1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * This module enables machines with Intel VT-x extensions to run virtual 6 * machines without emulation or binary translation. 7 * 8 * MMU support 9 * 10 * Copyright (C) 2006 Qumranet, Inc. 11 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 12 * 13 * Authors: 14 * Yaniv Kamay <yaniv@qumranet.com> 15 * Avi Kivity <avi@qumranet.com> 16 */ 17 18 #include "irq.h" 19 #include "ioapic.h" 20 #include "mmu.h" 21 #include "mmu_internal.h" 22 #include "tdp_mmu.h" 23 #include "x86.h" 24 #include "kvm_cache_regs.h" 25 #include "kvm_emulate.h" 26 #include "cpuid.h" 27 #include "spte.h" 28 29 #include <linux/kvm_host.h> 30 #include <linux/types.h> 31 #include <linux/string.h> 32 #include <linux/mm.h> 33 #include <linux/highmem.h> 34 #include <linux/moduleparam.h> 35 #include <linux/export.h> 36 #include <linux/swap.h> 37 #include <linux/hugetlb.h> 38 #include <linux/compiler.h> 39 #include <linux/srcu.h> 40 #include <linux/slab.h> 41 #include <linux/sched/signal.h> 42 #include <linux/uaccess.h> 43 #include <linux/hash.h> 44 #include <linux/kern_levels.h> 45 #include <linux/kthread.h> 46 47 #include <asm/page.h> 48 #include <asm/memtype.h> 49 #include <asm/cmpxchg.h> 50 #include <asm/io.h> 51 #include <asm/vmx.h> 52 #include <asm/kvm_page_track.h> 53 #include "trace.h" 54 55 extern bool itlb_multihit_kvm_mitigation; 56 57 static int __read_mostly nx_huge_pages = -1; 58 #ifdef CONFIG_PREEMPT_RT 59 /* Recovery can cause latency spikes, disable it for PREEMPT_RT. */ 60 static uint __read_mostly nx_huge_pages_recovery_ratio = 0; 61 #else 62 static uint __read_mostly nx_huge_pages_recovery_ratio = 60; 63 #endif 64 65 static int set_nx_huge_pages(const char *val, const struct kernel_param *kp); 66 static int set_nx_huge_pages_recovery_ratio(const char *val, const struct kernel_param *kp); 67 68 static const struct kernel_param_ops nx_huge_pages_ops = { 69 .set = set_nx_huge_pages, 70 .get = param_get_bool, 71 }; 72 73 static const struct kernel_param_ops nx_huge_pages_recovery_ratio_ops = { 74 .set = set_nx_huge_pages_recovery_ratio, 75 .get = param_get_uint, 76 }; 77 78 module_param_cb(nx_huge_pages, &nx_huge_pages_ops, &nx_huge_pages, 0644); 79 __MODULE_PARM_TYPE(nx_huge_pages, "bool"); 80 module_param_cb(nx_huge_pages_recovery_ratio, &nx_huge_pages_recovery_ratio_ops, 81 &nx_huge_pages_recovery_ratio, 0644); 82 __MODULE_PARM_TYPE(nx_huge_pages_recovery_ratio, "uint"); 83 84 static bool __read_mostly force_flush_and_sync_on_reuse; 85 module_param_named(flush_on_reuse, force_flush_and_sync_on_reuse, bool, 0644); 86 87 /* 88 * When setting this variable to true it enables Two-Dimensional-Paging 89 * where the hardware walks 2 page tables: 90 * 1. the guest-virtual to guest-physical 91 * 2. while doing 1. it walks guest-physical to host-physical 92 * If the hardware supports that we don't need to do shadow paging. 93 */ 94 bool tdp_enabled = false; 95 96 static int max_huge_page_level __read_mostly; 97 static int max_tdp_level __read_mostly; 98 99 enum { 100 AUDIT_PRE_PAGE_FAULT, 101 AUDIT_POST_PAGE_FAULT, 102 AUDIT_PRE_PTE_WRITE, 103 AUDIT_POST_PTE_WRITE, 104 AUDIT_PRE_SYNC, 105 AUDIT_POST_SYNC 106 }; 107 108 #ifdef MMU_DEBUG 109 bool dbg = 0; 110 module_param(dbg, bool, 0644); 111 #endif 112 113 #define PTE_PREFETCH_NUM 8 114 115 #define PT32_LEVEL_BITS 10 116 117 #define PT32_LEVEL_SHIFT(level) \ 118 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS) 119 120 #define PT32_LVL_OFFSET_MASK(level) \ 121 (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \ 122 * PT32_LEVEL_BITS))) - 1)) 123 124 #define PT32_INDEX(address, level)\ 125 (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1)) 126 127 128 #define PT32_BASE_ADDR_MASK PAGE_MASK 129 #define PT32_DIR_BASE_ADDR_MASK \ 130 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1)) 131 #define PT32_LVL_ADDR_MASK(level) \ 132 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \ 133 * PT32_LEVEL_BITS))) - 1)) 134 135 #include <trace/events/kvm.h> 136 137 /* make pte_list_desc fit well in cache line */ 138 #define PTE_LIST_EXT 3 139 140 struct pte_list_desc { 141 u64 *sptes[PTE_LIST_EXT]; 142 struct pte_list_desc *more; 143 }; 144 145 struct kvm_shadow_walk_iterator { 146 u64 addr; 147 hpa_t shadow_addr; 148 u64 *sptep; 149 int level; 150 unsigned index; 151 }; 152 153 #define for_each_shadow_entry_using_root(_vcpu, _root, _addr, _walker) \ 154 for (shadow_walk_init_using_root(&(_walker), (_vcpu), \ 155 (_root), (_addr)); \ 156 shadow_walk_okay(&(_walker)); \ 157 shadow_walk_next(&(_walker))) 158 159 #define for_each_shadow_entry(_vcpu, _addr, _walker) \ 160 for (shadow_walk_init(&(_walker), _vcpu, _addr); \ 161 shadow_walk_okay(&(_walker)); \ 162 shadow_walk_next(&(_walker))) 163 164 #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte) \ 165 for (shadow_walk_init(&(_walker), _vcpu, _addr); \ 166 shadow_walk_okay(&(_walker)) && \ 167 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; }); \ 168 __shadow_walk_next(&(_walker), spte)) 169 170 static struct kmem_cache *pte_list_desc_cache; 171 struct kmem_cache *mmu_page_header_cache; 172 static struct percpu_counter kvm_total_used_mmu_pages; 173 174 static void mmu_spte_set(u64 *sptep, u64 spte); 175 static union kvm_mmu_page_role 176 kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu); 177 178 #define CREATE_TRACE_POINTS 179 #include "mmutrace.h" 180 181 182 static inline bool kvm_available_flush_tlb_with_range(void) 183 { 184 return kvm_x86_ops.tlb_remote_flush_with_range; 185 } 186 187 static void kvm_flush_remote_tlbs_with_range(struct kvm *kvm, 188 struct kvm_tlb_range *range) 189 { 190 int ret = -ENOTSUPP; 191 192 if (range && kvm_x86_ops.tlb_remote_flush_with_range) 193 ret = static_call(kvm_x86_tlb_remote_flush_with_range)(kvm, range); 194 195 if (ret) 196 kvm_flush_remote_tlbs(kvm); 197 } 198 199 void kvm_flush_remote_tlbs_with_address(struct kvm *kvm, 200 u64 start_gfn, u64 pages) 201 { 202 struct kvm_tlb_range range; 203 204 range.start_gfn = start_gfn; 205 range.pages = pages; 206 207 kvm_flush_remote_tlbs_with_range(kvm, &range); 208 } 209 210 bool is_nx_huge_page_enabled(void) 211 { 212 return READ_ONCE(nx_huge_pages); 213 } 214 215 static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn, 216 unsigned int access) 217 { 218 u64 mask = make_mmio_spte(vcpu, gfn, access); 219 220 trace_mark_mmio_spte(sptep, gfn, mask); 221 mmu_spte_set(sptep, mask); 222 } 223 224 static gfn_t get_mmio_spte_gfn(u64 spte) 225 { 226 u64 gpa = spte & shadow_nonpresent_or_rsvd_lower_gfn_mask; 227 228 gpa |= (spte >> SHADOW_NONPRESENT_OR_RSVD_MASK_LEN) 229 & shadow_nonpresent_or_rsvd_mask; 230 231 return gpa >> PAGE_SHIFT; 232 } 233 234 static unsigned get_mmio_spte_access(u64 spte) 235 { 236 return spte & shadow_mmio_access_mask; 237 } 238 239 static bool set_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn, 240 kvm_pfn_t pfn, unsigned int access) 241 { 242 if (unlikely(is_noslot_pfn(pfn))) { 243 mark_mmio_spte(vcpu, sptep, gfn, access); 244 return true; 245 } 246 247 return false; 248 } 249 250 static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte) 251 { 252 u64 kvm_gen, spte_gen, gen; 253 254 gen = kvm_vcpu_memslots(vcpu)->generation; 255 if (unlikely(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS)) 256 return false; 257 258 kvm_gen = gen & MMIO_SPTE_GEN_MASK; 259 spte_gen = get_mmio_spte_generation(spte); 260 261 trace_check_mmio_spte(spte, kvm_gen, spte_gen); 262 return likely(kvm_gen == spte_gen); 263 } 264 265 static gpa_t translate_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access, 266 struct x86_exception *exception) 267 { 268 /* Check if guest physical address doesn't exceed guest maximum */ 269 if (kvm_vcpu_is_illegal_gpa(vcpu, gpa)) { 270 exception->error_code |= PFERR_RSVD_MASK; 271 return UNMAPPED_GVA; 272 } 273 274 return gpa; 275 } 276 277 static int is_cpuid_PSE36(void) 278 { 279 return 1; 280 } 281 282 static int is_nx(struct kvm_vcpu *vcpu) 283 { 284 return vcpu->arch.efer & EFER_NX; 285 } 286 287 static gfn_t pse36_gfn_delta(u32 gpte) 288 { 289 int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT; 290 291 return (gpte & PT32_DIR_PSE36_MASK) << shift; 292 } 293 294 #ifdef CONFIG_X86_64 295 static void __set_spte(u64 *sptep, u64 spte) 296 { 297 WRITE_ONCE(*sptep, spte); 298 } 299 300 static void __update_clear_spte_fast(u64 *sptep, u64 spte) 301 { 302 WRITE_ONCE(*sptep, spte); 303 } 304 305 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte) 306 { 307 return xchg(sptep, spte); 308 } 309 310 static u64 __get_spte_lockless(u64 *sptep) 311 { 312 return READ_ONCE(*sptep); 313 } 314 #else 315 union split_spte { 316 struct { 317 u32 spte_low; 318 u32 spte_high; 319 }; 320 u64 spte; 321 }; 322 323 static void count_spte_clear(u64 *sptep, u64 spte) 324 { 325 struct kvm_mmu_page *sp = sptep_to_sp(sptep); 326 327 if (is_shadow_present_pte(spte)) 328 return; 329 330 /* Ensure the spte is completely set before we increase the count */ 331 smp_wmb(); 332 sp->clear_spte_count++; 333 } 334 335 static void __set_spte(u64 *sptep, u64 spte) 336 { 337 union split_spte *ssptep, sspte; 338 339 ssptep = (union split_spte *)sptep; 340 sspte = (union split_spte)spte; 341 342 ssptep->spte_high = sspte.spte_high; 343 344 /* 345 * If we map the spte from nonpresent to present, We should store 346 * the high bits firstly, then set present bit, so cpu can not 347 * fetch this spte while we are setting the spte. 348 */ 349 smp_wmb(); 350 351 WRITE_ONCE(ssptep->spte_low, sspte.spte_low); 352 } 353 354 static void __update_clear_spte_fast(u64 *sptep, u64 spte) 355 { 356 union split_spte *ssptep, sspte; 357 358 ssptep = (union split_spte *)sptep; 359 sspte = (union split_spte)spte; 360 361 WRITE_ONCE(ssptep->spte_low, sspte.spte_low); 362 363 /* 364 * If we map the spte from present to nonpresent, we should clear 365 * present bit firstly to avoid vcpu fetch the old high bits. 366 */ 367 smp_wmb(); 368 369 ssptep->spte_high = sspte.spte_high; 370 count_spte_clear(sptep, spte); 371 } 372 373 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte) 374 { 375 union split_spte *ssptep, sspte, orig; 376 377 ssptep = (union split_spte *)sptep; 378 sspte = (union split_spte)spte; 379 380 /* xchg acts as a barrier before the setting of the high bits */ 381 orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low); 382 orig.spte_high = ssptep->spte_high; 383 ssptep->spte_high = sspte.spte_high; 384 count_spte_clear(sptep, spte); 385 386 return orig.spte; 387 } 388 389 /* 390 * The idea using the light way get the spte on x86_32 guest is from 391 * gup_get_pte (mm/gup.c). 392 * 393 * An spte tlb flush may be pending, because kvm_set_pte_rmapp 394 * coalesces them and we are running out of the MMU lock. Therefore 395 * we need to protect against in-progress updates of the spte. 396 * 397 * Reading the spte while an update is in progress may get the old value 398 * for the high part of the spte. The race is fine for a present->non-present 399 * change (because the high part of the spte is ignored for non-present spte), 400 * but for a present->present change we must reread the spte. 401 * 402 * All such changes are done in two steps (present->non-present and 403 * non-present->present), hence it is enough to count the number of 404 * present->non-present updates: if it changed while reading the spte, 405 * we might have hit the race. This is done using clear_spte_count. 406 */ 407 static u64 __get_spte_lockless(u64 *sptep) 408 { 409 struct kvm_mmu_page *sp = sptep_to_sp(sptep); 410 union split_spte spte, *orig = (union split_spte *)sptep; 411 int count; 412 413 retry: 414 count = sp->clear_spte_count; 415 smp_rmb(); 416 417 spte.spte_low = orig->spte_low; 418 smp_rmb(); 419 420 spte.spte_high = orig->spte_high; 421 smp_rmb(); 422 423 if (unlikely(spte.spte_low != orig->spte_low || 424 count != sp->clear_spte_count)) 425 goto retry; 426 427 return spte.spte; 428 } 429 #endif 430 431 static bool spte_has_volatile_bits(u64 spte) 432 { 433 if (!is_shadow_present_pte(spte)) 434 return false; 435 436 /* 437 * Always atomically update spte if it can be updated 438 * out of mmu-lock, it can ensure dirty bit is not lost, 439 * also, it can help us to get a stable is_writable_pte() 440 * to ensure tlb flush is not missed. 441 */ 442 if (spte_can_locklessly_be_made_writable(spte) || 443 is_access_track_spte(spte)) 444 return true; 445 446 if (spte_ad_enabled(spte)) { 447 if ((spte & shadow_accessed_mask) == 0 || 448 (is_writable_pte(spte) && (spte & shadow_dirty_mask) == 0)) 449 return true; 450 } 451 452 return false; 453 } 454 455 /* Rules for using mmu_spte_set: 456 * Set the sptep from nonpresent to present. 457 * Note: the sptep being assigned *must* be either not present 458 * or in a state where the hardware will not attempt to update 459 * the spte. 460 */ 461 static void mmu_spte_set(u64 *sptep, u64 new_spte) 462 { 463 WARN_ON(is_shadow_present_pte(*sptep)); 464 __set_spte(sptep, new_spte); 465 } 466 467 /* 468 * Update the SPTE (excluding the PFN), but do not track changes in its 469 * accessed/dirty status. 470 */ 471 static u64 mmu_spte_update_no_track(u64 *sptep, u64 new_spte) 472 { 473 u64 old_spte = *sptep; 474 475 WARN_ON(!is_shadow_present_pte(new_spte)); 476 477 if (!is_shadow_present_pte(old_spte)) { 478 mmu_spte_set(sptep, new_spte); 479 return old_spte; 480 } 481 482 if (!spte_has_volatile_bits(old_spte)) 483 __update_clear_spte_fast(sptep, new_spte); 484 else 485 old_spte = __update_clear_spte_slow(sptep, new_spte); 486 487 WARN_ON(spte_to_pfn(old_spte) != spte_to_pfn(new_spte)); 488 489 return old_spte; 490 } 491 492 /* Rules for using mmu_spte_update: 493 * Update the state bits, it means the mapped pfn is not changed. 494 * 495 * Whenever we overwrite a writable spte with a read-only one we 496 * should flush remote TLBs. Otherwise rmap_write_protect 497 * will find a read-only spte, even though the writable spte 498 * might be cached on a CPU's TLB, the return value indicates this 499 * case. 500 * 501 * Returns true if the TLB needs to be flushed 502 */ 503 static bool mmu_spte_update(u64 *sptep, u64 new_spte) 504 { 505 bool flush = false; 506 u64 old_spte = mmu_spte_update_no_track(sptep, new_spte); 507 508 if (!is_shadow_present_pte(old_spte)) 509 return false; 510 511 /* 512 * For the spte updated out of mmu-lock is safe, since 513 * we always atomically update it, see the comments in 514 * spte_has_volatile_bits(). 515 */ 516 if (spte_can_locklessly_be_made_writable(old_spte) && 517 !is_writable_pte(new_spte)) 518 flush = true; 519 520 /* 521 * Flush TLB when accessed/dirty states are changed in the page tables, 522 * to guarantee consistency between TLB and page tables. 523 */ 524 525 if (is_accessed_spte(old_spte) && !is_accessed_spte(new_spte)) { 526 flush = true; 527 kvm_set_pfn_accessed(spte_to_pfn(old_spte)); 528 } 529 530 if (is_dirty_spte(old_spte) && !is_dirty_spte(new_spte)) { 531 flush = true; 532 kvm_set_pfn_dirty(spte_to_pfn(old_spte)); 533 } 534 535 return flush; 536 } 537 538 /* 539 * Rules for using mmu_spte_clear_track_bits: 540 * It sets the sptep from present to nonpresent, and track the 541 * state bits, it is used to clear the last level sptep. 542 * Returns non-zero if the PTE was previously valid. 543 */ 544 static int mmu_spte_clear_track_bits(u64 *sptep) 545 { 546 kvm_pfn_t pfn; 547 u64 old_spte = *sptep; 548 549 if (!spte_has_volatile_bits(old_spte)) 550 __update_clear_spte_fast(sptep, 0ull); 551 else 552 old_spte = __update_clear_spte_slow(sptep, 0ull); 553 554 if (!is_shadow_present_pte(old_spte)) 555 return 0; 556 557 pfn = spte_to_pfn(old_spte); 558 559 /* 560 * KVM does not hold the refcount of the page used by 561 * kvm mmu, before reclaiming the page, we should 562 * unmap it from mmu first. 563 */ 564 WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn))); 565 566 if (is_accessed_spte(old_spte)) 567 kvm_set_pfn_accessed(pfn); 568 569 if (is_dirty_spte(old_spte)) 570 kvm_set_pfn_dirty(pfn); 571 572 return 1; 573 } 574 575 /* 576 * Rules for using mmu_spte_clear_no_track: 577 * Directly clear spte without caring the state bits of sptep, 578 * it is used to set the upper level spte. 579 */ 580 static void mmu_spte_clear_no_track(u64 *sptep) 581 { 582 __update_clear_spte_fast(sptep, 0ull); 583 } 584 585 static u64 mmu_spte_get_lockless(u64 *sptep) 586 { 587 return __get_spte_lockless(sptep); 588 } 589 590 /* Restore an acc-track PTE back to a regular PTE */ 591 static u64 restore_acc_track_spte(u64 spte) 592 { 593 u64 new_spte = spte; 594 u64 saved_bits = (spte >> SHADOW_ACC_TRACK_SAVED_BITS_SHIFT) 595 & SHADOW_ACC_TRACK_SAVED_BITS_MASK; 596 597 WARN_ON_ONCE(spte_ad_enabled(spte)); 598 WARN_ON_ONCE(!is_access_track_spte(spte)); 599 600 new_spte &= ~shadow_acc_track_mask; 601 new_spte &= ~(SHADOW_ACC_TRACK_SAVED_BITS_MASK << 602 SHADOW_ACC_TRACK_SAVED_BITS_SHIFT); 603 new_spte |= saved_bits; 604 605 return new_spte; 606 } 607 608 /* Returns the Accessed status of the PTE and resets it at the same time. */ 609 static bool mmu_spte_age(u64 *sptep) 610 { 611 u64 spte = mmu_spte_get_lockless(sptep); 612 613 if (!is_accessed_spte(spte)) 614 return false; 615 616 if (spte_ad_enabled(spte)) { 617 clear_bit((ffs(shadow_accessed_mask) - 1), 618 (unsigned long *)sptep); 619 } else { 620 /* 621 * Capture the dirty status of the page, so that it doesn't get 622 * lost when the SPTE is marked for access tracking. 623 */ 624 if (is_writable_pte(spte)) 625 kvm_set_pfn_dirty(spte_to_pfn(spte)); 626 627 spte = mark_spte_for_access_track(spte); 628 mmu_spte_update_no_track(sptep, spte); 629 } 630 631 return true; 632 } 633 634 static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu) 635 { 636 /* 637 * Prevent page table teardown by making any free-er wait during 638 * kvm_flush_remote_tlbs() IPI to all active vcpus. 639 */ 640 local_irq_disable(); 641 642 /* 643 * Make sure a following spte read is not reordered ahead of the write 644 * to vcpu->mode. 645 */ 646 smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES); 647 } 648 649 static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu) 650 { 651 /* 652 * Make sure the write to vcpu->mode is not reordered in front of 653 * reads to sptes. If it does, kvm_mmu_commit_zap_page() can see us 654 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table. 655 */ 656 smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE); 657 local_irq_enable(); 658 } 659 660 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu, bool maybe_indirect) 661 { 662 int r; 663 664 /* 1 rmap, 1 parent PTE per level, and the prefetched rmaps. */ 665 r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache, 666 1 + PT64_ROOT_MAX_LEVEL + PTE_PREFETCH_NUM); 667 if (r) 668 return r; 669 r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_shadow_page_cache, 670 PT64_ROOT_MAX_LEVEL); 671 if (r) 672 return r; 673 if (maybe_indirect) { 674 r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_gfn_array_cache, 675 PT64_ROOT_MAX_LEVEL); 676 if (r) 677 return r; 678 } 679 return kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache, 680 PT64_ROOT_MAX_LEVEL); 681 } 682 683 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu) 684 { 685 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache); 686 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_shadow_page_cache); 687 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_gfn_array_cache); 688 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache); 689 } 690 691 static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu) 692 { 693 return kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache); 694 } 695 696 static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc) 697 { 698 kmem_cache_free(pte_list_desc_cache, pte_list_desc); 699 } 700 701 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index) 702 { 703 if (!sp->role.direct) 704 return sp->gfns[index]; 705 706 return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS)); 707 } 708 709 static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn) 710 { 711 if (!sp->role.direct) { 712 sp->gfns[index] = gfn; 713 return; 714 } 715 716 if (WARN_ON(gfn != kvm_mmu_page_get_gfn(sp, index))) 717 pr_err_ratelimited("gfn mismatch under direct page %llx " 718 "(expected %llx, got %llx)\n", 719 sp->gfn, 720 kvm_mmu_page_get_gfn(sp, index), gfn); 721 } 722 723 /* 724 * Return the pointer to the large page information for a given gfn, 725 * handling slots that are not large page aligned. 726 */ 727 static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn, 728 struct kvm_memory_slot *slot, 729 int level) 730 { 731 unsigned long idx; 732 733 idx = gfn_to_index(gfn, slot->base_gfn, level); 734 return &slot->arch.lpage_info[level - 2][idx]; 735 } 736 737 static void update_gfn_disallow_lpage_count(struct kvm_memory_slot *slot, 738 gfn_t gfn, int count) 739 { 740 struct kvm_lpage_info *linfo; 741 int i; 742 743 for (i = PG_LEVEL_2M; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) { 744 linfo = lpage_info_slot(gfn, slot, i); 745 linfo->disallow_lpage += count; 746 WARN_ON(linfo->disallow_lpage < 0); 747 } 748 } 749 750 void kvm_mmu_gfn_disallow_lpage(struct kvm_memory_slot *slot, gfn_t gfn) 751 { 752 update_gfn_disallow_lpage_count(slot, gfn, 1); 753 } 754 755 void kvm_mmu_gfn_allow_lpage(struct kvm_memory_slot *slot, gfn_t gfn) 756 { 757 update_gfn_disallow_lpage_count(slot, gfn, -1); 758 } 759 760 static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp) 761 { 762 struct kvm_memslots *slots; 763 struct kvm_memory_slot *slot; 764 gfn_t gfn; 765 766 kvm->arch.indirect_shadow_pages++; 767 gfn = sp->gfn; 768 slots = kvm_memslots_for_spte_role(kvm, sp->role); 769 slot = __gfn_to_memslot(slots, gfn); 770 771 /* the non-leaf shadow pages are keeping readonly. */ 772 if (sp->role.level > PG_LEVEL_4K) 773 return kvm_slot_page_track_add_page(kvm, slot, gfn, 774 KVM_PAGE_TRACK_WRITE); 775 776 kvm_mmu_gfn_disallow_lpage(slot, gfn); 777 } 778 779 void account_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp) 780 { 781 if (sp->lpage_disallowed) 782 return; 783 784 ++kvm->stat.nx_lpage_splits; 785 list_add_tail(&sp->lpage_disallowed_link, 786 &kvm->arch.lpage_disallowed_mmu_pages); 787 sp->lpage_disallowed = true; 788 } 789 790 static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp) 791 { 792 struct kvm_memslots *slots; 793 struct kvm_memory_slot *slot; 794 gfn_t gfn; 795 796 kvm->arch.indirect_shadow_pages--; 797 gfn = sp->gfn; 798 slots = kvm_memslots_for_spte_role(kvm, sp->role); 799 slot = __gfn_to_memslot(slots, gfn); 800 if (sp->role.level > PG_LEVEL_4K) 801 return kvm_slot_page_track_remove_page(kvm, slot, gfn, 802 KVM_PAGE_TRACK_WRITE); 803 804 kvm_mmu_gfn_allow_lpage(slot, gfn); 805 } 806 807 void unaccount_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp) 808 { 809 --kvm->stat.nx_lpage_splits; 810 sp->lpage_disallowed = false; 811 list_del(&sp->lpage_disallowed_link); 812 } 813 814 static struct kvm_memory_slot * 815 gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn, 816 bool no_dirty_log) 817 { 818 struct kvm_memory_slot *slot; 819 820 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 821 if (!slot || slot->flags & KVM_MEMSLOT_INVALID) 822 return NULL; 823 if (no_dirty_log && kvm_slot_dirty_track_enabled(slot)) 824 return NULL; 825 826 return slot; 827 } 828 829 /* 830 * About rmap_head encoding: 831 * 832 * If the bit zero of rmap_head->val is clear, then it points to the only spte 833 * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct 834 * pte_list_desc containing more mappings. 