xref: /openbmc/linux/arch/x86/kvm/mmu/mmu.c (revision add48ba4)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This module enables machines with Intel VT-x extensions to run virtual
6  * machines without emulation or binary translation.
7  *
8  * MMU support
9  *
10  * Copyright (C) 2006 Qumranet, Inc.
11  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
12  *
13  * Authors:
14  *   Yaniv Kamay  <yaniv@qumranet.com>
15  *   Avi Kivity   <avi@qumranet.com>
16  */
17 
18 #include "irq.h"
19 #include "ioapic.h"
20 #include "mmu.h"
21 #include "x86.h"
22 #include "kvm_cache_regs.h"
23 #include "kvm_emulate.h"
24 #include "cpuid.h"
25 
26 #include <linux/kvm_host.h>
27 #include <linux/types.h>
28 #include <linux/string.h>
29 #include <linux/mm.h>
30 #include <linux/highmem.h>
31 #include <linux/moduleparam.h>
32 #include <linux/export.h>
33 #include <linux/swap.h>
34 #include <linux/hugetlb.h>
35 #include <linux/compiler.h>
36 #include <linux/srcu.h>
37 #include <linux/slab.h>
38 #include <linux/sched/signal.h>
39 #include <linux/uaccess.h>
40 #include <linux/hash.h>
41 #include <linux/kern_levels.h>
42 #include <linux/kthread.h>
43 
44 #include <asm/page.h>
45 #include <asm/memtype.h>
46 #include <asm/cmpxchg.h>
47 #include <asm/e820/api.h>
48 #include <asm/io.h>
49 #include <asm/vmx.h>
50 #include <asm/kvm_page_track.h>
51 #include "trace.h"
52 
53 extern bool itlb_multihit_kvm_mitigation;
54 
55 static int __read_mostly nx_huge_pages = -1;
56 #ifdef CONFIG_PREEMPT_RT
57 /* Recovery can cause latency spikes, disable it for PREEMPT_RT.  */
58 static uint __read_mostly nx_huge_pages_recovery_ratio = 0;
59 #else
60 static uint __read_mostly nx_huge_pages_recovery_ratio = 60;
61 #endif
62 
63 static int set_nx_huge_pages(const char *val, const struct kernel_param *kp);
64 static int set_nx_huge_pages_recovery_ratio(const char *val, const struct kernel_param *kp);
65 
66 static struct kernel_param_ops nx_huge_pages_ops = {
67 	.set = set_nx_huge_pages,
68 	.get = param_get_bool,
69 };
70 
71 static struct kernel_param_ops nx_huge_pages_recovery_ratio_ops = {
72 	.set = set_nx_huge_pages_recovery_ratio,
73 	.get = param_get_uint,
74 };
75 
76 module_param_cb(nx_huge_pages, &nx_huge_pages_ops, &nx_huge_pages, 0644);
77 __MODULE_PARM_TYPE(nx_huge_pages, "bool");
78 module_param_cb(nx_huge_pages_recovery_ratio, &nx_huge_pages_recovery_ratio_ops,
79 		&nx_huge_pages_recovery_ratio, 0644);
80 __MODULE_PARM_TYPE(nx_huge_pages_recovery_ratio, "uint");
81 
82 static bool __read_mostly force_flush_and_sync_on_reuse;
83 module_param_named(flush_on_reuse, force_flush_and_sync_on_reuse, bool, 0644);
84 
85 /*
86  * When setting this variable to true it enables Two-Dimensional-Paging
87  * where the hardware walks 2 page tables:
88  * 1. the guest-virtual to guest-physical
89  * 2. while doing 1. it walks guest-physical to host-physical
90  * If the hardware supports that we don't need to do shadow paging.
91  */
92 bool tdp_enabled = false;
93 
94 static int max_page_level __read_mostly;
95 
96 enum {
97 	AUDIT_PRE_PAGE_FAULT,
98 	AUDIT_POST_PAGE_FAULT,
99 	AUDIT_PRE_PTE_WRITE,
100 	AUDIT_POST_PTE_WRITE,
101 	AUDIT_PRE_SYNC,
102 	AUDIT_POST_SYNC
103 };
104 
105 #undef MMU_DEBUG
106 
107 #ifdef MMU_DEBUG
108 static bool dbg = 0;
109 module_param(dbg, bool, 0644);
110 
111 #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
112 #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
113 #define MMU_WARN_ON(x) WARN_ON(x)
114 #else
115 #define pgprintk(x...) do { } while (0)
116 #define rmap_printk(x...) do { } while (0)
117 #define MMU_WARN_ON(x) do { } while (0)
118 #endif
119 
120 #define PTE_PREFETCH_NUM		8
121 
122 #define PT_FIRST_AVAIL_BITS_SHIFT 10
123 #define PT64_SECOND_AVAIL_BITS_SHIFT 54
124 
125 /*
126  * The mask used to denote special SPTEs, which can be either MMIO SPTEs or
127  * Access Tracking SPTEs.
128  */
129 #define SPTE_SPECIAL_MASK (3ULL << 52)
130 #define SPTE_AD_ENABLED_MASK (0ULL << 52)
131 #define SPTE_AD_DISABLED_MASK (1ULL << 52)
132 #define SPTE_AD_WRPROT_ONLY_MASK (2ULL << 52)
133 #define SPTE_MMIO_MASK (3ULL << 52)
134 
135 #define PT64_LEVEL_BITS 9
136 
137 #define PT64_LEVEL_SHIFT(level) \
138 		(PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
139 
140 #define PT64_INDEX(address, level)\
141 	(((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
142 
143 
144 #define PT32_LEVEL_BITS 10
145 
146 #define PT32_LEVEL_SHIFT(level) \
147 		(PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
148 
149 #define PT32_LVL_OFFSET_MASK(level) \
150 	(PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
151 						* PT32_LEVEL_BITS))) - 1))
152 
153 #define PT32_INDEX(address, level)\
154 	(((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
155 
156 
157 #ifdef CONFIG_DYNAMIC_PHYSICAL_MASK
158 #define PT64_BASE_ADDR_MASK (physical_mask & ~(u64)(PAGE_SIZE-1))
159 #else
160 #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
161 #endif
162 #define PT64_LVL_ADDR_MASK(level) \
163 	(PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
164 						* PT64_LEVEL_BITS))) - 1))
165 #define PT64_LVL_OFFSET_MASK(level) \
166 	(PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
167 						* PT64_LEVEL_BITS))) - 1))
168 
169 #define PT32_BASE_ADDR_MASK PAGE_MASK
170 #define PT32_DIR_BASE_ADDR_MASK \
171 	(PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
172 #define PT32_LVL_ADDR_MASK(level) \
173 	(PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
174 					    * PT32_LEVEL_BITS))) - 1))
175 
176 #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | shadow_user_mask \
177 			| shadow_x_mask | shadow_nx_mask | shadow_me_mask)
178 
179 #define ACC_EXEC_MASK    1
180 #define ACC_WRITE_MASK   PT_WRITABLE_MASK
181 #define ACC_USER_MASK    PT_USER_MASK
182 #define ACC_ALL          (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
183 
184 /* The mask for the R/X bits in EPT PTEs */
185 #define PT64_EPT_READABLE_MASK			0x1ull
186 #define PT64_EPT_EXECUTABLE_MASK		0x4ull
187 
188 #include <trace/events/kvm.h>
189 
190 #define SPTE_HOST_WRITEABLE	(1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
191 #define SPTE_MMU_WRITEABLE	(1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
192 
193 #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
194 
195 /* make pte_list_desc fit well in cache line */
196 #define PTE_LIST_EXT 3
197 
198 /*
199  * Return values of handle_mmio_page_fault and mmu.page_fault:
200  * RET_PF_RETRY: let CPU fault again on the address.
201  * RET_PF_EMULATE: mmio page fault, emulate the instruction directly.
202  *
203  * For handle_mmio_page_fault only:
204  * RET_PF_INVALID: the spte is invalid, let the real page fault path update it.
205  */
206 enum {
207 	RET_PF_RETRY = 0,
208 	RET_PF_EMULATE = 1,
209 	RET_PF_INVALID = 2,
210 };
211 
212 struct pte_list_desc {
213 	u64 *sptes[PTE_LIST_EXT];
214 	struct pte_list_desc *more;
215 };
216 
217 struct kvm_shadow_walk_iterator {
218 	u64 addr;
219 	hpa_t shadow_addr;
220 	u64 *sptep;
221 	int level;
222 	unsigned index;
223 };
224 
225 #define for_each_shadow_entry_using_root(_vcpu, _root, _addr, _walker)     \
226 	for (shadow_walk_init_using_root(&(_walker), (_vcpu),              \
227 					 (_root), (_addr));                \
228 	     shadow_walk_okay(&(_walker));			           \
229 	     shadow_walk_next(&(_walker)))
230 
231 #define for_each_shadow_entry(_vcpu, _addr, _walker)            \
232 	for (shadow_walk_init(&(_walker), _vcpu, _addr);	\
233 	     shadow_walk_okay(&(_walker));			\
234 	     shadow_walk_next(&(_walker)))
235 
236 #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte)	\
237 	for (shadow_walk_init(&(_walker), _vcpu, _addr);		\
238 	     shadow_walk_okay(&(_walker)) &&				\
239 		({ spte = mmu_spte_get_lockless(_walker.sptep); 1; });	\
240 	     __shadow_walk_next(&(_walker), spte))
241 
242 static struct kmem_cache *pte_list_desc_cache;
243 static struct kmem_cache *mmu_page_header_cache;
244 static struct percpu_counter kvm_total_used_mmu_pages;
245 
246 static u64 __read_mostly shadow_nx_mask;
247 static u64 __read_mostly shadow_x_mask;	/* mutual exclusive with nx_mask */
248 static u64 __read_mostly shadow_user_mask;
249 static u64 __read_mostly shadow_accessed_mask;
250 static u64 __read_mostly shadow_dirty_mask;
251 static u64 __read_mostly shadow_mmio_value;
252 static u64 __read_mostly shadow_mmio_access_mask;
253 static u64 __read_mostly shadow_present_mask;
254 static u64 __read_mostly shadow_me_mask;
255 
256 /*
257  * SPTEs used by MMUs without A/D bits are marked with SPTE_AD_DISABLED_MASK;
258  * shadow_acc_track_mask is the set of bits to be cleared in non-accessed
259  * pages.
260  */
261 static u64 __read_mostly shadow_acc_track_mask;
262 
263 /*
264  * The mask/shift to use for saving the original R/X bits when marking the PTE
265  * as not-present for access tracking purposes. We do not save the W bit as the
266  * PTEs being access tracked also need to be dirty tracked, so the W bit will be
267  * restored only when a write is attempted to the page.
268  */
269 static const u64 shadow_acc_track_saved_bits_mask = PT64_EPT_READABLE_MASK |
270 						    PT64_EPT_EXECUTABLE_MASK;
271 static const u64 shadow_acc_track_saved_bits_shift = PT64_SECOND_AVAIL_BITS_SHIFT;
272 
273 /*
274  * This mask must be set on all non-zero Non-Present or Reserved SPTEs in order
275  * to guard against L1TF attacks.
276  */
277 static u64 __read_mostly shadow_nonpresent_or_rsvd_mask;
278 
279 /*
280  * The number of high-order 1 bits to use in the mask above.
281  */
282 static const u64 shadow_nonpresent_or_rsvd_mask_len = 5;
283 
284 /*
285  * In some cases, we need to preserve the GFN of a non-present or reserved
286  * SPTE when we usurp the upper five bits of the physical address space to
287  * defend against L1TF, e.g. for MMIO SPTEs.  To preserve the GFN, we'll
288  * shift bits of the GFN that overlap with shadow_nonpresent_or_rsvd_mask
289  * left into the reserved bits, i.e. the GFN in the SPTE will be split into
290  * high and low parts.  This mask covers the lower bits of the GFN.
291  */
292 static u64 __read_mostly shadow_nonpresent_or_rsvd_lower_gfn_mask;
293 
294 /*
295  * The number of non-reserved physical address bits irrespective of features
296  * that repurpose legal bits, e.g. MKTME.
297  */
298 static u8 __read_mostly shadow_phys_bits;
299 
300 static void mmu_spte_set(u64 *sptep, u64 spte);
301 static bool is_executable_pte(u64 spte);
302 static union kvm_mmu_page_role
303 kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu);
304 
305 #define CREATE_TRACE_POINTS
306 #include "mmutrace.h"
307 
308 
309 static inline bool kvm_available_flush_tlb_with_range(void)
310 {
311 	return kvm_x86_ops.tlb_remote_flush_with_range;
312 }
313 
314 static void kvm_flush_remote_tlbs_with_range(struct kvm *kvm,
315 		struct kvm_tlb_range *range)
316 {
317 	int ret = -ENOTSUPP;
318 
319 	if (range && kvm_x86_ops.tlb_remote_flush_with_range)
320 		ret = kvm_x86_ops.tlb_remote_flush_with_range(kvm, range);
321 
322 	if (ret)
323 		kvm_flush_remote_tlbs(kvm);
324 }
325 
326 static void kvm_flush_remote_tlbs_with_address(struct kvm *kvm,
327 		u64 start_gfn, u64 pages)
328 {
329 	struct kvm_tlb_range range;
330 
331 	range.start_gfn = start_gfn;
332 	range.pages = pages;
333 
334 	kvm_flush_remote_tlbs_with_range(kvm, &range);
335 }
336 
337 void kvm_mmu_set_mmio_spte_mask(u64 mmio_value, u64 access_mask)
338 {
339 	BUG_ON((u64)(unsigned)access_mask != access_mask);
340 	WARN_ON(mmio_value & (shadow_nonpresent_or_rsvd_mask << shadow_nonpresent_or_rsvd_mask_len));
341 	WARN_ON(mmio_value & shadow_nonpresent_or_rsvd_lower_gfn_mask);
342 	shadow_mmio_value = mmio_value | SPTE_MMIO_MASK;
343 	shadow_mmio_access_mask = access_mask;
344 }
345 EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
346 
347 static bool is_mmio_spte(u64 spte)
348 {
349 	return (spte & SPTE_SPECIAL_MASK) == SPTE_MMIO_MASK;
350 }
351 
352 static inline bool sp_ad_disabled(struct kvm_mmu_page *sp)
353 {
354 	return sp->role.ad_disabled;
355 }
356 
357 static inline bool kvm_vcpu_ad_need_write_protect(struct kvm_vcpu *vcpu)
358 {
359 	/*
360 	 * When using the EPT page-modification log, the GPAs in the log
361 	 * would come from L2 rather than L1.  Therefore, we need to rely
362 	 * on write protection to record dirty pages.  This also bypasses
363 	 * PML, since writes now result in a vmexit.
364 	 */
365 	return vcpu->arch.mmu == &vcpu->arch.guest_mmu;
366 }
367 
368 static inline bool spte_ad_enabled(u64 spte)
369 {
370 	MMU_WARN_ON(is_mmio_spte(spte));
371 	return (spte & SPTE_SPECIAL_MASK) != SPTE_AD_DISABLED_MASK;
372 }
373 
374 static inline bool spte_ad_need_write_protect(u64 spte)
375 {
376 	MMU_WARN_ON(is_mmio_spte(spte));
377 	return (spte & SPTE_SPECIAL_MASK) != SPTE_AD_ENABLED_MASK;
378 }
379 
380 static bool is_nx_huge_page_enabled(void)
381 {
382 	return READ_ONCE(nx_huge_pages);
383 }
384 
385 static inline u64 spte_shadow_accessed_mask(u64 spte)
386 {
387 	MMU_WARN_ON(is_mmio_spte(spte));
388 	return spte_ad_enabled(spte) ? shadow_accessed_mask : 0;
389 }
390 
391 static inline u64 spte_shadow_dirty_mask(u64 spte)
392 {
393 	MMU_WARN_ON(is_mmio_spte(spte));
394 	return spte_ad_enabled(spte) ? shadow_dirty_mask : 0;
395 }
396 
397 static inline bool is_access_track_spte(u64 spte)
398 {
399 	return !spte_ad_enabled(spte) && (spte & shadow_acc_track_mask) == 0;
400 }
401 
402 /*
403  * Due to limited space in PTEs, the MMIO generation is a 19 bit subset of
404  * the memslots generation and is derived as follows:
405  *
406  * Bits 0-8 of the MMIO generation are propagated to spte bits 3-11
407  * Bits 9-18 of the MMIO generation are propagated to spte bits 52-61
408  *
409  * The KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS flag is intentionally not included in
410  * the MMIO generation number, as doing so would require stealing a bit from
411  * the "real" generation number and thus effectively halve the maximum number
412  * of MMIO generations that can be handled before encountering a wrap (which
413  * requires a full MMU zap).  The flag is instead explicitly queried when
414  * checking for MMIO spte cache hits.
415  */
416 #define MMIO_SPTE_GEN_MASK		GENMASK_ULL(17, 0)
417 
418 #define MMIO_SPTE_GEN_LOW_START		3
419 #define MMIO_SPTE_GEN_LOW_END		11
420 #define MMIO_SPTE_GEN_LOW_MASK		GENMASK_ULL(MMIO_SPTE_GEN_LOW_END, \
421 						    MMIO_SPTE_GEN_LOW_START)
422 
423 #define MMIO_SPTE_GEN_HIGH_START	PT64_SECOND_AVAIL_BITS_SHIFT
424 #define MMIO_SPTE_GEN_HIGH_END		62
425 #define MMIO_SPTE_GEN_HIGH_MASK		GENMASK_ULL(MMIO_SPTE_GEN_HIGH_END, \
426 						    MMIO_SPTE_GEN_HIGH_START)
427 
428 static u64 generation_mmio_spte_mask(u64 gen)
429 {
430 	u64 mask;
431 
432 	WARN_ON(gen & ~MMIO_SPTE_GEN_MASK);
433 	BUILD_BUG_ON((MMIO_SPTE_GEN_HIGH_MASK | MMIO_SPTE_GEN_LOW_MASK) & SPTE_SPECIAL_MASK);
434 
435 	mask = (gen << MMIO_SPTE_GEN_LOW_START) & MMIO_SPTE_GEN_LOW_MASK;
436 	mask |= (gen << MMIO_SPTE_GEN_HIGH_START) & MMIO_SPTE_GEN_HIGH_MASK;
437 	return mask;
438 }
439 
440 static u64 get_mmio_spte_generation(u64 spte)
441 {
442 	u64 gen;
443 
444 	gen = (spte & MMIO_SPTE_GEN_LOW_MASK) >> MMIO_SPTE_GEN_LOW_START;
445 	gen |= (spte & MMIO_SPTE_GEN_HIGH_MASK) >> MMIO_SPTE_GEN_HIGH_START;
446 	return gen;
447 }
448 
449 static u64 make_mmio_spte(struct kvm_vcpu *vcpu, u64 gfn, unsigned int access)
450 {
451 
452 	u64 gen = kvm_vcpu_memslots(vcpu)->generation & MMIO_SPTE_GEN_MASK;
453 	u64 mask = generation_mmio_spte_mask(gen);
454 	u64 gpa = gfn << PAGE_SHIFT;
455 
456 	access &= shadow_mmio_access_mask;
457 	mask |= shadow_mmio_value | access;
458 	mask |= gpa | shadow_nonpresent_or_rsvd_mask;
459 	mask |= (gpa & shadow_nonpresent_or_rsvd_mask)
460 		<< shadow_nonpresent_or_rsvd_mask_len;
461 
462 	return mask;
463 }
464 
465 static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn,
466 			   unsigned int access)
467 {
468 	u64 mask = make_mmio_spte(vcpu, gfn, access);
469 	unsigned int gen = get_mmio_spte_generation(mask);
470 
471 	access = mask & ACC_ALL;
472 
473 	trace_mark_mmio_spte(sptep, gfn, access, gen);
474 	mmu_spte_set(sptep, mask);
475 }
476 
477 static gfn_t get_mmio_spte_gfn(u64 spte)
478 {
479 	u64 gpa = spte & shadow_nonpresent_or_rsvd_lower_gfn_mask;
480 
481 	gpa |= (spte >> shadow_nonpresent_or_rsvd_mask_len)
482 	       & shadow_nonpresent_or_rsvd_mask;
483 
484 	return gpa >> PAGE_SHIFT;
485 }
486 
487 static unsigned get_mmio_spte_access(u64 spte)
488 {
489 	return spte & shadow_mmio_access_mask;
490 }
491 
492 static bool set_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
493 			  kvm_pfn_t pfn, unsigned int access)
494 {
495 	if (unlikely(is_noslot_pfn(pfn))) {
496 		mark_mmio_spte(vcpu, sptep, gfn, access);
497 		return true;
498 	}
499 
500 	return false;
501 }
502 
503 static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte)
504 {
505 	u64 kvm_gen, spte_gen, gen;
506 
507 	gen = kvm_vcpu_memslots(vcpu)->generation;
508 	if (unlikely(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS))
509 		return false;
510 
511 	kvm_gen = gen & MMIO_SPTE_GEN_MASK;
512 	spte_gen = get_mmio_spte_generation(spte);
513 
514 	trace_check_mmio_spte(spte, kvm_gen, spte_gen);
515 	return likely(kvm_gen == spte_gen);
516 }
517 
518 /*
519  * Sets the shadow PTE masks used by the MMU.
520  *
521  * Assumptions:
522  *  - Setting either @accessed_mask or @dirty_mask requires setting both
523  *  - At least one of @accessed_mask or @acc_track_mask must be set
524  */
525 void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
526 		u64 dirty_mask, u64 nx_mask, u64 x_mask, u64 p_mask,
527 		u64 acc_track_mask, u64 me_mask)
528 {
529 	BUG_ON(!dirty_mask != !accessed_mask);
530 	BUG_ON(!accessed_mask && !acc_track_mask);
531 	BUG_ON(acc_track_mask & SPTE_SPECIAL_MASK);
532 
533 	shadow_user_mask = user_mask;
534 	shadow_accessed_mask = accessed_mask;
535 	shadow_dirty_mask = dirty_mask;
536 	shadow_nx_mask = nx_mask;
537 	shadow_x_mask = x_mask;
538 	shadow_present_mask = p_mask;
539 	shadow_acc_track_mask = acc_track_mask;
540 	shadow_me_mask = me_mask;
541 }
542 EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
543 
544 static u8 kvm_get_shadow_phys_bits(void)
545 {
546 	/*
547 	 * boot_cpu_data.x86_phys_bits is reduced when MKTME or SME are detected
548 	 * in CPU detection code, but the processor treats those reduced bits as
549 	 * 'keyID' thus they are not reserved bits. Therefore KVM needs to look at
550 	 * the physical address bits reported by CPUID.
551 	 */
552 	if (likely(boot_cpu_data.extended_cpuid_level >= 0x80000008))
553 		return cpuid_eax(0x80000008) & 0xff;
554 
555 	/*
556 	 * Quite weird to have VMX or SVM but not MAXPHYADDR; probably a VM with
557 	 * custom CPUID.  Proceed with whatever the kernel found since these features
558 	 * aren't virtualizable (SME/SEV also require CPUIDs higher than 0x80000008).
559 	 */
560 	return boot_cpu_data.x86_phys_bits;
561 }
562 
563 static void kvm_mmu_reset_all_pte_masks(void)
564 {
565 	u8 low_phys_bits;
566 
567 	shadow_user_mask = 0;
568 	shadow_accessed_mask = 0;
569 	shadow_dirty_mask = 0;
570 	shadow_nx_mask = 0;
571 	shadow_x_mask = 0;
572 	shadow_present_mask = 0;
573 	shadow_acc_track_mask = 0;
574 
575 	shadow_phys_bits = kvm_get_shadow_phys_bits();
576 
577 	/*
578 	 * If the CPU has 46 or less physical address bits, then set an
579 	 * appropriate mask to guard against L1TF attacks. Otherwise, it is
580 	 * assumed that the CPU is not vulnerable to L1TF.
581 	 *
582 	 * Some Intel CPUs address the L1 cache using more PA bits than are
583 	 * reported by CPUID. Use the PA width of the L1 cache when possible
584 	 * to achieve more effective mitigation, e.g. if system RAM overlaps
585 	 * the most significant bits of legal physical address space.
586 	 */
587 	shadow_nonpresent_or_rsvd_mask = 0;
588 	low_phys_bits = boot_cpu_data.x86_phys_bits;
589 	if (boot_cpu_has_bug(X86_BUG_L1TF) &&
590 	    !WARN_ON_ONCE(boot_cpu_data.x86_cache_bits >=
591 			  52 - shadow_nonpresent_or_rsvd_mask_len)) {
592 		low_phys_bits = boot_cpu_data.x86_cache_bits
593 			- shadow_nonpresent_or_rsvd_mask_len;
594 		shadow_nonpresent_or_rsvd_mask =
595 			rsvd_bits(low_phys_bits, boot_cpu_data.x86_cache_bits - 1);
596 	}
597 
598 	shadow_nonpresent_or_rsvd_lower_gfn_mask =
599 		GENMASK_ULL(low_phys_bits - 1, PAGE_SHIFT);
600 }
601 
602 static int is_cpuid_PSE36(void)
603 {
604 	return 1;
605 }
606 
607 static int is_nx(struct kvm_vcpu *vcpu)
608 {
609 	return vcpu->arch.efer & EFER_NX;
610 }
611 
612 static int is_shadow_present_pte(u64 pte)
613 {
614 	return (pte != 0) && !is_mmio_spte(pte);
615 }
616 
617 static int is_large_pte(u64 pte)
618 {
619 	return pte & PT_PAGE_SIZE_MASK;
620 }
621 
622 static int is_last_spte(u64 pte, int level)
623 {
624 	if (level == PG_LEVEL_4K)
625 		return 1;
626 	if (is_large_pte(pte))
627 		return 1;
628 	return 0;
629 }
630 
631 static bool is_executable_pte(u64 spte)
632 {
633 	return (spte & (shadow_x_mask | shadow_nx_mask)) == shadow_x_mask;
634 }
635 
636 static kvm_pfn_t spte_to_pfn(u64 pte)
637 {
638 	return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
639 }
640 
641 static gfn_t pse36_gfn_delta(u32 gpte)
642 {
643 	int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
644 
645 	return (gpte & PT32_DIR_PSE36_MASK) << shift;
646 }
647 
648 #ifdef CONFIG_X86_64
649 static void __set_spte(u64 *sptep, u64 spte)
650 {
651 	WRITE_ONCE(*sptep, spte);
652 }
653 
654 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
655 {
656 	WRITE_ONCE(*sptep, spte);
657 }
658 
659 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
660 {
661 	return xchg(sptep, spte);
662 }
663 
664 static u64 __get_spte_lockless(u64 *sptep)
665 {
666 	return READ_ONCE(*sptep);
667 }
668 #else
669 union split_spte {
670 	struct {
671 		u32 spte_low;
672 		u32 spte_high;
673 	};
674 	u64 spte;
675 };
676 
677 static void count_spte_clear(u64 *sptep, u64 spte)
678 {
679 	struct kvm_mmu_page *sp =  page_header(__pa(sptep));
680 
681 	if (is_shadow_present_pte(spte))
682 		return;
683 
684 	/* Ensure the spte is completely set before we increase the count */
685 	smp_wmb();
686 	sp->clear_spte_count++;
687 }
688 
689 static void __set_spte(u64 *sptep, u64 spte)
690 {
691 	union split_spte *ssptep, sspte;
692 
693 	ssptep = (union split_spte *)sptep;
694 	sspte = (union split_spte)spte;
695 
696 	ssptep->spte_high = sspte.spte_high;
697 
698 	/*
699 	 * If we map the spte from nonpresent to present, We should store
700 	 * the high bits firstly, then set present bit, so cpu can not
701 	 * fetch this spte while we are setting the spte.
702 	 */
703 	smp_wmb();
704 
705 	WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
706 }
707 
708 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
709 {
710 	union split_spte *ssptep, sspte;
711 
712 	ssptep = (union split_spte *)sptep;
713 	sspte = (union split_spte)spte;
714 
715 	WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
716 
717 	/*
718 	 * If we map the spte from present to nonpresent, we should clear
719 	 * present bit firstly to avoid vcpu fetch the old high bits.
720 	 */
721 	smp_wmb();
722 
723 	ssptep->spte_high = sspte.spte_high;
724 	count_spte_clear(sptep, spte);
725 }
726 
727 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
728 {
729 	union split_spte *ssptep, sspte, orig;
730 
731 	ssptep = (union split_spte *)sptep;
732 	sspte = (union split_spte)spte;
733 
734 	/* xchg acts as a barrier before the setting of the high bits */
735 	orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
736 	orig.spte_high = ssptep->spte_high;
737 	ssptep->spte_high = sspte.spte_high;
738 	count_spte_clear(sptep, spte);
739 
740 	return orig.spte;
741 }
742 
743 /*
744  * The idea using the light way get the spte on x86_32 guest is from
745  * gup_get_pte (mm/gup.c).
746  *
747  * An spte tlb flush may be pending, because kvm_set_pte_rmapp
748  * coalesces them and we are running out of the MMU lock.  Therefore
749  * we need to protect against in-progress updates of the spte.
750  *
751  * Reading the spte while an update is in progress may get the old value
752  * for the high part of the spte.  The race is fine for a present->non-present
753  * change (because the high part of the spte is ignored for non-present spte),
754  * but for a present->present change we must reread the spte.
755  *
756  * All such changes are done in two steps (present->non-present and
757  * non-present->present), hence it is enough to count the number of
758  * present->non-present updates: if it changed while reading the spte,
759  * we might have hit the race.  This is done using clear_spte_count.
