1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * This module enables machines with Intel VT-x extensions to run virtual 6 * machines without emulation or binary translation. 7 * 8 * MMU support 9 * 10 * Copyright (C) 2006 Qumranet, Inc. 11 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 12 * 13 * Authors: 14 * Yaniv Kamay <yaniv@qumranet.com> 15 * Avi Kivity <avi@qumranet.com> 16 */ 17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 18 19 #include "irq.h" 20 #include "ioapic.h" 21 #include "mmu.h" 22 #include "mmu_internal.h" 23 #include "tdp_mmu.h" 24 #include "x86.h" 25 #include "kvm_cache_regs.h" 26 #include "smm.h" 27 #include "kvm_emulate.h" 28 #include "cpuid.h" 29 #include "spte.h" 30 31 #include <linux/kvm_host.h> 32 #include <linux/types.h> 33 #include <linux/string.h> 34 #include <linux/mm.h> 35 #include <linux/highmem.h> 36 #include <linux/moduleparam.h> 37 #include <linux/export.h> 38 #include <linux/swap.h> 39 #include <linux/hugetlb.h> 40 #include <linux/compiler.h> 41 #include <linux/srcu.h> 42 #include <linux/slab.h> 43 #include <linux/sched/signal.h> 44 #include <linux/uaccess.h> 45 #include <linux/hash.h> 46 #include <linux/kern_levels.h> 47 #include <linux/kstrtox.h> 48 #include <linux/kthread.h> 49 50 #include <asm/page.h> 51 #include <asm/memtype.h> 52 #include <asm/cmpxchg.h> 53 #include <asm/io.h> 54 #include <asm/set_memory.h> 55 #include <asm/vmx.h> 56 #include <asm/kvm_page_track.h> 57 #include "trace.h" 58 59 extern bool itlb_multihit_kvm_mitigation; 60 61 static bool nx_hugepage_mitigation_hard_disabled; 62 63 int __read_mostly nx_huge_pages = -1; 64 static uint __read_mostly nx_huge_pages_recovery_period_ms; 65 #ifdef CONFIG_PREEMPT_RT 66 /* Recovery can cause latency spikes, disable it for PREEMPT_RT. */ 67 static uint __read_mostly nx_huge_pages_recovery_ratio = 0; 68 #else 69 static uint __read_mostly nx_huge_pages_recovery_ratio = 60; 70 #endif 71 72 static int get_nx_huge_pages(char *buffer, const struct kernel_param *kp); 73 static int set_nx_huge_pages(const char *val, const struct kernel_param *kp); 74 static int set_nx_huge_pages_recovery_param(const char *val, const struct kernel_param *kp); 75 76 static const struct kernel_param_ops nx_huge_pages_ops = { 77 .set = set_nx_huge_pages, 78 .get = get_nx_huge_pages, 79 }; 80 81 static const struct kernel_param_ops nx_huge_pages_recovery_param_ops = { 82 .set = set_nx_huge_pages_recovery_param, 83 .get = param_get_uint, 84 }; 85 86 module_param_cb(nx_huge_pages, &nx_huge_pages_ops, &nx_huge_pages, 0644); 87 __MODULE_PARM_TYPE(nx_huge_pages, "bool"); 88 module_param_cb(nx_huge_pages_recovery_ratio, &nx_huge_pages_recovery_param_ops, 89 &nx_huge_pages_recovery_ratio, 0644); 90 __MODULE_PARM_TYPE(nx_huge_pages_recovery_ratio, "uint"); 91 module_param_cb(nx_huge_pages_recovery_period_ms, &nx_huge_pages_recovery_param_ops, 92 &nx_huge_pages_recovery_period_ms, 0644); 93 __MODULE_PARM_TYPE(nx_huge_pages_recovery_period_ms, "uint"); 94 95 static bool __read_mostly force_flush_and_sync_on_reuse; 96 module_param_named(flush_on_reuse, force_flush_and_sync_on_reuse, bool, 0644); 97 98 /* 99 * When setting this variable to true it enables Two-Dimensional-Paging 100 * where the hardware walks 2 page tables: 101 * 1. the guest-virtual to guest-physical 102 * 2. while doing 1. it walks guest-physical to host-physical 103 * If the hardware supports that we don't need to do shadow paging. 104 */ 105 bool tdp_enabled = false; 106 107 static bool __ro_after_init tdp_mmu_allowed; 108 109 #ifdef CONFIG_X86_64 110 bool __read_mostly tdp_mmu_enabled = true; 111 module_param_named(tdp_mmu, tdp_mmu_enabled, bool, 0444); 112 #endif 113 114 static int max_huge_page_level __read_mostly; 115 static int tdp_root_level __read_mostly; 116 static int max_tdp_level __read_mostly; 117 118 #ifdef MMU_DEBUG 119 bool dbg = 0; 120 module_param(dbg, bool, 0644); 121 #endif 122 123 #define PTE_PREFETCH_NUM 8 124 125 #include <trace/events/kvm.h> 126 127 /* make pte_list_desc fit well in cache lines */ 128 #define PTE_LIST_EXT 14 129 130 /* 131 * struct pte_list_desc is the core data structure used to implement a custom 132 * list for tracking a set of related SPTEs, e.g. all the SPTEs that map a 133 * given GFN when used in the context of rmaps. Using a custom list allows KVM 134 * to optimize for the common case where many GFNs will have at most a handful 135 * of SPTEs pointing at them, i.e. allows packing multiple SPTEs into a small 136 * memory footprint, which in turn improves runtime performance by exploiting 137 * cache locality. 138 * 139 * A list is comprised of one or more pte_list_desc objects (descriptors). 140 * Each individual descriptor stores up to PTE_LIST_EXT SPTEs. If a descriptor 141 * is full and a new SPTEs needs to be added, a new descriptor is allocated and 142 * becomes the head of the list. This means that by definitions, all tail 143 * descriptors are full. 144 * 145 * Note, the meta data fields are deliberately placed at the start of the 146 * structure to optimize the cacheline layout; accessing the descriptor will 147 * touch only a single cacheline so long as @spte_count<=6 (or if only the 148 * descriptors metadata is accessed). 149 */ 150 struct pte_list_desc { 151 struct pte_list_desc *more; 152 /* The number of PTEs stored in _this_ descriptor. */ 153 u32 spte_count; 154 /* The number of PTEs stored in all tails of this descriptor. */ 155 u32 tail_count; 156 u64 *sptes[PTE_LIST_EXT]; 157 }; 158 159 struct kvm_shadow_walk_iterator { 160 u64 addr; 161 hpa_t shadow_addr; 162 u64 *sptep; 163 int level; 164 unsigned index; 165 }; 166 167 #define for_each_shadow_entry_using_root(_vcpu, _root, _addr, _walker) \ 168 for (shadow_walk_init_using_root(&(_walker), (_vcpu), \ 169 (_root), (_addr)); \ 170 shadow_walk_okay(&(_walker)); \ 171 shadow_walk_next(&(_walker))) 172 173 #define for_each_shadow_entry(_vcpu, _addr, _walker) \ 174 for (shadow_walk_init(&(_walker), _vcpu, _addr); \ 175 shadow_walk_okay(&(_walker)); \ 176 shadow_walk_next(&(_walker))) 177 178 #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte) \ 179 for (shadow_walk_init(&(_walker), _vcpu, _addr); \ 180 shadow_walk_okay(&(_walker)) && \ 181 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; }); \ 182 __shadow_walk_next(&(_walker), spte)) 183 184 static struct kmem_cache *pte_list_desc_cache; 185 struct kmem_cache *mmu_page_header_cache; 186 static struct percpu_counter kvm_total_used_mmu_pages; 187 188 static void mmu_spte_set(u64 *sptep, u64 spte); 189 190 struct kvm_mmu_role_regs { 191 const unsigned long cr0; 192 const unsigned long cr4; 193 const u64 efer; 194 }; 195 196 #define CREATE_TRACE_POINTS 197 #include "mmutrace.h" 198 199 /* 200 * Yes, lot's of underscores. They're a hint that you probably shouldn't be 201 * reading from the role_regs. Once the root_role is constructed, it becomes 202 * the single source of truth for the MMU's state. 203 */ 204 #define BUILD_MMU_ROLE_REGS_ACCESSOR(reg, name, flag) \ 205 static inline bool __maybe_unused \ 206 ____is_##reg##_##name(const struct kvm_mmu_role_regs *regs) \ 207 { \ 208 return !!(regs->reg & flag); \ 209 } 210 BUILD_MMU_ROLE_REGS_ACCESSOR(cr0, pg, X86_CR0_PG); 211 BUILD_MMU_ROLE_REGS_ACCESSOR(cr0, wp, X86_CR0_WP); 212 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pse, X86_CR4_PSE); 213 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pae, X86_CR4_PAE); 214 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, smep, X86_CR4_SMEP); 215 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, smap, X86_CR4_SMAP); 216 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pke, X86_CR4_PKE); 217 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, la57, X86_CR4_LA57); 218 BUILD_MMU_ROLE_REGS_ACCESSOR(efer, nx, EFER_NX); 219 BUILD_MMU_ROLE_REGS_ACCESSOR(efer, lma, EFER_LMA); 220 221 /* 222 * The MMU itself (with a valid role) is the single source of truth for the 223 * MMU. Do not use the regs used to build the MMU/role, nor the vCPU. The 224 * regs don't account for dependencies, e.g. clearing CR4 bits if CR0.PG=1, 225 * and the vCPU may be incorrect/irrelevant. 226 */ 227 #define BUILD_MMU_ROLE_ACCESSOR(base_or_ext, reg, name) \ 228 static inline bool __maybe_unused is_##reg##_##name(struct kvm_mmu *mmu) \ 229 { \ 230 return !!(mmu->cpu_role. base_or_ext . reg##_##name); \ 231 } 232 BUILD_MMU_ROLE_ACCESSOR(base, cr0, wp); 233 BUILD_MMU_ROLE_ACCESSOR(ext, cr4, pse); 234 BUILD_MMU_ROLE_ACCESSOR(ext, cr4, smep); 235 BUILD_MMU_ROLE_ACCESSOR(ext, cr4, smap); 236 BUILD_MMU_ROLE_ACCESSOR(ext, cr4, pke); 237 BUILD_MMU_ROLE_ACCESSOR(ext, cr4, la57); 238 BUILD_MMU_ROLE_ACCESSOR(base, efer, nx); 239 BUILD_MMU_ROLE_ACCESSOR(ext, efer, lma); 240 241 static inline bool is_cr0_pg(struct kvm_mmu *mmu) 242 { 243 return mmu->cpu_role.base.level > 0; 244 } 245 246 static inline bool is_cr4_pae(struct kvm_mmu *mmu) 247 { 248 return !mmu->cpu_role.base.has_4_byte_gpte; 249 } 250 251 static struct kvm_mmu_role_regs vcpu_to_role_regs(struct kvm_vcpu *vcpu) 252 { 253 struct kvm_mmu_role_regs regs = { 254 .cr0 = kvm_read_cr0_bits(vcpu, KVM_MMU_CR0_ROLE_BITS), 255 .cr4 = kvm_read_cr4_bits(vcpu, KVM_MMU_CR4_ROLE_BITS), 256 .efer = vcpu->arch.efer, 257 }; 258 259 return regs; 260 } 261 262 static unsigned long get_guest_cr3(struct kvm_vcpu *vcpu) 263 { 264 return kvm_read_cr3(vcpu); 265 } 266 267 static inline unsigned long kvm_mmu_get_guest_pgd(struct kvm_vcpu *vcpu, 268 struct kvm_mmu *mmu) 269 { 270 if (IS_ENABLED(CONFIG_RETPOLINE) && mmu->get_guest_pgd == get_guest_cr3) 271 return kvm_read_cr3(vcpu); 272 273 return mmu->get_guest_pgd(vcpu); 274 } 275 276 static inline bool kvm_available_flush_remote_tlbs_range(void) 277 { 278 return kvm_x86_ops.flush_remote_tlbs_range; 279 } 280 281 void kvm_flush_remote_tlbs_range(struct kvm *kvm, gfn_t start_gfn, 282 gfn_t nr_pages) 283 { 284 int ret = -EOPNOTSUPP; 285 286 if (kvm_x86_ops.flush_remote_tlbs_range) 287 ret = static_call(kvm_x86_flush_remote_tlbs_range)(kvm, start_gfn, 288 nr_pages); 289 if (ret) 290 kvm_flush_remote_tlbs(kvm); 291 } 292 293 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index); 294 295 /* Flush the range of guest memory mapped by the given SPTE. */ 296 static void kvm_flush_remote_tlbs_sptep(struct kvm *kvm, u64 *sptep) 297 { 298 struct kvm_mmu_page *sp = sptep_to_sp(sptep); 299 gfn_t gfn = kvm_mmu_page_get_gfn(sp, spte_index(sptep)); 300 301 kvm_flush_remote_tlbs_gfn(kvm, gfn, sp->role.level); 302 } 303 304 static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn, 305 unsigned int access) 306 { 307 u64 spte = make_mmio_spte(vcpu, gfn, access); 308 309 trace_mark_mmio_spte(sptep, gfn, spte); 310 mmu_spte_set(sptep, spte); 311 } 312 313 static gfn_t get_mmio_spte_gfn(u64 spte) 314 { 315 u64 gpa = spte & shadow_nonpresent_or_rsvd_lower_gfn_mask; 316 317 gpa |= (spte >> SHADOW_NONPRESENT_OR_RSVD_MASK_LEN) 318 & shadow_nonpresent_or_rsvd_mask; 319 320 return gpa >> PAGE_SHIFT; 321 } 322 323 static unsigned get_mmio_spte_access(u64 spte) 324 { 325 return spte & shadow_mmio_access_mask; 326 } 327 328 static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte) 329 { 330 u64 kvm_gen, spte_gen, gen; 331 332 gen = kvm_vcpu_memslots(vcpu)->generation; 333 if (unlikely(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS)) 334 return false; 335 336 kvm_gen = gen & MMIO_SPTE_GEN_MASK; 337 spte_gen = get_mmio_spte_generation(spte); 338 339 trace_check_mmio_spte(spte, kvm_gen, spte_gen); 340 return likely(kvm_gen == spte_gen); 341 } 342 343 static int is_cpuid_PSE36(void) 344 { 345 return 1; 346 } 347 348 #ifdef CONFIG_X86_64 349 static void __set_spte(u64 *sptep, u64 spte) 350 { 351 WRITE_ONCE(*sptep, spte); 352 } 353 354 static void __update_clear_spte_fast(u64 *sptep, u64 spte) 355 { 356 WRITE_ONCE(*sptep, spte); 357 } 358 359 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte) 360 { 361 return xchg(sptep, spte); 362 } 363 364 static u64 __get_spte_lockless(u64 *sptep) 365 { 366 return READ_ONCE(*sptep); 367 } 368 #else 369 union split_spte { 370 struct { 371 u32 spte_low; 372 u32 spte_high; 373 }; 374 u64 spte; 375 }; 376 377 static void count_spte_clear(u64 *sptep, u64 spte) 378 { 379 struct kvm_mmu_page *sp = sptep_to_sp(sptep); 380 381 if (is_shadow_present_pte(spte)) 382 return; 383 384 /* Ensure the spte is completely set before we increase the count */ 385 smp_wmb(); 386 sp->clear_spte_count++; 387 } 388 389 static void __set_spte(u64 *sptep, u64 spte) 390 { 391 union split_spte *ssptep, sspte; 392 393 ssptep = (union split_spte *)sptep; 394 sspte = (union split_spte)spte; 395 396 ssptep->spte_high = sspte.spte_high; 397 398 /* 399 * If we map the spte from nonpresent to present, We should store 400 * the high bits firstly, then set present bit, so cpu can not 401 * fetch this spte while we are setting the spte. 402 */ 403 smp_wmb(); 404 405 WRITE_ONCE(ssptep->spte_low, sspte.spte_low); 406 } 407 408 static void __update_clear_spte_fast(u64 *sptep, u64 spte) 409 { 410 union split_spte *ssptep, sspte; 411 412 ssptep = (union split_spte *)sptep; 413 sspte = (union split_spte)spte; 414 415 WRITE_ONCE(ssptep->spte_low, sspte.spte_low); 416 417 /* 418 * If we map the spte from present to nonpresent, we should clear 419 * present bit firstly to avoid vcpu fetch the old high bits. 420 */ 421 smp_wmb(); 422 423 ssptep->spte_high = sspte.spte_high; 424 count_spte_clear(sptep, spte); 425 } 426 427 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte) 428 { 429 union split_spte *ssptep, sspte, orig; 430 431 ssptep = (union split_spte *)sptep; 432 sspte = (union split_spte)spte; 433 434 /* xchg acts as a barrier before the setting of the high bits */ 435 orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low); 436 orig.spte_high = ssptep->spte_high; 437 ssptep->spte_high = sspte.spte_high; 438 count_spte_clear(sptep, spte); 439 440 return orig.spte; 441 } 442 443 /* 444 * The idea using the light way get the spte on x86_32 guest is from 445 * gup_get_pte (mm/gup.c). 446 * 447 * An spte tlb flush may be pending, because kvm_set_pte_rmap 448 * coalesces them and we are running out of the MMU lock. Therefore 449 * we need to protect against in-progress updates of the spte. 450 * 451 * Reading the spte while an update is in progress may get the old value 452 * for the high part of the spte. The race is fine for a present->non-present 453 * change (because the high part of the spte is ignored for non-present spte), 454 * but for a present->present change we must reread the spte. 455 * 456 * All such changes are done in two steps (present->non-present and 457 * non-present->present), hence it is enough to count the number of 458 * present->non-present updates: if it changed while reading the spte, 459 * we might have hit the race. This is done using clear_spte_count. 460 */ 461 static u64 __get_spte_lockless(u64 *sptep) 462 { 463 struct kvm_mmu_page *sp = sptep_to_sp(sptep); 464 union split_spte spte, *orig = (union split_spte *)sptep; 465 int count; 466 467 retry: 468 count = sp->clear_spte_count; 469 smp_rmb(); 470 471 spte.spte_low = orig->spte_low; 472 smp_rmb(); 473 474 spte.spte_high = orig->spte_high; 475 smp_rmb(); 476 477 if (unlikely(spte.spte_low != orig->spte_low || 478 count != sp->clear_spte_count)) 479 goto retry; 480 481 return spte.spte; 482 } 483 #endif 484 485 /* Rules for using mmu_spte_set: 486 * Set the sptep from nonpresent to present. 487 * Note: the sptep being assigned *must* be either not present 488 * or in a state where the hardware will not attempt to update 489 * the spte. 490 */ 491 static void mmu_spte_set(u64 *sptep, u64 new_spte) 492 { 493 WARN_ON(is_shadow_present_pte(*sptep)); 494 __set_spte(sptep, new_spte); 495 } 496 497 /* 498 * Update the SPTE (excluding the PFN), but do not track changes in its 499 * accessed/dirty status. 500 */ 501 static u64 mmu_spte_update_no_track(u64 *sptep, u64 new_spte) 502 { 503 u64 old_spte = *sptep; 504 505 WARN_ON(!is_shadow_present_pte(new_spte)); 506 check_spte_writable_invariants(new_spte); 507 508 if (!is_shadow_present_pte(old_spte)) { 509 mmu_spte_set(sptep, new_spte); 510 return old_spte; 511 } 512 513 if (!spte_has_volatile_bits(old_spte)) 514 __update_clear_spte_fast(sptep, new_spte); 515 else 516 old_spte = __update_clear_spte_slow(sptep, new_spte); 517 518 WARN_ON(spte_to_pfn(old_spte) != spte_to_pfn(new_spte)); 519 520 return old_spte; 521 } 522 523 /* Rules for using mmu_spte_update: 524 * Update the state bits, it means the mapped pfn is not changed. 525 * 526 * Whenever an MMU-writable SPTE is overwritten with a read-only SPTE, remote 527 * TLBs must be flushed. Otherwise rmap_write_protect will find a read-only 528 * spte, even though the writable spte might be cached on a CPU's TLB. 529 * 530 * Returns true if the TLB needs to be flushed 531 */ 532 static bool mmu_spte_update(u64 *sptep, u64 new_spte) 533 { 534 bool flush = false; 535 u64 old_spte = mmu_spte_update_no_track(sptep, new_spte); 536 537 if (!is_shadow_present_pte(old_spte)) 538 return false; 539 540 /* 541 * For the spte updated out of mmu-lock is safe, since 542 * we always atomically update it, see the comments in 543 * spte_has_volatile_bits(). 544 */ 545 if (is_mmu_writable_spte(old_spte) && 546 !is_writable_pte(new_spte)) 547 flush = true; 548 549 /* 550 * Flush TLB when accessed/dirty states are changed in the page tables, 551 * to guarantee consistency between TLB and page tables. 552 */ 553 554 if (is_accessed_spte(old_spte) && !is_accessed_spte(new_spte)) { 555 flush = true; 556 kvm_set_pfn_accessed(spte_to_pfn(old_spte)); 557 } 558 559 if (is_dirty_spte(old_spte) && !is_dirty_spte(new_spte)) { 560 flush = true; 561 kvm_set_pfn_dirty(spte_to_pfn(old_spte)); 562 } 563 564 return flush; 565 } 566 567 /* 568 * Rules for using mmu_spte_clear_track_bits: 569 * It sets the sptep from present to nonpresent, and track the 570 * state bits, it is used to clear the last level sptep. 571 * Returns the old PTE. 572 */ 573 static u64 mmu_spte_clear_track_bits(struct kvm *kvm, u64 *sptep) 574 { 575 kvm_pfn_t pfn; 576 u64 old_spte = *sptep; 577 int level = sptep_to_sp(sptep)->role.level; 578 struct page *page; 579 580 if (!is_shadow_present_pte(old_spte) || 581 !spte_has_volatile_bits(old_spte)) 582 __update_clear_spte_fast(sptep, 0ull); 583 else 584 old_spte = __update_clear_spte_slow(sptep, 0ull); 585 586 if (!is_shadow_present_pte(old_spte)) 587 return old_spte; 588 589 kvm_update_page_stats(kvm, level, -1); 590 591 pfn = spte_to_pfn(old_spte); 592 593 /* 594 * KVM doesn't hold a reference to any pages mapped into the guest, and 595 * instead uses the mmu_notifier to ensure that KVM unmaps any pages 596 * before they are reclaimed. Sanity check that, if the pfn is backed 597 * by a refcounted page, the refcount is elevated. 598 */ 599 page = kvm_pfn_to_refcounted_page(pfn); 600 WARN_ON(page && !page_count(page)); 601 602 if (is_accessed_spte(old_spte)) 603 kvm_set_pfn_accessed(pfn); 604 605 if (is_dirty_spte(old_spte)) 606 kvm_set_pfn_dirty(pfn); 607 608 return old_spte; 609 } 610 611 /* 612 * Rules for using mmu_spte_clear_no_track: 613 * Directly clear spte without caring the state bits of sptep, 614 * it is used to set the upper level spte. 615 */ 616 static void mmu_spte_clear_no_track(u64 *sptep) 617 { 618 __update_clear_spte_fast(sptep, 0ull); 619 } 620 621 static u64 mmu_spte_get_lockless(u64 *sptep) 622 { 623 return __get_spte_lockless(sptep); 624 } 625 626 /* Returns the Accessed status of the PTE and resets it at the same time. */ 627 static bool mmu_spte_age(u64 *sptep) 628 { 629 u64 spte = mmu_spte_get_lockless(sptep); 630 631 if (!is_accessed_spte(spte)) 632 return false; 633 634 if (spte_ad_enabled(spte)) { 635 clear_bit((ffs(shadow_accessed_mask) - 1), 636 (unsigned long *)sptep); 637 } else { 638 /* 639 * Capture the dirty status of the page, so that it doesn't get 640 * lost when the SPTE is marked for access tracking. 641 */ 642 if (is_writable_pte(spte)) 643 kvm_set_pfn_dirty(spte_to_pfn(spte)); 644 645 spte = mark_spte_for_access_track(spte); 646 mmu_spte_update_no_track(sptep, spte); 647 } 648 649 return true; 650 } 651 652 static inline bool is_tdp_mmu_active(struct kvm_vcpu *vcpu) 653 { 654 return tdp_mmu_enabled && vcpu->arch.mmu->root_role.direct; 655 } 656 657 static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu) 658 { 659 if (is_tdp_mmu_active(vcpu)) { 660 kvm_tdp_mmu_walk_lockless_begin(); 661 } else { 662 /* 663 * Prevent page table teardown by making any free-er wait during 664 * kvm_flush_remote_tlbs() IPI to all active vcpus. 665 */ 666 local_irq_disable(); 667 668 /* 669 * Make sure a following spte read is not reordered ahead of the write 670 * to vcpu->mode. 671 */ 672 smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES); 673 } 674 } 675 676 static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu) 677 { 678 if (is_tdp_mmu_active(vcpu)) { 679 kvm_tdp_mmu_walk_lockless_end(); 680 } else { 681 /* 682 * Make sure the write to vcpu->mode is not reordered in front of 683 * reads to sptes. If it does, kvm_mmu_commit_zap_page() can see us 684 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table. 685 */ 686 smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE); 687 local_irq_enable(); 688 } 689 } 690 691 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu, bool maybe_indirect) 692 { 693 int r; 694 695 /* 1 rmap, 1 parent PTE per level, and the prefetched rmaps. */ 696 r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache, 697 1 + PT64_ROOT_MAX_LEVEL + PTE_PREFETCH_NUM); 698 if (r) 699 return r; 700 r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_shadow_page_cache, 701 PT64_ROOT_MAX_LEVEL); 702 if (r) 703 return r; 704 if (maybe_indirect) { 705 r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_shadowed_info_cache, 706 PT64_ROOT_MAX_LEVEL); 707 if (r) 708 return r; 709 } 710 return kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache, 711 PT64_ROOT_MAX_LEVEL); 712 } 713 714 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu) 715 { 716 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache); 717 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_shadow_page_cache); 718 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_shadowed_info_cache); 719 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache); 720 } 721 722 static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc) 723 { 724 kmem_cache_free(pte_list_desc_cache, pte_list_desc); 725 } 726 727 static bool sp_has_gptes(struct kvm_mmu_page *sp); 728 729 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index) 730 { 731 if (sp->role.passthrough) 732 return sp->gfn; 733 734 if (!sp->role.direct) 735 return sp->shadowed_translation[index] >> PAGE_SHIFT; 736 737 return sp->gfn + (index << ((sp->role.level - 1) * SPTE_LEVEL_BITS)); 738 } 739 740 /* 741 * For leaf SPTEs, fetch the *guest* access permissions being shadowed. Note 742 * that the SPTE itself may have a more constrained access permissions that 743 * what the guest enforces. For example, a guest may create an executable 744 * huge PTE but KVM may disallow execution to mitigate iTLB multihit. 745 */ 746 static u32 kvm_mmu_page_get_access(struct kvm_mmu_page *sp, int index) 747 { 748 if (sp_has_gptes(sp)) 749 return sp->shadowed_translation[index] & ACC_ALL; 750 751 /* 752 * For direct MMUs (e.g. TDP or non-paging guests) or passthrough SPs, 753 * KVM is not shadowing any guest page tables, so the "guest access 754 * permissions" are just ACC_ALL. 755 * 756 * For direct SPs in indirect MMUs (shadow paging), i.e. when KVM 757 * is shadowing a guest huge page with small pages, the guest access 758 * permissions being shadowed are the access permissions of the huge 759 * page. 760 * 761 * In both cases, sp->role.access contains the correct access bits. 762 */ 763 return sp->role.access; 764 } 765 766 static void kvm_mmu_page_set_translation(struct kvm_mmu_page *sp, int index, 767 gfn_t gfn, unsigned int access) 768 { 769 if (sp_has_gptes(sp)) { 770 sp->shadowed_translation[index] = (gfn << PAGE_SHIFT) | access; 771 return; 772 } 773 774 WARN_ONCE(access != kvm_mmu_page_get_access(sp, index), 775 "access mismatch under %s page %llx (expected %u, got %u)\n", 776 sp->role.passthrough ? "passthrough" : "direct", 777 sp->gfn, kvm_mmu_page_get_access(sp, index), access); 778 779 WARN_ONCE(gfn != kvm_mmu_page_get_gfn(sp, index), 780 "gfn mismatch under %s page %llx (expected %llx, got %llx)\n", 781 sp->role.passthrough ? "passthrough" : "direct", 782 sp->gfn, kvm_mmu_page_get_gfn(sp, index), gfn); 783 } 784 785 static void kvm_mmu_page_set_access(struct kvm_mmu_page *sp, int index, 786 unsigned int access) 787 { 788 gfn_t gfn = kvm_mmu_page_get_gfn(sp, index); 789 790 kvm_mmu_page_set_translation(sp, index, gfn, access); 791 } 792 793 /* 794 * Return the pointer to the large page information for a given gfn, 795 * handling slots that are not large page aligned. 796 */ 797 static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn, 798 const struct kvm_memory_slot *slot, int level) 799 { 800 unsigned long idx; 801 802 idx = gfn_to_index(gfn, slot->base_gfn, level); 803 return &slot->arch.lpage_info[level - 2][idx]; 804 } 805 806 static void update_gfn_disallow_lpage_count(const struct kvm_memory_slot *slot, 807 gfn_t gfn, int count) 808 { 809 struct kvm_lpage_info *linfo; 810 int i; 811 812 for (i = PG_LEVEL_2M; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) { 813 linfo = lpage_info_slot(gfn, slot, i); 814 linfo->disallow_lpage += count; 815 WARN_ON(linfo->disallow_lpage < 0); 816 } 817 } 818 819 void kvm_mmu_gfn_disallow_lpage(const struct kvm_memory_slot *slot, gfn_t gfn) 820 { 821 update_gfn_disallow_lpage_count(slot, gfn, 1); 822 } 823 824 void kvm_mmu_gfn_allow_lpage(const struct kvm_memory_slot *slot, gfn_t gfn) 825 { 826 update_gfn_disallow_lpage_count(slot, gfn, -1); 827 } 828 829 static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp) 830 { 831 struct kvm_memslots *slots; 832 struct kvm_memory_slot *slot; 833 gfn_t gfn; 834 835 kvm->arch.indirect_shadow_pages++; 836 gfn = sp->gfn; 837 slots = kvm_memslots_for_spte_role(kvm, sp->role); 838 slot = __gfn_to_memslot(slots, gfn); 839 840 /* the non-leaf shadow pages are keeping readonly. */ 841 if (sp->role.level > PG_LEVEL_4K) 842 return kvm_slot_page_track_add_page(kvm, slot, gfn, 843 KVM_PAGE_TRACK_WRITE); 844 845 kvm_mmu_gfn_disallow_lpage(slot, gfn); 846 847 if (kvm_mmu_slot_gfn_write_protect(kvm, slot, gfn, PG_LEVEL_4K)) 848 kvm_flush_remote_tlbs_gfn(kvm, gfn, PG_LEVEL_4K); 849 } 850 851 void track_possible_nx_huge_page(struct kvm *kvm, struct kvm_mmu_page *sp) 852 { 853 /* 854 * If it's possible to replace the shadow page with an NX huge page, 855 * i.e. if the shadow page is the only thing currently preventing KVM 856 * from using a huge page, add the shadow page to the list of "to be 857 * zapped for NX recovery" pages. Note, the shadow page can already be 858 * on the list if KVM is reusing an existing shadow page, i.e. if KVM 859 * links a shadow page at multiple points. 