835 */ 836 837 /* 838 * Returns the number of pointers in the rmap chain, not counting the new one. 839 */ 840 static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte, 841 struct kvm_rmap_head *rmap_head) 842 { 843 struct pte_list_desc *desc; 844 int i, count = 0; 845 846 if (!rmap_head->val) { 847 rmap_printk("%p %llx 0->1\n", spte, *spte); 848 rmap_head->val = (unsigned long)spte; 849 } else if (!(rmap_head->val & 1)) { 850 rmap_printk("%p %llx 1->many\n", spte, *spte); 851 desc = mmu_alloc_pte_list_desc(vcpu); 852 desc->sptes[0] = (u64 *)rmap_head->val; 853 desc->sptes[1] = spte; 854 rmap_head->val = (unsigned long)desc | 1; 855 ++count; 856 } else { 857 rmap_printk("%p %llx many->many\n", spte, *spte); 858 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul); 859 while (desc->sptes[PTE_LIST_EXT-1]) { 860 count += PTE_LIST_EXT; 861 862 if (!desc->more) { 863 desc->more = mmu_alloc_pte_list_desc(vcpu); 864 desc = desc->more; 865 break; 866 } 867 desc = desc->more; 868 } 869 for (i = 0; desc->sptes[i]; ++i) 870 ++count; 871 desc->sptes[i] = spte; 872 } 873 return count; 874 } 875 876 static void 877 pte_list_desc_remove_entry(struct kvm_rmap_head *rmap_head, 878 struct pte_list_desc *desc, int i, 879 struct pte_list_desc *prev_desc) 880 { 881 int j; 882 883 for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j) 884 ; 885 desc->sptes[i] = desc->sptes[j]; 886 desc->sptes[j] = NULL; 887 if (j != 0) 888 return; 889 if (!prev_desc && !desc->more) 890 rmap_head->val = 0; 891 else 892 if (prev_desc) 893 prev_desc->more = desc->more; 894 else 895 rmap_head->val = (unsigned long)desc->more | 1; 896 mmu_free_pte_list_desc(desc); 897 } 898 899 static void __pte_list_remove(u64 *spte, struct kvm_rmap_head *rmap_head) 900 { 901 struct pte_list_desc *desc; 902 struct pte_list_desc *prev_desc; 903 int i; 904 905 if (!rmap_head->val) { 906 pr_err("%s: %p 0->BUG\n", __func__, spte); 907 BUG(); 908 } else if (!(rmap_head->val & 1)) { 909 rmap_printk("%p 1->0\n", spte); 910 if ((u64 *)rmap_head->val != spte) { 911 pr_err("%s: %p 1->BUG\n", __func__, spte); 912 BUG(); 913 } 914 rmap_head->val = 0; 915 } else { 916 rmap_printk("%p many->many\n", spte); 917 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul); 918 prev_desc = NULL; 919 while (desc) { 920 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i) { 921 if (desc->sptes[i] == spte) { 922 pte_list_desc_remove_entry(rmap_head, 923 desc, i, prev_desc); 924 return; 925 } 926 } 927 prev_desc = desc; 928 desc = desc->more; 929 } 930 pr_err("%s: %p many->many\n", __func__, spte); 931 BUG(); 932 } 933 } 934 935 static void pte_list_remove(struct kvm_rmap_head *rmap_head, u64 *sptep) 936 { 937 mmu_spte_clear_track_bits(sptep); 938 __pte_list_remove(sptep, rmap_head); 939 } 940 941 static struct kvm_rmap_head *__gfn_to_rmap(gfn_t gfn, int level, 942 struct kvm_memory_slot *slot) 943 { 944 unsigned long idx; 945 946 idx = gfn_to_index(gfn, slot->base_gfn, level); 947 return &slot->arch.rmap[level - PG_LEVEL_4K][idx]; 948 } 949 950 static struct kvm_rmap_head *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, 951 struct kvm_mmu_page *sp) 952 { 953 struct kvm_memslots *slots; 954 struct kvm_memory_slot *slot; 955 956 slots = kvm_memslots_for_spte_role(kvm, sp->role); 957 slot = __gfn_to_memslot(slots, gfn); 958 return __gfn_to_rmap(gfn, sp->role.level, slot); 959 } 960 961 static bool rmap_can_add(struct kvm_vcpu *vcpu) 962 { 963 struct kvm_mmu_memory_cache *mc; 964 965 mc = &vcpu->arch.mmu_pte_list_desc_cache; 966 return kvm_mmu_memory_cache_nr_free_objects(mc); 967 } 968 969 static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn) 970 { 971 struct kvm_mmu_page *sp; 972 struct kvm_rmap_head *rmap_head; 973 974 sp = sptep_to_sp(spte); 975 kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn); 976 rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp); 977 return pte_list_add(vcpu, spte, rmap_head); 978 } 979 980 static void rmap_remove(struct kvm *kvm, u64 *spte) 981 { 982 struct kvm_mmu_page *sp; 983 gfn_t gfn; 984 struct kvm_rmap_head *rmap_head; 985 986 sp = sptep_to_sp(spte); 987 gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt); 988 rmap_head = gfn_to_rmap(kvm, gfn, sp); 989 __pte_list_remove(spte, rmap_head); 990 } 991 992 /* 993 * Used by the following functions to iterate through the sptes linked by a 994 * rmap. All fields are private and not assumed to be used outside. 995 */ 996 struct rmap_iterator { 997 /* private fields */ 998 struct pte_list_desc *desc; /* holds the sptep if not NULL */ 999 int pos; /* index of the sptep */ 1000 }; 1001 1002 /* 1003 * Iteration must be started by this function. This should also be used after 1004 * removing/dropping sptes from the rmap link because in such cases the 1005 * information in the iterator may not be valid. 1006 * 1007 * Returns sptep if found, NULL otherwise. 1008 */ 1009 static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head, 1010 struct rmap_iterator *iter) 1011 { 1012 u64 *sptep; 1013 1014 if (!rmap_head->val) 1015 return NULL; 1016 1017 if (!(rmap_head->val & 1)) { 1018 iter->desc = NULL; 1019 sptep = (u64 *)rmap_head->val; 1020 goto out; 1021 } 1022 1023 iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul); 1024 iter->pos = 0; 1025 sptep = iter->desc->sptes[iter->pos]; 1026 out: 1027 BUG_ON(!is_shadow_present_pte(*sptep)); 1028 return sptep; 1029 } 1030 1031 /* 1032 * Must be used with a valid iterator: e.g. after rmap_get_first(). 1033 * 1034 * Returns sptep if found, NULL otherwise. 1035 */ 1036 static u64 *rmap_get_next(struct rmap_iterator *iter) 1037 { 1038 u64 *sptep; 1039 1040 if (iter->desc) { 1041 if (iter->pos < PTE_LIST_EXT - 1) { 1042 ++iter->pos; 1043 sptep = iter->desc->sptes[iter->pos]; 1044 if (sptep) 1045 goto out; 1046 } 1047 1048 iter->desc = iter->desc->more; 1049 1050 if (iter->desc) { 1051 iter->pos = 0; 1052 /* desc->sptes[0] cannot be NULL */ 1053 sptep = iter->desc->sptes[iter->pos]; 1054 goto out; 1055 } 1056 } 1057 1058 return NULL; 1059 out: 1060 BUG_ON(!is_shadow_present_pte(*sptep)); 1061 return sptep; 1062 } 1063 1064 #define for_each_rmap_spte(_rmap_head_, _iter_, _spte_) \ 1065 for (_spte_ = rmap_get_first(_rmap_head_, _iter_); \ 1066 _spte_; _spte_ = rmap_get_next(_iter_)) 1067 1068 static void drop_spte(struct kvm *kvm, u64 *sptep) 1069 { 1070 if (mmu_spte_clear_track_bits(sptep)) 1071 rmap_remove(kvm, sptep); 1072 } 1073 1074 1075 static bool __drop_large_spte(struct kvm *kvm, u64 *sptep) 1076 { 1077 if (is_large_pte(*sptep)) { 1078 WARN_ON(sptep_to_sp(sptep)->role.level == PG_LEVEL_4K); 1079 drop_spte(kvm, sptep); 1080 --kvm->stat.lpages; 1081 return true; 1082 } 1083 1084 return false; 1085 } 1086 1087 static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep) 1088 { 1089 if (__drop_large_spte(vcpu->kvm, sptep)) { 1090 struct kvm_mmu_page *sp = sptep_to_sp(sptep); 1091 1092 kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn, 1093 KVM_PAGES_PER_HPAGE(sp->role.level)); 1094 } 1095 } 1096 1097 /* 1098 * Write-protect on the specified @sptep, @pt_protect indicates whether 1099 * spte write-protection is caused by protecting shadow page table. 1100 * 1101 * Note: write protection is difference between dirty logging and spte 1102 * protection: 1103 * - for dirty logging, the spte can be set to writable at anytime if 1104 * its dirty bitmap is properly set. 1105 * - for spte protection, the spte can be writable only after unsync-ing 1106 * shadow page. 1107 * 1108 * Return true if tlb need be flushed. 1109 */ 1110 static bool spte_write_protect(u64 *sptep, bool pt_protect) 1111 { 1112 u64 spte = *sptep; 1113 1114 if (!is_writable_pte(spte) && 1115 !(pt_protect && spte_can_locklessly_be_made_writable(spte))) 1116 return false; 1117 1118 rmap_printk("spte %p %llx\n", sptep, *sptep); 1119 1120 if (pt_protect) 1121 spte &= ~SPTE_MMU_WRITEABLE; 1122 spte = spte & ~PT_WRITABLE_MASK; 1123 1124 return mmu_spte_update(sptep, spte); 1125 } 1126 1127 static bool __rmap_write_protect(struct kvm *kvm, 1128 struct kvm_rmap_head *rmap_head, 1129 bool pt_protect) 1130 { 1131 u64 *sptep; 1132 struct rmap_iterator iter; 1133 bool flush = false; 1134 1135 for_each_rmap_spte(rmap_head, &iter, sptep) 1136 flush |= spte_write_protect(sptep, pt_protect); 1137 1138 return flush; 1139 } 1140 1141 static bool spte_clear_dirty(u64 *sptep) 1142 { 1143 u64 spte = *sptep; 1144 1145 rmap_printk("spte %p %llx\n", sptep, *sptep); 1146 1147 MMU_WARN_ON(!spte_ad_enabled(spte)); 1148 spte &= ~shadow_dirty_mask; 1149 return mmu_spte_update(sptep, spte); 1150 } 1151 1152 static bool spte_wrprot_for_clear_dirty(u64 *sptep) 1153 { 1154 bool was_writable = test_and_clear_bit(PT_WRITABLE_SHIFT, 1155 (unsigned long *)sptep); 1156 if (was_writable && !spte_ad_enabled(*sptep)) 1157 kvm_set_pfn_dirty(spte_to_pfn(*sptep)); 1158 1159 return was_writable; 1160 } 1161 1162 /* 1163 * Gets the GFN ready for another round of dirty logging by clearing the 1164 * - D bit on ad-enabled SPTEs, and 1165 * - W bit on ad-disabled SPTEs. 1166 * Returns true iff any D or W bits were cleared. 1167 */ 1168 static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head, 1169 struct kvm_memory_slot *slot) 1170 { 1171 u64 *sptep; 1172 struct rmap_iterator iter; 1173 bool flush = false; 1174 1175 for_each_rmap_spte(rmap_head, &iter, sptep) 1176 if (spte_ad_need_write_protect(*sptep)) 1177 flush |= spte_wrprot_for_clear_dirty(sptep); 1178 else 1179 flush |= spte_clear_dirty(sptep); 1180 1181 return flush; 1182 } 1183 1184 /** 1185 * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages 1186 * @kvm: kvm instance 1187 * @slot: slot to protect 1188 * @gfn_offset: start of the BITS_PER_LONG pages we care about 1189 * @mask: indicates which pages we should protect 1190 * 1191 * Used when we do not need to care about huge page mappings: e.g. during dirty 1192 * logging we do not have any such mappings. 1193 */ 1194 static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm, 1195 struct kvm_memory_slot *slot, 1196 gfn_t gfn_offset, unsigned long mask) 1197 { 1198 struct kvm_rmap_head *rmap_head; 1199 1200 if (is_tdp_mmu_enabled(kvm)) 1201 kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot, 1202 slot->base_gfn + gfn_offset, mask, true); 1203 while (mask) { 1204 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask), 1205 PG_LEVEL_4K, slot); 1206 __rmap_write_protect(kvm, rmap_head, false); 1207 1208 /* clear the first set bit */ 1209 mask &= mask - 1; 1210 } 1211 } 1212 1213 /** 1214 * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages, or write 1215 * protect the page if the D-bit isn't supported. 1216 * @kvm: kvm instance 1217 * @slot: slot to clear D-bit 1218 * @gfn_offset: start of the BITS_PER_LONG pages we care about 1219 * @mask: indicates which pages we should clear D-bit 1220 * 1221 * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap. 1222 */ 1223 static void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm, 1224 struct kvm_memory_slot *slot, 1225 gfn_t gfn_offset, unsigned long mask) 1226 { 1227 struct kvm_rmap_head *rmap_head; 1228 1229 if (is_tdp_mmu_enabled(kvm)) 1230 kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot, 1231 slot->base_gfn + gfn_offset, mask, false); 1232 while (mask) { 1233 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask), 1234 PG_LEVEL_4K, slot); 1235 __rmap_clear_dirty(kvm, rmap_head, slot); 1236 1237 /* clear the first set bit */ 1238 mask &= mask - 1; 1239 } 1240 } 1241 1242 /** 1243 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected 1244 * PT level pages. 1245 * 1246 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to 1247 * enable dirty logging for them. 1248 * 1249 * Used when we do not need to care about huge page mappings: e.g. during dirty 1250 * logging we do not have any such mappings. 1251 */ 1252 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm, 1253 struct kvm_memory_slot *slot, 1254 gfn_t gfn_offset, unsigned long mask) 1255 { 1256 if (kvm_x86_ops.cpu_dirty_log_size) 1257 kvm_mmu_clear_dirty_pt_masked(kvm, slot, gfn_offset, mask); 1258 else 1259 kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask); 1260 } 1261 1262 int kvm_cpu_dirty_log_size(void) 1263 { 1264 return kvm_x86_ops.cpu_dirty_log_size; 1265 } 1266 1267 bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm, 1268 struct kvm_memory_slot *slot, u64 gfn) 1269 { 1270 struct kvm_rmap_head *rmap_head; 1271 int i; 1272 bool write_protected = false; 1273 1274 for (i = PG_LEVEL_4K; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) { 1275 rmap_head = __gfn_to_rmap(gfn, i, slot); 1276 write_protected |= __rmap_write_protect(kvm, rmap_head, true); 1277 } 1278 1279 if (is_tdp_mmu_enabled(kvm)) 1280 write_protected |= 1281 kvm_tdp_mmu_write_protect_gfn(kvm, slot, gfn); 1282 1283 return write_protected; 1284 } 1285 1286 static bool rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn) 1287 { 1288 struct kvm_memory_slot *slot; 1289 1290 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 1291 return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn); 1292 } 1293 1294 static bool kvm_zap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head, 1295 struct kvm_memory_slot *slot) 1296 { 1297 u64 *sptep; 1298 struct rmap_iterator iter; 1299 bool flush = false; 1300 1301 while ((sptep = rmap_get_first(rmap_head, &iter))) { 1302 rmap_printk("spte %p %llx.\n", sptep, *sptep); 1303 1304 pte_list_remove(rmap_head, sptep); 1305 flush = true; 1306 } 1307 1308 return flush; 1309 } 1310 1311 static int kvm_unmap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head, 1312 struct kvm_memory_slot *slot, gfn_t gfn, int level, 1313 unsigned long data) 1314 { 1315 return kvm_zap_rmapp(kvm, rmap_head, slot); 1316 } 1317 1318 static int kvm_set_pte_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head, 1319 struct kvm_memory_slot *slot, gfn_t gfn, int level, 1320 unsigned long data) 1321 { 1322 u64 *sptep; 1323 struct rmap_iterator iter; 1324 int need_flush = 0; 1325 u64 new_spte; 1326 pte_t *ptep = (pte_t *)data; 1327 kvm_pfn_t new_pfn; 1328 1329 WARN_ON(pte_huge(*ptep)); 1330 new_pfn = pte_pfn(*ptep); 1331 1332 restart: 1333 for_each_rmap_spte(rmap_head, &iter, sptep) { 1334 rmap_printk("spte %p %llx gfn %llx (%d)\n", 1335 sptep, *sptep, gfn, level); 1336 1337 need_flush = 1; 1338 1339 if (pte_write(*ptep)) { 1340 pte_list_remove(rmap_head, sptep); 1341 goto restart; 1342 } else { 1343 new_spte = kvm_mmu_changed_pte_notifier_make_spte( 1344 *sptep, new_pfn); 1345 1346 mmu_spte_clear_track_bits(sptep); 1347 mmu_spte_set(sptep, new_spte); 1348 } 1349 } 1350 1351 if (need_flush && kvm_available_flush_tlb_with_range()) { 1352 kvm_flush_remote_tlbs_with_address(kvm, gfn, 1); 1353 return 0; 1354 } 1355 1356 return need_flush; 1357 } 1358 1359 struct slot_rmap_walk_iterator { 1360 /* input fields. */ 1361 struct kvm_memory_slot *slot; 1362 gfn_t start_gfn; 1363 gfn_t end_gfn; 1364 int start_level; 1365 int end_level; 1366 1367 /* output fields. */ 1368 gfn_t gfn; 1369 struct kvm_rmap_head *rmap; 1370 int level; 1371 1372 /* private field. */ 1373 struct kvm_rmap_head *end_rmap; 1374 }; 1375 1376 static void 1377 rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level) 1378 { 1379 iterator->level = level; 1380 iterator->gfn = iterator->start_gfn; 1381 iterator->rmap = __gfn_to_rmap(iterator->gfn, level, iterator->slot); 1382 iterator->end_rmap = __gfn_to_rmap(iterator->end_gfn, level, 1383 iterator->slot); 1384 } 1385 1386 static void 1387 slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator, 1388 struct kvm_memory_slot *slot, int start_level, 1389 int end_level, gfn_t start_gfn, gfn_t end_gfn) 1390 { 1391 iterator->slot = slot; 1392 iterator->start_level = start_level; 1393 iterator->end_level = end_level; 1394 iterator->start_gfn = start_gfn; 1395 iterator->end_gfn = end_gfn; 1396 1397 rmap_walk_init_level(iterator, iterator->start_level); 1398 } 1399 1400 static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator) 1401 { 1402 return !!iterator->rmap; 1403 } 1404 1405 static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator) 1406 { 1407 if (++iterator->rmap <= iterator->end_rmap) { 1408 iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level)); 1409 return; 1410 } 1411 1412 if (++iterator->level > iterator->end_level) { 1413 iterator->rmap = NULL; 1414 return; 1415 } 1416 1417 rmap_walk_init_level(iterator, iterator->level); 1418 } 1419 1420 #define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_, \ 1421 _start_gfn, _end_gfn, _iter_) \ 1422 for (slot_rmap_walk_init(_iter_, _slot_, _start_level_, \ 1423 _end_level_, _start_gfn, _end_gfn); \ 1424 slot_rmap_walk_okay(_iter_); \ 1425 slot_rmap_walk_next(_iter_)) 1426 1427 static __always_inline int 1428 kvm_handle_hva_range(struct kvm *kvm, 1429 unsigned long start, 1430 unsigned long end, 1431 unsigned long data, 1432 int (*handler)(struct kvm *kvm, 1433 struct kvm_rmap_head *rmap_head, 1434 struct kvm_memory_slot *slot, 1435 gfn_t gfn, 1436 int level, 1437 unsigned long data)) 1438 { 1439 struct kvm_memslots *slots; 1440 struct kvm_memory_slot *memslot; 1441 struct slot_rmap_walk_iterator iterator; 1442 int ret = 0; 1443 int i; 1444 1445 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { 1446 slots = __kvm_memslots(kvm, i); 1447 kvm_for_each_memslot(memslot, slots) { 1448 unsigned long hva_start, hva_end; 1449 gfn_t gfn_start, gfn_end; 1450 1451 hva_start = max(start, memslot->userspace_addr); 1452 hva_end = min(end, memslot->userspace_addr + 1453 (memslot->npages << PAGE_SHIFT)); 1454 if (hva_start >= hva_end) 1455 continue; 1456 /* 1457 * {gfn(page) | page intersects with [hva_start, hva_end)} = 1458 * {gfn_start, gfn_start+1, ..., gfn_end-1}. 1459 */ 1460 gfn_start = hva_to_gfn_memslot(hva_start, memslot); 1461 gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot); 1462 1463 for_each_slot_rmap_range(memslot, PG_LEVEL_4K, 1464 KVM_MAX_HUGEPAGE_LEVEL, 1465 gfn_start, gfn_end - 1, 1466 &iterator) 1467 ret |= handler(kvm, iterator.rmap, memslot, 1468 iterator.gfn, iterator.level, data); 1469 } 1470 } 1471 1472 return ret; 1473 } 1474 1475 static int kvm_handle_hva(struct kvm *kvm, unsigned long hva, 1476 unsigned long data, 1477 int (*handler)(struct kvm *kvm, 1478 struct kvm_rmap_head *rmap_head, 1479 struct kvm_memory_slot *slot, 1480 gfn_t gfn, int level, 1481 unsigned long data)) 1482 { 1483 return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler); 1484 } 1485 1486 int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end, 1487 unsigned flags) 1488 { 1489 int r; 1490 1491 r = kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp); 1492 1493 if (is_tdp_mmu_enabled(kvm)) 1494 r |= kvm_tdp_mmu_zap_hva_range(kvm, start, end); 1495 1496 return r; 1497 } 1498 1499 int kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte) 1500 { 1501 int r; 1502 1503 r = kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp); 1504 1505 if (is_tdp_mmu_enabled(kvm)) 1506 r |= kvm_tdp_mmu_set_spte_hva(kvm, hva, &pte); 1507 1508 return r; 1509 } 1510 1511 static int kvm_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head, 1512 struct kvm_memory_slot *slot, gfn_t gfn, int level, 1513 unsigned long data) 1514 { 1515 u64 *sptep; 1516 struct rmap_iterator iter; 1517 int young = 0; 1518 1519 for_each_rmap_spte(rmap_head, &iter, sptep) 1520 young |= mmu_spte_age(sptep); 1521 1522 trace_kvm_age_page(gfn, level, slot, young); 1523 return young; 1524 } 1525 1526 static int kvm_test_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head, 1527 struct kvm_memory_slot *slot, gfn_t gfn, 1528 int level, unsigned long data) 1529 { 1530 u64 *sptep; 1531 struct rmap_iterator iter; 1532 1533 for_each_rmap_spte(rmap_head, &iter, sptep) 1534 if (is_accessed_spte(*sptep)) 1535 return 1; 1536 return 0; 1537 } 1538 1539 #define RMAP_RECYCLE_THRESHOLD 1000 1540 1541 static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn) 1542 { 1543 struct kvm_rmap_head *rmap_head; 1544 struct kvm_mmu_page *sp; 1545 1546 sp = sptep_to_sp(spte); 1547 1548 rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp); 1549 1550 kvm_unmap_rmapp(vcpu->kvm, rmap_head, NULL, gfn, sp->role.level, 0); 1551 kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn, 1552 KVM_PAGES_PER_HPAGE(sp->role.level)); 1553 } 1554 1555 int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end) 1556 { 1557 int young = false; 1558 1559 young = kvm_handle_hva_range(kvm, start, end, 0, kvm_age_rmapp); 1560 if (is_tdp_mmu_enabled(kvm)) 1561 young |= kvm_tdp_mmu_age_hva_range(kvm, start, end); 1562 1563 return young; 1564 } 1565 1566 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva) 1567 { 1568 int young = false; 1569 1570 young = kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp); 1571 if (is_tdp_mmu_enabled(kvm)) 1572 young |= kvm_tdp_mmu_test_age_hva(kvm, hva); 1573 1574 return young; 1575 } 1576 1577 #ifdef MMU_DEBUG 1578 static int is_empty_shadow_page(u64 *spt) 1579 { 1580 u64 *pos; 1581 u64 *end; 1582 1583 for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++) 1584 if (is_shadow_present_pte(*pos)) { 1585 printk(KERN_ERR "%s: %p %llx\n", __func__, 1586 pos, *pos); 1587 return 0; 1588 } 1589 return 1; 1590 } 1591 #endif 1592 1593 /* 1594 * This value is the sum of all of the kvm instances's 1595 * kvm->arch.n_used_mmu_pages values. We need a global, 1596 * aggregate version in order to make the slab shrinker 1597 * faster 1598 */ 1599 static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, unsigned long nr) 1600 { 1601 kvm->arch.n_used_mmu_pages += nr; 1602 percpu_counter_add(&kvm_total_used_mmu_pages, nr); 1603 } 1604 1605 static void kvm_mmu_free_page(struct kvm_mmu_page *sp) 1606 { 1607 MMU_WARN_ON(!is_empty_shadow_page(sp->spt)); 1608 hlist_del(&sp->hash_link); 1609 list_del(&sp->link); 1610 free_page((unsigned long)sp->spt); 1611 if (!sp->role.direct) 1612 free_page((unsigned long)sp->gfns); 1613 kmem_cache_free(mmu_page_header_cache, sp); 1614 } 1615 1616 static unsigned kvm_page_table_hashfn(gfn_t gfn) 1617 { 1618 return hash_64(gfn, KVM_MMU_HASH_SHIFT); 1619 } 1620 1621 static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu, 1622 struct kvm_mmu_page *sp, u64 *parent_pte) 1623 { 1624 if (!parent_pte) 1625 return; 1626 1627 pte_list_add(vcpu, parent_pte, &sp->parent_ptes); 1628 } 1629 1630 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp, 1631 u64 *parent_pte) 1632 { 1633 __pte_list_remove(parent_pte, &sp->parent_ptes); 1634 } 1635 1636 static void drop_parent_pte(struct kvm_mmu_page *sp, 1637 u64 *parent_pte) 1638 { 1639 mmu_page_remove_parent_pte(sp, parent_pte); 1640 mmu_spte_clear_no_track(parent_pte); 1641 } 1642 1643 static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu, int direct) 1644 { 1645 struct kvm_mmu_page *sp; 1646 1647 sp = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache); 1648 sp->spt = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_shadow_page_cache); 1649 if (!direct) 1650 sp->gfns = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_gfn_array_cache); 1651 set_page_private(virt_to_page(sp->spt), (unsigned long)sp); 1652 1653 /* 1654 * active_mmu_pages must be a FIFO list, as kvm_zap_obsolete_pages() 1655 * depends on valid pages being added to the head of the list. See 1656 * comments in kvm_zap_obsolete_pages(). 