760  */
761 static u64 __get_spte_lockless(u64 *sptep)
762 {
763 	struct kvm_mmu_page *sp =  page_header(__pa(sptep));
764 	union split_spte spte, *orig = (union split_spte *)sptep;
765 	int count;
766 
767 retry:
768 	count = sp->clear_spte_count;
769 	smp_rmb();
770 
771 	spte.spte_low = orig->spte_low;
772 	smp_rmb();
773 
774 	spte.spte_high = orig->spte_high;
775 	smp_rmb();
776 
777 	if (unlikely(spte.spte_low != orig->spte_low ||
778 	      count != sp->clear_spte_count))
779 		goto retry;
780 
781 	return spte.spte;
782 }
783 #endif
784 
785 static bool spte_can_locklessly_be_made_writable(u64 spte)
786 {
787 	return (spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE)) ==
788 		(SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE);
789 }
790 
791 static bool spte_has_volatile_bits(u64 spte)
792 {
793 	if (!is_shadow_present_pte(spte))
794 		return false;
795 
796 	/*
797 	 * Always atomically update spte if it can be updated
798 	 * out of mmu-lock, it can ensure dirty bit is not lost,
799 	 * also, it can help us to get a stable is_writable_pte()
800 	 * to ensure tlb flush is not missed.
801 	 */
802 	if (spte_can_locklessly_be_made_writable(spte) ||
803 	    is_access_track_spte(spte))
804 		return true;
805 
806 	if (spte_ad_enabled(spte)) {
807 		if ((spte & shadow_accessed_mask) == 0 ||
808 	    	    (is_writable_pte(spte) && (spte & shadow_dirty_mask) == 0))
809 			return true;
810 	}
811 
812 	return false;
813 }
814 
815 static bool is_accessed_spte(u64 spte)
816 {
817 	u64 accessed_mask = spte_shadow_accessed_mask(spte);
818 
819 	return accessed_mask ? spte & accessed_mask
820 			     : !is_access_track_spte(spte);
821 }
822 
823 static bool is_dirty_spte(u64 spte)
824 {
825 	u64 dirty_mask = spte_shadow_dirty_mask(spte);
826 
827 	return dirty_mask ? spte & dirty_mask : spte & PT_WRITABLE_MASK;
828 }
829 
830 /* Rules for using mmu_spte_set:
831  * Set the sptep from nonpresent to present.
832  * Note: the sptep being assigned *must* be either not present
833  * or in a state where the hardware will not attempt to update
834  * the spte.
835  */
836 static void mmu_spte_set(u64 *sptep, u64 new_spte)
837 {
838 	WARN_ON(is_shadow_present_pte(*sptep));
839 	__set_spte(sptep, new_spte);
840 }
841 
842 /*
843  * Update the SPTE (excluding the PFN), but do not track changes in its
844  * accessed/dirty status.
845  */
846 static u64 mmu_spte_update_no_track(u64 *sptep, u64 new_spte)
847 {
848 	u64 old_spte = *sptep;
849 
850 	WARN_ON(!is_shadow_present_pte(new_spte));
851 
852 	if (!is_shadow_present_pte(old_spte)) {
853 		mmu_spte_set(sptep, new_spte);
854 		return old_spte;
855 	}
856 
857 	if (!spte_has_volatile_bits(old_spte))
858 		__update_clear_spte_fast(sptep, new_spte);
859 	else
860 		old_spte = __update_clear_spte_slow(sptep, new_spte);
861 
862 	WARN_ON(spte_to_pfn(old_spte) != spte_to_pfn(new_spte));
863 
864 	return old_spte;
865 }
866 
867 /* Rules for using mmu_spte_update:
868  * Update the state bits, it means the mapped pfn is not changed.
869  *
870  * Whenever we overwrite a writable spte with a read-only one we
871  * should flush remote TLBs. Otherwise rmap_write_protect
872  * will find a read-only spte, even though the writable spte
873  * might be cached on a CPU's TLB, the return value indicates this
874  * case.
875  *
876  * Returns true if the TLB needs to be flushed
877  */
878 static bool mmu_spte_update(u64 *sptep, u64 new_spte)
879 {
880 	bool flush = false;
881 	u64 old_spte = mmu_spte_update_no_track(sptep, new_spte);
882 
883 	if (!is_shadow_present_pte(old_spte))
884 		return false;
885 
886 	/*
887 	 * For the spte updated out of mmu-lock is safe, since
888 	 * we always atomically update it, see the comments in
889 	 * spte_has_volatile_bits().
890 	 */
891 	if (spte_can_locklessly_be_made_writable(old_spte) &&
892 	      !is_writable_pte(new_spte))
893 		flush = true;
894 
895 	/*
896 	 * Flush TLB when accessed/dirty states are changed in the page tables,
897 	 * to guarantee consistency between TLB and page tables.
898 	 */
899 
900 	if (is_accessed_spte(old_spte) && !is_accessed_spte(new_spte)) {
901 		flush = true;
902 		kvm_set_pfn_accessed(spte_to_pfn(old_spte));
903 	}
904 
905 	if (is_dirty_spte(old_spte) && !is_dirty_spte(new_spte)) {
906 		flush = true;
907 		kvm_set_pfn_dirty(spte_to_pfn(old_spte));
908 	}
909 
910 	return flush;
911 }
912 
913 /*
914  * Rules for using mmu_spte_clear_track_bits:
915  * It sets the sptep from present to nonpresent, and track the
916  * state bits, it is used to clear the last level sptep.
917  * Returns non-zero if the PTE was previously valid.
918  */
919 static int mmu_spte_clear_track_bits(u64 *sptep)
920 {
921 	kvm_pfn_t pfn;
922 	u64 old_spte = *sptep;
923 
924 	if (!spte_has_volatile_bits(old_spte))
925 		__update_clear_spte_fast(sptep, 0ull);
926 	else
927 		old_spte = __update_clear_spte_slow(sptep, 0ull);
928 
929 	if (!is_shadow_present_pte(old_spte))
930 		return 0;
931 
932 	pfn = spte_to_pfn(old_spte);
933 
934 	/*
935 	 * KVM does not hold the refcount of the page used by
936 	 * kvm mmu, before reclaiming the page, we should
937 	 * unmap it from mmu first.
938 	 */
939 	WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn)));
940 
941 	if (is_accessed_spte(old_spte))
942 		kvm_set_pfn_accessed(pfn);
943 
944 	if (is_dirty_spte(old_spte))
945 		kvm_set_pfn_dirty(pfn);
946 
947 	return 1;
948 }
949 
950 /*
951  * Rules for using mmu_spte_clear_no_track:
952  * Directly clear spte without caring the state bits of sptep,
953  * it is used to set the upper level spte.
954  */
955 static void mmu_spte_clear_no_track(u64 *sptep)
956 {
957 	__update_clear_spte_fast(sptep, 0ull);
958 }
959 
960 static u64 mmu_spte_get_lockless(u64 *sptep)
961 {
962 	return __get_spte_lockless(sptep);
963 }
964 
965 static u64 mark_spte_for_access_track(u64 spte)
966 {
967 	if (spte_ad_enabled(spte))
968 		return spte & ~shadow_accessed_mask;
969 
970 	if (is_access_track_spte(spte))
971 		return spte;
972 
973 	/*
974 	 * Making an Access Tracking PTE will result in removal of write access
975 	 * from the PTE. So, verify that we will be able to restore the write
976 	 * access in the fast page fault path later on.
977 	 */
978 	WARN_ONCE((spte & PT_WRITABLE_MASK) &&
979 		  !spte_can_locklessly_be_made_writable(spte),
980 		  "kvm: Writable SPTE is not locklessly dirty-trackable\n");
981 
982 	WARN_ONCE(spte & (shadow_acc_track_saved_bits_mask <<
983 			  shadow_acc_track_saved_bits_shift),
984 		  "kvm: Access Tracking saved bit locations are not zero\n");
985 
986 	spte |= (spte & shadow_acc_track_saved_bits_mask) <<
987 		shadow_acc_track_saved_bits_shift;
988 	spte &= ~shadow_acc_track_mask;
989 
990 	return spte;
991 }
992 
993 /* Restore an acc-track PTE back to a regular PTE */
994 static u64 restore_acc_track_spte(u64 spte)
995 {
996 	u64 new_spte = spte;
997 	u64 saved_bits = (spte >> shadow_acc_track_saved_bits_shift)
998 			 & shadow_acc_track_saved_bits_mask;
999 
1000 	WARN_ON_ONCE(spte_ad_enabled(spte));
1001 	WARN_ON_ONCE(!is_access_track_spte(spte));
1002 
1003 	new_spte &= ~shadow_acc_track_mask;
1004 	new_spte &= ~(shadow_acc_track_saved_bits_mask <<
1005 		      shadow_acc_track_saved_bits_shift);
1006 	new_spte |= saved_bits;
1007 
1008 	return new_spte;
1009 }
1010 
1011 /* Returns the Accessed status of the PTE and resets it at the same time. */
1012 static bool mmu_spte_age(u64 *sptep)
1013 {
1014 	u64 spte = mmu_spte_get_lockless(sptep);
1015 
1016 	if (!is_accessed_spte(spte))
1017 		return false;
1018 
1019 	if (spte_ad_enabled(spte)) {
1020 		clear_bit((ffs(shadow_accessed_mask) - 1),
1021 			  (unsigned long *)sptep);
1022 	} else {
1023 		/*
1024 		 * Capture the dirty status of the page, so that it doesn't get
1025 		 * lost when the SPTE is marked for access tracking.
1026 		 */
1027 		if (is_writable_pte(spte))
1028 			kvm_set_pfn_dirty(spte_to_pfn(spte));
1029 
1030 		spte = mark_spte_for_access_track(spte);
1031 		mmu_spte_update_no_track(sptep, spte);
1032 	}
1033 
1034 	return true;
1035 }
1036 
1037 static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
1038 {
1039 	/*
1040 	 * Prevent page table teardown by making any free-er wait during
1041 	 * kvm_flush_remote_tlbs() IPI to all active vcpus.
1042 	 */
1043 	local_irq_disable();
1044 
1045 	/*
1046 	 * Make sure a following spte read is not reordered ahead of the write
1047 	 * to vcpu->mode.
1048 	 */
1049 	smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES);
1050 }
1051 
1052 static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
1053 {
1054 	/*
1055 	 * Make sure the write to vcpu->mode is not reordered in front of
1056 	 * reads to sptes.  If it does, kvm_mmu_commit_zap_page() can see us
1057 	 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
1058 	 */
1059 	smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE);
1060 	local_irq_enable();
1061 }
1062 
1063 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
1064 				  struct kmem_cache *base_cache, int min)
1065 {
1066 	void *obj;
1067 
1068 	if (cache->nobjs >= min)
1069 		return 0;
1070 	while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
1071 		obj = kmem_cache_zalloc(base_cache, GFP_KERNEL_ACCOUNT);
1072 		if (!obj)
1073 			return cache->nobjs >= min ? 0 : -ENOMEM;
1074 		cache->objects[cache->nobjs++] = obj;
1075 	}
1076 	return 0;
1077 }
1078 
1079 static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
1080 {
1081 	return cache->nobjs;
1082 }
1083 
1084 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
1085 				  struct kmem_cache *cache)
1086 {
1087 	while (mc->nobjs)
1088 		kmem_cache_free(cache, mc->objects[--mc->nobjs]);
1089 }
1090 
1091 static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
1092 				       int min)
1093 {
1094 	void *page;
1095 
1096 	if (cache->nobjs >= min)
1097 		return 0;
1098 	while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
1099 		page = (void *)__get_free_page(GFP_KERNEL_ACCOUNT);
1100 		if (!page)
1101 			return cache->nobjs >= min ? 0 : -ENOMEM;
1102 		cache->objects[cache->nobjs++] = page;
1103 	}
1104 	return 0;
1105 }
1106 
1107 static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
1108 {
1109 	while (mc->nobjs)
1110 		free_page((unsigned long)mc->objects[--mc->nobjs]);
1111 }
1112 
1113 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
1114 {
1115 	int r;
1116 
1117 	r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
1118 				   pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
1119 	if (r)
1120 		goto out;
1121 	r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
1122 	if (r)
1123 		goto out;
1124 	r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
1125 				   mmu_page_header_cache, 4);
1126 out:
1127 	return r;
1128 }
1129 
1130 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
1131 {
1132 	mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
1133 				pte_list_desc_cache);
1134 	mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
1135 	mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
1136 				mmu_page_header_cache);
1137 }
1138 
1139 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
1140 {
1141 	void *p;
1142 
1143 	BUG_ON(!mc->nobjs);
1144 	p = mc->objects[--mc->nobjs];
1145 	return p;
1146 }
1147 
1148 static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
1149 {
1150 	return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
1151 }
1152 
1153 static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
1154 {
1155 	kmem_cache_free(pte_list_desc_cache, pte_list_desc);
1156 }
1157 
1158 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
1159 {
1160 	if (!sp->role.direct)
1161 		return sp->gfns[index];
1162 
1163 	return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
1164 }
1165 
1166 static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
1167 {
1168 	if (!sp->role.direct) {
1169 		sp->gfns[index] = gfn;
1170 		return;
1171 	}
1172 
1173 	if (WARN_ON(gfn != kvm_mmu_page_get_gfn(sp, index)))
1174 		pr_err_ratelimited("gfn mismatch under direct page %llx "
1175 				   "(expected %llx, got %llx)\n",
1176 				   sp->gfn,
1177 				   kvm_mmu_page_get_gfn(sp, index), gfn);
1178 }
1179 
1180 /*
1181  * Return the pointer to the large page information for a given gfn,
1182  * handling slots that are not large page aligned.
1183  */
1184 static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
1185 					      struct kvm_memory_slot *slot,
1186 					      int level)
1187 {
1188 	unsigned long idx;
1189 
1190 	idx = gfn_to_index(gfn, slot->base_gfn, level);
1191 	return &slot->arch.lpage_info[level - 2][idx];
1192 }
1193 
1194 static void update_gfn_disallow_lpage_count(struct kvm_memory_slot *slot,
1195 					    gfn_t gfn, int count)
1196 {
1197 	struct kvm_lpage_info *linfo;
1198 	int i;
1199 
1200 	for (i = PG_LEVEL_2M; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) {
1201 		linfo = lpage_info_slot(gfn, slot, i);
1202 		linfo->disallow_lpage += count;
1203 		WARN_ON(linfo->disallow_lpage < 0);
1204 	}
1205 }
1206 
1207 void kvm_mmu_gfn_disallow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
1208 {
1209 	update_gfn_disallow_lpage_count(slot, gfn, 1);
1210 }
1211 
1212 void kvm_mmu_gfn_allow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
1213 {
1214 	update_gfn_disallow_lpage_count(slot, gfn, -1);
1215 }
1216 
1217 static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
1218 {
1219 	struct kvm_memslots *slots;
1220 	struct kvm_memory_slot *slot;
1221 	gfn_t gfn;
1222 
1223 	kvm->arch.indirect_shadow_pages++;
1224 	gfn = sp->gfn;
1225 	slots = kvm_memslots_for_spte_role(kvm, sp->role);
1226 	slot = __gfn_to_memslot(slots, gfn);
1227 
1228 	/* the non-leaf shadow pages are keeping readonly. */
1229 	if (sp->role.level > PG_LEVEL_4K)
1230 		return kvm_slot_page_track_add_page(kvm, slot, gfn,
1231 						    KVM_PAGE_TRACK_WRITE);
1232 
1233 	kvm_mmu_gfn_disallow_lpage(slot, gfn);
1234 }
1235 
1236 static void account_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1237 {
1238 	if (sp->lpage_disallowed)
1239 		return;
1240 
1241 	++kvm->stat.nx_lpage_splits;
1242 	list_add_tail(&sp->lpage_disallowed_link,
1243 		      &kvm->arch.lpage_disallowed_mmu_pages);
1244 	sp->lpage_disallowed = true;
1245 }
1246 
1247 static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
1248 {
1249 	struct kvm_memslots *slots;
1250 	struct kvm_memory_slot *slot;
1251 	gfn_t gfn;
1252 
1253 	kvm->arch.indirect_shadow_pages--;
1254 	gfn = sp->gfn;
1255 	slots = kvm_memslots_for_spte_role(kvm, sp->role);
1256 	slot = __gfn_to_memslot(slots, gfn);
1257 	if (sp->role.level > PG_LEVEL_4K)
1258 		return kvm_slot_page_track_remove_page(kvm, slot, gfn,
1259 						       KVM_PAGE_TRACK_WRITE);
1260 
1261 	kvm_mmu_gfn_allow_lpage(slot, gfn);
1262 }
1263 
1264 static void unaccount_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1265 {
1266 	--kvm->stat.nx_lpage_splits;
1267 	sp->lpage_disallowed = false;
1268 	list_del(&sp->lpage_disallowed_link);
1269 }
1270 
1271 static struct kvm_memory_slot *
1272 gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
1273 			    bool no_dirty_log)
1274 {
1275 	struct kvm_memory_slot *slot;
1276 
1277 	slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1278 	if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1279 		return NULL;
1280 	if (no_dirty_log && slot->dirty_bitmap)
1281 		return NULL;
1282 
1283 	return slot;
1284 }
1285 
1286 /*
1287  * About rmap_head encoding:
1288  *
1289  * If the bit zero of rmap_head->val is clear, then it points to the only spte
1290  * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct
1291  * pte_list_desc containing more mappings.
1292  */
1293 
1294 /*
1295  * Returns the number of pointers in the rmap chain, not counting the new one.
1296  */
1297 static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
1298 			struct kvm_rmap_head *rmap_head)
1299 {
1300 	struct pte_list_desc *desc;
1301 	int i, count = 0;
1302 
1303 	if (!rmap_head->val) {
1304 		rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
1305 		rmap_head->val = (unsigned long)spte;
1306 	} else if (!(rmap_head->val & 1)) {
1307 		rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
1308 		desc = mmu_alloc_pte_list_desc(vcpu);
1309 		desc->sptes[0] = (u64 *)rmap_head->val;
1310 		desc->sptes[1] = spte;
1311 		rmap_head->val = (unsigned long)desc | 1;
1312 		++count;
1313 	} else {
1314 		rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
1315 		desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1316 		while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
1317 			desc = desc->more;
1318 			count += PTE_LIST_EXT;
1319 		}
1320 		if (desc->sptes[PTE_LIST_EXT-1]) {
1321 			desc->more = mmu_alloc_pte_list_desc(vcpu);
1322 			desc = desc->more;
1323 		}
1324 		for (i = 0; desc->sptes[i]; ++i)
1325 			++count;
1326 		desc->sptes[i] = spte;
1327 	}
1328 	return count;
1329 }
1330 
1331 static void
1332 pte_list_desc_remove_entry(struct kvm_rmap_head *rmap_head,
1333 			   struct pte_list_desc *desc, int i,
1334 			   struct pte_list_desc *prev_desc)
1335 {
1336 	int j;
1337 
1338 	for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
1339 		;
1340 	desc->sptes[i] = desc->sptes[j];
1341 	desc->sptes[j] = NULL;
1342 	if (j != 0)
1343 		return;
1344 	if (!prev_desc && !desc->more)
1345 		rmap_head->val = 0;
1346 	else
1347 		if (prev_desc)
1348 			prev_desc->more = desc->more;
1349 		else
1350 			rmap_head->val = (unsigned long)desc->more | 1;
1351 	mmu_free_pte_list_desc(desc);
1352 }
1353 
1354 static void __pte_list_remove(u64 *spte, struct kvm_rmap_head *rmap_head)
1355 {
1356 	struct pte_list_desc *desc;
1357 	struct pte_list_desc *prev_desc;
1358 	int i;
1359 
1360 	if (!rmap_head->val) {
1361 		pr_err("%s: %p 0->BUG\n", __func__, spte);
1362 		BUG();
1363 	} else if (!(rmap_head->val & 1)) {
1364 		rmap_printk("%s:  %p 1->0\n", __func__, spte);
1365 		if ((u64 *)rmap_head->val != spte) {
1366 			pr_err("%s:  %p 1->BUG\n", __func__, spte);
1367 			BUG();
1368 		}
1369 		rmap_head->val = 0;
1370 	} else {
1371 		rmap_printk("%s:  %p many->many\n", __func__, spte);
1372 		desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1373 		prev_desc = NULL;
1374 		while (desc) {
1375 			for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i) {
1376 				if (desc->sptes[i] == spte) {
1377 					pte_list_desc_remove_entry(rmap_head,
1378 							desc, i, prev_desc);
1379 					return;
1380 				}
1381 			}
1382 			prev_desc = desc;
1383 			desc = desc->more;
1384 		}
1385 		pr_err("%s: %p many->many\n", __func__, spte);
1386 		BUG();
1387 	}
1388 }
1389 
1390 static void pte_list_remove(struct kvm_rmap_head *rmap_head, u64 *sptep)
1391 {
1392 	mmu_spte_clear_track_bits(sptep);
1393 	__pte_list_remove(sptep, rmap_head);
1394 }
1395 
1396 static struct kvm_rmap_head *__gfn_to_rmap(gfn_t gfn, int level,
1397 					   struct kvm_memory_slot *slot)
1398 {
1399 	unsigned long idx;
1400 
1401 	idx = gfn_to_index(gfn, slot->base_gfn, level);
1402 	return &slot->arch.rmap[level - PG_LEVEL_4K][idx];
1403 }
1404 
1405 static struct kvm_rmap_head *gfn_to_rmap(struct kvm *kvm, gfn_t gfn,
1406 					 struct kvm_mmu_page *sp)
1407 {
1408 	struct kvm_memslots *slots;
1409 	struct kvm_memory_slot *slot;
1410 
1411 	slots = kvm_memslots_for_spte_role(kvm, sp->role);
1412 	slot = __gfn_to_memslot(slots, gfn);
1413 	return __gfn_to_rmap(gfn, sp->role.level, slot);
1414 }
1415 
1416 static bool rmap_can_add(struct kvm_vcpu *vcpu)
1417 {
1418 	struct kvm_mmu_memory_cache *cache;
1419 
1420 	cache = &vcpu->arch.mmu_pte_list_desc_cache;
1421 	return mmu_memory_cache_free_objects(cache);
1422 }
1423 
1424 static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1425 {
1426 	struct kvm_mmu_page *sp;
1427 	struct kvm_rmap_head *rmap_head;
1428 
1429 	sp = page_header(__pa(spte));
1430 	kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
1431 	rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
1432 	return pte_list_add(vcpu, spte, rmap_head);
1433 }
1434 
1435 static void rmap_remove(struct kvm *kvm, u64 *spte)
1436 {
1437 	struct kvm_mmu_page *sp;
1438 	gfn_t gfn;
1439 	struct kvm_rmap_head *rmap_head;
1440 
1441 	sp = page_header(__pa(spte));
1442 	gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
1443 	rmap_head = gfn_to_rmap(kvm, gfn, sp);
1444 	__pte_list_remove(spte, rmap_head);
1445 }
1446 
1447 /*
1448  * Used by the following functions to iterate through the sptes linked by a
1449  * rmap.  All fields are private and not assumed to be used outside.
1450  */
1451 struct rmap_iterator {
1452 	/* private fields */
1453 	struct pte_list_desc *desc;	/* holds the sptep if not NULL */
1454 	int pos;			/* index of the sptep */
1455 };
1456 
1457 /*
1458  * Iteration must be started by this function.  This should also be used after
1459  * removing/dropping sptes from the rmap link because in such cases the
1460  * information in the iterator may not be valid.
1461  *
1462  * Returns sptep if found, NULL otherwise.
1463  */
1464 static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head,
1465 			   struct rmap_iterator *iter)
1466 {
1467 	u64 *sptep;
1468 
1469 	if (!rmap_head->val)
1470 		return NULL;
1471 
1472 	if (!(rmap_head->val & 1)) {
1473 		iter->desc = NULL;
1474 		sptep = (u64 *)rmap_head->val;
1475 		goto out;
1476 	}
1477 
1478 	iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1479 	iter->pos = 0;
1480 	sptep = iter->desc->sptes[iter->pos];
1481 out:
1482 	BUG_ON(!is_shadow_present_pte(*sptep));
1483 	return sptep;
1484 }
1485 
1486 /*
1487  * Must be used with a valid iterator: e.g. after rmap_get_first().
1488  *
1489  * Returns sptep if found, NULL otherwise.
1490  */
1491 static u64 *rmap_get_next(struct rmap_iterator *iter)
1492 {
1493 	u64 *sptep;
1494 
1495 	if (iter->desc) {
1496 		if (iter->pos < PTE_LIST_EXT - 1) {
1497 			++iter->pos;
1498 			sptep = iter->desc->sptes[iter->pos];
1499 			if (sptep)
1500 				goto out;
1501 		}
1502 
1503 		iter->desc = iter->desc->more;
1504 
1505 		if (iter->desc) {
1506 			iter->pos = 0;
1507 			/* desc->sptes[0] cannot be NULL */
1508 			sptep = iter->desc->sptes[iter->pos];
1509 			goto out;
1510 		}
1511 	}
1512 
1513 	return NULL;
1514 out:
1515 	BUG_ON(!is_shadow_present_pte(*sptep));
1516 	return sptep;
1517 }
1518 
1519 #define for_each_rmap_spte(_rmap_head_, _iter_, _spte_)			\
1520 	for (_spte_ = rmap_get_first(_rmap_head_, _iter_);		\
1521 	     _spte_; _spte_ = rmap_get_next(_iter_))
1522 
1523 static void drop_spte(struct kvm *kvm, u64 *sptep)
1524 {
1525 	if (mmu_spte_clear_track_bits(sptep))
1526 		rmap_remove(kvm, sptep);
1527 }
1528 
1529 
1530 static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
1531 {
1532 	if (is_large_pte(*sptep)) {
1533 		WARN_ON(page_header(__pa(sptep))->role.level == PG_LEVEL_4K);
1534 		drop_spte(kvm, sptep);
1535 		--kvm->stat.lpages;
1536 		return true;
1537 	}
1538 
1539 	return false;
1540 }
1541 
1542 static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1543 {
1544 	if (__drop_large_spte(vcpu->kvm, sptep)) {
1545 		struct kvm_mmu_page *sp = page_header(__pa(sptep));
1546 
1547 		kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn,
1548 			KVM_PAGES_PER_HPAGE(sp->role.level));
1549 	}
1550 }
1551 
1552 /*
1553  * Write-protect on the specified @sptep, @pt_protect indicates whether
1554  * spte write-protection is caused by protecting shadow page table.
1555  *
1556  * Note: write protection is difference between dirty logging and spte
1557  * protection:
1558  * - for dirty logging, the spte can be set to writable at anytime if
1559  *   its dirty bitmap is properly set.
1560  * - for spte protection, the spte can be writable only after unsync-ing
1561  *   shadow page.
1562  *
1563  * Return true if tlb need be flushed.
1564  */
1565 static bool spte_write_protect(u64 *sptep, bool pt_protect)
1566 {
1567 	u64 spte = *sptep;
1568 
1569 	if (!is_writable_pte(spte) &&
1570 	      !(pt_protect && spte_can_locklessly_be_made_writable(spte)))
1571 		return false;
1572 
1573 	rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);
1574 
1575 	if (pt_protect)
1576 		spte &= ~SPTE_MMU_WRITEABLE;
1577 	spte = spte & ~PT_WRITABLE_MASK;
1578 
1579 	return mmu_spte_update(sptep, spte);
1580 }
1581 
1582 static bool __rmap_write_protect(struct kvm *kvm,
1583 				 struct kvm_rmap_head *rmap_head,
1584 				 bool pt_protect)
1585 {
1586 	u64 *sptep;
1587 	struct rmap_iterator iter;
1588 	bool flush = false;
1589 
1590 	for_each_rmap_spte(rmap_head, &iter, sptep)
1591 		flush |= spte_write_protect(sptep, pt_protect);
1592 
1593 	return flush;
1594 }
1595 
1596 static bool spte_clear_dirty(u64 *sptep)
1597 {
1598 	u64 spte = *sptep;
1599 
1600 	rmap_printk("rmap_clear_dirty: spte %p %llx\n", sptep, *sptep);
1601 
1602 	MMU_WARN_ON(!spte_ad_enabled(spte));
1603 	spte &= ~shadow_dirty_mask;
1604 	return mmu_spte_update(sptep, spte);
1605 }
1606 
1607 static bool spte_wrprot_for_clear_dirty(u64 *sptep)
1608 {
1609 	bool was_writable = test_and_clear_bit(PT_WRITABLE_SHIFT,
1610 					       (unsigned long *)sptep);
1611 	if (was_writable && !spte_ad_enabled(*sptep))
1612 		kvm_set_pfn_dirty(spte_to_pfn(*sptep));
1613 
1614 	return was_writable;
1615 }
1616 
1617 /*
1618  * Gets the GFN ready for another round of dirty logging by clearing the
1619  *	- D bit on ad-enabled SPTEs, and
1620  *	- W bit on ad-disabled SPTEs.
1621  * Returns true iff any D or W bits were cleared.
1622  */
1623 static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1624 {
1625 	u64 *sptep;
1626 	struct rmap_iterator iter;
1627 	bool flush = false;
1628 
1629 	for_each_rmap_spte(rmap_head, &iter, sptep)
1630 		if (spte_ad_need_write_protect(*sptep))
1631 			flush |= spte_wrprot_for_clear_dirty(sptep);
1632 		else
1633 			flush |= spte_clear_dirty(sptep);
1634 
1635 	return flush;
1636 }
1637 
1638 static bool spte_set_dirty(u64 *sptep)
1639 {
1640 	u64 spte = *sptep;
1641 
1642 	rmap_printk("rmap_set_dirty: spte %p %llx\n", sptep, *sptep);
1643 
1644 	/*
1645 	 * Similar to the !kvm_x86_ops.slot_disable_log_dirty case,
1646 	 * do not bother adding back write access to pages marked
1647 	 * SPTE_AD_WRPROT_ONLY_MASK.