860 */ 861 if (!list_empty(&sp->possible_nx_huge_page_link)) 862 return; 863 864 ++kvm->stat.nx_lpage_splits; 865 list_add_tail(&sp->possible_nx_huge_page_link, 866 &kvm->arch.possible_nx_huge_pages); 867 } 868 869 static void account_nx_huge_page(struct kvm *kvm, struct kvm_mmu_page *sp, 870 bool nx_huge_page_possible) 871 { 872 sp->nx_huge_page_disallowed = true; 873 874 if (nx_huge_page_possible) 875 track_possible_nx_huge_page(kvm, sp); 876 } 877 878 static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp) 879 { 880 struct kvm_memslots *slots; 881 struct kvm_memory_slot *slot; 882 gfn_t gfn; 883 884 kvm->arch.indirect_shadow_pages--; 885 gfn = sp->gfn; 886 slots = kvm_memslots_for_spte_role(kvm, sp->role); 887 slot = __gfn_to_memslot(slots, gfn); 888 if (sp->role.level > PG_LEVEL_4K) 889 return kvm_slot_page_track_remove_page(kvm, slot, gfn, 890 KVM_PAGE_TRACK_WRITE); 891 892 kvm_mmu_gfn_allow_lpage(slot, gfn); 893 } 894 895 void untrack_possible_nx_huge_page(struct kvm *kvm, struct kvm_mmu_page *sp) 896 { 897 if (list_empty(&sp->possible_nx_huge_page_link)) 898 return; 899 900 --kvm->stat.nx_lpage_splits; 901 list_del_init(&sp->possible_nx_huge_page_link); 902 } 903 904 static void unaccount_nx_huge_page(struct kvm *kvm, struct kvm_mmu_page *sp) 905 { 906 sp->nx_huge_page_disallowed = false; 907 908 untrack_possible_nx_huge_page(kvm, sp); 909 } 910 911 static struct kvm_memory_slot *gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, 912 gfn_t gfn, 913 bool no_dirty_log) 914 { 915 struct kvm_memory_slot *slot; 916 917 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 918 if (!slot || slot->flags & KVM_MEMSLOT_INVALID) 919 return NULL; 920 if (no_dirty_log && kvm_slot_dirty_track_enabled(slot)) 921 return NULL; 922 923 return slot; 924 } 925 926 /* 927 * About rmap_head encoding: 928 * 929 * If the bit zero of rmap_head->val is clear, then it points to the only spte 930 * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct 931 * pte_list_desc containing more mappings. 932 */ 933 934 /* 935 * Returns the number of pointers in the rmap chain, not counting the new one. 936 */ 937 static int pte_list_add(struct kvm_mmu_memory_cache *cache, u64 *spte, 938 struct kvm_rmap_head *rmap_head) 939 { 940 struct pte_list_desc *desc; 941 int count = 0; 942 943 if (!rmap_head->val) { 944 rmap_printk("%p %llx 0->1\n", spte, *spte); 945 rmap_head->val = (unsigned long)spte; 946 } else if (!(rmap_head->val & 1)) { 947 rmap_printk("%p %llx 1->many\n", spte, *spte); 948 desc = kvm_mmu_memory_cache_alloc(cache); 949 desc->sptes[0] = (u64 *)rmap_head->val; 950 desc->sptes[1] = spte; 951 desc->spte_count = 2; 952 desc->tail_count = 0; 953 rmap_head->val = (unsigned long)desc | 1; 954 ++count; 955 } else { 956 rmap_printk("%p %llx many->many\n", spte, *spte); 957 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul); 958 count = desc->tail_count + desc->spte_count; 959 960 /* 961 * If the previous head is full, allocate a new head descriptor 962 * as tail descriptors are always kept full. 963 */ 964 if (desc->spte_count == PTE_LIST_EXT) { 965 desc = kvm_mmu_memory_cache_alloc(cache); 966 desc->more = (struct pte_list_desc *)(rmap_head->val & ~1ul); 967 desc->spte_count = 0; 968 desc->tail_count = count; 969 rmap_head->val = (unsigned long)desc | 1; 970 } 971 desc->sptes[desc->spte_count++] = spte; 972 } 973 return count; 974 } 975 976 static void pte_list_desc_remove_entry(struct kvm_rmap_head *rmap_head, 977 struct pte_list_desc *desc, int i) 978 { 979 struct pte_list_desc *head_desc = (struct pte_list_desc *)(rmap_head->val & ~1ul); 980 int j = head_desc->spte_count - 1; 981 982 /* 983 * The head descriptor should never be empty. A new head is added only 984 * when adding an entry and the previous head is full, and heads are 985 * removed (this flow) when they become empty. 986 */ 987 BUG_ON(j < 0); 988 989 /* 990 * Replace the to-be-freed SPTE with the last valid entry from the head 991 * descriptor to ensure that tail descriptors are full at all times. 992 * Note, this also means that tail_count is stable for each descriptor. 993 */ 994 desc->sptes[i] = head_desc->sptes[j]; 995 head_desc->sptes[j] = NULL; 996 head_desc->spte_count--; 997 if (head_desc->spte_count) 998 return; 999 1000 /* 1001 * The head descriptor is empty. If there are no tail descriptors, 1002 * nullify the rmap head to mark the list as emtpy, else point the rmap 1003 * head at the next descriptor, i.e. the new head. 1004 */ 1005 if (!head_desc->more) 1006 rmap_head->val = 0; 1007 else 1008 rmap_head->val = (unsigned long)head_desc->more | 1; 1009 mmu_free_pte_list_desc(head_desc); 1010 } 1011 1012 static void pte_list_remove(u64 *spte, struct kvm_rmap_head *rmap_head) 1013 { 1014 struct pte_list_desc *desc; 1015 int i; 1016 1017 if (!rmap_head->val) { 1018 pr_err("%s: %p 0->BUG\n", __func__, spte); 1019 BUG(); 1020 } else if (!(rmap_head->val & 1)) { 1021 rmap_printk("%p 1->0\n", spte); 1022 if ((u64 *)rmap_head->val != spte) { 1023 pr_err("%s: %p 1->BUG\n", __func__, spte); 1024 BUG(); 1025 } 1026 rmap_head->val = 0; 1027 } else { 1028 rmap_printk("%p many->many\n", spte); 1029 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul); 1030 while (desc) { 1031 for (i = 0; i < desc->spte_count; ++i) { 1032 if (desc->sptes[i] == spte) { 1033 pte_list_desc_remove_entry(rmap_head, desc, i); 1034 return; 1035 } 1036 } 1037 desc = desc->more; 1038 } 1039 pr_err("%s: %p many->many\n", __func__, spte); 1040 BUG(); 1041 } 1042 } 1043 1044 static void kvm_zap_one_rmap_spte(struct kvm *kvm, 1045 struct kvm_rmap_head *rmap_head, u64 *sptep) 1046 { 1047 mmu_spte_clear_track_bits(kvm, sptep); 1048 pte_list_remove(sptep, rmap_head); 1049 } 1050 1051 /* Return true if at least one SPTE was zapped, false otherwise */ 1052 static bool kvm_zap_all_rmap_sptes(struct kvm *kvm, 1053 struct kvm_rmap_head *rmap_head) 1054 { 1055 struct pte_list_desc *desc, *next; 1056 int i; 1057 1058 if (!rmap_head->val) 1059 return false; 1060 1061 if (!(rmap_head->val & 1)) { 1062 mmu_spte_clear_track_bits(kvm, (u64 *)rmap_head->val); 1063 goto out; 1064 } 1065 1066 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul); 1067 1068 for (; desc; desc = next) { 1069 for (i = 0; i < desc->spte_count; i++) 1070 mmu_spte_clear_track_bits(kvm, desc->sptes[i]); 1071 next = desc->more; 1072 mmu_free_pte_list_desc(desc); 1073 } 1074 out: 1075 /* rmap_head is meaningless now, remember to reset it */ 1076 rmap_head->val = 0; 1077 return true; 1078 } 1079 1080 unsigned int pte_list_count(struct kvm_rmap_head *rmap_head) 1081 { 1082 struct pte_list_desc *desc; 1083 1084 if (!rmap_head->val) 1085 return 0; 1086 else if (!(rmap_head->val & 1)) 1087 return 1; 1088 1089 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul); 1090 return desc->tail_count + desc->spte_count; 1091 } 1092 1093 static struct kvm_rmap_head *gfn_to_rmap(gfn_t gfn, int level, 1094 const struct kvm_memory_slot *slot) 1095 { 1096 unsigned long idx; 1097 1098 idx = gfn_to_index(gfn, slot->base_gfn, level); 1099 return &slot->arch.rmap[level - PG_LEVEL_4K][idx]; 1100 } 1101 1102 static void rmap_remove(struct kvm *kvm, u64 *spte) 1103 { 1104 struct kvm_memslots *slots; 1105 struct kvm_memory_slot *slot; 1106 struct kvm_mmu_page *sp; 1107 gfn_t gfn; 1108 struct kvm_rmap_head *rmap_head; 1109 1110 sp = sptep_to_sp(spte); 1111 gfn = kvm_mmu_page_get_gfn(sp, spte_index(spte)); 1112 1113 /* 1114 * Unlike rmap_add, rmap_remove does not run in the context of a vCPU 1115 * so we have to determine which memslots to use based on context 1116 * information in sp->role. 1117 */ 1118 slots = kvm_memslots_for_spte_role(kvm, sp->role); 1119 1120 slot = __gfn_to_memslot(slots, gfn); 1121 rmap_head = gfn_to_rmap(gfn, sp->role.level, slot); 1122 1123 pte_list_remove(spte, rmap_head); 1124 } 1125 1126 /* 1127 * Used by the following functions to iterate through the sptes linked by a 1128 * rmap. All fields are private and not assumed to be used outside. 1129 */ 1130 struct rmap_iterator { 1131 /* private fields */ 1132 struct pte_list_desc *desc; /* holds the sptep if not NULL */ 1133 int pos; /* index of the sptep */ 1134 }; 1135 1136 /* 1137 * Iteration must be started by this function. This should also be used after 1138 * removing/dropping sptes from the rmap link because in such cases the 1139 * information in the iterator may not be valid. 1140 * 1141 * Returns sptep if found, NULL otherwise. 1142 */ 1143 static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head, 1144 struct rmap_iterator *iter) 1145 { 1146 u64 *sptep; 1147 1148 if (!rmap_head->val) 1149 return NULL; 1150 1151 if (!(rmap_head->val & 1)) { 1152 iter->desc = NULL; 1153 sptep = (u64 *)rmap_head->val; 1154 goto out; 1155 } 1156 1157 iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul); 1158 iter->pos = 0; 1159 sptep = iter->desc->sptes[iter->pos]; 1160 out: 1161 BUG_ON(!is_shadow_present_pte(*sptep)); 1162 return sptep; 1163 } 1164 1165 /* 1166 * Must be used with a valid iterator: e.g. after rmap_get_first(). 1167 * 1168 * Returns sptep if found, NULL otherwise. 1169 */ 1170 static u64 *rmap_get_next(struct rmap_iterator *iter) 1171 { 1172 u64 *sptep; 1173 1174 if (iter->desc) { 1175 if (iter->pos < PTE_LIST_EXT - 1) { 1176 ++iter->pos; 1177 sptep = iter->desc->sptes[iter->pos]; 1178 if (sptep) 1179 goto out; 1180 } 1181 1182 iter->desc = iter->desc->more; 1183 1184 if (iter->desc) { 1185 iter->pos = 0; 1186 /* desc->sptes[0] cannot be NULL */ 1187 sptep = iter->desc->sptes[iter->pos]; 1188 goto out; 1189 } 1190 } 1191 1192 return NULL; 1193 out: 1194 BUG_ON(!is_shadow_present_pte(*sptep)); 1195 return sptep; 1196 } 1197 1198 #define for_each_rmap_spte(_rmap_head_, _iter_, _spte_) \ 1199 for (_spte_ = rmap_get_first(_rmap_head_, _iter_); \ 1200 _spte_; _spte_ = rmap_get_next(_iter_)) 1201 1202 static void drop_spte(struct kvm *kvm, u64 *sptep) 1203 { 1204 u64 old_spte = mmu_spte_clear_track_bits(kvm, sptep); 1205 1206 if (is_shadow_present_pte(old_spte)) 1207 rmap_remove(kvm, sptep); 1208 } 1209 1210 static void drop_large_spte(struct kvm *kvm, u64 *sptep, bool flush) 1211 { 1212 struct kvm_mmu_page *sp; 1213 1214 sp = sptep_to_sp(sptep); 1215 WARN_ON(sp->role.level == PG_LEVEL_4K); 1216 1217 drop_spte(kvm, sptep); 1218 1219 if (flush) 1220 kvm_flush_remote_tlbs_sptep(kvm, sptep); 1221 } 1222 1223 /* 1224 * Write-protect on the specified @sptep, @pt_protect indicates whether 1225 * spte write-protection is caused by protecting shadow page table. 1226 * 1227 * Note: write protection is difference between dirty logging and spte 1228 * protection: 1229 * - for dirty logging, the spte can be set to writable at anytime if 1230 * its dirty bitmap is properly set. 1231 * - for spte protection, the spte can be writable only after unsync-ing 1232 * shadow page. 1233 * 1234 * Return true if tlb need be flushed. 1235 */ 1236 static bool spte_write_protect(u64 *sptep, bool pt_protect) 1237 { 1238 u64 spte = *sptep; 1239 1240 if (!is_writable_pte(spte) && 1241 !(pt_protect && is_mmu_writable_spte(spte))) 1242 return false; 1243 1244 rmap_printk("spte %p %llx\n", sptep, *sptep); 1245 1246 if (pt_protect) 1247 spte &= ~shadow_mmu_writable_mask; 1248 spte = spte & ~PT_WRITABLE_MASK; 1249 1250 return mmu_spte_update(sptep, spte); 1251 } 1252 1253 static bool rmap_write_protect(struct kvm_rmap_head *rmap_head, 1254 bool pt_protect) 1255 { 1256 u64 *sptep; 1257 struct rmap_iterator iter; 1258 bool flush = false; 1259 1260 for_each_rmap_spte(rmap_head, &iter, sptep) 1261 flush |= spte_write_protect(sptep, pt_protect); 1262 1263 return flush; 1264 } 1265 1266 static bool spte_clear_dirty(u64 *sptep) 1267 { 1268 u64 spte = *sptep; 1269 1270 rmap_printk("spte %p %llx\n", sptep, *sptep); 1271 1272 MMU_WARN_ON(!spte_ad_enabled(spte)); 1273 spte &= ~shadow_dirty_mask; 1274 return mmu_spte_update(sptep, spte); 1275 } 1276 1277 static bool spte_wrprot_for_clear_dirty(u64 *sptep) 1278 { 1279 bool was_writable = test_and_clear_bit(PT_WRITABLE_SHIFT, 1280 (unsigned long *)sptep); 1281 if (was_writable && !spte_ad_enabled(*sptep)) 1282 kvm_set_pfn_dirty(spte_to_pfn(*sptep)); 1283 1284 return was_writable; 1285 } 1286 1287 /* 1288 * Gets the GFN ready for another round of dirty logging by clearing the 1289 * - D bit on ad-enabled SPTEs, and 1290 * - W bit on ad-disabled SPTEs. 1291 * Returns true iff any D or W bits were cleared. 1292 */ 1293 static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head, 1294 const struct kvm_memory_slot *slot) 1295 { 1296 u64 *sptep; 1297 struct rmap_iterator iter; 1298 bool flush = false; 1299 1300 for_each_rmap_spte(rmap_head, &iter, sptep) 1301 if (spte_ad_need_write_protect(*sptep)) 1302 flush |= spte_wrprot_for_clear_dirty(sptep); 1303 else 1304 flush |= spte_clear_dirty(sptep); 1305 1306 return flush; 1307 } 1308 1309 /** 1310 * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages 1311 * @kvm: kvm instance 1312 * @slot: slot to protect 1313 * @gfn_offset: start of the BITS_PER_LONG pages we care about 1314 * @mask: indicates which pages we should protect 1315 * 1316 * Used when we do not need to care about huge page mappings. 1317 */ 1318 static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm, 1319 struct kvm_memory_slot *slot, 1320 gfn_t gfn_offset, unsigned long mask) 1321 { 1322 struct kvm_rmap_head *rmap_head; 1323 1324 if (tdp_mmu_enabled) 1325 kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot, 1326 slot->base_gfn + gfn_offset, mask, true); 1327 1328 if (!kvm_memslots_have_rmaps(kvm)) 1329 return; 1330 1331 while (mask) { 1332 rmap_head = gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask), 1333 PG_LEVEL_4K, slot); 1334 rmap_write_protect(rmap_head, false); 1335 1336 /* clear the first set bit */ 1337 mask &= mask - 1; 1338 } 1339 } 1340 1341 /** 1342 * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages, or write 1343 * protect the page if the D-bit isn't supported. 1344 * @kvm: kvm instance 1345 * @slot: slot to clear D-bit 1346 * @gfn_offset: start of the BITS_PER_LONG pages we care about 1347 * @mask: indicates which pages we should clear D-bit 1348 * 1349 * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap. 1350 */ 1351 static void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm, 1352 struct kvm_memory_slot *slot, 1353 gfn_t gfn_offset, unsigned long mask) 1354 { 1355 struct kvm_rmap_head *rmap_head; 1356 1357 if (tdp_mmu_enabled) 1358 kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot, 1359 slot->base_gfn + gfn_offset, mask, false); 1360 1361 if (!kvm_memslots_have_rmaps(kvm)) 1362 return; 1363 1364 while (mask) { 1365 rmap_head = gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask), 1366 PG_LEVEL_4K, slot); 1367 __rmap_clear_dirty(kvm, rmap_head, slot); 1368 1369 /* clear the first set bit */ 1370 mask &= mask - 1; 1371 } 1372 } 1373 1374 /** 1375 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected 1376 * PT level pages. 1377 * 1378 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to 1379 * enable dirty logging for them. 1380 * 1381 * We need to care about huge page mappings: e.g. during dirty logging we may 1382 * have such mappings. 1383 */ 1384 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm, 1385 struct kvm_memory_slot *slot, 1386 gfn_t gfn_offset, unsigned long mask) 1387 { 1388 /* 1389 * Huge pages are NOT write protected when we start dirty logging in 1390 * initially-all-set mode; must write protect them here so that they 1391 * are split to 4K on the first write. 1392 * 1393 * The gfn_offset is guaranteed to be aligned to 64, but the base_gfn 1394 * of memslot has no such restriction, so the range can cross two large 1395 * pages. 1396 */ 1397 if (kvm_dirty_log_manual_protect_and_init_set(kvm)) { 1398 gfn_t start = slot->base_gfn + gfn_offset + __ffs(mask); 1399 gfn_t end = slot->base_gfn + gfn_offset + __fls(mask); 1400 1401 if (READ_ONCE(eager_page_split)) 1402 kvm_mmu_try_split_huge_pages(kvm, slot, start, end, PG_LEVEL_4K); 1403 1404 kvm_mmu_slot_gfn_write_protect(kvm, slot, start, PG_LEVEL_2M); 1405 1406 /* Cross two large pages? */ 1407 if (ALIGN(start << PAGE_SHIFT, PMD_SIZE) != 1408 ALIGN(end << PAGE_SHIFT, PMD_SIZE)) 1409 kvm_mmu_slot_gfn_write_protect(kvm, slot, end, 1410 PG_LEVEL_2M); 1411 } 1412 1413 /* Now handle 4K PTEs. */ 1414 if (kvm_x86_ops.cpu_dirty_log_size) 1415 kvm_mmu_clear_dirty_pt_masked(kvm, slot, gfn_offset, mask); 1416 else 1417 kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask); 1418 } 1419 1420 int kvm_cpu_dirty_log_size(void) 1421 { 1422 return kvm_x86_ops.cpu_dirty_log_size; 1423 } 1424 1425 bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm, 1426 struct kvm_memory_slot *slot, u64 gfn, 1427 int min_level) 1428 { 1429 struct kvm_rmap_head *rmap_head; 1430 int i; 1431 bool write_protected = false; 1432 1433 if (kvm_memslots_have_rmaps(kvm)) { 1434 for (i = min_level; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) { 1435 rmap_head = gfn_to_rmap(gfn, i, slot); 1436 write_protected |= rmap_write_protect(rmap_head, true); 1437 } 1438 } 1439 1440 if (tdp_mmu_enabled) 1441 write_protected |= 1442 kvm_tdp_mmu_write_protect_gfn(kvm, slot, gfn, min_level); 1443 1444 return write_protected; 1445 } 1446 1447 static bool kvm_vcpu_write_protect_gfn(struct kvm_vcpu *vcpu, u64 gfn) 1448 { 1449 struct kvm_memory_slot *slot; 1450 1451 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 1452 return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn, PG_LEVEL_4K); 1453 } 1454 1455 static bool __kvm_zap_rmap(struct kvm *kvm, struct kvm_rmap_head *rmap_head, 1456 const struct kvm_memory_slot *slot) 1457 { 1458 return kvm_zap_all_rmap_sptes(kvm, rmap_head); 1459 } 1460 1461 static bool kvm_zap_rmap(struct kvm *kvm, struct kvm_rmap_head *rmap_head, 1462 struct kvm_memory_slot *slot, gfn_t gfn, int level, 1463 pte_t unused) 1464 { 1465 return __kvm_zap_rmap(kvm, rmap_head, slot); 1466 } 1467 1468 static bool kvm_set_pte_rmap(struct kvm *kvm, struct kvm_rmap_head *rmap_head, 1469 struct kvm_memory_slot *slot, gfn_t gfn, int level, 1470 pte_t pte) 1471 { 1472 u64 *sptep; 1473 struct rmap_iterator iter; 1474 bool need_flush = false; 1475 u64 new_spte; 1476 kvm_pfn_t new_pfn; 1477 1478 WARN_ON(pte_huge(pte)); 1479 new_pfn = pte_pfn(pte); 1480 1481 restart: 1482 for_each_rmap_spte(rmap_head, &iter, sptep) { 1483 rmap_printk("spte %p %llx gfn %llx (%d)\n", 1484 sptep, *sptep, gfn, level); 1485 1486 need_flush = true; 1487 1488 if (pte_write(pte)) { 1489 kvm_zap_one_rmap_spte(kvm, rmap_head, sptep); 1490 goto restart; 1491 } else { 1492 new_spte = kvm_mmu_changed_pte_notifier_make_spte( 1493 *sptep, new_pfn); 1494 1495 mmu_spte_clear_track_bits(kvm, sptep); 1496 mmu_spte_set(sptep, new_spte); 1497 } 1498 } 1499 1500 if (need_flush && kvm_available_flush_remote_tlbs_range()) { 1501 kvm_flush_remote_tlbs_gfn(kvm, gfn, level); 1502 return false; 1503 } 1504 1505 return need_flush; 1506 } 1507 1508 struct slot_rmap_walk_iterator { 1509 /* input fields. */ 1510 const struct kvm_memory_slot *slot; 1511 gfn_t start_gfn; 1512 gfn_t end_gfn; 1513 int start_level; 1514 int end_level; 1515 1516 /* output fields. */ 1517 gfn_t gfn; 1518 struct kvm_rmap_head *rmap; 1519 int level; 1520 1521 /* private field. */ 1522 struct kvm_rmap_head *end_rmap; 1523 }; 1524 1525 static void rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, 1526 int level) 1527 { 1528 iterator->level = level; 1529 iterator->gfn = iterator->start_gfn; 1530 iterator->rmap = gfn_to_rmap(iterator->gfn, level, iterator->slot); 1531 iterator->end_rmap = gfn_to_rmap(iterator->end_gfn, level, iterator->slot); 1532 } 1533 1534 static void slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator, 1535 const struct kvm_memory_slot *slot, 1536 int start_level, int end_level, 1537 gfn_t start_gfn, gfn_t end_gfn) 1538 { 1539 iterator->slot = slot; 1540 iterator->start_level = start_level; 1541 iterator->end_level = end_level; 1542 iterator->start_gfn = start_gfn; 1543 iterator->end_gfn = end_gfn; 1544 1545 rmap_walk_init_level(iterator, iterator->start_level); 1546 } 1547 1548 static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator) 1549 { 1550 return !!iterator->rmap; 1551 } 1552 1553 static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator) 1554 { 1555 while (++iterator->rmap <= iterator->end_rmap) { 1556 iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level)); 1557 1558 if (iterator->rmap->val) 1559 return; 1560 } 1561 1562 if (++iterator->level > iterator->end_level) { 1563 iterator->rmap = NULL; 1564 return; 1565 } 1566 1567 rmap_walk_init_level(iterator, iterator->level); 1568 } 1569 1570 #define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_, \ 1571 _start_gfn, _end_gfn, _iter_) \ 1572 for (slot_rmap_walk_init(_iter_, _slot_, _start_level_, \ 1573 _end_level_, _start_gfn, _end_gfn); \ 1574 slot_rmap_walk_okay(_iter_); \ 1575 slot_rmap_walk_next(_iter_)) 1576 1577 typedef bool (*rmap_handler_t)(struct kvm *kvm, struct kvm_rmap_head *rmap_head, 1578 struct kvm_memory_slot *slot, gfn_t gfn, 1579 int level, pte_t pte); 1580 1581 static __always_inline bool kvm_handle_gfn_range(struct kvm *kvm, 1582 struct kvm_gfn_range *range, 1583 rmap_handler_t handler) 1584 { 1585 struct slot_rmap_walk_iterator iterator; 1586 bool ret = false; 1587 1588 for_each_slot_rmap_range(range->slot, PG_LEVEL_4K, KVM_MAX_HUGEPAGE_LEVEL, 1589 range->start, range->end - 1, &iterator) 1590 ret |= handler(kvm, iterator.rmap, range->slot, iterator.gfn, 1591 iterator.level, range->pte); 1592 1593 return ret; 1594 } 1595 1596 bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range) 1597 { 1598 bool flush = false; 1599 1600 if (kvm_memslots_have_rmaps(kvm)) 1601 flush = kvm_handle_gfn_range(kvm, range, kvm_zap_rmap); 1602 1603 if (tdp_mmu_enabled) 1604 flush = kvm_tdp_mmu_unmap_gfn_range(kvm, range, flush); 1605 1606 if (kvm_x86_ops.set_apic_access_page_addr && 1607 range->slot->id == APIC_ACCESS_PAGE_PRIVATE_MEMSLOT) 1608 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD); 1609 1610 return flush; 1611 } 1612 1613 bool kvm_set_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range) 1614 { 1615 bool flush = false; 1616 1617 if (kvm_memslots_have_rmaps(kvm)) 1618 flush = kvm_handle_gfn_range(kvm, range, kvm_set_pte_rmap); 1619 1620 if (tdp_mmu_enabled) 1621 flush |= kvm_tdp_mmu_set_spte_gfn(kvm, range); 1622 1623 return flush; 1624 } 1625 1626 static bool kvm_age_rmap(struct kvm *kvm, struct kvm_rmap_head *rmap_head, 1627 struct kvm_memory_slot *slot, gfn_t gfn, int level, 1628 pte_t unused) 1629 { 1630 u64 *sptep; 1631 struct rmap_iterator iter; 1632 int young = 0; 1633 1634 for_each_rmap_spte(rmap_head, &iter, sptep) 1635 young |= mmu_spte_age(sptep); 1636 1637 return young; 1638 } 1639 1640 static bool kvm_test_age_rmap(struct kvm *kvm, struct kvm_rmap_head *rmap_head, 1641 struct kvm_memory_slot *slot, gfn_t gfn, 1642 int level, pte_t unused) 1643 { 1644 u64 *sptep; 1645 struct rmap_iterator iter; 1646 1647 for_each_rmap_spte(rmap_head, &iter, sptep) 1648 if (is_accessed_spte(*sptep)) 1649 return true; 1650 return false; 1651 } 1652 1653 #define RMAP_RECYCLE_THRESHOLD 1000 1654 1655 static void __rmap_add(struct kvm *kvm, 1656 struct kvm_mmu_memory_cache *cache, 1657 const struct kvm_memory_slot *slot, 1658 u64 *spte, gfn_t gfn, unsigned int access) 1659 { 1660 struct kvm_mmu_page *sp; 1661 struct kvm_rmap_head *rmap_head; 1662 int rmap_count; 1663 1664 sp = sptep_to_sp(spte); 1665 kvm_mmu_page_set_translation(sp, spte_index(spte), gfn, access); 1666 kvm_update_page_stats(kvm, sp->role.level, 1); 1667 1668 rmap_head = gfn_to_rmap(gfn, sp->role.level, slot); 1669 rmap_count = pte_list_add(cache, spte, rmap_head); 1670 1671 if (rmap_count > kvm->stat.max_mmu_rmap_size) 1672 kvm->stat.max_mmu_rmap_size = rmap_count; 1673 if (rmap_count > RMAP_RECYCLE_THRESHOLD) { 1674 kvm_zap_all_rmap_sptes(kvm, rmap_head); 1675 kvm_flush_remote_tlbs_gfn(kvm, gfn, sp->role.level); 1676 } 1677 } 1678 1679 static void rmap_add(struct kvm_vcpu *vcpu, const struct kvm_memory_slot *slot, 1680 u64 *spte, gfn_t gfn, unsigned int access) 1681 { 1682 struct kvm_mmu_memory_cache *cache = &vcpu->arch.mmu_pte_list_desc_cache; 1683 1684 __rmap_add(vcpu->kvm, cache, slot, spte, gfn, access); 1685 } 1686 1687 bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range) 1688 { 1689 bool young = false; 1690 1691 if (kvm_memslots_have_rmaps(kvm)) 1692 young = kvm_handle_gfn_range(kvm, range, kvm_age_rmap); 1693 1694 if (tdp_mmu_enabled) 1695 young |= kvm_tdp_mmu_age_gfn_range(kvm, range); 1696 1697 return young; 1698 } 1699 1700 bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range) 1701 { 1702 bool young = false; 1703 1704 if (kvm_memslots_have_rmaps(kvm)) 1705 young = kvm_handle_gfn_range(kvm, range, kvm_test_age_rmap); 1706 1707 if (tdp_mmu_enabled) 1708 young |= kvm_tdp_mmu_test_age_gfn(kvm, range); 1709 1710 return young; 1711 } 1712 1713 #ifdef MMU_DEBUG 1714 static int is_empty_shadow_page(u64 *spt) 1715 { 1716 u64 *pos; 1717 u64 *end; 1718 1719 for (pos = spt, end = pos + SPTE_ENT_PER_PAGE; pos != end; pos++) 1720 if (is_shadow_present_pte(*pos)) { 1721 printk(KERN_ERR "%s: %p %llx\n", __func__, 1722 pos, *pos); 1723 return 0; 1724 } 1725 return 1; 1726 } 1727 #endif 1728 1729 /* 1730 * This value is the sum of all of the kvm instances's 1731 * kvm->arch.n_used_mmu_pages values. We need a global, 1732 * aggregate version in order to make the slab shrinker 1733 * faster 1734 */ 1735 static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, long nr) 1736 { 1737 kvm->arch.n_used_mmu_pages += nr; 1738 percpu_counter_add(&kvm_total_used_mmu_pages, nr); 1739 } 1740 1741 static void kvm_account_mmu_page(struct kvm *kvm, struct kvm_mmu_page *sp) 1742 { 1743 kvm_mod_used_mmu_pages(kvm, +1); 1744 kvm_account_pgtable_pages((void *)sp->spt, +1); 1745 } 1746 1747 static void kvm_unaccount_mmu_page(struct kvm *kvm, struct kvm_mmu_page *sp) 1748 { 1749 kvm_mod_used_mmu_pages(kvm, -1); 1750 kvm_account_pgtable_pages((void *)sp->spt, -1); 1751 } 1752 1753 static void kvm_mmu_free_shadow_page(struct kvm_mmu_page *sp) 1754 { 1755 MMU_WARN_ON(!is_empty_shadow_page(sp->spt)); 1756 hlist_del(&sp->hash_link); 1757 list_del(&sp->link); 1758 free_page((unsigned long)sp->spt); 1759 if (!sp->role.direct) 1760 free_page((unsigned long)sp->shadowed_translation); 1761 kmem_cache_free(mmu_page_header_cache, sp); 1762 } 1763 1764 static unsigned kvm_page_table_hashfn(gfn_t gfn) 1765 { 1766 return hash_64(gfn, KVM_MMU_HASH_SHIFT); 1767 } 1768 1769 static void mmu_page_add_parent_pte(struct kvm_mmu_memory_cache *cache, 1770 struct kvm_mmu_page *sp, u64 *parent_pte) 1771 { 1772 if (!parent_pte) 1773 return; 1774 1775 pte_list_add(cache, parent_pte, &sp->parent_ptes); 1776 } 1777 1778 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp, 1779 u64 *parent_pte) 1780 { 1781 pte_list_remove(parent_pte, &sp->parent_ptes); 1782 } 1783 1784 static void drop_parent_pte(struct kvm_mmu_page *sp, 1785 u64 *parent_pte) 1786 { 1787 mmu_page_remove_parent_pte(sp, parent_pte); 1788 mmu_spte_clear_no_track(parent_pte); 1789 } 1790 1791 static void mark_unsync(u64 *spte); 1792 static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp) 1793 { 1794 u64 *sptep; 1795 struct rmap_iterator iter; 1796 1797 for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) { 1798 mark_unsync(sptep); 1799 } 1800 } 1801 1802 static void mark_unsync(u64 *spte) 1803 { 1804 struct kvm_mmu_page *sp; 1805 1806 sp = sptep_to_sp(spte); 1807 if (__test_and_set_bit(spte_index(spte), sp->unsync_child_bitmap)) 1808 return; 1809 if (sp->unsync_children++) 1810 return; 1811 kvm_mmu_mark_parents_unsync(sp); 1812 } 1813 1814 #define KVM_PAGE_ARRAY_NR 16 1815 1816 struct kvm_mmu_pages { 1817 struct mmu_page_and_offset { 1818 struct kvm_mmu_page *sp; 1819 unsigned int idx; 1820 } page[KVM_PAGE_ARRAY_NR]; 1821 unsigned int nr; 1822 }; 1823 1824 static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp, 1825 int idx) 1826 { 1827 int i; 1828 1829 if (sp->unsync) 1830 for (i=0; i < pvec->nr; i++) 1831 if (pvec->page[i].sp == sp) 1832 return 0; 1833 1834 pvec->page[pvec->nr].sp = sp; 1835 pvec->page[pvec->nr].idx = idx; 1836 pvec->nr++; 1837 return (pvec->nr == KVM_PAGE_ARRAY_NR); 1838 } 1839 1840 static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx) 1841 { 1842 --sp->unsync_children; 1843 WARN_ON((int)sp->unsync_children < 0); 1844 __clear_bit(idx, sp->unsync_child_bitmap); 1845 } 1846 1847 static int __mmu_unsync_walk(struct kvm_mmu_page *sp, 1848 struct kvm_mmu_pages *pvec) 1849 { 1850 int i, ret, nr_unsync_leaf = 0; 1851 1852 for_each_set_bit(i, sp->unsync_child_bitmap, 512) { 1853 struct kvm_mmu_page *child; 1854 u64 ent = sp->spt[i]; 1855 1856 if (!is_shadow_present_pte(ent) || is_large_pte(ent)) { 1857 clear_unsync_child_bit(sp, i); 1858 continue; 1859 } 1860 1861 child = spte_to_child_sp(ent); 1862 1863 if (child->unsync_children) { 1864 if (mmu_pages_add(pvec, child, i)) 1865 return -ENOSPC; 1866 1867 ret = __mmu_unsync_walk(child, pvec); 1868 if (!ret) { 1869 clear_unsync_child_bit(sp, i); 1870 continue; 1871 } else if (ret > 0) { 1872 nr_unsync_leaf += ret; 1873 } else 1874 return ret; 1875 } else if (child->unsync) { 1876 nr_unsync_leaf++; 1877 if (mmu_pages_add(pvec, child, i)) 1878 return -ENOSPC; 1879 } else 1880 clear_unsync_child_bit(sp, i); 1881 } 1882 1883 return nr_unsync_leaf; 1884 } 1885 1886 #define INVALID_INDEX (-1) 1887 1888 static int mmu_unsync_walk(struct kvm_mmu_page *sp, 1889 struct kvm_mmu_pages *pvec) 1890 { 1891 pvec->nr = 0; 1892 if (!sp->unsync_children) 1893 return 0; 1894 1895 mmu_pages_add(pvec, sp, INVALID_INDEX); 1896 return __mmu_unsync_walk(sp, pvec); 1897 } 1898 1899 static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp) 1900 { 1901 WARN_ON(!sp->unsync); 1902 trace_kvm_mmu_sync_page(sp); 1903 sp->unsync = 0; 1904 --kvm->stat.mmu_unsync; 1905 } 1906 1907 static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp, 1908 struct list_head *invalid_list); 1909 static void kvm_mmu_commit_zap_page(struct kvm *kvm, 1910 struct list_head *invalid_list); 1911 1912 static bool sp_has_gptes(struct kvm_mmu_page *sp) 1913 { 1914 if (sp->role.direct) 1915 return false; 1916 1917 if (sp->role.passthrough) 1918 return false; 1919 1920 return true; 1921 } 1922 1923 #define for_each_valid_sp(_kvm, _sp, _list) \ 1924 hlist_for_each_entry(_sp, _list, hash_link) \ 1925 if (is_obsolete_sp((_kvm), (_sp))) { \ 1926 } else 1927 1928 #define for_each_gfn_valid_sp_with_gptes(_kvm, _sp, _gfn) \ 1929 for_each_valid_sp(_kvm, _sp, \ 1930 &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)]) \ 1931 if ((_sp)->gfn != (_gfn) || !sp_has_gptes(_sp)) {} else 1932 1933 static bool kvm_sync_page_check(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp) 1934 { 1935 union kvm_mmu_page_role root_role = vcpu->arch.mmu->root_role; 1936 1937 /* 1938 * Ignore various flags when verifying that it's safe to sync a shadow 1939 * page using the current MMU context. 