xref: /openbmc/linux/arch/x86/kvm/mmu/mmu.c (revision b625fe69)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This module enables machines with Intel VT-x extensions to run virtual
6  * machines without emulation or binary translation.
7  *
8  * MMU support
9  *
10  * Copyright (C) 2006 Qumranet, Inc.
11  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
12  *
13  * Authors:
14  *   Yaniv Kamay  <yaniv@qumranet.com>
15  *   Avi Kivity   <avi@qumranet.com>
16  */
17 
18 #include "irq.h"
19 #include "ioapic.h"
20 #include "mmu.h"
21 #include "mmu_internal.h"
22 #include "tdp_mmu.h"
23 #include "x86.h"
24 #include "kvm_cache_regs.h"
25 #include "kvm_emulate.h"
26 #include "cpuid.h"
27 #include "spte.h"
28 
29 #include <linux/kvm_host.h>
30 #include <linux/types.h>
31 #include <linux/string.h>
32 #include <linux/mm.h>
33 #include <linux/highmem.h>
34 #include <linux/moduleparam.h>
35 #include <linux/export.h>
36 #include <linux/swap.h>
37 #include <linux/hugetlb.h>
38 #include <linux/compiler.h>
39 #include <linux/srcu.h>
40 #include <linux/slab.h>
41 #include <linux/sched/signal.h>
42 #include <linux/uaccess.h>
43 #include <linux/hash.h>
44 #include <linux/kern_levels.h>
45 #include <linux/kthread.h>
46 
47 #include <asm/page.h>
48 #include <asm/memtype.h>
49 #include <asm/cmpxchg.h>
50 #include <asm/io.h>
51 #include <asm/set_memory.h>
52 #include <asm/vmx.h>
53 #include <asm/kvm_page_track.h>
54 #include "trace.h"
55 
56 #include "paging.h"
57 
58 extern bool itlb_multihit_kvm_mitigation;
59 
60 int __read_mostly nx_huge_pages = -1;
61 static uint __read_mostly nx_huge_pages_recovery_period_ms;
62 #ifdef CONFIG_PREEMPT_RT
63 /* Recovery can cause latency spikes, disable it for PREEMPT_RT.  */
64 static uint __read_mostly nx_huge_pages_recovery_ratio = 0;
65 #else
66 static uint __read_mostly nx_huge_pages_recovery_ratio = 60;
67 #endif
68 
69 static int set_nx_huge_pages(const char *val, const struct kernel_param *kp);
70 static int set_nx_huge_pages_recovery_param(const char *val, const struct kernel_param *kp);
71 
72 static const struct kernel_param_ops nx_huge_pages_ops = {
73 	.set = set_nx_huge_pages,
74 	.get = param_get_bool,
75 };
76 
77 static const struct kernel_param_ops nx_huge_pages_recovery_param_ops = {
78 	.set = set_nx_huge_pages_recovery_param,
79 	.get = param_get_uint,
80 };
81 
82 module_param_cb(nx_huge_pages, &nx_huge_pages_ops, &nx_huge_pages, 0644);
83 __MODULE_PARM_TYPE(nx_huge_pages, "bool");
84 module_param_cb(nx_huge_pages_recovery_ratio, &nx_huge_pages_recovery_param_ops,
85 		&nx_huge_pages_recovery_ratio, 0644);
86 __MODULE_PARM_TYPE(nx_huge_pages_recovery_ratio, "uint");
87 module_param_cb(nx_huge_pages_recovery_period_ms, &nx_huge_pages_recovery_param_ops,
88 		&nx_huge_pages_recovery_period_ms, 0644);
89 __MODULE_PARM_TYPE(nx_huge_pages_recovery_period_ms, "uint");
90 
91 static bool __read_mostly force_flush_and_sync_on_reuse;
92 module_param_named(flush_on_reuse, force_flush_and_sync_on_reuse, bool, 0644);
93 
94 /*
95  * When setting this variable to true it enables Two-Dimensional-Paging
96  * where the hardware walks 2 page tables:
97  * 1. the guest-virtual to guest-physical
98  * 2. while doing 1. it walks guest-physical to host-physical
99  * If the hardware supports that we don't need to do shadow paging.
100  */
101 bool tdp_enabled = false;
102 
103 static int max_huge_page_level __read_mostly;
104 static int tdp_root_level __read_mostly;
105 static int max_tdp_level __read_mostly;
106 
107 enum {
108 	AUDIT_PRE_PAGE_FAULT,
109 	AUDIT_POST_PAGE_FAULT,
110 	AUDIT_PRE_PTE_WRITE,
111 	AUDIT_POST_PTE_WRITE,
112 	AUDIT_PRE_SYNC,
113 	AUDIT_POST_SYNC
114 };
115 
116 #ifdef MMU_DEBUG
117 bool dbg = 0;
118 module_param(dbg, bool, 0644);
119 #endif
120 
121 #define PTE_PREFETCH_NUM		8
122 
123 #define PT32_LEVEL_BITS 10
124 
125 #define PT32_LEVEL_SHIFT(level) \
126 		(PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
127 
128 #define PT32_LVL_OFFSET_MASK(level) \
129 	(PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
130 						* PT32_LEVEL_BITS))) - 1))
131 
132 #define PT32_INDEX(address, level)\
133 	(((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
134 
135 
136 #define PT32_BASE_ADDR_MASK PAGE_MASK
137 #define PT32_DIR_BASE_ADDR_MASK \
138 	(PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
139 #define PT32_LVL_ADDR_MASK(level) \
140 	(PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
141 					    * PT32_LEVEL_BITS))) - 1))
142 
143 #include <trace/events/kvm.h>
144 
145 /* make pte_list_desc fit well in cache lines */
146 #define PTE_LIST_EXT 14
147 
148 /*
149  * Slight optimization of cacheline layout, by putting `more' and `spte_count'
150  * at the start; then accessing it will only use one single cacheline for
151  * either full (entries==PTE_LIST_EXT) case or entries<=6.
152  */
153 struct pte_list_desc {
154 	struct pte_list_desc *more;
155 	/*
156 	 * Stores number of entries stored in the pte_list_desc.  No need to be
157 	 * u64 but just for easier alignment.  When PTE_LIST_EXT, means full.
158 	 */
159 	u64 spte_count;
160 	u64 *sptes[PTE_LIST_EXT];
161 };
162 
163 struct kvm_shadow_walk_iterator {
164 	u64 addr;
165 	hpa_t shadow_addr;
166 	u64 *sptep;
167 	int level;
168 	unsigned index;
169 };
170 
171 #define for_each_shadow_entry_using_root(_vcpu, _root, _addr, _walker)     \
172 	for (shadow_walk_init_using_root(&(_walker), (_vcpu),              \
173 					 (_root), (_addr));                \
174 	     shadow_walk_okay(&(_walker));			           \
175 	     shadow_walk_next(&(_walker)))
176 
177 #define for_each_shadow_entry(_vcpu, _addr, _walker)            \
178 	for (shadow_walk_init(&(_walker), _vcpu, _addr);	\
179 	     shadow_walk_okay(&(_walker));			\
180 	     shadow_walk_next(&(_walker)))
181 
182 #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte)	\
183 	for (shadow_walk_init(&(_walker), _vcpu, _addr);		\
184 	     shadow_walk_okay(&(_walker)) &&				\
185 		({ spte = mmu_spte_get_lockless(_walker.sptep); 1; });	\
186 	     __shadow_walk_next(&(_walker), spte))
187 
188 static struct kmem_cache *pte_list_desc_cache;
189 struct kmem_cache *mmu_page_header_cache;
190 static struct percpu_counter kvm_total_used_mmu_pages;
191 
192 static void mmu_spte_set(u64 *sptep, u64 spte);
193 static union kvm_mmu_page_role
194 kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu);
195 
196 struct kvm_mmu_role_regs {
197 	const unsigned long cr0;
198 	const unsigned long cr4;
199 	const u64 efer;
200 };
201 
202 #define CREATE_TRACE_POINTS
203 #include "mmutrace.h"
204 
205 /*
206  * Yes, lot's of underscores.  They're a hint that you probably shouldn't be
207  * reading from the role_regs.  Once the mmu_role is constructed, it becomes
208  * the single source of truth for the MMU's state.
209  */
210 #define BUILD_MMU_ROLE_REGS_ACCESSOR(reg, name, flag)			\
211 static inline bool __maybe_unused ____is_##reg##_##name(struct kvm_mmu_role_regs *regs)\
212 {									\
213 	return !!(regs->reg & flag);					\
214 }
215 BUILD_MMU_ROLE_REGS_ACCESSOR(cr0, pg, X86_CR0_PG);
216 BUILD_MMU_ROLE_REGS_ACCESSOR(cr0, wp, X86_CR0_WP);
217 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pse, X86_CR4_PSE);
218 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pae, X86_CR4_PAE);
219 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, smep, X86_CR4_SMEP);
220 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, smap, X86_CR4_SMAP);
221 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pke, X86_CR4_PKE);
222 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, la57, X86_CR4_LA57);
223 BUILD_MMU_ROLE_REGS_ACCESSOR(efer, nx, EFER_NX);
224 BUILD_MMU_ROLE_REGS_ACCESSOR(efer, lma, EFER_LMA);
225 
226 /*
227  * The MMU itself (with a valid role) is the single source of truth for the
228  * MMU.  Do not use the regs used to build the MMU/role, nor the vCPU.  The
229  * regs don't account for dependencies, e.g. clearing CR4 bits if CR0.PG=1,
230  * and the vCPU may be incorrect/irrelevant.
231  */
232 #define BUILD_MMU_ROLE_ACCESSOR(base_or_ext, reg, name)		\
233 static inline bool __maybe_unused is_##reg##_##name(struct kvm_mmu *mmu)	\
234 {								\
235 	return !!(mmu->mmu_role. base_or_ext . reg##_##name);	\
236 }
237 BUILD_MMU_ROLE_ACCESSOR(ext,  cr0, pg);
238 BUILD_MMU_ROLE_ACCESSOR(base, cr0, wp);
239 BUILD_MMU_ROLE_ACCESSOR(ext,  cr4, pse);
240 BUILD_MMU_ROLE_ACCESSOR(ext,  cr4, pae);
241 BUILD_MMU_ROLE_ACCESSOR(ext,  cr4, smep);
242 BUILD_MMU_ROLE_ACCESSOR(ext,  cr4, smap);
243 BUILD_MMU_ROLE_ACCESSOR(ext,  cr4, pke);
244 BUILD_MMU_ROLE_ACCESSOR(ext,  cr4, la57);
245 BUILD_MMU_ROLE_ACCESSOR(base, efer, nx);
246 
247 static struct kvm_mmu_role_regs vcpu_to_role_regs(struct kvm_vcpu *vcpu)
248 {
249 	struct kvm_mmu_role_regs regs = {
250 		.cr0 = kvm_read_cr0_bits(vcpu, KVM_MMU_CR0_ROLE_BITS),
251 		.cr4 = kvm_read_cr4_bits(vcpu, KVM_MMU_CR4_ROLE_BITS),
252 		.efer = vcpu->arch.efer,
253 	};
254 
255 	return regs;
256 }
257 
258 static int role_regs_to_root_level(struct kvm_mmu_role_regs *regs)
259 {
260 	if (!____is_cr0_pg(regs))
261 		return 0;
262 	else if (____is_efer_lma(regs))
263 		return ____is_cr4_la57(regs) ? PT64_ROOT_5LEVEL :
264 					       PT64_ROOT_4LEVEL;
265 	else if (____is_cr4_pae(regs))
266 		return PT32E_ROOT_LEVEL;
267 	else
268 		return PT32_ROOT_LEVEL;
269 }
270 
271 static inline bool kvm_available_flush_tlb_with_range(void)
272 {
273 	return kvm_x86_ops.tlb_remote_flush_with_range;
274 }
275 
276 static void kvm_flush_remote_tlbs_with_range(struct kvm *kvm,
277 		struct kvm_tlb_range *range)
278 {
279 	int ret = -ENOTSUPP;
280 
281 	if (range && kvm_x86_ops.tlb_remote_flush_with_range)
282 		ret = static_call(kvm_x86_tlb_remote_flush_with_range)(kvm, range);
283 
284 	if (ret)
285 		kvm_flush_remote_tlbs(kvm);
286 }
287 
288 void kvm_flush_remote_tlbs_with_address(struct kvm *kvm,
289 		u64 start_gfn, u64 pages)
290 {
291 	struct kvm_tlb_range range;
292 
293 	range.start_gfn = start_gfn;
294 	range.pages = pages;
295 
296 	kvm_flush_remote_tlbs_with_range(kvm, &range);
297 }
298 
299 static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn,
300 			   unsigned int access)
301 {
302 	u64 spte = make_mmio_spte(vcpu, gfn, access);
303 
304 	trace_mark_mmio_spte(sptep, gfn, spte);
305 	mmu_spte_set(sptep, spte);
306 }
307 
308 static gfn_t get_mmio_spte_gfn(u64 spte)
309 {
310 	u64 gpa = spte & shadow_nonpresent_or_rsvd_lower_gfn_mask;
311 
312 	gpa |= (spte >> SHADOW_NONPRESENT_OR_RSVD_MASK_LEN)
313 	       & shadow_nonpresent_or_rsvd_mask;
314 
315 	return gpa >> PAGE_SHIFT;
316 }
317 
318 static unsigned get_mmio_spte_access(u64 spte)
319 {
320 	return spte & shadow_mmio_access_mask;
321 }
322 
323 static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte)
324 {
325 	u64 kvm_gen, spte_gen, gen;
326 
327 	gen = kvm_vcpu_memslots(vcpu)->generation;
328 	if (unlikely(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS))
329 		return false;
330 
331 	kvm_gen = gen & MMIO_SPTE_GEN_MASK;
332 	spte_gen = get_mmio_spte_generation(spte);
333 
334 	trace_check_mmio_spte(spte, kvm_gen, spte_gen);
335 	return likely(kvm_gen == spte_gen);
336 }
337 
338 static int is_cpuid_PSE36(void)
339 {
340 	return 1;
341 }
342 
343 static gfn_t pse36_gfn_delta(u32 gpte)
344 {
345 	int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
346 
347 	return (gpte & PT32_DIR_PSE36_MASK) << shift;
348 }
349 
350 #ifdef CONFIG_X86_64
351 static void __set_spte(u64 *sptep, u64 spte)
352 {
353 	WRITE_ONCE(*sptep, spte);
354 }
355 
356 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
357 {
358 	WRITE_ONCE(*sptep, spte);
359 }
360 
361 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
362 {
363 	return xchg(sptep, spte);
364 }
365 
366 static u64 __get_spte_lockless(u64 *sptep)
367 {
368 	return READ_ONCE(*sptep);
369 }
370 #else
371 union split_spte {
372 	struct {
373 		u32 spte_low;
374 		u32 spte_high;
375 	};
376 	u64 spte;
377 };
378 
379 static void count_spte_clear(u64 *sptep, u64 spte)
380 {
381 	struct kvm_mmu_page *sp =  sptep_to_sp(sptep);
382 
383 	if (is_shadow_present_pte(spte))
384 		return;
385 
386 	/* Ensure the spte is completely set before we increase the count */
387 	smp_wmb();
388 	sp->clear_spte_count++;
389 }
390 
391 static void __set_spte(u64 *sptep, u64 spte)
392 {
393 	union split_spte *ssptep, sspte;
394 
395 	ssptep = (union split_spte *)sptep;
396 	sspte = (union split_spte)spte;
397 
398 	ssptep->spte_high = sspte.spte_high;
399 
400 	/*
401 	 * If we map the spte from nonpresent to present, We should store
402 	 * the high bits firstly, then set present bit, so cpu can not
403 	 * fetch this spte while we are setting the spte.
404 	 */
405 	smp_wmb();
406 
407 	WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
408 }
409 
410 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
411 {
412 	union split_spte *ssptep, sspte;
413 
414 	ssptep = (union split_spte *)sptep;
415 	sspte = (union split_spte)spte;
416 
417 	WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
418 
419 	/*
420 	 * If we map the spte from present to nonpresent, we should clear
421 	 * present bit firstly to avoid vcpu fetch the old high bits.
422 	 */
423 	smp_wmb();
424 
425 	ssptep->spte_high = sspte.spte_high;
426 	count_spte_clear(sptep, spte);
427 }
428 
429 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
430 {
431 	union split_spte *ssptep, sspte, orig;
432 
433 	ssptep = (union split_spte *)sptep;
434 	sspte = (union split_spte)spte;
435 
436 	/* xchg acts as a barrier before the setting of the high bits */
437 	orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
438 	orig.spte_high = ssptep->spte_high;
439 	ssptep->spte_high = sspte.spte_high;
440 	count_spte_clear(sptep, spte);
441 
442 	return orig.spte;
443 }
444 
445 /*
446  * The idea using the light way get the spte on x86_32 guest is from
447  * gup_get_pte (mm/gup.c).
448  *
449  * An spte tlb flush may be pending, because kvm_set_pte_rmapp
450  * coalesces them and we are running out of the MMU lock.  Therefore
451  * we need to protect against in-progress updates of the spte.
452  *
453  * Reading the spte while an update is in progress may get the old value
454  * for the high part of the spte.  The race is fine for a present->non-present
455  * change (because the high part of the spte is ignored for non-present spte),
456  * but for a present->present change we must reread the spte.
457  *
458  * All such changes are done in two steps (present->non-present and
459  * non-present->present), hence it is enough to count the number of
460  * present->non-present updates: if it changed while reading the spte,
461  * we might have hit the race.  This is done using clear_spte_count.
462  */
463 static u64 __get_spte_lockless(u64 *sptep)
464 {
465 	struct kvm_mmu_page *sp =  sptep_to_sp(sptep);
466 	union split_spte spte, *orig = (union split_spte *)sptep;
467 	int count;
468 
469 retry:
470 	count = sp->clear_spte_count;
471 	smp_rmb();
472 
473 	spte.spte_low = orig->spte_low;
474 	smp_rmb();
475 
476 	spte.spte_high = orig->spte_high;
477 	smp_rmb();
478 
479 	if (unlikely(spte.spte_low != orig->spte_low ||
480 	      count != sp->clear_spte_count))
481 		goto retry;
482 
483 	return spte.spte;
484 }
485 #endif
486 
487 static bool spte_has_volatile_bits(u64 spte)
488 {
489 	if (!is_shadow_present_pte(spte))
490 		return false;
491 
492 	/*
493 	 * Always atomically update spte if it can be updated
494 	 * out of mmu-lock, it can ensure dirty bit is not lost,
495 	 * also, it can help us to get a stable is_writable_pte()
496 	 * to ensure tlb flush is not missed.
497 	 */
498 	if (spte_can_locklessly_be_made_writable(spte) ||
499 	    is_access_track_spte(spte))
500 		return true;
501 
502 	if (spte_ad_enabled(spte)) {
503 		if ((spte & shadow_accessed_mask) == 0 ||
504 	    	    (is_writable_pte(spte) && (spte & shadow_dirty_mask) == 0))
505 			return true;
506 	}
507 
508 	return false;
509 }
510 
511 /* Rules for using mmu_spte_set:
512  * Set the sptep from nonpresent to present.
513  * Note: the sptep being assigned *must* be either not present
514  * or in a state where the hardware will not attempt to update
515  * the spte.
516  */
517 static void mmu_spte_set(u64 *sptep, u64 new_spte)
518 {
519 	WARN_ON(is_shadow_present_pte(*sptep));
520 	__set_spte(sptep, new_spte);
521 }
522 
523 /*
524  * Update the SPTE (excluding the PFN), but do not track changes in its
525  * accessed/dirty status.
526  */
527 static u64 mmu_spte_update_no_track(u64 *sptep, u64 new_spte)
528 {
529 	u64 old_spte = *sptep;
530 
531 	WARN_ON(!is_shadow_present_pte(new_spte));
532 
533 	if (!is_shadow_present_pte(old_spte)) {
534 		mmu_spte_set(sptep, new_spte);
535 		return old_spte;
536 	}
537 
538 	if (!spte_has_volatile_bits(old_spte))
539 		__update_clear_spte_fast(sptep, new_spte);
540 	else
541 		old_spte = __update_clear_spte_slow(sptep, new_spte);
542 
543 	WARN_ON(spte_to_pfn(old_spte) != spte_to_pfn(new_spte));
544 
545 	return old_spte;
546 }
547 
548 /* Rules for using mmu_spte_update:
549  * Update the state bits, it means the mapped pfn is not changed.
550  *
551  * Whenever we overwrite a writable spte with a read-only one we
552  * should flush remote TLBs. Otherwise rmap_write_protect
553  * will find a read-only spte, even though the writable spte
554  * might be cached on a CPU's TLB, the return value indicates this
555  * case.
556  *
557  * Returns true if the TLB needs to be flushed
558  */
559 static bool mmu_spte_update(u64 *sptep, u64 new_spte)
560 {
561 	bool flush = false;
562 	u64 old_spte = mmu_spte_update_no_track(sptep, new_spte);
563 
564 	if (!is_shadow_present_pte(old_spte))
565 		return false;
566 
567 	/*
568 	 * For the spte updated out of mmu-lock is safe, since
569 	 * we always atomically update it, see the comments in
570 	 * spte_has_volatile_bits().
571 	 */
572 	if (spte_can_locklessly_be_made_writable(old_spte) &&
573 	      !is_writable_pte(new_spte))
574 		flush = true;
575 
576 	/*
577 	 * Flush TLB when accessed/dirty states are changed in the page tables,
578 	 * to guarantee consistency between TLB and page tables.
579 	 */
580 
581 	if (is_accessed_spte(old_spte) && !is_accessed_spte(new_spte)) {
582 		flush = true;
583 		kvm_set_pfn_accessed(spte_to_pfn(old_spte));
584 	}
585 
586 	if (is_dirty_spte(old_spte) && !is_dirty_spte(new_spte)) {
587 		flush = true;
588 		kvm_set_pfn_dirty(spte_to_pfn(old_spte));
589 	}
590 
591 	return flush;
592 }
593 
594 /*
595  * Rules for using mmu_spte_clear_track_bits:
596  * It sets the sptep from present to nonpresent, and track the
597  * state bits, it is used to clear the last level sptep.
598  * Returns the old PTE.
599  */
600 static int mmu_spte_clear_track_bits(struct kvm *kvm, u64 *sptep)
601 {
602 	kvm_pfn_t pfn;
603 	u64 old_spte = *sptep;
604 	int level = sptep_to_sp(sptep)->role.level;
605 
606 	if (!spte_has_volatile_bits(old_spte))
607 		__update_clear_spte_fast(sptep, 0ull);
608 	else
609 		old_spte = __update_clear_spte_slow(sptep, 0ull);
610 
611 	if (!is_shadow_present_pte(old_spte))
612 		return old_spte;
613 
614 	kvm_update_page_stats(kvm, level, -1);
615 
616 	pfn = spte_to_pfn(old_spte);
617 
618 	/*
619 	 * KVM does not hold the refcount of the page used by
620 	 * kvm mmu, before reclaiming the page, we should
621 	 * unmap it from mmu first.
622 	 */
623 	WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn)));
624 
625 	if (is_accessed_spte(old_spte))
626 		kvm_set_pfn_accessed(pfn);
627 
628 	if (is_dirty_spte(old_spte))
629 		kvm_set_pfn_dirty(pfn);
630 
631 	return old_spte;
632 }
633 
634 /*
635  * Rules for using mmu_spte_clear_no_track:
636  * Directly clear spte without caring the state bits of sptep,
637  * it is used to set the upper level spte.
638  */
639 static void mmu_spte_clear_no_track(u64 *sptep)
640 {
641 	__update_clear_spte_fast(sptep, 0ull);
642 }
643 
644 static u64 mmu_spte_get_lockless(u64 *sptep)
645 {
646 	return __get_spte_lockless(sptep);
647 }
648 
649 /* Restore an acc-track PTE back to a regular PTE */
650 static u64 restore_acc_track_spte(u64 spte)
651 {
652 	u64 new_spte = spte;
653 	u64 saved_bits = (spte >> SHADOW_ACC_TRACK_SAVED_BITS_SHIFT)
654 			 & SHADOW_ACC_TRACK_SAVED_BITS_MASK;
655 
656 	WARN_ON_ONCE(spte_ad_enabled(spte));
657 	WARN_ON_ONCE(!is_access_track_spte(spte));
658 
659 	new_spte &= ~shadow_acc_track_mask;
660 	new_spte &= ~(SHADOW_ACC_TRACK_SAVED_BITS_MASK <<
661 		      SHADOW_ACC_TRACK_SAVED_BITS_SHIFT);
662 	new_spte |= saved_bits;
663 
664 	return new_spte;
665 }
666 
667 /* Returns the Accessed status of the PTE and resets it at the same time. */
668 static bool mmu_spte_age(u64 *sptep)
669 {
670 	u64 spte = mmu_spte_get_lockless(sptep);
671 
672 	if (!is_accessed_spte(spte))
673 		return false;
674 
675 	if (spte_ad_enabled(spte)) {
676 		clear_bit((ffs(shadow_accessed_mask) - 1),
677 			  (unsigned long *)sptep);
678 	} else {
679 		/*
680 		 * Capture the dirty status of the page, so that it doesn't get
681 		 * lost when the SPTE is marked for access tracking.
682 		 */
683 		if (is_writable_pte(spte))
684 			kvm_set_pfn_dirty(spte_to_pfn(spte));
685 
686 		spte = mark_spte_for_access_track(spte);
687 		mmu_spte_update_no_track(sptep, spte);
688 	}
689 
690 	return true;
691 }
692 
693 static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
694 {
695 	if (is_tdp_mmu(vcpu->arch.mmu)) {
696 		kvm_tdp_mmu_walk_lockless_begin();
697 	} else {
698 		/*
699 		 * Prevent page table teardown by making any free-er wait during
700 		 * kvm_flush_remote_tlbs() IPI to all active vcpus.
701 		 */
702 		local_irq_disable();
703 
704 		/*
705 		 * Make sure a following spte read is not reordered ahead of the write
706 		 * to vcpu->mode.
707 		 */
708 		smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES);
709 	}
710 }
711 
712 static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
713 {
714 	if (is_tdp_mmu(vcpu->arch.mmu)) {
715 		kvm_tdp_mmu_walk_lockless_end();
716 	} else {
717 		/*
718 		 * Make sure the write to vcpu->mode is not reordered in front of
719 		 * reads to sptes.  If it does, kvm_mmu_commit_zap_page() can see us
720 		 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
721 		 */
722 		smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE);
723 		local_irq_enable();
724 	}
725 }
726 
727 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu, bool maybe_indirect)
728 {
729 	int r;
730 
731 	/* 1 rmap, 1 parent PTE per level, and the prefetched rmaps. */
732 	r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
733 				       1 + PT64_ROOT_MAX_LEVEL + PTE_PREFETCH_NUM);
734 	if (r)
735 		return r;
736 	r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_shadow_page_cache,
737 				       PT64_ROOT_MAX_LEVEL);
738 	if (r)
739 		return r;
740 	if (maybe_indirect) {
741 		r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_gfn_array_cache,
742 					       PT64_ROOT_MAX_LEVEL);
743 		if (r)
744 			return r;
745 	}
746 	return kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
747 					  PT64_ROOT_MAX_LEVEL);
748 }
749 
750 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
751 {
752 	kvm_mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache);
753 	kvm_mmu_free_memory_cache(&vcpu->arch.mmu_shadow_page_cache);
754 	kvm_mmu_free_memory_cache(&vcpu->arch.mmu_gfn_array_cache);
755 	kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache);
756 }
757 
758 static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
759 {
760 	return kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
761 }
762 
763 static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
764 {
765 	kmem_cache_free(pte_list_desc_cache, pte_list_desc);
766 }
767 
768 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
769 {
770 	if (!sp->role.direct)
771 		return sp->gfns[index];
772 
773 	return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
774 }
775 
776 static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
777 {
778 	if (!sp->role.direct) {
779 		sp->gfns[index] = gfn;
780 		return;
781 	}
782 
783 	if (WARN_ON(gfn != kvm_mmu_page_get_gfn(sp, index)))
784 		pr_err_ratelimited("gfn mismatch under direct page %llx "
785 				   "(expected %llx, got %llx)\n",
786 				   sp->gfn,
787 				   kvm_mmu_page_get_gfn(sp, index), gfn);
788 }
789 
790 /*
791  * Return the pointer to the large page information for a given gfn,
792  * handling slots that are not large page aligned.
793  */
794 static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
795 		const struct kvm_memory_slot *slot, int level)
796 {
797 	unsigned long idx;
798 
799 	idx = gfn_to_index(gfn, slot->base_gfn, level);
800 	return &slot->arch.lpage_info[level - 2][idx];
801 }
802 
803 static void update_gfn_disallow_lpage_count(const struct kvm_memory_slot *slot,
804 					    gfn_t gfn, int count)
805 {
806 	struct kvm_lpage_info *linfo;
807 	int i;
808 
809 	for (i = PG_LEVEL_2M; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) {
810 		linfo = lpage_info_slot(gfn, slot, i);
811 		linfo->disallow_lpage += count;
812 		WARN_ON(linfo->disallow_lpage < 0);
813 	}
814 }
815 
816 void kvm_mmu_gfn_disallow_lpage(const struct kvm_memory_slot *slot, gfn_t gfn)
817 {
818 	update_gfn_disallow_lpage_count(slot, gfn, 1);
819 }
820 
821 void kvm_mmu_gfn_allow_lpage(const struct kvm_memory_slot *slot, gfn_t gfn)
822 {
823 	update_gfn_disallow_lpage_count(slot, gfn, -1);
824 }
825 
826 static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
827 {
828 	struct kvm_memslots *slots;
829 	struct kvm_memory_slot *slot;
830 	gfn_t gfn;
831 
832 	kvm->arch.indirect_shadow_pages++;
833 	gfn = sp->gfn;
834 	slots = kvm_memslots_for_spte_role(kvm, sp->role);
835 	slot = __gfn_to_memslot(slots, gfn);
836 
837 	/* the non-leaf shadow pages are keeping readonly. */
838 	if (sp->role.level > PG_LEVEL_4K)
839 		return kvm_slot_page_track_add_page(kvm, slot, gfn,
840 						    KVM_PAGE_TRACK_WRITE);
841 
842 	kvm_mmu_gfn_disallow_lpage(slot, gfn);
843 }
844 
845 void account_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp)
846 {
847 	if (sp->lpage_disallowed)
848 		return;
849 
850 	++kvm->stat.nx_lpage_splits;
851 	list_add_tail(&sp->lpage_disallowed_link,
852 		      &kvm->arch.lpage_disallowed_mmu_pages);
853 	sp->lpage_disallowed = true;
854 }
855 
856 static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
857 {
858 	struct kvm_memslots *slots;
859 	struct kvm_memory_slot *slot;
860 	gfn_t gfn;
861 
862 	kvm->arch.indirect_shadow_pages--;
863 	gfn = sp->gfn;
864 	slots = kvm_memslots_for_spte_role(kvm, sp->role);
865 	slot = __gfn_to_memslot(slots, gfn);
866 	if (sp->role.level > PG_LEVEL_4K)
867 		return kvm_slot_page_track_remove_page(kvm, slot, gfn,
868 						       KVM_PAGE_TRACK_WRITE);
869 
870 	kvm_mmu_gfn_allow_lpage(slot, gfn);
871 }
872 
873 void unaccount_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp)
874 {
875 	--kvm->stat.nx_lpage_splits;
876 	sp->lpage_disallowed = false;
877 	list_del(&sp->lpage_disallowed_link);
878 }
879 
880 static struct kvm_memory_slot *
881 gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
882 			    bool no_dirty_log)
883 {
884 	struct kvm_memory_slot *slot;
885 
886 	slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
887 	if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
888 		return NULL;
889 	if (no_dirty_log && kvm_slot_dirty_track_enabled(slot))
890 		return NULL;
891 
892 	return slot;
893 }
894 
895 /*
896  * About rmap_head encoding:
897  *
898  * If the bit zero of rmap_head->val is clear, then it points to the only spte
899  * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct
900  * pte_list_desc containing more mappings.
