1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * This module enables machines with Intel VT-x extensions to run virtual 6 * machines without emulation or binary translation. 7 * 8 * MMU support 9 * 10 * Copyright (C) 2006 Qumranet, Inc. 11 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 12 * 13 * Authors: 14 * Yaniv Kamay <yaniv@qumranet.com> 15 * Avi Kivity <avi@qumranet.com> 16 */ 17 18 #include "irq.h" 19 #include "ioapic.h" 20 #include "mmu.h" 21 #include "mmu_internal.h" 22 #include "tdp_mmu.h" 23 #include "x86.h" 24 #include "kvm_cache_regs.h" 25 #include "kvm_emulate.h" 26 #include "cpuid.h" 27 #include "spte.h" 28 29 #include <linux/kvm_host.h> 30 #include <linux/types.h> 31 #include <linux/string.h> 32 #include <linux/mm.h> 33 #include <linux/highmem.h> 34 #include <linux/moduleparam.h> 35 #include <linux/export.h> 36 #include <linux/swap.h> 37 #include <linux/hugetlb.h> 38 #include <linux/compiler.h> 39 #include <linux/srcu.h> 40 #include <linux/slab.h> 41 #include <linux/sched/signal.h> 42 #include <linux/uaccess.h> 43 #include <linux/hash.h> 44 #include <linux/kern_levels.h> 45 #include <linux/kthread.h> 46 47 #include <asm/page.h> 48 #include <asm/memtype.h> 49 #include <asm/cmpxchg.h> 50 #include <asm/io.h> 51 #include <asm/set_memory.h> 52 #include <asm/vmx.h> 53 #include <asm/kvm_page_track.h> 54 #include "trace.h" 55 56 #include "paging.h" 57 58 extern bool itlb_multihit_kvm_mitigation; 59 60 int __read_mostly nx_huge_pages = -1; 61 #ifdef CONFIG_PREEMPT_RT 62 /* Recovery can cause latency spikes, disable it for PREEMPT_RT. */ 63 static uint __read_mostly nx_huge_pages_recovery_ratio = 0; 64 #else 65 static uint __read_mostly nx_huge_pages_recovery_ratio = 60; 66 #endif 67 68 static int set_nx_huge_pages(const char *val, const struct kernel_param *kp); 69 static int set_nx_huge_pages_recovery_ratio(const char *val, const struct kernel_param *kp); 70 71 static const struct kernel_param_ops nx_huge_pages_ops = { 72 .set = set_nx_huge_pages, 73 .get = param_get_bool, 74 }; 75 76 static const struct kernel_param_ops nx_huge_pages_recovery_ratio_ops = { 77 .set = set_nx_huge_pages_recovery_ratio, 78 .get = param_get_uint, 79 }; 80 81 module_param_cb(nx_huge_pages, &nx_huge_pages_ops, &nx_huge_pages, 0644); 82 __MODULE_PARM_TYPE(nx_huge_pages, "bool"); 83 module_param_cb(nx_huge_pages_recovery_ratio, &nx_huge_pages_recovery_ratio_ops, 84 &nx_huge_pages_recovery_ratio, 0644); 85 __MODULE_PARM_TYPE(nx_huge_pages_recovery_ratio, "uint"); 86 87 static bool __read_mostly force_flush_and_sync_on_reuse; 88 module_param_named(flush_on_reuse, force_flush_and_sync_on_reuse, bool, 0644); 89 90 /* 91 * When setting this variable to true it enables Two-Dimensional-Paging 92 * where the hardware walks 2 page tables: 93 * 1. the guest-virtual to guest-physical 94 * 2. while doing 1. it walks guest-physical to host-physical 95 * If the hardware supports that we don't need to do shadow paging. 96 */ 97 bool tdp_enabled = false; 98 99 static int max_huge_page_level __read_mostly; 100 static int tdp_root_level __read_mostly; 101 static int max_tdp_level __read_mostly; 102 103 enum { 104 AUDIT_PRE_PAGE_FAULT, 105 AUDIT_POST_PAGE_FAULT, 106 AUDIT_PRE_PTE_WRITE, 107 AUDIT_POST_PTE_WRITE, 108 AUDIT_PRE_SYNC, 109 AUDIT_POST_SYNC 110 }; 111 112 #ifdef MMU_DEBUG 113 bool dbg = 0; 114 module_param(dbg, bool, 0644); 115 #endif 116 117 #define PTE_PREFETCH_NUM 8 118 119 #define PT32_LEVEL_BITS 10 120 121 #define PT32_LEVEL_SHIFT(level) \ 122 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS) 123 124 #define PT32_LVL_OFFSET_MASK(level) \ 125 (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \ 126 * PT32_LEVEL_BITS))) - 1)) 127 128 #define PT32_INDEX(address, level)\ 129 (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1)) 130 131 132 #define PT32_BASE_ADDR_MASK PAGE_MASK 133 #define PT32_DIR_BASE_ADDR_MASK \ 134 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1)) 135 #define PT32_LVL_ADDR_MASK(level) \ 136 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \ 137 * PT32_LEVEL_BITS))) - 1)) 138 139 #include <trace/events/kvm.h> 140 141 /* make pte_list_desc fit well in cache lines */ 142 #define PTE_LIST_EXT 14 143 144 /* 145 * Slight optimization of cacheline layout, by putting `more' and `spte_count' 146 * at the start; then accessing it will only use one single cacheline for 147 * either full (entries==PTE_LIST_EXT) case or entries<=6. 148 */ 149 struct pte_list_desc { 150 struct pte_list_desc *more; 151 /* 152 * Stores number of entries stored in the pte_list_desc. No need to be 153 * u64 but just for easier alignment. When PTE_LIST_EXT, means full. 154 */ 155 u64 spte_count; 156 u64 *sptes[PTE_LIST_EXT]; 157 }; 158 159 struct kvm_shadow_walk_iterator { 160 u64 addr; 161 hpa_t shadow_addr; 162 u64 *sptep; 163 int level; 164 unsigned index; 165 }; 166 167 #define for_each_shadow_entry_using_root(_vcpu, _root, _addr, _walker) \ 168 for (shadow_walk_init_using_root(&(_walker), (_vcpu), \ 169 (_root), (_addr)); \ 170 shadow_walk_okay(&(_walker)); \ 171 shadow_walk_next(&(_walker))) 172 173 #define for_each_shadow_entry(_vcpu, _addr, _walker) \ 174 for (shadow_walk_init(&(_walker), _vcpu, _addr); \ 175 shadow_walk_okay(&(_walker)); \ 176 shadow_walk_next(&(_walker))) 177 178 #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte) \ 179 for (shadow_walk_init(&(_walker), _vcpu, _addr); \ 180 shadow_walk_okay(&(_walker)) && \ 181 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; }); \ 182 __shadow_walk_next(&(_walker), spte)) 183 184 static struct kmem_cache *pte_list_desc_cache; 185 struct kmem_cache *mmu_page_header_cache; 186 static struct percpu_counter kvm_total_used_mmu_pages; 187 188 static void mmu_spte_set(u64 *sptep, u64 spte); 189 static union kvm_mmu_page_role 190 kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu); 191 192 struct kvm_mmu_role_regs { 193 const unsigned long cr0; 194 const unsigned long cr4; 195 const u64 efer; 196 }; 197 198 #define CREATE_TRACE_POINTS 199 #include "mmutrace.h" 200 201 /* 202 * Yes, lot's of underscores. They're a hint that you probably shouldn't be 203 * reading from the role_regs. Once the mmu_role is constructed, it becomes 204 * the single source of truth for the MMU's state. 205 */ 206 #define BUILD_MMU_ROLE_REGS_ACCESSOR(reg, name, flag) \ 207 static inline bool __maybe_unused ____is_##reg##_##name(struct kvm_mmu_role_regs *regs)\ 208 { \ 209 return !!(regs->reg & flag); \ 210 } 211 BUILD_MMU_ROLE_REGS_ACCESSOR(cr0, pg, X86_CR0_PG); 212 BUILD_MMU_ROLE_REGS_ACCESSOR(cr0, wp, X86_CR0_WP); 213 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pse, X86_CR4_PSE); 214 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pae, X86_CR4_PAE); 215 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, smep, X86_CR4_SMEP); 216 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, smap, X86_CR4_SMAP); 217 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pke, X86_CR4_PKE); 218 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, la57, X86_CR4_LA57); 219 BUILD_MMU_ROLE_REGS_ACCESSOR(efer, nx, EFER_NX); 220 BUILD_MMU_ROLE_REGS_ACCESSOR(efer, lma, EFER_LMA); 221 222 /* 223 * The MMU itself (with a valid role) is the single source of truth for the 224 * MMU. Do not use the regs used to build the MMU/role, nor the vCPU. The 225 * regs don't account for dependencies, e.g. clearing CR4 bits if CR0.PG=1, 226 * and the vCPU may be incorrect/irrelevant. 227 */ 228 #define BUILD_MMU_ROLE_ACCESSOR(base_or_ext, reg, name) \ 229 static inline bool __maybe_unused is_##reg##_##name(struct kvm_mmu *mmu) \ 230 { \ 231 return !!(mmu->mmu_role. base_or_ext . reg##_##name); \ 232 } 233 BUILD_MMU_ROLE_ACCESSOR(ext, cr0, pg); 234 BUILD_MMU_ROLE_ACCESSOR(base, cr0, wp); 235 BUILD_MMU_ROLE_ACCESSOR(ext, cr4, pse); 236 BUILD_MMU_ROLE_ACCESSOR(ext, cr4, pae); 237 BUILD_MMU_ROLE_ACCESSOR(ext, cr4, smep); 238 BUILD_MMU_ROLE_ACCESSOR(ext, cr4, smap); 239 BUILD_MMU_ROLE_ACCESSOR(ext, cr4, pke); 240 BUILD_MMU_ROLE_ACCESSOR(ext, cr4, la57); 241 BUILD_MMU_ROLE_ACCESSOR(base, efer, nx); 242 243 static struct kvm_mmu_role_regs vcpu_to_role_regs(struct kvm_vcpu *vcpu) 244 { 245 struct kvm_mmu_role_regs regs = { 246 .cr0 = kvm_read_cr0_bits(vcpu, KVM_MMU_CR0_ROLE_BITS), 247 .cr4 = kvm_read_cr4_bits(vcpu, KVM_MMU_CR4_ROLE_BITS), 248 .efer = vcpu->arch.efer, 249 }; 250 251 return regs; 252 } 253 254 static int role_regs_to_root_level(struct kvm_mmu_role_regs *regs) 255 { 256 if (!____is_cr0_pg(regs)) 257 return 0; 258 else if (____is_efer_lma(regs)) 259 return ____is_cr4_la57(regs) ? PT64_ROOT_5LEVEL : 260 PT64_ROOT_4LEVEL; 261 else if (____is_cr4_pae(regs)) 262 return PT32E_ROOT_LEVEL; 263 else 264 return PT32_ROOT_LEVEL; 265 } 266 267 static inline bool kvm_available_flush_tlb_with_range(void) 268 { 269 return kvm_x86_ops.tlb_remote_flush_with_range; 270 } 271 272 static void kvm_flush_remote_tlbs_with_range(struct kvm *kvm, 273 struct kvm_tlb_range *range) 274 { 275 int ret = -ENOTSUPP; 276 277 if (range && kvm_x86_ops.tlb_remote_flush_with_range) 278 ret = static_call(kvm_x86_tlb_remote_flush_with_range)(kvm, range); 279 280 if (ret) 281 kvm_flush_remote_tlbs(kvm); 282 } 283 284 void kvm_flush_remote_tlbs_with_address(struct kvm *kvm, 285 u64 start_gfn, u64 pages) 286 { 287 struct kvm_tlb_range range; 288 289 range.start_gfn = start_gfn; 290 range.pages = pages; 291 292 kvm_flush_remote_tlbs_with_range(kvm, &range); 293 } 294 295 static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn, 296 unsigned int access) 297 { 298 u64 spte = make_mmio_spte(vcpu, gfn, access); 299 300 trace_mark_mmio_spte(sptep, gfn, spte); 301 mmu_spte_set(sptep, spte); 302 } 303 304 static gfn_t get_mmio_spte_gfn(u64 spte) 305 { 306 u64 gpa = spte & shadow_nonpresent_or_rsvd_lower_gfn_mask; 307 308 gpa |= (spte >> SHADOW_NONPRESENT_OR_RSVD_MASK_LEN) 309 & shadow_nonpresent_or_rsvd_mask; 310 311 return gpa >> PAGE_SHIFT; 312 } 313 314 static unsigned get_mmio_spte_access(u64 spte) 315 { 316 return spte & shadow_mmio_access_mask; 317 } 318 319 static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte) 320 { 321 u64 kvm_gen, spte_gen, gen; 322 323 gen = kvm_vcpu_memslots(vcpu)->generation; 324 if (unlikely(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS)) 325 return false; 326 327 kvm_gen = gen & MMIO_SPTE_GEN_MASK; 328 spte_gen = get_mmio_spte_generation(spte); 329 330 trace_check_mmio_spte(spte, kvm_gen, spte_gen); 331 return likely(kvm_gen == spte_gen); 332 } 333 334 static gpa_t translate_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access, 335 struct x86_exception *exception) 336 { 337 return gpa; 338 } 339 340 static int is_cpuid_PSE36(void) 341 { 342 return 1; 343 } 344 345 static gfn_t pse36_gfn_delta(u32 gpte) 346 { 347 int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT; 348 349 return (gpte & PT32_DIR_PSE36_MASK) << shift; 350 } 351 352 #ifdef CONFIG_X86_64 353 static void __set_spte(u64 *sptep, u64 spte) 354 { 355 WRITE_ONCE(*sptep, spte); 356 } 357 358 static void __update_clear_spte_fast(u64 *sptep, u64 spte) 359 { 360 WRITE_ONCE(*sptep, spte); 361 } 362 363 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte) 364 { 365 return xchg(sptep, spte); 366 } 367 368 static u64 __get_spte_lockless(u64 *sptep) 369 { 370 return READ_ONCE(*sptep); 371 } 372 #else 373 union split_spte { 374 struct { 375 u32 spte_low; 376 u32 spte_high; 377 }; 378 u64 spte; 379 }; 380 381 static void count_spte_clear(u64 *sptep, u64 spte) 382 { 383 struct kvm_mmu_page *sp = sptep_to_sp(sptep); 384 385 if (is_shadow_present_pte(spte)) 386 return; 387 388 /* Ensure the spte is completely set before we increase the count */ 389 smp_wmb(); 390 sp->clear_spte_count++; 391 } 392 393 static void __set_spte(u64 *sptep, u64 spte) 394 { 395 union split_spte *ssptep, sspte; 396 397 ssptep = (union split_spte *)sptep; 398 sspte = (union split_spte)spte; 399 400 ssptep->spte_high = sspte.spte_high; 401 402 /* 403 * If we map the spte from nonpresent to present, We should store 404 * the high bits firstly, then set present bit, so cpu can not 405 * fetch this spte while we are setting the spte. 406 */ 407 smp_wmb(); 408 409 WRITE_ONCE(ssptep->spte_low, sspte.spte_low); 410 } 411 412 static void __update_clear_spte_fast(u64 *sptep, u64 spte) 413 { 414 union split_spte *ssptep, sspte; 415 416 ssptep = (union split_spte *)sptep; 417 sspte = (union split_spte)spte; 418 419 WRITE_ONCE(ssptep->spte_low, sspte.spte_low); 420 421 /* 422 * If we map the spte from present to nonpresent, we should clear 423 * present bit firstly to avoid vcpu fetch the old high bits. 424 */ 425 smp_wmb(); 426 427 ssptep->spte_high = sspte.spte_high; 428 count_spte_clear(sptep, spte); 429 } 430 431 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte) 432 { 433 union split_spte *ssptep, sspte, orig; 434 435 ssptep = (union split_spte *)sptep; 436 sspte = (union split_spte)spte; 437 438 /* xchg acts as a barrier before the setting of the high bits */ 439 orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low); 440 orig.spte_high = ssptep->spte_high; 441 ssptep->spte_high = sspte.spte_high; 442 count_spte_clear(sptep, spte); 443 444 return orig.spte; 445 } 446 447 /* 448 * The idea using the light way get the spte on x86_32 guest is from 449 * gup_get_pte (mm/gup.c). 450 * 451 * An spte tlb flush may be pending, because kvm_set_pte_rmapp 452 * coalesces them and we are running out of the MMU lock. Therefore 453 * we need to protect against in-progress updates of the spte. 454 * 455 * Reading the spte while an update is in progress may get the old value 456 * for the high part of the spte. The race is fine for a present->non-present 457 * change (because the high part of the spte is ignored for non-present spte), 458 * but for a present->present change we must reread the spte. 459 * 460 * All such changes are done in two steps (present->non-present and 461 * non-present->present), hence it is enough to count the number of 462 * present->non-present updates: if it changed while reading the spte, 463 * we might have hit the race. This is done using clear_spte_count. 464 */ 465 static u64 __get_spte_lockless(u64 *sptep) 466 { 467 struct kvm_mmu_page *sp = sptep_to_sp(sptep); 468 union split_spte spte, *orig = (union split_spte *)sptep; 469 int count; 470 471 retry: 472 count = sp->clear_spte_count; 473 smp_rmb(); 474 475 spte.spte_low = orig->spte_low; 476 smp_rmb(); 477 478 spte.spte_high = orig->spte_high; 479 smp_rmb(); 480 481 if (unlikely(spte.spte_low != orig->spte_low || 482 count != sp->clear_spte_count)) 483 goto retry; 484 485 return spte.spte; 486 } 487 #endif 488 489 static bool spte_has_volatile_bits(u64 spte) 490 { 491 if (!is_shadow_present_pte(spte)) 492 return false; 493 494 /* 495 * Always atomically update spte if it can be updated 496 * out of mmu-lock, it can ensure dirty bit is not lost, 497 * also, it can help us to get a stable is_writable_pte() 498 * to ensure tlb flush is not missed. 499 */ 500 if (spte_can_locklessly_be_made_writable(spte) || 501 is_access_track_spte(spte)) 502 return true; 503 504 if (spte_ad_enabled(spte)) { 505 if ((spte & shadow_accessed_mask) == 0 || 506 (is_writable_pte(spte) && (spte & shadow_dirty_mask) == 0)) 507 return true; 508 } 509 510 return false; 511 } 512 513 /* Rules for using mmu_spte_set: 514 * Set the sptep from nonpresent to present. 515 * Note: the sptep being assigned *must* be either not present 516 * or in a state where the hardware will not attempt to update 517 * the spte. 518 */ 519 static void mmu_spte_set(u64 *sptep, u64 new_spte) 520 { 521 WARN_ON(is_shadow_present_pte(*sptep)); 522 __set_spte(sptep, new_spte); 523 } 524 525 /* 526 * Update the SPTE (excluding the PFN), but do not track changes in its 527 * accessed/dirty status. 528 */ 529 static u64 mmu_spte_update_no_track(u64 *sptep, u64 new_spte) 530 { 531 u64 old_spte = *sptep; 532 533 WARN_ON(!is_shadow_present_pte(new_spte)); 534 535 if (!is_shadow_present_pte(old_spte)) { 536 mmu_spte_set(sptep, new_spte); 537 return old_spte; 538 } 539 540 if (!spte_has_volatile_bits(old_spte)) 541 __update_clear_spte_fast(sptep, new_spte); 542 else 543 old_spte = __update_clear_spte_slow(sptep, new_spte); 544 545 WARN_ON(spte_to_pfn(old_spte) != spte_to_pfn(new_spte)); 546 547 return old_spte; 548 } 549 550 /* Rules for using mmu_spte_update: 551 * Update the state bits, it means the mapped pfn is not changed. 552 * 553 * Whenever we overwrite a writable spte with a read-only one we 554 * should flush remote TLBs. Otherwise rmap_write_protect 555 * will find a read-only spte, even though the writable spte 556 * might be cached on a CPU's TLB, the return value indicates this 557 * case. 558 * 559 * Returns true if the TLB needs to be flushed 560 */ 561 static bool mmu_spte_update(u64 *sptep, u64 new_spte) 562 { 563 bool flush = false; 564 u64 old_spte = mmu_spte_update_no_track(sptep, new_spte); 565 566 if (!is_shadow_present_pte(old_spte)) 567 return false; 568 569 /* 570 * For the spte updated out of mmu-lock is safe, since 571 * we always atomically update it, see the comments in 572 * spte_has_volatile_bits(). 573 */ 574 if (spte_can_locklessly_be_made_writable(old_spte) && 575 !is_writable_pte(new_spte)) 576 flush = true; 577 578 /* 579 * Flush TLB when accessed/dirty states are changed in the page tables, 580 * to guarantee consistency between TLB and page tables. 581 */ 582 583 if (is_accessed_spte(old_spte) && !is_accessed_spte(new_spte)) { 584 flush = true; 585 kvm_set_pfn_accessed(spte_to_pfn(old_spte)); 586 } 587 588 if (is_dirty_spte(old_spte) && !is_dirty_spte(new_spte)) { 589 flush = true; 590 kvm_set_pfn_dirty(spte_to_pfn(old_spte)); 591 } 592 593 return flush; 594 } 595 596 /* 597 * Rules for using mmu_spte_clear_track_bits: 598 * It sets the sptep from present to nonpresent, and track the 599 * state bits, it is used to clear the last level sptep. 600 * Returns the old PTE. 601 */ 602 static int mmu_spte_clear_track_bits(struct kvm *kvm, u64 *sptep) 603 { 604 kvm_pfn_t pfn; 605 u64 old_spte = *sptep; 606 int level = sptep_to_sp(sptep)->role.level; 607 608 if (!spte_has_volatile_bits(old_spte)) 609 __update_clear_spte_fast(sptep, 0ull); 610 else 611 old_spte = __update_clear_spte_slow(sptep, 0ull); 612 613 if (!is_shadow_present_pte(old_spte)) 614 return old_spte; 615 616 kvm_update_page_stats(kvm, level, -1); 617 618 pfn = spte_to_pfn(old_spte); 619 620 /* 621 * KVM does not hold the refcount of the page used by 622 * kvm mmu, before reclaiming the page, we should 623 * unmap it from mmu first. 624 */ 625 WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn))); 626 627 if (is_accessed_spte(old_spte)) 628 kvm_set_pfn_accessed(pfn); 629 630 if (is_dirty_spte(old_spte)) 631 kvm_set_pfn_dirty(pfn); 632 633 return old_spte; 634 } 635 636 /* 637 * Rules for using mmu_spte_clear_no_track: 638 * Directly clear spte without caring the state bits of sptep, 639 * it is used to set the upper level spte. 640 */ 641 static void mmu_spte_clear_no_track(u64 *sptep) 642 { 643 __update_clear_spte_fast(sptep, 0ull); 644 } 645 646 static u64 mmu_spte_get_lockless(u64 *sptep) 647 { 648 return __get_spte_lockless(sptep); 649 } 650 651 /* Restore an acc-track PTE back to a regular PTE */ 652 static u64 restore_acc_track_spte(u64 spte) 653 { 654 u64 new_spte = spte; 655 u64 saved_bits = (spte >> SHADOW_ACC_TRACK_SAVED_BITS_SHIFT) 656 & SHADOW_ACC_TRACK_SAVED_BITS_MASK; 657 658 WARN_ON_ONCE(spte_ad_enabled(spte)); 659 WARN_ON_ONCE(!is_access_track_spte(spte)); 660 661 new_spte &= ~shadow_acc_track_mask; 662 new_spte &= ~(SHADOW_ACC_TRACK_SAVED_BITS_MASK << 663 SHADOW_ACC_TRACK_SAVED_BITS_SHIFT); 664 new_spte |= saved_bits; 665 666 return new_spte; 667 } 668 669 /* Returns the Accessed status of the PTE and resets it at the same time. */ 670 static bool mmu_spte_age(u64 *sptep) 671 { 672 u64 spte = mmu_spte_get_lockless(sptep); 673 674 if (!is_accessed_spte(spte)) 675 return false; 676 677 if (spte_ad_enabled(spte)) { 678 clear_bit((ffs(shadow_accessed_mask) - 1), 679 (unsigned long *)sptep); 680 } else { 681 /* 682 * Capture the dirty status of the page, so that it doesn't get 683 * lost when the SPTE is marked for access tracking. 684 */ 685 if (is_writable_pte(spte)) 686 kvm_set_pfn_dirty(spte_to_pfn(spte)); 687 688 spte = mark_spte_for_access_track(spte); 689 mmu_spte_update_no_track(sptep, spte); 690 } 691 692 return true; 693 } 694 695 static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu) 696 { 697 if (is_tdp_mmu(vcpu->arch.mmu)) { 698 kvm_tdp_mmu_walk_lockless_begin(); 699 } else { 700 /* 701 * Prevent page table teardown by making any free-er wait during 702 * kvm_flush_remote_tlbs() IPI to all active vcpus. 703 */ 704 local_irq_disable(); 705 706 /* 707 * Make sure a following spte read is not reordered ahead of the write 708 * to vcpu->mode. 709 */ 710 smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES); 711 } 712 } 713 714 static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu) 715 { 716 if (is_tdp_mmu(vcpu->arch.mmu)) { 717 kvm_tdp_mmu_walk_lockless_end(); 718 } else { 719 /* 720 * Make sure the write to vcpu->mode is not reordered in front of 721 * reads to sptes. If it does, kvm_mmu_commit_zap_page() can see us 722 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table. 723 */ 724 smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE); 725 local_irq_enable(); 726 } 727 } 728 729 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu, bool maybe_indirect) 730 { 731 int r; 732 733 /* 1 rmap, 1 parent PTE per level, and the prefetched rmaps. */ 734 r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache, 735 1 + PT64_ROOT_MAX_LEVEL + PTE_PREFETCH_NUM); 736 if (r) 737 return r; 738 r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_shadow_page_cache, 739 PT64_ROOT_MAX_LEVEL); 740 if (r) 741 return r; 742 if (maybe_indirect) { 743 r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_gfn_array_cache, 744 PT64_ROOT_MAX_LEVEL); 745 if (r) 746 return r; 747 } 748 return kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache, 749 PT64_ROOT_MAX_LEVEL); 750 } 751 752 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu) 753 { 754 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache); 755 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_shadow_page_cache); 756 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_gfn_array_cache); 757 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache); 758 } 759 760 static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu) 761 { 762 return kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache); 763 } 764 765 static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc) 766 { 767 kmem_cache_free(pte_list_desc_cache, pte_list_desc); 768 } 769 770 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index) 771 { 772 if (!sp->role.direct) 773 return sp->gfns[index]; 774 775 return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS)); 776 } 777 778 static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn) 779 { 780 if (!sp->role.direct) { 781 sp->gfns[index] = gfn; 782 return; 783 } 784 785 if (WARN_ON(gfn != kvm_mmu_page_get_gfn(sp, index))) 786 pr_err_ratelimited("gfn mismatch under direct page %llx " 787 "(expected %llx, got %llx)\n", 788 sp->gfn, 789 kvm_mmu_page_get_gfn(sp, index), gfn); 790 } 791 792 /* 793 * Return the pointer to the large page information for a given gfn, 794 * handling slots that are not large page aligned. 