1940 * 1941 * - level: not part of the overall MMU role and will never match as the MMU's 1942 * level tracks the root level 1943 * - access: updated based on the new guest PTE 1944 * - quadrant: not part of the overall MMU role (similar to level) 1945 */ 1946 const union kvm_mmu_page_role sync_role_ign = { 1947 .level = 0xf, 1948 .access = 0x7, 1949 .quadrant = 0x3, 1950 .passthrough = 0x1, 1951 }; 1952 1953 /* 1954 * Direct pages can never be unsync, and KVM should never attempt to 1955 * sync a shadow page for a different MMU context, e.g. if the role 1956 * differs then the memslot lookup (SMM vs. non-SMM) will be bogus, the 1957 * reserved bits checks will be wrong, etc... 1958 */ 1959 if (WARN_ON_ONCE(sp->role.direct || !vcpu->arch.mmu->sync_spte || 1960 (sp->role.word ^ root_role.word) & ~sync_role_ign.word)) 1961 return false; 1962 1963 return true; 1964 } 1965 1966 static int kvm_sync_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp, int i) 1967 { 1968 if (!sp->spt[i]) 1969 return 0; 1970 1971 return vcpu->arch.mmu->sync_spte(vcpu, sp, i); 1972 } 1973 1974 static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp) 1975 { 1976 int flush = 0; 1977 int i; 1978 1979 if (!kvm_sync_page_check(vcpu, sp)) 1980 return -1; 1981 1982 for (i = 0; i < SPTE_ENT_PER_PAGE; i++) { 1983 int ret = kvm_sync_spte(vcpu, sp, i); 1984 1985 if (ret < -1) 1986 return -1; 1987 flush |= ret; 1988 } 1989 1990 /* 1991 * Note, any flush is purely for KVM's correctness, e.g. when dropping 1992 * an existing SPTE or clearing W/A/D bits to ensure an mmu_notifier 1993 * unmap or dirty logging event doesn't fail to flush. The guest is 1994 * responsible for flushing the TLB to ensure any changes in protection 1995 * bits are recognized, i.e. until the guest flushes or page faults on 1996 * a relevant address, KVM is architecturally allowed to let vCPUs use 1997 * cached translations with the old protection bits. 1998 */ 1999 return flush; 2000 } 2001 2002 static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp, 2003 struct list_head *invalid_list) 2004 { 2005 int ret = __kvm_sync_page(vcpu, sp); 2006 2007 if (ret < 0) 2008 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list); 2009 return ret; 2010 } 2011 2012 static bool kvm_mmu_remote_flush_or_zap(struct kvm *kvm, 2013 struct list_head *invalid_list, 2014 bool remote_flush) 2015 { 2016 if (!remote_flush && list_empty(invalid_list)) 2017 return false; 2018 2019 if (!list_empty(invalid_list)) 2020 kvm_mmu_commit_zap_page(kvm, invalid_list); 2021 else 2022 kvm_flush_remote_tlbs(kvm); 2023 return true; 2024 } 2025 2026 static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp) 2027 { 2028 if (sp->role.invalid) 2029 return true; 2030 2031 /* TDP MMU pages do not use the MMU generation. */ 2032 return !is_tdp_mmu_page(sp) && 2033 unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen); 2034 } 2035 2036 struct mmu_page_path { 2037 struct kvm_mmu_page *parent[PT64_ROOT_MAX_LEVEL]; 2038 unsigned int idx[PT64_ROOT_MAX_LEVEL]; 2039 }; 2040 2041 #define for_each_sp(pvec, sp, parents, i) \ 2042 for (i = mmu_pages_first(&pvec, &parents); \ 2043 i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \ 2044 i = mmu_pages_next(&pvec, &parents, i)) 2045 2046 static int mmu_pages_next(struct kvm_mmu_pages *pvec, 2047 struct mmu_page_path *parents, 2048 int i) 2049 { 2050 int n; 2051 2052 for (n = i+1; n < pvec->nr; n++) { 2053 struct kvm_mmu_page *sp = pvec->page[n].sp; 2054 unsigned idx = pvec->page[n].idx; 2055 int level = sp->role.level; 2056 2057 parents->idx[level-1] = idx; 2058 if (level == PG_LEVEL_4K) 2059 break; 2060 2061 parents->parent[level-2] = sp; 2062 } 2063 2064 return n; 2065 } 2066 2067 static int mmu_pages_first(struct kvm_mmu_pages *pvec, 2068 struct mmu_page_path *parents) 2069 { 2070 struct kvm_mmu_page *sp; 2071 int level; 2072 2073 if (pvec->nr == 0) 2074 return 0; 2075 2076 WARN_ON(pvec->page[0].idx != INVALID_INDEX); 2077 2078 sp = pvec->page[0].sp; 2079 level = sp->role.level; 2080 WARN_ON(level == PG_LEVEL_4K); 2081 2082 parents->parent[level-2] = sp; 2083 2084 /* Also set up a sentinel. Further entries in pvec are all 2085 * children of sp, so this element is never overwritten. 2086 */ 2087 parents->parent[level-1] = NULL; 2088 return mmu_pages_next(pvec, parents, 0); 2089 } 2090 2091 static void mmu_pages_clear_parents(struct mmu_page_path *parents) 2092 { 2093 struct kvm_mmu_page *sp; 2094 unsigned int level = 0; 2095 2096 do { 2097 unsigned int idx = parents->idx[level]; 2098 sp = parents->parent[level]; 2099 if (!sp) 2100 return; 2101 2102 WARN_ON(idx == INVALID_INDEX); 2103 clear_unsync_child_bit(sp, idx); 2104 level++; 2105 } while (!sp->unsync_children); 2106 } 2107 2108 static int mmu_sync_children(struct kvm_vcpu *vcpu, 2109 struct kvm_mmu_page *parent, bool can_yield) 2110 { 2111 int i; 2112 struct kvm_mmu_page *sp; 2113 struct mmu_page_path parents; 2114 struct kvm_mmu_pages pages; 2115 LIST_HEAD(invalid_list); 2116 bool flush = false; 2117 2118 while (mmu_unsync_walk(parent, &pages)) { 2119 bool protected = false; 2120 2121 for_each_sp(pages, sp, parents, i) 2122 protected |= kvm_vcpu_write_protect_gfn(vcpu, sp->gfn); 2123 2124 if (protected) { 2125 kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, true); 2126 flush = false; 2127 } 2128 2129 for_each_sp(pages, sp, parents, i) { 2130 kvm_unlink_unsync_page(vcpu->kvm, sp); 2131 flush |= kvm_sync_page(vcpu, sp, &invalid_list) > 0; 2132 mmu_pages_clear_parents(&parents); 2133 } 2134 if (need_resched() || rwlock_needbreak(&vcpu->kvm->mmu_lock)) { 2135 kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, flush); 2136 if (!can_yield) { 2137 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu); 2138 return -EINTR; 2139 } 2140 2141 cond_resched_rwlock_write(&vcpu->kvm->mmu_lock); 2142 flush = false; 2143 } 2144 } 2145 2146 kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, flush); 2147 return 0; 2148 } 2149 2150 static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp) 2151 { 2152 atomic_set(&sp->write_flooding_count, 0); 2153 } 2154 2155 static void clear_sp_write_flooding_count(u64 *spte) 2156 { 2157 __clear_sp_write_flooding_count(sptep_to_sp(spte)); 2158 } 2159 2160 /* 2161 * The vCPU is required when finding indirect shadow pages; the shadow 2162 * page may already exist and syncing it needs the vCPU pointer in 2163 * order to read guest page tables. Direct shadow pages are never 2164 * unsync, thus @vcpu can be NULL if @role.direct is true. 2165 */ 2166 static struct kvm_mmu_page *kvm_mmu_find_shadow_page(struct kvm *kvm, 2167 struct kvm_vcpu *vcpu, 2168 gfn_t gfn, 2169 struct hlist_head *sp_list, 2170 union kvm_mmu_page_role role) 2171 { 2172 struct kvm_mmu_page *sp; 2173 int ret; 2174 int collisions = 0; 2175 LIST_HEAD(invalid_list); 2176 2177 for_each_valid_sp(kvm, sp, sp_list) { 2178 if (sp->gfn != gfn) { 2179 collisions++; 2180 continue; 2181 } 2182 2183 if (sp->role.word != role.word) { 2184 /* 2185 * If the guest is creating an upper-level page, zap 2186 * unsync pages for the same gfn. While it's possible 2187 * the guest is using recursive page tables, in all 2188 * likelihood the guest has stopped using the unsync 2189 * page and is installing a completely unrelated page. 2190 * Unsync pages must not be left as is, because the new 2191 * upper-level page will be write-protected. 2192 */ 2193 if (role.level > PG_LEVEL_4K && sp->unsync) 2194 kvm_mmu_prepare_zap_page(kvm, sp, 2195 &invalid_list); 2196 continue; 2197 } 2198 2199 /* unsync and write-flooding only apply to indirect SPs. */ 2200 if (sp->role.direct) 2201 goto out; 2202 2203 if (sp->unsync) { 2204 if (KVM_BUG_ON(!vcpu, kvm)) 2205 break; 2206 2207 /* 2208 * The page is good, but is stale. kvm_sync_page does 2209 * get the latest guest state, but (unlike mmu_unsync_children) 2210 * it doesn't write-protect the page or mark it synchronized! 2211 * This way the validity of the mapping is ensured, but the 2212 * overhead of write protection is not incurred until the 2213 * guest invalidates the TLB mapping. This allows multiple 2214 * SPs for a single gfn to be unsync. 2215 * 2216 * If the sync fails, the page is zapped. If so, break 2217 * in order to rebuild it. 2218 */ 2219 ret = kvm_sync_page(vcpu, sp, &invalid_list); 2220 if (ret < 0) 2221 break; 2222 2223 WARN_ON(!list_empty(&invalid_list)); 2224 if (ret > 0) 2225 kvm_flush_remote_tlbs(kvm); 2226 } 2227 2228 __clear_sp_write_flooding_count(sp); 2229 2230 goto out; 2231 } 2232 2233 sp = NULL; 2234 ++kvm->stat.mmu_cache_miss; 2235 2236 out: 2237 kvm_mmu_commit_zap_page(kvm, &invalid_list); 2238 2239 if (collisions > kvm->stat.max_mmu_page_hash_collisions) 2240 kvm->stat.max_mmu_page_hash_collisions = collisions; 2241 return sp; 2242 } 2243 2244 /* Caches used when allocating a new shadow page. */ 2245 struct shadow_page_caches { 2246 struct kvm_mmu_memory_cache *page_header_cache; 2247 struct kvm_mmu_memory_cache *shadow_page_cache; 2248 struct kvm_mmu_memory_cache *shadowed_info_cache; 2249 }; 2250 2251 static struct kvm_mmu_page *kvm_mmu_alloc_shadow_page(struct kvm *kvm, 2252 struct shadow_page_caches *caches, 2253 gfn_t gfn, 2254 struct hlist_head *sp_list, 2255 union kvm_mmu_page_role role) 2256 { 2257 struct kvm_mmu_page *sp; 2258 2259 sp = kvm_mmu_memory_cache_alloc(caches->page_header_cache); 2260 sp->spt = kvm_mmu_memory_cache_alloc(caches->shadow_page_cache); 2261 if (!role.direct) 2262 sp->shadowed_translation = kvm_mmu_memory_cache_alloc(caches->shadowed_info_cache); 2263 2264 set_page_private(virt_to_page(sp->spt), (unsigned long)sp); 2265 2266 INIT_LIST_HEAD(&sp->possible_nx_huge_page_link); 2267 2268 /* 2269 * active_mmu_pages must be a FIFO list, as kvm_zap_obsolete_pages() 2270 * depends on valid pages being added to the head of the list. See 2271 * comments in kvm_zap_obsolete_pages(). 2272 */ 2273 sp->mmu_valid_gen = kvm->arch.mmu_valid_gen; 2274 list_add(&sp->link, &kvm->arch.active_mmu_pages); 2275 kvm_account_mmu_page(kvm, sp); 2276 2277 sp->gfn = gfn; 2278 sp->role = role; 2279 hlist_add_head(&sp->hash_link, sp_list); 2280 if (sp_has_gptes(sp)) 2281 account_shadowed(kvm, sp); 2282 2283 return sp; 2284 } 2285 2286 /* Note, @vcpu may be NULL if @role.direct is true; see kvm_mmu_find_shadow_page. */ 2287 static struct kvm_mmu_page *__kvm_mmu_get_shadow_page(struct kvm *kvm, 2288 struct kvm_vcpu *vcpu, 2289 struct shadow_page_caches *caches, 2290 gfn_t gfn, 2291 union kvm_mmu_page_role role) 2292 { 2293 struct hlist_head *sp_list; 2294 struct kvm_mmu_page *sp; 2295 bool created = false; 2296 2297 sp_list = &kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]; 2298 2299 sp = kvm_mmu_find_shadow_page(kvm, vcpu, gfn, sp_list, role); 2300 if (!sp) { 2301 created = true; 2302 sp = kvm_mmu_alloc_shadow_page(kvm, caches, gfn, sp_list, role); 2303 } 2304 2305 trace_kvm_mmu_get_page(sp, created); 2306 return sp; 2307 } 2308 2309 static struct kvm_mmu_page *kvm_mmu_get_shadow_page(struct kvm_vcpu *vcpu, 2310 gfn_t gfn, 2311 union kvm_mmu_page_role role) 2312 { 2313 struct shadow_page_caches caches = { 2314 .page_header_cache = &vcpu->arch.mmu_page_header_cache, 2315 .shadow_page_cache = &vcpu->arch.mmu_shadow_page_cache, 2316 .shadowed_info_cache = &vcpu->arch.mmu_shadowed_info_cache, 2317 }; 2318 2319 return __kvm_mmu_get_shadow_page(vcpu->kvm, vcpu, &caches, gfn, role); 2320 } 2321 2322 static union kvm_mmu_page_role kvm_mmu_child_role(u64 *sptep, bool direct, 2323 unsigned int access) 2324 { 2325 struct kvm_mmu_page *parent_sp = sptep_to_sp(sptep); 2326 union kvm_mmu_page_role role; 2327 2328 role = parent_sp->role; 2329 role.level--; 2330 role.access = access; 2331 role.direct = direct; 2332 role.passthrough = 0; 2333 2334 /* 2335 * If the guest has 4-byte PTEs then that means it's using 32-bit, 2336 * 2-level, non-PAE paging. KVM shadows such guests with PAE paging 2337 * (i.e. 8-byte PTEs). The difference in PTE size means that KVM must 2338 * shadow each guest page table with multiple shadow page tables, which 2339 * requires extra bookkeeping in the role. 2340 * 2341 * Specifically, to shadow the guest's page directory (which covers a 2342 * 4GiB address space), KVM uses 4 PAE page directories, each mapping 2343 * 1GiB of the address space. @role.quadrant encodes which quarter of 2344 * the address space each maps. 2345 * 2346 * To shadow the guest's page tables (which each map a 4MiB region), KVM 2347 * uses 2 PAE page tables, each mapping a 2MiB region. For these, 2348 * @role.quadrant encodes which half of the region they map. 2349 * 2350 * Concretely, a 4-byte PDE consumes bits 31:22, while an 8-byte PDE 2351 * consumes bits 29:21. To consume bits 31:30, KVM's uses 4 shadow 2352 * PDPTEs; those 4 PAE page directories are pre-allocated and their 2353 * quadrant is assigned in mmu_alloc_root(). A 4-byte PTE consumes 2354 * bits 21:12, while an 8-byte PTE consumes bits 20:12. To consume 2355 * bit 21 in the PTE (the child here), KVM propagates that bit to the 2356 * quadrant, i.e. sets quadrant to '0' or '1'. The parent 8-byte PDE 2357 * covers bit 21 (see above), thus the quadrant is calculated from the 2358 * _least_ significant bit of the PDE index. 2359 */ 2360 if (role.has_4_byte_gpte) { 2361 WARN_ON_ONCE(role.level != PG_LEVEL_4K); 2362 role.quadrant = spte_index(sptep) & 1; 2363 } 2364 2365 return role; 2366 } 2367 2368 static struct kvm_mmu_page *kvm_mmu_get_child_sp(struct kvm_vcpu *vcpu, 2369 u64 *sptep, gfn_t gfn, 2370 bool direct, unsigned int access) 2371 { 2372 union kvm_mmu_page_role role; 2373 2374 if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) 2375 return ERR_PTR(-EEXIST); 2376 2377 role = kvm_mmu_child_role(sptep, direct, access); 2378 return kvm_mmu_get_shadow_page(vcpu, gfn, role); 2379 } 2380 2381 static void shadow_walk_init_using_root(struct kvm_shadow_walk_iterator *iterator, 2382 struct kvm_vcpu *vcpu, hpa_t root, 2383 u64 addr) 2384 { 2385 iterator->addr = addr; 2386 iterator->shadow_addr = root; 2387 iterator->level = vcpu->arch.mmu->root_role.level; 2388 2389 if (iterator->level >= PT64_ROOT_4LEVEL && 2390 vcpu->arch.mmu->cpu_role.base.level < PT64_ROOT_4LEVEL && 2391 !vcpu->arch.mmu->root_role.direct) 2392 iterator->level = PT32E_ROOT_LEVEL; 2393 2394 if (iterator->level == PT32E_ROOT_LEVEL) { 2395 /* 2396 * prev_root is currently only used for 64-bit hosts. So only 2397 * the active root_hpa is valid here. 2398 */ 2399 BUG_ON(root != vcpu->arch.mmu->root.hpa); 2400 2401 iterator->shadow_addr 2402 = vcpu->arch.mmu->pae_root[(addr >> 30) & 3]; 2403 iterator->shadow_addr &= SPTE_BASE_ADDR_MASK; 2404 --iterator->level; 2405 if (!iterator->shadow_addr) 2406 iterator->level = 0; 2407 } 2408 } 2409 2410 static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator, 2411 struct kvm_vcpu *vcpu, u64 addr) 2412 { 2413 shadow_walk_init_using_root(iterator, vcpu, vcpu->arch.mmu->root.hpa, 2414 addr); 2415 } 2416 2417 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator) 2418 { 2419 if (iterator->level < PG_LEVEL_4K) 2420 return false; 2421 2422 iterator->index = SPTE_INDEX(iterator->addr, iterator->level); 2423 iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index; 2424 return true; 2425 } 2426 2427 static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator, 2428 u64 spte) 2429 { 2430 if (!is_shadow_present_pte(spte) || is_last_spte(spte, iterator->level)) { 2431 iterator->level = 0; 2432 return; 2433 } 2434 2435 iterator->shadow_addr = spte & SPTE_BASE_ADDR_MASK; 2436 --iterator->level; 2437 } 2438 2439 static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator) 2440 { 2441 __shadow_walk_next(iterator, *iterator->sptep); 2442 } 2443 2444 static void __link_shadow_page(struct kvm *kvm, 2445 struct kvm_mmu_memory_cache *cache, u64 *sptep, 2446 struct kvm_mmu_page *sp, bool flush) 2447 { 2448 u64 spte; 2449 2450 BUILD_BUG_ON(VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK); 2451 2452 /* 2453 * If an SPTE is present already, it must be a leaf and therefore 2454 * a large one. Drop it, and flush the TLB if needed, before 2455 * installing sp. 2456 */ 2457 if (is_shadow_present_pte(*sptep)) 2458 drop_large_spte(kvm, sptep, flush); 2459 2460 spte = make_nonleaf_spte(sp->spt, sp_ad_disabled(sp)); 2461 2462 mmu_spte_set(sptep, spte); 2463 2464 mmu_page_add_parent_pte(cache, sp, sptep); 2465 2466 /* 2467 * The non-direct sub-pagetable must be updated before linking. For 2468 * L1 sp, the pagetable is updated via kvm_sync_page() in 2469 * kvm_mmu_find_shadow_page() without write-protecting the gfn, 2470 * so sp->unsync can be true or false. For higher level non-direct 2471 * sp, the pagetable is updated/synced via mmu_sync_children() in 2472 * FNAME(fetch)(), so sp->unsync_children can only be false. 2473 * WARN_ON_ONCE() if anything happens unexpectedly. 2474 */ 2475 if (WARN_ON_ONCE(sp->unsync_children) || sp->unsync) 2476 mark_unsync(sptep); 2477 } 2478 2479 static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep, 2480 struct kvm_mmu_page *sp) 2481 { 2482 __link_shadow_page(vcpu->kvm, &vcpu->arch.mmu_pte_list_desc_cache, sptep, sp, true); 2483 } 2484 2485 static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep, 2486 unsigned direct_access) 2487 { 2488 if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) { 2489 struct kvm_mmu_page *child; 2490 2491 /* 2492 * For the direct sp, if the guest pte's dirty bit 2493 * changed form clean to dirty, it will corrupt the 2494 * sp's access: allow writable in the read-only sp, 2495 * so we should update the spte at this point to get 2496 * a new sp with the correct access. 2497 */ 2498 child = spte_to_child_sp(*sptep); 2499 if (child->role.access == direct_access) 2500 return; 2501 2502 drop_parent_pte(child, sptep); 2503 kvm_flush_remote_tlbs_sptep(vcpu->kvm, sptep); 2504 } 2505 } 2506 2507 /* Returns the number of zapped non-leaf child shadow pages. */ 2508 static int mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp, 2509 u64 *spte, struct list_head *invalid_list) 2510 { 2511 u64 pte; 2512 struct kvm_mmu_page *child; 2513 2514 pte = *spte; 2515 if (is_shadow_present_pte(pte)) { 2516 if (is_last_spte(pte, sp->role.level)) { 2517 drop_spte(kvm, spte); 2518 } else { 2519 child = spte_to_child_sp(pte); 2520 drop_parent_pte(child, spte); 2521 2522 /* 2523 * Recursively zap nested TDP SPs, parentless SPs are 2524 * unlikely to be used again in the near future. This 2525 * avoids retaining a large number of stale nested SPs. 2526 */ 2527 if (tdp_enabled && invalid_list && 2528 child->role.guest_mode && !child->parent_ptes.val) 2529 return kvm_mmu_prepare_zap_page(kvm, child, 2530 invalid_list); 2531 } 2532 } else if (is_mmio_spte(pte)) { 2533 mmu_spte_clear_no_track(spte); 2534 } 2535 return 0; 2536 } 2537 2538 static int kvm_mmu_page_unlink_children(struct kvm *kvm, 2539 struct kvm_mmu_page *sp, 2540 struct list_head *invalid_list) 2541 { 2542 int zapped = 0; 2543 unsigned i; 2544 2545 for (i = 0; i < SPTE_ENT_PER_PAGE; ++i) 2546 zapped += mmu_page_zap_pte(kvm, sp, sp->spt + i, invalid_list); 2547 2548 return zapped; 2549 } 2550 2551 static void kvm_mmu_unlink_parents(struct kvm_mmu_page *sp) 2552 { 2553 u64 *sptep; 2554 struct rmap_iterator iter; 2555 2556 while ((sptep = rmap_get_first(&sp->parent_ptes, &iter))) 2557 drop_parent_pte(sp, sptep); 2558 } 2559 2560 static int mmu_zap_unsync_children(struct kvm *kvm, 2561 struct kvm_mmu_page *parent, 2562 struct list_head *invalid_list) 2563 { 2564 int i, zapped = 0; 2565 struct mmu_page_path parents; 2566 struct kvm_mmu_pages pages; 2567 2568 if (parent->role.level == PG_LEVEL_4K) 2569 return 0; 2570 2571 while (mmu_unsync_walk(parent, &pages)) { 2572 struct kvm_mmu_page *sp; 2573 2574 for_each_sp(pages, sp, parents, i) { 2575 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list); 2576 mmu_pages_clear_parents(&parents); 2577 zapped++; 2578 } 2579 } 2580 2581 return zapped; 2582 } 2583 2584 static bool __kvm_mmu_prepare_zap_page(struct kvm *kvm, 2585 struct kvm_mmu_page *sp, 2586 struct list_head *invalid_list, 2587 int *nr_zapped) 2588 { 2589 bool list_unstable, zapped_root = false; 2590 2591 lockdep_assert_held_write(&kvm->mmu_lock); 2592 trace_kvm_mmu_prepare_zap_page(sp); 2593 ++kvm->stat.mmu_shadow_zapped; 2594 *nr_zapped = mmu_zap_unsync_children(kvm, sp, invalid_list); 2595 *nr_zapped += kvm_mmu_page_unlink_children(kvm, sp, invalid_list); 2596 kvm_mmu_unlink_parents(sp); 2597 2598 /* Zapping children means active_mmu_pages has become unstable. */ 2599 list_unstable = *nr_zapped; 2600 2601 if (!sp->role.invalid && sp_has_gptes(sp)) 2602 unaccount_shadowed(kvm, sp); 2603 2604 if (sp->unsync) 2605 kvm_unlink_unsync_page(kvm, sp); 2606 if (!sp->root_count) { 2607 /* Count self */ 2608 (*nr_zapped)++; 2609 2610 /* 2611 * Already invalid pages (previously active roots) are not on 2612 * the active page list. See list_del() in the "else" case of 2613 * !sp->root_count. 2614 */ 2615 if (sp->role.invalid) 2616 list_add(&sp->link, invalid_list); 2617 else 2618 list_move(&sp->link, invalid_list); 2619 kvm_unaccount_mmu_page(kvm, sp); 2620 } else { 2621 /* 2622 * Remove the active root from the active page list, the root 2623 * will be explicitly freed when the root_count hits zero. 2624 */ 2625 list_del(&sp->link); 2626 2627 /* 2628 * Obsolete pages cannot be used on any vCPUs, see the comment 2629 * in kvm_mmu_zap_all_fast(). Note, is_obsolete_sp() also 2630 * treats invalid shadow pages as being obsolete. 2631 */ 2632 zapped_root = !is_obsolete_sp(kvm, sp); 2633 } 2634 2635 if (sp->nx_huge_page_disallowed) 2636 unaccount_nx_huge_page(kvm, sp); 2637 2638 sp->role.invalid = 1; 2639 2640 /* 2641 * Make the request to free obsolete roots after marking the root 2642 * invalid, otherwise other vCPUs may not see it as invalid. 2643 */ 2644 if (zapped_root) 2645 kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_FREE_OBSOLETE_ROOTS); 2646 return list_unstable; 2647 } 2648 2649 static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp, 2650 struct list_head *invalid_list) 2651 { 2652 int nr_zapped; 2653 2654 __kvm_mmu_prepare_zap_page(kvm, sp, invalid_list, &nr_zapped); 2655 return nr_zapped; 2656 } 2657 2658 static void kvm_mmu_commit_zap_page(struct kvm *kvm, 2659 struct list_head *invalid_list) 2660 { 2661 struct kvm_mmu_page *sp, *nsp; 2662 2663 if (list_empty(invalid_list)) 2664 return; 2665 2666 /* 2667 * We need to make sure everyone sees our modifications to 2668 * the page tables and see changes to vcpu->mode here. The barrier 2669 * in the kvm_flush_remote_tlbs() achieves this. This pairs 2670 * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end. 2671 * 2672 * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit 2673 * guest mode and/or lockless shadow page table walks. 2674 */ 2675 kvm_flush_remote_tlbs(kvm); 2676 2677 list_for_each_entry_safe(sp, nsp, invalid_list, link) { 2678 WARN_ON(!sp->role.invalid || sp->root_count); 2679 kvm_mmu_free_shadow_page(sp); 2680 } 2681 } 2682 2683 static unsigned long kvm_mmu_zap_oldest_mmu_pages(struct kvm *kvm, 2684 unsigned long nr_to_zap) 2685 { 2686 unsigned long total_zapped = 0; 2687 struct kvm_mmu_page *sp, *tmp; 2688 LIST_HEAD(invalid_list); 2689 bool unstable; 2690 int nr_zapped; 2691 2692 if (list_empty(&kvm->arch.active_mmu_pages)) 2693 return 0; 2694 2695 restart: 2696 list_for_each_entry_safe_reverse(sp, tmp, &kvm->arch.active_mmu_pages, link) { 2697 /* 2698 * Don't zap active root pages, the page itself can't be freed 2699 * and zapping it will just force vCPUs to realloc and reload. 2700 */ 2701 if (sp->root_count) 2702 continue; 2703 2704 unstable = __kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list, 2705 &nr_zapped); 2706 total_zapped += nr_zapped; 2707 if (total_zapped >= nr_to_zap) 2708 break; 2709 2710 if (unstable) 2711 goto restart; 2712 } 2713 2714 kvm_mmu_commit_zap_page(kvm, &invalid_list); 2715 2716 kvm->stat.mmu_recycled += total_zapped; 2717 return total_zapped; 2718 } 2719 2720 static inline unsigned long kvm_mmu_available_pages(struct kvm *kvm) 2721 { 2722 if (kvm->arch.n_max_mmu_pages > kvm->arch.n_used_mmu_pages) 2723 return kvm->arch.n_max_mmu_pages - 2724 kvm->arch.n_used_mmu_pages; 2725 2726 return 0; 2727 } 2728 2729 static int make_mmu_pages_available(struct kvm_vcpu *vcpu) 2730 { 2731 unsigned long avail = kvm_mmu_available_pages(vcpu->kvm); 2732 2733 if (likely(avail >= KVM_MIN_FREE_MMU_PAGES)) 2734 return 0; 2735 2736 kvm_mmu_zap_oldest_mmu_pages(vcpu->kvm, KVM_REFILL_PAGES - avail); 2737 2738 /* 2739 * Note, this check is intentionally soft, it only guarantees that one 2740 * page is available, while the caller may end up allocating as many as 2741 * four pages, e.g. for PAE roots or for 5-level paging. Temporarily 2742 * exceeding the (arbitrary by default) limit will not harm the host, 2743 * being too aggressive may unnecessarily kill the guest, and getting an 2744 * exact count is far more trouble than it's worth, especially in the 2745 * page fault paths. 