1648 	 */
1649 	spte |= shadow_dirty_mask;
1650 
1651 	return mmu_spte_update(sptep, spte);
1652 }
1653 
1654 static bool __rmap_set_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1655 {
1656 	u64 *sptep;
1657 	struct rmap_iterator iter;
1658 	bool flush = false;
1659 
1660 	for_each_rmap_spte(rmap_head, &iter, sptep)
1661 		if (spte_ad_enabled(*sptep))
1662 			flush |= spte_set_dirty(sptep);
1663 
1664 	return flush;
1665 }
1666 
1667 /**
1668  * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1669  * @kvm: kvm instance
1670  * @slot: slot to protect
1671  * @gfn_offset: start of the BITS_PER_LONG pages we care about
1672  * @mask: indicates which pages we should protect
1673  *
1674  * Used when we do not need to care about huge page mappings: e.g. during dirty
1675  * logging we do not have any such mappings.
1676  */
1677 static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1678 				     struct kvm_memory_slot *slot,
1679 				     gfn_t gfn_offset, unsigned long mask)
1680 {
1681 	struct kvm_rmap_head *rmap_head;
1682 
1683 	while (mask) {
1684 		rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1685 					  PG_LEVEL_4K, slot);
1686 		__rmap_write_protect(kvm, rmap_head, false);
1687 
1688 		/* clear the first set bit */
1689 		mask &= mask - 1;
1690 	}
1691 }
1692 
1693 /**
1694  * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages, or write
1695  * protect the page if the D-bit isn't supported.
1696  * @kvm: kvm instance
1697  * @slot: slot to clear D-bit
1698  * @gfn_offset: start of the BITS_PER_LONG pages we care about
1699  * @mask: indicates which pages we should clear D-bit
1700  *
1701  * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap.
1702  */
1703 void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
1704 				     struct kvm_memory_slot *slot,
1705 				     gfn_t gfn_offset, unsigned long mask)
1706 {
1707 	struct kvm_rmap_head *rmap_head;
1708 
1709 	while (mask) {
1710 		rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1711 					  PG_LEVEL_4K, slot);
1712 		__rmap_clear_dirty(kvm, rmap_head);
1713 
1714 		/* clear the first set bit */
1715 		mask &= mask - 1;
1716 	}
1717 }
1718 EXPORT_SYMBOL_GPL(kvm_mmu_clear_dirty_pt_masked);
1719 
1720 /**
1721  * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
1722  * PT level pages.
1723  *
1724  * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
1725  * enable dirty logging for them.
1726  *
1727  * Used when we do not need to care about huge page mappings: e.g. during dirty
1728  * logging we do not have any such mappings.
1729  */
1730 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1731 				struct kvm_memory_slot *slot,
1732 				gfn_t gfn_offset, unsigned long mask)
1733 {
1734 	if (kvm_x86_ops.enable_log_dirty_pt_masked)
1735 		kvm_x86_ops.enable_log_dirty_pt_masked(kvm, slot, gfn_offset,
1736 				mask);
1737 	else
1738 		kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
1739 }
1740 
1741 /**
1742  * kvm_arch_write_log_dirty - emulate dirty page logging
1743  * @vcpu: Guest mode vcpu
1744  *
1745  * Emulate arch specific page modification logging for the
1746  * nested hypervisor
1747  */
1748 int kvm_arch_write_log_dirty(struct kvm_vcpu *vcpu)
1749 {
1750 	if (kvm_x86_ops.write_log_dirty)
1751 		return kvm_x86_ops.write_log_dirty(vcpu);
1752 
1753 	return 0;
1754 }
1755 
1756 bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
1757 				    struct kvm_memory_slot *slot, u64 gfn)
1758 {
1759 	struct kvm_rmap_head *rmap_head;
1760 	int i;
1761 	bool write_protected = false;
1762 
1763 	for (i = PG_LEVEL_4K; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) {
1764 		rmap_head = __gfn_to_rmap(gfn, i, slot);
1765 		write_protected |= __rmap_write_protect(kvm, rmap_head, true);
1766 	}
1767 
1768 	return write_protected;
1769 }
1770 
1771 static bool rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn)
1772 {
1773 	struct kvm_memory_slot *slot;
1774 
1775 	slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1776 	return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn);
1777 }
1778 
1779 static bool kvm_zap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1780 {
1781 	u64 *sptep;
1782 	struct rmap_iterator iter;
1783 	bool flush = false;
1784 
1785 	while ((sptep = rmap_get_first(rmap_head, &iter))) {
1786 		rmap_printk("%s: spte %p %llx.\n", __func__, sptep, *sptep);
1787 
1788 		pte_list_remove(rmap_head, sptep);
1789 		flush = true;
1790 	}
1791 
1792 	return flush;
1793 }
1794 
1795 static int kvm_unmap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1796 			   struct kvm_memory_slot *slot, gfn_t gfn, int level,
1797 			   unsigned long data)
1798 {
1799 	return kvm_zap_rmapp(kvm, rmap_head);
1800 }
1801 
1802 static int kvm_set_pte_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1803 			     struct kvm_memory_slot *slot, gfn_t gfn, int level,
1804 			     unsigned long data)
1805 {
1806 	u64 *sptep;
1807 	struct rmap_iterator iter;
1808 	int need_flush = 0;
1809 	u64 new_spte;
1810 	pte_t *ptep = (pte_t *)data;
1811 	kvm_pfn_t new_pfn;
1812 
1813 	WARN_ON(pte_huge(*ptep));
1814 	new_pfn = pte_pfn(*ptep);
1815 
1816 restart:
1817 	for_each_rmap_spte(rmap_head, &iter, sptep) {
1818 		rmap_printk("kvm_set_pte_rmapp: spte %p %llx gfn %llx (%d)\n",
1819 			    sptep, *sptep, gfn, level);
1820 
1821 		need_flush = 1;
1822 
1823 		if (pte_write(*ptep)) {
1824 			pte_list_remove(rmap_head, sptep);
1825 			goto restart;
1826 		} else {
1827 			new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
1828 			new_spte |= (u64)new_pfn << PAGE_SHIFT;
1829 
1830 			new_spte &= ~PT_WRITABLE_MASK;
1831 			new_spte &= ~SPTE_HOST_WRITEABLE;
1832 
1833 			new_spte = mark_spte_for_access_track(new_spte);
1834 
1835 			mmu_spte_clear_track_bits(sptep);
1836 			mmu_spte_set(sptep, new_spte);
1837 		}
1838 	}
1839 
1840 	if (need_flush && kvm_available_flush_tlb_with_range()) {
1841 		kvm_flush_remote_tlbs_with_address(kvm, gfn, 1);
1842 		return 0;
1843 	}
1844 
1845 	return need_flush;
1846 }
1847 
1848 struct slot_rmap_walk_iterator {
1849 	/* input fields. */
1850 	struct kvm_memory_slot *slot;
1851 	gfn_t start_gfn;
1852 	gfn_t end_gfn;
1853 	int start_level;
1854 	int end_level;
1855 
1856 	/* output fields. */
1857 	gfn_t gfn;
1858 	struct kvm_rmap_head *rmap;
1859 	int level;
1860 
1861 	/* private field. */
1862 	struct kvm_rmap_head *end_rmap;
1863 };
1864 
1865 static void
1866 rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level)
1867 {
1868 	iterator->level = level;
1869 	iterator->gfn = iterator->start_gfn;
1870 	iterator->rmap = __gfn_to_rmap(iterator->gfn, level, iterator->slot);
1871 	iterator->end_rmap = __gfn_to_rmap(iterator->end_gfn, level,
1872 					   iterator->slot);
1873 }
1874 
1875 static void
1876 slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator,
1877 		    struct kvm_memory_slot *slot, int start_level,
1878 		    int end_level, gfn_t start_gfn, gfn_t end_gfn)
1879 {
1880 	iterator->slot = slot;
1881 	iterator->start_level = start_level;
1882 	iterator->end_level = end_level;
1883 	iterator->start_gfn = start_gfn;
1884 	iterator->end_gfn = end_gfn;
1885 
1886 	rmap_walk_init_level(iterator, iterator->start_level);
1887 }
1888 
1889 static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator)
1890 {
1891 	return !!iterator->rmap;
1892 }
1893 
1894 static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
1895 {
1896 	if (++iterator->rmap <= iterator->end_rmap) {
1897 		iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level));
1898 		return;
1899 	}
1900 
1901 	if (++iterator->level > iterator->end_level) {
1902 		iterator->rmap = NULL;
1903 		return;
1904 	}
1905 
1906 	rmap_walk_init_level(iterator, iterator->level);
1907 }
1908 
1909 #define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_,	\
1910 	   _start_gfn, _end_gfn, _iter_)				\
1911 	for (slot_rmap_walk_init(_iter_, _slot_, _start_level_,		\
1912 				 _end_level_, _start_gfn, _end_gfn);	\
1913 	     slot_rmap_walk_okay(_iter_);				\
1914 	     slot_rmap_walk_next(_iter_))
1915 
1916 static int kvm_handle_hva_range(struct kvm *kvm,
1917 				unsigned long start,
1918 				unsigned long end,
1919 				unsigned long data,
1920 				int (*handler)(struct kvm *kvm,
1921 					       struct kvm_rmap_head *rmap_head,
1922 					       struct kvm_memory_slot *slot,
1923 					       gfn_t gfn,
1924 					       int level,
1925 					       unsigned long data))
1926 {
1927 	struct kvm_memslots *slots;
1928 	struct kvm_memory_slot *memslot;
1929 	struct slot_rmap_walk_iterator iterator;
1930 	int ret = 0;
1931 	int i;
1932 
1933 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
1934 		slots = __kvm_memslots(kvm, i);
1935 		kvm_for_each_memslot(memslot, slots) {
1936 			unsigned long hva_start, hva_end;
1937 			gfn_t gfn_start, gfn_end;
1938 
1939 			hva_start = max(start, memslot->userspace_addr);
1940 			hva_end = min(end, memslot->userspace_addr +
1941 				      (memslot->npages << PAGE_SHIFT));
1942 			if (hva_start >= hva_end)
1943 				continue;
1944 			/*
1945 			 * {gfn(page) | page intersects with [hva_start, hva_end)} =
1946 			 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
1947 			 */
1948 			gfn_start = hva_to_gfn_memslot(hva_start, memslot);
1949 			gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
1950 
1951 			for_each_slot_rmap_range(memslot, PG_LEVEL_4K,
1952 						 KVM_MAX_HUGEPAGE_LEVEL,
1953 						 gfn_start, gfn_end - 1,
1954 						 &iterator)
1955 				ret |= handler(kvm, iterator.rmap, memslot,
1956 					       iterator.gfn, iterator.level, data);
1957 		}
1958 	}
1959 
1960 	return ret;
1961 }
1962 
1963 static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
1964 			  unsigned long data,
1965 			  int (*handler)(struct kvm *kvm,
1966 					 struct kvm_rmap_head *rmap_head,
1967 					 struct kvm_memory_slot *slot,
1968 					 gfn_t gfn, int level,
1969 					 unsigned long data))
1970 {
1971 	return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
1972 }
1973 
1974 int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
1975 {
1976 	return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
1977 }
1978 
1979 int kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1980 {
1981 	return kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
1982 }
1983 
1984 static int kvm_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1985 			 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1986 			 unsigned long data)
1987 {
1988 	u64 *sptep;
1989 	struct rmap_iterator uninitialized_var(iter);
1990 	int young = 0;
1991 
1992 	for_each_rmap_spte(rmap_head, &iter, sptep)
1993 		young |= mmu_spte_age(sptep);
1994 
1995 	trace_kvm_age_page(gfn, level, slot, young);
1996 	return young;
1997 }
1998 
1999 static int kvm_test_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
2000 			      struct kvm_memory_slot *slot, gfn_t gfn,
2001 			      int level, unsigned long data)
2002 {
2003 	u64 *sptep;
2004 	struct rmap_iterator iter;
2005 
2006 	for_each_rmap_spte(rmap_head, &iter, sptep)
2007 		if (is_accessed_spte(*sptep))
2008 			return 1;
2009 	return 0;
2010 }
2011 
2012 #define RMAP_RECYCLE_THRESHOLD 1000
2013 
2014 static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
2015 {
2016 	struct kvm_rmap_head *rmap_head;
2017 	struct kvm_mmu_page *sp;
2018 
2019 	sp = page_header(__pa(spte));
2020 
2021 	rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
2022 
2023 	kvm_unmap_rmapp(vcpu->kvm, rmap_head, NULL, gfn, sp->role.level, 0);
2024 	kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn,
2025 			KVM_PAGES_PER_HPAGE(sp->role.level));
2026 }
2027 
2028 int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
2029 {
2030 	return kvm_handle_hva_range(kvm, start, end, 0, kvm_age_rmapp);
2031 }
2032 
2033 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
2034 {
2035 	return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
2036 }
2037 
2038 #ifdef MMU_DEBUG
2039 static int is_empty_shadow_page(u64 *spt)
2040 {
2041 	u64 *pos;
2042 	u64 *end;
2043 
2044 	for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
2045 		if (is_shadow_present_pte(*pos)) {
2046 			printk(KERN_ERR "%s: %p %llx\n", __func__,
2047 			       pos, *pos);
2048 			return 0;
2049 		}
2050 	return 1;
2051 }
2052 #endif
2053 
2054 /*
2055  * This value is the sum of all of the kvm instances's
2056  * kvm->arch.n_used_mmu_pages values.  We need a global,
2057  * aggregate version in order to make the slab shrinker
2058  * faster
2059  */
2060 static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, unsigned long nr)
2061 {
2062 	kvm->arch.n_used_mmu_pages += nr;
2063 	percpu_counter_add(&kvm_total_used_mmu_pages, nr);
2064 }
2065 
2066 static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
2067 {
2068 	MMU_WARN_ON(!is_empty_shadow_page(sp->spt));
2069 	hlist_del(&sp->hash_link);
2070 	list_del(&sp->link);
2071 	free_page((unsigned long)sp->spt);
2072 	if (!sp->role.direct)
2073 		free_page((unsigned long)sp->gfns);
2074 	kmem_cache_free(mmu_page_header_cache, sp);
2075 }
2076 
2077 static unsigned kvm_page_table_hashfn(gfn_t gfn)
2078 {
2079 	return hash_64(gfn, KVM_MMU_HASH_SHIFT);
2080 }
2081 
2082 static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
2083 				    struct kvm_mmu_page *sp, u64 *parent_pte)
2084 {
2085 	if (!parent_pte)
2086 		return;
2087 
2088 	pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
2089 }
2090 
2091 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
2092 				       u64 *parent_pte)
2093 {
2094 	__pte_list_remove(parent_pte, &sp->parent_ptes);
2095 }
2096 
2097 static void drop_parent_pte(struct kvm_mmu_page *sp,
2098 			    u64 *parent_pte)
2099 {
2100 	mmu_page_remove_parent_pte(sp, parent_pte);
2101 	mmu_spte_clear_no_track(parent_pte);
2102 }
2103 
2104 static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu, int direct)
2105 {
2106 	struct kvm_mmu_page *sp;
2107 
2108 	sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
2109 	sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
2110 	if (!direct)
2111 		sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
2112 	set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
2113 
2114 	/*
2115 	 * active_mmu_pages must be a FIFO list, as kvm_zap_obsolete_pages()
2116 	 * depends on valid pages being added to the head of the list.  See
2117 	 * comments in kvm_zap_obsolete_pages().
2118 	 */
2119 	sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
2120 	list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
2121 	kvm_mod_used_mmu_pages(vcpu->kvm, +1);
2122 	return sp;
2123 }
2124 
2125 static void mark_unsync(u64 *spte);
2126 static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
2127 {
2128 	u64 *sptep;
2129 	struct rmap_iterator iter;
2130 
2131 	for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) {
2132 		mark_unsync(sptep);
2133 	}
2134 }
2135 
2136 static void mark_unsync(u64 *spte)
2137 {
2138 	struct kvm_mmu_page *sp;
2139 	unsigned int index;
2140 
2141 	sp = page_header(__pa(spte));
2142 	index = spte - sp->spt;
2143 	if (__test_and_set_bit(index, sp->unsync_child_bitmap))
2144 		return;
2145 	if (sp->unsync_children++)
2146 		return;
2147 	kvm_mmu_mark_parents_unsync(sp);
2148 }
2149 
2150 static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
2151 			       struct kvm_mmu_page *sp)
2152 {
2153 	return 0;
2154 }
2155 
2156 static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
2157 				 struct kvm_mmu_page *sp, u64 *spte,
2158 				 const void *pte)
2159 {
2160 	WARN_ON(1);
2161 }
2162 
2163 #define KVM_PAGE_ARRAY_NR 16
2164 
2165 struct kvm_mmu_pages {
2166 	struct mmu_page_and_offset {
2167 		struct kvm_mmu_page *sp;
2168 		unsigned int idx;
2169 	} page[KVM_PAGE_ARRAY_NR];
2170 	unsigned int nr;
2171 };
2172 
2173 static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
2174 			 int idx)
2175 {
2176 	int i;
2177 
2178 	if (sp->unsync)
2179 		for (i=0; i < pvec->nr; i++)
2180 			if (pvec->page[i].sp == sp)
2181 				return 0;
2182 
2183 	pvec->page[pvec->nr].sp = sp;
2184 	pvec->page[pvec->nr].idx = idx;
2185 	pvec->nr++;
2186 	return (pvec->nr == KVM_PAGE_ARRAY_NR);
2187 }
2188 
2189 static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx)
2190 {
2191 	--sp->unsync_children;
2192 	WARN_ON((int)sp->unsync_children < 0);
2193 	__clear_bit(idx, sp->unsync_child_bitmap);
2194 }
2195 
2196 static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
2197 			   struct kvm_mmu_pages *pvec)
2198 {
2199 	int i, ret, nr_unsync_leaf = 0;
2200 
2201 	for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
2202 		struct kvm_mmu_page *child;
2203 		u64 ent = sp->spt[i];
2204 
2205 		if (!is_shadow_present_pte(ent) || is_large_pte(ent)) {
2206 			clear_unsync_child_bit(sp, i);
2207 			continue;
2208 		}
2209 
2210 		child = page_header(ent & PT64_BASE_ADDR_MASK);
2211 
2212 		if (child->unsync_children) {
2213 			if (mmu_pages_add(pvec, child, i))
2214 				return -ENOSPC;
2215 
2216 			ret = __mmu_unsync_walk(child, pvec);
2217 			if (!ret) {
2218 				clear_unsync_child_bit(sp, i);
2219 				continue;
2220 			} else if (ret > 0) {
2221 				nr_unsync_leaf += ret;
2222 			} else
2223 				return ret;
2224 		} else if (child->unsync) {
2225 			nr_unsync_leaf++;
2226 			if (mmu_pages_add(pvec, child, i))
2227 				return -ENOSPC;
2228 		} else
2229 			clear_unsync_child_bit(sp, i);
2230 	}
2231 
2232 	return nr_unsync_leaf;
2233 }
2234 
2235 #define INVALID_INDEX (-1)
2236 
2237 static int mmu_unsync_walk(struct kvm_mmu_page *sp,
2238 			   struct kvm_mmu_pages *pvec)
2239 {
2240 	pvec->nr = 0;
2241 	if (!sp->unsync_children)
2242 		return 0;
2243 
2244 	mmu_pages_add(pvec, sp, INVALID_INDEX);
2245 	return __mmu_unsync_walk(sp, pvec);
2246 }
2247 
2248 static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
2249 {
2250 	WARN_ON(!sp->unsync);
2251 	trace_kvm_mmu_sync_page(sp);
2252 	sp->unsync = 0;
2253 	--kvm->stat.mmu_unsync;
2254 }
2255 
2256 static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2257 				     struct list_head *invalid_list);
2258 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2259 				    struct list_head *invalid_list);
2260 
2261 
2262 #define for_each_valid_sp(_kvm, _sp, _gfn)				\
2263 	hlist_for_each_entry(_sp,					\
2264 	  &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)], hash_link) \
2265 		if (is_obsolete_sp((_kvm), (_sp))) {			\
2266 		} else
2267 
2268 #define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn)			\
2269 	for_each_valid_sp(_kvm, _sp, _gfn)				\
2270 		if ((_sp)->gfn != (_gfn) || (_sp)->role.direct) {} else
2271 
2272 static inline bool is_ept_sp(struct kvm_mmu_page *sp)
2273 {
2274 	return sp->role.cr0_wp && sp->role.smap_andnot_wp;
2275 }
2276 
2277 /* @sp->gfn should be write-protected at the call site */
2278 static bool __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
2279 			    struct list_head *invalid_list)
2280 {
2281 	if ((!is_ept_sp(sp) && sp->role.gpte_is_8_bytes != !!is_pae(vcpu)) ||
2282 	    vcpu->arch.mmu->sync_page(vcpu, sp) == 0) {
2283 		kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
2284 		return false;
2285 	}
2286 
2287 	return true;
2288 }
2289 
2290 static bool kvm_mmu_remote_flush_or_zap(struct kvm *kvm,
2291 					struct list_head *invalid_list,
2292 					bool remote_flush)
2293 {
2294 	if (!remote_flush && list_empty(invalid_list))
2295 		return false;
2296 
2297 	if (!list_empty(invalid_list))
2298 		kvm_mmu_commit_zap_page(kvm, invalid_list);
2299 	else
2300 		kvm_flush_remote_tlbs(kvm);
2301 	return true;
2302 }
2303 
2304 static void kvm_mmu_flush_or_zap(struct kvm_vcpu *vcpu,
2305 				 struct list_head *invalid_list,
2306 				 bool remote_flush, bool local_flush)
2307 {
2308 	if (kvm_mmu_remote_flush_or_zap(vcpu->kvm, invalid_list, remote_flush))
2309 		return;
2310 
2311 	if (local_flush)
2312 		kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
2313 }
2314 
2315 #ifdef CONFIG_KVM_MMU_AUDIT
2316 #include "mmu_audit.c"
2317 #else
2318 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
2319 static void mmu_audit_disable(void) { }
2320 #endif
2321 
2322 static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
2323 {
2324 	return sp->role.invalid ||
2325 	       unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
2326 }
2327 
2328 static bool kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
2329 			 struct list_head *invalid_list)
2330 {
2331 	kvm_unlink_unsync_page(vcpu->kvm, sp);
2332 	return __kvm_sync_page(vcpu, sp, invalid_list);
2333 }
2334 
2335 /* @gfn should be write-protected at the call site */
2336 static bool kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn,
2337 			   struct list_head *invalid_list)
2338 {
2339 	struct kvm_mmu_page *s;
2340 	bool ret = false;
2341 
2342 	for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
2343 		if (!s->unsync)
2344 			continue;
2345 
2346 		WARN_ON(s->role.level != PG_LEVEL_4K);
2347 		ret |= kvm_sync_page(vcpu, s, invalid_list);
2348 	}
2349 
2350 	return ret;
2351 }
2352 
2353 struct mmu_page_path {
2354 	struct kvm_mmu_page *parent[PT64_ROOT_MAX_LEVEL];
2355 	unsigned int idx[PT64_ROOT_MAX_LEVEL];
2356 };
2357 
2358 #define for_each_sp(pvec, sp, parents, i)			\
2359 		for (i = mmu_pages_first(&pvec, &parents);	\
2360 			i < pvec.nr && ({ sp = pvec.page[i].sp; 1;});	\
2361 			i = mmu_pages_next(&pvec, &parents, i))
2362 
2363 static int mmu_pages_next(struct kvm_mmu_pages *pvec,
2364 			  struct mmu_page_path *parents,
2365 			  int i)
2366 {
2367 	int n;
2368 
2369 	for (n = i+1; n < pvec->nr; n++) {
2370 		struct kvm_mmu_page *sp = pvec->page[n].sp;
2371 		unsigned idx = pvec->page[n].idx;
2372 		int level = sp->role.level;
2373 
2374 		parents->idx[level-1] = idx;
2375 		if (level == PG_LEVEL_4K)
2376 			break;
2377 
2378 		parents->parent[level-2] = sp;
2379 	}
2380 
2381 	return n;
2382 }
2383 
2384 static int mmu_pages_first(struct kvm_mmu_pages *pvec,
2385 			   struct mmu_page_path *parents)
2386 {
2387 	struct kvm_mmu_page *sp;
2388 	int level;
2389 
2390 	if (pvec->nr == 0)
2391 		return 0;
2392 
2393 	WARN_ON(pvec->page[0].idx != INVALID_INDEX);
2394 
2395 	sp = pvec->page[0].sp;
2396 	level = sp->role.level;
2397 	WARN_ON(level == PG_LEVEL_4K);
2398 
2399 	parents->parent[level-2] = sp;
2400 
2401 	/* Also set up a sentinel.  Further entries in pvec are all
2402 	 * children of sp, so this element is never overwritten.
2403 	 */
2404 	parents->parent[level-1] = NULL;
2405 	return mmu_pages_next(pvec, parents, 0);
2406 }
2407 
2408 static void mmu_pages_clear_parents(struct mmu_page_path *parents)
2409 {
2410 	struct kvm_mmu_page *sp;
2411 	unsigned int level = 0;
2412 
2413 	do {
2414 		unsigned int idx = parents->idx[level];
2415 		sp = parents->parent[level];
2416 		if (!sp)
2417 			return;
2418 
2419 		WARN_ON(idx == INVALID_INDEX);
2420 		clear_unsync_child_bit(sp, idx);
2421 		level++;
2422 	} while (!sp->unsync_children);
2423 }
2424 
2425 static void mmu_sync_children(struct kvm_vcpu *vcpu,
2426 			      struct kvm_mmu_page *parent)
2427 {
2428 	int i;
2429 	struct kvm_mmu_page *sp;
2430 	struct mmu_page_path parents;
2431 	struct kvm_mmu_pages pages;
2432 	LIST_HEAD(invalid_list);
2433 	bool flush = false;
2434 
2435 	while (mmu_unsync_walk(parent, &pages)) {
2436 		bool protected = false;
2437 
2438 		for_each_sp(pages, sp, parents, i)
2439 			protected |= rmap_write_protect(vcpu, sp->gfn);
2440 
2441 		if (protected) {
2442 			kvm_flush_remote_tlbs(vcpu->kvm);
2443 			flush = false;
2444 		}
2445 
2446 		for_each_sp(pages, sp, parents, i) {
2447 			flush |= kvm_sync_page(vcpu, sp, &invalid_list);
2448 			mmu_pages_clear_parents(&parents);
2449 		}
2450 		if (need_resched() || spin_needbreak(&vcpu->kvm->mmu_lock)) {
2451 			kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2452 			cond_resched_lock(&vcpu->kvm->mmu_lock);
2453 			flush = false;
2454 		}
2455 	}
2456 
2457 	kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2458 }
2459 
2460 static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
2461 {
2462 	atomic_set(&sp->write_flooding_count,  0);
2463 }
2464 
2465 static void clear_sp_write_flooding_count(u64 *spte)
2466 {
2467 	struct kvm_mmu_page *sp =  page_header(__pa(spte));
2468 
2469 	__clear_sp_write_flooding_count(sp);
2470 }
2471 
2472 static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
2473 					     gfn_t gfn,
2474 					     gva_t gaddr,
2475 					     unsigned level,
2476 					     int direct,
2477 					     unsigned int access)
2478 {
2479 	union kvm_mmu_page_role role;
2480 	unsigned quadrant;
2481 	struct kvm_mmu_page *sp;
2482 	bool need_sync = false;
2483 	bool flush = false;
2484 	int collisions = 0;
2485 	LIST_HEAD(invalid_list);
2486 
2487 	role = vcpu->arch.mmu->mmu_role.base;
2488 	role.level = level;
2489 	role.direct = direct;
2490 	if (role.direct)
2491 		role.gpte_is_8_bytes = true;
2492 	role.access = access;
2493 	if (!vcpu->arch.mmu->direct_map
2494 	    && vcpu->arch.mmu->root_level <= PT32_ROOT_LEVEL) {
2495 		quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
2496 		quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
2497 		role.quadrant = quadrant;
2498 	}
2499 	for_each_valid_sp(vcpu->kvm, sp, gfn) {
2500 		if (sp->gfn != gfn) {
2501 			collisions++;
2502 			continue;
2503 		}
2504 
2505 		if (!need_sync && sp->unsync)
2506 			need_sync = true;
2507 
2508 		if (sp->role.word != role.word)
2509 			continue;
2510 
2511 		if (sp->unsync) {
2512 			/* The page is good, but __kvm_sync_page might still end
2513 			 * up zapping it.  If so, break in order to rebuild it.
2514 			 */
2515 			if (!__kvm_sync_page(vcpu, sp, &invalid_list))
2516 				break;
2517 
2518 			WARN_ON(!list_empty(&invalid_list));
2519 			kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
2520 		}
2521 
2522 		if (sp->unsync_children)
2523 			kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
2524 
2525 		__clear_sp_write_flooding_count(sp);
2526 		trace_kvm_mmu_get_page(sp, false);
2527 		goto out;
2528 	}
2529 
2530 	++vcpu->kvm->stat.mmu_cache_miss;
2531 
2532 	sp = kvm_mmu_alloc_page(vcpu, direct);
2533 
2534 	sp->gfn = gfn;
2535 	sp->role = role;
2536 	hlist_add_head(&sp->hash_link,
2537 		&vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
2538 	if (!direct) {
2539 		/*
2540 		 * we should do write protection before syncing pages
2541 		 * otherwise the content of the synced shadow page may
2542 		 * be inconsistent with guest page table.