795 */ 796 static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn, 797 const struct kvm_memory_slot *slot, int level) 798 { 799 unsigned long idx; 800 801 idx = gfn_to_index(gfn, slot->base_gfn, level); 802 return &slot->arch.lpage_info[level - 2][idx]; 803 } 804 805 static void update_gfn_disallow_lpage_count(const struct kvm_memory_slot *slot, 806 gfn_t gfn, int count) 807 { 808 struct kvm_lpage_info *linfo; 809 int i; 810 811 for (i = PG_LEVEL_2M; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) { 812 linfo = lpage_info_slot(gfn, slot, i); 813 linfo->disallow_lpage += count; 814 WARN_ON(linfo->disallow_lpage < 0); 815 } 816 } 817 818 void kvm_mmu_gfn_disallow_lpage(const struct kvm_memory_slot *slot, gfn_t gfn) 819 { 820 update_gfn_disallow_lpage_count(slot, gfn, 1); 821 } 822 823 void kvm_mmu_gfn_allow_lpage(const struct kvm_memory_slot *slot, gfn_t gfn) 824 { 825 update_gfn_disallow_lpage_count(slot, gfn, -1); 826 } 827 828 static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp) 829 { 830 struct kvm_memslots *slots; 831 struct kvm_memory_slot *slot; 832 gfn_t gfn; 833 834 kvm->arch.indirect_shadow_pages++; 835 gfn = sp->gfn; 836 slots = kvm_memslots_for_spte_role(kvm, sp->role); 837 slot = __gfn_to_memslot(slots, gfn); 838 839 /* the non-leaf shadow pages are keeping readonly. */ 840 if (sp->role.level > PG_LEVEL_4K) 841 return kvm_slot_page_track_add_page(kvm, slot, gfn, 842 KVM_PAGE_TRACK_WRITE); 843 844 kvm_mmu_gfn_disallow_lpage(slot, gfn); 845 } 846 847 void account_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp) 848 { 849 if (sp->lpage_disallowed) 850 return; 851 852 ++kvm->stat.nx_lpage_splits; 853 list_add_tail(&sp->lpage_disallowed_link, 854 &kvm->arch.lpage_disallowed_mmu_pages); 855 sp->lpage_disallowed = true; 856 } 857 858 static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp) 859 { 860 struct kvm_memslots *slots; 861 struct kvm_memory_slot *slot; 862 gfn_t gfn; 863 864 kvm->arch.indirect_shadow_pages--; 865 gfn = sp->gfn; 866 slots = kvm_memslots_for_spte_role(kvm, sp->role); 867 slot = __gfn_to_memslot(slots, gfn); 868 if (sp->role.level > PG_LEVEL_4K) 869 return kvm_slot_page_track_remove_page(kvm, slot, gfn, 870 KVM_PAGE_TRACK_WRITE); 871 872 kvm_mmu_gfn_allow_lpage(slot, gfn); 873 } 874 875 void unaccount_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp) 876 { 877 --kvm->stat.nx_lpage_splits; 878 sp->lpage_disallowed = false; 879 list_del(&sp->lpage_disallowed_link); 880 } 881 882 static struct kvm_memory_slot * 883 gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn, 884 bool no_dirty_log) 885 { 886 struct kvm_memory_slot *slot; 887 888 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 889 if (!slot || slot->flags & KVM_MEMSLOT_INVALID) 890 return NULL; 891 if (no_dirty_log && kvm_slot_dirty_track_enabled(slot)) 892 return NULL; 893 894 return slot; 895 } 896 897 /* 898 * About rmap_head encoding: 899 * 900 * If the bit zero of rmap_head->val is clear, then it points to the only spte 901 * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct 902 * pte_list_desc containing more mappings. 903 */ 904 905 /* 906 * Returns the number of pointers in the rmap chain, not counting the new one. 907 */ 908 static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte, 909 struct kvm_rmap_head *rmap_head) 910 { 911 struct pte_list_desc *desc; 912 int count = 0; 913 914 if (!rmap_head->val) { 915 rmap_printk("%p %llx 0->1\n", spte, *spte); 916 rmap_head->val = (unsigned long)spte; 917 } else if (!(rmap_head->val & 1)) { 918 rmap_printk("%p %llx 1->many\n", spte, *spte); 919 desc = mmu_alloc_pte_list_desc(vcpu); 920 desc->sptes[0] = (u64 *)rmap_head->val; 921 desc->sptes[1] = spte; 922 desc->spte_count = 2; 923 rmap_head->val = (unsigned long)desc | 1; 924 ++count; 925 } else { 926 rmap_printk("%p %llx many->many\n", spte, *spte); 927 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul); 928 while (desc->spte_count == PTE_LIST_EXT) { 929 count += PTE_LIST_EXT; 930 if (!desc->more) { 931 desc->more = mmu_alloc_pte_list_desc(vcpu); 932 desc = desc->more; 933 desc->spte_count = 0; 934 break; 935 } 936 desc = desc->more; 937 } 938 count += desc->spte_count; 939 desc->sptes[desc->spte_count++] = spte; 940 } 941 return count; 942 } 943 944 static void 945 pte_list_desc_remove_entry(struct kvm_rmap_head *rmap_head, 946 struct pte_list_desc *desc, int i, 947 struct pte_list_desc *prev_desc) 948 { 949 int j = desc->spte_count - 1; 950 951 desc->sptes[i] = desc->sptes[j]; 952 desc->sptes[j] = NULL; 953 desc->spte_count--; 954 if (desc->spte_count) 955 return; 956 if (!prev_desc && !desc->more) 957 rmap_head->val = 0; 958 else 959 if (prev_desc) 960 prev_desc->more = desc->more; 961 else 962 rmap_head->val = (unsigned long)desc->more | 1; 963 mmu_free_pte_list_desc(desc); 964 } 965 966 static void __pte_list_remove(u64 *spte, struct kvm_rmap_head *rmap_head) 967 { 968 struct pte_list_desc *desc; 969 struct pte_list_desc *prev_desc; 970 int i; 971 972 if (!rmap_head->val) { 973 pr_err("%s: %p 0->BUG\n", __func__, spte); 974 BUG(); 975 } else if (!(rmap_head->val & 1)) { 976 rmap_printk("%p 1->0\n", spte); 977 if ((u64 *)rmap_head->val != spte) { 978 pr_err("%s: %p 1->BUG\n", __func__, spte); 979 BUG(); 980 } 981 rmap_head->val = 0; 982 } else { 983 rmap_printk("%p many->many\n", spte); 984 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul); 985 prev_desc = NULL; 986 while (desc) { 987 for (i = 0; i < desc->spte_count; ++i) { 988 if (desc->sptes[i] == spte) { 989 pte_list_desc_remove_entry(rmap_head, 990 desc, i, prev_desc); 991 return; 992 } 993 } 994 prev_desc = desc; 995 desc = desc->more; 996 } 997 pr_err("%s: %p many->many\n", __func__, spte); 998 BUG(); 999 } 1000 } 1001 1002 static void pte_list_remove(struct kvm *kvm, struct kvm_rmap_head *rmap_head, 1003 u64 *sptep) 1004 { 1005 mmu_spte_clear_track_bits(kvm, sptep); 1006 __pte_list_remove(sptep, rmap_head); 1007 } 1008 1009 /* Return true if rmap existed, false otherwise */ 1010 static bool pte_list_destroy(struct kvm *kvm, struct kvm_rmap_head *rmap_head) 1011 { 1012 struct pte_list_desc *desc, *next; 1013 int i; 1014 1015 if (!rmap_head->val) 1016 return false; 1017 1018 if (!(rmap_head->val & 1)) { 1019 mmu_spte_clear_track_bits(kvm, (u64 *)rmap_head->val); 1020 goto out; 1021 } 1022 1023 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul); 1024 1025 for (; desc; desc = next) { 1026 for (i = 0; i < desc->spte_count; i++) 1027 mmu_spte_clear_track_bits(kvm, desc->sptes[i]); 1028 next = desc->more; 1029 mmu_free_pte_list_desc(desc); 1030 } 1031 out: 1032 /* rmap_head is meaningless now, remember to reset it */ 1033 rmap_head->val = 0; 1034 return true; 1035 } 1036 1037 unsigned int pte_list_count(struct kvm_rmap_head *rmap_head) 1038 { 1039 struct pte_list_desc *desc; 1040 unsigned int count = 0; 1041 1042 if (!rmap_head->val) 1043 return 0; 1044 else if (!(rmap_head->val & 1)) 1045 return 1; 1046 1047 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul); 1048 1049 while (desc) { 1050 count += desc->spte_count; 1051 desc = desc->more; 1052 } 1053 1054 return count; 1055 } 1056 1057 static struct kvm_rmap_head *gfn_to_rmap(gfn_t gfn, int level, 1058 const struct kvm_memory_slot *slot) 1059 { 1060 unsigned long idx; 1061 1062 idx = gfn_to_index(gfn, slot->base_gfn, level); 1063 return &slot->arch.rmap[level - PG_LEVEL_4K][idx]; 1064 } 1065 1066 static bool rmap_can_add(struct kvm_vcpu *vcpu) 1067 { 1068 struct kvm_mmu_memory_cache *mc; 1069 1070 mc = &vcpu->arch.mmu_pte_list_desc_cache; 1071 return kvm_mmu_memory_cache_nr_free_objects(mc); 1072 } 1073 1074 static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn) 1075 { 1076 struct kvm_memory_slot *slot; 1077 struct kvm_mmu_page *sp; 1078 struct kvm_rmap_head *rmap_head; 1079 1080 sp = sptep_to_sp(spte); 1081 kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn); 1082 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 1083 rmap_head = gfn_to_rmap(gfn, sp->role.level, slot); 1084 return pte_list_add(vcpu, spte, rmap_head); 1085 } 1086 1087 1088 static void rmap_remove(struct kvm *kvm, u64 *spte) 1089 { 1090 struct kvm_memslots *slots; 1091 struct kvm_memory_slot *slot; 1092 struct kvm_mmu_page *sp; 1093 gfn_t gfn; 1094 struct kvm_rmap_head *rmap_head; 1095 1096 sp = sptep_to_sp(spte); 1097 gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt); 1098 1099 /* 1100 * Unlike rmap_add and rmap_recycle, rmap_remove does not run in the 1101 * context of a vCPU so have to determine which memslots to use based 1102 * on context information in sp->role. 1103 */ 1104 slots = kvm_memslots_for_spte_role(kvm, sp->role); 1105 1106 slot = __gfn_to_memslot(slots, gfn); 1107 rmap_head = gfn_to_rmap(gfn, sp->role.level, slot); 1108 1109 __pte_list_remove(spte, rmap_head); 1110 } 1111 1112 /* 1113 * Used by the following functions to iterate through the sptes linked by a 1114 * rmap. All fields are private and not assumed to be used outside. 1115 */ 1116 struct rmap_iterator { 1117 /* private fields */ 1118 struct pte_list_desc *desc; /* holds the sptep if not NULL */ 1119 int pos; /* index of the sptep */ 1120 }; 1121 1122 /* 1123 * Iteration must be started by this function. This should also be used after 1124 * removing/dropping sptes from the rmap link because in such cases the 1125 * information in the iterator may not be valid. 1126 * 1127 * Returns sptep if found, NULL otherwise. 1128 */ 1129 static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head, 1130 struct rmap_iterator *iter) 1131 { 1132 u64 *sptep; 1133 1134 if (!rmap_head->val) 1135 return NULL; 1136 1137 if (!(rmap_head->val & 1)) { 1138 iter->desc = NULL; 1139 sptep = (u64 *)rmap_head->val; 1140 goto out; 1141 } 1142 1143 iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul); 1144 iter->pos = 0; 1145 sptep = iter->desc->sptes[iter->pos]; 1146 out: 1147 BUG_ON(!is_shadow_present_pte(*sptep)); 1148 return sptep; 1149 } 1150 1151 /* 1152 * Must be used with a valid iterator: e.g. after rmap_get_first(). 1153 * 1154 * Returns sptep if found, NULL otherwise. 1155 */ 1156 static u64 *rmap_get_next(struct rmap_iterator *iter) 1157 { 1158 u64 *sptep; 1159 1160 if (iter->desc) { 1161 if (iter->pos < PTE_LIST_EXT - 1) { 1162 ++iter->pos; 1163 sptep = iter->desc->sptes[iter->pos]; 1164 if (sptep) 1165 goto out; 1166 } 1167 1168 iter->desc = iter->desc->more; 1169 1170 if (iter->desc) { 1171 iter->pos = 0; 1172 /* desc->sptes[0] cannot be NULL */ 1173 sptep = iter->desc->sptes[iter->pos]; 1174 goto out; 1175 } 1176 } 1177 1178 return NULL; 1179 out: 1180 BUG_ON(!is_shadow_present_pte(*sptep)); 1181 return sptep; 1182 } 1183 1184 #define for_each_rmap_spte(_rmap_head_, _iter_, _spte_) \ 1185 for (_spte_ = rmap_get_first(_rmap_head_, _iter_); \ 1186 _spte_; _spte_ = rmap_get_next(_iter_)) 1187 1188 static void drop_spte(struct kvm *kvm, u64 *sptep) 1189 { 1190 u64 old_spte = mmu_spte_clear_track_bits(kvm, sptep); 1191 1192 if (is_shadow_present_pte(old_spte)) 1193 rmap_remove(kvm, sptep); 1194 } 1195 1196 1197 static bool __drop_large_spte(struct kvm *kvm, u64 *sptep) 1198 { 1199 if (is_large_pte(*sptep)) { 1200 WARN_ON(sptep_to_sp(sptep)->role.level == PG_LEVEL_4K); 1201 drop_spte(kvm, sptep); 1202 return true; 1203 } 1204 1205 return false; 1206 } 1207 1208 static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep) 1209 { 1210 if (__drop_large_spte(vcpu->kvm, sptep)) { 1211 struct kvm_mmu_page *sp = sptep_to_sp(sptep); 1212 1213 kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn, 1214 KVM_PAGES_PER_HPAGE(sp->role.level)); 1215 } 1216 } 1217 1218 /* 1219 * Write-protect on the specified @sptep, @pt_protect indicates whether 1220 * spte write-protection is caused by protecting shadow page table. 1221 * 1222 * Note: write protection is difference between dirty logging and spte 1223 * protection: 1224 * - for dirty logging, the spte can be set to writable at anytime if 1225 * its dirty bitmap is properly set. 1226 * - for spte protection, the spte can be writable only after unsync-ing 1227 * shadow page. 1228 * 1229 * Return true if tlb need be flushed. 1230 */ 1231 static bool spte_write_protect(u64 *sptep, bool pt_protect) 1232 { 1233 u64 spte = *sptep; 1234 1235 if (!is_writable_pte(spte) && 1236 !(pt_protect && spte_can_locklessly_be_made_writable(spte))) 1237 return false; 1238 1239 rmap_printk("spte %p %llx\n", sptep, *sptep); 1240 1241 if (pt_protect) 1242 spte &= ~shadow_mmu_writable_mask; 1243 spte = spte & ~PT_WRITABLE_MASK; 1244 1245 return mmu_spte_update(sptep, spte); 1246 } 1247 1248 static bool __rmap_write_protect(struct kvm *kvm, 1249 struct kvm_rmap_head *rmap_head, 1250 bool pt_protect) 1251 { 1252 u64 *sptep; 1253 struct rmap_iterator iter; 1254 bool flush = false; 1255 1256 for_each_rmap_spte(rmap_head, &iter, sptep) 1257 flush |= spte_write_protect(sptep, pt_protect); 1258 1259 return flush; 1260 } 1261 1262 static bool spte_clear_dirty(u64 *sptep) 1263 { 1264 u64 spte = *sptep; 1265 1266 rmap_printk("spte %p %llx\n", sptep, *sptep); 1267 1268 MMU_WARN_ON(!spte_ad_enabled(spte)); 1269 spte &= ~shadow_dirty_mask; 1270 return mmu_spte_update(sptep, spte); 1271 } 1272 1273 static bool spte_wrprot_for_clear_dirty(u64 *sptep) 1274 { 1275 bool was_writable = test_and_clear_bit(PT_WRITABLE_SHIFT, 1276 (unsigned long *)sptep); 1277 if (was_writable && !spte_ad_enabled(*sptep)) 1278 kvm_set_pfn_dirty(spte_to_pfn(*sptep)); 1279 1280 return was_writable; 1281 } 1282 1283 /* 1284 * Gets the GFN ready for another round of dirty logging by clearing the 1285 * - D bit on ad-enabled SPTEs, and 1286 * - W bit on ad-disabled SPTEs. 1287 * Returns true iff any D or W bits were cleared. 1288 */ 1289 static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head, 1290 const struct kvm_memory_slot *slot) 1291 { 1292 u64 *sptep; 1293 struct rmap_iterator iter; 1294 bool flush = false; 1295 1296 for_each_rmap_spte(rmap_head, &iter, sptep) 1297 if (spte_ad_need_write_protect(*sptep)) 1298 flush |= spte_wrprot_for_clear_dirty(sptep); 1299 else 1300 flush |= spte_clear_dirty(sptep); 1301 1302 return flush; 1303 } 1304 1305 /** 1306 * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages 1307 * @kvm: kvm instance 1308 * @slot: slot to protect 1309 * @gfn_offset: start of the BITS_PER_LONG pages we care about 1310 * @mask: indicates which pages we should protect 1311 * 1312 * Used when we do not need to care about huge page mappings. 1313 */ 1314 static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm, 1315 struct kvm_memory_slot *slot, 1316 gfn_t gfn_offset, unsigned long mask) 1317 { 1318 struct kvm_rmap_head *rmap_head; 1319 1320 if (is_tdp_mmu_enabled(kvm)) 1321 kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot, 1322 slot->base_gfn + gfn_offset, mask, true); 1323 1324 if (!kvm_memslots_have_rmaps(kvm)) 1325 return; 1326 1327 while (mask) { 1328 rmap_head = gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask), 1329 PG_LEVEL_4K, slot); 1330 __rmap_write_protect(kvm, rmap_head, false); 1331 1332 /* clear the first set bit */ 1333 mask &= mask - 1; 1334 } 1335 } 1336 1337 /** 1338 * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages, or write 1339 * protect the page if the D-bit isn't supported. 1340 * @kvm: kvm instance 1341 * @slot: slot to clear D-bit 1342 * @gfn_offset: start of the BITS_PER_LONG pages we care about 1343 * @mask: indicates which pages we should clear D-bit 1344 * 1345 * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap. 1346 */ 1347 static void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm, 1348 struct kvm_memory_slot *slot, 1349 gfn_t gfn_offset, unsigned long mask) 1350 { 1351 struct kvm_rmap_head *rmap_head; 1352 1353 if (is_tdp_mmu_enabled(kvm)) 1354 kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot, 1355 slot->base_gfn + gfn_offset, mask, false); 1356 1357 if (!kvm_memslots_have_rmaps(kvm)) 1358 return; 1359 1360 while (mask) { 1361 rmap_head = gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask), 1362 PG_LEVEL_4K, slot); 1363 __rmap_clear_dirty(kvm, rmap_head, slot); 1364 1365 /* clear the first set bit */ 1366 mask &= mask - 1; 1367 } 1368 } 1369 1370 /** 1371 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected 1372 * PT level pages. 1373 * 1374 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to 1375 * enable dirty logging for them. 1376 * 1377 * We need to care about huge page mappings: e.g. during dirty logging we may 1378 * have such mappings. 1379 */ 1380 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm, 1381 struct kvm_memory_slot *slot, 1382 gfn_t gfn_offset, unsigned long mask) 1383 { 1384 /* 1385 * Huge pages are NOT write protected when we start dirty logging in 1386 * initially-all-set mode; must write protect them here so that they 1387 * are split to 4K on the first write. 1388 * 1389 * The gfn_offset is guaranteed to be aligned to 64, but the base_gfn 1390 * of memslot has no such restriction, so the range can cross two large 1391 * pages. 1392 */ 1393 if (kvm_dirty_log_manual_protect_and_init_set(kvm)) { 1394 gfn_t start = slot->base_gfn + gfn_offset + __ffs(mask); 1395 gfn_t end = slot->base_gfn + gfn_offset + __fls(mask); 1396 1397 kvm_mmu_slot_gfn_write_protect(kvm, slot, start, PG_LEVEL_2M); 1398 1399 /* Cross two large pages? */ 1400 if (ALIGN(start << PAGE_SHIFT, PMD_SIZE) != 1401 ALIGN(end << PAGE_SHIFT, PMD_SIZE)) 1402 kvm_mmu_slot_gfn_write_protect(kvm, slot, end, 1403 PG_LEVEL_2M); 1404 } 1405 1406 /* Now handle 4K PTEs. */ 1407 if (kvm_x86_ops.cpu_dirty_log_size) 1408 kvm_mmu_clear_dirty_pt_masked(kvm, slot, gfn_offset, mask); 1409 else 1410 kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask); 1411 } 1412 1413 int kvm_cpu_dirty_log_size(void) 1414 { 1415 return kvm_x86_ops.cpu_dirty_log_size; 1416 } 1417 1418 bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm, 1419 struct kvm_memory_slot *slot, u64 gfn, 1420 int min_level) 1421 { 1422 struct kvm_rmap_head *rmap_head; 1423 int i; 1424 bool write_protected = false; 1425 1426 if (kvm_memslots_have_rmaps(kvm)) { 1427 for (i = min_level; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) { 1428 rmap_head = gfn_to_rmap(gfn, i, slot); 1429 write_protected |= __rmap_write_protect(kvm, rmap_head, true); 1430 } 1431 } 1432 1433 if (is_tdp_mmu_enabled(kvm)) 1434 write_protected |= 1435 kvm_tdp_mmu_write_protect_gfn(kvm, slot, gfn, min_level); 1436 1437 return write_protected; 1438 } 1439 1440 static bool rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn) 1441 { 1442 struct kvm_memory_slot *slot; 1443 1444 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 1445 return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn, PG_LEVEL_4K); 1446 } 1447 1448 static bool kvm_zap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head, 1449 const struct kvm_memory_slot *slot) 1450 { 1451 return pte_list_destroy(kvm, rmap_head); 1452 } 1453 1454 static bool kvm_unmap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head, 1455 struct kvm_memory_slot *slot, gfn_t gfn, int level, 1456 pte_t unused) 1457 { 1458 return kvm_zap_rmapp(kvm, rmap_head, slot); 1459 } 1460 1461 static bool kvm_set_pte_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head, 1462 struct kvm_memory_slot *slot, gfn_t gfn, int level, 1463 pte_t pte) 1464 { 1465 u64 *sptep; 1466 struct rmap_iterator iter; 1467 int need_flush = 0; 1468 u64 new_spte; 1469 kvm_pfn_t new_pfn; 1470 1471 WARN_ON(pte_huge(pte)); 1472 new_pfn = pte_pfn(pte); 1473 1474 restart: 1475 for_each_rmap_spte(rmap_head, &iter, sptep) { 1476 rmap_printk("spte %p %llx gfn %llx (%d)\n", 1477 sptep, *sptep, gfn, level); 1478 1479 need_flush = 1; 1480 1481 if (pte_write(pte)) { 1482 pte_list_remove(kvm, rmap_head, sptep); 1483 goto restart; 1484 } else { 1485 new_spte = kvm_mmu_changed_pte_notifier_make_spte( 1486 *sptep, new_pfn); 1487 1488 mmu_spte_clear_track_bits(kvm, sptep); 1489 mmu_spte_set(sptep, new_spte); 1490 } 1491 } 1492 1493 if (need_flush && kvm_available_flush_tlb_with_range()) { 1494 kvm_flush_remote_tlbs_with_address(kvm, gfn, 1); 1495 return 0; 1496 } 1497 1498 return need_flush; 1499 } 1500 1501 struct slot_rmap_walk_iterator { 1502 /* input fields. */ 1503 const struct kvm_memory_slot *slot; 1504 gfn_t start_gfn; 1505 gfn_t end_gfn; 1506 int start_level; 1507 int end_level; 1508 1509 /* output fields. */ 1510 gfn_t gfn; 1511 struct kvm_rmap_head *rmap; 1512 int level; 1513 1514 /* private field. */ 1515 struct kvm_rmap_head *end_rmap; 1516 }; 1517 1518 static void 1519 rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level) 1520 { 1521 iterator->level = level; 1522 iterator->gfn = iterator->start_gfn; 1523 iterator->rmap = gfn_to_rmap(iterator->gfn, level, iterator->slot); 1524 iterator->end_rmap = gfn_to_rmap(iterator->end_gfn, level, iterator->slot); 1525 } 1526 1527 static void 1528 slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator, 1529 const struct kvm_memory_slot *slot, int start_level, 1530 int end_level, gfn_t start_gfn, gfn_t end_gfn) 1531 { 1532 iterator->slot = slot; 1533 iterator->start_level = start_level; 1534 iterator->end_level = end_level; 1535 iterator->start_gfn = start_gfn; 1536 iterator->end_gfn = end_gfn; 1537 1538 rmap_walk_init_level(iterator, iterator->start_level); 1539 } 1540 1541 static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator) 1542 { 1543 return !!iterator->rmap; 1544 } 1545 1546 static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator) 1547 { 1548 if (++iterator->rmap <= iterator->end_rmap) { 1549 iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level)); 1550 return; 1551 } 1552 1553 if (++iterator->level > iterator->end_level) { 1554 iterator->rmap = NULL; 1555 return; 1556 } 1557 1558 rmap_walk_init_level(iterator, iterator->level); 1559 } 1560 1561 #define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_, \ 1562 _start_gfn, _end_gfn, _iter_) \ 1563 for (slot_rmap_walk_init(_iter_, _slot_, _start_level_, \ 1564 _end_level_, _start_gfn, _end_gfn); \ 1565 slot_rmap_walk_okay(_iter_); \ 1566 slot_rmap_walk_next(_iter_)) 1567 1568 typedef bool (*rmap_handler_t)(struct kvm *kvm, struct kvm_rmap_head *rmap_head, 1569 struct kvm_memory_slot *slot, gfn_t gfn, 1570 int level, pte_t pte); 1571 1572 static __always_inline bool kvm_handle_gfn_range(struct kvm *kvm, 1573 struct kvm_gfn_range *range, 1574 rmap_handler_t handler) 1575 { 1576 struct slot_rmap_walk_iterator iterator; 1577 bool ret = false; 1578 1579 for_each_slot_rmap_range(range->slot, PG_LEVEL_4K, KVM_MAX_HUGEPAGE_LEVEL, 1580 range->start, range->end - 1, &iterator) 1581 ret |= handler(kvm, iterator.rmap, range->slot, iterator.gfn, 1582 iterator.level, range->pte); 1583 1584 return ret; 1585 } 1586 1587 bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range) 1588 { 1589 bool flush = false; 1590 1591 if (kvm_memslots_have_rmaps(kvm)) 1592 flush = kvm_handle_gfn_range(kvm, range, kvm_unmap_rmapp); 1593 1594 if (is_tdp_mmu_enabled(kvm)) 1595 flush |= kvm_tdp_mmu_unmap_gfn_range(kvm, range, flush); 1596 1597 return flush; 1598 } 1599 1600 bool kvm_set_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range) 1601 { 1602 bool flush = false; 1603 1604 if (kvm_memslots_have_rmaps(kvm)) 1605 flush = kvm_handle_gfn_range(kvm, range, kvm_set_pte_rmapp); 1606 1607 if (is_tdp_mmu_enabled(kvm)) 1608 flush |= kvm_tdp_mmu_set_spte_gfn(kvm, range); 1609 1610 return flush; 1611 } 1612 1613 static bool kvm_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head, 1614 struct kvm_memory_slot *slot, gfn_t gfn, int level, 1615 pte_t unused) 1616 { 1617 u64 *sptep; 1618 struct rmap_iterator iter; 1619 int young = 0; 1620 1621 for_each_rmap_spte(rmap_head, &iter, sptep) 1622 young |= mmu_spte_age(sptep); 1623 1624 return young; 1625 } 1626 1627 static bool kvm_test_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head, 1628 struct kvm_memory_slot *slot, gfn_t gfn, 1629 int level, pte_t unused) 1630 { 1631 u64 *sptep; 1632 struct rmap_iterator iter; 1633 1634 for_each_rmap_spte(rmap_head, &iter, sptep) 1635 if (is_accessed_spte(*sptep)) 1636 return 1; 1637 return 0; 1638 } 1639 1640 #define RMAP_RECYCLE_THRESHOLD 1000 1641 1642 static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn) 1643 { 1644 struct kvm_memory_slot *slot; 1645 struct kvm_rmap_head *rmap_head; 1646 struct kvm_mmu_page *sp; 1647 1648 sp = sptep_to_sp(spte); 1649 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 1650 rmap_head = gfn_to_rmap(gfn, sp->role.level, slot); 1651 1652 kvm_unmap_rmapp(vcpu->kvm, rmap_head, NULL, gfn, sp->role.level, __pte(0)); 1653 kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn, 1654 KVM_PAGES_PER_HPAGE(sp->role.level)); 1655 } 1656 1657 bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range) 1658 { 1659 bool young = false; 1660 1661 if (kvm_memslots_have_rmaps(kvm)) 1662 young = kvm_handle_gfn_range(kvm, range, kvm_age_rmapp); 1663 1664 if (is_tdp_mmu_enabled(kvm)) 1665 young |= kvm_tdp_mmu_age_gfn_range(kvm, range); 1666 1667 return young; 1668 } 1669 1670 bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range) 1671 { 1672 bool young = false; 1673 1674 if (kvm_memslots_have_rmaps(kvm)) 1675 young = kvm_handle_gfn_range(kvm, range, kvm_test_age_rmapp); 1676 1677 if (is_tdp_mmu_enabled(kvm)) 1678 young |= kvm_tdp_mmu_test_age_gfn(kvm, range); 1679 1680 return young; 1681 } 1682 1683 #ifdef MMU_DEBUG 1684 static int is_empty_shadow_page(u64 *spt) 1685 { 1686 u64 *pos; 1687 u64 *end; 1688 1689 for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++) 1690 if (is_shadow_present_pte(*pos)) { 1691 printk(KERN_ERR "%s: %p %llx\n", __func__, 1692 pos, *pos); 1693 return 0; 1694 } 1695 return 1; 1696 } 1697 #endif 1698 1699 /* 1700 * This value is the sum of all of the kvm instances's 1701 * kvm->arch.n_used_mmu_pages values. We need a global, 1702 * aggregate version in order to make the slab shrinker 1703 * faster 1704 */ 1705 static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, long nr) 1706 { 1707 kvm->arch.n_used_mmu_pages += nr; 1708 percpu_counter_add(&kvm_total_used_mmu_pages, nr); 1709 } 1710 1711 static void kvm_mmu_free_page(struct kvm_mmu_page *sp) 1712 { 1713 MMU_WARN_ON(!is_empty_shadow_page(sp->spt)); 1714 hlist_del(&sp->hash_link); 1715 list_del(&sp->link); 1716 free_page((unsigned long)sp->spt); 1717 if (!sp->role.direct) 1718 free_page((unsigned long)sp->gfns); 1719 kmem_cache_free(mmu_page_header_cache, sp); 1720 } 1721 1722 static unsigned kvm_page_table_hashfn(gfn_t gfn) 1723 { 1724 return hash_64(gfn, KVM_MMU_HASH_SHIFT); 1725 } 1726 1727 static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu, 1728 struct kvm_mmu_page *sp, u64 *parent_pte) 1729 { 1730 if (!parent_pte) 1731 return; 1732 1733 pte_list_add(vcpu, parent_pte, &sp->parent_ptes); 1734 } 1735 1736 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp, 1737 u64 *parent_pte) 1738 { 1739 __pte_list_remove(parent_pte, &sp->parent_ptes); 1740 } 1741 1742 static void drop_parent_pte(struct kvm_mmu_page *sp, 1743 u64 *parent_pte) 1744 { 1745 mmu_page_remove_parent_pte(sp, parent_pte); 1746 mmu_spte_clear_no_track(parent_pte); 1747 } 1748 1749 static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu, int direct) 1750 { 1751 struct kvm_mmu_page *sp; 1752 1753 sp = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache); 1754 sp->spt = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_shadow_page_cache); 1755 if (!direct) 1756 sp->gfns = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_gfn_array_cache); 1757 set_page_private(virt_to_page(sp->spt), (unsigned long)sp); 1758 1759 /* 1760 * active_mmu_pages must be a FIFO list, as kvm_zap_obsolete_pages() 1761 * depends on valid pages being added to the head of the list. See 1762 * comments in kvm_zap_obsolete_pages(). 