2746 */ 2747 if (!kvm_mmu_available_pages(vcpu->kvm)) 2748 return -ENOSPC; 2749 return 0; 2750 } 2751 2752 /* 2753 * Changing the number of mmu pages allocated to the vm 2754 * Note: if goal_nr_mmu_pages is too small, you will get dead lock 2755 */ 2756 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long goal_nr_mmu_pages) 2757 { 2758 write_lock(&kvm->mmu_lock); 2759 2760 if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) { 2761 kvm_mmu_zap_oldest_mmu_pages(kvm, kvm->arch.n_used_mmu_pages - 2762 goal_nr_mmu_pages); 2763 2764 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages; 2765 } 2766 2767 kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages; 2768 2769 write_unlock(&kvm->mmu_lock); 2770 } 2771 2772 int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn) 2773 { 2774 struct kvm_mmu_page *sp; 2775 LIST_HEAD(invalid_list); 2776 int r; 2777 2778 pgprintk("%s: looking for gfn %llx\n", __func__, gfn); 2779 r = 0; 2780 write_lock(&kvm->mmu_lock); 2781 for_each_gfn_valid_sp_with_gptes(kvm, sp, gfn) { 2782 pgprintk("%s: gfn %llx role %x\n", __func__, gfn, 2783 sp->role.word); 2784 r = 1; 2785 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list); 2786 } 2787 kvm_mmu_commit_zap_page(kvm, &invalid_list); 2788 write_unlock(&kvm->mmu_lock); 2789 2790 return r; 2791 } 2792 2793 static int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva) 2794 { 2795 gpa_t gpa; 2796 int r; 2797 2798 if (vcpu->arch.mmu->root_role.direct) 2799 return 0; 2800 2801 gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL); 2802 2803 r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT); 2804 2805 return r; 2806 } 2807 2808 static void kvm_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp) 2809 { 2810 trace_kvm_mmu_unsync_page(sp); 2811 ++kvm->stat.mmu_unsync; 2812 sp->unsync = 1; 2813 2814 kvm_mmu_mark_parents_unsync(sp); 2815 } 2816 2817 /* 2818 * Attempt to unsync any shadow pages that can be reached by the specified gfn, 2819 * KVM is creating a writable mapping for said gfn. Returns 0 if all pages 2820 * were marked unsync (or if there is no shadow page), -EPERM if the SPTE must 2821 * be write-protected. 2822 */ 2823 int mmu_try_to_unsync_pages(struct kvm *kvm, const struct kvm_memory_slot *slot, 2824 gfn_t gfn, bool can_unsync, bool prefetch) 2825 { 2826 struct kvm_mmu_page *sp; 2827 bool locked = false; 2828 2829 /* 2830 * Force write-protection if the page is being tracked. Note, the page 2831 * track machinery is used to write-protect upper-level shadow pages, 2832 * i.e. this guards the role.level == 4K assertion below! 2833 */ 2834 if (kvm_slot_page_track_is_active(kvm, slot, gfn, KVM_PAGE_TRACK_WRITE)) 2835 return -EPERM; 2836 2837 /* 2838 * The page is not write-tracked, mark existing shadow pages unsync 2839 * unless KVM is synchronizing an unsync SP (can_unsync = false). In 2840 * that case, KVM must complete emulation of the guest TLB flush before 2841 * allowing shadow pages to become unsync (writable by the guest). 2842 */ 2843 for_each_gfn_valid_sp_with_gptes(kvm, sp, gfn) { 2844 if (!can_unsync) 2845 return -EPERM; 2846 2847 if (sp->unsync) 2848 continue; 2849 2850 if (prefetch) 2851 return -EEXIST; 2852 2853 /* 2854 * TDP MMU page faults require an additional spinlock as they 2855 * run with mmu_lock held for read, not write, and the unsync 2856 * logic is not thread safe. Take the spinklock regardless of 2857 * the MMU type to avoid extra conditionals/parameters, there's 2858 * no meaningful penalty if mmu_lock is held for write. 2859 */ 2860 if (!locked) { 2861 locked = true; 2862 spin_lock(&kvm->arch.mmu_unsync_pages_lock); 2863 2864 /* 2865 * Recheck after taking the spinlock, a different vCPU 2866 * may have since marked the page unsync. A false 2867 * positive on the unprotected check above is not 2868 * possible as clearing sp->unsync _must_ hold mmu_lock 2869 * for write, i.e. unsync cannot transition from 0->1 2870 * while this CPU holds mmu_lock for read (or write). 2871 */ 2872 if (READ_ONCE(sp->unsync)) 2873 continue; 2874 } 2875 2876 WARN_ON(sp->role.level != PG_LEVEL_4K); 2877 kvm_unsync_page(kvm, sp); 2878 } 2879 if (locked) 2880 spin_unlock(&kvm->arch.mmu_unsync_pages_lock); 2881 2882 /* 2883 * We need to ensure that the marking of unsync pages is visible 2884 * before the SPTE is updated to allow writes because 2885 * kvm_mmu_sync_roots() checks the unsync flags without holding 2886 * the MMU lock and so can race with this. If the SPTE was updated 2887 * before the page had been marked as unsync-ed, something like the 2888 * following could happen: 2889 * 2890 * CPU 1 CPU 2 2891 * --------------------------------------------------------------------- 2892 * 1.2 Host updates SPTE 2893 * to be writable 2894 * 2.1 Guest writes a GPTE for GVA X. 2895 * (GPTE being in the guest page table shadowed 2896 * by the SP from CPU 1.) 2897 * This reads SPTE during the page table walk. 2898 * Since SPTE.W is read as 1, there is no 2899 * fault. 2900 * 2901 * 2.2 Guest issues TLB flush. 2902 * That causes a VM Exit. 2903 * 2904 * 2.3 Walking of unsync pages sees sp->unsync is 2905 * false and skips the page. 2906 * 2907 * 2.4 Guest accesses GVA X. 2908 * Since the mapping in the SP was not updated, 2909 * so the old mapping for GVA X incorrectly 2910 * gets used. 2911 * 1.1 Host marks SP 2912 * as unsync 2913 * (sp->unsync = true) 2914 * 2915 * The write barrier below ensures that 1.1 happens before 1.2 and thus 2916 * the situation in 2.4 does not arise. It pairs with the read barrier 2917 * in is_unsync_root(), placed between 2.1's load of SPTE.W and 2.3. 2918 */ 2919 smp_wmb(); 2920 2921 return 0; 2922 } 2923 2924 static int mmu_set_spte(struct kvm_vcpu *vcpu, struct kvm_memory_slot *slot, 2925 u64 *sptep, unsigned int pte_access, gfn_t gfn, 2926 kvm_pfn_t pfn, struct kvm_page_fault *fault) 2927 { 2928 struct kvm_mmu_page *sp = sptep_to_sp(sptep); 2929 int level = sp->role.level; 2930 int was_rmapped = 0; 2931 int ret = RET_PF_FIXED; 2932 bool flush = false; 2933 bool wrprot; 2934 u64 spte; 2935 2936 /* Prefetching always gets a writable pfn. */ 2937 bool host_writable = !fault || fault->map_writable; 2938 bool prefetch = !fault || fault->prefetch; 2939 bool write_fault = fault && fault->write; 2940 2941 pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__, 2942 *sptep, write_fault, gfn); 2943 2944 if (unlikely(is_noslot_pfn(pfn))) { 2945 vcpu->stat.pf_mmio_spte_created++; 2946 mark_mmio_spte(vcpu, sptep, gfn, pte_access); 2947 return RET_PF_EMULATE; 2948 } 2949 2950 if (is_shadow_present_pte(*sptep)) { 2951 /* 2952 * If we overwrite a PTE page pointer with a 2MB PMD, unlink 2953 * the parent of the now unreachable PTE. 2954 */ 2955 if (level > PG_LEVEL_4K && !is_large_pte(*sptep)) { 2956 struct kvm_mmu_page *child; 2957 u64 pte = *sptep; 2958 2959 child = spte_to_child_sp(pte); 2960 drop_parent_pte(child, sptep); 2961 flush = true; 2962 } else if (pfn != spte_to_pfn(*sptep)) { 2963 pgprintk("hfn old %llx new %llx\n", 2964 spte_to_pfn(*sptep), pfn); 2965 drop_spte(vcpu->kvm, sptep); 2966 flush = true; 2967 } else 2968 was_rmapped = 1; 2969 } 2970 2971 wrprot = make_spte(vcpu, sp, slot, pte_access, gfn, pfn, *sptep, prefetch, 2972 true, host_writable, &spte); 2973 2974 if (*sptep == spte) { 2975 ret = RET_PF_SPURIOUS; 2976 } else { 2977 flush |= mmu_spte_update(sptep, spte); 2978 trace_kvm_mmu_set_spte(level, gfn, sptep); 2979 } 2980 2981 if (wrprot) { 2982 if (write_fault) 2983 ret = RET_PF_EMULATE; 2984 } 2985 2986 if (flush) 2987 kvm_flush_remote_tlbs_gfn(vcpu->kvm, gfn, level); 2988 2989 pgprintk("%s: setting spte %llx\n", __func__, *sptep); 2990 2991 if (!was_rmapped) { 2992 WARN_ON_ONCE(ret == RET_PF_SPURIOUS); 2993 rmap_add(vcpu, slot, sptep, gfn, pte_access); 2994 } else { 2995 /* Already rmapped but the pte_access bits may have changed. */ 2996 kvm_mmu_page_set_access(sp, spte_index(sptep), pte_access); 2997 } 2998 2999 return ret; 3000 } 3001 3002 static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu, 3003 struct kvm_mmu_page *sp, 3004 u64 *start, u64 *end) 3005 { 3006 struct page *pages[PTE_PREFETCH_NUM]; 3007 struct kvm_memory_slot *slot; 3008 unsigned int access = sp->role.access; 3009 int i, ret; 3010 gfn_t gfn; 3011 3012 gfn = kvm_mmu_page_get_gfn(sp, spte_index(start)); 3013 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK); 3014 if (!slot) 3015 return -1; 3016 3017 ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start); 3018 if (ret <= 0) 3019 return -1; 3020 3021 for (i = 0; i < ret; i++, gfn++, start++) { 3022 mmu_set_spte(vcpu, slot, start, access, gfn, 3023 page_to_pfn(pages[i]), NULL); 3024 put_page(pages[i]); 3025 } 3026 3027 return 0; 3028 } 3029 3030 static void __direct_pte_prefetch(struct kvm_vcpu *vcpu, 3031 struct kvm_mmu_page *sp, u64 *sptep) 3032 { 3033 u64 *spte, *start = NULL; 3034 int i; 3035 3036 WARN_ON(!sp->role.direct); 3037 3038 i = spte_index(sptep) & ~(PTE_PREFETCH_NUM - 1); 3039 spte = sp->spt + i; 3040 3041 for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) { 3042 if (is_shadow_present_pte(*spte) || spte == sptep) { 3043 if (!start) 3044 continue; 3045 if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0) 3046 return; 3047 start = NULL; 3048 } else if (!start) 3049 start = spte; 3050 } 3051 if (start) 3052 direct_pte_prefetch_many(vcpu, sp, start, spte); 3053 } 3054 3055 static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep) 3056 { 3057 struct kvm_mmu_page *sp; 3058 3059 sp = sptep_to_sp(sptep); 3060 3061 /* 3062 * Without accessed bits, there's no way to distinguish between 3063 * actually accessed translations and prefetched, so disable pte 3064 * prefetch if accessed bits aren't available. 3065 */ 3066 if (sp_ad_disabled(sp)) 3067 return; 3068 3069 if (sp->role.level > PG_LEVEL_4K) 3070 return; 3071 3072 /* 3073 * If addresses are being invalidated, skip prefetching to avoid 3074 * accidentally prefetching those addresses. 3075 */ 3076 if (unlikely(vcpu->kvm->mmu_invalidate_in_progress)) 3077 return; 3078 3079 __direct_pte_prefetch(vcpu, sp, sptep); 3080 } 3081 3082 /* 3083 * Lookup the mapping level for @gfn in the current mm. 3084 * 3085 * WARNING! Use of host_pfn_mapping_level() requires the caller and the end 3086 * consumer to be tied into KVM's handlers for MMU notifier events! 3087 * 3088 * There are several ways to safely use this helper: 3089 * 3090 * - Check mmu_invalidate_retry_hva() after grabbing the mapping level, before 3091 * consuming it. In this case, mmu_lock doesn't need to be held during the 3092 * lookup, but it does need to be held while checking the MMU notifier. 3093 * 3094 * - Hold mmu_lock AND ensure there is no in-progress MMU notifier invalidation 3095 * event for the hva. This can be done by explicit checking the MMU notifier 3096 * or by ensuring that KVM already has a valid mapping that covers the hva. 3097 * 3098 * - Do not use the result to install new mappings, e.g. use the host mapping 3099 * level only to decide whether or not to zap an entry. In this case, it's 3100 * not required to hold mmu_lock (though it's highly likely the caller will 3101 * want to hold mmu_lock anyways, e.g. to modify SPTEs). 3102 * 3103 * Note! The lookup can still race with modifications to host page tables, but 3104 * the above "rules" ensure KVM will not _consume_ the result of the walk if a 3105 * race with the primary MMU occurs. 3106 */ 3107 static int host_pfn_mapping_level(struct kvm *kvm, gfn_t gfn, 3108 const struct kvm_memory_slot *slot) 3109 { 3110 int level = PG_LEVEL_4K; 3111 unsigned long hva; 3112 unsigned long flags; 3113 pgd_t pgd; 3114 p4d_t p4d; 3115 pud_t pud; 3116 pmd_t pmd; 3117 3118 /* 3119 * Note, using the already-retrieved memslot and __gfn_to_hva_memslot() 3120 * is not solely for performance, it's also necessary to avoid the 3121 * "writable" check in __gfn_to_hva_many(), which will always fail on 3122 * read-only memslots due to gfn_to_hva() assuming writes. Earlier 3123 * page fault steps have already verified the guest isn't writing a 3124 * read-only memslot. 3125 */ 3126 hva = __gfn_to_hva_memslot(slot, gfn); 3127 3128 /* 3129 * Disable IRQs to prevent concurrent tear down of host page tables, 3130 * e.g. if the primary MMU promotes a P*D to a huge page and then frees 3131 * the original page table. 3132 */ 3133 local_irq_save(flags); 3134 3135 /* 3136 * Read each entry once. As above, a non-leaf entry can be promoted to 3137 * a huge page _during_ this walk. Re-reading the entry could send the 3138 * walk into the weeks, e.g. p*d_large() returns false (sees the old 3139 * value) and then p*d_offset() walks into the target huge page instead 3140 * of the old page table (sees the new value). 3141 */ 3142 pgd = READ_ONCE(*pgd_offset(kvm->mm, hva)); 3143 if (pgd_none(pgd)) 3144 goto out; 3145 3146 p4d = READ_ONCE(*p4d_offset(&pgd, hva)); 3147 if (p4d_none(p4d) || !p4d_present(p4d)) 3148 goto out; 3149 3150 pud = READ_ONCE(*pud_offset(&p4d, hva)); 3151 if (pud_none(pud) || !pud_present(pud)) 3152 goto out; 3153 3154 if (pud_large(pud)) { 3155 level = PG_LEVEL_1G; 3156 goto out; 3157 } 3158 3159 pmd = READ_ONCE(*pmd_offset(&pud, hva)); 3160 if (pmd_none(pmd) || !pmd_present(pmd)) 3161 goto out; 3162 3163 if (pmd_large(pmd)) 3164 level = PG_LEVEL_2M; 3165 3166 out: 3167 local_irq_restore(flags); 3168 return level; 3169 } 3170 3171 int kvm_mmu_max_mapping_level(struct kvm *kvm, 3172 const struct kvm_memory_slot *slot, gfn_t gfn, 3173 int max_level) 3174 { 3175 struct kvm_lpage_info *linfo; 3176 int host_level; 3177 3178 max_level = min(max_level, max_huge_page_level); 3179 for ( ; max_level > PG_LEVEL_4K; max_level--) { 3180 linfo = lpage_info_slot(gfn, slot, max_level); 3181 if (!linfo->disallow_lpage) 3182 break; 3183 } 3184 3185 if (max_level == PG_LEVEL_4K) 3186 return PG_LEVEL_4K; 3187 3188 host_level = host_pfn_mapping_level(kvm, gfn, slot); 3189 return min(host_level, max_level); 3190 } 3191 3192 void kvm_mmu_hugepage_adjust(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault) 3193 { 3194 struct kvm_memory_slot *slot = fault->slot; 3195 kvm_pfn_t mask; 3196 3197 fault->huge_page_disallowed = fault->exec && fault->nx_huge_page_workaround_enabled; 3198 3199 if (unlikely(fault->max_level == PG_LEVEL_4K)) 3200 return; 3201 3202 if (is_error_noslot_pfn(fault->pfn)) 3203 return; 3204 3205 if (kvm_slot_dirty_track_enabled(slot)) 3206 return; 3207 3208 /* 3209 * Enforce the iTLB multihit workaround after capturing the requested 3210 * level, which will be used to do precise, accurate accounting. 3211 */ 3212 fault->req_level = kvm_mmu_max_mapping_level(vcpu->kvm, slot, 3213 fault->gfn, fault->max_level); 3214 if (fault->req_level == PG_LEVEL_4K || fault->huge_page_disallowed) 3215 return; 3216 3217 /* 3218 * mmu_invalidate_retry() was successful and mmu_lock is held, so 3219 * the pmd can't be split from under us. 3220 */ 3221 fault->goal_level = fault->req_level; 3222 mask = KVM_PAGES_PER_HPAGE(fault->goal_level) - 1; 3223 VM_BUG_ON((fault->gfn & mask) != (fault->pfn & mask)); 3224 fault->pfn &= ~mask; 3225 } 3226 3227 void disallowed_hugepage_adjust(struct kvm_page_fault *fault, u64 spte, int cur_level) 3228 { 3229 if (cur_level > PG_LEVEL_4K && 3230 cur_level == fault->goal_level && 3231 is_shadow_present_pte(spte) && 3232 !is_large_pte(spte) && 3233 spte_to_child_sp(spte)->nx_huge_page_disallowed) { 3234 /* 3235 * A small SPTE exists for this pfn, but FNAME(fetch), 3236 * direct_map(), or kvm_tdp_mmu_map() would like to create a 3237 * large PTE instead: just force them to go down another level, 3238 * patching back for them into pfn the next 9 bits of the 3239 * address. 3240 */ 3241 u64 page_mask = KVM_PAGES_PER_HPAGE(cur_level) - 3242 KVM_PAGES_PER_HPAGE(cur_level - 1); 3243 fault->pfn |= fault->gfn & page_mask; 3244 fault->goal_level--; 3245 } 3246 } 3247 3248 static int direct_map(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault) 3249 { 3250 struct kvm_shadow_walk_iterator it; 3251 struct kvm_mmu_page *sp; 3252 int ret; 3253 gfn_t base_gfn = fault->gfn; 3254 3255 kvm_mmu_hugepage_adjust(vcpu, fault); 3256 3257 trace_kvm_mmu_spte_requested(fault); 3258 for_each_shadow_entry(vcpu, fault->addr, it) { 3259 /* 3260 * We cannot overwrite existing page tables with an NX 3261 * large page, as the leaf could be executable. 3262 */ 3263 if (fault->nx_huge_page_workaround_enabled) 3264 disallowed_hugepage_adjust(fault, *it.sptep, it.level); 3265 3266 base_gfn = gfn_round_for_level(fault->gfn, it.level); 3267 if (it.level == fault->goal_level) 3268 break; 3269 3270 sp = kvm_mmu_get_child_sp(vcpu, it.sptep, base_gfn, true, ACC_ALL); 3271 if (sp == ERR_PTR(-EEXIST)) 3272 continue; 3273 3274 link_shadow_page(vcpu, it.sptep, sp); 3275 if (fault->huge_page_disallowed) 3276 account_nx_huge_page(vcpu->kvm, sp, 3277 fault->req_level >= it.level); 3278 } 3279 3280 if (WARN_ON_ONCE(it.level != fault->goal_level)) 3281 return -EFAULT; 3282 3283 ret = mmu_set_spte(vcpu, fault->slot, it.sptep, ACC_ALL, 3284 base_gfn, fault->pfn, fault); 3285 if (ret == RET_PF_SPURIOUS) 3286 return ret; 3287 3288 direct_pte_prefetch(vcpu, it.sptep); 3289 return ret; 3290 } 3291 3292 static void kvm_send_hwpoison_signal(struct kvm_memory_slot *slot, gfn_t gfn) 3293 { 3294 unsigned long hva = gfn_to_hva_memslot(slot, gfn); 3295 3296 send_sig_mceerr(BUS_MCEERR_AR, (void __user *)hva, PAGE_SHIFT, current); 3297 } 3298 3299 static int kvm_handle_error_pfn(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault) 3300 { 3301 if (is_sigpending_pfn(fault->pfn)) { 3302 kvm_handle_signal_exit(vcpu); 3303 return -EINTR; 3304 } 3305 3306 /* 3307 * Do not cache the mmio info caused by writing the readonly gfn 3308 * into the spte otherwise read access on readonly gfn also can 3309 * caused mmio page fault and treat it as mmio access. 3310 */ 3311 if (fault->pfn == KVM_PFN_ERR_RO_FAULT) 3312 return RET_PF_EMULATE; 3313 3314 if (fault->pfn == KVM_PFN_ERR_HWPOISON) { 3315 kvm_send_hwpoison_signal(fault->slot, fault->gfn); 3316 return RET_PF_RETRY; 3317 } 3318 3319 return -EFAULT; 3320 } 3321 3322 static int kvm_handle_noslot_fault(struct kvm_vcpu *vcpu, 3323 struct kvm_page_fault *fault, 3324 unsigned int access) 3325 { 3326 gva_t gva = fault->is_tdp ? 0 : fault->addr; 3327 3328 vcpu_cache_mmio_info(vcpu, gva, fault->gfn, 3329 access & shadow_mmio_access_mask); 3330 3331 /* 3332 * If MMIO caching is disabled, emulate immediately without 3333 * touching the shadow page tables as attempting to install an 3334 * MMIO SPTE will just be an expensive nop. 3335 */ 3336 if (unlikely(!enable_mmio_caching)) 3337 return RET_PF_EMULATE; 3338 3339 /* 3340 * Do not create an MMIO SPTE for a gfn greater than host.MAXPHYADDR, 3341 * any guest that generates such gfns is running nested and is being 3342 * tricked by L0 userspace (you can observe gfn > L1.MAXPHYADDR if and 3343 * only if L1's MAXPHYADDR is inaccurate with respect to the 3344 * hardware's). 3345 */ 3346 if (unlikely(fault->gfn > kvm_mmu_max_gfn())) 3347 return RET_PF_EMULATE; 3348 3349 return RET_PF_CONTINUE; 3350 } 3351 3352 static bool page_fault_can_be_fast(struct kvm_page_fault *fault) 3353 { 3354 /* 3355 * Page faults with reserved bits set, i.e. faults on MMIO SPTEs, only 3356 * reach the common page fault handler if the SPTE has an invalid MMIO 3357 * generation number. Refreshing the MMIO generation needs to go down 3358 * the slow path. Note, EPT Misconfigs do NOT set the PRESENT flag! 3359 */ 3360 if (fault->rsvd) 3361 return false; 3362 3363 /* 3364 * #PF can be fast if: 3365 * 3366 * 1. The shadow page table entry is not present and A/D bits are 3367 * disabled _by KVM_, which could mean that the fault is potentially 3368 * caused by access tracking (if enabled). If A/D bits are enabled 3369 * by KVM, but disabled by L1 for L2, KVM is forced to disable A/D 3370 * bits for L2 and employ access tracking, but the fast page fault 3371 * mechanism only supports direct MMUs. 3372 * 2. The shadow page table entry is present, the access is a write, 3373 * and no reserved bits are set (MMIO SPTEs cannot be "fixed"), i.e. 3374 * the fault was caused by a write-protection violation. If the 3375 * SPTE is MMU-writable (determined later), the fault can be fixed 3376 * by setting the Writable bit, which can be done out of mmu_lock. 3377 */ 3378 if (!fault->present) 3379 return !kvm_ad_enabled(); 3380 3381 /* 3382 * Note, instruction fetches and writes are mutually exclusive, ignore 3383 * the "exec" flag. 3384 */ 3385 return fault->write; 3386 } 3387 3388 /* 3389 * Returns true if the SPTE was fixed successfully. Otherwise, 3390 * someone else modified the SPTE from its original value. 3391 */ 3392 static bool fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, 3393 struct kvm_page_fault *fault, 3394 u64 *sptep, u64 old_spte, u64 new_spte) 3395 { 3396 /* 3397 * Theoretically we could also set dirty bit (and flush TLB) here in 3398 * order to eliminate unnecessary PML logging. See comments in 3399 * set_spte. But fast_page_fault is very unlikely to happen with PML 3400 * enabled, so we do not do this. This might result in the same GPA 3401 * to be logged in PML buffer again when the write really happens, and 3402 * eventually to be called by mark_page_dirty twice. But it's also no 3403 * harm. This also avoids the TLB flush needed after setting dirty bit 3404 * so non-PML cases won't be impacted. 3405 * 3406 * Compare with set_spte where instead shadow_dirty_mask is set. 3407 */ 3408 if (!try_cmpxchg64(sptep, &old_spte, new_spte)) 3409 return false; 3410 3411 if (is_writable_pte(new_spte) && !is_writable_pte(old_spte)) 3412 mark_page_dirty_in_slot(vcpu->kvm, fault->slot, fault->gfn); 3413 3414 return true; 3415 } 3416 3417 static bool is_access_allowed(struct kvm_page_fault *fault, u64 spte) 3418 { 3419 if (fault->exec) 3420 return is_executable_pte(spte); 3421 3422 if (fault->write) 3423 return is_writable_pte(spte); 3424 3425 /* Fault was on Read access */ 3426 return spte & PT_PRESENT_MASK; 3427 } 3428 3429 /* 3430 * Returns the last level spte pointer of the shadow page walk for the given 3431 * gpa, and sets *spte to the spte value. This spte may be non-preset. If no 3432 * walk could be performed, returns NULL and *spte does not contain valid data. 3433 * 3434 * Contract: 3435 * - Must be called between walk_shadow_page_lockless_{begin,end}. 3436 * - The returned sptep must not be used after walk_shadow_page_lockless_end. 3437 */ 3438 static u64 *fast_pf_get_last_sptep(struct kvm_vcpu *vcpu, gpa_t gpa, u64 *spte) 3439 { 3440 struct kvm_shadow_walk_iterator iterator; 3441 u64 old_spte; 3442 u64 *sptep = NULL; 3443 3444 for_each_shadow_entry_lockless(vcpu, gpa, iterator, old_spte) { 3445 sptep = iterator.sptep; 3446 *spte = old_spte; 3447 } 3448 3449 return sptep; 3450 } 3451 3452 /* 3453 * Returns one of RET_PF_INVALID, RET_PF_FIXED or RET_PF_SPURIOUS. 3454 */ 3455 static int fast_page_fault(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault) 3456 { 3457 struct kvm_mmu_page *sp; 3458 int ret = RET_PF_INVALID; 3459 u64 spte = 0ull; 3460 u64 *sptep = NULL; 3461 uint retry_count = 0; 3462 3463 if (!page_fault_can_be_fast(fault)) 3464 return ret; 3465 3466 walk_shadow_page_lockless_begin(vcpu); 3467 3468 do { 3469 u64 new_spte; 3470 3471 if (tdp_mmu_enabled) 3472 sptep = kvm_tdp_mmu_fast_pf_get_last_sptep(vcpu, fault->addr, &spte); 3473 else 3474 sptep = fast_pf_get_last_sptep(vcpu, fault->addr, &spte); 3475 3476 if (!is_shadow_present_pte(spte)) 3477 break; 3478 3479 sp = sptep_to_sp(sptep); 3480 if (!is_last_spte(spte, sp->role.level)) 3481 break; 3482 3483 /* 3484 * Check whether the memory access that caused the fault would 3485 * still cause it if it were to be performed right now. If not, 3486 * then this is a spurious fault caused by TLB lazily flushed, 3487 * or some other CPU has already fixed the PTE after the 3488 * current CPU took the fault. 3489 * 3490 * Need not check the access of upper level table entries since 3491 * they are always ACC_ALL. 3492 */ 3493 if (is_access_allowed(fault, spte)) { 3494 ret = RET_PF_SPURIOUS; 3495 break; 3496 } 3497 3498 new_spte = spte; 3499 3500 /* 3501 * KVM only supports fixing page faults outside of MMU lock for 3502 * direct MMUs, nested MMUs are always indirect, and KVM always 3503 * uses A/D bits for non-nested MMUs. Thus, if A/D bits are 3504 * enabled, the SPTE can't be an access-tracked SPTE. 3505 */ 3506 if (unlikely(!kvm_ad_enabled()) && is_access_track_spte(spte)) 3507 new_spte = restore_acc_track_spte(new_spte); 3508 3509 /* 3510 * To keep things simple, only SPTEs that are MMU-writable can 3511 * be made fully writable outside of mmu_lock, e.g. only SPTEs 3512 * that were write-protected for dirty-logging or access 3513 * tracking are handled here. Don't bother checking if the 3514 * SPTE is writable to prioritize running with A/D bits enabled. 3515 * The is_access_allowed() check above handles the common case 3516 * of the fault being spurious, and the SPTE is known to be 3517 * shadow-present, i.e. except for access tracking restoration 3518 * making the new SPTE writable, the check is wasteful. 3519 */ 3520 if (fault->write && is_mmu_writable_spte(spte)) { 3521 new_spte |= PT_WRITABLE_MASK; 3522 3523 /* 3524 * Do not fix write-permission on the large spte when 3525 * dirty logging is enabled. Since we only dirty the 3526 * first page into the dirty-bitmap in 3527 * fast_pf_fix_direct_spte(), other pages are missed 3528 * if its slot has dirty logging enabled. 3529 * 3530 * Instead, we let the slow page fault path create a 3531 * normal spte to fix the access. 3532 */ 3533 if (sp->role.level > PG_LEVEL_4K && 3534 kvm_slot_dirty_track_enabled(fault->slot)) 3535 break; 3536 } 3537 3538 /* Verify that the fault can be handled in the fast path */ 3539 if (new_spte == spte || 3540 !is_access_allowed(fault, new_spte)) 3541 break; 3542 3543 /* 3544 * Currently, fast page fault only works for direct mapping 3545 * since the gfn is not stable for indirect shadow page. See 3546 * Documentation/virt/kvm/locking.rst to get more detail. 3547 */ 3548 if (fast_pf_fix_direct_spte(vcpu, fault, sptep, spte, new_spte)) { 3549 ret = RET_PF_FIXED; 3550 break; 3551 } 3552 3553 if (++retry_count > 4) { 3554 pr_warn_once("Fast #PF retrying more than 4 times.\n"); 3555 break; 3556 } 3557 3558 } while (true); 3559 3560 trace_fast_page_fault(vcpu, fault, sptep, spte, ret); 3561 walk_shadow_page_lockless_end(vcpu); 3562 3563 if (ret != RET_PF_INVALID) 3564 vcpu->stat.pf_fast++; 3565 3566 return ret; 3567 } 3568 3569 static void mmu_free_root_page(struct kvm *kvm, hpa_t *root_hpa, 3570 struct list_head *invalid_list) 3571 { 3572 struct kvm_mmu_page *sp; 3573 3574 if (!VALID_PAGE(*root_hpa)) 3575 return; 3576 3577 /* 3578 * The "root" may be a special root, e.g. a PAE entry, treat it as a 3579 * SPTE to ensure any non-PA bits are dropped. 3580 */ 3581 sp = spte_to_child_sp(*root_hpa); 3582 if (WARN_ON(!sp)) 3583 return; 3584 3585 if (is_tdp_mmu_page(sp)) 3586 kvm_tdp_mmu_put_root(kvm, sp, false); 3587 else if (!--sp->root_count && sp->role.invalid) 3588 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list); 3589 3590 *root_hpa = INVALID_PAGE; 3591 } 3592 3593 /* roots_to_free must be some combination of the KVM_MMU_ROOT_* flags */ 3594 void kvm_mmu_free_roots(struct kvm *kvm, struct kvm_mmu *mmu, 3595 ulong roots_to_free) 3596 { 3597 int i; 3598 LIST_HEAD(invalid_list); 3599 bool free_active_root; 3600 3601 WARN_ON_ONCE(roots_to_free & ~KVM_MMU_ROOTS_ALL); 3602 3603 BUILD_BUG_ON(KVM_MMU_NUM_PREV_ROOTS >= BITS_PER_LONG); 3604 3605 /* Before acquiring the MMU lock, see if we need to do any real work. */ 3606 free_active_root = (roots_to_free & KVM_MMU_ROOT_CURRENT) 3607 && VALID_PAGE(mmu->root.hpa); 3608 3609 if (!free_active_root) { 3610 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 3611 if ((roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) && 3612 VALID_PAGE(mmu->prev_roots[i].hpa)) 3613 break; 3614 3615 if (i == KVM_MMU_NUM_PREV_ROOTS) 3616 return; 3617 } 3618 3619 write_lock(&kvm->mmu_lock); 3620 3621 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 3622 if (roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) 3623 mmu_free_root_page(kvm, &mmu->prev_roots[i].hpa, 3624 &invalid_list); 3625 3626 if (free_active_root) { 3627 if (to_shadow_page(mmu->root.hpa)) { 3628 mmu_free_root_page(kvm, &mmu->root.hpa, &invalid_list); 3629 } else if (mmu->pae_root) { 3630 for (i = 0; i < 4; ++i) { 3631 if (!IS_VALID_PAE_ROOT(mmu->pae_root[i])) 3632 continue; 3633 3634 mmu_free_root_page(kvm, &mmu->pae_root[i], 3635 &invalid_list); 3636 mmu->pae_root[i] = INVALID_PAE_ROOT; 3637 } 3638 } 3639 mmu->root.hpa = INVALID_PAGE; 3640 mmu->root.pgd = 0; 3641 } 3642 3643 kvm_mmu_commit_zap_page(kvm, &invalid_list); 3644 write_unlock(&kvm->mmu_lock); 3645 } 3646 EXPORT_SYMBOL_GPL(kvm_mmu_free_roots); 3647 3648 void kvm_mmu_free_guest_mode_roots(struct kvm *kvm, struct kvm_mmu *mmu) 3649 { 3650 unsigned long roots_to_free = 0; 3651 hpa_t root_hpa; 3652 int i; 3653 3654 /* 3655 * This should not be called while L2 is active, L2 can't invalidate 3656 * _only_ its own roots, e.g. INVVPID unconditionally exits. 