901  */
902 
903 /*
904  * Returns the number of pointers in the rmap chain, not counting the new one.
905  */
906 static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
907 			struct kvm_rmap_head *rmap_head)
908 {
909 	struct pte_list_desc *desc;
910 	int count = 0;
911 
912 	if (!rmap_head->val) {
913 		rmap_printk("%p %llx 0->1\n", spte, *spte);
914 		rmap_head->val = (unsigned long)spte;
915 	} else if (!(rmap_head->val & 1)) {
916 		rmap_printk("%p %llx 1->many\n", spte, *spte);
917 		desc = mmu_alloc_pte_list_desc(vcpu);
918 		desc->sptes[0] = (u64 *)rmap_head->val;
919 		desc->sptes[1] = spte;
920 		desc->spte_count = 2;
921 		rmap_head->val = (unsigned long)desc | 1;
922 		++count;
923 	} else {
924 		rmap_printk("%p %llx many->many\n", spte, *spte);
925 		desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
926 		while (desc->spte_count == PTE_LIST_EXT) {
927 			count += PTE_LIST_EXT;
928 			if (!desc->more) {
929 				desc->more = mmu_alloc_pte_list_desc(vcpu);
930 				desc = desc->more;
931 				desc->spte_count = 0;
932 				break;
933 			}
934 			desc = desc->more;
935 		}
936 		count += desc->spte_count;
937 		desc->sptes[desc->spte_count++] = spte;
938 	}
939 	return count;
940 }
941 
942 static void
943 pte_list_desc_remove_entry(struct kvm_rmap_head *rmap_head,
944 			   struct pte_list_desc *desc, int i,
945 			   struct pte_list_desc *prev_desc)
946 {
947 	int j = desc->spte_count - 1;
948 
949 	desc->sptes[i] = desc->sptes[j];
950 	desc->sptes[j] = NULL;
951 	desc->spte_count--;
952 	if (desc->spte_count)
953 		return;
954 	if (!prev_desc && !desc->more)
955 		rmap_head->val = 0;
956 	else
957 		if (prev_desc)
958 			prev_desc->more = desc->more;
959 		else
960 			rmap_head->val = (unsigned long)desc->more | 1;
961 	mmu_free_pte_list_desc(desc);
962 }
963 
964 static void __pte_list_remove(u64 *spte, struct kvm_rmap_head *rmap_head)
965 {
966 	struct pte_list_desc *desc;
967 	struct pte_list_desc *prev_desc;
968 	int i;
969 
970 	if (!rmap_head->val) {
971 		pr_err("%s: %p 0->BUG\n", __func__, spte);
972 		BUG();
973 	} else if (!(rmap_head->val & 1)) {
974 		rmap_printk("%p 1->0\n", spte);
975 		if ((u64 *)rmap_head->val != spte) {
976 			pr_err("%s:  %p 1->BUG\n", __func__, spte);
977 			BUG();
978 		}
979 		rmap_head->val = 0;
980 	} else {
981 		rmap_printk("%p many->many\n", spte);
982 		desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
983 		prev_desc = NULL;
984 		while (desc) {
985 			for (i = 0; i < desc->spte_count; ++i) {
986 				if (desc->sptes[i] == spte) {
987 					pte_list_desc_remove_entry(rmap_head,
988 							desc, i, prev_desc);
989 					return;
990 				}
991 			}
992 			prev_desc = desc;
993 			desc = desc->more;
994 		}
995 		pr_err("%s: %p many->many\n", __func__, spte);
996 		BUG();
997 	}
998 }
999 
1000 static void pte_list_remove(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1001 			    u64 *sptep)
1002 {
1003 	mmu_spte_clear_track_bits(kvm, sptep);
1004 	__pte_list_remove(sptep, rmap_head);
1005 }
1006 
1007 /* Return true if rmap existed, false otherwise */
1008 static bool pte_list_destroy(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1009 {
1010 	struct pte_list_desc *desc, *next;
1011 	int i;
1012 
1013 	if (!rmap_head->val)
1014 		return false;
1015 
1016 	if (!(rmap_head->val & 1)) {
1017 		mmu_spte_clear_track_bits(kvm, (u64 *)rmap_head->val);
1018 		goto out;
1019 	}
1020 
1021 	desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1022 
1023 	for (; desc; desc = next) {
1024 		for (i = 0; i < desc->spte_count; i++)
1025 			mmu_spte_clear_track_bits(kvm, desc->sptes[i]);
1026 		next = desc->more;
1027 		mmu_free_pte_list_desc(desc);
1028 	}
1029 out:
1030 	/* rmap_head is meaningless now, remember to reset it */
1031 	rmap_head->val = 0;
1032 	return true;
1033 }
1034 
1035 unsigned int pte_list_count(struct kvm_rmap_head *rmap_head)
1036 {
1037 	struct pte_list_desc *desc;
1038 	unsigned int count = 0;
1039 
1040 	if (!rmap_head->val)
1041 		return 0;
1042 	else if (!(rmap_head->val & 1))
1043 		return 1;
1044 
1045 	desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1046 
1047 	while (desc) {
1048 		count += desc->spte_count;
1049 		desc = desc->more;
1050 	}
1051 
1052 	return count;
1053 }
1054 
1055 static struct kvm_rmap_head *gfn_to_rmap(gfn_t gfn, int level,
1056 					 const struct kvm_memory_slot *slot)
1057 {
1058 	unsigned long idx;
1059 
1060 	idx = gfn_to_index(gfn, slot->base_gfn, level);
1061 	return &slot->arch.rmap[level - PG_LEVEL_4K][idx];
1062 }
1063 
1064 static bool rmap_can_add(struct kvm_vcpu *vcpu)
1065 {
1066 	struct kvm_mmu_memory_cache *mc;
1067 
1068 	mc = &vcpu->arch.mmu_pte_list_desc_cache;
1069 	return kvm_mmu_memory_cache_nr_free_objects(mc);
1070 }
1071 
1072 static void rmap_remove(struct kvm *kvm, u64 *spte)
1073 {
1074 	struct kvm_memslots *slots;
1075 	struct kvm_memory_slot *slot;
1076 	struct kvm_mmu_page *sp;
1077 	gfn_t gfn;
1078 	struct kvm_rmap_head *rmap_head;
1079 
1080 	sp = sptep_to_sp(spte);
1081 	gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
1082 
1083 	/*
1084 	 * Unlike rmap_add, rmap_remove does not run in the context of a vCPU
1085 	 * so we have to determine which memslots to use based on context
1086 	 * information in sp->role.
1087 	 */
1088 	slots = kvm_memslots_for_spte_role(kvm, sp->role);
1089 
1090 	slot = __gfn_to_memslot(slots, gfn);
1091 	rmap_head = gfn_to_rmap(gfn, sp->role.level, slot);
1092 
1093 	__pte_list_remove(spte, rmap_head);
1094 }
1095 
1096 /*
1097  * Used by the following functions to iterate through the sptes linked by a
1098  * rmap.  All fields are private and not assumed to be used outside.
1099  */
1100 struct rmap_iterator {
1101 	/* private fields */
1102 	struct pte_list_desc *desc;	/* holds the sptep if not NULL */
1103 	int pos;			/* index of the sptep */
1104 };
1105 
1106 /*
1107  * Iteration must be started by this function.  This should also be used after
1108  * removing/dropping sptes from the rmap link because in such cases the
1109  * information in the iterator may not be valid.
1110  *
1111  * Returns sptep if found, NULL otherwise.
1112  */
1113 static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head,
1114 			   struct rmap_iterator *iter)
1115 {
1116 	u64 *sptep;
1117 
1118 	if (!rmap_head->val)
1119 		return NULL;
1120 
1121 	if (!(rmap_head->val & 1)) {
1122 		iter->desc = NULL;
1123 		sptep = (u64 *)rmap_head->val;
1124 		goto out;
1125 	}
1126 
1127 	iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1128 	iter->pos = 0;
1129 	sptep = iter->desc->sptes[iter->pos];
1130 out:
1131 	BUG_ON(!is_shadow_present_pte(*sptep));
1132 	return sptep;
1133 }
1134 
1135 /*
1136  * Must be used with a valid iterator: e.g. after rmap_get_first().
1137  *
1138  * Returns sptep if found, NULL otherwise.
1139  */
1140 static u64 *rmap_get_next(struct rmap_iterator *iter)
1141 {
1142 	u64 *sptep;
1143 
1144 	if (iter->desc) {
1145 		if (iter->pos < PTE_LIST_EXT - 1) {
1146 			++iter->pos;
1147 			sptep = iter->desc->sptes[iter->pos];
1148 			if (sptep)
1149 				goto out;
1150 		}
1151 
1152 		iter->desc = iter->desc->more;
1153 
1154 		if (iter->desc) {
1155 			iter->pos = 0;
1156 			/* desc->sptes[0] cannot be NULL */
1157 			sptep = iter->desc->sptes[iter->pos];
1158 			goto out;
1159 		}
1160 	}
1161 
1162 	return NULL;
1163 out:
1164 	BUG_ON(!is_shadow_present_pte(*sptep));
1165 	return sptep;
1166 }
1167 
1168 #define for_each_rmap_spte(_rmap_head_, _iter_, _spte_)			\
1169 	for (_spte_ = rmap_get_first(_rmap_head_, _iter_);		\
1170 	     _spte_; _spte_ = rmap_get_next(_iter_))
1171 
1172 static void drop_spte(struct kvm *kvm, u64 *sptep)
1173 {
1174 	u64 old_spte = mmu_spte_clear_track_bits(kvm, sptep);
1175 
1176 	if (is_shadow_present_pte(old_spte))
1177 		rmap_remove(kvm, sptep);
1178 }
1179 
1180 
1181 static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
1182 {
1183 	if (is_large_pte(*sptep)) {
1184 		WARN_ON(sptep_to_sp(sptep)->role.level == PG_LEVEL_4K);
1185 		drop_spte(kvm, sptep);
1186 		return true;
1187 	}
1188 
1189 	return false;
1190 }
1191 
1192 static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1193 {
1194 	if (__drop_large_spte(vcpu->kvm, sptep)) {
1195 		struct kvm_mmu_page *sp = sptep_to_sp(sptep);
1196 
1197 		kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn,
1198 			KVM_PAGES_PER_HPAGE(sp->role.level));
1199 	}
1200 }
1201 
1202 /*
1203  * Write-protect on the specified @sptep, @pt_protect indicates whether
1204  * spte write-protection is caused by protecting shadow page table.
1205  *
1206  * Note: write protection is difference between dirty logging and spte
1207  * protection:
1208  * - for dirty logging, the spte can be set to writable at anytime if
1209  *   its dirty bitmap is properly set.
1210  * - for spte protection, the spte can be writable only after unsync-ing
1211  *   shadow page.
1212  *
1213  * Return true if tlb need be flushed.
1214  */
1215 static bool spte_write_protect(u64 *sptep, bool pt_protect)
1216 {
1217 	u64 spte = *sptep;
1218 
1219 	if (!is_writable_pte(spte) &&
1220 	      !(pt_protect && spte_can_locklessly_be_made_writable(spte)))
1221 		return false;
1222 
1223 	rmap_printk("spte %p %llx\n", sptep, *sptep);
1224 
1225 	if (pt_protect)
1226 		spte &= ~shadow_mmu_writable_mask;
1227 	spte = spte & ~PT_WRITABLE_MASK;
1228 
1229 	return mmu_spte_update(sptep, spte);
1230 }
1231 
1232 static bool __rmap_write_protect(struct kvm *kvm,
1233 				 struct kvm_rmap_head *rmap_head,
1234 				 bool pt_protect)
1235 {
1236 	u64 *sptep;
1237 	struct rmap_iterator iter;
1238 	bool flush = false;
1239 
1240 	for_each_rmap_spte(rmap_head, &iter, sptep)
1241 		flush |= spte_write_protect(sptep, pt_protect);
1242 
1243 	return flush;
1244 }
1245 
1246 static bool spte_clear_dirty(u64 *sptep)
1247 {
1248 	u64 spte = *sptep;
1249 
1250 	rmap_printk("spte %p %llx\n", sptep, *sptep);
1251 
1252 	MMU_WARN_ON(!spte_ad_enabled(spte));
1253 	spte &= ~shadow_dirty_mask;
1254 	return mmu_spte_update(sptep, spte);
1255 }
1256 
1257 static bool spte_wrprot_for_clear_dirty(u64 *sptep)
1258 {
1259 	bool was_writable = test_and_clear_bit(PT_WRITABLE_SHIFT,
1260 					       (unsigned long *)sptep);
1261 	if (was_writable && !spte_ad_enabled(*sptep))
1262 		kvm_set_pfn_dirty(spte_to_pfn(*sptep));
1263 
1264 	return was_writable;
1265 }
1266 
1267 /*
1268  * Gets the GFN ready for another round of dirty logging by clearing the
1269  *	- D bit on ad-enabled SPTEs, and
1270  *	- W bit on ad-disabled SPTEs.
1271  * Returns true iff any D or W bits were cleared.
1272  */
1273 static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1274 			       const struct kvm_memory_slot *slot)
1275 {
1276 	u64 *sptep;
1277 	struct rmap_iterator iter;
1278 	bool flush = false;
1279 
1280 	for_each_rmap_spte(rmap_head, &iter, sptep)
1281 		if (spte_ad_need_write_protect(*sptep))
1282 			flush |= spte_wrprot_for_clear_dirty(sptep);
1283 		else
1284 			flush |= spte_clear_dirty(sptep);
1285 
1286 	return flush;
1287 }
1288 
1289 /**
1290  * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1291  * @kvm: kvm instance
1292  * @slot: slot to protect
1293  * @gfn_offset: start of the BITS_PER_LONG pages we care about
1294  * @mask: indicates which pages we should protect
1295  *
1296  * Used when we do not need to care about huge page mappings.
1297  */
1298 static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1299 				     struct kvm_memory_slot *slot,
1300 				     gfn_t gfn_offset, unsigned long mask)
1301 {
1302 	struct kvm_rmap_head *rmap_head;
1303 
1304 	if (is_tdp_mmu_enabled(kvm))
1305 		kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot,
1306 				slot->base_gfn + gfn_offset, mask, true);
1307 
1308 	if (!kvm_memslots_have_rmaps(kvm))
1309 		return;
1310 
1311 	while (mask) {
1312 		rmap_head = gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1313 					PG_LEVEL_4K, slot);
1314 		__rmap_write_protect(kvm, rmap_head, false);
1315 
1316 		/* clear the first set bit */
1317 		mask &= mask - 1;
1318 	}
1319 }
1320 
1321 /**
1322  * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages, or write
1323  * protect the page if the D-bit isn't supported.
1324  * @kvm: kvm instance
1325  * @slot: slot to clear D-bit
1326  * @gfn_offset: start of the BITS_PER_LONG pages we care about
1327  * @mask: indicates which pages we should clear D-bit
1328  *
1329  * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap.
1330  */
1331 static void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
1332 					 struct kvm_memory_slot *slot,
1333 					 gfn_t gfn_offset, unsigned long mask)
1334 {
1335 	struct kvm_rmap_head *rmap_head;
1336 
1337 	if (is_tdp_mmu_enabled(kvm))
1338 		kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot,
1339 				slot->base_gfn + gfn_offset, mask, false);
1340 
1341 	if (!kvm_memslots_have_rmaps(kvm))
1342 		return;
1343 
1344 	while (mask) {
1345 		rmap_head = gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1346 					PG_LEVEL_4K, slot);
1347 		__rmap_clear_dirty(kvm, rmap_head, slot);
1348 
1349 		/* clear the first set bit */
1350 		mask &= mask - 1;
1351 	}
1352 }
1353 
1354 /**
1355  * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
1356  * PT level pages.
1357  *
1358  * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
1359  * enable dirty logging for them.
1360  *
1361  * We need to care about huge page mappings: e.g. during dirty logging we may
1362  * have such mappings.
1363  */
1364 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1365 				struct kvm_memory_slot *slot,
1366 				gfn_t gfn_offset, unsigned long mask)
1367 {
1368 	/*
1369 	 * Huge pages are NOT write protected when we start dirty logging in
1370 	 * initially-all-set mode; must write protect them here so that they
1371 	 * are split to 4K on the first write.
1372 	 *
1373 	 * The gfn_offset is guaranteed to be aligned to 64, but the base_gfn
1374 	 * of memslot has no such restriction, so the range can cross two large
1375 	 * pages.
1376 	 */
1377 	if (kvm_dirty_log_manual_protect_and_init_set(kvm)) {
1378 		gfn_t start = slot->base_gfn + gfn_offset + __ffs(mask);
1379 		gfn_t end = slot->base_gfn + gfn_offset + __fls(mask);
1380 
1381 		kvm_mmu_slot_gfn_write_protect(kvm, slot, start, PG_LEVEL_2M);
1382 
1383 		/* Cross two large pages? */
1384 		if (ALIGN(start << PAGE_SHIFT, PMD_SIZE) !=
1385 		    ALIGN(end << PAGE_SHIFT, PMD_SIZE))
1386 			kvm_mmu_slot_gfn_write_protect(kvm, slot, end,
1387 						       PG_LEVEL_2M);
1388 	}
1389 
1390 	/* Now handle 4K PTEs.  */
1391 	if (kvm_x86_ops.cpu_dirty_log_size)
1392 		kvm_mmu_clear_dirty_pt_masked(kvm, slot, gfn_offset, mask);
1393 	else
1394 		kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
1395 }
1396 
1397 int kvm_cpu_dirty_log_size(void)
1398 {
1399 	return kvm_x86_ops.cpu_dirty_log_size;
1400 }
1401 
1402 bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
1403 				    struct kvm_memory_slot *slot, u64 gfn,
1404 				    int min_level)
1405 {
1406 	struct kvm_rmap_head *rmap_head;
1407 	int i;
1408 	bool write_protected = false;
1409 
1410 	if (kvm_memslots_have_rmaps(kvm)) {
1411 		for (i = min_level; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) {
1412 			rmap_head = gfn_to_rmap(gfn, i, slot);
1413 			write_protected |= __rmap_write_protect(kvm, rmap_head, true);
1414 		}
1415 	}
1416 
1417 	if (is_tdp_mmu_enabled(kvm))
1418 		write_protected |=
1419 			kvm_tdp_mmu_write_protect_gfn(kvm, slot, gfn, min_level);
1420 
1421 	return write_protected;
1422 }
1423 
1424 static bool rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn)
1425 {
1426 	struct kvm_memory_slot *slot;
1427 
1428 	slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1429 	return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn, PG_LEVEL_4K);
1430 }
1431 
1432 static bool kvm_zap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1433 			  const struct kvm_memory_slot *slot)
1434 {
1435 	return pte_list_destroy(kvm, rmap_head);
1436 }
1437 
1438 static bool kvm_unmap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1439 			    struct kvm_memory_slot *slot, gfn_t gfn, int level,
1440 			    pte_t unused)
1441 {
1442 	return kvm_zap_rmapp(kvm, rmap_head, slot);
1443 }
1444 
1445 static bool kvm_set_pte_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1446 			      struct kvm_memory_slot *slot, gfn_t gfn, int level,
1447 			      pte_t pte)
1448 {
1449 	u64 *sptep;
1450 	struct rmap_iterator iter;
1451 	bool need_flush = false;
1452 	u64 new_spte;
1453 	kvm_pfn_t new_pfn;
1454 
1455 	WARN_ON(pte_huge(pte));
1456 	new_pfn = pte_pfn(pte);
1457 
1458 restart:
1459 	for_each_rmap_spte(rmap_head, &iter, sptep) {
1460 		rmap_printk("spte %p %llx gfn %llx (%d)\n",
1461 			    sptep, *sptep, gfn, level);
1462 
1463 		need_flush = true;
1464 
1465 		if (pte_write(pte)) {
1466 			pte_list_remove(kvm, rmap_head, sptep);
1467 			goto restart;
1468 		} else {
1469 			new_spte = kvm_mmu_changed_pte_notifier_make_spte(
1470 					*sptep, new_pfn);
1471 
1472 			mmu_spte_clear_track_bits(kvm, sptep);
1473 			mmu_spte_set(sptep, new_spte);
1474 		}
1475 	}
1476 
1477 	if (need_flush && kvm_available_flush_tlb_with_range()) {
1478 		kvm_flush_remote_tlbs_with_address(kvm, gfn, 1);
1479 		return false;
1480 	}
1481 
1482 	return need_flush;
1483 }
1484 
1485 struct slot_rmap_walk_iterator {
1486 	/* input fields. */
1487 	const struct kvm_memory_slot *slot;
1488 	gfn_t start_gfn;
1489 	gfn_t end_gfn;
1490 	int start_level;
1491 	int end_level;
1492 
1493 	/* output fields. */
1494 	gfn_t gfn;
1495 	struct kvm_rmap_head *rmap;
1496 	int level;
1497 
1498 	/* private field. */
1499 	struct kvm_rmap_head *end_rmap;
1500 };
1501 
1502 static void
1503 rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level)
1504 {
1505 	iterator->level = level;
1506 	iterator->gfn = iterator->start_gfn;
1507 	iterator->rmap = gfn_to_rmap(iterator->gfn, level, iterator->slot);
1508 	iterator->end_rmap = gfn_to_rmap(iterator->end_gfn, level, iterator->slot);
1509 }
1510 
1511 static void
1512 slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator,
1513 		    const struct kvm_memory_slot *slot, int start_level,
1514 		    int end_level, gfn_t start_gfn, gfn_t end_gfn)
1515 {
1516 	iterator->slot = slot;
1517 	iterator->start_level = start_level;
1518 	iterator->end_level = end_level;
1519 	iterator->start_gfn = start_gfn;
1520 	iterator->end_gfn = end_gfn;
1521 
1522 	rmap_walk_init_level(iterator, iterator->start_level);
1523 }
1524 
1525 static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator)
1526 {
1527 	return !!iterator->rmap;
1528 }
1529 
1530 static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
1531 {
1532 	if (++iterator->rmap <= iterator->end_rmap) {
1533 		iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level));
1534 		return;
1535 	}
1536 
1537 	if (++iterator->level > iterator->end_level) {
1538 		iterator->rmap = NULL;
1539 		return;
1540 	}
1541 
1542 	rmap_walk_init_level(iterator, iterator->level);
1543 }
1544 
1545 #define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_,	\
1546 	   _start_gfn, _end_gfn, _iter_)				\
1547 	for (slot_rmap_walk_init(_iter_, _slot_, _start_level_,		\
1548 				 _end_level_, _start_gfn, _end_gfn);	\
1549 	     slot_rmap_walk_okay(_iter_);				\
1550 	     slot_rmap_walk_next(_iter_))
1551 
1552 typedef bool (*rmap_handler_t)(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1553 			       struct kvm_memory_slot *slot, gfn_t gfn,
1554 			       int level, pte_t pte);
1555 
1556 static __always_inline bool kvm_handle_gfn_range(struct kvm *kvm,
1557 						 struct kvm_gfn_range *range,
1558 						 rmap_handler_t handler)
1559 {
1560 	struct slot_rmap_walk_iterator iterator;
1561 	bool ret = false;
1562 
1563 	for_each_slot_rmap_range(range->slot, PG_LEVEL_4K, KVM_MAX_HUGEPAGE_LEVEL,
1564 				 range->start, range->end - 1, &iterator)
1565 		ret |= handler(kvm, iterator.rmap, range->slot, iterator.gfn,
1566 			       iterator.level, range->pte);
1567 
1568 	return ret;
1569 }
1570 
1571 bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range)
1572 {
1573 	bool flush = false;
1574 
1575 	if (kvm_memslots_have_rmaps(kvm))
1576 		flush = kvm_handle_gfn_range(kvm, range, kvm_unmap_rmapp);
1577 
1578 	if (is_tdp_mmu_enabled(kvm))
1579 		flush = kvm_tdp_mmu_unmap_gfn_range(kvm, range, flush);
1580 
1581 	return flush;
1582 }
1583 
1584 bool kvm_set_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
1585 {
1586 	bool flush = false;
1587 
1588 	if (kvm_memslots_have_rmaps(kvm))
1589 		flush = kvm_handle_gfn_range(kvm, range, kvm_set_pte_rmapp);
1590 
1591 	if (is_tdp_mmu_enabled(kvm))
1592 		flush |= kvm_tdp_mmu_set_spte_gfn(kvm, range);
1593 
1594 	return flush;
1595 }
1596 
1597 static bool kvm_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1598 			  struct kvm_memory_slot *slot, gfn_t gfn, int level,
1599 			  pte_t unused)
1600 {
1601 	u64 *sptep;
1602 	struct rmap_iterator iter;
1603 	int young = 0;
1604 
1605 	for_each_rmap_spte(rmap_head, &iter, sptep)
1606 		young |= mmu_spte_age(sptep);
1607 
1608 	return young;
1609 }
1610 
1611 static bool kvm_test_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1612 			       struct kvm_memory_slot *slot, gfn_t gfn,
1613 			       int level, pte_t unused)
1614 {
1615 	u64 *sptep;
1616 	struct rmap_iterator iter;
1617 
1618 	for_each_rmap_spte(rmap_head, &iter, sptep)
1619 		if (is_accessed_spte(*sptep))
1620 			return true;
1621 	return false;
1622 }
1623 
1624 #define RMAP_RECYCLE_THRESHOLD 1000
1625 
1626 static void rmap_add(struct kvm_vcpu *vcpu, struct kvm_memory_slot *slot,
1627 		     u64 *spte, gfn_t gfn)
1628 {
1629 	struct kvm_mmu_page *sp;
1630 	struct kvm_rmap_head *rmap_head;
1631 	int rmap_count;
1632 
1633 	sp = sptep_to_sp(spte);
1634 	kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
1635 	rmap_head = gfn_to_rmap(gfn, sp->role.level, slot);
1636 	rmap_count = pte_list_add(vcpu, spte, rmap_head);
1637 
1638 	if (rmap_count > RMAP_RECYCLE_THRESHOLD) {
1639 		kvm_unmap_rmapp(vcpu->kvm, rmap_head, NULL, gfn, sp->role.level, __pte(0));
1640 		kvm_flush_remote_tlbs_with_address(
1641 				vcpu->kvm, sp->gfn, KVM_PAGES_PER_HPAGE(sp->role.level));
1642 	}
1643 }
1644 
1645 bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
1646 {
1647 	bool young = false;
1648 
1649 	if (kvm_memslots_have_rmaps(kvm))
1650 		young = kvm_handle_gfn_range(kvm, range, kvm_age_rmapp);
1651 
1652 	if (is_tdp_mmu_enabled(kvm))
1653 		young |= kvm_tdp_mmu_age_gfn_range(kvm, range);
1654 
1655 	return young;
1656 }
1657 
1658 bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
1659 {
1660 	bool young = false;
1661 
1662 	if (kvm_memslots_have_rmaps(kvm))
1663 		young = kvm_handle_gfn_range(kvm, range, kvm_test_age_rmapp);
1664 
1665 	if (is_tdp_mmu_enabled(kvm))
1666 		young |= kvm_tdp_mmu_test_age_gfn(kvm, range);
1667 
1668 	return young;
1669 }
1670 
1671 #ifdef MMU_DEBUG
1672 static int is_empty_shadow_page(u64 *spt)
1673 {
1674 	u64 *pos;
1675 	u64 *end;
1676 
1677 	for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
1678 		if (is_shadow_present_pte(*pos)) {
1679 			printk(KERN_ERR "%s: %p %llx\n", __func__,
1680 			       pos, *pos);
1681 			return 0;
1682 		}
1683 	return 1;
1684 }
1685 #endif
1686 
1687 /*
1688  * This value is the sum of all of the kvm instances's
1689  * kvm->arch.n_used_mmu_pages values.  We need a global,
1690  * aggregate version in order to make the slab shrinker
1691  * faster
1692  */
1693 static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, long nr)
1694 {
1695 	kvm->arch.n_used_mmu_pages += nr;
1696 	percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1697 }
1698 
1699 static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
1700 {
1701 	MMU_WARN_ON(!is_empty_shadow_page(sp->spt));
1702 	hlist_del(&sp->hash_link);
1703 	list_del(&sp->link);
1704 	free_page((unsigned long)sp->spt);
1705 	if (!sp->role.direct)
1706 		free_page((unsigned long)sp->gfns);
1707 	kmem_cache_free(mmu_page_header_cache, sp);
1708 }
1709 
1710 static unsigned kvm_page_table_hashfn(gfn_t gfn)
1711 {
1712 	return hash_64(gfn, KVM_MMU_HASH_SHIFT);
1713 }
1714 
1715 static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
1716 				    struct kvm_mmu_page *sp, u64 *parent_pte)
1717 {
1718 	if (!parent_pte)
1719 		return;
1720 
1721 	pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
1722 }
1723 
1724 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
1725 				       u64 *parent_pte)
1726 {
1727 	__pte_list_remove(parent_pte, &sp->parent_ptes);
1728 }
1729 
1730 static void drop_parent_pte(struct kvm_mmu_page *sp,
1731 			    u64 *parent_pte)
1732 {
1733 	mmu_page_remove_parent_pte(sp, parent_pte);
1734 	mmu_spte_clear_no_track(parent_pte);
1735 }
1736 
1737 static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu, int direct)
1738 {
1739 	struct kvm_mmu_page *sp;
1740 
1741 	sp = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
1742 	sp->spt = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_shadow_page_cache);
1743 	if (!direct)
1744 		sp->gfns = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_gfn_array_cache);
1745 	set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
1746 
1747 	/*
1748 	 * active_mmu_pages must be a FIFO list, as kvm_zap_obsolete_pages()
1749 	 * depends on valid pages being added to the head of the list.  See
1750 	 * comments in kvm_zap_obsolete_pages().