1763 */ 1764 sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen; 1765 list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages); 1766 kvm_mod_used_mmu_pages(vcpu->kvm, +1); 1767 return sp; 1768 } 1769 1770 static void mark_unsync(u64 *spte); 1771 static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp) 1772 { 1773 u64 *sptep; 1774 struct rmap_iterator iter; 1775 1776 for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) { 1777 mark_unsync(sptep); 1778 } 1779 } 1780 1781 static void mark_unsync(u64 *spte) 1782 { 1783 struct kvm_mmu_page *sp; 1784 unsigned int index; 1785 1786 sp = sptep_to_sp(spte); 1787 index = spte - sp->spt; 1788 if (__test_and_set_bit(index, sp->unsync_child_bitmap)) 1789 return; 1790 if (sp->unsync_children++) 1791 return; 1792 kvm_mmu_mark_parents_unsync(sp); 1793 } 1794 1795 static int nonpaging_sync_page(struct kvm_vcpu *vcpu, 1796 struct kvm_mmu_page *sp) 1797 { 1798 return 0; 1799 } 1800 1801 #define KVM_PAGE_ARRAY_NR 16 1802 1803 struct kvm_mmu_pages { 1804 struct mmu_page_and_offset { 1805 struct kvm_mmu_page *sp; 1806 unsigned int idx; 1807 } page[KVM_PAGE_ARRAY_NR]; 1808 unsigned int nr; 1809 }; 1810 1811 static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp, 1812 int idx) 1813 { 1814 int i; 1815 1816 if (sp->unsync) 1817 for (i=0; i < pvec->nr; i++) 1818 if (pvec->page[i].sp == sp) 1819 return 0; 1820 1821 pvec->page[pvec->nr].sp = sp; 1822 pvec->page[pvec->nr].idx = idx; 1823 pvec->nr++; 1824 return (pvec->nr == KVM_PAGE_ARRAY_NR); 1825 } 1826 1827 static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx) 1828 { 1829 --sp->unsync_children; 1830 WARN_ON((int)sp->unsync_children < 0); 1831 __clear_bit(idx, sp->unsync_child_bitmap); 1832 } 1833 1834 static int __mmu_unsync_walk(struct kvm_mmu_page *sp, 1835 struct kvm_mmu_pages *pvec) 1836 { 1837 int i, ret, nr_unsync_leaf = 0; 1838 1839 for_each_set_bit(i, sp->unsync_child_bitmap, 512) { 1840 struct kvm_mmu_page *child; 1841 u64 ent = sp->spt[i]; 1842 1843 if (!is_shadow_present_pte(ent) || is_large_pte(ent)) { 1844 clear_unsync_child_bit(sp, i); 1845 continue; 1846 } 1847 1848 child = to_shadow_page(ent & PT64_BASE_ADDR_MASK); 1849 1850 if (child->unsync_children) { 1851 if (mmu_pages_add(pvec, child, i)) 1852 return -ENOSPC; 1853 1854 ret = __mmu_unsync_walk(child, pvec); 1855 if (!ret) { 1856 clear_unsync_child_bit(sp, i); 1857 continue; 1858 } else if (ret > 0) { 1859 nr_unsync_leaf += ret; 1860 } else 1861 return ret; 1862 } else if (child->unsync) { 1863 nr_unsync_leaf++; 1864 if (mmu_pages_add(pvec, child, i)) 1865 return -ENOSPC; 1866 } else 1867 clear_unsync_child_bit(sp, i); 1868 } 1869 1870 return nr_unsync_leaf; 1871 } 1872 1873 #define INVALID_INDEX (-1) 1874 1875 static int mmu_unsync_walk(struct kvm_mmu_page *sp, 1876 struct kvm_mmu_pages *pvec) 1877 { 1878 pvec->nr = 0; 1879 if (!sp->unsync_children) 1880 return 0; 1881 1882 mmu_pages_add(pvec, sp, INVALID_INDEX); 1883 return __mmu_unsync_walk(sp, pvec); 1884 } 1885 1886 static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp) 1887 { 1888 WARN_ON(!sp->unsync); 1889 trace_kvm_mmu_sync_page(sp); 1890 sp->unsync = 0; 1891 --kvm->stat.mmu_unsync; 1892 } 1893 1894 static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp, 1895 struct list_head *invalid_list); 1896 static void kvm_mmu_commit_zap_page(struct kvm *kvm, 1897 struct list_head *invalid_list); 1898 1899 #define for_each_valid_sp(_kvm, _sp, _list) \ 1900 hlist_for_each_entry(_sp, _list, hash_link) \ 1901 if (is_obsolete_sp((_kvm), (_sp))) { \ 1902 } else 1903 1904 #define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn) \ 1905 for_each_valid_sp(_kvm, _sp, \ 1906 &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)]) \ 1907 if ((_sp)->gfn != (_gfn) || (_sp)->role.direct) {} else 1908 1909 static bool kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp, 1910 struct list_head *invalid_list) 1911 { 1912 if (vcpu->arch.mmu->sync_page(vcpu, sp) == 0) { 1913 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list); 1914 return false; 1915 } 1916 1917 return true; 1918 } 1919 1920 static bool kvm_mmu_remote_flush_or_zap(struct kvm *kvm, 1921 struct list_head *invalid_list, 1922 bool remote_flush) 1923 { 1924 if (!remote_flush && list_empty(invalid_list)) 1925 return false; 1926 1927 if (!list_empty(invalid_list)) 1928 kvm_mmu_commit_zap_page(kvm, invalid_list); 1929 else 1930 kvm_flush_remote_tlbs(kvm); 1931 return true; 1932 } 1933 1934 static void kvm_mmu_flush_or_zap(struct kvm_vcpu *vcpu, 1935 struct list_head *invalid_list, 1936 bool remote_flush, bool local_flush) 1937 { 1938 if (kvm_mmu_remote_flush_or_zap(vcpu->kvm, invalid_list, remote_flush)) 1939 return; 1940 1941 if (local_flush) 1942 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 1943 } 1944 1945 #ifdef CONFIG_KVM_MMU_AUDIT 1946 #include "mmu_audit.c" 1947 #else 1948 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { } 1949 static void mmu_audit_disable(void) { } 1950 #endif 1951 1952 static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp) 1953 { 1954 return sp->role.invalid || 1955 unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen); 1956 } 1957 1958 struct mmu_page_path { 1959 struct kvm_mmu_page *parent[PT64_ROOT_MAX_LEVEL]; 1960 unsigned int idx[PT64_ROOT_MAX_LEVEL]; 1961 }; 1962 1963 #define for_each_sp(pvec, sp, parents, i) \ 1964 for (i = mmu_pages_first(&pvec, &parents); \ 1965 i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \ 1966 i = mmu_pages_next(&pvec, &parents, i)) 1967 1968 static int mmu_pages_next(struct kvm_mmu_pages *pvec, 1969 struct mmu_page_path *parents, 1970 int i) 1971 { 1972 int n; 1973 1974 for (n = i+1; n < pvec->nr; n++) { 1975 struct kvm_mmu_page *sp = pvec->page[n].sp; 1976 unsigned idx = pvec->page[n].idx; 1977 int level = sp->role.level; 1978 1979 parents->idx[level-1] = idx; 1980 if (level == PG_LEVEL_4K) 1981 break; 1982 1983 parents->parent[level-2] = sp; 1984 } 1985 1986 return n; 1987 } 1988 1989 static int mmu_pages_first(struct kvm_mmu_pages *pvec, 1990 struct mmu_page_path *parents) 1991 { 1992 struct kvm_mmu_page *sp; 1993 int level; 1994 1995 if (pvec->nr == 0) 1996 return 0; 1997 1998 WARN_ON(pvec->page[0].idx != INVALID_INDEX); 1999 2000 sp = pvec->page[0].sp; 2001 level = sp->role.level; 2002 WARN_ON(level == PG_LEVEL_4K); 2003 2004 parents->parent[level-2] = sp; 2005 2006 /* Also set up a sentinel. Further entries in pvec are all 2007 * children of sp, so this element is never overwritten. 2008 */ 2009 parents->parent[level-1] = NULL; 2010 return mmu_pages_next(pvec, parents, 0); 2011 } 2012 2013 static void mmu_pages_clear_parents(struct mmu_page_path *parents) 2014 { 2015 struct kvm_mmu_page *sp; 2016 unsigned int level = 0; 2017 2018 do { 2019 unsigned int idx = parents->idx[level]; 2020 sp = parents->parent[level]; 2021 if (!sp) 2022 return; 2023 2024 WARN_ON(idx == INVALID_INDEX); 2025 clear_unsync_child_bit(sp, idx); 2026 level++; 2027 } while (!sp->unsync_children); 2028 } 2029 2030 static void mmu_sync_children(struct kvm_vcpu *vcpu, 2031 struct kvm_mmu_page *parent) 2032 { 2033 int i; 2034 struct kvm_mmu_page *sp; 2035 struct mmu_page_path parents; 2036 struct kvm_mmu_pages pages; 2037 LIST_HEAD(invalid_list); 2038 bool flush = false; 2039 2040 while (mmu_unsync_walk(parent, &pages)) { 2041 bool protected = false; 2042 2043 for_each_sp(pages, sp, parents, i) 2044 protected |= rmap_write_protect(vcpu, sp->gfn); 2045 2046 if (protected) { 2047 kvm_flush_remote_tlbs(vcpu->kvm); 2048 flush = false; 2049 } 2050 2051 for_each_sp(pages, sp, parents, i) { 2052 kvm_unlink_unsync_page(vcpu->kvm, sp); 2053 flush |= kvm_sync_page(vcpu, sp, &invalid_list); 2054 mmu_pages_clear_parents(&parents); 2055 } 2056 if (need_resched() || rwlock_needbreak(&vcpu->kvm->mmu_lock)) { 2057 kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush); 2058 cond_resched_rwlock_write(&vcpu->kvm->mmu_lock); 2059 flush = false; 2060 } 2061 } 2062 2063 kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush); 2064 } 2065 2066 static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp) 2067 { 2068 atomic_set(&sp->write_flooding_count, 0); 2069 } 2070 2071 static void clear_sp_write_flooding_count(u64 *spte) 2072 { 2073 __clear_sp_write_flooding_count(sptep_to_sp(spte)); 2074 } 2075 2076 static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu, 2077 gfn_t gfn, 2078 gva_t gaddr, 2079 unsigned level, 2080 int direct, 2081 unsigned int access) 2082 { 2083 bool direct_mmu = vcpu->arch.mmu->direct_map; 2084 union kvm_mmu_page_role role; 2085 struct hlist_head *sp_list; 2086 unsigned quadrant; 2087 struct kvm_mmu_page *sp; 2088 int collisions = 0; 2089 LIST_HEAD(invalid_list); 2090 2091 role = vcpu->arch.mmu->mmu_role.base; 2092 role.level = level; 2093 role.direct = direct; 2094 if (role.direct) 2095 role.gpte_is_8_bytes = true; 2096 role.access = access; 2097 if (!direct_mmu && vcpu->arch.mmu->root_level <= PT32_ROOT_LEVEL) { 2098 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level)); 2099 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1; 2100 role.quadrant = quadrant; 2101 } 2102 2103 sp_list = &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]; 2104 for_each_valid_sp(vcpu->kvm, sp, sp_list) { 2105 if (sp->gfn != gfn) { 2106 collisions++; 2107 continue; 2108 } 2109 2110 if (sp->role.word != role.word) { 2111 /* 2112 * If the guest is creating an upper-level page, zap 2113 * unsync pages for the same gfn. While it's possible 2114 * the guest is using recursive page tables, in all 2115 * likelihood the guest has stopped using the unsync 2116 * page and is installing a completely unrelated page. 2117 * Unsync pages must not be left as is, because the new 2118 * upper-level page will be write-protected. 2119 */ 2120 if (level > PG_LEVEL_4K && sp->unsync) 2121 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, 2122 &invalid_list); 2123 continue; 2124 } 2125 2126 if (direct_mmu) 2127 goto trace_get_page; 2128 2129 if (sp->unsync) { 2130 /* 2131 * The page is good, but is stale. kvm_sync_page does 2132 * get the latest guest state, but (unlike mmu_unsync_children) 2133 * it doesn't write-protect the page or mark it synchronized! 2134 * This way the validity of the mapping is ensured, but the 2135 * overhead of write protection is not incurred until the 2136 * guest invalidates the TLB mapping. This allows multiple 2137 * SPs for a single gfn to be unsync. 2138 * 2139 * If the sync fails, the page is zapped. If so, break 2140 * in order to rebuild it. 2141 */ 2142 if (!kvm_sync_page(vcpu, sp, &invalid_list)) 2143 break; 2144 2145 WARN_ON(!list_empty(&invalid_list)); 2146 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 2147 } 2148 2149 if (sp->unsync_children) 2150 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu); 2151 2152 __clear_sp_write_flooding_count(sp); 2153 2154 trace_get_page: 2155 trace_kvm_mmu_get_page(sp, false); 2156 goto out; 2157 } 2158 2159 ++vcpu->kvm->stat.mmu_cache_miss; 2160 2161 sp = kvm_mmu_alloc_page(vcpu, direct); 2162 2163 sp->gfn = gfn; 2164 sp->role = role; 2165 hlist_add_head(&sp->hash_link, sp_list); 2166 if (!direct) { 2167 account_shadowed(vcpu->kvm, sp); 2168 if (level == PG_LEVEL_4K && rmap_write_protect(vcpu, gfn)) 2169 kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn, 1); 2170 } 2171 trace_kvm_mmu_get_page(sp, true); 2172 out: 2173 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list); 2174 2175 if (collisions > vcpu->kvm->stat.max_mmu_page_hash_collisions) 2176 vcpu->kvm->stat.max_mmu_page_hash_collisions = collisions; 2177 return sp; 2178 } 2179 2180 static void shadow_walk_init_using_root(struct kvm_shadow_walk_iterator *iterator, 2181 struct kvm_vcpu *vcpu, hpa_t root, 2182 u64 addr) 2183 { 2184 iterator->addr = addr; 2185 iterator->shadow_addr = root; 2186 iterator->level = vcpu->arch.mmu->shadow_root_level; 2187 2188 if (iterator->level == PT64_ROOT_4LEVEL && 2189 vcpu->arch.mmu->root_level < PT64_ROOT_4LEVEL && 2190 !vcpu->arch.mmu->direct_map) 2191 --iterator->level; 2192 2193 if (iterator->level == PT32E_ROOT_LEVEL) { 2194 /* 2195 * prev_root is currently only used for 64-bit hosts. So only 2196 * the active root_hpa is valid here. 2197 */ 2198 BUG_ON(root != vcpu->arch.mmu->root_hpa); 2199 2200 iterator->shadow_addr 2201 = vcpu->arch.mmu->pae_root[(addr >> 30) & 3]; 2202 iterator->shadow_addr &= PT64_BASE_ADDR_MASK; 2203 --iterator->level; 2204 if (!iterator->shadow_addr) 2205 iterator->level = 0; 2206 } 2207 } 2208 2209 static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator, 2210 struct kvm_vcpu *vcpu, u64 addr) 2211 { 2212 shadow_walk_init_using_root(iterator, vcpu, vcpu->arch.mmu->root_hpa, 2213 addr); 2214 } 2215 2216 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator) 2217 { 2218 if (iterator->level < PG_LEVEL_4K) 2219 return false; 2220 2221 iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level); 2222 iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index; 2223 return true; 2224 } 2225 2226 static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator, 2227 u64 spte) 2228 { 2229 if (is_last_spte(spte, iterator->level)) { 2230 iterator->level = 0; 2231 return; 2232 } 2233 2234 iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK; 2235 --iterator->level; 2236 } 2237 2238 static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator) 2239 { 2240 __shadow_walk_next(iterator, *iterator->sptep); 2241 } 2242 2243 static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep, 2244 struct kvm_mmu_page *sp) 2245 { 2246 u64 spte; 2247 2248 BUILD_BUG_ON(VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK); 2249 2250 spte = make_nonleaf_spte(sp->spt, sp_ad_disabled(sp)); 2251 2252 mmu_spte_set(sptep, spte); 2253 2254 mmu_page_add_parent_pte(vcpu, sp, sptep); 2255 2256 if (sp->unsync_children || sp->unsync) 2257 mark_unsync(sptep); 2258 } 2259 2260 static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep, 2261 unsigned direct_access) 2262 { 2263 if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) { 2264 struct kvm_mmu_page *child; 2265 2266 /* 2267 * For the direct sp, if the guest pte's dirty bit 2268 * changed form clean to dirty, it will corrupt the 2269 * sp's access: allow writable in the read-only sp, 2270 * so we should update the spte at this point to get 2271 * a new sp with the correct access. 2272 */ 2273 child = to_shadow_page(*sptep & PT64_BASE_ADDR_MASK); 2274 if (child->role.access == direct_access) 2275 return; 2276 2277 drop_parent_pte(child, sptep); 2278 kvm_flush_remote_tlbs_with_address(vcpu->kvm, child->gfn, 1); 2279 } 2280 } 2281 2282 /* Returns the number of zapped non-leaf child shadow pages. */ 2283 static int mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp, 2284 u64 *spte, struct list_head *invalid_list) 2285 { 2286 u64 pte; 2287 struct kvm_mmu_page *child; 2288 2289 pte = *spte; 2290 if (is_shadow_present_pte(pte)) { 2291 if (is_last_spte(pte, sp->role.level)) { 2292 drop_spte(kvm, spte); 2293 } else { 2294 child = to_shadow_page(pte & PT64_BASE_ADDR_MASK); 2295 drop_parent_pte(child, spte); 2296 2297 /* 2298 * Recursively zap nested TDP SPs, parentless SPs are 2299 * unlikely to be used again in the near future. This 2300 * avoids retaining a large number of stale nested SPs. 2301 */ 2302 if (tdp_enabled && invalid_list && 2303 child->role.guest_mode && !child->parent_ptes.val) 2304 return kvm_mmu_prepare_zap_page(kvm, child, 2305 invalid_list); 2306 } 2307 } else if (is_mmio_spte(pte)) { 2308 mmu_spte_clear_no_track(spte); 2309 } 2310 return 0; 2311 } 2312 2313 static int kvm_mmu_page_unlink_children(struct kvm *kvm, 2314 struct kvm_mmu_page *sp, 2315 struct list_head *invalid_list) 2316 { 2317 int zapped = 0; 2318 unsigned i; 2319 2320 for (i = 0; i < PT64_ENT_PER_PAGE; ++i) 2321 zapped += mmu_page_zap_pte(kvm, sp, sp->spt + i, invalid_list); 2322 2323 return zapped; 2324 } 2325 2326 static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp) 2327 { 2328 u64 *sptep; 2329 struct rmap_iterator iter; 2330 2331 while ((sptep = rmap_get_first(&sp->parent_ptes, &iter))) 2332 drop_parent_pte(sp, sptep); 2333 } 2334 2335 static int mmu_zap_unsync_children(struct kvm *kvm, 2336 struct kvm_mmu_page *parent, 2337 struct list_head *invalid_list) 2338 { 2339 int i, zapped = 0; 2340 struct mmu_page_path parents; 2341 struct kvm_mmu_pages pages; 2342 2343 if (parent->role.level == PG_LEVEL_4K) 2344 return 0; 2345 2346 while (mmu_unsync_walk(parent, &pages)) { 2347 struct kvm_mmu_page *sp; 2348 2349 for_each_sp(pages, sp, parents, i) { 2350 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list); 2351 mmu_pages_clear_parents(&parents); 2352 zapped++; 2353 } 2354 } 2355 2356 return zapped; 2357 } 2358 2359 static bool __kvm_mmu_prepare_zap_page(struct kvm *kvm, 2360 struct kvm_mmu_page *sp, 2361 struct list_head *invalid_list, 2362 int *nr_zapped) 2363 { 2364 bool list_unstable; 2365 2366 trace_kvm_mmu_prepare_zap_page(sp); 2367 ++kvm->stat.mmu_shadow_zapped; 2368 *nr_zapped = mmu_zap_unsync_children(kvm, sp, invalid_list); 2369 *nr_zapped += kvm_mmu_page_unlink_children(kvm, sp, invalid_list); 2370 kvm_mmu_unlink_parents(kvm, sp); 2371 2372 /* Zapping children means active_mmu_pages has become unstable. */ 2373 list_unstable = *nr_zapped; 2374 2375 if (!sp->role.invalid && !sp->role.direct) 2376 unaccount_shadowed(kvm, sp); 2377 2378 if (sp->unsync) 2379 kvm_unlink_unsync_page(kvm, sp); 2380 if (!sp->root_count) { 2381 /* Count self */ 2382 (*nr_zapped)++; 2383 2384 /* 2385 * Already invalid pages (previously active roots) are not on 2386 * the active page list. See list_del() in the "else" case of 2387 * !sp->root_count. 2388 */ 2389 if (sp->role.invalid) 2390 list_add(&sp->link, invalid_list); 2391 else 2392 list_move(&sp->link, invalid_list); 2393 kvm_mod_used_mmu_pages(kvm, -1); 2394 } else { 2395 /* 2396 * Remove the active root from the active page list, the root 2397 * will be explicitly freed when the root_count hits zero. 2398 */ 2399 list_del(&sp->link); 2400 2401 /* 2402 * Obsolete pages cannot be used on any vCPUs, see the comment 2403 * in kvm_mmu_zap_all_fast(). Note, is_obsolete_sp() also 2404 * treats invalid shadow pages as being obsolete. 2405 */ 2406 if (!is_obsolete_sp(kvm, sp)) 2407 kvm_reload_remote_mmus(kvm); 2408 } 2409 2410 if (sp->lpage_disallowed) 2411 unaccount_huge_nx_page(kvm, sp); 2412 2413 sp->role.invalid = 1; 2414 return list_unstable; 2415 } 2416 2417 static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp, 2418 struct list_head *invalid_list) 2419 { 2420 int nr_zapped; 2421 2422 __kvm_mmu_prepare_zap_page(kvm, sp, invalid_list, &nr_zapped); 2423 return nr_zapped; 2424 } 2425 2426 static void kvm_mmu_commit_zap_page(struct kvm *kvm, 2427 struct list_head *invalid_list) 2428 { 2429 struct kvm_mmu_page *sp, *nsp; 2430 2431 if (list_empty(invalid_list)) 2432 return; 2433 2434 /* 2435 * We need to make sure everyone sees our modifications to 2436 * the page tables and see changes to vcpu->mode here. The barrier 2437 * in the kvm_flush_remote_tlbs() achieves this. This pairs 2438 * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end. 2439 * 2440 * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit 2441 * guest mode and/or lockless shadow page table walks. 2442 */ 2443 kvm_flush_remote_tlbs(kvm); 2444 2445 list_for_each_entry_safe(sp, nsp, invalid_list, link) { 2446 WARN_ON(!sp->role.invalid || sp->root_count); 2447 kvm_mmu_free_page(sp); 2448 } 2449 } 2450 2451 static unsigned long kvm_mmu_zap_oldest_mmu_pages(struct kvm *kvm, 2452 unsigned long nr_to_zap) 2453 { 2454 unsigned long total_zapped = 0; 2455 struct kvm_mmu_page *sp, *tmp; 2456 LIST_HEAD(invalid_list); 2457 bool unstable; 2458 int nr_zapped; 2459 2460 if (list_empty(&kvm->arch.active_mmu_pages)) 2461 return 0; 2462 2463 restart: 2464 list_for_each_entry_safe_reverse(sp, tmp, &kvm->arch.active_mmu_pages, link) { 2465 /* 2466 * Don't zap active root pages, the page itself can't be freed 2467 * and zapping it will just force vCPUs to realloc and reload. 