator, 2169 struct kvm_vcpu *vcpu, hpa_t root, 2170 u64 addr) 2171 { 2172 iterator->addr = addr; 2173 iterator->shadow_addr = root; 2174 iterator->level = vcpu->arch.mmu->shadow_root_level; 2175 2176 if (iterator->level >= PT64_ROOT_4LEVEL && 2177 vcpu->arch.mmu->root_level < PT64_ROOT_4LEVEL && 2178 !vcpu->arch.mmu->direct_map) 2179 iterator->level = PT32E_ROOT_LEVEL; 2180 2181 if (iterator->level == PT32E_ROOT_LEVEL) { 2182 /* 2183 * prev_root is currently only used for 64-bit hosts. So only 2184 * the active root_hpa is valid here. 2185 */ 2186 BUG_ON(root != vcpu->arch.mmu->root_hpa); 2187 2188 iterator->shadow_addr 2189 = vcpu->arch.mmu->pae_root[(addr >> 30) & 3]; 2190 iterator->shadow_addr &= PT64_BASE_ADDR_MASK; 2191 --iterator->level; 2192 if (!iterator->shadow_addr) 2193 iterator->level = 0; 2194 } 2195 } 2196 2197 static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator, 2198 struct kvm_vcpu *vcpu, u64 addr) 2199 { 2200 shadow_walk_init_using_root(iterator, vcpu, vcpu->arch.mmu->root_hpa, 2201 addr); 2202 } 2203 2204 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator) 2205 { 2206 if (iterator->level < PG_LEVEL_4K) 2207 return false; 2208 2209 iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level); 2210 iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index; 2211 return true; 2212 } 2213 2214 static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator, 2215 u64 spte) 2216 { 2217 if (!is_shadow_present_pte(spte) || is_last_spte(spte, iterator->level)) { 2218 iterator->level = 0; 2219 return; 2220 } 2221 2222 iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK; 2223 --iterator->level; 2224 } 2225 2226 static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator) 2227 { 2228 __shadow_walk_next(iterator, *iterator->sptep); 2229 } 2230 2231 static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep, 2232 struct kvm_mmu_page *sp) 2233 { 2234 u64 spte; 2235 2236 BUILD_BUG_ON(VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK); 2237 2238 spte = make_nonleaf_spte(sp->spt, sp_ad_disabled(sp)); 2239 2240 mmu_spte_set(sptep, spte); 2241 2242 mmu_page_add_parent_pte(vcpu, sp, sptep); 2243 2244 if (sp->unsync_children || sp->unsync) 2245 mark_unsync(sptep); 2246 } 2247 2248 static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep, 2249 unsigned direct_access) 2250 { 2251 if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) { 2252 struct kvm_mmu_page *child; 2253 2254 /* 2255 * For the direct sp, if the guest pte's dirty bit 2256 * changed form clean to dirty, it will corrupt the 2257 * sp's access: allow writable in the read-only sp, 2258 * so we should update the spte at this point to get 2259 * a new sp with the correct access. 2260 */ 2261 child = to_shadow_page(*sptep & PT64_BASE_ADDR_MASK); 2262 if (child->role.access == direct_access) 2263 return; 2264 2265 drop_parent_pte(child, sptep); 2266 kvm_flush_remote_tlbs_with_address(vcpu->kvm, child->gfn, 1); 2267 } 2268 } 2269 2270 /* Returns the number of zapped non-leaf child shadow pages. */ 2271 static int mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp, 2272 u64 *spte, struct list_head *invalid_list) 2273 { 2274 u64 pte; 2275 struct kvm_mmu_page *child; 2276 2277 pte = *spte; 2278 if (is_shadow_present_pte(pte)) { 2279 if (is_last_spte(pte, sp->role.level)) { 2280 drop_spte(kvm, spte); 2281 } else { 2282 child = to_shadow_page(pte & PT64_BASE_ADDR_MASK); 2283 drop_parent_pte(child, spte); 2284 2285 /* 2286 * Recursively zap nested TDP SPs, parentless SPs are 2287 * unlikely to be used again in the near future. This 2288 * avoids retaining a large number of stale nested SPs. 2289 */ 2290 if (tdp_enabled && invalid_list && 2291 child->role.guest_mode && !child->parent_ptes.val) 2292 return kvm_mmu_prepare_zap_page(kvm, child, 2293 invalid_list); 2294 } 2295 } else if (is_mmio_spte(pte)) { 2296 mmu_spte_clear_no_track(spte); 2297 } 2298 return 0; 2299 } 2300 2301 static int kvm_mmu_page_unlink_children(struct kvm *kvm, 2302 struct kvm_mmu_page *sp, 2303 struct list_head *invalid_list) 2304 { 2305 int zapped = 0; 2306 unsigned i; 2307 2308 for (i = 0; i < PT64_ENT_PER_PAGE; ++i) 2309 zapped += mmu_page_zap_pte(kvm, sp, sp->spt + i, invalid_list); 2310 2311 return zapped; 2312 } 2313 2314 static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp) 2315 { 2316 u64 *sptep; 2317 struct rmap_iterator iter; 2318 2319 while ((sptep = rmap_get_first(&sp->parent_ptes, &iter))) 2320 drop_parent_pte(sp, sptep); 2321 } 2322 2323 static int mmu_zap_unsync_children(struct kvm *kvm, 2324 struct kvm_mmu_page *parent, 2325 struct list_head *invalid_list) 2326 { 2327 int i, zapped = 0; 2328 struct mmu_page_path parents; 2329 struct kvm_mmu_pages pages; 2330 2331 if (parent->role.level == PG_LEVEL_4K) 2332 return 0; 2333 2334 while (mmu_unsync_walk(parent, &pages)) { 2335 struct kvm_mmu_page *sp; 2336 2337 for_each_sp(pages, sp, parents, i) { 2338 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list); 2339 mmu_pages_clear_parents(&parents); 2340 zapped++; 2341 } 2342 } 2343 2344 return zapped; 2345 } 2346 2347 static bool __kvm_mmu_prepare_zap_page(struct kvm *kvm, 2348 struct kvm_mmu_page *sp, 2349 struct list_head *invalid_list, 2350 int *nr_zapped) 2351 { 2352 bool list_unstable; 2353 2354 trace_kvm_mmu_prepare_zap_page(sp); 2355 ++kvm->stat.mmu_shadow_zapped; 2356 *nr_zapped = mmu_zap_unsync_children(kvm, sp, invalid_list); 2357 *nr_zapped += kvm_mmu_page_unlink_children(kvm, sp, invalid_list); 2358 kvm_mmu_unlink_parents(kvm, sp); 2359 2360 /* Zapping children means active_mmu_pages has become unstable. */ 2361 list_unstable = *nr_zapped; 2362 2363 if (!sp->role.invalid && !sp->role.direct) 2364 unaccount_shadowed(kvm, sp); 2365 2366 if (sp->unsync) 2367 kvm_unlink_unsync_page(kvm, sp); 2368 if (!sp->root_count) { 2369 /* Count self */ 2370 (*nr_zapped)++; 2371 2372 /* 2373 * Already invalid pages (previously active roots) are not on 2374 * the active page list. See list_del() in the "else" case of 2375 * !sp->root_count. 2376 */ 2377 if (sp->role.invalid) 2378 list_add(&sp->link, invalid_list); 2379 else 2380 list_move(&sp->link, invalid_list); 2381 kvm_mod_used_mmu_pages(kvm, -1); 2382 } else { 2383 /* 2384 * Remove the active root from the active page list, the root 2385 * will be explicitly freed when the root_count hits zero. 2386 */ 2387 list_del(&sp->link); 2388 2389 /* 2390 * Obsolete pages cannot be used on any vCPUs, see the comment 2391 * in kvm_mmu_zap_all_fast(). Note, is_obsolete_sp() also 2392 * treats invalid shadow pages as being obsolete. 2393 */ 2394 if (!is_obsolete_sp(kvm, sp)) 2395 kvm_reload_remote_mmus(kvm); 2396 } 2397 2398 if (sp->lpage_disallowed) 2399 unaccount_huge_nx_page(kvm, sp); 2400 2401 sp->role.invalid = 1; 2402 return list_unstable; 2403 } 2404 2405 static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp, 2406 struct list_head *invalid_list) 2407 { 2408 int nr_zapped; 2409 2410 __kvm_mmu_prepare_zap_page(kvm, sp, invalid_list, &nr_zapped); 2411 return nr_zapped; 2412 } 2413 2414 static void kvm_mmu_commit_zap_page(struct kvm *kvm, 2415 struct list_head *invalid_list) 2416 { 2417 struct kvm_mmu_page *sp, *nsp; 2418 2419 if (list_empty(invalid_list)) 2420 return; 2421 2422 /* 2423 * We need to make sure everyone sees our modifications to 2424 * the page tables and see changes to vcpu->mode here. The barrier 2425 * in the kvm_flush_remote_tlbs() achieves this. This pairs 2426 * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end. 2427 * 2428 * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit 2429 * guest mode and/or lockless shadow page table walks. 2430 */ 2431 kvm_flush_remote_tlbs(kvm); 2432 2433 list_for_each_entry_safe(sp, nsp, invalid_list, link) { 2434 WARN_ON(!sp->role.invalid || sp->root_count); 2435 kvm_mmu_free_page(sp); 2436 } 2437 } 2438 2439 static unsigned long kvm_mmu_zap_oldest_mmu_pages(struct kvm *kvm, 2440 unsigned long nr_to_zap) 2441 { 2442 unsigned long total_zapped = 0; 2443 struct kvm_mmu_page *sp, *tmp; 2444 LIST_HEAD(invalid_list); 2445 bool unstable; 2446 int nr_zapped; 2447 2448 if (list_empty(&kvm->arch.active_mmu_pages)) 2449 return 0; 2450 2451 restart: 2452 list_for_each_entry_safe_reverse(sp, tmp, &kvm->arch.active_mmu_pages, link) { 2453 /* 2454 * Don't zap active root pages, the page itself can't be freed 2455 * and zapping it will just force vCPUs to realloc and reload. 2456 */ 2457 if (sp->root_count) 2458 continue; 2459 2460 unstable = __kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list, 2461 &nr_zapped); 2462 total_zapped += nr_zapped; 2463 if (total_zapped >= nr_to_zap) 2464 break; 2465 2466 if (unstable) 2467 goto restart; 2468 } 2469 2470 kvm_mmu_commit_zap_page(kvm, &invalid_list); 2471 2472 kvm->stat.mmu_recycled += total_zapped; 2473 return total_zapped; 2474 } 2475 2476 static inline unsigned long kvm_mmu_available_pages(struct kvm *kvm) 2477 { 2478 if (kvm->arch.n_max_mmu_pages > kvm->arch.n_used_mmu_pages) 2479 return kvm->arch.n_max_mmu_pages - 2480 kvm->arch.n_used_mmu_pages; 2481 2482 return 0; 2483 } 2484 2485 static int make_mmu_pages_available(struct kvm_vcpu *vcpu) 2486 { 2487 unsigned long avail = kvm_mmu_available_pages(vcpu->kvm); 2488 2489 if (likely(avail >= KVM_MIN_FREE_MMU_PAGES)) 2490 return 0; 2491 2492 kvm_mmu_zap_oldest_mmu_pages(vcpu->kvm, KVM_REFILL_PAGES - avail); 2493 2494 /* 2495 * Note, this check is intentionally soft, it only guarantees that one 2496 * page is available, while the caller may end up allocating as many as 2497 * four pages, e.g. for PAE roots or for 5-level paging. Temporarily 2498 * exceeding the (arbitrary by default) limit will not harm the host, 2499 * being too aggressive may unnecessarily kill the guest, and getting an 2500 * exact count is far more trouble than it's worth, especially in the 2501 * page fault paths. 2502 */ 2503 if (!kvm_mmu_available_pages(vcpu->kvm)) 2504 return -ENOSPC; 2505 return 0; 2506 } 2507 2508 /* 2509 * Changing the number of mmu pages allocated to the vm 2510 * Note: if goal_nr_mmu_pages is too small, you will get dead lock 2511 */ 2512 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long goal_nr_mmu_pages) 2513 { 2514 write_lock(&kvm->mmu_lock); 2515 2516 if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) { 2517 kvm_mmu_zap_oldest_mmu_pages(kvm, kvm->arch.n_used_mmu_pages - 2518 goal_nr_mmu_pages); 2519 2520 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages; 2521 } 2522 2523 kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages; 2524 2525 write_unlock(&kvm->mmu_lock); 2526 } 2527 2528 int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn) 2529 { 2530 struct kvm_mmu_page *sp; 2531 LIST_HEAD(invalid_list); 2532 int r; 2533 2534 pgprintk("%s: looking for gfn %llx\n", __func__, gfn); 2535 r = 0; 2536 write_lock(&kvm->mmu_lock); 2537 for_each_gfn_indirect_valid_sp(kvm, sp, gfn) { 2538 pgprintk("%s: gfn %llx role %x\n", __func__, gfn, 2539 sp->role.word); 2540 r = 1; 2541 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list); 2542 } 2543 kvm_mmu_commit_zap_page(kvm, &invalid_list); 2544 write_unlock(&kvm->mmu_lock); 2545 2546 return r; 2547 } 2548 2549 static int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva) 2550 { 2551 gpa_t gpa; 2552 int r; 2553 2554 if (vcpu->arch.mmu->direct_map) 2555 return 0; 2556 2557 gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL); 2558 2559 r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT); 2560 2561 return r; 2562 } 2563 2564 static void kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp) 2565 { 2566 trace_kvm_mmu_unsync_page(sp); 2567 ++vcpu->kvm->stat.mmu_unsync; 2568 sp->unsync = 1; 2569 2570 kvm_mmu_mark_parents_unsync(sp); 2571 } 2572 2573 /* 2574 * Attempt to unsync any shadow pages that can be reached by the specified gfn, 2575 * KVM is creating a writable mapping for said gfn. Returns 0 if all pages 2576 * were marked unsync (or if there is no shadow page), -EPERM if the SPTE must 2577 * be write-protected. 2578 */ 2579 int mmu_try_to_unsync_pages(struct kvm_vcpu *vcpu, struct kvm_memory_slot *slot, 2580 gfn_t gfn, bool can_unsync, bool prefetch) 2581 { 2582 struct kvm_mmu_page *sp; 2583 bool locked = false; 2584 2585 /* 2586 * Force write-protection if the page is being tracked. Note, the page 2587 * track machinery is used to write-protect upper-level shadow pages, 2588 * i.e. this guards the role.level == 4K assertion below! 2589 */ 2590 if (kvm_slot_page_track_is_active(vcpu, slot, gfn, KVM_PAGE_TRACK_WRITE)) 2591 return -EPERM; 2592 2593 /* 2594 * The page is not write-tracked, mark existing shadow pages unsync 2595 * unless KVM is synchronizing an unsync SP (can_unsync = false). In 2596 * that case, KVM must complete emulation of the guest TLB flush before 2597 * allowing shadow pages to become unsync (writable by the guest). 2598 */ 2599 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) { 2600 if (!can_unsync) 2601 return -EPERM; 2602 2603 if (sp->unsync) 2604 continue; 2605 2606 if (prefetch) 2607 return -EEXIST; 2608 2609 /* 2610 * TDP MMU page faults require an additional spinlock as they 2611 * run with mmu_lock held for read, not write, and the unsync 2612 * logic is not thread safe. Take the spinklock regardless of 2613 * the MMU type to avoid extra conditionals/parameters, there's 2614 * no meaningful penalty if mmu_lock is held for write. 2615 */ 2616 if (!locked) { 2617 locked = true; 2618 spin_lock(&vcpu->kvm->arch.mmu_unsync_pages_lock); 2619 2620 /* 2621 * Recheck after taking the spinlock, a different vCPU 2622 * may have since marked the page unsync. A false 2623 * positive on the unprotected check above is not 2624 * possible as clearing sp->unsync _must_ hold mmu_lock 2625 * for write, i.e. unsync cannot transition from 0->1 2626 * while this CPU holds mmu_lock for read (or write). 2627 */ 2628 if (READ_ONCE(sp->unsync)) 2629 continue; 2630 } 2631 2632 WARN_ON(sp->role.level != PG_LEVEL_4K); 2633 kvm_unsync_page(vcpu, sp); 2634 } 2635 if (locked) 2636 spin_unlock(&vcpu->kvm->arch.mmu_unsync_pages_lock); 2637 2638 /* 2639 * We need to ensure that the marking of unsync pages is visible 2640 * before the SPTE is updated to allow writes because 2641 * kvm_mmu_sync_roots() checks the unsync flags without holding 2642 * the MMU lock and so can race with this. If the SPTE was updated 2643 * before the page had been marked as unsync-ed, something like the 2644 * following could happen: 2645 * 2646 * CPU 1 CPU 2 2647 * --------------------------------------------------------------------- 2648 * 1.2 Host updates SPTE 2649 * to be writable 2650 * 2.1 Guest writes a GPTE for GVA X. 2651 * (GPTE being in the guest page table shadowed 2652 * by the SP from CPU 1.) 2653 * This reads SPTE during the page table walk. 2654 * Since SPTE.W is read as 1, there is no 2655 * fault. 2656 * 2657 * 2.2 Guest issues TLB flush. 2658 * That causes a VM Exit. 2659 * 2660 * 2.3 Walking of unsync pages sees sp->unsync is 2661 * false and skips the page. 2662 * 2663 * 2.4 Guest accesses GVA X. 2664 * Since the mapping in the SP was not updated, 2665 * so the old mapping for GVA X incorrectly 2666 * gets used. 2667 * 1.1 Host marks SP 2668 * as unsync 2669 * (sp->unsync = true) 2670 * 2671 * The write barrier below ensures that 1.1 happens before 1.2 and thus 2672 * the situation in 2.4 does not arise. It pairs with the read barrier 2673 * in is_unsync_root(), placed between 2.1's load of SPTE.W and 2.3. 