1657 */ 1658 sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen; 1659 list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages); 1660 kvm_mod_used_mmu_pages(vcpu->kvm, +1); 1661 return sp; 1662 } 1663 1664 static void mark_unsync(u64 *spte); 1665 static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp) 1666 { 1667 u64 *sptep; 1668 struct rmap_iterator iter; 1669 1670 for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) { 1671 mark_unsync(sptep); 1672 } 1673 } 1674 1675 static void mark_unsync(u64 *spte) 1676 { 1677 struct kvm_mmu_page *sp; 1678 unsigned int index; 1679 1680 sp = sptep_to_sp(spte); 1681 index = spte - sp->spt; 1682 if (__test_and_set_bit(index, sp->unsync_child_bitmap)) 1683 return; 1684 if (sp->unsync_children++) 1685 return; 1686 kvm_mmu_mark_parents_unsync(sp); 1687 } 1688 1689 static int nonpaging_sync_page(struct kvm_vcpu *vcpu, 1690 struct kvm_mmu_page *sp) 1691 { 1692 return 0; 1693 } 1694 1695 #define KVM_PAGE_ARRAY_NR 16 1696 1697 struct kvm_mmu_pages { 1698 struct mmu_page_and_offset { 1699 struct kvm_mmu_page *sp; 1700 unsigned int idx; 1701 } page[KVM_PAGE_ARRAY_NR]; 1702 unsigned int nr; 1703 }; 1704 1705 static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp, 1706 int idx) 1707 { 1708 int i; 1709 1710 if (sp->unsync) 1711 for (i=0; i < pvec->nr; i++) 1712 if (pvec->page[i].sp == sp) 1713 return 0; 1714 1715 pvec->page[pvec->nr].sp = sp; 1716 pvec->page[pvec->nr].idx = idx; 1717 pvec->nr++; 1718 return (pvec->nr == KVM_PAGE_ARRAY_NR); 1719 } 1720 1721 static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx) 1722 { 1723 --sp->unsync_children; 1724 WARN_ON((int)sp->unsync_children < 0); 1725 __clear_bit(idx, sp->unsync_child_bitmap); 1726 } 1727 1728 static int __mmu_unsync_walk(struct kvm_mmu_page *sp, 1729 struct kvm_mmu_pages *pvec) 1730 { 1731 int i, ret, nr_unsync_leaf = 0; 1732 1733 for_each_set_bit(i, sp->unsync_child_bitmap, 512) { 1734 struct kvm_mmu_page *child; 1735 u64 ent = sp->spt[i]; 1736 1737 if (!is_shadow_present_pte(ent) || is_large_pte(ent)) { 1738 clear_unsync_child_bit(sp, i); 1739 continue; 1740 } 1741 1742 child = to_shadow_page(ent & PT64_BASE_ADDR_MASK); 1743 1744 if (child->unsync_children) { 1745 if (mmu_pages_add(pvec, child, i)) 1746 return -ENOSPC; 1747 1748 ret = __mmu_unsync_walk(child, pvec); 1749 if (!ret) { 1750 clear_unsync_child_bit(sp, i); 1751 continue; 1752 } else if (ret > 0) { 1753 nr_unsync_leaf += ret; 1754 } else 1755 return ret; 1756 } else if (child->unsync) { 1757 nr_unsync_leaf++; 1758 if (mmu_pages_add(pvec, child, i)) 1759 return -ENOSPC; 1760 } else 1761 clear_unsync_child_bit(sp, i); 1762 } 1763 1764 return nr_unsync_leaf; 1765 } 1766 1767 #define INVALID_INDEX (-1) 1768 1769 static int mmu_unsync_walk(struct kvm_mmu_page *sp, 1770 struct kvm_mmu_pages *pvec) 1771 { 1772 pvec->nr = 0; 1773 if (!sp->unsync_children) 1774 return 0; 1775 1776 mmu_pages_add(pvec, sp, INVALID_INDEX); 1777 return __mmu_unsync_walk(sp, pvec); 1778 } 1779 1780 static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp) 1781 { 1782 WARN_ON(!sp->unsync); 1783 trace_kvm_mmu_sync_page(sp); 1784 sp->unsync = 0; 1785 --kvm->stat.mmu_unsync; 1786 } 1787 1788 static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp, 1789 struct list_head *invalid_list); 1790 static void kvm_mmu_commit_zap_page(struct kvm *kvm, 1791 struct list_head *invalid_list); 1792 1793 #define for_each_valid_sp(_kvm, _sp, _list) \ 1794 hlist_for_each_entry(_sp, _list, hash_link) \ 1795 if (is_obsolete_sp((_kvm), (_sp))) { \ 1796 } else 1797 1798 #define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn) \ 1799 for_each_valid_sp(_kvm, _sp, \ 1800 &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)]) \ 1801 if ((_sp)->gfn != (_gfn) || (_sp)->role.direct) {} else 1802 1803 static inline bool is_ept_sp(struct kvm_mmu_page *sp) 1804 { 1805 return sp->role.cr0_wp && sp->role.smap_andnot_wp; 1806 } 1807 1808 /* @sp->gfn should be write-protected at the call site */ 1809 static bool __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp, 1810 struct list_head *invalid_list) 1811 { 1812 if ((!is_ept_sp(sp) && sp->role.gpte_is_8_bytes != !!is_pae(vcpu)) || 1813 vcpu->arch.mmu->sync_page(vcpu, sp) == 0) { 1814 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list); 1815 return false; 1816 } 1817 1818 return true; 1819 } 1820 1821 static bool kvm_mmu_remote_flush_or_zap(struct kvm *kvm, 1822 struct list_head *invalid_list, 1823 bool remote_flush) 1824 { 1825 if (!remote_flush && list_empty(invalid_list)) 1826 return false; 1827 1828 if (!list_empty(invalid_list)) 1829 kvm_mmu_commit_zap_page(kvm, invalid_list); 1830 else 1831 kvm_flush_remote_tlbs(kvm); 1832 return true; 1833 } 1834 1835 static void kvm_mmu_flush_or_zap(struct kvm_vcpu *vcpu, 1836 struct list_head *invalid_list, 1837 bool remote_flush, bool local_flush) 1838 { 1839 if (kvm_mmu_remote_flush_or_zap(vcpu->kvm, invalid_list, remote_flush)) 1840 return; 1841 1842 if (local_flush) 1843 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 1844 } 1845 1846 #ifdef CONFIG_KVM_MMU_AUDIT 1847 #include "mmu_audit.c" 1848 #else 1849 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { } 1850 static void mmu_audit_disable(void) { } 1851 #endif 1852 1853 static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp) 1854 { 1855 return sp->role.invalid || 1856 unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen); 1857 } 1858 1859 static bool kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp, 1860 struct list_head *invalid_list) 1861 { 1862 kvm_unlink_unsync_page(vcpu->kvm, sp); 1863 return __kvm_sync_page(vcpu, sp, invalid_list); 1864 } 1865 1866 /* @gfn should be write-protected at the call site */ 1867 static bool kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn, 1868 struct list_head *invalid_list) 1869 { 1870 struct kvm_mmu_page *s; 1871 bool ret = false; 1872 1873 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) { 1874 if (!s->unsync) 1875 continue; 1876 1877 WARN_ON(s->role.level != PG_LEVEL_4K); 1878 ret |= kvm_sync_page(vcpu, s, invalid_list); 1879 } 1880 1881 return ret; 1882 } 1883 1884 struct mmu_page_path { 1885 struct kvm_mmu_page *parent[PT64_ROOT_MAX_LEVEL]; 1886 unsigned int idx[PT64_ROOT_MAX_LEVEL]; 1887 }; 1888 1889 #define for_each_sp(pvec, sp, parents, i) \ 1890 for (i = mmu_pages_first(&pvec, &parents); \ 1891 i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \ 1892 i = mmu_pages_next(&pvec, &parents, i)) 1893 1894 static int mmu_pages_next(struct kvm_mmu_pages *pvec, 1895 struct mmu_page_path *parents, 1896 int i) 1897 { 1898 int n; 1899 1900 for (n = i+1; n < pvec->nr; n++) { 1901 struct kvm_mmu_page *sp = pvec->page[n].sp; 1902 unsigned idx = pvec->page[n].idx; 1903 int level = sp->role.level; 1904 1905 parents->idx[level-1] = idx; 1906 if (level == PG_LEVEL_4K) 1907 break; 1908 1909 parents->parent[level-2] = sp; 1910 } 1911 1912 return n; 1913 } 1914 1915 static int mmu_pages_first(struct kvm_mmu_pages *pvec, 1916 struct mmu_page_path *parents) 1917 { 1918 struct kvm_mmu_page *sp; 1919 int level; 1920 1921 if (pvec->nr == 0) 1922 return 0; 1923 1924 WARN_ON(pvec->page[0].idx != INVALID_INDEX); 1925 1926 sp = pvec->page[0].sp; 1927 level = sp->role.level; 1928 WARN_ON(level == PG_LEVEL_4K); 1929 1930 parents->parent[level-2] = sp; 1931 1932 /* Also set up a sentinel. Further entries in pvec are all 1933 * children of sp, so this element is never overwritten. 1934 */ 1935 parents->parent[level-1] = NULL; 1936 return mmu_pages_next(pvec, parents, 0); 1937 } 1938 1939 static void mmu_pages_clear_parents(struct mmu_page_path *parents) 1940 { 1941 struct kvm_mmu_page *sp; 1942 unsigned int level = 0; 1943 1944 do { 1945 unsigned int idx = parents->idx[level]; 1946 sp = parents->parent[level]; 1947 if (!sp) 1948 return; 1949 1950 WARN_ON(idx == INVALID_INDEX); 1951 clear_unsync_child_bit(sp, idx); 1952 level++; 1953 } while (!sp->unsync_children); 1954 } 1955 1956 static void mmu_sync_children(struct kvm_vcpu *vcpu, 1957 struct kvm_mmu_page *parent) 1958 { 1959 int i; 1960 struct kvm_mmu_page *sp; 1961 struct mmu_page_path parents; 1962 struct kvm_mmu_pages pages; 1963 LIST_HEAD(invalid_list); 1964 bool flush = false; 1965 1966 while (mmu_unsync_walk(parent, &pages)) { 1967 bool protected = false; 1968 1969 for_each_sp(pages, sp, parents, i) 1970 protected |= rmap_write_protect(vcpu, sp->gfn); 1971 1972 if (protected) { 1973 kvm_flush_remote_tlbs(vcpu->kvm); 1974 flush = false; 1975 } 1976 1977 for_each_sp(pages, sp, parents, i) { 1978 flush |= kvm_sync_page(vcpu, sp, &invalid_list); 1979 mmu_pages_clear_parents(&parents); 1980 } 1981 if (need_resched() || rwlock_needbreak(&vcpu->kvm->mmu_lock)) { 1982 kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush); 1983 cond_resched_rwlock_write(&vcpu->kvm->mmu_lock); 1984 flush = false; 1985 } 1986 } 1987 1988 kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush); 1989 } 1990 1991 static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp) 1992 { 1993 atomic_set(&sp->write_flooding_count, 0); 1994 } 1995 1996 static void clear_sp_write_flooding_count(u64 *spte) 1997 { 1998 __clear_sp_write_flooding_count(sptep_to_sp(spte)); 1999 } 2000 2001 static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu, 2002 gfn_t gfn, 2003 gva_t gaddr, 2004 unsigned level, 2005 int direct, 2006 unsigned int access) 2007 { 2008 bool direct_mmu = vcpu->arch.mmu->direct_map; 2009 union kvm_mmu_page_role role; 2010 struct hlist_head *sp_list; 2011 unsigned quadrant; 2012 struct kvm_mmu_page *sp; 2013 bool need_sync = false; 2014 bool flush = false; 2015 int collisions = 0; 2016 LIST_HEAD(invalid_list); 2017 2018 role = vcpu->arch.mmu->mmu_role.base; 2019 role.level = level; 2020 role.direct = direct; 2021 if (role.direct) 2022 role.gpte_is_8_bytes = true; 2023 role.access = access; 2024 if (!direct_mmu && vcpu->arch.mmu->root_level <= PT32_ROOT_LEVEL) { 2025 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level)); 2026 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1; 2027 role.quadrant = quadrant; 2028 } 2029 2030 sp_list = &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]; 2031 for_each_valid_sp(vcpu->kvm, sp, sp_list) { 2032 if (sp->gfn != gfn) { 2033 collisions++; 2034 continue; 2035 } 2036 2037 if (!need_sync && sp->unsync) 2038 need_sync = true; 2039 2040 if (sp->role.word != role.word) 2041 continue; 2042 2043 if (direct_mmu) 2044 goto trace_get_page; 2045 2046 if (sp->unsync) { 2047 /* The page is good, but __kvm_sync_page might still end 2048 * up zapping it. If so, break in order to rebuild it. 2049 */ 2050 if (!__kvm_sync_page(vcpu, sp, &invalid_list)) 2051 break; 2052 2053 WARN_ON(!list_empty(&invalid_list)); 2054 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 2055 } 2056 2057 if (sp->unsync_children) 2058 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu); 2059 2060 __clear_sp_write_flooding_count(sp); 2061 2062 trace_get_page: 2063 trace_kvm_mmu_get_page(sp, false); 2064 goto out; 2065 } 2066 2067 ++vcpu->kvm->stat.mmu_cache_miss; 2068 2069 sp = kvm_mmu_alloc_page(vcpu, direct); 2070 2071 sp->gfn = gfn; 2072 sp->role = role; 2073 hlist_add_head(&sp->hash_link, sp_list); 2074 if (!direct) { 2075 /* 2076 * we should do write protection before syncing pages 2077 * otherwise the content of the synced shadow page may 2078 * be inconsistent with guest page table. 2079 */ 2080 account_shadowed(vcpu->kvm, sp); 2081 if (level == PG_LEVEL_4K && rmap_write_protect(vcpu, gfn)) 2082 kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn, 1); 2083 2084 if (level > PG_LEVEL_4K && need_sync) 2085 flush |= kvm_sync_pages(vcpu, gfn, &invalid_list); 2086 } 2087 trace_kvm_mmu_get_page(sp, true); 2088 2089 kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush); 2090 out: 2091 if (collisions > vcpu->kvm->stat.max_mmu_page_hash_collisions) 2092 vcpu->kvm->stat.max_mmu_page_hash_collisions = collisions; 2093 return sp; 2094 } 2095 2096 static void shadow_walk_init_using_root(struct kvm_shadow_walk_iterator *iterator, 2097 struct kvm_vcpu *vcpu, hpa_t root, 2098 u64 addr) 2099 { 2100 iterator->addr = addr; 2101 iterator->shadow_addr = root; 2102 iterator->level = vcpu->arch.mmu->shadow_root_level; 2103 2104 if (iterator->level == PT64_ROOT_4LEVEL && 2105 vcpu->arch.mmu->root_level < PT64_ROOT_4LEVEL && 2106 !vcpu->arch.mmu->direct_map) 2107 --iterator->level; 2108 2109 if (iterator->level == PT32E_ROOT_LEVEL) { 2110 /* 2111 * prev_root is currently only used for 64-bit hosts. So only 2112 * the active root_hpa is valid here. 2113 */ 2114 BUG_ON(root != vcpu->arch.mmu->root_hpa); 2115 2116 iterator->shadow_addr 2117 = vcpu->arch.mmu->pae_root[(addr >> 30) & 3]; 2118 iterator->shadow_addr &= PT64_BASE_ADDR_MASK; 2119 --iterator->level; 2120 if (!iterator->shadow_addr) 2121 iterator->level = 0; 2122 } 2123 } 2124 2125 static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator, 2126 struct kvm_vcpu *vcpu, u64 addr) 2127 { 2128 shadow_walk_init_using_root(iterator, vcpu, vcpu->arch.mmu->root_hpa, 2129 addr); 2130 } 2131 2132 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator) 2133 { 2134 if (iterator->level < PG_LEVEL_4K) 2135 return false; 2136 2137 iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level); 2138 iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index; 2139 return true; 2140 } 2141 2142 static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator, 2143 u64 spte) 2144 { 2145 if (is_last_spte(spte, iterator->level)) { 2146 iterator->level = 0; 2147 return; 2148 } 2149 2150 iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK; 2151 --iterator->level; 2152 } 2153 2154 static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator) 2155 { 2156 __shadow_walk_next(iterator, *iterator->sptep); 2157 } 2158 2159 static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep, 2160 struct kvm_mmu_page *sp) 2161 { 2162 u64 spte; 2163 2164 BUILD_BUG_ON(VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK); 2165 2166 spte = make_nonleaf_spte(sp->spt, sp_ad_disabled(sp)); 2167 2168 mmu_spte_set(sptep, spte); 2169 2170 mmu_page_add_parent_pte(vcpu, sp, sptep); 2171 2172 if (sp->unsync_children || sp->unsync) 2173 mark_unsync(sptep); 2174 } 2175 2176 static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep, 2177 unsigned direct_access) 2178 { 2179 if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) { 2180 struct kvm_mmu_page *child; 2181 2182 /* 2183 * For the direct sp, if the guest pte's dirty bit 2184 * changed form clean to dirty, it will corrupt the 2185 * sp's access: allow writable in the read-only sp, 2186 * so we should update the spte at this point to get 2187 * a new sp with the correct access. 2188 */ 2189 child = to_shadow_page(*sptep & PT64_BASE_ADDR_MASK); 2190 if (child->role.access == direct_access) 2191 return; 2192 2193 drop_parent_pte(child, sptep); 2194 kvm_flush_remote_tlbs_with_address(vcpu->kvm, child->gfn, 1); 2195 } 2196 } 2197 2198 /* Returns the number of zapped non-leaf child shadow pages. */ 2199 static int mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp, 2200 u64 *spte, struct list_head *invalid_list) 2201 { 2202 u64 pte; 2203 struct kvm_mmu_page *child; 2204 2205 pte = *spte; 2206 if (is_shadow_present_pte(pte)) { 2207 if (is_last_spte(pte, sp->role.level)) { 2208 drop_spte(kvm, spte); 2209 if (is_large_pte(pte)) 2210 --kvm->stat.lpages; 2211 } else { 2212 child = to_shadow_page(pte & PT64_BASE_ADDR_MASK); 2213 drop_parent_pte(child, spte); 2214 2215 /* 2216 * Recursively zap nested TDP SPs, parentless SPs are 2217 * unlikely to be used again in the near future. This 2218 * avoids retaining a large number of stale nested SPs. 2219 */ 2220 if (tdp_enabled && invalid_list && 2221 child->role.guest_mode && !child->parent_ptes.val) 2222 return kvm_mmu_prepare_zap_page(kvm, child, 2223 invalid_list); 2224 } 2225 } else if (is_mmio_spte(pte)) { 2226 mmu_spte_clear_no_track(spte); 2227 } 2228 return 0; 2229 } 2230 2231 static int kvm_mmu_page_unlink_children(struct kvm *kvm, 2232 struct kvm_mmu_page *sp, 2233 struct list_head *invalid_list) 2234 { 2235 int zapped = 0; 2236 unsigned i; 2237 2238 for (i = 0; i < PT64_ENT_PER_PAGE; ++i) 2239 zapped += mmu_page_zap_pte(kvm, sp, sp->spt + i, invalid_list); 2240 2241 return zapped; 2242 } 2243 2244 static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp) 2245 { 2246 u64 *sptep; 2247 struct rmap_iterator iter; 2248 2249 while ((sptep = rmap_get_first(&sp->parent_ptes, &iter))) 2250 drop_parent_pte(sp, sptep); 2251 } 2252 2253 static int mmu_zap_unsync_children(struct kvm *kvm, 2254 struct kvm_mmu_page *parent, 2255 struct list_head *invalid_list) 2256 { 2257 int i, zapped = 0; 2258 struct mmu_page_path parents; 2259 struct kvm_mmu_pages pages; 2260 2261 if (parent->role.level == PG_LEVEL_4K) 2262 return 0; 2263 2264 while (mmu_unsync_walk(parent, &pages)) { 2265 struct kvm_mmu_page *sp; 2266 2267 for_each_sp(pages, sp, parents, i) { 2268 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list); 2269 mmu_pages_clear_parents(&parents); 2270 zapped++; 2271 } 2272 } 2273 2274 return zapped; 2275 } 2276 2277 static bool __kvm_mmu_prepare_zap_page(struct kvm *kvm, 2278 struct kvm_mmu_page *sp, 2279 struct list_head *invalid_list, 2280 int *nr_zapped) 2281 { 2282 bool list_unstable; 2283 2284 trace_kvm_mmu_prepare_zap_page(sp); 2285 ++kvm->stat.mmu_shadow_zapped; 2286 *nr_zapped = mmu_zap_unsync_children(kvm, sp, invalid_list); 2287 *nr_zapped += kvm_mmu_page_unlink_children(kvm, sp, invalid_list); 2288 kvm_mmu_unlink_parents(kvm, sp); 2289 2290 /* Zapping children means active_mmu_pages has become unstable. */ 2291 list_unstable = *nr_zapped; 2292 2293 if (!sp->role.invalid && !sp->role.direct) 2294 unaccount_shadowed(kvm, sp); 2295 2296 if (sp->unsync) 2297 kvm_unlink_unsync_page(kvm, sp); 2298 if (!sp->root_count) { 2299 /* Count self */ 2300 (*nr_zapped)++; 2301 2302 /* 2303 * Already invalid pages (previously active roots) are not on 2304 * the active page list. See list_del() in the "else" case of 2305 * !sp->root_count. 2306 */ 2307 if (sp->role.invalid) 2308 list_add(&sp->link, invalid_list); 2309 else 2310 list_move(&sp->link, invalid_list); 2311 kvm_mod_used_mmu_pages(kvm, -1); 2312 } else { 2313 /* 2314 * Remove the active root from the active page list, the root 2315 * will be explicitly freed when the root_count hits zero. 2316 */ 2317 list_del(&sp->link); 2318 2319 /* 2320 * Obsolete pages cannot be used on any vCPUs, see the comment 2321 * in kvm_mmu_zap_all_fast(). Note, is_obsolete_sp() also 2322 * treats invalid shadow pages as being obsolete. 2323 */ 2324 if (!is_obsolete_sp(kvm, sp)) 2325 kvm_reload_remote_mmus(kvm); 2326 } 2327 2328 if (sp->lpage_disallowed) 2329 unaccount_huge_nx_page(kvm, sp); 2330 2331 sp->role.invalid = 1; 2332 return list_unstable; 2333 } 2334 2335 static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp, 2336 struct list_head *invalid_list) 2337 { 2338 int nr_zapped; 2339 2340 __kvm_mmu_prepare_zap_page(kvm, sp, invalid_list, &nr_zapped); 2341 return nr_zapped; 2342 } 2343 2344 static void kvm_mmu_commit_zap_page(struct kvm *kvm, 2345 struct list_head *invalid_list) 2346 { 2347 struct kvm_mmu_page *sp, *nsp; 2348 2349 if (list_empty(invalid_list)) 2350 return; 2351 2352 /* 2353 * We need to make sure everyone sees our modifications to 2354 * the page tables and see changes to vcpu->mode here. The barrier 2355 * in the kvm_flush_remote_tlbs() achieves this. This pairs 2356 * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end. 2357 * 2358 * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit 2359 * guest mode and/or lockless shadow page table walks. 2360 */ 2361 kvm_flush_remote_tlbs(kvm); 2362 2363 list_for_each_entry_safe(sp, nsp, invalid_list, link) { 2364 WARN_ON(!sp->role.invalid || sp->root_count); 2365 kvm_mmu_free_page(sp); 2366 } 2367 } 2368 2369 static unsigned long kvm_mmu_zap_oldest_mmu_pages(struct kvm *kvm, 2370 unsigned long nr_to_zap) 2371 { 2372 unsigned long total_zapped = 0; 2373 struct kvm_mmu_page *sp, *tmp; 2374 LIST_HEAD(invalid_list); 2375 bool unstable; 2376 int nr_zapped; 2377 2378 if (list_empty(&kvm->arch.active_mmu_pages)) 2379 return 0; 2380 2381 restart: 2382 list_for_each_entry_safe_reverse(sp, tmp, &kvm->arch.active_mmu_pages, link) { 2383 /* 2384 * Don't zap active root pages, the page itself can't be freed 2385 * and zapping it will just force vCPUs to realloc and reload. 