1751 	 */
1752 	sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
1753 	list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
1754 	kvm_mod_used_mmu_pages(vcpu->kvm, +1);
1755 	return sp;
1756 }
1757 
1758 static void mark_unsync(u64 *spte);
1759 static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
1760 {
1761 	u64 *sptep;
1762 	struct rmap_iterator iter;
1763 
1764 	for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) {
1765 		mark_unsync(sptep);
1766 	}
1767 }
1768 
1769 static void mark_unsync(u64 *spte)
1770 {
1771 	struct kvm_mmu_page *sp;
1772 	unsigned int index;
1773 
1774 	sp = sptep_to_sp(spte);
1775 	index = spte - sp->spt;
1776 	if (__test_and_set_bit(index, sp->unsync_child_bitmap))
1777 		return;
1778 	if (sp->unsync_children++)
1779 		return;
1780 	kvm_mmu_mark_parents_unsync(sp);
1781 }
1782 
1783 static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
1784 			       struct kvm_mmu_page *sp)
1785 {
1786 	return -1;
1787 }
1788 
1789 #define KVM_PAGE_ARRAY_NR 16
1790 
1791 struct kvm_mmu_pages {
1792 	struct mmu_page_and_offset {
1793 		struct kvm_mmu_page *sp;
1794 		unsigned int idx;
1795 	} page[KVM_PAGE_ARRAY_NR];
1796 	unsigned int nr;
1797 };
1798 
1799 static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
1800 			 int idx)
1801 {
1802 	int i;
1803 
1804 	if (sp->unsync)
1805 		for (i=0; i < pvec->nr; i++)
1806 			if (pvec->page[i].sp == sp)
1807 				return 0;
1808 
1809 	pvec->page[pvec->nr].sp = sp;
1810 	pvec->page[pvec->nr].idx = idx;
1811 	pvec->nr++;
1812 	return (pvec->nr == KVM_PAGE_ARRAY_NR);
1813 }
1814 
1815 static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx)
1816 {
1817 	--sp->unsync_children;
1818 	WARN_ON((int)sp->unsync_children < 0);
1819 	__clear_bit(idx, sp->unsync_child_bitmap);
1820 }
1821 
1822 static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
1823 			   struct kvm_mmu_pages *pvec)
1824 {
1825 	int i, ret, nr_unsync_leaf = 0;
1826 
1827 	for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
1828 		struct kvm_mmu_page *child;
1829 		u64 ent = sp->spt[i];
1830 
1831 		if (!is_shadow_present_pte(ent) || is_large_pte(ent)) {
1832 			clear_unsync_child_bit(sp, i);
1833 			continue;
1834 		}
1835 
1836 		child = to_shadow_page(ent & PT64_BASE_ADDR_MASK);
1837 
1838 		if (child->unsync_children) {
1839 			if (mmu_pages_add(pvec, child, i))
1840 				return -ENOSPC;
1841 
1842 			ret = __mmu_unsync_walk(child, pvec);
1843 			if (!ret) {
1844 				clear_unsync_child_bit(sp, i);
1845 				continue;
1846 			} else if (ret > 0) {
1847 				nr_unsync_leaf += ret;
1848 			} else
1849 				return ret;
1850 		} else if (child->unsync) {
1851 			nr_unsync_leaf++;
1852 			if (mmu_pages_add(pvec, child, i))
1853 				return -ENOSPC;
1854 		} else
1855 			clear_unsync_child_bit(sp, i);
1856 	}
1857 
1858 	return nr_unsync_leaf;
1859 }
1860 
1861 #define INVALID_INDEX (-1)
1862 
1863 static int mmu_unsync_walk(struct kvm_mmu_page *sp,
1864 			   struct kvm_mmu_pages *pvec)
1865 {
1866 	pvec->nr = 0;
1867 	if (!sp->unsync_children)
1868 		return 0;
1869 
1870 	mmu_pages_add(pvec, sp, INVALID_INDEX);
1871 	return __mmu_unsync_walk(sp, pvec);
1872 }
1873 
1874 static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1875 {
1876 	WARN_ON(!sp->unsync);
1877 	trace_kvm_mmu_sync_page(sp);
1878 	sp->unsync = 0;
1879 	--kvm->stat.mmu_unsync;
1880 }
1881 
1882 static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1883 				     struct list_head *invalid_list);
1884 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1885 				    struct list_head *invalid_list);
1886 
1887 #define for_each_valid_sp(_kvm, _sp, _list)				\
1888 	hlist_for_each_entry(_sp, _list, hash_link)			\
1889 		if (is_obsolete_sp((_kvm), (_sp))) {			\
1890 		} else
1891 
1892 #define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn)			\
1893 	for_each_valid_sp(_kvm, _sp,					\
1894 	  &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)])	\
1895 		if ((_sp)->gfn != (_gfn) || (_sp)->role.direct) {} else
1896 
1897 static bool kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1898 			 struct list_head *invalid_list)
1899 {
1900 	int ret = vcpu->arch.mmu->sync_page(vcpu, sp);
1901 
1902 	if (ret < 0) {
1903 		kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1904 		return false;
1905 	}
1906 
1907 	return !!ret;
1908 }
1909 
1910 static bool kvm_mmu_remote_flush_or_zap(struct kvm *kvm,
1911 					struct list_head *invalid_list,
1912 					bool remote_flush)
1913 {
1914 	if (!remote_flush && list_empty(invalid_list))
1915 		return false;
1916 
1917 	if (!list_empty(invalid_list))
1918 		kvm_mmu_commit_zap_page(kvm, invalid_list);
1919 	else
1920 		kvm_flush_remote_tlbs(kvm);
1921 	return true;
1922 }
1923 
1924 #ifdef CONFIG_KVM_MMU_AUDIT
1925 #include "mmu_audit.c"
1926 #else
1927 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
1928 static void mmu_audit_disable(void) { }
1929 #endif
1930 
1931 static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
1932 {
1933 	if (sp->role.invalid)
1934 		return true;
1935 
1936 	/* TDP MMU pages due not use the MMU generation. */
1937 	return !sp->tdp_mmu_page &&
1938 	       unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
1939 }
1940 
1941 struct mmu_page_path {
1942 	struct kvm_mmu_page *parent[PT64_ROOT_MAX_LEVEL];
1943 	unsigned int idx[PT64_ROOT_MAX_LEVEL];
1944 };
1945 
1946 #define for_each_sp(pvec, sp, parents, i)			\
1947 		for (i = mmu_pages_first(&pvec, &parents);	\
1948 			i < pvec.nr && ({ sp = pvec.page[i].sp; 1;});	\
1949 			i = mmu_pages_next(&pvec, &parents, i))
1950 
1951 static int mmu_pages_next(struct kvm_mmu_pages *pvec,
1952 			  struct mmu_page_path *parents,
1953 			  int i)
1954 {
1955 	int n;
1956 
1957 	for (n = i+1; n < pvec->nr; n++) {
1958 		struct kvm_mmu_page *sp = pvec->page[n].sp;
1959 		unsigned idx = pvec->page[n].idx;
1960 		int level = sp->role.level;
1961 
1962 		parents->idx[level-1] = idx;
1963 		if (level == PG_LEVEL_4K)
1964 			break;
1965 
1966 		parents->parent[level-2] = sp;
1967 	}
1968 
1969 	return n;
1970 }
1971 
1972 static int mmu_pages_first(struct kvm_mmu_pages *pvec,
1973 			   struct mmu_page_path *parents)
1974 {
1975 	struct kvm_mmu_page *sp;
1976 	int level;
1977 
1978 	if (pvec->nr == 0)
1979 		return 0;
1980 
1981 	WARN_ON(pvec->page[0].idx != INVALID_INDEX);
1982 
1983 	sp = pvec->page[0].sp;
1984 	level = sp->role.level;
1985 	WARN_ON(level == PG_LEVEL_4K);
1986 
1987 	parents->parent[level-2] = sp;
1988 
1989 	/* Also set up a sentinel.  Further entries in pvec are all
1990 	 * children of sp, so this element is never overwritten.
1991 	 */
1992 	parents->parent[level-1] = NULL;
1993 	return mmu_pages_next(pvec, parents, 0);
1994 }
1995 
1996 static void mmu_pages_clear_parents(struct mmu_page_path *parents)
1997 {
1998 	struct kvm_mmu_page *sp;
1999 	unsigned int level = 0;
2000 
2001 	do {
2002 		unsigned int idx = parents->idx[level];
2003 		sp = parents->parent[level];
2004 		if (!sp)
2005 			return;
2006 
2007 		WARN_ON(idx == INVALID_INDEX);
2008 		clear_unsync_child_bit(sp, idx);
2009 		level++;
2010 	} while (!sp->unsync_children);
2011 }
2012 
2013 static int mmu_sync_children(struct kvm_vcpu *vcpu,
2014 			     struct kvm_mmu_page *parent, bool can_yield)
2015 {
2016 	int i;
2017 	struct kvm_mmu_page *sp;
2018 	struct mmu_page_path parents;
2019 	struct kvm_mmu_pages pages;
2020 	LIST_HEAD(invalid_list);
2021 	bool flush = false;
2022 
2023 	while (mmu_unsync_walk(parent, &pages)) {
2024 		bool protected = false;
2025 
2026 		for_each_sp(pages, sp, parents, i)
2027 			protected |= rmap_write_protect(vcpu, sp->gfn);
2028 
2029 		if (protected) {
2030 			kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, true);
2031 			flush = false;
2032 		}
2033 
2034 		for_each_sp(pages, sp, parents, i) {
2035 			kvm_unlink_unsync_page(vcpu->kvm, sp);
2036 			flush |= kvm_sync_page(vcpu, sp, &invalid_list);
2037 			mmu_pages_clear_parents(&parents);
2038 		}
2039 		if (need_resched() || rwlock_needbreak(&vcpu->kvm->mmu_lock)) {
2040 			kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, flush);
2041 			if (!can_yield) {
2042 				kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
2043 				return -EINTR;
2044 			}
2045 
2046 			cond_resched_rwlock_write(&vcpu->kvm->mmu_lock);
2047 			flush = false;
2048 		}
2049 	}
2050 
2051 	kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, flush);
2052 	return 0;
2053 }
2054 
2055 static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
2056 {
2057 	atomic_set(&sp->write_flooding_count,  0);
2058 }
2059 
2060 static void clear_sp_write_flooding_count(u64 *spte)
2061 {
2062 	__clear_sp_write_flooding_count(sptep_to_sp(spte));
2063 }
2064 
2065 static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
2066 					     gfn_t gfn,
2067 					     gva_t gaddr,
2068 					     unsigned level,
2069 					     int direct,
2070 					     unsigned int access)
2071 {
2072 	bool direct_mmu = vcpu->arch.mmu->direct_map;
2073 	union kvm_mmu_page_role role;
2074 	struct hlist_head *sp_list;
2075 	unsigned quadrant;
2076 	struct kvm_mmu_page *sp;
2077 	int collisions = 0;
2078 	LIST_HEAD(invalid_list);
2079 
2080 	role = vcpu->arch.mmu->mmu_role.base;
2081 	role.level = level;
2082 	role.direct = direct;
2083 	role.access = access;
2084 	if (role.has_4_byte_gpte) {
2085 		quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
2086 		quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
2087 		role.quadrant = quadrant;
2088 	}
2089 
2090 	sp_list = &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)];
2091 	for_each_valid_sp(vcpu->kvm, sp, sp_list) {
2092 		if (sp->gfn != gfn) {
2093 			collisions++;
2094 			continue;
2095 		}
2096 
2097 		if (sp->role.word != role.word) {
2098 			/*
2099 			 * If the guest is creating an upper-level page, zap
2100 			 * unsync pages for the same gfn.  While it's possible
2101 			 * the guest is using recursive page tables, in all
2102 			 * likelihood the guest has stopped using the unsync
2103 			 * page and is installing a completely unrelated page.
2104 			 * Unsync pages must not be left as is, because the new
2105 			 * upper-level page will be write-protected.
2106 			 */
2107 			if (level > PG_LEVEL_4K && sp->unsync)
2108 				kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
2109 							 &invalid_list);
2110 			continue;
2111 		}
2112 
2113 		if (direct_mmu)
2114 			goto trace_get_page;
2115 
2116 		if (sp->unsync) {
2117 			/*
2118 			 * The page is good, but is stale.  kvm_sync_page does
2119 			 * get the latest guest state, but (unlike mmu_unsync_children)
2120 			 * it doesn't write-protect the page or mark it synchronized!
2121 			 * This way the validity of the mapping is ensured, but the
2122 			 * overhead of write protection is not incurred until the
2123 			 * guest invalidates the TLB mapping.  This allows multiple
2124 			 * SPs for a single gfn to be unsync.
2125 			 *
2126 			 * If the sync fails, the page is zapped.  If so, break
2127 			 * in order to rebuild it.
2128 			 */
2129 			if (!kvm_sync_page(vcpu, sp, &invalid_list))
2130 				break;
2131 
2132 			WARN_ON(!list_empty(&invalid_list));
2133 			kvm_flush_remote_tlbs(vcpu->kvm);
2134 		}
2135 
2136 		__clear_sp_write_flooding_count(sp);
2137 
2138 trace_get_page:
2139 		trace_kvm_mmu_get_page(sp, false);
2140 		goto out;
2141 	}
2142 
2143 	++vcpu->kvm->stat.mmu_cache_miss;
2144 
2145 	sp = kvm_mmu_alloc_page(vcpu, direct);
2146 
2147 	sp->gfn = gfn;
2148 	sp->role = role;
2149 	hlist_add_head(&sp->hash_link, sp_list);
2150 	if (!direct) {
2151 		account_shadowed(vcpu->kvm, sp);
2152 		if (level == PG_LEVEL_4K && rmap_write_protect(vcpu, gfn))
2153 			kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn, 1);
2154 	}
2155 	trace_kvm_mmu_get_page(sp, true);
2156 out:
2157 	kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2158 
2159 	if (collisions > vcpu->kvm->stat.max_mmu_page_hash_collisions)
2160 		vcpu->kvm->stat.max_mmu_page_hash_collisions = collisions;
2161 	return sp;
2162 }
2163 
2164 static void shadow_walk_init_using_root(struct kvm_shadow_walk_iterator *iterator,
2165 					struct kvm_vcpu *vcpu, hpa_t root,
2166 					u64 addr)
2167 {
2168 	iterator->addr = addr;
2169 	iterator->shadow_addr = root;
2170 	iterator->level = vcpu->arch.mmu->shadow_root_level;
2171 
2172 	if (iterator->level >= PT64_ROOT_4LEVEL &&
2173 	    vcpu->arch.mmu->root_level < PT64_ROOT_4LEVEL &&
2174 	    !vcpu->arch.mmu->direct_map)
2175 		iterator->level = PT32E_ROOT_LEVEL;
2176 
2177 	if (iterator->level == PT32E_ROOT_LEVEL) {
2178 		/*
2179 		 * prev_root is currently only used for 64-bit hosts. So only
2180 		 * the active root_hpa is valid here.
2181 		 */
2182 		BUG_ON(root != vcpu->arch.mmu->root_hpa);
2183 
2184 		iterator->shadow_addr
2185 			= vcpu->arch.mmu->pae_root[(addr >> 30) & 3];
2186 		iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
2187 		--iterator->level;
2188 		if (!iterator->shadow_addr)
2189 			iterator->level = 0;
2190 	}
2191 }
2192 
2193 static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
2194 			     struct kvm_vcpu *vcpu, u64 addr)
2195 {
2196 	shadow_walk_init_using_root(iterator, vcpu, vcpu->arch.mmu->root_hpa,
2197 				    addr);
2198 }
2199 
2200 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
2201 {
2202 	if (iterator->level < PG_LEVEL_4K)
2203 		return false;
2204 
2205 	iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
2206 	iterator->sptep	= ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
2207 	return true;
2208 }
2209 
2210 static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
2211 			       u64 spte)
2212 {
2213 	if (!is_shadow_present_pte(spte) || is_last_spte(spte, iterator->level)) {
2214 		iterator->level = 0;
2215 		return;
2216 	}
2217 
2218 	iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2219 	--iterator->level;
2220 }
2221 
2222 static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
2223 {
2224 	__shadow_walk_next(iterator, *iterator->sptep);
2225 }
2226 
2227 static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep,
2228 			     struct kvm_mmu_page *sp)
2229 {
2230 	u64 spte;
2231 
2232 	BUILD_BUG_ON(VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);
2233 
2234 	spte = make_nonleaf_spte(sp->spt, sp_ad_disabled(sp));
2235 
2236 	mmu_spte_set(sptep, spte);
2237 
2238 	mmu_page_add_parent_pte(vcpu, sp, sptep);
2239 
2240 	if (sp->unsync_children || sp->unsync)
2241 		mark_unsync(sptep);
2242 }
2243 
2244 static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2245 				   unsigned direct_access)
2246 {
2247 	if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
2248 		struct kvm_mmu_page *child;
2249 
2250 		/*
2251 		 * For the direct sp, if the guest pte's dirty bit
2252 		 * changed form clean to dirty, it will corrupt the
2253 		 * sp's access: allow writable in the read-only sp,
2254 		 * so we should update the spte at this point to get
2255 		 * a new sp with the correct access.
2256 		 */
2257 		child = to_shadow_page(*sptep & PT64_BASE_ADDR_MASK);
2258 		if (child->role.access == direct_access)
2259 			return;
2260 
2261 		drop_parent_pte(child, sptep);
2262 		kvm_flush_remote_tlbs_with_address(vcpu->kvm, child->gfn, 1);
2263 	}
2264 }
2265 
2266 /* Returns the number of zapped non-leaf child shadow pages. */
2267 static int mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
2268 			    u64 *spte, struct list_head *invalid_list)
2269 {
2270 	u64 pte;
2271 	struct kvm_mmu_page *child;
2272 
2273 	pte = *spte;
2274 	if (is_shadow_present_pte(pte)) {
2275 		if (is_last_spte(pte, sp->role.level)) {
2276 			drop_spte(kvm, spte);
2277 		} else {
2278 			child = to_shadow_page(pte & PT64_BASE_ADDR_MASK);
2279 			drop_parent_pte(child, spte);
2280 
2281 			/*
2282 			 * Recursively zap nested TDP SPs, parentless SPs are
2283 			 * unlikely to be used again in the near future.  This
2284 			 * avoids retaining a large number of stale nested SPs.
2285 			 */
2286 			if (tdp_enabled && invalid_list &&
2287 			    child->role.guest_mode && !child->parent_ptes.val)
2288 				return kvm_mmu_prepare_zap_page(kvm, child,
2289 								invalid_list);
2290 		}
2291 	} else if (is_mmio_spte(pte)) {
2292 		mmu_spte_clear_no_track(spte);
2293 	}
2294 	return 0;
2295 }
2296 
2297 static int kvm_mmu_page_unlink_children(struct kvm *kvm,
2298 					struct kvm_mmu_page *sp,
2299 					struct list_head *invalid_list)
2300 {
2301 	int zapped = 0;
2302 	unsigned i;
2303 
2304 	for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2305 		zapped += mmu_page_zap_pte(kvm, sp, sp->spt + i, invalid_list);
2306 
2307 	return zapped;
2308 }
2309 
2310 static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
2311 {
2312 	u64 *sptep;
2313 	struct rmap_iterator iter;
2314 
2315 	while ((sptep = rmap_get_first(&sp->parent_ptes, &iter)))
2316 		drop_parent_pte(sp, sptep);
2317 }
2318 
2319 static int mmu_zap_unsync_children(struct kvm *kvm,
2320 				   struct kvm_mmu_page *parent,
2321 				   struct list_head *invalid_list)
2322 {
2323 	int i, zapped = 0;
2324 	struct mmu_page_path parents;
2325 	struct kvm_mmu_pages pages;
2326 
2327 	if (parent->role.level == PG_LEVEL_4K)
2328 		return 0;
2329 
2330 	while (mmu_unsync_walk(parent, &pages)) {
2331 		struct kvm_mmu_page *sp;
2332 
2333 		for_each_sp(pages, sp, parents, i) {
2334 			kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2335 			mmu_pages_clear_parents(&parents);
2336 			zapped++;
2337 		}
2338 	}
2339 
2340 	return zapped;
2341 }
2342 
2343 static bool __kvm_mmu_prepare_zap_page(struct kvm *kvm,
2344 				       struct kvm_mmu_page *sp,
2345 				       struct list_head *invalid_list,
2346 				       int *nr_zapped)
2347 {
2348 	bool list_unstable;
2349 
2350 	trace_kvm_mmu_prepare_zap_page(sp);
2351 	++kvm->stat.mmu_shadow_zapped;
2352 	*nr_zapped = mmu_zap_unsync_children(kvm, sp, invalid_list);
2353 	*nr_zapped += kvm_mmu_page_unlink_children(kvm, sp, invalid_list);
2354 	kvm_mmu_unlink_parents(kvm, sp);
2355 
2356 	/* Zapping children means active_mmu_pages has become unstable. */
2357 	list_unstable = *nr_zapped;
2358 
2359 	if (!sp->role.invalid && !sp->role.direct)
2360 		unaccount_shadowed(kvm, sp);
2361 
2362 	if (sp->unsync)
2363 		kvm_unlink_unsync_page(kvm, sp);
2364 	if (!sp->root_count) {
2365 		/* Count self */
2366 		(*nr_zapped)++;
2367 
2368 		/*
2369 		 * Already invalid pages (previously active roots) are not on
2370 		 * the active page list.  See list_del() in the "else" case of
2371 		 * !sp->root_count.
2372 		 */
2373 		if (sp->role.invalid)
2374 			list_add(&sp->link, invalid_list);
2375 		else
2376 			list_move(&sp->link, invalid_list);
2377 		kvm_mod_used_mmu_pages(kvm, -1);
2378 	} else {
2379 		/*
2380 		 * Remove the active root from the active page list, the root
2381 		 * will be explicitly freed when the root_count hits zero.
2382 		 */
2383 		list_del(&sp->link);
2384 
2385 		/*
2386 		 * Obsolete pages cannot be used on any vCPUs, see the comment
2387 		 * in kvm_mmu_zap_all_fast().  Note, is_obsolete_sp() also
2388 		 * treats invalid shadow pages as being obsolete.
2389 		 */
2390 		if (!is_obsolete_sp(kvm, sp))
2391 			kvm_reload_remote_mmus(kvm);
2392 	}
2393 
2394 	if (sp->lpage_disallowed)
2395 		unaccount_huge_nx_page(kvm, sp);
2396 
2397 	sp->role.invalid = 1;
2398 	return list_unstable;
2399 }
2400 
2401 static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2402 				     struct list_head *invalid_list)
2403 {
2404 	int nr_zapped;
2405 
2406 	__kvm_mmu_prepare_zap_page(kvm, sp, invalid_list, &nr_zapped);
2407 	return nr_zapped;
2408 }
2409 
2410 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2411 				    struct list_head *invalid_list)
2412 {
2413 	struct kvm_mmu_page *sp, *nsp;
2414 
2415 	if (list_empty(invalid_list))
2416 		return;
2417 
2418 	/*
2419 	 * We need to make sure everyone sees our modifications to
2420 	 * the page tables and see changes to vcpu->mode here. The barrier
2421 	 * in the kvm_flush_remote_tlbs() achieves this. This pairs
2422 	 * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end.
2423 	 *
2424 	 * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit
2425 	 * guest mode and/or lockless shadow page table walks.
2426 	 */
2427 	kvm_flush_remote_tlbs(kvm);
2428 
2429 	list_for_each_entry_safe(sp, nsp, invalid_list, link) {
2430 		WARN_ON(!sp->role.invalid || sp->root_count);
2431 		kvm_mmu_free_page(sp);
2432 	}
2433 }
2434 
2435 static unsigned long kvm_mmu_zap_oldest_mmu_pages(struct kvm *kvm,
2436 						  unsigned long nr_to_zap)
2437 {
2438 	unsigned long total_zapped = 0;
2439 	struct kvm_mmu_page *sp, *tmp;
2440 	LIST_HEAD(invalid_list);
2441 	bool unstable;
2442 	int nr_zapped;
2443 
2444 	if (list_empty(&kvm->arch.active_mmu_pages))
2445 		return 0;
2446 
2447 restart:
2448 	list_for_each_entry_safe_reverse(sp, tmp, &kvm->arch.active_mmu_pages, link) {
2449 		/*
2450 		 * Don't zap active root pages, the page itself can't be freed
2451 		 * and zapping it will just force vCPUs to realloc and reload.
2452 		 */
2453 		if (sp->root_count)
2454 			continue;
2455 
2456 		unstable = __kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list,
2457 						      &nr_zapped);
2458 		total_zapped += nr_zapped;
2459 		if (total_zapped >= nr_to_zap)
2460 			break;
2461 
2462 		if (unstable)
2463 			goto restart;
2464 	}
2465 
2466 	kvm_mmu_commit_zap_page(kvm, &invalid_list);
2467 
2468 	kvm->stat.mmu_recycled += total_zapped;
2469 	return total_zapped;
2470 }
2471 
2472 static inline unsigned long kvm_mmu_available_pages(struct kvm *kvm)
2473 {
2474 	if (kvm->arch.n_max_mmu_pages > kvm->arch.n_used_mmu_pages)
2475 		return kvm->arch.n_max_mmu_pages -
2476 			kvm->arch.n_used_mmu_pages;
2477 
2478 	return 0;
2479 }
2480 
2481 static int make_mmu_pages_available(struct kvm_vcpu *vcpu)
2482 {
2483 	unsigned long avail = kvm_mmu_available_pages(vcpu->kvm);
2484 
2485 	if (likely(avail >= KVM_MIN_FREE_MMU_PAGES))
2486 		return 0;
2487 
2488 	kvm_mmu_zap_oldest_mmu_pages(vcpu->kvm, KVM_REFILL_PAGES - avail);
2489 
2490 	/*
2491 	 * Note, this check is intentionally soft, it only guarantees that one
2492 	 * page is available, while the caller may end up allocating as many as
2493 	 * four pages, e.g. for PAE roots or for 5-level paging.  Temporarily
2494 	 * exceeding the (arbitrary by default) limit will not harm the host,
2495 	 * being too aggressive may unnecessarily kill the guest, and getting an
2496 	 * exact count is far more trouble than it's worth, especially in the
2497 	 * page fault paths.
2498 	 */
2499 	if (!kvm_mmu_available_pages(vcpu->kvm))
2500 		return -ENOSPC;
2501 	return 0;
2502 }
2503 
2504 /*
2505  * Changing the number of mmu pages allocated to the vm
2506  * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2507  */
2508 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long goal_nr_mmu_pages)
2509 {
2510 	write_lock(&kvm->mmu_lock);
2511 
2512 	if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2513 		kvm_mmu_zap_oldest_mmu_pages(kvm, kvm->arch.n_used_mmu_pages -
2514 						  goal_nr_mmu_pages);
2515 
2516 		goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2517 	}
2518 
2519 	kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2520 
2521 	write_unlock(&kvm->mmu_lock);
2522 }
2523 
2524 int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2525 {
2526 	struct kvm_mmu_page *sp;
2527 	LIST_HEAD(invalid_list);
2528 	int r;
2529 
2530 	pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
2531 	r = 0;
2532 	write_lock(&kvm->mmu_lock);
2533 	for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
2534 		pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
2535 			 sp->role.word);
2536 		r = 1;
2537 		kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2538 	}
2539 	kvm_mmu_commit_zap_page(kvm, &invalid_list);
2540 	write_unlock(&kvm->mmu_lock);
2541 
2542 	return r;
2543 }
2544 
2545 static int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
2546 {
2547 	gpa_t gpa;
2548 	int r;
2549 
2550 	if (vcpu->arch.mmu->direct_map)
2551 		return 0;
2552 
2553 	gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
2554 
2555 	r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
2556 
2557 	return r;
2558 }
2559 
2560 static void kvm_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
2561 {
2562 	trace_kvm_mmu_unsync_page(sp);
2563 	++kvm->stat.mmu_unsync;
2564 	sp->unsync = 1;
2565 
2566 	kvm_mmu_mark_parents_unsync(sp);
2567 }
2568 
2569 /*
2570  * Attempt to unsync any shadow pages that can be reached by the specified gfn,
2571  * KVM is creating a writable mapping for said gfn.  Returns 0 if all pages
2572  * were marked unsync (or if there is no shadow page), -EPERM if the SPTE must
2573  * be write-protected.
2574  */
2575 int mmu_try_to_unsync_pages(struct kvm *kvm, const struct kvm_memory_slot *slot,
2576 			    gfn_t gfn, bool can_unsync, bool prefetch)
2577 {
2578 	struct kvm_mmu_page *sp;
2579 	bool locked = false;
2580 
2581 	/*
2582 	 * Force write-protection if the page is being tracked.  Note, the page
2583 	 * track machinery is used to write-protect upper-level shadow pages,
2584 	 * i.e. this guards the role.level == 4K assertion below!
2585 	 */
2586 	if (kvm_slot_page_track_is_active(kvm, slot, gfn, KVM_PAGE_TRACK_WRITE))
2587 		return -EPERM;
2588 
2589 	/*
2590 	 * The page is not write-tracked, mark existing shadow pages unsync
2591 	 * unless KVM is synchronizing an unsync SP (can_unsync = false).  In
2592 	 * that case, KVM must complete emulation of the guest TLB flush before
2593 	 * allowing shadow pages to become unsync (writable by the guest).