2674 */ 2675 smp_wmb(); 2676 2677 return 0; 2678 } 2679 2680 static int mmu_set_spte(struct kvm_vcpu *vcpu, struct kvm_memory_slot *slot, 2681 u64 *sptep, unsigned int pte_access, gfn_t gfn, 2682 kvm_pfn_t pfn, struct kvm_page_fault *fault) 2683 { 2684 struct kvm_mmu_page *sp = sptep_to_sp(sptep); 2685 int level = sp->role.level; 2686 int was_rmapped = 0; 2687 int ret = RET_PF_FIXED; 2688 bool flush = false; 2689 bool wrprot; 2690 u64 spte; 2691 2692 /* Prefetching always gets a writable pfn. */ 2693 bool host_writable = !fault || fault->map_writable; 2694 bool prefetch = !fault || fault->prefetch; 2695 bool write_fault = fault && fault->write; 2696 2697 pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__, 2698 *sptep, write_fault, gfn); 2699 2700 if (unlikely(is_noslot_pfn(pfn))) { 2701 mark_mmio_spte(vcpu, sptep, gfn, pte_access); 2702 return RET_PF_EMULATE; 2703 } 2704 2705 if (is_shadow_present_pte(*sptep)) { 2706 /* 2707 * If we overwrite a PTE page pointer with a 2MB PMD, unlink 2708 * the parent of the now unreachable PTE. 2709 */ 2710 if (level > PG_LEVEL_4K && !is_large_pte(*sptep)) { 2711 struct kvm_mmu_page *child; 2712 u64 pte = *sptep; 2713 2714 child = to_shadow_page(pte & PT64_BASE_ADDR_MASK); 2715 drop_parent_pte(child, sptep); 2716 flush = true; 2717 } else if (pfn != spte_to_pfn(*sptep)) { 2718 pgprintk("hfn old %llx new %llx\n", 2719 spte_to_pfn(*sptep), pfn); 2720 drop_spte(vcpu->kvm, sptep); 2721 flush = true; 2722 } else 2723 was_rmapped = 1; 2724 } 2725 2726 wrprot = make_spte(vcpu, sp, slot, pte_access, gfn, pfn, *sptep, prefetch, 2727 true, host_writable, &spte); 2728 2729 if (*sptep == spte) { 2730 ret = RET_PF_SPURIOUS; 2731 } else { 2732 trace_kvm_mmu_set_spte(level, gfn, sptep); 2733 flush |= mmu_spte_update(sptep, spte); 2734 } 2735 2736 if (wrprot) { 2737 if (write_fault) 2738 ret = RET_PF_EMULATE; 2739 } 2740 2741 if (flush) 2742 kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn, 2743 KVM_PAGES_PER_HPAGE(level)); 2744 2745 pgprintk("%s: setting spte %llx\n", __func__, *sptep); 2746 2747 if (!was_rmapped) { 2748 WARN_ON_ONCE(ret == RET_PF_SPURIOUS); 2749 kvm_update_page_stats(vcpu->kvm, level, 1); 2750 rmap_add(vcpu, slot, sptep, gfn); 2751 } 2752 2753 return ret; 2754 } 2755 2756 static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu, 2757 struct kvm_mmu_page *sp, 2758 u64 *start, u64 *end) 2759 { 2760 struct page *pages[PTE_PREFETCH_NUM]; 2761 struct kvm_memory_slot *slot; 2762 unsigned int access = sp->role.access; 2763 int i, ret; 2764 gfn_t gfn; 2765 2766 gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt); 2767 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK); 2768 if (!slot) 2769 return -1; 2770 2771 ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start); 2772 if (ret <= 0) 2773 return -1; 2774 2775 for (i = 0; i < ret; i++, gfn++, start++) { 2776 mmu_set_spte(vcpu, slot, start, access, gfn, 2777 page_to_pfn(pages[i]), NULL); 2778 put_page(pages[i]); 2779 } 2780 2781 return 0; 2782 } 2783 2784 static void __direct_pte_prefetch(struct kvm_vcpu *vcpu, 2785 struct kvm_mmu_page *sp, u64 *sptep) 2786 { 2787 u64 *spte, *start = NULL; 2788 int i; 2789 2790 WARN_ON(!sp->role.direct); 2791 2792 i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1); 2793 spte = sp->spt + i; 2794 2795 for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) { 2796 if (is_shadow_present_pte(*spte) || spte == sptep) { 2797 if (!start) 2798 continue; 2799 if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0) 2800 return; 2801 start = NULL; 2802 } else if (!start) 2803 start = spte; 2804 } 2805 if (start) 2806 direct_pte_prefetch_many(vcpu, sp, start, spte); 2807 } 2808 2809 static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep) 2810 { 2811 struct kvm_mmu_page *sp; 2812 2813 sp = sptep_to_sp(sptep); 2814 2815 /* 2816 * Without accessed bits, there's no way to distinguish between 2817 * actually accessed translations and prefetched, so disable pte 2818 * prefetch if accessed bits aren't available. 2819 */ 2820 if (sp_ad_disabled(sp)) 2821 return; 2822 2823 if (sp->role.level > PG_LEVEL_4K) 2824 return; 2825 2826 /* 2827 * If addresses are being invalidated, skip prefetching to avoid 2828 * accidentally prefetching those addresses. 2829 */ 2830 if (unlikely(vcpu->kvm->mmu_notifier_count)) 2831 return; 2832 2833 __direct_pte_prefetch(vcpu, sp, sptep); 2834 } 2835 2836 static int host_pfn_mapping_level(struct kvm *kvm, gfn_t gfn, kvm_pfn_t pfn, 2837 const struct kvm_memory_slot *slot) 2838 { 2839 unsigned long hva; 2840 pte_t *pte; 2841 int level; 2842 2843 if (!PageCompound(pfn_to_page(pfn)) && !kvm_is_zone_device_pfn(pfn)) 2844 return PG_LEVEL_4K; 2845 2846 /* 2847 * Note, using the already-retrieved memslot and __gfn_to_hva_memslot() 2848 * is not solely for performance, it's also necessary to avoid the 2849 * "writable" check in __gfn_to_hva_many(), which will always fail on 2850 * read-only memslots due to gfn_to_hva() assuming writes. Earlier 2851 * page fault steps have already verified the guest isn't writing a 2852 * read-only memslot. 2853 */ 2854 hva = __gfn_to_hva_memslot(slot, gfn); 2855 2856 pte = lookup_address_in_mm(kvm->mm, hva, &level); 2857 if (unlikely(!pte)) 2858 return PG_LEVEL_4K; 2859 2860 return level; 2861 } 2862 2863 int kvm_mmu_max_mapping_level(struct kvm *kvm, 2864 const struct kvm_memory_slot *slot, gfn_t gfn, 2865 kvm_pfn_t pfn, int max_level) 2866 { 2867 struct kvm_lpage_info *linfo; 2868 int host_level; 2869 2870 max_level = min(max_level, max_huge_page_level); 2871 for ( ; max_level > PG_LEVEL_4K; max_level--) { 2872 linfo = lpage_info_slot(gfn, slot, max_level); 2873 if (!linfo->disallow_lpage) 2874 break; 2875 } 2876 2877 if (max_level == PG_LEVEL_4K) 2878 return PG_LEVEL_4K; 2879 2880 host_level = host_pfn_mapping_level(kvm, gfn, pfn, slot); 2881 return min(host_level, max_level); 2882 } 2883 2884 void kvm_mmu_hugepage_adjust(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault) 2885 { 2886 struct kvm_memory_slot *slot = fault->slot; 2887 kvm_pfn_t mask; 2888 2889 fault->huge_page_disallowed = fault->exec && fault->nx_huge_page_workaround_enabled; 2890 2891 if (unlikely(fault->max_level == PG_LEVEL_4K)) 2892 return; 2893 2894 if (is_error_noslot_pfn(fault->pfn) || kvm_is_reserved_pfn(fault->pfn)) 2895 return; 2896 2897 if (kvm_slot_dirty_track_enabled(slot)) 2898 return; 2899 2900 /* 2901 * Enforce the iTLB multihit workaround after capturing the requested 2902 * level, which will be used to do precise, accurate accounting. 2903 */ 2904 fault->req_level = kvm_mmu_max_mapping_level(vcpu->kvm, slot, 2905 fault->gfn, fault->pfn, 2906 fault->max_level); 2907 if (fault->req_level == PG_LEVEL_4K || fault->huge_page_disallowed) 2908 return; 2909 2910 /* 2911 * mmu_notifier_retry() was successful and mmu_lock is held, so 2912 * the pmd can't be split from under us. 2913 */ 2914 fault->goal_level = fault->req_level; 2915 mask = KVM_PAGES_PER_HPAGE(fault->goal_level) - 1; 2916 VM_BUG_ON((fault->gfn & mask) != (fault->pfn & mask)); 2917 fault->pfn &= ~mask; 2918 } 2919 2920 void disallowed_hugepage_adjust(struct kvm_page_fault *fault, u64 spte, int cur_level) 2921 { 2922 if (cur_level > PG_LEVEL_4K && 2923 cur_level == fault->goal_level && 2924 is_shadow_present_pte(spte) && 2925 !is_large_pte(spte)) { 2926 /* 2927 * A small SPTE exists for this pfn, but FNAME(fetch) 2928 * and __direct_map would like to create a large PTE 2929 * instead: just force them to go down another level, 2930 * patching back for them into pfn the next 9 bits of 2931 * the address. 2932 */ 2933 u64 page_mask = KVM_PAGES_PER_HPAGE(cur_level) - 2934 KVM_PAGES_PER_HPAGE(cur_level - 1); 2935 fault->pfn |= fault->gfn & page_mask; 2936 fault->goal_level--; 2937 } 2938 } 2939 2940 static int __direct_map(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault) 2941 { 2942 struct kvm_shadow_walk_iterator it; 2943 struct kvm_mmu_page *sp; 2944 int ret; 2945 gfn_t base_gfn = fault->gfn; 2946 2947 kvm_mmu_hugepage_adjust(vcpu, fault); 2948 2949 trace_kvm_mmu_spte_requested(fault); 2950 for_each_shadow_entry(vcpu, fault->addr, it) { 2951 /* 2952 * We cannot overwrite existing page tables with an NX 2953 * large page, as the leaf could be executable. 2954 */ 2955 if (fault->nx_huge_page_workaround_enabled) 2956 disallowed_hugepage_adjust(fault, *it.sptep, it.level); 2957 2958 base_gfn = fault->gfn & ~(KVM_PAGES_PER_HPAGE(it.level) - 1); 2959 if (it.level == fault->goal_level) 2960 break; 2961 2962 drop_large_spte(vcpu, it.sptep); 2963 if (is_shadow_present_pte(*it.sptep)) 2964 continue; 2965 2966 sp = kvm_mmu_get_page(vcpu, base_gfn, it.addr, 2967 it.level - 1, true, ACC_ALL); 2968 2969 link_shadow_page(vcpu, it.sptep, sp); 2970 if (fault->is_tdp && fault->huge_page_disallowed && 2971 fault->req_level >= it.level) 2972 account_huge_nx_page(vcpu->kvm, sp); 2973 } 2974 2975 if (WARN_ON_ONCE(it.level != fault->goal_level)) 2976 return -EFAULT; 2977 2978 ret = mmu_set_spte(vcpu, fault->slot, it.sptep, ACC_ALL, 2979 base_gfn, fault->pfn, fault); 2980 if (ret == RET_PF_SPURIOUS) 2981 return ret; 2982 2983 direct_pte_prefetch(vcpu, it.sptep); 2984 ++vcpu->stat.pf_fixed; 2985 return ret; 2986 } 2987 2988 static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk) 2989 { 2990 send_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, PAGE_SHIFT, tsk); 2991 } 2992 2993 static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, kvm_pfn_t pfn) 2994 { 2995 /* 2996 * Do not cache the mmio info caused by writing the readonly gfn 2997 * into the spte otherwise read access on readonly gfn also can 2998 * caused mmio page fault and treat it as mmio access. 2999 */ 3000 if (pfn == KVM_PFN_ERR_RO_FAULT) 3001 return RET_PF_EMULATE; 3002 3003 if (pfn == KVM_PFN_ERR_HWPOISON) { 3004 kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current); 3005 return RET_PF_RETRY; 3006 } 3007 3008 return -EFAULT; 3009 } 3010 3011 static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault, 3012 unsigned int access, int *ret_val) 3013 { 3014 /* The pfn is invalid, report the error! */ 3015 if (unlikely(is_error_pfn(fault->pfn))) { 3016 *ret_val = kvm_handle_bad_page(vcpu, fault->gfn, fault->pfn); 3017 return true; 3018 } 3019 3020 if (unlikely(!fault->slot)) { 3021 gva_t gva = fault->is_tdp ? 0 : fault->addr; 3022 3023 vcpu_cache_mmio_info(vcpu, gva, fault->gfn, 3024 access & shadow_mmio_access_mask); 3025 /* 3026 * If MMIO caching is disabled, emulate immediately without 3027 * touching the shadow page tables as attempting to install an 3028 * MMIO SPTE will just be an expensive nop. 3029 */ 3030 if (unlikely(!shadow_mmio_value)) { 3031 *ret_val = RET_PF_EMULATE; 3032 return true; 3033 } 3034 } 3035 3036 return false; 3037 } 3038 3039 static bool page_fault_can_be_fast(struct kvm_page_fault *fault) 3040 { 3041 /* 3042 * Do not fix the mmio spte with invalid generation number which 3043 * need to be updated by slow page fault path. 3044 */ 3045 if (fault->rsvd) 3046 return false; 3047 3048 /* See if the page fault is due to an NX violation */ 3049 if (unlikely(fault->exec && fault->present)) 3050 return false; 3051 3052 /* 3053 * #PF can be fast if: 3054 * 1. The shadow page table entry is not present, which could mean that 3055 * the fault is potentially caused by access tracking (if enabled). 3056 * 2. The shadow page table entry is present and the fault 3057 * is caused by write-protect, that means we just need change the W 3058 * bit of the spte which can be done out of mmu-lock. 3059 * 3060 * However, if access tracking is disabled we know that a non-present 3061 * page must be a genuine page fault where we have to create a new SPTE. 3062 * So, if access tracking is disabled, we return true only for write 3063 * accesses to a present page. 3064 */ 3065 3066 return shadow_acc_track_mask != 0 || (fault->write && fault->present); 3067 } 3068 3069 /* 3070 * Returns true if the SPTE was fixed successfully. Otherwise, 3071 * someone else modified the SPTE from its original value. 3072 */ 3073 static bool 3074 fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault, 3075 u64 *sptep, u64 old_spte, u64 new_spte) 3076 { 3077 /* 3078 * Theoretically we could also set dirty bit (and flush TLB) here in 3079 * order to eliminate unnecessary PML logging. See comments in 3080 * set_spte. But fast_page_fault is very unlikely to happen with PML 3081 * enabled, so we do not do this. This might result in the same GPA 3082 * to be logged in PML buffer again when the write really happens, and 3083 * eventually to be called by mark_page_dirty twice. But it's also no 3084 * harm. This also avoids the TLB flush needed after setting dirty bit 3085 * so non-PML cases won't be impacted. 3086 * 3087 * Compare with set_spte where instead shadow_dirty_mask is set. 3088 */ 3089 if (cmpxchg64(sptep, old_spte, new_spte) != old_spte) 3090 return false; 3091 3092 if (is_writable_pte(new_spte) && !is_writable_pte(old_spte)) 3093 mark_page_dirty_in_slot(vcpu->kvm, fault->slot, fault->gfn); 3094 3095 return true; 3096 } 3097 3098 static bool is_access_allowed(struct kvm_page_fault *fault, u64 spte) 3099 { 3100 if (fault->exec) 3101 return is_executable_pte(spte); 3102 3103 if (fault->write) 3104 return is_writable_pte(spte); 3105 3106 /* Fault was on Read access */ 3107 return spte & PT_PRESENT_MASK; 3108 } 3109 3110 /* 3111 * Returns the last level spte pointer of the shadow page walk for the given 3112 * gpa, and sets *spte to the spte value. This spte may be non-preset. If no 3113 * walk could be performed, returns NULL and *spte does not contain valid data. 3114 * 3115 * Contract: 3116 * - Must be called between walk_shadow_page_lockless_{begin,end}. 3117 * - The returned sptep must not be used after walk_shadow_page_lockless_end. 3118 */ 3119 static u64 *fast_pf_get_last_sptep(struct kvm_vcpu *vcpu, gpa_t gpa, u64 *spte) 3120 { 3121 struct kvm_shadow_walk_iterator iterator; 3122 u64 old_spte; 3123 u64 *sptep = NULL; 3124 3125 for_each_shadow_entry_lockless(vcpu, gpa, iterator, old_spte) { 3126 sptep = iterator.sptep; 3127 *spte = old_spte; 3128 } 3129 3130 return sptep; 3131 } 3132 3133 /* 3134 * Returns one of RET_PF_INVALID, RET_PF_FIXED or RET_PF_SPURIOUS. 3135 */ 3136 static int fast_page_fault(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault) 3137 { 3138 struct kvm_mmu_page *sp; 3139 int ret = RET_PF_INVALID; 3140 u64 spte = 0ull; 3141 u64 *sptep = NULL; 3142 uint retry_count = 0; 3143 3144 if (!page_fault_can_be_fast(fault)) 3145 return ret; 3146 3147 walk_shadow_page_lockless_begin(vcpu); 3148 3149 do { 3150 u64 new_spte; 3151 3152 if (is_tdp_mmu(vcpu->arch.mmu)) 3153 sptep = kvm_tdp_mmu_fast_pf_get_last_sptep(vcpu, fault->addr, &spte); 3154 else 3155 sptep = fast_pf_get_last_sptep(vcpu, fault->addr, &spte); 3156 3157 if (!is_shadow_present_pte(spte)) 3158 break; 3159 3160 sp = sptep_to_sp(sptep); 3161 if (!is_last_spte(spte, sp->role.level)) 3162 break; 3163 3164 /* 3165 * Check whether the memory access that caused the fault would 3166 * still cause it if it were to be performed right now. If not, 3167 * then this is a spurious fault caused by TLB lazily flushed, 3168 * or some other CPU has already fixed the PTE after the 3169 * current CPU took the fault. 3170 * 3171 * Need not check the access of upper level table entries since 3172 * they are always ACC_ALL. 3173 */ 3174 if (is_access_allowed(fault, spte)) { 3175 ret = RET_PF_SPURIOUS; 3176 break; 3177 } 3178 3179 new_spte = spte; 3180 3181 if (is_access_track_spte(spte)) 3182 new_spte = restore_acc_track_spte(new_spte); 3183 3184 /* 3185 * Currently, to simplify the code, write-protection can 3186 * be removed in the fast path only if the SPTE was 3187 * write-protected for dirty-logging or access tracking. 3188 */ 3189 if (fault->write && 3190 spte_can_locklessly_be_made_writable(spte)) { 3191 new_spte |= PT_WRITABLE_MASK; 3192 3193 /* 3194 * Do not fix write-permission on the large spte when 3195 * dirty logging is enabled. Since we only dirty the 3196 * first page into the dirty-bitmap in 3197 * fast_pf_fix_direct_spte(), other pages are missed 3198 * if its slot has dirty logging enabled. 3199 * 3200 * Instead, we let the slow page fault path create a 3201 * normal spte to fix the access. 3202 */ 3203 if (sp->role.level > PG_LEVEL_4K && 3204 kvm_slot_dirty_track_enabled(fault->slot)) 3205 break; 3206 } 3207 3208 /* Verify that the fault can be handled in the fast path */ 3209 if (new_spte == spte || 3210 !is_access_allowed(fault, new_spte)) 3211 break; 3212 3213 /* 3214 * Currently, fast page fault only works for direct mapping 3215 * since the gfn is not stable for indirect shadow page. See 3216 * Documentation/virt/kvm/locking.rst to get more detail. 3217 */ 3218 if (fast_pf_fix_direct_spte(vcpu, fault, sptep, spte, new_spte)) { 3219 ret = RET_PF_FIXED; 3220 break; 3221 } 3222 3223 if (++retry_count > 4) { 3224 printk_once(KERN_WARNING 3225 "kvm: Fast #PF retrying more than 4 times.