2386 */ 2387 if (sp->root_count) 2388 continue; 2389 2390 unstable = __kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list, 2391 &nr_zapped); 2392 total_zapped += nr_zapped; 2393 if (total_zapped >= nr_to_zap) 2394 break; 2395 2396 if (unstable) 2397 goto restart; 2398 } 2399 2400 kvm_mmu_commit_zap_page(kvm, &invalid_list); 2401 2402 kvm->stat.mmu_recycled += total_zapped; 2403 return total_zapped; 2404 } 2405 2406 static inline unsigned long kvm_mmu_available_pages(struct kvm *kvm) 2407 { 2408 if (kvm->arch.n_max_mmu_pages > kvm->arch.n_used_mmu_pages) 2409 return kvm->arch.n_max_mmu_pages - 2410 kvm->arch.n_used_mmu_pages; 2411 2412 return 0; 2413 } 2414 2415 static int make_mmu_pages_available(struct kvm_vcpu *vcpu) 2416 { 2417 unsigned long avail = kvm_mmu_available_pages(vcpu->kvm); 2418 2419 if (likely(avail >= KVM_MIN_FREE_MMU_PAGES)) 2420 return 0; 2421 2422 kvm_mmu_zap_oldest_mmu_pages(vcpu->kvm, KVM_REFILL_PAGES - avail); 2423 2424 if (!kvm_mmu_available_pages(vcpu->kvm)) 2425 return -ENOSPC; 2426 return 0; 2427 } 2428 2429 /* 2430 * Changing the number of mmu pages allocated to the vm 2431 * Note: if goal_nr_mmu_pages is too small, you will get dead lock 2432 */ 2433 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long goal_nr_mmu_pages) 2434 { 2435 write_lock(&kvm->mmu_lock); 2436 2437 if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) { 2438 kvm_mmu_zap_oldest_mmu_pages(kvm, kvm->arch.n_used_mmu_pages - 2439 goal_nr_mmu_pages); 2440 2441 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages; 2442 } 2443 2444 kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages; 2445 2446 write_unlock(&kvm->mmu_lock); 2447 } 2448 2449 int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn) 2450 { 2451 struct kvm_mmu_page *sp; 2452 LIST_HEAD(invalid_list); 2453 int r; 2454 2455 pgprintk("%s: looking for gfn %llx\n", __func__, gfn); 2456 r = 0; 2457 write_lock(&kvm->mmu_lock); 2458 for_each_gfn_indirect_valid_sp(kvm, sp, gfn) { 2459 pgprintk("%s: gfn %llx role %x\n", __func__, gfn, 2460 sp->role.word); 2461 r = 1; 2462 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list); 2463 } 2464 kvm_mmu_commit_zap_page(kvm, &invalid_list); 2465 write_unlock(&kvm->mmu_lock); 2466 2467 return r; 2468 } 2469 2470 static int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva) 2471 { 2472 gpa_t gpa; 2473 int r; 2474 2475 if (vcpu->arch.mmu->direct_map) 2476 return 0; 2477 2478 gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL); 2479 2480 r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT); 2481 2482 return r; 2483 } 2484 2485 static void kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp) 2486 { 2487 trace_kvm_mmu_unsync_page(sp); 2488 ++vcpu->kvm->stat.mmu_unsync; 2489 sp->unsync = 1; 2490 2491 kvm_mmu_mark_parents_unsync(sp); 2492 } 2493 2494 bool mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn, 2495 bool can_unsync) 2496 { 2497 struct kvm_mmu_page *sp; 2498 2499 if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE)) 2500 return true; 2501 2502 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) { 2503 if (!can_unsync) 2504 return true; 2505 2506 if (sp->unsync) 2507 continue; 2508 2509 WARN_ON(sp->role.level != PG_LEVEL_4K); 2510 kvm_unsync_page(vcpu, sp); 2511 } 2512 2513 /* 2514 * We need to ensure that the marking of unsync pages is visible 2515 * before the SPTE is updated to allow writes because 2516 * kvm_mmu_sync_roots() checks the unsync flags without holding 2517 * the MMU lock and so can race with this. If the SPTE was updated 2518 * before the page had been marked as unsync-ed, something like the 2519 * following could happen: 2520 * 2521 * CPU 1 CPU 2 2522 * --------------------------------------------------------------------- 2523 * 1.2 Host updates SPTE 2524 * to be writable 2525 * 2.1 Guest writes a GPTE for GVA X. 2526 * (GPTE being in the guest page table shadowed 2527 * by the SP from CPU 1.) 2528 * This reads SPTE during the page table walk. 2529 * Since SPTE.W is read as 1, there is no 2530 * fault. 2531 * 2532 * 2.2 Guest issues TLB flush. 2533 * That causes a VM Exit. 2534 * 2535 * 2.3 kvm_mmu_sync_pages() reads sp->unsync. 2536 * Since it is false, so it just returns. 2537 * 2538 * 2.4 Guest accesses GVA X. 2539 * Since the mapping in the SP was not updated, 2540 * so the old mapping for GVA X incorrectly 2541 * gets used. 2542 * 1.1 Host marks SP 2543 * as unsync 2544 * (sp->unsync = true) 2545 * 2546 * The write barrier below ensures that 1.1 happens before 1.2 and thus 2547 * the situation in 2.4 does not arise. The implicit barrier in 2.2 2548 * pairs with this write barrier. 2549 */ 2550 smp_wmb(); 2551 2552 return false; 2553 } 2554 2555 static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep, 2556 unsigned int pte_access, int level, 2557 gfn_t gfn, kvm_pfn_t pfn, bool speculative, 2558 bool can_unsync, bool host_writable) 2559 { 2560 u64 spte; 2561 struct kvm_mmu_page *sp; 2562 int ret; 2563 2564 if (set_mmio_spte(vcpu, sptep, gfn, pfn, pte_access)) 2565 return 0; 2566 2567 sp = sptep_to_sp(sptep); 2568 2569 ret = make_spte(vcpu, pte_access, level, gfn, pfn, *sptep, speculative, 2570 can_unsync, host_writable, sp_ad_disabled(sp), &spte); 2571 2572 if (spte & PT_WRITABLE_MASK) 2573 kvm_vcpu_mark_page_dirty(vcpu, gfn); 2574 2575 if (*sptep == spte) 2576 ret |= SET_SPTE_SPURIOUS; 2577 else if (mmu_spte_update(sptep, spte)) 2578 ret |= SET_SPTE_NEED_REMOTE_TLB_FLUSH; 2579 return ret; 2580 } 2581 2582 static int mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep, 2583 unsigned int pte_access, bool write_fault, int level, 2584 gfn_t gfn, kvm_pfn_t pfn, bool speculative, 2585 bool host_writable) 2586 { 2587 int was_rmapped = 0; 2588 int rmap_count; 2589 int set_spte_ret; 2590 int ret = RET_PF_FIXED; 2591 bool flush = false; 2592 2593 pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__, 2594 *sptep, write_fault, gfn); 2595 2596 if (is_shadow_present_pte(*sptep)) { 2597 /* 2598 * If we overwrite a PTE page pointer with a 2MB PMD, unlink 2599 * the parent of the now unreachable PTE. 2600 */ 2601 if (level > PG_LEVEL_4K && !is_large_pte(*sptep)) { 2602 struct kvm_mmu_page *child; 2603 u64 pte = *sptep; 2604 2605 child = to_shadow_page(pte & PT64_BASE_ADDR_MASK); 2606 drop_parent_pte(child, sptep); 2607 flush = true; 2608 } else if (pfn != spte_to_pfn(*sptep)) { 2609 pgprintk("hfn old %llx new %llx\n", 2610 spte_to_pfn(*sptep), pfn); 2611 drop_spte(vcpu->kvm, sptep); 2612 flush = true; 2613 } else 2614 was_rmapped = 1; 2615 } 2616 2617 set_spte_ret = set_spte(vcpu, sptep, pte_access, level, gfn, pfn, 2618 speculative, true, host_writable); 2619 if (set_spte_ret & SET_SPTE_WRITE_PROTECTED_PT) { 2620 if (write_fault) 2621 ret = RET_PF_EMULATE; 2622 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 2623 } 2624 2625 if (set_spte_ret & SET_SPTE_NEED_REMOTE_TLB_FLUSH || flush) 2626 kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn, 2627 KVM_PAGES_PER_HPAGE(level)); 2628 2629 if (unlikely(is_mmio_spte(*sptep))) 2630 ret = RET_PF_EMULATE; 2631 2632 /* 2633 * The fault is fully spurious if and only if the new SPTE and old SPTE 2634 * are identical, and emulation is not required. 2635 */ 2636 if ((set_spte_ret & SET_SPTE_SPURIOUS) && ret == RET_PF_FIXED) { 2637 WARN_ON_ONCE(!was_rmapped); 2638 return RET_PF_SPURIOUS; 2639 } 2640 2641 pgprintk("%s: setting spte %llx\n", __func__, *sptep); 2642 trace_kvm_mmu_set_spte(level, gfn, sptep); 2643 if (!was_rmapped && is_large_pte(*sptep)) 2644 ++vcpu->kvm->stat.lpages; 2645 2646 if (is_shadow_present_pte(*sptep)) { 2647 if (!was_rmapped) { 2648 rmap_count = rmap_add(vcpu, sptep, gfn); 2649 if (rmap_count > RMAP_RECYCLE_THRESHOLD) 2650 rmap_recycle(vcpu, sptep, gfn); 2651 } 2652 } 2653 2654 return ret; 2655 } 2656 2657 static kvm_pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn, 2658 bool no_dirty_log) 2659 { 2660 struct kvm_memory_slot *slot; 2661 2662 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log); 2663 if (!slot) 2664 return KVM_PFN_ERR_FAULT; 2665 2666 return gfn_to_pfn_memslot_atomic(slot, gfn); 2667 } 2668 2669 static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu, 2670 struct kvm_mmu_page *sp, 2671 u64 *start, u64 *end) 2672 { 2673 struct page *pages[PTE_PREFETCH_NUM]; 2674 struct kvm_memory_slot *slot; 2675 unsigned int access = sp->role.access; 2676 int i, ret; 2677 gfn_t gfn; 2678 2679 gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt); 2680 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK); 2681 if (!slot) 2682 return -1; 2683 2684 ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start); 2685 if (ret <= 0) 2686 return -1; 2687 2688 for (i = 0; i < ret; i++, gfn++, start++) { 2689 mmu_set_spte(vcpu, start, access, false, sp->role.level, gfn, 2690 page_to_pfn(pages[i]), true, true); 2691 put_page(pages[i]); 2692 } 2693 2694 return 0; 2695 } 2696 2697 static void __direct_pte_prefetch(struct kvm_vcpu *vcpu, 2698 struct kvm_mmu_page *sp, u64 *sptep) 2699 { 2700 u64 *spte, *start = NULL; 2701 int i; 2702 2703 WARN_ON(!sp->role.direct); 2704 2705 i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1); 2706 spte = sp->spt + i; 2707 2708 for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) { 2709 if (is_shadow_present_pte(*spte) || spte == sptep) { 2710 if (!start) 2711 continue; 2712 if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0) 2713 break; 2714 start = NULL; 2715 } else if (!start) 2716 start = spte; 2717 } 2718 } 2719 2720 static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep) 2721 { 2722 struct kvm_mmu_page *sp; 2723 2724 sp = sptep_to_sp(sptep); 2725 2726 /* 2727 * Without accessed bits, there's no way to distinguish between 2728 * actually accessed translations and prefetched, so disable pte 2729 * prefetch if accessed bits aren't available. 2730 */ 2731 if (sp_ad_disabled(sp)) 2732 return; 2733 2734 if (sp->role.level > PG_LEVEL_4K) 2735 return; 2736 2737 /* 2738 * If addresses are being invalidated, skip prefetching to avoid 2739 * accidentally prefetching those addresses. 2740 */ 2741 if (unlikely(vcpu->kvm->mmu_notifier_count)) 2742 return; 2743 2744 __direct_pte_prefetch(vcpu, sp, sptep); 2745 } 2746 2747 static int host_pfn_mapping_level(struct kvm *kvm, gfn_t gfn, kvm_pfn_t pfn, 2748 struct kvm_memory_slot *slot) 2749 { 2750 unsigned long hva; 2751 pte_t *pte; 2752 int level; 2753 2754 if (!PageCompound(pfn_to_page(pfn)) && !kvm_is_zone_device_pfn(pfn)) 2755 return PG_LEVEL_4K; 2756 2757 /* 2758 * Note, using the already-retrieved memslot and __gfn_to_hva_memslot() 2759 * is not solely for performance, it's also necessary to avoid the 2760 * "writable" check in __gfn_to_hva_many(), which will always fail on 2761 * read-only memslots due to gfn_to_hva() assuming writes. Earlier 2762 * page fault steps have already verified the guest isn't writing a 2763 * read-only memslot. 2764 */ 2765 hva = __gfn_to_hva_memslot(slot, gfn); 2766 2767 pte = lookup_address_in_mm(kvm->mm, hva, &level); 2768 if (unlikely(!pte)) 2769 return PG_LEVEL_4K; 2770 2771 return level; 2772 } 2773 2774 int kvm_mmu_max_mapping_level(struct kvm *kvm, struct kvm_memory_slot *slot, 2775 gfn_t gfn, kvm_pfn_t pfn, int max_level) 2776 { 2777 struct kvm_lpage_info *linfo; 2778 2779 max_level = min(max_level, max_huge_page_level); 2780 for ( ; max_level > PG_LEVEL_4K; max_level--) { 2781 linfo = lpage_info_slot(gfn, slot, max_level); 2782 if (!linfo->disallow_lpage) 2783 break; 2784 } 2785 2786 if (max_level == PG_LEVEL_4K) 2787 return PG_LEVEL_4K; 2788 2789 return host_pfn_mapping_level(kvm, gfn, pfn, slot); 2790 } 2791 2792 int kvm_mmu_hugepage_adjust(struct kvm_vcpu *vcpu, gfn_t gfn, 2793 int max_level, kvm_pfn_t *pfnp, 2794 bool huge_page_disallowed, int *req_level) 2795 { 2796 struct kvm_memory_slot *slot; 2797 kvm_pfn_t pfn = *pfnp; 2798 kvm_pfn_t mask; 2799 int level; 2800 2801 *req_level = PG_LEVEL_4K; 2802 2803 if (unlikely(max_level == PG_LEVEL_4K)) 2804 return PG_LEVEL_4K; 2805 2806 if (is_error_noslot_pfn(pfn) || kvm_is_reserved_pfn(pfn)) 2807 return PG_LEVEL_4K; 2808 2809 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, true); 2810 if (!slot) 2811 return PG_LEVEL_4K; 2812 2813 level = kvm_mmu_max_mapping_level(vcpu->kvm, slot, gfn, pfn, max_level); 2814 if (level == PG_LEVEL_4K) 2815 return level; 2816 2817 *req_level = level = min(level, max_level); 2818 2819 /* 2820 * Enforce the iTLB multihit workaround after capturing the requested 2821 * level, which will be used to do precise, accurate accounting. 2822 */ 2823 if (huge_page_disallowed) 2824 return PG_LEVEL_4K; 2825 2826 /* 2827 * mmu_notifier_retry() was successful and mmu_lock is held, so 2828 * the pmd can't be split from under us. 2829 */ 2830 mask = KVM_PAGES_PER_HPAGE(level) - 1; 2831 VM_BUG_ON((gfn & mask) != (pfn & mask)); 2832 *pfnp = pfn & ~mask; 2833 2834 return level; 2835 } 2836 2837 void disallowed_hugepage_adjust(u64 spte, gfn_t gfn, int cur_level, 2838 kvm_pfn_t *pfnp, int *goal_levelp) 2839 { 2840 int level = *goal_levelp; 2841 2842 if (cur_level == level && level > PG_LEVEL_4K && 2843 is_shadow_present_pte(spte) && 2844 !is_large_pte(spte)) { 2845 /* 2846 * A small SPTE exists for this pfn, but FNAME(fetch) 2847 * and __direct_map would like to create a large PTE 2848 * instead: just force them to go down another level, 2849 * patching back for them into pfn the next 9 bits of 2850 * the address. 2851 */ 2852 u64 page_mask = KVM_PAGES_PER_HPAGE(level) - 2853 KVM_PAGES_PER_HPAGE(level - 1); 2854 *pfnp |= gfn & page_mask; 2855 (*goal_levelp)--; 2856 } 2857 } 2858 2859 static int __direct_map(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code, 2860 int map_writable, int max_level, kvm_pfn_t pfn, 2861 bool prefault, bool is_tdp) 2862 { 2863 bool nx_huge_page_workaround_enabled = is_nx_huge_page_enabled(); 2864 bool write = error_code & PFERR_WRITE_MASK; 2865 bool exec = error_code & PFERR_FETCH_MASK; 2866 bool huge_page_disallowed = exec && nx_huge_page_workaround_enabled; 2867 struct kvm_shadow_walk_iterator it; 2868 struct kvm_mmu_page *sp; 2869 int level, req_level, ret; 2870 gfn_t gfn = gpa >> PAGE_SHIFT; 2871 gfn_t base_gfn = gfn; 2872 2873 if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa))) 2874 return RET_PF_RETRY; 2875 2876 level = kvm_mmu_hugepage_adjust(vcpu, gfn, max_level, &pfn, 2877 huge_page_disallowed, &req_level); 2878 2879 trace_kvm_mmu_spte_requested(gpa, level, pfn); 2880 for_each_shadow_entry(vcpu, gpa, it) { 2881 /* 2882 * We cannot overwrite existing page tables with an NX 2883 * large page, as the leaf could be executable. 2884 */ 2885 if (nx_huge_page_workaround_enabled) 2886 disallowed_hugepage_adjust(*it.sptep, gfn, it.level, 2887 &pfn, &level); 2888 2889 base_gfn = gfn & ~(KVM_PAGES_PER_HPAGE(it.level) - 1); 2890 if (it.level == level) 2891 break; 2892 2893 drop_large_spte(vcpu, it.sptep); 2894 if (!is_shadow_present_pte(*it.sptep)) { 2895 sp = kvm_mmu_get_page(vcpu, base_gfn, it.addr, 2896 it.level - 1, true, ACC_ALL); 2897 2898 link_shadow_page(vcpu, it.sptep, sp); 2899 if (is_tdp && huge_page_disallowed && 2900 req_level >= it.level) 2901 account_huge_nx_page(vcpu->kvm, sp); 2902 } 2903 } 2904 2905 ret = mmu_set_spte(vcpu, it.sptep, ACC_ALL, 2906 write, level, base_gfn, pfn, prefault, 2907 map_writable); 2908 if (ret == RET_PF_SPURIOUS) 2909 return ret; 2910 2911 direct_pte_prefetch(vcpu, it.sptep); 2912 ++vcpu->stat.pf_fixed; 2913 return ret; 2914 } 2915 2916 static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk) 2917 { 2918 send_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, PAGE_SHIFT, tsk); 2919 } 2920 2921 static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, kvm_pfn_t pfn) 2922 { 2923 /* 2924 * Do not cache the mmio info caused by writing the readonly gfn 2925 * into the spte otherwise read access on readonly gfn also can 2926 * caused mmio page fault and treat it as mmio access. 2927 */ 2928 if (pfn == KVM_PFN_ERR_RO_FAULT) 2929 return RET_PF_EMULATE; 2930 2931 if (pfn == KVM_PFN_ERR_HWPOISON) { 2932 kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current); 2933 return RET_PF_RETRY; 2934 } 2935 2936 return -EFAULT; 2937 } 2938 2939 static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn, 2940 kvm_pfn_t pfn, unsigned int access, 2941 int *ret_val) 2942 { 2943 /* The pfn is invalid, report the error! */ 2944 if (unlikely(is_error_pfn(pfn))) { 2945 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn); 2946 return true; 2947 } 2948 2949 if (unlikely(is_noslot_pfn(pfn))) 2950 vcpu_cache_mmio_info(vcpu, gva, gfn, 2951 access & shadow_mmio_access_mask); 2952 2953 return false; 2954 } 2955 2956 static bool page_fault_can_be_fast(u32 error_code) 2957 { 2958 /* 2959 * Do not fix the mmio spte with invalid generation number which 2960 * need to be updated by slow page fault path. 2961 */ 2962 if (unlikely(error_code & PFERR_RSVD_MASK)) 2963 return false; 2964 2965 /* See if the page fault is due to an NX violation */ 2966 if (unlikely(((error_code & (PFERR_FETCH_MASK | PFERR_PRESENT_MASK)) 2967 == (PFERR_FETCH_MASK | PFERR_PRESENT_MASK)))) 2968 return false; 2969 2970 /* 2971 * #PF can be fast if: 2972 * 1. The shadow page table entry is not present, which could mean that 2973 * the fault is potentially caused by access tracking (if enabled). 2974 * 2. The shadow page table entry is present and the fault 2975 * is caused by write-protect, that means we just need change the W 2976 * bit of the spte which can be done out of mmu-lock. 2977 * 2978 * However, if access tracking is disabled we know that a non-present 2979 * page must be a genuine page fault where we have to create a new SPTE. 2980 * So, if access tracking is disabled, we return true only for write 2981 * accesses to a present page. 2982 */ 2983 2984 return shadow_acc_track_mask != 0 || 2985 ((error_code & (PFERR_WRITE_MASK | PFERR_PRESENT_MASK)) 2986 == (PFERR_WRITE_MASK | PFERR_PRESENT_MASK)); 2987 } 2988 2989 /* 2990 * Returns true if the SPTE was fixed successfully. Otherwise, 2991 * someone else modified the SPTE from its original value. 2992 */ 2993 static bool 2994 fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp, 2995 u64 *sptep, u64 old_spte, u64 new_spte) 2996 { 2997 gfn_t gfn; 2998 2999 WARN_ON(!sp->role.direct); 3000 3001 /* 3002 * Theoretically we could also set dirty bit (and flush TLB) here in 3003 * order to eliminate unnecessary PML logging. See comments in 3004 * set_spte. But fast_page_fault is very unlikely to happen with PML 3005 * enabled, so we do not do this. This might result in the same GPA 3006 * to be logged in PML buffer again when the write really happens, and 3007 * eventually to be called by mark_page_dirty twice. But it's also no 3008 * harm. This also avoids the TLB flush needed after setting dirty bit 3009 * so non-PML cases won't be impacted. 3010 * 3011 * Compare with set_spte where instead shadow_dirty_mask is set. 3012 */ 3013 if (cmpxchg64(sptep, old_spte, new_spte) != old_spte) 3014 return false; 3015 3016 if (is_writable_pte(new_spte) && !is_writable_pte(old_spte)) { 3017 /* 3018 * The gfn of direct spte is stable since it is 3019 * calculated by sp->gfn. 3020 */ 3021 gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt); 3022 kvm_vcpu_mark_page_dirty(vcpu, gfn); 3023 } 3024 3025 return true; 3026 } 3027 3028 static bool is_access_allowed(u32 fault_err_code, u64 spte) 3029 { 3030 if (fault_err_code & PFERR_FETCH_MASK) 3031 return is_executable_pte(spte); 3032 3033 if (fault_err_code & PFERR_WRITE_MASK) 3034 return is_writable_pte(spte); 3035 3036 /* Fault was on Read access */ 3037 return spte & PT_PRESENT_MASK; 3038 } 3039 3040 /* 3041 * Returns one of RET_PF_INVALID, RET_PF_FIXED or RET_PF_SPURIOUS. 3042 */ 3043 static int fast_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, 3044 u32 error_code) 3045 { 3046 struct kvm_shadow_walk_iterator iterator; 3047 struct kvm_mmu_page *sp; 3048 int ret = RET_PF_INVALID; 3049 u64 spte = 0ull; 3050 uint retry_count = 0; 3051 3052 if (!page_fault_can_be_fast(error_code)) 3053 return ret; 3054 3055 walk_shadow_page_lockless_begin(vcpu); 3056 3057 do { 3058 u64 new_spte; 3059 3060 for_each_shadow_entry_lockless(vcpu, cr2_or_gpa, iterator, spte) 3061 if (!is_shadow_present_pte(spte)) 3062 break; 3063 3064 sp = sptep_to_sp(iterator.sptep); 3065 if (!is_last_spte(spte, sp->role.level)) 3066 break; 3067 3068 /* 3069 * Check whether the memory access that caused the fault would 3070 * still cause it if it were to be performed right now. If not, 3071 * then this is a spurious fault caused by TLB lazily flushed, 3072 * or some other CPU has already fixed the PTE after the 3073 * current CPU took the fault. 3074 * 3075 * Need not check the access of upper level table entries since 3076 * they are always ACC_ALL. 3077 */ 3078 if (is_access_allowed(error_code, spte)) { 3079 ret = RET_PF_SPURIOUS; 3080 break; 3081 } 3082 3083 new_spte = spte; 3084 3085 if (is_access_track_spte(spte)) 3086 new_spte = restore_acc_track_spte(new_spte); 3087 3088 /* 3089 * Currently, to simplify the code, write-protection can 3090 * be removed in the fast path only if the SPTE was 3091 * write-protected for dirty-logging or access tracking. 3092 */ 3093 if ((error_code & PFERR_WRITE_MASK) && 3094 spte_can_locklessly_be_made_writable(spte)) { 3095 new_spte |= PT_WRITABLE_MASK; 3096 3097 /* 3098 * Do not fix write-permission on the large spte. Since 3099 * we only dirty the first page into the dirty-bitmap in 3100 * fast_pf_fix_direct_spte(), other pages are missed 3101 * if its slot has dirty logging enabled. 3102 * 3103 * Instead, we let the slow page fault path create a 3104 * normal spte to fix the access. 3105 * 3106 * See the comments in kvm_arch_commit_memory_region(). 3107 */ 3108 if (sp->role.level > PG_LEVEL_4K) 3109 break; 3110 } 3111 3112 /* Verify that the fault can be handled in the fast path */ 3113 if (new_spte == spte || 3114 !is_access_allowed(error_code, new_spte)) 3115 break; 3116 3117 /* 3118 * Currently, fast page fault only works for direct mapping 3119 * since the gfn is not stable for indirect shadow page. See 3120 * Documentation/virt/kvm/locking.rst to get more detail. 