2468 */ 2469 if (sp->root_count) 2470 continue; 2471 2472 unstable = __kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list, 2473 &nr_zapped); 2474 total_zapped += nr_zapped; 2475 if (total_zapped >= nr_to_zap) 2476 break; 2477 2478 if (unstable) 2479 goto restart; 2480 } 2481 2482 kvm_mmu_commit_zap_page(kvm, &invalid_list); 2483 2484 kvm->stat.mmu_recycled += total_zapped; 2485 return total_zapped; 2486 } 2487 2488 static inline unsigned long kvm_mmu_available_pages(struct kvm *kvm) 2489 { 2490 if (kvm->arch.n_max_mmu_pages > kvm->arch.n_used_mmu_pages) 2491 return kvm->arch.n_max_mmu_pages - 2492 kvm->arch.n_used_mmu_pages; 2493 2494 return 0; 2495 } 2496 2497 static int make_mmu_pages_available(struct kvm_vcpu *vcpu) 2498 { 2499 unsigned long avail = kvm_mmu_available_pages(vcpu->kvm); 2500 2501 if (likely(avail >= KVM_MIN_FREE_MMU_PAGES)) 2502 return 0; 2503 2504 kvm_mmu_zap_oldest_mmu_pages(vcpu->kvm, KVM_REFILL_PAGES - avail); 2505 2506 /* 2507 * Note, this check is intentionally soft, it only guarantees that one 2508 * page is available, while the caller may end up allocating as many as 2509 * four pages, e.g. for PAE roots or for 5-level paging. Temporarily 2510 * exceeding the (arbitrary by default) limit will not harm the host, 2511 * being too aggressive may unnecessarily kill the guest, and getting an 2512 * exact count is far more trouble than it's worth, especially in the 2513 * page fault paths. 2514 */ 2515 if (!kvm_mmu_available_pages(vcpu->kvm)) 2516 return -ENOSPC; 2517 return 0; 2518 } 2519 2520 /* 2521 * Changing the number of mmu pages allocated to the vm 2522 * Note: if goal_nr_mmu_pages is too small, you will get dead lock 2523 */ 2524 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long goal_nr_mmu_pages) 2525 { 2526 write_lock(&kvm->mmu_lock); 2527 2528 if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) { 2529 kvm_mmu_zap_oldest_mmu_pages(kvm, kvm->arch.n_used_mmu_pages - 2530 goal_nr_mmu_pages); 2531 2532 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages; 2533 } 2534 2535 kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages; 2536 2537 write_unlock(&kvm->mmu_lock); 2538 } 2539 2540 int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn) 2541 { 2542 struct kvm_mmu_page *sp; 2543 LIST_HEAD(invalid_list); 2544 int r; 2545 2546 pgprintk("%s: looking for gfn %llx\n", __func__, gfn); 2547 r = 0; 2548 write_lock(&kvm->mmu_lock); 2549 for_each_gfn_indirect_valid_sp(kvm, sp, gfn) { 2550 pgprintk("%s: gfn %llx role %x\n", __func__, gfn, 2551 sp->role.word); 2552 r = 1; 2553 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list); 2554 } 2555 kvm_mmu_commit_zap_page(kvm, &invalid_list); 2556 write_unlock(&kvm->mmu_lock); 2557 2558 return r; 2559 } 2560 2561 static int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva) 2562 { 2563 gpa_t gpa; 2564 int r; 2565 2566 if (vcpu->arch.mmu->direct_map) 2567 return 0; 2568 2569 gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL); 2570 2571 r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT); 2572 2573 return r; 2574 } 2575 2576 static void kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp) 2577 { 2578 trace_kvm_mmu_unsync_page(sp); 2579 ++vcpu->kvm->stat.mmu_unsync; 2580 sp->unsync = 1; 2581 2582 kvm_mmu_mark_parents_unsync(sp); 2583 } 2584 2585 /* 2586 * Attempt to unsync any shadow pages that can be reached by the specified gfn, 2587 * KVM is creating a writable mapping for said gfn. Returns 0 if all pages 2588 * were marked unsync (or if there is no shadow page), -EPERM if the SPTE must 2589 * be write-protected. 2590 */ 2591 int mmu_try_to_unsync_pages(struct kvm_vcpu *vcpu, gfn_t gfn, bool can_unsync) 2592 { 2593 struct kvm_mmu_page *sp; 2594 bool locked = false; 2595 2596 /* 2597 * Force write-protection if the page is being tracked. Note, the page 2598 * track machinery is used to write-protect upper-level shadow pages, 2599 * i.e. this guards the role.level == 4K assertion below! 2600 */ 2601 if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE)) 2602 return -EPERM; 2603 2604 /* 2605 * The page is not write-tracked, mark existing shadow pages unsync 2606 * unless KVM is synchronizing an unsync SP (can_unsync = false). In 2607 * that case, KVM must complete emulation of the guest TLB flush before 2608 * allowing shadow pages to become unsync (writable by the guest). 2609 */ 2610 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) { 2611 if (!can_unsync) 2612 return -EPERM; 2613 2614 if (sp->unsync) 2615 continue; 2616 2617 /* 2618 * TDP MMU page faults require an additional spinlock as they 2619 * run with mmu_lock held for read, not write, and the unsync 2620 * logic is not thread safe. Take the spinklock regardless of 2621 * the MMU type to avoid extra conditionals/parameters, there's 2622 * no meaningful penalty if mmu_lock is held for write. 2623 */ 2624 if (!locked) { 2625 locked = true; 2626 spin_lock(&vcpu->kvm->arch.mmu_unsync_pages_lock); 2627 2628 /* 2629 * Recheck after taking the spinlock, a different vCPU 2630 * may have since marked the page unsync. A false 2631 * positive on the unprotected check above is not 2632 * possible as clearing sp->unsync _must_ hold mmu_lock 2633 * for write, i.e. unsync cannot transition from 0->1 2634 * while this CPU holds mmu_lock for read (or write). 2635 */ 2636 if (READ_ONCE(sp->unsync)) 2637 continue; 2638 } 2639 2640 WARN_ON(sp->role.level != PG_LEVEL_4K); 2641 kvm_unsync_page(vcpu, sp); 2642 } 2643 if (locked) 2644 spin_unlock(&vcpu->kvm->arch.mmu_unsync_pages_lock); 2645 2646 /* 2647 * We need to ensure that the marking of unsync pages is visible 2648 * before the SPTE is updated to allow writes because 2649 * kvm_mmu_sync_roots() checks the unsync flags without holding 2650 * the MMU lock and so can race with this. If the SPTE was updated 2651 * before the page had been marked as unsync-ed, something like the 2652 * following could happen: 2653 * 2654 * CPU 1 CPU 2 2655 * --------------------------------------------------------------------- 2656 * 1.2 Host updates SPTE 2657 * to be writable 2658 * 2.1 Guest writes a GPTE for GVA X. 2659 * (GPTE being in the guest page table shadowed 2660 * by the SP from CPU 1.) 2661 * This reads SPTE during the page table walk. 2662 * Since SPTE.W is read as 1, there is no 2663 * fault. 2664 * 2665 * 2.2 Guest issues TLB flush. 2666 * That causes a VM Exit. 2667 * 2668 * 2.3 Walking of unsync pages sees sp->unsync is 2669 * false and skips the page. 2670 * 2671 * 2.4 Guest accesses GVA X. 2672 * Since the mapping in the SP was not updated, 2673 * so the old mapping for GVA X incorrectly 2674 * gets used. 2675 * 1.1 Host marks SP 2676 * as unsync 2677 * (sp->unsync = true) 2678 * 2679 * The write barrier below ensures that 1.1 happens before 1.2 and thus 2680 * the situation in 2.4 does not arise. The implicit barrier in 2.2 2681 * pairs with this write barrier. 2682 */ 2683 smp_wmb(); 2684 2685 return 0; 2686 } 2687 2688 static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep, 2689 unsigned int pte_access, int level, 2690 gfn_t gfn, kvm_pfn_t pfn, bool speculative, 2691 bool can_unsync, bool host_writable) 2692 { 2693 u64 spte; 2694 struct kvm_mmu_page *sp; 2695 int ret; 2696 2697 sp = sptep_to_sp(sptep); 2698 2699 ret = make_spte(vcpu, pte_access, level, gfn, pfn, *sptep, speculative, 2700 can_unsync, host_writable, sp_ad_disabled(sp), &spte); 2701 2702 if (spte & PT_WRITABLE_MASK) 2703 kvm_vcpu_mark_page_dirty(vcpu, gfn); 2704 2705 if (*sptep == spte) 2706 ret |= SET_SPTE_SPURIOUS; 2707 else if (mmu_spte_update(sptep, spte)) 2708 ret |= SET_SPTE_NEED_REMOTE_TLB_FLUSH; 2709 return ret; 2710 } 2711 2712 static int mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep, 2713 unsigned int pte_access, bool write_fault, int level, 2714 gfn_t gfn, kvm_pfn_t pfn, bool speculative, 2715 bool host_writable) 2716 { 2717 int was_rmapped = 0; 2718 int rmap_count; 2719 int set_spte_ret; 2720 int ret = RET_PF_FIXED; 2721 bool flush = false; 2722 2723 pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__, 2724 *sptep, write_fault, gfn); 2725 2726 if (unlikely(is_noslot_pfn(pfn))) { 2727 mark_mmio_spte(vcpu, sptep, gfn, pte_access); 2728 return RET_PF_EMULATE; 2729 } 2730 2731 if (is_shadow_present_pte(*sptep)) { 2732 /* 2733 * If we overwrite a PTE page pointer with a 2MB PMD, unlink 2734 * the parent of the now unreachable PTE. 2735 */ 2736 if (level > PG_LEVEL_4K && !is_large_pte(*sptep)) { 2737 struct kvm_mmu_page *child; 2738 u64 pte = *sptep; 2739 2740 child = to_shadow_page(pte & PT64_BASE_ADDR_MASK); 2741 drop_parent_pte(child, sptep); 2742 flush = true; 2743 } else if (pfn != spte_to_pfn(*sptep)) { 2744 pgprintk("hfn old %llx new %llx\n", 2745 spte_to_pfn(*sptep), pfn); 2746 drop_spte(vcpu->kvm, sptep); 2747 flush = true; 2748 } else 2749 was_rmapped = 1; 2750 } 2751 2752 set_spte_ret = set_spte(vcpu, sptep, pte_access, level, gfn, pfn, 2753 speculative, true, host_writable); 2754 if (set_spte_ret & SET_SPTE_WRITE_PROTECTED_PT) { 2755 if (write_fault) 2756 ret = RET_PF_EMULATE; 2757 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 2758 } 2759 2760 if (set_spte_ret & SET_SPTE_NEED_REMOTE_TLB_FLUSH || flush) 2761 kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn, 2762 KVM_PAGES_PER_HPAGE(level)); 2763 2764 /* 2765 * The fault is fully spurious if and only if the new SPTE and old SPTE 2766 * are identical, and emulation is not required. 2767 */ 2768 if ((set_spte_ret & SET_SPTE_SPURIOUS) && ret == RET_PF_FIXED) { 2769 WARN_ON_ONCE(!was_rmapped); 2770 return RET_PF_SPURIOUS; 2771 } 2772 2773 pgprintk("%s: setting spte %llx\n", __func__, *sptep); 2774 trace_kvm_mmu_set_spte(level, gfn, sptep); 2775 2776 if (!was_rmapped) { 2777 kvm_update_page_stats(vcpu->kvm, level, 1); 2778 rmap_count = rmap_add(vcpu, sptep, gfn); 2779 if (rmap_count > RMAP_RECYCLE_THRESHOLD) 2780 rmap_recycle(vcpu, sptep, gfn); 2781 } 2782 2783 return ret; 2784 } 2785 2786 static kvm_pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn, 2787 bool no_dirty_log) 2788 { 2789 struct kvm_memory_slot *slot; 2790 2791 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log); 2792 if (!slot) 2793 return KVM_PFN_ERR_FAULT; 2794 2795 return gfn_to_pfn_memslot_atomic(slot, gfn); 2796 } 2797 2798 static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu, 2799 struct kvm_mmu_page *sp, 2800 u64 *start, u64 *end) 2801 { 2802 struct page *pages[PTE_PREFETCH_NUM]; 2803 struct kvm_memory_slot *slot; 2804 unsigned int access = sp->role.access; 2805 int i, ret; 2806 gfn_t gfn; 2807 2808 gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt); 2809 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK); 2810 if (!slot) 2811 return -1; 2812 2813 ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start); 2814 if (ret <= 0) 2815 return -1; 2816 2817 for (i = 0; i < ret; i++, gfn++, start++) { 2818 mmu_set_spte(vcpu, start, access, false, sp->role.level, gfn, 2819 page_to_pfn(pages[i]), true, true); 2820 put_page(pages[i]); 2821 } 2822 2823 return 0; 2824 } 2825 2826 static void __direct_pte_prefetch(struct kvm_vcpu *vcpu, 2827 struct kvm_mmu_page *sp, u64 *sptep) 2828 { 2829 u64 *spte, *start = NULL; 2830 int i; 2831 2832 WARN_ON(!sp->role.direct); 2833 2834 i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1); 2835 spte = sp->spt + i; 2836 2837 for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) { 2838 if (is_shadow_present_pte(*spte) || spte == sptep) { 2839 if (!start) 2840 continue; 2841 if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0) 2842 break; 2843 start = NULL; 2844 } else if (!start) 2845 start = spte; 2846 } 2847 } 2848 2849 static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep) 2850 { 2851 struct kvm_mmu_page *sp; 2852 2853 sp = sptep_to_sp(sptep); 2854 2855 /* 2856 * Without accessed bits, there's no way to distinguish between 2857 * actually accessed translations and prefetched, so disable pte 2858 * prefetch if accessed bits aren't available. 2859 */ 2860 if (sp_ad_disabled(sp)) 2861 return; 2862 2863 if (sp->role.level > PG_LEVEL_4K) 2864 return; 2865 2866 /* 2867 * If addresses are being invalidated, skip prefetching to avoid 2868 * accidentally prefetching those addresses. 2869 */ 2870 if (unlikely(vcpu->kvm->mmu_notifier_count)) 2871 return; 2872 2873 __direct_pte_prefetch(vcpu, sp, sptep); 2874 } 2875 2876 static int host_pfn_mapping_level(struct kvm *kvm, gfn_t gfn, kvm_pfn_t pfn, 2877 const struct kvm_memory_slot *slot) 2878 { 2879 unsigned long hva; 2880 pte_t *pte; 2881 int level; 2882 2883 if (!PageCompound(pfn_to_page(pfn)) && !kvm_is_zone_device_pfn(pfn)) 2884 return PG_LEVEL_4K; 2885 2886 /* 2887 * Note, using the already-retrieved memslot and __gfn_to_hva_memslot() 2888 * is not solely for performance, it's also necessary to avoid the 2889 * "writable" check in __gfn_to_hva_many(), which will always fail on 2890 * read-only memslots due to gfn_to_hva() assuming writes. Earlier 2891 * page fault steps have already verified the guest isn't writing a 2892 * read-only memslot. 2893 */ 2894 hva = __gfn_to_hva_memslot(slot, gfn); 2895 2896 pte = lookup_address_in_mm(kvm->mm, hva, &level); 2897 if (unlikely(!pte)) 2898 return PG_LEVEL_4K; 2899 2900 return level; 2901 } 2902 2903 int kvm_mmu_max_mapping_level(struct kvm *kvm, 2904 const struct kvm_memory_slot *slot, gfn_t gfn, 2905 kvm_pfn_t pfn, int max_level) 2906 { 2907 struct kvm_lpage_info *linfo; 2908 int host_level; 2909 2910 max_level = min(max_level, max_huge_page_level); 2911 for ( ; max_level > PG_LEVEL_4K; max_level--) { 2912 linfo = lpage_info_slot(gfn, slot, max_level); 2913 if (!linfo->disallow_lpage) 2914 break; 2915 } 2916 2917 if (max_level == PG_LEVEL_4K) 2918 return PG_LEVEL_4K; 2919 2920 host_level = host_pfn_mapping_level(kvm, gfn, pfn, slot); 2921 return min(host_level, max_level); 2922 } 2923 2924 int kvm_mmu_hugepage_adjust(struct kvm_vcpu *vcpu, gfn_t gfn, 2925 int max_level, kvm_pfn_t *pfnp, 2926 bool huge_page_disallowed, int *req_level) 2927 { 2928 struct kvm_memory_slot *slot; 2929 kvm_pfn_t pfn = *pfnp; 2930 kvm_pfn_t mask; 2931 int level; 2932 2933 *req_level = PG_LEVEL_4K; 2934 2935 if (unlikely(max_level == PG_LEVEL_4K)) 2936 return PG_LEVEL_4K; 2937 2938 if (is_error_noslot_pfn(pfn) || kvm_is_reserved_pfn(pfn)) 2939 return PG_LEVEL_4K; 2940 2941 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, true); 2942 if (!slot) 2943 return PG_LEVEL_4K; 2944 2945 /* 2946 * Enforce the iTLB multihit workaround after capturing the requested 2947 * level, which will be used to do precise, accurate accounting. 2948 */ 2949 *req_level = level = kvm_mmu_max_mapping_level(vcpu->kvm, slot, gfn, pfn, max_level); 2950 if (level == PG_LEVEL_4K || huge_page_disallowed) 2951 return PG_LEVEL_4K; 2952 2953 /* 2954 * mmu_notifier_retry() was successful and mmu_lock is held, so 2955 * the pmd can't be split from under us. 2956 */ 2957 mask = KVM_PAGES_PER_HPAGE(level) - 1; 2958 VM_BUG_ON((gfn & mask) != (pfn & mask)); 2959 *pfnp = pfn & ~mask; 2960 2961 return level; 2962 } 2963 2964 void disallowed_hugepage_adjust(u64 spte, gfn_t gfn, int cur_level, 2965 kvm_pfn_t *pfnp, int *goal_levelp) 2966 { 2967 int level = *goal_levelp; 2968 2969 if (cur_level == level && level > PG_LEVEL_4K && 2970 is_shadow_present_pte(spte) && 2971 !is_large_pte(spte)) { 2972 /* 2973 * A small SPTE exists for this pfn, but FNAME(fetch) 2974 * and __direct_map would like to create a large PTE 2975 * instead: just force them to go down another level, 2976 * patching back for them into pfn the next 9 bits of 2977 * the address. 2978 */ 2979 u64 page_mask = KVM_PAGES_PER_HPAGE(level) - 2980 KVM_PAGES_PER_HPAGE(level - 1); 2981 *pfnp |= gfn & page_mask; 2982 (*goal_levelp)--; 2983 } 2984 } 2985 2986 static int __direct_map(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code, 2987 int map_writable, int max_level, kvm_pfn_t pfn, 2988 bool prefault, bool is_tdp) 2989 { 2990 bool nx_huge_page_workaround_enabled = is_nx_huge_page_enabled(); 2991 bool write = error_code & PFERR_WRITE_MASK; 2992 bool exec = error_code & PFERR_FETCH_MASK; 2993 bool huge_page_disallowed = exec && nx_huge_page_workaround_enabled; 2994 struct kvm_shadow_walk_iterator it; 2995 struct kvm_mmu_page *sp; 2996 int level, req_level, ret; 2997 gfn_t gfn = gpa >> PAGE_SHIFT; 2998 gfn_t base_gfn = gfn; 2999 3000 level = kvm_mmu_hugepage_adjust(vcpu, gfn, max_level, &pfn, 3001 huge_page_disallowed, &req_level); 3002 3003 trace_kvm_mmu_spte_requested(gpa, level, pfn); 3004 for_each_shadow_entry(vcpu, gpa, it) { 3005 /* 3006 * We cannot overwrite existing page tables with an NX 3007 * large page, as the leaf could be executable. 3008 */ 3009 if (nx_huge_page_workaround_enabled) 3010 disallowed_hugepage_adjust(*it.sptep, gfn, it.level, 3011 &pfn, &level); 3012 3013 base_gfn = gfn & ~(KVM_PAGES_PER_HPAGE(it.level) - 1); 3014 if (it.level == level) 3015 break; 3016 3017 drop_large_spte(vcpu, it.sptep); 3018 if (is_shadow_present_pte(*it.sptep)) 3019 continue; 3020 3021 sp = kvm_mmu_get_page(vcpu, base_gfn, it.addr, 3022 it.level - 1, true, ACC_ALL); 3023 3024 link_shadow_page(vcpu, it.sptep, sp); 3025 if (is_tdp && huge_page_disallowed && 3026 req_level >= it.level) 3027 account_huge_nx_page(vcpu->kvm, sp); 3028 } 3029 3030 ret = mmu_set_spte(vcpu, it.sptep, ACC_ALL, 3031 write, level, base_gfn, pfn, prefault, 3032 map_writable); 3033 if (ret == RET_PF_SPURIOUS) 3034 return ret; 3035 3036 direct_pte_prefetch(vcpu, it.sptep); 3037 ++vcpu->stat.pf_fixed; 3038 return ret; 3039 } 3040 3041 static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk) 3042 { 3043 send_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, PAGE_SHIFT, tsk); 3044 } 3045 3046 static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, kvm_pfn_t pfn) 3047 { 3048 /* 3049 * Do not cache the mmio info caused by writing the readonly gfn 3050 * into the spte otherwise read access on readonly gfn also can 3051 * caused mmio page fault and treat it as mmio access. 3052 */ 3053 if (pfn == KVM_PFN_ERR_RO_FAULT) 3054 return RET_PF_EMULATE; 3055 3056 if (pfn == KVM_PFN_ERR_HWPOISON) { 3057 kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current); 3058 return RET_PF_RETRY; 3059 } 3060 3061 return -EFAULT; 3062 } 3063 3064 static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn, 3065 kvm_pfn_t pfn, unsigned int access, 3066 int *ret_val) 3067 { 3068 /* The pfn is invalid, report the error! */ 3069 if (unlikely(is_error_pfn(pfn))) { 3070 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn); 3071 return true; 3072 } 3073 3074 if (unlikely(is_noslot_pfn(pfn))) { 3075 vcpu_cache_mmio_info(vcpu, gva, gfn, 3076 access & shadow_mmio_access_mask); 3077 /* 3078 * If MMIO caching is disabled, emulate immediately without 3079 * touching the shadow page tables as attempting to install an 3080 * MMIO SPTE will just be an expensive nop. 3081 */ 3082 if (unlikely(!shadow_mmio_value)) { 3083 *ret_val = RET_PF_EMULATE; 3084 return true; 3085 } 3086 } 3087 3088 return false; 3089 } 3090 3091 static bool page_fault_can_be_fast(u32 error_code) 3092 { 3093 /* 3094 * Do not fix the mmio spte with invalid generation number which 3095 * need to be updated by slow page fault path. 3096 */ 3097 if (unlikely(error_code & PFERR_RSVD_MASK)) 3098 return false; 3099 3100 /* See if the page fault is due to an NX violation */ 3101 if (unlikely(((error_code & (PFERR_FETCH_MASK | PFERR_PRESENT_MASK)) 3102 == (PFERR_FETCH_MASK | PFERR_PRESENT_MASK)))) 3103 return false; 3104 3105 /* 3106 * #PF can be fast if: 3107 * 1. The shadow page table entry is not present, which could mean that 3108 * the fault is potentially caused by access tracking (if enabled). 3109 * 2. The shadow page table entry is present and the fault 3110 * is caused by write-protect, that means we just need change the W 3111 * bit of the spte which can be done out of mmu-lock. 3112 * 3113 * However, if access tracking is disabled we know that a non-present 3114 * page must be a genuine page fault where we have to create a new SPTE. 3115 * So, if access tracking is disabled, we return true only for write 3116 * accesses to a present page. 3117 */ 3118 3119 return shadow_acc_track_mask != 0 || 3120 ((error_code & (PFERR_WRITE_MASK | PFERR_PRESENT_MASK)) 3121 == (PFERR_WRITE_MASK | PFERR_PRESENT_MASK)); 3122 } 3123 3124 /* 3125 * Returns true if the SPTE was fixed successfully. Otherwise, 3126 * someone else modified the SPTE from its original value. 3127 */ 3128 static bool 3129 fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp, 3130 u64 *sptep, u64 old_spte, u64 new_spte) 3131 { 3132 gfn_t gfn; 3133 3134 WARN_ON(!sp->role.direct); 3135 3136 /* 3137 * Theoretically we could also set dirty bit (and flush TLB) here in 3138 * order to eliminate unnecessary PML logging. See comments in 3139 * set_spte. But fast_page_fault is very unlikely to happen with PML 3140 * enabled, so we do not do this. This might result in the same GPA 3141 * to be logged in PML buffer again when the write really happens, and 3142 * eventually to be called by mark_page_dirty twice. But it's also no 3143 * harm. This also avoids the TLB flush needed after setting dirty bit 3144 * so non-PML cases won't be impacted. 3145 * 3146 * Compare with set_spte where instead shadow_dirty_mask is set. 3147 */ 3148 if (cmpxchg64(sptep, old_spte, new_spte) != old_spte) 3149 return false; 3150 3151 if (is_writable_pte(new_spte) && !is_writable_pte(old_spte)) { 3152 /* 3153 * The gfn of direct spte is stable since it is 3154 * calculated by sp->gfn. 3155 */ 3156 gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt); 3157 kvm_vcpu_mark_page_dirty(vcpu, gfn); 3158 } 3159 3160 return true; 3161 } 3162 3163 static bool is_access_allowed(u32 fault_err_code, u64 spte) 3164 { 3165 if (fault_err_code & PFERR_FETCH_MASK) 3166 return is_executable_pte(spte); 3167 3168 if (fault_err_code & PFERR_WRITE_MASK) 3169 return is_writable_pte(spte); 3170 3171 /* Fault was on Read access */ 3172 return spte & PT_PRESENT_MASK; 3173 } 3174 3175 /* 3176 * Returns the last level spte pointer of the shadow page walk for the given 3177 * gpa, and sets *spte to the spte value. This spte may be non-preset. If no 3178 * walk could be performed, returns NULL and *spte does not contain valid data. 3179 * 3180 * Contract: 3181 * - Must be called between walk_shadow_page_lockless_{begin,end}. 3182 * - The returned sptep must not be used after walk_shadow_page_lockless_end. 3183 */ 3184 static u64 *fast_pf_get_last_sptep(struct kvm_vcpu *vcpu, gpa_t gpa, u64 *spte) 3185 { 3186 struct kvm_shadow_walk_iterator iterator; 3187 u64 old_spte; 3188 u64 *sptep = NULL; 3189 3190 for_each_shadow_entry_lockless(vcpu, gpa, iterator, old_spte) { 3191 sptep = iterator.sptep; 3192 *spte = old_spte; 3193 3194 if (!is_shadow_present_pte(old_spte)) 3195 break; 3196 } 3197 3198 return sptep; 3199 } 3200 3201 /* 3202 * Returns one of RET_PF_INVALID, RET_PF_FIXED or RET_PF_SPURIOUS. 3203 */ 3204 static int fast_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code) 3205 { 3206 struct kvm_mmu_page *sp; 3207 int ret = RET_PF_INVALID; 3208 u64 spte = 0ull; 3209 u64 *sptep = NULL; 3210 uint retry_count = 0; 3211 3212 if (!page_fault_can_be_fast(error_code)) 3213 return ret; 3214 3215 walk_shadow_page_lockless_begin(vcpu); 3216 3217 do { 3218 u64 new_spte; 3219 3220 if (is_tdp_mmu(vcpu->arch.mmu)) 3221 sptep = kvm_tdp_mmu_fast_pf_get_last_sptep(vcpu, gpa, &spte); 3222 else 3223 sptep = fast_pf_get_last_sptep(vcpu, gpa, &spte); 3224 3225 if (!is_shadow_present_pte(spte)) 3226 break; 3227 3228 sp = sptep_to_sp(sptep); 3229 if (!is_last_spte(spte, sp->role.level)) 3230 break; 3231 3232 /* 3233 * Check whether the memory access that caused the fault would 3234 * still cause it if it were to be performed right now. If not, 3235 * then this is a spurious fault caused by TLB lazily flushed, 3236 * or some other CPU has already fixed the PTE after the 3237 * current CPU took the fault. 3238 * 3239 * Need not check the access of upper level table entries since 3240 * they are always ACC_ALL. 3241 */ 3242 if (is_access_allowed(error_code, spte)) { 3243 ret = RET_PF_SPURIOUS; 3244 break; 3245 } 3246 3247 new_spte = spte; 3248 3249 if (is_access_track_spte(spte)) 3250 new_spte = restore_acc_track_spte(new_spte); 3251 3252 /* 3253 * Currently, to simplify the code, write-protection can 3254 * be removed in the fast path only if the SPTE was 3255 * write-protected for dirty-logging or access tracking. 