2594 	 */
2595 	for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
2596 		if (!can_unsync)
2597 			return -EPERM;
2598 
2599 		if (sp->unsync)
2600 			continue;
2601 
2602 		if (prefetch)
2603 			return -EEXIST;
2604 
2605 		/*
2606 		 * TDP MMU page faults require an additional spinlock as they
2607 		 * run with mmu_lock held for read, not write, and the unsync
2608 		 * logic is not thread safe.  Take the spinklock regardless of
2609 		 * the MMU type to avoid extra conditionals/parameters, there's
2610 		 * no meaningful penalty if mmu_lock is held for write.
2611 		 */
2612 		if (!locked) {
2613 			locked = true;
2614 			spin_lock(&kvm->arch.mmu_unsync_pages_lock);
2615 
2616 			/*
2617 			 * Recheck after taking the spinlock, a different vCPU
2618 			 * may have since marked the page unsync.  A false
2619 			 * positive on the unprotected check above is not
2620 			 * possible as clearing sp->unsync _must_ hold mmu_lock
2621 			 * for write, i.e. unsync cannot transition from 0->1
2622 			 * while this CPU holds mmu_lock for read (or write).
2623 			 */
2624 			if (READ_ONCE(sp->unsync))
2625 				continue;
2626 		}
2627 
2628 		WARN_ON(sp->role.level != PG_LEVEL_4K);
2629 		kvm_unsync_page(kvm, sp);
2630 	}
2631 	if (locked)
2632 		spin_unlock(&kvm->arch.mmu_unsync_pages_lock);
2633 
2634 	/*
2635 	 * We need to ensure that the marking of unsync pages is visible
2636 	 * before the SPTE is updated to allow writes because
2637 	 * kvm_mmu_sync_roots() checks the unsync flags without holding
2638 	 * the MMU lock and so can race with this. If the SPTE was updated
2639 	 * before the page had been marked as unsync-ed, something like the
2640 	 * following could happen:
2641 	 *
2642 	 * CPU 1                    CPU 2
2643 	 * ---------------------------------------------------------------------
2644 	 * 1.2 Host updates SPTE
2645 	 *     to be writable
2646 	 *                      2.1 Guest writes a GPTE for GVA X.
2647 	 *                          (GPTE being in the guest page table shadowed
2648 	 *                           by the SP from CPU 1.)
2649 	 *                          This reads SPTE during the page table walk.
2650 	 *                          Since SPTE.W is read as 1, there is no
2651 	 *                          fault.
2652 	 *
2653 	 *                      2.2 Guest issues TLB flush.
2654 	 *                          That causes a VM Exit.
2655 	 *
2656 	 *                      2.3 Walking of unsync pages sees sp->unsync is
2657 	 *                          false and skips the page.
2658 	 *
2659 	 *                      2.4 Guest accesses GVA X.
2660 	 *                          Since the mapping in the SP was not updated,
2661 	 *                          so the old mapping for GVA X incorrectly
2662 	 *                          gets used.
2663 	 * 1.1 Host marks SP
2664 	 *     as unsync
2665 	 *     (sp->unsync = true)
2666 	 *
2667 	 * The write barrier below ensures that 1.1 happens before 1.2 and thus
2668 	 * the situation in 2.4 does not arise.  It pairs with the read barrier
2669 	 * in is_unsync_root(), placed between 2.1's load of SPTE.W and 2.3.
2670 	 */
2671 	smp_wmb();
2672 
2673 	return 0;
2674 }
2675 
2676 static int mmu_set_spte(struct kvm_vcpu *vcpu, struct kvm_memory_slot *slot,
2677 			u64 *sptep, unsigned int pte_access, gfn_t gfn,
2678 			kvm_pfn_t pfn, struct kvm_page_fault *fault)
2679 {
2680 	struct kvm_mmu_page *sp = sptep_to_sp(sptep);
2681 	int level = sp->role.level;
2682 	int was_rmapped = 0;
2683 	int ret = RET_PF_FIXED;
2684 	bool flush = false;
2685 	bool wrprot;
2686 	u64 spte;
2687 
2688 	/* Prefetching always gets a writable pfn.  */
2689 	bool host_writable = !fault || fault->map_writable;
2690 	bool prefetch = !fault || fault->prefetch;
2691 	bool write_fault = fault && fault->write;
2692 
2693 	pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
2694 		 *sptep, write_fault, gfn);
2695 
2696 	if (unlikely(is_noslot_pfn(pfn))) {
2697 		mark_mmio_spte(vcpu, sptep, gfn, pte_access);
2698 		return RET_PF_EMULATE;
2699 	}
2700 
2701 	if (is_shadow_present_pte(*sptep)) {
2702 		/*
2703 		 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2704 		 * the parent of the now unreachable PTE.
2705 		 */
2706 		if (level > PG_LEVEL_4K && !is_large_pte(*sptep)) {
2707 			struct kvm_mmu_page *child;
2708 			u64 pte = *sptep;
2709 
2710 			child = to_shadow_page(pte & PT64_BASE_ADDR_MASK);
2711 			drop_parent_pte(child, sptep);
2712 			flush = true;
2713 		} else if (pfn != spte_to_pfn(*sptep)) {
2714 			pgprintk("hfn old %llx new %llx\n",
2715 				 spte_to_pfn(*sptep), pfn);
2716 			drop_spte(vcpu->kvm, sptep);
2717 			flush = true;
2718 		} else
2719 			was_rmapped = 1;
2720 	}
2721 
2722 	wrprot = make_spte(vcpu, sp, slot, pte_access, gfn, pfn, *sptep, prefetch,
2723 			   true, host_writable, &spte);
2724 
2725 	if (*sptep == spte) {
2726 		ret = RET_PF_SPURIOUS;
2727 	} else {
2728 		trace_kvm_mmu_set_spte(level, gfn, sptep);
2729 		flush |= mmu_spte_update(sptep, spte);
2730 	}
2731 
2732 	if (wrprot) {
2733 		if (write_fault)
2734 			ret = RET_PF_EMULATE;
2735 	}
2736 
2737 	if (flush)
2738 		kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn,
2739 				KVM_PAGES_PER_HPAGE(level));
2740 
2741 	pgprintk("%s: setting spte %llx\n", __func__, *sptep);
2742 
2743 	if (!was_rmapped) {
2744 		WARN_ON_ONCE(ret == RET_PF_SPURIOUS);
2745 		kvm_update_page_stats(vcpu->kvm, level, 1);
2746 		rmap_add(vcpu, slot, sptep, gfn);
2747 	}
2748 
2749 	return ret;
2750 }
2751 
2752 static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2753 				    struct kvm_mmu_page *sp,
2754 				    u64 *start, u64 *end)
2755 {
2756 	struct page *pages[PTE_PREFETCH_NUM];
2757 	struct kvm_memory_slot *slot;
2758 	unsigned int access = sp->role.access;
2759 	int i, ret;
2760 	gfn_t gfn;
2761 
2762 	gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
2763 	slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK);
2764 	if (!slot)
2765 		return -1;
2766 
2767 	ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start);
2768 	if (ret <= 0)
2769 		return -1;
2770 
2771 	for (i = 0; i < ret; i++, gfn++, start++) {
2772 		mmu_set_spte(vcpu, slot, start, access, gfn,
2773 			     page_to_pfn(pages[i]), NULL);
2774 		put_page(pages[i]);
2775 	}
2776 
2777 	return 0;
2778 }
2779 
2780 static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
2781 				  struct kvm_mmu_page *sp, u64 *sptep)
2782 {
2783 	u64 *spte, *start = NULL;
2784 	int i;
2785 
2786 	WARN_ON(!sp->role.direct);
2787 
2788 	i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
2789 	spte = sp->spt + i;
2790 
2791 	for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
2792 		if (is_shadow_present_pte(*spte) || spte == sptep) {
2793 			if (!start)
2794 				continue;
2795 			if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2796 				return;
2797 			start = NULL;
2798 		} else if (!start)
2799 			start = spte;
2800 	}
2801 	if (start)
2802 		direct_pte_prefetch_many(vcpu, sp, start, spte);
2803 }
2804 
2805 static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
2806 {
2807 	struct kvm_mmu_page *sp;
2808 
2809 	sp = sptep_to_sp(sptep);
2810 
2811 	/*
2812 	 * Without accessed bits, there's no way to distinguish between
2813 	 * actually accessed translations and prefetched, so disable pte
2814 	 * prefetch if accessed bits aren't available.
2815 	 */
2816 	if (sp_ad_disabled(sp))
2817 		return;
2818 
2819 	if (sp->role.level > PG_LEVEL_4K)
2820 		return;
2821 
2822 	/*
2823 	 * If addresses are being invalidated, skip prefetching to avoid
2824 	 * accidentally prefetching those addresses.
2825 	 */
2826 	if (unlikely(vcpu->kvm->mmu_notifier_count))
2827 		return;
2828 
2829 	__direct_pte_prefetch(vcpu, sp, sptep);
2830 }
2831 
2832 static int host_pfn_mapping_level(struct kvm *kvm, gfn_t gfn, kvm_pfn_t pfn,
2833 				  const struct kvm_memory_slot *slot)
2834 {
2835 	unsigned long hva;
2836 	pte_t *pte;
2837 	int level;
2838 
2839 	if (!PageCompound(pfn_to_page(pfn)) && !kvm_is_zone_device_pfn(pfn))
2840 		return PG_LEVEL_4K;
2841 
2842 	/*
2843 	 * Note, using the already-retrieved memslot and __gfn_to_hva_memslot()
2844 	 * is not solely for performance, it's also necessary to avoid the
2845 	 * "writable" check in __gfn_to_hva_many(), which will always fail on
2846 	 * read-only memslots due to gfn_to_hva() assuming writes.  Earlier
2847 	 * page fault steps have already verified the guest isn't writing a
2848 	 * read-only memslot.
2849 	 */
2850 	hva = __gfn_to_hva_memslot(slot, gfn);
2851 
2852 	pte = lookup_address_in_mm(kvm->mm, hva, &level);
2853 	if (unlikely(!pte))
2854 		return PG_LEVEL_4K;
2855 
2856 	return level;
2857 }
2858 
2859 int kvm_mmu_max_mapping_level(struct kvm *kvm,
2860 			      const struct kvm_memory_slot *slot, gfn_t gfn,
2861 			      kvm_pfn_t pfn, int max_level)
2862 {
2863 	struct kvm_lpage_info *linfo;
2864 	int host_level;
2865 
2866 	max_level = min(max_level, max_huge_page_level);
2867 	for ( ; max_level > PG_LEVEL_4K; max_level--) {
2868 		linfo = lpage_info_slot(gfn, slot, max_level);
2869 		if (!linfo->disallow_lpage)
2870 			break;
2871 	}
2872 
2873 	if (max_level == PG_LEVEL_4K)
2874 		return PG_LEVEL_4K;
2875 
2876 	host_level = host_pfn_mapping_level(kvm, gfn, pfn, slot);
2877 	return min(host_level, max_level);
2878 }
2879 
2880 void kvm_mmu_hugepage_adjust(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault)
2881 {
2882 	struct kvm_memory_slot *slot = fault->slot;
2883 	kvm_pfn_t mask;
2884 
2885 	fault->huge_page_disallowed = fault->exec && fault->nx_huge_page_workaround_enabled;
2886 
2887 	if (unlikely(fault->max_level == PG_LEVEL_4K))
2888 		return;
2889 
2890 	if (is_error_noslot_pfn(fault->pfn) || kvm_is_reserved_pfn(fault->pfn))
2891 		return;
2892 
2893 	if (kvm_slot_dirty_track_enabled(slot))
2894 		return;
2895 
2896 	/*
2897 	 * Enforce the iTLB multihit workaround after capturing the requested
2898 	 * level, which will be used to do precise, accurate accounting.
2899 	 */
2900 	fault->req_level = kvm_mmu_max_mapping_level(vcpu->kvm, slot,
2901 						     fault->gfn, fault->pfn,
2902 						     fault->max_level);
2903 	if (fault->req_level == PG_LEVEL_4K || fault->huge_page_disallowed)
2904 		return;
2905 
2906 	/*
2907 	 * mmu_notifier_retry() was successful and mmu_lock is held, so
2908 	 * the pmd can't be split from under us.
2909 	 */
2910 	fault->goal_level = fault->req_level;
2911 	mask = KVM_PAGES_PER_HPAGE(fault->goal_level) - 1;
2912 	VM_BUG_ON((fault->gfn & mask) != (fault->pfn & mask));
2913 	fault->pfn &= ~mask;
2914 }
2915 
2916 void disallowed_hugepage_adjust(struct kvm_page_fault *fault, u64 spte, int cur_level)
2917 {
2918 	if (cur_level > PG_LEVEL_4K &&
2919 	    cur_level == fault->goal_level &&
2920 	    is_shadow_present_pte(spte) &&
2921 	    !is_large_pte(spte)) {
2922 		/*
2923 		 * A small SPTE exists for this pfn, but FNAME(fetch)
2924 		 * and __direct_map would like to create a large PTE
2925 		 * instead: just force them to go down another level,
2926 		 * patching back for them into pfn the next 9 bits of
2927 		 * the address.
2928 		 */
2929 		u64 page_mask = KVM_PAGES_PER_HPAGE(cur_level) -
2930 				KVM_PAGES_PER_HPAGE(cur_level - 1);
2931 		fault->pfn |= fault->gfn & page_mask;
2932 		fault->goal_level--;
2933 	}
2934 }
2935 
2936 static int __direct_map(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault)
2937 {
2938 	struct kvm_shadow_walk_iterator it;
2939 	struct kvm_mmu_page *sp;
2940 	int ret;
2941 	gfn_t base_gfn = fault->gfn;
2942 
2943 	kvm_mmu_hugepage_adjust(vcpu, fault);
2944 
2945 	trace_kvm_mmu_spte_requested(fault);
2946 	for_each_shadow_entry(vcpu, fault->addr, it) {
2947 		/*
2948 		 * We cannot overwrite existing page tables with an NX
2949 		 * large page, as the leaf could be executable.
2950 		 */
2951 		if (fault->nx_huge_page_workaround_enabled)
2952 			disallowed_hugepage_adjust(fault, *it.sptep, it.level);
2953 
2954 		base_gfn = fault->gfn & ~(KVM_PAGES_PER_HPAGE(it.level) - 1);
2955 		if (it.level == fault->goal_level)
2956 			break;
2957 
2958 		drop_large_spte(vcpu, it.sptep);
2959 		if (is_shadow_present_pte(*it.sptep))
2960 			continue;
2961 
2962 		sp = kvm_mmu_get_page(vcpu, base_gfn, it.addr,
2963 				      it.level - 1, true, ACC_ALL);
2964 
2965 		link_shadow_page(vcpu, it.sptep, sp);
2966 		if (fault->is_tdp && fault->huge_page_disallowed &&
2967 		    fault->req_level >= it.level)
2968 			account_huge_nx_page(vcpu->kvm, sp);
2969 	}
2970 
2971 	if (WARN_ON_ONCE(it.level != fault->goal_level))
2972 		return -EFAULT;
2973 
2974 	ret = mmu_set_spte(vcpu, fault->slot, it.sptep, ACC_ALL,
2975 			   base_gfn, fault->pfn, fault);
2976 	if (ret == RET_PF_SPURIOUS)
2977 		return ret;
2978 
2979 	direct_pte_prefetch(vcpu, it.sptep);
2980 	++vcpu->stat.pf_fixed;
2981 	return ret;
2982 }
2983 
2984 static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
2985 {
2986 	send_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, PAGE_SHIFT, tsk);
2987 }
2988 
2989 static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, kvm_pfn_t pfn)
2990 {
2991 	/*
2992 	 * Do not cache the mmio info caused by writing the readonly gfn
2993 	 * into the spte otherwise read access on readonly gfn also can
2994 	 * caused mmio page fault and treat it as mmio access.
2995 	 */
2996 	if (pfn == KVM_PFN_ERR_RO_FAULT)
2997 		return RET_PF_EMULATE;
2998 
2999 	if (pfn == KVM_PFN_ERR_HWPOISON) {
3000 		kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current);
3001 		return RET_PF_RETRY;
3002 	}
3003 
3004 	return -EFAULT;
3005 }
3006 
3007 static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault,
3008 				unsigned int access, int *ret_val)
3009 {
3010 	/* The pfn is invalid, report the error! */
3011 	if (unlikely(is_error_pfn(fault->pfn))) {
3012 		*ret_val = kvm_handle_bad_page(vcpu, fault->gfn, fault->pfn);
3013 		return true;
3014 	}
3015 
3016 	if (unlikely(!fault->slot)) {
3017 		gva_t gva = fault->is_tdp ? 0 : fault->addr;
3018 
3019 		vcpu_cache_mmio_info(vcpu, gva, fault->gfn,
3020 				     access & shadow_mmio_access_mask);
3021 		/*
3022 		 * If MMIO caching is disabled, emulate immediately without
3023 		 * touching the shadow page tables as attempting to install an
3024 		 * MMIO SPTE will just be an expensive nop.
3025 		 */
3026 		if (unlikely(!shadow_mmio_value)) {
3027 			*ret_val = RET_PF_EMULATE;
3028 			return true;
3029 		}
3030 	}
3031 
3032 	return false;
3033 }
3034 
3035 static bool page_fault_can_be_fast(struct kvm_page_fault *fault)
3036 {
3037 	/*
3038 	 * Do not fix the mmio spte with invalid generation number which
3039 	 * need to be updated by slow page fault path.
3040 	 */
3041 	if (fault->rsvd)
3042 		return false;
3043 
3044 	/* See if the page fault is due to an NX violation */
3045 	if (unlikely(fault->exec && fault->present))
3046 		return false;
3047 
3048 	/*
3049 	 * #PF can be fast if:
3050 	 * 1. The shadow page table entry is not present, which could mean that
3051 	 *    the fault is potentially caused by access tracking (if enabled).
3052 	 * 2. The shadow page table entry is present and the fault
3053 	 *    is caused by write-protect, that means we just need change the W
3054 	 *    bit of the spte which can be done out of mmu-lock.
3055 	 *
3056 	 * However, if access tracking is disabled we know that a non-present
3057 	 * page must be a genuine page fault where we have to create a new SPTE.
3058 	 * So, if access tracking is disabled, we return true only for write
3059 	 * accesses to a present page.
3060 	 */
3061 
3062 	return shadow_acc_track_mask != 0 || (fault->write && fault->present);
3063 }
3064 
3065 /*
3066  * Returns true if the SPTE was fixed successfully. Otherwise,
3067  * someone else modified the SPTE from its original value.
3068  */
3069 static bool
3070 fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault,
3071 			u64 *sptep, u64 old_spte, u64 new_spte)
3072 {
3073 	/*
3074 	 * Theoretically we could also set dirty bit (and flush TLB) here in
3075 	 * order to eliminate unnecessary PML logging. See comments in
3076 	 * set_spte. But fast_page_fault is very unlikely to happen with PML
3077 	 * enabled, so we do not do this. This might result in the same GPA
3078 	 * to be logged in PML buffer again when the write really happens, and
3079 	 * eventually to be called by mark_page_dirty twice. But it's also no
3080 	 * harm. This also avoids the TLB flush needed after setting dirty bit
3081 	 * so non-PML cases won't be impacted.
3082 	 *
3083 	 * Compare with set_spte where instead shadow_dirty_mask is set.
3084 	 */
3085 	if (cmpxchg64(sptep, old_spte, new_spte) != old_spte)
3086 		return false;
3087 
3088 	if (is_writable_pte(new_spte) && !is_writable_pte(old_spte))
3089 		mark_page_dirty_in_slot(vcpu->kvm, fault->slot, fault->gfn);
3090 
3091 	return true;
3092 }
3093 
3094 static bool is_access_allowed(struct kvm_page_fault *fault, u64 spte)
3095 {
3096 	if (fault->exec)
3097 		return is_executable_pte(spte);
3098 
3099 	if (fault->write)
3100 		return is_writable_pte(spte);
3101 
3102 	/* Fault was on Read access */
3103 	return spte & PT_PRESENT_MASK;
3104 }
3105 
3106 /*
3107  * Returns the last level spte pointer of the shadow page walk for the given
3108  * gpa, and sets *spte to the spte value. This spte may be non-preset. If no
3109  * walk could be performed, returns NULL and *spte does not contain valid data.
3110  *
3111  * Contract:
3112  *  - Must be called between walk_shadow_page_lockless_{begin,end}.
3113  *  - The returned sptep must not be used after walk_shadow_page_lockless_end.
3114  */
3115 static u64 *fast_pf_get_last_sptep(struct kvm_vcpu *vcpu, gpa_t gpa, u64 *spte)
3116 {
3117 	struct kvm_shadow_walk_iterator iterator;
3118 	u64 old_spte;
3119 	u64 *sptep = NULL;
3120 
3121 	for_each_shadow_entry_lockless(vcpu, gpa, iterator, old_spte) {
3122 		sptep = iterator.sptep;
3123 		*spte = old_spte;
3124 	}
3125 
3126 	return sptep;
3127 }
3128 
3129 /*
3130  * Returns one of RET_PF_INVALID, RET_PF_FIXED or RET_PF_SPURIOUS.
3131  */
3132 static int fast_page_fault(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault)
3133 {
3134 	struct kvm_mmu_page *sp;
3135 	int ret = RET_PF_INVALID;
3136 	u64 spte = 0ull;
3137 	u64 *sptep = NULL;
3138 	uint retry_count = 0;
3139 
3140 	if (!page_fault_can_be_fast(fault))
3141 		return ret;
3142 
3143 	walk_shadow_page_lockless_begin(vcpu);
3144 
3145 	do {
3146 		u64 new_spte;
3147 
3148 		if (is_tdp_mmu(vcpu->arch.mmu))
3149 			sptep = kvm_tdp_mmu_fast_pf_get_last_sptep(vcpu, fault->addr, &spte);
3150 		else
3151 			sptep = fast_pf_get_last_sptep(vcpu, fault->addr, &spte);
3152 
3153 		if (!is_shadow_present_pte(spte))
3154 			break;
3155 
3156 		sp = sptep_to_sp(sptep);
3157 		if (!is_last_spte(spte, sp->role.level))
3158 			break;
3159 
3160 		/*
3161 		 * Check whether the memory access that caused the fault would
3162 		 * still cause it if it were to be performed right now. If not,
3163 		 * then this is a spurious fault caused by TLB lazily flushed,
3164 		 * or some other CPU has already fixed the PTE after the
3165 		 * current CPU took the fault.
3166 		 *
3167 		 * Need not check the access of upper level table entries since
3168 		 * they are always ACC_ALL.
3169 		 */
3170 		if (is_access_allowed(fault, spte)) {
3171 			ret = RET_PF_SPURIOUS;
3172 			break;
3173 		}
3174 
3175 		new_spte = spte;
3176 
3177 		if (is_access_track_spte(spte))
3178 			new_spte = restore_acc_track_spte(new_spte);
3179 
3180 		/*
3181 		 * Currently, to simplify the code, write-protection can
3182 		 * be removed in the fast path only if the SPTE was
3183 		 * write-protected for dirty-logging or access tracking.
3184 		 */
3185 		if (fault->write &&
3186 		    spte_can_locklessly_be_made_writable(spte)) {
3187 			new_spte |= PT_WRITABLE_MASK;
3188 
3189 			/*
3190 			 * Do not fix write-permission on the large spte when
3191 			 * dirty logging is enabled. Since we only dirty the
3192 			 * first page into the dirty-bitmap in
3193 			 * fast_pf_fix_direct_spte(), other pages are missed
3194 			 * if its slot has dirty logging enabled.
3195 			 *
3196 			 * Instead, we let the slow page fault path create a
3197 			 * normal spte to fix the access.
3198 			 */
3199 			if (sp->role.level > PG_LEVEL_4K &&
3200 			    kvm_slot_dirty_track_enabled(fault->slot))
3201 				break;
3202 		}
3203 
3204 		/* Verify that the fault can be handled in the fast path */
3205 		if (new_spte == spte ||
3206 		    !is_access_allowed(fault, new_spte))
3207 			break;
3208 
3209 		/*
3210 		 * Currently, fast page fault only works for direct mapping
3211 		 * since the gfn is not stable for indirect shadow page. See
3212 		 * Documentation/virt/kvm/locking.rst to get more detail.
3213 		 */
3214 		if (fast_pf_fix_direct_spte(vcpu, fault, sptep, spte, new_spte)) {
3215 			ret = RET_PF_FIXED;
3216 			break;
3217 		}
3218 
3219 		if (++retry_count > 4) {
3220 			printk_once(KERN_WARNING
3221 				"kvm: Fast #PF retrying more than 4 times.\n");
3222 			break;
3223 		}
3224 
3225 	} while (true);
3226 
3227 	trace_fast_page_fault(vcpu, fault, sptep, spte, ret);
3228 	walk_shadow_page_lockless_end(vcpu);
3229 
3230 	return ret;
3231 }
3232 
3233 static void mmu_free_root_page(struct kvm *kvm, hpa_t *root_hpa,
3234 			       struct list_head *invalid_list)
3235 {
3236 	struct kvm_mmu_page *sp;
3237 
3238 	if (!VALID_PAGE(*root_hpa))
3239 		return;
3240 
3241 	sp = to_shadow_page(*root_hpa & PT64_BASE_ADDR_MASK);
3242 
3243 	if (is_tdp_mmu_page(sp))
3244 		kvm_tdp_mmu_put_root(kvm, sp, false);
3245 	else if (!--sp->root_count && sp->role.invalid)
3246 		kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
3247 
3248 	*root_hpa = INVALID_PAGE;
3249 }
3250 
3251 /* roots_to_free must be some combination of the KVM_MMU_ROOT_* flags */
3252 void kvm_mmu_free_roots(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
3253 			ulong roots_to_free)
3254 {
3255 	struct kvm *kvm = vcpu->kvm;
3256 	int i;
3257 	LIST_HEAD(invalid_list);
3258 	bool free_active_root = roots_to_free & KVM_MMU_ROOT_CURRENT;
3259 
3260 	BUILD_BUG_ON(KVM_MMU_NUM_PREV_ROOTS >= BITS_PER_LONG);
3261 
3262 	/* Before acquiring the MMU lock, see if we need to do any real work. */
3263 	if (!(free_active_root && VALID_PAGE(mmu->root_hpa))) {
3264 		for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
3265 			if ((roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) &&
3266 			    VALID_PAGE(mmu->prev_roots[i].hpa))
3267 				break;
3268 
3269 		if (i == KVM_MMU_NUM_PREV_ROOTS)
3270 			return;
3271 	}
3272 
3273 	write_lock(&kvm->mmu_lock);
3274 
3275 	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
3276 		if (roots_to_free & KVM_MMU_ROOT_PREVIOUS(i))
3277 			mmu_free_root_page(kvm, &mmu->prev_roots[i].hpa,
3278 					   &invalid_list);
3279 
3280 	if (free_active_root) {
3281 		if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
3282 		    (mmu->root_level >= PT64_ROOT_4LEVEL || mmu->direct_map)) {
3283 			mmu_free_root_page(kvm, &mmu->root_hpa, &invalid_list);
3284 		} else if (mmu->pae_root) {
3285 			for (i = 0; i < 4; ++i) {
3286 				if (!IS_VALID_PAE_ROOT(mmu->pae_root[i]))
3287 					continue;
3288 
3289 				mmu_free_root_page(kvm, &mmu->pae_root[i],
3290 						   &invalid_list);
3291 				mmu->pae_root[i] = INVALID_PAE_ROOT;
3292 			}
3293 		}
3294 		mmu->root_hpa = INVALID_PAGE;
3295 		mmu->root_pgd = 0;
3296 	}
3297 
3298 	kvm_mmu_commit_zap_page(kvm, &invalid_list);
3299 	write_unlock(&kvm->mmu_lock);
3300 }
3301 EXPORT_SYMBOL_GPL(kvm_mmu_free_roots);
3302 
3303 void kvm_mmu_free_guest_mode_roots(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
3304 {
3305 	unsigned long roots_to_free = 0;
3306 	hpa_t root_hpa;
3307 	int i;
3308 
3309 	/*
3310 	 * This should not be called while L2 is active, L2 can't invalidate
3311 	 * _only_ its own roots, e.g. INVVPID unconditionally exits.
3312 	 */
3313 	WARN_ON_ONCE(mmu->mmu_role.base.guest_mode);
3314 
3315 	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
3316 		root_hpa = mmu->prev_roots[i].hpa;
3317 		if (!VALID_PAGE(root_hpa))
3318 			continue;
3319 
3320 		if (!to_shadow_page(root_hpa) ||
3321 			to_shadow_page(root_hpa)->role.guest_mode)
3322 			roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
3323 	}
3324 
3325 	kvm_mmu_free_roots(vcpu, mmu, roots_to_free);
3326 }
3327 EXPORT_SYMBOL_GPL(kvm_mmu_free_guest_mode_roots);
3328 
3329 
3330 static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
3331 {
3332 	int ret = 0;
3333 
3334 	if (!kvm_vcpu_is_visible_gfn(vcpu, root_gfn)) {
3335 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3336 		ret = 1;
3337 	}
3338 
3339 	return ret;
3340 }
3341 
3342 static hpa_t mmu_alloc_root(struct kvm_vcpu *vcpu, gfn_t gfn, gva_t gva,
3343 			    u8 level, bool direct)
3344 {
3345 	struct kvm_mmu_page *sp;
3346 
3347 	sp = kvm_mmu_get_page(vcpu, gfn, gva, level, direct, ACC_ALL);
3348 	++sp->root_count;
3349 
3350 	return __pa(sp->spt);
3351 }
3352 
3353 static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
3354 {
3355 	struct kvm_mmu *mmu = vcpu->arch.mmu;
3356 	u8 shadow_root_level = mmu->shadow_root_level;
3357 	hpa_t root;
3358 	unsigned i;
3359 	int r;
3360 
3361 	write_lock(&vcpu->kvm->mmu_lock);
3362 	r = make_mmu_pages_available(vcpu);
3363 	if (r < 0)
3364 		goto out_unlock;
3365 
3366 	if (is_tdp_mmu_enabled(vcpu->kvm)) {
3367 		root = kvm_tdp_mmu_get_vcpu_root_hpa(vcpu);
3368 		mmu->root_hpa = root;
3369 	} else if (shadow_root_level >= PT64_ROOT_4LEVEL) {
3370 		root = mmu_alloc_root(vcpu, 0, 0, shadow_root_level, true);
3371 		mmu->root_hpa = root;
3372 	} else if (shadow_root_level == PT32E_ROOT_LEVEL) {
3373 		if (WARN_ON_ONCE(!mmu->pae_root)) {
3374 			r = -EIO;
3375 			goto out_unlock;
3376 		}
3377 
3378 		for (i = 0; i < 4; ++i) {
3379 			WARN_ON_ONCE(IS_VALID_PAE_ROOT(mmu->pae_root[i]));
3380 
3381 			root = mmu_alloc_root(vcpu, i << (30 - PAGE_SHIFT),
3382 					      i << 30, PT32_ROOT_LEVEL, true);
3383 			mmu->pae_root[i] = root | PT_PRESENT_MASK |
3384 					   shadow_me_mask;
3385 		}
3386 		mmu->root_hpa = __pa(mmu->pae_root);
3387 	} else {
3388 		WARN_ONCE(1, "Bad TDP root level = %d\n", shadow_root_level);
3389 		r = -EIO;
3390 		goto out_unlock;
3391 	}
3392 
3393 	/* root_pgd is ignored for direct MMUs. */
3394 	mmu->root_pgd = 0;
3395 out_unlock:
3396 	write_unlock(&vcpu->kvm->mmu_lock);
3397 	return r;
3398 }
3399 
3400 static int mmu_first_shadow_root_alloc(struct kvm *kvm)
3401 {
3402 	struct kvm_memslots *slots;
3403 	struct kvm_memory_slot *slot;
3404 	int r = 0, i, bkt;
3405 
3406 	/*
3407 	 * Check if this is the first shadow root being allocated before
3408 	 * taking the lock.