2543 		 */
2544 		account_shadowed(vcpu->kvm, sp);
2545 		if (level == PG_LEVEL_4K && rmap_write_protect(vcpu, gfn))
2546 			kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn, 1);
2547 
2548 		if (level > PG_LEVEL_4K && need_sync)
2549 			flush |= kvm_sync_pages(vcpu, gfn, &invalid_list);
2550 	}
2551 	clear_page(sp->spt);
2552 	trace_kvm_mmu_get_page(sp, true);
2553 
2554 	kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2555 out:
2556 	if (collisions > vcpu->kvm->stat.max_mmu_page_hash_collisions)
2557 		vcpu->kvm->stat.max_mmu_page_hash_collisions = collisions;
2558 	return sp;
2559 }
2560 
2561 static void shadow_walk_init_using_root(struct kvm_shadow_walk_iterator *iterator,
2562 					struct kvm_vcpu *vcpu, hpa_t root,
2563 					u64 addr)
2564 {
2565 	iterator->addr = addr;
2566 	iterator->shadow_addr = root;
2567 	iterator->level = vcpu->arch.mmu->shadow_root_level;
2568 
2569 	if (iterator->level == PT64_ROOT_4LEVEL &&
2570 	    vcpu->arch.mmu->root_level < PT64_ROOT_4LEVEL &&
2571 	    !vcpu->arch.mmu->direct_map)
2572 		--iterator->level;
2573 
2574 	if (iterator->level == PT32E_ROOT_LEVEL) {
2575 		/*
2576 		 * prev_root is currently only used for 64-bit hosts. So only
2577 		 * the active root_hpa is valid here.
2578 		 */
2579 		BUG_ON(root != vcpu->arch.mmu->root_hpa);
2580 
2581 		iterator->shadow_addr
2582 			= vcpu->arch.mmu->pae_root[(addr >> 30) & 3];
2583 		iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
2584 		--iterator->level;
2585 		if (!iterator->shadow_addr)
2586 			iterator->level = 0;
2587 	}
2588 }
2589 
2590 static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
2591 			     struct kvm_vcpu *vcpu, u64 addr)
2592 {
2593 	shadow_walk_init_using_root(iterator, vcpu, vcpu->arch.mmu->root_hpa,
2594 				    addr);
2595 }
2596 
2597 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
2598 {
2599 	if (iterator->level < PG_LEVEL_4K)
2600 		return false;
2601 
2602 	iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
2603 	iterator->sptep	= ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
2604 	return true;
2605 }
2606 
2607 static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
2608 			       u64 spte)
2609 {
2610 	if (is_last_spte(spte, iterator->level)) {
2611 		iterator->level = 0;
2612 		return;
2613 	}
2614 
2615 	iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2616 	--iterator->level;
2617 }
2618 
2619 static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
2620 {
2621 	__shadow_walk_next(iterator, *iterator->sptep);
2622 }
2623 
2624 static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep,
2625 			     struct kvm_mmu_page *sp)
2626 {
2627 	u64 spte;
2628 
2629 	BUILD_BUG_ON(VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);
2630 
2631 	spte = __pa(sp->spt) | shadow_present_mask | PT_WRITABLE_MASK |
2632 	       shadow_user_mask | shadow_x_mask | shadow_me_mask;
2633 
2634 	if (sp_ad_disabled(sp))
2635 		spte |= SPTE_AD_DISABLED_MASK;
2636 	else
2637 		spte |= shadow_accessed_mask;
2638 
2639 	mmu_spte_set(sptep, spte);
2640 
2641 	mmu_page_add_parent_pte(vcpu, sp, sptep);
2642 
2643 	if (sp->unsync_children || sp->unsync)
2644 		mark_unsync(sptep);
2645 }
2646 
2647 static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2648 				   unsigned direct_access)
2649 {
2650 	if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
2651 		struct kvm_mmu_page *child;
2652 
2653 		/*
2654 		 * For the direct sp, if the guest pte's dirty bit
2655 		 * changed form clean to dirty, it will corrupt the
2656 		 * sp's access: allow writable in the read-only sp,
2657 		 * so we should update the spte at this point to get
2658 		 * a new sp with the correct access.
2659 		 */
2660 		child = page_header(*sptep & PT64_BASE_ADDR_MASK);
2661 		if (child->role.access == direct_access)
2662 			return;
2663 
2664 		drop_parent_pte(child, sptep);
2665 		kvm_flush_remote_tlbs_with_address(vcpu->kvm, child->gfn, 1);
2666 	}
2667 }
2668 
2669 static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
2670 			     u64 *spte)
2671 {
2672 	u64 pte;
2673 	struct kvm_mmu_page *child;
2674 
2675 	pte = *spte;
2676 	if (is_shadow_present_pte(pte)) {
2677 		if (is_last_spte(pte, sp->role.level)) {
2678 			drop_spte(kvm, spte);
2679 			if (is_large_pte(pte))
2680 				--kvm->stat.lpages;
2681 		} else {
2682 			child = page_header(pte & PT64_BASE_ADDR_MASK);
2683 			drop_parent_pte(child, spte);
2684 		}
2685 		return true;
2686 	}
2687 
2688 	if (is_mmio_spte(pte))
2689 		mmu_spte_clear_no_track(spte);
2690 
2691 	return false;
2692 }
2693 
2694 static void kvm_mmu_page_unlink_children(struct kvm *kvm,
2695 					 struct kvm_mmu_page *sp)
2696 {
2697 	unsigned i;
2698 
2699 	for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2700 		mmu_page_zap_pte(kvm, sp, sp->spt + i);
2701 }
2702 
2703 static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
2704 {
2705 	u64 *sptep;
2706 	struct rmap_iterator iter;
2707 
2708 	while ((sptep = rmap_get_first(&sp->parent_ptes, &iter)))
2709 		drop_parent_pte(sp, sptep);
2710 }
2711 
2712 static int mmu_zap_unsync_children(struct kvm *kvm,
2713 				   struct kvm_mmu_page *parent,
2714 				   struct list_head *invalid_list)
2715 {
2716 	int i, zapped = 0;
2717 	struct mmu_page_path parents;
2718 	struct kvm_mmu_pages pages;
2719 
2720 	if (parent->role.level == PG_LEVEL_4K)
2721 		return 0;
2722 
2723 	while (mmu_unsync_walk(parent, &pages)) {
2724 		struct kvm_mmu_page *sp;
2725 
2726 		for_each_sp(pages, sp, parents, i) {
2727 			kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2728 			mmu_pages_clear_parents(&parents);
2729 			zapped++;
2730 		}
2731 	}
2732 
2733 	return zapped;
2734 }
2735 
2736 static bool __kvm_mmu_prepare_zap_page(struct kvm *kvm,
2737 				       struct kvm_mmu_page *sp,
2738 				       struct list_head *invalid_list,
2739 				       int *nr_zapped)
2740 {
2741 	bool list_unstable;
2742 
2743 	trace_kvm_mmu_prepare_zap_page(sp);
2744 	++kvm->stat.mmu_shadow_zapped;
2745 	*nr_zapped = mmu_zap_unsync_children(kvm, sp, invalid_list);
2746 	kvm_mmu_page_unlink_children(kvm, sp);
2747 	kvm_mmu_unlink_parents(kvm, sp);
2748 
2749 	/* Zapping children means active_mmu_pages has become unstable. */
2750 	list_unstable = *nr_zapped;
2751 
2752 	if (!sp->role.invalid && !sp->role.direct)
2753 		unaccount_shadowed(kvm, sp);
2754 
2755 	if (sp->unsync)
2756 		kvm_unlink_unsync_page(kvm, sp);
2757 	if (!sp->root_count) {
2758 		/* Count self */
2759 		(*nr_zapped)++;
2760 		list_move(&sp->link, invalid_list);
2761 		kvm_mod_used_mmu_pages(kvm, -1);
2762 	} else {
2763 		list_move(&sp->link, &kvm->arch.active_mmu_pages);
2764 
2765 		/*
2766 		 * Obsolete pages cannot be used on any vCPUs, see the comment
2767 		 * in kvm_mmu_zap_all_fast().  Note, is_obsolete_sp() also
2768 		 * treats invalid shadow pages as being obsolete.
2769 		 */
2770 		if (!is_obsolete_sp(kvm, sp))
2771 			kvm_reload_remote_mmus(kvm);
2772 	}
2773 
2774 	if (sp->lpage_disallowed)
2775 		unaccount_huge_nx_page(kvm, sp);
2776 
2777 	sp->role.invalid = 1;
2778 	return list_unstable;
2779 }
2780 
2781 static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2782 				     struct list_head *invalid_list)
2783 {
2784 	int nr_zapped;
2785 
2786 	__kvm_mmu_prepare_zap_page(kvm, sp, invalid_list, &nr_zapped);
2787 	return nr_zapped;
2788 }
2789 
2790 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2791 				    struct list_head *invalid_list)
2792 {
2793 	struct kvm_mmu_page *sp, *nsp;
2794 
2795 	if (list_empty(invalid_list))
2796 		return;
2797 
2798 	/*
2799 	 * We need to make sure everyone sees our modifications to
2800 	 * the page tables and see changes to vcpu->mode here. The barrier
2801 	 * in the kvm_flush_remote_tlbs() achieves this. This pairs
2802 	 * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end.
2803 	 *
2804 	 * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit
2805 	 * guest mode and/or lockless shadow page table walks.
2806 	 */
2807 	kvm_flush_remote_tlbs(kvm);
2808 
2809 	list_for_each_entry_safe(sp, nsp, invalid_list, link) {
2810 		WARN_ON(!sp->role.invalid || sp->root_count);
2811 		kvm_mmu_free_page(sp);
2812 	}
2813 }
2814 
2815 static bool prepare_zap_oldest_mmu_page(struct kvm *kvm,
2816 					struct list_head *invalid_list)
2817 {
2818 	struct kvm_mmu_page *sp;
2819 
2820 	if (list_empty(&kvm->arch.active_mmu_pages))
2821 		return false;
2822 
2823 	sp = list_last_entry(&kvm->arch.active_mmu_pages,
2824 			     struct kvm_mmu_page, link);
2825 	return kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2826 }
2827 
2828 static int make_mmu_pages_available(struct kvm_vcpu *vcpu)
2829 {
2830 	LIST_HEAD(invalid_list);
2831 
2832 	if (likely(kvm_mmu_available_pages(vcpu->kvm) >= KVM_MIN_FREE_MMU_PAGES))
2833 		return 0;
2834 
2835 	while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES) {
2836 		if (!prepare_zap_oldest_mmu_page(vcpu->kvm, &invalid_list))
2837 			break;
2838 
2839 		++vcpu->kvm->stat.mmu_recycled;
2840 	}
2841 	kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2842 
2843 	if (!kvm_mmu_available_pages(vcpu->kvm))
2844 		return -ENOSPC;
2845 	return 0;
2846 }
2847 
2848 /*
2849  * Changing the number of mmu pages allocated to the vm
2850  * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2851  */
2852 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long goal_nr_mmu_pages)
2853 {
2854 	LIST_HEAD(invalid_list);
2855 
2856 	spin_lock(&kvm->mmu_lock);
2857 
2858 	if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2859 		/* Need to free some mmu pages to achieve the goal. */
2860 		while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages)
2861 			if (!prepare_zap_oldest_mmu_page(kvm, &invalid_list))
2862 				break;
2863 
2864 		kvm_mmu_commit_zap_page(kvm, &invalid_list);
2865 		goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2866 	}
2867 
2868 	kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2869 
2870 	spin_unlock(&kvm->mmu_lock);
2871 }
2872 
2873 int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2874 {
2875 	struct kvm_mmu_page *sp;
2876 	LIST_HEAD(invalid_list);
2877 	int r;
2878 
2879 	pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
2880 	r = 0;
2881 	spin_lock(&kvm->mmu_lock);
2882 	for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
2883 		pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
2884 			 sp->role.word);
2885 		r = 1;
2886 		kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2887 	}
2888 	kvm_mmu_commit_zap_page(kvm, &invalid_list);
2889 	spin_unlock(&kvm->mmu_lock);
2890 
2891 	return r;
2892 }
2893 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
2894 
2895 static void kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2896 {
2897 	trace_kvm_mmu_unsync_page(sp);
2898 	++vcpu->kvm->stat.mmu_unsync;
2899 	sp->unsync = 1;
2900 
2901 	kvm_mmu_mark_parents_unsync(sp);
2902 }
2903 
2904 static bool mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
2905 				   bool can_unsync)
2906 {
2907 	struct kvm_mmu_page *sp;
2908 
2909 	if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
2910 		return true;
2911 
2912 	for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
2913 		if (!can_unsync)
2914 			return true;
2915 
2916 		if (sp->unsync)
2917 			continue;
2918 
2919 		WARN_ON(sp->role.level != PG_LEVEL_4K);
2920 		kvm_unsync_page(vcpu, sp);
2921 	}
2922 
2923 	/*
2924 	 * We need to ensure that the marking of unsync pages is visible
2925 	 * before the SPTE is updated to allow writes because
2926 	 * kvm_mmu_sync_roots() checks the unsync flags without holding
2927 	 * the MMU lock and so can race with this. If the SPTE was updated
2928 	 * before the page had been marked as unsync-ed, something like the
2929 	 * following could happen:
2930 	 *
2931 	 * CPU 1                    CPU 2
2932 	 * ---------------------------------------------------------------------
2933 	 * 1.2 Host updates SPTE
2934 	 *     to be writable
2935 	 *                      2.1 Guest writes a GPTE for GVA X.
2936 	 *                          (GPTE being in the guest page table shadowed
2937 	 *                           by the SP from CPU 1.)
2938 	 *                          This reads SPTE during the page table walk.
2939 	 *                          Since SPTE.W is read as 1, there is no
2940 	 *                          fault.
2941 	 *
2942 	 *                      2.2 Guest issues TLB flush.
2943 	 *                          That causes a VM Exit.
2944 	 *
2945 	 *                      2.3 kvm_mmu_sync_pages() reads sp->unsync.
2946 	 *                          Since it is false, so it just returns.
2947 	 *
2948 	 *                      2.4 Guest accesses GVA X.
2949 	 *                          Since the mapping in the SP was not updated,
2950 	 *                          so the old mapping for GVA X incorrectly
2951 	 *                          gets used.
2952 	 * 1.1 Host marks SP
2953 	 *     as unsync
2954 	 *     (sp->unsync = true)
2955 	 *
2956 	 * The write barrier below ensures that 1.1 happens before 1.2 and thus
2957 	 * the situation in 2.4 does not arise. The implicit barrier in 2.2
2958 	 * pairs with this write barrier.
2959 	 */
2960 	smp_wmb();
2961 
2962 	return false;
2963 }
2964 
2965 static bool kvm_is_mmio_pfn(kvm_pfn_t pfn)
2966 {
2967 	if (pfn_valid(pfn))
2968 		return !is_zero_pfn(pfn) && PageReserved(pfn_to_page(pfn)) &&
2969 			/*
2970 			 * Some reserved pages, such as those from NVDIMM
2971 			 * DAX devices, are not for MMIO, and can be mapped
2972 			 * with cached memory type for better performance.
2973 			 * However, the above check misconceives those pages
2974 			 * as MMIO, and results in KVM mapping them with UC
2975 			 * memory type, which would hurt the performance.
2976 			 * Therefore, we check the host memory type in addition
2977 			 * and only treat UC/UC-/WC pages as MMIO.
2978 			 */
2979 			(!pat_enabled() || pat_pfn_immune_to_uc_mtrr(pfn));
2980 
2981 	return !e820__mapped_raw_any(pfn_to_hpa(pfn),
2982 				     pfn_to_hpa(pfn + 1) - 1,
2983 				     E820_TYPE_RAM);
2984 }
2985 
2986 /* Bits which may be returned by set_spte() */
2987 #define SET_SPTE_WRITE_PROTECTED_PT	BIT(0)
2988 #define SET_SPTE_NEED_REMOTE_TLB_FLUSH	BIT(1)
2989 
2990 static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2991 		    unsigned int pte_access, int level,
2992 		    gfn_t gfn, kvm_pfn_t pfn, bool speculative,
2993 		    bool can_unsync, bool host_writable)
2994 {
2995 	u64 spte = 0;
2996 	int ret = 0;
2997 	struct kvm_mmu_page *sp;
2998 
2999 	if (set_mmio_spte(vcpu, sptep, gfn, pfn, pte_access))
3000 		return 0;
3001 
3002 	sp = page_header(__pa(sptep));
3003 	if (sp_ad_disabled(sp))
3004 		spte |= SPTE_AD_DISABLED_MASK;
3005 	else if (kvm_vcpu_ad_need_write_protect(vcpu))
3006 		spte |= SPTE_AD_WRPROT_ONLY_MASK;
3007 
3008 	/*
3009 	 * For the EPT case, shadow_present_mask is 0 if hardware
3010 	 * supports exec-only page table entries.  In that case,
3011 	 * ACC_USER_MASK and shadow_user_mask are used to represent
3012 	 * read access.  See FNAME(gpte_access) in paging_tmpl.h.
3013 	 */
3014 	spte |= shadow_present_mask;
3015 	if (!speculative)
3016 		spte |= spte_shadow_accessed_mask(spte);
3017 
3018 	if (level > PG_LEVEL_4K && (pte_access & ACC_EXEC_MASK) &&
3019 	    is_nx_huge_page_enabled()) {
3020 		pte_access &= ~ACC_EXEC_MASK;
3021 	}
3022 
3023 	if (pte_access & ACC_EXEC_MASK)
3024 		spte |= shadow_x_mask;
3025 	else
3026 		spte |= shadow_nx_mask;
3027 
3028 	if (pte_access & ACC_USER_MASK)
3029 		spte |= shadow_user_mask;
3030 
3031 	if (level > PG_LEVEL_4K)
3032 		spte |= PT_PAGE_SIZE_MASK;
3033 	if (tdp_enabled)
3034 		spte |= kvm_x86_ops.get_mt_mask(vcpu, gfn,
3035 			kvm_is_mmio_pfn(pfn));
3036 
3037 	if (host_writable)
3038 		spte |= SPTE_HOST_WRITEABLE;
3039 	else
3040 		pte_access &= ~ACC_WRITE_MASK;
3041 
3042 	if (!kvm_is_mmio_pfn(pfn))
3043 		spte |= shadow_me_mask;
3044 
3045 	spte |= (u64)pfn << PAGE_SHIFT;
3046 
3047 	if (pte_access & ACC_WRITE_MASK) {
3048 		spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
3049 
3050 		/*
3051 		 * Optimization: for pte sync, if spte was writable the hash
3052 		 * lookup is unnecessary (and expensive). Write protection
3053 		 * is responsibility of mmu_get_page / kvm_sync_page.
3054 		 * Same reasoning can be applied to dirty page accounting.
3055 		 */
3056 		if (!can_unsync && is_writable_pte(*sptep))
3057 			goto set_pte;
3058 
3059 		if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
3060 			pgprintk("%s: found shadow page for %llx, marking ro\n",
3061 				 __func__, gfn);
3062 			ret |= SET_SPTE_WRITE_PROTECTED_PT;
3063 			pte_access &= ~ACC_WRITE_MASK;
3064 			spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
3065 		}
3066 	}
3067 
3068 	if (pte_access & ACC_WRITE_MASK) {
3069 		kvm_vcpu_mark_page_dirty(vcpu, gfn);
3070 		spte |= spte_shadow_dirty_mask(spte);
3071 	}
3072 
3073 	if (speculative)
3074 		spte = mark_spte_for_access_track(spte);
3075 
3076 set_pte:
3077 	if (mmu_spte_update(sptep, spte))
3078 		ret |= SET_SPTE_NEED_REMOTE_TLB_FLUSH;
3079 	return ret;
3080 }
3081 
3082 static int mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
3083 			unsigned int pte_access, int write_fault, int level,
3084 			gfn_t gfn, kvm_pfn_t pfn, bool speculative,
3085 			bool host_writable)
3086 {
3087 	int was_rmapped = 0;
3088 	int rmap_count;
3089 	int set_spte_ret;
3090 	int ret = RET_PF_RETRY;
3091 	bool flush = false;
3092 
3093 	pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
3094 		 *sptep, write_fault, gfn);
3095 
3096 	if (is_shadow_present_pte(*sptep)) {
3097 		/*
3098 		 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
3099 		 * the parent of the now unreachable PTE.
3100 		 */
3101 		if (level > PG_LEVEL_4K && !is_large_pte(*sptep)) {
3102 			struct kvm_mmu_page *child;
3103 			u64 pte = *sptep;
3104 
3105 			child = page_header(pte & PT64_BASE_ADDR_MASK);
3106 			drop_parent_pte(child, sptep);
3107 			flush = true;
3108 		} else if (pfn != spte_to_pfn(*sptep)) {
3109 			pgprintk("hfn old %llx new %llx\n",
3110 				 spte_to_pfn(*sptep), pfn);
3111 			drop_spte(vcpu->kvm, sptep);
3112 			flush = true;
3113 		} else
3114 			was_rmapped = 1;
3115 	}
3116 
3117 	set_spte_ret = set_spte(vcpu, sptep, pte_access, level, gfn, pfn,
3118 				speculative, true, host_writable);
3119 	if (set_spte_ret & SET_SPTE_WRITE_PROTECTED_PT) {
3120 		if (write_fault)
3121 			ret = RET_PF_EMULATE;
3122 		kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
3123 	}
3124 
3125 	if (set_spte_ret & SET_SPTE_NEED_REMOTE_TLB_FLUSH || flush)
3126 		kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn,
3127 				KVM_PAGES_PER_HPAGE(level));
3128 
3129 	if (unlikely(is_mmio_spte(*sptep)))
3130 		ret = RET_PF_EMULATE;
3131 
3132 	pgprintk("%s: setting spte %llx\n", __func__, *sptep);
3133 	trace_kvm_mmu_set_spte(level, gfn, sptep);
3134 	if (!was_rmapped && is_large_pte(*sptep))
3135 		++vcpu->kvm->stat.lpages;
3136 
3137 	if (is_shadow_present_pte(*sptep)) {
3138 		if (!was_rmapped) {
3139 			rmap_count = rmap_add(vcpu, sptep, gfn);
3140 			if (rmap_count > RMAP_RECYCLE_THRESHOLD)
3141 				rmap_recycle(vcpu, sptep, gfn);
3142 		}
3143 	}
3144 
3145 	return ret;
3146 }
3147 
3148 static kvm_pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
3149 				     bool no_dirty_log)
3150 {
3151 	struct kvm_memory_slot *slot;
3152 
3153 	slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
3154 	if (!slot)
3155 		return KVM_PFN_ERR_FAULT;
3156 
3157 	return gfn_to_pfn_memslot_atomic(slot, gfn);
3158 }
3159 
3160 static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
3161 				    struct kvm_mmu_page *sp,
3162 				    u64 *start, u64 *end)
3163 {
3164 	struct page *pages[PTE_PREFETCH_NUM];
3165 	struct kvm_memory_slot *slot;
3166 	unsigned int access = sp->role.access;
3167 	int i, ret;
3168 	gfn_t gfn;
3169 
3170 	gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
3171 	slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK);
3172 	if (!slot)
3173 		return -1;
3174 
3175 	ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start);
3176 	if (ret <= 0)
3177 		return -1;
3178 
3179 	for (i = 0; i < ret; i++, gfn++, start++) {
3180 		mmu_set_spte(vcpu, start, access, 0, sp->role.level, gfn,
3181 			     page_to_pfn(pages[i]), true, true);
3182 		put_page(pages[i]);
3183 	}
3184 
3185 	return 0;
3186 }
3187 
3188 static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
3189 				  struct kvm_mmu_page *sp, u64 *sptep)
3190 {
3191 	u64 *spte, *start = NULL;
3192 	int i;
3193 
3194 	WARN_ON(!sp->role.direct);
3195 
3196 	i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
3197 	spte = sp->spt + i;
3198 
3199 	for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
3200 		if (is_shadow_present_pte(*spte) || spte == sptep) {
3201 			if (!start)
3202 				continue;
3203 			if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
3204 				break;
3205 			start = NULL;
3206 		} else if (!start)
3207 			start = spte;
3208 	}
3209 }
3210 
3211 static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
3212 {
3213 	struct kvm_mmu_page *sp;
3214 
3215 	sp = page_header(__pa(sptep));
3216 
3217 	/*
3218 	 * Without accessed bits, there's no way to distinguish between
3219 	 * actually accessed translations and prefetched, so disable pte
3220 	 * prefetch if accessed bits aren't available.
3221 	 */
3222 	if (sp_ad_disabled(sp))
3223 		return;
3224 
3225 	if (sp->role.level > PG_LEVEL_4K)
3226 		return;
3227 
3228 	__direct_pte_prefetch(vcpu, sp, sptep);
3229 }
3230 
3231 static int host_pfn_mapping_level(struct kvm_vcpu *vcpu, gfn_t gfn,
3232 				  kvm_pfn_t pfn, struct kvm_memory_slot *slot)
3233 {
3234 	unsigned long hva;
3235 	pte_t *pte;
3236 	int level;
3237 
3238 	if (!PageCompound(pfn_to_page(pfn)) && !kvm_is_zone_device_pfn(pfn))
3239 		return PG_LEVEL_4K;
3240 
3241 	/*
3242 	 * Note, using the already-retrieved memslot and __gfn_to_hva_memslot()
3243 	 * is not solely for performance, it's also necessary to avoid the
3244 	 * "writable" check in __gfn_to_hva_many(), which will always fail on
3245 	 * read-only memslots due to gfn_to_hva() assuming writes.  Earlier
3246 	 * page fault steps have already verified the guest isn't writing a
3247 	 * read-only memslot.
3248 	 */
3249 	hva = __gfn_to_hva_memslot(slot, gfn);
3250 
3251 	pte = lookup_address_in_mm(vcpu->kvm->mm, hva, &level);
3252 	if (unlikely(!pte))
3253 		return PG_LEVEL_4K;
3254 
3255 	return level;
3256 }
3257 
3258 static int kvm_mmu_hugepage_adjust(struct kvm_vcpu *vcpu, gfn_t gfn,
3259 				   int max_level, kvm_pfn_t *pfnp)
3260 {
3261 	struct kvm_memory_slot *slot;
3262 	struct kvm_lpage_info *linfo;
3263 	kvm_pfn_t pfn = *pfnp;
3264 	kvm_pfn_t mask;
3265 	int level;
3266 
3267 	if (unlikely(max_level == PG_LEVEL_4K))
3268 		return PG_LEVEL_4K;
3269 
3270 	if (is_error_noslot_pfn(pfn) || kvm_is_reserved_pfn(pfn))
3271 		return PG_LEVEL_4K;
3272 
3273 	slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, true);
3274 	if (!slot)
3275 		return PG_LEVEL_4K;
3276 
3277 	max_level = min(max_level, max_page_level);
3278 	for ( ; max_level > PG_LEVEL_4K; max_level--) {
3279 		linfo = lpage_info_slot(gfn, slot, max_level);
3280 		if (!linfo->disallow_lpage)
3281 			break;
3282 	}
3283 
3284 	if (max_level == PG_LEVEL_4K)
3285 		return PG_LEVEL_4K;
3286 
3287 	level = host_pfn_mapping_level(vcpu, gfn, pfn, slot);
3288 	if (level == PG_LEVEL_4K)
3289 		return level;
3290 
3291 	level = min(level, max_level);
3292 
3293 	/*
3294 	 * mmu_notifier_retry() was successful and mmu_lock is held, so
3295 	 * the pmd can't be split from under us.
3296 	 */
3297 	mask = KVM_PAGES_PER_HPAGE(level) - 1;
3298 	VM_BUG_ON((gfn & mask) != (pfn & mask));
3299 	*pfnp = pfn & ~mask;
3300 
3301 	return level;
3302 }
3303 
3304 static void disallowed_hugepage_adjust(struct kvm_shadow_walk_iterator it,
3305 				       gfn_t gfn, kvm_pfn_t *pfnp, int *levelp)
3306 {
3307 	int level = *levelp;
3308 	u64 spte = *it.sptep;
3309 
3310 	if (it.level == level && level > PG_LEVEL_4K &&
3311 	    is_nx_huge_page_enabled() &&
3312 	    is_shadow_present_pte(spte) &&
3313 	    !is_large_pte(spte)) {
3314 		/*
3315 		 * A small SPTE exists for this pfn, but FNAME(fetch)
3316 		 * and __direct_map would like to create a large PTE
3317 		 * instead: just force them to go down another level,
3318 		 * patching back for them into pfn the next 9 bits of
3319 		 * the address.
3320 		 */
3321 		u64 page_mask = KVM_PAGES_PER_HPAGE(level) - KVM_PAGES_PER_HPAGE(level - 1);
3322 		*pfnp |= gfn & page_mask;
3323 		(*levelp)--;
3324 	}
3325 }
3326 
3327 static int __direct_map(struct kvm_vcpu *vcpu, gpa_t gpa, int write,
3328 			int map_writable, int max_level, kvm_pfn_t pfn,
3329 			bool prefault, bool account_disallowed_nx_lpage)
3330 {
3331 	struct kvm_shadow_walk_iterator it;
3332 	struct kvm_mmu_page *sp;
3333 	int level, ret;
3334 	gfn_t gfn = gpa >> PAGE_SHIFT;
3335 	gfn_t base_gfn = gfn;
3336 
3337 	if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa)))
3338 		return RET_PF_RETRY;
3339 
3340 	level = kvm_mmu_hugepage_adjust(vcpu, gfn, max_level, &pfn);
3341 
3342 	trace_kvm_mmu_spte_requested(gpa, level, pfn);
3343 	for_each_shadow_entry(vcpu, gpa, it) {
3344 		/*
3345 		 * We cannot overwrite existing page tables with an NX
3346 		 * large page, as the leaf could be executable.