3256 */ 3257 if ((error_code & PFERR_WRITE_MASK) && 3258 spte_can_locklessly_be_made_writable(spte)) { 3259 new_spte |= PT_WRITABLE_MASK; 3260 3261 /* 3262 * Do not fix write-permission on the large spte. Since 3263 * we only dirty the first page into the dirty-bitmap in 3264 * fast_pf_fix_direct_spte(), other pages are missed 3265 * if its slot has dirty logging enabled. 3266 * 3267 * Instead, we let the slow page fault path create a 3268 * normal spte to fix the access. 3269 * 3270 * See the comments in kvm_arch_commit_memory_region(). 3271 */ 3272 if (sp->role.level > PG_LEVEL_4K) 3273 break; 3274 } 3275 3276 /* Verify that the fault can be handled in the fast path */ 3277 if (new_spte == spte || 3278 !is_access_allowed(error_code, new_spte)) 3279 break; 3280 3281 /* 3282 * Currently, fast page fault only works for direct mapping 3283 * since the gfn is not stable for indirect shadow page. See 3284 * Documentation/virt/kvm/locking.rst to get more detail. 3285 */ 3286 if (fast_pf_fix_direct_spte(vcpu, sp, sptep, spte, new_spte)) { 3287 ret = RET_PF_FIXED; 3288 break; 3289 } 3290 3291 if (++retry_count > 4) { 3292 printk_once(KERN_WARNING 3293 "kvm: Fast #PF retrying more than 4 times.\n"); 3294 break; 3295 } 3296 3297 } while (true); 3298 3299 trace_fast_page_fault(vcpu, gpa, error_code, sptep, spte, ret); 3300 walk_shadow_page_lockless_end(vcpu); 3301 3302 return ret; 3303 } 3304 3305 static void mmu_free_root_page(struct kvm *kvm, hpa_t *root_hpa, 3306 struct list_head *invalid_list) 3307 { 3308 struct kvm_mmu_page *sp; 3309 3310 if (!VALID_PAGE(*root_hpa)) 3311 return; 3312 3313 sp = to_shadow_page(*root_hpa & PT64_BASE_ADDR_MASK); 3314 3315 if (is_tdp_mmu_page(sp)) 3316 kvm_tdp_mmu_put_root(kvm, sp, false); 3317 else if (!--sp->root_count && sp->role.invalid) 3318 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list); 3319 3320 *root_hpa = INVALID_PAGE; 3321 } 3322 3323 /* roots_to_free must be some combination of the KVM_MMU_ROOT_* flags */ 3324 void kvm_mmu_free_roots(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, 3325 ulong roots_to_free) 3326 { 3327 struct kvm *kvm = vcpu->kvm; 3328 int i; 3329 LIST_HEAD(invalid_list); 3330 bool free_active_root = roots_to_free & KVM_MMU_ROOT_CURRENT; 3331 3332 BUILD_BUG_ON(KVM_MMU_NUM_PREV_ROOTS >= BITS_PER_LONG); 3333 3334 /* Before acquiring the MMU lock, see if we need to do any real work. */ 3335 if (!(free_active_root && VALID_PAGE(mmu->root_hpa))) { 3336 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 3337 if ((roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) && 3338 VALID_PAGE(mmu->prev_roots[i].hpa)) 3339 break; 3340 3341 if (i == KVM_MMU_NUM_PREV_ROOTS) 3342 return; 3343 } 3344 3345 write_lock(&kvm->mmu_lock); 3346 3347 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 3348 if (roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) 3349 mmu_free_root_page(kvm, &mmu->prev_roots[i].hpa, 3350 &invalid_list); 3351 3352 if (free_active_root) { 3353 if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL && 3354 (mmu->root_level >= PT64_ROOT_4LEVEL || mmu->direct_map)) { 3355 mmu_free_root_page(kvm, &mmu->root_hpa, &invalid_list); 3356 } else if (mmu->pae_root) { 3357 for (i = 0; i < 4; ++i) { 3358 if (!IS_VALID_PAE_ROOT(mmu->pae_root[i])) 3359 continue; 3360 3361 mmu_free_root_page(kvm, &mmu->pae_root[i], 3362 &invalid_list); 3363 mmu->pae_root[i] = INVALID_PAE_ROOT; 3364 } 3365 } 3366 mmu->root_hpa = INVALID_PAGE; 3367 mmu->root_pgd = 0; 3368 } 3369 3370 kvm_mmu_commit_zap_page(kvm, &invalid_list); 3371 write_unlock(&kvm->mmu_lock); 3372 } 3373 EXPORT_SYMBOL_GPL(kvm_mmu_free_roots); 3374 3375 void kvm_mmu_free_guest_mode_roots(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu) 3376 { 3377 unsigned long roots_to_free = 0; 3378 hpa_t root_hpa; 3379 int i; 3380 3381 /* 3382 * This should not be called while L2 is active, L2 can't invalidate 3383 * _only_ its own roots, e.g. INVVPID unconditionally exits. 3384 */ 3385 WARN_ON_ONCE(mmu->mmu_role.base.guest_mode); 3386 3387 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) { 3388 root_hpa = mmu->prev_roots[i].hpa; 3389 if (!VALID_PAGE(root_hpa)) 3390 continue; 3391 3392 if (!to_shadow_page(root_hpa) || 3393 to_shadow_page(root_hpa)->role.guest_mode) 3394 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i); 3395 } 3396 3397 kvm_mmu_free_roots(vcpu, mmu, roots_to_free); 3398 } 3399 EXPORT_SYMBOL_GPL(kvm_mmu_free_guest_mode_roots); 3400 3401 3402 static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn) 3403 { 3404 int ret = 0; 3405 3406 if (!kvm_vcpu_is_visible_gfn(vcpu, root_gfn)) { 3407 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 3408 ret = 1; 3409 } 3410 3411 return ret; 3412 } 3413 3414 static hpa_t mmu_alloc_root(struct kvm_vcpu *vcpu, gfn_t gfn, gva_t gva, 3415 u8 level, bool direct) 3416 { 3417 struct kvm_mmu_page *sp; 3418 3419 sp = kvm_mmu_get_page(vcpu, gfn, gva, level, direct, ACC_ALL); 3420 ++sp->root_count; 3421 3422 return __pa(sp->spt); 3423 } 3424 3425 static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu) 3426 { 3427 struct kvm_mmu *mmu = vcpu->arch.mmu; 3428 u8 shadow_root_level = mmu->shadow_root_level; 3429 hpa_t root; 3430 unsigned i; 3431 int r; 3432 3433 write_lock(&vcpu->kvm->mmu_lock); 3434 r = make_mmu_pages_available(vcpu); 3435 if (r < 0) 3436 goto out_unlock; 3437 3438 if (is_tdp_mmu_enabled(vcpu->kvm)) { 3439 root = kvm_tdp_mmu_get_vcpu_root_hpa(vcpu); 3440 mmu->root_hpa = root; 3441 } else if (shadow_root_level >= PT64_ROOT_4LEVEL) { 3442 root = mmu_alloc_root(vcpu, 0, 0, shadow_root_level, true); 3443 mmu->root_hpa = root; 3444 } else if (shadow_root_level == PT32E_ROOT_LEVEL) { 3445 if (WARN_ON_ONCE(!mmu->pae_root)) { 3446 r = -EIO; 3447 goto out_unlock; 3448 } 3449 3450 for (i = 0; i < 4; ++i) { 3451 WARN_ON_ONCE(IS_VALID_PAE_ROOT(mmu->pae_root[i])); 3452 3453 root = mmu_alloc_root(vcpu, i << (30 - PAGE_SHIFT), 3454 i << 30, PT32_ROOT_LEVEL, true); 3455 mmu->pae_root[i] = root | PT_PRESENT_MASK | 3456 shadow_me_mask; 3457 } 3458 mmu->root_hpa = __pa(mmu->pae_root); 3459 } else { 3460 WARN_ONCE(1, "Bad TDP root level = %d\n", shadow_root_level); 3461 r = -EIO; 3462 goto out_unlock; 3463 } 3464 3465 /* root_pgd is ignored for direct MMUs. */ 3466 mmu->root_pgd = 0; 3467 out_unlock: 3468 write_unlock(&vcpu->kvm->mmu_lock); 3469 return r; 3470 } 3471 3472 static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu) 3473 { 3474 struct kvm_mmu *mmu = vcpu->arch.mmu; 3475 u64 pdptrs[4], pm_mask; 3476 gfn_t root_gfn, root_pgd; 3477 hpa_t root; 3478 unsigned i; 3479 int r; 3480 3481 root_pgd = mmu->get_guest_pgd(vcpu); 3482 root_gfn = root_pgd >> PAGE_SHIFT; 3483 3484 if (mmu_check_root(vcpu, root_gfn)) 3485 return 1; 3486 3487 /* 3488 * On SVM, reading PDPTRs might access guest memory, which might fault 3489 * and thus might sleep. Grab the PDPTRs before acquiring mmu_lock. 3490 */ 3491 if (mmu->root_level == PT32E_ROOT_LEVEL) { 3492 for (i = 0; i < 4; ++i) { 3493 pdptrs[i] = mmu->get_pdptr(vcpu, i); 3494 if (!(pdptrs[i] & PT_PRESENT_MASK)) 3495 continue; 3496 3497 if (mmu_check_root(vcpu, pdptrs[i] >> PAGE_SHIFT)) 3498 return 1; 3499 } 3500 } 3501 3502 r = alloc_all_memslots_rmaps(vcpu->kvm); 3503 if (r) 3504 return r; 3505 3506 write_lock(&vcpu->kvm->mmu_lock); 3507 r = make_mmu_pages_available(vcpu); 3508 if (r < 0) 3509 goto out_unlock; 3510 3511 /* 3512 * Do we shadow a long mode page table? If so we need to 3513 * write-protect the guests page table root. 3514 */ 3515 if (mmu->root_level >= PT64_ROOT_4LEVEL) { 3516 root = mmu_alloc_root(vcpu, root_gfn, 0, 3517 mmu->shadow_root_level, false); 3518 mmu->root_hpa = root; 3519 goto set_root_pgd; 3520 } 3521 3522 if (WARN_ON_ONCE(!mmu->pae_root)) { 3523 r = -EIO; 3524 goto out_unlock; 3525 } 3526 3527 /* 3528 * We shadow a 32 bit page table. This may be a legacy 2-level 3529 * or a PAE 3-level page table. In either case we need to be aware that 3530 * the shadow page table may be a PAE or a long mode page table. 3531 */ 3532 pm_mask = PT_PRESENT_MASK | shadow_me_mask; 3533 if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL) { 3534 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK; 3535 3536 if (WARN_ON_ONCE(!mmu->pml4_root)) { 3537 r = -EIO; 3538 goto out_unlock; 3539 } 3540 mmu->pml4_root[0] = __pa(mmu->pae_root) | pm_mask; 3541 3542 if (mmu->shadow_root_level == PT64_ROOT_5LEVEL) { 3543 if (WARN_ON_ONCE(!mmu->pml5_root)) { 3544 r = -EIO; 3545 goto out_unlock; 3546 } 3547 mmu->pml5_root[0] = __pa(mmu->pml4_root) | pm_mask; 3548 } 3549 } 3550 3551 for (i = 0; i < 4; ++i) { 3552 WARN_ON_ONCE(IS_VALID_PAE_ROOT(mmu->pae_root[i])); 3553 3554 if (mmu->root_level == PT32E_ROOT_LEVEL) { 3555 if (!(pdptrs[i] & PT_PRESENT_MASK)) { 3556 mmu->pae_root[i] = INVALID_PAE_ROOT; 3557 continue; 3558 } 3559 root_gfn = pdptrs[i] >> PAGE_SHIFT; 3560 } 3561 3562 root = mmu_alloc_root(vcpu, root_gfn, i << 30, 3563 PT32_ROOT_LEVEL, false); 3564 mmu->pae_root[i] = root | pm_mask; 3565 } 3566 3567 if (mmu->shadow_root_level == PT64_ROOT_5LEVEL) 3568 mmu->root_hpa = __pa(mmu->pml5_root); 3569 else if (mmu->shadow_root_level == PT64_ROOT_4LEVEL) 3570 mmu->root_hpa = __pa(mmu->pml4_root); 3571 else 3572 mmu->root_hpa = __pa(mmu->pae_root); 3573 3574 set_root_pgd: 3575 mmu->root_pgd = root_pgd; 3576 out_unlock: 3577 write_unlock(&vcpu->kvm->mmu_lock); 3578 3579 return 0; 3580 } 3581 3582 static int mmu_alloc_special_roots(struct kvm_vcpu *vcpu) 3583 { 3584 struct kvm_mmu *mmu = vcpu->arch.mmu; 3585 bool need_pml5 = mmu->shadow_root_level > PT64_ROOT_4LEVEL; 3586 u64 *pml5_root = NULL; 3587 u64 *pml4_root = NULL; 3588 u64 *pae_root; 3589 3590 /* 3591 * When shadowing 32-bit or PAE NPT with 64-bit NPT, the PML4 and PDP 3592 * tables are allocated and initialized at root creation as there is no 3593 * equivalent level in the guest's NPT to shadow. Allocate the tables 3594 * on demand, as running a 32-bit L1 VMM on 64-bit KVM is very rare. 3595 */ 3596 if (mmu->direct_map || mmu->root_level >= PT64_ROOT_4LEVEL || 3597 mmu->shadow_root_level < PT64_ROOT_4LEVEL) 3598 return 0; 3599 3600 /* 3601 * NPT, the only paging mode that uses this horror, uses a fixed number 3602 * of levels for the shadow page tables, e.g. all MMUs are 4-level or 3603 * all MMus are 5-level. Thus, this can safely require that pml5_root 3604 * is allocated if the other roots are valid and pml5 is needed, as any 3605 * prior MMU would also have required pml5. 3606 */ 3607 if (mmu->pae_root && mmu->pml4_root && (!need_pml5 || mmu->pml5_root)) 3608 return 0; 3609 3610 /* 3611 * The special roots should always be allocated in concert. Yell and 3612 * bail if KVM ends up in a state where only one of the roots is valid. 3613 */ 3614 if (WARN_ON_ONCE(!tdp_enabled || mmu->pae_root || mmu->pml4_root || 3615 (need_pml5 && mmu->pml5_root))) 3616 return -EIO; 3617 3618 /* 3619 * Unlike 32-bit NPT, the PDP table doesn't need to be in low mem, and 3620 * doesn't need to be decrypted. 3621 */ 3622 pae_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT); 3623 if (!pae_root) 3624 return -ENOMEM; 3625 3626 #ifdef CONFIG_X86_64 3627 pml4_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT); 3628 if (!pml4_root) 3629 goto err_pml4; 3630 3631 if (need_pml5) { 3632 pml5_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT); 3633 if (!pml5_root) 3634 goto err_pml5; 3635 } 3636 #endif 3637 3638 mmu->pae_root = pae_root; 3639 mmu->pml4_root = pml4_root; 3640 mmu->pml5_root = pml5_root; 3641 3642 return 0; 3643 3644 #ifdef CONFIG_X86_64 3645 err_pml5: 3646 free_page((unsigned long)pml4_root); 3647 err_pml4: 3648 free_page((unsigned long)pae_root); 3649 return -ENOMEM; 3650 #endif 3651 } 3652 3653 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu) 3654 { 3655 int i; 3656 struct kvm_mmu_page *sp; 3657 3658 if (vcpu->arch.mmu->direct_map) 3659 return; 3660 3661 if (!VALID_PAGE(vcpu->arch.mmu->root_hpa)) 3662 return; 3663 3664 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY); 3665 3666 if (vcpu->arch.mmu->root_level >= PT64_ROOT_4LEVEL) { 3667 hpa_t root = vcpu->arch.mmu->root_hpa; 3668 sp = to_shadow_page(root); 3669 3670 /* 3671 * Even if another CPU was marking the SP as unsync-ed 3672 * simultaneously, any guest page table changes are not 3673 * guaranteed to be visible anyway until this VCPU issues a TLB 3674 * flush strictly after those changes are made. We only need to 3675 * ensure that the other CPU sets these flags before any actual 3676 * changes to the page tables are made. The comments in 3677 * mmu_try_to_unsync_pages() describe what could go wrong if 3678 * this requirement isn't satisfied. 3679 */ 3680 if (!smp_load_acquire(&sp->unsync) && 3681 !smp_load_acquire(&sp->unsync_children)) 3682 return; 3683 3684 write_lock(&vcpu->kvm->mmu_lock); 3685 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC); 3686 3687 mmu_sync_children(vcpu, sp); 3688 3689 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC); 3690 write_unlock(&vcpu->kvm->mmu_lock); 3691 return; 3692 } 3693 3694 write_lock(&vcpu->kvm->mmu_lock); 3695 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC); 3696 3697 for (i = 0; i < 4; ++i) { 3698 hpa_t root = vcpu->arch.mmu->pae_root[i]; 3699 3700 if (IS_VALID_PAE_ROOT(root)) { 3701 root &= PT64_BASE_ADDR_MASK; 3702 sp = to_shadow_page(root); 3703 mmu_sync_children(vcpu, sp); 3704 } 3705 } 3706 3707 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC); 3708 write_unlock(&vcpu->kvm->mmu_lock); 3709 } 3710 3711 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gpa_t vaddr, 3712 u32 access, struct x86_exception *exception) 3713 { 3714 if (exception) 3715 exception->error_code = 0; 3716 return vaddr; 3717 } 3718 3719 static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gpa_t vaddr, 3720 u32 access, 3721 struct x86_exception *exception) 3722 { 3723 if (exception) 3724 exception->error_code = 0; 3725 return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception); 3726 } 3727 3728 static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct) 3729 { 3730 /* 3731 * A nested guest cannot use the MMIO cache if it is using nested 3732 * page tables, because cr2 is a nGPA while the cache stores GPAs. 3733 */ 3734 if (mmu_is_nested(vcpu)) 3735 return false; 3736 3737 if (direct) 3738 return vcpu_match_mmio_gpa(vcpu, addr); 3739 3740 return vcpu_match_mmio_gva(vcpu, addr); 3741 } 3742 3743 /* 3744 * Return the level of the lowest level SPTE added to sptes. 3745 * That SPTE may be non-present. 3746 * 3747 * Must be called between walk_shadow_page_lockless_{begin,end}. 3748 */ 3749 static int get_walk(struct kvm_vcpu *vcpu, u64 addr, u64 *sptes, int *root_level) 3750 { 3751 struct kvm_shadow_walk_iterator iterator; 3752 int leaf = -1; 3753 u64 spte; 3754 3755 for (shadow_walk_init(&iterator, vcpu, addr), 3756 *root_level = iterator.level; 3757 shadow_walk_okay(&iterator); 3758 __shadow_walk_next(&iterator, spte)) { 3759 leaf = iterator.level; 3760 spte = mmu_spte_get_lockless(iterator.sptep); 3761 3762 sptes[leaf] = spte; 3763 3764 if (!is_shadow_present_pte(spte)) 3765 break; 3766 } 3767 3768 return leaf; 3769 } 3770 3771 /* return true if reserved bit(s) are detected on a valid, non-MMIO SPTE. */ 3772 static bool get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep) 3773 { 3774 u64 sptes[PT64_ROOT_MAX_LEVEL + 1]; 3775 struct rsvd_bits_validate *rsvd_check; 3776 int root, leaf, level; 3777 bool reserved = false; 3778 3779 walk_shadow_page_lockless_begin(vcpu); 3780 3781 if (is_tdp_mmu(vcpu->arch.mmu)) 3782 leaf = kvm_tdp_mmu_get_walk(vcpu, addr, sptes, &root); 3783 else 3784 leaf = get_walk(vcpu, addr, sptes, &root); 3785 3786 walk_shadow_page_lockless_end(vcpu); 3787 3788 if (unlikely(leaf < 0)) { 3789 *sptep = 0ull; 3790 return reserved; 3791 } 3792 3793 *sptep = sptes[leaf]; 3794 3795 /* 3796 * Skip reserved bits checks on the terminal leaf if it's not a valid 3797 * SPTE. Note, this also (intentionally) skips MMIO SPTEs, which, by 3798 * design, always have reserved bits set. The purpose of the checks is 3799 * to detect reserved bits on non-MMIO SPTEs. i.e. buggy SPTEs. 3800 */ 3801 if (!is_shadow_present_pte(sptes[leaf])) 3802 leaf++; 3803 3804 rsvd_check = &vcpu->arch.mmu->shadow_zero_check; 3805 3806 for (level = root; level >= leaf; level--) 3807 reserved |= is_rsvd_spte(rsvd_check, sptes[level], level); 3808 3809 if (reserved) { 3810 pr_err("%s: reserved bits set on MMU-present spte, addr 0x%llx, hierarchy:\n", 3811 __func__, addr); 3812 for (level = root; level >= leaf; level--) 3813 pr_err("------ spte = 0x%llx level = %d, rsvd bits = 0x%llx", 3814 sptes[level], level, 3815 get_rsvd_bits(rsvd_check, sptes[level], level)); 3816 } 3817 3818 return reserved; 3819 } 3820 3821 static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct) 3822 { 3823 u64 spte; 3824 bool reserved; 3825 3826 if (mmio_info_in_cache(vcpu, addr, direct)) 3827 return RET_PF_EMULATE; 3828 3829 reserved = get_mmio_spte(vcpu, addr, &spte); 3830 if (WARN_ON(reserved)) 3831 return -EINVAL; 3832 3833 if (is_mmio_spte(spte)) { 3834 gfn_t gfn = get_mmio_spte_gfn(spte); 3835 unsigned int access = get_mmio_spte_access(spte); 3836 3837 if (!check_mmio_spte(vcpu, spte)) 3838 return RET_PF_INVALID; 3839 3840 if (direct) 3841 addr = 0; 3842 3843 trace_handle_mmio_page_fault(addr, gfn, access); 3844 vcpu_cache_mmio_info(vcpu, addr, gfn, access); 3845 return RET_PF_EMULATE; 3846 } 3847 3848 /* 3849 * If the page table is zapped by other cpus, let CPU fault again on 3850 * the address. 3851 */ 3852 return RET_PF_RETRY; 3853 } 3854 3855 static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu, 3856 u32 error_code, gfn_t gfn) 3857 { 3858 if (unlikely(error_code & PFERR_RSVD_MASK)) 3859 return false; 3860 3861 if (!(error_code & PFERR_PRESENT_MASK) || 3862 !(error_code & PFERR_WRITE_MASK)) 3863 return false; 3864 3865 /* 3866 * guest is writing the page which is write tracked which can 3867 * not be fixed by page fault handler. 3868 */ 3869 if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE)) 3870 return true; 3871 3872 return false; 3873 } 3874 3875 static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr) 3876 { 3877 struct kvm_shadow_walk_iterator iterator; 3878 u64 spte; 3879 3880 walk_shadow_page_lockless_begin(vcpu); 3881 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) { 3882 clear_sp_write_flooding_count(iterator.sptep); 3883 if (!is_shadow_present_pte(spte)) 3884 break; 3885 } 3886 walk_shadow_page_lockless_end(vcpu); 3887 } 3888 3889 static bool kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, 3890 gfn_t gfn) 3891 { 3892 struct kvm_arch_async_pf arch; 3893 3894 arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id; 3895 arch.gfn = gfn; 3896 arch.direct_map = vcpu->arch.mmu->direct_map; 3897 arch.cr3 = vcpu->arch.mmu->get_guest_pgd(vcpu); 3898 3899 return kvm_setup_async_pf(vcpu, cr2_or_gpa, 3900 kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch); 3901 } 3902 3903 static bool kvm_faultin_pfn(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn, 3904 gpa_t cr2_or_gpa, kvm_pfn_t *pfn, hva_t *hva, 3905 bool write, bool *writable, int *r) 3906 { 3907 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 3908 bool async; 3909 3910 /* 3911 * Retry the page fault if the gfn hit a memslot that is being deleted 3912 * or moved. This ensures any existing SPTEs for the old memslot will 3913 * be zapped before KVM inserts a new MMIO SPTE for the gfn. 3914 */ 3915 if (slot && (slot->flags & KVM_MEMSLOT_INVALID)) 3916 goto out_retry; 3917 3918 if (!kvm_is_visible_memslot(slot)) { 3919 /* Don't expose private memslots to L2. */ 3920 if (is_guest_mode(vcpu)) { 3921 *pfn = KVM_PFN_NOSLOT; 3922 *writable = false; 3923 return false; 3924 } 3925 /* 3926 * If the APIC access page exists but is disabled, go directly 3927 * to emulation without caching the MMIO access or creating a 3928 * MMIO SPTE. That way the cache doesn't need to be purged 3929 * when the AVIC is re-enabled. 3930 */ 3931 if (slot && slot->id == APIC_ACCESS_PAGE_PRIVATE_MEMSLOT && 3932 !kvm_apicv_activated(vcpu->kvm)) { 3933 *r = RET_PF_EMULATE; 3934 return true; 3935 } 3936 } 3937 3938 async = false; 3939 *pfn = __gfn_to_pfn_memslot(slot, gfn, false, &async, 3940 write, writable, hva); 3941 if (!async) 3942 return false; /* *pfn has correct page already */ 3943 3944 if (!prefault && kvm_can_do_async_pf(vcpu)) { 3945 trace_kvm_try_async_get_page(cr2_or_gpa, gfn); 3946 if (kvm_find_async_pf_gfn(vcpu, gfn)) { 3947 trace_kvm_async_pf_doublefault(cr2_or_gpa, gfn); 3948 kvm_make_request(KVM_REQ_APF_HALT, vcpu); 3949 goto out_retry; 3950 } else if (kvm_arch_setup_async_pf(vcpu, cr2_or_gpa, gfn)) 3951 goto out_retry; 3952 } 3953 3954 *pfn = __gfn_to_pfn_memslot(slot, gfn, false, NULL, 3955 write, writable, hva); 3956 3957 out_retry: 3958 *r = RET_PF_RETRY; 3959 return true; 3960 } 3961 3962 static int direct_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code, 3963 bool prefault, int max_level, bool is_tdp) 3964 { 3965 bool is_tdp_mmu_fault = is_tdp_mmu(vcpu->arch.mmu); 3966 bool write = error_code & PFERR_WRITE_MASK; 3967 bool map_writable; 3968 3969 gfn_t gfn = gpa >> PAGE_SHIFT; 3970 unsigned long mmu_seq; 3971 kvm_pfn_t pfn; 3972 hva_t hva; 3973 int r; 3974 3975 if (page_fault_handle_page_track(vcpu, error_code, gfn)) 3976 return RET_PF_EMULATE; 3977 3978 r = fast_page_fault(vcpu, gpa, error_code); 3979 if (r != RET_PF_INVALID) 3980 return r; 3981 3982 r = mmu_topup_memory_caches(vcpu, false); 3983 if (r) 3984 return r; 3985 3986 mmu_seq = vcpu->kvm->mmu_notifier_seq; 3987 smp_rmb(); 3988 3989 if (kvm_faultin_pfn(vcpu, prefault, gfn, gpa, &pfn, &hva, 3990 write, &map_writable, &r)) 3991 return r; 3992 3993 if (handle_abnormal_pfn(vcpu, is_tdp ? 0 : gpa, gfn, pfn, ACC_ALL, &r)) 3994 return r; 3995 3996 r = RET_PF_RETRY; 3997 3998 if (is_tdp_mmu_fault) 3999 read_lock(&vcpu->kvm->mmu_lock); 4000 else 4001 write_lock(&vcpu->kvm->mmu_lock); 4002 4003 if (!is_noslot_pfn(pfn) && mmu_notifier_retry_hva(vcpu->kvm, mmu_seq, hva)) 4004 goto out_unlock; 4005 r = make_mmu_pages_available(vcpu); 4006 if (r) 4007 goto out_unlock; 4008 4009 if (is_tdp_mmu_fault) 4010 r = kvm_tdp_mmu_map(vcpu, gpa, error_code, map_writable, max_level, 4011 pfn, prefault); 4012 else 4013 r = __direct_map(vcpu, gpa, error_code, map_writable, max_level, pfn, 4014 prefault, is_tdp); 4015 4016 out_unlock: 4017 if (is_tdp_mmu_fault) 4018 read_unlock(&vcpu->kvm->mmu_lock); 4019 else 4020 write_unlock(&vcpu->kvm->mmu_lock); 4021 kvm_release_pfn_clean(pfn); 4022 return r; 4023 } 4024 4025 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa, 4026 u32 error_code, bool prefault) 4027 { 4028 pgprintk("%s: gva %lx error %x\n", __func__, gpa, error_code); 4029 4030 /* This path builds a PAE pagetable, we can map 2mb pages at maximum. */ 4031 return direct_page_fault(vcpu, gpa & PAGE_MASK, error_code, prefault, 4032 PG_LEVEL_2M, false); 4033 } 4034 4035 int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code, 4036 u64 fault_address, char *insn, int insn_len) 4037 { 4038 int r = 1; 4039 u32 flags = vcpu->arch.apf.host_apf_flags; 4040 4041 #ifndef CONFIG_X86_64 4042 /* A 64-bit CR2 should be impossible on 32-bit KVM. */ 4043 if (WARN_ON_ONCE(fault_address >> 32)) 4044 return -EFAULT; 4045 #endif 4046 4047 vcpu->arch.l1tf_flush_l1d = true; 4048 if (!flags) { 4049 trace_kvm_page_fault(fault_address, error_code); 4050 4051 if (kvm_event_needs_reinjection(vcpu)) 4052 kvm_mmu_unprotect_page_virt(vcpu, fault_address); 4053 r = kvm_mmu_page_fault(vcpu, fault_address, error_code, insn, 4054 insn_len); 4055 } else if (flags & KVM_PV_REASON_PAGE_NOT_PRESENT) { 4056 vcpu->arch.apf.host_apf_flags = 0; 4057 local_irq_disable(); 4058 kvm_async_pf_task_wait_schedule(fault_address); 4059 local_irq_enable(); 4060 } else { 4061 WARN_ONCE(1, "Unexpected host async PF flags: %x\n", flags); 4062 } 4063 4064 return r; 4065 } 4066 EXPORT_SYMBOL_GPL(kvm_handle_page_fault); 4067 4068 int kvm_tdp_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code, 4069 bool prefault) 4070 { 4071 int max_level; 4072 4073 for (max_level = KVM_MAX_HUGEPAGE_LEVEL; 4074 max_level > PG_LEVEL_4K; 4075 max_level--) { 4076 int page_num = KVM_PAGES_PER_HPAGE(max_level); 4077 gfn_t base = (gpa >> PAGE_SHIFT) & ~(page_num - 1); 4078 4079 if (kvm_mtrr_check_gfn_range_consistency(vcpu, base, page_num)) 4080 break; 4081 } 4082 4083 return direct_page_fault(vcpu, gpa, error_code, prefault, 4084 max_level, true); 4085 } 4086 4087 static void nonpaging_init_context(struct kvm_mmu *context) 4088 { 4089 context->page_fault = nonpaging_page_fault; 4090 context->gva_to_gpa = nonpaging_gva_to_gpa; 4091 context->sync_page = nonpaging_sync_page; 4092 context->invlpg = NULL; 4093 context->direct_map = true; 4094 } 4095 4096 static inline bool is_root_usable(struct kvm_mmu_root_info *root, gpa_t pgd, 4097 union kvm_mmu_page_role role) 4098 { 4099 return (role.direct || pgd == root->pgd) && 4100 VALID_PAGE(root->hpa) && to_shadow_page(root->hpa) && 4101 role.word == to_shadow_page(root->hpa)->role.word; 4102 } 4103 4104 /* 4105 * Find out if a previously cached root matching the new pgd/role is available. 