3657 */ 3658 WARN_ON_ONCE(mmu->root_role.guest_mode); 3659 3660 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) { 3661 root_hpa = mmu->prev_roots[i].hpa; 3662 if (!VALID_PAGE(root_hpa)) 3663 continue; 3664 3665 if (!to_shadow_page(root_hpa) || 3666 to_shadow_page(root_hpa)->role.guest_mode) 3667 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i); 3668 } 3669 3670 kvm_mmu_free_roots(kvm, mmu, roots_to_free); 3671 } 3672 EXPORT_SYMBOL_GPL(kvm_mmu_free_guest_mode_roots); 3673 3674 3675 static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn) 3676 { 3677 int ret = 0; 3678 3679 if (!kvm_vcpu_is_visible_gfn(vcpu, root_gfn)) { 3680 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 3681 ret = 1; 3682 } 3683 3684 return ret; 3685 } 3686 3687 static hpa_t mmu_alloc_root(struct kvm_vcpu *vcpu, gfn_t gfn, int quadrant, 3688 u8 level) 3689 { 3690 union kvm_mmu_page_role role = vcpu->arch.mmu->root_role; 3691 struct kvm_mmu_page *sp; 3692 3693 role.level = level; 3694 role.quadrant = quadrant; 3695 3696 WARN_ON_ONCE(quadrant && !role.has_4_byte_gpte); 3697 WARN_ON_ONCE(role.direct && role.has_4_byte_gpte); 3698 3699 sp = kvm_mmu_get_shadow_page(vcpu, gfn, role); 3700 ++sp->root_count; 3701 3702 return __pa(sp->spt); 3703 } 3704 3705 static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu) 3706 { 3707 struct kvm_mmu *mmu = vcpu->arch.mmu; 3708 u8 shadow_root_level = mmu->root_role.level; 3709 hpa_t root; 3710 unsigned i; 3711 int r; 3712 3713 write_lock(&vcpu->kvm->mmu_lock); 3714 r = make_mmu_pages_available(vcpu); 3715 if (r < 0) 3716 goto out_unlock; 3717 3718 if (tdp_mmu_enabled) { 3719 root = kvm_tdp_mmu_get_vcpu_root_hpa(vcpu); 3720 mmu->root.hpa = root; 3721 } else if (shadow_root_level >= PT64_ROOT_4LEVEL) { 3722 root = mmu_alloc_root(vcpu, 0, 0, shadow_root_level); 3723 mmu->root.hpa = root; 3724 } else if (shadow_root_level == PT32E_ROOT_LEVEL) { 3725 if (WARN_ON_ONCE(!mmu->pae_root)) { 3726 r = -EIO; 3727 goto out_unlock; 3728 } 3729 3730 for (i = 0; i < 4; ++i) { 3731 WARN_ON_ONCE(IS_VALID_PAE_ROOT(mmu->pae_root[i])); 3732 3733 root = mmu_alloc_root(vcpu, i << (30 - PAGE_SHIFT), 0, 3734 PT32_ROOT_LEVEL); 3735 mmu->pae_root[i] = root | PT_PRESENT_MASK | 3736 shadow_me_value; 3737 } 3738 mmu->root.hpa = __pa(mmu->pae_root); 3739 } else { 3740 WARN_ONCE(1, "Bad TDP root level = %d\n", shadow_root_level); 3741 r = -EIO; 3742 goto out_unlock; 3743 } 3744 3745 /* root.pgd is ignored for direct MMUs. */ 3746 mmu->root.pgd = 0; 3747 out_unlock: 3748 write_unlock(&vcpu->kvm->mmu_lock); 3749 return r; 3750 } 3751 3752 static int mmu_first_shadow_root_alloc(struct kvm *kvm) 3753 { 3754 struct kvm_memslots *slots; 3755 struct kvm_memory_slot *slot; 3756 int r = 0, i, bkt; 3757 3758 /* 3759 * Check if this is the first shadow root being allocated before 3760 * taking the lock. 3761 */ 3762 if (kvm_shadow_root_allocated(kvm)) 3763 return 0; 3764 3765 mutex_lock(&kvm->slots_arch_lock); 3766 3767 /* Recheck, under the lock, whether this is the first shadow root. */ 3768 if (kvm_shadow_root_allocated(kvm)) 3769 goto out_unlock; 3770 3771 /* 3772 * Check if anything actually needs to be allocated, e.g. all metadata 3773 * will be allocated upfront if TDP is disabled. 3774 */ 3775 if (kvm_memslots_have_rmaps(kvm) && 3776 kvm_page_track_write_tracking_enabled(kvm)) 3777 goto out_success; 3778 3779 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { 3780 slots = __kvm_memslots(kvm, i); 3781 kvm_for_each_memslot(slot, bkt, slots) { 3782 /* 3783 * Both of these functions are no-ops if the target is 3784 * already allocated, so unconditionally calling both 3785 * is safe. Intentionally do NOT free allocations on 3786 * failure to avoid having to track which allocations 3787 * were made now versus when the memslot was created. 3788 * The metadata is guaranteed to be freed when the slot 3789 * is freed, and will be kept/used if userspace retries 3790 * KVM_RUN instead of killing the VM. 3791 */ 3792 r = memslot_rmap_alloc(slot, slot->npages); 3793 if (r) 3794 goto out_unlock; 3795 r = kvm_page_track_write_tracking_alloc(slot); 3796 if (r) 3797 goto out_unlock; 3798 } 3799 } 3800 3801 /* 3802 * Ensure that shadow_root_allocated becomes true strictly after 3803 * all the related pointers are set. 3804 */ 3805 out_success: 3806 smp_store_release(&kvm->arch.shadow_root_allocated, true); 3807 3808 out_unlock: 3809 mutex_unlock(&kvm->slots_arch_lock); 3810 return r; 3811 } 3812 3813 static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu) 3814 { 3815 struct kvm_mmu *mmu = vcpu->arch.mmu; 3816 u64 pdptrs[4], pm_mask; 3817 gfn_t root_gfn, root_pgd; 3818 int quadrant, i, r; 3819 hpa_t root; 3820 3821 root_pgd = kvm_mmu_get_guest_pgd(vcpu, mmu); 3822 root_gfn = root_pgd >> PAGE_SHIFT; 3823 3824 if (mmu_check_root(vcpu, root_gfn)) 3825 return 1; 3826 3827 /* 3828 * On SVM, reading PDPTRs might access guest memory, which might fault 3829 * and thus might sleep. Grab the PDPTRs before acquiring mmu_lock. 3830 */ 3831 if (mmu->cpu_role.base.level == PT32E_ROOT_LEVEL) { 3832 for (i = 0; i < 4; ++i) { 3833 pdptrs[i] = mmu->get_pdptr(vcpu, i); 3834 if (!(pdptrs[i] & PT_PRESENT_MASK)) 3835 continue; 3836 3837 if (mmu_check_root(vcpu, pdptrs[i] >> PAGE_SHIFT)) 3838 return 1; 3839 } 3840 } 3841 3842 r = mmu_first_shadow_root_alloc(vcpu->kvm); 3843 if (r) 3844 return r; 3845 3846 write_lock(&vcpu->kvm->mmu_lock); 3847 r = make_mmu_pages_available(vcpu); 3848 if (r < 0) 3849 goto out_unlock; 3850 3851 /* 3852 * Do we shadow a long mode page table? If so we need to 3853 * write-protect the guests page table root. 3854 */ 3855 if (mmu->cpu_role.base.level >= PT64_ROOT_4LEVEL) { 3856 root = mmu_alloc_root(vcpu, root_gfn, 0, 3857 mmu->root_role.level); 3858 mmu->root.hpa = root; 3859 goto set_root_pgd; 3860 } 3861 3862 if (WARN_ON_ONCE(!mmu->pae_root)) { 3863 r = -EIO; 3864 goto out_unlock; 3865 } 3866 3867 /* 3868 * We shadow a 32 bit page table. This may be a legacy 2-level 3869 * or a PAE 3-level page table. In either case we need to be aware that 3870 * the shadow page table may be a PAE or a long mode page table. 3871 */ 3872 pm_mask = PT_PRESENT_MASK | shadow_me_value; 3873 if (mmu->root_role.level >= PT64_ROOT_4LEVEL) { 3874 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK; 3875 3876 if (WARN_ON_ONCE(!mmu->pml4_root)) { 3877 r = -EIO; 3878 goto out_unlock; 3879 } 3880 mmu->pml4_root[0] = __pa(mmu->pae_root) | pm_mask; 3881 3882 if (mmu->root_role.level == PT64_ROOT_5LEVEL) { 3883 if (WARN_ON_ONCE(!mmu->pml5_root)) { 3884 r = -EIO; 3885 goto out_unlock; 3886 } 3887 mmu->pml5_root[0] = __pa(mmu->pml4_root) | pm_mask; 3888 } 3889 } 3890 3891 for (i = 0; i < 4; ++i) { 3892 WARN_ON_ONCE(IS_VALID_PAE_ROOT(mmu->pae_root[i])); 3893 3894 if (mmu->cpu_role.base.level == PT32E_ROOT_LEVEL) { 3895 if (!(pdptrs[i] & PT_PRESENT_MASK)) { 3896 mmu->pae_root[i] = INVALID_PAE_ROOT; 3897 continue; 3898 } 3899 root_gfn = pdptrs[i] >> PAGE_SHIFT; 3900 } 3901 3902 /* 3903 * If shadowing 32-bit non-PAE page tables, each PAE page 3904 * directory maps one quarter of the guest's non-PAE page 3905 * directory. Othwerise each PAE page direct shadows one guest 3906 * PAE page directory so that quadrant should be 0. 3907 */ 3908 quadrant = (mmu->cpu_role.base.level == PT32_ROOT_LEVEL) ? i : 0; 3909 3910 root = mmu_alloc_root(vcpu, root_gfn, quadrant, PT32_ROOT_LEVEL); 3911 mmu->pae_root[i] = root | pm_mask; 3912 } 3913 3914 if (mmu->root_role.level == PT64_ROOT_5LEVEL) 3915 mmu->root.hpa = __pa(mmu->pml5_root); 3916 else if (mmu->root_role.level == PT64_ROOT_4LEVEL) 3917 mmu->root.hpa = __pa(mmu->pml4_root); 3918 else 3919 mmu->root.hpa = __pa(mmu->pae_root); 3920 3921 set_root_pgd: 3922 mmu->root.pgd = root_pgd; 3923 out_unlock: 3924 write_unlock(&vcpu->kvm->mmu_lock); 3925 3926 return r; 3927 } 3928 3929 static int mmu_alloc_special_roots(struct kvm_vcpu *vcpu) 3930 { 3931 struct kvm_mmu *mmu = vcpu->arch.mmu; 3932 bool need_pml5 = mmu->root_role.level > PT64_ROOT_4LEVEL; 3933 u64 *pml5_root = NULL; 3934 u64 *pml4_root = NULL; 3935 u64 *pae_root; 3936 3937 /* 3938 * When shadowing 32-bit or PAE NPT with 64-bit NPT, the PML4 and PDP 3939 * tables are allocated and initialized at root creation as there is no 3940 * equivalent level in the guest's NPT to shadow. Allocate the tables 3941 * on demand, as running a 32-bit L1 VMM on 64-bit KVM is very rare. 3942 */ 3943 if (mmu->root_role.direct || 3944 mmu->cpu_role.base.level >= PT64_ROOT_4LEVEL || 3945 mmu->root_role.level < PT64_ROOT_4LEVEL) 3946 return 0; 3947 3948 /* 3949 * NPT, the only paging mode that uses this horror, uses a fixed number 3950 * of levels for the shadow page tables, e.g. all MMUs are 4-level or 3951 * all MMus are 5-level. Thus, this can safely require that pml5_root 3952 * is allocated if the other roots are valid and pml5 is needed, as any 3953 * prior MMU would also have required pml5. 3954 */ 3955 if (mmu->pae_root && mmu->pml4_root && (!need_pml5 || mmu->pml5_root)) 3956 return 0; 3957 3958 /* 3959 * The special roots should always be allocated in concert. Yell and 3960 * bail if KVM ends up in a state where only one of the roots is valid. 3961 */ 3962 if (WARN_ON_ONCE(!tdp_enabled || mmu->pae_root || mmu->pml4_root || 3963 (need_pml5 && mmu->pml5_root))) 3964 return -EIO; 3965 3966 /* 3967 * Unlike 32-bit NPT, the PDP table doesn't need to be in low mem, and 3968 * doesn't need to be decrypted. 3969 */ 3970 pae_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT); 3971 if (!pae_root) 3972 return -ENOMEM; 3973 3974 #ifdef CONFIG_X86_64 3975 pml4_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT); 3976 if (!pml4_root) 3977 goto err_pml4; 3978 3979 if (need_pml5) { 3980 pml5_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT); 3981 if (!pml5_root) 3982 goto err_pml5; 3983 } 3984 #endif 3985 3986 mmu->pae_root = pae_root; 3987 mmu->pml4_root = pml4_root; 3988 mmu->pml5_root = pml5_root; 3989 3990 return 0; 3991 3992 #ifdef CONFIG_X86_64 3993 err_pml5: 3994 free_page((unsigned long)pml4_root); 3995 err_pml4: 3996 free_page((unsigned long)pae_root); 3997 return -ENOMEM; 3998 #endif 3999 } 4000 4001 static bool is_unsync_root(hpa_t root) 4002 { 4003 struct kvm_mmu_page *sp; 4004 4005 if (!VALID_PAGE(root)) 4006 return false; 4007 4008 /* 4009 * The read barrier orders the CPU's read of SPTE.W during the page table 4010 * walk before the reads of sp->unsync/sp->unsync_children here. 4011 * 4012 * Even if another CPU was marking the SP as unsync-ed simultaneously, 4013 * any guest page table changes are not guaranteed to be visible anyway 4014 * until this VCPU issues a TLB flush strictly after those changes are 4015 * made. We only need to ensure that the other CPU sets these flags 4016 * before any actual changes to the page tables are made. The comments 4017 * in mmu_try_to_unsync_pages() describe what could go wrong if this 4018 * requirement isn't satisfied. 4019 */ 4020 smp_rmb(); 4021 sp = to_shadow_page(root); 4022 4023 /* 4024 * PAE roots (somewhat arbitrarily) aren't backed by shadow pages, the 4025 * PDPTEs for a given PAE root need to be synchronized individually. 4026 */ 4027 if (WARN_ON_ONCE(!sp)) 4028 return false; 4029 4030 if (sp->unsync || sp->unsync_children) 4031 return true; 4032 4033 return false; 4034 } 4035 4036 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu) 4037 { 4038 int i; 4039 struct kvm_mmu_page *sp; 4040 4041 if (vcpu->arch.mmu->root_role.direct) 4042 return; 4043 4044 if (!VALID_PAGE(vcpu->arch.mmu->root.hpa)) 4045 return; 4046 4047 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY); 4048 4049 if (vcpu->arch.mmu->cpu_role.base.level >= PT64_ROOT_4LEVEL) { 4050 hpa_t root = vcpu->arch.mmu->root.hpa; 4051 sp = to_shadow_page(root); 4052 4053 if (!is_unsync_root(root)) 4054 return; 4055 4056 write_lock(&vcpu->kvm->mmu_lock); 4057 mmu_sync_children(vcpu, sp, true); 4058 write_unlock(&vcpu->kvm->mmu_lock); 4059 return; 4060 } 4061 4062 write_lock(&vcpu->kvm->mmu_lock); 4063 4064 for (i = 0; i < 4; ++i) { 4065 hpa_t root = vcpu->arch.mmu->pae_root[i]; 4066 4067 if (IS_VALID_PAE_ROOT(root)) { 4068 sp = spte_to_child_sp(root); 4069 mmu_sync_children(vcpu, sp, true); 4070 } 4071 } 4072 4073 write_unlock(&vcpu->kvm->mmu_lock); 4074 } 4075 4076 void kvm_mmu_sync_prev_roots(struct kvm_vcpu *vcpu) 4077 { 4078 unsigned long roots_to_free = 0; 4079 int i; 4080 4081 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 4082 if (is_unsync_root(vcpu->arch.mmu->prev_roots[i].hpa)) 4083 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i); 4084 4085 /* sync prev_roots by simply freeing them */ 4086 kvm_mmu_free_roots(vcpu->kvm, vcpu->arch.mmu, roots_to_free); 4087 } 4088 4089 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, 4090 gpa_t vaddr, u64 access, 4091 struct x86_exception *exception) 4092 { 4093 if (exception) 4094 exception->error_code = 0; 4095 return kvm_translate_gpa(vcpu, mmu, vaddr, access, exception); 4096 } 4097 4098 static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct) 4099 { 4100 /* 4101 * A nested guest cannot use the MMIO cache if it is using nested 4102 * page tables, because cr2 is a nGPA while the cache stores GPAs. 4103 */ 4104 if (mmu_is_nested(vcpu)) 4105 return false; 4106 4107 if (direct) 4108 return vcpu_match_mmio_gpa(vcpu, addr); 4109 4110 return vcpu_match_mmio_gva(vcpu, addr); 4111 } 4112 4113 /* 4114 * Return the level of the lowest level SPTE added to sptes. 4115 * That SPTE may be non-present. 4116 * 4117 * Must be called between walk_shadow_page_lockless_{begin,end}. 4118 */ 4119 static int get_walk(struct kvm_vcpu *vcpu, u64 addr, u64 *sptes, int *root_level) 4120 { 4121 struct kvm_shadow_walk_iterator iterator; 4122 int leaf = -1; 4123 u64 spte; 4124 4125 for (shadow_walk_init(&iterator, vcpu, addr), 4126 *root_level = iterator.level; 4127 shadow_walk_okay(&iterator); 4128 __shadow_walk_next(&iterator, spte)) { 4129 leaf = iterator.level; 4130 spte = mmu_spte_get_lockless(iterator.sptep); 4131 4132 sptes[leaf] = spte; 4133 } 4134 4135 return leaf; 4136 } 4137 4138 /* return true if reserved bit(s) are detected on a valid, non-MMIO SPTE. */ 4139 static bool get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep) 4140 { 4141 u64 sptes[PT64_ROOT_MAX_LEVEL + 1]; 4142 struct rsvd_bits_validate *rsvd_check; 4143 int root, leaf, level; 4144 bool reserved = false; 4145 4146 walk_shadow_page_lockless_begin(vcpu); 4147 4148 if (is_tdp_mmu_active(vcpu)) 4149 leaf = kvm_tdp_mmu_get_walk(vcpu, addr, sptes, &root); 4150 else 4151 leaf = get_walk(vcpu, addr, sptes, &root); 4152 4153 walk_shadow_page_lockless_end(vcpu); 4154 4155 if (unlikely(leaf < 0)) { 4156 *sptep = 0ull; 4157 return reserved; 4158 } 4159 4160 *sptep = sptes[leaf]; 4161 4162 /* 4163 * Skip reserved bits checks on the terminal leaf if it's not a valid 4164 * SPTE. Note, this also (intentionally) skips MMIO SPTEs, which, by 4165 * design, always have reserved bits set. The purpose of the checks is 4166 * to detect reserved bits on non-MMIO SPTEs. i.e. buggy SPTEs. 4167 */ 4168 if (!is_shadow_present_pte(sptes[leaf])) 4169 leaf++; 4170 4171 rsvd_check = &vcpu->arch.mmu->shadow_zero_check; 4172 4173 for (level = root; level >= leaf; level--) 4174 reserved |= is_rsvd_spte(rsvd_check, sptes[level], level); 4175 4176 if (reserved) { 4177 pr_err("%s: reserved bits set on MMU-present spte, addr 0x%llx, hierarchy:\n", 4178 __func__, addr); 4179 for (level = root; level >= leaf; level--) 4180 pr_err("------ spte = 0x%llx level = %d, rsvd bits = 0x%llx", 4181 sptes[level], level, 4182 get_rsvd_bits(rsvd_check, sptes[level], level)); 4183 } 4184 4185 return reserved; 4186 } 4187 4188 static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct) 4189 { 4190 u64 spte; 4191 bool reserved; 4192 4193 if (mmio_info_in_cache(vcpu, addr, direct)) 4194 return RET_PF_EMULATE; 4195 4196 reserved = get_mmio_spte(vcpu, addr, &spte); 4197 if (WARN_ON(reserved)) 4198 return -EINVAL; 4199 4200 if (is_mmio_spte(spte)) { 4201 gfn_t gfn = get_mmio_spte_gfn(spte); 4202 unsigned int access = get_mmio_spte_access(spte); 4203 4204 if (!check_mmio_spte(vcpu, spte)) 4205 return RET_PF_INVALID; 4206 4207 if (direct) 4208 addr = 0; 4209 4210 trace_handle_mmio_page_fault(addr, gfn, access); 4211 vcpu_cache_mmio_info(vcpu, addr, gfn, access); 4212 return RET_PF_EMULATE; 4213 } 4214 4215 /* 4216 * If the page table is zapped by other cpus, let CPU fault again on 4217 * the address. 4218 */ 4219 return RET_PF_RETRY; 4220 } 4221 4222 static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu, 4223 struct kvm_page_fault *fault) 4224 { 4225 if (unlikely(fault->rsvd)) 4226 return false; 4227 4228 if (!fault->present || !fault->write) 4229 return false; 4230 4231 /* 4232 * guest is writing the page which is write tracked which can 4233 * not be fixed by page fault handler. 4234 */ 4235 if (kvm_slot_page_track_is_active(vcpu->kvm, fault->slot, fault->gfn, KVM_PAGE_TRACK_WRITE)) 4236 return true; 4237 4238 return false; 4239 } 4240 4241 static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr) 4242 { 4243 struct kvm_shadow_walk_iterator iterator; 4244 u64 spte; 4245 4246 walk_shadow_page_lockless_begin(vcpu); 4247 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) 4248 clear_sp_write_flooding_count(iterator.sptep); 4249 walk_shadow_page_lockless_end(vcpu); 4250 } 4251 4252 static u32 alloc_apf_token(struct kvm_vcpu *vcpu) 4253 { 4254 /* make sure the token value is not 0 */ 4255 u32 id = vcpu->arch.apf.id; 4256 4257 if (id << 12 == 0) 4258 vcpu->arch.apf.id = 1; 4259 4260 return (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id; 4261 } 4262 4263 static bool kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, 4264 gfn_t gfn) 4265 { 4266 struct kvm_arch_async_pf arch; 4267 4268 arch.token = alloc_apf_token(vcpu); 4269 arch.gfn = gfn; 4270 arch.direct_map = vcpu->arch.mmu->root_role.direct; 4271 arch.cr3 = kvm_mmu_get_guest_pgd(vcpu, vcpu->arch.mmu); 4272 4273 return kvm_setup_async_pf(vcpu, cr2_or_gpa, 4274 kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch); 4275 } 4276 4277 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work) 4278 { 4279 int r; 4280 4281 if ((vcpu->arch.mmu->root_role.direct != work->arch.direct_map) || 4282 work->wakeup_all) 4283 return; 4284 4285 r = kvm_mmu_reload(vcpu); 4286 if (unlikely(r)) 4287 return; 4288 4289 if (!vcpu->arch.mmu->root_role.direct && 4290 work->arch.cr3 != kvm_mmu_get_guest_pgd(vcpu, vcpu->arch.mmu)) 4291 return; 4292 4293 kvm_mmu_do_page_fault(vcpu, work->cr2_or_gpa, 0, true, NULL); 4294 } 4295 4296 static int __kvm_faultin_pfn(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault) 4297 { 4298 struct kvm_memory_slot *slot = fault->slot; 4299 bool async; 4300 4301 /* 4302 * Retry the page fault if the gfn hit a memslot that is being deleted 4303 * or moved. This ensures any existing SPTEs for the old memslot will 4304 * be zapped before KVM inserts a new MMIO SPTE for the gfn. 4305 */ 4306 if (slot && (slot->flags & KVM_MEMSLOT_INVALID)) 4307 return RET_PF_RETRY; 4308 4309 if (!kvm_is_visible_memslot(slot)) { 4310 /* Don't expose private memslots to L2. */ 4311 if (is_guest_mode(vcpu)) { 4312 fault->slot = NULL; 4313 fault->pfn = KVM_PFN_NOSLOT; 4314 fault->map_writable = false; 4315 return RET_PF_CONTINUE; 4316 } 4317 /* 4318 * If the APIC access page exists but is disabled, go directly 4319 * to emulation without caching the MMIO access or creating a 4320 * MMIO SPTE. That way the cache doesn't need to be purged 4321 * when the AVIC is re-enabled. 4322 */ 4323 if (slot && slot->id == APIC_ACCESS_PAGE_PRIVATE_MEMSLOT && 4324 !kvm_apicv_activated(vcpu->kvm)) 4325 return RET_PF_EMULATE; 4326 } 4327 4328 async = false; 4329 fault->pfn = __gfn_to_pfn_memslot(slot, fault->gfn, false, false, &async, 4330 fault->write, &fault->map_writable, 4331 &fault->hva); 4332 if (!async) 4333 return RET_PF_CONTINUE; /* *pfn has correct page already */ 4334 4335 if (!fault->prefetch && kvm_can_do_async_pf(vcpu)) { 4336 trace_kvm_try_async_get_page(fault->addr, fault->gfn); 4337 if (kvm_find_async_pf_gfn(vcpu, fault->gfn)) { 4338 trace_kvm_async_pf_repeated_fault(fault->addr, fault->gfn); 4339 kvm_make_request(KVM_REQ_APF_HALT, vcpu); 4340 return RET_PF_RETRY; 4341 } else if (kvm_arch_setup_async_pf(vcpu, fault->addr, fault->gfn)) { 4342 return RET_PF_RETRY; 4343 } 4344 } 4345 4346 /* 4347 * Allow gup to bail on pending non-fatal signals when it's also allowed 4348 * to wait for IO. Note, gup always bails if it is unable to quickly 4349 * get a page and a fatal signal, i.e. SIGKILL, is pending. 4350 */ 4351 fault->pfn = __gfn_to_pfn_memslot(slot, fault->gfn, false, true, NULL, 4352 fault->write, &fault->map_writable, 4353 &fault->hva); 4354 return RET_PF_CONTINUE; 4355 } 4356 4357 static int kvm_faultin_pfn(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault, 4358 unsigned int access) 4359 { 4360 int ret; 4361 4362 fault->mmu_seq = vcpu->kvm->mmu_invalidate_seq; 4363 smp_rmb(); 4364 4365 ret = __kvm_faultin_pfn(vcpu, fault); 4366 if (ret != RET_PF_CONTINUE) 4367 return ret; 4368 4369 if (unlikely(is_error_pfn(fault->pfn))) 4370 return kvm_handle_error_pfn(vcpu, fault); 4371 4372 if (unlikely(!fault->slot)) 4373 return kvm_handle_noslot_fault(vcpu, fault, access); 4374 4375 return RET_PF_CONTINUE; 4376 } 4377 4378 /* 4379 * Returns true if the page fault is stale and needs to be retried, i.e. if the 4380 * root was invalidated by a memslot update or a relevant mmu_notifier fired. 4381 */ 4382 static bool is_page_fault_stale(struct kvm_vcpu *vcpu, 4383 struct kvm_page_fault *fault) 4384 { 4385 struct kvm_mmu_page *sp = to_shadow_page(vcpu->arch.mmu->root.hpa); 4386 4387 /* Special roots, e.g. pae_root, are not backed by shadow pages. */ 4388 if (sp && is_obsolete_sp(vcpu->kvm, sp)) 4389 return true; 4390 4391 /* 4392 * Roots without an associated shadow page are considered invalid if 4393 * there is a pending request to free obsolete roots. The request is 4394 * only a hint that the current root _may_ be obsolete and needs to be 4395 * reloaded, e.g. if the guest frees a PGD that KVM is tracking as a 4396 * previous root, then __kvm_mmu_prepare_zap_page() signals all vCPUs 4397 * to reload even if no vCPU is actively using the root. 4398 */ 4399 if (!sp && kvm_test_request(KVM_REQ_MMU_FREE_OBSOLETE_ROOTS, vcpu)) 4400 return true; 4401 4402 return fault->slot && 4403 mmu_invalidate_retry_hva(vcpu->kvm, fault->mmu_seq, fault->hva); 4404 } 4405 4406 static int direct_page_fault(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault) 4407 { 4408 int r; 4409 4410 if (page_fault_handle_page_track(vcpu, fault)) 4411 return RET_PF_EMULATE; 4412 4413 r = fast_page_fault(vcpu, fault); 4414 if (r != RET_PF_INVALID) 4415 return r; 4416 4417 r = mmu_topup_memory_caches(vcpu, false); 4418 if (r) 4419 return r; 4420 4421 r = kvm_faultin_pfn(vcpu, fault, ACC_ALL); 4422 if (r != RET_PF_CONTINUE) 4423 return r; 4424 4425 r = RET_PF_RETRY; 4426 write_lock(&vcpu->kvm->mmu_lock); 4427 4428 if (is_page_fault_stale(vcpu, fault)) 4429 goto out_unlock; 4430 4431 r = make_mmu_pages_available(vcpu); 4432 if (r) 4433 goto out_unlock; 4434 4435 r = direct_map(vcpu, fault); 4436 4437 out_unlock: 4438 write_unlock(&vcpu->kvm->mmu_lock); 4439 kvm_release_pfn_clean(fault->pfn); 4440 return r; 4441 } 4442 4443 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, 4444 struct kvm_page_fault *fault) 4445 { 4446 pgprintk("%s: gva %lx error %x\n", __func__, fault->addr, fault->error_code); 4447 4448 /* This path builds a PAE pagetable, we can map 2mb pages at maximum. */ 4449 fault->max_level = PG_LEVEL_2M; 4450 return direct_page_fault(vcpu, fault); 4451 } 4452 4453 int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code, 4454 u64 fault_address, char *insn, int insn_len) 4455 { 4456 int r = 1; 4457 u32 flags = vcpu->arch.apf.host_apf_flags; 4458 4459 #ifndef CONFIG_X86_64 4460 /* A 64-bit CR2 should be impossible on 32-bit KVM. */ 4461 if (WARN_ON_ONCE(fault_address >> 32)) 4462 return -EFAULT; 4463 #endif 4464 4465 vcpu->arch.l1tf_flush_l1d = true; 4466 if (!flags) { 4467 trace_kvm_page_fault(vcpu, fault_address, error_code); 4468 4469 if (kvm_event_needs_reinjection(vcpu)) 4470 kvm_mmu_unprotect_page_virt(vcpu, fault_address); 4471 r = kvm_mmu_page_fault(vcpu, fault_address, error_code, insn, 4472 insn_len); 4473 } else if (flags & KVM_PV_REASON_PAGE_NOT_PRESENT) { 4474 vcpu->arch.apf.host_apf_flags = 0; 4475 local_irq_disable(); 4476 kvm_async_pf_task_wait_schedule(fault_address); 4477 local_irq_enable(); 4478 } else { 4479 WARN_ONCE(1, "Unexpected host async PF flags: %x\n", flags); 4480 } 4481 4482 return r; 4483 } 4484 EXPORT_SYMBOL_GPL(kvm_handle_page_fault); 4485 4486 #ifdef CONFIG_X86_64 4487 static int kvm_tdp_mmu_page_fault(struct kvm_vcpu *vcpu, 4488 struct kvm_page_fault *fault) 4489 { 4490 int r; 4491 4492 if (page_fault_handle_page_track(vcpu, fault)) 4493 return RET_PF_EMULATE; 4494 4495 r = fast_page_fault(vcpu, fault); 4496 if (r != RET_PF_INVALID) 4497 return r; 4498 4499 r = mmu_topup_memory_caches(vcpu, false); 4500 if (r) 4501 return r; 4502 4503 r = kvm_faultin_pfn(vcpu, fault, ACC_ALL); 4504 if (r != RET_PF_CONTINUE) 4505 return r; 4506 4507 r = RET_PF_RETRY; 4508 read_lock(&vcpu->kvm->mmu_lock); 4509 4510 if (is_page_fault_stale(vcpu, fault)) 4511 goto out_unlock; 4512 4513 r = kvm_tdp_mmu_map(vcpu, fault); 4514 4515 out_unlock: 4516 read_unlock(&vcpu->kvm->mmu_lock); 4517 kvm_release_pfn_clean(fault->pfn); 4518 return r; 4519 } 4520 #endif 4521 4522 int kvm_tdp_page_fault(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault) 4523 { 4524 /* 4525 * If the guest's MTRRs may be used to compute the "real" memtype, 4526 * restrict the mapping level to ensure KVM uses a consistent memtype 4527 * across the entire mapping. If the host MTRRs are ignored by TDP 4528 * (shadow_memtype_mask is non-zero), and the VM has non-coherent DMA 4529 * (DMA doesn't snoop CPU caches), KVM's ABI is to honor the memtype 4530 * from the guest's MTRRs so that guest accesses to memory that is 4531 * DMA'd aren't cached against the guest's wishes. 4532 * 4533 * Note, KVM may still ultimately ignore guest MTRRs for certain PFNs, 4534 * e.g. KVM will force UC memtype for host MMIO. 4535 */ 4536 if (shadow_memtype_mask && kvm_arch_has_noncoherent_dma(vcpu->kvm)) { 4537 for ( ; fault->max_level > PG_LEVEL_4K; --fault->max_level) { 4538 int page_num = KVM_PAGES_PER_HPAGE(fault->max_level); 4539 gfn_t base = gfn_round_for_level(fault->gfn, 4540 fault->max_level); 4541 4542 if (kvm_mtrr_check_gfn_range_consistency(vcpu, base, page_num)) 4543 break; 4544 } 4545 } 4546 4547 #ifdef CONFIG_X86_64 4548 if (tdp_mmu_enabled) 4549 return kvm_tdp_mmu_page_fault(vcpu, fault); 4550 #endif 4551 4552 return direct_page_fault(vcpu, fault); 4553 } 4554 4555 static void nonpaging_init_context(struct kvm_mmu *context) 4556 { 4557 context->page_fault = nonpaging_page_fault; 4558 context->gva_to_gpa = nonpaging_gva_to_gpa; 4559 context->sync_spte = NULL; 4560 } 4561 4562 static inline bool is_root_usable(struct kvm_mmu_root_info *root, gpa_t pgd, 4563 union kvm_mmu_page_role role) 4564 { 4565 return (role.direct || pgd == root->pgd) && 4566 VALID_PAGE(root->hpa) && 4567 role.word == to_shadow_page(root->hpa)->role.word; 4568 } 4569 4570 /* 4571 * Find out if a previously cached root matching the new pgd/role is available, 4572 * and insert the current root as the MRU in the cache. 4573 * If a matching root is found, it is assigned to kvm_mmu->root and 4574 * true is returned. 4575 * If no match is found, kvm_mmu->root is left invalid, the LRU root is 4576 * evicted to make room for the current root, and false is returned. 