3121 */ 3122 if (fast_pf_fix_direct_spte(vcpu, sp, iterator.sptep, spte, 3123 new_spte)) { 3124 ret = RET_PF_FIXED; 3125 break; 3126 } 3127 3128 if (++retry_count > 4) { 3129 printk_once(KERN_WARNING 3130 "kvm: Fast #PF retrying more than 4 times.\n"); 3131 break; 3132 } 3133 3134 } while (true); 3135 3136 trace_fast_page_fault(vcpu, cr2_or_gpa, error_code, iterator.sptep, 3137 spte, ret); 3138 walk_shadow_page_lockless_end(vcpu); 3139 3140 return ret; 3141 } 3142 3143 static void mmu_free_root_page(struct kvm *kvm, hpa_t *root_hpa, 3144 struct list_head *invalid_list) 3145 { 3146 struct kvm_mmu_page *sp; 3147 3148 if (!VALID_PAGE(*root_hpa)) 3149 return; 3150 3151 sp = to_shadow_page(*root_hpa & PT64_BASE_ADDR_MASK); 3152 3153 if (kvm_mmu_put_root(kvm, sp)) { 3154 if (is_tdp_mmu_page(sp)) 3155 kvm_tdp_mmu_free_root(kvm, sp); 3156 else if (sp->role.invalid) 3157 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list); 3158 } 3159 3160 *root_hpa = INVALID_PAGE; 3161 } 3162 3163 /* roots_to_free must be some combination of the KVM_MMU_ROOT_* flags */ 3164 void kvm_mmu_free_roots(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, 3165 ulong roots_to_free) 3166 { 3167 struct kvm *kvm = vcpu->kvm; 3168 int i; 3169 LIST_HEAD(invalid_list); 3170 bool free_active_root = roots_to_free & KVM_MMU_ROOT_CURRENT; 3171 3172 BUILD_BUG_ON(KVM_MMU_NUM_PREV_ROOTS >= BITS_PER_LONG); 3173 3174 /* Before acquiring the MMU lock, see if we need to do any real work. */ 3175 if (!(free_active_root && VALID_PAGE(mmu->root_hpa))) { 3176 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 3177 if ((roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) && 3178 VALID_PAGE(mmu->prev_roots[i].hpa)) 3179 break; 3180 3181 if (i == KVM_MMU_NUM_PREV_ROOTS) 3182 return; 3183 } 3184 3185 write_lock(&kvm->mmu_lock); 3186 3187 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 3188 if (roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) 3189 mmu_free_root_page(kvm, &mmu->prev_roots[i].hpa, 3190 &invalid_list); 3191 3192 if (free_active_root) { 3193 if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL && 3194 (mmu->root_level >= PT64_ROOT_4LEVEL || mmu->direct_map)) { 3195 mmu_free_root_page(kvm, &mmu->root_hpa, &invalid_list); 3196 } else { 3197 for (i = 0; i < 4; ++i) 3198 if (mmu->pae_root[i] != 0) 3199 mmu_free_root_page(kvm, 3200 &mmu->pae_root[i], 3201 &invalid_list); 3202 mmu->root_hpa = INVALID_PAGE; 3203 } 3204 mmu->root_pgd = 0; 3205 } 3206 3207 kvm_mmu_commit_zap_page(kvm, &invalid_list); 3208 write_unlock(&kvm->mmu_lock); 3209 } 3210 EXPORT_SYMBOL_GPL(kvm_mmu_free_roots); 3211 3212 static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn) 3213 { 3214 int ret = 0; 3215 3216 if (!kvm_vcpu_is_visible_gfn(vcpu, root_gfn)) { 3217 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 3218 ret = 1; 3219 } 3220 3221 return ret; 3222 } 3223 3224 static hpa_t mmu_alloc_root(struct kvm_vcpu *vcpu, gfn_t gfn, gva_t gva, 3225 u8 level, bool direct) 3226 { 3227 struct kvm_mmu_page *sp; 3228 3229 write_lock(&vcpu->kvm->mmu_lock); 3230 3231 if (make_mmu_pages_available(vcpu)) { 3232 write_unlock(&vcpu->kvm->mmu_lock); 3233 return INVALID_PAGE; 3234 } 3235 sp = kvm_mmu_get_page(vcpu, gfn, gva, level, direct, ACC_ALL); 3236 ++sp->root_count; 3237 3238 write_unlock(&vcpu->kvm->mmu_lock); 3239 return __pa(sp->spt); 3240 } 3241 3242 static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu) 3243 { 3244 u8 shadow_root_level = vcpu->arch.mmu->shadow_root_level; 3245 hpa_t root; 3246 unsigned i; 3247 3248 if (is_tdp_mmu_enabled(vcpu->kvm)) { 3249 root = kvm_tdp_mmu_get_vcpu_root_hpa(vcpu); 3250 3251 if (!VALID_PAGE(root)) 3252 return -ENOSPC; 3253 vcpu->arch.mmu->root_hpa = root; 3254 } else if (shadow_root_level >= PT64_ROOT_4LEVEL) { 3255 root = mmu_alloc_root(vcpu, 0, 0, shadow_root_level, 3256 true); 3257 3258 if (!VALID_PAGE(root)) 3259 return -ENOSPC; 3260 vcpu->arch.mmu->root_hpa = root; 3261 } else if (shadow_root_level == PT32E_ROOT_LEVEL) { 3262 for (i = 0; i < 4; ++i) { 3263 MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu->pae_root[i])); 3264 3265 root = mmu_alloc_root(vcpu, i << (30 - PAGE_SHIFT), 3266 i << 30, PT32_ROOT_LEVEL, true); 3267 if (!VALID_PAGE(root)) 3268 return -ENOSPC; 3269 vcpu->arch.mmu->pae_root[i] = root | PT_PRESENT_MASK; 3270 } 3271 vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->pae_root); 3272 } else 3273 BUG(); 3274 3275 /* root_pgd is ignored for direct MMUs. */ 3276 vcpu->arch.mmu->root_pgd = 0; 3277 3278 return 0; 3279 } 3280 3281 static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu) 3282 { 3283 u64 pdptr, pm_mask; 3284 gfn_t root_gfn, root_pgd; 3285 hpa_t root; 3286 int i; 3287 3288 root_pgd = vcpu->arch.mmu->get_guest_pgd(vcpu); 3289 root_gfn = root_pgd >> PAGE_SHIFT; 3290 3291 if (mmu_check_root(vcpu, root_gfn)) 3292 return 1; 3293 3294 /* 3295 * Do we shadow a long mode page table? If so we need to 3296 * write-protect the guests page table root. 3297 */ 3298 if (vcpu->arch.mmu->root_level >= PT64_ROOT_4LEVEL) { 3299 MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu->root_hpa)); 3300 3301 root = mmu_alloc_root(vcpu, root_gfn, 0, 3302 vcpu->arch.mmu->shadow_root_level, false); 3303 if (!VALID_PAGE(root)) 3304 return -ENOSPC; 3305 vcpu->arch.mmu->root_hpa = root; 3306 goto set_root_pgd; 3307 } 3308 3309 /* 3310 * We shadow a 32 bit page table. This may be a legacy 2-level 3311 * or a PAE 3-level page table. In either case we need to be aware that 3312 * the shadow page table may be a PAE or a long mode page table. 3313 */ 3314 pm_mask = PT_PRESENT_MASK; 3315 if (vcpu->arch.mmu->shadow_root_level == PT64_ROOT_4LEVEL) 3316 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK; 3317 3318 for (i = 0; i < 4; ++i) { 3319 MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu->pae_root[i])); 3320 if (vcpu->arch.mmu->root_level == PT32E_ROOT_LEVEL) { 3321 pdptr = vcpu->arch.mmu->get_pdptr(vcpu, i); 3322 if (!(pdptr & PT_PRESENT_MASK)) { 3323 vcpu->arch.mmu->pae_root[i] = 0; 3324 continue; 3325 } 3326 root_gfn = pdptr >> PAGE_SHIFT; 3327 if (mmu_check_root(vcpu, root_gfn)) 3328 return 1; 3329 } 3330 3331 root = mmu_alloc_root(vcpu, root_gfn, i << 30, 3332 PT32_ROOT_LEVEL, false); 3333 if (!VALID_PAGE(root)) 3334 return -ENOSPC; 3335 vcpu->arch.mmu->pae_root[i] = root | pm_mask; 3336 } 3337 vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->pae_root); 3338 3339 /* 3340 * If we shadow a 32 bit page table with a long mode page 3341 * table we enter this path. 3342 */ 3343 if (vcpu->arch.mmu->shadow_root_level == PT64_ROOT_4LEVEL) { 3344 if (vcpu->arch.mmu->lm_root == NULL) { 3345 /* 3346 * The additional page necessary for this is only 3347 * allocated on demand. 3348 */ 3349 3350 u64 *lm_root; 3351 3352 lm_root = (void*)get_zeroed_page(GFP_KERNEL_ACCOUNT); 3353 if (lm_root == NULL) 3354 return 1; 3355 3356 lm_root[0] = __pa(vcpu->arch.mmu->pae_root) | pm_mask; 3357 3358 vcpu->arch.mmu->lm_root = lm_root; 3359 } 3360 3361 vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->lm_root); 3362 } 3363 3364 set_root_pgd: 3365 vcpu->arch.mmu->root_pgd = root_pgd; 3366 3367 return 0; 3368 } 3369 3370 static int mmu_alloc_roots(struct kvm_vcpu *vcpu) 3371 { 3372 if (vcpu->arch.mmu->direct_map) 3373 return mmu_alloc_direct_roots(vcpu); 3374 else 3375 return mmu_alloc_shadow_roots(vcpu); 3376 } 3377 3378 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu) 3379 { 3380 int i; 3381 struct kvm_mmu_page *sp; 3382 3383 if (vcpu->arch.mmu->direct_map) 3384 return; 3385 3386 if (!VALID_PAGE(vcpu->arch.mmu->root_hpa)) 3387 return; 3388 3389 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY); 3390 3391 if (vcpu->arch.mmu->root_level >= PT64_ROOT_4LEVEL) { 3392 hpa_t root = vcpu->arch.mmu->root_hpa; 3393 sp = to_shadow_page(root); 3394 3395 /* 3396 * Even if another CPU was marking the SP as unsync-ed 3397 * simultaneously, any guest page table changes are not 3398 * guaranteed to be visible anyway until this VCPU issues a TLB 3399 * flush strictly after those changes are made. We only need to 3400 * ensure that the other CPU sets these flags before any actual 3401 * changes to the page tables are made. The comments in 3402 * mmu_need_write_protect() describe what could go wrong if this 3403 * requirement isn't satisfied. 3404 */ 3405 if (!smp_load_acquire(&sp->unsync) && 3406 !smp_load_acquire(&sp->unsync_children)) 3407 return; 3408 3409 write_lock(&vcpu->kvm->mmu_lock); 3410 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC); 3411 3412 mmu_sync_children(vcpu, sp); 3413 3414 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC); 3415 write_unlock(&vcpu->kvm->mmu_lock); 3416 return; 3417 } 3418 3419 write_lock(&vcpu->kvm->mmu_lock); 3420 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC); 3421 3422 for (i = 0; i < 4; ++i) { 3423 hpa_t root = vcpu->arch.mmu->pae_root[i]; 3424 3425 if (root && VALID_PAGE(root)) { 3426 root &= PT64_BASE_ADDR_MASK; 3427 sp = to_shadow_page(root); 3428 mmu_sync_children(vcpu, sp); 3429 } 3430 } 3431 3432 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC); 3433 write_unlock(&vcpu->kvm->mmu_lock); 3434 } 3435 3436 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gpa_t vaddr, 3437 u32 access, struct x86_exception *exception) 3438 { 3439 if (exception) 3440 exception->error_code = 0; 3441 return vaddr; 3442 } 3443 3444 static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gpa_t vaddr, 3445 u32 access, 3446 struct x86_exception *exception) 3447 { 3448 if (exception) 3449 exception->error_code = 0; 3450 return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception); 3451 } 3452 3453 static bool 3454 __is_rsvd_bits_set(struct rsvd_bits_validate *rsvd_check, u64 pte, int level) 3455 { 3456 int bit7 = (pte >> 7) & 1; 3457 3458 return pte & rsvd_check->rsvd_bits_mask[bit7][level-1]; 3459 } 3460 3461 static bool __is_bad_mt_xwr(struct rsvd_bits_validate *rsvd_check, u64 pte) 3462 { 3463 return rsvd_check->bad_mt_xwr & BIT_ULL(pte & 0x3f); 3464 } 3465 3466 static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct) 3467 { 3468 /* 3469 * A nested guest cannot use the MMIO cache if it is using nested 3470 * page tables, because cr2 is a nGPA while the cache stores GPAs. 3471 */ 3472 if (mmu_is_nested(vcpu)) 3473 return false; 3474 3475 if (direct) 3476 return vcpu_match_mmio_gpa(vcpu, addr); 3477 3478 return vcpu_match_mmio_gva(vcpu, addr); 3479 } 3480 3481 /* 3482 * Return the level of the lowest level SPTE added to sptes. 3483 * That SPTE may be non-present. 3484 */ 3485 static int get_walk(struct kvm_vcpu *vcpu, u64 addr, u64 *sptes, int *root_level) 3486 { 3487 struct kvm_shadow_walk_iterator iterator; 3488 int leaf = -1; 3489 u64 spte; 3490 3491 walk_shadow_page_lockless_begin(vcpu); 3492 3493 for (shadow_walk_init(&iterator, vcpu, addr), 3494 *root_level = iterator.level; 3495 shadow_walk_okay(&iterator); 3496 __shadow_walk_next(&iterator, spte)) { 3497 leaf = iterator.level; 3498 spte = mmu_spte_get_lockless(iterator.sptep); 3499 3500 sptes[leaf] = spte; 3501 3502 if (!is_shadow_present_pte(spte)) 3503 break; 3504 } 3505 3506 walk_shadow_page_lockless_end(vcpu); 3507 3508 return leaf; 3509 } 3510 3511 /* return true if reserved bit(s) are detected on a valid, non-MMIO SPTE. */ 3512 static bool get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep) 3513 { 3514 u64 sptes[PT64_ROOT_MAX_LEVEL + 1]; 3515 struct rsvd_bits_validate *rsvd_check; 3516 int root, leaf, level; 3517 bool reserved = false; 3518 3519 if (!VALID_PAGE(vcpu->arch.mmu->root_hpa)) { 3520 *sptep = 0ull; 3521 return reserved; 3522 } 3523 3524 if (is_tdp_mmu_root(vcpu->kvm, vcpu->arch.mmu->root_hpa)) 3525 leaf = kvm_tdp_mmu_get_walk(vcpu, addr, sptes, &root); 3526 else 3527 leaf = get_walk(vcpu, addr, sptes, &root); 3528 3529 if (unlikely(leaf < 0)) { 3530 *sptep = 0ull; 3531 return reserved; 3532 } 3533 3534 *sptep = sptes[leaf]; 3535 3536 /* 3537 * Skip reserved bits checks on the terminal leaf if it's not a valid 3538 * SPTE. Note, this also (intentionally) skips MMIO SPTEs, which, by 3539 * design, always have reserved bits set. The purpose of the checks is 3540 * to detect reserved bits on non-MMIO SPTEs. i.e. buggy SPTEs. 3541 */ 3542 if (!is_shadow_present_pte(sptes[leaf])) 3543 leaf++; 3544 3545 rsvd_check = &vcpu->arch.mmu->shadow_zero_check; 3546 3547 for (level = root; level >= leaf; level--) 3548 /* 3549 * Use a bitwise-OR instead of a logical-OR to aggregate the 3550 * reserved bit and EPT's invalid memtype/XWR checks to avoid 3551 * adding a Jcc in the loop. 3552 */ 3553 reserved |= __is_bad_mt_xwr(rsvd_check, sptes[level]) | 3554 __is_rsvd_bits_set(rsvd_check, sptes[level], level); 3555 3556 if (reserved) { 3557 pr_err("%s: detect reserved bits on spte, addr 0x%llx, dump hierarchy:\n", 3558 __func__, addr); 3559 for (level = root; level >= leaf; level--) 3560 pr_err("------ spte 0x%llx level %d.\n", 3561 sptes[level], level); 3562 } 3563 3564 return reserved; 3565 } 3566 3567 static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct) 3568 { 3569 u64 spte; 3570 bool reserved; 3571 3572 if (mmio_info_in_cache(vcpu, addr, direct)) 3573 return RET_PF_EMULATE; 3574 3575 reserved = get_mmio_spte(vcpu, addr, &spte); 3576 if (WARN_ON(reserved)) 3577 return -EINVAL; 3578 3579 if (is_mmio_spte(spte)) { 3580 gfn_t gfn = get_mmio_spte_gfn(spte); 3581 unsigned int access = get_mmio_spte_access(spte); 3582 3583 if (!check_mmio_spte(vcpu, spte)) 3584 return RET_PF_INVALID; 3585 3586 if (direct) 3587 addr = 0; 3588 3589 trace_handle_mmio_page_fault(addr, gfn, access); 3590 vcpu_cache_mmio_info(vcpu, addr, gfn, access); 3591 return RET_PF_EMULATE; 3592 } 3593 3594 /* 3595 * If the page table is zapped by other cpus, let CPU fault again on 3596 * the address. 3597 */ 3598 return RET_PF_RETRY; 3599 } 3600 3601 static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu, 3602 u32 error_code, gfn_t gfn) 3603 { 3604 if (unlikely(error_code & PFERR_RSVD_MASK)) 3605 return false; 3606 3607 if (!(error_code & PFERR_PRESENT_MASK) || 3608 !(error_code & PFERR_WRITE_MASK)) 3609 return false; 3610 3611 /* 3612 * guest is writing the page which is write tracked which can 3613 * not be fixed by page fault handler. 3614 */ 3615 if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE)) 3616 return true; 3617 3618 return false; 3619 } 3620 3621 static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr) 3622 { 3623 struct kvm_shadow_walk_iterator iterator; 3624 u64 spte; 3625 3626 walk_shadow_page_lockless_begin(vcpu); 3627 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) { 3628 clear_sp_write_flooding_count(iterator.sptep); 3629 if (!is_shadow_present_pte(spte)) 3630 break; 3631 } 3632 walk_shadow_page_lockless_end(vcpu); 3633 } 3634 3635 static bool kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, 3636 gfn_t gfn) 3637 { 3638 struct kvm_arch_async_pf arch; 3639 3640 arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id; 3641 arch.gfn = gfn; 3642 arch.direct_map = vcpu->arch.mmu->direct_map; 3643 arch.cr3 = vcpu->arch.mmu->get_guest_pgd(vcpu); 3644 3645 return kvm_setup_async_pf(vcpu, cr2_or_gpa, 3646 kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch); 3647 } 3648 3649 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn, 3650 gpa_t cr2_or_gpa, kvm_pfn_t *pfn, hva_t *hva, 3651 bool write, bool *writable) 3652 { 3653 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 3654 bool async; 3655 3656 /* Don't expose private memslots to L2. */ 3657 if (is_guest_mode(vcpu) && !kvm_is_visible_memslot(slot)) { 3658 *pfn = KVM_PFN_NOSLOT; 3659 *writable = false; 3660 return false; 3661 } 3662 3663 async = false; 3664 *pfn = __gfn_to_pfn_memslot(slot, gfn, false, &async, 3665 write, writable, hva); 3666 if (!async) 3667 return false; /* *pfn has correct page already */ 3668 3669 if (!prefault && kvm_can_do_async_pf(vcpu)) { 3670 trace_kvm_try_async_get_page(cr2_or_gpa, gfn); 3671 if (kvm_find_async_pf_gfn(vcpu, gfn)) { 3672 trace_kvm_async_pf_doublefault(cr2_or_gpa, gfn); 3673 kvm_make_request(KVM_REQ_APF_HALT, vcpu); 3674 return true; 3675 } else if (kvm_arch_setup_async_pf(vcpu, cr2_or_gpa, gfn)) 3676 return true; 3677 } 3678 3679 *pfn = __gfn_to_pfn_memslot(slot, gfn, false, NULL, 3680 write, writable, hva); 3681 return false; 3682 } 3683 3684 static int direct_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code, 3685 bool prefault, int max_level, bool is_tdp) 3686 { 3687 bool write = error_code & PFERR_WRITE_MASK; 3688 bool map_writable; 3689 3690 gfn_t gfn = gpa >> PAGE_SHIFT; 3691 unsigned long mmu_seq; 3692 kvm_pfn_t pfn; 3693 hva_t hva; 3694 int r; 3695 3696 if (page_fault_handle_page_track(vcpu, error_code, gfn)) 3697 return RET_PF_EMULATE; 3698 3699 if (!is_tdp_mmu_root(vcpu->kvm, vcpu->arch.mmu->root_hpa)) { 3700 r = fast_page_fault(vcpu, gpa, error_code); 3701 if (r != RET_PF_INVALID) 3702 return r; 3703 } 3704 3705 r = mmu_topup_memory_caches(vcpu, false); 3706 if (r) 3707 return r; 3708 3709 mmu_seq = vcpu->kvm->mmu_notifier_seq; 3710 smp_rmb(); 3711 3712 if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, &hva, 3713 write, &map_writable)) 3714 return RET_PF_RETRY; 3715 3716 if (handle_abnormal_pfn(vcpu, is_tdp ? 0 : gpa, gfn, pfn, ACC_ALL, &r)) 3717 return r; 3718 3719 r = RET_PF_RETRY; 3720 3721 if (is_tdp_mmu_root(vcpu->kvm, vcpu->arch.mmu->root_hpa)) 3722 read_lock(&vcpu->kvm->mmu_lock); 3723 else 3724 write_lock(&vcpu->kvm->mmu_lock); 3725 3726 if (!is_noslot_pfn(pfn) && mmu_notifier_retry_hva(vcpu->kvm, mmu_seq, hva)) 3727 goto out_unlock; 3728 r = make_mmu_pages_available(vcpu); 3729 if (r) 3730 goto out_unlock; 3731 3732 if (is_tdp_mmu_root(vcpu->kvm, vcpu->arch.mmu->root_hpa)) 3733 r = kvm_tdp_mmu_map(vcpu, gpa, error_code, map_writable, max_level, 3734 pfn, prefault); 3735 else 3736 r = __direct_map(vcpu, gpa, error_code, map_writable, max_level, pfn, 3737 prefault, is_tdp); 3738 3739 out_unlock: 3740 if (is_tdp_mmu_root(vcpu->kvm, vcpu->arch.mmu->root_hpa)) 3741 read_unlock(&vcpu->kvm->mmu_lock); 3742 else 3743 write_unlock(&vcpu->kvm->mmu_lock); 3744 kvm_release_pfn_clean(pfn); 3745 return r; 3746 } 3747 3748 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa, 3749 u32 error_code, bool prefault) 3750 { 3751 pgprintk("%s: gva %lx error %x\n", __func__, gpa, error_code); 3752 3753 /* This path builds a PAE pagetable, we can map 2mb pages at maximum. */ 3754 return direct_page_fault(vcpu, gpa & PAGE_MASK, error_code, prefault, 3755 PG_LEVEL_2M, false); 3756 } 3757 3758 int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code, 3759 u64 fault_address, char *insn, int insn_len) 3760 { 3761 int r = 1; 3762 u32 flags = vcpu->arch.apf.host_apf_flags; 3763 3764 #ifndef CONFIG_X86_64 3765 /* A 64-bit CR2 should be impossible on 32-bit KVM. */ 3766 if (WARN_ON_ONCE(fault_address >> 32)) 3767 return -EFAULT; 3768 #endif 3769 3770 vcpu->arch.l1tf_flush_l1d = true; 3771 if (!flags) { 3772 trace_kvm_page_fault(fault_address, error_code); 3773 3774 if (kvm_event_needs_reinjection(vcpu)) 3775 kvm_mmu_unprotect_page_virt(vcpu, fault_address); 3776 r = kvm_mmu_page_fault(vcpu, fault_address, error_code, insn, 3777 insn_len); 3778 } else if (flags & KVM_PV_REASON_PAGE_NOT_PRESENT) { 3779 vcpu->arch.apf.host_apf_flags = 0; 3780 local_irq_disable(); 3781 kvm_async_pf_task_wait_schedule(fault_address); 3782 local_irq_enable(); 3783 } else { 3784 WARN_ONCE(1, "Unexpected host async PF flags: %x\n", flags); 3785 } 3786 3787 return r; 3788 } 3789 EXPORT_SYMBOL_GPL(kvm_handle_page_fault); 3790 3791 int kvm_tdp_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code, 3792 bool prefault) 3793 { 3794 int max_level; 3795 3796 for (max_level = KVM_MAX_HUGEPAGE_LEVEL; 3797 max_level > PG_LEVEL_4K; 3798 max_level--) { 3799 int page_num = KVM_PAGES_PER_HPAGE(max_level); 3800 gfn_t base = (gpa >> PAGE_SHIFT) & ~(page_num - 1); 3801 3802 if (kvm_mtrr_check_gfn_range_consistency(vcpu, base, page_num)) 3803 break; 3804 } 3805 3806 return direct_page_fault(vcpu, gpa, error_code, prefault, 3807 max_level, true); 3808 } 3809 3810 static void nonpaging_init_context(struct kvm_vcpu *vcpu, 3811 struct kvm_mmu *context) 3812 { 3813 context->page_fault = nonpaging_page_fault; 3814 context->gva_to_gpa = nonpaging_gva_to_gpa; 3815 context->sync_page = nonpaging_sync_page; 3816 context->invlpg = NULL; 3817 context->root_level = 0; 3818 context->shadow_root_level = PT32E_ROOT_LEVEL; 3819 context->direct_map = true; 3820 context->nx = false; 3821 } 3822 3823 static inline bool is_root_usable(struct kvm_mmu_root_info *root, gpa_t pgd, 3824 union kvm_mmu_page_role role) 3825 { 3826 return (role.direct || pgd == root->pgd) && 3827 VALID_PAGE(root->hpa) && to_shadow_page(root->hpa) && 3828 role.word == to_shadow_page(root->hpa)->role.word; 3829 } 3830 3831 /* 3832 * Find out if a previously cached root matching the new pgd/role is available. 3833 * The current root is also inserted into the cache. 3834 * If a matching root was found, it is assigned to kvm_mmu->root_hpa and true is 3835 * returned. 3836 * Otherwise, the LRU root from the cache is assigned to kvm_mmu->root_hpa and 3837 * false is returned. This root should now be freed by the caller. 3838 */ 3839 static bool cached_root_available(struct kvm_vcpu *vcpu, gpa_t new_pgd, 3840 union kvm_mmu_page_role new_role) 3841 { 3842 uint i; 3843 struct kvm_mmu_root_info root; 3844 struct kvm_mmu *mmu = vcpu->arch.mmu; 3845 3846 root.pgd = mmu->root_pgd; 3847 root.hpa = mmu->root_hpa; 3848 3849 if (is_root_usable(&root, new_pgd, new_role)) 3850 return true; 3851 3852 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) { 3853 swap(root, mmu->prev_roots[i]); 3854 3855 if (is_root_usable(&root, new_pgd, new_role)) 3856 break; 3857 } 3858 3859 mmu->root_hpa = root.hpa; 3860 mmu->root_pgd = root.pgd; 3861 3862 return i < KVM_MMU_NUM_PREV_ROOTS; 3863 } 3864 3865 static bool fast_pgd_switch(struct kvm_vcpu *vcpu, gpa_t new_pgd, 3866 union kvm_mmu_page_role new_role) 3867 { 3868 struct kvm_mmu *mmu = vcpu->arch.mmu; 3869 3870 /* 3871 * For now, limit the fast switch to 64-bit hosts+VMs in order to avoid 3872 * having to deal with PDPTEs. We may add support for 32-bit hosts/VMs 3873 * later if necessary. 