3409 	 */
3410 	if (kvm_shadow_root_allocated(kvm))
3411 		return 0;
3412 
3413 	mutex_lock(&kvm->slots_arch_lock);
3414 
3415 	/* Recheck, under the lock, whether this is the first shadow root. */
3416 	if (kvm_shadow_root_allocated(kvm))
3417 		goto out_unlock;
3418 
3419 	/*
3420 	 * Check if anything actually needs to be allocated, e.g. all metadata
3421 	 * will be allocated upfront if TDP is disabled.
3422 	 */
3423 	if (kvm_memslots_have_rmaps(kvm) &&
3424 	    kvm_page_track_write_tracking_enabled(kvm))
3425 		goto out_success;
3426 
3427 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
3428 		slots = __kvm_memslots(kvm, i);
3429 		kvm_for_each_memslot(slot, bkt, slots) {
3430 			/*
3431 			 * Both of these functions are no-ops if the target is
3432 			 * already allocated, so unconditionally calling both
3433 			 * is safe.  Intentionally do NOT free allocations on
3434 			 * failure to avoid having to track which allocations
3435 			 * were made now versus when the memslot was created.
3436 			 * The metadata is guaranteed to be freed when the slot
3437 			 * is freed, and will be kept/used if userspace retries
3438 			 * KVM_RUN instead of killing the VM.
3439 			 */
3440 			r = memslot_rmap_alloc(slot, slot->npages);
3441 			if (r)
3442 				goto out_unlock;
3443 			r = kvm_page_track_write_tracking_alloc(slot);
3444 			if (r)
3445 				goto out_unlock;
3446 		}
3447 	}
3448 
3449 	/*
3450 	 * Ensure that shadow_root_allocated becomes true strictly after
3451 	 * all the related pointers are set.
3452 	 */
3453 out_success:
3454 	smp_store_release(&kvm->arch.shadow_root_allocated, true);
3455 
3456 out_unlock:
3457 	mutex_unlock(&kvm->slots_arch_lock);
3458 	return r;
3459 }
3460 
3461 static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
3462 {
3463 	struct kvm_mmu *mmu = vcpu->arch.mmu;
3464 	u64 pdptrs[4], pm_mask;
3465 	gfn_t root_gfn, root_pgd;
3466 	hpa_t root;
3467 	unsigned i;
3468 	int r;
3469 
3470 	root_pgd = mmu->get_guest_pgd(vcpu);
3471 	root_gfn = root_pgd >> PAGE_SHIFT;
3472 
3473 	if (mmu_check_root(vcpu, root_gfn))
3474 		return 1;
3475 
3476 	/*
3477 	 * On SVM, reading PDPTRs might access guest memory, which might fault
3478 	 * and thus might sleep.  Grab the PDPTRs before acquiring mmu_lock.
3479 	 */
3480 	if (mmu->root_level == PT32E_ROOT_LEVEL) {
3481 		for (i = 0; i < 4; ++i) {
3482 			pdptrs[i] = mmu->get_pdptr(vcpu, i);
3483 			if (!(pdptrs[i] & PT_PRESENT_MASK))
3484 				continue;
3485 
3486 			if (mmu_check_root(vcpu, pdptrs[i] >> PAGE_SHIFT))
3487 				return 1;
3488 		}
3489 	}
3490 
3491 	r = mmu_first_shadow_root_alloc(vcpu->kvm);
3492 	if (r)
3493 		return r;
3494 
3495 	write_lock(&vcpu->kvm->mmu_lock);
3496 	r = make_mmu_pages_available(vcpu);
3497 	if (r < 0)
3498 		goto out_unlock;
3499 
3500 	/*
3501 	 * Do we shadow a long mode page table? If so we need to
3502 	 * write-protect the guests page table root.
3503 	 */
3504 	if (mmu->root_level >= PT64_ROOT_4LEVEL) {
3505 		root = mmu_alloc_root(vcpu, root_gfn, 0,
3506 				      mmu->shadow_root_level, false);
3507 		mmu->root_hpa = root;
3508 		goto set_root_pgd;
3509 	}
3510 
3511 	if (WARN_ON_ONCE(!mmu->pae_root)) {
3512 		r = -EIO;
3513 		goto out_unlock;
3514 	}
3515 
3516 	/*
3517 	 * We shadow a 32 bit page table. This may be a legacy 2-level
3518 	 * or a PAE 3-level page table. In either case we need to be aware that
3519 	 * the shadow page table may be a PAE or a long mode page table.
3520 	 */
3521 	pm_mask = PT_PRESENT_MASK | shadow_me_mask;
3522 	if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL) {
3523 		pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
3524 
3525 		if (WARN_ON_ONCE(!mmu->pml4_root)) {
3526 			r = -EIO;
3527 			goto out_unlock;
3528 		}
3529 		mmu->pml4_root[0] = __pa(mmu->pae_root) | pm_mask;
3530 
3531 		if (mmu->shadow_root_level == PT64_ROOT_5LEVEL) {
3532 			if (WARN_ON_ONCE(!mmu->pml5_root)) {
3533 				r = -EIO;
3534 				goto out_unlock;
3535 			}
3536 			mmu->pml5_root[0] = __pa(mmu->pml4_root) | pm_mask;
3537 		}
3538 	}
3539 
3540 	for (i = 0; i < 4; ++i) {
3541 		WARN_ON_ONCE(IS_VALID_PAE_ROOT(mmu->pae_root[i]));
3542 
3543 		if (mmu->root_level == PT32E_ROOT_LEVEL) {
3544 			if (!(pdptrs[i] & PT_PRESENT_MASK)) {
3545 				mmu->pae_root[i] = INVALID_PAE_ROOT;
3546 				continue;
3547 			}
3548 			root_gfn = pdptrs[i] >> PAGE_SHIFT;
3549 		}
3550 
3551 		root = mmu_alloc_root(vcpu, root_gfn, i << 30,
3552 				      PT32_ROOT_LEVEL, false);
3553 		mmu->pae_root[i] = root | pm_mask;
3554 	}
3555 
3556 	if (mmu->shadow_root_level == PT64_ROOT_5LEVEL)
3557 		mmu->root_hpa = __pa(mmu->pml5_root);
3558 	else if (mmu->shadow_root_level == PT64_ROOT_4LEVEL)
3559 		mmu->root_hpa = __pa(mmu->pml4_root);
3560 	else
3561 		mmu->root_hpa = __pa(mmu->pae_root);
3562 
3563 set_root_pgd:
3564 	mmu->root_pgd = root_pgd;
3565 out_unlock:
3566 	write_unlock(&vcpu->kvm->mmu_lock);
3567 
3568 	return 0;
3569 }
3570 
3571 static int mmu_alloc_special_roots(struct kvm_vcpu *vcpu)
3572 {
3573 	struct kvm_mmu *mmu = vcpu->arch.mmu;
3574 	bool need_pml5 = mmu->shadow_root_level > PT64_ROOT_4LEVEL;
3575 	u64 *pml5_root = NULL;
3576 	u64 *pml4_root = NULL;
3577 	u64 *pae_root;
3578 
3579 	/*
3580 	 * When shadowing 32-bit or PAE NPT with 64-bit NPT, the PML4 and PDP
3581 	 * tables are allocated and initialized at root creation as there is no
3582 	 * equivalent level in the guest's NPT to shadow.  Allocate the tables
3583 	 * on demand, as running a 32-bit L1 VMM on 64-bit KVM is very rare.
3584 	 */
3585 	if (mmu->direct_map || mmu->root_level >= PT64_ROOT_4LEVEL ||
3586 	    mmu->shadow_root_level < PT64_ROOT_4LEVEL)
3587 		return 0;
3588 
3589 	/*
3590 	 * NPT, the only paging mode that uses this horror, uses a fixed number
3591 	 * of levels for the shadow page tables, e.g. all MMUs are 4-level or
3592 	 * all MMus are 5-level.  Thus, this can safely require that pml5_root
3593 	 * is allocated if the other roots are valid and pml5 is needed, as any
3594 	 * prior MMU would also have required pml5.
3595 	 */
3596 	if (mmu->pae_root && mmu->pml4_root && (!need_pml5 || mmu->pml5_root))
3597 		return 0;
3598 
3599 	/*
3600 	 * The special roots should always be allocated in concert.  Yell and
3601 	 * bail if KVM ends up in a state where only one of the roots is valid.
3602 	 */
3603 	if (WARN_ON_ONCE(!tdp_enabled || mmu->pae_root || mmu->pml4_root ||
3604 			 (need_pml5 && mmu->pml5_root)))
3605 		return -EIO;
3606 
3607 	/*
3608 	 * Unlike 32-bit NPT, the PDP table doesn't need to be in low mem, and
3609 	 * doesn't need to be decrypted.
3610 	 */
3611 	pae_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT);
3612 	if (!pae_root)
3613 		return -ENOMEM;
3614 
3615 #ifdef CONFIG_X86_64
3616 	pml4_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT);
3617 	if (!pml4_root)
3618 		goto err_pml4;
3619 
3620 	if (need_pml5) {
3621 		pml5_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT);
3622 		if (!pml5_root)
3623 			goto err_pml5;
3624 	}
3625 #endif
3626 
3627 	mmu->pae_root = pae_root;
3628 	mmu->pml4_root = pml4_root;
3629 	mmu->pml5_root = pml5_root;
3630 
3631 	return 0;
3632 
3633 #ifdef CONFIG_X86_64
3634 err_pml5:
3635 	free_page((unsigned long)pml4_root);
3636 err_pml4:
3637 	free_page((unsigned long)pae_root);
3638 	return -ENOMEM;
3639 #endif
3640 }
3641 
3642 static bool is_unsync_root(hpa_t root)
3643 {
3644 	struct kvm_mmu_page *sp;
3645 
3646 	if (!VALID_PAGE(root))
3647 		return false;
3648 
3649 	/*
3650 	 * The read barrier orders the CPU's read of SPTE.W during the page table
3651 	 * walk before the reads of sp->unsync/sp->unsync_children here.
3652 	 *
3653 	 * Even if another CPU was marking the SP as unsync-ed simultaneously,
3654 	 * any guest page table changes are not guaranteed to be visible anyway
3655 	 * until this VCPU issues a TLB flush strictly after those changes are
3656 	 * made.  We only need to ensure that the other CPU sets these flags
3657 	 * before any actual changes to the page tables are made.  The comments
3658 	 * in mmu_try_to_unsync_pages() describe what could go wrong if this
3659 	 * requirement isn't satisfied.
3660 	 */
3661 	smp_rmb();
3662 	sp = to_shadow_page(root);
3663 	if (sp->unsync || sp->unsync_children)
3664 		return true;
3665 
3666 	return false;
3667 }
3668 
3669 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3670 {
3671 	int i;
3672 	struct kvm_mmu_page *sp;
3673 
3674 	if (vcpu->arch.mmu->direct_map)
3675 		return;
3676 
3677 	if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
3678 		return;
3679 
3680 	vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
3681 
3682 	if (vcpu->arch.mmu->root_level >= PT64_ROOT_4LEVEL) {
3683 		hpa_t root = vcpu->arch.mmu->root_hpa;
3684 		sp = to_shadow_page(root);
3685 
3686 		if (!is_unsync_root(root))
3687 			return;
3688 
3689 		write_lock(&vcpu->kvm->mmu_lock);
3690 		kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3691 
3692 		mmu_sync_children(vcpu, sp, true);
3693 
3694 		kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3695 		write_unlock(&vcpu->kvm->mmu_lock);
3696 		return;
3697 	}
3698 
3699 	write_lock(&vcpu->kvm->mmu_lock);
3700 	kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3701 
3702 	for (i = 0; i < 4; ++i) {
3703 		hpa_t root = vcpu->arch.mmu->pae_root[i];
3704 
3705 		if (IS_VALID_PAE_ROOT(root)) {
3706 			root &= PT64_BASE_ADDR_MASK;
3707 			sp = to_shadow_page(root);
3708 			mmu_sync_children(vcpu, sp, true);
3709 		}
3710 	}
3711 
3712 	kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3713 	write_unlock(&vcpu->kvm->mmu_lock);
3714 }
3715 
3716 void kvm_mmu_sync_prev_roots(struct kvm_vcpu *vcpu)
3717 {
3718 	unsigned long roots_to_free = 0;
3719 	int i;
3720 
3721 	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
3722 		if (is_unsync_root(vcpu->arch.mmu->prev_roots[i].hpa))
3723 			roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
3724 
3725 	/* sync prev_roots by simply freeing them */
3726 	kvm_mmu_free_roots(vcpu, vcpu->arch.mmu, roots_to_free);
3727 }
3728 
3729 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
3730 				  gpa_t vaddr, u32 access,
3731 				  struct x86_exception *exception)
3732 {
3733 	if (exception)
3734 		exception->error_code = 0;
3735 	return kvm_translate_gpa(vcpu, mmu, vaddr, access, exception);
3736 }
3737 
3738 static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3739 {
3740 	/*
3741 	 * A nested guest cannot use the MMIO cache if it is using nested
3742 	 * page tables, because cr2 is a nGPA while the cache stores GPAs.
3743 	 */
3744 	if (mmu_is_nested(vcpu))
3745 		return false;
3746 
3747 	if (direct)
3748 		return vcpu_match_mmio_gpa(vcpu, addr);
3749 
3750 	return vcpu_match_mmio_gva(vcpu, addr);
3751 }
3752 
3753 /*
3754  * Return the level of the lowest level SPTE added to sptes.
3755  * That SPTE may be non-present.
3756  *
3757  * Must be called between walk_shadow_page_lockless_{begin,end}.
3758  */
3759 static int get_walk(struct kvm_vcpu *vcpu, u64 addr, u64 *sptes, int *root_level)
3760 {
3761 	struct kvm_shadow_walk_iterator iterator;
3762 	int leaf = -1;
3763 	u64 spte;
3764 
3765 	for (shadow_walk_init(&iterator, vcpu, addr),
3766 	     *root_level = iterator.level;
3767 	     shadow_walk_okay(&iterator);
3768 	     __shadow_walk_next(&iterator, spte)) {
3769 		leaf = iterator.level;
3770 		spte = mmu_spte_get_lockless(iterator.sptep);
3771 
3772 		sptes[leaf] = spte;
3773 	}
3774 
3775 	return leaf;
3776 }
3777 
3778 /* return true if reserved bit(s) are detected on a valid, non-MMIO SPTE. */
3779 static bool get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep)
3780 {
3781 	u64 sptes[PT64_ROOT_MAX_LEVEL + 1];
3782 	struct rsvd_bits_validate *rsvd_check;
3783 	int root, leaf, level;
3784 	bool reserved = false;
3785 
3786 	walk_shadow_page_lockless_begin(vcpu);
3787 
3788 	if (is_tdp_mmu(vcpu->arch.mmu))
3789 		leaf = kvm_tdp_mmu_get_walk(vcpu, addr, sptes, &root);
3790 	else
3791 		leaf = get_walk(vcpu, addr, sptes, &root);
3792 
3793 	walk_shadow_page_lockless_end(vcpu);
3794 
3795 	if (unlikely(leaf < 0)) {
3796 		*sptep = 0ull;
3797 		return reserved;
3798 	}
3799 
3800 	*sptep = sptes[leaf];
3801 
3802 	/*
3803 	 * Skip reserved bits checks on the terminal leaf if it's not a valid
3804 	 * SPTE.  Note, this also (intentionally) skips MMIO SPTEs, which, by
3805 	 * design, always have reserved bits set.  The purpose of the checks is
3806 	 * to detect reserved bits on non-MMIO SPTEs. i.e. buggy SPTEs.
3807 	 */
3808 	if (!is_shadow_present_pte(sptes[leaf]))
3809 		leaf++;
3810 
3811 	rsvd_check = &vcpu->arch.mmu->shadow_zero_check;
3812 
3813 	for (level = root; level >= leaf; level--)
3814 		reserved |= is_rsvd_spte(rsvd_check, sptes[level], level);
3815 
3816 	if (reserved) {
3817 		pr_err("%s: reserved bits set on MMU-present spte, addr 0x%llx, hierarchy:\n",
3818 		       __func__, addr);
3819 		for (level = root; level >= leaf; level--)
3820 			pr_err("------ spte = 0x%llx level = %d, rsvd bits = 0x%llx",
3821 			       sptes[level], level,
3822 			       get_rsvd_bits(rsvd_check, sptes[level], level));
3823 	}
3824 
3825 	return reserved;
3826 }
3827 
3828 static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3829 {
3830 	u64 spte;
3831 	bool reserved;
3832 
3833 	if (mmio_info_in_cache(vcpu, addr, direct))
3834 		return RET_PF_EMULATE;
3835 
3836 	reserved = get_mmio_spte(vcpu, addr, &spte);
3837 	if (WARN_ON(reserved))
3838 		return -EINVAL;
3839 
3840 	if (is_mmio_spte(spte)) {
3841 		gfn_t gfn = get_mmio_spte_gfn(spte);
3842 		unsigned int access = get_mmio_spte_access(spte);
3843 
3844 		if (!check_mmio_spte(vcpu, spte))
3845 			return RET_PF_INVALID;
3846 
3847 		if (direct)
3848 			addr = 0;
3849 
3850 		trace_handle_mmio_page_fault(addr, gfn, access);
3851 		vcpu_cache_mmio_info(vcpu, addr, gfn, access);
3852 		return RET_PF_EMULATE;
3853 	}
3854 
3855 	/*
3856 	 * If the page table is zapped by other cpus, let CPU fault again on
3857 	 * the address.
3858 	 */
3859 	return RET_PF_RETRY;
3860 }
3861 
3862 static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu,
3863 					 struct kvm_page_fault *fault)
3864 {
3865 	if (unlikely(fault->rsvd))
3866 		return false;
3867 
3868 	if (!fault->present || !fault->write)
3869 		return false;
3870 
3871 	/*
3872 	 * guest is writing the page which is write tracked which can
3873 	 * not be fixed by page fault handler.
3874 	 */
3875 	if (kvm_slot_page_track_is_active(vcpu->kvm, fault->slot, fault->gfn, KVM_PAGE_TRACK_WRITE))
3876 		return true;
3877 
3878 	return false;
3879 }
3880 
3881 static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr)
3882 {
3883 	struct kvm_shadow_walk_iterator iterator;
3884 	u64 spte;
3885 
3886 	walk_shadow_page_lockless_begin(vcpu);
3887 	for_each_shadow_entry_lockless(vcpu, addr, iterator, spte)
3888 		clear_sp_write_flooding_count(iterator.sptep);
3889 	walk_shadow_page_lockless_end(vcpu);
3890 }
3891 
3892 static u32 alloc_apf_token(struct kvm_vcpu *vcpu)
3893 {
3894 	/* make sure the token value is not 0 */
3895 	u32 id = vcpu->arch.apf.id;
3896 
3897 	if (id << 12 == 0)
3898 		vcpu->arch.apf.id = 1;
3899 
3900 	return (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
3901 }
3902 
3903 static bool kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
3904 				    gfn_t gfn)
3905 {
3906 	struct kvm_arch_async_pf arch;
3907 
3908 	arch.token = alloc_apf_token(vcpu);
3909 	arch.gfn = gfn;
3910 	arch.direct_map = vcpu->arch.mmu->direct_map;
3911 	arch.cr3 = vcpu->arch.mmu->get_guest_pgd(vcpu);
3912 
3913 	return kvm_setup_async_pf(vcpu, cr2_or_gpa,
3914 				  kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch);
3915 }
3916 
3917 static bool kvm_faultin_pfn(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault, int *r)
3918 {
3919 	struct kvm_memory_slot *slot = fault->slot;
3920 	bool async;
3921 
3922 	/*
3923 	 * Retry the page fault if the gfn hit a memslot that is being deleted
3924 	 * or moved.  This ensures any existing SPTEs for the old memslot will
3925 	 * be zapped before KVM inserts a new MMIO SPTE for the gfn.
3926 	 */
3927 	if (slot && (slot->flags & KVM_MEMSLOT_INVALID))
3928 		goto out_retry;
3929 
3930 	if (!kvm_is_visible_memslot(slot)) {
3931 		/* Don't expose private memslots to L2. */
3932 		if (is_guest_mode(vcpu)) {
3933 			fault->slot = NULL;
3934 			fault->pfn = KVM_PFN_NOSLOT;
3935 			fault->map_writable = false;
3936 			return false;
3937 		}
3938 		/*
3939 		 * If the APIC access page exists but is disabled, go directly
3940 		 * to emulation without caching the MMIO access or creating a
3941 		 * MMIO SPTE.  That way the cache doesn't need to be purged
3942 		 * when the AVIC is re-enabled.
3943 		 */
3944 		if (slot && slot->id == APIC_ACCESS_PAGE_PRIVATE_MEMSLOT &&
3945 		    !kvm_apicv_activated(vcpu->kvm)) {
3946 			*r = RET_PF_EMULATE;
3947 			return true;
3948 		}
3949 	}
3950 
3951 	async = false;
3952 	fault->pfn = __gfn_to_pfn_memslot(slot, fault->gfn, false, &async,
3953 					  fault->write, &fault->map_writable,
3954 					  &fault->hva);
3955 	if (!async)
3956 		return false; /* *pfn has correct page already */
3957 
3958 	if (!fault->prefetch && kvm_can_do_async_pf(vcpu)) {
3959 		trace_kvm_try_async_get_page(fault->addr, fault->gfn);
3960 		if (kvm_find_async_pf_gfn(vcpu, fault->gfn)) {
3961 			trace_kvm_async_pf_doublefault(fault->addr, fault->gfn);
3962 			kvm_make_request(KVM_REQ_APF_HALT, vcpu);
3963 			goto out_retry;
3964 		} else if (kvm_arch_setup_async_pf(vcpu, fault->addr, fault->gfn))
3965 			goto out_retry;
3966 	}
3967 
3968 	fault->pfn = __gfn_to_pfn_memslot(slot, fault->gfn, false, NULL,
3969 					  fault->write, &fault->map_writable,
3970 					  &fault->hva);
3971 	return false;
3972 
3973 out_retry:
3974 	*r = RET_PF_RETRY;
3975 	return true;
3976 }
3977 
3978 /*
3979  * Returns true if the page fault is stale and needs to be retried, i.e. if the
3980  * root was invalidated by a memslot update or a relevant mmu_notifier fired.
3981  */
3982 static bool is_page_fault_stale(struct kvm_vcpu *vcpu,
3983 				struct kvm_page_fault *fault, int mmu_seq)
3984 {
3985 	struct kvm_mmu_page *sp = to_shadow_page(vcpu->arch.mmu->root_hpa);
3986 
3987 	/* Special roots, e.g. pae_root, are not backed by shadow pages. */
3988 	if (sp && is_obsolete_sp(vcpu->kvm, sp))
3989 		return true;
3990 
3991 	/*
3992 	 * Roots without an associated shadow page are considered invalid if
3993 	 * there is a pending request to free obsolete roots.  The request is
3994 	 * only a hint that the current root _may_ be obsolete and needs to be
3995 	 * reloaded, e.g. if the guest frees a PGD that KVM is tracking as a
3996 	 * previous root, then __kvm_mmu_prepare_zap_page() signals all vCPUs
3997 	 * to reload even if no vCPU is actively using the root.
3998 	 */
3999 	if (!sp && kvm_test_request(KVM_REQ_MMU_RELOAD, vcpu))
4000 		return true;
4001 
4002 	return fault->slot &&
4003 	       mmu_notifier_retry_hva(vcpu->kvm, mmu_seq, fault->hva);
4004 }
4005 
4006 static int direct_page_fault(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault)
4007 {
4008 	bool is_tdp_mmu_fault = is_tdp_mmu(vcpu->arch.mmu);
4009 
4010 	unsigned long mmu_seq;
4011 	int r;
4012 
4013 	fault->gfn = fault->addr >> PAGE_SHIFT;
4014 	fault->slot = kvm_vcpu_gfn_to_memslot(vcpu, fault->gfn);
4015 
4016 	if (page_fault_handle_page_track(vcpu, fault))
4017 		return RET_PF_EMULATE;
4018 
4019 	r = fast_page_fault(vcpu, fault);
4020 	if (r != RET_PF_INVALID)
4021 		return r;
4022 
4023 	r = mmu_topup_memory_caches(vcpu, false);
4024 	if (r)
4025 		return r;
4026 
4027 	mmu_seq = vcpu->kvm->mmu_notifier_seq;
4028 	smp_rmb();
4029 
4030 	if (kvm_faultin_pfn(vcpu, fault, &r))
4031 		return r;
4032 
4033 	if (handle_abnormal_pfn(vcpu, fault, ACC_ALL, &r))
4034 		return r;
4035 
4036 	r = RET_PF_RETRY;
4037 
4038 	if (is_tdp_mmu_fault)
4039 		read_lock(&vcpu->kvm->mmu_lock);
4040 	else
4041 		write_lock(&vcpu->kvm->mmu_lock);
4042 
4043 	if (is_page_fault_stale(vcpu, fault, mmu_seq))
4044 		goto out_unlock;
4045 
4046 	r = make_mmu_pages_available(vcpu);
4047 	if (r)
4048 		goto out_unlock;
4049 
4050 	if (is_tdp_mmu_fault)
4051 		r = kvm_tdp_mmu_map(vcpu, fault);
4052 	else
4053 		r = __direct_map(vcpu, fault);
4054 
4055 out_unlock:
4056 	if (is_tdp_mmu_fault)
4057 		read_unlock(&vcpu->kvm->mmu_lock);
4058 	else
4059 		write_unlock(&vcpu->kvm->mmu_lock);
4060 	kvm_release_pfn_clean(fault->pfn);
4061 	return r;
4062 }
4063 
4064 static int nonpaging_page_fault(struct kvm_vcpu *vcpu,
4065 				struct kvm_page_fault *fault)
4066 {
4067 	pgprintk("%s: gva %lx error %x\n", __func__, fault->addr, fault->error_code);
4068 
4069 	/* This path builds a PAE pagetable, we can map 2mb pages at maximum. */
4070 	fault->max_level = PG_LEVEL_2M;
4071 	return direct_page_fault(vcpu, fault);
4072 }
4073 
4074 int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code,
4075 				u64 fault_address, char *insn, int insn_len)
4076 {
4077 	int r = 1;
4078 	u32 flags = vcpu->arch.apf.host_apf_flags;
4079 
4080 #ifndef CONFIG_X86_64
4081 	/* A 64-bit CR2 should be impossible on 32-bit KVM. */
4082 	if (WARN_ON_ONCE(fault_address >> 32))
4083 		return -EFAULT;
4084 #endif
4085 
4086 	vcpu->arch.l1tf_flush_l1d = true;
4087 	if (!flags) {
4088 		trace_kvm_page_fault(fault_address, error_code);
4089 
4090 		if (kvm_event_needs_reinjection(vcpu))
4091 			kvm_mmu_unprotect_page_virt(vcpu, fault_address);
4092 		r = kvm_mmu_page_fault(vcpu, fault_address, error_code, insn,
4093 				insn_len);
4094 	} else if (flags & KVM_PV_REASON_PAGE_NOT_PRESENT) {
4095 		vcpu->arch.apf.host_apf_flags = 0;
4096 		local_irq_disable();
4097 		kvm_async_pf_task_wait_schedule(fault_address);
4098 		local_irq_enable();
4099 	} else {
4100 		WARN_ONCE(1, "Unexpected host async PF flags: %x\n", flags);
4101 	}
4102 
4103 	return r;
4104 }
4105 EXPORT_SYMBOL_GPL(kvm_handle_page_fault);
4106 
4107 int kvm_tdp_page_fault(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault)
4108 {
4109 	while (fault->max_level > PG_LEVEL_4K) {
4110 		int page_num = KVM_PAGES_PER_HPAGE(fault->max_level);
4111 		gfn_t base = (fault->addr >> PAGE_SHIFT) & ~(page_num - 1);
4112 
4113 		if (kvm_mtrr_check_gfn_range_consistency(vcpu, base, page_num))
4114 			break;
4115 
4116 		--fault->max_level;
4117 	}
4118 
4119 	return direct_page_fault(vcpu, fault);
4120 }
4121 
4122 static void nonpaging_init_context(struct kvm_mmu *context)
4123 {
4124 	context->page_fault = nonpaging_page_fault;
4125 	context->gva_to_gpa = nonpaging_gva_to_gpa;
4126 	context->sync_page = nonpaging_sync_page;
4127 	context->invlpg = NULL;
4128 	context->direct_map = true;
4129 }
4130 
4131 static inline bool is_root_usable(struct kvm_mmu_root_info *root, gpa_t pgd,
4132 				  union kvm_mmu_page_role role)
4133 {
4134 	return (role.direct || pgd == root->pgd) &&
4135 	       VALID_PAGE(root->hpa) && to_shadow_page(root->hpa) &&
4136 	       role.word == to_shadow_page(root->hpa)->role.word;
4137 }
4138 
4139 /*
4140  * Find out if a previously cached root matching the new pgd/role is available.