\n"); 3226 break; 3227 } 3228 3229 } while (true); 3230 3231 trace_fast_page_fault(vcpu, fault, sptep, spte, ret); 3232 walk_shadow_page_lockless_end(vcpu); 3233 3234 return ret; 3235 } 3236 3237 static void mmu_free_root_page(struct kvm *kvm, hpa_t *root_hpa, 3238 struct list_head *invalid_list) 3239 { 3240 struct kvm_mmu_page *sp; 3241 3242 if (!VALID_PAGE(*root_hpa)) 3243 return; 3244 3245 sp = to_shadow_page(*root_hpa & PT64_BASE_ADDR_MASK); 3246 3247 if (is_tdp_mmu_page(sp)) 3248 kvm_tdp_mmu_put_root(kvm, sp, false); 3249 else if (!--sp->root_count && sp->role.invalid) 3250 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list); 3251 3252 *root_hpa = INVALID_PAGE; 3253 } 3254 3255 /* roots_to_free must be some combination of the KVM_MMU_ROOT_* flags */ 3256 void kvm_mmu_free_roots(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, 3257 ulong roots_to_free) 3258 { 3259 struct kvm *kvm = vcpu->kvm; 3260 int i; 3261 LIST_HEAD(invalid_list); 3262 bool free_active_root = roots_to_free & KVM_MMU_ROOT_CURRENT; 3263 3264 BUILD_BUG_ON(KVM_MMU_NUM_PREV_ROOTS >= BITS_PER_LONG); 3265 3266 /* Before acquiring the MMU lock, see if we need to do any real work. */ 3267 if (!(free_active_root && VALID_PAGE(mmu->root_hpa))) { 3268 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 3269 if ((roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) && 3270 VALID_PAGE(mmu->prev_roots[i].hpa)) 3271 break; 3272 3273 if (i == KVM_MMU_NUM_PREV_ROOTS) 3274 return; 3275 } 3276 3277 write_lock(&kvm->mmu_lock); 3278 3279 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 3280 if (roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) 3281 mmu_free_root_page(kvm, &mmu->prev_roots[i].hpa, 3282 &invalid_list); 3283 3284 if (free_active_root) { 3285 if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL && 3286 (mmu->root_level >= PT64_ROOT_4LEVEL || mmu->direct_map)) { 3287 mmu_free_root_page(kvm, &mmu->root_hpa, &invalid_list); 3288 } else if (mmu->pae_root) { 3289 for (i = 0; i < 4; ++i) { 3290 if (!IS_VALID_PAE_ROOT(mmu->pae_root[i])) 3291 continue; 3292 3293 mmu_free_root_page(kvm, &mmu->pae_root[i], 3294 &invalid_list); 3295 mmu->pae_root[i] = INVALID_PAE_ROOT; 3296 } 3297 } 3298 mmu->root_hpa = INVALID_PAGE; 3299 mmu->root_pgd = 0; 3300 } 3301 3302 kvm_mmu_commit_zap_page(kvm, &invalid_list); 3303 write_unlock(&kvm->mmu_lock); 3304 } 3305 EXPORT_SYMBOL_GPL(kvm_mmu_free_roots); 3306 3307 void kvm_mmu_free_guest_mode_roots(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu) 3308 { 3309 unsigned long roots_to_free = 0; 3310 hpa_t root_hpa; 3311 int i; 3312 3313 /* 3314 * This should not be called while L2 is active, L2 can't invalidate 3315 * _only_ its own roots, e.g. INVVPID unconditionally exits. 3316 */ 3317 WARN_ON_ONCE(mmu->mmu_role.base.guest_mode); 3318 3319 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) { 3320 root_hpa = mmu->prev_roots[i].hpa; 3321 if (!VALID_PAGE(root_hpa)) 3322 continue; 3323 3324 if (!to_shadow_page(root_hpa) || 3325 to_shadow_page(root_hpa)->role.guest_mode) 3326 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i); 3327 } 3328 3329 kvm_mmu_free_roots(vcpu, mmu, roots_to_free); 3330 } 3331 EXPORT_SYMBOL_GPL(kvm_mmu_free_guest_mode_roots); 3332 3333 3334 static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn) 3335 { 3336 int ret = 0; 3337 3338 if (!kvm_vcpu_is_visible_gfn(vcpu, root_gfn)) { 3339 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 3340 ret = 1; 3341 } 3342 3343 return ret; 3344 } 3345 3346 static hpa_t mmu_alloc_root(struct kvm_vcpu *vcpu, gfn_t gfn, gva_t gva, 3347 u8 level, bool direct) 3348 { 3349 struct kvm_mmu_page *sp; 3350 3351 sp = kvm_mmu_get_page(vcpu, gfn, gva, level, direct, ACC_ALL); 3352 ++sp->root_count; 3353 3354 return __pa(sp->spt); 3355 } 3356 3357 static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu) 3358 { 3359 struct kvm_mmu *mmu = vcpu->arch.mmu; 3360 u8 shadow_root_level = mmu->shadow_root_level; 3361 hpa_t root; 3362 unsigned i; 3363 int r; 3364 3365 write_lock(&vcpu->kvm->mmu_lock); 3366 r = make_mmu_pages_available(vcpu); 3367 if (r < 0) 3368 goto out_unlock; 3369 3370 if (is_tdp_mmu_enabled(vcpu->kvm)) { 3371 root = kvm_tdp_mmu_get_vcpu_root_hpa(vcpu); 3372 mmu->root_hpa = root; 3373 } else if (shadow_root_level >= PT64_ROOT_4LEVEL) { 3374 root = mmu_alloc_root(vcpu, 0, 0, shadow_root_level, true); 3375 mmu->root_hpa = root; 3376 } else if (shadow_root_level == PT32E_ROOT_LEVEL) { 3377 if (WARN_ON_ONCE(!mmu->pae_root)) { 3378 r = -EIO; 3379 goto out_unlock; 3380 } 3381 3382 for (i = 0; i < 4; ++i) { 3383 WARN_ON_ONCE(IS_VALID_PAE_ROOT(mmu->pae_root[i])); 3384 3385 root = mmu_alloc_root(vcpu, i << (30 - PAGE_SHIFT), 3386 i << 30, PT32_ROOT_LEVEL, true); 3387 mmu->pae_root[i] = root | PT_PRESENT_MASK | 3388 shadow_me_mask; 3389 } 3390 mmu->root_hpa = __pa(mmu->pae_root); 3391 } else { 3392 WARN_ONCE(1, "Bad TDP root level = %d\n", shadow_root_level); 3393 r = -EIO; 3394 goto out_unlock; 3395 } 3396 3397 /* root_pgd is ignored for direct MMUs. */ 3398 mmu->root_pgd = 0; 3399 out_unlock: 3400 write_unlock(&vcpu->kvm->mmu_lock); 3401 return r; 3402 } 3403 3404 static int mmu_first_shadow_root_alloc(struct kvm *kvm) 3405 { 3406 struct kvm_memslots *slots; 3407 struct kvm_memory_slot *slot; 3408 int r = 0, i; 3409 3410 /* 3411 * Check if this is the first shadow root being allocated before 3412 * taking the lock. 3413 */ 3414 if (kvm_shadow_root_allocated(kvm)) 3415 return 0; 3416 3417 mutex_lock(&kvm->slots_arch_lock); 3418 3419 /* Recheck, under the lock, whether this is the first shadow root. */ 3420 if (kvm_shadow_root_allocated(kvm)) 3421 goto out_unlock; 3422 3423 /* 3424 * Check if anything actually needs to be allocated, e.g. all metadata 3425 * will be allocated upfront if TDP is disabled. 3426 */ 3427 if (kvm_memslots_have_rmaps(kvm) && 3428 kvm_page_track_write_tracking_enabled(kvm)) 3429 goto out_success; 3430 3431 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { 3432 slots = __kvm_memslots(kvm, i); 3433 kvm_for_each_memslot(slot, slots) { 3434 /* 3435 * Both of these functions are no-ops if the target is 3436 * already allocated, so unconditionally calling both 3437 * is safe. Intentionally do NOT free allocations on 3438 * failure to avoid having to track which allocations 3439 * were made now versus when the memslot was created. 3440 * The metadata is guaranteed to be freed when the slot 3441 * is freed, and will be kept/used if userspace retries 3442 * KVM_RUN instead of killing the VM. 3443 */ 3444 r = memslot_rmap_alloc(slot, slot->npages); 3445 if (r) 3446 goto out_unlock; 3447 r = kvm_page_track_write_tracking_alloc(slot); 3448 if (r) 3449 goto out_unlock; 3450 } 3451 } 3452 3453 /* 3454 * Ensure that shadow_root_allocated becomes true strictly after 3455 * all the related pointers are set. 3456 */ 3457 out_success: 3458 smp_store_release(&kvm->arch.shadow_root_allocated, true); 3459 3460 out_unlock: 3461 mutex_unlock(&kvm->slots_arch_lock); 3462 return r; 3463 } 3464 3465 static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu) 3466 { 3467 struct kvm_mmu *mmu = vcpu->arch.mmu; 3468 u64 pdptrs[4], pm_mask; 3469 gfn_t root_gfn, root_pgd; 3470 hpa_t root; 3471 unsigned i; 3472 int r; 3473 3474 root_pgd = mmu->get_guest_pgd(vcpu); 3475 root_gfn = root_pgd >> PAGE_SHIFT; 3476 3477 if (mmu_check_root(vcpu, root_gfn)) 3478 return 1; 3479 3480 /* 3481 * On SVM, reading PDPTRs might access guest memory, which might fault 3482 * and thus might sleep. Grab the PDPTRs before acquiring mmu_lock. 3483 */ 3484 if (mmu->root_level == PT32E_ROOT_LEVEL) { 3485 for (i = 0; i < 4; ++i) { 3486 pdptrs[i] = mmu->get_pdptr(vcpu, i); 3487 if (!(pdptrs[i] & PT_PRESENT_MASK)) 3488 continue; 3489 3490 if (mmu_check_root(vcpu, pdptrs[i] >> PAGE_SHIFT)) 3491 return 1; 3492 } 3493 } 3494 3495 r = mmu_first_shadow_root_alloc(vcpu->kvm); 3496 if (r) 3497 return r; 3498 3499 write_lock(&vcpu->kvm->mmu_lock); 3500 r = make_mmu_pages_available(vcpu); 3501 if (r < 0) 3502 goto out_unlock; 3503 3504 /* 3505 * Do we shadow a long mode page table? If so we need to 3506 * write-protect the guests page table root. 3507 */ 3508 if (mmu->root_level >= PT64_ROOT_4LEVEL) { 3509 root = mmu_alloc_root(vcpu, root_gfn, 0, 3510 mmu->shadow_root_level, false); 3511 mmu->root_hpa = root; 3512 goto set_root_pgd; 3513 } 3514 3515 if (WARN_ON_ONCE(!mmu->pae_root)) { 3516 r = -EIO; 3517 goto out_unlock; 3518 } 3519 3520 /* 3521 * We shadow a 32 bit page table. This may be a legacy 2-level 3522 * or a PAE 3-level page table. In either case we need to be aware that 3523 * the shadow page table may be a PAE or a long mode page table. 3524 */ 3525 pm_mask = PT_PRESENT_MASK | shadow_me_mask; 3526 if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL) { 3527 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK; 3528 3529 if (WARN_ON_ONCE(!mmu->pml4_root)) { 3530 r = -EIO; 3531 goto out_unlock; 3532 } 3533 mmu->pml4_root[0] = __pa(mmu->pae_root) | pm_mask; 3534 3535 if (mmu->shadow_root_level == PT64_ROOT_5LEVEL) { 3536 if (WARN_ON_ONCE(!mmu->pml5_root)) { 3537 r = -EIO; 3538 goto out_unlock; 3539 } 3540 mmu->pml5_root[0] = __pa(mmu->pml4_root) | pm_mask; 3541 } 3542 } 3543 3544 for (i = 0; i < 4; ++i) { 3545 WARN_ON_ONCE(IS_VALID_PAE_ROOT(mmu->pae_root[i])); 3546 3547 if (mmu->root_level == PT32E_ROOT_LEVEL) { 3548 if (!(pdptrs[i] & PT_PRESENT_MASK)) { 3549 mmu->pae_root[i] = INVALID_PAE_ROOT; 3550 continue; 3551 } 3552 root_gfn = pdptrs[i] >> PAGE_SHIFT; 3553 } 3554 3555 root = mmu_alloc_root(vcpu, root_gfn, i << 30, 3556 PT32_ROOT_LEVEL, false); 3557 mmu->pae_root[i] = root | pm_mask; 3558 } 3559 3560 if (mmu->shadow_root_level == PT64_ROOT_5LEVEL) 3561 mmu->root_hpa = __pa(mmu->pml5_root); 3562 else if (mmu->shadow_root_level == PT64_ROOT_4LEVEL) 3563 mmu->root_hpa = __pa(mmu->pml4_root); 3564 else 3565 mmu->root_hpa = __pa(mmu->pae_root); 3566 3567 set_root_pgd: 3568 mmu->root_pgd = root_pgd; 3569 out_unlock: 3570 write_unlock(&vcpu->kvm->mmu_lock); 3571 3572 return 0; 3573 } 3574 3575 static int mmu_alloc_special_roots(struct kvm_vcpu *vcpu) 3576 { 3577 struct kvm_mmu *mmu = vcpu->arch.mmu; 3578 bool need_pml5 = mmu->shadow_root_level > PT64_ROOT_4LEVEL; 3579 u64 *pml5_root = NULL; 3580 u64 *pml4_root = NULL; 3581 u64 *pae_root; 3582 3583 /* 3584 * When shadowing 32-bit or PAE NPT with 64-bit NPT, the PML4 and PDP 3585 * tables are allocated and initialized at root creation as there is no 3586 * equivalent level in the guest's NPT to shadow. Allocate the tables 3587 * on demand, as running a 32-bit L1 VMM on 64-bit KVM is very rare. 3588 */ 3589 if (mmu->direct_map || mmu->root_level >= PT64_ROOT_4LEVEL || 3590 mmu->shadow_root_level < PT64_ROOT_4LEVEL) 3591 return 0; 3592 3593 /* 3594 * NPT, the only paging mode that uses this horror, uses a fixed number 3595 * of levels for the shadow page tables, e.g. all MMUs are 4-level or 3596 * all MMus are 5-level. Thus, this can safely require that pml5_root 3597 * is allocated if the other roots are valid and pml5 is needed, as any 3598 * prior MMU would also have required pml5. 3599 */ 3600 if (mmu->pae_root && mmu->pml4_root && (!need_pml5 || mmu->pml5_root)) 3601 return 0; 3602 3603 /* 3604 * The special roots should always be allocated in concert. Yell and 3605 * bail if KVM ends up in a state where only one of the roots is valid. 3606 */ 3607 if (WARN_ON_ONCE(!tdp_enabled || mmu->pae_root || mmu->pml4_root || 3608 (need_pml5 && mmu->pml5_root))) 3609 return -EIO; 3610 3611 /* 3612 * Unlike 32-bit NPT, the PDP table doesn't need to be in low mem, and 3613 * doesn't need to be decrypted. 3614 */ 3615 pae_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT); 3616 if (!pae_root) 3617 return -ENOMEM; 3618 3619 #ifdef CONFIG_X86_64 3620 pml4_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT); 3621 if (!pml4_root) 3622 goto err_pml4; 3623 3624 if (need_pml5) { 3625 pml5_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT); 3626 if (!pml5_root) 3627 goto err_pml5; 3628 } 3629 #endif 3630 3631 mmu->pae_root = pae_root; 3632 mmu->pml4_root = pml4_root; 3633 mmu->pml5_root = pml5_root; 3634 3635 return 0; 3636 3637 #ifdef CONFIG_X86_64 3638 err_pml5: 3639 free_page((unsigned long)pml4_root); 3640 err_pml4: 3641 free_page((unsigned long)pae_root); 3642 return -ENOMEM; 3643 #endif 3644 } 3645 3646 static bool is_unsync_root(hpa_t root) 3647 { 3648 struct kvm_mmu_page *sp; 3649 3650 if (!VALID_PAGE(root)) 3651 return false; 3652 3653 /* 3654 * The read barrier orders the CPU's read of SPTE.W during the page table 3655 * walk before the reads of sp->unsync/sp->unsync_children here. 3656 * 3657 * Even if another CPU was marking the SP as unsync-ed simultaneously, 3658 * any guest page table changes are not guaranteed to be visible anyway 3659 * until this VCPU issues a TLB flush strictly after those changes are 3660 * made. We only need to ensure that the other CPU sets these flags 3661 * before any actual changes to the page tables are made. The comments 3662 * in mmu_try_to_unsync_pages() describe what could go wrong if this 3663 * requirement isn't satisfied. 3664 */ 3665 smp_rmb(); 3666 sp = to_shadow_page(root); 3667 if (sp->unsync || sp->unsync_children) 3668 return true; 3669 3670 return false; 3671 } 3672 3673 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu) 3674 { 3675 int i; 3676 struct kvm_mmu_page *sp; 3677 3678 if (vcpu->arch.mmu->direct_map) 3679 return; 3680 3681 if (!VALID_PAGE(vcpu->arch.mmu->root_hpa)) 3682 return; 3683 3684 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY); 3685 3686 if (vcpu->arch.mmu->root_level >= PT64_ROOT_4LEVEL) { 3687 hpa_t root = vcpu->arch.mmu->root_hpa; 3688 sp = to_shadow_page(root); 3689 3690 if (!is_unsync_root(root)) 3691 return; 3692 3693 write_lock(&vcpu->kvm->mmu_lock); 3694 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC); 3695 3696 mmu_sync_children(vcpu, sp, true); 3697 3698 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC); 3699 write_unlock(&vcpu->kvm->mmu_lock); 3700 return; 3701 } 3702 3703 write_lock(&vcpu->kvm->mmu_lock); 3704 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC); 3705 3706 for (i = 0; i < 4; ++i) { 3707 hpa_t root = vcpu->arch.mmu->pae_root[i]; 3708 3709 if (IS_VALID_PAE_ROOT(root)) { 3710 root &= PT64_BASE_ADDR_MASK; 3711 sp = to_shadow_page(root); 3712 mmu_sync_children(vcpu, sp, true); 3713 } 3714 } 3715 3716 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC); 3717 write_unlock(&vcpu->kvm->mmu_lock); 3718 } 3719 3720 void kvm_mmu_sync_prev_roots(struct kvm_vcpu *vcpu) 3721 { 3722 unsigned long roots_to_free = 0; 3723 int i; 3724 3725 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 3726 if (is_unsync_root(vcpu->arch.mmu->prev_roots[i].hpa)) 3727 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i); 3728 3729 /* sync prev_roots by simply freeing them */ 3730 kvm_mmu_free_roots(vcpu, vcpu->arch.mmu, roots_to_free); 3731 } 3732 3733 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gpa_t vaddr, 3734 u32 access, struct x86_exception *exception) 3735 { 3736 if (exception) 3737 exception->error_code = 0; 3738 return vaddr; 3739 } 3740 3741 static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gpa_t vaddr, 3742 u32 access, 3743 struct x86_exception *exception) 3744 { 3745 if (exception) 3746 exception->error_code = 0; 3747 return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception); 3748 } 3749 3750 static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct) 3751 { 3752 /* 3753 * A nested guest cannot use the MMIO cache if it is using nested 3754 * page tables, because cr2 is a nGPA while the cache stores GPAs. 3755 */ 3756 if (mmu_is_nested(vcpu)) 3757 return false; 3758 3759 if (direct) 3760 return vcpu_match_mmio_gpa(vcpu, addr); 3761 3762 return vcpu_match_mmio_gva(vcpu, addr); 3763 } 3764 3765 /* 3766 * Return the level of the lowest level SPTE added to sptes. 3767 * That SPTE may be non-present. 3768 * 3769 * Must be called between walk_shadow_page_lockless_{begin,end}. 