3874 */ 3875 if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL && 3876 mmu->root_level >= PT64_ROOT_4LEVEL) 3877 return cached_root_available(vcpu, new_pgd, new_role); 3878 3879 return false; 3880 } 3881 3882 static void __kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd, 3883 union kvm_mmu_page_role new_role, 3884 bool skip_tlb_flush, bool skip_mmu_sync) 3885 { 3886 if (!fast_pgd_switch(vcpu, new_pgd, new_role)) { 3887 kvm_mmu_free_roots(vcpu, vcpu->arch.mmu, KVM_MMU_ROOT_CURRENT); 3888 return; 3889 } 3890 3891 /* 3892 * It's possible that the cached previous root page is obsolete because 3893 * of a change in the MMU generation number. However, changing the 3894 * generation number is accompanied by KVM_REQ_MMU_RELOAD, which will 3895 * free the root set here and allocate a new one. 3896 */ 3897 kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu); 3898 3899 if (!skip_mmu_sync || force_flush_and_sync_on_reuse) 3900 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu); 3901 if (!skip_tlb_flush || force_flush_and_sync_on_reuse) 3902 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 3903 3904 /* 3905 * The last MMIO access's GVA and GPA are cached in the VCPU. When 3906 * switching to a new CR3, that GVA->GPA mapping may no longer be 3907 * valid. So clear any cached MMIO info even when we don't need to sync 3908 * the shadow page tables. 3909 */ 3910 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY); 3911 3912 /* 3913 * If this is a direct root page, it doesn't have a write flooding 3914 * count. Otherwise, clear the write flooding count. 3915 */ 3916 if (!new_role.direct) 3917 __clear_sp_write_flooding_count( 3918 to_shadow_page(vcpu->arch.mmu->root_hpa)); 3919 } 3920 3921 void kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd, bool skip_tlb_flush, 3922 bool skip_mmu_sync) 3923 { 3924 __kvm_mmu_new_pgd(vcpu, new_pgd, kvm_mmu_calc_root_page_role(vcpu), 3925 skip_tlb_flush, skip_mmu_sync); 3926 } 3927 EXPORT_SYMBOL_GPL(kvm_mmu_new_pgd); 3928 3929 static unsigned long get_cr3(struct kvm_vcpu *vcpu) 3930 { 3931 return kvm_read_cr3(vcpu); 3932 } 3933 3934 static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn, 3935 unsigned int access, int *nr_present) 3936 { 3937 if (unlikely(is_mmio_spte(*sptep))) { 3938 if (gfn != get_mmio_spte_gfn(*sptep)) { 3939 mmu_spte_clear_no_track(sptep); 3940 return true; 3941 } 3942 3943 (*nr_present)++; 3944 mark_mmio_spte(vcpu, sptep, gfn, access); 3945 return true; 3946 } 3947 3948 return false; 3949 } 3950 3951 static inline bool is_last_gpte(struct kvm_mmu *mmu, 3952 unsigned level, unsigned gpte) 3953 { 3954 /* 3955 * The RHS has bit 7 set iff level < mmu->last_nonleaf_level. 3956 * If it is clear, there are no large pages at this level, so clear 3957 * PT_PAGE_SIZE_MASK in gpte if that is the case. 3958 */ 3959 gpte &= level - mmu->last_nonleaf_level; 3960 3961 /* 3962 * PG_LEVEL_4K always terminates. The RHS has bit 7 set 3963 * iff level <= PG_LEVEL_4K, which for our purpose means 3964 * level == PG_LEVEL_4K; set PT_PAGE_SIZE_MASK in gpte then. 3965 */ 3966 gpte |= level - PG_LEVEL_4K - 1; 3967 3968 return gpte & PT_PAGE_SIZE_MASK; 3969 } 3970 3971 #define PTTYPE_EPT 18 /* arbitrary */ 3972 #define PTTYPE PTTYPE_EPT 3973 #include "paging_tmpl.h" 3974 #undef PTTYPE 3975 3976 #define PTTYPE 64 3977 #include "paging_tmpl.h" 3978 #undef PTTYPE 3979 3980 #define PTTYPE 32 3981 #include "paging_tmpl.h" 3982 #undef PTTYPE 3983 3984 static void 3985 __reset_rsvds_bits_mask(struct kvm_vcpu *vcpu, 3986 struct rsvd_bits_validate *rsvd_check, 3987 u64 pa_bits_rsvd, int level, bool nx, bool gbpages, 3988 bool pse, bool amd) 3989 { 3990 u64 gbpages_bit_rsvd = 0; 3991 u64 nonleaf_bit8_rsvd = 0; 3992 u64 high_bits_rsvd; 3993 3994 rsvd_check->bad_mt_xwr = 0; 3995 3996 if (!gbpages) 3997 gbpages_bit_rsvd = rsvd_bits(7, 7); 3998 3999 if (level == PT32E_ROOT_LEVEL) 4000 high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 62); 4001 else 4002 high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 51); 4003 4004 /* Note, NX doesn't exist in PDPTEs, this is handled below. */ 4005 if (!nx) 4006 high_bits_rsvd |= rsvd_bits(63, 63); 4007 4008 /* 4009 * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for 4010 * leaf entries) on AMD CPUs only. 4011 */ 4012 if (amd) 4013 nonleaf_bit8_rsvd = rsvd_bits(8, 8); 4014 4015 switch (level) { 4016 case PT32_ROOT_LEVEL: 4017 /* no rsvd bits for 2 level 4K page table entries */ 4018 rsvd_check->rsvd_bits_mask[0][1] = 0; 4019 rsvd_check->rsvd_bits_mask[0][0] = 0; 4020 rsvd_check->rsvd_bits_mask[1][0] = 4021 rsvd_check->rsvd_bits_mask[0][0]; 4022 4023 if (!pse) { 4024 rsvd_check->rsvd_bits_mask[1][1] = 0; 4025 break; 4026 } 4027 4028 if (is_cpuid_PSE36()) 4029 /* 36bits PSE 4MB page */ 4030 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21); 4031 else 4032 /* 32 bits PSE 4MB page */ 4033 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21); 4034 break; 4035 case PT32E_ROOT_LEVEL: 4036 rsvd_check->rsvd_bits_mask[0][2] = rsvd_bits(63, 63) | 4037 high_bits_rsvd | 4038 rsvd_bits(5, 8) | 4039 rsvd_bits(1, 2); /* PDPTE */ 4040 rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd; /* PDE */ 4041 rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd; /* PTE */ 4042 rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd | 4043 rsvd_bits(13, 20); /* large page */ 4044 rsvd_check->rsvd_bits_mask[1][0] = 4045 rsvd_check->rsvd_bits_mask[0][0]; 4046 break; 4047 case PT64_ROOT_5LEVEL: 4048 rsvd_check->rsvd_bits_mask[0][4] = high_bits_rsvd | 4049 nonleaf_bit8_rsvd | 4050 rsvd_bits(7, 7); 4051 rsvd_check->rsvd_bits_mask[1][4] = 4052 rsvd_check->rsvd_bits_mask[0][4]; 4053 fallthrough; 4054 case PT64_ROOT_4LEVEL: 4055 rsvd_check->rsvd_bits_mask[0][3] = high_bits_rsvd | 4056 nonleaf_bit8_rsvd | 4057 rsvd_bits(7, 7); 4058 rsvd_check->rsvd_bits_mask[0][2] = high_bits_rsvd | 4059 gbpages_bit_rsvd; 4060 rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd; 4061 rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd; 4062 rsvd_check->rsvd_bits_mask[1][3] = 4063 rsvd_check->rsvd_bits_mask[0][3]; 4064 rsvd_check->rsvd_bits_mask[1][2] = high_bits_rsvd | 4065 gbpages_bit_rsvd | 4066 rsvd_bits(13, 29); 4067 rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd | 4068 rsvd_bits(13, 20); /* large page */ 4069 rsvd_check->rsvd_bits_mask[1][0] = 4070 rsvd_check->rsvd_bits_mask[0][0]; 4071 break; 4072 } 4073 } 4074 4075 static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu, 4076 struct kvm_mmu *context) 4077 { 4078 __reset_rsvds_bits_mask(vcpu, &context->guest_rsvd_check, 4079 vcpu->arch.reserved_gpa_bits, 4080 context->root_level, context->nx, 4081 guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES), 4082 is_pse(vcpu), 4083 guest_cpuid_is_amd_or_hygon(vcpu)); 4084 } 4085 4086 static void 4087 __reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check, 4088 u64 pa_bits_rsvd, bool execonly) 4089 { 4090 u64 high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 51); 4091 u64 bad_mt_xwr; 4092 4093 rsvd_check->rsvd_bits_mask[0][4] = high_bits_rsvd | rsvd_bits(3, 7); 4094 rsvd_check->rsvd_bits_mask[0][3] = high_bits_rsvd | rsvd_bits(3, 7); 4095 rsvd_check->rsvd_bits_mask[0][2] = high_bits_rsvd | rsvd_bits(3, 6); 4096 rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd | rsvd_bits(3, 6); 4097 rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd; 4098 4099 /* large page */ 4100 rsvd_check->rsvd_bits_mask[1][4] = rsvd_check->rsvd_bits_mask[0][4]; 4101 rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3]; 4102 rsvd_check->rsvd_bits_mask[1][2] = high_bits_rsvd | rsvd_bits(12, 29); 4103 rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd | rsvd_bits(12, 20); 4104 rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0]; 4105 4106 bad_mt_xwr = 0xFFull << (2 * 8); /* bits 3..5 must not be 2 */ 4107 bad_mt_xwr |= 0xFFull << (3 * 8); /* bits 3..5 must not be 3 */ 4108 bad_mt_xwr |= 0xFFull << (7 * 8); /* bits 3..5 must not be 7 */ 4109 bad_mt_xwr |= REPEAT_BYTE(1ull << 2); /* bits 0..2 must not be 010 */ 4110 bad_mt_xwr |= REPEAT_BYTE(1ull << 6); /* bits 0..2 must not be 110 */ 4111 if (!execonly) { 4112 /* bits 0..2 must not be 100 unless VMX capabilities allow it */ 4113 bad_mt_xwr |= REPEAT_BYTE(1ull << 4); 4114 } 4115 rsvd_check->bad_mt_xwr = bad_mt_xwr; 4116 } 4117 4118 static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu, 4119 struct kvm_mmu *context, bool execonly) 4120 { 4121 __reset_rsvds_bits_mask_ept(&context->guest_rsvd_check, 4122 vcpu->arch.reserved_gpa_bits, execonly); 4123 } 4124 4125 static inline u64 reserved_hpa_bits(void) 4126 { 4127 return rsvd_bits(shadow_phys_bits, 63); 4128 } 4129 4130 /* 4131 * the page table on host is the shadow page table for the page 4132 * table in guest or amd nested guest, its mmu features completely 4133 * follow the features in guest. 4134 */ 4135 void 4136 reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, struct kvm_mmu *context) 4137 { 4138 bool uses_nx = context->nx || 4139 context->mmu_role.base.smep_andnot_wp; 4140 struct rsvd_bits_validate *shadow_zero_check; 4141 int i; 4142 4143 /* 4144 * Passing "true" to the last argument is okay; it adds a check 4145 * on bit 8 of the SPTEs which KVM doesn't use anyway. 4146 */ 4147 shadow_zero_check = &context->shadow_zero_check; 4148 __reset_rsvds_bits_mask(vcpu, shadow_zero_check, 4149 reserved_hpa_bits(), 4150 context->shadow_root_level, uses_nx, 4151 guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES), 4152 is_pse(vcpu), true); 4153 4154 if (!shadow_me_mask) 4155 return; 4156 4157 for (i = context->shadow_root_level; --i >= 0;) { 4158 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask; 4159 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask; 4160 } 4161 4162 } 4163 EXPORT_SYMBOL_GPL(reset_shadow_zero_bits_mask); 4164 4165 static inline bool boot_cpu_is_amd(void) 4166 { 4167 WARN_ON_ONCE(!tdp_enabled); 4168 return shadow_x_mask == 0; 4169 } 4170 4171 /* 4172 * the direct page table on host, use as much mmu features as 4173 * possible, however, kvm currently does not do execution-protection. 4174 */ 4175 static void 4176 reset_tdp_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, 4177 struct kvm_mmu *context) 4178 { 4179 struct rsvd_bits_validate *shadow_zero_check; 4180 int i; 4181 4182 shadow_zero_check = &context->shadow_zero_check; 4183 4184 if (boot_cpu_is_amd()) 4185 __reset_rsvds_bits_mask(vcpu, shadow_zero_check, 4186 reserved_hpa_bits(), 4187 context->shadow_root_level, false, 4188 boot_cpu_has(X86_FEATURE_GBPAGES), 4189 true, true); 4190 else 4191 __reset_rsvds_bits_mask_ept(shadow_zero_check, 4192 reserved_hpa_bits(), false); 4193 4194 if (!shadow_me_mask) 4195 return; 4196 4197 for (i = context->shadow_root_level; --i >= 0;) { 4198 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask; 4199 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask; 4200 } 4201 } 4202 4203 /* 4204 * as the comments in reset_shadow_zero_bits_mask() except it 4205 * is the shadow page table for intel nested guest. 4206 */ 4207 static void 4208 reset_ept_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, 4209 struct kvm_mmu *context, bool execonly) 4210 { 4211 __reset_rsvds_bits_mask_ept(&context->shadow_zero_check, 4212 reserved_hpa_bits(), execonly); 4213 } 4214 4215 #define BYTE_MASK(access) \ 4216 ((1 & (access) ? 2 : 0) | \ 4217 (2 & (access) ? 4 : 0) | \ 4218 (3 & (access) ? 8 : 0) | \ 4219 (4 & (access) ? 16 : 0) | \ 4220 (5 & (access) ? 32 : 0) | \ 4221 (6 & (access) ? 64 : 0) | \ 4222 (7 & (access) ? 128 : 0)) 4223 4224 4225 static void update_permission_bitmask(struct kvm_vcpu *vcpu, 4226 struct kvm_mmu *mmu, bool ept) 4227 { 4228 unsigned byte; 4229 4230 const u8 x = BYTE_MASK(ACC_EXEC_MASK); 4231 const u8 w = BYTE_MASK(ACC_WRITE_MASK); 4232 const u8 u = BYTE_MASK(ACC_USER_MASK); 4233 4234 bool cr4_smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP) != 0; 4235 bool cr4_smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP) != 0; 4236 bool cr0_wp = is_write_protection(vcpu); 4237 4238 for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) { 4239 unsigned pfec = byte << 1; 4240 4241 /* 4242 * Each "*f" variable has a 1 bit for each UWX value 4243 * that causes a fault with the given PFEC. 4244 */ 4245 4246 /* Faults from writes to non-writable pages */ 4247 u8 wf = (pfec & PFERR_WRITE_MASK) ? (u8)~w : 0; 4248 /* Faults from user mode accesses to supervisor pages */ 4249 u8 uf = (pfec & PFERR_USER_MASK) ? (u8)~u : 0; 4250 /* Faults from fetches of non-executable pages*/ 4251 u8 ff = (pfec & PFERR_FETCH_MASK) ? (u8)~x : 0; 4252 /* Faults from kernel mode fetches of user pages */ 4253 u8 smepf = 0; 4254 /* Faults from kernel mode accesses of user pages */ 4255 u8 smapf = 0; 4256 4257 if (!ept) { 4258 /* Faults from kernel mode accesses to user pages */ 4259 u8 kf = (pfec & PFERR_USER_MASK) ? 0 : u; 4260 4261 /* Not really needed: !nx will cause pte.nx to fault */ 4262 if (!mmu->nx) 4263 ff = 0; 4264 4265 /* Allow supervisor writes if !cr0.wp */ 4266 if (!cr0_wp) 4267 wf = (pfec & PFERR_USER_MASK) ? wf : 0; 4268 4269 /* Disallow supervisor fetches of user code if cr4.smep */ 4270 if (cr4_smep) 4271 smepf = (pfec & PFERR_FETCH_MASK) ? kf : 0; 4272 4273 /* 4274 * SMAP:kernel-mode data accesses from user-mode 4275 * mappings should fault. A fault is considered 4276 * as a SMAP violation if all of the following 4277 * conditions are true: 4278 * - X86_CR4_SMAP is set in CR4 4279 * - A user page is accessed 4280 * - The access is not a fetch 4281 * - Page fault in kernel mode 4282 * - if CPL = 3 or X86_EFLAGS_AC is clear 4283 * 4284 * Here, we cover the first three conditions. 4285 * The fourth is computed dynamically in permission_fault(); 4286 * PFERR_RSVD_MASK bit will be set in PFEC if the access is 4287 * *not* subject to SMAP restrictions. 4288 */ 4289 if (cr4_smap) 4290 smapf = (pfec & (PFERR_RSVD_MASK|PFERR_FETCH_MASK)) ? 0 : kf; 4291 } 4292 4293 mmu->permissions[byte] = ff | uf | wf | smepf | smapf; 4294 } 4295 } 4296 4297 /* 4298 * PKU is an additional mechanism by which the paging controls access to 4299 * user-mode addresses based on the value in the PKRU register. Protection 4300 * key violations are reported through a bit in the page fault error code. 4301 * Unlike other bits of the error code, the PK bit is not known at the 4302 * call site of e.g. gva_to_gpa; it must be computed directly in 4303 * permission_fault based on two bits of PKRU, on some machine state (CR4, 4304 * CR0, EFER, CPL), and on other bits of the error code and the page tables. 4305 * 4306 * In particular the following conditions come from the error code, the 4307 * page tables and the machine state: 4308 * - PK is always zero unless CR4.PKE=1 and EFER.LMA=1 4309 * - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch) 4310 * - PK is always zero if U=0 in the page tables 4311 * - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access. 4312 * 4313 * The PKRU bitmask caches the result of these four conditions. The error 4314 * code (minus the P bit) and the page table's U bit form an index into the 4315 * PKRU bitmask. Two bits of the PKRU bitmask are then extracted and ANDed 4316 * with the two bits of the PKRU register corresponding to the protection key. 4317 * For the first three conditions above the bits will be 00, thus masking 4318 * away both AD and WD. For all reads or if the last condition holds, WD 4319 * only will be masked away. 4320 */ 4321 static void update_pkru_bitmask(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, 4322 bool ept) 4323 { 4324 unsigned bit; 4325 bool wp; 4326 4327 if (ept) { 4328 mmu->pkru_mask = 0; 4329 return; 4330 } 4331 4332 /* PKEY is enabled only if CR4.PKE and EFER.LMA are both set. */ 4333 if (!kvm_read_cr4_bits(vcpu, X86_CR4_PKE) || !is_long_mode(vcpu)) { 4334 mmu->pkru_mask = 0; 4335 return; 4336 } 4337 4338 wp = is_write_protection(vcpu); 4339 4340 for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) { 4341 unsigned pfec, pkey_bits; 4342 bool check_pkey, check_write, ff, uf, wf, pte_user; 4343 4344 pfec = bit << 1; 4345 ff = pfec & PFERR_FETCH_MASK; 4346 uf = pfec & PFERR_USER_MASK; 4347 wf = pfec & PFERR_WRITE_MASK; 4348 4349 /* PFEC.RSVD is replaced by ACC_USER_MASK. */ 4350 pte_user = pfec & PFERR_RSVD_MASK; 4351 4352 /* 4353 * Only need to check the access which is not an 4354 * instruction fetch and is to a user page. 4355 */ 4356 check_pkey = (!ff && pte_user); 4357 /* 4358 * write access is controlled by PKRU if it is a 4359 * user access or CR0.WP = 1. 4360 */ 4361 check_write = check_pkey && wf && (uf || wp); 4362 4363 /* PKRU.AD stops both read and write access. */ 4364 pkey_bits = !!check_pkey; 4365 /* PKRU.WD stops write access. */ 4366 pkey_bits |= (!!check_write) << 1; 4367 4368 mmu->pkru_mask |= (pkey_bits & 3) << pfec; 4369 } 4370 } 4371 4372 static void update_last_nonleaf_level(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu) 4373 { 4374 unsigned root_level = mmu->root_level; 4375 4376 mmu->last_nonleaf_level = root_level; 4377 if (root_level == PT32_ROOT_LEVEL && is_pse(vcpu)) 4378 mmu->last_nonleaf_level++; 4379 } 4380 4381 static void paging64_init_context_common(struct kvm_vcpu *vcpu, 4382 struct kvm_mmu *context, 4383 int level) 4384 { 4385 context->nx = is_nx(vcpu); 4386 context->root_level = level; 4387 4388 reset_rsvds_bits_mask(vcpu, context); 4389 update_permission_bitmask(vcpu, context, false); 4390 update_pkru_bitmask(vcpu, context, false); 4391 update_last_nonleaf_level(vcpu, context); 4392 4393 MMU_WARN_ON(!is_pae(vcpu)); 4394 context->page_fault = paging64_page_fault; 4395 context->gva_to_gpa = paging64_gva_to_gpa; 4396 context->sync_page = paging64_sync_page; 4397 context->invlpg = paging64_invlpg; 4398 context->shadow_root_level = level; 4399 context->direct_map = false; 4400 } 4401 4402 static void paging64_init_context(struct kvm_vcpu *vcpu, 4403 struct kvm_mmu *context) 4404 { 4405 int root_level = is_la57_mode(vcpu) ? 4406 PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL; 4407 4408 paging64_init_context_common(vcpu, context, root_level); 4409 } 4410 4411 static void paging32_init_context(struct kvm_vcpu *vcpu, 4412 struct kvm_mmu *context) 4413 { 4414 context->nx = false; 4415 context->root_level = PT32_ROOT_LEVEL; 4416 4417 reset_rsvds_bits_mask(vcpu, context); 4418 update_permission_bitmask(vcpu, context, false); 4419 update_pkru_bitmask(vcpu, context, false); 4420 update_last_nonleaf_level(vcpu, context); 4421 4422 context->page_fault = paging32_page_fault; 4423 context->gva_to_gpa = paging32_gva_to_gpa; 4424 context->sync_page = paging32_sync_page; 4425 context->invlpg = paging32_invlpg; 4426 context->shadow_root_level = PT32E_ROOT_LEVEL; 4427 context->direct_map = false; 4428 } 4429 4430 static void paging32E_init_context(struct kvm_vcpu *vcpu, 4431 struct kvm_mmu *context) 4432 { 4433 paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL); 4434 } 4435 4436 static union kvm_mmu_extended_role kvm_calc_mmu_role_ext(struct kvm_vcpu *vcpu) 4437 { 4438 union kvm_mmu_extended_role ext = {0}; 4439 4440 ext.cr0_pg = !!is_paging(vcpu); 4441 ext.cr4_pae = !!is_pae(vcpu); 4442 ext.cr4_smep = !!kvm_read_cr4_bits(vcpu, X86_CR4_SMEP); 4443 ext.cr4_smap = !!kvm_read_cr4_bits(vcpu, X86_CR4_SMAP); 4444 ext.cr4_pse = !!is_pse(vcpu); 4445 ext.cr4_pke = !!kvm_read_cr4_bits(vcpu, X86_CR4_PKE); 4446 ext.maxphyaddr = cpuid_maxphyaddr(vcpu); 4447 4448 ext.valid = 1; 4449 4450 return ext; 4451 } 4452 4453 static union kvm_mmu_role kvm_calc_mmu_role_common(struct kvm_vcpu *vcpu, 4454 bool base_only) 4455 { 4456 union kvm_mmu_role role = {0}; 4457 4458 role.base.access = ACC_ALL; 4459 role.base.nxe = !!is_nx(vcpu); 4460 role.base.cr0_wp = is_write_protection(vcpu); 4461 role.base.smm = is_smm(vcpu); 4462 role.base.guest_mode = is_guest_mode(vcpu); 4463 4464 if (base_only) 4465 return role; 4466 4467 role.ext = kvm_calc_mmu_role_ext(vcpu); 4468 4469 return role; 4470 } 4471 4472 static inline int kvm_mmu_get_tdp_level(struct kvm_vcpu *vcpu) 4473 { 4474 /* Use 5-level TDP if and only if it's useful/necessary. */ 4475 if (max_tdp_level == 5 && cpuid_maxphyaddr(vcpu) <= 48) 4476 return 4; 4477 4478 return max_tdp_level; 4479 } 4480 4481 static union kvm_mmu_role 4482 kvm_calc_tdp_mmu_root_page_role(struct kvm_vcpu *vcpu, bool base_only) 4483 { 4484 union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, base_only); 4485 4486 role.base.ad_disabled = (shadow_accessed_mask == 0); 4487 role.base.level = kvm_mmu_get_tdp_level(vcpu); 4488 role.base.direct = true; 4489 role.base.gpte_is_8_bytes = true; 4490 4491 return role; 4492 } 4493 4494 static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu) 4495 { 4496 struct kvm_mmu *context = &vcpu->arch.root_mmu; 4497 union kvm_mmu_role new_role = 4498 kvm_calc_tdp_mmu_root_page_role(vcpu, false); 4499 4500 if (new_role.as_u64 == context->mmu_role.as_u64) 4501 return; 4502 4503 context->mmu_role.as_u64 = new_role.as_u64; 4504 context->page_fault = kvm_tdp_page_fault; 4505 context->sync_page = nonpaging_sync_page; 4506 context->invlpg = NULL; 4507 context->shadow_root_level = kvm_mmu_get_tdp_level(vcpu); 4508 context->direct_map = true; 4509 context->get_guest_pgd = get_cr3; 4510 context->get_pdptr = kvm_pdptr_read; 4511 context->inject_page_fault = kvm_inject_page_fault; 4512 4513 if (!is_paging(vcpu)) { 4514 context->nx = false; 4515 context->gva_to_gpa = nonpaging_gva_to_gpa; 4516 context->root_level = 0; 4517 } else if (is_long_mode(vcpu)) { 4518 context->nx = is_nx(vcpu); 4519 context->root_level = is_la57_mode(vcpu) ? 