3347 		 */
3348 		disallowed_hugepage_adjust(it, gfn, &pfn, &level);
3349 
3350 		base_gfn = gfn & ~(KVM_PAGES_PER_HPAGE(it.level) - 1);
3351 		if (it.level == level)
3352 			break;
3353 
3354 		drop_large_spte(vcpu, it.sptep);
3355 		if (!is_shadow_present_pte(*it.sptep)) {
3356 			sp = kvm_mmu_get_page(vcpu, base_gfn, it.addr,
3357 					      it.level - 1, true, ACC_ALL);
3358 
3359 			link_shadow_page(vcpu, it.sptep, sp);
3360 			if (account_disallowed_nx_lpage)
3361 				account_huge_nx_page(vcpu->kvm, sp);
3362 		}
3363 	}
3364 
3365 	ret = mmu_set_spte(vcpu, it.sptep, ACC_ALL,
3366 			   write, level, base_gfn, pfn, prefault,
3367 			   map_writable);
3368 	direct_pte_prefetch(vcpu, it.sptep);
3369 	++vcpu->stat.pf_fixed;
3370 	return ret;
3371 }
3372 
3373 static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
3374 {
3375 	send_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, PAGE_SHIFT, tsk);
3376 }
3377 
3378 static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, kvm_pfn_t pfn)
3379 {
3380 	/*
3381 	 * Do not cache the mmio info caused by writing the readonly gfn
3382 	 * into the spte otherwise read access on readonly gfn also can
3383 	 * caused mmio page fault and treat it as mmio access.
3384 	 */
3385 	if (pfn == KVM_PFN_ERR_RO_FAULT)
3386 		return RET_PF_EMULATE;
3387 
3388 	if (pfn == KVM_PFN_ERR_HWPOISON) {
3389 		kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current);
3390 		return RET_PF_RETRY;
3391 	}
3392 
3393 	return -EFAULT;
3394 }
3395 
3396 static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
3397 				kvm_pfn_t pfn, unsigned int access,
3398 				int *ret_val)
3399 {
3400 	/* The pfn is invalid, report the error! */
3401 	if (unlikely(is_error_pfn(pfn))) {
3402 		*ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
3403 		return true;
3404 	}
3405 
3406 	if (unlikely(is_noslot_pfn(pfn)))
3407 		vcpu_cache_mmio_info(vcpu, gva, gfn,
3408 				     access & shadow_mmio_access_mask);
3409 
3410 	return false;
3411 }
3412 
3413 static bool page_fault_can_be_fast(u32 error_code)
3414 {
3415 	/*
3416 	 * Do not fix the mmio spte with invalid generation number which
3417 	 * need to be updated by slow page fault path.
3418 	 */
3419 	if (unlikely(error_code & PFERR_RSVD_MASK))
3420 		return false;
3421 
3422 	/* See if the page fault is due to an NX violation */
3423 	if (unlikely(((error_code & (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))
3424 		      == (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))))
3425 		return false;
3426 
3427 	/*
3428 	 * #PF can be fast if:
3429 	 * 1. The shadow page table entry is not present, which could mean that
3430 	 *    the fault is potentially caused by access tracking (if enabled).
3431 	 * 2. The shadow page table entry is present and the fault
3432 	 *    is caused by write-protect, that means we just need change the W
3433 	 *    bit of the spte which can be done out of mmu-lock.
3434 	 *
3435 	 * However, if access tracking is disabled we know that a non-present
3436 	 * page must be a genuine page fault where we have to create a new SPTE.
3437 	 * So, if access tracking is disabled, we return true only for write
3438 	 * accesses to a present page.
3439 	 */
3440 
3441 	return shadow_acc_track_mask != 0 ||
3442 	       ((error_code & (PFERR_WRITE_MASK | PFERR_PRESENT_MASK))
3443 		== (PFERR_WRITE_MASK | PFERR_PRESENT_MASK));
3444 }
3445 
3446 /*
3447  * Returns true if the SPTE was fixed successfully. Otherwise,
3448  * someone else modified the SPTE from its original value.
3449  */
3450 static bool
3451 fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
3452 			u64 *sptep, u64 old_spte, u64 new_spte)
3453 {
3454 	gfn_t gfn;
3455 
3456 	WARN_ON(!sp->role.direct);
3457 
3458 	/*
3459 	 * Theoretically we could also set dirty bit (and flush TLB) here in
3460 	 * order to eliminate unnecessary PML logging. See comments in
3461 	 * set_spte. But fast_page_fault is very unlikely to happen with PML
3462 	 * enabled, so we do not do this. This might result in the same GPA
3463 	 * to be logged in PML buffer again when the write really happens, and
3464 	 * eventually to be called by mark_page_dirty twice. But it's also no
3465 	 * harm. This also avoids the TLB flush needed after setting dirty bit
3466 	 * so non-PML cases won't be impacted.
3467 	 *
3468 	 * Compare with set_spte where instead shadow_dirty_mask is set.
3469 	 */
3470 	if (cmpxchg64(sptep, old_spte, new_spte) != old_spte)
3471 		return false;
3472 
3473 	if (is_writable_pte(new_spte) && !is_writable_pte(old_spte)) {
3474 		/*
3475 		 * The gfn of direct spte is stable since it is
3476 		 * calculated by sp->gfn.
3477 		 */
3478 		gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
3479 		kvm_vcpu_mark_page_dirty(vcpu, gfn);
3480 	}
3481 
3482 	return true;
3483 }
3484 
3485 static bool is_access_allowed(u32 fault_err_code, u64 spte)
3486 {
3487 	if (fault_err_code & PFERR_FETCH_MASK)
3488 		return is_executable_pte(spte);
3489 
3490 	if (fault_err_code & PFERR_WRITE_MASK)
3491 		return is_writable_pte(spte);
3492 
3493 	/* Fault was on Read access */
3494 	return spte & PT_PRESENT_MASK;
3495 }
3496 
3497 /*
3498  * Return value:
3499  * - true: let the vcpu to access on the same address again.
3500  * - false: let the real page fault path to fix it.
3501  */
3502 static bool fast_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
3503 			    u32 error_code)
3504 {
3505 	struct kvm_shadow_walk_iterator iterator;
3506 	struct kvm_mmu_page *sp;
3507 	bool fault_handled = false;
3508 	u64 spte = 0ull;
3509 	uint retry_count = 0;
3510 
3511 	if (!page_fault_can_be_fast(error_code))
3512 		return false;
3513 
3514 	walk_shadow_page_lockless_begin(vcpu);
3515 
3516 	do {
3517 		u64 new_spte;
3518 
3519 		for_each_shadow_entry_lockless(vcpu, cr2_or_gpa, iterator, spte)
3520 			if (!is_shadow_present_pte(spte))
3521 				break;
3522 
3523 		sp = page_header(__pa(iterator.sptep));
3524 		if (!is_last_spte(spte, sp->role.level))
3525 			break;
3526 
3527 		/*
3528 		 * Check whether the memory access that caused the fault would
3529 		 * still cause it if it were to be performed right now. If not,
3530 		 * then this is a spurious fault caused by TLB lazily flushed,
3531 		 * or some other CPU has already fixed the PTE after the
3532 		 * current CPU took the fault.
3533 		 *
3534 		 * Need not check the access of upper level table entries since
3535 		 * they are always ACC_ALL.
3536 		 */
3537 		if (is_access_allowed(error_code, spte)) {
3538 			fault_handled = true;
3539 			break;
3540 		}
3541 
3542 		new_spte = spte;
3543 
3544 		if (is_access_track_spte(spte))
3545 			new_spte = restore_acc_track_spte(new_spte);
3546 
3547 		/*
3548 		 * Currently, to simplify the code, write-protection can
3549 		 * be removed in the fast path only if the SPTE was
3550 		 * write-protected for dirty-logging or access tracking.
3551 		 */
3552 		if ((error_code & PFERR_WRITE_MASK) &&
3553 		    spte_can_locklessly_be_made_writable(spte)) {
3554 			new_spte |= PT_WRITABLE_MASK;
3555 
3556 			/*
3557 			 * Do not fix write-permission on the large spte.  Since
3558 			 * we only dirty the first page into the dirty-bitmap in
3559 			 * fast_pf_fix_direct_spte(), other pages are missed
3560 			 * if its slot has dirty logging enabled.
3561 			 *
3562 			 * Instead, we let the slow page fault path create a
3563 			 * normal spte to fix the access.
3564 			 *
3565 			 * See the comments in kvm_arch_commit_memory_region().
3566 			 */
3567 			if (sp->role.level > PG_LEVEL_4K)
3568 				break;
3569 		}
3570 
3571 		/* Verify that the fault can be handled in the fast path */
3572 		if (new_spte == spte ||
3573 		    !is_access_allowed(error_code, new_spte))
3574 			break;
3575 
3576 		/*
3577 		 * Currently, fast page fault only works for direct mapping
3578 		 * since the gfn is not stable for indirect shadow page. See
3579 		 * Documentation/virt/kvm/locking.rst to get more detail.
3580 		 */
3581 		fault_handled = fast_pf_fix_direct_spte(vcpu, sp,
3582 							iterator.sptep, spte,
3583 							new_spte);
3584 		if (fault_handled)
3585 			break;
3586 
3587 		if (++retry_count > 4) {
3588 			printk_once(KERN_WARNING
3589 				"kvm: Fast #PF retrying more than 4 times.\n");
3590 			break;
3591 		}
3592 
3593 	} while (true);
3594 
3595 	trace_fast_page_fault(vcpu, cr2_or_gpa, error_code, iterator.sptep,
3596 			      spte, fault_handled);
3597 	walk_shadow_page_lockless_end(vcpu);
3598 
3599 	return fault_handled;
3600 }
3601 
3602 static void mmu_free_root_page(struct kvm *kvm, hpa_t *root_hpa,
3603 			       struct list_head *invalid_list)
3604 {
3605 	struct kvm_mmu_page *sp;
3606 
3607 	if (!VALID_PAGE(*root_hpa))
3608 		return;
3609 
3610 	sp = page_header(*root_hpa & PT64_BASE_ADDR_MASK);
3611 	--sp->root_count;
3612 	if (!sp->root_count && sp->role.invalid)
3613 		kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
3614 
3615 	*root_hpa = INVALID_PAGE;
3616 }
3617 
3618 /* roots_to_free must be some combination of the KVM_MMU_ROOT_* flags */
3619 void kvm_mmu_free_roots(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
3620 			ulong roots_to_free)
3621 {
3622 	int i;
3623 	LIST_HEAD(invalid_list);
3624 	bool free_active_root = roots_to_free & KVM_MMU_ROOT_CURRENT;
3625 
3626 	BUILD_BUG_ON(KVM_MMU_NUM_PREV_ROOTS >= BITS_PER_LONG);
3627 
3628 	/* Before acquiring the MMU lock, see if we need to do any real work. */
3629 	if (!(free_active_root && VALID_PAGE(mmu->root_hpa))) {
3630 		for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
3631 			if ((roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) &&
3632 			    VALID_PAGE(mmu->prev_roots[i].hpa))
3633 				break;
3634 
3635 		if (i == KVM_MMU_NUM_PREV_ROOTS)
3636 			return;
3637 	}
3638 
3639 	spin_lock(&vcpu->kvm->mmu_lock);
3640 
3641 	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
3642 		if (roots_to_free & KVM_MMU_ROOT_PREVIOUS(i))
3643 			mmu_free_root_page(vcpu->kvm, &mmu->prev_roots[i].hpa,
3644 					   &invalid_list);
3645 
3646 	if (free_active_root) {
3647 		if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
3648 		    (mmu->root_level >= PT64_ROOT_4LEVEL || mmu->direct_map)) {
3649 			mmu_free_root_page(vcpu->kvm, &mmu->root_hpa,
3650 					   &invalid_list);
3651 		} else {
3652 			for (i = 0; i < 4; ++i)
3653 				if (mmu->pae_root[i] != 0)
3654 					mmu_free_root_page(vcpu->kvm,
3655 							   &mmu->pae_root[i],
3656 							   &invalid_list);
3657 			mmu->root_hpa = INVALID_PAGE;
3658 		}
3659 		mmu->root_pgd = 0;
3660 	}
3661 
3662 	kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3663 	spin_unlock(&vcpu->kvm->mmu_lock);
3664 }
3665 EXPORT_SYMBOL_GPL(kvm_mmu_free_roots);
3666 
3667 static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
3668 {
3669 	int ret = 0;
3670 
3671 	if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
3672 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3673 		ret = 1;
3674 	}
3675 
3676 	return ret;
3677 }
3678 
3679 static hpa_t mmu_alloc_root(struct kvm_vcpu *vcpu, gfn_t gfn, gva_t gva,
3680 			    u8 level, bool direct)
3681 {
3682 	struct kvm_mmu_page *sp;
3683 
3684 	spin_lock(&vcpu->kvm->mmu_lock);
3685 
3686 	if (make_mmu_pages_available(vcpu)) {
3687 		spin_unlock(&vcpu->kvm->mmu_lock);
3688 		return INVALID_PAGE;
3689 	}
3690 	sp = kvm_mmu_get_page(vcpu, gfn, gva, level, direct, ACC_ALL);
3691 	++sp->root_count;
3692 
3693 	spin_unlock(&vcpu->kvm->mmu_lock);
3694 	return __pa(sp->spt);
3695 }
3696 
3697 static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
3698 {
3699 	u8 shadow_root_level = vcpu->arch.mmu->shadow_root_level;
3700 	hpa_t root;
3701 	unsigned i;
3702 
3703 	if (shadow_root_level >= PT64_ROOT_4LEVEL) {
3704 		root = mmu_alloc_root(vcpu, 0, 0, shadow_root_level, true);
3705 		if (!VALID_PAGE(root))
3706 			return -ENOSPC;
3707 		vcpu->arch.mmu->root_hpa = root;
3708 	} else if (shadow_root_level == PT32E_ROOT_LEVEL) {
3709 		for (i = 0; i < 4; ++i) {
3710 			MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu->pae_root[i]));
3711 
3712 			root = mmu_alloc_root(vcpu, i << (30 - PAGE_SHIFT),
3713 					      i << 30, PT32_ROOT_LEVEL, true);
3714 			if (!VALID_PAGE(root))
3715 				return -ENOSPC;
3716 			vcpu->arch.mmu->pae_root[i] = root | PT_PRESENT_MASK;
3717 		}
3718 		vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->pae_root);
3719 	} else
3720 		BUG();
3721 
3722 	/* root_pgd is ignored for direct MMUs. */
3723 	vcpu->arch.mmu->root_pgd = 0;
3724 
3725 	return 0;
3726 }
3727 
3728 static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
3729 {
3730 	u64 pdptr, pm_mask;
3731 	gfn_t root_gfn, root_pgd;
3732 	hpa_t root;
3733 	int i;
3734 
3735 	root_pgd = vcpu->arch.mmu->get_guest_pgd(vcpu);
3736 	root_gfn = root_pgd >> PAGE_SHIFT;
3737 
3738 	if (mmu_check_root(vcpu, root_gfn))
3739 		return 1;
3740 
3741 	/*
3742 	 * Do we shadow a long mode page table? If so we need to
3743 	 * write-protect the guests page table root.
3744 	 */
3745 	if (vcpu->arch.mmu->root_level >= PT64_ROOT_4LEVEL) {
3746 		MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu->root_hpa));
3747 
3748 		root = mmu_alloc_root(vcpu, root_gfn, 0,
3749 				      vcpu->arch.mmu->shadow_root_level, false);
3750 		if (!VALID_PAGE(root))
3751 			return -ENOSPC;
3752 		vcpu->arch.mmu->root_hpa = root;
3753 		goto set_root_pgd;
3754 	}
3755 
3756 	/*
3757 	 * We shadow a 32 bit page table. This may be a legacy 2-level
3758 	 * or a PAE 3-level page table. In either case we need to be aware that
3759 	 * the shadow page table may be a PAE or a long mode page table.
3760 	 */
3761 	pm_mask = PT_PRESENT_MASK;
3762 	if (vcpu->arch.mmu->shadow_root_level == PT64_ROOT_4LEVEL)
3763 		pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
3764 
3765 	for (i = 0; i < 4; ++i) {
3766 		MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu->pae_root[i]));
3767 		if (vcpu->arch.mmu->root_level == PT32E_ROOT_LEVEL) {
3768 			pdptr = vcpu->arch.mmu->get_pdptr(vcpu, i);
3769 			if (!(pdptr & PT_PRESENT_MASK)) {
3770 				vcpu->arch.mmu->pae_root[i] = 0;
3771 				continue;
3772 			}
3773 			root_gfn = pdptr >> PAGE_SHIFT;
3774 			if (mmu_check_root(vcpu, root_gfn))
3775 				return 1;
3776 		}
3777 
3778 		root = mmu_alloc_root(vcpu, root_gfn, i << 30,
3779 				      PT32_ROOT_LEVEL, false);
3780 		if (!VALID_PAGE(root))
3781 			return -ENOSPC;
3782 		vcpu->arch.mmu->pae_root[i] = root | pm_mask;
3783 	}
3784 	vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->pae_root);
3785 
3786 	/*
3787 	 * If we shadow a 32 bit page table with a long mode page
3788 	 * table we enter this path.
3789 	 */
3790 	if (vcpu->arch.mmu->shadow_root_level == PT64_ROOT_4LEVEL) {
3791 		if (vcpu->arch.mmu->lm_root == NULL) {
3792 			/*
3793 			 * The additional page necessary for this is only
3794 			 * allocated on demand.
3795 			 */
3796 
3797 			u64 *lm_root;
3798 
3799 			lm_root = (void*)get_zeroed_page(GFP_KERNEL_ACCOUNT);
3800 			if (lm_root == NULL)
3801 				return 1;
3802 
3803 			lm_root[0] = __pa(vcpu->arch.mmu->pae_root) | pm_mask;
3804 
3805 			vcpu->arch.mmu->lm_root = lm_root;
3806 		}
3807 
3808 		vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->lm_root);
3809 	}
3810 
3811 set_root_pgd:
3812 	vcpu->arch.mmu->root_pgd = root_pgd;
3813 
3814 	return 0;
3815 }
3816 
3817 static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
3818 {
3819 	if (vcpu->arch.mmu->direct_map)
3820 		return mmu_alloc_direct_roots(vcpu);
3821 	else
3822 		return mmu_alloc_shadow_roots(vcpu);
3823 }
3824 
3825 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3826 {
3827 	int i;
3828 	struct kvm_mmu_page *sp;
3829 
3830 	if (vcpu->arch.mmu->direct_map)
3831 		return;
3832 
3833 	if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
3834 		return;
3835 
3836 	vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
3837 
3838 	if (vcpu->arch.mmu->root_level >= PT64_ROOT_4LEVEL) {
3839 		hpa_t root = vcpu->arch.mmu->root_hpa;
3840 		sp = page_header(root);
3841 
3842 		/*
3843 		 * Even if another CPU was marking the SP as unsync-ed
3844 		 * simultaneously, any guest page table changes are not
3845 		 * guaranteed to be visible anyway until this VCPU issues a TLB
3846 		 * flush strictly after those changes are made. We only need to
3847 		 * ensure that the other CPU sets these flags before any actual
3848 		 * changes to the page tables are made. The comments in
3849 		 * mmu_need_write_protect() describe what could go wrong if this
3850 		 * requirement isn't satisfied.
3851 		 */
3852 		if (!smp_load_acquire(&sp->unsync) &&
3853 		    !smp_load_acquire(&sp->unsync_children))
3854 			return;
3855 
3856 		spin_lock(&vcpu->kvm->mmu_lock);
3857 		kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3858 
3859 		mmu_sync_children(vcpu, sp);
3860 
3861 		kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3862 		spin_unlock(&vcpu->kvm->mmu_lock);
3863 		return;
3864 	}
3865 
3866 	spin_lock(&vcpu->kvm->mmu_lock);
3867 	kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3868 
3869 	for (i = 0; i < 4; ++i) {
3870 		hpa_t root = vcpu->arch.mmu->pae_root[i];
3871 
3872 		if (root && VALID_PAGE(root)) {
3873 			root &= PT64_BASE_ADDR_MASK;
3874 			sp = page_header(root);
3875 			mmu_sync_children(vcpu, sp);
3876 		}
3877 	}
3878 
3879 	kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3880 	spin_unlock(&vcpu->kvm->mmu_lock);
3881 }
3882 EXPORT_SYMBOL_GPL(kvm_mmu_sync_roots);
3883 
3884 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gpa_t vaddr,
3885 				  u32 access, struct x86_exception *exception)
3886 {
3887 	if (exception)
3888 		exception->error_code = 0;
3889 	return vaddr;
3890 }
3891 
3892 static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gpa_t vaddr,
3893 					 u32 access,
3894 					 struct x86_exception *exception)
3895 {
3896 	if (exception)
3897 		exception->error_code = 0;
3898 	return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception);
3899 }
3900 
3901 static bool
3902 __is_rsvd_bits_set(struct rsvd_bits_validate *rsvd_check, u64 pte, int level)
3903 {
3904 	int bit7 = (pte >> 7) & 1;
3905 
3906 	return pte & rsvd_check->rsvd_bits_mask[bit7][level-1];
3907 }
3908 
3909 static bool __is_bad_mt_xwr(struct rsvd_bits_validate *rsvd_check, u64 pte)
3910 {
3911 	return rsvd_check->bad_mt_xwr & BIT_ULL(pte & 0x3f);
3912 }
3913 
3914 static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3915 {
3916 	/*
3917 	 * A nested guest cannot use the MMIO cache if it is using nested
3918 	 * page tables, because cr2 is a nGPA while the cache stores GPAs.
3919 	 */
3920 	if (mmu_is_nested(vcpu))
3921 		return false;
3922 
3923 	if (direct)
3924 		return vcpu_match_mmio_gpa(vcpu, addr);
3925 
3926 	return vcpu_match_mmio_gva(vcpu, addr);
3927 }
3928 
3929 /* return true if reserved bit is detected on spte. */
3930 static bool
3931 walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep)
3932 {
3933 	struct kvm_shadow_walk_iterator iterator;
3934 	u64 sptes[PT64_ROOT_MAX_LEVEL], spte = 0ull;
3935 	struct rsvd_bits_validate *rsvd_check;
3936 	int root, leaf;
3937 	bool reserved = false;
3938 
3939 	rsvd_check = &vcpu->arch.mmu->shadow_zero_check;
3940 
3941 	walk_shadow_page_lockless_begin(vcpu);
3942 
3943 	for (shadow_walk_init(&iterator, vcpu, addr),
3944 		 leaf = root = iterator.level;
3945 	     shadow_walk_okay(&iterator);
3946 	     __shadow_walk_next(&iterator, spte)) {
3947 		spte = mmu_spte_get_lockless(iterator.sptep);
3948 
3949 		sptes[leaf - 1] = spte;
3950 		leaf--;
3951 
3952 		if (!is_shadow_present_pte(spte))
3953 			break;
3954 
3955 		/*
3956 		 * Use a bitwise-OR instead of a logical-OR to aggregate the
3957 		 * reserved bit and EPT's invalid memtype/XWR checks to avoid
3958 		 * adding a Jcc in the loop.
3959 		 */
3960 		reserved |= __is_bad_mt_xwr(rsvd_check, spte) |
3961 			    __is_rsvd_bits_set(rsvd_check, spte, iterator.level);
3962 	}
3963 
3964 	walk_shadow_page_lockless_end(vcpu);
3965 
3966 	if (reserved) {
3967 		pr_err("%s: detect reserved bits on spte, addr 0x%llx, dump hierarchy:\n",
3968 		       __func__, addr);
3969 		while (root > leaf) {
3970 			pr_err("------ spte 0x%llx level %d.\n",
3971 			       sptes[root - 1], root);
3972 			root--;
3973 		}
3974 	}
3975 
3976 	*sptep = spte;
3977 	return reserved;
3978 }
3979 
3980 static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3981 {
3982 	u64 spte;
3983 	bool reserved;
3984 
3985 	if (mmio_info_in_cache(vcpu, addr, direct))
3986 		return RET_PF_EMULATE;
3987 
3988 	reserved = walk_shadow_page_get_mmio_spte(vcpu, addr, &spte);
3989 	if (WARN_ON(reserved))
3990 		return -EINVAL;
3991 
3992 	if (is_mmio_spte(spte)) {
3993 		gfn_t gfn = get_mmio_spte_gfn(spte);
3994 		unsigned int access = get_mmio_spte_access(spte);
3995 
3996 		if (!check_mmio_spte(vcpu, spte))
3997 			return RET_PF_INVALID;
3998 
3999 		if (direct)
4000 			addr = 0;
4001 
4002 		trace_handle_mmio_page_fault(addr, gfn, access);
4003 		vcpu_cache_mmio_info(vcpu, addr, gfn, access);
4004 		return RET_PF_EMULATE;
4005 	}
4006 
4007 	/*
4008 	 * If the page table is zapped by other cpus, let CPU fault again on
4009 	 * the address.
4010 	 */
4011 	return RET_PF_RETRY;
4012 }
4013 
4014 static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu,
4015 					 u32 error_code, gfn_t gfn)
4016 {
4017 	if (unlikely(error_code & PFERR_RSVD_MASK))
4018 		return false;
4019 
4020 	if (!(error_code & PFERR_PRESENT_MASK) ||
4021 	      !(error_code & PFERR_WRITE_MASK))
4022 		return false;
4023 
4024 	/*
4025 	 * guest is writing the page which is write tracked which can
4026 	 * not be fixed by page fault handler.
4027 	 */
4028 	if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
4029 		return true;
4030 
4031 	return false;
4032 }
4033 
4034 static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr)
4035 {
4036 	struct kvm_shadow_walk_iterator iterator;
4037 	u64 spte;
4038 
4039 	walk_shadow_page_lockless_begin(vcpu);
4040 	for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
4041 		clear_sp_write_flooding_count(iterator.sptep);
4042 		if (!is_shadow_present_pte(spte))
4043 			break;
4044 	}
4045 	walk_shadow_page_lockless_end(vcpu);
4046 }
4047 
4048 static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
4049 				   gfn_t gfn)
4050 {
4051 	struct kvm_arch_async_pf arch;
4052 
4053 	arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
4054 	arch.gfn = gfn;
4055 	arch.direct_map = vcpu->arch.mmu->direct_map;
4056 	arch.cr3 = vcpu->arch.mmu->get_guest_pgd(vcpu);
4057 
4058 	return kvm_setup_async_pf(vcpu, cr2_or_gpa,
4059 				  kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch);
4060 }
4061 
4062 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
4063 			 gpa_t cr2_or_gpa, kvm_pfn_t *pfn, bool write,
4064 			 bool *writable)
4065 {
4066 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
4067 	bool async;
4068 
4069 	/* Don't expose private memslots to L2. */
4070 	if (is_guest_mode(vcpu) && !kvm_is_visible_memslot(slot)) {
4071 		*pfn = KVM_PFN_NOSLOT;
4072 		*writable = false;
4073 		return false;
4074 	}
4075 
4076 	async = false;
4077 	*pfn = __gfn_to_pfn_memslot(slot, gfn, false, &async, write, writable);
4078 	if (!async)
4079 		return false; /* *pfn has correct page already */
4080 
4081 	if (!prefault && kvm_can_do_async_pf(vcpu)) {
4082 		trace_kvm_try_async_get_page(cr2_or_gpa, gfn);
4083 		if (kvm_find_async_pf_gfn(vcpu, gfn)) {
4084 			trace_kvm_async_pf_doublefault(cr2_or_gpa, gfn);
4085 			kvm_make_request(KVM_REQ_APF_HALT, vcpu);
4086 			return true;
4087 		} else if (kvm_arch_setup_async_pf(vcpu, cr2_or_gpa, gfn))
4088 			return true;
4089 	}
4090 
4091 	*pfn = __gfn_to_pfn_memslot(slot, gfn, false, NULL, write, writable);
4092 	return false;
4093 }
4094 
4095 static int direct_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
4096 			     bool prefault, int max_level, bool is_tdp)
4097 {
4098 	bool write = error_code & PFERR_WRITE_MASK;
4099 	bool exec = error_code & PFERR_FETCH_MASK;
4100 	bool lpage_disallowed = exec && is_nx_huge_page_enabled();
4101 	bool map_writable;
4102 
4103 	gfn_t gfn = gpa >> PAGE_SHIFT;
4104 	unsigned long mmu_seq;
4105 	kvm_pfn_t pfn;
4106 	int r;
4107 
4108 	if (page_fault_handle_page_track(vcpu, error_code, gfn))
4109 		return RET_PF_EMULATE;
4110 
4111 	r = mmu_topup_memory_caches(vcpu);
4112 	if (r)
4113 		return r;
4114 
4115 	if (lpage_disallowed)
4116 		max_level = PG_LEVEL_4K;
4117 
4118 	if (fast_page_fault(vcpu, gpa, error_code))
4119 		return RET_PF_RETRY;
4120 
4121 	mmu_seq = vcpu->kvm->mmu_notifier_seq;
4122 	smp_rmb();
4123 
4124 	if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
4125 		return RET_PF_RETRY;
4126 
4127 	if (handle_abnormal_pfn(vcpu, is_tdp ? 0 : gpa, gfn, pfn, ACC_ALL, &r))
4128 		return r;
4129 
4130 	r = RET_PF_RETRY;
4131 	spin_lock(&vcpu->kvm->mmu_lock);
4132 	if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
4133 		goto out_unlock;
4134 	if (make_mmu_pages_available(vcpu) < 0)
4135 		goto out_unlock;
4136 	r = __direct_map(vcpu, gpa, write, map_writable, max_level, pfn,
4137 			 prefault, is_tdp && lpage_disallowed);
4138 
4139 out_unlock:
4140 	spin_unlock(&vcpu->kvm->mmu_lock);
4141 	kvm_release_pfn_clean(pfn);
4142 	return r;
4143 }
4144 
4145 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa,
4146 				u32 error_code, bool prefault)
4147 {
4148 	pgprintk("%s: gva %lx error %x\n", __func__, gpa, error_code);
4149 
4150 	/* This path builds a PAE pagetable, we can map 2mb pages at maximum. */
4151 	return direct_page_fault(vcpu, gpa & PAGE_MASK, error_code, prefault,
4152 				 PG_LEVEL_2M, false);
4153 }
4154 
4155 int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code,
4156 				u64 fault_address, char *insn, int insn_len)
4157 {
4158 	int r = 1;
4159 
4160 #ifndef CONFIG_X86_64
4161 	/* A 64-bit CR2 should be impossible on 32-bit KVM. */
4162 	if (WARN_ON_ONCE(fault_address >> 32))
4163 		return -EFAULT;
4164 #endif
4165 
4166 	vcpu->arch.l1tf_flush_l1d = true;
4167 	switch (vcpu->arch.apf.host_apf_flags) {
4168 	default:
4169 		trace_kvm_page_fault(fault_address, error_code);
4170 
4171 		if (kvm_event_needs_reinjection(vcpu))
4172 			kvm_mmu_unprotect_page_virt(vcpu, fault_address);
4173 		r = kvm_mmu_page_fault(vcpu, fault_address, error_code, insn,
4174 				insn_len);
4175 		break;
4176 	case KVM_PV_REASON_PAGE_NOT_PRESENT:
4177 		vcpu->arch.apf.host_apf_flags = 0;
4178 		local_irq_disable();
4179 		kvm_async_pf_task_wait_schedule(fault_address);
4180 		local_irq_enable();
4181 		break;
4182 	case KVM_PV_REASON_PAGE_READY:
4183 		vcpu->arch.apf.host_apf_flags = 0;
4184 		local_irq_disable();
4185 		kvm_async_pf_task_wake(fault_address);
4186 		local_irq_enable();
4187 		break;
4188 	}
4189 	return r;
4190 }
4191 EXPORT_SYMBOL_GPL(kvm_handle_page_fault);
4192 
4193 int kvm_tdp_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
4194 		       bool prefault)
4195 {
4196 	int max_level;
4197 
4198 	for (max_level = KVM_MAX_HUGEPAGE_LEVEL;
4199 	     max_level > PG_LEVEL_4K;
4200 	     max_level--) {
4201 		int page_num = KVM_PAGES_PER_HPAGE(max_level);
4202 		gfn_t base = (gpa >> PAGE_SHIFT) & ~(page_num - 1);
4203 
4204 		if (kvm_mtrr_check_gfn_range_consistency(vcpu, base, page_num))
4205 			break;
4206 	}
4207 
4208 	return direct_page_fault(vcpu, gpa, error_code, prefault,
4209 				 max_level, true);
4210 }
4211 
4212 static void nonpaging_init_context(struct kvm_vcpu *vcpu,
4213 				   struct kvm_mmu *context)
4214 {
4215 	context->page_fault = nonpaging_page_fault;
4216 	context->gva_to_gpa = nonpaging_gva_to_gpa;
4217 	context->sync_page = nonpaging_sync_page;
4218 	context->invlpg = NULL;
4219 	context->update_pte = nonpaging_update_pte;
4220 	context->root_level = 0;
4221 	context->shadow_root_level = PT32E_ROOT_LEVEL;
4222 	context->direct_map = true;
4223 	context->nx = false;
4224 }
4225 
4226 static inline bool is_root_usable(struct kvm_mmu_root_info *root, gpa_t pgd,
4227 				  union kvm_mmu_page_role role)
4228 {
4229 	return (role.direct || pgd == root->pgd) &&
4230 	       VALID_PAGE(root->hpa) && page_header(root->hpa) &&
4231 	       role.word == page_header(root->hpa)->role.word;
4232 }
4233 
4234 /*
4235  * Find out if a previously cached root matching the new pgd/role is available.