3770 */ 3771 static int get_walk(struct kvm_vcpu *vcpu, u64 addr, u64 *sptes, int *root_level) 3772 { 3773 struct kvm_shadow_walk_iterator iterator; 3774 int leaf = -1; 3775 u64 spte; 3776 3777 for (shadow_walk_init(&iterator, vcpu, addr), 3778 *root_level = iterator.level; 3779 shadow_walk_okay(&iterator); 3780 __shadow_walk_next(&iterator, spte)) { 3781 leaf = iterator.level; 3782 spte = mmu_spte_get_lockless(iterator.sptep); 3783 3784 sptes[leaf] = spte; 3785 } 3786 3787 return leaf; 3788 } 3789 3790 /* return true if reserved bit(s) are detected on a valid, non-MMIO SPTE. */ 3791 static bool get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep) 3792 { 3793 u64 sptes[PT64_ROOT_MAX_LEVEL + 1]; 3794 struct rsvd_bits_validate *rsvd_check; 3795 int root, leaf, level; 3796 bool reserved = false; 3797 3798 walk_shadow_page_lockless_begin(vcpu); 3799 3800 if (is_tdp_mmu(vcpu->arch.mmu)) 3801 leaf = kvm_tdp_mmu_get_walk(vcpu, addr, sptes, &root); 3802 else 3803 leaf = get_walk(vcpu, addr, sptes, &root); 3804 3805 walk_shadow_page_lockless_end(vcpu); 3806 3807 if (unlikely(leaf < 0)) { 3808 *sptep = 0ull; 3809 return reserved; 3810 } 3811 3812 *sptep = sptes[leaf]; 3813 3814 /* 3815 * Skip reserved bits checks on the terminal leaf if it's not a valid 3816 * SPTE. Note, this also (intentionally) skips MMIO SPTEs, which, by 3817 * design, always have reserved bits set. The purpose of the checks is 3818 * to detect reserved bits on non-MMIO SPTEs. i.e. buggy SPTEs. 3819 */ 3820 if (!is_shadow_present_pte(sptes[leaf])) 3821 leaf++; 3822 3823 rsvd_check = &vcpu->arch.mmu->shadow_zero_check; 3824 3825 for (level = root; level >= leaf; level--) 3826 reserved |= is_rsvd_spte(rsvd_check, sptes[level], level); 3827 3828 if (reserved) { 3829 pr_err("%s: reserved bits set on MMU-present spte, addr 0x%llx, hierarchy:\n", 3830 __func__, addr); 3831 for (level = root; level >= leaf; level--) 3832 pr_err("------ spte = 0x%llx level = %d, rsvd bits = 0x%llx", 3833 sptes[level], level, 3834 get_rsvd_bits(rsvd_check, sptes[level], level)); 3835 } 3836 3837 return reserved; 3838 } 3839 3840 static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct) 3841 { 3842 u64 spte; 3843 bool reserved; 3844 3845 if (mmio_info_in_cache(vcpu, addr, direct)) 3846 return RET_PF_EMULATE; 3847 3848 reserved = get_mmio_spte(vcpu, addr, &spte); 3849 if (WARN_ON(reserved)) 3850 return -EINVAL; 3851 3852 if (is_mmio_spte(spte)) { 3853 gfn_t gfn = get_mmio_spte_gfn(spte); 3854 unsigned int access = get_mmio_spte_access(spte); 3855 3856 if (!check_mmio_spte(vcpu, spte)) 3857 return RET_PF_INVALID; 3858 3859 if (direct) 3860 addr = 0; 3861 3862 trace_handle_mmio_page_fault(addr, gfn, access); 3863 vcpu_cache_mmio_info(vcpu, addr, gfn, access); 3864 return RET_PF_EMULATE; 3865 } 3866 3867 /* 3868 * If the page table is zapped by other cpus, let CPU fault again on 3869 * the address. 3870 */ 3871 return RET_PF_RETRY; 3872 } 3873 3874 static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu, 3875 struct kvm_page_fault *fault) 3876 { 3877 if (unlikely(fault->rsvd)) 3878 return false; 3879 3880 if (!fault->present || !fault->write) 3881 return false; 3882 3883 /* 3884 * guest is writing the page which is write tracked which can 3885 * not be fixed by page fault handler. 3886 */ 3887 if (kvm_slot_page_track_is_active(vcpu, fault->slot, fault->gfn, KVM_PAGE_TRACK_WRITE)) 3888 return true; 3889 3890 return false; 3891 } 3892 3893 static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr) 3894 { 3895 struct kvm_shadow_walk_iterator iterator; 3896 u64 spte; 3897 3898 walk_shadow_page_lockless_begin(vcpu); 3899 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) 3900 clear_sp_write_flooding_count(iterator.sptep); 3901 walk_shadow_page_lockless_end(vcpu); 3902 } 3903 3904 static bool kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, 3905 gfn_t gfn) 3906 { 3907 struct kvm_arch_async_pf arch; 3908 3909 arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id; 3910 arch.gfn = gfn; 3911 arch.direct_map = vcpu->arch.mmu->direct_map; 3912 arch.cr3 = vcpu->arch.mmu->get_guest_pgd(vcpu); 3913 3914 return kvm_setup_async_pf(vcpu, cr2_or_gpa, 3915 kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch); 3916 } 3917 3918 static bool kvm_faultin_pfn(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault, int *r) 3919 { 3920 struct kvm_memory_slot *slot = fault->slot; 3921 bool async; 3922 3923 /* 3924 * Retry the page fault if the gfn hit a memslot that is being deleted 3925 * or moved. This ensures any existing SPTEs for the old memslot will 3926 * be zapped before KVM inserts a new MMIO SPTE for the gfn. 3927 */ 3928 if (slot && (slot->flags & KVM_MEMSLOT_INVALID)) 3929 goto out_retry; 3930 3931 if (!kvm_is_visible_memslot(slot)) { 3932 /* Don't expose private memslots to L2. */ 3933 if (is_guest_mode(vcpu)) { 3934 fault->slot = NULL; 3935 fault->pfn = KVM_PFN_NOSLOT; 3936 fault->map_writable = false; 3937 return false; 3938 } 3939 /* 3940 * If the APIC access page exists but is disabled, go directly 3941 * to emulation without caching the MMIO access or creating a 3942 * MMIO SPTE. That way the cache doesn't need to be purged 3943 * when the AVIC is re-enabled. 3944 */ 3945 if (slot && slot->id == APIC_ACCESS_PAGE_PRIVATE_MEMSLOT && 3946 !kvm_apicv_activated(vcpu->kvm)) { 3947 *r = RET_PF_EMULATE; 3948 return true; 3949 } 3950 } 3951 3952 async = false; 3953 fault->pfn = __gfn_to_pfn_memslot(slot, fault->gfn, false, &async, 3954 fault->write, &fault->map_writable, 3955 &fault->hva); 3956 if (!async) 3957 return false; /* *pfn has correct page already */ 3958 3959 if (!fault->prefetch && kvm_can_do_async_pf(vcpu)) { 3960 trace_kvm_try_async_get_page(fault->addr, fault->gfn); 3961 if (kvm_find_async_pf_gfn(vcpu, fault->gfn)) { 3962 trace_kvm_async_pf_doublefault(fault->addr, fault->gfn); 3963 kvm_make_request(KVM_REQ_APF_HALT, vcpu); 3964 goto out_retry; 3965 } else if (kvm_arch_setup_async_pf(vcpu, fault->addr, fault->gfn)) 3966 goto out_retry; 3967 } 3968 3969 fault->pfn = __gfn_to_pfn_memslot(slot, fault->gfn, false, NULL, 3970 fault->write, &fault->map_writable, 3971 &fault->hva); 3972 return false; 3973 3974 out_retry: 3975 *r = RET_PF_RETRY; 3976 return true; 3977 } 3978 3979 static int direct_page_fault(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault) 3980 { 3981 bool is_tdp_mmu_fault = is_tdp_mmu(vcpu->arch.mmu); 3982 3983 unsigned long mmu_seq; 3984 int r; 3985 3986 fault->gfn = fault->addr >> PAGE_SHIFT; 3987 fault->slot = kvm_vcpu_gfn_to_memslot(vcpu, fault->gfn); 3988 3989 if (page_fault_handle_page_track(vcpu, fault)) 3990 return RET_PF_EMULATE; 3991 3992 r = fast_page_fault(vcpu, fault); 3993 if (r != RET_PF_INVALID) 3994 return r; 3995 3996 r = mmu_topup_memory_caches(vcpu, false); 3997 if (r) 3998 return r; 3999 4000 mmu_seq = vcpu->kvm->mmu_notifier_seq; 4001 smp_rmb(); 4002 4003 if (kvm_faultin_pfn(vcpu, fault, &r)) 4004 return r; 4005 4006 if (handle_abnormal_pfn(vcpu, fault, ACC_ALL, &r)) 4007 return r; 4008 4009 r = RET_PF_RETRY; 4010 4011 if (is_tdp_mmu_fault) 4012 read_lock(&vcpu->kvm->mmu_lock); 4013 else 4014 write_lock(&vcpu->kvm->mmu_lock); 4015 4016 if (fault->slot && mmu_notifier_retry_hva(vcpu->kvm, mmu_seq, fault->hva)) 4017 goto out_unlock; 4018 r = make_mmu_pages_available(vcpu); 4019 if (r) 4020 goto out_unlock; 4021 4022 if (is_tdp_mmu_fault) 4023 r = kvm_tdp_mmu_map(vcpu, fault); 4024 else 4025 r = __direct_map(vcpu, fault); 4026 4027 out_unlock: 4028 if (is_tdp_mmu_fault) 4029 read_unlock(&vcpu->kvm->mmu_lock); 4030 else 4031 write_unlock(&vcpu->kvm->mmu_lock); 4032 kvm_release_pfn_clean(fault->pfn); 4033 return r; 4034 } 4035 4036 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, 4037 struct kvm_page_fault *fault) 4038 { 4039 pgprintk("%s: gva %lx error %x\n", __func__, fault->addr, fault->error_code); 4040 4041 /* This path builds a PAE pagetable, we can map 2mb pages at maximum. */ 4042 fault->max_level = PG_LEVEL_2M; 4043 return direct_page_fault(vcpu, fault); 4044 } 4045 4046 int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code, 4047 u64 fault_address, char *insn, int insn_len) 4048 { 4049 int r = 1; 4050 u32 flags = vcpu->arch.apf.host_apf_flags; 4051 4052 #ifndef CONFIG_X86_64 4053 /* A 64-bit CR2 should be impossible on 32-bit KVM. */ 4054 if (WARN_ON_ONCE(fault_address >> 32)) 4055 return -EFAULT; 4056 #endif 4057 4058 vcpu->arch.l1tf_flush_l1d = true; 4059 if (!flags) { 4060 trace_kvm_page_fault(fault_address, error_code); 4061 4062 if (kvm_event_needs_reinjection(vcpu)) 4063 kvm_mmu_unprotect_page_virt(vcpu, fault_address); 4064 r = kvm_mmu_page_fault(vcpu, fault_address, error_code, insn, 4065 insn_len); 4066 } else if (flags & KVM_PV_REASON_PAGE_NOT_PRESENT) { 4067 vcpu->arch.apf.host_apf_flags = 0; 4068 local_irq_disable(); 4069 kvm_async_pf_task_wait_schedule(fault_address); 4070 local_irq_enable(); 4071 } else { 4072 WARN_ONCE(1, "Unexpected host async PF flags: %x\n", flags); 4073 } 4074 4075 return r; 4076 } 4077 EXPORT_SYMBOL_GPL(kvm_handle_page_fault); 4078 4079 int kvm_tdp_page_fault(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault) 4080 { 4081 while (fault->max_level > PG_LEVEL_4K) { 4082 int page_num = KVM_PAGES_PER_HPAGE(fault->max_level); 4083 gfn_t base = (fault->addr >> PAGE_SHIFT) & ~(page_num - 1); 4084 4085 if (kvm_mtrr_check_gfn_range_consistency(vcpu, base, page_num)) 4086 break; 4087 4088 --fault->max_level; 4089 } 4090 4091 return direct_page_fault(vcpu, fault); 4092 } 4093 4094 static void nonpaging_init_context(struct kvm_mmu *context) 4095 { 4096 context->page_fault = nonpaging_page_fault; 4097 context->gva_to_gpa = nonpaging_gva_to_gpa; 4098 context->sync_page = nonpaging_sync_page; 4099 context->invlpg = NULL; 4100 context->direct_map = true; 4101 } 4102 4103 static inline bool is_root_usable(struct kvm_mmu_root_info *root, gpa_t pgd, 4104 union kvm_mmu_page_role role) 4105 { 4106 return (role.direct || pgd == root->pgd) && 4107 VALID_PAGE(root->hpa) && to_shadow_page(root->hpa) && 4108 role.word == to_shadow_page(root->hpa)->role.word; 4109 } 4110 4111 /* 4112 * Find out if a previously cached root matching the new pgd/role is available. 4113 * The current root is also inserted into the cache. 4114 * If a matching root was found, it is assigned to kvm_mmu->root_hpa and true is 4115 * returned. 4116 * Otherwise, the LRU root from the cache is assigned to kvm_mmu->root_hpa and 4117 * false is returned. This root should now be freed by the caller. 4118 */ 4119 static bool cached_root_available(struct kvm_vcpu *vcpu, gpa_t new_pgd, 4120 union kvm_mmu_page_role new_role) 4121 { 4122 uint i; 4123 struct kvm_mmu_root_info root; 4124 struct kvm_mmu *mmu = vcpu->arch.mmu; 4125 4126 root.pgd = mmu->root_pgd; 4127 root.hpa = mmu->root_hpa; 4128 4129 if (is_root_usable(&root, new_pgd, new_role)) 4130 return true; 4131 4132 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) { 4133 swap(root, mmu->prev_roots[i]); 4134 4135 if (is_root_usable(&root, new_pgd, new_role)) 4136 break; 4137 } 4138 4139 mmu->root_hpa = root.hpa; 4140 mmu->root_pgd = root.pgd; 4141 4142 return i < KVM_MMU_NUM_PREV_ROOTS; 4143 } 4144 4145 static bool fast_pgd_switch(struct kvm_vcpu *vcpu, gpa_t new_pgd, 4146 union kvm_mmu_page_role new_role) 4147 { 4148 struct kvm_mmu *mmu = vcpu->arch.mmu; 4149 4150 /* 4151 * For now, limit the fast switch to 64-bit hosts+VMs in order to avoid 4152 * having to deal with PDPTEs. We may add support for 32-bit hosts/VMs 4153 * later if necessary. 4154 */ 4155 if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL && 4156 mmu->root_level >= PT64_ROOT_4LEVEL) 4157 return cached_root_available(vcpu, new_pgd, new_role); 4158 4159 return false; 4160 } 4161 4162 static void __kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd, 4163 union kvm_mmu_page_role new_role) 4164 { 4165 if (!fast_pgd_switch(vcpu, new_pgd, new_role)) { 4166 kvm_mmu_free_roots(vcpu, vcpu->arch.mmu, KVM_MMU_ROOT_CURRENT); 4167 return; 4168 } 4169 4170 /* 4171 * It's possible that the cached previous root page is obsolete because 4172 * of a change in the MMU generation number. However, changing the 4173 * generation number is accompanied by KVM_REQ_MMU_RELOAD, which will 4174 * free the root set here and allocate a new one. 4175 */ 4176 kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu); 4177 4178 if (force_flush_and_sync_on_reuse) { 4179 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu); 4180 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 4181 } 4182 4183 /* 4184 * The last MMIO access's GVA and GPA are cached in the VCPU. When 4185 * switching to a new CR3, that GVA->GPA mapping may no longer be 4186 * valid. So clear any cached MMIO info even when we don't need to sync 4187 * the shadow page tables. 4188 */ 4189 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY); 4190 4191 /* 4192 * If this is a direct root page, it doesn't have a write flooding 4193 * count. Otherwise, clear the write flooding count. 4194 */ 4195 if (!new_role.direct) 4196 __clear_sp_write_flooding_count( 4197 to_shadow_page(vcpu->arch.mmu->root_hpa)); 4198 } 4199 4200 void kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd) 4201 { 4202 __kvm_mmu_new_pgd(vcpu, new_pgd, kvm_mmu_calc_root_page_role(vcpu)); 4203 } 4204 EXPORT_SYMBOL_GPL(kvm_mmu_new_pgd); 4205 4206 static unsigned long get_cr3(struct kvm_vcpu *vcpu) 4207 { 4208 return kvm_read_cr3(vcpu); 4209 } 4210 4211 static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn, 4212 unsigned int access) 4213 { 4214 if (unlikely(is_mmio_spte(*sptep))) { 4215 if (gfn != get_mmio_spte_gfn(*sptep)) { 4216 mmu_spte_clear_no_track(sptep); 4217 return true; 4218 } 4219 4220 mark_mmio_spte(vcpu, sptep, gfn, access); 4221 return true; 4222 } 4223 4224 return false; 4225 } 4226 4227 #define PTTYPE_EPT 18 /* arbitrary */ 4228 #define PTTYPE PTTYPE_EPT 4229 #include "paging_tmpl.h" 4230 #undef PTTYPE 4231 4232 #define PTTYPE 64 4233 #include "paging_tmpl.h" 4234 #undef PTTYPE 4235 4236 #define PTTYPE 32 4237 #include "paging_tmpl.h" 4238 #undef PTTYPE 4239 4240 static void 4241 __reset_rsvds_bits_mask(struct rsvd_bits_validate *rsvd_check, 4242 u64 pa_bits_rsvd, int level, bool nx, bool gbpages, 4243 bool pse, bool amd) 4244 { 4245 u64 gbpages_bit_rsvd = 0; 4246 u64 nonleaf_bit8_rsvd = 0; 4247 u64 high_bits_rsvd; 4248 4249 rsvd_check->bad_mt_xwr = 0; 4250 4251 if (!gbpages) 4252 gbpages_bit_rsvd = rsvd_bits(7, 7); 4253 4254 if (level == PT32E_ROOT_LEVEL) 4255 high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 62); 4256 else 4257 high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 51); 4258 4259 /* Note, NX doesn't exist in PDPTEs, this is handled below. */ 4260 if (!nx) 4261 high_bits_rsvd |= rsvd_bits(63, 63); 4262 4263 /* 4264 * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for 4265 * leaf entries) on AMD CPUs only. 4266 */ 4267 if (amd) 4268 nonleaf_bit8_rsvd = rsvd_bits(8, 8); 4269 4270 switch (level) { 4271 case PT32_ROOT_LEVEL: 4272 /* no rsvd bits for 2 level 4K page table entries */ 4273 rsvd_check->rsvd_bits_mask[0][1] = 0; 4274 rsvd_check->rsvd_bits_mask[0][0] = 0; 4275 rsvd_check->rsvd_bits_mask[1][0] = 4276 rsvd_check->rsvd_bits_mask[0][0]; 4277 4278 if (!pse) { 4279 rsvd_check->rsvd_bits_mask[1][1] = 0; 4280 break; 4281 } 4282 4283 if (is_cpuid_PSE36()) 4284 /* 36bits PSE 4MB page */ 4285 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21); 4286 else 4287 /* 32 bits PSE 4MB page */ 4288 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21); 4289 break; 4290 case PT32E_ROOT_LEVEL: 4291 rsvd_check->rsvd_bits_mask[0][2] = rsvd_bits(63, 63) | 4292 high_bits_rsvd | 4293 rsvd_bits(5, 8) | 4294 rsvd_bits(1, 2); /* PDPTE */ 4295 rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd; /* PDE */ 4296 rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd; /* PTE */ 4297 rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd | 4298 rsvd_bits(13, 20); /* large page */ 4299 rsvd_check->rsvd_bits_mask[1][0] = 4300 rsvd_check->rsvd_bits_mask[0][0]; 4301 break; 4302 case PT64_ROOT_5LEVEL: 4303 rsvd_check->rsvd_bits_mask[0][4] = high_bits_rsvd | 4304 nonleaf_bit8_rsvd | 4305 rsvd_bits(7, 7); 4306 rsvd_check->rsvd_bits_mask[1][4] = 4307 rsvd_check->rsvd_bits_mask[0][4]; 4308 fallthrough; 4309 case PT64_ROOT_4LEVEL: 4310 rsvd_check->rsvd_bits_mask[0][3] = high_bits_rsvd | 4311 nonleaf_bit8_rsvd | 4312 rsvd_bits(7, 7); 4313 