4106 * The current root is also inserted into the cache. 4107 * If a matching root was found, it is assigned to kvm_mmu->root_hpa and true is 4108 * returned. 4109 * Otherwise, the LRU root from the cache is assigned to kvm_mmu->root_hpa and 4110 * false is returned. This root should now be freed by the caller. 4111 */ 4112 static bool cached_root_available(struct kvm_vcpu *vcpu, gpa_t new_pgd, 4113 union kvm_mmu_page_role new_role) 4114 { 4115 uint i; 4116 struct kvm_mmu_root_info root; 4117 struct kvm_mmu *mmu = vcpu->arch.mmu; 4118 4119 root.pgd = mmu->root_pgd; 4120 root.hpa = mmu->root_hpa; 4121 4122 if (is_root_usable(&root, new_pgd, new_role)) 4123 return true; 4124 4125 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) { 4126 swap(root, mmu->prev_roots[i]); 4127 4128 if (is_root_usable(&root, new_pgd, new_role)) 4129 break; 4130 } 4131 4132 mmu->root_hpa = root.hpa; 4133 mmu->root_pgd = root.pgd; 4134 4135 return i < KVM_MMU_NUM_PREV_ROOTS; 4136 } 4137 4138 static bool fast_pgd_switch(struct kvm_vcpu *vcpu, gpa_t new_pgd, 4139 union kvm_mmu_page_role new_role) 4140 { 4141 struct kvm_mmu *mmu = vcpu->arch.mmu; 4142 4143 /* 4144 * For now, limit the fast switch to 64-bit hosts+VMs in order to avoid 4145 * having to deal with PDPTEs. We may add support for 32-bit hosts/VMs 4146 * later if necessary. 4147 */ 4148 if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL && 4149 mmu->root_level >= PT64_ROOT_4LEVEL) 4150 return cached_root_available(vcpu, new_pgd, new_role); 4151 4152 return false; 4153 } 4154 4155 static void __kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd, 4156 union kvm_mmu_page_role new_role) 4157 { 4158 if (!fast_pgd_switch(vcpu, new_pgd, new_role)) { 4159 kvm_mmu_free_roots(vcpu, vcpu->arch.mmu, KVM_MMU_ROOT_CURRENT); 4160 return; 4161 } 4162 4163 /* 4164 * It's possible that the cached previous root page is obsolete because 4165 * of a change in the MMU generation number. However, changing the 4166 * generation number is accompanied by KVM_REQ_MMU_RELOAD, which will 4167 * free the root set here and allocate a new one. 4168 */ 4169 kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu); 4170 4171 if (force_flush_and_sync_on_reuse) { 4172 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu); 4173 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 4174 } 4175 4176 /* 4177 * The last MMIO access's GVA and GPA are cached in the VCPU. When 4178 * switching to a new CR3, that GVA->GPA mapping may no longer be 4179 * valid. So clear any cached MMIO info even when we don't need to sync 4180 * the shadow page tables. 4181 */ 4182 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY); 4183 4184 /* 4185 * If this is a direct root page, it doesn't have a write flooding 4186 * count. Otherwise, clear the write flooding count. 4187 */ 4188 if (!new_role.direct) 4189 __clear_sp_write_flooding_count( 4190 to_shadow_page(vcpu->arch.mmu->root_hpa)); 4191 } 4192 4193 void kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd) 4194 { 4195 __kvm_mmu_new_pgd(vcpu, new_pgd, kvm_mmu_calc_root_page_role(vcpu)); 4196 } 4197 EXPORT_SYMBOL_GPL(kvm_mmu_new_pgd); 4198 4199 static unsigned long get_cr3(struct kvm_vcpu *vcpu) 4200 { 4201 return kvm_read_cr3(vcpu); 4202 } 4203 4204 static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn, 4205 unsigned int access, int *nr_present) 4206 { 4207 if (unlikely(is_mmio_spte(*sptep))) { 4208 if (gfn != get_mmio_spte_gfn(*sptep)) { 4209 mmu_spte_clear_no_track(sptep); 4210 return true; 4211 } 4212 4213 (*nr_present)++; 4214 mark_mmio_spte(vcpu, sptep, gfn, access); 4215 return true; 4216 } 4217 4218 return false; 4219 } 4220 4221 #define PTTYPE_EPT 18 /* arbitrary */ 4222 #define PTTYPE PTTYPE_EPT 4223 #include "paging_tmpl.h" 4224 #undef PTTYPE 4225 4226 #define PTTYPE 64 4227 #include "paging_tmpl.h" 4228 #undef PTTYPE 4229 4230 #define PTTYPE 32 4231 #include "paging_tmpl.h" 4232 #undef PTTYPE 4233 4234 static void 4235 __reset_rsvds_bits_mask(struct rsvd_bits_validate *rsvd_check, 4236 u64 pa_bits_rsvd, int level, bool nx, bool gbpages, 4237 bool pse, bool amd) 4238 { 4239 u64 gbpages_bit_rsvd = 0; 4240 u64 nonleaf_bit8_rsvd = 0; 4241 u64 high_bits_rsvd; 4242 4243 rsvd_check->bad_mt_xwr = 0; 4244 4245 if (!gbpages) 4246 gbpages_bit_rsvd = rsvd_bits(7, 7); 4247 4248 if (level == PT32E_ROOT_LEVEL) 4249 high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 62); 4250 else 4251 high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 51); 4252 4253 /* Note, NX doesn't exist in PDPTEs, this is handled below. */ 4254 if (!nx) 4255 high_bits_rsvd |= rsvd_bits(63, 63); 4256 4257 /* 4258 * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for 4259 * leaf entries) on AMD CPUs only. 4260 */ 4261 if (amd) 4262 nonleaf_bit8_rsvd = rsvd_bits(8, 8); 4263 4264 switch (level) { 4265 case PT32_ROOT_LEVEL: 4266 /* no rsvd bits for 2 level 4K page table entries */ 4267 rsvd_check->rsvd_bits_mask[0][1] = 0; 4268 rsvd_check->rsvd_bits_mask[0][0] = 0; 4269 rsvd_check->rsvd_bits_mask[1][0] = 4270 rsvd_check->rsvd_bits_mask[0][0]; 4271 4272 if (!pse) { 4273 rsvd_check->rsvd_bits_mask[1][1] = 0; 4274 break; 4275 } 4276 4277 if (is_cpuid_PSE36()) 4278 /* 36bits PSE 4MB page */ 4279 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21); 4280 else 4281 /* 32 bits PSE 4MB page */ 4282 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21); 4283 break; 4284 case PT32E_ROOT_LEVEL: 4285 rsvd_check->rsvd_bits_mask[0][2] = rsvd_bits(63, 63) | 4286 high_bits_rsvd | 4287 rsvd_bits(5, 8) | 4288 rsvd_bits(1, 2); /* PDPTE */ 4289 rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd; /* PDE */ 4290 rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd; /* PTE */ 4291 rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd | 4292 rsvd_bits(13, 20); /* large page */ 4293 rsvd_check->rsvd_bits_mask[1][0] = 4294 rsvd_check->rsvd_bits_mask[0][0]; 4295 break; 4296 case PT64_ROOT_5LEVEL: 4297 rsvd_check->rsvd_bits_mask[0][4] = high_bits_rsvd | 4298 nonleaf_bit8_rsvd | 4299 rsvd_bits(7, 7); 4300 rsvd_check->rsvd_bits_mask[1][4] = 4301 rsvd_check->rsvd_bits_mask[0][4]; 4302 fallthrough; 4303 case PT64_ROOT_4LEVEL: 4304 rsvd_check->rsvd_bits_mask[0][3] = high_bits_rsvd | 4305 nonleaf_bit8_rsvd | 4306 rsvd_bits(7, 7); 4307 rsvd_check->rsvd_bits_mask[0][2] = high_bits_rsvd | 4308 gbpages_bit_rsvd; 4309 rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd; 4310 rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd; 4311 rsvd_check->rsvd_bits_mask[1][3] = 4312 rsvd_check->rsvd_bits_mask[0][3]; 4313 rsvd_check->rsvd_bits_mask[1][2] = high_bits_rsvd | 4314 gbpages_bit_rsvd | 4315 rsvd_bits(13, 29); 4316 rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd | 4317 rsvd_bits(13, 20); /* large page */ 4318 rsvd_check->rsvd_bits_mask[1][0] = 4319 rsvd_check->rsvd_bits_mask[0][0]; 4320 break; 4321 } 4322 } 4323 4324 static bool guest_can_use_gbpages(struct kvm_vcpu *vcpu) 4325 { 4326 /* 4327 * If TDP is enabled, let the guest use GBPAGES if they're supported in 4328 * hardware. The hardware page walker doesn't let KVM disable GBPAGES, 4329 * i.e. won't treat them as reserved, and KVM doesn't redo the GVA->GPA 4330 * walk for performance and complexity reasons. Not to mention KVM 4331 * _can't_ solve the problem because GVA->GPA walks aren't visible to 4332 * KVM once a TDP translation is installed. Mimic hardware behavior so 4333 * that KVM's is at least consistent, i.e. doesn't randomly inject #PF. 4334 */ 4335 return tdp_enabled ? boot_cpu_has(X86_FEATURE_GBPAGES) : 4336 guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES); 4337 } 4338 4339 static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu, 4340 struct kvm_mmu *context) 4341 { 4342 __reset_rsvds_bits_mask(&context->guest_rsvd_check, 4343 vcpu->arch.reserved_gpa_bits, 4344 context->root_level, is_efer_nx(context), 4345 guest_can_use_gbpages(vcpu), 4346 is_cr4_pse(context), 4347 guest_cpuid_is_amd_or_hygon(vcpu)); 4348 } 4349 4350 static void 4351 __reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check, 4352 u64 pa_bits_rsvd, bool execonly) 4353 { 4354 u64 high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 51); 4355 u64 bad_mt_xwr; 4356 4357 rsvd_check->rsvd_bits_mask[0][4] = high_bits_rsvd | rsvd_bits(3, 7); 4358 rsvd_check->rsvd_bits_mask[0][3] = high_bits_rsvd | rsvd_bits(3, 7); 4359 rsvd_check->rsvd_bits_mask[0][2] = high_bits_rsvd | rsvd_bits(3, 6); 4360 rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd | rsvd_bits(3, 6); 4361 rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd; 4362 4363 /* large page */ 4364 rsvd_check->rsvd_bits_mask[1][4] = rsvd_check->rsvd_bits_mask[0][4]; 4365 rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3]; 4366 rsvd_check->rsvd_bits_mask[1][2] = high_bits_rsvd | rsvd_bits(12, 29); 4367 rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd | rsvd_bits(12, 20); 4368 rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0]; 4369 4370 bad_mt_xwr = 0xFFull << (2 * 8); /* bits 3..5 must not be 2 */ 4371 bad_mt_xwr |= 0xFFull << (3 * 8); /* bits 3..5 must not be 3 */ 4372 bad_mt_xwr |= 0xFFull << (7 * 8); /* bits 3..5 must not be 7 */ 4373 bad_mt_xwr |= REPEAT_BYTE(1ull << 2); /* bits 0..2 must not be 010 */ 4374 bad_mt_xwr |= REPEAT_BYTE(1ull << 6); /* bits 0..2 must not be 110 */ 4375 if (!execonly) { 4376 /* bits 0..2 must not be 100 unless VMX capabilities allow it */ 4377 bad_mt_xwr |= REPEAT_BYTE(1ull << 4); 4378 } 4379 rsvd_check->bad_mt_xwr = bad_mt_xwr; 4380 } 4381 4382 static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu, 4383 struct kvm_mmu *context, bool execonly) 4384 { 4385 __reset_rsvds_bits_mask_ept(&context->guest_rsvd_check, 4386 vcpu->arch.reserved_gpa_bits, execonly); 4387 } 4388 4389 static inline u64 reserved_hpa_bits(void) 4390 { 4391 return rsvd_bits(shadow_phys_bits, 63); 4392 } 4393 4394 /* 4395 * the page table on host is the shadow page table for the page 4396 * table in guest or amd nested guest, its mmu features completely 4397 * follow the features in guest. 4398 */ 4399 static void reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, 4400 struct kvm_mmu *context) 4401 { 4402 /* 4403 * KVM uses NX when TDP is disabled to handle a variety of scenarios, 4404 * notably for huge SPTEs if iTLB multi-hit mitigation is enabled and 4405 * to generate correct permissions for CR0.WP=0/CR4.SMEP=1/EFER.NX=0. 4406 * The iTLB multi-hit workaround can be toggled at any time, so assume 4407 * NX can be used by any non-nested shadow MMU to avoid having to reset 4408 * MMU contexts. Note, KVM forces EFER.NX=1 when TDP is disabled. 4409 */ 4410 bool uses_nx = is_efer_nx(context) || !tdp_enabled; 4411 4412 /* @amd adds a check on bit of SPTEs, which KVM shouldn't use anyways. */ 4413 bool is_amd = true; 4414 /* KVM doesn't use 2-level page tables for the shadow MMU. */ 4415 bool is_pse = false; 4416 struct rsvd_bits_validate *shadow_zero_check; 4417 int i; 4418 4419 WARN_ON_ONCE(context->shadow_root_level < PT32E_ROOT_LEVEL); 4420 4421 shadow_zero_check = &context->shadow_zero_check; 4422 __reset_rsvds_bits_mask(shadow_zero_check, reserved_hpa_bits(), 4423 context->shadow_root_level, uses_nx, 4424 guest_can_use_gbpages(vcpu), is_pse, is_amd); 4425 4426 if (!shadow_me_mask) 4427 return; 4428 4429 for (i = context->shadow_root_level; --i >= 0;) { 4430 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask; 4431 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask; 4432 } 4433 4434 } 4435 4436 static inline bool boot_cpu_is_amd(void) 4437 { 4438 WARN_ON_ONCE(!tdp_enabled); 4439 return shadow_x_mask == 0; 4440 } 4441 4442 /* 4443 * the direct page table on host, use as much mmu features as 4444 * possible, however, kvm currently does not do execution-protection. 4445 */ 4446 static void 4447 reset_tdp_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, 4448 struct kvm_mmu *context) 4449 { 4450 struct rsvd_bits_validate *shadow_zero_check; 4451 int i; 4452 4453 shadow_zero_check = &context->shadow_zero_check; 4454 4455 if (boot_cpu_is_amd()) 4456 __reset_rsvds_bits_mask(shadow_zero_check, reserved_hpa_bits(), 4457 context->shadow_root_level, false, 4458 boot_cpu_has(X86_FEATURE_GBPAGES), 4459 false, true); 4460 else 4461 __reset_rsvds_bits_mask_ept(shadow_zero_check, 4462 reserved_hpa_bits(), false); 4463 4464 if (!shadow_me_mask) 4465 return; 4466 4467 for (i = context->shadow_root_level; --i >= 0;) { 4468 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask; 4469 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask; 4470 } 4471 } 4472 4473 /* 4474 * as the comments in reset_shadow_zero_bits_mask() except it 4475 * is the shadow page table for intel nested guest. 4476 */ 4477 static void 4478 reset_ept_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, 4479 struct kvm_mmu *context, bool execonly) 4480 { 4481 __reset_rsvds_bits_mask_ept(&context->shadow_zero_check, 4482 reserved_hpa_bits(), execonly); 4483 } 4484 4485 #define BYTE_MASK(access) \ 4486 ((1 & (access) ? 2 : 0) | \ 4487 (2 & (access) ? 4 : 0) | \ 4488 (3 & (access) ? 8 : 0) | \ 4489 (4 & (access) ? 16 : 0) | \ 4490 (5 & (access) ? 32 : 0) | \ 4491 (6 & (access) ? 64 : 0) | \ 4492 (7 & (access) ? 128 : 0)) 4493 4494 4495 static void update_permission_bitmask(struct kvm_mmu *mmu, bool ept) 4496 { 4497 unsigned byte; 4498 4499 const u8 x = BYTE_MASK(ACC_EXEC_MASK); 4500 const u8 w = BYTE_MASK(ACC_WRITE_MASK); 4501 const u8 u = BYTE_MASK(ACC_USER_MASK); 4502 4503 bool cr4_smep = is_cr4_smep(mmu); 4504 bool cr4_smap = is_cr4_smap(mmu); 4505 bool cr0_wp = is_cr0_wp(mmu); 4506 bool efer_nx = is_efer_nx(mmu); 4507 4508 for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) { 4509 unsigned pfec = byte << 1; 4510 4511 /* 4512 * Each "*f" variable has a 1 bit for each UWX value 4513 * that causes a fault with the given PFEC. 4514 */ 4515 4516 /* Faults from writes to non-writable pages */ 4517 u8 wf = (pfec & PFERR_WRITE_MASK) ? (u8)~w : 0; 4518 /* Faults from user mode accesses to supervisor pages */ 4519 u8 uf = (pfec & PFERR_USER_MASK) ? (u8)~u : 0; 4520 /* Faults from fetches of non-executable pages*/ 4521 u8 ff = (pfec & PFERR_FETCH_MASK) ? (u8)~x : 0; 4522 /* Faults from kernel mode fetches of user pages */ 4523 u8 smepf = 0; 4524 /* Faults from kernel mode accesses of user pages */ 4525 u8 smapf = 0; 4526 4527 if (!ept) { 4528 /* Faults from kernel mode accesses to user pages */ 4529 u8 kf = (pfec & PFERR_USER_MASK) ? 0 : u; 4530 4531 /* Not really needed: !nx will cause pte.nx to fault */ 4532 if (!efer_nx) 4533 ff = 0; 4534 4535 /* Allow supervisor writes if !cr0.wp */ 4536 if (!cr0_wp) 4537 wf = (pfec & PFERR_USER_MASK) ? wf : 0; 4538 4539 /* Disallow supervisor fetches of user code if cr4.smep */ 4540 if (cr4_smep) 4541 smepf = (pfec & PFERR_FETCH_MASK) ? kf : 0; 4542 4543 /* 4544 * SMAP:kernel-mode data accesses from user-mode 4545 * mappings should fault. A fault is considered 4546 * as a SMAP violation if all of the following 4547 * conditions are true: 4548 * - X86_CR4_SMAP is set in CR4 4549 * - A user page is accessed 4550 * - The access is not a fetch 4551 * - Page fault in kernel mode 4552 * - if CPL = 3 or X86_EFLAGS_AC is clear 4553 * 4554 * Here, we cover the first three conditions. 4555 * The fourth is computed dynamically in permission_fault(); 4556 * PFERR_RSVD_MASK bit will be set in PFEC if the access is 4557 * *not* subject to SMAP restrictions. 4558 */ 4559 if (cr4_smap) 4560 smapf = (pfec & (PFERR_RSVD_MASK|PFERR_FETCH_MASK)) ? 0 : kf; 4561 } 4562 4563 mmu->permissions[byte] = ff | uf | wf | smepf | smapf; 4564 } 4565 } 4566 4567 /* 4568 * PKU is an additional mechanism by which the paging controls access to 4569 * user-mode addresses based on the value in the PKRU register. Protection 4570 * key violations are reported through a bit in the page fault error code. 4571 * Unlike other bits of the error code, the PK bit is not known at the 4572 * call site of e.g. gva_to_gpa; it must be computed directly in 4573 * permission_fault based on two bits of PKRU, on some machine state (CR4, 4574 * CR0, EFER, CPL), and on other bits of the error code and the page tables. 4575 * 4576 * In particular the following conditions come from the error code, the 4577 * page tables and the machine state: 4578 * - PK is always zero unless CR4.PKE=1 and EFER.LMA=1 4579 * - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch) 4580 * - PK is always zero if U=0 in the page tables 4581 * - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access. 4582 * 4583 * The PKRU bitmask caches the result of these four conditions. The error 4584 * code (minus the P bit) and the page table's U bit form an index into the 4585 * PKRU bitmask. Two bits of the PKRU bitmask are then extracted and ANDed 4586 * with the two bits of the PKRU register corresponding to the protection key. 4587 * For the first three conditions above the bits will be 00, thus masking 4588 * away both AD and WD. For all reads or if the last condition holds, WD 4589 * only will be masked away. 4590 */ 4591 static void update_pkru_bitmask(struct kvm_mmu *mmu) 4592 { 4593 unsigned bit; 4594 bool wp; 4595 4596 if (!is_cr4_pke(mmu)) { 4597 mmu->pkru_mask = 0; 4598 return; 4599 } 4600 4601 wp = is_cr0_wp(mmu); 4602 4603 for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) { 4604 unsigned pfec, pkey_bits; 4605 bool check_pkey, check_write, ff, uf, wf, pte_user; 4606 4607 pfec = bit << 1; 4608 ff = pfec & PFERR_FETCH_MASK; 4609 uf = pfec & PFERR_USER_MASK; 4610 wf = pfec & PFERR_WRITE_MASK; 4611 4612 /* PFEC.RSVD is replaced by ACC_USER_MASK. */ 4613 pte_user = pfec & PFERR_RSVD_MASK; 4614 4615 /* 4616 * Only need to check the access which is not an 4617 * instruction fetch and is to a user page. 4618 */ 4619 check_pkey = (!ff && pte_user); 4620 /* 4621 * write access is controlled by PKRU if it is a 4622 * user access or CR0.WP = 1. 4623 */ 4624 check_write = check_pkey && wf && (uf || wp); 4625 4626 /* PKRU.AD stops both read and write access. */ 4627 pkey_bits = !!check_pkey; 4628 /* PKRU.WD stops write access. */ 4629 pkey_bits |= (!!check_write) << 1; 4630 4631 mmu->pkru_mask |= (pkey_bits & 3) << pfec; 4632 } 4633 } 4634 4635 static void reset_guest_paging_metadata(struct kvm_vcpu *vcpu, 4636 struct kvm_mmu *mmu) 4637 { 4638 if (!is_cr0_pg(mmu)) 4639 return; 4640 4641 reset_rsvds_bits_mask(vcpu, mmu); 4642 update_permission_bitmask(mmu, false); 4643 update_pkru_bitmask(mmu); 4644 } 4645 4646 static void paging64_init_context(struct kvm_mmu *context) 4647 { 4648 context->page_fault = paging64_page_fault; 4649 context->gva_to_gpa = paging64_gva_to_gpa; 4650 context->sync_page = paging64_sync_page; 4651 context->invlpg = paging64_invlpg; 4652 context->direct_map = false; 4653 } 4654 4655 static void paging32_init_context(struct kvm_mmu *context) 4656 { 4657 context->page_fault = paging32_page_fault; 4658 context->gva_to_gpa = paging32_gva_to_gpa; 4659 context->sync_page = paging32_sync_page; 4660 context->invlpg = paging32_invlpg; 4661 context->direct_map = false; 4662 } 4663 4664 static union kvm_mmu_extended_role kvm_calc_mmu_role_ext(struct kvm_vcpu *vcpu, 4665 struct kvm_mmu_role_regs *regs) 4666 { 4667 union kvm_mmu_extended_role ext = {0}; 4668 4669 if (____is_cr0_pg(regs)) { 4670 ext.cr0_pg = 1; 4671 ext.cr4_pae = ____is_cr4_pae(regs); 4672 ext.cr4_smep = ____is_cr4_smep(regs); 4673 ext.cr4_smap = ____is_cr4_smap(regs); 4674 ext.cr4_pse = ____is_cr4_pse(regs); 4675 4676 /* PKEY and LA57 are active iff long mode is active. */ 4677 ext.cr4_pke = ____is_efer_lma(regs) && ____is_cr4_pke(regs); 4678 ext.cr4_la57 = ____is_efer_lma(regs) && ____is_cr4_la57(regs); 4679 } 4680 4681 ext.valid = 1; 4682 4683 return ext; 4684 } 4685 4686 static union kvm_mmu_role kvm_calc_mmu_role_common(struct kvm_vcpu *vcpu, 4687 struct kvm_mmu_role_regs *regs, 4688 bool base_only) 4689 { 4690 union kvm_mmu_role role = {0}; 4691 4692 role.base.access = ACC_ALL; 4693 if (____is_cr0_pg(regs)) { 4694 role.base.efer_nx = ____is_efer_nx(regs); 4695 role.base.cr0_wp = ____is_cr0_wp(regs); 4696 } 4697 role.base.smm = is_smm(vcpu); 4698 role.base.guest_mode = is_guest_mode(vcpu); 4699 4700 if (base_only) 4701 return role; 4702 4703 role.ext = kvm_calc_mmu_role_ext(vcpu, regs); 4704 4705 return role; 4706 } 4707 4708 static inline int kvm_mmu_get_tdp_level(struct kvm_vcpu *vcpu) 4709 { 4710 /* tdp_root_level is architecture forced level, use it if nonzero */ 4711 if (tdp_root_level) 4712 return tdp_root_level; 4713 4714 /* Use 5-level TDP if and only if it's useful/necessary. */ 4715 if (max_tdp_level == 5 && cpuid_maxphyaddr(vcpu) <= 48) 4716 return 4; 4717 4718 return max_tdp_level; 4719 } 4720 4721 static union kvm_mmu_role 4722 kvm_calc_tdp_mmu_root_page_role(struct kvm_vcpu *vcpu, 4723 struct kvm_mmu_role_regs *regs, bool base_only) 4724 { 4725 union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, regs, base_only); 4726 4727 role.base.ad_disabled = (shadow_accessed_mask == 0); 4728 role.base.level = kvm_mmu_get_tdp_level(vcpu); 4729 role.base.direct = true; 4730 role.base.gpte_is_8_bytes = true; 4731 4732 return role; 4733 } 4734 4735 static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu) 4736 { 4737 struct kvm_mmu *context = &vcpu->arch.root_mmu; 4738 struct kvm_mmu_role_regs regs = vcpu_to_role_regs(vcpu); 4739 union kvm_mmu_role new_role = 4740 kvm_calc_tdp_mmu_root_page_role(vcpu, ®s, false); 4741 4742 if (new_role.as_u64 == context->mmu_role.as_u64) 4743 return; 4744 4745 context->mmu_role.as_u64 = new_role.as_u64; 4746 context->page_fault = kvm_tdp_page_fault; 4747 context->sync_page = nonpaging_sync_page; 4748 context->invlpg = NULL; 4749 context->shadow_root_level = kvm_mmu_get_tdp_level(vcpu); 4750 context->direct_map = true; 4751 context->get_guest_pgd = get_cr3; 4752 context->get_pdptr = kvm_pdptr_read; 4753 context->inject_page_fault = kvm_inject_page_fault; 4754 context->root_level = role_regs_to_root_level(®s); 4755 4756 if (!is_cr0_pg(context)) 4757 context->gva_to_gpa = nonpaging_gva_to_gpa; 4758 else if (is_cr4_pae(context)) 4759 context->gva_to_gpa = paging64_gva_to_gpa; 4760 else 4761 context->gva_to_gpa = paging32_gva_to_gpa; 4762 4763 reset_guest_paging_metadata(vcpu, context); 4764 reset_tdp_shadow_zero_bits_mask(vcpu, context); 4765 } 4766 4767 static union kvm_mmu_role 4768 kvm_calc_shadow_root_page_role_common(struct kvm_vcpu *vcpu, 4769 struct kvm_mmu_role_regs *regs, bool base_only) 4770 { 4771 union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, regs, base_only); 4772 4773 role.base.smep_andnot_wp = role.ext.cr4_smep && !____is_cr0_wp(regs); 4774 role.base.smap_andnot_wp = role.ext.cr4_smap && !