4236  * The current root is also inserted into the cache.
4237  * If a matching root was found, it is assigned to kvm_mmu->root_hpa and true is
4238  * returned.
4239  * Otherwise, the LRU root from the cache is assigned to kvm_mmu->root_hpa and
4240  * false is returned. This root should now be freed by the caller.
4241  */
4242 static bool cached_root_available(struct kvm_vcpu *vcpu, gpa_t new_pgd,
4243 				  union kvm_mmu_page_role new_role)
4244 {
4245 	uint i;
4246 	struct kvm_mmu_root_info root;
4247 	struct kvm_mmu *mmu = vcpu->arch.mmu;
4248 
4249 	root.pgd = mmu->root_pgd;
4250 	root.hpa = mmu->root_hpa;
4251 
4252 	if (is_root_usable(&root, new_pgd, new_role))
4253 		return true;
4254 
4255 	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
4256 		swap(root, mmu->prev_roots[i]);
4257 
4258 		if (is_root_usable(&root, new_pgd, new_role))
4259 			break;
4260 	}
4261 
4262 	mmu->root_hpa = root.hpa;
4263 	mmu->root_pgd = root.pgd;
4264 
4265 	return i < KVM_MMU_NUM_PREV_ROOTS;
4266 }
4267 
4268 static bool fast_pgd_switch(struct kvm_vcpu *vcpu, gpa_t new_pgd,
4269 			    union kvm_mmu_page_role new_role)
4270 {
4271 	struct kvm_mmu *mmu = vcpu->arch.mmu;
4272 
4273 	/*
4274 	 * For now, limit the fast switch to 64-bit hosts+VMs in order to avoid
4275 	 * having to deal with PDPTEs. We may add support for 32-bit hosts/VMs
4276 	 * later if necessary.
4277 	 */
4278 	if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
4279 	    mmu->root_level >= PT64_ROOT_4LEVEL)
4280 		return !mmu_check_root(vcpu, new_pgd >> PAGE_SHIFT) &&
4281 		       cached_root_available(vcpu, new_pgd, new_role);
4282 
4283 	return false;
4284 }
4285 
4286 static void __kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd,
4287 			      union kvm_mmu_page_role new_role,
4288 			      bool skip_tlb_flush, bool skip_mmu_sync)
4289 {
4290 	if (!fast_pgd_switch(vcpu, new_pgd, new_role)) {
4291 		kvm_mmu_free_roots(vcpu, vcpu->arch.mmu, KVM_MMU_ROOT_CURRENT);
4292 		return;
4293 	}
4294 
4295 	/*
4296 	 * It's possible that the cached previous root page is obsolete because
4297 	 * of a change in the MMU generation number. However, changing the
4298 	 * generation number is accompanied by KVM_REQ_MMU_RELOAD, which will
4299 	 * free the root set here and allocate a new one.
4300 	 */
4301 	kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu);
4302 
4303 	if (!skip_mmu_sync || force_flush_and_sync_on_reuse)
4304 		kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
4305 	if (!skip_tlb_flush || force_flush_and_sync_on_reuse)
4306 		kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
4307 
4308 	/*
4309 	 * The last MMIO access's GVA and GPA are cached in the VCPU. When
4310 	 * switching to a new CR3, that GVA->GPA mapping may no longer be
4311 	 * valid. So clear any cached MMIO info even when we don't need to sync
4312 	 * the shadow page tables.
4313 	 */
4314 	vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
4315 
4316 	__clear_sp_write_flooding_count(page_header(vcpu->arch.mmu->root_hpa));
4317 }
4318 
4319 void kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd, bool skip_tlb_flush,
4320 		     bool skip_mmu_sync)
4321 {
4322 	__kvm_mmu_new_pgd(vcpu, new_pgd, kvm_mmu_calc_root_page_role(vcpu),
4323 			  skip_tlb_flush, skip_mmu_sync);
4324 }
4325 EXPORT_SYMBOL_GPL(kvm_mmu_new_pgd);
4326 
4327 static unsigned long get_cr3(struct kvm_vcpu *vcpu)
4328 {
4329 	return kvm_read_cr3(vcpu);
4330 }
4331 
4332 static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
4333 			   unsigned int access, int *nr_present)
4334 {
4335 	if (unlikely(is_mmio_spte(*sptep))) {
4336 		if (gfn != get_mmio_spte_gfn(*sptep)) {
4337 			mmu_spte_clear_no_track(sptep);
4338 			return true;
4339 		}
4340 
4341 		(*nr_present)++;
4342 		mark_mmio_spte(vcpu, sptep, gfn, access);
4343 		return true;
4344 	}
4345 
4346 	return false;
4347 }
4348 
4349 static inline bool is_last_gpte(struct kvm_mmu *mmu,
4350 				unsigned level, unsigned gpte)
4351 {
4352 	/*
4353 	 * The RHS has bit 7 set iff level < mmu->last_nonleaf_level.
4354 	 * If it is clear, there are no large pages at this level, so clear
4355 	 * PT_PAGE_SIZE_MASK in gpte if that is the case.
4356 	 */
4357 	gpte &= level - mmu->last_nonleaf_level;
4358 
4359 	/*
4360 	 * PG_LEVEL_4K always terminates.  The RHS has bit 7 set
4361 	 * iff level <= PG_LEVEL_4K, which for our purpose means
4362 	 * level == PG_LEVEL_4K; set PT_PAGE_SIZE_MASK in gpte then.
4363 	 */
4364 	gpte |= level - PG_LEVEL_4K - 1;
4365 
4366 	return gpte & PT_PAGE_SIZE_MASK;
4367 }
4368 
4369 #define PTTYPE_EPT 18 /* arbitrary */
4370 #define PTTYPE PTTYPE_EPT
4371 #include "paging_tmpl.h"
4372 #undef PTTYPE
4373 
4374 #define PTTYPE 64
4375 #include "paging_tmpl.h"
4376 #undef PTTYPE
4377 
4378 #define PTTYPE 32
4379 #include "paging_tmpl.h"
4380 #undef PTTYPE
4381 
4382 static void
4383 __reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
4384 			struct rsvd_bits_validate *rsvd_check,
4385 			int maxphyaddr, int level, bool nx, bool gbpages,
4386 			bool pse, bool amd)
4387 {
4388 	u64 exb_bit_rsvd = 0;
4389 	u64 gbpages_bit_rsvd = 0;
4390 	u64 nonleaf_bit8_rsvd = 0;
4391 
4392 	rsvd_check->bad_mt_xwr = 0;
4393 
4394 	if (!nx)
4395 		exb_bit_rsvd = rsvd_bits(63, 63);
4396 	if (!gbpages)
4397 		gbpages_bit_rsvd = rsvd_bits(7, 7);
4398 
4399 	/*
4400 	 * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
4401 	 * leaf entries) on AMD CPUs only.
4402 	 */
4403 	if (amd)
4404 		nonleaf_bit8_rsvd = rsvd_bits(8, 8);
4405 
4406 	switch (level) {
4407 	case PT32_ROOT_LEVEL:
4408 		/* no rsvd bits for 2 level 4K page table entries */
4409 		rsvd_check->rsvd_bits_mask[0][1] = 0;
4410 		rsvd_check->rsvd_bits_mask[0][0] = 0;
4411 		rsvd_check->rsvd_bits_mask[1][0] =
4412 			rsvd_check->rsvd_bits_mask[0][0];
4413 
4414 		if (!pse) {
4415 			rsvd_check->rsvd_bits_mask[1][1] = 0;
4416 			break;
4417 		}
4418 
4419 		if (is_cpuid_PSE36())
4420 			/* 36bits PSE 4MB page */
4421 			rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
4422 		else
4423 			/* 32 bits PSE 4MB page */
4424 			rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
4425 		break;
4426 	case PT32E_ROOT_LEVEL:
4427 		rsvd_check->rsvd_bits_mask[0][2] =
4428 			rsvd_bits(maxphyaddr, 63) |
4429 			rsvd_bits(5, 8) | rsvd_bits(1, 2);	/* PDPTE */
4430 		rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4431 			rsvd_bits(maxphyaddr, 62);	/* PDE */
4432 		rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
4433 			rsvd_bits(maxphyaddr, 62); 	/* PTE */
4434 		rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
4435 			rsvd_bits(maxphyaddr, 62) |
4436 			rsvd_bits(13, 20);		/* large page */
4437 		rsvd_check->rsvd_bits_mask[1][0] =
4438 			rsvd_check->rsvd_bits_mask[0][0];
4439 		break;
4440 	case PT64_ROOT_5LEVEL:
4441 		rsvd_check->rsvd_bits_mask[0][4] = exb_bit_rsvd |
4442 			nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
4443 			rsvd_bits(maxphyaddr, 51);
4444 		rsvd_check->rsvd_bits_mask[1][4] =
4445 			rsvd_check->rsvd_bits_mask[0][4];
4446 		/* fall through */
4447 	case PT64_ROOT_4LEVEL:
4448 		rsvd_check->rsvd_bits_mask[0][3] = exb_bit_rsvd |
4449 			nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
4450 			rsvd_bits(maxphyaddr, 51);
4451 		rsvd_check->rsvd_bits_mask[0][2] = exb_bit_rsvd |
4452 			nonleaf_bit8_rsvd | gbpages_bit_rsvd |
4453 			rsvd_bits(maxphyaddr, 51);
4454 		rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4455 			rsvd_bits(maxphyaddr, 51);
4456 		rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
4457 			rsvd_bits(maxphyaddr, 51);
4458 		rsvd_check->rsvd_bits_mask[1][3] =
4459 			rsvd_check->rsvd_bits_mask[0][3];
4460 		rsvd_check->rsvd_bits_mask[1][2] = exb_bit_rsvd |
4461 			gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51) |
4462 			rsvd_bits(13, 29);
4463 		rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
4464 			rsvd_bits(maxphyaddr, 51) |
4465 			rsvd_bits(13, 20);		/* large page */
4466 		rsvd_check->rsvd_bits_mask[1][0] =
4467 			rsvd_check->rsvd_bits_mask[0][0];
4468 		break;
4469 	}
4470 }
4471 
4472 static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
4473 				  struct kvm_mmu *context)
4474 {
4475 	__reset_rsvds_bits_mask(vcpu, &context->guest_rsvd_check,
4476 				cpuid_maxphyaddr(vcpu), context->root_level,
4477 				context->nx,
4478 				guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
4479 				is_pse(vcpu),
4480 				guest_cpuid_is_amd_or_hygon(vcpu));
4481 }
4482 
4483 static void
4484 __reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check,
4485 			    int maxphyaddr, bool execonly)
4486 {
4487 	u64 bad_mt_xwr;
4488 
4489 	rsvd_check->rsvd_bits_mask[0][4] =
4490 		rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
4491 	rsvd_check->rsvd_bits_mask[0][3] =
4492 		rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
4493 	rsvd_check->rsvd_bits_mask[0][2] =
4494 		rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
4495 	rsvd_check->rsvd_bits_mask[0][1] =
4496 		rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
4497 	rsvd_check->rsvd_bits_mask[0][0] = rsvd_bits(maxphyaddr, 51);
4498 
4499 	/* large page */
4500 	rsvd_check->rsvd_bits_mask[1][4] = rsvd_check->rsvd_bits_mask[0][4];
4501 	rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3];
4502 	rsvd_check->rsvd_bits_mask[1][2] =
4503 		rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 29);
4504 	rsvd_check->rsvd_bits_mask[1][1] =
4505 		rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 20);
4506 	rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0];
4507 
4508 	bad_mt_xwr = 0xFFull << (2 * 8);	/* bits 3..5 must not be 2 */
4509 	bad_mt_xwr |= 0xFFull << (3 * 8);	/* bits 3..5 must not be 3 */
4510 	bad_mt_xwr |= 0xFFull << (7 * 8);	/* bits 3..5 must not be 7 */
4511 	bad_mt_xwr |= REPEAT_BYTE(1ull << 2);	/* bits 0..2 must not be 010 */
4512 	bad_mt_xwr |= REPEAT_BYTE(1ull << 6);	/* bits 0..2 must not be 110 */
4513 	if (!execonly) {
4514 		/* bits 0..2 must not be 100 unless VMX capabilities allow it */
4515 		bad_mt_xwr |= REPEAT_BYTE(1ull << 4);
4516 	}
4517 	rsvd_check->bad_mt_xwr = bad_mt_xwr;
4518 }
4519 
4520 static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
4521 		struct kvm_mmu *context, bool execonly)
4522 {
4523 	__reset_rsvds_bits_mask_ept(&context->guest_rsvd_check,
4524 				    cpuid_maxphyaddr(vcpu), execonly);
4525 }
4526 
4527 /*
4528  * the page table on host is the shadow page table for the page
4529  * table in guest or amd nested guest, its mmu features completely
4530  * follow the features in guest.
4531  */
4532 void
4533 reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
4534 {
4535 	bool uses_nx = context->nx ||
4536 		context->mmu_role.base.smep_andnot_wp;
4537 	struct rsvd_bits_validate *shadow_zero_check;
4538 	int i;
4539 
4540 	/*
4541 	 * Passing "true" to the last argument is okay; it adds a check
4542 	 * on bit 8 of the SPTEs which KVM doesn't use anyway.
4543 	 */
4544 	shadow_zero_check = &context->shadow_zero_check;
4545 	__reset_rsvds_bits_mask(vcpu, shadow_zero_check,
4546 				shadow_phys_bits,
4547 				context->shadow_root_level, uses_nx,
4548 				guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
4549 				is_pse(vcpu), true);
4550 
4551 	if (!shadow_me_mask)
4552 		return;
4553 
4554 	for (i = context->shadow_root_level; --i >= 0;) {
4555 		shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
4556 		shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
4557 	}
4558 
4559 }
4560 EXPORT_SYMBOL_GPL(reset_shadow_zero_bits_mask);
4561 
4562 static inline bool boot_cpu_is_amd(void)
4563 {
4564 	WARN_ON_ONCE(!tdp_enabled);
4565 	return shadow_x_mask == 0;
4566 }
4567 
4568 /*
4569  * the direct page table on host, use as much mmu features as
4570  * possible, however, kvm currently does not do execution-protection.
4571  */
4572 static void
4573 reset_tdp_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4574 				struct kvm_mmu *context)
4575 {
4576 	struct rsvd_bits_validate *shadow_zero_check;
4577 	int i;
4578 
4579 	shadow_zero_check = &context->shadow_zero_check;
4580 
4581 	if (boot_cpu_is_amd())
4582 		__reset_rsvds_bits_mask(vcpu, shadow_zero_check,
4583 					shadow_phys_bits,
4584 					context->shadow_root_level, false,
4585 					boot_cpu_has(X86_FEATURE_GBPAGES),
4586 					true, true);
4587 	else
4588 		__reset_rsvds_bits_mask_ept(shadow_zero_check,
4589 					    shadow_phys_bits,
4590 					    false);
4591 
4592 	if (!shadow_me_mask)
4593 		return;
4594 
4595 	for (i = context->shadow_root_level; --i >= 0;) {
4596 		shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
4597 		shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
4598 	}
4599 }
4600 
4601 /*
4602  * as the comments in reset_shadow_zero_bits_mask() except it
4603  * is the shadow page table for intel nested guest.
4604  */
4605 static void
4606 reset_ept_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4607 				struct kvm_mmu *context, bool execonly)
4608 {
4609 	__reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
4610 				    shadow_phys_bits, execonly);
4611 }
4612 
4613 #define BYTE_MASK(access) \
4614 	((1 & (access) ? 2 : 0) | \
4615 	 (2 & (access) ? 4 : 0) | \
4616 	 (3 & (access) ? 8 : 0) | \
4617 	 (4 & (access) ? 16 : 0) | \
4618 	 (5 & (access) ? 32 : 0) | \
4619 	 (6 & (access) ? 64 : 0) | \
4620 	 (7 & (access) ? 128 : 0))
4621 
4622 
4623 static void update_permission_bitmask(struct kvm_vcpu *vcpu,
4624 				      struct kvm_mmu *mmu, bool ept)
4625 {
4626 	unsigned byte;
4627 
4628 	const u8 x = BYTE_MASK(ACC_EXEC_MASK);
4629 	const u8 w = BYTE_MASK(ACC_WRITE_MASK);
4630 	const u8 u = BYTE_MASK(ACC_USER_MASK);
4631 
4632 	bool cr4_smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP) != 0;
4633 	bool cr4_smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP) != 0;
4634 	bool cr0_wp = is_write_protection(vcpu);
4635 
4636 	for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
4637 		unsigned pfec = byte << 1;
4638 
4639 		/*
4640 		 * Each "*f" variable has a 1 bit for each UWX value
4641 		 * that causes a fault with the given PFEC.
4642 		 */
4643 
4644 		/* Faults from writes to non-writable pages */
4645 		u8 wf = (pfec & PFERR_WRITE_MASK) ? (u8)~w : 0;
4646 		/* Faults from user mode accesses to supervisor pages */
4647 		u8 uf = (pfec & PFERR_USER_MASK) ? (u8)~u : 0;
4648 		/* Faults from fetches of non-executable pages*/
4649 		u8 ff = (pfec & PFERR_FETCH_MASK) ? (u8)~x : 0;
4650 		/* Faults from kernel mode fetches of user pages */
4651 		u8 smepf = 0;
4652 		/* Faults from kernel mode accesses of user pages */
4653 		u8 smapf = 0;
4654 
4655 		if (!ept) {
4656 			/* Faults from kernel mode accesses to user pages */
4657 			u8 kf = (pfec & PFERR_USER_MASK) ? 0 : u;
4658 
4659 			/* Not really needed: !nx will cause pte.nx to fault */
4660 			if (!mmu->nx)
4661 				ff = 0;
4662 
4663 			/* Allow supervisor writes if !cr0.wp */
4664 			if (!cr0_wp)
4665 				wf = (pfec & PFERR_USER_MASK) ? wf : 0;
4666 
4667 			/* Disallow supervisor fetches of user code if cr4.smep */
4668 			if (cr4_smep)
4669 				smepf = (pfec & PFERR_FETCH_MASK) ? kf : 0;
4670 
4671 			/*
4672 			 * SMAP:kernel-mode data accesses from user-mode
4673 			 * mappings should fault. A fault is considered
4674 			 * as a SMAP violation if all of the following
4675 			 * conditions are true:
4676 			 *   - X86_CR4_SMAP is set in CR4
4677 			 *   - A user page is accessed
4678 			 *   - The access is not a fetch
4679 			 *   - Page fault in kernel mode
4680 			 *   - if CPL = 3 or X86_EFLAGS_AC is clear
4681 			 *
4682 			 * Here, we cover the first three conditions.
4683 			 * The fourth is computed dynamically in permission_fault();
4684 			 * PFERR_RSVD_MASK bit will be set in PFEC if the access is
4685 			 * *not* subject to SMAP restrictions.
4686 			 */
4687 			if (cr4_smap)
4688 				smapf = (pfec & (PFERR_RSVD_MASK|PFERR_FETCH_MASK)) ? 0 : kf;
4689 		}
4690 
4691 		mmu->permissions[byte] = ff | uf | wf | smepf | smapf;
4692 	}
4693 }
4694 
4695 /*
4696 * PKU is an additional mechanism by which the paging controls access to
4697 * user-mode addresses based on the value in the PKRU register.  Protection
4698 * key violations are reported through a bit in the page fault error code.
4699 * Unlike other bits of the error code, the PK bit is not known at the
4700 * call site of e.g. gva_to_gpa; it must be computed directly in
4701 * permission_fault based on two bits of PKRU, on some machine state (CR4,
4702 * CR0, EFER, CPL), and on other bits of the error code and the page tables.
4703 *
4704 * In particular the following conditions come from the error code, the
4705 * page tables and the machine state:
4706 * - PK is always zero unless CR4.PKE=1 and EFER.LMA=1
4707 * - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch)
4708 * - PK is always zero if U=0 in the page tables
4709 * - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access.
4710 *
4711 * The PKRU bitmask caches the result of these four conditions.  The error
4712 * code (minus the P bit) and the page table's U bit form an index into the
4713 * PKRU bitmask.  Two bits of the PKRU bitmask are then extracted and ANDed
4714 * with the two bits of the PKRU register corresponding to the protection key.
4715 * For the first three conditions above the bits will be 00, thus masking
4716 * away both AD and WD.  For all reads or if the last condition holds, WD
4717 * only will be masked away.
4718 */
4719 static void update_pkru_bitmask(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
4720 				bool ept)
4721 {
4722 	unsigned bit;
4723 	bool wp;
4724 
4725 	if (ept) {
4726 		mmu->pkru_mask = 0;
4727 		return;
4728 	}
4729 
4730 	/* PKEY is enabled only if CR4.PKE and EFER.LMA are both set. */
4731 	if (!kvm_read_cr4_bits(vcpu, X86_CR4_PKE) || !is_long_mode(vcpu)) {
4732 		mmu->pkru_mask = 0;
4733 		return;
4734 	}
4735 
4736 	wp = is_write_protection(vcpu);
4737 
4738 	for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) {
4739 		unsigned pfec, pkey_bits;
4740 		bool check_pkey, check_write, ff, uf, wf, pte_user;
4741 
4742 		pfec = bit << 1;
4743 		ff = pfec & PFERR_FETCH_MASK;
4744 		uf = pfec & PFERR_USER_MASK;
4745 		wf = pfec & PFERR_WRITE_MASK;
4746 
4747 		/* PFEC.RSVD is replaced by ACC_USER_MASK. */
4748 		pte_user = pfec & PFERR_RSVD_MASK;
4749 
4750 		/*
4751 		 * Only need to check the access which is not an
4752 		 * instruction fetch and is to a user page.
4753 		 */
4754 		check_pkey = (!ff && pte_user);
4755 		/*
4756 		 * write access is controlled by PKRU if it is a
4757 		 * user access or CR0.WP = 1.
4758 		 */
4759 		check_write = check_pkey && wf && (uf || wp);
4760 
4761 		/* PKRU.AD stops both read and write access. */
4762 		pkey_bits = !!check_pkey;
4763 		/* PKRU.WD stops write access. */
4764 		pkey_bits |= (!!check_write) << 1;
4765 
4766 		mmu->pkru_mask |= (pkey_bits & 3) << pfec;
4767 	}
4768 }
4769 
4770 static void update_last_nonleaf_level(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
4771 {
4772 	unsigned root_level = mmu->root_level;
4773 
4774 	mmu->last_nonleaf_level = root_level;
4775 	if (root_level == PT32_ROOT_LEVEL && is_pse(vcpu))
4776 		mmu->last_nonleaf_level++;
4777 }
4778 
4779 static void paging64_init_context_common(struct kvm_vcpu *vcpu,
4780 					 struct kvm_mmu *context,
4781 					 int level)
4782 {
4783 	context->nx = is_nx(vcpu);
4784 	context->root_level = level;
4785 
4786 	reset_rsvds_bits_mask(vcpu, context);
4787 	update_permission_bitmask(vcpu, context, false);
4788 	update_pkru_bitmask(vcpu, context, false);
4789 	update_last_nonleaf_level(vcpu, context);
4790 
4791 	MMU_WARN_ON(!is_pae(vcpu));
4792 	context->page_fault = paging64_page_fault;
4793 	context->gva_to_gpa = paging64_gva_to_gpa;
4794 	context->sync_page = paging64_sync_page;
4795 	context->invlpg = paging64_invlpg;
4796 	context->update_pte = paging64_update_pte;
4797 	context->shadow_root_level = level;
4798 	context->direct_map = false;
4799 }
4800 
4801 static void paging64_init_context(struct kvm_vcpu *vcpu,
4802 				  struct kvm_mmu *context)
4803 {
4804 	int root_level = is_la57_mode(vcpu) ?
4805 			 PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4806 
4807 	paging64_init_context_common(vcpu, context, root_level);
4808 }
4809 
4810 static void paging32_init_context(struct kvm_vcpu *vcpu,
4811 				  struct kvm_mmu *context)
4812 {
4813 	context->nx = false;
4814 	context->root_level = PT32_ROOT_LEVEL;
4815 
4816 	reset_rsvds_bits_mask(vcpu, context);
4817 	update_permission_bitmask(vcpu, context, false);
4818 	update_pkru_bitmask(vcpu, context, false);
4819 	update_last_nonleaf_level(vcpu, context);
4820 
4821 	context->page_fault = paging32_page_fault;
4822 	context->gva_to_gpa = paging32_gva_to_gpa;
4823 	context->sync_page = paging32_sync_page;
4824 	context->invlpg = paging32_invlpg;
4825 	context->update_pte = paging32_update_pte;
4826 	context->shadow_root_level = PT32E_ROOT_LEVEL;
4827 	context->direct_map = false;
4828 }
4829 
4830 static void paging32E_init_context(struct kvm_vcpu *vcpu,
4831 				   struct kvm_mmu *context)
4832 {
4833 	paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
4834 }
4835 
4836 static union kvm_mmu_extended_role kvm_calc_mmu_role_ext(struct kvm_vcpu *vcpu)
4837 {
4838 	union kvm_mmu_extended_role ext = {0};
4839 
4840 	ext.cr0_pg = !!is_paging(vcpu);
4841 	ext.cr4_pae = !!is_pae(vcpu);
4842 	ext.cr4_smep = !!kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
4843 	ext.cr4_smap = !!kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
4844 	ext.cr4_pse = !!is_pse(vcpu);
4845 	ext.cr4_pke = !!kvm_read_cr4_bits(vcpu, X86_CR4_PKE);
4846 	ext.maxphyaddr = cpuid_maxphyaddr(vcpu);
4847 
4848 	ext.valid = 1;
4849 
4850 	return ext;
4851 }
4852 
4853 static union kvm_mmu_role kvm_calc_mmu_role_common(struct kvm_vcpu *vcpu,
4854 						   bool base_only)
4855 {
4856 	union kvm_mmu_role role = {0};
4857 
4858 	role.base.access = ACC_ALL;
4859 	role.base.nxe = !!is_nx(vcpu);
4860 	role.base.cr0_wp = is_write_protection(vcpu);
4861 	role.base.smm = is_smm(vcpu);
4862 	role.base.guest_mode = is_guest_mode(vcpu);
4863 
4864 	if (base_only)
4865 		return role;
4866 
4867 	role.ext = kvm_calc_mmu_role_ext(vcpu);
4868 
4869 	return role;
4870 }
4871 
4872 static union kvm_mmu_role
4873 kvm_calc_tdp_mmu_root_page_role(struct kvm_vcpu *vcpu, bool base_only)
4874 {
4875 	union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, base_only);
4876 
4877 	role.base.ad_disabled = (shadow_accessed_mask == 0);
4878 	role.base.level = vcpu->arch.tdp_level;
4879 	role.base.direct = true;
4880 	role.base.gpte_is_8_bytes = true;
4881 
4882 	return role;
4883 }
4884 
4885 static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
4886 {
4887 	struct kvm_mmu *context = vcpu->arch.mmu;
4888 	union kvm_mmu_role new_role =
4889 		kvm_calc_tdp_mmu_root_page_role(vcpu, false);
4890 
4891 	if (new_role.as_u64 == context->mmu_role.as_u64)
4892 		return;
4893 
4894 	context->mmu_role.as_u64 = new_role.as_u64;
4895 	context->page_fault = kvm_tdp_page_fault;
4896 	context->sync_page = nonpaging_sync_page;
4897 	context->invlpg = NULL;
4898 	context->update_pte = nonpaging_update_pte;
4899 	context->shadow_root_level = vcpu->arch.tdp_level;
4900 	context->direct_map = true;
4901 	context->get_guest_pgd = get_cr3;
4902 	context->get_pdptr = kvm_pdptr_read;
4903 	context->inject_page_fault = kvm_inject_page_fault;
4904 
4905 	if (!is_paging(vcpu)) {
4906 		context->nx = false;
4907 		context->gva_to_gpa = nonpaging_gva_to_gpa;
4908 		context->root_level = 0;
4909 	} else if (is_long_mode(vcpu)) {
4910 		context->nx = is_nx(vcpu);
4911 		context->root_level = is_la57_mode(vcpu) ?