rsvd_check->rsvd_bits_mask[0][2] = high_bits_rsvd | 4314 gbpages_bit_rsvd; 4315 rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd; 4316 rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd; 4317 rsvd_check->rsvd_bits_mask[1][3] = 4318 rsvd_check->rsvd_bits_mask[0][3]; 4319 rsvd_check->rsvd_bits_mask[1][2] = high_bits_rsvd | 4320 gbpages_bit_rsvd | 4321 rsvd_bits(13, 29); 4322 rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd | 4323 rsvd_bits(13, 20); /* large page */ 4324 rsvd_check->rsvd_bits_mask[1][0] = 4325 rsvd_check->rsvd_bits_mask[0][0]; 4326 break; 4327 } 4328 } 4329 4330 static bool guest_can_use_gbpages(struct kvm_vcpu *vcpu) 4331 { 4332 /* 4333 * If TDP is enabled, let the guest use GBPAGES if they're supported in 4334 * hardware. The hardware page walker doesn't let KVM disable GBPAGES, 4335 * i.e. won't treat them as reserved, and KVM doesn't redo the GVA->GPA 4336 * walk for performance and complexity reasons. Not to mention KVM 4337 * _can't_ solve the problem because GVA->GPA walks aren't visible to 4338 * KVM once a TDP translation is installed. Mimic hardware behavior so 4339 * that KVM's is at least consistent, i.e. doesn't randomly inject #PF. 4340 */ 4341 return tdp_enabled ? boot_cpu_has(X86_FEATURE_GBPAGES) : 4342 guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES); 4343 } 4344 4345 static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu, 4346 struct kvm_mmu *context) 4347 { 4348 __reset_rsvds_bits_mask(&context->guest_rsvd_check, 4349 vcpu->arch.reserved_gpa_bits, 4350 context->root_level, is_efer_nx(context), 4351 guest_can_use_gbpages(vcpu), 4352 is_cr4_pse(context), 4353 guest_cpuid_is_amd_or_hygon(vcpu)); 4354 } 4355 4356 static void 4357 __reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check, 4358 u64 pa_bits_rsvd, bool execonly) 4359 { 4360 u64 high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 51); 4361 u64 bad_mt_xwr; 4362 4363 rsvd_check->rsvd_bits_mask[0][4] = high_bits_rsvd | rsvd_bits(3, 7); 4364 rsvd_check->rsvd_bits_mask[0][3] = high_bits_rsvd | rsvd_bits(3, 7); 4365 rsvd_check->rsvd_bits_mask[0][2] = high_bits_rsvd | rsvd_bits(3, 6); 4366 rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd | rsvd_bits(3, 6); 4367 rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd; 4368 4369 /* large page */ 4370 rsvd_check->rsvd_bits_mask[1][4] = rsvd_check->rsvd_bits_mask[0][4]; 4371 rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3]; 4372 rsvd_check->rsvd_bits_mask[1][2] = high_bits_rsvd | rsvd_bits(12, 29); 4373 rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd | rsvd_bits(12, 20); 4374 rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0]; 4375 4376 bad_mt_xwr = 0xFFull << (2 * 8); /* bits 3..5 must not be 2 */ 4377 bad_mt_xwr |= 0xFFull << (3 * 8); /* bits 3..5 must not be 3 */ 4378 bad_mt_xwr |= 0xFFull << (7 * 8); /* bits 3..5 must not be 7 */ 4379 bad_mt_xwr |= REPEAT_BYTE(1ull << 2); /* bits 0..2 must not be 010 */ 4380 bad_mt_xwr |= REPEAT_BYTE(1ull << 6); /* bits 0..2 must not be 110 */ 4381 if (!execonly) { 4382 /* bits 0..2 must not be 100 unless VMX capabilities allow it */ 4383 bad_mt_xwr |= REPEAT_BYTE(1ull << 4); 4384 } 4385 rsvd_check->bad_mt_xwr = bad_mt_xwr; 4386 } 4387 4388 static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu, 4389 struct kvm_mmu *context, bool execonly) 4390 { 4391 __reset_rsvds_bits_mask_ept(&context->guest_rsvd_check, 4392 vcpu->arch.reserved_gpa_bits, execonly); 4393 } 4394 4395 static inline u64 reserved_hpa_bits(void) 4396 { 4397 return rsvd_bits(shadow_phys_bits, 63); 4398 } 4399 4400 /* 4401 * the page table on host is the shadow page table for the page 4402 * table in guest or amd nested guest, its mmu features completely 4403 * follow the features in guest. 4404 */ 4405 static void reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, 4406 struct kvm_mmu *context) 4407 { 4408 /* 4409 * KVM uses NX when TDP is disabled to handle a variety of scenarios, 4410 * notably for huge SPTEs if iTLB multi-hit mitigation is enabled and 4411 * to generate correct permissions for CR0.WP=0/CR4.SMEP=1/EFER.NX=0. 4412 * The iTLB multi-hit workaround can be toggled at any time, so assume 4413 * NX can be used by any non-nested shadow MMU to avoid having to reset 4414 * MMU contexts. Note, KVM forces EFER.NX=1 when TDP is disabled. 4415 */ 4416 bool uses_nx = is_efer_nx(context) || !tdp_enabled; 4417 4418 /* @amd adds a check on bit of SPTEs, which KVM shouldn't use anyways. */ 4419 bool is_amd = true; 4420 /* KVM doesn't use 2-level page tables for the shadow MMU. */ 4421 bool is_pse = false; 4422 struct rsvd_bits_validate *shadow_zero_check; 4423 int i; 4424 4425 WARN_ON_ONCE(context->shadow_root_level < PT32E_ROOT_LEVEL); 4426 4427 shadow_zero_check = &context->shadow_zero_check; 4428 __reset_rsvds_bits_mask(shadow_zero_check, reserved_hpa_bits(), 4429 context->shadow_root_level, uses_nx, 4430 guest_can_use_gbpages(vcpu), is_pse, is_amd); 4431 4432 if (!shadow_me_mask) 4433 return; 4434 4435 for (i = context->shadow_root_level; --i >= 0;) { 4436 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask; 4437 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask; 4438 } 4439 4440 } 4441 4442 static inline bool boot_cpu_is_amd(void) 4443 { 4444 WARN_ON_ONCE(!tdp_enabled); 4445 return shadow_x_mask == 0; 4446 } 4447 4448 /* 4449 * the direct page table on host, use as much mmu features as 4450 * possible, however, kvm currently does not do execution-protection. 4451 */ 4452 static void 4453 reset_tdp_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, 4454 struct kvm_mmu *context) 4455 { 4456 struct rsvd_bits_validate *shadow_zero_check; 4457 int i; 4458 4459 shadow_zero_check = &context->shadow_zero_check; 4460 4461 if (boot_cpu_is_amd()) 4462 __reset_rsvds_bits_mask(shadow_zero_check, reserved_hpa_bits(), 4463 context->shadow_root_level, false, 4464 boot_cpu_has(X86_FEATURE_GBPAGES), 4465 false, true); 4466 else 4467 __reset_rsvds_bits_mask_ept(shadow_zero_check, 4468 reserved_hpa_bits(), false); 4469 4470 if (!shadow_me_mask) 4471 return; 4472 4473 for (i = context->shadow_root_level; --i >= 0;) { 4474 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask; 4475 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask; 4476 } 4477 } 4478 4479 /* 4480 * as the comments in reset_shadow_zero_bits_mask() except it 4481 * is the shadow page table for intel nested guest. 4482 */ 4483 static void 4484 reset_ept_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, 4485 struct kvm_mmu *context, bool execonly) 4486 { 4487 __reset_rsvds_bits_mask_ept(&context->shadow_zero_check, 4488 reserved_hpa_bits(), execonly); 4489 } 4490 4491 #define BYTE_MASK(access) \ 4492 ((1 & (access) ? 2 : 0) | \ 4493 (2 & (access) ? 4 : 0) | \ 4494 (3 & (access) ? 8 : 0) | \ 4495 (4 & (access) ? 16 : 0) | \ 4496 (5 & (access) ? 32 : 0) | \ 4497 (6 & (access) ? 64 : 0) | \ 4498 (7 & (access) ? 128 : 0)) 4499 4500 4501 static void update_permission_bitmask(struct kvm_mmu *mmu, bool ept) 4502 { 4503 unsigned byte; 4504 4505 const u8 x = BYTE_MASK(ACC_EXEC_MASK); 4506 const u8 w = BYTE_MASK(ACC_WRITE_MASK); 4507 const u8 u = BYTE_MASK(ACC_USER_MASK); 4508 4509 bool cr4_smep = is_cr4_smep(mmu); 4510 bool cr4_smap = is_cr4_smap(mmu); 4511 bool cr0_wp = is_cr0_wp(mmu); 4512 bool efer_nx = is_efer_nx(mmu); 4513 4514 for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) { 4515 unsigned pfec = byte << 1; 4516 4517 /* 4518 * Each "*f" variable has a 1 bit for each UWX value 4519 * that causes a fault with the given PFEC. 4520 */ 4521 4522 /* Faults from writes to non-writable pages */ 4523 u8 wf = (pfec & PFERR_WRITE_MASK) ? (u8)~w : 0; 4524 /* Faults from user mode accesses to supervisor pages */ 4525 u8 uf = (pfec & PFERR_USER_MASK) ? (u8)~u : 0; 4526 /* Faults from fetches of non-executable pages*/ 4527 u8 ff = (pfec & PFERR_FETCH_MASK) ? (u8)~x : 0; 4528 /* Faults from kernel mode fetches of user pages */ 4529 u8 smepf = 0; 4530 /* Faults from kernel mode accesses of user pages */ 4531 u8 smapf = 0; 4532 4533 if (!ept) { 4534 /* Faults from kernel mode accesses to user pages */ 4535 u8 kf = (pfec & PFERR_USER_MASK) ? 0 : u; 4536 4537 /* Not really needed: !nx will cause pte.nx to fault */ 4538 if (!efer_nx) 4539 ff = 0; 4540 4541 /* Allow supervisor writes if !cr0.wp */ 4542 if (!cr0_wp) 4543 wf = (pfec & PFERR_USER_MASK) ? wf : 0; 4544 4545 /* Disallow supervisor fetches of user code if cr4.smep */ 4546 if (cr4_smep) 4547 smepf = (pfec & PFERR_FETCH_MASK) ? kf : 0; 4548 4549 /* 4550 * SMAP:kernel-mode data accesses from user-mode 4551 * mappings should fault. A fault is considered 4552 * as a SMAP violation if all of the following 4553 * conditions are true: 4554 * - X86_CR4_SMAP is set in CR4 4555 * - A user page is accessed 4556 * - The access is not a fetch 4557 * - Page fault in kernel mode 4558 * - if CPL = 3 or X86_EFLAGS_AC is clear 4559 * 4560 * Here, we cover the first three conditions. 4561 * The fourth is computed dynamically in permission_fault(); 4562 * PFERR_RSVD_MASK bit will be set in PFEC if the access is 4563 * *not* subject to SMAP restrictions. 4564 */ 4565 if (cr4_smap) 4566 smapf = (pfec & (PFERR_RSVD_MASK|PFERR_FETCH_MASK)) ? 0 : kf; 4567 } 4568 4569 mmu->permissions[byte] = ff | uf | wf | smepf | smapf; 4570 } 4571 } 4572 4573 /* 4574 * PKU is an additional mechanism by which the paging controls access to 4575 * user-mode addresses based on the value in the PKRU register. Protection 4576 * key violations are reported through a bit in the page fault error code. 4577 * Unlike other bits of the error code, the PK bit is not known at the 4578 * call site of e.g. gva_to_gpa; it must be computed directly in 4579 * permission_fault based on two bits of PKRU, on some machine state (CR4, 4580 * CR0, EFER, CPL), and on other bits of the error code and the page tables. 4581 * 4582 * In particular the following conditions come from the error code, the 4583 * page tables and the machine state: 4584 * - PK is always zero unless CR4.PKE=1 and EFER.LMA=1 4585 * - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch) 4586 * - PK is always zero if U=0 in the page tables 4587 * - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access. 4588 * 4589 * The PKRU bitmask caches the result of these four conditions. The error 4590 * code (minus the P bit) and the page table's U bit form an index into the 4591 * PKRU bitmask. Two bits of the PKRU bitmask are then extracted and ANDed 4592 * with the two bits of the PKRU register corresponding to the protection key. 4593 * For the first three conditions above the bits will be 00, thus masking 4594 * away both AD and WD. For all reads or if the last condition holds, WD 4595 * only will be masked away. 4596 */ 4597 static void update_pkru_bitmask(struct kvm_mmu *mmu) 4598 { 4599 unsigned bit; 4600 bool wp; 4601 4602 mmu->pkru_mask = 0; 4603 4604 if (!is_cr4_pke(mmu)) 4605 return; 4606 4607 wp = is_cr0_wp(mmu); 4608 4609 for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) { 4610 unsigned pfec, pkey_bits; 4611 bool check_pkey, check_write, ff, uf, wf, pte_user; 4612 4613 pfec = bit << 1; 4614 ff = pfec & PFERR_FETCH_MASK; 4615 uf = pfec & PFERR_USER_MASK; 4616 wf = pfec & PFERR_WRITE_MASK; 4617 4618 /* PFEC.RSVD is replaced by ACC_USER_MASK. */ 4619 pte_user = pfec & PFERR_RSVD_MASK; 4620 4621 /* 4622 * Only need to check the access which is not an 4623 * instruction fetch and is to a user page. 4624 */ 4625 check_pkey = (!ff && pte_user); 4626 /* 4627 * write access is controlled by PKRU if it is a 4628 * user access or CR0.WP = 1. 4629 */ 4630 check_write = check_pkey && wf && (uf || wp); 4631 4632 /* PKRU.AD stops both read and write access. */ 4633 pkey_bits = !!check_pkey; 4634 /* PKRU.WD stops write access. */ 4635 pkey_bits |= (!!check_write) << 1; 4636 4637 mmu->pkru_mask |= (pkey_bits & 3) << pfec; 4638 } 4639 } 4640 4641 static void reset_guest_paging_metadata(struct kvm_vcpu *vcpu, 4642 struct kvm_mmu *mmu) 4643 { 4644 if (!is_cr0_pg(mmu)) 4645 return; 4646 4647 reset_rsvds_bits_mask(vcpu, mmu); 4648 update_permission_bitmask(mmu, false); 4649 update_pkru_bitmask(mmu); 4650 } 4651 4652 static void paging64_init_context(struct kvm_mmu *context) 4653 { 4654 context->page_fault = paging64_page_fault; 4655 context->gva_to_gpa = paging64_gva_to_gpa; 4656 context->sync_page = paging64_sync_page; 4657 context->invlpg = paging64_invlpg; 4658 context->direct_map = false; 4659 } 4660 4661 static void paging32_init_context(struct kvm_mmu *context) 4662 { 4663 context->page_fault = paging32_page_fault; 4664 context->gva_to_gpa = paging32_gva_to_gpa; 4665 context->sync_page = paging32_sync_page; 4666 context->invlpg = paging32_invlpg; 4667 context->direct_map = false; 4668 } 4669 4670 static union kvm_mmu_extended_role kvm_calc_mmu_role_ext(struct kvm_vcpu *vcpu, 4671 struct kvm_mmu_role_regs *regs) 4672 { 4673 union kvm_mmu_extended_role ext = {0}; 4674 4675 if (____is_cr0_pg(regs)) { 4676 ext.cr0_pg = 1; 4677 ext.cr4_pae = ____is_cr4_pae(regs); 4678 ext.cr4_smep = ____is_cr4_smep(regs); 4679 ext.cr4_smap = ____is_cr4_smap(regs); 4680 ext.cr4_pse = ____is_cr4_pse(regs); 4681 4682 /* PKEY and LA57 are active iff long mode is active. */ 4683 ext.cr4_pke = ____is_efer_lma(regs) && ____is_cr4_pke(regs); 4684 ext.cr4_la57 = ____is_efer_lma(regs) && ____is_cr4_la57(regs); 4685 ext.efer_lma = ____is_efer_lma(regs); 4686 } 4687 4688 ext.valid = 1; 4689 4690 return ext; 4691 } 4692 4693 static union kvm_mmu_role kvm_calc_mmu_role_common(struct kvm_vcpu *vcpu, 4694 struct kvm_mmu_role_regs *regs, 4695 bool base_only) 4696 { 4697 union kvm_mmu_role role = {0}; 4698 4699 role.base.access = ACC_ALL; 4700 if (____is_cr0_pg(regs)) { 4701 role.base.efer_nx = ____is_efer_nx(regs); 4702 role.base.cr0_wp = ____is_cr0_wp(regs); 4703 } 4704 role.base.smm = is_smm(vcpu); 4705 role.base.guest_mode = is_guest_mode(vcpu); 4706 4707 if (base_only) 4708 return role; 4709 4710 role.ext = kvm_calc_mmu_role_ext(vcpu, regs); 4711 4712 return role; 4713 } 4714 4715 static inline int kvm_mmu_get_tdp_level(struct kvm_vcpu *vcpu) 4716 { 4717 /* tdp_root_level is architecture forced level, use it if nonzero */ 4718 if (tdp_root_level) 4719 return tdp_root_level; 4720 4721 /* Use 5-level TDP if and only if it's useful/necessary. */ 4722 if (max_tdp_level == 5 && cpuid_maxphyaddr(vcpu) <= 48) 4723 return 4; 4724 4725 return max_tdp_level; 4726 } 4727 4728 static union kvm_mmu_role 4729 kvm_calc_tdp_mmu_root_page_role(struct kvm_vcpu *vcpu, 4730 struct kvm_mmu_role_regs *regs, bool base_only) 4731 { 4732 union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, regs, base_only); 4733 4734 role.base.ad_disabled = (shadow_accessed_mask == 0); 4735 role.base.level = kvm_mmu_get_tdp_level(vcpu); 4736 role.base.direct = true; 4737 role.base.gpte_is_8_bytes = true; 4738 4739 return role; 4740 } 4741 4742 static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu) 4743 { 4744 struct kvm_mmu *context = &vcpu->arch.root_mmu; 4745 struct kvm_mmu_role_regs regs = vcpu_to_role_regs(vcpu); 4746 union kvm_mmu_role new_role = 4747 kvm_calc_tdp_mmu_root_page_role(vcpu, ®s, false); 4748 4749 if (new_role.as_u64 == context->mmu_role.as_u64) 4750 return; 4751 4752 context->mmu_role.as_u64 = new_role.as_u64; 4753 context->page_fault = kvm_tdp_page_fault; 4754 context->sync_page = nonpaging_sync_page; 4755 context->invlpg = NULL; 4756 context->shadow_root_level = kvm_mmu_get_tdp_level(vcpu); 4757 context->direct_map = true; 4758 context->get_guest_pgd = get_cr3; 4759 context->get_pdptr = kvm_pdptr_read; 4760 context->inject_page_fault = kvm_inject_page_fault; 4761 context->root_level = role_regs_to_root_level(®s); 4762 4763 if (!is_cr0_pg(context)) 4764 context->gva_to_gpa = nonpaging_gva_to_gpa; 4765 else if (is_cr4_pae(context)) 4766 context->gva_to_gpa = paging64_gva_to_gpa; 4767 else 4768 context->gva_to_gpa = paging32_gva_to_gpa; 4769 4770 reset_guest_paging_metadata(vcpu, context); 4771 reset_tdp_shadow_zero_bits_mask(vcpu, context); 4772 } 4773 4774 static union kvm_mmu_role 4775 kvm_calc_shadow_root_page_role_common(struct kvm_vcpu *vcpu, 4776 struct kvm_mmu_role_regs *regs, bool base_only) 4777 { 4778 union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, regs, base_only); 4779 4780 role.base.smep_andnot_wp = role.ext.cr4_smep && !