4577 */ 4578 static bool cached_root_find_and_keep_current(struct kvm *kvm, struct kvm_mmu *mmu, 4579 gpa_t new_pgd, 4580 union kvm_mmu_page_role new_role) 4581 { 4582 uint i; 4583 4584 if (is_root_usable(&mmu->root, new_pgd, new_role)) 4585 return true; 4586 4587 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) { 4588 /* 4589 * The swaps end up rotating the cache like this: 4590 * C 0 1 2 3 (on entry to the function) 4591 * 0 C 1 2 3 4592 * 1 C 0 2 3 4593 * 2 C 0 1 3 4594 * 3 C 0 1 2 (on exit from the loop) 4595 */ 4596 swap(mmu->root, mmu->prev_roots[i]); 4597 if (is_root_usable(&mmu->root, new_pgd, new_role)) 4598 return true; 4599 } 4600 4601 kvm_mmu_free_roots(kvm, mmu, KVM_MMU_ROOT_CURRENT); 4602 return false; 4603 } 4604 4605 /* 4606 * Find out if a previously cached root matching the new pgd/role is available. 4607 * On entry, mmu->root is invalid. 4608 * If a matching root is found, it is assigned to kvm_mmu->root, the LRU entry 4609 * of the cache becomes invalid, and true is returned. 4610 * If no match is found, kvm_mmu->root is left invalid and false is returned. 4611 */ 4612 static bool cached_root_find_without_current(struct kvm *kvm, struct kvm_mmu *mmu, 4613 gpa_t new_pgd, 4614 union kvm_mmu_page_role new_role) 4615 { 4616 uint i; 4617 4618 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 4619 if (is_root_usable(&mmu->prev_roots[i], new_pgd, new_role)) 4620 goto hit; 4621 4622 return false; 4623 4624 hit: 4625 swap(mmu->root, mmu->prev_roots[i]); 4626 /* Bubble up the remaining roots. */ 4627 for (; i < KVM_MMU_NUM_PREV_ROOTS - 1; i++) 4628 mmu->prev_roots[i] = mmu->prev_roots[i + 1]; 4629 mmu->prev_roots[i].hpa = INVALID_PAGE; 4630 return true; 4631 } 4632 4633 static bool fast_pgd_switch(struct kvm *kvm, struct kvm_mmu *mmu, 4634 gpa_t new_pgd, union kvm_mmu_page_role new_role) 4635 { 4636 /* 4637 * For now, limit the caching to 64-bit hosts+VMs in order to avoid 4638 * having to deal with PDPTEs. We may add support for 32-bit hosts/VMs 4639 * later if necessary. 4640 */ 4641 if (VALID_PAGE(mmu->root.hpa) && !to_shadow_page(mmu->root.hpa)) 4642 kvm_mmu_free_roots(kvm, mmu, KVM_MMU_ROOT_CURRENT); 4643 4644 if (VALID_PAGE(mmu->root.hpa)) 4645 return cached_root_find_and_keep_current(kvm, mmu, new_pgd, new_role); 4646 else 4647 return cached_root_find_without_current(kvm, mmu, new_pgd, new_role); 4648 } 4649 4650 void kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd) 4651 { 4652 struct kvm_mmu *mmu = vcpu->arch.mmu; 4653 union kvm_mmu_page_role new_role = mmu->root_role; 4654 4655 /* 4656 * Return immediately if no usable root was found, kvm_mmu_reload() 4657 * will establish a valid root prior to the next VM-Enter. 4658 */ 4659 if (!fast_pgd_switch(vcpu->kvm, mmu, new_pgd, new_role)) 4660 return; 4661 4662 /* 4663 * It's possible that the cached previous root page is obsolete because 4664 * of a change in the MMU generation number. However, changing the 4665 * generation number is accompanied by KVM_REQ_MMU_FREE_OBSOLETE_ROOTS, 4666 * which will free the root set here and allocate a new one. 4667 */ 4668 kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu); 4669 4670 if (force_flush_and_sync_on_reuse) { 4671 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu); 4672 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 4673 } 4674 4675 /* 4676 * The last MMIO access's GVA and GPA are cached in the VCPU. When 4677 * switching to a new CR3, that GVA->GPA mapping may no longer be 4678 * valid. So clear any cached MMIO info even when we don't need to sync 4679 * the shadow page tables. 4680 */ 4681 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY); 4682 4683 /* 4684 * If this is a direct root page, it doesn't have a write flooding 4685 * count. Otherwise, clear the write flooding count. 4686 */ 4687 if (!new_role.direct) 4688 __clear_sp_write_flooding_count( 4689 to_shadow_page(vcpu->arch.mmu->root.hpa)); 4690 } 4691 EXPORT_SYMBOL_GPL(kvm_mmu_new_pgd); 4692 4693 static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn, 4694 unsigned int access) 4695 { 4696 if (unlikely(is_mmio_spte(*sptep))) { 4697 if (gfn != get_mmio_spte_gfn(*sptep)) { 4698 mmu_spte_clear_no_track(sptep); 4699 return true; 4700 } 4701 4702 mark_mmio_spte(vcpu, sptep, gfn, access); 4703 return true; 4704 } 4705 4706 return false; 4707 } 4708 4709 #define PTTYPE_EPT 18 /* arbitrary */ 4710 #define PTTYPE PTTYPE_EPT 4711 #include "paging_tmpl.h" 4712 #undef PTTYPE 4713 4714 #define PTTYPE 64 4715 #include "paging_tmpl.h" 4716 #undef PTTYPE 4717 4718 #define PTTYPE 32 4719 #include "paging_tmpl.h" 4720 #undef PTTYPE 4721 4722 static void __reset_rsvds_bits_mask(struct rsvd_bits_validate *rsvd_check, 4723 u64 pa_bits_rsvd, int level, bool nx, 4724 bool gbpages, bool pse, bool amd) 4725 { 4726 u64 gbpages_bit_rsvd = 0; 4727 u64 nonleaf_bit8_rsvd = 0; 4728 u64 high_bits_rsvd; 4729 4730 rsvd_check->bad_mt_xwr = 0; 4731 4732 if (!gbpages) 4733 gbpages_bit_rsvd = rsvd_bits(7, 7); 4734 4735 if (level == PT32E_ROOT_LEVEL) 4736 high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 62); 4737 else 4738 high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 51); 4739 4740 /* Note, NX doesn't exist in PDPTEs, this is handled below. */ 4741 if (!nx) 4742 high_bits_rsvd |= rsvd_bits(63, 63); 4743 4744 /* 4745 * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for 4746 * leaf entries) on AMD CPUs only. 4747 */ 4748 if (amd) 4749 nonleaf_bit8_rsvd = rsvd_bits(8, 8); 4750 4751 switch (level) { 4752 case PT32_ROOT_LEVEL: 4753 /* no rsvd bits for 2 level 4K page table entries */ 4754 rsvd_check->rsvd_bits_mask[0][1] = 0; 4755 rsvd_check->rsvd_bits_mask[0][0] = 0; 4756 rsvd_check->rsvd_bits_mask[1][0] = 4757 rsvd_check->rsvd_bits_mask[0][0]; 4758 4759 if (!pse) { 4760 rsvd_check->rsvd_bits_mask[1][1] = 0; 4761 break; 4762 } 4763 4764 if (is_cpuid_PSE36()) 4765 /* 36bits PSE 4MB page */ 4766 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21); 4767 else 4768 /* 32 bits PSE 4MB page */ 4769 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21); 4770 break; 4771 case PT32E_ROOT_LEVEL: 4772 rsvd_check->rsvd_bits_mask[0][2] = rsvd_bits(63, 63) | 4773 high_bits_rsvd | 4774 rsvd_bits(5, 8) | 4775 rsvd_bits(1, 2); /* PDPTE */ 4776 rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd; /* PDE */ 4777 rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd; /* PTE */ 4778 rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd | 4779 rsvd_bits(13, 20); /* large page */ 4780 rsvd_check->rsvd_bits_mask[1][0] = 4781 rsvd_check->rsvd_bits_mask[0][0]; 4782 break; 4783 case PT64_ROOT_5LEVEL: 4784 rsvd_check->rsvd_bits_mask[0][4] = high_bits_rsvd | 4785 nonleaf_bit8_rsvd | 4786 rsvd_bits(7, 7); 4787 rsvd_check->rsvd_bits_mask[1][4] = 4788 rsvd_check->rsvd_bits_mask[0][4]; 4789 fallthrough; 4790 case PT64_ROOT_4LEVEL: 4791 rsvd_check->rsvd_bits_mask[0][3] = high_bits_rsvd | 4792 nonleaf_bit8_rsvd | 4793 rsvd_bits(7, 7); 4794 rsvd_check->rsvd_bits_mask[0][2] = high_bits_rsvd | 4795 gbpages_bit_rsvd; 4796 rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd; 4797 rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd; 4798 rsvd_check->rsvd_bits_mask[1][3] = 4799 rsvd_check->rsvd_bits_mask[0][3]; 4800 rsvd_check->rsvd_bits_mask[1][2] = high_bits_rsvd | 4801 gbpages_bit_rsvd | 4802 rsvd_bits(13, 29); 4803 rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd | 4804 rsvd_bits(13, 20); /* large page */ 4805 rsvd_check->rsvd_bits_mask[1][0] = 4806 rsvd_check->rsvd_bits_mask[0][0]; 4807 break; 4808 } 4809 } 4810 4811 static bool guest_can_use_gbpages(struct kvm_vcpu *vcpu) 4812 { 4813 /* 4814 * If TDP is enabled, let the guest use GBPAGES if they're supported in 4815 * hardware. The hardware page walker doesn't let KVM disable GBPAGES, 4816 * i.e. won't treat them as reserved, and KVM doesn't redo the GVA->GPA 4817 * walk for performance and complexity reasons. Not to mention KVM 4818 * _can't_ solve the problem because GVA->GPA walks aren't visible to 4819 * KVM once a TDP translation is installed. Mimic hardware behavior so 4820 * that KVM's is at least consistent, i.e. doesn't randomly inject #PF. 4821 */ 4822 return tdp_enabled ? boot_cpu_has(X86_FEATURE_GBPAGES) : 4823 guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES); 4824 } 4825 4826 static void reset_guest_rsvds_bits_mask(struct kvm_vcpu *vcpu, 4827 struct kvm_mmu *context) 4828 { 4829 __reset_rsvds_bits_mask(&context->guest_rsvd_check, 4830 vcpu->arch.reserved_gpa_bits, 4831 context->cpu_role.base.level, is_efer_nx(context), 4832 guest_can_use_gbpages(vcpu), 4833 is_cr4_pse(context), 4834 guest_cpuid_is_amd_or_hygon(vcpu)); 4835 } 4836 4837 static void __reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check, 4838 u64 pa_bits_rsvd, bool execonly, 4839 int huge_page_level) 4840 { 4841 u64 high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 51); 4842 u64 large_1g_rsvd = 0, large_2m_rsvd = 0; 4843 u64 bad_mt_xwr; 4844 4845 if (huge_page_level < PG_LEVEL_1G) 4846 large_1g_rsvd = rsvd_bits(7, 7); 4847 if (huge_page_level < PG_LEVEL_2M) 4848 large_2m_rsvd = rsvd_bits(7, 7); 4849 4850 rsvd_check->rsvd_bits_mask[0][4] = high_bits_rsvd | rsvd_bits(3, 7); 4851 rsvd_check->rsvd_bits_mask[0][3] = high_bits_rsvd | rsvd_bits(3, 7); 4852 rsvd_check->rsvd_bits_mask[0][2] = high_bits_rsvd | rsvd_bits(3, 6) | large_1g_rsvd; 4853 rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd | rsvd_bits(3, 6) | large_2m_rsvd; 4854 rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd; 4855 4856 /* large page */ 4857 rsvd_check->rsvd_bits_mask[1][4] = rsvd_check->rsvd_bits_mask[0][4]; 4858 rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3]; 4859 rsvd_check->rsvd_bits_mask[1][2] = high_bits_rsvd | rsvd_bits(12, 29) | large_1g_rsvd; 4860 rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd | rsvd_bits(12, 20) | large_2m_rsvd; 4861 rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0]; 4862 4863 bad_mt_xwr = 0xFFull << (2 * 8); /* bits 3..5 must not be 2 */ 4864 bad_mt_xwr |= 0xFFull << (3 * 8); /* bits 3..5 must not be 3 */ 4865 bad_mt_xwr |= 0xFFull << (7 * 8); /* bits 3..5 must not be 7 */ 4866 bad_mt_xwr |= REPEAT_BYTE(1ull << 2); /* bits 0..2 must not be 010 */ 4867 bad_mt_xwr |= REPEAT_BYTE(1ull << 6); /* bits 0..2 must not be 110 */ 4868 if (!execonly) { 4869 /* bits 0..2 must not be 100 unless VMX capabilities allow it */ 4870 bad_mt_xwr |= REPEAT_BYTE(1ull << 4); 4871 } 4872 rsvd_check->bad_mt_xwr = bad_mt_xwr; 4873 } 4874 4875 static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu, 4876 struct kvm_mmu *context, bool execonly, int huge_page_level) 4877 { 4878 __reset_rsvds_bits_mask_ept(&context->guest_rsvd_check, 4879 vcpu->arch.reserved_gpa_bits, execonly, 4880 huge_page_level); 4881 } 4882 4883 static inline u64 reserved_hpa_bits(void) 4884 { 4885 return rsvd_bits(shadow_phys_bits, 63); 4886 } 4887 4888 /* 4889 * the page table on host is the shadow page table for the page 4890 * table in guest or amd nested guest, its mmu features completely 4891 * follow the features in guest. 4892 */ 4893 static void reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, 4894 struct kvm_mmu *context) 4895 { 4896 /* @amd adds a check on bit of SPTEs, which KVM shouldn't use anyways. */ 4897 bool is_amd = true; 4898 /* KVM doesn't use 2-level page tables for the shadow MMU. */ 4899 bool is_pse = false; 4900 struct rsvd_bits_validate *shadow_zero_check; 4901 int i; 4902 4903 WARN_ON_ONCE(context->root_role.level < PT32E_ROOT_LEVEL); 4904 4905 shadow_zero_check = &context->shadow_zero_check; 4906 __reset_rsvds_bits_mask(shadow_zero_check, reserved_hpa_bits(), 4907 context->root_role.level, 4908 context->root_role.efer_nx, 4909 guest_can_use_gbpages(vcpu), is_pse, is_amd); 4910 4911 if (!shadow_me_mask) 4912 return; 4913 4914 for (i = context->root_role.level; --i >= 0;) { 4915 /* 4916 * So far shadow_me_value is a constant during KVM's life 4917 * time. Bits in shadow_me_value are allowed to be set. 4918 * Bits in shadow_me_mask but not in shadow_me_value are 4919 * not allowed to be set. 4920 */ 4921 shadow_zero_check->rsvd_bits_mask[0][i] |= shadow_me_mask; 4922 shadow_zero_check->rsvd_bits_mask[1][i] |= shadow_me_mask; 4923 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_value; 4924 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_value; 4925 } 4926 4927 } 4928 4929 static inline bool boot_cpu_is_amd(void) 4930 { 4931 WARN_ON_ONCE(!tdp_enabled); 4932 return shadow_x_mask == 0; 4933 } 4934 4935 /* 4936 * the direct page table on host, use as much mmu features as 4937 * possible, however, kvm currently does not do execution-protection. 4938 */ 4939 static void reset_tdp_shadow_zero_bits_mask(struct kvm_mmu *context) 4940 { 4941 struct rsvd_bits_validate *shadow_zero_check; 4942 int i; 4943 4944 shadow_zero_check = &context->shadow_zero_check; 4945 4946 if (boot_cpu_is_amd()) 4947 __reset_rsvds_bits_mask(shadow_zero_check, reserved_hpa_bits(), 4948 context->root_role.level, true, 4949 boot_cpu_has(X86_FEATURE_GBPAGES), 4950 false, true); 4951 else 4952 __reset_rsvds_bits_mask_ept(shadow_zero_check, 4953 reserved_hpa_bits(), false, 4954 max_huge_page_level); 4955 4956 if (!shadow_me_mask) 4957 return; 4958 4959 for (i = context->root_role.level; --i >= 0;) { 4960 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask; 4961 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask; 4962 } 4963 } 4964 4965 /* 4966 * as the comments in reset_shadow_zero_bits_mask() except it 4967 * is the shadow page table for intel nested guest. 4968 */ 4969 static void 4970 reset_ept_shadow_zero_bits_mask(struct kvm_mmu *context, bool execonly) 4971 { 4972 __reset_rsvds_bits_mask_ept(&context->shadow_zero_check, 4973 reserved_hpa_bits(), execonly, 4974 max_huge_page_level); 4975 } 4976 4977 #define BYTE_MASK(access) \ 4978 ((1 & (access) ? 2 : 0) | \ 4979 (2 & (access) ? 4 : 0) | \ 4980 (3 & (access) ? 8 : 0) | \ 4981 (4 & (access) ? 16 : 0) | \ 4982 (5 & (access) ? 32 : 0) | \ 4983 (6 & (access) ? 64 : 0) | \ 4984 (7 & (access) ? 128 : 0)) 4985 4986 4987 static void update_permission_bitmask(struct kvm_mmu *mmu, bool ept) 4988 { 4989 unsigned byte; 4990 4991 const u8 x = BYTE_MASK(ACC_EXEC_MASK); 4992 const u8 w = BYTE_MASK(ACC_WRITE_MASK); 4993 const u8 u = BYTE_MASK(ACC_USER_MASK); 4994 4995 bool cr4_smep = is_cr4_smep(mmu); 4996 bool cr4_smap = is_cr4_smap(mmu); 4997 bool cr0_wp = is_cr0_wp(mmu); 4998 bool efer_nx = is_efer_nx(mmu); 4999 5000 for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) { 5001 unsigned pfec = byte << 1; 5002 5003 /* 5004 * Each "*f" variable has a 1 bit for each UWX value 5005 * that causes a fault with the given PFEC. 5006 */ 5007 5008 /* Faults from writes to non-writable pages */ 5009 u8 wf = (pfec & PFERR_WRITE_MASK) ? (u8)~w : 0; 5010 /* Faults from user mode accesses to supervisor pages */ 5011 u8 uf = (pfec & PFERR_USER_MASK) ? (u8)~u : 0; 5012 /* Faults from fetches of non-executable pages*/ 5013 u8 ff = (pfec & PFERR_FETCH_MASK) ? (u8)~x : 0; 5014 /* Faults from kernel mode fetches of user pages */ 5015 u8 smepf = 0; 5016 /* Faults from kernel mode accesses of user pages */ 5017 u8 smapf = 0; 5018 5019 if (!ept) { 5020 /* Faults from kernel mode accesses to user pages */ 5021 u8 kf = (pfec & PFERR_USER_MASK) ? 0 : u; 5022 5023 /* Not really needed: !nx will cause pte.nx to fault */ 5024 if (!efer_nx) 5025 ff = 0; 5026 5027 /* Allow supervisor writes if !cr0.wp */ 5028 if (!cr0_wp) 5029 wf = (pfec & PFERR_USER_MASK) ? wf : 0; 5030 5031 /* Disallow supervisor fetches of user code if cr4.smep */ 5032 if (cr4_smep) 5033 smepf = (pfec & PFERR_FETCH_MASK) ? kf : 0; 5034 5035 /* 5036 * SMAP:kernel-mode data accesses from user-mode 5037 * mappings should fault. A fault is considered 5038 * as a SMAP violation if all of the following 5039 * conditions are true: 5040 * - X86_CR4_SMAP is set in CR4 5041 * - A user page is accessed 5042 * - The access is not a fetch 5043 * - The access is supervisor mode 5044 * - If implicit supervisor access or X86_EFLAGS_AC is clear 5045 * 5046 * Here, we cover the first four conditions. 5047 * The fifth is computed dynamically in permission_fault(); 5048 * PFERR_RSVD_MASK bit will be set in PFEC if the access is 5049 * *not* subject to SMAP restrictions. 5050 */ 5051 if (cr4_smap) 5052 smapf = (pfec & (PFERR_RSVD_MASK|PFERR_FETCH_MASK)) ? 0 : kf; 5053 } 5054 5055 mmu->permissions[byte] = ff | uf | wf | smepf | smapf; 5056 } 5057 } 5058 5059 /* 5060 * PKU is an additional mechanism by which the paging controls access to 5061 * user-mode addresses based on the value in the PKRU register. Protection 5062 * key violations are reported through a bit in the page fault error code. 5063 * Unlike other bits of the error code, the PK bit is not known at the 5064 * call site of e.g. gva_to_gpa; it must be computed directly in 5065 * permission_fault based on two bits of PKRU, on some machine state (CR4, 5066 * CR0, EFER, CPL), and on other bits of the error code and the page tables. 5067 * 5068 * In particular the following conditions come from the error code, the 5069 * page tables and the machine state: 5070 * - PK is always zero unless CR4.PKE=1 and EFER.LMA=1 5071 * - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch) 5072 * - PK is always zero if U=0 in the page tables 5073 * - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access. 5074 * 5075 * The PKRU bitmask caches the result of these four conditions. The error 5076 * code (minus the P bit) and the page table's U bit form an index into the 5077 * PKRU bitmask. Two bits of the PKRU bitmask are then extracted and ANDed 5078 * with the two bits of the PKRU register corresponding to the protection key. 5079 * For the first three conditions above the bits will be 00, thus masking 5080 * away both AD and WD. For all reads or if the last condition holds, WD 5081 * only will be masked away. 5082 */ 5083 static void update_pkru_bitmask(struct kvm_mmu *mmu) 5084 { 5085 unsigned bit; 5086 bool wp; 5087 5088 mmu->pkru_mask = 0; 5089 5090 if (!is_cr4_pke(mmu)) 5091 return; 5092 5093 wp = is_cr0_wp(mmu); 5094 5095 for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) { 5096 unsigned pfec, pkey_bits; 5097 bool check_pkey, check_write, ff, uf, wf, pte_user; 5098 5099 pfec = bit << 1; 5100 ff = pfec & PFERR_FETCH_MASK; 5101 uf = pfec & PFERR_USER_MASK; 5102 wf = pfec & PFERR_WRITE_MASK; 5103 5104 /* PFEC.RSVD is replaced by ACC_USER_MASK. */ 5105 pte_user = pfec & PFERR_RSVD_MASK; 5106 5107 /* 5108 * Only need to check the access which is not an 5109 * instruction fetch and is to a user page. 5110 */ 5111 check_pkey = (!ff && pte_user); 5112 /* 5113 * write access is controlled by PKRU if it is a 5114 * user access or CR0.WP = 1. 5115 */ 5116 check_write = check_pkey && wf && (uf || wp); 5117 5118 /* PKRU.AD stops both read and write access. */ 5119 pkey_bits = !!check_pkey; 5120 /* PKRU.WD stops write access. */ 5121 pkey_bits |= (!!check_write) << 1; 5122 5123 mmu->pkru_mask |= (pkey_bits & 3) << pfec; 5124 } 5125 } 5126 5127 static void reset_guest_paging_metadata(struct kvm_vcpu *vcpu, 5128 struct kvm_mmu *mmu) 5129 { 5130 if (!is_cr0_pg(mmu)) 5131 return; 5132 5133 reset_guest_rsvds_bits_mask(vcpu, mmu); 5134 update_permission_bitmask(mmu, false); 5135 update_pkru_bitmask(mmu); 5136 } 5137 5138 static void paging64_init_context(struct kvm_mmu *context) 5139 { 5140 context->page_fault = paging64_page_fault; 5141 context->gva_to_gpa = paging64_gva_to_gpa; 5142 context->sync_spte = paging64_sync_spte; 5143 } 5144 5145 static void paging32_init_context(struct kvm_mmu *context) 5146 { 5147 context->page_fault = paging32_page_fault; 5148 context->gva_to_gpa = paging32_gva_to_gpa; 5149 context->sync_spte = paging32_sync_spte; 5150 } 5151 5152 static union kvm_cpu_role kvm_calc_cpu_role(struct kvm_vcpu *vcpu, 5153 const struct kvm_mmu_role_regs *regs) 5154 { 5155 union kvm_cpu_role role = {0}; 5156 5157 role.base.access = ACC_ALL; 5158 role.base.smm = is_smm(vcpu); 5159 role.base.guest_mode = is_guest_mode(vcpu); 5160 role.ext.valid = 1; 5161 5162 if (!____is_cr0_pg(regs)) { 5163 role.base.direct = 1; 5164 return role; 5165 } 5166 5167 role.base.efer_nx = ____is_efer_nx(regs); 5168 role.base.cr0_wp = ____is_cr0_wp(regs); 5169 role.base.smep_andnot_wp = ____is_cr4_smep(regs) && !____is_cr0_wp(regs); 5170 role.base.smap_andnot_wp = ____is_cr4_smap(regs) && !____is_cr0_wp(regs); 5171 role.base.has_4_byte_gpte = !____is_cr4_pae(regs); 5172 5173 if (____is_efer_lma(regs)) 5174 role.base.level = ____is_cr4_la57(regs) ? PT64_ROOT_5LEVEL 5175 : PT64_ROOT_4LEVEL; 5176 else if (____is_cr4_pae(regs)) 5177 role.base.level = PT32E_ROOT_LEVEL; 5178 else 5179 role.base.level = PT32_ROOT_LEVEL; 5180 5181 role.ext.cr4_smep = ____is_cr4_smep(regs); 5182 role.ext.cr4_smap = ____is_cr4_smap(regs); 5183 role.ext.cr4_pse = ____is_cr4_pse(regs); 5184 5185 /* PKEY and LA57 are active iff long mode is active. */ 5186 role.ext.cr4_pke = ____is_efer_lma(regs) && ____is_cr4_pke(regs); 5187 role.ext.cr4_la57 = ____is_efer_lma(regs) && ____is_cr4_la57(regs); 5188 role.ext.efer_lma = ____is_efer_lma(regs); 5189 return role; 5190 } 5191 5192 void __kvm_mmu_refresh_passthrough_bits(struct kvm_vcpu *vcpu, 5193 struct kvm_mmu *mmu) 5194 { 5195 const bool cr0_wp = kvm_is_cr0_bit_set(vcpu, X86_CR0_WP); 5196 5197 BUILD_BUG_ON((KVM_MMU_CR0_ROLE_BITS & KVM_POSSIBLE_CR0_GUEST_BITS) != X86_CR0_WP); 5198 BUILD_BUG_ON((KVM_MMU_CR4_ROLE_BITS & KVM_POSSIBLE_CR4_GUEST_BITS)); 5199 5200 if (is_cr0_wp(mmu) == cr0_wp) 5201 return; 5202 5203 mmu->cpu_role.base.cr0_wp = cr0_wp; 5204 reset_guest_paging_metadata(vcpu, mmu); 5205 } 5206 5207 static inline int kvm_mmu_get_tdp_level(struct kvm_vcpu *vcpu) 5208 { 5209 /* tdp_root_level is architecture forced level, use it if nonzero */ 5210 if (tdp_root_level) 5211 return tdp_root_level; 5212 5213 /* Use 5-level TDP if and only if it's useful/necessary. */ 5214 if (max_tdp_level == 5 && cpuid_maxphyaddr(vcpu) <= 48) 5215 return 4; 5216 5217 return max_tdp_level; 5218 } 5219 5220 static union kvm_mmu_page_role 5221 kvm_calc_tdp_mmu_root_page_role(struct kvm_vcpu *vcpu, 5222 union kvm_cpu_role cpu_role) 5223 { 5224 union kvm_mmu_page_role role = {0}; 5225 5226 role.access = ACC_ALL; 5227 role.cr0_wp = true; 5228 role.efer_nx = true; 5229 role.smm = cpu_role.base.smm; 5230 role.guest_mode = cpu_role.base.guest_mode; 5231 role.ad_disabled = !kvm_ad_enabled(); 5232 role.level = kvm_mmu_get_tdp_level(vcpu); 5233 role.direct = true; 5234 role.has_4_byte_gpte = false; 5235 5236 return role; 5237 } 5238 5239 static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu, 5240 union kvm_cpu_role cpu_role) 5241 { 5242 struct kvm_mmu *context = &vcpu->arch.root_mmu; 5243 union kvm_mmu_page_role root_role = kvm_calc_tdp_mmu_root_page_role(vcpu, cpu_role); 5244 5245 if (cpu_role.as_u64 == context->cpu_role.as_u64 && 5246 root_role.word == context->root_role.word) 5247 return; 5248 5249 context->cpu_role.as_u64 = cpu_role.as_u64; 5250 context->root_role.word = root_role.word; 5251 context->page_fault = kvm_tdp_page_fault; 5252 context->sync_spte = NULL; 5253 context->get_guest_pgd = get_guest_cr3; 5254 context->get_pdptr = kvm_pdptr_read; 5255 context->inject_page_fault = kvm_inject_page_fault; 5256 5257 if (!is_cr0_pg(context)) 5258 context->gva_to_gpa = nonpaging_gva_to_gpa; 5259 else if (is_cr4_pae(context)) 5260 context->gva_to_gpa = paging64_gva_to_gpa; 5261 else 5262 context->gva_to_gpa = paging32_gva_to_gpa; 5263 5264 reset_guest_paging_metadata(vcpu, context); 5265 reset_tdp_shadow_zero_bits_mask(context); 5266 } 5267 5268 static void shadow_mmu_init_context(struct kvm_vcpu *vcpu, struct kvm_mmu *context, 5269 union kvm_cpu_role cpu_role, 5270 union kvm_mmu_page_role root_role) 5271 { 5272 if (cpu_role.as_u64 == context->cpu_role.as_u64 && 5273 root_role.word == context->root_role.word) 5274 return; 5275 5276 context->cpu_role.as_u64 = cpu_role.as_u64; 5277 context->root_role.word = root_role.word; 5278 5279 if (!is_cr0_pg(context)) 5280 nonpaging_init_context(context); 5281 else if (is_cr4_pae(context)) 5282 paging64_init_context(context); 5283 else 5284 paging32_init_context(context); 5285 5286 reset_guest_paging_metadata(vcpu, context); 5287 reset_shadow_zero_bits_mask(vcpu, context); 5288 } 5289 5290 static void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, 5291 union kvm_cpu_role cpu_role) 5292 { 5293 struct kvm_mmu *context = &vcpu->arch.root_mmu; 5294 union kvm_mmu_page_role root_role; 5295 5296 root_role = cpu_role.base; 5297 5298 /* KVM uses PAE paging whenever the guest isn't using 64-bit paging. */ 5299 root_role.level = max_t(u32, root_role.level, PT32E_ROOT_LEVEL); 5300 5301 /* 5302 * KVM forces EFER.NX=1 when TDP is disabled, reflect it in the MMU role. 5303 * KVM uses NX when TDP is disabled to handle a variety of scenarios, 5304 * notably for huge SPTEs if iTLB multi-hit mitigation is enabled and 5305 * to generate correct permissions for CR0.WP=0/CR4.SMEP=1/EFER.NX=0. 5306 * The iTLB multi-hit workaround can be toggled at any time, so assume 5307 * NX can be used by any non-nested shadow MMU to avoid having to reset 5308 * MMU contexts. 5309 */ 5310 root_role.efer_nx = true; 5311 5312 shadow_mmu_init_context(vcpu, context, cpu_role, root_role); 5313 } 5314 5315 void kvm_init_shadow_npt_mmu(struct kvm_vcpu *vcpu, unsigned long cr0, 5316 unsigned long cr4, u64 efer, gpa_t nested_cr3) 5317 { 5318 struct kvm_mmu *context = &vcpu->arch.guest_mmu; 5319 struct kvm_mmu_role_regs regs = { 5320 .cr0 = cr0, 5321 .cr4 = cr4 & ~X86_CR4_PKE, 5322 .efer = efer, 5323 }; 5324 union kvm_cpu_role cpu_role = kvm_calc_cpu_role(vcpu, ®s); 5325 union kvm_mmu_page_role root_role; 5326 5327 /* NPT requires CR0.PG=1. */ 5328 WARN_ON_ONCE(cpu_role.base.direct); 5329 5330 root_role = cpu_role.base; 5331 root_role.level = kvm_mmu_get_tdp_level(vcpu); 5332 if (root_role.level == PT64_ROOT_5LEVEL && 5333 cpu_role.base.level == PT64_ROOT_4LEVEL) 5334 root_role.passthrough = 1; 5335 5336 shadow_mmu_init_context(vcpu, context, cpu_role, root_role); 5337 kvm_mmu_new_pgd(vcpu, nested_cr3); 5338 } 5339 EXPORT_SYMBOL_GPL(kvm_init_shadow_npt_mmu); 5340 5341 static union kvm_cpu_role 5342 kvm_calc_shadow_ept_root_page_role(struct kvm_vcpu *vcpu, bool accessed_dirty, 5343 bool execonly, u8 level) 5344 { 5345 union kvm_cpu_role role = {0}; 5346 5347 /* 5348 * KVM does not support SMM transfer monitors, and consequently does not 5349 * support the "entry to SMM" control either. role.base.smm is always 0. 5350 */ 5351 WARN_ON_ONCE(is_smm(vcpu)); 5352 role.base.level = level; 5353 role.base.has_4_byte_gpte = false; 5354 role.base.direct = false; 5355 role.base.ad_disabled = !accessed_dirty; 5356 role.base.guest_mode = true; 5357 role.base.access = ACC_ALL; 5358 5359 role.ext.word = 0; 5360 role.ext.execonly = execonly; 5361 role.ext.valid = 1; 5362 5363 return role; 5364 } 5365 5366 void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly, 5367 int huge_page_level, bool accessed_dirty, 5368 gpa_t new_eptp) 5369 { 5370 struct kvm_mmu *context = &vcpu->arch.guest_mmu; 5371 u8 level = vmx_eptp_page_walk_level(new_eptp); 5372 union kvm_cpu_role new_mode = 5373 kvm_calc_shadow_ept_root_page_role(vcpu, accessed_dirty, 5374 execonly, level); 5375 5376 if (new_mode.as_u64 != context->cpu_role.as_u64) { 5377 /* EPT, and thus nested EPT, does not consume CR0, CR4, nor EFER. */ 5378 context->cpu_role.as_u64 = new_mode.as_u64; 5379 context->root_role.word = new_mode.base.word; 5380 5381 context->page_fault = ept_page_fault; 5382 context->gva_to_gpa = ept_gva_to_gpa; 5383 context->sync_spte = ept_sync_spte; 5384 5385 update_permission_bitmask(context, true); 5386 context->pkru_mask = 0; 5387 reset_rsvds_bits_mask_ept(vcpu, context, execonly, huge_page_level); 5388 reset_ept_shadow_zero_bits_mask(context, execonly); 5389 } 5390 5391 kvm_mmu_new_pgd(vcpu, new_eptp); 5392 } 5393 EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu); 5394 5395 static void init_kvm_softmmu(struct kvm_vcpu *vcpu, 5396 union kvm_cpu_role cpu_role) 5397 { 5398 struct kvm_mmu *context = &vcpu->arch.root_mmu; 5399 5400 kvm_init_shadow_mmu(vcpu, cpu_role); 5401 5402 context->get_guest_pgd = get_guest_cr3; 5403 context->get_pdptr = kvm_pdptr_read; 5404 context->inject_page_fault = kvm_inject_page_fault; 5405 } 5406 5407 static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu, 5408 union kvm_cpu_role new_mode) 5409 { 5410 struct kvm_mmu *g_context = &vcpu->arch.nested_mmu; 5411 5412 if (new_mode.as_u64 == g_context->cpu_role.as_u64) 5413 return; 5414 5415 g_context->cpu_role.as_u64 = new_mode.as_u64; 5416 g_context->get_guest_pgd = get_guest_cr3; 5417 g_context->get_pdptr = kvm_pdptr_read; 5418 g_context->inject_page_fault = kvm_inject_page_fault; 5419 5420 /* 5421 * L2 page tables are never shadowed, so there is no need to sync 5422 * SPTEs. 