____is_cr0_wp(regs); 4775 role.base.gpte_is_8_bytes = ____is_cr0_pg(regs) && ____is_cr4_pae(regs); 4776 4777 return role; 4778 } 4779 4780 static union kvm_mmu_role 4781 kvm_calc_shadow_mmu_root_page_role(struct kvm_vcpu *vcpu, 4782 struct kvm_mmu_role_regs *regs, bool base_only) 4783 { 4784 union kvm_mmu_role role = 4785 kvm_calc_shadow_root_page_role_common(vcpu, regs, base_only); 4786 4787 role.base.direct = !____is_cr0_pg(regs); 4788 4789 if (!____is_efer_lma(regs)) 4790 role.base.level = PT32E_ROOT_LEVEL; 4791 else if (____is_cr4_la57(regs)) 4792 role.base.level = PT64_ROOT_5LEVEL; 4793 else 4794 role.base.level = PT64_ROOT_4LEVEL; 4795 4796 return role; 4797 } 4798 4799 static void shadow_mmu_init_context(struct kvm_vcpu *vcpu, struct kvm_mmu *context, 4800 struct kvm_mmu_role_regs *regs, 4801 union kvm_mmu_role new_role) 4802 { 4803 if (new_role.as_u64 == context->mmu_role.as_u64) 4804 return; 4805 4806 context->mmu_role.as_u64 = new_role.as_u64; 4807 4808 if (!is_cr0_pg(context)) 4809 nonpaging_init_context(context); 4810 else if (is_cr4_pae(context)) 4811 paging64_init_context(context); 4812 else 4813 paging32_init_context(context); 4814 context->root_level = role_regs_to_root_level(regs); 4815 4816 reset_guest_paging_metadata(vcpu, context); 4817 context->shadow_root_level = new_role.base.level; 4818 4819 reset_shadow_zero_bits_mask(vcpu, context); 4820 } 4821 4822 static void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, 4823 struct kvm_mmu_role_regs *regs) 4824 { 4825 struct kvm_mmu *context = &vcpu->arch.root_mmu; 4826 union kvm_mmu_role new_role = 4827 kvm_calc_shadow_mmu_root_page_role(vcpu, regs, false); 4828 4829 shadow_mmu_init_context(vcpu, context, regs, new_role); 4830 } 4831 4832 static union kvm_mmu_role 4833 kvm_calc_shadow_npt_root_page_role(struct kvm_vcpu *vcpu, 4834 struct kvm_mmu_role_regs *regs) 4835 { 4836 union kvm_mmu_role role = 4837 kvm_calc_shadow_root_page_role_common(vcpu, regs, false); 4838 4839 role.base.direct = false; 4840 role.base.level = kvm_mmu_get_tdp_level(vcpu); 4841 4842 return role; 4843 } 4844 4845 void kvm_init_shadow_npt_mmu(struct kvm_vcpu *vcpu, unsigned long cr0, 4846 unsigned long cr4, u64 efer, gpa_t nested_cr3) 4847 { 4848 struct kvm_mmu *context = &vcpu->arch.guest_mmu; 4849 struct kvm_mmu_role_regs regs = { 4850 .cr0 = cr0, 4851 .cr4 = cr4, 4852 .efer = efer, 4853 }; 4854 union kvm_mmu_role new_role; 4855 4856 new_role = kvm_calc_shadow_npt_root_page_role(vcpu, ®s); 4857 4858 __kvm_mmu_new_pgd(vcpu, nested_cr3, new_role.base); 4859 4860 shadow_mmu_init_context(vcpu, context, ®s, new_role); 4861 } 4862 EXPORT_SYMBOL_GPL(kvm_init_shadow_npt_mmu); 4863 4864 static union kvm_mmu_role 4865 kvm_calc_shadow_ept_root_page_role(struct kvm_vcpu *vcpu, bool accessed_dirty, 4866 bool execonly, u8 level) 4867 { 4868 union kvm_mmu_role role = {0}; 4869 4870 /* SMM flag is inherited from root_mmu */ 4871 role.base.smm = vcpu->arch.root_mmu.mmu_role.base.smm; 4872 4873 role.base.level = level; 4874 role.base.gpte_is_8_bytes = true; 4875 role.base.direct = false; 4876 role.base.ad_disabled = !accessed_dirty; 4877 role.base.guest_mode = true; 4878 role.base.access = ACC_ALL; 4879 4880 /* EPT, and thus nested EPT, does not consume CR0, CR4, nor EFER. */ 4881 role.ext.word = 0; 4882 role.ext.execonly = execonly; 4883 role.ext.valid = 1; 4884 4885 return role; 4886 } 4887 4888 void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly, 4889 bool accessed_dirty, gpa_t new_eptp) 4890 { 4891 struct kvm_mmu *context = &vcpu->arch.guest_mmu; 4892 u8 level = vmx_eptp_page_walk_level(new_eptp); 4893 union kvm_mmu_role new_role = 4894 kvm_calc_shadow_ept_root_page_role(vcpu, accessed_dirty, 4895 execonly, level); 4896 4897 __kvm_mmu_new_pgd(vcpu, new_eptp, new_role.base); 4898 4899 if (new_role.as_u64 == context->mmu_role.as_u64) 4900 return; 4901 4902 context->mmu_role.as_u64 = new_role.as_u64; 4903 4904 context->shadow_root_level = level; 4905 4906 context->ept_ad = accessed_dirty; 4907 context->page_fault = ept_page_fault; 4908 context->gva_to_gpa = ept_gva_to_gpa; 4909 context->sync_page = ept_sync_page; 4910 context->invlpg = ept_invlpg; 4911 context->root_level = level; 4912 context->direct_map = false; 4913 4914 update_permission_bitmask(context, true); 4915 update_pkru_bitmask(context); 4916 reset_rsvds_bits_mask_ept(vcpu, context, execonly); 4917 reset_ept_shadow_zero_bits_mask(vcpu, context, execonly); 4918 } 4919 EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu); 4920 4921 static void init_kvm_softmmu(struct kvm_vcpu *vcpu) 4922 { 4923 struct kvm_mmu *context = &vcpu->arch.root_mmu; 4924 struct kvm_mmu_role_regs regs = vcpu_to_role_regs(vcpu); 4925 4926 kvm_init_shadow_mmu(vcpu, ®s); 4927 4928 context->get_guest_pgd = get_cr3; 4929 context->get_pdptr = kvm_pdptr_read; 4930 context->inject_page_fault = kvm_inject_page_fault; 4931 } 4932 4933 static union kvm_mmu_role 4934 kvm_calc_nested_mmu_role(struct kvm_vcpu *vcpu, struct kvm_mmu_role_regs *regs) 4935 { 4936 union kvm_mmu_role role; 4937 4938 role = kvm_calc_shadow_root_page_role_common(vcpu, regs, false); 4939 4940 /* 4941 * Nested MMUs are used only for walking L2's gva->gpa, they never have 4942 * shadow pages of their own and so "direct" has no meaning. Set it 4943 * to "true" to try to detect bogus usage of the nested MMU. 4944 */ 4945 role.base.direct = true; 4946 role.base.level = role_regs_to_root_level(regs); 4947 return role; 4948 } 4949 4950 static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu) 4951 { 4952 struct kvm_mmu_role_regs regs = vcpu_to_role_regs(vcpu); 4953 union kvm_mmu_role new_role = kvm_calc_nested_mmu_role(vcpu, ®s); 4954 struct kvm_mmu *g_context = &vcpu->arch.nested_mmu; 4955 4956 if (new_role.as_u64 == g_context->mmu_role.as_u64) 4957 return; 4958 4959 g_context->mmu_role.as_u64 = new_role.as_u64; 4960 g_context->get_guest_pgd = get_cr3; 4961 g_context->get_pdptr = kvm_pdptr_read; 4962 g_context->inject_page_fault = kvm_inject_page_fault; 4963 g_context->root_level = new_role.base.level; 4964 4965 /* 4966 * L2 page tables are never shadowed, so there is no need to sync 4967 * SPTEs. 4968 */ 4969 g_context->invlpg = NULL; 4970 4971 /* 4972 * Note that arch.mmu->gva_to_gpa translates l2_gpa to l1_gpa using 4973 * L1's nested page tables (e.g. EPT12). The nested translation 4974 * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using 4975 * L2's page tables as the first level of translation and L1's 4976 * nested page tables as the second level of translation. Basically 4977 * the gva_to_gpa functions between mmu and nested_mmu are swapped. 4978 */ 4979 if (!is_paging(vcpu)) 4980 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested; 4981 else if (is_long_mode(vcpu)) 4982 g_context->gva_to_gpa = paging64_gva_to_gpa_nested; 4983 else if (is_pae(vcpu)) 4984 g_context->gva_to_gpa = paging64_gva_to_gpa_nested; 4985 else 4986 g_context->gva_to_gpa = paging32_gva_to_gpa_nested; 4987 4988 reset_guest_paging_metadata(vcpu, g_context); 4989 } 4990 4991 void kvm_init_mmu(struct kvm_vcpu *vcpu) 4992 { 4993 if (mmu_is_nested(vcpu)) 4994 init_kvm_nested_mmu(vcpu); 4995 else if (tdp_enabled) 4996 init_kvm_tdp_mmu(vcpu); 4997 else 4998 init_kvm_softmmu(vcpu); 4999 } 5000 EXPORT_SYMBOL_GPL(kvm_init_mmu); 5001 5002 static union kvm_mmu_page_role 5003 kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu) 5004 { 5005 struct kvm_mmu_role_regs regs = vcpu_to_role_regs(vcpu); 5006 union kvm_mmu_role role; 5007 5008 if (tdp_enabled) 5009 role = kvm_calc_tdp_mmu_root_page_role(vcpu, ®s, true); 5010 else 5011 role = kvm_calc_shadow_mmu_root_page_role(vcpu, ®s, true); 5012 5013 return role.base; 5014 } 5015 5016 void kvm_mmu_after_set_cpuid(struct kvm_vcpu *vcpu) 5017 { 5018 /* 5019 * Invalidate all MMU roles to force them to reinitialize as CPUID 5020 * information is factored into reserved bit calculations. 5021 */ 5022 vcpu->arch.root_mmu.mmu_role.ext.valid = 0; 5023 vcpu->arch.guest_mmu.mmu_role.ext.valid = 0; 5024 vcpu->arch.nested_mmu.mmu_role.ext.valid = 0; 5025 kvm_mmu_reset_context(vcpu); 5026 5027 /* 5028 * KVM does not correctly handle changing guest CPUID after KVM_RUN, as 5029 * MAXPHYADDR, GBPAGES support, AMD reserved bit behavior, etc.. aren't 5030 * tracked in kvm_mmu_page_role. As a result, KVM may miss guest page 5031 * faults due to reusing SPs/SPTEs. Alert userspace, but otherwise 5032 * sweep the problem under the rug. 5033 * 5034 * KVM's horrific CPUID ABI makes the problem all but impossible to 5035 * solve, as correctly handling multiple vCPU models (with respect to 5036 * paging and physical address properties) in a single VM would require 5037 * tracking all relevant CPUID information in kvm_mmu_page_role. That 5038 * is very undesirable as it would double the memory requirements for 5039 * gfn_track (see struct kvm_mmu_page_role comments), and in practice 5040 * no sane VMM mucks with the core vCPU model on the fly. 5041 */ 5042 if (vcpu->arch.last_vmentry_cpu != -1) { 5043 pr_warn_ratelimited("KVM: KVM_SET_CPUID{,2} after KVM_RUN may cause guest instability\n"); 5044 pr_warn_ratelimited("KVM: KVM_SET_CPUID{,2} will fail after KVM_RUN starting with Linux 5.16\n"); 5045 } 5046 } 5047 5048 void kvm_mmu_reset_context(struct kvm_vcpu *vcpu) 5049 { 5050 kvm_mmu_unload(vcpu); 5051 kvm_init_mmu(vcpu); 5052 } 5053 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context); 5054 5055 int kvm_mmu_load(struct kvm_vcpu *vcpu) 5056 { 5057 int r; 5058 5059 r = mmu_topup_memory_caches(vcpu, !vcpu->arch.mmu->direct_map); 5060 if (r) 5061 goto out; 5062 r = mmu_alloc_special_roots(vcpu); 5063 if (r) 5064 goto out; 5065 if (vcpu->arch.mmu->direct_map) 5066 r = mmu_alloc_direct_roots(vcpu); 5067 else 5068 r = mmu_alloc_shadow_roots(vcpu); 5069 if (r) 5070 goto out; 5071 5072 kvm_mmu_sync_roots(vcpu); 5073 5074 kvm_mmu_load_pgd(vcpu); 5075 static_call(kvm_x86_tlb_flush_current)(vcpu); 5076 out: 5077 return r; 5078 } 5079 5080 void kvm_mmu_unload(struct kvm_vcpu *vcpu) 5081 { 5082 kvm_mmu_free_roots(vcpu, &vcpu->arch.root_mmu, KVM_MMU_ROOTS_ALL); 5083 WARN_ON(VALID_PAGE(vcpu->arch.root_mmu.root_hpa)); 5084 kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL); 5085 WARN_ON(VALID_PAGE(vcpu->arch.guest_mmu.root_hpa)); 5086 } 5087 5088 static bool need_remote_flush(u64 old, u64 new) 5089 { 5090 if (!is_shadow_present_pte(old)) 5091 return false; 5092 if (!is_shadow_present_pte(new)) 5093 return true; 5094 if ((old ^ new) & PT64_BASE_ADDR_MASK) 5095 return true; 5096 old ^= shadow_nx_mask; 5097 new ^= shadow_nx_mask; 5098 return (old & ~new & PT64_PERM_MASK) != 0; 5099 } 5100 5101 static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa, 5102 int *bytes) 5103 { 5104 u64 gentry = 0; 5105 int r; 5106 5107 /* 5108 * Assume that the pte write on a page table of the same type 5109 * as the current vcpu paging mode since we update the sptes only 5110 * when they have the same mode. 5111 */ 5112 if (is_pae(vcpu) && *bytes == 4) { 5113 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */ 5114 *gpa &= ~(gpa_t)7; 5115 *bytes = 8; 5116 } 5117 5118 if (*bytes == 4 || *bytes == 8) { 5119 r = kvm_vcpu_read_guest_atomic(vcpu, *gpa, &gentry, *bytes); 5120 if (r) 5121 gentry = 0; 5122 } 5123 5124 return gentry; 5125 } 5126 5127 /* 5128 * If we're seeing too many writes to a page, it may no longer be a page table, 5129 * or we may be forking, in which case it is better to unmap the page. 5130 */ 5131 static bool detect_write_flooding(struct kvm_mmu_page *sp) 5132 { 5133 /* 5134 * Skip write-flooding detected for the sp whose level is 1, because 5135 * it can become unsync, then the guest page is not write-protected. 5136 */ 5137 if (sp->role.level == PG_LEVEL_4K) 5138 return false; 5139 5140 atomic_inc(&sp->write_flooding_count); 5141 return atomic_read(&sp->write_flooding_count) >= 3; 5142 } 5143 5144 /* 5145 * Misaligned accesses are too much trouble to fix up; also, they usually 5146 * indicate a page is not used as a page table. 5147 */ 5148 static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa, 5149 int bytes) 5150 { 5151 unsigned offset, pte_size, misaligned; 5152 5153 pgprintk("misaligned: gpa %llx bytes %d role %x\n", 5154 gpa, bytes, sp->role.word); 5155 5156 offset = offset_in_page(gpa); 5157 pte_size = sp->role.gpte_is_8_bytes ? 8 : 4; 5158 5159 /* 5160 * Sometimes, the OS only writes the last one bytes to update status 5161 * bits, for example, in linux, andb instruction is used in clear_bit(). 5162 */ 5163 if (!(offset & (pte_size - 1)) && bytes == 1) 5164 return false; 5165 5166 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1); 5167 misaligned |= bytes < 4; 5168 5169 return misaligned; 5170 } 5171 5172 static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte) 5173 { 5174 unsigned page_offset, quadrant; 5175 u64 *spte; 5176 int level; 5177 5178 page_offset = offset_in_page(gpa); 5179 level = sp->role.level; 5180 *nspte = 1; 5181 if (!sp->role.gpte_is_8_bytes) { 5182 page_offset <<= 1; /* 32->64 */ 5183 /* 5184 * A 32-bit pde maps 4MB while the shadow pdes map 5185 * only 2MB. So we need to double the offset again 5186 * and zap two pdes instead of one. 5187 */ 5188 if (level == PT32_ROOT_LEVEL) { 5189 page_offset &= ~7; /* kill rounding error */ 5190 page_offset <<= 1; 5191 *nspte = 2; 5192 } 5193 quadrant = page_offset >> PAGE_SHIFT; 5194 page_offset &= ~PAGE_MASK; 5195 if (quadrant != sp->role.quadrant) 5196 return NULL; 5197 } 5198 5199 spte = &sp->spt[page_offset / sizeof(*spte)]; 5200 return spte; 5201 } 5202 5203 static void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa, 5204 const u8 *new, int bytes, 5205 struct kvm_page_track_notifier_node *node) 5206 { 5207 gfn_t gfn = gpa >> PAGE_SHIFT; 5208 struct kvm_mmu_page *sp; 5209 LIST_HEAD(invalid_list); 5210 u64 entry, gentry, *spte; 5211 int npte; 5212 bool remote_flush, local_flush; 5213 5214 /* 5215 * If we don't have indirect shadow pages, it means no page is 5216 * write-protected, so we can exit simply. 5217 */ 5218 if (!READ_ONCE(vcpu->kvm->arch.indirect_shadow_pages)) 5219 return; 5220 5221 remote_flush = local_flush = false; 5222 5223 pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes); 5224 5225 /* 5226 * No need to care whether allocation memory is successful 5227 * or not since pte prefetch is skipped if it does not have 5228 * enough objects in the cache. 5229 */ 5230 mmu_topup_memory_caches(vcpu, true); 5231 5232 write_lock(&vcpu->kvm->mmu_lock); 5233 5234 gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, &bytes); 5235 5236 ++vcpu->kvm->stat.mmu_pte_write; 5237 kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE); 5238 5239 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) { 5240 if (detect_write_misaligned(sp, gpa, bytes) || 5241 detect_write_flooding(sp)) { 5242 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list); 5243 ++vcpu->kvm->stat.mmu_flooded; 5244 continue; 5245 } 5246 5247 spte = get_written_sptes(sp, gpa, &npte); 5248 if (!spte) 5249 continue; 5250 5251 local_flush = true; 5252 while (npte--) { 5253 entry = *spte; 5254 mmu_page_zap_pte(vcpu->kvm, sp, spte, NULL); 5255 if (gentry && sp->role.level != PG_LEVEL_4K) 5256 ++vcpu->kvm->stat.mmu_pde_zapped; 5257 if (need_remote_flush(entry, *spte)) 5258 remote_flush = true; 5259 ++spte; 5260 } 5261 } 5262 kvm_mmu_flush_or_zap(vcpu, &invalid_list, remote_flush, local_flush); 5263 kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE); 5264 write_unlock(&vcpu->kvm->mmu_lock); 5265 } 5266 5267 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 error_code, 5268 void *insn, int insn_len) 5269 { 5270 int r, emulation_type = EMULTYPE_PF; 5271 bool direct = vcpu->arch.mmu->direct_map; 5272 5273 if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa))) 5274 return RET_PF_RETRY; 5275 5276 r = RET_PF_INVALID; 5277 if (unlikely(error_code & PFERR_RSVD_MASK)) { 5278 r = handle_mmio_page_fault(vcpu, cr2_or_gpa, direct); 5279 if (r == RET_PF_EMULATE) 5280 goto emulate; 5281 } 5282 5283 if (r == RET_PF_INVALID) { 5284 r = kvm_mmu_do_page_fault(vcpu, cr2_or_gpa, 5285 lower_32_bits(error_code), false); 5286 if (KVM_BUG_ON(r == RET_PF_INVALID, vcpu->kvm)) 5287 return -EIO; 5288 } 5289 5290 if (r < 0) 5291 return r; 5292 if (r != RET_PF_EMULATE) 5293 return 1; 5294 5295 /* 5296 * Before emulating the instruction, check if the error code 5297 * was due to a RO violation while translating the guest page. 5298 * This can occur when using nested virtualization with nested 5299 * paging in both guests. If true, we simply unprotect the page 5300 * and resume the guest. 5301 */ 5302 if (vcpu->arch.mmu->direct_map && 5303 (error_code & PFERR_NESTED_GUEST_PAGE) == PFERR_NESTED_GUEST_PAGE) { 5304 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(cr2_or_gpa)); 5305 return 1; 5306 } 5307 5308 /* 5309 * vcpu->arch.mmu.page_fault returned RET_PF_EMULATE, but we can still 5310 * optimistically try to just unprotect the page and let the processor 5311 * re-execute the instruction that caused the page fault. Do not allow 5312 * retrying MMIO emulation, as it's not only pointless but could also 5313 * cause us to enter an infinite loop because the processor will keep 5314 * faulting on the non-existent MMIO address. Retrying an instruction 5315 * from a nested guest is also pointless and dangerous as we are only 5316 * explicitly shadowing L1's page tables, i.e. unprotecting something 5317 * for L1 isn't going to magically fix whatever issue cause L2 to fail. 5318 */ 5319 if (!mmio_info_in_cache(vcpu, cr2_or_gpa, direct) && !is_guest_mode(vcpu)) 5320 emulation_type |= EMULTYPE_ALLOW_RETRY_PF; 5321 emulate: 5322 return x86_emulate_instruction(vcpu, cr2_or_gpa, emulation_type, insn, 5323 insn_len); 5324 } 5325 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault); 5326 5327 void kvm_mmu_invalidate_gva(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, 5328 gva_t gva, hpa_t root_hpa) 5329 { 5330 int i; 5331 5332 /* It's actually a GPA for vcpu->arch.guest_mmu. */ 5333 if (mmu != &vcpu->arch.guest_mmu) { 5334 /* INVLPG on a non-canonical address is a NOP according to the SDM. */ 5335 if (is_noncanonical_address(gva, vcpu)) 5336 return; 5337 5338 static_call(kvm_x86_tlb_flush_gva)(vcpu, gva); 5339 } 5340 5341 if (!mmu->invlpg) 5342 return; 5343 5344 if (root_hpa == INVALID_PAGE) { 5345 mmu->invlpg(vcpu, gva, mmu->root_hpa); 5346 5347 /* 5348 * INVLPG is required to invalidate any global mappings for the VA, 5349 * irrespective of PCID. Since it would take us roughly similar amount 5350 * of work to determine whether any of the prev_root mappings of the VA 5351 * is marked global, or to just sync it blindly, so we might as well 5352 * just always sync it. 5353 * 5354 * Mappings not reachable via the current cr3 or the prev_roots will be 5355 * synced when switching to that cr3, so nothing needs to be done here 5356 * for them. 5357 */ 5358 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 5359 if (VALID_PAGE(mmu->prev_roots[i].hpa)) 5360 mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa); 5361 } else { 5362 mmu->invlpg(vcpu, gva, root_hpa); 5363 } 5364 } 5365 5366 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva) 5367 { 5368 kvm_mmu_invalidate_gva(vcpu, vcpu->arch.mmu, gva, INVALID_PAGE); 5369 ++vcpu->stat.invlpg; 5370 } 5371 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg); 5372 5373 5374 void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid) 5375 { 5376 struct kvm_mmu *mmu = vcpu->arch.mmu; 5377 bool tlb_flush = false; 5378 uint i; 5379 5380 if (pcid == kvm_get_active_pcid(vcpu)) { 5381 mmu->invlpg(vcpu, gva, mmu->root_hpa); 5382 tlb_flush = true; 5383 } 5384 5385 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) { 5386 if (VALID_PAGE(mmu->prev_roots[i].hpa) && 5387 pcid == kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd)) { 5388 mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa); 5389 tlb_flush = true; 5390 } 5391 } 5392 5393 if (tlb_flush) 5394 static_call(kvm_x86_tlb_flush_gva)(vcpu, gva); 5395 5396 ++vcpu->stat.invlpg; 5397 5398 /* 5399 * Mappings not reachable via the current cr3 or the prev_roots will be 5400 * synced when switching to that cr3, so nothing needs to be done here 5401 * for them. 5402 */ 5403 } 5404 5405 void kvm_configure_mmu(bool enable_tdp, int tdp_forced_root_level, 5406 int tdp_max_root_level, int tdp_huge_page_level) 5407 { 5408 tdp_enabled = enable_tdp; 5409 tdp_root_level = tdp_forced_root_level; 5410 max_tdp_level = tdp_max_root_level; 5411 5412 /* 5413 * max_huge_page_level reflects KVM's MMU capabilities irrespective 5414 * of kernel support, e.g. KVM may be capable of using 1GB pages when 5415 * the kernel is not. But, KVM never creates a page size greater than 5416 * what is used by the kernel for any given HVA, i.e. the kernel's 5417 * capabilities are ultimately consulted by kvm_mmu_hugepage_adjust(). 5418 */ 5419 if (tdp_enabled) 5420 max_huge_page_level = tdp_huge_page_level; 5421 else if (boot_cpu_has(X86_FEATURE_GBPAGES)) 5422 max_huge_page_level = PG_LEVEL_1G; 5423 else 5424 max_huge_page_level = PG_LEVEL_2M; 5425 } 5426 EXPORT_SYMBOL_GPL(kvm_configure_mmu); 5427 5428 /* The return value indicates if tlb flush on all vcpus is needed. */ 5429 typedef bool (*slot_level_handler) (struct kvm *kvm, 5430 struct kvm_rmap_head *rmap_head, 5431 const struct kvm_memory_slot *slot); 5432 5433 /* The caller should hold mmu-lock before calling this function. */ 5434 static __always_inline bool 5435 slot_handle_level_range(struct kvm *kvm, const struct kvm_memory_slot *memslot, 5436 slot_level_handler fn, int start_level, int end_level, 5437 gfn_t start_gfn, gfn_t end_gfn, bool flush_on_yield, 5438 bool flush) 5439 { 5440 struct slot_rmap_walk_iterator iterator; 5441 5442 for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn, 5443 end_gfn, &iterator) { 5444 if (iterator.rmap) 5445 flush |= fn(kvm, iterator.rmap, memslot); 5446 5447 if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) { 5448 if (flush && flush_on_yield) { 5449 kvm_flush_remote_tlbs_with_address(kvm, 5450 start_gfn, 5451 iterator.gfn - start_gfn + 1); 5452 flush = false; 5453 } 5454 cond_resched_rwlock_write(&kvm->mmu_lock); 5455 } 5456 } 5457 5458 return flush; 5459 } 5460 5461 static __always_inline bool 5462 slot_handle_level(struct kvm *kvm, const struct kvm_memory_slot *memslot, 5463 slot_level_handler fn, int start_level, int end_level, 5464 bool flush_on_yield) 5465 { 5466 return slot_handle_level_range(kvm, memslot, fn, start_level, 5467 end_level, memslot->base_gfn, 5468 memslot->base_gfn + memslot->npages - 1, 5469 flush_on_yield, false); 5470 } 5471 5472 static __always_inline bool 5473 slot_handle_leaf(struct kvm *kvm, const struct kvm_memory_slot *memslot, 5474 slot_level_handler fn, bool flush_on_yield) 5475 { 5476 return slot_handle_level(kvm, memslot, fn, PG_LEVEL_4K, 5477 PG_LEVEL_4K, flush_on_yield); 5478 } 5479 5480 static void free_mmu_pages(struct kvm_mmu *mmu) 5481 { 5482 if (!tdp_enabled && mmu->pae_root) 5483 set_memory_encrypted((unsigned long)mmu->pae_root, 1); 5484 free_page((unsigned long)mmu->pae_root); 5485 free_page((unsigned long)mmu->pml4_root); 5486 free_page((unsigned long)mmu->pml5_root); 5487 } 5488 5489 static int __kvm_mmu_create(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu) 5490 { 5491 struct page *page; 5492 int i; 5493 5494 mmu->root_hpa = INVALID_PAGE; 5495 mmu->root_pgd = 0; 5496 mmu->translate_gpa = translate_gpa; 5497 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 5498 mmu->prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID; 5499 5500 /* 5501 * When using PAE paging, the four PDPTEs are treated as 'root' pages, 5502 * while the PDP table is a per-vCPU construct that's allocated at MMU 5503 * creation. When emulating 32-bit mode, cr3 is only 32 bits even on 5504 * x86_64. Therefore we need to allocate the PDP table in the first 5505 * 4GB of memory, which happens to fit the DMA32 zone. TDP paging 5506 * generally doesn't use PAE paging and can skip allocating the PDP 5507 * table. The main exception, handled here, is SVM's 32-bit NPT. The 5508 * other exception is for shadowing L1's 32-bit or PAE NPT on 64-bit 5509 * KVM; that horror is handled on-demand by mmu_alloc_shadow_roots(). 