____is_cr0_wp(regs); 4781 role.base.smap_andnot_wp = role.ext.cr4_smap && !____is_cr0_wp(regs); 4782 role.base.gpte_is_8_bytes = ____is_cr0_pg(regs) && ____is_cr4_pae(regs); 4783 4784 return role; 4785 } 4786 4787 static union kvm_mmu_role 4788 kvm_calc_shadow_mmu_root_page_role(struct kvm_vcpu *vcpu, 4789 struct kvm_mmu_role_regs *regs, bool base_only) 4790 { 4791 union kvm_mmu_role role = 4792 kvm_calc_shadow_root_page_role_common(vcpu, regs, base_only); 4793 4794 role.base.direct = !____is_cr0_pg(regs); 4795 4796 if (!____is_efer_lma(regs)) 4797 role.base.level = PT32E_ROOT_LEVEL; 4798 else if (____is_cr4_la57(regs)) 4799 role.base.level = PT64_ROOT_5LEVEL; 4800 else 4801 role.base.level = PT64_ROOT_4LEVEL; 4802 4803 return role; 4804 } 4805 4806 static void shadow_mmu_init_context(struct kvm_vcpu *vcpu, struct kvm_mmu *context, 4807 struct kvm_mmu_role_regs *regs, 4808 union kvm_mmu_role new_role) 4809 { 4810 if (new_role.as_u64 == context->mmu_role.as_u64) 4811 return; 4812 4813 context->mmu_role.as_u64 = new_role.as_u64; 4814 4815 if (!is_cr0_pg(context)) 4816 nonpaging_init_context(context); 4817 else if (is_cr4_pae(context)) 4818 paging64_init_context(context); 4819 else 4820 paging32_init_context(context); 4821 context->root_level = role_regs_to_root_level(regs); 4822 4823 reset_guest_paging_metadata(vcpu, context); 4824 context->shadow_root_level = new_role.base.level; 4825 4826 reset_shadow_zero_bits_mask(vcpu, context); 4827 } 4828 4829 static void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, 4830 struct kvm_mmu_role_regs *regs) 4831 { 4832 struct kvm_mmu *context = &vcpu->arch.root_mmu; 4833 union kvm_mmu_role new_role = 4834 kvm_calc_shadow_mmu_root_page_role(vcpu, regs, false); 4835 4836 shadow_mmu_init_context(vcpu, context, regs, new_role); 4837 } 4838 4839 static union kvm_mmu_role 4840 kvm_calc_shadow_npt_root_page_role(struct kvm_vcpu *vcpu, 4841 struct kvm_mmu_role_regs *regs) 4842 { 4843 union kvm_mmu_role role = 4844 kvm_calc_shadow_root_page_role_common(vcpu, regs, false); 4845 4846 role.base.direct = false; 4847 role.base.level = kvm_mmu_get_tdp_level(vcpu); 4848 4849 return role; 4850 } 4851 4852 void kvm_init_shadow_npt_mmu(struct kvm_vcpu *vcpu, unsigned long cr0, 4853 unsigned long cr4, u64 efer, gpa_t nested_cr3) 4854 { 4855 struct kvm_mmu *context = &vcpu->arch.guest_mmu; 4856 struct kvm_mmu_role_regs regs = { 4857 .cr0 = cr0, 4858 .cr4 = cr4 & ~X86_CR4_PKE, 4859 .efer = efer, 4860 }; 4861 union kvm_mmu_role new_role; 4862 4863 new_role = kvm_calc_shadow_npt_root_page_role(vcpu, ®s); 4864 4865 __kvm_mmu_new_pgd(vcpu, nested_cr3, new_role.base); 4866 4867 shadow_mmu_init_context(vcpu, context, ®s, new_role); 4868 } 4869 EXPORT_SYMBOL_GPL(kvm_init_shadow_npt_mmu); 4870 4871 static union kvm_mmu_role 4872 kvm_calc_shadow_ept_root_page_role(struct kvm_vcpu *vcpu, bool accessed_dirty, 4873 bool execonly, u8 level) 4874 { 4875 union kvm_mmu_role role = {0}; 4876 4877 /* SMM flag is inherited from root_mmu */ 4878 role.base.smm = vcpu->arch.root_mmu.mmu_role.base.smm; 4879 4880 role.base.level = level; 4881 role.base.gpte_is_8_bytes = true; 4882 role.base.direct = false; 4883 role.base.ad_disabled = !accessed_dirty; 4884 role.base.guest_mode = true; 4885 role.base.access = ACC_ALL; 4886 4887 /* EPT, and thus nested EPT, does not consume CR0, CR4, nor EFER. */ 4888 role.ext.word = 0; 4889 role.ext.execonly = execonly; 4890 role.ext.valid = 1; 4891 4892 return role; 4893 } 4894 4895 void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly, 4896 bool accessed_dirty, gpa_t new_eptp) 4897 { 4898 struct kvm_mmu *context = &vcpu->arch.guest_mmu; 4899 u8 level = vmx_eptp_page_walk_level(new_eptp); 4900 union kvm_mmu_role new_role = 4901 kvm_calc_shadow_ept_root_page_role(vcpu, accessed_dirty, 4902 execonly, level); 4903 4904 __kvm_mmu_new_pgd(vcpu, new_eptp, new_role.base); 4905 4906 if (new_role.as_u64 == context->mmu_role.as_u64) 4907 return; 4908 4909 context->mmu_role.as_u64 = new_role.as_u64; 4910 4911 context->shadow_root_level = level; 4912 4913 context->ept_ad = accessed_dirty; 4914 context->page_fault = ept_page_fault; 4915 context->gva_to_gpa = ept_gva_to_gpa; 4916 context->sync_page = ept_sync_page; 4917 context->invlpg = ept_invlpg; 4918 context->root_level = level; 4919 context->direct_map = false; 4920 4921 update_permission_bitmask(context, true); 4922 context->pkru_mask = 0; 4923 reset_rsvds_bits_mask_ept(vcpu, context, execonly); 4924 reset_ept_shadow_zero_bits_mask(vcpu, context, execonly); 4925 } 4926 EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu); 4927 4928 static void init_kvm_softmmu(struct kvm_vcpu *vcpu) 4929 { 4930 struct kvm_mmu *context = &vcpu->arch.root_mmu; 4931 struct kvm_mmu_role_regs regs = vcpu_to_role_regs(vcpu); 4932 4933 kvm_init_shadow_mmu(vcpu, ®s); 4934 4935 context->get_guest_pgd = get_cr3; 4936 context->get_pdptr = kvm_pdptr_read; 4937 context->inject_page_fault = kvm_inject_page_fault; 4938 } 4939 4940 static union kvm_mmu_role 4941 kvm_calc_nested_mmu_role(struct kvm_vcpu *vcpu, struct kvm_mmu_role_regs *regs) 4942 { 4943 union kvm_mmu_role role; 4944 4945 role = kvm_calc_shadow_root_page_role_common(vcpu, regs, false); 4946 4947 /* 4948 * Nested MMUs are used only for walking L2's gva->gpa, they never have 4949 * shadow pages of their own and so "direct" has no meaning. Set it 4950 * to "true" to try to detect bogus usage of the nested MMU. 4951 */ 4952 role.base.direct = true; 4953 role.base.level = role_regs_to_root_level(regs); 4954 return role; 4955 } 4956 4957 static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu) 4958 { 4959 struct kvm_mmu_role_regs regs = vcpu_to_role_regs(vcpu); 4960 union kvm_mmu_role new_role = kvm_calc_nested_mmu_role(vcpu, ®s); 4961 struct kvm_mmu *g_context = &vcpu->arch.nested_mmu; 4962 4963 if (new_role.as_u64 == g_context->mmu_role.as_u64) 4964 return; 4965 4966 g_context->mmu_role.as_u64 = new_role.as_u64; 4967 g_context->get_guest_pgd = get_cr3; 4968 g_context->get_pdptr = kvm_pdptr_read; 4969 g_context->inject_page_fault = kvm_inject_page_fault; 4970 g_context->root_level = new_role.base.level; 4971 4972 /* 4973 * L2 page tables are never shadowed, so there is no need to sync 4974 * SPTEs. 4975 */ 4976 g_context->invlpg = NULL; 4977 4978 /* 4979 * Note that arch.mmu->gva_to_gpa translates l2_gpa to l1_gpa using 4980 * L1's nested page tables (e.g. EPT12). The nested translation 4981 * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using 4982 * L2's page tables as the first level of translation and L1's 4983 * nested page tables as the second level of translation. Basically 4984 * the gva_to_gpa functions between mmu and nested_mmu are swapped. 4985 */ 4986 if (!is_paging(vcpu)) 4987 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested; 4988 else if (is_long_mode(vcpu)) 4989 g_context->gva_to_gpa = paging64_gva_to_gpa_nested; 4990 else if (is_pae(vcpu)) 4991 g_context->gva_to_gpa = paging64_gva_to_gpa_nested; 4992 else 4993 g_context->gva_to_gpa = paging32_gva_to_gpa_nested; 4994 4995 reset_guest_paging_metadata(vcpu, g_context); 4996 } 4997 4998 void kvm_init_mmu(struct kvm_vcpu *vcpu) 4999 { 5000 if (mmu_is_nested(vcpu)) 5001 init_kvm_nested_mmu(vcpu); 5002 else if (tdp_enabled) 5003 init_kvm_tdp_mmu(vcpu); 5004 else 5005 init_kvm_softmmu(vcpu); 5006 } 5007 EXPORT_SYMBOL_GPL(kvm_init_mmu); 5008 5009 static union kvm_mmu_page_role 5010 kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu) 5011 { 5012 struct kvm_mmu_role_regs regs = vcpu_to_role_regs(vcpu); 5013 union kvm_mmu_role role; 5014 5015 if (tdp_enabled) 5016 role = kvm_calc_tdp_mmu_root_page_role(vcpu, ®s, true); 5017 else 5018 role = kvm_calc_shadow_mmu_root_page_role(vcpu, ®s, true); 5019 5020 return role.base; 5021 } 5022 5023 void kvm_mmu_after_set_cpuid(struct kvm_vcpu *vcpu) 5024 { 5025 /* 5026 * Invalidate all MMU roles to force them to reinitialize as CPUID 5027 * information is factored into reserved bit calculations. 5028 * 5029 * Correctly handling multiple vCPU models with respect to paging and 5030 * physical address properties) in a single VM would require tracking 5031 * all relevant CPUID information in kvm_mmu_page_role. That is very 5032 * undesirable as it would increase the memory requirements for 5033 * gfn_track (see struct kvm_mmu_page_role comments). For now that 5034 * problem is swept under the rug; KVM's CPUID API is horrific and 5035 * it's all but impossible to solve it without introducing a new API. 5036 */ 5037 vcpu->arch.root_mmu.mmu_role.ext.valid = 0; 5038 vcpu->arch.guest_mmu.mmu_role.ext.valid = 0; 5039 vcpu->arch.nested_mmu.mmu_role.ext.valid = 0; 5040 kvm_mmu_reset_context(vcpu); 5041 5042 /* 5043 * Changing guest CPUID after KVM_RUN is forbidden, see the comment in 5044 * kvm_arch_vcpu_ioctl(). 5045 */ 5046 KVM_BUG_ON(vcpu->arch.last_vmentry_cpu != -1, vcpu->kvm); 5047 } 5048 5049 void kvm_mmu_reset_context(struct kvm_vcpu *vcpu) 5050 { 5051 kvm_mmu_unload(vcpu); 5052 kvm_init_mmu(vcpu); 5053 } 5054 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context); 5055 5056 int kvm_mmu_load(struct kvm_vcpu *vcpu) 5057 { 5058 int r; 5059 5060 r = mmu_topup_memory_caches(vcpu, !vcpu->arch.mmu->direct_map); 5061 if (r) 5062 goto out; 5063 r = mmu_alloc_special_roots(vcpu); 5064 if (r) 5065 goto out; 5066 if (vcpu->arch.mmu->direct_map) 5067 r = mmu_alloc_direct_roots(vcpu); 5068 else 5069 r = mmu_alloc_shadow_roots(vcpu); 5070 if (r) 5071 goto out; 5072 5073 kvm_mmu_sync_roots(vcpu); 5074 5075 kvm_mmu_load_pgd(vcpu); 5076 static_call(kvm_x86_tlb_flush_current)(vcpu); 5077 out: 5078 return r; 5079 } 5080 5081 void kvm_mmu_unload(struct kvm_vcpu *vcpu) 5082 { 5083 kvm_mmu_free_roots(vcpu, &vcpu->arch.root_mmu, KVM_MMU_ROOTS_ALL); 5084 WARN_ON(VALID_PAGE(vcpu->arch.root_mmu.root_hpa)); 5085 kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL); 5086 WARN_ON(VALID_PAGE(vcpu->arch.guest_mmu.root_hpa)); 5087 } 5088 5089 static bool need_remote_flush(u64 old, u64 new) 5090 { 5091 if (!is_shadow_present_pte(old)) 5092 return false; 5093 if (!is_shadow_present_pte(new)) 5094 return true; 5095 if ((old ^ new) & PT64_BASE_ADDR_MASK) 5096 return true; 5097 old ^= shadow_nx_mask; 5098 new ^= shadow_nx_mask; 5099 return (old & ~new & PT64_PERM_MASK) != 0; 5100 } 5101 5102 static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa, 5103 int *bytes) 5104 { 5105 u64 gentry = 0; 5106 int r; 5107 5108 /* 5109 * Assume that the pte write on a page table of the same type 5110 * as the current vcpu paging mode since we update the sptes only 5111 * when they have the same mode. 5112 */ 5113 if (is_pae(vcpu) && *bytes == 4) { 5114 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */ 5115 *gpa &= ~(gpa_t)7; 5116 *bytes = 8; 5117 } 5118 5119 if (*bytes == 4 || *bytes == 8) { 5120 r = kvm_vcpu_read_guest_atomic(vcpu, *gpa, &gentry, *bytes); 5121 if (r) 5122 gentry = 0; 5123 } 5124 5125 return gentry; 5126 } 5127 5128 /* 5129 * If we're seeing too many writes to a page, it may no longer be a page table, 5130 * or we may be forking, in which case it is better to unmap the page. 5131 */ 5132 static bool detect_write_flooding(struct kvm_mmu_page *sp) 5133 { 5134 /* 5135 * Skip write-flooding detected for the sp whose level is 1, because 5136 * it can become unsync, then the guest page is not write-protected. 5137 */ 5138 if (sp->role.level == PG_LEVEL_4K) 5139 return false; 5140 5141 atomic_inc(&sp->write_flooding_count); 5142 return atomic_read(&sp->write_flooding_count) >= 3; 5143 } 5144 5145 /* 5146 * Misaligned accesses are too much trouble to fix up; also, they usually 5147 * indicate a page is not used as a page table. 5148 */ 5149 static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa, 5150 int bytes) 5151 { 5152 unsigned offset, pte_size, misaligned; 5153 5154 pgprintk("misaligned: gpa %llx bytes %d role %x\n", 5155 gpa, bytes, sp->role.word); 5156 5157 offset = offset_in_page(gpa); 5158 pte_size = sp->role.gpte_is_8_bytes ? 8 : 4; 5159 5160 /* 5161 * Sometimes, the OS only writes the last one bytes to update status 5162 * bits, for example, in linux, andb instruction is used in clear_bit(). 5163 */ 5164 if (!(offset & (pte_size - 1)) && bytes == 1) 5165 return false; 5166 5167 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1); 5168 misaligned |= bytes < 4; 5169 5170 return misaligned; 5171 } 5172 5173 static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte) 5174 { 5175 unsigned page_offset, quadrant; 5176 u64 *spte; 5177 int level; 5178 5179 page_offset = offset_in_page(gpa); 5180 level = sp->role.level; 5181 *nspte = 1; 5182 if (!sp->role.gpte_is_8_bytes) { 5183 page_offset <<= 1; /* 32->64 */ 5184 /* 5185 * A 32-bit pde maps 4MB while the shadow pdes map 5186 * only 2MB. So we need to double the offset again 5187 * and zap two pdes instead of one. 5188 */ 5189 if (level == PT32_ROOT_LEVEL) { 5190 page_offset &= ~7; /* kill rounding error */ 5191 page_offset <<= 1; 5192 *nspte = 2; 5193 } 5194 quadrant = page_offset >> PAGE_SHIFT; 5195 page_offset &= ~PAGE_MASK; 5196 if (quadrant != sp->role.quadrant) 5197 return NULL; 5198 } 5199 5200 spte = &sp->spt[page_offset / sizeof(*spte)]; 5201 return spte; 5202 } 5203 5204 static void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa, 5205 const u8 *new, int bytes, 5206 struct kvm_page_track_notifier_node *node) 5207 { 5208 gfn_t gfn = gpa >> PAGE_SHIFT; 5209 struct kvm_mmu_page *sp; 5210 LIST_HEAD(invalid_list); 5211 u64 entry, gentry, *spte; 5212 int npte; 5213 bool flush = false; 5214 5215 /* 5216 * If we don't have indirect shadow pages, it means no page is 5217 * write-protected, so we can exit simply. 5218 */ 5219 if (!READ_ONCE(vcpu->kvm->arch.indirect_shadow_pages)) 5220 return; 5221 5222 pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes); 5223 5224 /* 5225 * No need to care whether allocation memory is successful 5226 * or not since pte prefetch is skipped if it does not have 5227 * enough objects in the cache. 5228 */ 5229 mmu_topup_memory_caches(vcpu, true); 5230 5231 write_lock(&vcpu->kvm->mmu_lock); 5232 5233 gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, &bytes); 5234 5235 ++vcpu->kvm->stat.mmu_pte_write; 5236 kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE); 5237 5238 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) { 5239 if (detect_write_misaligned(sp, gpa, bytes) || 5240 detect_write_flooding(sp)) { 5241 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list); 5242 ++vcpu->kvm->stat.mmu_flooded; 5243 continue; 5244 } 5245 5246 spte = get_written_sptes(sp, gpa, &npte); 5247 if (!spte) 5248 continue; 5249 5250 while (npte--) { 5251 entry = *spte; 5252 mmu_page_zap_pte(vcpu->kvm, sp, spte, NULL); 5253 if (gentry && sp->role.level != PG_LEVEL_4K) 5254 ++vcpu->kvm->stat.mmu_pde_zapped; 5255 if (need_remote_flush(entry, *spte)) 5256 flush = true; 5257 ++spte; 5258 } 5259 } 5260 kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, flush); 5261 kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE); 5262 write_unlock(&vcpu->kvm->mmu_lock); 5263 } 5264 5265 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 error_code, 5266 void *insn, int insn_len) 5267 { 5268 int r, emulation_type = EMULTYPE_PF; 5269 bool direct = vcpu->arch.mmu->direct_map; 5270 5271 if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa))) 5272 return RET_PF_RETRY; 5273 5274 r = RET_PF_INVALID; 5275 if (unlikely(error_code & PFERR_RSVD_MASK)) { 5276 r = handle_mmio_page_fault(vcpu, cr2_or_gpa, direct); 5277 if (r == RET_PF_EMULATE) 5278 goto emulate; 5279 } 5280 5281 if (r == RET_PF_INVALID) { 5282 r = kvm_mmu_do_page_fault(vcpu, cr2_or_gpa, 5283 lower_32_bits(error_code), false); 5284 if (KVM_BUG_ON(r == RET_PF_INVALID, vcpu->kvm)) 5285 return -EIO; 5286 } 5287 5288 if (r < 0) 5289 return r; 5290 if (r != RET_PF_EMULATE) 5291 return 1; 5292 5293 /* 5294 * Before emulating the instruction, check if the error code 5295 * was due to a RO violation while translating the guest page. 5296 * This can occur when using nested virtualization with nested 5297 * paging in both guests. If true, we simply unprotect the page 5298 * and resume the guest. 