5423 */ 5424 g_context->sync_spte = NULL; 5425 5426 /* 5427 * Note that arch.mmu->gva_to_gpa translates l2_gpa to l1_gpa using 5428 * L1's nested page tables (e.g. EPT12). The nested translation 5429 * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using 5430 * L2's page tables as the first level of translation and L1's 5431 * nested page tables as the second level of translation. Basically 5432 * the gva_to_gpa functions between mmu and nested_mmu are swapped. 5433 */ 5434 if (!is_paging(vcpu)) 5435 g_context->gva_to_gpa = nonpaging_gva_to_gpa; 5436 else if (is_long_mode(vcpu)) 5437 g_context->gva_to_gpa = paging64_gva_to_gpa; 5438 else if (is_pae(vcpu)) 5439 g_context->gva_to_gpa = paging64_gva_to_gpa; 5440 else 5441 g_context->gva_to_gpa = paging32_gva_to_gpa; 5442 5443 reset_guest_paging_metadata(vcpu, g_context); 5444 } 5445 5446 void kvm_init_mmu(struct kvm_vcpu *vcpu) 5447 { 5448 struct kvm_mmu_role_regs regs = vcpu_to_role_regs(vcpu); 5449 union kvm_cpu_role cpu_role = kvm_calc_cpu_role(vcpu, ®s); 5450 5451 if (mmu_is_nested(vcpu)) 5452 init_kvm_nested_mmu(vcpu, cpu_role); 5453 else if (tdp_enabled) 5454 init_kvm_tdp_mmu(vcpu, cpu_role); 5455 else 5456 init_kvm_softmmu(vcpu, cpu_role); 5457 } 5458 EXPORT_SYMBOL_GPL(kvm_init_mmu); 5459 5460 void kvm_mmu_after_set_cpuid(struct kvm_vcpu *vcpu) 5461 { 5462 /* 5463 * Invalidate all MMU roles to force them to reinitialize as CPUID 5464 * information is factored into reserved bit calculations. 5465 * 5466 * Correctly handling multiple vCPU models with respect to paging and 5467 * physical address properties) in a single VM would require tracking 5468 * all relevant CPUID information in kvm_mmu_page_role. That is very 5469 * undesirable as it would increase the memory requirements for 5470 * gfn_track (see struct kvm_mmu_page_role comments). For now that 5471 * problem is swept under the rug; KVM's CPUID API is horrific and 5472 * it's all but impossible to solve it without introducing a new API. 5473 */ 5474 vcpu->arch.root_mmu.root_role.word = 0; 5475 vcpu->arch.guest_mmu.root_role.word = 0; 5476 vcpu->arch.nested_mmu.root_role.word = 0; 5477 vcpu->arch.root_mmu.cpu_role.ext.valid = 0; 5478 vcpu->arch.guest_mmu.cpu_role.ext.valid = 0; 5479 vcpu->arch.nested_mmu.cpu_role.ext.valid = 0; 5480 kvm_mmu_reset_context(vcpu); 5481 5482 /* 5483 * Changing guest CPUID after KVM_RUN is forbidden, see the comment in 5484 * kvm_arch_vcpu_ioctl(). 5485 */ 5486 KVM_BUG_ON(kvm_vcpu_has_run(vcpu), vcpu->kvm); 5487 } 5488 5489 void kvm_mmu_reset_context(struct kvm_vcpu *vcpu) 5490 { 5491 kvm_mmu_unload(vcpu); 5492 kvm_init_mmu(vcpu); 5493 } 5494 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context); 5495 5496 int kvm_mmu_load(struct kvm_vcpu *vcpu) 5497 { 5498 int r; 5499 5500 r = mmu_topup_memory_caches(vcpu, !vcpu->arch.mmu->root_role.direct); 5501 if (r) 5502 goto out; 5503 r = mmu_alloc_special_roots(vcpu); 5504 if (r) 5505 goto out; 5506 if (vcpu->arch.mmu->root_role.direct) 5507 r = mmu_alloc_direct_roots(vcpu); 5508 else 5509 r = mmu_alloc_shadow_roots(vcpu); 5510 if (r) 5511 goto out; 5512 5513 kvm_mmu_sync_roots(vcpu); 5514 5515 kvm_mmu_load_pgd(vcpu); 5516 5517 /* 5518 * Flush any TLB entries for the new root, the provenance of the root 5519 * is unknown. Even if KVM ensures there are no stale TLB entries 5520 * for a freed root, in theory another hypervisor could have left 5521 * stale entries. Flushing on alloc also allows KVM to skip the TLB 5522 * flush when freeing a root (see kvm_tdp_mmu_put_root()). 5523 */ 5524 static_call(kvm_x86_flush_tlb_current)(vcpu); 5525 out: 5526 return r; 5527 } 5528 5529 void kvm_mmu_unload(struct kvm_vcpu *vcpu) 5530 { 5531 struct kvm *kvm = vcpu->kvm; 5532 5533 kvm_mmu_free_roots(kvm, &vcpu->arch.root_mmu, KVM_MMU_ROOTS_ALL); 5534 WARN_ON(VALID_PAGE(vcpu->arch.root_mmu.root.hpa)); 5535 kvm_mmu_free_roots(kvm, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL); 5536 WARN_ON(VALID_PAGE(vcpu->arch.guest_mmu.root.hpa)); 5537 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY); 5538 } 5539 5540 static bool is_obsolete_root(struct kvm *kvm, hpa_t root_hpa) 5541 { 5542 struct kvm_mmu_page *sp; 5543 5544 if (!VALID_PAGE(root_hpa)) 5545 return false; 5546 5547 /* 5548 * When freeing obsolete roots, treat roots as obsolete if they don't 5549 * have an associated shadow page. This does mean KVM will get false 5550 * positives and free roots that don't strictly need to be freed, but 5551 * such false positives are relatively rare: 5552 * 5553 * (a) only PAE paging and nested NPT has roots without shadow pages 5554 * (b) remote reloads due to a memslot update obsoletes _all_ roots 5555 * (c) KVM doesn't track previous roots for PAE paging, and the guest 5556 * is unlikely to zap an in-use PGD. 5557 */ 5558 sp = to_shadow_page(root_hpa); 5559 return !sp || is_obsolete_sp(kvm, sp); 5560 } 5561 5562 static void __kvm_mmu_free_obsolete_roots(struct kvm *kvm, struct kvm_mmu *mmu) 5563 { 5564 unsigned long roots_to_free = 0; 5565 int i; 5566 5567 if (is_obsolete_root(kvm, mmu->root.hpa)) 5568 roots_to_free |= KVM_MMU_ROOT_CURRENT; 5569 5570 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) { 5571 if (is_obsolete_root(kvm, mmu->prev_roots[i].hpa)) 5572 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i); 5573 } 5574 5575 if (roots_to_free) 5576 kvm_mmu_free_roots(kvm, mmu, roots_to_free); 5577 } 5578 5579 void kvm_mmu_free_obsolete_roots(struct kvm_vcpu *vcpu) 5580 { 5581 __kvm_mmu_free_obsolete_roots(vcpu->kvm, &vcpu->arch.root_mmu); 5582 __kvm_mmu_free_obsolete_roots(vcpu->kvm, &vcpu->arch.guest_mmu); 5583 } 5584 5585 static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa, 5586 int *bytes) 5587 { 5588 u64 gentry = 0; 5589 int r; 5590 5591 /* 5592 * Assume that the pte write on a page table of the same type 5593 * as the current vcpu paging mode since we update the sptes only 5594 * when they have the same mode. 5595 */ 5596 if (is_pae(vcpu) && *bytes == 4) { 5597 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */ 5598 *gpa &= ~(gpa_t)7; 5599 *bytes = 8; 5600 } 5601 5602 if (*bytes == 4 || *bytes == 8) { 5603 r = kvm_vcpu_read_guest_atomic(vcpu, *gpa, &gentry, *bytes); 5604 if (r) 5605 gentry = 0; 5606 } 5607 5608 return gentry; 5609 } 5610 5611 /* 5612 * If we're seeing too many writes to a page, it may no longer be a page table, 5613 * or we may be forking, in which case it is better to unmap the page. 5614 */ 5615 static bool detect_write_flooding(struct kvm_mmu_page *sp) 5616 { 5617 /* 5618 * Skip write-flooding detected for the sp whose level is 1, because 5619 * it can become unsync, then the guest page is not write-protected. 5620 */ 5621 if (sp->role.level == PG_LEVEL_4K) 5622 return false; 5623 5624 atomic_inc(&sp->write_flooding_count); 5625 return atomic_read(&sp->write_flooding_count) >= 3; 5626 } 5627 5628 /* 5629 * Misaligned accesses are too much trouble to fix up; also, they usually 5630 * indicate a page is not used as a page table. 5631 */ 5632 static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa, 5633 int bytes) 5634 { 5635 unsigned offset, pte_size, misaligned; 5636 5637 pgprintk("misaligned: gpa %llx bytes %d role %x\n", 5638 gpa, bytes, sp->role.word); 5639 5640 offset = offset_in_page(gpa); 5641 pte_size = sp->role.has_4_byte_gpte ? 4 : 8; 5642 5643 /* 5644 * Sometimes, the OS only writes the last one bytes to update status 5645 * bits, for example, in linux, andb instruction is used in clear_bit(). 5646 */ 5647 if (!(offset & (pte_size - 1)) && bytes == 1) 5648 return false; 5649 5650 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1); 5651 misaligned |= bytes < 4; 5652 5653 return misaligned; 5654 } 5655 5656 static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte) 5657 { 5658 unsigned page_offset, quadrant; 5659 u64 *spte; 5660 int level; 5661 5662 page_offset = offset_in_page(gpa); 5663 level = sp->role.level; 5664 *nspte = 1; 5665 if (sp->role.has_4_byte_gpte) { 5666 page_offset <<= 1; /* 32->64 */ 5667 /* 5668 * A 32-bit pde maps 4MB while the shadow pdes map 5669 * only 2MB. So we need to double the offset again 5670 * and zap two pdes instead of one. 5671 */ 5672 if (level == PT32_ROOT_LEVEL) { 5673 page_offset &= ~7; /* kill rounding error */ 5674 page_offset <<= 1; 5675 *nspte = 2; 5676 } 5677 quadrant = page_offset >> PAGE_SHIFT; 5678 page_offset &= ~PAGE_MASK; 5679 if (quadrant != sp->role.quadrant) 5680 return NULL; 5681 } 5682 5683 spte = &sp->spt[page_offset / sizeof(*spte)]; 5684 return spte; 5685 } 5686 5687 static void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa, 5688 const u8 *new, int bytes, 5689 struct kvm_page_track_notifier_node *node) 5690 { 5691 gfn_t gfn = gpa >> PAGE_SHIFT; 5692 struct kvm_mmu_page *sp; 5693 LIST_HEAD(invalid_list); 5694 u64 entry, gentry, *spte; 5695 int npte; 5696 bool flush = false; 5697 5698 /* 5699 * If we don't have indirect shadow pages, it means no page is 5700 * write-protected, so we can exit simply. 5701 */ 5702 if (!READ_ONCE(vcpu->kvm->arch.indirect_shadow_pages)) 5703 return; 5704 5705 pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes); 5706 5707 write_lock(&vcpu->kvm->mmu_lock); 5708 5709 gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, &bytes); 5710 5711 ++vcpu->kvm->stat.mmu_pte_write; 5712 5713 for_each_gfn_valid_sp_with_gptes(vcpu->kvm, sp, gfn) { 5714 if (detect_write_misaligned(sp, gpa, bytes) || 5715 detect_write_flooding(sp)) { 5716 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list); 5717 ++vcpu->kvm->stat.mmu_flooded; 5718 continue; 5719 } 5720 5721 spte = get_written_sptes(sp, gpa, &npte); 5722 if (!spte) 5723 continue; 5724 5725 while (npte--) { 5726 entry = *spte; 5727 mmu_page_zap_pte(vcpu->kvm, sp, spte, NULL); 5728 if (gentry && sp->role.level != PG_LEVEL_4K) 5729 ++vcpu->kvm->stat.mmu_pde_zapped; 5730 if (is_shadow_present_pte(entry)) 5731 flush = true; 5732 ++spte; 5733 } 5734 } 5735 kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, flush); 5736 write_unlock(&vcpu->kvm->mmu_lock); 5737 } 5738 5739 int noinline kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 error_code, 5740 void *insn, int insn_len) 5741 { 5742 int r, emulation_type = EMULTYPE_PF; 5743 bool direct = vcpu->arch.mmu->root_role.direct; 5744 5745 if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root.hpa))) 5746 return RET_PF_RETRY; 5747 5748 r = RET_PF_INVALID; 5749 if (unlikely(error_code & PFERR_RSVD_MASK)) { 5750 r = handle_mmio_page_fault(vcpu, cr2_or_gpa, direct); 5751 if (r == RET_PF_EMULATE) 5752 goto emulate; 5753 } 5754 5755 if (r == RET_PF_INVALID) { 5756 r = kvm_mmu_do_page_fault(vcpu, cr2_or_gpa, 5757 lower_32_bits(error_code), false, 5758 &emulation_type); 5759 if (KVM_BUG_ON(r == RET_PF_INVALID, vcpu->kvm)) 5760 return -EIO; 5761 } 5762 5763 if (r < 0) 5764 return r; 5765 if (r != RET_PF_EMULATE) 5766 return 1; 5767 5768 /* 5769 * Before emulating the instruction, check if the error code 5770 * was due to a RO violation while translating the guest page. 5771 * This can occur when using nested virtualization with nested 5772 * paging in both guests. If true, we simply unprotect the page 5773 * and resume the guest. 5774 */ 5775 if (vcpu->arch.mmu->root_role.direct && 5776 (error_code & PFERR_NESTED_GUEST_PAGE) == PFERR_NESTED_GUEST_PAGE) { 5777 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(cr2_or_gpa)); 5778 return 1; 5779 } 5780 5781 /* 5782 * vcpu->arch.mmu.page_fault returned RET_PF_EMULATE, but we can still 5783 * optimistically try to just unprotect the page and let the processor 5784 * re-execute the instruction that caused the page fault. Do not allow 5785 * retrying MMIO emulation, as it's not only pointless but could also 5786 * cause us to enter an infinite loop because the processor will keep 5787 * faulting on the non-existent MMIO address. Retrying an instruction 5788 * from a nested guest is also pointless and dangerous as we are only 5789 * explicitly shadowing L1's page tables, i.e. unprotecting something 5790 * for L1 isn't going to magically fix whatever issue cause L2 to fail. 5791 */ 5792 if (!mmio_info_in_cache(vcpu, cr2_or_gpa, direct) && !is_guest_mode(vcpu)) 5793 emulation_type |= EMULTYPE_ALLOW_RETRY_PF; 5794 emulate: 5795 return x86_emulate_instruction(vcpu, cr2_or_gpa, emulation_type, insn, 5796 insn_len); 5797 } 5798 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault); 5799 5800 static void __kvm_mmu_invalidate_addr(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, 5801 u64 addr, hpa_t root_hpa) 5802 { 5803 struct kvm_shadow_walk_iterator iterator; 5804 5805 vcpu_clear_mmio_info(vcpu, addr); 5806 5807 /* 5808 * Walking and synchronizing SPTEs both assume they are operating in 5809 * the context of the current MMU, and would need to be reworked if 5810 * this is ever used to sync the guest_mmu, e.g. to emulate INVEPT. 5811 */ 5812 if (WARN_ON_ONCE(mmu != vcpu->arch.mmu)) 5813 return; 5814 5815 if (!VALID_PAGE(root_hpa)) 5816 return; 5817 5818 write_lock(&vcpu->kvm->mmu_lock); 5819 for_each_shadow_entry_using_root(vcpu, root_hpa, addr, iterator) { 5820 struct kvm_mmu_page *sp = sptep_to_sp(iterator.sptep); 5821 5822 if (sp->unsync) { 5823 int ret = kvm_sync_spte(vcpu, sp, iterator.index); 5824 5825 if (ret < 0) 5826 mmu_page_zap_pte(vcpu->kvm, sp, iterator.sptep, NULL); 5827 if (ret) 5828 kvm_flush_remote_tlbs_sptep(vcpu->kvm, iterator.sptep); 5829 } 5830 5831 if (!sp->unsync_children) 5832 break; 5833 } 5834 write_unlock(&vcpu->kvm->mmu_lock); 5835 } 5836 5837 void kvm_mmu_invalidate_addr(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, 5838 u64 addr, unsigned long roots) 5839 { 5840 int i; 5841 5842 WARN_ON_ONCE(roots & ~KVM_MMU_ROOTS_ALL); 5843 5844 /* It's actually a GPA for vcpu->arch.guest_mmu. */ 5845 if (mmu != &vcpu->arch.guest_mmu) { 5846 /* INVLPG on a non-canonical address is a NOP according to the SDM. */ 5847 if (is_noncanonical_address(addr, vcpu)) 5848 return; 5849 5850 static_call(kvm_x86_flush_tlb_gva)(vcpu, addr); 5851 } 5852 5853 if (!mmu->sync_spte) 5854 return; 5855 5856 if (roots & KVM_MMU_ROOT_CURRENT) 5857 __kvm_mmu_invalidate_addr(vcpu, mmu, addr, mmu->root.hpa); 5858 5859 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) { 5860 if (roots & KVM_MMU_ROOT_PREVIOUS(i)) 5861 __kvm_mmu_invalidate_addr(vcpu, mmu, addr, mmu->prev_roots[i].hpa); 5862 } 5863 } 5864 EXPORT_SYMBOL_GPL(kvm_mmu_invalidate_addr); 5865 5866 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva) 5867 { 5868 /* 5869 * INVLPG is required to invalidate any global mappings for the VA, 5870 * irrespective of PCID. Blindly sync all roots as it would take 5871 * roughly the same amount of work/time to determine whether any of the 5872 * previous roots have a global mapping. 5873 * 5874 * Mappings not reachable via the current or previous cached roots will 5875 * be synced when switching to that new cr3, so nothing needs to be 5876 * done here for them. 5877 */ 5878 kvm_mmu_invalidate_addr(vcpu, vcpu->arch.walk_mmu, gva, KVM_MMU_ROOTS_ALL); 5879 ++vcpu->stat.invlpg; 5880 } 5881 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg); 5882 5883 5884 void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid) 5885 { 5886 struct kvm_mmu *mmu = vcpu->arch.mmu; 5887 unsigned long roots = 0; 5888 uint i; 5889 5890 if (pcid == kvm_get_active_pcid(vcpu)) 5891 roots |= KVM_MMU_ROOT_CURRENT; 5892 5893 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) { 5894 if (VALID_PAGE(mmu->prev_roots[i].hpa) && 5895 pcid == kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd)) 5896 roots |= KVM_MMU_ROOT_PREVIOUS(i); 5897 } 5898 5899 if (roots) 5900 kvm_mmu_invalidate_addr(vcpu, mmu, gva, roots); 5901 ++vcpu->stat.invlpg; 5902 5903 /* 5904 * Mappings not reachable via the current cr3 or the prev_roots will be 5905 * synced when switching to that cr3, so nothing needs to be done here 5906 * for them. 5907 */ 5908 } 5909 5910 void kvm_configure_mmu(bool enable_tdp, int tdp_forced_root_level, 5911 int tdp_max_root_level, int tdp_huge_page_level) 5912 { 5913 tdp_enabled = enable_tdp; 5914 tdp_root_level = tdp_forced_root_level; 5915 max_tdp_level = tdp_max_root_level; 5916 5917 #ifdef CONFIG_X86_64 5918 tdp_mmu_enabled = tdp_mmu_allowed && tdp_enabled; 5919 #endif 5920 /* 5921 * max_huge_page_level reflects KVM's MMU capabilities irrespective 5922 * of kernel support, e.g. KVM may be capable of using 1GB pages when 5923 * the kernel is not. But, KVM never creates a page size greater than 5924 * what is used by the kernel for any given HVA, i.e. the kernel's 5925 * capabilities are ultimately consulted by kvm_mmu_hugepage_adjust(). 5926 */ 5927 if (tdp_enabled) 5928 max_huge_page_level = tdp_huge_page_level; 5929 else if (boot_cpu_has(X86_FEATURE_GBPAGES)) 5930 max_huge_page_level = PG_LEVEL_1G; 5931 else 5932 max_huge_page_level = PG_LEVEL_2M; 5933 } 5934 EXPORT_SYMBOL_GPL(kvm_configure_mmu); 5935 5936 /* The return value indicates if tlb flush on all vcpus is needed. */ 5937 typedef bool (*slot_rmaps_handler) (struct kvm *kvm, 5938 struct kvm_rmap_head *rmap_head, 5939 const struct kvm_memory_slot *slot); 5940 5941 static __always_inline bool __walk_slot_rmaps(struct kvm *kvm, 5942 const struct kvm_memory_slot *slot, 5943 slot_rmaps_handler fn, 5944 int start_level, int end_level, 5945 gfn_t start_gfn, gfn_t end_gfn, 5946 bool flush_on_yield, bool flush) 5947 { 5948 struct slot_rmap_walk_iterator iterator; 5949 5950 lockdep_assert_held_write(&kvm->mmu_lock); 5951 5952 for_each_slot_rmap_range(slot, start_level, end_level, start_gfn, 5953 end_gfn, &iterator) { 5954 if (iterator.rmap) 5955 flush |= fn(kvm, iterator.rmap, slot); 5956 5957 if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) { 5958 if (flush && flush_on_yield) { 5959 kvm_flush_remote_tlbs_range(kvm, start_gfn, 5960 iterator.gfn - start_gfn + 1); 5961 flush = false; 5962 } 5963 cond_resched_rwlock_write(&kvm->mmu_lock); 5964 } 5965 } 5966 5967 return flush; 5968 } 5969 5970 static __always_inline bool walk_slot_rmaps(struct kvm *kvm, 5971 const struct kvm_memory_slot *slot, 5972 slot_rmaps_handler fn, 5973 int start_level, int end_level, 5974 bool flush_on_yield) 5975 { 5976 return __walk_slot_rmaps(kvm, slot, fn, start_level, end_level, 5977 slot->base_gfn, slot->base_gfn + slot->npages - 1, 5978 flush_on_yield, false); 5979 } 5980 5981 static __always_inline bool walk_slot_rmaps_4k(struct kvm *kvm, 5982 const struct kvm_memory_slot *slot, 5983 slot_rmaps_handler fn, 5984 bool flush_on_yield) 5985 { 5986 return walk_slot_rmaps(kvm, slot, fn, PG_LEVEL_4K, PG_LEVEL_4K, flush_on_yield); 5987 } 5988 5989 static void free_mmu_pages(struct kvm_mmu *mmu) 5990 { 5991 if (!tdp_enabled && mmu->pae_root) 5992 set_memory_encrypted((unsigned long)mmu->pae_root, 1); 5993 free_page((unsigned long)mmu->pae_root); 5994 free_page((unsigned long)mmu->pml4_root); 5995 free_page((unsigned long)mmu->pml5_root); 5996 } 5997 5998 static int __kvm_mmu_create(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu) 5999 { 6000 struct page *page; 6001 int i; 6002 6003 mmu->root.hpa = INVALID_PAGE; 6004 mmu->root.pgd = 0; 6005 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 6006 mmu->prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID; 6007 6008 /* vcpu->arch.guest_mmu isn't used when !tdp_enabled. */ 6009 if (!tdp_enabled && mmu == &vcpu->arch.guest_mmu) 6010 return 0; 6011 6012 /* 6013 * When using PAE paging, the four PDPTEs are treated as 'root' pages, 6014 * while the PDP table is a per-vCPU construct that's allocated at MMU 6015 * creation. When emulating 32-bit mode, cr3 is only 32 bits even on 6016 * x86_64. Therefore we need to allocate the PDP table in the first 6017 * 4GB of memory, which happens to fit the DMA32 zone. TDP paging 6018 * generally doesn't use PAE paging and can skip allocating the PDP 6019 * table. The main exception, handled here, is SVM's 32-bit NPT. The 6020 * other exception is for shadowing L1's 32-bit or PAE NPT on 64-bit 6021 * KVM; that horror is handled on-demand by mmu_alloc_special_roots(). 6022 */ 6023 if (tdp_enabled && kvm_mmu_get_tdp_level(vcpu) > PT32E_ROOT_LEVEL) 6024 return 0; 6025 6026 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_DMA32); 6027 if (!page) 6028 return -ENOMEM; 6029 6030 mmu->pae_root = page_address(page); 6031 6032 /* 6033 * CR3 is only 32 bits when PAE paging is used, thus it's impossible to 6034 * get the CPU to treat the PDPTEs as encrypted. Decrypt the page so 6035 * that KVM's writes and the CPU's reads get along. Note, this is 6036 * only necessary when using shadow paging, as 64-bit NPT can get at 6037 * the C-bit even when shadowing 32-bit NPT, and SME isn't supported 6038 * by 32-bit kernels (when KVM itself uses 32-bit NPT). 6039 */ 6040 if (!tdp_enabled) 6041 set_memory_decrypted((unsigned long)mmu->pae_root, 1); 6042 else 6043 WARN_ON_ONCE(shadow_me_value); 6044 6045 for (i = 0; i < 4; ++i) 6046 mmu->pae_root[i] = INVALID_PAE_ROOT; 6047 6048 return 0; 6049 } 6050 6051 int kvm_mmu_create(struct kvm_vcpu *vcpu) 6052 { 6053 int ret; 6054 6055 vcpu->arch.mmu_pte_list_desc_cache.kmem_cache = pte_list_desc_cache; 6056 vcpu->arch.mmu_pte_list_desc_cache.gfp_zero = __GFP_ZERO; 6057 6058 vcpu->arch.mmu_page_header_cache.kmem_cache = mmu_page_header_cache; 6059 vcpu->arch.mmu_page_header_cache.gfp_zero = __GFP_ZERO; 6060 6061 vcpu->arch.mmu_shadow_page_cache.gfp_zero = __GFP_ZERO; 6062 6063 vcpu->arch.mmu = &vcpu->arch.root_mmu; 6064 vcpu->arch.walk_mmu = &vcpu->arch.root_mmu; 6065 6066 ret = __kvm_mmu_create(vcpu, &vcpu->arch.guest_mmu); 6067 if (ret) 6068 return ret; 6069 6070 ret = __kvm_mmu_create(vcpu, &vcpu->arch.root_mmu); 6071 if (ret) 6072 goto fail_allocate_root; 6073 6074 return ret; 6075 fail_allocate_root: 6076 free_mmu_pages(&vcpu->arch.guest_mmu); 6077 return ret; 6078 } 6079 6080 #define BATCH_ZAP_PAGES 10 6081 static void kvm_zap_obsolete_pages(struct kvm *kvm) 6082 { 6083 struct kvm_mmu_page *sp, *node; 6084 int nr_zapped, batch = 0; 6085 bool unstable; 6086 6087 restart: 6088 list_for_each_entry_safe_reverse(sp, node, 6089 &kvm->arch.active_mmu_pages, link) { 6090 /* 6091 * No obsolete valid page exists before a newly created page 6092 * since active_mmu_pages is a FIFO list. 6093 */ 6094 if (!is_obsolete_sp(kvm, sp)) 6095 break; 6096 6097 /* 6098 * Invalid pages should never land back on the list of active 6099 * pages. Skip the bogus page, otherwise we'll get stuck in an 6100 * infinite loop if the page gets put back on the list (again). 6101 */ 6102 if (WARN_ON(sp->role.invalid)) 6103 continue; 6104 6105 /* 6106 * No need to flush the TLB since we're only zapping shadow 6107 * pages with an obsolete generation number and all vCPUS have 6108 * loaded a new root, i.e. the shadow pages being zapped cannot 6109 * be in active use by the guest. 6110 */ 6111 if (batch >= BATCH_ZAP_PAGES && 6112 cond_resched_rwlock_write(&kvm->mmu_lock)) { 6113 batch = 0; 6114 goto restart; 6115 } 6116 6117 unstable = __kvm_mmu_prepare_zap_page(kvm, sp, 6118 &kvm->arch.zapped_obsolete_pages, &nr_zapped); 6119 batch += nr_zapped; 6120 6121 if (unstable) 6122 goto restart; 6123 } 6124 6125 /* 6126 * Kick all vCPUs (via remote TLB flush) before freeing the page tables 6127 * to ensure KVM is not in the middle of a lockless shadow page table 6128 * walk, which may reference the pages. The remote TLB flush itself is 6129 * not required and is simply a convenient way to kick vCPUs as needed. 6130 * KVM performs a local TLB flush when allocating a new root (see 6131 * kvm_mmu_load()), and the reload in the caller ensure no vCPUs are 6132 * running with an obsolete MMU. 6133 */ 6134 kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages); 6135 } 6136 6137 /* 6138 * Fast invalidate all shadow pages and use lock-break technique 6139 * to zap obsolete pages. 6140 * 6141 * It's required when memslot is being deleted or VM is being 6142 * destroyed, in these cases, we should ensure that KVM MMU does 6143 * not use any resource of the being-deleted slot or all slots 6144 * after calling the function. 6145 */ 6146 static void kvm_mmu_zap_all_fast(struct kvm *kvm) 6147 { 6148 lockdep_assert_held(&kvm->slots_lock); 6149 6150 write_lock(&kvm->mmu_lock); 6151 trace_kvm_mmu_zap_all_fast(kvm); 6152 6153 /* 6154 * Toggle mmu_valid_gen between '0' and '1'. Because slots_lock is 6155 * held for the entire duration of zapping obsolete pages, it's 6156 * impossible for there to be multiple invalid generations associated 6157 * with *valid* shadow pages at any given time, i.e. there is exactly 6158 * one valid generation and (at most) one invalid generation. 6159 */ 6160 kvm->arch.mmu_valid_gen = kvm->arch.mmu_valid_gen ? 0 : 1; 6161 6162 /* 6163 * In order to ensure all vCPUs drop their soon-to-be invalid roots, 6164 * invalidating TDP MMU roots must be done while holding mmu_lock for 6165 * write and in the same critical section as making the reload request, 6166 * e.g. before kvm_zap_obsolete_pages() could drop mmu_lock and yield. 6167 */ 6168 if (tdp_mmu_enabled) 6169 kvm_tdp_mmu_invalidate_all_roots(kvm); 6170 6171 /* 6172 * Notify all vcpus to reload its shadow page table and flush TLB. 6173 * Then all vcpus will switch to new shadow page table with the new 6174 * mmu_valid_gen. 6175 * 6176 * Note: we need to do this under the protection of mmu_lock, 6177 * otherwise, vcpu would purge shadow page but miss tlb flush. 