4912 				PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4913 		reset_rsvds_bits_mask(vcpu, context);
4914 		context->gva_to_gpa = paging64_gva_to_gpa;
4915 	} else if (is_pae(vcpu)) {
4916 		context->nx = is_nx(vcpu);
4917 		context->root_level = PT32E_ROOT_LEVEL;
4918 		reset_rsvds_bits_mask(vcpu, context);
4919 		context->gva_to_gpa = paging64_gva_to_gpa;
4920 	} else {
4921 		context->nx = false;
4922 		context->root_level = PT32_ROOT_LEVEL;
4923 		reset_rsvds_bits_mask(vcpu, context);
4924 		context->gva_to_gpa = paging32_gva_to_gpa;
4925 	}
4926 
4927 	update_permission_bitmask(vcpu, context, false);
4928 	update_pkru_bitmask(vcpu, context, false);
4929 	update_last_nonleaf_level(vcpu, context);
4930 	reset_tdp_shadow_zero_bits_mask(vcpu, context);
4931 }
4932 
4933 static union kvm_mmu_role
4934 kvm_calc_shadow_mmu_root_page_role(struct kvm_vcpu *vcpu, bool base_only)
4935 {
4936 	union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, base_only);
4937 
4938 	role.base.smep_andnot_wp = role.ext.cr4_smep &&
4939 		!is_write_protection(vcpu);
4940 	role.base.smap_andnot_wp = role.ext.cr4_smap &&
4941 		!is_write_protection(vcpu);
4942 	role.base.direct = !is_paging(vcpu);
4943 	role.base.gpte_is_8_bytes = !!is_pae(vcpu);
4944 
4945 	if (!is_long_mode(vcpu))
4946 		role.base.level = PT32E_ROOT_LEVEL;
4947 	else if (is_la57_mode(vcpu))
4948 		role.base.level = PT64_ROOT_5LEVEL;
4949 	else
4950 		role.base.level = PT64_ROOT_4LEVEL;
4951 
4952 	return role;
4953 }
4954 
4955 void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, u32 cr0, u32 cr4, u32 efer)
4956 {
4957 	struct kvm_mmu *context = vcpu->arch.mmu;
4958 	union kvm_mmu_role new_role =
4959 		kvm_calc_shadow_mmu_root_page_role(vcpu, false);
4960 
4961 	if (new_role.as_u64 == context->mmu_role.as_u64)
4962 		return;
4963 
4964 	if (!(cr0 & X86_CR0_PG))
4965 		nonpaging_init_context(vcpu, context);
4966 	else if (efer & EFER_LMA)
4967 		paging64_init_context(vcpu, context);
4968 	else if (cr4 & X86_CR4_PAE)
4969 		paging32E_init_context(vcpu, context);
4970 	else
4971 		paging32_init_context(vcpu, context);
4972 
4973 	context->mmu_role.as_u64 = new_role.as_u64;
4974 	reset_shadow_zero_bits_mask(vcpu, context);
4975 }
4976 EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
4977 
4978 static union kvm_mmu_role
4979 kvm_calc_shadow_ept_root_page_role(struct kvm_vcpu *vcpu, bool accessed_dirty,
4980 				   bool execonly, u8 level)
4981 {
4982 	union kvm_mmu_role role = {0};
4983 
4984 	/* SMM flag is inherited from root_mmu */
4985 	role.base.smm = vcpu->arch.root_mmu.mmu_role.base.smm;
4986 
4987 	role.base.level = level;
4988 	role.base.gpte_is_8_bytes = true;
4989 	role.base.direct = false;
4990 	role.base.ad_disabled = !accessed_dirty;
4991 	role.base.guest_mode = true;
4992 	role.base.access = ACC_ALL;
4993 
4994 	/*
4995 	 * WP=1 and NOT_WP=1 is an impossible combination, use WP and the
4996 	 * SMAP variation to denote shadow EPT entries.
4997 	 */
4998 	role.base.cr0_wp = true;
4999 	role.base.smap_andnot_wp = true;
5000 
5001 	role.ext = kvm_calc_mmu_role_ext(vcpu);
5002 	role.ext.execonly = execonly;
5003 
5004 	return role;
5005 }
5006 
5007 void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly,
5008 			     bool accessed_dirty, gpa_t new_eptp)
5009 {
5010 	struct kvm_mmu *context = vcpu->arch.mmu;
5011 	u8 level = vmx_eptp_page_walk_level(new_eptp);
5012 	union kvm_mmu_role new_role =
5013 		kvm_calc_shadow_ept_root_page_role(vcpu, accessed_dirty,
5014 						   execonly, level);
5015 
5016 	__kvm_mmu_new_pgd(vcpu, new_eptp, new_role.base, true, true);
5017 
5018 	if (new_role.as_u64 == context->mmu_role.as_u64)
5019 		return;
5020 
5021 	context->shadow_root_level = level;
5022 
5023 	context->nx = true;
5024 	context->ept_ad = accessed_dirty;
5025 	context->page_fault = ept_page_fault;
5026 	context->gva_to_gpa = ept_gva_to_gpa;
5027 	context->sync_page = ept_sync_page;
5028 	context->invlpg = ept_invlpg;
5029 	context->update_pte = ept_update_pte;
5030 	context->root_level = level;
5031 	context->direct_map = false;
5032 	context->mmu_role.as_u64 = new_role.as_u64;
5033 
5034 	update_permission_bitmask(vcpu, context, true);
5035 	update_pkru_bitmask(vcpu, context, true);
5036 	update_last_nonleaf_level(vcpu, context);
5037 	reset_rsvds_bits_mask_ept(vcpu, context, execonly);
5038 	reset_ept_shadow_zero_bits_mask(vcpu, context, execonly);
5039 }
5040 EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);
5041 
5042 static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
5043 {
5044 	struct kvm_mmu *context = vcpu->arch.mmu;
5045 
5046 	kvm_init_shadow_mmu(vcpu,
5047 			    kvm_read_cr0_bits(vcpu, X86_CR0_PG),
5048 			    kvm_read_cr4_bits(vcpu, X86_CR4_PAE),
5049 			    vcpu->arch.efer);
5050 
5051 	context->get_guest_pgd     = get_cr3;
5052 	context->get_pdptr         = kvm_pdptr_read;
5053 	context->inject_page_fault = kvm_inject_page_fault;
5054 }
5055 
5056 static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
5057 {
5058 	union kvm_mmu_role new_role = kvm_calc_mmu_role_common(vcpu, false);
5059 	struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
5060 
5061 	if (new_role.as_u64 == g_context->mmu_role.as_u64)
5062 		return;
5063 
5064 	g_context->mmu_role.as_u64 = new_role.as_u64;
5065 	g_context->get_guest_pgd     = get_cr3;
5066 	g_context->get_pdptr         = kvm_pdptr_read;
5067 	g_context->inject_page_fault = kvm_inject_page_fault;
5068 
5069 	/*
5070 	 * L2 page tables are never shadowed, so there is no need to sync
5071 	 * SPTEs.
5072 	 */
5073 	g_context->invlpg            = NULL;
5074 
5075 	/*
5076 	 * Note that arch.mmu->gva_to_gpa translates l2_gpa to l1_gpa using
5077 	 * L1's nested page tables (e.g. EPT12). The nested translation
5078 	 * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using
5079 	 * L2's page tables as the first level of translation and L1's
5080 	 * nested page tables as the second level of translation. Basically
5081 	 * the gva_to_gpa functions between mmu and nested_mmu are swapped.
5082 	 */
5083 	if (!is_paging(vcpu)) {
5084 		g_context->nx = false;
5085 		g_context->root_level = 0;
5086 		g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
5087 	} else if (is_long_mode(vcpu)) {
5088 		g_context->nx = is_nx(vcpu);
5089 		g_context->root_level = is_la57_mode(vcpu) ?
5090 					PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
5091 		reset_rsvds_bits_mask(vcpu, g_context);
5092 		g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
5093 	} else if (is_pae(vcpu)) {
5094 		g_context->nx = is_nx(vcpu);
5095 		g_context->root_level = PT32E_ROOT_LEVEL;
5096 		reset_rsvds_bits_mask(vcpu, g_context);
5097 		g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
5098 	} else {
5099 		g_context->nx = false;
5100 		g_context->root_level = PT32_ROOT_LEVEL;
5101 		reset_rsvds_bits_mask(vcpu, g_context);
5102 		g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
5103 	}
5104 
5105 	update_permission_bitmask(vcpu, g_context, false);
5106 	update_pkru_bitmask(vcpu, g_context, false);
5107 	update_last_nonleaf_level(vcpu, g_context);
5108 }
5109 
5110 void kvm_init_mmu(struct kvm_vcpu *vcpu, bool reset_roots)
5111 {
5112 	if (reset_roots) {
5113 		uint i;
5114 
5115 		vcpu->arch.mmu->root_hpa = INVALID_PAGE;
5116 
5117 		for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5118 			vcpu->arch.mmu->prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
5119 	}
5120 
5121 	if (mmu_is_nested(vcpu))
5122 		init_kvm_nested_mmu(vcpu);
5123 	else if (tdp_enabled)
5124 		init_kvm_tdp_mmu(vcpu);
5125 	else
5126 		init_kvm_softmmu(vcpu);
5127 }
5128 EXPORT_SYMBOL_GPL(kvm_init_mmu);
5129 
5130 static union kvm_mmu_page_role
5131 kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu)
5132 {
5133 	union kvm_mmu_role role;
5134 
5135 	if (tdp_enabled)
5136 		role = kvm_calc_tdp_mmu_root_page_role(vcpu, true);
5137 	else
5138 		role = kvm_calc_shadow_mmu_root_page_role(vcpu, true);
5139 
5140 	return role.base;
5141 }
5142 
5143 void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
5144 {
5145 	kvm_mmu_unload(vcpu);
5146 	kvm_init_mmu(vcpu, true);
5147 }
5148 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
5149 
5150 int kvm_mmu_load(struct kvm_vcpu *vcpu)
5151 {
5152 	int r;
5153 
5154 	r = mmu_topup_memory_caches(vcpu);
5155 	if (r)
5156 		goto out;
5157 	r = mmu_alloc_roots(vcpu);
5158 	kvm_mmu_sync_roots(vcpu);
5159 	if (r)
5160 		goto out;
5161 	kvm_mmu_load_pgd(vcpu);
5162 	kvm_x86_ops.tlb_flush_current(vcpu);
5163 out:
5164 	return r;
5165 }
5166 EXPORT_SYMBOL_GPL(kvm_mmu_load);
5167 
5168 void kvm_mmu_unload(struct kvm_vcpu *vcpu)
5169 {
5170 	kvm_mmu_free_roots(vcpu, &vcpu->arch.root_mmu, KVM_MMU_ROOTS_ALL);
5171 	WARN_ON(VALID_PAGE(vcpu->arch.root_mmu.root_hpa));
5172 	kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
5173 	WARN_ON(VALID_PAGE(vcpu->arch.guest_mmu.root_hpa));
5174 }
5175 EXPORT_SYMBOL_GPL(kvm_mmu_unload);
5176 
5177 static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
5178 				  struct kvm_mmu_page *sp, u64 *spte,
5179 				  const void *new)
5180 {
5181 	if (sp->role.level != PG_LEVEL_4K) {
5182 		++vcpu->kvm->stat.mmu_pde_zapped;
5183 		return;
5184         }
5185 
5186 	++vcpu->kvm->stat.mmu_pte_updated;
5187 	vcpu->arch.mmu->update_pte(vcpu, sp, spte, new);
5188 }
5189 
5190 static bool need_remote_flush(u64 old, u64 new)
5191 {
5192 	if (!is_shadow_present_pte(old))
5193 		return false;
5194 	if (!is_shadow_present_pte(new))
5195 		return true;
5196 	if ((old ^ new) & PT64_BASE_ADDR_MASK)
5197 		return true;
5198 	old ^= shadow_nx_mask;
5199 	new ^= shadow_nx_mask;
5200 	return (old & ~new & PT64_PERM_MASK) != 0;
5201 }
5202 
5203 static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
5204 				    int *bytes)
5205 {
5206 	u64 gentry = 0;
5207 	int r;
5208 
5209 	/*
5210 	 * Assume that the pte write on a page table of the same type
5211 	 * as the current vcpu paging mode since we update the sptes only
5212 	 * when they have the same mode.
5213 	 */
5214 	if (is_pae(vcpu) && *bytes == 4) {
5215 		/* Handle a 32-bit guest writing two halves of a 64-bit gpte */
5216 		*gpa &= ~(gpa_t)7;
5217 		*bytes = 8;
5218 	}
5219 
5220 	if (*bytes == 4 || *bytes == 8) {
5221 		r = kvm_vcpu_read_guest_atomic(vcpu, *gpa, &gentry, *bytes);
5222 		if (r)
5223 			gentry = 0;
5224 	}
5225 
5226 	return gentry;
5227 }
5228 
5229 /*
5230  * If we're seeing too many writes to a page, it may no longer be a page table,
5231  * or we may be forking, in which case it is better to unmap the page.
5232  */
5233 static bool detect_write_flooding(struct kvm_mmu_page *sp)
5234 {
5235 	/*
5236 	 * Skip write-flooding detected for the sp whose level is 1, because
5237 	 * it can become unsync, then the guest page is not write-protected.
5238 	 */
5239 	if (sp->role.level == PG_LEVEL_4K)
5240 		return false;
5241 
5242 	atomic_inc(&sp->write_flooding_count);
5243 	return atomic_read(&sp->write_flooding_count) >= 3;
5244 }
5245 
5246 /*
5247  * Misaligned accesses are too much trouble to fix up; also, they usually
5248  * indicate a page is not used as a page table.
5249  */
5250 static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
5251 				    int bytes)
5252 {
5253 	unsigned offset, pte_size, misaligned;
5254 
5255 	pgprintk("misaligned: gpa %llx bytes %d role %x\n",
5256 		 gpa, bytes, sp->role.word);
5257 
5258 	offset = offset_in_page(gpa);
5259 	pte_size = sp->role.gpte_is_8_bytes ? 8 : 4;
5260 
5261 	/*
5262 	 * Sometimes, the OS only writes the last one bytes to update status
5263 	 * bits, for example, in linux, andb instruction is used in clear_bit().
5264 	 */
5265 	if (!(offset & (pte_size - 1)) && bytes == 1)
5266 		return false;
5267 
5268 	misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
5269 	misaligned |= bytes < 4;
5270 
5271 	return misaligned;
5272 }
5273 
5274 static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
5275 {
5276 	unsigned page_offset, quadrant;
5277 	u64 *spte;
5278 	int level;
5279 
5280 	page_offset = offset_in_page(gpa);
5281 	level = sp->role.level;
5282 	*nspte = 1;
5283 	if (!sp->role.gpte_is_8_bytes) {
5284 		page_offset <<= 1;	/* 32->64 */
5285 		/*
5286 		 * A 32-bit pde maps 4MB while the shadow pdes map
5287 		 * only 2MB.  So we need to double the offset again
5288 		 * and zap two pdes instead of one.
5289 		 */
5290 		if (level == PT32_ROOT_LEVEL) {
5291 			page_offset &= ~7; /* kill rounding error */
5292 			page_offset <<= 1;
5293 			*nspte = 2;
5294 		}
5295 		quadrant = page_offset >> PAGE_SHIFT;
5296 		page_offset &= ~PAGE_MASK;
5297 		if (quadrant != sp->role.quadrant)
5298 			return NULL;
5299 	}
5300 
5301 	spte = &sp->spt[page_offset / sizeof(*spte)];
5302 	return spte;
5303 }
5304 
5305 /*
5306  * Ignore various flags when determining if a SPTE can be immediately
5307  * overwritten for the current MMU.
5308  *  - level: explicitly checked in mmu_pte_write_new_pte(), and will never
5309  *    match the current MMU role, as MMU's level tracks the root level.
5310  *  - access: updated based on the new guest PTE
5311  *  - quadrant: handled by get_written_sptes()
5312  *  - invalid: always false (loop only walks valid shadow pages)
5313  */
5314 static const union kvm_mmu_page_role role_ign = {
5315 	.level = 0xf,
5316 	.access = 0x7,
5317 	.quadrant = 0x3,
5318 	.invalid = 0x1,
5319 };
5320 
5321 static void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
5322 			      const u8 *new, int bytes,
5323 			      struct kvm_page_track_notifier_node *node)
5324 {
5325 	gfn_t gfn = gpa >> PAGE_SHIFT;
5326 	struct kvm_mmu_page *sp;
5327 	LIST_HEAD(invalid_list);
5328 	u64 entry, gentry, *spte;
5329 	int npte;
5330 	bool remote_flush, local_flush;
5331 
5332 	/*
5333 	 * If we don't have indirect shadow pages, it means no page is
5334 	 * write-protected, so we can exit simply.
5335 	 */
5336 	if (!READ_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
5337 		return;
5338 
5339 	remote_flush = local_flush = false;
5340 
5341 	pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
5342 
5343 	/*
5344 	 * No need to care whether allocation memory is successful
5345 	 * or not since pte prefetch is skiped if it does not have
5346 	 * enough objects in the cache.
5347 	 */
5348 	mmu_topup_memory_caches(vcpu);
5349 
5350 	spin_lock(&vcpu->kvm->mmu_lock);
5351 
5352 	gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, &bytes);
5353 
5354 	++vcpu->kvm->stat.mmu_pte_write;
5355 	kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
5356 
5357 	for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
5358 		if (detect_write_misaligned(sp, gpa, bytes) ||
5359 		      detect_write_flooding(sp)) {
5360 			kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
5361 			++vcpu->kvm->stat.mmu_flooded;
5362 			continue;
5363 		}
5364 
5365 		spte = get_written_sptes(sp, gpa, &npte);
5366 		if (!spte)
5367 			continue;
5368 
5369 		local_flush = true;
5370 		while (npte--) {
5371 			u32 base_role = vcpu->arch.mmu->mmu_role.base.word;
5372 
5373 			entry = *spte;
5374 			mmu_page_zap_pte(vcpu->kvm, sp, spte);
5375 			if (gentry &&
5376 			    !((sp->role.word ^ base_role) & ~role_ign.word) &&
5377 			    rmap_can_add(vcpu))
5378 				mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
5379 			if (need_remote_flush(entry, *spte))
5380 				remote_flush = true;
5381 			++spte;
5382 		}
5383 	}
5384 	kvm_mmu_flush_or_zap(vcpu, &invalid_list, remote_flush, local_flush);
5385 	kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
5386 	spin_unlock(&vcpu->kvm->mmu_lock);
5387 }
5388 
5389 int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
5390 {
5391 	gpa_t gpa;
5392 	int r;
5393 
5394 	if (vcpu->arch.mmu->direct_map)
5395 		return 0;
5396 
5397 	gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
5398 
5399 	r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
5400 
5401 	return r;
5402 }
5403 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
5404 
5405 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 error_code,
5406 		       void *insn, int insn_len)
5407 {
5408 	int r, emulation_type = EMULTYPE_PF;
5409 	bool direct = vcpu->arch.mmu->direct_map;
5410 
5411 	if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa)))
5412 		return RET_PF_RETRY;
5413 
5414 	r = RET_PF_INVALID;
5415 	if (unlikely(error_code & PFERR_RSVD_MASK)) {
5416 		r = handle_mmio_page_fault(vcpu, cr2_or_gpa, direct);
5417 		if (r == RET_PF_EMULATE)
5418 			goto emulate;
5419 	}
5420 
5421 	if (r == RET_PF_INVALID) {
5422 		r = kvm_mmu_do_page_fault(vcpu, cr2_or_gpa,
5423 					  lower_32_bits(error_code), false);
5424 		WARN_ON(r == RET_PF_INVALID);
5425 	}
5426 
5427 	if (r == RET_PF_RETRY)
5428 		return 1;
5429 	if (r < 0)
5430 		return r;
5431 
5432 	/*
5433 	 * Before emulating the instruction, check if the error code
5434 	 * was due to a RO violation while translating the guest page.
5435 	 * This can occur when using nested virtualization with nested
5436 	 * paging in both guests. If true, we simply unprotect the page
5437 	 * and resume the guest.
5438 	 */
5439 	if (vcpu->arch.mmu->direct_map &&
5440 	    (error_code & PFERR_NESTED_GUEST_PAGE) == PFERR_NESTED_GUEST_PAGE) {
5441 		kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(cr2_or_gpa));
5442 		return 1;
5443 	}
5444 
5445 	/*
5446 	 * vcpu->arch.mmu.page_fault returned RET_PF_EMULATE, but we can still
5447 	 * optimistically try to just unprotect the page and let the processor
5448 	 * re-execute the instruction that caused the page fault.  Do not allow
5449 	 * retrying MMIO emulation, as it's not only pointless but could also
5450 	 * cause us to enter an infinite loop because the processor will keep
5451 	 * faulting on the non-existent MMIO address.  Retrying an instruction
5452 	 * from a nested guest is also pointless and dangerous as we are only
5453 	 * explicitly shadowing L1's page tables, i.e. unprotecting something
5454 	 * for L1 isn't going to magically fix whatever issue cause L2 to fail.
5455 	 */
5456 	if (!mmio_info_in_cache(vcpu, cr2_or_gpa, direct) && !is_guest_mode(vcpu))
5457 		emulation_type |= EMULTYPE_ALLOW_RETRY_PF;
5458 emulate:
5459 	/*
5460 	 * On AMD platforms, under certain conditions insn_len may be zero on #NPF.
5461 	 * This can happen if a guest gets a page-fault on data access but the HW
5462 	 * table walker is not able to read the instruction page (e.g instruction
5463 	 * page is not present in memory). In those cases we simply restart the
5464 	 * guest, with the exception of AMD Erratum 1096 which is unrecoverable.
5465 	 */
5466 	if (unlikely(insn && !insn_len)) {
5467 		if (!kvm_x86_ops.need_emulation_on_page_fault(vcpu))
5468 			return 1;
5469 	}
5470 
5471 	return x86_emulate_instruction(vcpu, cr2_or_gpa, emulation_type, insn,
5472 				       insn_len);
5473 }
5474 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
5475 
5476 void kvm_mmu_invalidate_gva(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
5477 			    gva_t gva, hpa_t root_hpa)
5478 {
5479 	int i;
5480 
5481 	/* It's actually a GPA for vcpu->arch.guest_mmu.  */
5482 	if (mmu != &vcpu->arch.guest_mmu) {
5483 		/* INVLPG on a non-canonical address is a NOP according to the SDM.  */
5484 		if (is_noncanonical_address(gva, vcpu))
5485 			return;
5486 
5487 		kvm_x86_ops.tlb_flush_gva(vcpu, gva);
5488 	}
5489 
5490 	if (!mmu->invlpg)
5491 		return;
5492 
5493 	if (root_hpa == INVALID_PAGE) {
5494 		mmu->invlpg(vcpu, gva, mmu->root_hpa);
5495 
5496 		/*
5497 		 * INVLPG is required to invalidate any global mappings for the VA,
5498 		 * irrespective of PCID. Since it would take us roughly similar amount
5499 		 * of work to determine whether any of the prev_root mappings of the VA
5500 		 * is marked global, or to just sync it blindly, so we might as well
5501 		 * just always sync it.
5502 		 *
5503 		 * Mappings not reachable via the current cr3 or the prev_roots will be
5504 		 * synced when switching to that cr3, so nothing needs to be done here
5505 		 * for them.
5506 		 */
5507 		for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5508 			if (VALID_PAGE(mmu->prev_roots[i].hpa))
5509 				mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
5510 	} else {
5511 		mmu->invlpg(vcpu, gva, root_hpa);
5512 	}
5513 }
5514 EXPORT_SYMBOL_GPL(kvm_mmu_invalidate_gva);
5515 
5516 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
5517 {
5518 	kvm_mmu_invalidate_gva(vcpu, vcpu->arch.mmu, gva, INVALID_PAGE);
5519 	++vcpu->stat.invlpg;
5520 }
5521 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
5522 
5523 
5524 void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid)
5525 {
5526 	struct kvm_mmu *mmu = vcpu->arch.mmu;
5527 	bool tlb_flush = false;
5528 	uint i;
5529 
5530 	if (pcid == kvm_get_active_pcid(vcpu)) {
5531 		mmu->invlpg(vcpu, gva, mmu->root_hpa);
5532 		tlb_flush = true;
5533 	}
5534 
5535 	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
5536 		if (VALID_PAGE(mmu->prev_roots[i].hpa) &&
5537 		    pcid == kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd)) {
5538 			mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
5539 			tlb_flush = true;
5540 		}
5541 	}
5542 
5543 	if (tlb_flush)
5544 		kvm_x86_ops.tlb_flush_gva(vcpu, gva);
5545 
5546 	++vcpu->stat.invlpg;
5547 
5548 	/*
5549 	 * Mappings not reachable via the current cr3 or the prev_roots will be
5550 	 * synced when switching to that cr3, so nothing needs to be done here
5551 	 * for them.
5552 	 */
5553 }
5554 EXPORT_SYMBOL_GPL(kvm_mmu_invpcid_gva);
5555 
5556 void kvm_configure_mmu(bool enable_tdp, int tdp_page_level)
5557 {
5558 	tdp_enabled = enable_tdp;
5559 
5560 	/*
5561 	 * max_page_level reflects the capabilities of KVM's MMU irrespective
5562 	 * of kernel support, e.g. KVM may be capable of using 1GB pages when
5563 	 * the kernel is not.  But, KVM never creates a page size greater than
5564 	 * what is used by the kernel for any given HVA, i.e. the kernel's
5565 	 * capabilities are ultimately consulted by kvm_mmu_hugepage_adjust().
5566 	 */
5567 	if (tdp_enabled)
5568 		max_page_level = tdp_page_level;
5569 	else if (boot_cpu_has(X86_FEATURE_GBPAGES))
5570 		max_page_level = PG_LEVEL_1G;
5571 	else
5572 		max_page_level = PG_LEVEL_2M;
5573 }
5574 EXPORT_SYMBOL_GPL(kvm_configure_mmu);
5575 
5576 /* The return value indicates if tlb flush on all vcpus is needed. */
5577 typedef bool (*slot_level_handler) (struct kvm *kvm, struct kvm_rmap_head *rmap_head);
5578 
5579 /* The caller should hold mmu-lock before calling this function. */
5580 static __always_inline bool
5581 slot_handle_level_range(struct kvm *kvm, struct kvm_memory_slot *memslot,
5582 			slot_level_handler fn, int start_level, int end_level,
5583 			gfn_t start_gfn, gfn_t end_gfn, bool lock_flush_tlb)
5584 {
5585 	struct slot_rmap_walk_iterator iterator;
5586 	bool flush = false;
5587 
5588 	for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn,
5589 			end_gfn, &iterator) {
5590 		if (iterator.rmap)
5591 			flush |= fn(kvm, iterator.rmap);
5592 
5593 		if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
5594 			if (flush && lock_flush_tlb) {
5595 				kvm_flush_remote_tlbs_with_address(kvm,
5596 						start_gfn,
5597 						iterator.gfn - start_gfn + 1);
5598 				flush = false;
5599 			}
5600 			cond_resched_lock(&kvm->mmu_lock);
5601 		}
5602 	}
5603 
5604 	if (flush && lock_flush_tlb) {
5605 		kvm_flush_remote_tlbs_with_address(kvm, start_gfn,
5606 						   end_gfn - start_gfn + 1);
5607 		flush = false;
5608 	}
5609 
5610 	return flush;
5611 }
5612 
5613 static __always_inline bool
5614 slot_handle_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5615 		  slot_level_handler fn, int start_level, int end_level,
5616 		  bool lock_flush_tlb)
5617 {
5618 	return slot_handle_level_range(kvm, memslot, fn, start_level,
5619 			end_level, memslot->base_gfn,
5620 			memslot->base_gfn + memslot->npages - 1,
5621 			lock_flush_tlb);
5622 }
5623 
5624 static __always_inline bool
5625 slot_handle_all_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5626 		      slot_level_handler fn, bool lock_flush_tlb)
5627 {
5628 	return slot_handle_level(kvm, memslot, fn, PG_LEVEL_4K,
5629 				 KVM_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
5630 }
5631 
5632 static __always_inline bool
5633 slot_handle_large_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5634 			slot_level_handler fn, bool lock_flush_tlb)
5635 {
5636 	return slot_handle_level(kvm, memslot, fn, PG_LEVEL_4K + 1,
5637 				 KVM_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
5638 }
5639 
5640 static __always_inline bool
5641 slot_handle_leaf(struct kvm *kvm, struct kvm_memory_slot *memslot,
5642 		 slot_level_handler fn, bool lock_flush_tlb)
5643 {
5644 	return slot_handle_level(kvm, memslot, fn, PG_LEVEL_4K,
5645 				 PG_LEVEL_4K, lock_flush_tlb);
5646 }
5647 
5648 static void free_mmu_pages(struct kvm_mmu *mmu)
5649 {
5650 	free_page((unsigned long)mmu->pae_root);
5651 	free_page((unsigned long)mmu->lm_root);
5652 }
5653 
5654 static int alloc_mmu_pages(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
5655 {
5656 	struct page *page;
5657 	int i;
5658 
5659 	/*
5660 	 * When using PAE paging, the four PDPTEs are treated as 'root' pages,
5661 	 * while the PDP table is a per-vCPU construct that's allocated at MMU
5662 	 * creation.  When emulating 32-bit mode, cr3 is only 32 bits even on
5663 	 * x86_64.  Therefore we need to allocate the PDP table in the first
5664 	 * 4GB of memory, which happens to fit the DMA32 zone.  Except for
5665 	 * SVM's 32-bit NPT support, TDP paging doesn't use PAE paging and can
5666 	 * skip allocating the PDP table.