5299 */ 5300 if (vcpu->arch.mmu->direct_map && 5301 (error_code & PFERR_NESTED_GUEST_PAGE) == PFERR_NESTED_GUEST_PAGE) { 5302 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(cr2_or_gpa)); 5303 return 1; 5304 } 5305 5306 /* 5307 * vcpu->arch.mmu.page_fault returned RET_PF_EMULATE, but we can still 5308 * optimistically try to just unprotect the page and let the processor 5309 * re-execute the instruction that caused the page fault. Do not allow 5310 * retrying MMIO emulation, as it's not only pointless but could also 5311 * cause us to enter an infinite loop because the processor will keep 5312 * faulting on the non-existent MMIO address. Retrying an instruction 5313 * from a nested guest is also pointless and dangerous as we are only 5314 * explicitly shadowing L1's page tables, i.e. unprotecting something 5315 * for L1 isn't going to magically fix whatever issue cause L2 to fail. 5316 */ 5317 if (!mmio_info_in_cache(vcpu, cr2_or_gpa, direct) && !is_guest_mode(vcpu)) 5318 emulation_type |= EMULTYPE_ALLOW_RETRY_PF; 5319 emulate: 5320 return x86_emulate_instruction(vcpu, cr2_or_gpa, emulation_type, insn, 5321 insn_len); 5322 } 5323 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault); 5324 5325 void kvm_mmu_invalidate_gva(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, 5326 gva_t gva, hpa_t root_hpa) 5327 { 5328 int i; 5329 5330 /* It's actually a GPA for vcpu->arch.guest_mmu. */ 5331 if (mmu != &vcpu->arch.guest_mmu) { 5332 /* INVLPG on a non-canonical address is a NOP according to the SDM. */ 5333 if (is_noncanonical_address(gva, vcpu)) 5334 return; 5335 5336 static_call(kvm_x86_tlb_flush_gva)(vcpu, gva); 5337 } 5338 5339 if (!mmu->invlpg) 5340 return; 5341 5342 if (root_hpa == INVALID_PAGE) { 5343 mmu->invlpg(vcpu, gva, mmu->root_hpa); 5344 5345 /* 5346 * INVLPG is required to invalidate any global mappings for the VA, 5347 * irrespective of PCID. Since it would take us roughly similar amount 5348 * of work to determine whether any of the prev_root mappings of the VA 5349 * is marked global, or to just sync it blindly, so we might as well 5350 * just always sync it. 5351 * 5352 * Mappings not reachable via the current cr3 or the prev_roots will be 5353 * synced when switching to that cr3, so nothing needs to be done here 5354 * for them. 5355 */ 5356 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 5357 if (VALID_PAGE(mmu->prev_roots[i].hpa)) 5358 mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa); 5359 } else { 5360 mmu->invlpg(vcpu, gva, root_hpa); 5361 } 5362 } 5363 5364 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva) 5365 { 5366 kvm_mmu_invalidate_gva(vcpu, vcpu->arch.walk_mmu, gva, INVALID_PAGE); 5367 ++vcpu->stat.invlpg; 5368 } 5369 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg); 5370 5371 5372 void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid) 5373 { 5374 struct kvm_mmu *mmu = vcpu->arch.mmu; 5375 bool tlb_flush = false; 5376 uint i; 5377 5378 if (pcid == kvm_get_active_pcid(vcpu)) { 5379 mmu->invlpg(vcpu, gva, mmu->root_hpa); 5380 tlb_flush = true; 5381 } 5382 5383 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) { 5384 if (VALID_PAGE(mmu->prev_roots[i].hpa) && 5385 pcid == kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd)) { 5386 mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa); 5387 tlb_flush = true; 5388 } 5389 } 5390 5391 if (tlb_flush) 5392 static_call(kvm_x86_tlb_flush_gva)(vcpu, gva); 5393 5394 ++vcpu->stat.invlpg; 5395 5396 /* 5397 * Mappings not reachable via the current cr3 or the prev_roots will be 5398 * synced when switching to that cr3, so nothing needs to be done here 5399 * for them. 5400 */ 5401 } 5402 5403 void kvm_configure_mmu(bool enable_tdp, int tdp_forced_root_level, 5404 int tdp_max_root_level, int tdp_huge_page_level) 5405 { 5406 tdp_enabled = enable_tdp; 5407 tdp_root_level = tdp_forced_root_level; 5408 max_tdp_level = tdp_max_root_level; 5409 5410 /* 5411 * max_huge_page_level reflects KVM's MMU capabilities irrespective 5412 * of kernel support, e.g. KVM may be capable of using 1GB pages when 5413 * the kernel is not. But, KVM never creates a page size greater than 5414 * what is used by the kernel for any given HVA, i.e. the kernel's 5415 * capabilities are ultimately consulted by kvm_mmu_hugepage_adjust(). 5416 */ 5417 if (tdp_enabled) 5418 max_huge_page_level = tdp_huge_page_level; 5419 else if (boot_cpu_has(X86_FEATURE_GBPAGES)) 5420 max_huge_page_level = PG_LEVEL_1G; 5421 else 5422 max_huge_page_level = PG_LEVEL_2M; 5423 } 5424 EXPORT_SYMBOL_GPL(kvm_configure_mmu); 5425 5426 /* The return value indicates if tlb flush on all vcpus is needed. */ 5427 typedef bool (*slot_level_handler) (struct kvm *kvm, 5428 struct kvm_rmap_head *rmap_head, 5429 const struct kvm_memory_slot *slot); 5430 5431 /* The caller should hold mmu-lock before calling this function. */ 5432 static __always_inline bool 5433 slot_handle_level_range(struct kvm *kvm, const struct kvm_memory_slot *memslot, 5434 slot_level_handler fn, int start_level, int end_level, 5435 gfn_t start_gfn, gfn_t end_gfn, bool flush_on_yield, 5436 bool flush) 5437 { 5438 struct slot_rmap_walk_iterator iterator; 5439 5440 for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn, 5441 end_gfn, &iterator) { 5442 if (iterator.rmap) 5443 flush |= fn(kvm, iterator.rmap, memslot); 5444 5445 if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) { 5446 if (flush && flush_on_yield) { 5447 kvm_flush_remote_tlbs_with_address(kvm, 5448 start_gfn, 5449 iterator.gfn - start_gfn + 1); 5450 flush = false; 5451 } 5452 cond_resched_rwlock_write(&kvm->mmu_lock); 5453 } 5454 } 5455 5456 return flush; 5457 } 5458 5459 static __always_inline bool 5460 slot_handle_level(struct kvm *kvm, const struct kvm_memory_slot *memslot, 5461 slot_level_handler fn, int start_level, int end_level, 5462 bool flush_on_yield) 5463 { 5464 return slot_handle_level_range(kvm, memslot, fn, start_level, 5465 end_level, memslot->base_gfn, 5466 memslot->base_gfn + memslot->npages - 1, 5467 flush_on_yield, false); 5468 } 5469 5470 static __always_inline bool 5471 slot_handle_level_4k(struct kvm *kvm, const struct kvm_memory_slot *memslot, 5472 slot_level_handler fn, bool flush_on_yield) 5473 { 5474 return slot_handle_level(kvm, memslot, fn, PG_LEVEL_4K, 5475 PG_LEVEL_4K, flush_on_yield); 5476 } 5477 5478 static void free_mmu_pages(struct kvm_mmu *mmu) 5479 { 5480 if (!tdp_enabled && mmu->pae_root) 5481 set_memory_encrypted((unsigned long)mmu->pae_root, 1); 5482 free_page((unsigned long)mmu->pae_root); 5483 free_page((unsigned long)mmu->pml4_root); 5484 free_page((unsigned long)mmu->pml5_root); 5485 } 5486 5487 static int __kvm_mmu_create(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu) 5488 { 5489 struct page *page; 5490 int i; 5491 5492 mmu->root_hpa = INVALID_PAGE; 5493 mmu->root_pgd = 0; 5494 mmu->translate_gpa = translate_gpa; 5495 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 5496 mmu->prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID; 5497 5498 /* 5499 * When using PAE paging, the four PDPTEs are treated as 'root' pages, 5500 * while the PDP table is a per-vCPU construct that's allocated at MMU 5501 * creation. When emulating 32-bit mode, cr3 is only 32 bits even on 5502 * x86_64. Therefore we need to allocate the PDP table in the first 5503 * 4GB of memory, which happens to fit the DMA32 zone. TDP paging 5504 * generally doesn't use PAE paging and can skip allocating the PDP 5505 * table. The main exception, handled here, is SVM's 32-bit NPT. The 5506 * other exception is for shadowing L1's 32-bit or PAE NPT on 64-bit 5507 * KVM; that horror is handled on-demand by mmu_alloc_shadow_roots(). 5508 */ 5509 if (tdp_enabled && kvm_mmu_get_tdp_level(vcpu) > PT32E_ROOT_LEVEL) 5510 return 0; 5511 5512 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_DMA32); 5513 if (!page) 5514 return -ENOMEM; 5515 5516 mmu->pae_root = page_address(page); 5517 5518 /* 5519 * CR3 is only 32 bits when PAE paging is used, thus it's impossible to 5520 * get the CPU to treat the PDPTEs as encrypted. Decrypt the page so 5521 * that KVM's writes and the CPU's reads get along. Note, this is 5522 * only necessary when using shadow paging, as 64-bit NPT can get at 5523 * the C-bit even when shadowing 32-bit NPT, and SME isn't supported 5524 * by 32-bit kernels (when KVM itself uses 32-bit NPT). 5525 */ 5526 if (!tdp_enabled) 5527 set_memory_decrypted((unsigned long)mmu->pae_root, 1); 5528 else 5529 WARN_ON_ONCE(shadow_me_mask); 5530 5531 for (i = 0; i < 4; ++i) 5532 mmu->pae_root[i] = INVALID_PAE_ROOT; 5533 5534 return 0; 5535 } 5536 5537 int kvm_mmu_create(struct kvm_vcpu *vcpu) 5538 { 5539 int ret; 5540 5541 vcpu->arch.mmu_pte_list_desc_cache.kmem_cache = pte_list_desc_cache; 5542 vcpu->arch.mmu_pte_list_desc_cache.gfp_zero = __GFP_ZERO; 5543 5544 vcpu->arch.mmu_page_header_cache.kmem_cache = mmu_page_header_cache; 5545 vcpu->arch.mmu_page_header_cache.gfp_zero = __GFP_ZERO; 5546 5547 vcpu->arch.mmu_shadow_page_cache.gfp_zero = __GFP_ZERO; 5548 5549 vcpu->arch.mmu = &vcpu->arch.root_mmu; 5550 vcpu->arch.walk_mmu = &vcpu->arch.root_mmu; 5551 5552 vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa; 5553 5554 ret = __kvm_mmu_create(vcpu, &vcpu->arch.guest_mmu); 5555 if (ret) 5556 return ret; 5557 5558 ret = __kvm_mmu_create(vcpu, &vcpu->arch.root_mmu); 5559 if (ret) 5560 goto fail_allocate_root; 5561 5562 return ret; 5563 fail_allocate_root: 5564 free_mmu_pages(&vcpu->arch.guest_mmu); 5565 return ret; 5566 } 5567 5568 #define BATCH_ZAP_PAGES 10 5569 static void kvm_zap_obsolete_pages(struct kvm *kvm) 5570 { 5571 struct kvm_mmu_page *sp, *node; 5572 int nr_zapped, batch = 0; 5573 5574 restart: 5575 list_for_each_entry_safe_reverse(sp, node, 5576 &kvm->arch.active_mmu_pages, link) { 5577 /* 5578 * No obsolete valid page exists before a newly created page 5579 * since active_mmu_pages is a FIFO list. 5580 */ 5581 if (!is_obsolete_sp(kvm, sp)) 5582 break; 5583 5584 /* 5585 * Invalid pages should never land back on the list of active 5586 * pages. Skip the bogus page, otherwise we'll get stuck in an 5587 * infinite loop if the page gets put back on the list (again). 5588 */ 5589 if (WARN_ON(sp->role.invalid)) 5590 continue; 5591 5592 /* 5593 * No need to flush the TLB since we're only zapping shadow 5594 * pages with an obsolete generation number and all vCPUS have 5595 * loaded a new root, i.e. the shadow pages being zapped cannot 5596 * be in active use by the guest. 5597 */ 5598 if (batch >= BATCH_ZAP_PAGES && 5599 cond_resched_rwlock_write(&kvm->mmu_lock)) { 5600 batch = 0; 5601 goto restart; 5602 } 5603 5604 if (__kvm_mmu_prepare_zap_page(kvm, sp, 5605 &kvm->arch.zapped_obsolete_pages, &nr_zapped)) { 5606 batch += nr_zapped; 5607 goto restart; 5608 } 5609 } 5610 5611 /* 5612 * Trigger a remote TLB flush before freeing the page tables to ensure 5613 * KVM is not in the middle of a lockless shadow page table walk, which 5614 * may reference the pages. 5615 */ 5616 kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages); 5617 } 5618 5619 /* 5620 * Fast invalidate all shadow pages and use lock-break technique 5621 * to zap obsolete pages. 5622 * 5623 * It's required when memslot is being deleted or VM is being 5624 * destroyed, in these cases, we should ensure that KVM MMU does 5625 * not use any resource of the being-deleted slot or all slots 5626 * after calling the function. 5627 */ 5628 static void kvm_mmu_zap_all_fast(struct kvm *kvm) 5629 { 5630 lockdep_assert_held(&kvm->slots_lock); 5631 5632 write_lock(&kvm->mmu_lock); 5633 trace_kvm_mmu_zap_all_fast(kvm); 5634 5635 /* 5636 * Toggle mmu_valid_gen between '0' and '1'. Because slots_lock is 5637 * held for the entire duration of zapping obsolete pages, it's 5638 * impossible for there to be multiple invalid generations associated 5639 * with *valid* shadow pages at any given time, i.e. there is exactly 5640 * one valid generation and (at most) one invalid generation. 5641 */ 5642 kvm->arch.mmu_valid_gen = kvm->arch.mmu_valid_gen ? 0 : 1; 5643 5644 /* In order to ensure all threads see this change when 5645 * handling the MMU reload signal, this must happen in the 5646 * same critical section as kvm_reload_remote_mmus, and 5647 * before kvm_zap_obsolete_pages as kvm_zap_obsolete_pages 5648 * could drop the MMU lock and yield. 5649 */ 5650 if (is_tdp_mmu_enabled(kvm)) 5651 kvm_tdp_mmu_invalidate_all_roots(kvm); 5652 5653 /* 5654 * Notify all vcpus to reload its shadow page table and flush TLB. 5655 * Then all vcpus will switch to new shadow page table with the new 5656 * mmu_valid_gen. 5657 * 5658 * Note: we need to do this under the protection of mmu_lock, 5659 * otherwise, vcpu would purge shadow page but miss tlb flush. 5660 */ 5661 kvm_reload_remote_mmus(kvm); 5662 5663 kvm_zap_obsolete_pages(kvm); 5664 5665 write_unlock(&kvm->mmu_lock); 5666 5667 if (is_tdp_mmu_enabled(kvm)) { 5668 read_lock(&kvm->mmu_lock); 5669 kvm_tdp_mmu_zap_invalidated_roots(kvm); 5670 read_unlock(&kvm->mmu_lock); 5671 } 5672 } 5673 5674 static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm) 5675 { 5676 return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages)); 5677 } 5678 5679 static void kvm_mmu_invalidate_zap_pages_in_memslot(struct kvm *kvm, 5680 struct kvm_memory_slot *slot, 5681 struct kvm_page_track_notifier_node *node) 5682 { 5683 kvm_mmu_zap_all_fast(kvm); 5684 } 5685 5686 void kvm_mmu_init_vm(struct kvm *kvm) 5687 { 5688 struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker; 5689 5690 spin_lock_init(&kvm->arch.mmu_unsync_pages_lock); 5691 5692 kvm_mmu_init_tdp_mmu(kvm); 5693 5694 node->track_write = kvm_mmu_pte_write; 5695 node->track_flush_slot = kvm_mmu_invalidate_zap_pages_in_memslot; 5696 kvm_page_track_register_notifier(kvm, node); 5697 } 5698 5699 void kvm_mmu_uninit_vm(struct kvm *kvm) 5700 { 5701 struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker; 5702 5703 kvm_page_track_unregister_notifier(kvm, node); 5704 5705 kvm_mmu_uninit_tdp_mmu(kvm); 5706 } 5707 5708 static bool __kvm_zap_rmaps(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end) 5709 { 5710 const struct kvm_memory_slot *memslot; 5711 struct kvm_memslots *slots; 5712 bool flush = false; 5713 gfn_t start, end; 5714 int i; 5715 5716 if (!kvm_memslots_have_rmaps(kvm)) 5717 return flush; 5718 5719 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { 5720 slots = __kvm_memslots(kvm, i); 5721 kvm_for_each_memslot(memslot, slots) { 5722 start = max(gfn_start, memslot->base_gfn); 5723 end = min(gfn_end, memslot->base_gfn + memslot->npages); 5724 if (start >= end) 5725 continue; 5726 5727 flush = slot_handle_level_range(kvm, memslot, kvm_zap_rmapp, 5728 PG_LEVEL_4K, KVM_MAX_HUGEPAGE_LEVEL, 5729 start, end - 1, true, flush); 5730 } 5731 } 5732 5733 return flush; 5734 } 5735 5736 /* 5737 * Invalidate (zap) SPTEs that cover GFNs from gfn_start and up to gfn_end 5738 * (not including it) 5739 */ 5740 void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end) 5741 { 5742 bool flush; 5743 int i; 5744 5745 write_lock(&kvm->mmu_lock); 5746 5747 kvm_inc_notifier_count(kvm, gfn_start, gfn_end); 5748 5749 flush = __kvm_zap_rmaps(kvm, gfn_start, gfn_end); 5750 5751 if (is_tdp_mmu_enabled(kvm)) { 5752 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) 5753 flush = kvm_tdp_mmu_zap_gfn_range(kvm, i, gfn_start, 5754 gfn_end, flush); 5755 } 5756 5757 if (flush) 5758 kvm_flush_remote_tlbs_with_address(kvm, gfn_start, 5759 gfn_end - gfn_start); 5760 5761 kvm_dec_notifier_count(kvm, gfn_start, gfn_end); 5762 5763 write_unlock(&kvm->mmu_lock); 5764 } 5765 5766 static bool slot_rmap_write_protect(struct kvm *kvm, 5767 struct kvm_rmap_head *rmap_head, 5768 const struct kvm_memory_slot *slot) 5769 { 5770 return __rmap_write_protect(kvm, rmap_head, false); 5771 } 5772 5773 void kvm_mmu_slot_remove_write_access(struct kvm *kvm, 5774 const struct kvm_memory_slot *memslot, 5775 int start_level) 5776 { 5777 bool flush = false; 5778 5779 if (kvm_memslots_have_rmaps(kvm)) { 5780 write_lock(&kvm->mmu_lock); 5781 flush = slot_handle_level(kvm, memslot, slot_rmap_write_protect, 5782 start_level, KVM_MAX_HUGEPAGE_LEVEL, 5783 false); 5784 write_unlock(&kvm->mmu_lock); 5785 } 5786 5787 if (is_tdp_mmu_enabled(kvm)) { 5788 read_lock(&kvm->mmu_lock); 5789 flush |= kvm_tdp_mmu_wrprot_slot(kvm, memslot, start_level); 5790 read_unlock(&kvm->mmu_lock); 5791 } 5792 5793 /* 5794 * We can flush all the TLBs out of the mmu lock without TLB 5795 * corruption since we just change the spte from writable to 5796 * readonly so that we only need to care the case of changing 5797 * spte from present to present (changing the spte from present 5798 * to nonpresent will flush all the TLBs immediately), in other 5799 * words, the only case we care is mmu_spte_update() where we 5800 * have checked Host-writable | MMU-writable instead of 5801 * PT_WRITABLE_MASK, that means it does not depend on PT_WRITABLE_MASK 5802 * anymore. 