4141  * The current root is also inserted into the cache.
4142  * If a matching root was found, it is assigned to kvm_mmu->root_hpa and true is
4143  * returned.
4144  * Otherwise, the LRU root from the cache is assigned to kvm_mmu->root_hpa and
4145  * false is returned. This root should now be freed by the caller.
4146  */
4147 static bool cached_root_available(struct kvm_vcpu *vcpu, gpa_t new_pgd,
4148 				  union kvm_mmu_page_role new_role)
4149 {
4150 	uint i;
4151 	struct kvm_mmu_root_info root;
4152 	struct kvm_mmu *mmu = vcpu->arch.mmu;
4153 
4154 	root.pgd = mmu->root_pgd;
4155 	root.hpa = mmu->root_hpa;
4156 
4157 	if (is_root_usable(&root, new_pgd, new_role))
4158 		return true;
4159 
4160 	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
4161 		swap(root, mmu->prev_roots[i]);
4162 
4163 		if (is_root_usable(&root, new_pgd, new_role))
4164 			break;
4165 	}
4166 
4167 	mmu->root_hpa = root.hpa;
4168 	mmu->root_pgd = root.pgd;
4169 
4170 	return i < KVM_MMU_NUM_PREV_ROOTS;
4171 }
4172 
4173 static bool fast_pgd_switch(struct kvm_vcpu *vcpu, gpa_t new_pgd,
4174 			    union kvm_mmu_page_role new_role)
4175 {
4176 	struct kvm_mmu *mmu = vcpu->arch.mmu;
4177 
4178 	/*
4179 	 * For now, limit the fast switch to 64-bit hosts+VMs in order to avoid
4180 	 * having to deal with PDPTEs. We may add support for 32-bit hosts/VMs
4181 	 * later if necessary.
4182 	 */
4183 	if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
4184 	    mmu->root_level >= PT64_ROOT_4LEVEL)
4185 		return cached_root_available(vcpu, new_pgd, new_role);
4186 
4187 	return false;
4188 }
4189 
4190 static void __kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd,
4191 			      union kvm_mmu_page_role new_role)
4192 {
4193 	if (!fast_pgd_switch(vcpu, new_pgd, new_role)) {
4194 		kvm_mmu_free_roots(vcpu, vcpu->arch.mmu, KVM_MMU_ROOT_CURRENT);
4195 		return;
4196 	}
4197 
4198 	/*
4199 	 * It's possible that the cached previous root page is obsolete because
4200 	 * of a change in the MMU generation number. However, changing the
4201 	 * generation number is accompanied by KVM_REQ_MMU_RELOAD, which will
4202 	 * free the root set here and allocate a new one.
4203 	 */
4204 	kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu);
4205 
4206 	if (force_flush_and_sync_on_reuse) {
4207 		kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
4208 		kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
4209 	}
4210 
4211 	/*
4212 	 * The last MMIO access's GVA and GPA are cached in the VCPU. When
4213 	 * switching to a new CR3, that GVA->GPA mapping may no longer be
4214 	 * valid. So clear any cached MMIO info even when we don't need to sync
4215 	 * the shadow page tables.
4216 	 */
4217 	vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
4218 
4219 	/*
4220 	 * If this is a direct root page, it doesn't have a write flooding
4221 	 * count. Otherwise, clear the write flooding count.
4222 	 */
4223 	if (!new_role.direct)
4224 		__clear_sp_write_flooding_count(
4225 				to_shadow_page(vcpu->arch.mmu->root_hpa));
4226 }
4227 
4228 void kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd)
4229 {
4230 	__kvm_mmu_new_pgd(vcpu, new_pgd, kvm_mmu_calc_root_page_role(vcpu));
4231 }
4232 EXPORT_SYMBOL_GPL(kvm_mmu_new_pgd);
4233 
4234 static unsigned long get_cr3(struct kvm_vcpu *vcpu)
4235 {
4236 	return kvm_read_cr3(vcpu);
4237 }
4238 
4239 static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
4240 			   unsigned int access)
4241 {
4242 	if (unlikely(is_mmio_spte(*sptep))) {
4243 		if (gfn != get_mmio_spte_gfn(*sptep)) {
4244 			mmu_spte_clear_no_track(sptep);
4245 			return true;
4246 		}
4247 
4248 		mark_mmio_spte(vcpu, sptep, gfn, access);
4249 		return true;
4250 	}
4251 
4252 	return false;
4253 }
4254 
4255 #define PTTYPE_EPT 18 /* arbitrary */
4256 #define PTTYPE PTTYPE_EPT
4257 #include "paging_tmpl.h"
4258 #undef PTTYPE
4259 
4260 #define PTTYPE 64
4261 #include "paging_tmpl.h"
4262 #undef PTTYPE
4263 
4264 #define PTTYPE 32
4265 #include "paging_tmpl.h"
4266 #undef PTTYPE
4267 
4268 static void
4269 __reset_rsvds_bits_mask(struct rsvd_bits_validate *rsvd_check,
4270 			u64 pa_bits_rsvd, int level, bool nx, bool gbpages,
4271 			bool pse, bool amd)
4272 {
4273 	u64 gbpages_bit_rsvd = 0;
4274 	u64 nonleaf_bit8_rsvd = 0;
4275 	u64 high_bits_rsvd;
4276 
4277 	rsvd_check->bad_mt_xwr = 0;
4278 
4279 	if (!gbpages)
4280 		gbpages_bit_rsvd = rsvd_bits(7, 7);
4281 
4282 	if (level == PT32E_ROOT_LEVEL)
4283 		high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 62);
4284 	else
4285 		high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 51);
4286 
4287 	/* Note, NX doesn't exist in PDPTEs, this is handled below. */
4288 	if (!nx)
4289 		high_bits_rsvd |= rsvd_bits(63, 63);
4290 
4291 	/*
4292 	 * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
4293 	 * leaf entries) on AMD CPUs only.
4294 	 */
4295 	if (amd)
4296 		nonleaf_bit8_rsvd = rsvd_bits(8, 8);
4297 
4298 	switch (level) {
4299 	case PT32_ROOT_LEVEL:
4300 		/* no rsvd bits for 2 level 4K page table entries */
4301 		rsvd_check->rsvd_bits_mask[0][1] = 0;
4302 		rsvd_check->rsvd_bits_mask[0][0] = 0;
4303 		rsvd_check->rsvd_bits_mask[1][0] =
4304 			rsvd_check->rsvd_bits_mask[0][0];
4305 
4306 		if (!pse) {
4307 			rsvd_check->rsvd_bits_mask[1][1] = 0;
4308 			break;
4309 		}
4310 
4311 		if (is_cpuid_PSE36())
4312 			/* 36bits PSE 4MB page */
4313 			rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
4314 		else
4315 			/* 32 bits PSE 4MB page */
4316 			rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
4317 		break;
4318 	case PT32E_ROOT_LEVEL:
4319 		rsvd_check->rsvd_bits_mask[0][2] = rsvd_bits(63, 63) |
4320 						   high_bits_rsvd |
4321 						   rsvd_bits(5, 8) |
4322 						   rsvd_bits(1, 2);	/* PDPTE */
4323 		rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd;	/* PDE */
4324 		rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd;	/* PTE */
4325 		rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd |
4326 						   rsvd_bits(13, 20);	/* large page */
4327 		rsvd_check->rsvd_bits_mask[1][0] =
4328 			rsvd_check->rsvd_bits_mask[0][0];
4329 		break;
4330 	case PT64_ROOT_5LEVEL:
4331 		rsvd_check->rsvd_bits_mask[0][4] = high_bits_rsvd |
4332 						   nonleaf_bit8_rsvd |
4333 						   rsvd_bits(7, 7);
4334 		rsvd_check->rsvd_bits_mask[1][4] =
4335 			rsvd_check->rsvd_bits_mask[0][4];
4336 		fallthrough;
4337 	case PT64_ROOT_4LEVEL:
4338 		rsvd_check->rsvd_bits_mask[0][3] = high_bits_rsvd |
4339 						   nonleaf_bit8_rsvd |
4340 						   rsvd_bits(7, 7);
4341 		rsvd_check->rsvd_bits_mask[0][2] = high_bits_rsvd |
4342 						   gbpages_bit_rsvd;
4343 		rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd;
4344 		rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd;
4345 		rsvd_check->rsvd_bits_mask[1][3] =
4346 			rsvd_check->rsvd_bits_mask[0][3];
4347 		rsvd_check->rsvd_bits_mask[1][2] = high_bits_rsvd |
4348 						   gbpages_bit_rsvd |
4349 						   rsvd_bits(13, 29);
4350 		rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd |
4351 						   rsvd_bits(13, 20); /* large page */
4352 		rsvd_check->rsvd_bits_mask[1][0] =
4353 			rsvd_check->rsvd_bits_mask[0][0];
4354 		break;
4355 	}
4356 }
4357 
4358 static bool guest_can_use_gbpages(struct kvm_vcpu *vcpu)
4359 {
4360 	/*
4361 	 * If TDP is enabled, let the guest use GBPAGES if they're supported in
4362 	 * hardware.  The hardware page walker doesn't let KVM disable GBPAGES,
4363 	 * i.e. won't treat them as reserved, and KVM doesn't redo the GVA->GPA
4364 	 * walk for performance and complexity reasons.  Not to mention KVM
4365 	 * _can't_ solve the problem because GVA->GPA walks aren't visible to
4366 	 * KVM once a TDP translation is installed.  Mimic hardware behavior so
4367 	 * that KVM's is at least consistent, i.e. doesn't randomly inject #PF.
4368 	 */
4369 	return tdp_enabled ? boot_cpu_has(X86_FEATURE_GBPAGES) :
4370 			     guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES);
4371 }
4372 
4373 static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
4374 				  struct kvm_mmu *context)
4375 {
4376 	__reset_rsvds_bits_mask(&context->guest_rsvd_check,
4377 				vcpu->arch.reserved_gpa_bits,
4378 				context->root_level, is_efer_nx(context),
4379 				guest_can_use_gbpages(vcpu),
4380 				is_cr4_pse(context),
4381 				guest_cpuid_is_amd_or_hygon(vcpu));
4382 }
4383 
4384 static void
4385 __reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check,
4386 			    u64 pa_bits_rsvd, bool execonly, int huge_page_level)
4387 {
4388 	u64 high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 51);
4389 	u64 large_1g_rsvd = 0, large_2m_rsvd = 0;
4390 	u64 bad_mt_xwr;
4391 
4392 	if (huge_page_level < PG_LEVEL_1G)
4393 		large_1g_rsvd = rsvd_bits(7, 7);
4394 	if (huge_page_level < PG_LEVEL_2M)
4395 		large_2m_rsvd = rsvd_bits(7, 7);
4396 
4397 	rsvd_check->rsvd_bits_mask[0][4] = high_bits_rsvd | rsvd_bits(3, 7);
4398 	rsvd_check->rsvd_bits_mask[0][3] = high_bits_rsvd | rsvd_bits(3, 7);
4399 	rsvd_check->rsvd_bits_mask[0][2] = high_bits_rsvd | rsvd_bits(3, 6) | large_1g_rsvd;
4400 	rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd | rsvd_bits(3, 6) | large_2m_rsvd;
4401 	rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd;
4402 
4403 	/* large page */
4404 	rsvd_check->rsvd_bits_mask[1][4] = rsvd_check->rsvd_bits_mask[0][4];
4405 	rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3];
4406 	rsvd_check->rsvd_bits_mask[1][2] = high_bits_rsvd | rsvd_bits(12, 29) | large_1g_rsvd;
4407 	rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd | rsvd_bits(12, 20) | large_2m_rsvd;
4408 	rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0];
4409 
4410 	bad_mt_xwr = 0xFFull << (2 * 8);	/* bits 3..5 must not be 2 */
4411 	bad_mt_xwr |= 0xFFull << (3 * 8);	/* bits 3..5 must not be 3 */
4412 	bad_mt_xwr |= 0xFFull << (7 * 8);	/* bits 3..5 must not be 7 */
4413 	bad_mt_xwr |= REPEAT_BYTE(1ull << 2);	/* bits 0..2 must not be 010 */
4414 	bad_mt_xwr |= REPEAT_BYTE(1ull << 6);	/* bits 0..2 must not be 110 */
4415 	if (!execonly) {
4416 		/* bits 0..2 must not be 100 unless VMX capabilities allow it */
4417 		bad_mt_xwr |= REPEAT_BYTE(1ull << 4);
4418 	}
4419 	rsvd_check->bad_mt_xwr = bad_mt_xwr;
4420 }
4421 
4422 static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
4423 		struct kvm_mmu *context, bool execonly, int huge_page_level)
4424 {
4425 	__reset_rsvds_bits_mask_ept(&context->guest_rsvd_check,
4426 				    vcpu->arch.reserved_gpa_bits, execonly,
4427 				    huge_page_level);
4428 }
4429 
4430 static inline u64 reserved_hpa_bits(void)
4431 {
4432 	return rsvd_bits(shadow_phys_bits, 63);
4433 }
4434 
4435 /*
4436  * the page table on host is the shadow page table for the page
4437  * table in guest or amd nested guest, its mmu features completely
4438  * follow the features in guest.
4439  */
4440 static void reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4441 					struct kvm_mmu *context)
4442 {
4443 	/*
4444 	 * KVM uses NX when TDP is disabled to handle a variety of scenarios,
4445 	 * notably for huge SPTEs if iTLB multi-hit mitigation is enabled and
4446 	 * to generate correct permissions for CR0.WP=0/CR4.SMEP=1/EFER.NX=0.
4447 	 * The iTLB multi-hit workaround can be toggled at any time, so assume
4448 	 * NX can be used by any non-nested shadow MMU to avoid having to reset
4449 	 * MMU contexts.  Note, KVM forces EFER.NX=1 when TDP is disabled.
4450 	 */
4451 	bool uses_nx = is_efer_nx(context) || !tdp_enabled;
4452 
4453 	/* @amd adds a check on bit of SPTEs, which KVM shouldn't use anyways. */
4454 	bool is_amd = true;
4455 	/* KVM doesn't use 2-level page tables for the shadow MMU. */
4456 	bool is_pse = false;
4457 	struct rsvd_bits_validate *shadow_zero_check;
4458 	int i;
4459 
4460 	WARN_ON_ONCE(context->shadow_root_level < PT32E_ROOT_LEVEL);
4461 
4462 	shadow_zero_check = &context->shadow_zero_check;
4463 	__reset_rsvds_bits_mask(shadow_zero_check, reserved_hpa_bits(),
4464 				context->shadow_root_level, uses_nx,
4465 				guest_can_use_gbpages(vcpu), is_pse, is_amd);
4466 
4467 	if (!shadow_me_mask)
4468 		return;
4469 
4470 	for (i = context->shadow_root_level; --i >= 0;) {
4471 		shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
4472 		shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
4473 	}
4474 
4475 }
4476 
4477 static inline bool boot_cpu_is_amd(void)
4478 {
4479 	WARN_ON_ONCE(!tdp_enabled);
4480 	return shadow_x_mask == 0;
4481 }
4482 
4483 /*
4484  * the direct page table on host, use as much mmu features as
4485  * possible, however, kvm currently does not do execution-protection.
4486  */
4487 static void
4488 reset_tdp_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4489 				struct kvm_mmu *context)
4490 {
4491 	struct rsvd_bits_validate *shadow_zero_check;
4492 	int i;
4493 
4494 	shadow_zero_check = &context->shadow_zero_check;
4495 
4496 	if (boot_cpu_is_amd())
4497 		__reset_rsvds_bits_mask(shadow_zero_check, reserved_hpa_bits(),
4498 					context->shadow_root_level, false,
4499 					boot_cpu_has(X86_FEATURE_GBPAGES),
4500 					false, true);
4501 	else
4502 		__reset_rsvds_bits_mask_ept(shadow_zero_check,
4503 					    reserved_hpa_bits(), false,
4504 					    max_huge_page_level);
4505 
4506 	if (!shadow_me_mask)
4507 		return;
4508 
4509 	for (i = context->shadow_root_level; --i >= 0;) {
4510 		shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
4511 		shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
4512 	}
4513 }
4514 
4515 /*
4516  * as the comments in reset_shadow_zero_bits_mask() except it
4517  * is the shadow page table for intel nested guest.
4518  */
4519 static void
4520 reset_ept_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4521 				struct kvm_mmu *context, bool execonly)
4522 {
4523 	__reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
4524 				    reserved_hpa_bits(), execonly,
4525 				    max_huge_page_level);
4526 }
4527 
4528 #define BYTE_MASK(access) \
4529 	((1 & (access) ? 2 : 0) | \
4530 	 (2 & (access) ? 4 : 0) | \
4531 	 (3 & (access) ? 8 : 0) | \
4532 	 (4 & (access) ? 16 : 0) | \
4533 	 (5 & (access) ? 32 : 0) | \
4534 	 (6 & (access) ? 64 : 0) | \
4535 	 (7 & (access) ? 128 : 0))
4536 
4537 
4538 static void update_permission_bitmask(struct kvm_mmu *mmu, bool ept)
4539 {
4540 	unsigned byte;
4541 
4542 	const u8 x = BYTE_MASK(ACC_EXEC_MASK);
4543 	const u8 w = BYTE_MASK(ACC_WRITE_MASK);
4544 	const u8 u = BYTE_MASK(ACC_USER_MASK);
4545 
4546 	bool cr4_smep = is_cr4_smep(mmu);
4547 	bool cr4_smap = is_cr4_smap(mmu);
4548 	bool cr0_wp = is_cr0_wp(mmu);
4549 	bool efer_nx = is_efer_nx(mmu);
4550 
4551 	for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
4552 		unsigned pfec = byte << 1;
4553 
4554 		/*
4555 		 * Each "*f" variable has a 1 bit for each UWX value
4556 		 * that causes a fault with the given PFEC.
4557 		 */
4558 
4559 		/* Faults from writes to non-writable pages */
4560 		u8 wf = (pfec & PFERR_WRITE_MASK) ? (u8)~w : 0;
4561 		/* Faults from user mode accesses to supervisor pages */
4562 		u8 uf = (pfec & PFERR_USER_MASK) ? (u8)~u : 0;
4563 		/* Faults from fetches of non-executable pages*/
4564 		u8 ff = (pfec & PFERR_FETCH_MASK) ? (u8)~x : 0;
4565 		/* Faults from kernel mode fetches of user pages */
4566 		u8 smepf = 0;
4567 		/* Faults from kernel mode accesses of user pages */
4568 		u8 smapf = 0;
4569 
4570 		if (!ept) {
4571 			/* Faults from kernel mode accesses to user pages */
4572 			u8 kf = (pfec & PFERR_USER_MASK) ? 0 : u;
4573 
4574 			/* Not really needed: !nx will cause pte.nx to fault */
4575 			if (!efer_nx)
4576 				ff = 0;
4577 
4578 			/* Allow supervisor writes if !cr0.wp */
4579 			if (!cr0_wp)
4580 				wf = (pfec & PFERR_USER_MASK) ? wf : 0;
4581 
4582 			/* Disallow supervisor fetches of user code if cr4.smep */
4583 			if (cr4_smep)
4584 				smepf = (pfec & PFERR_FETCH_MASK) ? kf : 0;
4585 
4586 			/*
4587 			 * SMAP:kernel-mode data accesses from user-mode
4588 			 * mappings should fault. A fault is considered
4589 			 * as a SMAP violation if all of the following
4590 			 * conditions are true:
4591 			 *   - X86_CR4_SMAP is set in CR4
4592 			 *   - A user page is accessed
4593 			 *   - The access is not a fetch
4594 			 *   - Page fault in kernel mode
4595 			 *   - if CPL = 3 or X86_EFLAGS_AC is clear
4596 			 *
4597 			 * Here, we cover the first three conditions.
4598 			 * The fourth is computed dynamically in permission_fault();
4599 			 * PFERR_RSVD_MASK bit will be set in PFEC if the access is
4600 			 * *not* subject to SMAP restrictions.
4601 			 */
4602 			if (cr4_smap)
4603 				smapf = (pfec & (PFERR_RSVD_MASK|PFERR_FETCH_MASK)) ? 0 : kf;
4604 		}
4605 
4606 		mmu->permissions[byte] = ff | uf | wf | smepf | smapf;
4607 	}
4608 }
4609 
4610 /*
4611 * PKU is an additional mechanism by which the paging controls access to
4612 * user-mode addresses based on the value in the PKRU register.  Protection
4613 * key violations are reported through a bit in the page fault error code.
4614 * Unlike other bits of the error code, the PK bit is not known at the
4615 * call site of e.g. gva_to_gpa; it must be computed directly in
4616 * permission_fault based on two bits of PKRU, on some machine state (CR4,
4617 * CR0, EFER, CPL), and on other bits of the error code and the page tables.
4618 *
4619 * In particular the following conditions come from the error code, the
4620 * page tables and the machine state:
4621 * - PK is always zero unless CR4.PKE=1 and EFER.LMA=1
4622 * - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch)
4623 * - PK is always zero if U=0 in the page tables
4624 * - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access.
4625 *
4626 * The PKRU bitmask caches the result of these four conditions.  The error
4627 * code (minus the P bit) and the page table's U bit form an index into the
4628 * PKRU bitmask.  Two bits of the PKRU bitmask are then extracted and ANDed
4629 * with the two bits of the PKRU register corresponding to the protection key.
4630 * For the first three conditions above the bits will be 00, thus masking
4631 * away both AD and WD.  For all reads or if the last condition holds, WD
4632 * only will be masked away.
4633 */
4634 static void update_pkru_bitmask(struct kvm_mmu *mmu)
4635 {
4636 	unsigned bit;
4637 	bool wp;
4638 
4639 	mmu->pkru_mask = 0;
4640 
4641 	if (!is_cr4_pke(mmu))
4642 		return;
4643 
4644 	wp = is_cr0_wp(mmu);
4645 
4646 	for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) {
4647 		unsigned pfec, pkey_bits;
4648 		bool check_pkey, check_write, ff, uf, wf, pte_user;
4649 
4650 		pfec = bit << 1;
4651 		ff = pfec & PFERR_FETCH_MASK;
4652 		uf = pfec & PFERR_USER_MASK;
4653 		wf = pfec & PFERR_WRITE_MASK;
4654 
4655 		/* PFEC.RSVD is replaced by ACC_USER_MASK. */
4656 		pte_user = pfec & PFERR_RSVD_MASK;
4657 
4658 		/*
4659 		 * Only need to check the access which is not an
4660 		 * instruction fetch and is to a user page.
4661 		 */
4662 		check_pkey = (!ff && pte_user);
4663 		/*
4664 		 * write access is controlled by PKRU if it is a
4665 		 * user access or CR0.WP = 1.
4666 		 */
4667 		check_write = check_pkey && wf && (uf || wp);
4668 
4669 		/* PKRU.AD stops both read and write access. */
4670 		pkey_bits = !!check_pkey;
4671 		/* PKRU.WD stops write access. */
4672 		pkey_bits |= (!!check_write) << 1;
4673 
4674 		mmu->pkru_mask |= (pkey_bits & 3) << pfec;
4675 	}
4676 }
4677 
4678 static void reset_guest_paging_metadata(struct kvm_vcpu *vcpu,
4679 					struct kvm_mmu *mmu)
4680 {
4681 	if (!is_cr0_pg(mmu))
4682 		return;
4683 
4684 	reset_rsvds_bits_mask(vcpu, mmu);
4685 	update_permission_bitmask(mmu, false);
4686 	update_pkru_bitmask(mmu);
4687 }
4688 
4689 static void paging64_init_context(struct kvm_mmu *context)
4690 {
4691 	context->page_fault = paging64_page_fault;
4692 	context->gva_to_gpa = paging64_gva_to_gpa;
4693 	context->sync_page = paging64_sync_page;
4694 	context->invlpg = paging64_invlpg;
4695 	context->direct_map = false;
4696 }
4697 
4698 static void paging32_init_context(struct kvm_mmu *context)
4699 {
4700 	context->page_fault = paging32_page_fault;
4701 	context->gva_to_gpa = paging32_gva_to_gpa;
4702 	context->sync_page = paging32_sync_page;
4703 	context->invlpg = paging32_invlpg;
4704 	context->direct_map = false;
4705 }
4706 
4707 static union kvm_mmu_extended_role kvm_calc_mmu_role_ext(struct kvm_vcpu *vcpu,
4708 							 struct kvm_mmu_role_regs *regs)
4709 {
4710 	union kvm_mmu_extended_role ext = {0};
4711 
4712 	if (____is_cr0_pg(regs)) {
4713 		ext.cr0_pg = 1;
4714 		ext.cr4_pae = ____is_cr4_pae(regs);
4715 		ext.cr4_smep = ____is_cr4_smep(regs);
4716 		ext.cr4_smap = ____is_cr4_smap(regs);
4717 		ext.cr4_pse = ____is_cr4_pse(regs);
4718 
4719 		/* PKEY and LA57 are active iff long mode is active. */
4720 		ext.cr4_pke = ____is_efer_lma(regs) && ____is_cr4_pke(regs);
4721 		ext.cr4_la57 = ____is_efer_lma(regs) && ____is_cr4_la57(regs);
4722 		ext.efer_lma = ____is_efer_lma(regs);
4723 	}
4724 
4725 	ext.valid = 1;
4726 
4727 	return ext;
4728 }
4729 
4730 static union kvm_mmu_role kvm_calc_mmu_role_common(struct kvm_vcpu *vcpu,
4731 						   struct kvm_mmu_role_regs *regs,
4732 						   bool base_only)
4733 {
4734 	union kvm_mmu_role role = {0};
4735 
4736 	role.base.access = ACC_ALL;
4737 	if (____is_cr0_pg(regs)) {
4738 		role.base.efer_nx = ____is_efer_nx(regs);
4739 		role.base.cr0_wp = ____is_cr0_wp(regs);
4740 	}
4741 	role.base.smm = is_smm(vcpu);
4742 	role.base.guest_mode = is_guest_mode(vcpu);
4743 
4744 	if (base_only)
4745 		return role;
4746 
4747 	role.ext = kvm_calc_mmu_role_ext(vcpu, regs);
4748 
4749 	return role;
4750 }
4751 
4752 static inline int kvm_mmu_get_tdp_level(struct kvm_vcpu *vcpu)
4753 {
4754 	/* tdp_root_level is architecture forced level, use it if nonzero */
4755 	if (tdp_root_level)
4756 		return tdp_root_level;
4757 
4758 	/* Use 5-level TDP if and only if it's useful/necessary. */
4759 	if (max_tdp_level == 5 && cpuid_maxphyaddr(vcpu) <= 48)
4760 		return 4;
4761 
4762 	return max_tdp_level;
4763 }
4764 
4765 static union kvm_mmu_role
4766 kvm_calc_tdp_mmu_root_page_role(struct kvm_vcpu *vcpu,
4767 				struct kvm_mmu_role_regs *regs, bool base_only)
4768 {
4769 	union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, regs, base_only);
4770 
4771 	role.base.ad_disabled = (shadow_accessed_mask == 0);
4772 	role.base.level = kvm_mmu_get_tdp_level(vcpu);
4773 	role.base.direct = true;
4774 	role.base.has_4_byte_gpte = false;
4775 
4776 	return role;
4777 }
4778 
4779 static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
4780 {
4781 	struct kvm_mmu *context = &vcpu->arch.root_mmu;
4782 	struct kvm_mmu_role_regs regs = vcpu_to_role_regs(vcpu);
4783 	union kvm_mmu_role new_role =
4784 		kvm_calc_tdp_mmu_root_page_role(vcpu, &regs, false);
4785 
4786 	if (new_role.as_u64 == context->mmu_role.as_u64)
4787 		return;
4788 
4789 	context->mmu_role.as_u64 = new_role.as_u64;
4790 	context->page_fault = kvm_tdp_page_fault;
4791 	context->sync_page = nonpaging_sync_page;
4792 	context->invlpg = NULL;
4793 	context->shadow_root_level = kvm_mmu_get_tdp_level(vcpu);
4794 	context->direct_map = true;
4795 	context->get_guest_pgd = get_cr3;
4796 	context->get_pdptr = kvm_pdptr_read;
4797 	context->inject_page_fault = kvm_inject_page_fault;
4798 	context->root_level = role_regs_to_root_level(&regs);
4799 
4800 	if (!is_cr0_pg(context))
4801 		context->gva_to_gpa = nonpaging_gva_to_gpa;
4802 	else if (is_cr4_pae(context))
4803 		context->gva_to_gpa = paging64_gva_to_gpa;
4804 	else
4805 		context->gva_to_gpa = paging32_gva_to_gpa;
4806 
4807 	reset_guest_paging_metadata(vcpu, context);
4808 	reset_tdp_shadow_zero_bits_mask(vcpu, context);
4809 }
4810 
4811 static union kvm_mmu_role
4812 kvm_calc_shadow_root_page_role_common(struct kvm_vcpu *vcpu,
4813 				      struct kvm_mmu_role_regs *regs, bool base_only)
4814 {
4815 	union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, regs, base_only);
4816 
4817 	role.base.smep_andnot_wp = role.ext.cr4_smep && !____is_cr0_wp(regs);
4818 	role.base.smap_andnot_wp = role.ext.cr4_smap && !____is_cr0_wp(regs);
4819 	role.base.has_4_byte_gpte = ____is_cr0_pg(regs) && !____is_cr4_pae(regs);
4820 
4821 	return role;
4822 }
4823 
4824 static union kvm_mmu_role
4825 kvm_calc_shadow_mmu_root_page_role(struct kvm_vcpu *vcpu,
4826 				   struct kvm_mmu_role_regs *regs, bool base_only)
4827 {
4828 	union kvm_mmu_role role =
4829 		kvm_calc_shadow_root_page_role_common(vcpu, regs, base_only);
4830 
4831 	role.base.direct = !____is_cr0_pg(regs);
4832 
4833 	if (!____is_efer_lma(regs))
4834 		role.base.level = PT32E_ROOT_LEVEL;
4835 	else if (____is_cr4_la57(regs))
4836 		role.base.level = PT64_ROOT_5LEVEL;
4837 	else
4838 		role.base.level = PT64_ROOT_4LEVEL;
4839 
4840 	return role;
4841 }
4842 
4843 static void shadow_mmu_init_context(struct kvm_vcpu *vcpu, struct kvm_mmu *context,
4844 				    struct kvm_mmu_role_regs *regs,
4845 				    union kvm_mmu_role new_role)
4846 {
4847 	if (new_role.as_u64 == context->mmu_role.as_u64)
4848 		return;
4849 
4850 	context->mmu_role.as_u64 = new_role.as_u64;
4851 
4852 	if (!is_cr0_pg(context))
4853 		nonpaging_init_context(context);
4854 	else if (is_cr4_pae(context))
4855 		paging64_init_context(context);
4856 	else
4857 		paging32_init_context(context);
4858 	context->root_level = role_regs_to_root_level(regs);
4859 
4860 	reset_guest_paging_metadata(vcpu, context);
4861 	context->shadow_root_level = new_role.base.level;
4862 
4863 	reset_shadow_zero_bits_mask(vcpu, context);
4864 }
4865 
4866 static void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu,
4867 				struct kvm_mmu_role_regs *regs)
4868 {
4869 	struct kvm_mmu *context = &vcpu->arch.root_mmu;
4870 	union kvm_mmu_role new_role =
4871 		kvm_calc_shadow_mmu_root_page_role(vcpu, regs, false);
4872 
4873 	shadow_mmu_init_context(vcpu, context, regs, new_role);
4874 }
4875 
4876 static union kvm_mmu_role
4877 kvm_calc_shadow_npt_root_page_role(struct kvm_vcpu *vcpu,
4878 				   struct kvm_mmu_role_regs *regs)
4879 {
4880 	union kvm_mmu_role role =
4881 		kvm_calc_shadow_root_page_role_common(vcpu, regs, false);
4882 
4883 	role.base.direct = false;
4884 	role.base.level = kvm_mmu_get_tdp_level(vcpu);
4885 
4886 	return role;
4887 }
4888 
4889 void kvm_init_shadow_npt_mmu(struct kvm_vcpu *vcpu, unsigned long cr0,
4890 			     unsigned long cr4, u64 efer, gpa_t nested_cr3)
4891 {
4892 	struct kvm_mmu *context = &vcpu->arch.guest_mmu;
4893 	struct kvm_mmu_role_regs regs = {
4894 		.cr0 = cr0,
4895 		.cr4 = cr4 & ~X86_CR4_PKE,
4896 		.efer = efer,
4897 	};
4898 	union kvm_mmu_role new_role;
4899 
4900 	new_role = kvm_calc_shadow_npt_root_page_role(vcpu, &regs);
4901 
4902 	__kvm_mmu_new_pgd(vcpu, nested_cr3, new_role.base);
4903 
4904 	shadow_mmu_init_context(vcpu, context, &regs, new_role);
4905 }
4906 EXPORT_SYMBOL_GPL(kvm_init_shadow_npt_mmu);
4907 
4908 static union kvm_mmu_role
4909 kvm_calc_shadow_ept_root_page_role(struct kvm_vcpu *vcpu, bool accessed_dirty,
4910 				   bool execonly, u8 level)
4911 {
4912 	union kvm_mmu_role role = {0};
4913 
4914 	/* SMM flag is inherited from root_mmu */
4915 	role.base.smm = vcpu->arch.root_mmu.mmu_role.base.smm;
4916 
4917 	role.base.level = level;
4918 	role.base.has_4_byte_gpte = false;
4919 	role.base.direct = false;
4920 	role.base.ad_disabled = !accessed_dirty;
4921 	role.base.guest_mode = true;
4922 	role.base.access = ACC_ALL;
4923 
4924 	/* EPT, and thus nested EPT, does not consume CR0, CR4, nor EFER. */
4925 	role.ext.word = 0;
4926 	role.ext.execonly = execonly;
4927 	role.ext.valid = 1;
4928 
4929 	return role;
4930 }
4931 
4932 void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly,
4933 			     int huge_page_level, bool accessed_dirty,
4934 			     gpa_t new_eptp)
4935 {
4936 	struct kvm_mmu *context = &vcpu->arch.guest_mmu;
4937 	u8 level = vmx_eptp_page_walk_level(new_eptp);
4938 	union kvm_mmu_role new_role =
4939 		kvm_calc_shadow_ept_root_page_role(vcpu, accessed_dirty,
4940 						   execonly, level);
4941 
4942 	__kvm_mmu_new_pgd(vcpu, new_eptp, new_role.base);
4943 
4944 	if (new_role.as_u64 == context->mmu_role.as_u64)
4945 		return;
4946 
4947 	context->mmu_role.as_u64 = new_role.as_u64;
4948 
4949 	context->shadow_root_level = level;
4950 
4951 	context->ept_ad = accessed_dirty;
4952 	context->page_fault = ept_page_fault;
4953 	context->gva_to_gpa = ept_gva_to_gpa;
4954 	context->sync_page = ept_sync_page;
4955 	context->invlpg = ept_invlpg;
4956 	context->root_level = level;
4957 	context->direct_map = false;
4958 
4959 	update_permission_bitmask(context, true);
4960 	context->pkru_mask = 0;
4961 	reset_rsvds_bits_mask_ept(vcpu, context, execonly, huge_page_level);
4962 	reset_ept_shadow_zero_bits_mask(vcpu, context, execonly);
4963 }
4964 EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);
4965 
4966 static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
4967 {
4968 	struct kvm_mmu *context = &vcpu->arch.root_mmu;
4969 	struct kvm_mmu_role_regs regs = vcpu_to_role_regs(vcpu);
4970 
4971 	kvm_init_shadow_mmu(vcpu, &regs);
4972 
4973 	context->get_guest_pgd     = get_cr3;
4974 	context->get_pdptr         = kvm_pdptr_read;
4975 	context->inject_page_fault = kvm_inject_page_fault;
4976 }
4977 
4978 static union kvm_mmu_role
4979 kvm_calc_nested_mmu_role(struct kvm_vcpu *vcpu, struct kvm_mmu_role_regs *regs)
4980 {
4981 	union kvm_mmu_role role;
4982 
4983 	role = kvm_calc_shadow_root_page_role_common(vcpu, regs, false);
4984 
4985 	/*
4986 	 * Nested MMUs are used only for walking L2's gva->gpa, they never have
4987 	 * shadow pages of their own and so "direct" has no meaning.   Set it
4988 	 * to "true" to try to detect bogus usage of the nested MMU.