5667 	 */
5668 	if (tdp_enabled && vcpu->arch.tdp_level > PT32E_ROOT_LEVEL)
5669 		return 0;
5670 
5671 	page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_DMA32);
5672 	if (!page)
5673 		return -ENOMEM;
5674 
5675 	mmu->pae_root = page_address(page);
5676 	for (i = 0; i < 4; ++i)
5677 		mmu->pae_root[i] = INVALID_PAGE;
5678 
5679 	return 0;
5680 }
5681 
5682 int kvm_mmu_create(struct kvm_vcpu *vcpu)
5683 {
5684 	uint i;
5685 	int ret;
5686 
5687 	vcpu->arch.mmu = &vcpu->arch.root_mmu;
5688 	vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
5689 
5690 	vcpu->arch.root_mmu.root_hpa = INVALID_PAGE;
5691 	vcpu->arch.root_mmu.root_pgd = 0;
5692 	vcpu->arch.root_mmu.translate_gpa = translate_gpa;
5693 	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5694 		vcpu->arch.root_mmu.prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
5695 
5696 	vcpu->arch.guest_mmu.root_hpa = INVALID_PAGE;
5697 	vcpu->arch.guest_mmu.root_pgd = 0;
5698 	vcpu->arch.guest_mmu.translate_gpa = translate_gpa;
5699 	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5700 		vcpu->arch.guest_mmu.prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
5701 
5702 	vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
5703 
5704 	ret = alloc_mmu_pages(vcpu, &vcpu->arch.guest_mmu);
5705 	if (ret)
5706 		return ret;
5707 
5708 	ret = alloc_mmu_pages(vcpu, &vcpu->arch.root_mmu);
5709 	if (ret)
5710 		goto fail_allocate_root;
5711 
5712 	return ret;
5713  fail_allocate_root:
5714 	free_mmu_pages(&vcpu->arch.guest_mmu);
5715 	return ret;
5716 }
5717 
5718 #define BATCH_ZAP_PAGES	10
5719 static void kvm_zap_obsolete_pages(struct kvm *kvm)
5720 {
5721 	struct kvm_mmu_page *sp, *node;
5722 	int nr_zapped, batch = 0;
5723 
5724 restart:
5725 	list_for_each_entry_safe_reverse(sp, node,
5726 	      &kvm->arch.active_mmu_pages, link) {
5727 		/*
5728 		 * No obsolete valid page exists before a newly created page
5729 		 * since active_mmu_pages is a FIFO list.
5730 		 */
5731 		if (!is_obsolete_sp(kvm, sp))
5732 			break;
5733 
5734 		/*
5735 		 * Skip invalid pages with a non-zero root count, zapping pages
5736 		 * with a non-zero root count will never succeed, i.e. the page
5737 		 * will get thrown back on active_mmu_pages and we'll get stuck
5738 		 * in an infinite loop.
5739 		 */
5740 		if (sp->role.invalid && sp->root_count)
5741 			continue;
5742 
5743 		/*
5744 		 * No need to flush the TLB since we're only zapping shadow
5745 		 * pages with an obsolete generation number and all vCPUS have
5746 		 * loaded a new root, i.e. the shadow pages being zapped cannot
5747 		 * be in active use by the guest.
5748 		 */
5749 		if (batch >= BATCH_ZAP_PAGES &&
5750 		    cond_resched_lock(&kvm->mmu_lock)) {
5751 			batch = 0;
5752 			goto restart;
5753 		}
5754 
5755 		if (__kvm_mmu_prepare_zap_page(kvm, sp,
5756 				&kvm->arch.zapped_obsolete_pages, &nr_zapped)) {
5757 			batch += nr_zapped;
5758 			goto restart;
5759 		}
5760 	}
5761 
5762 	/*
5763 	 * Trigger a remote TLB flush before freeing the page tables to ensure
5764 	 * KVM is not in the middle of a lockless shadow page table walk, which
5765 	 * may reference the pages.
5766 	 */
5767 	kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
5768 }
5769 
5770 /*
5771  * Fast invalidate all shadow pages and use lock-break technique
5772  * to zap obsolete pages.
5773  *
5774  * It's required when memslot is being deleted or VM is being
5775  * destroyed, in these cases, we should ensure that KVM MMU does
5776  * not use any resource of the being-deleted slot or all slots
5777  * after calling the function.
5778  */
5779 static void kvm_mmu_zap_all_fast(struct kvm *kvm)
5780 {
5781 	lockdep_assert_held(&kvm->slots_lock);
5782 
5783 	spin_lock(&kvm->mmu_lock);
5784 	trace_kvm_mmu_zap_all_fast(kvm);
5785 
5786 	/*
5787 	 * Toggle mmu_valid_gen between '0' and '1'.  Because slots_lock is
5788 	 * held for the entire duration of zapping obsolete pages, it's
5789 	 * impossible for there to be multiple invalid generations associated
5790 	 * with *valid* shadow pages at any given time, i.e. there is exactly
5791 	 * one valid generation and (at most) one invalid generation.
5792 	 */
5793 	kvm->arch.mmu_valid_gen = kvm->arch.mmu_valid_gen ? 0 : 1;
5794 
5795 	/*
5796 	 * Notify all vcpus to reload its shadow page table and flush TLB.
5797 	 * Then all vcpus will switch to new shadow page table with the new
5798 	 * mmu_valid_gen.
5799 	 *
5800 	 * Note: we need to do this under the protection of mmu_lock,
5801 	 * otherwise, vcpu would purge shadow page but miss tlb flush.
5802 	 */
5803 	kvm_reload_remote_mmus(kvm);
5804 
5805 	kvm_zap_obsolete_pages(kvm);
5806 	spin_unlock(&kvm->mmu_lock);
5807 }
5808 
5809 static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
5810 {
5811 	return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
5812 }
5813 
5814 static void kvm_mmu_invalidate_zap_pages_in_memslot(struct kvm *kvm,
5815 			struct kvm_memory_slot *slot,
5816 			struct kvm_page_track_notifier_node *node)
5817 {
5818 	kvm_mmu_zap_all_fast(kvm);
5819 }
5820 
5821 void kvm_mmu_init_vm(struct kvm *kvm)
5822 {
5823 	struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5824 
5825 	node->track_write = kvm_mmu_pte_write;
5826 	node->track_flush_slot = kvm_mmu_invalidate_zap_pages_in_memslot;
5827 	kvm_page_track_register_notifier(kvm, node);
5828 }
5829 
5830 void kvm_mmu_uninit_vm(struct kvm *kvm)
5831 {
5832 	struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5833 
5834 	kvm_page_track_unregister_notifier(kvm, node);
5835 }
5836 
5837 void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
5838 {
5839 	struct kvm_memslots *slots;
5840 	struct kvm_memory_slot *memslot;
5841 	int i;
5842 
5843 	spin_lock(&kvm->mmu_lock);
5844 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
5845 		slots = __kvm_memslots(kvm, i);
5846 		kvm_for_each_memslot(memslot, slots) {
5847 			gfn_t start, end;
5848 
5849 			start = max(gfn_start, memslot->base_gfn);
5850 			end = min(gfn_end, memslot->base_gfn + memslot->npages);
5851 			if (start >= end)
5852 				continue;
5853 
5854 			slot_handle_level_range(kvm, memslot, kvm_zap_rmapp,
5855 						PG_LEVEL_4K,
5856 						KVM_MAX_HUGEPAGE_LEVEL,
5857 						start, end - 1, true);
5858 		}
5859 	}
5860 
5861 	spin_unlock(&kvm->mmu_lock);
5862 }
5863 
5864 static bool slot_rmap_write_protect(struct kvm *kvm,
5865 				    struct kvm_rmap_head *rmap_head)
5866 {
5867 	return __rmap_write_protect(kvm, rmap_head, false);
5868 }
5869 
5870 void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
5871 				      struct kvm_memory_slot *memslot,
5872 				      int start_level)
5873 {
5874 	bool flush;
5875 
5876 	spin_lock(&kvm->mmu_lock);
5877 	flush = slot_handle_level(kvm, memslot, slot_rmap_write_protect,
5878 				start_level, KVM_MAX_HUGEPAGE_LEVEL, false);
5879 	spin_unlock(&kvm->mmu_lock);
5880 
5881 	/*
5882 	 * We can flush all the TLBs out of the mmu lock without TLB
5883 	 * corruption since we just change the spte from writable to
5884 	 * readonly so that we only need to care the case of changing
5885 	 * spte from present to present (changing the spte from present
5886 	 * to nonpresent will flush all the TLBs immediately), in other
5887 	 * words, the only case we care is mmu_spte_update() where we
5888 	 * have checked SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE
5889 	 * instead of PT_WRITABLE_MASK, that means it does not depend
5890 	 * on PT_WRITABLE_MASK anymore.
5891 	 */
5892 	if (flush)
5893 		kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
5894 }
5895 
5896 static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
5897 					 struct kvm_rmap_head *rmap_head)
5898 {
5899 	u64 *sptep;
5900 	struct rmap_iterator iter;
5901 	int need_tlb_flush = 0;
5902 	kvm_pfn_t pfn;
5903 	struct kvm_mmu_page *sp;
5904 
5905 restart:
5906 	for_each_rmap_spte(rmap_head, &iter, sptep) {
5907 		sp = page_header(__pa(sptep));
5908 		pfn = spte_to_pfn(*sptep);
5909 
5910 		/*
5911 		 * We cannot do huge page mapping for indirect shadow pages,
5912 		 * which are found on the last rmap (level = 1) when not using
5913 		 * tdp; such shadow pages are synced with the page table in
5914 		 * the guest, and the guest page table is using 4K page size
5915 		 * mapping if the indirect sp has level = 1.
5916 		 */
5917 		if (sp->role.direct && !kvm_is_reserved_pfn(pfn) &&
5918 		    (kvm_is_zone_device_pfn(pfn) ||
5919 		     PageCompound(pfn_to_page(pfn)))) {
5920 			pte_list_remove(rmap_head, sptep);
5921 
5922 			if (kvm_available_flush_tlb_with_range())
5923 				kvm_flush_remote_tlbs_with_address(kvm, sp->gfn,
5924 					KVM_PAGES_PER_HPAGE(sp->role.level));
5925 			else
5926 				need_tlb_flush = 1;
5927 
5928 			goto restart;
5929 		}
5930 	}
5931 
5932 	return need_tlb_flush;
5933 }
5934 
5935 void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
5936 				   const struct kvm_memory_slot *memslot)
5937 {
5938 	/* FIXME: const-ify all uses of struct kvm_memory_slot.  */
5939 	spin_lock(&kvm->mmu_lock);
5940 	slot_handle_leaf(kvm, (struct kvm_memory_slot *)memslot,
5941 			 kvm_mmu_zap_collapsible_spte, true);
5942 	spin_unlock(&kvm->mmu_lock);
5943 }
5944 
5945 void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
5946 					struct kvm_memory_slot *memslot)
5947 {
5948 	/*
5949 	 * All current use cases for flushing the TLBs for a specific memslot
5950 	 * are related to dirty logging, and do the TLB flush out of mmu_lock.
5951 	 * The interaction between the various operations on memslot must be
5952 	 * serialized by slots_locks to ensure the TLB flush from one operation
5953 	 * is observed by any other operation on the same memslot.
5954 	 */
5955 	lockdep_assert_held(&kvm->slots_lock);
5956 	kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn,
5957 					   memslot->npages);
5958 }
5959 
5960 void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
5961 				   struct kvm_memory_slot *memslot)
5962 {
5963 	bool flush;
5964 
5965 	spin_lock(&kvm->mmu_lock);
5966 	flush = slot_handle_leaf(kvm, memslot, __rmap_clear_dirty, false);
5967 	spin_unlock(&kvm->mmu_lock);
5968 
5969 	/*
5970 	 * It's also safe to flush TLBs out of mmu lock here as currently this
5971 	 * function is only used for dirty logging, in which case flushing TLB
5972 	 * out of mmu lock also guarantees no dirty pages will be lost in
5973 	 * dirty_bitmap.
5974 	 */
5975 	if (flush)
5976 		kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
5977 }
5978 EXPORT_SYMBOL_GPL(kvm_mmu_slot_leaf_clear_dirty);
5979 
5980 void kvm_mmu_slot_largepage_remove_write_access(struct kvm *kvm,
5981 					struct kvm_memory_slot *memslot)
5982 {
5983 	bool flush;
5984 
5985 	spin_lock(&kvm->mmu_lock);
5986 	flush = slot_handle_large_level(kvm, memslot, slot_rmap_write_protect,
5987 					false);
5988 	spin_unlock(&kvm->mmu_lock);
5989 
5990 	if (flush)
5991 		kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
5992 }
5993 EXPORT_SYMBOL_GPL(kvm_mmu_slot_largepage_remove_write_access);
5994 
5995 void kvm_mmu_slot_set_dirty(struct kvm *kvm,
5996 			    struct kvm_memory_slot *memslot)
5997 {
5998 	bool flush;
5999 
6000 	spin_lock(&kvm->mmu_lock);
6001 	flush = slot_handle_all_level(kvm, memslot, __rmap_set_dirty, false);
6002 	spin_unlock(&kvm->mmu_lock);
6003 
6004 	if (flush)
6005 		kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
6006 }
6007 EXPORT_SYMBOL_GPL(kvm_mmu_slot_set_dirty);
6008 
6009 void kvm_mmu_zap_all(struct kvm *kvm)
6010 {
6011 	struct kvm_mmu_page *sp, *node;
6012 	LIST_HEAD(invalid_list);
6013 	int ign;
6014 
6015 	spin_lock(&kvm->mmu_lock);
6016 restart:
6017 	list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link) {
6018 		if (sp->role.invalid && sp->root_count)
6019 			continue;
6020 		if (__kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list, &ign))
6021 			goto restart;
6022 		if (cond_resched_lock(&kvm->mmu_lock))
6023 			goto restart;
6024 	}
6025 
6026 	kvm_mmu_commit_zap_page(kvm, &invalid_list);
6027 	spin_unlock(&kvm->mmu_lock);
6028 }
6029 
6030 void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen)
6031 {
6032 	WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
6033 
6034 	gen &= MMIO_SPTE_GEN_MASK;
6035 
6036 	/*
6037 	 * Generation numbers are incremented in multiples of the number of
6038 	 * address spaces in order to provide unique generations across all
6039 	 * address spaces.  Strip what is effectively the address space
6040 	 * modifier prior to checking for a wrap of the MMIO generation so
6041 	 * that a wrap in any address space is detected.
6042 	 */
6043 	gen &= ~((u64)KVM_ADDRESS_SPACE_NUM - 1);
6044 
6045 	/*
6046 	 * The very rare case: if the MMIO generation number has wrapped,
6047 	 * zap all shadow pages.
6048 	 */
6049 	if (unlikely(gen == 0)) {
6050 		kvm_debug_ratelimited("kvm: zapping shadow pages for mmio generation wraparound\n");
6051 		kvm_mmu_zap_all_fast(kvm);
6052 	}
6053 }
6054 
6055 static unsigned long
6056 mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
6057 {
6058 	struct kvm *kvm;
6059 	int nr_to_scan = sc->nr_to_scan;
6060 	unsigned long freed = 0;
6061 
6062 	mutex_lock(&kvm_lock);
6063 
6064 	list_for_each_entry(kvm, &vm_list, vm_list) {
6065 		int idx;
6066 		LIST_HEAD(invalid_list);
6067 
6068 		/*
6069 		 * Never scan more than sc->nr_to_scan VM instances.
6070 		 * Will not hit this condition practically since we do not try
6071 		 * to shrink more than one VM and it is very unlikely to see
6072 		 * !n_used_mmu_pages so many times.
6073 		 */
6074 		if (!nr_to_scan--)
6075 			break;
6076 		/*
6077 		 * n_used_mmu_pages is accessed without holding kvm->mmu_lock
6078 		 * here. We may skip a VM instance errorneosly, but we do not
6079 		 * want to shrink a VM that only started to populate its MMU
6080 		 * anyway.
6081 		 */
6082 		if (!kvm->arch.n_used_mmu_pages &&
6083 		    !kvm_has_zapped_obsolete_pages(kvm))
6084 			continue;
6085 
6086 		idx = srcu_read_lock(&kvm->srcu);
6087 		spin_lock(&kvm->mmu_lock);
6088 
6089 		if (kvm_has_zapped_obsolete_pages(kvm)) {
6090 			kvm_mmu_commit_zap_page(kvm,
6091 			      &kvm->arch.zapped_obsolete_pages);
6092 			goto unlock;
6093 		}
6094 
6095 		if (prepare_zap_oldest_mmu_page(kvm, &invalid_list))
6096 			freed++;
6097 		kvm_mmu_commit_zap_page(kvm, &invalid_list);
6098 
6099 unlock:
6100 		spin_unlock(&kvm->mmu_lock);
6101 		srcu_read_unlock(&kvm->srcu, idx);
6102 
6103 		/*
6104 		 * unfair on small ones
6105 		 * per-vm shrinkers cry out
6106 		 * sadness comes quickly
6107 		 */
6108 		list_move_tail(&kvm->vm_list, &vm_list);
6109 		break;
6110 	}
6111 
6112 	mutex_unlock(&kvm_lock);
6113 	return freed;
6114 }
6115 
6116 static unsigned long
6117 mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
6118 {
6119 	return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
6120 }
6121 
6122 static struct shrinker mmu_shrinker = {
6123 	.count_objects = mmu_shrink_count,
6124 	.scan_objects = mmu_shrink_scan,
6125 	.seeks = DEFAULT_SEEKS * 10,
6126 };
6127 
6128 static void mmu_destroy_caches(void)
6129 {
6130 	kmem_cache_destroy(pte_list_desc_cache);
6131 	kmem_cache_destroy(mmu_page_header_cache);
6132 }
6133 
6134 static void kvm_set_mmio_spte_mask(void)
6135 {
6136 	u64 mask;
6137 
6138 	/*
6139 	 * Set a reserved PA bit in MMIO SPTEs to generate page faults with
6140 	 * PFEC.RSVD=1 on MMIO accesses.  64-bit PTEs (PAE, x86-64, and EPT
6141 	 * paging) support a maximum of 52 bits of PA, i.e. if the CPU supports
6142 	 * 52-bit physical addresses then there are no reserved PA bits in the
6143 	 * PTEs and so the reserved PA approach must be disabled.
6144 	 */
6145 	if (shadow_phys_bits < 52)
6146 		mask = BIT_ULL(51) | PT_PRESENT_MASK;
6147 	else
6148 		mask = 0;
6149 
6150 	kvm_mmu_set_mmio_spte_mask(mask, ACC_WRITE_MASK | ACC_USER_MASK);
6151 }
6152 
6153 static bool get_nx_auto_mode(void)
6154 {
6155 	/* Return true when CPU has the bug, and mitigations are ON */
6156 	return boot_cpu_has_bug(X86_BUG_ITLB_MULTIHIT) && !cpu_mitigations_off();
6157 }
6158 
6159 static void __set_nx_huge_pages(bool val)
6160 {
6161 	nx_huge_pages = itlb_multihit_kvm_mitigation = val;
6162 }
6163 
6164 static int set_nx_huge_pages(const char *val, const struct kernel_param *kp)
6165 {
6166 	bool old_val = nx_huge_pages;
6167 	bool new_val;
6168 
6169 	/* In "auto" mode deploy workaround only if CPU has the bug. */
6170 	if (sysfs_streq(val, "off"))
6171 		new_val = 0;
6172 	else if (sysfs_streq(val, "force"))
6173 		new_val = 1;
6174 	else if (sysfs_streq(val, "auto"))
6175 		new_val = get_nx_auto_mode();
6176 	else if (strtobool(val, &new_val) < 0)
6177 		return -EINVAL;
6178 
6179 	__set_nx_huge_pages(new_val);
6180 
6181 	if (new_val != old_val) {
6182 		struct kvm *kvm;
6183 
6184 		mutex_lock(&kvm_lock);
6185 
6186 		list_for_each_entry(kvm, &vm_list, vm_list) {
6187 			mutex_lock(&kvm->slots_lock);
6188 			kvm_mmu_zap_all_fast(kvm);
6189 			mutex_unlock(&kvm->slots_lock);
6190 
6191 			wake_up_process(kvm->arch.nx_lpage_recovery_thread);
6192 		}
6193 		mutex_unlock(&kvm_lock);
6194 	}
6195 
6196 	return 0;
6197 }
6198 
6199 int kvm_mmu_module_init(void)
6200 {
6201 	int ret = -ENOMEM;
6202 
6203 	if (nx_huge_pages == -1)
6204 		__set_nx_huge_pages(get_nx_auto_mode());
6205 
6206 	/*
6207 	 * MMU roles use union aliasing which is, generally speaking, an
6208 	 * undefined behavior. However, we supposedly know how compilers behave
6209 	 * and the current status quo is unlikely to change. Guardians below are
6210 	 * supposed to let us know if the assumption becomes false.
6211 	 */
6212 	BUILD_BUG_ON(sizeof(union kvm_mmu_page_role) != sizeof(u32));
6213 	BUILD_BUG_ON(sizeof(union kvm_mmu_extended_role) != sizeof(u32));
6214 	BUILD_BUG_ON(sizeof(union kvm_mmu_role) != sizeof(u64));
6215 
6216 	kvm_mmu_reset_all_pte_masks();
6217 
6218 	kvm_set_mmio_spte_mask();
6219 
6220 	pte_list_desc_cache = kmem_cache_create("pte_list_desc",
6221 					    sizeof(struct pte_list_desc),
6222 					    0, SLAB_ACCOUNT, NULL);
6223 	if (!pte_list_desc_cache)
6224 		goto out;
6225 
6226 	mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
6227 						  sizeof(struct kvm_mmu_page),
6228 						  0, SLAB_ACCOUNT, NULL);
6229 	if (!mmu_page_header_cache)
6230 		goto out;
6231 
6232 	if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
6233 		goto out;
6234 
6235 	ret = register_shrinker(&mmu_shrinker);
6236 	if (ret)
6237 		goto out;
6238 
6239 	return 0;
6240 
6241 out:
6242 	mmu_destroy_caches();
6243 	return ret;
6244 }
6245 
6246 /*
6247  * Calculate mmu pages needed for kvm.
6248  */
6249 unsigned long kvm_mmu_calculate_default_mmu_pages(struct kvm *kvm)
6250 {
6251 	unsigned long nr_mmu_pages;
6252 	unsigned long nr_pages = 0;
6253 	struct kvm_memslots *slots;
6254 	struct kvm_memory_slot *memslot;
6255 	int i;
6256 
6257 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
6258 		slots = __kvm_memslots(kvm, i);
6259 
6260 		kvm_for_each_memslot(memslot, slots)
6261 			nr_pages += memslot->npages;
6262 	}
6263 
6264 	nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
6265 	nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES);
6266 
6267 	return nr_mmu_pages;
6268 }
6269 
6270 void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
6271 {
6272 	kvm_mmu_unload(vcpu);
6273 	free_mmu_pages(&vcpu->arch.root_mmu);
6274 	free_mmu_pages(&vcpu->arch.guest_mmu);
6275 	mmu_free_memory_caches(vcpu);
6276 }
6277 
6278 void kvm_mmu_module_exit(void)
6279 {
6280 	mmu_destroy_caches();
6281 	percpu_counter_destroy(&kvm_total_used_mmu_pages);
6282 	unregister_shrinker(&mmu_shrinker);
6283 	mmu_audit_disable();
6284 }
6285 
6286 static int set_nx_huge_pages_recovery_ratio(const char *val, const struct kernel_param *kp)
6287 {
6288 	unsigned int old_val;
6289 	int err;
6290 
6291 	old_val = nx_huge_pages_recovery_ratio;
6292 	err = param_set_uint(val, kp);
6293 	if (err)
6294 		return err;
6295 
6296 	if (READ_ONCE(nx_huge_pages) &&
6297 	    !old_val && nx_huge_pages_recovery_ratio) {
6298 		struct kvm *kvm;
6299 
6300 		mutex_lock(&kvm_lock);
6301 
6302 		list_for_each_entry(kvm, &vm_list, vm_list)
6303 			wake_up_process(kvm->arch.nx_lpage_recovery_thread);
6304 
6305 		mutex_unlock(&kvm_lock);
6306 	}
6307 
6308 	return err;
6309 }
6310 
6311 static void kvm_recover_nx_lpages(struct kvm *kvm)
6312 {
6313 	int rcu_idx;
6314 	struct kvm_mmu_page *sp;
6315 	unsigned int ratio;
6316 	LIST_HEAD(invalid_list);
6317 	ulong to_zap;
6318 
6319 	rcu_idx = srcu_read_lock(&kvm->srcu);
6320 	spin_lock(&kvm->mmu_lock);
6321 
6322 	ratio = READ_ONCE(nx_huge_pages_recovery_ratio);
6323 	to_zap = ratio ? DIV_ROUND_UP(kvm->stat.nx_lpage_splits, ratio) : 0;
6324 	while (to_zap && !list_empty(&kvm->arch.lpage_disallowed_mmu_pages)) {
6325 		/*
6326 		 * We use a separate list instead of just using active_mmu_pages
6327 		 * because the number of lpage_disallowed pages is expected to
6328 		 * be relatively small compared to the total.
6329 		 */
6330 		sp = list_first_entry(&kvm->arch.lpage_disallowed_mmu_pages,
6331 				      struct kvm_mmu_page,
6332 				      lpage_disallowed_link);
6333 		WARN_ON_ONCE(!sp->lpage_disallowed);
6334 		kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
6335 		WARN_ON_ONCE(sp->lpage_disallowed);
6336 
6337 		if (!--to_zap || need_resched() || spin_needbreak(&kvm->mmu_lock)) {
6338 			kvm_mmu_commit_zap_page(kvm, &invalid_list);
6339 			if (to_zap)
6340 				cond_resched_lock(&kvm->mmu_lock);
6341 		}
6342 	}
6343 
6344 	spin_unlock(&kvm->mmu_lock);
6345 	srcu_read_unlock(&kvm->srcu, rcu_idx);
6346 }
6347 
6348 static long get_nx_lpage_recovery_timeout(u64 start_time)
6349 {
6350 	return READ_ONCE(nx_huge_pages) && READ_ONCE(nx_huge_pages_recovery_ratio)
6351 		? start_time + 60 * HZ - get_jiffies_64()
6352 		: MAX_SCHEDULE_TIMEOUT;
6353 }
6354 
6355 static int kvm_nx_lpage_recovery_worker(struct kvm *kvm, uintptr_t data)
6356 {
6357 	u64 start_time;
6358 	long remaining_time;
6359 
6360 	while (true) {
6361 		start_time = get_jiffies_64();
6362 		remaining_time = get_nx_lpage_recovery_timeout(start_time);
6363 
6364 		set_current_state(TASK_INTERRUPTIBLE);
6365 		while (!kthread_should_stop() && remaining_time > 0) {
6366 			schedule_timeout(remaining_time);
6367 			remaining_time = get_nx_lpage_recovery_timeout(start_time);
6368 			set_current_state(TASK_INTERRUPTIBLE);
6369 		}
6370 
6371 		set_current_state(TASK_RUNNING);
6372 
6373 		if (kthread_should_stop())
6374 			return 0;
6375 
6376 		kvm_recover_nx_lpages(kvm);
6377 	}
6378 }
6379 
6380 int kvm_mmu_post_init_vm(struct kvm *kvm)
6381 {
6382 	int err;
6383 
6384 	err = kvm_vm_create_worker_thread(kvm, kvm_nx_lpage_recovery_worker, 0,
6385 					  "kvm-nx-lpage-recovery",
6386 					  &kvm->arch.nx_lpage_recovery_thread);
6387 	if (!err)
6388 		kthread_unpark(kvm->arch.nx_lpage_recovery_thread);
6389 
6390 	return err;
6391 }
6392 
6393 void kvm_mmu_pre_destroy_vm(struct kvm *kvm)
6394 {
6395 	if (kvm->arch.nx_lpage_recovery_thread)
6396 		kthread_stop(kvm->arch.nx_lpage_recovery_thread);
6397 }
6398