5803 */ 5804 if (flush) 5805 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot); 5806 } 5807 5808 static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm, 5809 struct kvm_rmap_head *rmap_head, 5810 const struct kvm_memory_slot *slot) 5811 { 5812 u64 *sptep; 5813 struct rmap_iterator iter; 5814 int need_tlb_flush = 0; 5815 kvm_pfn_t pfn; 5816 struct kvm_mmu_page *sp; 5817 5818 restart: 5819 for_each_rmap_spte(rmap_head, &iter, sptep) { 5820 sp = sptep_to_sp(sptep); 5821 pfn = spte_to_pfn(*sptep); 5822 5823 /* 5824 * We cannot do huge page mapping for indirect shadow pages, 5825 * which are found on the last rmap (level = 1) when not using 5826 * tdp; such shadow pages are synced with the page table in 5827 * the guest, and the guest page table is using 4K page size 5828 * mapping if the indirect sp has level = 1. 5829 */ 5830 if (sp->role.direct && !kvm_is_reserved_pfn(pfn) && 5831 sp->role.level < kvm_mmu_max_mapping_level(kvm, slot, sp->gfn, 5832 pfn, PG_LEVEL_NUM)) { 5833 pte_list_remove(kvm, rmap_head, sptep); 5834 5835 if (kvm_available_flush_tlb_with_range()) 5836 kvm_flush_remote_tlbs_with_address(kvm, sp->gfn, 5837 KVM_PAGES_PER_HPAGE(sp->role.level)); 5838 else 5839 need_tlb_flush = 1; 5840 5841 goto restart; 5842 } 5843 } 5844 5845 return need_tlb_flush; 5846 } 5847 5848 void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm, 5849 const struct kvm_memory_slot *slot) 5850 { 5851 if (kvm_memslots_have_rmaps(kvm)) { 5852 write_lock(&kvm->mmu_lock); 5853 /* 5854 * Zap only 4k SPTEs since the legacy MMU only supports dirty 5855 * logging at a 4k granularity and never creates collapsible 5856 * 2m SPTEs during dirty logging. 5857 */ 5858 if (slot_handle_level_4k(kvm, slot, kvm_mmu_zap_collapsible_spte, true)) 5859 kvm_arch_flush_remote_tlbs_memslot(kvm, slot); 5860 write_unlock(&kvm->mmu_lock); 5861 } 5862 5863 if (is_tdp_mmu_enabled(kvm)) { 5864 read_lock(&kvm->mmu_lock); 5865 kvm_tdp_mmu_zap_collapsible_sptes(kvm, slot); 5866 read_unlock(&kvm->mmu_lock); 5867 } 5868 } 5869 5870 void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm, 5871 const struct kvm_memory_slot *memslot) 5872 { 5873 /* 5874 * All current use cases for flushing the TLBs for a specific memslot 5875 * related to dirty logging, and many do the TLB flush out of mmu_lock. 5876 * The interaction between the various operations on memslot must be 5877 * serialized by slots_locks to ensure the TLB flush from one operation 5878 * is observed by any other operation on the same memslot. 5879 */ 5880 lockdep_assert_held(&kvm->slots_lock); 5881 kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn, 5882 memslot->npages); 5883 } 5884 5885 void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm, 5886 const struct kvm_memory_slot *memslot) 5887 { 5888 bool flush = false; 5889 5890 if (kvm_memslots_have_rmaps(kvm)) { 5891 write_lock(&kvm->mmu_lock); 5892 /* 5893 * Clear dirty bits only on 4k SPTEs since the legacy MMU only 5894 * support dirty logging at a 4k granularity. 5895 */ 5896 flush = slot_handle_level_4k(kvm, memslot, __rmap_clear_dirty, false); 5897 write_unlock(&kvm->mmu_lock); 5898 } 5899 5900 if (is_tdp_mmu_enabled(kvm)) { 5901 read_lock(&kvm->mmu_lock); 5902 flush |= kvm_tdp_mmu_clear_dirty_slot(kvm, memslot); 5903 read_unlock(&kvm->mmu_lock); 5904 } 5905 5906 /* 5907 * It's also safe to flush TLBs out of mmu lock here as currently this 5908 * function is only used for dirty logging, in which case flushing TLB 5909 * out of mmu lock also guarantees no dirty pages will be lost in 5910 * dirty_bitmap. 5911 */ 5912 if (flush) 5913 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot); 5914 } 5915 5916 void kvm_mmu_zap_all(struct kvm *kvm) 5917 { 5918 struct kvm_mmu_page *sp, *node; 5919 LIST_HEAD(invalid_list); 5920 int ign; 5921 5922 write_lock(&kvm->mmu_lock); 5923 restart: 5924 list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link) { 5925 if (WARN_ON(sp->role.invalid)) 5926 continue; 5927 if (__kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list, &ign)) 5928 goto restart; 5929 if (cond_resched_rwlock_write(&kvm->mmu_lock)) 5930 goto restart; 5931 } 5932 5933 kvm_mmu_commit_zap_page(kvm, &invalid_list); 5934 5935 if (is_tdp_mmu_enabled(kvm)) 5936 kvm_tdp_mmu_zap_all(kvm); 5937 5938 write_unlock(&kvm->mmu_lock); 5939 } 5940 5941 void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen) 5942 { 5943 WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS); 5944 5945 gen &= MMIO_SPTE_GEN_MASK; 5946 5947 /* 5948 * Generation numbers are incremented in multiples of the number of 5949 * address spaces in order to provide unique generations across all 5950 * address spaces. Strip what is effectively the address space 5951 * modifier prior to checking for a wrap of the MMIO generation so 5952 * that a wrap in any address space is detected. 5953 */ 5954 gen &= ~((u64)KVM_ADDRESS_SPACE_NUM - 1); 5955 5956 /* 5957 * The very rare case: if the MMIO generation number has wrapped, 5958 * zap all shadow pages. 5959 */ 5960 if (unlikely(gen == 0)) { 5961 kvm_debug_ratelimited("kvm: zapping shadow pages for mmio generation wraparound\n"); 5962 kvm_mmu_zap_all_fast(kvm); 5963 } 5964 } 5965 5966 static unsigned long 5967 mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc) 5968 { 5969 struct kvm *kvm; 5970 int nr_to_scan = sc->nr_to_scan; 5971 unsigned long freed = 0; 5972 5973 mutex_lock(&kvm_lock); 5974 5975 list_for_each_entry(kvm, &vm_list, vm_list) { 5976 int idx; 5977 LIST_HEAD(invalid_list); 5978 5979 /* 5980 * Never scan more than sc->nr_to_scan VM instances. 5981 * Will not hit this condition practically since we do not try 5982 * to shrink more than one VM and it is very unlikely to see 5983 * !n_used_mmu_pages so many times. 5984 */ 5985 if (!nr_to_scan--) 5986 break; 5987 /* 5988 * n_used_mmu_pages is accessed without holding kvm->mmu_lock 5989 * here. We may skip a VM instance errorneosly, but we do not 5990 * want to shrink a VM that only started to populate its MMU 5991 * anyway. 5992 */ 5993 if (!kvm->arch.n_used_mmu_pages && 5994 !kvm_has_zapped_obsolete_pages(kvm)) 5995 continue; 5996 5997 idx = srcu_read_lock(&kvm->srcu); 5998 write_lock(&kvm->mmu_lock); 5999 6000 if (kvm_has_zapped_obsolete_pages(kvm)) { 6001 kvm_mmu_commit_zap_page(kvm, 6002 &kvm->arch.zapped_obsolete_pages); 6003 goto unlock; 6004 } 6005 6006 freed = kvm_mmu_zap_oldest_mmu_pages(kvm, sc->nr_to_scan); 6007 6008 unlock: 6009 write_unlock(&kvm->mmu_lock); 6010 srcu_read_unlock(&kvm->srcu, idx); 6011 6012 /* 6013 * unfair on small ones 6014 * per-vm shrinkers cry out 6015 * sadness comes quickly 6016 */ 6017 list_move_tail(&kvm->vm_list, &vm_list); 6018 break; 6019 } 6020 6021 mutex_unlock(&kvm_lock); 6022 return freed; 6023 } 6024 6025 static unsigned long 6026 mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc) 6027 { 6028 return percpu_counter_read_positive(&kvm_total_used_mmu_pages); 6029 } 6030 6031 static struct shrinker mmu_shrinker = { 6032 .count_objects = mmu_shrink_count, 6033 .scan_objects = mmu_shrink_scan, 6034 .seeks = DEFAULT_SEEKS * 10, 6035 }; 6036 6037 static void mmu_destroy_caches(void) 6038 { 6039 kmem_cache_destroy(pte_list_desc_cache); 6040 kmem_cache_destroy(mmu_page_header_cache); 6041 } 6042 6043 static bool get_nx_auto_mode(void) 6044 { 6045 /* Return true when CPU has the bug, and mitigations are ON */ 6046 return boot_cpu_has_bug(X86_BUG_ITLB_MULTIHIT) && !cpu_mitigations_off(); 6047 } 6048 6049 static void __set_nx_huge_pages(bool val) 6050 { 6051 nx_huge_pages = itlb_multihit_kvm_mitigation = val; 6052 } 6053 6054 static int set_nx_huge_pages(const char *val, const struct kernel_param *kp) 6055 { 6056 bool old_val = nx_huge_pages; 6057 bool new_val; 6058 6059 /* In "auto" mode deploy workaround only if CPU has the bug. */ 6060 if (sysfs_streq(val, "off")) 6061 new_val = 0; 6062 else if (sysfs_streq(val, "force")) 6063 new_val = 1; 6064 else if (sysfs_streq(val, "auto")) 6065 new_val = get_nx_auto_mode(); 6066 else if (strtobool(val, &new_val) < 0) 6067 return -EINVAL; 6068 6069 __set_nx_huge_pages(new_val); 6070 6071 if (new_val != old_val) { 6072 struct kvm *kvm; 6073 6074 mutex_lock(&kvm_lock); 6075 6076 list_for_each_entry(kvm, &vm_list, vm_list) { 6077 mutex_lock(&kvm->slots_lock); 6078 kvm_mmu_zap_all_fast(kvm); 6079 mutex_unlock(&kvm->slots_lock); 6080 6081 wake_up_process(kvm->arch.nx_lpage_recovery_thread); 6082 } 6083 mutex_unlock(&kvm_lock); 6084 } 6085 6086 return 0; 6087 } 6088 6089 int kvm_mmu_module_init(void) 6090 { 6091 int ret = -ENOMEM; 6092 6093 if (nx_huge_pages == -1) 6094 __set_nx_huge_pages(get_nx_auto_mode()); 6095 6096 /* 6097 * MMU roles use union aliasing which is, generally speaking, an 6098 * undefined behavior. However, we supposedly know how compilers behave 6099 * and the current status quo is unlikely to change. Guardians below are 6100 * supposed to let us know if the assumption becomes false. 6101 */ 6102 BUILD_BUG_ON(sizeof(union kvm_mmu_page_role) != sizeof(u32)); 6103 BUILD_BUG_ON(sizeof(union kvm_mmu_extended_role) != sizeof(u32)); 6104 BUILD_BUG_ON(sizeof(union kvm_mmu_role) != sizeof(u64)); 6105 6106 kvm_mmu_reset_all_pte_masks(); 6107 6108 pte_list_desc_cache = kmem_cache_create("pte_list_desc", 6109 sizeof(struct pte_list_desc), 6110 0, SLAB_ACCOUNT, NULL); 6111 if (!pte_list_desc_cache) 6112 goto out; 6113 6114 mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header", 6115 sizeof(struct kvm_mmu_page), 6116 0, SLAB_ACCOUNT, NULL); 6117 if (!mmu_page_header_cache) 6118 goto out; 6119 6120 if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL)) 6121 goto out; 6122 6123 ret = register_shrinker(&mmu_shrinker); 6124 if (ret) 6125 goto out; 6126 6127 return 0; 6128 6129 out: 6130 mmu_destroy_caches(); 6131 return ret; 6132 } 6133 6134 /* 6135 * Calculate mmu pages needed for kvm. 6136 */ 6137 unsigned long kvm_mmu_calculate_default_mmu_pages(struct kvm *kvm) 6138 { 6139 unsigned long nr_mmu_pages; 6140 unsigned long nr_pages = 0; 6141 struct kvm_memslots *slots; 6142 struct kvm_memory_slot *memslot; 6143 int i; 6144 6145 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { 6146 slots = __kvm_memslots(kvm, i); 6147 6148 kvm_for_each_memslot(memslot, slots) 6149 nr_pages += memslot->npages; 6150 } 6151 6152 nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000; 6153 nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES); 6154 6155 return nr_mmu_pages; 6156 } 6157 6158 void kvm_mmu_destroy(struct kvm_vcpu *vcpu) 6159 { 6160 kvm_mmu_unload(vcpu); 6161 free_mmu_pages(&vcpu->arch.root_mmu); 6162 free_mmu_pages(&vcpu->arch.guest_mmu); 6163 mmu_free_memory_caches(vcpu); 6164 } 6165 6166 void kvm_mmu_module_exit(void) 6167 { 6168 mmu_destroy_caches(); 6169 percpu_counter_destroy(&kvm_total_used_mmu_pages); 6170 unregister_shrinker(&mmu_shrinker); 6171 mmu_audit_disable(); 6172 } 6173 6174 /* 6175 * Calculate the effective recovery period, accounting for '0' meaning "let KVM 6176 * select a halving time of 1 hour". Returns true if recovery is enabled. 6177 */ 6178 static bool calc_nx_huge_pages_recovery_period(uint *period) 6179 { 6180 /* 6181 * Use READ_ONCE to get the params, this may be called outside of the 6182 * param setters, e.g. by the kthread to compute its next timeout. 6183 */ 6184 bool enabled = READ_ONCE(nx_huge_pages); 6185 uint ratio = READ_ONCE(nx_huge_pages_recovery_ratio); 6186 6187 if (!enabled || !ratio) 6188 return false; 6189 6190 *period = READ_ONCE(nx_huge_pages_recovery_period_ms); 6191 if (!*period) { 6192 /* Make sure the period is not less than one second. */ 6193 ratio = min(ratio, 3600u); 6194 *period = 60 * 60 * 1000 / ratio; 6195 } 6196 return true; 6197 } 6198 6199 static int set_nx_huge_pages_recovery_param(const char *val, const struct kernel_param *kp) 6200 { 6201 bool was_recovery_enabled, is_recovery_enabled; 6202 uint old_period, new_period; 6203 int err; 6204 6205 was_recovery_enabled = calc_nx_huge_pages_recovery_period(&old_period); 6206 6207 err = param_set_uint(val, kp); 6208 if (err) 6209 return err; 6210 6211 is_recovery_enabled = calc_nx_huge_pages_recovery_period(&new_period); 6212 6213 if (is_recovery_enabled && 6214 (!was_recovery_enabled || old_period > new_period)) { 6215 struct kvm *kvm; 6216 6217 mutex_lock(&kvm_lock); 6218 6219 list_for_each_entry(kvm, &vm_list, vm_list) 6220 wake_up_process(kvm->arch.nx_lpage_recovery_thread); 6221 6222 mutex_unlock(&kvm_lock); 6223 } 6224 6225 return err; 6226 } 6227 6228 static void kvm_recover_nx_lpages(struct kvm *kvm) 6229 { 6230 unsigned long nx_lpage_splits = kvm->stat.nx_lpage_splits; 6231 int rcu_idx; 6232 struct kvm_mmu_page *sp; 6233 unsigned int ratio; 6234 LIST_HEAD(invalid_list); 6235 bool flush = false; 6236 ulong to_zap; 6237 6238 rcu_idx = srcu_read_lock(&kvm->srcu); 6239 write_lock(&kvm->mmu_lock); 6240 6241 ratio = READ_ONCE(nx_huge_pages_recovery_ratio); 6242 to_zap = ratio ? DIV_ROUND_UP(nx_lpage_splits, ratio) : 0; 6243 for ( ; to_zap; --to_zap) { 6244 if (list_empty(&kvm->arch.lpage_disallowed_mmu_pages)) 6245 break; 6246 6247 /* 6248 * We use a separate list instead of just using active_mmu_pages 6249 * because the number of lpage_disallowed pages is expected to 6250 * be relatively small compared to the total. 6251 */ 6252 sp = list_first_entry(&kvm->arch.lpage_disallowed_mmu_pages, 6253 struct kvm_mmu_page, 6254 lpage_disallowed_link); 6255 WARN_ON_ONCE(!sp->lpage_disallowed); 6256 if (is_tdp_mmu_page(sp)) { 6257 flush |= kvm_tdp_mmu_zap_sp(kvm, sp); 6258 } else { 6259 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list); 6260 WARN_ON_ONCE(sp->lpage_disallowed); 6261 } 6262 6263 if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) { 6264 kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush); 6265 cond_resched_rwlock_write(&kvm->mmu_lock); 6266 flush = false; 6267 } 6268 } 6269 kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush); 6270 6271 write_unlock(&kvm->mmu_lock); 6272 srcu_read_unlock(&kvm->srcu, rcu_idx); 6273 } 6274 6275 static long get_nx_lpage_recovery_timeout(u64 start_time) 6276 { 6277 bool enabled; 6278 uint period; 6279 6280 enabled = calc_nx_huge_pages_recovery_period(&period); 6281 6282 return enabled ? start_time + msecs_to_jiffies(period) - get_jiffies_64() 6283 : MAX_SCHEDULE_TIMEOUT; 6284 } 6285 6286 static int kvm_nx_lpage_recovery_worker(struct kvm *kvm, uintptr_t data) 6287 { 6288 u64 start_time; 6289 long remaining_time; 6290 6291 while (true) { 6292 start_time = get_jiffies_64(); 6293 remaining_time = get_nx_lpage_recovery_timeout(start_time); 6294 6295 set_current_state(TASK_INTERRUPTIBLE); 6296 while (!kthread_should_stop() && remaining_time > 0) { 6297 schedule_timeout(remaining_time); 6298 remaining_time = get_nx_lpage_recovery_timeout(start_time); 6299 set_current_state(TASK_INTERRUPTIBLE); 6300 } 6301 6302 set_current_state(TASK_RUNNING); 6303 6304 if (kthread_should_stop()) 6305 return 0; 6306 6307 kvm_recover_nx_lpages(kvm); 6308 } 6309 } 6310 6311 int kvm_mmu_post_init_vm(struct kvm *kvm) 6312 { 6313 int err; 6314 6315 err = kvm_vm_create_worker_thread(kvm, kvm_nx_lpage_recovery_worker, 0, 6316 "kvm-nx-lpage-recovery", 6317 &kvm->arch.nx_lpage_recovery_thread); 6318 if (!err) 6319 kthread_unpark(kvm->arch.nx_lpage_recovery_thread); 6320 6321 return err; 6322 } 6323 6324 void kvm_mmu_pre_destroy_vm(struct kvm *kvm) 6325 { 6326 if (kvm->arch.nx_lpage_recovery_thread) 6327 kthread_stop(kvm->arch.nx_lpage_recovery_thread); 6328 } 6329