5510 */ 5511 if (tdp_enabled && kvm_mmu_get_tdp_level(vcpu) > PT32E_ROOT_LEVEL) 5512 return 0; 5513 5514 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_DMA32); 5515 if (!page) 5516 return -ENOMEM; 5517 5518 mmu->pae_root = page_address(page); 5519 5520 /* 5521 * CR3 is only 32 bits when PAE paging is used, thus it's impossible to 5522 * get the CPU to treat the PDPTEs as encrypted. Decrypt the page so 5523 * that KVM's writes and the CPU's reads get along. Note, this is 5524 * only necessary when using shadow paging, as 64-bit NPT can get at 5525 * the C-bit even when shadowing 32-bit NPT, and SME isn't supported 5526 * by 32-bit kernels (when KVM itself uses 32-bit NPT). 5527 */ 5528 if (!tdp_enabled) 5529 set_memory_decrypted((unsigned long)mmu->pae_root, 1); 5530 else 5531 WARN_ON_ONCE(shadow_me_mask); 5532 5533 for (i = 0; i < 4; ++i) 5534 mmu->pae_root[i] = INVALID_PAE_ROOT; 5535 5536 return 0; 5537 } 5538 5539 int kvm_mmu_create(struct kvm_vcpu *vcpu) 5540 { 5541 int ret; 5542 5543 vcpu->arch.mmu_pte_list_desc_cache.kmem_cache = pte_list_desc_cache; 5544 vcpu->arch.mmu_pte_list_desc_cache.gfp_zero = __GFP_ZERO; 5545 5546 vcpu->arch.mmu_page_header_cache.kmem_cache = mmu_page_header_cache; 5547 vcpu->arch.mmu_page_header_cache.gfp_zero = __GFP_ZERO; 5548 5549 vcpu->arch.mmu_shadow_page_cache.gfp_zero = __GFP_ZERO; 5550 5551 vcpu->arch.mmu = &vcpu->arch.root_mmu; 5552 vcpu->arch.walk_mmu = &vcpu->arch.root_mmu; 5553 5554 vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa; 5555 5556 ret = __kvm_mmu_create(vcpu, &vcpu->arch.guest_mmu); 5557 if (ret) 5558 return ret; 5559 5560 ret = __kvm_mmu_create(vcpu, &vcpu->arch.root_mmu); 5561 if (ret) 5562 goto fail_allocate_root; 5563 5564 return ret; 5565 fail_allocate_root: 5566 free_mmu_pages(&vcpu->arch.guest_mmu); 5567 return ret; 5568 } 5569 5570 #define BATCH_ZAP_PAGES 10 5571 static void kvm_zap_obsolete_pages(struct kvm *kvm) 5572 { 5573 struct kvm_mmu_page *sp, *node; 5574 int nr_zapped, batch = 0; 5575 5576 restart: 5577 list_for_each_entry_safe_reverse(sp, node, 5578 &kvm->arch.active_mmu_pages, link) { 5579 /* 5580 * No obsolete valid page exists before a newly created page 5581 * since active_mmu_pages is a FIFO list. 5582 */ 5583 if (!is_obsolete_sp(kvm, sp)) 5584 break; 5585 5586 /* 5587 * Invalid pages should never land back on the list of active 5588 * pages. Skip the bogus page, otherwise we'll get stuck in an 5589 * infinite loop if the page gets put back on the list (again). 5590 */ 5591 if (WARN_ON(sp->role.invalid)) 5592 continue; 5593 5594 /* 5595 * No need to flush the TLB since we're only zapping shadow 5596 * pages with an obsolete generation number and all vCPUS have 5597 * loaded a new root, i.e. the shadow pages being zapped cannot 5598 * be in active use by the guest. 5599 */ 5600 if (batch >= BATCH_ZAP_PAGES && 5601 cond_resched_rwlock_write(&kvm->mmu_lock)) { 5602 batch = 0; 5603 goto restart; 5604 } 5605 5606 if (__kvm_mmu_prepare_zap_page(kvm, sp, 5607 &kvm->arch.zapped_obsolete_pages, &nr_zapped)) { 5608 batch += nr_zapped; 5609 goto restart; 5610 } 5611 } 5612 5613 /* 5614 * Trigger a remote TLB flush before freeing the page tables to ensure 5615 * KVM is not in the middle of a lockless shadow page table walk, which 5616 * may reference the pages. 5617 */ 5618 kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages); 5619 } 5620 5621 /* 5622 * Fast invalidate all shadow pages and use lock-break technique 5623 * to zap obsolete pages. 5624 * 5625 * It's required when memslot is being deleted or VM is being 5626 * destroyed, in these cases, we should ensure that KVM MMU does 5627 * not use any resource of the being-deleted slot or all slots 5628 * after calling the function. 5629 */ 5630 static void kvm_mmu_zap_all_fast(struct kvm *kvm) 5631 { 5632 lockdep_assert_held(&kvm->slots_lock); 5633 5634 write_lock(&kvm->mmu_lock); 5635 trace_kvm_mmu_zap_all_fast(kvm); 5636 5637 /* 5638 * Toggle mmu_valid_gen between '0' and '1'. Because slots_lock is 5639 * held for the entire duration of zapping obsolete pages, it's 5640 * impossible for there to be multiple invalid generations associated 5641 * with *valid* shadow pages at any given time, i.e. there is exactly 5642 * one valid generation and (at most) one invalid generation. 5643 */ 5644 kvm->arch.mmu_valid_gen = kvm->arch.mmu_valid_gen ? 0 : 1; 5645 5646 /* In order to ensure all threads see this change when 5647 * handling the MMU reload signal, this must happen in the 5648 * same critical section as kvm_reload_remote_mmus, and 5649 * before kvm_zap_obsolete_pages as kvm_zap_obsolete_pages 5650 * could drop the MMU lock and yield. 5651 */ 5652 if (is_tdp_mmu_enabled(kvm)) 5653 kvm_tdp_mmu_invalidate_all_roots(kvm); 5654 5655 /* 5656 * Notify all vcpus to reload its shadow page table and flush TLB. 5657 * Then all vcpus will switch to new shadow page table with the new 5658 * mmu_valid_gen. 5659 * 5660 * Note: we need to do this under the protection of mmu_lock, 5661 * otherwise, vcpu would purge shadow page but miss tlb flush. 5662 */ 5663 kvm_reload_remote_mmus(kvm); 5664 5665 kvm_zap_obsolete_pages(kvm); 5666 5667 write_unlock(&kvm->mmu_lock); 5668 5669 if (is_tdp_mmu_enabled(kvm)) { 5670 read_lock(&kvm->mmu_lock); 5671 kvm_tdp_mmu_zap_invalidated_roots(kvm); 5672 read_unlock(&kvm->mmu_lock); 5673 } 5674 } 5675 5676 static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm) 5677 { 5678 return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages)); 5679 } 5680 5681 static void kvm_mmu_invalidate_zap_pages_in_memslot(struct kvm *kvm, 5682 struct kvm_memory_slot *slot, 5683 struct kvm_page_track_notifier_node *node) 5684 { 5685 kvm_mmu_zap_all_fast(kvm); 5686 } 5687 5688 void kvm_mmu_init_vm(struct kvm *kvm) 5689 { 5690 struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker; 5691 5692 spin_lock_init(&kvm->arch.mmu_unsync_pages_lock); 5693 5694 if (!kvm_mmu_init_tdp_mmu(kvm)) 5695 /* 5696 * No smp_load/store wrappers needed here as we are in 5697 * VM init and there cannot be any memslots / other threads 5698 * accessing this struct kvm yet. 5699 */ 5700 kvm->arch.memslots_have_rmaps = true; 5701 5702 node->track_write = kvm_mmu_pte_write; 5703 node->track_flush_slot = kvm_mmu_invalidate_zap_pages_in_memslot; 5704 kvm_page_track_register_notifier(kvm, node); 5705 } 5706 5707 void kvm_mmu_uninit_vm(struct kvm *kvm) 5708 { 5709 struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker; 5710 5711 kvm_page_track_unregister_notifier(kvm, node); 5712 5713 kvm_mmu_uninit_tdp_mmu(kvm); 5714 } 5715 5716 /* 5717 * Invalidate (zap) SPTEs that cover GFNs from gfn_start and up to gfn_end 5718 * (not including it) 5719 */ 5720 void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end) 5721 { 5722 struct kvm_memslots *slots; 5723 struct kvm_memory_slot *memslot; 5724 int i; 5725 bool flush = false; 5726 5727 write_lock(&kvm->mmu_lock); 5728 5729 kvm_inc_notifier_count(kvm, gfn_start, gfn_end); 5730 5731 if (kvm_memslots_have_rmaps(kvm)) { 5732 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { 5733 slots = __kvm_memslots(kvm, i); 5734 kvm_for_each_memslot(memslot, slots) { 5735 gfn_t start, end; 5736 5737 start = max(gfn_start, memslot->base_gfn); 5738 end = min(gfn_end, memslot->base_gfn + memslot->npages); 5739 if (start >= end) 5740 continue; 5741 5742 flush = slot_handle_level_range(kvm, 5743 (const struct kvm_memory_slot *) memslot, 5744 kvm_zap_rmapp, PG_LEVEL_4K, 5745 KVM_MAX_HUGEPAGE_LEVEL, start, 5746 end - 1, true, flush); 5747 } 5748 } 5749 if (flush) 5750 kvm_flush_remote_tlbs_with_address(kvm, gfn_start, 5751 gfn_end - gfn_start); 5752 } 5753 5754 if (is_tdp_mmu_enabled(kvm)) { 5755 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) 5756 flush = kvm_tdp_mmu_zap_gfn_range(kvm, i, gfn_start, 5757 gfn_end, flush); 5758 if (flush) 5759 kvm_flush_remote_tlbs_with_address(kvm, gfn_start, 5760 gfn_end - gfn_start); 5761 } 5762 5763 if (flush) 5764 kvm_flush_remote_tlbs_with_address(kvm, gfn_start, gfn_end); 5765 5766 kvm_dec_notifier_count(kvm, gfn_start, gfn_end); 5767 5768 write_unlock(&kvm->mmu_lock); 5769 } 5770 5771 static bool slot_rmap_write_protect(struct kvm *kvm, 5772 struct kvm_rmap_head *rmap_head, 5773 const struct kvm_memory_slot *slot) 5774 { 5775 return __rmap_write_protect(kvm, rmap_head, false); 5776 } 5777 5778 void kvm_mmu_slot_remove_write_access(struct kvm *kvm, 5779 const struct kvm_memory_slot *memslot, 5780 int start_level) 5781 { 5782 bool flush = false; 5783 5784 if (kvm_memslots_have_rmaps(kvm)) { 5785 write_lock(&kvm->mmu_lock); 5786 flush = slot_handle_level(kvm, memslot, slot_rmap_write_protect, 5787 start_level, KVM_MAX_HUGEPAGE_LEVEL, 5788 false); 5789 write_unlock(&kvm->mmu_lock); 5790 } 5791 5792 if (is_tdp_mmu_enabled(kvm)) { 5793 read_lock(&kvm->mmu_lock); 5794 flush |= kvm_tdp_mmu_wrprot_slot(kvm, memslot, start_level); 5795 read_unlock(&kvm->mmu_lock); 5796 } 5797 5798 /* 5799 * We can flush all the TLBs out of the mmu lock without TLB 5800 * corruption since we just change the spte from writable to 5801 * readonly so that we only need to care the case of changing 5802 * spte from present to present (changing the spte from present 5803 * to nonpresent will flush all the TLBs immediately), in other 5804 * words, the only case we care is mmu_spte_update() where we 5805 * have checked Host-writable | MMU-writable instead of 5806 * PT_WRITABLE_MASK, that means it does not depend on PT_WRITABLE_MASK 5807 * anymore. 5808 */ 5809 if (flush) 5810 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot); 5811 } 5812 5813 static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm, 5814 struct kvm_rmap_head *rmap_head, 5815 const struct kvm_memory_slot *slot) 5816 { 5817 u64 *sptep; 5818 struct rmap_iterator iter; 5819 int need_tlb_flush = 0; 5820 kvm_pfn_t pfn; 5821 struct kvm_mmu_page *sp; 5822 5823 restart: 5824 for_each_rmap_spte(rmap_head, &iter, sptep) { 5825 sp = sptep_to_sp(sptep); 5826 pfn = spte_to_pfn(*sptep); 5827 5828 /* 5829 * We cannot do huge page mapping for indirect shadow pages, 5830 * which are found on the last rmap (level = 1) when not using 5831 * tdp; such shadow pages are synced with the page table in 5832 * the guest, and the guest page table is using 4K page size 5833 * mapping if the indirect sp has level = 1. 5834 */ 5835 if (sp->role.direct && !kvm_is_reserved_pfn(pfn) && 5836 sp->role.level < kvm_mmu_max_mapping_level(kvm, slot, sp->gfn, 5837 pfn, PG_LEVEL_NUM)) { 5838 pte_list_remove(kvm, rmap_head, sptep); 5839 5840 if (kvm_available_flush_tlb_with_range()) 5841 kvm_flush_remote_tlbs_with_address(kvm, sp->gfn, 5842 KVM_PAGES_PER_HPAGE(sp->role.level)); 5843 else 5844 need_tlb_flush = 1; 5845 5846 goto restart; 5847 } 5848 } 5849 5850 return need_tlb_flush; 5851 } 5852 5853 void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm, 5854 const struct kvm_memory_slot *slot) 5855 { 5856 bool flush = false; 5857 5858 if (kvm_memslots_have_rmaps(kvm)) { 5859 write_lock(&kvm->mmu_lock); 5860 flush = slot_handle_leaf(kvm, slot, kvm_mmu_zap_collapsible_spte, true); 5861 if (flush) 5862 kvm_arch_flush_remote_tlbs_memslot(kvm, slot); 5863 write_unlock(&kvm->mmu_lock); 5864 } 5865 5866 if (is_tdp_mmu_enabled(kvm)) { 5867 read_lock(&kvm->mmu_lock); 5868 flush = kvm_tdp_mmu_zap_collapsible_sptes(kvm, slot, flush); 5869 if (flush) 5870 kvm_arch_flush_remote_tlbs_memslot(kvm, slot); 5871 read_unlock(&kvm->mmu_lock); 5872 } 5873 } 5874 5875 void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm, 5876 const struct kvm_memory_slot *memslot) 5877 { 5878 /* 5879 * All current use cases for flushing the TLBs for a specific memslot 5880 * related to dirty logging, and many do the TLB flush out of mmu_lock. 5881 * The interaction between the various operations on memslot must be 5882 * serialized by slots_locks to ensure the TLB flush from one operation 5883 * is observed by any other operation on the same memslot. 5884 */ 5885 lockdep_assert_held(&kvm->slots_lock); 5886 kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn, 5887 memslot->npages); 5888 } 5889 5890 void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm, 5891 const struct kvm_memory_slot *memslot) 5892 { 5893 bool flush = false; 5894 5895 if (kvm_memslots_have_rmaps(kvm)) { 5896 write_lock(&kvm->mmu_lock); 5897 flush = slot_handle_leaf(kvm, memslot, __rmap_clear_dirty, 5898 false); 5899 write_unlock(&kvm->mmu_lock); 5900 } 5901 5902 if (is_tdp_mmu_enabled(kvm)) { 5903 read_lock(&kvm->mmu_lock); 5904 flush |= kvm_tdp_mmu_clear_dirty_slot(kvm, memslot); 5905 read_unlock(&kvm->mmu_lock); 5906 } 5907 5908 /* 5909 * It's also safe to flush TLBs out of mmu lock here as currently this 5910 * function is only used for dirty logging, in which case flushing TLB 5911 * out of mmu lock also guarantees no dirty pages will be lost in 5912 * dirty_bitmap. 5913 */ 5914 if (flush) 5915 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot); 5916 } 5917 5918 void kvm_mmu_zap_all(struct kvm *kvm) 5919 { 5920 struct kvm_mmu_page *sp, *node; 5921 LIST_HEAD(invalid_list); 5922 int ign; 5923 5924 write_lock(&kvm->mmu_lock); 5925 restart: 5926 list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link) { 5927 if (WARN_ON(sp->role.invalid)) 5928 continue; 5929 if (__kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list, &ign)) 5930 goto restart; 5931 if (cond_resched_rwlock_write(&kvm->mmu_lock)) 5932 goto restart; 5933 } 5934 5935 kvm_mmu_commit_zap_page(kvm, &invalid_list); 5936 5937 if (is_tdp_mmu_enabled(kvm)) 5938 kvm_tdp_mmu_zap_all(kvm); 5939 5940 write_unlock(&kvm->mmu_lock); 5941 } 5942 5943 void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen) 5944 { 5945 WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS); 5946 5947 gen &= MMIO_SPTE_GEN_MASK; 5948 5949 /* 5950 * Generation numbers are incremented in multiples of the number of 5951 * address spaces in order to provide unique generations across all 5952 * address spaces. Strip what is effectively the address space 5953 * modifier prior to checking for a wrap of the MMIO generation so 5954 * that a wrap in any address space is detected. 5955 */ 5956 gen &= ~((u64)KVM_ADDRESS_SPACE_NUM - 1); 5957 5958 /* 5959 * The very rare case: if the MMIO generation number has wrapped, 5960 * zap all shadow pages. 5961 */ 5962 if (unlikely(gen == 0)) { 5963 kvm_debug_ratelimited("kvm: zapping shadow pages for mmio generation wraparound\n"); 5964 kvm_mmu_zap_all_fast(kvm); 5965 } 5966 } 5967 5968 static unsigned long 5969 mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc) 5970 { 5971 struct kvm *kvm; 5972 int nr_to_scan = sc->nr_to_scan; 5973 unsigned long freed = 0; 5974 5975 mutex_lock(&kvm_lock); 5976 5977 list_for_each_entry(kvm, &vm_list, vm_list) { 5978 int idx; 5979 LIST_HEAD(invalid_list); 5980 5981 /* 5982 * Never scan more than sc->nr_to_scan VM instances. 5983 * Will not hit this condition practically since we do not try 5984 * to shrink more than one VM and it is very unlikely to see 5985 * !n_used_mmu_pages so many times. 5986 */ 5987 if (!nr_to_scan--) 5988 break; 5989 /* 5990 * n_used_mmu_pages is accessed without holding kvm->mmu_lock 5991 * here. We may skip a VM instance errorneosly, but we do not 5992 * want to shrink a VM that only started to populate its MMU 5993 * anyway. 5994 */ 5995 if (!kvm->arch.n_used_mmu_pages && 5996 !kvm_has_zapped_obsolete_pages(kvm)) 5997 continue; 5998 5999 idx = srcu_read_lock(&kvm->srcu); 6000 write_lock(&kvm->mmu_lock); 6001 6002 if (kvm_has_zapped_obsolete_pages(kvm)) { 6003 kvm_mmu_commit_zap_page(kvm, 6004 &kvm->arch.zapped_obsolete_pages); 6005 goto unlock; 6006 } 6007 6008 freed = kvm_mmu_zap_oldest_mmu_pages(kvm, sc->nr_to_scan); 6009 6010 unlock: 6011 write_unlock(&kvm->mmu_lock); 6012 srcu_read_unlock(&kvm->srcu, idx); 6013 6014 /* 6015 * unfair on small ones 6016 * per-vm shrinkers cry out 6017 * sadness comes quickly 6018 */ 6019 list_move_tail(&kvm->vm_list, &vm_list); 6020 break; 6021 } 6022 6023 mutex_unlock(&kvm_lock); 6024 return freed; 6025 } 6026 6027 static unsigned long 6028 mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc) 6029 { 6030 return percpu_counter_read_positive(&kvm_total_used_mmu_pages); 6031 } 6032 6033 static struct shrinker mmu_shrinker = { 6034 .count_objects = mmu_shrink_count, 6035 .scan_objects = mmu_shrink_scan, 6036 .seeks = DEFAULT_SEEKS * 10, 6037 }; 6038 6039 static void mmu_destroy_caches(void) 6040 { 6041 kmem_cache_destroy(pte_list_desc_cache); 6042 kmem_cache_destroy(mmu_page_header_cache); 6043 } 6044 6045 static bool get_nx_auto_mode(void) 6046 { 6047 /* Return true when CPU has the bug, and mitigations are ON */ 6048 return boot_cpu_has_bug(X86_BUG_ITLB_MULTIHIT) && !cpu_mitigations_off(); 6049 } 6050 6051 static void __set_nx_huge_pages(bool val) 6052 { 6053 nx_huge_pages = itlb_multihit_kvm_mitigation = val; 6054 } 6055 6056 static int set_nx_huge_pages(const char *val, const struct kernel_param *kp) 6057 { 6058 bool old_val = nx_huge_pages; 6059 bool new_val; 6060 6061 /* In "auto" mode deploy workaround only if CPU has the bug. */ 6062 if (sysfs_streq(val, "off")) 6063 new_val = 0; 6064 else if (sysfs_streq(val, "force")) 6065 new_val = 1; 6066 else if (sysfs_streq(val, "auto")) 6067 new_val = get_nx_auto_mode(); 6068 else if (strtobool(val, &new_val) < 0) 6069 return -EINVAL; 6070 6071 __set_nx_huge_pages(new_val); 6072 6073 if (new_val != old_val) { 6074 struct kvm *kvm; 6075 6076 mutex_lock(&kvm_lock); 6077 6078 list_for_each_entry(kvm, &vm_list, vm_list) { 6079 mutex_lock(&kvm->slots_lock); 6080 kvm_mmu_zap_all_fast(kvm); 6081 mutex_unlock(&kvm->slots_lock); 6082 6083 wake_up_process(kvm->arch.nx_lpage_recovery_thread); 6084 } 6085 mutex_unlock(&kvm_lock); 6086 } 6087 6088 return 0; 6089 } 6090 6091 int kvm_mmu_module_init(void) 6092 { 6093 int ret = -ENOMEM; 6094 6095 if (nx_huge_pages == -1) 6096 __set_nx_huge_pages(get_nx_auto_mode()); 6097 6098 /* 6099 * MMU roles use union aliasing which is, generally speaking, an 6100 * undefined behavior. However, we supposedly know how compilers behave 6101 * and the current status quo is unlikely to change. Guardians below are 6102 * supposed to let us know if the assumption becomes false. 6103 */ 6104 BUILD_BUG_ON(sizeof(union kvm_mmu_page_role) != sizeof(u32)); 6105 BUILD_BUG_ON(sizeof(union kvm_mmu_extended_role) != sizeof(u32)); 6106 BUILD_BUG_ON(sizeof(union kvm_mmu_role) != sizeof(u64)); 6107 6108 kvm_mmu_reset_all_pte_masks(); 6109 6110 pte_list_desc_cache = kmem_cache_create("pte_list_desc", 6111 sizeof(struct pte_list_desc), 6112 0, SLAB_ACCOUNT, NULL); 6113 if (!pte_list_desc_cache) 6114 goto out; 6115 6116 mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header", 6117 sizeof(struct kvm_mmu_page), 6118 0, SLAB_ACCOUNT, NULL); 6119 if (!mmu_page_header_cache) 6120 goto out; 6121 6122 if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL)) 6123 goto out; 6124 6125 ret = register_shrinker(&mmu_shrinker); 6126 if (ret) 6127 goto out; 6128 6129 return 0; 6130 6131 out: 6132 mmu_destroy_caches(); 6133 return ret; 6134 } 6135 6136 /* 6137 * Calculate mmu pages needed for kvm. 6138 */ 6139 unsigned long kvm_mmu_calculate_default_mmu_pages(struct kvm *kvm) 6140 { 6141 unsigned long nr_mmu_pages; 6142 unsigned long nr_pages = 0; 6143 struct kvm_memslots *slots; 6144 struct kvm_memory_slot *memslot; 6145 int i; 6146 6147 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { 6148 slots = __kvm_memslots(kvm, i); 6149 6150 kvm_for_each_memslot(memslot, slots) 6151 nr_pages += memslot->npages; 6152 } 6153 6154 nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000; 6155 nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES); 6156 6157 return nr_mmu_pages; 6158 } 6159 6160 void kvm_mmu_destroy(struct kvm_vcpu *vcpu) 6161 { 6162 kvm_mmu_unload(vcpu); 6163 free_mmu_pages(&vcpu->arch.root_mmu); 6164 free_mmu_pages(&vcpu->arch.guest_mmu); 6165 mmu_free_memory_caches(vcpu); 6166 } 6167 6168 void kvm_mmu_module_exit(void) 6169 { 6170 mmu_destroy_caches(); 6171 percpu_counter_destroy(&kvm_total_used_mmu_pages); 6172 unregister_shrinker(&mmu_shrinker); 6173 mmu_audit_disable(); 6174 } 6175 6176 static int set_nx_huge_pages_recovery_ratio(const char *val, const struct kernel_param *kp) 6177 { 6178 unsigned int old_val; 6179 int err; 6180 6181 old_val = nx_huge_pages_recovery_ratio; 6182 err = param_set_uint(val, kp); 6183 if (err) 6184 return err; 6185 6186 if (READ_ONCE(nx_huge_pages) && 6187 !old_val && nx_huge_pages_recovery_ratio) { 6188 struct kvm *kvm; 6189 6190 mutex_lock(&kvm_lock); 6191 6192 list_for_each_entry(kvm, &vm_list, vm_list) 6193 wake_up_process(kvm->arch.nx_lpage_recovery_thread); 6194 6195 mutex_unlock(&kvm_lock); 6196 } 6197 6198 return err; 6199 } 6200 6201 static void kvm_recover_nx_lpages(struct kvm *kvm) 6202 { 6203 unsigned long nx_lpage_splits = kvm->stat.nx_lpage_splits; 6204 int rcu_idx; 6205 struct kvm_mmu_page *sp; 6206 unsigned int ratio; 6207 LIST_HEAD(invalid_list); 6208 bool flush = false; 6209 ulong to_zap; 6210 6211 rcu_idx = srcu_read_lock(&kvm->srcu); 6212 write_lock(&kvm->mmu_lock); 6213 6214 ratio = READ_ONCE(nx_huge_pages_recovery_ratio); 6215 to_zap = ratio ? DIV_ROUND_UP(nx_lpage_splits, ratio) : 0; 6216 for ( ; to_zap; --to_zap) { 6217 if (list_empty(&kvm->arch.lpage_disallowed_mmu_pages)) 6218 break; 6219 6220 /* 6221 * We use a separate list instead of just using active_mmu_pages 6222 * because the number of lpage_disallowed pages is expected to 6223 * be relatively small compared to the total. 6224 */ 6225 sp = list_first_entry(&kvm->arch.lpage_disallowed_mmu_pages, 6226 struct kvm_mmu_page, 6227 lpage_disallowed_link); 6228 WARN_ON_ONCE(!sp->lpage_disallowed); 6229 if (is_tdp_mmu_page(sp)) { 6230 flush |= kvm_tdp_mmu_zap_sp(kvm, sp); 6231 } else { 6232 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list); 6233 WARN_ON_ONCE(sp->lpage_disallowed); 6234 } 6235 6236 if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) { 6237 kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush); 6238 cond_resched_rwlock_write(&kvm->mmu_lock); 6239 flush = false; 6240 } 6241 } 6242 kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush); 6243 6244 write_unlock(&kvm->mmu_lock); 6245 srcu_read_unlock(&kvm->srcu, rcu_idx); 6246 } 6247 6248 static long get_nx_lpage_recovery_timeout(u64 start_time) 6249 { 6250 return READ_ONCE(nx_huge_pages) && READ_ONCE(nx_huge_pages_recovery_ratio) 6251 ? start_time + 60 * HZ - get_jiffies_64() 6252 : MAX_SCHEDULE_TIMEOUT; 6253 } 6254 6255 static int kvm_nx_lpage_recovery_worker(struct kvm *kvm, uintptr_t data) 6256 { 6257 u64 start_time; 6258 long remaining_time; 6259 6260 while (true) { 6261 start_time = get_jiffies_64(); 6262 remaining_time = get_nx_lpage_recovery_timeout(start_time); 6263 6264 set_current_state(TASK_INTERRUPTIBLE); 6265 while (!kthread_should_stop() && remaining_time > 0) { 6266 schedule_timeout(remaining_time); 6267 remaining_time = get_nx_lpage_recovery_timeout(start_time); 6268 set_current_state(TASK_INTERRUPTIBLE); 6269 } 6270 6271 set_current_state(TASK_RUNNING); 6272 6273 if (kthread_should_stop()) 6274 return 0; 6275 6276 kvm_recover_nx_lpages(kvm); 6277 } 6278 } 6279 6280 int kvm_mmu_post_init_vm(struct kvm *kvm) 6281 { 6282 int err; 6283 6284 err = kvm_vm_create_worker_thread(kvm, kvm_nx_lpage_recovery_worker, 0, 6285 "kvm-nx-lpage-recovery", 6286 &kvm->arch.nx_lpage_recovery_thread); 6287 if (!err) 6288 kthread_unpark(kvm->arch.nx_lpage_recovery_thread); 6289 6290 return err; 6291 } 6292 6293 void kvm_mmu_pre_destroy_vm(struct kvm *kvm) 6294 { 6295 if (kvm->arch.nx_lpage_recovery_thread) 6296 kthread_stop(kvm->arch.nx_lpage_recovery_thread); 6297 } 6298