4989 	 */
4990 	role.base.direct = true;
4991 	role.base.level = role_regs_to_root_level(regs);
4992 	return role;
4993 }
4994 
4995 static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
4996 {
4997 	struct kvm_mmu_role_regs regs = vcpu_to_role_regs(vcpu);
4998 	union kvm_mmu_role new_role = kvm_calc_nested_mmu_role(vcpu, &regs);
4999 	struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
5000 
5001 	if (new_role.as_u64 == g_context->mmu_role.as_u64)
5002 		return;
5003 
5004 	g_context->mmu_role.as_u64 = new_role.as_u64;
5005 	g_context->get_guest_pgd     = get_cr3;
5006 	g_context->get_pdptr         = kvm_pdptr_read;
5007 	g_context->inject_page_fault = kvm_inject_page_fault;
5008 	g_context->root_level        = new_role.base.level;
5009 
5010 	/*
5011 	 * L2 page tables are never shadowed, so there is no need to sync
5012 	 * SPTEs.
5013 	 */
5014 	g_context->invlpg            = NULL;
5015 
5016 	/*
5017 	 * Note that arch.mmu->gva_to_gpa translates l2_gpa to l1_gpa using
5018 	 * L1's nested page tables (e.g. EPT12). The nested translation
5019 	 * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using
5020 	 * L2's page tables as the first level of translation and L1's
5021 	 * nested page tables as the second level of translation. Basically
5022 	 * the gva_to_gpa functions between mmu and nested_mmu are swapped.
5023 	 */
5024 	if (!is_paging(vcpu))
5025 		g_context->gva_to_gpa = nonpaging_gva_to_gpa;
5026 	else if (is_long_mode(vcpu))
5027 		g_context->gva_to_gpa = paging64_gva_to_gpa;
5028 	else if (is_pae(vcpu))
5029 		g_context->gva_to_gpa = paging64_gva_to_gpa;
5030 	else
5031 		g_context->gva_to_gpa = paging32_gva_to_gpa;
5032 
5033 	reset_guest_paging_metadata(vcpu, g_context);
5034 }
5035 
5036 void kvm_init_mmu(struct kvm_vcpu *vcpu)
5037 {
5038 	if (mmu_is_nested(vcpu))
5039 		init_kvm_nested_mmu(vcpu);
5040 	else if (tdp_enabled)
5041 		init_kvm_tdp_mmu(vcpu);
5042 	else
5043 		init_kvm_softmmu(vcpu);
5044 }
5045 EXPORT_SYMBOL_GPL(kvm_init_mmu);
5046 
5047 static union kvm_mmu_page_role
5048 kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu)
5049 {
5050 	struct kvm_mmu_role_regs regs = vcpu_to_role_regs(vcpu);
5051 	union kvm_mmu_role role;
5052 
5053 	if (tdp_enabled)
5054 		role = kvm_calc_tdp_mmu_root_page_role(vcpu, &regs, true);
5055 	else
5056 		role = kvm_calc_shadow_mmu_root_page_role(vcpu, &regs, true);
5057 
5058 	return role.base;
5059 }
5060 
5061 void kvm_mmu_after_set_cpuid(struct kvm_vcpu *vcpu)
5062 {
5063 	/*
5064 	 * Invalidate all MMU roles to force them to reinitialize as CPUID
5065 	 * information is factored into reserved bit calculations.
5066 	 *
5067 	 * Correctly handling multiple vCPU models with respect to paging and
5068 	 * physical address properties) in a single VM would require tracking
5069 	 * all relevant CPUID information in kvm_mmu_page_role. That is very
5070 	 * undesirable as it would increase the memory requirements for
5071 	 * gfn_track (see struct kvm_mmu_page_role comments).  For now that
5072 	 * problem is swept under the rug; KVM's CPUID API is horrific and
5073 	 * it's all but impossible to solve it without introducing a new API.
5074 	 */
5075 	vcpu->arch.root_mmu.mmu_role.ext.valid = 0;
5076 	vcpu->arch.guest_mmu.mmu_role.ext.valid = 0;
5077 	vcpu->arch.nested_mmu.mmu_role.ext.valid = 0;
5078 	kvm_mmu_reset_context(vcpu);
5079 
5080 	/*
5081 	 * Changing guest CPUID after KVM_RUN is forbidden, see the comment in
5082 	 * kvm_arch_vcpu_ioctl().
5083 	 */
5084 	KVM_BUG_ON(vcpu->arch.last_vmentry_cpu != -1, vcpu->kvm);
5085 }
5086 
5087 void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
5088 {
5089 	kvm_mmu_unload(vcpu);
5090 	kvm_init_mmu(vcpu);
5091 }
5092 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
5093 
5094 int kvm_mmu_load(struct kvm_vcpu *vcpu)
5095 {
5096 	int r;
5097 
5098 	r = mmu_topup_memory_caches(vcpu, !vcpu->arch.mmu->direct_map);
5099 	if (r)
5100 		goto out;
5101 	r = mmu_alloc_special_roots(vcpu);
5102 	if (r)
5103 		goto out;
5104 	if (vcpu->arch.mmu->direct_map)
5105 		r = mmu_alloc_direct_roots(vcpu);
5106 	else
5107 		r = mmu_alloc_shadow_roots(vcpu);
5108 	if (r)
5109 		goto out;
5110 
5111 	kvm_mmu_sync_roots(vcpu);
5112 
5113 	kvm_mmu_load_pgd(vcpu);
5114 	static_call(kvm_x86_tlb_flush_current)(vcpu);
5115 out:
5116 	return r;
5117 }
5118 
5119 void kvm_mmu_unload(struct kvm_vcpu *vcpu)
5120 {
5121 	kvm_mmu_free_roots(vcpu, &vcpu->arch.root_mmu, KVM_MMU_ROOTS_ALL);
5122 	WARN_ON(VALID_PAGE(vcpu->arch.root_mmu.root_hpa));
5123 	kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
5124 	WARN_ON(VALID_PAGE(vcpu->arch.guest_mmu.root_hpa));
5125 }
5126 
5127 static bool need_remote_flush(u64 old, u64 new)
5128 {
5129 	if (!is_shadow_present_pte(old))
5130 		return false;
5131 	if (!is_shadow_present_pte(new))
5132 		return true;
5133 	if ((old ^ new) & PT64_BASE_ADDR_MASK)
5134 		return true;
5135 	old ^= shadow_nx_mask;
5136 	new ^= shadow_nx_mask;
5137 	return (old & ~new & PT64_PERM_MASK) != 0;
5138 }
5139 
5140 static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
5141 				    int *bytes)
5142 {
5143 	u64 gentry = 0;
5144 	int r;
5145 
5146 	/*
5147 	 * Assume that the pte write on a page table of the same type
5148 	 * as the current vcpu paging mode since we update the sptes only
5149 	 * when they have the same mode.
5150 	 */
5151 	if (is_pae(vcpu) && *bytes == 4) {
5152 		/* Handle a 32-bit guest writing two halves of a 64-bit gpte */
5153 		*gpa &= ~(gpa_t)7;
5154 		*bytes = 8;
5155 	}
5156 
5157 	if (*bytes == 4 || *bytes == 8) {
5158 		r = kvm_vcpu_read_guest_atomic(vcpu, *gpa, &gentry, *bytes);
5159 		if (r)
5160 			gentry = 0;
5161 	}
5162 
5163 	return gentry;
5164 }
5165 
5166 /*
5167  * If we're seeing too many writes to a page, it may no longer be a page table,
5168  * or we may be forking, in which case it is better to unmap the page.
5169  */
5170 static bool detect_write_flooding(struct kvm_mmu_page *sp)
5171 {
5172 	/*
5173 	 * Skip write-flooding detected for the sp whose level is 1, because
5174 	 * it can become unsync, then the guest page is not write-protected.
5175 	 */
5176 	if (sp->role.level == PG_LEVEL_4K)
5177 		return false;
5178 
5179 	atomic_inc(&sp->write_flooding_count);
5180 	return atomic_read(&sp->write_flooding_count) >= 3;
5181 }
5182 
5183 /*
5184  * Misaligned accesses are too much trouble to fix up; also, they usually
5185  * indicate a page is not used as a page table.
5186  */
5187 static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
5188 				    int bytes)
5189 {
5190 	unsigned offset, pte_size, misaligned;
5191 
5192 	pgprintk("misaligned: gpa %llx bytes %d role %x\n",
5193 		 gpa, bytes, sp->role.word);
5194 
5195 	offset = offset_in_page(gpa);
5196 	pte_size = sp->role.has_4_byte_gpte ? 4 : 8;
5197 
5198 	/*
5199 	 * Sometimes, the OS only writes the last one bytes to update status
5200 	 * bits, for example, in linux, andb instruction is used in clear_bit().
5201 	 */
5202 	if (!(offset & (pte_size - 1)) && bytes == 1)
5203 		return false;
5204 
5205 	misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
5206 	misaligned |= bytes < 4;
5207 
5208 	return misaligned;
5209 }
5210 
5211 static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
5212 {
5213 	unsigned page_offset, quadrant;
5214 	u64 *spte;
5215 	int level;
5216 
5217 	page_offset = offset_in_page(gpa);
5218 	level = sp->role.level;
5219 	*nspte = 1;
5220 	if (sp->role.has_4_byte_gpte) {
5221 		page_offset <<= 1;	/* 32->64 */
5222 		/*
5223 		 * A 32-bit pde maps 4MB while the shadow pdes map
5224 		 * only 2MB.  So we need to double the offset again
5225 		 * and zap two pdes instead of one.
5226 		 */
5227 		if (level == PT32_ROOT_LEVEL) {
5228 			page_offset &= ~7; /* kill rounding error */
5229 			page_offset <<= 1;
5230 			*nspte = 2;
5231 		}
5232 		quadrant = page_offset >> PAGE_SHIFT;
5233 		page_offset &= ~PAGE_MASK;
5234 		if (quadrant != sp->role.quadrant)
5235 			return NULL;
5236 	}
5237 
5238 	spte = &sp->spt[page_offset / sizeof(*spte)];
5239 	return spte;
5240 }
5241 
5242 static void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
5243 			      const u8 *new, int bytes,
5244 			      struct kvm_page_track_notifier_node *node)
5245 {
5246 	gfn_t gfn = gpa >> PAGE_SHIFT;
5247 	struct kvm_mmu_page *sp;
5248 	LIST_HEAD(invalid_list);
5249 	u64 entry, gentry, *spte;
5250 	int npte;
5251 	bool flush = false;
5252 
5253 	/*
5254 	 * If we don't have indirect shadow pages, it means no page is
5255 	 * write-protected, so we can exit simply.
5256 	 */
5257 	if (!READ_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
5258 		return;
5259 
5260 	pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
5261 
5262 	/*
5263 	 * No need to care whether allocation memory is successful
5264 	 * or not since pte prefetch is skipped if it does not have
5265 	 * enough objects in the cache.
5266 	 */
5267 	mmu_topup_memory_caches(vcpu, true);
5268 
5269 	write_lock(&vcpu->kvm->mmu_lock);
5270 
5271 	gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, &bytes);
5272 
5273 	++vcpu->kvm->stat.mmu_pte_write;
5274 	kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
5275 
5276 	for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
5277 		if (detect_write_misaligned(sp, gpa, bytes) ||
5278 		      detect_write_flooding(sp)) {
5279 			kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
5280 			++vcpu->kvm->stat.mmu_flooded;
5281 			continue;
5282 		}
5283 
5284 		spte = get_written_sptes(sp, gpa, &npte);
5285 		if (!spte)
5286 			continue;
5287 
5288 		while (npte--) {
5289 			entry = *spte;
5290 			mmu_page_zap_pte(vcpu->kvm, sp, spte, NULL);
5291 			if (gentry && sp->role.level != PG_LEVEL_4K)
5292 				++vcpu->kvm->stat.mmu_pde_zapped;
5293 			if (need_remote_flush(entry, *spte))
5294 				flush = true;
5295 			++spte;
5296 		}
5297 	}
5298 	kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, flush);
5299 	kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
5300 	write_unlock(&vcpu->kvm->mmu_lock);
5301 }
5302 
5303 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 error_code,
5304 		       void *insn, int insn_len)
5305 {
5306 	int r, emulation_type = EMULTYPE_PF;
5307 	bool direct = vcpu->arch.mmu->direct_map;
5308 
5309 	if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa)))
5310 		return RET_PF_RETRY;
5311 
5312 	r = RET_PF_INVALID;
5313 	if (unlikely(error_code & PFERR_RSVD_MASK)) {
5314 		r = handle_mmio_page_fault(vcpu, cr2_or_gpa, direct);
5315 		if (r == RET_PF_EMULATE)
5316 			goto emulate;
5317 	}
5318 
5319 	if (r == RET_PF_INVALID) {
5320 		r = kvm_mmu_do_page_fault(vcpu, cr2_or_gpa,
5321 					  lower_32_bits(error_code), false);
5322 		if (KVM_BUG_ON(r == RET_PF_INVALID, vcpu->kvm))
5323 			return -EIO;
5324 	}
5325 
5326 	if (r < 0)
5327 		return r;
5328 	if (r != RET_PF_EMULATE)
5329 		return 1;
5330 
5331 	/*
5332 	 * Before emulating the instruction, check if the error code
5333 	 * was due to a RO violation while translating the guest page.
5334 	 * This can occur when using nested virtualization with nested
5335 	 * paging in both guests. If true, we simply unprotect the page
5336 	 * and resume the guest.
5337 	 */
5338 	if (vcpu->arch.mmu->direct_map &&
5339 	    (error_code & PFERR_NESTED_GUEST_PAGE) == PFERR_NESTED_GUEST_PAGE) {
5340 		kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(cr2_or_gpa));
5341 		return 1;
5342 	}
5343 
5344 	/*
5345 	 * vcpu->arch.mmu.page_fault returned RET_PF_EMULATE, but we can still
5346 	 * optimistically try to just unprotect the page and let the processor
5347 	 * re-execute the instruction that caused the page fault.  Do not allow
5348 	 * retrying MMIO emulation, as it's not only pointless but could also
5349 	 * cause us to enter an infinite loop because the processor will keep
5350 	 * faulting on the non-existent MMIO address.  Retrying an instruction
5351 	 * from a nested guest is also pointless and dangerous as we are only
5352 	 * explicitly shadowing L1's page tables, i.e. unprotecting something
5353 	 * for L1 isn't going to magically fix whatever issue cause L2 to fail.
5354 	 */
5355 	if (!mmio_info_in_cache(vcpu, cr2_or_gpa, direct) && !is_guest_mode(vcpu))
5356 		emulation_type |= EMULTYPE_ALLOW_RETRY_PF;
5357 emulate:
5358 	return x86_emulate_instruction(vcpu, cr2_or_gpa, emulation_type, insn,
5359 				       insn_len);
5360 }
5361 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
5362 
5363 void kvm_mmu_invalidate_gva(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
5364 			    gva_t gva, hpa_t root_hpa)
5365 {
5366 	int i;
5367 
5368 	/* It's actually a GPA for vcpu->arch.guest_mmu.  */
5369 	if (mmu != &vcpu->arch.guest_mmu) {
5370 		/* INVLPG on a non-canonical address is a NOP according to the SDM.  */
5371 		if (is_noncanonical_address(gva, vcpu))
5372 			return;
5373 
5374 		static_call(kvm_x86_tlb_flush_gva)(vcpu, gva);
5375 	}
5376 
5377 	if (!mmu->invlpg)
5378 		return;
5379 
5380 	if (root_hpa == INVALID_PAGE) {
5381 		mmu->invlpg(vcpu, gva, mmu->root_hpa);
5382 
5383 		/*
5384 		 * INVLPG is required to invalidate any global mappings for the VA,
5385 		 * irrespective of PCID. Since it would take us roughly similar amount
5386 		 * of work to determine whether any of the prev_root mappings of the VA
5387 		 * is marked global, or to just sync it blindly, so we might as well
5388 		 * just always sync it.
5389 		 *
5390 		 * Mappings not reachable via the current cr3 or the prev_roots will be
5391 		 * synced when switching to that cr3, so nothing needs to be done here
5392 		 * for them.
5393 		 */
5394 		for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5395 			if (VALID_PAGE(mmu->prev_roots[i].hpa))
5396 				mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
5397 	} else {
5398 		mmu->invlpg(vcpu, gva, root_hpa);
5399 	}
5400 }
5401 
5402 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
5403 {
5404 	kvm_mmu_invalidate_gva(vcpu, vcpu->arch.walk_mmu, gva, INVALID_PAGE);
5405 	++vcpu->stat.invlpg;
5406 }
5407 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
5408 
5409 
5410 void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid)
5411 {
5412 	struct kvm_mmu *mmu = vcpu->arch.mmu;
5413 	bool tlb_flush = false;
5414 	uint i;
5415 
5416 	if (pcid == kvm_get_active_pcid(vcpu)) {
5417 		mmu->invlpg(vcpu, gva, mmu->root_hpa);
5418 		tlb_flush = true;
5419 	}
5420 
5421 	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
5422 		if (VALID_PAGE(mmu->prev_roots[i].hpa) &&
5423 		    pcid == kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd)) {
5424 			mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
5425 			tlb_flush = true;
5426 		}
5427 	}
5428 
5429 	if (tlb_flush)
5430 		static_call(kvm_x86_tlb_flush_gva)(vcpu, gva);
5431 
5432 	++vcpu->stat.invlpg;
5433 
5434 	/*
5435 	 * Mappings not reachable via the current cr3 or the prev_roots will be
5436 	 * synced when switching to that cr3, so nothing needs to be done here
5437 	 * for them.
5438 	 */
5439 }
5440 
5441 void kvm_configure_mmu(bool enable_tdp, int tdp_forced_root_level,
5442 		       int tdp_max_root_level, int tdp_huge_page_level)
5443 {
5444 	tdp_enabled = enable_tdp;
5445 	tdp_root_level = tdp_forced_root_level;
5446 	max_tdp_level = tdp_max_root_level;
5447 
5448 	/*
5449 	 * max_huge_page_level reflects KVM's MMU capabilities irrespective
5450 	 * of kernel support, e.g. KVM may be capable of using 1GB pages when
5451 	 * the kernel is not.  But, KVM never creates a page size greater than
5452 	 * what is used by the kernel for any given HVA, i.e. the kernel's
5453 	 * capabilities are ultimately consulted by kvm_mmu_hugepage_adjust().
5454 	 */
5455 	if (tdp_enabled)
5456 		max_huge_page_level = tdp_huge_page_level;
5457 	else if (boot_cpu_has(X86_FEATURE_GBPAGES))
5458 		max_huge_page_level = PG_LEVEL_1G;
5459 	else
5460 		max_huge_page_level = PG_LEVEL_2M;
5461 }
5462 EXPORT_SYMBOL_GPL(kvm_configure_mmu);
5463 
5464 /* The return value indicates if tlb flush on all vcpus is needed. */
5465 typedef bool (*slot_level_handler) (struct kvm *kvm,
5466 				    struct kvm_rmap_head *rmap_head,
5467 				    const struct kvm_memory_slot *slot);
5468 
5469 /* The caller should hold mmu-lock before calling this function. */
5470 static __always_inline bool
5471 slot_handle_level_range(struct kvm *kvm, const struct kvm_memory_slot *memslot,
5472 			slot_level_handler fn, int start_level, int end_level,
5473 			gfn_t start_gfn, gfn_t end_gfn, bool flush_on_yield,
5474 			bool flush)
5475 {
5476 	struct slot_rmap_walk_iterator iterator;
5477 
5478 	for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn,
5479 			end_gfn, &iterator) {
5480 		if (iterator.rmap)
5481 			flush |= fn(kvm, iterator.rmap, memslot);
5482 
5483 		if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) {
5484 			if (flush && flush_on_yield) {
5485 				kvm_flush_remote_tlbs_with_address(kvm,
5486 						start_gfn,
5487 						iterator.gfn - start_gfn + 1);
5488 				flush = false;
5489 			}
5490 			cond_resched_rwlock_write(&kvm->mmu_lock);
5491 		}
5492 	}
5493 
5494 	return flush;
5495 }
5496 
5497 static __always_inline bool
5498 slot_handle_level(struct kvm *kvm, const struct kvm_memory_slot *memslot,
5499 		  slot_level_handler fn, int start_level, int end_level,
5500 		  bool flush_on_yield)
5501 {
5502 	return slot_handle_level_range(kvm, memslot, fn, start_level,
5503 			end_level, memslot->base_gfn,
5504 			memslot->base_gfn + memslot->npages - 1,
5505 			flush_on_yield, false);
5506 }
5507 
5508 static __always_inline bool
5509 slot_handle_level_4k(struct kvm *kvm, const struct kvm_memory_slot *memslot,
5510 		     slot_level_handler fn, bool flush_on_yield)
5511 {
5512 	return slot_handle_level(kvm, memslot, fn, PG_LEVEL_4K,
5513 				 PG_LEVEL_4K, flush_on_yield);
5514 }
5515 
5516 static void free_mmu_pages(struct kvm_mmu *mmu)
5517 {
5518 	if (!tdp_enabled && mmu->pae_root)
5519 		set_memory_encrypted((unsigned long)mmu->pae_root, 1);
5520 	free_page((unsigned long)mmu->pae_root);
5521 	free_page((unsigned long)mmu->pml4_root);
5522 	free_page((unsigned long)mmu->pml5_root);
5523 }
5524 
5525 static int __kvm_mmu_create(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
5526 {
5527 	struct page *page;
5528 	int i;
5529 
5530 	mmu->root_hpa = INVALID_PAGE;
5531 	mmu->root_pgd = 0;
5532 	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5533 		mmu->prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
5534 
5535 	/* vcpu->arch.guest_mmu isn't used when !tdp_enabled. */
5536 	if (!tdp_enabled && mmu == &vcpu->arch.guest_mmu)
5537 		return 0;
5538 
5539 	/*
5540 	 * When using PAE paging, the four PDPTEs are treated as 'root' pages,
5541 	 * while the PDP table is a per-vCPU construct that's allocated at MMU
5542 	 * creation.  When emulating 32-bit mode, cr3 is only 32 bits even on
5543 	 * x86_64.  Therefore we need to allocate the PDP table in the first
5544 	 * 4GB of memory, which happens to fit the DMA32 zone.  TDP paging
5545 	 * generally doesn't use PAE paging and can skip allocating the PDP
5546 	 * table.  The main exception, handled here, is SVM's 32-bit NPT.  The
5547 	 * other exception is for shadowing L1's 32-bit or PAE NPT on 64-bit
5548 	 * KVM; that horror is handled on-demand by mmu_alloc_special_roots().
5549 	 */
5550 	if (tdp_enabled && kvm_mmu_get_tdp_level(vcpu) > PT32E_ROOT_LEVEL)
5551 		return 0;
5552 
5553 	page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_DMA32);
5554 	if (!page)
5555 		return -ENOMEM;
5556 
5557 	mmu->pae_root = page_address(page);
5558 
5559 	/*
5560 	 * CR3 is only 32 bits when PAE paging is used, thus it's impossible to
5561 	 * get the CPU to treat the PDPTEs as encrypted.  Decrypt the page so
5562 	 * that KVM's writes and the CPU's reads get along.  Note, this is
5563 	 * only necessary when using shadow paging, as 64-bit NPT can get at
5564 	 * the C-bit even when shadowing 32-bit NPT, and SME isn't supported
5565 	 * by 32-bit kernels (when KVM itself uses 32-bit NPT).