4520 PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL; 4521 reset_rsvds_bits_mask(vcpu, context); 4522 context->gva_to_gpa = paging64_gva_to_gpa; 4523 } else if (is_pae(vcpu)) { 4524 context->nx = is_nx(vcpu); 4525 context->root_level = PT32E_ROOT_LEVEL; 4526 reset_rsvds_bits_mask(vcpu, context); 4527 context->gva_to_gpa = paging64_gva_to_gpa; 4528 } else { 4529 context->nx = false; 4530 context->root_level = PT32_ROOT_LEVEL; 4531 reset_rsvds_bits_mask(vcpu, context); 4532 context->gva_to_gpa = paging32_gva_to_gpa; 4533 } 4534 4535 update_permission_bitmask(vcpu, context, false); 4536 update_pkru_bitmask(vcpu, context, false); 4537 update_last_nonleaf_level(vcpu, context); 4538 reset_tdp_shadow_zero_bits_mask(vcpu, context); 4539 } 4540 4541 static union kvm_mmu_role 4542 kvm_calc_shadow_root_page_role_common(struct kvm_vcpu *vcpu, bool base_only) 4543 { 4544 union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, base_only); 4545 4546 role.base.smep_andnot_wp = role.ext.cr4_smep && 4547 !is_write_protection(vcpu); 4548 role.base.smap_andnot_wp = role.ext.cr4_smap && 4549 !is_write_protection(vcpu); 4550 role.base.gpte_is_8_bytes = !!is_pae(vcpu); 4551 4552 return role; 4553 } 4554 4555 static union kvm_mmu_role 4556 kvm_calc_shadow_mmu_root_page_role(struct kvm_vcpu *vcpu, bool base_only) 4557 { 4558 union kvm_mmu_role role = 4559 kvm_calc_shadow_root_page_role_common(vcpu, base_only); 4560 4561 role.base.direct = !is_paging(vcpu); 4562 4563 if (!is_long_mode(vcpu)) 4564 role.base.level = PT32E_ROOT_LEVEL; 4565 else if (is_la57_mode(vcpu)) 4566 role.base.level = PT64_ROOT_5LEVEL; 4567 else 4568 role.base.level = PT64_ROOT_4LEVEL; 4569 4570 return role; 4571 } 4572 4573 static void shadow_mmu_init_context(struct kvm_vcpu *vcpu, struct kvm_mmu *context, 4574 u32 cr0, u32 cr4, u32 efer, 4575 union kvm_mmu_role new_role) 4576 { 4577 if (!(cr0 & X86_CR0_PG)) 4578 nonpaging_init_context(vcpu, context); 4579 else if (efer & EFER_LMA) 4580 paging64_init_context(vcpu, context); 4581 else if (cr4 & X86_CR4_PAE) 4582 paging32E_init_context(vcpu, context); 4583 else 4584 paging32_init_context(vcpu, context); 4585 4586 context->mmu_role.as_u64 = new_role.as_u64; 4587 reset_shadow_zero_bits_mask(vcpu, context); 4588 } 4589 4590 static void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, u32 cr0, u32 cr4, u32 efer) 4591 { 4592 struct kvm_mmu *context = &vcpu->arch.root_mmu; 4593 union kvm_mmu_role new_role = 4594 kvm_calc_shadow_mmu_root_page_role(vcpu, false); 4595 4596 if (new_role.as_u64 != context->mmu_role.as_u64) 4597 shadow_mmu_init_context(vcpu, context, cr0, cr4, efer, new_role); 4598 } 4599 4600 static union kvm_mmu_role 4601 kvm_calc_shadow_npt_root_page_role(struct kvm_vcpu *vcpu) 4602 { 4603 union kvm_mmu_role role = 4604 kvm_calc_shadow_root_page_role_common(vcpu, false); 4605 4606 role.base.direct = false; 4607 role.base.level = kvm_mmu_get_tdp_level(vcpu); 4608 4609 return role; 4610 } 4611 4612 void kvm_init_shadow_npt_mmu(struct kvm_vcpu *vcpu, u32 cr0, u32 cr4, u32 efer, 4613 gpa_t nested_cr3) 4614 { 4615 struct kvm_mmu *context = &vcpu->arch.guest_mmu; 4616 union kvm_mmu_role new_role = kvm_calc_shadow_npt_root_page_role(vcpu); 4617 4618 context->shadow_root_level = new_role.base.level; 4619 4620 __kvm_mmu_new_pgd(vcpu, nested_cr3, new_role.base, false, false); 4621 4622 if (new_role.as_u64 != context->mmu_role.as_u64) 4623 shadow_mmu_init_context(vcpu, context, cr0, cr4, efer, new_role); 4624 } 4625 EXPORT_SYMBOL_GPL(kvm_init_shadow_npt_mmu); 4626 4627 static union kvm_mmu_role 4628 kvm_calc_shadow_ept_root_page_role(struct kvm_vcpu *vcpu, bool accessed_dirty, 4629 bool execonly, u8 level) 4630 { 4631 union kvm_mmu_role role = {0}; 4632 4633 /* SMM flag is inherited from root_mmu */ 4634 role.base.smm = vcpu->arch.root_mmu.mmu_role.base.smm; 4635 4636 role.base.level = level; 4637 role.base.gpte_is_8_bytes = true; 4638 role.base.direct = false; 4639 role.base.ad_disabled = !accessed_dirty; 4640 role.base.guest_mode = true; 4641 role.base.access = ACC_ALL; 4642 4643 /* 4644 * WP=1 and NOT_WP=1 is an impossible combination, use WP and the 4645 * SMAP variation to denote shadow EPT entries. 4646 */ 4647 role.base.cr0_wp = true; 4648 role.base.smap_andnot_wp = true; 4649 4650 role.ext = kvm_calc_mmu_role_ext(vcpu); 4651 role.ext.execonly = execonly; 4652 4653 return role; 4654 } 4655 4656 void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly, 4657 bool accessed_dirty, gpa_t new_eptp) 4658 { 4659 struct kvm_mmu *context = &vcpu->arch.guest_mmu; 4660 u8 level = vmx_eptp_page_walk_level(new_eptp); 4661 union kvm_mmu_role new_role = 4662 kvm_calc_shadow_ept_root_page_role(vcpu, accessed_dirty, 4663 execonly, level); 4664 4665 __kvm_mmu_new_pgd(vcpu, new_eptp, new_role.base, true, true); 4666 4667 if (new_role.as_u64 == context->mmu_role.as_u64) 4668 return; 4669 4670 context->shadow_root_level = level; 4671 4672 context->nx = true; 4673 context->ept_ad = accessed_dirty; 4674 context->page_fault = ept_page_fault; 4675 context->gva_to_gpa = ept_gva_to_gpa; 4676 context->sync_page = ept_sync_page; 4677 context->invlpg = ept_invlpg; 4678 context->root_level = level; 4679 context->direct_map = false; 4680 context->mmu_role.as_u64 = new_role.as_u64; 4681 4682 update_permission_bitmask(vcpu, context, true); 4683 update_pkru_bitmask(vcpu, context, true); 4684 update_last_nonleaf_level(vcpu, context); 4685 reset_rsvds_bits_mask_ept(vcpu, context, execonly); 4686 reset_ept_shadow_zero_bits_mask(vcpu, context, execonly); 4687 } 4688 EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu); 4689 4690 static void init_kvm_softmmu(struct kvm_vcpu *vcpu) 4691 { 4692 struct kvm_mmu *context = &vcpu->arch.root_mmu; 4693 4694 kvm_init_shadow_mmu(vcpu, 4695 kvm_read_cr0_bits(vcpu, X86_CR0_PG), 4696 kvm_read_cr4_bits(vcpu, X86_CR4_PAE), 4697 vcpu->arch.efer); 4698 4699 context->get_guest_pgd = get_cr3; 4700 context->get_pdptr = kvm_pdptr_read; 4701 context->inject_page_fault = kvm_inject_page_fault; 4702 } 4703 4704 static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu) 4705 { 4706 union kvm_mmu_role new_role = kvm_calc_mmu_role_common(vcpu, false); 4707 struct kvm_mmu *g_context = &vcpu->arch.nested_mmu; 4708 4709 if (new_role.as_u64 == g_context->mmu_role.as_u64) 4710 return; 4711 4712 g_context->mmu_role.as_u64 = new_role.as_u64; 4713 g_context->get_guest_pgd = get_cr3; 4714 g_context->get_pdptr = kvm_pdptr_read; 4715 g_context->inject_page_fault = kvm_inject_page_fault; 4716 4717 /* 4718 * L2 page tables are never shadowed, so there is no need to sync 4719 * SPTEs. 4720 */ 4721 g_context->invlpg = NULL; 4722 4723 /* 4724 * Note that arch.mmu->gva_to_gpa translates l2_gpa to l1_gpa using 4725 * L1's nested page tables (e.g. EPT12). The nested translation 4726 * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using 4727 * L2's page tables as the first level of translation and L1's 4728 * nested page tables as the second level of translation. Basically 4729 * the gva_to_gpa functions between mmu and nested_mmu are swapped. 4730 */ 4731 if (!is_paging(vcpu)) { 4732 g_context->nx = false; 4733 g_context->root_level = 0; 4734 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested; 4735 } else if (is_long_mode(vcpu)) { 4736 g_context->nx = is_nx(vcpu); 4737 g_context->root_level = is_la57_mode(vcpu) ? 4738 PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL; 4739 reset_rsvds_bits_mask(vcpu, g_context); 4740 g_context->gva_to_gpa = paging64_gva_to_gpa_nested; 4741 } else if (is_pae(vcpu)) { 4742 g_context->nx = is_nx(vcpu); 4743 g_context->root_level = PT32E_ROOT_LEVEL; 4744 reset_rsvds_bits_mask(vcpu, g_context); 4745 g_context->gva_to_gpa = paging64_gva_to_gpa_nested; 4746 } else { 4747 g_context->nx = false; 4748 g_context->root_level = PT32_ROOT_LEVEL; 4749 reset_rsvds_bits_mask(vcpu, g_context); 4750 g_context->gva_to_gpa = paging32_gva_to_gpa_nested; 4751 } 4752 4753 update_permission_bitmask(vcpu, g_context, false); 4754 update_pkru_bitmask(vcpu, g_context, false); 4755 update_last_nonleaf_level(vcpu, g_context); 4756 } 4757 4758 void kvm_init_mmu(struct kvm_vcpu *vcpu, bool reset_roots) 4759 { 4760 if (reset_roots) { 4761 uint i; 4762 4763 vcpu->arch.mmu->root_hpa = INVALID_PAGE; 4764 4765 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 4766 vcpu->arch.mmu->prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID; 4767 } 4768 4769 if (mmu_is_nested(vcpu)) 4770 init_kvm_nested_mmu(vcpu); 4771 else if (tdp_enabled) 4772 init_kvm_tdp_mmu(vcpu); 4773 else 4774 init_kvm_softmmu(vcpu); 4775 } 4776 EXPORT_SYMBOL_GPL(kvm_init_mmu); 4777 4778 static union kvm_mmu_page_role 4779 kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu) 4780 { 4781 union kvm_mmu_role role; 4782 4783 if (tdp_enabled) 4784 role = kvm_calc_tdp_mmu_root_page_role(vcpu, true); 4785 else 4786 role = kvm_calc_shadow_mmu_root_page_role(vcpu, true); 4787 4788 return role.base; 4789 } 4790 4791 void kvm_mmu_reset_context(struct kvm_vcpu *vcpu) 4792 { 4793 kvm_mmu_unload(vcpu); 4794 kvm_init_mmu(vcpu, true); 4795 } 4796 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context); 4797 4798 int kvm_mmu_load(struct kvm_vcpu *vcpu) 4799 { 4800 int r; 4801 4802 r = mmu_topup_memory_caches(vcpu, !vcpu->arch.mmu->direct_map); 4803 if (r) 4804 goto out; 4805 r = mmu_alloc_roots(vcpu); 4806 kvm_mmu_sync_roots(vcpu); 4807 if (r) 4808 goto out; 4809 kvm_mmu_load_pgd(vcpu); 4810 static_call(kvm_x86_tlb_flush_current)(vcpu); 4811 out: 4812 return r; 4813 } 4814 EXPORT_SYMBOL_GPL(kvm_mmu_load); 4815 4816 void kvm_mmu_unload(struct kvm_vcpu *vcpu) 4817 { 4818 kvm_mmu_free_roots(vcpu, &vcpu->arch.root_mmu, KVM_MMU_ROOTS_ALL); 4819 WARN_ON(VALID_PAGE(vcpu->arch.root_mmu.root_hpa)); 4820 kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL); 4821 WARN_ON(VALID_PAGE(vcpu->arch.guest_mmu.root_hpa)); 4822 } 4823 EXPORT_SYMBOL_GPL(kvm_mmu_unload); 4824 4825 static bool need_remote_flush(u64 old, u64 new) 4826 { 4827 if (!is_shadow_present_pte(old)) 4828 return false; 4829 if (!is_shadow_present_pte(new)) 4830 return true; 4831 if ((old ^ new) & PT64_BASE_ADDR_MASK) 4832 return true; 4833 old ^= shadow_nx_mask; 4834 new ^= shadow_nx_mask; 4835 return (old & ~new & PT64_PERM_MASK) != 0; 4836 } 4837 4838 static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa, 4839 int *bytes) 4840 { 4841 u64 gentry = 0; 4842 int r; 4843 4844 /* 4845 * Assume that the pte write on a page table of the same type 4846 * as the current vcpu paging mode since we update the sptes only 4847 * when they have the same mode. 4848 */ 4849 if (is_pae(vcpu) && *bytes == 4) { 4850 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */ 4851 *gpa &= ~(gpa_t)7; 4852 *bytes = 8; 4853 } 4854 4855 if (*bytes == 4 || *bytes == 8) { 4856 r = kvm_vcpu_read_guest_atomic(vcpu, *gpa, &gentry, *bytes); 4857 if (r) 4858 gentry = 0; 4859 } 4860 4861 return gentry; 4862 } 4863 4864 /* 4865 * If we're seeing too many writes to a page, it may no longer be a page table, 4866 * or we may be forking, in which case it is better to unmap the page. 4867 */ 4868 static bool detect_write_flooding(struct kvm_mmu_page *sp) 4869 { 4870 /* 4871 * Skip write-flooding detected for the sp whose level is 1, because 4872 * it can become unsync, then the guest page is not write-protected. 4873 */ 4874 if (sp->role.level == PG_LEVEL_4K) 4875 return false; 4876 4877 atomic_inc(&sp->write_flooding_count); 4878 return atomic_read(&sp->write_flooding_count) >= 3; 4879 } 4880 4881 /* 4882 * Misaligned accesses are too much trouble to fix up; also, they usually 4883 * indicate a page is not used as a page table. 4884 */ 4885 static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa, 4886 int bytes) 4887 { 4888 unsigned offset, pte_size, misaligned; 4889 4890 pgprintk("misaligned: gpa %llx bytes %d role %x\n", 4891 gpa, bytes, sp->role.word); 4892 4893 offset = offset_in_page(gpa); 4894 pte_size = sp->role.gpte_is_8_bytes ? 8 : 4; 4895 4896 /* 4897 * Sometimes, the OS only writes the last one bytes to update status 4898 * bits, for example, in linux, andb instruction is used in clear_bit(). 4899 */ 4900 if (!(offset & (pte_size - 1)) && bytes == 1) 4901 return false; 4902 4903 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1); 4904 misaligned |= bytes < 4; 4905 4906 return misaligned; 4907 } 4908 4909 static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte) 4910 { 4911 unsigned page_offset, quadrant; 4912 u64 *spte; 4913 int level; 4914 4915 page_offset = offset_in_page(gpa); 4916 level = sp->role.level; 4917 *nspte = 1; 4918 if (!sp->role.gpte_is_8_bytes) { 4919 page_offset <<= 1; /* 32->64 */ 4920 /* 4921 * A 32-bit pde maps 4MB while the shadow pdes map 4922 * only 2MB. So we need to double the offset again 4923 * and zap two pdes instead of one. 4924 */ 4925 if (level == PT32_ROOT_LEVEL) { 4926 page_offset &= ~7; /* kill rounding error */ 4927 page_offset <<= 1; 4928 *nspte = 2; 4929 } 4930 quadrant = page_offset >> PAGE_SHIFT; 4931 page_offset &= ~PAGE_MASK; 4932 if (quadrant != sp->role.quadrant) 4933 return NULL; 4934 } 4935 4936 spte = &sp->spt[page_offset / sizeof(*spte)]; 4937 return spte; 4938 } 4939 4940 static void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa, 4941 const u8 *new, int bytes, 4942 struct kvm_page_track_notifier_node *node) 4943 { 4944 gfn_t gfn = gpa >> PAGE_SHIFT; 4945 struct kvm_mmu_page *sp; 4946 LIST_HEAD(invalid_list); 4947 u64 entry, gentry, *spte; 4948 int npte; 4949 bool remote_flush, local_flush; 4950 4951 /* 4952 * If we don't have indirect shadow pages, it means no page is 4953 * write-protected, so we can exit simply. 4954 */ 4955 if (!READ_ONCE(vcpu->kvm->arch.indirect_shadow_pages)) 4956 return; 4957 4958 remote_flush = local_flush = false; 4959 4960 pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes); 4961 4962 /* 4963 * No need to care whether allocation memory is successful 4964 * or not since pte prefetch is skipped if it does not have 4965 * enough objects in the cache. 4966 */ 4967 mmu_topup_memory_caches(vcpu, true); 4968 4969 write_lock(&vcpu->kvm->mmu_lock); 4970 4971 gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, &bytes); 4972 4973 ++vcpu->kvm->stat.mmu_pte_write; 4974 kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE); 4975 4976 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) { 4977 if (detect_write_misaligned(sp, gpa, bytes) || 4978 detect_write_flooding(sp)) { 4979 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list); 4980 ++vcpu->kvm->stat.mmu_flooded; 4981 continue; 4982 } 4983 4984 spte = get_written_sptes(sp, gpa, &npte); 4985 if (!spte) 4986 continue; 4987 4988 local_flush = true; 4989 while (npte--) { 4990 entry = *spte; 4991 mmu_page_zap_pte(vcpu->kvm, sp, spte, NULL); 4992 if (gentry && sp->role.level != PG_LEVEL_4K) 4993 ++vcpu->kvm->stat.mmu_pde_zapped; 4994 if (need_remote_flush(entry, *spte)) 4995 remote_flush = true; 4996 ++spte; 4997 } 4998 } 4999 kvm_mmu_flush_or_zap(vcpu, &invalid_list, remote_flush, local_flush); 5000 kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE); 5001 write_unlock(&vcpu->kvm->mmu_lock); 5002 } 5003 5004 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 error_code, 5005 void *insn, int insn_len) 5006 { 5007 int r, emulation_type = EMULTYPE_PF; 5008 bool direct = vcpu->arch.mmu->direct_map; 5009 5010 if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa))) 5011 return RET_PF_RETRY; 5012 5013 r = RET_PF_INVALID; 5014 if (unlikely(error_code & PFERR_RSVD_MASK)) { 5015 r = handle_mmio_page_fault(vcpu, cr2_or_gpa, direct); 5016 if (r == RET_PF_EMULATE) 5017 goto emulate; 5018 } 5019 5020 if (r == RET_PF_INVALID) { 5021 r = kvm_mmu_do_page_fault(vcpu, cr2_or_gpa, 5022 lower_32_bits(error_code), false); 5023 if (WARN_ON_ONCE(r == RET_PF_INVALID)) 5024 return -EIO; 5025 } 5026 5027 if (r < 0) 5028 return r; 5029 if (r != RET_PF_EMULATE) 5030 return 1; 5031 5032 /* 5033 * Before emulating the instruction, check if the error code 5034 * was due to a RO violation while translating the guest page. 5035 * This can occur when using nested virtualization with nested 5036 * paging in both guests. If true, we simply unprotect the page 5037 * and resume the guest. 5038 */ 5039 if (vcpu->arch.mmu->direct_map && 5040 (error_code & PFERR_NESTED_GUEST_PAGE) == PFERR_NESTED_GUEST_PAGE) { 5041 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(cr2_or_gpa)); 5042 return 1; 5043 } 5044 5045 /* 5046 * vcpu->arch.mmu.page_fault returned RET_PF_EMULATE, but we can still 5047 * optimistically try to just unprotect the page and let the processor 5048 * re-execute the instruction that caused the page fault. Do not allow 5049 * retrying MMIO emulation, as it's not only pointless but could also 5050 * cause us to enter an infinite loop because the processor will keep 5051 * faulting on the non-existent MMIO address. Retrying an instruction 5052 * from a nested guest is also pointless and dangerous as we are only 5053 * explicitly shadowing L1's page tables, i.e. unprotecting something 5054 * for L1 isn't going to magically fix whatever issue cause L2 to fail. 5055 */ 5056 if (!mmio_info_in_cache(vcpu, cr2_or_gpa, direct) && !is_guest_mode(vcpu)) 5057 emulation_type |= EMULTYPE_ALLOW_RETRY_PF; 5058 emulate: 5059 return x86_emulate_instruction(vcpu, cr2_or_gpa, emulation_type, insn, 5060 insn_len); 5061 } 5062 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault); 5063 5064 void kvm_mmu_invalidate_gva(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, 5065 gva_t gva, hpa_t root_hpa) 5066 { 5067 int i; 5068 5069 /* It's actually a GPA for vcpu->arch.guest_mmu. */ 5070 if (mmu != &vcpu->arch.guest_mmu) { 5071 /* INVLPG on a non-canonical address is a NOP according to the SDM. */ 5072 if (is_noncanonical_address(gva, vcpu)) 5073 return; 5074 5075 static_call(kvm_x86_tlb_flush_gva)(vcpu, gva); 5076 } 5077 5078 if (!mmu->invlpg) 5079 return; 5080 5081 if (root_hpa == INVALID_PAGE) { 5082 mmu->invlpg(vcpu, gva, mmu->root_hpa); 5083 5084 /* 5085 * INVLPG is required to invalidate any global mappings for the VA, 5086 * irrespective of PCID. Since it would take us roughly similar amount 5087 * of work to determine whether any of the prev_root mappings of the VA 5088 * is marked global, or to just sync it blindly, so we might as well 5089 * just always sync it. 5090 * 5091 * Mappings not reachable via the current cr3 or the prev_roots will be 5092 * synced when switching to that cr3, so nothing needs to be done here 5093 * for them. 5094 */ 5095 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 5096 if (VALID_PAGE(mmu->prev_roots[i].hpa)) 5097 mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa); 5098 } else { 5099 mmu->invlpg(vcpu, gva, root_hpa); 5100 } 5101 } 5102 5103 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva) 5104 { 5105 kvm_mmu_invalidate_gva(vcpu, vcpu->arch.mmu, gva, INVALID_PAGE); 5106 ++vcpu->stat.invlpg; 5107 } 5108 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg); 5109 5110 5111 void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid) 5112 { 5113 struct kvm_mmu *mmu = vcpu->arch.mmu; 5114 bool tlb_flush = false; 5115 uint i; 5116 5117 if (pcid == kvm_get_active_pcid(vcpu)) { 5118 mmu->invlpg(vcpu, gva, mmu->root_hpa); 5119 tlb_flush = true; 5120 } 5121 5122 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) { 5123 if (VALID_PAGE(mmu->prev_roots[i].hpa) && 5124 pcid == kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd)) { 5125 mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa); 5126 tlb_flush = true; 5127 } 5128 } 5129 5130 if (tlb_flush) 5131 static_call(kvm_x86_tlb_flush_gva)(vcpu, gva); 5132 5133 ++vcpu->stat.invlpg; 5134 5135 /* 5136 * Mappings not reachable via the current cr3 or the prev_roots will be 5137 * synced when switching to that cr3, so nothing needs to be done here 5138 * for them. 5139 */ 5140 } 5141 5142 void kvm_configure_mmu(bool enable_tdp, int tdp_max_root_level, 5143 int tdp_huge_page_level) 5144 { 5145 tdp_enabled = enable_tdp; 5146 max_tdp_level = tdp_max_root_level; 5147 5148 /* 5149 * max_huge_page_level reflects KVM's MMU capabilities irrespective 5150 * of kernel support, e.g. KVM may be capable of using 1GB pages when 5151 * the kernel is not. But, KVM never creates a page size greater than 5152 * what is used by the kernel for any given HVA, i.e. the kernel's 5153 * capabilities are ultimately consulted by kvm_mmu_hugepage_adjust(). 5154 */ 5155 if (tdp_enabled) 5156 max_huge_page_level = tdp_huge_page_level; 5157 else if (boot_cpu_has(X86_FEATURE_GBPAGES)) 5158 max_huge_page_level = PG_LEVEL_1G; 5159 else 5160 max_huge_page_level = PG_LEVEL_2M; 5161 } 5162 EXPORT_SYMBOL_GPL(kvm_configure_mmu); 5163 5164 /* The return value indicates if tlb flush on all vcpus is needed. */ 5165 typedef bool (*slot_level_handler) (struct kvm *kvm, struct kvm_rmap_head *rmap_head, 5166 struct kvm_memory_slot *slot); 5167 5168 /* The caller should hold mmu-lock before calling this function. */ 5169 static __always_inline bool 5170 slot_handle_level_range(struct kvm *kvm, struct kvm_memory_slot *memslot, 5171 slot_level_handler fn, int start_level, int end_level, 5172 gfn_t start_gfn, gfn_t end_gfn, bool lock_flush_tlb) 5173 { 5174 struct slot_rmap_walk_iterator iterator; 5175 bool flush = false; 5176 5177 for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn, 5178 end_gfn, &iterator) { 5179 if (iterator.rmap) 5180 flush |= fn(kvm, iterator.rmap, memslot); 5181 5182 if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) { 5183 if (flush && lock_flush_tlb) { 5184 kvm_flush_remote_tlbs_with_address(kvm, 5185 start_gfn, 5186 iterator.gfn - start_gfn + 1); 5187 flush = false; 5188 } 5189 cond_resched_rwlock_write(&kvm->mmu_lock); 5190 } 5191 } 5192 5193 if (flush && lock_flush_tlb) { 5194 kvm_flush_remote_tlbs_with_address(kvm, start_gfn, 5195 end_gfn - start_gfn + 1); 5196 flush = false; 5197 } 5198 5199 return flush; 5200 } 5201 5202 static __always_inline bool 5203 slot_handle_level(struct kvm *kvm, struct kvm_memory_slot *memslot, 5204 slot_level_handler fn, int start_level, int end_level, 5205 bool lock_flush_tlb) 5206 { 5207 return slot_handle_level_range(kvm, memslot, fn, start_level, 5208 end_level, memslot->base_gfn, 5209 memslot->base_gfn + memslot->npages - 1, 5210 lock_flush_tlb); 5211 } 5212 5213 static __always_inline bool 5214 slot_handle_leaf(struct kvm *kvm, struct kvm_memory_slot *memslot, 5215 slot_level_handler fn, bool lock_flush_tlb) 5216 { 5217 return slot_handle_level(kvm, memslot, fn, PG_LEVEL_4K, 5218 PG_LEVEL_4K, lock_flush_tlb); 5219 } 5220 5221 static void free_mmu_pages(struct kvm_mmu *mmu) 5222 { 5223 free_page((unsigned long)mmu->pae_root); 5224 free_page((unsigned long)mmu->lm_root); 5225 } 5226 5227 static int __kvm_mmu_create(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu) 5228 { 5229 struct page *page; 5230 int i; 5231 5232 mmu->root_hpa = INVALID_PAGE; 5233 mmu->root_pgd = 0; 5234 mmu->translate_gpa = translate_gpa; 5235 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 5236 mmu->prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID; 5237 5238 /* 5239 * When using PAE paging, the four PDPTEs are treated as 'root' pages, 5240 * while the PDP table is a per-vCPU construct that's allocated at MMU 5241 * creation. When emulating 32-bit mode, cr3 is only 32 bits even on 5242 * x86_64. Therefore we need to allocate the PDP table in the first 5243 * 4GB of memory, which happens to fit the DMA32 zone. Except for 5244 * SVM's 32-bit NPT support, TDP paging doesn't use PAE paging and can 5245 * skip allocating the PDP table. 