5566 	 */
5567 	if (!tdp_enabled)
5568 		set_memory_decrypted((unsigned long)mmu->pae_root, 1);
5569 	else
5570 		WARN_ON_ONCE(shadow_me_mask);
5571 
5572 	for (i = 0; i < 4; ++i)
5573 		mmu->pae_root[i] = INVALID_PAE_ROOT;
5574 
5575 	return 0;
5576 }
5577 
5578 int kvm_mmu_create(struct kvm_vcpu *vcpu)
5579 {
5580 	int ret;
5581 
5582 	vcpu->arch.mmu_pte_list_desc_cache.kmem_cache = pte_list_desc_cache;
5583 	vcpu->arch.mmu_pte_list_desc_cache.gfp_zero = __GFP_ZERO;
5584 
5585 	vcpu->arch.mmu_page_header_cache.kmem_cache = mmu_page_header_cache;
5586 	vcpu->arch.mmu_page_header_cache.gfp_zero = __GFP_ZERO;
5587 
5588 	vcpu->arch.mmu_shadow_page_cache.gfp_zero = __GFP_ZERO;
5589 
5590 	vcpu->arch.mmu = &vcpu->arch.root_mmu;
5591 	vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
5592 
5593 	ret = __kvm_mmu_create(vcpu, &vcpu->arch.guest_mmu);
5594 	if (ret)
5595 		return ret;
5596 
5597 	ret = __kvm_mmu_create(vcpu, &vcpu->arch.root_mmu);
5598 	if (ret)
5599 		goto fail_allocate_root;
5600 
5601 	return ret;
5602  fail_allocate_root:
5603 	free_mmu_pages(&vcpu->arch.guest_mmu);
5604 	return ret;
5605 }
5606 
5607 #define BATCH_ZAP_PAGES	10
5608 static void kvm_zap_obsolete_pages(struct kvm *kvm)
5609 {
5610 	struct kvm_mmu_page *sp, *node;
5611 	int nr_zapped, batch = 0;
5612 
5613 restart:
5614 	list_for_each_entry_safe_reverse(sp, node,
5615 	      &kvm->arch.active_mmu_pages, link) {
5616 		/*
5617 		 * No obsolete valid page exists before a newly created page
5618 		 * since active_mmu_pages is a FIFO list.
5619 		 */
5620 		if (!is_obsolete_sp(kvm, sp))
5621 			break;
5622 
5623 		/*
5624 		 * Invalid pages should never land back on the list of active
5625 		 * pages.  Skip the bogus page, otherwise we'll get stuck in an
5626 		 * infinite loop if the page gets put back on the list (again).
5627 		 */
5628 		if (WARN_ON(sp->role.invalid))
5629 			continue;
5630 
5631 		/*
5632 		 * No need to flush the TLB since we're only zapping shadow
5633 		 * pages with an obsolete generation number and all vCPUS have
5634 		 * loaded a new root, i.e. the shadow pages being zapped cannot
5635 		 * be in active use by the guest.
5636 		 */
5637 		if (batch >= BATCH_ZAP_PAGES &&
5638 		    cond_resched_rwlock_write(&kvm->mmu_lock)) {
5639 			batch = 0;
5640 			goto restart;
5641 		}
5642 
5643 		if (__kvm_mmu_prepare_zap_page(kvm, sp,
5644 				&kvm->arch.zapped_obsolete_pages, &nr_zapped)) {
5645 			batch += nr_zapped;
5646 			goto restart;
5647 		}
5648 	}
5649 
5650 	/*
5651 	 * Trigger a remote TLB flush before freeing the page tables to ensure
5652 	 * KVM is not in the middle of a lockless shadow page table walk, which
5653 	 * may reference the pages.
5654 	 */
5655 	kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
5656 }
5657 
5658 /*
5659  * Fast invalidate all shadow pages and use lock-break technique
5660  * to zap obsolete pages.
5661  *
5662  * It's required when memslot is being deleted or VM is being
5663  * destroyed, in these cases, we should ensure that KVM MMU does
5664  * not use any resource of the being-deleted slot or all slots
5665  * after calling the function.
5666  */
5667 static void kvm_mmu_zap_all_fast(struct kvm *kvm)
5668 {
5669 	lockdep_assert_held(&kvm->slots_lock);
5670 
5671 	write_lock(&kvm->mmu_lock);
5672 	trace_kvm_mmu_zap_all_fast(kvm);
5673 
5674 	/*
5675 	 * Toggle mmu_valid_gen between '0' and '1'.  Because slots_lock is
5676 	 * held for the entire duration of zapping obsolete pages, it's
5677 	 * impossible for there to be multiple invalid generations associated
5678 	 * with *valid* shadow pages at any given time, i.e. there is exactly
5679 	 * one valid generation and (at most) one invalid generation.
5680 	 */
5681 	kvm->arch.mmu_valid_gen = kvm->arch.mmu_valid_gen ? 0 : 1;
5682 
5683 	/* In order to ensure all threads see this change when
5684 	 * handling the MMU reload signal, this must happen in the
5685 	 * same critical section as kvm_reload_remote_mmus, and
5686 	 * before kvm_zap_obsolete_pages as kvm_zap_obsolete_pages
5687 	 * could drop the MMU lock and yield.
5688 	 */
5689 	if (is_tdp_mmu_enabled(kvm))
5690 		kvm_tdp_mmu_invalidate_all_roots(kvm);
5691 
5692 	/*
5693 	 * Notify all vcpus to reload its shadow page table and flush TLB.
5694 	 * Then all vcpus will switch to new shadow page table with the new
5695 	 * mmu_valid_gen.
5696 	 *
5697 	 * Note: we need to do this under the protection of mmu_lock,
5698 	 * otherwise, vcpu would purge shadow page but miss tlb flush.
5699 	 */
5700 	kvm_reload_remote_mmus(kvm);
5701 
5702 	kvm_zap_obsolete_pages(kvm);
5703 
5704 	write_unlock(&kvm->mmu_lock);
5705 
5706 	if (is_tdp_mmu_enabled(kvm)) {
5707 		read_lock(&kvm->mmu_lock);
5708 		kvm_tdp_mmu_zap_invalidated_roots(kvm);
5709 		read_unlock(&kvm->mmu_lock);
5710 	}
5711 }
5712 
5713 static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
5714 {
5715 	return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
5716 }
5717 
5718 static void kvm_mmu_invalidate_zap_pages_in_memslot(struct kvm *kvm,
5719 			struct kvm_memory_slot *slot,
5720 			struct kvm_page_track_notifier_node *node)
5721 {
5722 	kvm_mmu_zap_all_fast(kvm);
5723 }
5724 
5725 void kvm_mmu_init_vm(struct kvm *kvm)
5726 {
5727 	struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5728 
5729 	spin_lock_init(&kvm->arch.mmu_unsync_pages_lock);
5730 
5731 	kvm_mmu_init_tdp_mmu(kvm);
5732 
5733 	node->track_write = kvm_mmu_pte_write;
5734 	node->track_flush_slot = kvm_mmu_invalidate_zap_pages_in_memslot;
5735 	kvm_page_track_register_notifier(kvm, node);
5736 }
5737 
5738 void kvm_mmu_uninit_vm(struct kvm *kvm)
5739 {
5740 	struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5741 
5742 	kvm_page_track_unregister_notifier(kvm, node);
5743 
5744 	kvm_mmu_uninit_tdp_mmu(kvm);
5745 }
5746 
5747 static bool __kvm_zap_rmaps(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
5748 {
5749 	const struct kvm_memory_slot *memslot;
5750 	struct kvm_memslots *slots;
5751 	struct kvm_memslot_iter iter;
5752 	bool flush = false;
5753 	gfn_t start, end;
5754 	int i;
5755 
5756 	if (!kvm_memslots_have_rmaps(kvm))
5757 		return flush;
5758 
5759 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
5760 		slots = __kvm_memslots(kvm, i);
5761 
5762 		kvm_for_each_memslot_in_gfn_range(&iter, slots, gfn_start, gfn_end) {
5763 			memslot = iter.slot;
5764 			start = max(gfn_start, memslot->base_gfn);
5765 			end = min(gfn_end, memslot->base_gfn + memslot->npages);
5766 			if (WARN_ON_ONCE(start >= end))
5767 				continue;
5768 
5769 			flush = slot_handle_level_range(kvm, memslot, kvm_zap_rmapp,
5770 
5771 							PG_LEVEL_4K, KVM_MAX_HUGEPAGE_LEVEL,
5772 							start, end - 1, true, flush);
5773 		}
5774 	}
5775 
5776 	return flush;
5777 }
5778 
5779 /*
5780  * Invalidate (zap) SPTEs that cover GFNs from gfn_start and up to gfn_end
5781  * (not including it)
5782  */
5783 void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
5784 {
5785 	bool flush;
5786 	int i;
5787 
5788 	if (WARN_ON_ONCE(gfn_end <= gfn_start))
5789 		return;
5790 
5791 	write_lock(&kvm->mmu_lock);
5792 
5793 	kvm_inc_notifier_count(kvm, gfn_start, gfn_end);
5794 
5795 	flush = __kvm_zap_rmaps(kvm, gfn_start, gfn_end);
5796 
5797 	if (is_tdp_mmu_enabled(kvm)) {
5798 		for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
5799 			flush = kvm_tdp_mmu_zap_gfn_range(kvm, i, gfn_start,
5800 							  gfn_end, flush);
5801 	}
5802 
5803 	if (flush)
5804 		kvm_flush_remote_tlbs_with_address(kvm, gfn_start,
5805 						   gfn_end - gfn_start);
5806 
5807 	kvm_dec_notifier_count(kvm, gfn_start, gfn_end);
5808 
5809 	write_unlock(&kvm->mmu_lock);
5810 }
5811 
5812 static bool slot_rmap_write_protect(struct kvm *kvm,
5813 				    struct kvm_rmap_head *rmap_head,
5814 				    const struct kvm_memory_slot *slot)
5815 {
5816 	return __rmap_write_protect(kvm, rmap_head, false);
5817 }
5818 
5819 void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
5820 				      const struct kvm_memory_slot *memslot,
5821 				      int start_level)
5822 {
5823 	bool flush = false;
5824 
5825 	if (kvm_memslots_have_rmaps(kvm)) {
5826 		write_lock(&kvm->mmu_lock);
5827 		flush = slot_handle_level(kvm, memslot, slot_rmap_write_protect,
5828 					  start_level, KVM_MAX_HUGEPAGE_LEVEL,
5829 					  false);
5830 		write_unlock(&kvm->mmu_lock);
5831 	}
5832 
5833 	if (is_tdp_mmu_enabled(kvm)) {
5834 		read_lock(&kvm->mmu_lock);
5835 		flush |= kvm_tdp_mmu_wrprot_slot(kvm, memslot, start_level);
5836 		read_unlock(&kvm->mmu_lock);
5837 	}
5838 
5839 	/*
5840 	 * Flush TLBs if any SPTEs had to be write-protected to ensure that
5841 	 * guest writes are reflected in the dirty bitmap before the memslot
5842 	 * update completes, i.e. before enabling dirty logging is visible to
5843 	 * userspace.
5844 	 *
5845 	 * Perform the TLB flush outside the mmu_lock to reduce the amount of
5846 	 * time the lock is held. However, this does mean that another CPU can
5847 	 * now grab mmu_lock and encounter a write-protected SPTE while CPUs
5848 	 * still have a writable mapping for the associated GFN in their TLB.
5849 	 *
5850 	 * This is safe but requires KVM to be careful when making decisions
5851 	 * based on the write-protection status of an SPTE. Specifically, KVM
5852 	 * also write-protects SPTEs to monitor changes to guest page tables
5853 	 * during shadow paging, and must guarantee no CPUs can write to those
5854 	 * page before the lock is dropped. As mentioned in the previous
5855 	 * paragraph, a write-protected SPTE is no guarantee that CPU cannot
5856 	 * perform writes. So to determine if a TLB flush is truly required, KVM
5857 	 * will clear a separate software-only bit (MMU-writable) and skip the
5858 	 * flush if-and-only-if this bit was already clear.
5859 	 *
5860 	 * See DEFAULT_SPTE_MMU_WRITEABLE for more details.
5861 	 */
5862 	if (flush)
5863 		kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
5864 }
5865 
5866 static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
5867 					 struct kvm_rmap_head *rmap_head,
5868 					 const struct kvm_memory_slot *slot)
5869 {
5870 	u64 *sptep;
5871 	struct rmap_iterator iter;
5872 	int need_tlb_flush = 0;
5873 	kvm_pfn_t pfn;
5874 	struct kvm_mmu_page *sp;
5875 
5876 restart:
5877 	for_each_rmap_spte(rmap_head, &iter, sptep) {
5878 		sp = sptep_to_sp(sptep);
5879 		pfn = spte_to_pfn(*sptep);
5880 
5881 		/*
5882 		 * We cannot do huge page mapping for indirect shadow pages,
5883 		 * which are found on the last rmap (level = 1) when not using
5884 		 * tdp; such shadow pages are synced with the page table in
5885 		 * the guest, and the guest page table is using 4K page size
5886 		 * mapping if the indirect sp has level = 1.
5887 		 */
5888 		if (sp->role.direct && !kvm_is_reserved_pfn(pfn) &&
5889 		    sp->role.level < kvm_mmu_max_mapping_level(kvm, slot, sp->gfn,
5890 							       pfn, PG_LEVEL_NUM)) {
5891 			pte_list_remove(kvm, rmap_head, sptep);
5892 
5893 			if (kvm_available_flush_tlb_with_range())
5894 				kvm_flush_remote_tlbs_with_address(kvm, sp->gfn,
5895 					KVM_PAGES_PER_HPAGE(sp->role.level));
5896 			else
5897 				need_tlb_flush = 1;
5898 
5899 			goto restart;
5900 		}
5901 	}
5902 
5903 	return need_tlb_flush;
5904 }
5905 
5906 void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
5907 				   const struct kvm_memory_slot *slot)
5908 {
5909 	if (kvm_memslots_have_rmaps(kvm)) {
5910 		write_lock(&kvm->mmu_lock);
5911 		/*
5912 		 * Zap only 4k SPTEs since the legacy MMU only supports dirty
5913 		 * logging at a 4k granularity and never creates collapsible
5914 		 * 2m SPTEs during dirty logging.
5915 		 */
5916 		if (slot_handle_level_4k(kvm, slot, kvm_mmu_zap_collapsible_spte, true))
5917 			kvm_arch_flush_remote_tlbs_memslot(kvm, slot);
5918 		write_unlock(&kvm->mmu_lock);
5919 	}
5920 
5921 	if (is_tdp_mmu_enabled(kvm)) {
5922 		read_lock(&kvm->mmu_lock);
5923 		kvm_tdp_mmu_zap_collapsible_sptes(kvm, slot);
5924 		read_unlock(&kvm->mmu_lock);
5925 	}
5926 }
5927 
5928 void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
5929 					const struct kvm_memory_slot *memslot)
5930 {
5931 	/*
5932 	 * All current use cases for flushing the TLBs for a specific memslot
5933 	 * related to dirty logging, and many do the TLB flush out of mmu_lock.
5934 	 * The interaction between the various operations on memslot must be
5935 	 * serialized by slots_locks to ensure the TLB flush from one operation
5936 	 * is observed by any other operation on the same memslot.
5937 	 */
5938 	lockdep_assert_held(&kvm->slots_lock);
5939 	kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn,
5940 					   memslot->npages);
5941 }
5942 
5943 void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
5944 				   const struct kvm_memory_slot *memslot)
5945 {
5946 	bool flush = false;
5947 
5948 	if (kvm_memslots_have_rmaps(kvm)) {
5949 		write_lock(&kvm->mmu_lock);
5950 		/*
5951 		 * Clear dirty bits only on 4k SPTEs since the legacy MMU only
5952 		 * support dirty logging at a 4k granularity.
5953 		 */
5954 		flush = slot_handle_level_4k(kvm, memslot, __rmap_clear_dirty, false);
5955 		write_unlock(&kvm->mmu_lock);
5956 	}
5957 
5958 	if (is_tdp_mmu_enabled(kvm)) {
5959 		read_lock(&kvm->mmu_lock);
5960 		flush |= kvm_tdp_mmu_clear_dirty_slot(kvm, memslot);
5961 		read_unlock(&kvm->mmu_lock);
5962 	}
5963 
5964 	/*
5965 	 * It's also safe to flush TLBs out of mmu lock here as currently this
5966 	 * function is only used for dirty logging, in which case flushing TLB
5967 	 * out of mmu lock also guarantees no dirty pages will be lost in
5968 	 * dirty_bitmap.
5969 	 */
5970 	if (flush)
5971 		kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
5972 }
5973 
5974 void kvm_mmu_zap_all(struct kvm *kvm)
5975 {
5976 	struct kvm_mmu_page *sp, *node;
5977 	LIST_HEAD(invalid_list);
5978 	int ign;
5979 
5980 	write_lock(&kvm->mmu_lock);
5981 restart:
5982 	list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link) {
5983 		if (WARN_ON(sp->role.invalid))
5984 			continue;
5985 		if (__kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list, &ign))
5986 			goto restart;
5987 		if (cond_resched_rwlock_write(&kvm->mmu_lock))
5988 			goto restart;
5989 	}
5990 
5991 	kvm_mmu_commit_zap_page(kvm, &invalid_list);
5992 
5993 	if (is_tdp_mmu_enabled(kvm))
5994 		kvm_tdp_mmu_zap_all(kvm);
5995 
5996 	write_unlock(&kvm->mmu_lock);
5997 }
5998 
5999 void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen)
6000 {
6001 	WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
6002 
6003 	gen &= MMIO_SPTE_GEN_MASK;
6004 
6005 	/*
6006 	 * Generation numbers are incremented in multiples of the number of
6007 	 * address spaces in order to provide unique generations across all
6008 	 * address spaces.  Strip what is effectively the address space
6009 	 * modifier prior to checking for a wrap of the MMIO generation so
6010 	 * that a wrap in any address space is detected.
6011 	 */
6012 	gen &= ~((u64)KVM_ADDRESS_SPACE_NUM - 1);
6013 
6014 	/*
6015 	 * The very rare case: if the MMIO generation number has wrapped,
6016 	 * zap all shadow pages.
6017 	 */
6018 	if (unlikely(gen == 0)) {
6019 		kvm_debug_ratelimited("kvm: zapping shadow pages for mmio generation wraparound\n");
6020 		kvm_mmu_zap_all_fast(kvm);
6021 	}
6022 }
6023 
6024 static unsigned long
6025 mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
6026 {
6027 	struct kvm *kvm;
6028 	int nr_to_scan = sc->nr_to_scan;
6029 	unsigned long freed = 0;
6030 
6031 	mutex_lock(&kvm_lock);
6032 
6033 	list_for_each_entry(kvm, &vm_list, vm_list) {
6034 		int idx;
6035 		LIST_HEAD(invalid_list);
6036 
6037 		/*
6038 		 * Never scan more than sc->nr_to_scan VM instances.
6039 		 * Will not hit this condition practically since we do not try
6040 		 * to shrink more than one VM and it is very unlikely to see
6041 		 * !n_used_mmu_pages so many times.
6042 		 */
6043 		if (!nr_to_scan--)
6044 			break;
6045 		/*
6046 		 * n_used_mmu_pages is accessed without holding kvm->mmu_lock
6047 		 * here. We may skip a VM instance errorneosly, but we do not
6048 		 * want to shrink a VM that only started to populate its MMU
6049 		 * anyway.
6050 		 */
6051 		if (!kvm->arch.n_used_mmu_pages &&
6052 		    !kvm_has_zapped_obsolete_pages(kvm))
6053 			continue;
6054 
6055 		idx = srcu_read_lock(&kvm->srcu);
6056 		write_lock(&kvm->mmu_lock);
6057 
6058 		if (kvm_has_zapped_obsolete_pages(kvm)) {
6059 			kvm_mmu_commit_zap_page(kvm,
6060 			      &kvm->arch.zapped_obsolete_pages);
6061 			goto unlock;
6062 		}
6063 
6064 		freed = kvm_mmu_zap_oldest_mmu_pages(kvm, sc->nr_to_scan);
6065 
6066 unlock:
6067 		write_unlock(&kvm->mmu_lock);
6068 		srcu_read_unlock(&kvm->srcu, idx);
6069 
6070 		/*
6071 		 * unfair on small ones
6072 		 * per-vm shrinkers cry out
6073 		 * sadness comes quickly
6074 		 */
6075 		list_move_tail(&kvm->vm_list, &vm_list);
6076 		break;
6077 	}
6078 
6079 	mutex_unlock(&kvm_lock);
6080 	return freed;
6081 }
6082 
6083 static unsigned long
6084 mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
6085 {
6086 	return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
6087 }
6088 
6089 static struct shrinker mmu_shrinker = {
6090 	.count_objects = mmu_shrink_count,
6091 	.scan_objects = mmu_shrink_scan,
6092 	.seeks = DEFAULT_SEEKS * 10,
6093 };
6094 
6095 static void mmu_destroy_caches(void)
6096 {
6097 	kmem_cache_destroy(pte_list_desc_cache);
6098 	kmem_cache_destroy(mmu_page_header_cache);
6099 }
6100 
6101 static bool get_nx_auto_mode(void)
6102 {
6103 	/* Return true when CPU has the bug, and mitigations are ON */
6104 	return boot_cpu_has_bug(X86_BUG_ITLB_MULTIHIT) && !cpu_mitigations_off();
6105 }
6106 
6107 static void __set_nx_huge_pages(bool val)
6108 {
6109 	nx_huge_pages = itlb_multihit_kvm_mitigation = val;
6110 }
6111 
6112 static int set_nx_huge_pages(const char *val, const struct kernel_param *kp)
6113 {
6114 	bool old_val = nx_huge_pages;
6115 	bool new_val;
6116 
6117 	/* In "auto" mode deploy workaround only if CPU has the bug. */
6118 	if (sysfs_streq(val, "off"))
6119 		new_val = 0;
6120 	else if (sysfs_streq(val, "force"))
6121 		new_val = 1;
6122 	else if (sysfs_streq(val, "auto"))
6123 		new_val = get_nx_auto_mode();
6124 	else if (strtobool(val, &new_val) < 0)
6125 		return -EINVAL;
6126 
6127 	__set_nx_huge_pages(new_val);
6128 
6129 	if (new_val != old_val) {
6130 		struct kvm *kvm;
6131 
6132 		mutex_lock(&kvm_lock);
6133 
6134 		list_for_each_entry(kvm, &vm_list, vm_list) {
6135 			mutex_lock(&kvm->slots_lock);
6136 			kvm_mmu_zap_all_fast(kvm);
6137 			mutex_unlock(&kvm->slots_lock);
6138 
6139 			wake_up_process(kvm->arch.nx_lpage_recovery_thread);
6140 		}
6141 		mutex_unlock(&kvm_lock);
6142 	}
6143 
6144 	return 0;
6145 }
6146 
6147 int kvm_mmu_module_init(void)
6148 {
6149 	int ret = -ENOMEM;
6150 
6151 	if (nx_huge_pages == -1)
6152 		__set_nx_huge_pages(get_nx_auto_mode());
6153 
6154 	/*
6155 	 * MMU roles use union aliasing which is, generally speaking, an
6156 	 * undefined behavior. However, we supposedly know how compilers behave
6157 	 * and the current status quo is unlikely to change. Guardians below are
6158 	 * supposed to let us know if the assumption becomes false.
6159 	 */
6160 	BUILD_BUG_ON(sizeof(union kvm_mmu_page_role) != sizeof(u32));
6161 	BUILD_BUG_ON(sizeof(union kvm_mmu_extended_role) != sizeof(u32));
6162 	BUILD_BUG_ON(sizeof(union kvm_mmu_role) != sizeof(u64));
6163 
6164 	kvm_mmu_reset_all_pte_masks();
6165 
6166 	pte_list_desc_cache = kmem_cache_create("pte_list_desc",
6167 					    sizeof(struct pte_list_desc),
6168 					    0, SLAB_ACCOUNT, NULL);
6169 	if (!pte_list_desc_cache)
6170 		goto out;
6171 
6172 	mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
6173 						  sizeof(struct kvm_mmu_page),
6174 						  0, SLAB_ACCOUNT, NULL);
6175 	if (!mmu_page_header_cache)
6176 		goto out;
6177 
6178 	if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
6179 		goto out;
6180 
6181 	ret = register_shrinker(&mmu_shrinker);
6182 	if (ret)
6183 		goto out;
6184 
6185 	return 0;
6186 
6187 out:
6188 	mmu_destroy_caches();
6189 	return ret;
6190 }
6191 
6192 void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
6193 {
6194 	kvm_mmu_unload(vcpu);
6195 	free_mmu_pages(&vcpu->arch.root_mmu);
6196 	free_mmu_pages(&vcpu->arch.guest_mmu);
6197 	mmu_free_memory_caches(vcpu);
6198 }
6199 
6200 void kvm_mmu_module_exit(void)
6201 {
6202 	mmu_destroy_caches();
6203 	percpu_counter_destroy(&kvm_total_used_mmu_pages);
6204 	unregister_shrinker(&mmu_shrinker);
6205 	mmu_audit_disable();
6206 }
6207 
6208 /*
6209  * Calculate the effective recovery period, accounting for '0' meaning "let KVM
6210  * select a halving time of 1 hour".  Returns true if recovery is enabled.
6211  */
6212 static bool calc_nx_huge_pages_recovery_period(uint *period)
6213 {
6214 	/*
6215 	 * Use READ_ONCE to get the params, this may be called outside of the
6216 	 * param setters, e.g. by the kthread to compute its next timeout.
6217 	 */
6218 	bool enabled = READ_ONCE(nx_huge_pages);
6219 	uint ratio = READ_ONCE(nx_huge_pages_recovery_ratio);
6220 
6221 	if (!enabled || !ratio)
6222 		return false;
6223 
6224 	*period = READ_ONCE(nx_huge_pages_recovery_period_ms);
6225 	if (!*period) {
6226 		/* Make sure the period is not less than one second.  */
6227 		ratio = min(ratio, 3600u);
6228 		*period = 60 * 60 * 1000 / ratio;
6229 	}
6230 	return true;
6231 }
6232 
6233 static int set_nx_huge_pages_recovery_param(const char *val, const struct kernel_param *kp)
6234 {
6235 	bool was_recovery_enabled, is_recovery_enabled;
6236 	uint old_period, new_period;
6237 	int err;
6238 
6239 	was_recovery_enabled = calc_nx_huge_pages_recovery_period(&old_period);
6240 
6241 	err = param_set_uint(val, kp);
6242 	if (err)
6243 		return err;
6244 
6245 	is_recovery_enabled = calc_nx_huge_pages_recovery_period(&new_period);
6246 
6247 	if (is_recovery_enabled &&
6248 	    (!was_recovery_enabled || old_period > new_period)) {
6249 		struct kvm *kvm;
6250 
6251 		mutex_lock(&kvm_lock);
6252 
6253 		list_for_each_entry(kvm, &vm_list, vm_list)
6254 			wake_up_process(kvm->arch.nx_lpage_recovery_thread);
6255 
6256 		mutex_unlock(&kvm_lock);
6257 	}
6258 
6259 	return err;
6260 }
6261 
6262 static void kvm_recover_nx_lpages(struct kvm *kvm)
6263 {
6264 	unsigned long nx_lpage_splits = kvm->stat.nx_lpage_splits;
6265 	int rcu_idx;
6266 	struct kvm_mmu_page *sp;
6267 	unsigned int ratio;
6268 	LIST_HEAD(invalid_list);
6269 	bool flush = false;
6270 	ulong to_zap;
6271 
6272 	rcu_idx = srcu_read_lock(&kvm->srcu);
6273 	write_lock(&kvm->mmu_lock);
6274 
6275 	ratio = READ_ONCE(nx_huge_pages_recovery_ratio);
6276 	to_zap = ratio ? DIV_ROUND_UP(nx_lpage_splits, ratio) : 0;
6277 	for ( ; to_zap; --to_zap) {
6278 		if (list_empty(&kvm->arch.lpage_disallowed_mmu_pages))
6279 			break;
6280 
6281 		/*
6282 		 * We use a separate list instead of just using active_mmu_pages
6283 		 * because the number of lpage_disallowed pages is expected to
6284 		 * be relatively small compared to the total.
6285 		 */
6286 		sp = list_first_entry(&kvm->arch.lpage_disallowed_mmu_pages,
6287 				      struct kvm_mmu_page,
6288 				      lpage_disallowed_link);
6289 		WARN_ON_ONCE(!sp->lpage_disallowed);
6290 		if (is_tdp_mmu_page(sp)) {
6291 			flush |= kvm_tdp_mmu_zap_sp(kvm, sp);
6292 		} else {
6293 			kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
6294 			WARN_ON_ONCE(sp->lpage_disallowed);
6295 		}
6296 
6297 		if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) {
6298 			kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush);
6299 			cond_resched_rwlock_write(&kvm->mmu_lock);
6300 			flush = false;
6301 		}
6302 	}
6303 	kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush);
6304 
6305 	write_unlock(&kvm->mmu_lock);
6306 	srcu_read_unlock(&kvm->srcu, rcu_idx);
6307 }
6308 
6309 static long get_nx_lpage_recovery_timeout(u64 start_time)
6310 {
6311 	bool enabled;
6312 	uint period;
6313 
6314 	enabled = calc_nx_huge_pages_recovery_period(&period);
6315 
6316 	return enabled ? start_time + msecs_to_jiffies(period) - get_jiffies_64()
6317 		       : MAX_SCHEDULE_TIMEOUT;
6318 }
6319 
6320 static int kvm_nx_lpage_recovery_worker(struct kvm *kvm, uintptr_t data)
6321 {
6322 	u64 start_time;
6323 	long remaining_time;
6324 
6325 	while (true) {
6326 		start_time = get_jiffies_64();
6327 		remaining_time = get_nx_lpage_recovery_timeout(start_time);
6328 
6329 		set_current_state(TASK_INTERRUPTIBLE);
6330 		while (!kthread_should_stop() && remaining_time > 0) {
6331 			schedule_timeout(remaining_time);
6332 			remaining_time = get_nx_lpage_recovery_timeout(start_time);
6333 			set_current_state(TASK_INTERRUPTIBLE);
6334 		}
6335 
6336 		set_current_state(TASK_RUNNING);
6337 
6338 		if (kthread_should_stop())
6339 			return 0;
6340 
6341 		kvm_recover_nx_lpages(kvm);
6342 	}
6343 }
6344 
6345 int kvm_mmu_post_init_vm(struct kvm *kvm)
6346 {
6347 	int err;
6348 
6349 	err = kvm_vm_create_worker_thread(kvm, kvm_nx_lpage_recovery_worker, 0,
6350 					  "kvm-nx-lpage-recovery",
6351 					  &kvm->arch.nx_lpage_recovery_thread);
6352 	if (!err)
6353 		kthread_unpark(kvm->arch.nx_lpage_recovery_thread);
6354 
6355 	return err;
6356 }
6357 
6358 void kvm_mmu_pre_destroy_vm(struct kvm *kvm)
6359 {
6360 	if (kvm->arch.nx_lpage_recovery_thread)
6361 		kthread_stop(kvm->arch.nx_lpage_recovery_thread);
6362 }
6363