5246 */ 5247 if (tdp_enabled && kvm_mmu_get_tdp_level(vcpu) > PT32E_ROOT_LEVEL) 5248 return 0; 5249 5250 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_DMA32); 5251 if (!page) 5252 return -ENOMEM; 5253 5254 mmu->pae_root = page_address(page); 5255 for (i = 0; i < 4; ++i) 5256 mmu->pae_root[i] = INVALID_PAGE; 5257 5258 return 0; 5259 } 5260 5261 int kvm_mmu_create(struct kvm_vcpu *vcpu) 5262 { 5263 int ret; 5264 5265 vcpu->arch.mmu_pte_list_desc_cache.kmem_cache = pte_list_desc_cache; 5266 vcpu->arch.mmu_pte_list_desc_cache.gfp_zero = __GFP_ZERO; 5267 5268 vcpu->arch.mmu_page_header_cache.kmem_cache = mmu_page_header_cache; 5269 vcpu->arch.mmu_page_header_cache.gfp_zero = __GFP_ZERO; 5270 5271 vcpu->arch.mmu_shadow_page_cache.gfp_zero = __GFP_ZERO; 5272 5273 vcpu->arch.mmu = &vcpu->arch.root_mmu; 5274 vcpu->arch.walk_mmu = &vcpu->arch.root_mmu; 5275 5276 vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa; 5277 5278 ret = __kvm_mmu_create(vcpu, &vcpu->arch.guest_mmu); 5279 if (ret) 5280 return ret; 5281 5282 ret = __kvm_mmu_create(vcpu, &vcpu->arch.root_mmu); 5283 if (ret) 5284 goto fail_allocate_root; 5285 5286 return ret; 5287 fail_allocate_root: 5288 free_mmu_pages(&vcpu->arch.guest_mmu); 5289 return ret; 5290 } 5291 5292 #define BATCH_ZAP_PAGES 10 5293 static void kvm_zap_obsolete_pages(struct kvm *kvm) 5294 { 5295 struct kvm_mmu_page *sp, *node; 5296 int nr_zapped, batch = 0; 5297 5298 restart: 5299 list_for_each_entry_safe_reverse(sp, node, 5300 &kvm->arch.active_mmu_pages, link) { 5301 /* 5302 * No obsolete valid page exists before a newly created page 5303 * since active_mmu_pages is a FIFO list. 5304 */ 5305 if (!is_obsolete_sp(kvm, sp)) 5306 break; 5307 5308 /* 5309 * Invalid pages should never land back on the list of active 5310 * pages. Skip the bogus page, otherwise we'll get stuck in an 5311 * infinite loop if the page gets put back on the list (again). 5312 */ 5313 if (WARN_ON(sp->role.invalid)) 5314 continue; 5315 5316 /* 5317 * No need to flush the TLB since we're only zapping shadow 5318 * pages with an obsolete generation number and all vCPUS have 5319 * loaded a new root, i.e. the shadow pages being zapped cannot 5320 * be in active use by the guest. 5321 */ 5322 if (batch >= BATCH_ZAP_PAGES && 5323 cond_resched_rwlock_write(&kvm->mmu_lock)) { 5324 batch = 0; 5325 goto restart; 5326 } 5327 5328 if (__kvm_mmu_prepare_zap_page(kvm, sp, 5329 &kvm->arch.zapped_obsolete_pages, &nr_zapped)) { 5330 batch += nr_zapped; 5331 goto restart; 5332 } 5333 } 5334 5335 /* 5336 * Trigger a remote TLB flush before freeing the page tables to ensure 5337 * KVM is not in the middle of a lockless shadow page table walk, which 5338 * may reference the pages. 5339 */ 5340 kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages); 5341 } 5342 5343 /* 5344 * Fast invalidate all shadow pages and use lock-break technique 5345 * to zap obsolete pages. 5346 * 5347 * It's required when memslot is being deleted or VM is being 5348 * destroyed, in these cases, we should ensure that KVM MMU does 5349 * not use any resource of the being-deleted slot or all slots 5350 * after calling the function. 5351 */ 5352 static void kvm_mmu_zap_all_fast(struct kvm *kvm) 5353 { 5354 lockdep_assert_held(&kvm->slots_lock); 5355 5356 write_lock(&kvm->mmu_lock); 5357 trace_kvm_mmu_zap_all_fast(kvm); 5358 5359 /* 5360 * Toggle mmu_valid_gen between '0' and '1'. Because slots_lock is 5361 * held for the entire duration of zapping obsolete pages, it's 5362 * impossible for there to be multiple invalid generations associated 5363 * with *valid* shadow pages at any given time, i.e. there is exactly 5364 * one valid generation and (at most) one invalid generation. 5365 */ 5366 kvm->arch.mmu_valid_gen = kvm->arch.mmu_valid_gen ? 0 : 1; 5367 5368 /* 5369 * Notify all vcpus to reload its shadow page table and flush TLB. 5370 * Then all vcpus will switch to new shadow page table with the new 5371 * mmu_valid_gen. 5372 * 5373 * Note: we need to do this under the protection of mmu_lock, 5374 * otherwise, vcpu would purge shadow page but miss tlb flush. 5375 */ 5376 kvm_reload_remote_mmus(kvm); 5377 5378 kvm_zap_obsolete_pages(kvm); 5379 5380 if (is_tdp_mmu_enabled(kvm)) 5381 kvm_tdp_mmu_zap_all(kvm); 5382 5383 write_unlock(&kvm->mmu_lock); 5384 } 5385 5386 static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm) 5387 { 5388 return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages)); 5389 } 5390 5391 static void kvm_mmu_invalidate_zap_pages_in_memslot(struct kvm *kvm, 5392 struct kvm_memory_slot *slot, 5393 struct kvm_page_track_notifier_node *node) 5394 { 5395 kvm_mmu_zap_all_fast(kvm); 5396 } 5397 5398 void kvm_mmu_init_vm(struct kvm *kvm) 5399 { 5400 struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker; 5401 5402 kvm_mmu_init_tdp_mmu(kvm); 5403 5404 node->track_write = kvm_mmu_pte_write; 5405 node->track_flush_slot = kvm_mmu_invalidate_zap_pages_in_memslot; 5406 kvm_page_track_register_notifier(kvm, node); 5407 } 5408 5409 void kvm_mmu_uninit_vm(struct kvm *kvm) 5410 { 5411 struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker; 5412 5413 kvm_page_track_unregister_notifier(kvm, node); 5414 5415 kvm_mmu_uninit_tdp_mmu(kvm); 5416 } 5417 5418 void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end) 5419 { 5420 struct kvm_memslots *slots; 5421 struct kvm_memory_slot *memslot; 5422 int i; 5423 bool flush; 5424 5425 write_lock(&kvm->mmu_lock); 5426 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { 5427 slots = __kvm_memslots(kvm, i); 5428 kvm_for_each_memslot(memslot, slots) { 5429 gfn_t start, end; 5430 5431 start = max(gfn_start, memslot->base_gfn); 5432 end = min(gfn_end, memslot->base_gfn + memslot->npages); 5433 if (start >= end) 5434 continue; 5435 5436 slot_handle_level_range(kvm, memslot, kvm_zap_rmapp, 5437 PG_LEVEL_4K, 5438 KVM_MAX_HUGEPAGE_LEVEL, 5439 start, end - 1, true); 5440 } 5441 } 5442 5443 if (is_tdp_mmu_enabled(kvm)) { 5444 flush = kvm_tdp_mmu_zap_gfn_range(kvm, gfn_start, gfn_end); 5445 if (flush) 5446 kvm_flush_remote_tlbs(kvm); 5447 } 5448 5449 write_unlock(&kvm->mmu_lock); 5450 } 5451 5452 static bool slot_rmap_write_protect(struct kvm *kvm, 5453 struct kvm_rmap_head *rmap_head, 5454 struct kvm_memory_slot *slot) 5455 { 5456 return __rmap_write_protect(kvm, rmap_head, false); 5457 } 5458 5459 void kvm_mmu_slot_remove_write_access(struct kvm *kvm, 5460 struct kvm_memory_slot *memslot, 5461 int start_level) 5462 { 5463 bool flush; 5464 5465 write_lock(&kvm->mmu_lock); 5466 flush = slot_handle_level(kvm, memslot, slot_rmap_write_protect, 5467 start_level, KVM_MAX_HUGEPAGE_LEVEL, false); 5468 if (is_tdp_mmu_enabled(kvm)) 5469 flush |= kvm_tdp_mmu_wrprot_slot(kvm, memslot, PG_LEVEL_4K); 5470 write_unlock(&kvm->mmu_lock); 5471 5472 /* 5473 * We can flush all the TLBs out of the mmu lock without TLB 5474 * corruption since we just change the spte from writable to 5475 * readonly so that we only need to care the case of changing 5476 * spte from present to present (changing the spte from present 5477 * to nonpresent will flush all the TLBs immediately), in other 5478 * words, the only case we care is mmu_spte_update() where we 5479 * have checked SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE 5480 * instead of PT_WRITABLE_MASK, that means it does not depend 5481 * on PT_WRITABLE_MASK anymore. 5482 */ 5483 if (flush) 5484 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot); 5485 } 5486 5487 static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm, 5488 struct kvm_rmap_head *rmap_head, 5489 struct kvm_memory_slot *slot) 5490 { 5491 u64 *sptep; 5492 struct rmap_iterator iter; 5493 int need_tlb_flush = 0; 5494 kvm_pfn_t pfn; 5495 struct kvm_mmu_page *sp; 5496 5497 restart: 5498 for_each_rmap_spte(rmap_head, &iter, sptep) { 5499 sp = sptep_to_sp(sptep); 5500 pfn = spte_to_pfn(*sptep); 5501 5502 /* 5503 * We cannot do huge page mapping for indirect shadow pages, 5504 * which are found on the last rmap (level = 1) when not using 5505 * tdp; such shadow pages are synced with the page table in 5506 * the guest, and the guest page table is using 4K page size 5507 * mapping if the indirect sp has level = 1. 5508 */ 5509 if (sp->role.direct && !kvm_is_reserved_pfn(pfn) && 5510 sp->role.level < kvm_mmu_max_mapping_level(kvm, slot, sp->gfn, 5511 pfn, PG_LEVEL_NUM)) { 5512 pte_list_remove(rmap_head, sptep); 5513 5514 if (kvm_available_flush_tlb_with_range()) 5515 kvm_flush_remote_tlbs_with_address(kvm, sp->gfn, 5516 KVM_PAGES_PER_HPAGE(sp->role.level)); 5517 else 5518 need_tlb_flush = 1; 5519 5520 goto restart; 5521 } 5522 } 5523 5524 return need_tlb_flush; 5525 } 5526 5527 void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm, 5528 const struct kvm_memory_slot *memslot) 5529 { 5530 /* FIXME: const-ify all uses of struct kvm_memory_slot. */ 5531 struct kvm_memory_slot *slot = (struct kvm_memory_slot *)memslot; 5532 5533 write_lock(&kvm->mmu_lock); 5534 slot_handle_leaf(kvm, slot, kvm_mmu_zap_collapsible_spte, true); 5535 5536 if (is_tdp_mmu_enabled(kvm)) 5537 kvm_tdp_mmu_zap_collapsible_sptes(kvm, slot); 5538 write_unlock(&kvm->mmu_lock); 5539 } 5540 5541 void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm, 5542 struct kvm_memory_slot *memslot) 5543 { 5544 /* 5545 * All current use cases for flushing the TLBs for a specific memslot 5546 * are related to dirty logging, and do the TLB flush out of mmu_lock. 5547 * The interaction between the various operations on memslot must be 5548 * serialized by slots_locks to ensure the TLB flush from one operation 5549 * is observed by any other operation on the same memslot. 5550 */ 5551 lockdep_assert_held(&kvm->slots_lock); 5552 kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn, 5553 memslot->npages); 5554 } 5555 5556 void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm, 5557 struct kvm_memory_slot *memslot) 5558 { 5559 bool flush; 5560 5561 write_lock(&kvm->mmu_lock); 5562 flush = slot_handle_leaf(kvm, memslot, __rmap_clear_dirty, false); 5563 if (is_tdp_mmu_enabled(kvm)) 5564 flush |= kvm_tdp_mmu_clear_dirty_slot(kvm, memslot); 5565 write_unlock(&kvm->mmu_lock); 5566 5567 /* 5568 * It's also safe to flush TLBs out of mmu lock here as currently this 5569 * function is only used for dirty logging, in which case flushing TLB 5570 * out of mmu lock also guarantees no dirty pages will be lost in 5571 * dirty_bitmap. 5572 */ 5573 if (flush) 5574 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot); 5575 } 5576 5577 void kvm_mmu_zap_all(struct kvm *kvm) 5578 { 5579 struct kvm_mmu_page *sp, *node; 5580 LIST_HEAD(invalid_list); 5581 int ign; 5582 5583 write_lock(&kvm->mmu_lock); 5584 restart: 5585 list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link) { 5586 if (WARN_ON(sp->role.invalid)) 5587 continue; 5588 if (__kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list, &ign)) 5589 goto restart; 5590 if (cond_resched_rwlock_write(&kvm->mmu_lock)) 5591 goto restart; 5592 } 5593 5594 kvm_mmu_commit_zap_page(kvm, &invalid_list); 5595 5596 if (is_tdp_mmu_enabled(kvm)) 5597 kvm_tdp_mmu_zap_all(kvm); 5598 5599 write_unlock(&kvm->mmu_lock); 5600 } 5601 5602 void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen) 5603 { 5604 WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS); 5605 5606 gen &= MMIO_SPTE_GEN_MASK; 5607 5608 /* 5609 * Generation numbers are incremented in multiples of the number of 5610 * address spaces in order to provide unique generations across all 5611 * address spaces. Strip what is effectively the address space 5612 * modifier prior to checking for a wrap of the MMIO generation so 5613 * that a wrap in any address space is detected. 5614 */ 5615 gen &= ~((u64)KVM_ADDRESS_SPACE_NUM - 1); 5616 5617 /* 5618 * The very rare case: if the MMIO generation number has wrapped, 5619 * zap all shadow pages. 5620 */ 5621 if (unlikely(gen == 0)) { 5622 kvm_debug_ratelimited("kvm: zapping shadow pages for mmio generation wraparound\n"); 5623 kvm_mmu_zap_all_fast(kvm); 5624 } 5625 } 5626 5627 static unsigned long 5628 mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc) 5629 { 5630 struct kvm *kvm; 5631 int nr_to_scan = sc->nr_to_scan; 5632 unsigned long freed = 0; 5633 5634 mutex_lock(&kvm_lock); 5635 5636 list_for_each_entry(kvm, &vm_list, vm_list) { 5637 int idx; 5638 LIST_HEAD(invalid_list); 5639 5640 /* 5641 * Never scan more than sc->nr_to_scan VM instances. 5642 * Will not hit this condition practically since we do not try 5643 * to shrink more than one VM and it is very unlikely to see 5644 * !n_used_mmu_pages so many times. 5645 */ 5646 if (!nr_to_scan--) 5647 break; 5648 /* 5649 * n_used_mmu_pages is accessed without holding kvm->mmu_lock 5650 * here. We may skip a VM instance errorneosly, but we do not 5651 * want to shrink a VM that only started to populate its MMU 5652 * anyway. 5653 */ 5654 if (!kvm->arch.n_used_mmu_pages && 5655 !kvm_has_zapped_obsolete_pages(kvm)) 5656 continue; 5657 5658 idx = srcu_read_lock(&kvm->srcu); 5659 write_lock(&kvm->mmu_lock); 5660 5661 if (kvm_has_zapped_obsolete_pages(kvm)) { 5662 kvm_mmu_commit_zap_page(kvm, 5663 &kvm->arch.zapped_obsolete_pages); 5664 goto unlock; 5665 } 5666 5667 freed = kvm_mmu_zap_oldest_mmu_pages(kvm, sc->nr_to_scan); 5668 5669 unlock: 5670 write_unlock(&kvm->mmu_lock); 5671 srcu_read_unlock(&kvm->srcu, idx); 5672 5673 /* 5674 * unfair on small ones 5675 * per-vm shrinkers cry out 5676 * sadness comes quickly 5677 */ 5678 list_move_tail(&kvm->vm_list, &vm_list); 5679 break; 5680 } 5681 5682 mutex_unlock(&kvm_lock); 5683 return freed; 5684 } 5685 5686 static unsigned long 5687 mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc) 5688 { 5689 return percpu_counter_read_positive(&kvm_total_used_mmu_pages); 5690 } 5691 5692 static struct shrinker mmu_shrinker = { 5693 .count_objects = mmu_shrink_count, 5694 .scan_objects = mmu_shrink_scan, 5695 .seeks = DEFAULT_SEEKS * 10, 5696 }; 5697 5698 static void mmu_destroy_caches(void) 5699 { 5700 kmem_cache_destroy(pte_list_desc_cache); 5701 kmem_cache_destroy(mmu_page_header_cache); 5702 } 5703 5704 static void kvm_set_mmio_spte_mask(void) 5705 { 5706 u64 mask; 5707 5708 /* 5709 * Set a reserved PA bit in MMIO SPTEs to generate page faults with 5710 * PFEC.RSVD=1 on MMIO accesses. 64-bit PTEs (PAE, x86-64, and EPT 5711 * paging) support a maximum of 52 bits of PA, i.e. if the CPU supports 5712 * 52-bit physical addresses then there are no reserved PA bits in the 5713 * PTEs and so the reserved PA approach must be disabled. 5714 */ 5715 if (shadow_phys_bits < 52) 5716 mask = BIT_ULL(51) | PT_PRESENT_MASK; 5717 else 5718 mask = 0; 5719 5720 kvm_mmu_set_mmio_spte_mask(mask, ACC_WRITE_MASK | ACC_USER_MASK); 5721 } 5722 5723 static bool get_nx_auto_mode(void) 5724 { 5725 /* Return true when CPU has the bug, and mitigations are ON */ 5726 return boot_cpu_has_bug(X86_BUG_ITLB_MULTIHIT) && !cpu_mitigations_off(); 5727 } 5728 5729 static void __set_nx_huge_pages(bool val) 5730 { 5731 nx_huge_pages = itlb_multihit_kvm_mitigation = val; 5732 } 5733 5734 static int set_nx_huge_pages(const char *val, const struct kernel_param *kp) 5735 { 5736 bool old_val = nx_huge_pages; 5737 bool new_val; 5738 5739 /* In "auto" mode deploy workaround only if CPU has the bug. */ 5740 if (sysfs_streq(val, "off")) 5741 new_val = 0; 5742 else if (sysfs_streq(val, "force")) 5743 new_val = 1; 5744 else if (sysfs_streq(val, "auto")) 5745 new_val = get_nx_auto_mode(); 5746 else if (strtobool(val, &new_val) < 0) 5747 return -EINVAL; 5748 5749 __set_nx_huge_pages(new_val); 5750 5751 if (new_val != old_val) { 5752 struct kvm *kvm; 5753 5754 mutex_lock(&kvm_lock); 5755 5756 list_for_each_entry(kvm, &vm_list, vm_list) { 5757 mutex_lock(&kvm->slots_lock); 5758 kvm_mmu_zap_all_fast(kvm); 5759 mutex_unlock(&kvm->slots_lock); 5760 5761 wake_up_process(kvm->arch.nx_lpage_recovery_thread); 5762 } 5763 mutex_unlock(&kvm_lock); 5764 } 5765 5766 return 0; 5767 } 5768 5769 int kvm_mmu_module_init(void) 5770 { 5771 int ret = -ENOMEM; 5772 5773 if (nx_huge_pages == -1) 5774 __set_nx_huge_pages(get_nx_auto_mode()); 5775 5776 /* 5777 * MMU roles use union aliasing which is, generally speaking, an 5778 * undefined behavior. However, we supposedly know how compilers behave 5779 * and the current status quo is unlikely to change. Guardians below are 5780 * supposed to let us know if the assumption becomes false. 5781 */ 5782 BUILD_BUG_ON(sizeof(union kvm_mmu_page_role) != sizeof(u32)); 5783 BUILD_BUG_ON(sizeof(union kvm_mmu_extended_role) != sizeof(u32)); 5784 BUILD_BUG_ON(sizeof(union kvm_mmu_role) != sizeof(u64)); 5785 5786 kvm_mmu_reset_all_pte_masks(); 5787 5788 kvm_set_mmio_spte_mask(); 5789 5790 pte_list_desc_cache = kmem_cache_create("pte_list_desc", 5791 sizeof(struct pte_list_desc), 5792 0, SLAB_ACCOUNT, NULL); 5793 if (!pte_list_desc_cache) 5794 goto out; 5795 5796 mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header", 5797 sizeof(struct kvm_mmu_page), 5798 0, SLAB_ACCOUNT, NULL); 5799 if (!mmu_page_header_cache) 5800 goto out; 5801 5802 if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL)) 5803 goto out; 5804 5805 ret = register_shrinker(&mmu_shrinker); 5806 if (ret) 5807 goto out; 5808 5809 return 0; 5810 5811 out: 5812 mmu_destroy_caches(); 5813 return ret; 5814 } 5815 5816 /* 5817 * Calculate mmu pages needed for kvm. 5818 */ 5819 unsigned long kvm_mmu_calculate_default_mmu_pages(struct kvm *kvm) 5820 { 5821 unsigned long nr_mmu_pages; 5822 unsigned long nr_pages = 0; 5823 struct kvm_memslots *slots; 5824 struct kvm_memory_slot *memslot; 5825 int i; 5826 5827 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { 5828 slots = __kvm_memslots(kvm, i); 5829 5830 kvm_for_each_memslot(memslot, slots) 5831 nr_pages += memslot->npages; 5832 } 5833 5834 nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000; 5835 nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES); 5836 5837 return nr_mmu_pages; 5838 } 5839 5840 void kvm_mmu_destroy(struct kvm_vcpu *vcpu) 5841 { 5842 kvm_mmu_unload(vcpu); 5843 free_mmu_pages(&vcpu->arch.root_mmu); 5844 free_mmu_pages(&vcpu->arch.guest_mmu); 5845 mmu_free_memory_caches(vcpu); 5846 } 5847 5848 void kvm_mmu_module_exit(void) 5849 { 5850 mmu_destroy_caches(); 5851 percpu_counter_destroy(&kvm_total_used_mmu_pages); 5852 unregister_shrinker(&mmu_shrinker); 5853 mmu_audit_disable(); 5854 } 5855 5856 static int set_nx_huge_pages_recovery_ratio(const char *val, const struct kernel_param *kp) 5857 { 5858 unsigned int old_val; 5859 int err; 5860 5861 old_val = nx_huge_pages_recovery_ratio; 5862 err = param_set_uint(val, kp); 5863 if (err) 5864 return err; 5865 5866 if (READ_ONCE(nx_huge_pages) && 5867 !old_val && nx_huge_pages_recovery_ratio) { 5868 struct kvm *kvm; 5869 5870 mutex_lock(&kvm_lock); 5871 5872 list_for_each_entry(kvm, &vm_list, vm_list) 5873 wake_up_process(kvm->arch.nx_lpage_recovery_thread); 5874 5875 mutex_unlock(&kvm_lock); 5876 } 5877 5878 return err; 5879 } 5880 5881 static void kvm_recover_nx_lpages(struct kvm *kvm) 5882 { 5883 int rcu_idx; 5884 struct kvm_mmu_page *sp; 5885 unsigned int ratio; 5886 LIST_HEAD(invalid_list); 5887 bool flush = false; 5888 ulong to_zap; 5889 5890 rcu_idx = srcu_read_lock(&kvm->srcu); 5891 write_lock(&kvm->mmu_lock); 5892 5893 ratio = READ_ONCE(nx_huge_pages_recovery_ratio); 5894 to_zap = ratio ? DIV_ROUND_UP(kvm->stat.nx_lpage_splits, ratio) : 0; 5895 for ( ; to_zap; --to_zap) { 5896 if (list_empty(&kvm->arch.lpage_disallowed_mmu_pages)) 5897 break; 5898 5899 /* 5900 * We use a separate list instead of just using active_mmu_pages 5901 * because the number of lpage_disallowed pages is expected to 5902 * be relatively small compared to the total. 5903 */ 5904 sp = list_first_entry(&kvm->arch.lpage_disallowed_mmu_pages, 5905 struct kvm_mmu_page, 5906 lpage_disallowed_link); 5907 WARN_ON_ONCE(!sp->lpage_disallowed); 5908 if (is_tdp_mmu_page(sp)) { 5909 flush |= kvm_tdp_mmu_zap_sp(kvm, sp); 5910 } else { 5911 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list); 5912 WARN_ON_ONCE(sp->lpage_disallowed); 5913 } 5914 5915 if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) { 5916 kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush); 5917 cond_resched_rwlock_write(&kvm->mmu_lock); 5918 flush = false; 5919 } 5920 } 5921 kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush); 5922 5923 write_unlock(&kvm->mmu_lock); 5924 srcu_read_unlock(&kvm->srcu, rcu_idx); 5925 } 5926 5927 static long get_nx_lpage_recovery_timeout(u64 start_time) 5928 { 5929 return READ_ONCE(nx_huge_pages) && READ_ONCE(nx_huge_pages_recovery_ratio) 5930 ? start_time + 60 * HZ - get_jiffies_64() 5931 : MAX_SCHEDULE_TIMEOUT; 5932 } 5933 5934 static int kvm_nx_lpage_recovery_worker(struct kvm *kvm, uintptr_t data) 5935 { 5936 u64 start_time; 5937 long remaining_time; 5938 5939 while (true) { 5940 start_time = get_jiffies_64(); 5941 remaining_time = get_nx_lpage_recovery_timeout(start_time); 5942 5943 set_current_state(TASK_INTERRUPTIBLE); 5944 while (!kthread_should_stop() && remaining_time > 0) { 5945 schedule_timeout(remaining_time); 5946 remaining_time = get_nx_lpage_recovery_timeout(start_time); 5947 set_current_state(TASK_INTERRUPTIBLE); 5948 } 5949 5950 set_current_state(TASK_RUNNING); 5951 5952 if (kthread_should_stop()) 5953 return 0; 5954 5955 kvm_recover_nx_lpages(kvm); 5956 } 5957 } 5958 5959 int kvm_mmu_post_init_vm(struct kvm *kvm) 5960 { 5961 int err; 5962 5963 err = kvm_vm_create_worker_thread(kvm, kvm_nx_lpage_recovery_worker, 0, 5964 "kvm-nx-lpage-recovery", 5965 &kvm->arch.nx_lpage_recovery_thread); 5966 if (!err) 5967 kthread_unpark(kvm->arch.nx_lpage_recovery_thread); 5968 5969 return err; 5970 } 5971 5972 void kvm_mmu_pre_destroy_vm(struct kvm *kvm) 5973 { 5974 if (kvm->arch.nx_lpage_recovery_thread) 5975 kthread_stop(kvm->arch.nx_lpage_recovery_thread); 5976 } 5977