6178 */ 6179 kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_FREE_OBSOLETE_ROOTS); 6180 6181 kvm_zap_obsolete_pages(kvm); 6182 6183 write_unlock(&kvm->mmu_lock); 6184 6185 /* 6186 * Zap the invalidated TDP MMU roots, all SPTEs must be dropped before 6187 * returning to the caller, e.g. if the zap is in response to a memslot 6188 * deletion, mmu_notifier callbacks will be unable to reach the SPTEs 6189 * associated with the deleted memslot once the update completes, and 6190 * Deferring the zap until the final reference to the root is put would 6191 * lead to use-after-free. 6192 */ 6193 if (tdp_mmu_enabled) 6194 kvm_tdp_mmu_zap_invalidated_roots(kvm); 6195 } 6196 6197 static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm) 6198 { 6199 return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages)); 6200 } 6201 6202 static void kvm_mmu_invalidate_zap_pages_in_memslot(struct kvm *kvm, 6203 struct kvm_memory_slot *slot, 6204 struct kvm_page_track_notifier_node *node) 6205 { 6206 kvm_mmu_zap_all_fast(kvm); 6207 } 6208 6209 int kvm_mmu_init_vm(struct kvm *kvm) 6210 { 6211 struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker; 6212 int r; 6213 6214 INIT_LIST_HEAD(&kvm->arch.active_mmu_pages); 6215 INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages); 6216 INIT_LIST_HEAD(&kvm->arch.possible_nx_huge_pages); 6217 spin_lock_init(&kvm->arch.mmu_unsync_pages_lock); 6218 6219 if (tdp_mmu_enabled) { 6220 r = kvm_mmu_init_tdp_mmu(kvm); 6221 if (r < 0) 6222 return r; 6223 } 6224 6225 node->track_write = kvm_mmu_pte_write; 6226 node->track_flush_slot = kvm_mmu_invalidate_zap_pages_in_memslot; 6227 kvm_page_track_register_notifier(kvm, node); 6228 6229 kvm->arch.split_page_header_cache.kmem_cache = mmu_page_header_cache; 6230 kvm->arch.split_page_header_cache.gfp_zero = __GFP_ZERO; 6231 6232 kvm->arch.split_shadow_page_cache.gfp_zero = __GFP_ZERO; 6233 6234 kvm->arch.split_desc_cache.kmem_cache = pte_list_desc_cache; 6235 kvm->arch.split_desc_cache.gfp_zero = __GFP_ZERO; 6236 6237 return 0; 6238 } 6239 6240 static void mmu_free_vm_memory_caches(struct kvm *kvm) 6241 { 6242 kvm_mmu_free_memory_cache(&kvm->arch.split_desc_cache); 6243 kvm_mmu_free_memory_cache(&kvm->arch.split_page_header_cache); 6244 kvm_mmu_free_memory_cache(&kvm->arch.split_shadow_page_cache); 6245 } 6246 6247 void kvm_mmu_uninit_vm(struct kvm *kvm) 6248 { 6249 struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker; 6250 6251 kvm_page_track_unregister_notifier(kvm, node); 6252 6253 if (tdp_mmu_enabled) 6254 kvm_mmu_uninit_tdp_mmu(kvm); 6255 6256 mmu_free_vm_memory_caches(kvm); 6257 } 6258 6259 static bool kvm_rmap_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end) 6260 { 6261 const struct kvm_memory_slot *memslot; 6262 struct kvm_memslots *slots; 6263 struct kvm_memslot_iter iter; 6264 bool flush = false; 6265 gfn_t start, end; 6266 int i; 6267 6268 if (!kvm_memslots_have_rmaps(kvm)) 6269 return flush; 6270 6271 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { 6272 slots = __kvm_memslots(kvm, i); 6273 6274 kvm_for_each_memslot_in_gfn_range(&iter, slots, gfn_start, gfn_end) { 6275 memslot = iter.slot; 6276 start = max(gfn_start, memslot->base_gfn); 6277 end = min(gfn_end, memslot->base_gfn + memslot->npages); 6278 if (WARN_ON_ONCE(start >= end)) 6279 continue; 6280 6281 flush = __walk_slot_rmaps(kvm, memslot, __kvm_zap_rmap, 6282 PG_LEVEL_4K, KVM_MAX_HUGEPAGE_LEVEL, 6283 start, end - 1, true, flush); 6284 } 6285 } 6286 6287 return flush; 6288 } 6289 6290 /* 6291 * Invalidate (zap) SPTEs that cover GFNs from gfn_start and up to gfn_end 6292 * (not including it) 6293 */ 6294 void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end) 6295 { 6296 bool flush; 6297 int i; 6298 6299 if (WARN_ON_ONCE(gfn_end <= gfn_start)) 6300 return; 6301 6302 write_lock(&kvm->mmu_lock); 6303 6304 kvm_mmu_invalidate_begin(kvm, 0, -1ul); 6305 6306 flush = kvm_rmap_zap_gfn_range(kvm, gfn_start, gfn_end); 6307 6308 if (tdp_mmu_enabled) { 6309 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) 6310 flush = kvm_tdp_mmu_zap_leafs(kvm, i, gfn_start, 6311 gfn_end, true, flush); 6312 } 6313 6314 if (flush) 6315 kvm_flush_remote_tlbs_range(kvm, gfn_start, gfn_end - gfn_start); 6316 6317 kvm_mmu_invalidate_end(kvm, 0, -1ul); 6318 6319 write_unlock(&kvm->mmu_lock); 6320 } 6321 6322 static bool slot_rmap_write_protect(struct kvm *kvm, 6323 struct kvm_rmap_head *rmap_head, 6324 const struct kvm_memory_slot *slot) 6325 { 6326 return rmap_write_protect(rmap_head, false); 6327 } 6328 6329 void kvm_mmu_slot_remove_write_access(struct kvm *kvm, 6330 const struct kvm_memory_slot *memslot, 6331 int start_level) 6332 { 6333 if (kvm_memslots_have_rmaps(kvm)) { 6334 write_lock(&kvm->mmu_lock); 6335 walk_slot_rmaps(kvm, memslot, slot_rmap_write_protect, 6336 start_level, KVM_MAX_HUGEPAGE_LEVEL, false); 6337 write_unlock(&kvm->mmu_lock); 6338 } 6339 6340 if (tdp_mmu_enabled) { 6341 read_lock(&kvm->mmu_lock); 6342 kvm_tdp_mmu_wrprot_slot(kvm, memslot, start_level); 6343 read_unlock(&kvm->mmu_lock); 6344 } 6345 } 6346 6347 static inline bool need_topup(struct kvm_mmu_memory_cache *cache, int min) 6348 { 6349 return kvm_mmu_memory_cache_nr_free_objects(cache) < min; 6350 } 6351 6352 static bool need_topup_split_caches_or_resched(struct kvm *kvm) 6353 { 6354 if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) 6355 return true; 6356 6357 /* 6358 * In the worst case, SPLIT_DESC_CACHE_MIN_NR_OBJECTS descriptors are needed 6359 * to split a single huge page. Calculating how many are actually needed 6360 * is possible but not worth the complexity. 6361 */ 6362 return need_topup(&kvm->arch.split_desc_cache, SPLIT_DESC_CACHE_MIN_NR_OBJECTS) || 6363 need_topup(&kvm->arch.split_page_header_cache, 1) || 6364 need_topup(&kvm->arch.split_shadow_page_cache, 1); 6365 } 6366 6367 static int topup_split_caches(struct kvm *kvm) 6368 { 6369 /* 6370 * Allocating rmap list entries when splitting huge pages for nested 6371 * MMUs is uncommon as KVM needs to use a list if and only if there is 6372 * more than one rmap entry for a gfn, i.e. requires an L1 gfn to be 6373 * aliased by multiple L2 gfns and/or from multiple nested roots with 6374 * different roles. Aliasing gfns when using TDP is atypical for VMMs; 6375 * a few gfns are often aliased during boot, e.g. when remapping BIOS, 6376 * but aliasing rarely occurs post-boot or for many gfns. If there is 6377 * only one rmap entry, rmap->val points directly at that one entry and 6378 * doesn't need to allocate a list. Buffer the cache by the default 6379 * capacity so that KVM doesn't have to drop mmu_lock to topup if KVM 6380 * encounters an aliased gfn or two. 6381 */ 6382 const int capacity = SPLIT_DESC_CACHE_MIN_NR_OBJECTS + 6383 KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE; 6384 int r; 6385 6386 lockdep_assert_held(&kvm->slots_lock); 6387 6388 r = __kvm_mmu_topup_memory_cache(&kvm->arch.split_desc_cache, capacity, 6389 SPLIT_DESC_CACHE_MIN_NR_OBJECTS); 6390 if (r) 6391 return r; 6392 6393 r = kvm_mmu_topup_memory_cache(&kvm->arch.split_page_header_cache, 1); 6394 if (r) 6395 return r; 6396 6397 return kvm_mmu_topup_memory_cache(&kvm->arch.split_shadow_page_cache, 1); 6398 } 6399 6400 static struct kvm_mmu_page *shadow_mmu_get_sp_for_split(struct kvm *kvm, u64 *huge_sptep) 6401 { 6402 struct kvm_mmu_page *huge_sp = sptep_to_sp(huge_sptep); 6403 struct shadow_page_caches caches = {}; 6404 union kvm_mmu_page_role role; 6405 unsigned int access; 6406 gfn_t gfn; 6407 6408 gfn = kvm_mmu_page_get_gfn(huge_sp, spte_index(huge_sptep)); 6409 access = kvm_mmu_page_get_access(huge_sp, spte_index(huge_sptep)); 6410 6411 /* 6412 * Note, huge page splitting always uses direct shadow pages, regardless 6413 * of whether the huge page itself is mapped by a direct or indirect 6414 * shadow page, since the huge page region itself is being directly 6415 * mapped with smaller pages. 6416 */ 6417 role = kvm_mmu_child_role(huge_sptep, /*direct=*/true, access); 6418 6419 /* Direct SPs do not require a shadowed_info_cache. */ 6420 caches.page_header_cache = &kvm->arch.split_page_header_cache; 6421 caches.shadow_page_cache = &kvm->arch.split_shadow_page_cache; 6422 6423 /* Safe to pass NULL for vCPU since requesting a direct SP. */ 6424 return __kvm_mmu_get_shadow_page(kvm, NULL, &caches, gfn, role); 6425 } 6426 6427 static void shadow_mmu_split_huge_page(struct kvm *kvm, 6428 const struct kvm_memory_slot *slot, 6429 u64 *huge_sptep) 6430 6431 { 6432 struct kvm_mmu_memory_cache *cache = &kvm->arch.split_desc_cache; 6433 u64 huge_spte = READ_ONCE(*huge_sptep); 6434 struct kvm_mmu_page *sp; 6435 bool flush = false; 6436 u64 *sptep, spte; 6437 gfn_t gfn; 6438 int index; 6439 6440 sp = shadow_mmu_get_sp_for_split(kvm, huge_sptep); 6441 6442 for (index = 0; index < SPTE_ENT_PER_PAGE; index++) { 6443 sptep = &sp->spt[index]; 6444 gfn = kvm_mmu_page_get_gfn(sp, index); 6445 6446 /* 6447 * The SP may already have populated SPTEs, e.g. if this huge 6448 * page is aliased by multiple sptes with the same access 6449 * permissions. These entries are guaranteed to map the same 6450 * gfn-to-pfn translation since the SP is direct, so no need to 6451 * modify them. 6452 * 6453 * However, if a given SPTE points to a lower level page table, 6454 * that lower level page table may only be partially populated. 6455 * Installing such SPTEs would effectively unmap a potion of the 6456 * huge page. Unmapping guest memory always requires a TLB flush 6457 * since a subsequent operation on the unmapped regions would 6458 * fail to detect the need to flush. 6459 */ 6460 if (is_shadow_present_pte(*sptep)) { 6461 flush |= !is_last_spte(*sptep, sp->role.level); 6462 continue; 6463 } 6464 6465 spte = make_huge_page_split_spte(kvm, huge_spte, sp->role, index); 6466 mmu_spte_set(sptep, spte); 6467 __rmap_add(kvm, cache, slot, sptep, gfn, sp->role.access); 6468 } 6469 6470 __link_shadow_page(kvm, cache, huge_sptep, sp, flush); 6471 } 6472 6473 static int shadow_mmu_try_split_huge_page(struct kvm *kvm, 6474 const struct kvm_memory_slot *slot, 6475 u64 *huge_sptep) 6476 { 6477 struct kvm_mmu_page *huge_sp = sptep_to_sp(huge_sptep); 6478 int level, r = 0; 6479 gfn_t gfn; 6480 u64 spte; 6481 6482 /* Grab information for the tracepoint before dropping the MMU lock. */ 6483 gfn = kvm_mmu_page_get_gfn(huge_sp, spte_index(huge_sptep)); 6484 level = huge_sp->role.level; 6485 spte = *huge_sptep; 6486 6487 if (kvm_mmu_available_pages(kvm) <= KVM_MIN_FREE_MMU_PAGES) { 6488 r = -ENOSPC; 6489 goto out; 6490 } 6491 6492 if (need_topup_split_caches_or_resched(kvm)) { 6493 write_unlock(&kvm->mmu_lock); 6494 cond_resched(); 6495 /* 6496 * If the topup succeeds, return -EAGAIN to indicate that the 6497 * rmap iterator should be restarted because the MMU lock was 6498 * dropped. 6499 */ 6500 r = topup_split_caches(kvm) ?: -EAGAIN; 6501 write_lock(&kvm->mmu_lock); 6502 goto out; 6503 } 6504 6505 shadow_mmu_split_huge_page(kvm, slot, huge_sptep); 6506 6507 out: 6508 trace_kvm_mmu_split_huge_page(gfn, spte, level, r); 6509 return r; 6510 } 6511 6512 static bool shadow_mmu_try_split_huge_pages(struct kvm *kvm, 6513 struct kvm_rmap_head *rmap_head, 6514 const struct kvm_memory_slot *slot) 6515 { 6516 struct rmap_iterator iter; 6517 struct kvm_mmu_page *sp; 6518 u64 *huge_sptep; 6519 int r; 6520 6521 restart: 6522 for_each_rmap_spte(rmap_head, &iter, huge_sptep) { 6523 sp = sptep_to_sp(huge_sptep); 6524 6525 /* TDP MMU is enabled, so rmap only contains nested MMU SPs. */ 6526 if (WARN_ON_ONCE(!sp->role.guest_mode)) 6527 continue; 6528 6529 /* The rmaps should never contain non-leaf SPTEs. */ 6530 if (WARN_ON_ONCE(!is_large_pte(*huge_sptep))) 6531 continue; 6532 6533 /* SPs with level >PG_LEVEL_4K should never by unsync. */ 6534 if (WARN_ON_ONCE(sp->unsync)) 6535 continue; 6536 6537 /* Don't bother splitting huge pages on invalid SPs. */ 6538 if (sp->role.invalid) 6539 continue; 6540 6541 r = shadow_mmu_try_split_huge_page(kvm, slot, huge_sptep); 6542 6543 /* 6544 * The split succeeded or needs to be retried because the MMU 6545 * lock was dropped. Either way, restart the iterator to get it 6546 * back into a consistent state. 6547 */ 6548 if (!r || r == -EAGAIN) 6549 goto restart; 6550 6551 /* The split failed and shouldn't be retried (e.g. -ENOMEM). */ 6552 break; 6553 } 6554 6555 return false; 6556 } 6557 6558 static void kvm_shadow_mmu_try_split_huge_pages(struct kvm *kvm, 6559 const struct kvm_memory_slot *slot, 6560 gfn_t start, gfn_t end, 6561 int target_level) 6562 { 6563 int level; 6564 6565 /* 6566 * Split huge pages starting with KVM_MAX_HUGEPAGE_LEVEL and working 6567 * down to the target level. This ensures pages are recursively split 6568 * all the way to the target level. There's no need to split pages 6569 * already at the target level. 6570 */ 6571 for (level = KVM_MAX_HUGEPAGE_LEVEL; level > target_level; level--) 6572 __walk_slot_rmaps(kvm, slot, shadow_mmu_try_split_huge_pages, 6573 level, level, start, end - 1, true, false); 6574 } 6575 6576 /* Must be called with the mmu_lock held in write-mode. */ 6577 void kvm_mmu_try_split_huge_pages(struct kvm *kvm, 6578 const struct kvm_memory_slot *memslot, 6579 u64 start, u64 end, 6580 int target_level) 6581 { 6582 if (!tdp_mmu_enabled) 6583 return; 6584 6585 if (kvm_memslots_have_rmaps(kvm)) 6586 kvm_shadow_mmu_try_split_huge_pages(kvm, memslot, start, end, target_level); 6587 6588 kvm_tdp_mmu_try_split_huge_pages(kvm, memslot, start, end, target_level, false); 6589 6590 /* 6591 * A TLB flush is unnecessary at this point for the same resons as in 6592 * kvm_mmu_slot_try_split_huge_pages(). 6593 */ 6594 } 6595 6596 void kvm_mmu_slot_try_split_huge_pages(struct kvm *kvm, 6597 const struct kvm_memory_slot *memslot, 6598 int target_level) 6599 { 6600 u64 start = memslot->base_gfn; 6601 u64 end = start + memslot->npages; 6602 6603 if (!tdp_mmu_enabled) 6604 return; 6605 6606 if (kvm_memslots_have_rmaps(kvm)) { 6607 write_lock(&kvm->mmu_lock); 6608 kvm_shadow_mmu_try_split_huge_pages(kvm, memslot, start, end, target_level); 6609 write_unlock(&kvm->mmu_lock); 6610 } 6611 6612 read_lock(&kvm->mmu_lock); 6613 kvm_tdp_mmu_try_split_huge_pages(kvm, memslot, start, end, target_level, true); 6614 read_unlock(&kvm->mmu_lock); 6615 6616 /* 6617 * No TLB flush is necessary here. KVM will flush TLBs after 6618 * write-protecting and/or clearing dirty on the newly split SPTEs to 6619 * ensure that guest writes are reflected in the dirty log before the 6620 * ioctl to enable dirty logging on this memslot completes. Since the 6621 * split SPTEs retain the write and dirty bits of the huge SPTE, it is 6622 * safe for KVM to decide if a TLB flush is necessary based on the split 6623 * SPTEs. 6624 */ 6625 } 6626 6627 static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm, 6628 struct kvm_rmap_head *rmap_head, 6629 const struct kvm_memory_slot *slot) 6630 { 6631 u64 *sptep; 6632 struct rmap_iterator iter; 6633 int need_tlb_flush = 0; 6634 struct kvm_mmu_page *sp; 6635 6636 restart: 6637 for_each_rmap_spte(rmap_head, &iter, sptep) { 6638 sp = sptep_to_sp(sptep); 6639 6640 /* 6641 * We cannot do huge page mapping for indirect shadow pages, 6642 * which are found on the last rmap (level = 1) when not using 6643 * tdp; such shadow pages are synced with the page table in 6644 * the guest, and the guest page table is using 4K page size 6645 * mapping if the indirect sp has level = 1. 6646 */ 6647 if (sp->role.direct && 6648 sp->role.level < kvm_mmu_max_mapping_level(kvm, slot, sp->gfn, 6649 PG_LEVEL_NUM)) { 6650 kvm_zap_one_rmap_spte(kvm, rmap_head, sptep); 6651 6652 if (kvm_available_flush_remote_tlbs_range()) 6653 kvm_flush_remote_tlbs_sptep(kvm, sptep); 6654 else 6655 need_tlb_flush = 1; 6656 6657 goto restart; 6658 } 6659 } 6660 6661 return need_tlb_flush; 6662 } 6663 6664 static void kvm_rmap_zap_collapsible_sptes(struct kvm *kvm, 6665 const struct kvm_memory_slot *slot) 6666 { 6667 /* 6668 * Note, use KVM_MAX_HUGEPAGE_LEVEL - 1 since there's no need to zap 6669 * pages that are already mapped at the maximum hugepage level. 6670 */ 6671 if (walk_slot_rmaps(kvm, slot, kvm_mmu_zap_collapsible_spte, 6672 PG_LEVEL_4K, KVM_MAX_HUGEPAGE_LEVEL - 1, true)) 6673 kvm_arch_flush_remote_tlbs_memslot(kvm, slot); 6674 } 6675 6676 void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm, 6677 const struct kvm_memory_slot *slot) 6678 { 6679 if (kvm_memslots_have_rmaps(kvm)) { 6680 write_lock(&kvm->mmu_lock); 6681 kvm_rmap_zap_collapsible_sptes(kvm, slot); 6682 write_unlock(&kvm->mmu_lock); 6683 } 6684 6685 if (tdp_mmu_enabled) { 6686 read_lock(&kvm->mmu_lock); 6687 kvm_tdp_mmu_zap_collapsible_sptes(kvm, slot); 6688 read_unlock(&kvm->mmu_lock); 6689 } 6690 } 6691 6692 void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm, 6693 const struct kvm_memory_slot *memslot) 6694 { 6695 /* 6696 * All current use cases for flushing the TLBs for a specific memslot 6697 * related to dirty logging, and many do the TLB flush out of mmu_lock. 6698 * The interaction between the various operations on memslot must be 6699 * serialized by slots_locks to ensure the TLB flush from one operation 6700 * is observed by any other operation on the same memslot. 6701 */ 6702 lockdep_assert_held(&kvm->slots_lock); 6703 kvm_flush_remote_tlbs_range(kvm, memslot->base_gfn, memslot->npages); 6704 } 6705 6706 void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm, 6707 const struct kvm_memory_slot *memslot) 6708 { 6709 if (kvm_memslots_have_rmaps(kvm)) { 6710 write_lock(&kvm->mmu_lock); 6711 /* 6712 * Clear dirty bits only on 4k SPTEs since the legacy MMU only 6713 * support dirty logging at a 4k granularity. 6714 */ 6715 walk_slot_rmaps_4k(kvm, memslot, __rmap_clear_dirty, false); 6716 write_unlock(&kvm->mmu_lock); 6717 } 6718 6719 if (tdp_mmu_enabled) { 6720 read_lock(&kvm->mmu_lock); 6721 kvm_tdp_mmu_clear_dirty_slot(kvm, memslot); 6722 read_unlock(&kvm->mmu_lock); 6723 } 6724 6725 /* 6726 * The caller will flush the TLBs after this function returns. 6727 * 6728 * It's also safe to flush TLBs out of mmu lock here as currently this 6729 * function is only used for dirty logging, in which case flushing TLB 6730 * out of mmu lock also guarantees no dirty pages will be lost in 6731 * dirty_bitmap. 6732 */ 6733 } 6734 6735 void kvm_mmu_zap_all(struct kvm *kvm) 6736 { 6737 struct kvm_mmu_page *sp, *node; 6738 LIST_HEAD(invalid_list); 6739 int ign; 6740 6741 write_lock(&kvm->mmu_lock); 6742 restart: 6743 list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link) { 6744 if (WARN_ON(sp->role.invalid)) 6745 continue; 6746 if (__kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list, &ign)) 6747 goto restart; 6748 if (cond_resched_rwlock_write(&kvm->mmu_lock)) 6749 goto restart; 6750 } 6751 6752 kvm_mmu_commit_zap_page(kvm, &invalid_list); 6753 6754 if (tdp_mmu_enabled) 6755 kvm_tdp_mmu_zap_all(kvm); 6756 6757 write_unlock(&kvm->mmu_lock); 6758 } 6759 6760 void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen) 6761 { 6762 WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS); 6763 6764 gen &= MMIO_SPTE_GEN_MASK; 6765 6766 /* 6767 * Generation numbers are incremented in multiples of the number of 6768 * address spaces in order to provide unique generations across all 6769 * address spaces. Strip what is effectively the address space 6770 * modifier prior to checking for a wrap of the MMIO generation so 6771 * that a wrap in any address space is detected. 6772 */ 6773 gen &= ~((u64)KVM_ADDRESS_SPACE_NUM - 1); 6774 6775 /* 6776 * The very rare case: if the MMIO generation number has wrapped, 6777 * zap all shadow pages. 6778 */ 6779 if (unlikely(gen == 0)) { 6780 kvm_debug_ratelimited("zapping shadow pages for mmio generation wraparound\n"); 6781 kvm_mmu_zap_all_fast(kvm); 6782 } 6783 } 6784 6785 static unsigned long mmu_shrink_scan(struct shrinker *shrink, 6786 struct shrink_control *sc) 6787 { 6788 struct kvm *kvm; 6789 int nr_to_scan = sc->nr_to_scan; 6790 unsigned long freed = 0; 6791 6792 mutex_lock(&kvm_lock); 6793 6794 list_for_each_entry(kvm, &vm_list, vm_list) { 6795 int idx; 6796 LIST_HEAD(invalid_list); 6797 6798 /* 6799 * Never scan more than sc->nr_to_scan VM instances. 6800 * Will not hit this condition practically since we do not try 6801 * to shrink more than one VM and it is very unlikely to see 6802 * !n_used_mmu_pages so many times. 6803 */ 6804 if (!nr_to_scan--) 6805 break; 6806 /* 6807 * n_used_mmu_pages is accessed without holding kvm->mmu_lock 6808 * here. We may skip a VM instance errorneosly, but we do not 6809 * want to shrink a VM that only started to populate its MMU 6810 * anyway. 6811 */ 6812 if (!kvm->arch.n_used_mmu_pages && 6813 !kvm_has_zapped_obsolete_pages(kvm)) 6814 continue; 6815 6816 idx = srcu_read_lock(&kvm->srcu); 6817 write_lock(&kvm->mmu_lock); 6818 6819 if (kvm_has_zapped_obsolete_pages(kvm)) { 6820 kvm_mmu_commit_zap_page(kvm, 6821 &kvm->arch.zapped_obsolete_pages); 6822 goto unlock; 6823 } 6824 6825 freed = kvm_mmu_zap_oldest_mmu_pages(kvm, sc->nr_to_scan); 6826 6827 unlock: 6828 write_unlock(&kvm->mmu_lock); 6829 srcu_read_unlock(&kvm->srcu, idx); 6830 6831 /* 6832 * unfair on small ones 6833 * per-vm shrinkers cry out 6834 * sadness comes quickly 6835 */ 6836 list_move_tail(&kvm->vm_list, &vm_list); 6837 break; 6838 } 6839 6840 mutex_unlock(&kvm_lock); 6841 return freed; 6842 } 6843 6844 static unsigned long mmu_shrink_count(struct shrinker *shrink, 6845 struct shrink_control *sc) 6846 { 6847 return percpu_counter_read_positive(&kvm_total_used_mmu_pages); 6848 } 6849 6850 static struct shrinker mmu_shrinker = { 6851 .count_objects = mmu_shrink_count, 6852 .scan_objects = mmu_shrink_scan, 6853 .seeks = DEFAULT_SEEKS * 10, 6854 }; 6855 6856 static void mmu_destroy_caches(void) 6857 { 6858 kmem_cache_destroy(pte_list_desc_cache); 6859 kmem_cache_destroy(mmu_page_header_cache); 6860 } 6861 6862 static int get_nx_huge_pages(char *buffer, const struct kernel_param *kp) 6863 { 6864 if (nx_hugepage_mitigation_hard_disabled) 6865 return sprintf(buffer, "never\n"); 6866 6867 return param_get_bool(buffer, kp); 6868 } 6869 6870 static bool get_nx_auto_mode(void) 6871 { 6872 /* Return true when CPU has the bug, and mitigations are ON */ 6873 return boot_cpu_has_bug(X86_BUG_ITLB_MULTIHIT) && !cpu_mitigations_off(); 6874 } 6875 6876 static void __set_nx_huge_pages(bool val) 6877 { 6878 nx_huge_pages = itlb_multihit_kvm_mitigation = val; 6879 } 6880 6881 static int set_nx_huge_pages(const char *val, const struct kernel_param *kp) 6882 { 6883 bool old_val = nx_huge_pages; 6884 bool new_val; 6885 6886 if (nx_hugepage_mitigation_hard_disabled) 6887 return -EPERM; 6888 6889 /* In "auto" mode deploy workaround only if CPU has the bug. */ 6890 if (sysfs_streq(val, "off")) { 6891 new_val = 0; 6892 } else if (sysfs_streq(val, "force")) { 6893 new_val = 1; 6894 } else if (sysfs_streq(val, "auto")) { 6895 new_val = get_nx_auto_mode(); 6896 } else if (sysfs_streq(val, "never")) { 6897 new_val = 0; 6898 6899 mutex_lock(&kvm_lock); 6900 if (!list_empty(&vm_list)) { 6901 mutex_unlock(&kvm_lock); 6902 return -EBUSY; 6903 } 6904 nx_hugepage_mitigation_hard_disabled = true; 6905 mutex_unlock(&kvm_lock); 6906 } else if (kstrtobool(val, &new_val) < 0) { 6907 return -EINVAL; 6908 } 6909 6910 __set_nx_huge_pages(new_val); 6911 6912 if (new_val != old_val) { 6913 struct kvm *kvm; 6914 6915 mutex_lock(&kvm_lock); 6916 6917 list_for_each_entry(kvm, &vm_list, vm_list) { 6918 mutex_lock(&kvm->slots_lock); 6919 kvm_mmu_zap_all_fast(kvm); 6920 mutex_unlock(&kvm->slots_lock); 6921 6922 wake_up_process(kvm->arch.nx_huge_page_recovery_thread); 6923 } 6924 mutex_unlock(&kvm_lock); 6925 } 6926 6927 return 0; 6928 } 6929 6930 /* 6931 * nx_huge_pages needs to be resolved to true/false when kvm.ko is loaded, as 6932 * its default value of -1 is technically undefined behavior for a boolean. 6933 * Forward the module init call to SPTE code so that it too can handle module 6934 * params that need to be resolved/snapshot. 6935 */ 6936 void __init kvm_mmu_x86_module_init(void) 6937 { 6938 if (nx_huge_pages == -1) 6939 __set_nx_huge_pages(get_nx_auto_mode()); 6940 6941 /* 6942 * Snapshot userspace's desire to enable the TDP MMU. Whether or not the 6943 * TDP MMU is actually enabled is determined in kvm_configure_mmu() 6944 * when the vendor module is loaded. 6945 */ 6946 tdp_mmu_allowed = tdp_mmu_enabled; 6947 6948 kvm_mmu_spte_module_init(); 6949 } 6950 6951 /* 6952 * The bulk of the MMU initialization is deferred until the vendor module is 6953 * loaded as many of the masks/values may be modified by VMX or SVM, i.e. need 6954 * to be reset when a potentially different vendor module is loaded. 6955 */ 6956 int kvm_mmu_vendor_module_init(void) 6957 { 6958 int ret = -ENOMEM; 6959 6960 /* 6961 * MMU roles use union aliasing which is, generally speaking, an 6962 * undefined behavior. However, we supposedly know how compilers behave 6963 * and the current status quo is unlikely to change. Guardians below are 6964 * supposed to let us know if the assumption becomes false. 6965 */ 6966 BUILD_BUG_ON(sizeof(union kvm_mmu_page_role) != sizeof(u32)); 6967 BUILD_BUG_ON(sizeof(union kvm_mmu_extended_role) != sizeof(u32)); 6968 BUILD_BUG_ON(sizeof(union kvm_cpu_role) != sizeof(u64)); 6969 6970 kvm_mmu_reset_all_pte_masks(); 6971 6972 pte_list_desc_cache = kmem_cache_create("pte_list_desc", 6973 sizeof(struct pte_list_desc), 6974 0, SLAB_ACCOUNT, NULL); 6975 if (!pte_list_desc_cache) 6976 goto out; 6977 6978 mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header", 6979 sizeof(struct kvm_mmu_page), 6980 0, SLAB_ACCOUNT, NULL); 6981 if (!mmu_page_header_cache) 6982 goto out; 6983 6984 if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL)) 6985 goto out; 6986 6987 ret = register_shrinker(&mmu_shrinker, "x86-mmu"); 6988 if (ret) 6989 goto out_shrinker; 6990 6991 return 0; 6992 6993 out_shrinker: 6994 percpu_counter_destroy(&kvm_total_used_mmu_pages); 6995 out: 6996 mmu_destroy_caches(); 6997 return ret; 6998 } 6999 7000 void kvm_mmu_destroy(struct kvm_vcpu *vcpu) 7001 { 7002 kvm_mmu_unload(vcpu); 7003 free_mmu_pages(&vcpu->arch.root_mmu); 7004 free_mmu_pages(&vcpu->arch.guest_mmu); 7005 mmu_free_memory_caches(vcpu); 7006 } 7007 7008 void kvm_mmu_vendor_module_exit(void) 7009 { 7010 mmu_destroy_caches(); 7011 percpu_counter_destroy(&kvm_total_used_mmu_pages); 7012 unregister_shrinker(&mmu_shrinker); 7013 } 7014 7015 /* 7016 * Calculate the effective recovery period, accounting for '0' meaning "let KVM 7017 * select a halving time of 1 hour". Returns true if recovery is enabled. 7018 */ 7019 static bool calc_nx_huge_pages_recovery_period(uint *period) 7020 { 7021 /* 7022 * Use READ_ONCE to get the params, this may be called outside of the 7023 * param setters, e.g. by the kthread to compute its next timeout. 7024 */ 7025 bool enabled = READ_ONCE(nx_huge_pages); 7026 uint ratio = READ_ONCE(nx_huge_pages_recovery_ratio); 7027 7028 if (!enabled || !ratio) 7029 return false; 7030 7031 *period = READ_ONCE(nx_huge_pages_recovery_period_ms); 7032 if (!*period) { 7033 /* Make sure the period is not less than one second. */ 7034 ratio = min(ratio, 3600u); 7035 *period = 60 * 60 * 1000 / ratio; 7036 } 7037 return true; 7038 } 7039 7040 static int set_nx_huge_pages_recovery_param(const char *val, const struct kernel_param *kp) 7041 { 7042 bool was_recovery_enabled, is_recovery_enabled; 7043 uint old_period, new_period; 7044 int err; 7045 7046 if (nx_hugepage_mitigation_hard_disabled) 7047 return -EPERM; 7048 7049 was_recovery_enabled = calc_nx_huge_pages_recovery_period(&old_period); 7050 7051 err = param_set_uint(val, kp); 7052 if (err) 7053 return err; 7054 7055 is_recovery_enabled = calc_nx_huge_pages_recovery_period(&new_period); 7056 7057 if (is_recovery_enabled && 7058 (!was_recovery_enabled || old_period > new_period)) { 7059 struct kvm *kvm; 7060 7061 mutex_lock(&kvm_lock); 7062 7063 list_for_each_entry(kvm, &vm_list, vm_list) 7064 wake_up_process(kvm->arch.nx_huge_page_recovery_thread); 7065 7066 mutex_unlock(&kvm_lock); 7067 } 7068 7069 return err; 7070 } 7071 7072 static void kvm_recover_nx_huge_pages(struct kvm *kvm) 7073 { 7074 unsigned long nx_lpage_splits = kvm->stat.nx_lpage_splits; 7075 struct kvm_memory_slot *slot; 7076 int rcu_idx; 7077 struct kvm_mmu_page *sp; 7078 unsigned int ratio; 7079 LIST_HEAD(invalid_list); 7080 bool flush = false; 7081 ulong to_zap; 7082 7083 rcu_idx = srcu_read_lock(&kvm->srcu); 7084 write_lock(&kvm->mmu_lock); 7085 7086 /* 7087 * Zapping TDP MMU shadow pages, including the remote TLB flush, must 7088 * be done under RCU protection, because the pages are freed via RCU 7089 * callback. 7090 */ 7091 rcu_read_lock(); 7092 7093 ratio = READ_ONCE(nx_huge_pages_recovery_ratio); 7094 to_zap = ratio ? DIV_ROUND_UP(nx_lpage_splits, ratio) : 0; 7095 for ( ; to_zap; --to_zap) { 7096 if (list_empty(&kvm->arch.possible_nx_huge_pages)) 7097 break; 7098 7099 /* 7100 * We use a separate list instead of just using active_mmu_pages 7101 * because the number of shadow pages that be replaced with an 7102 * NX huge page is expected to be relatively small compared to 7103 * the total number of shadow pages. And because the TDP MMU 7104 * doesn't use active_mmu_pages. 7105 */ 7106 sp = list_first_entry(&kvm->arch.possible_nx_huge_pages, 7107 struct kvm_mmu_page, 7108 possible_nx_huge_page_link); 7109 WARN_ON_ONCE(!sp->nx_huge_page_disallowed); 7110 WARN_ON_ONCE(!sp->role.direct); 7111 7112 /* 7113 * Unaccount and do not attempt to recover any NX Huge Pages 7114 * that are being dirty tracked, as they would just be faulted 7115 * back in as 4KiB pages. The NX Huge Pages in this slot will be 7116 * recovered, along with all the other huge pages in the slot, 7117 * when dirty logging is disabled. 7118 * 7119 * Since gfn_to_memslot() is relatively expensive, it helps to 7120 * skip it if it the test cannot possibly return true. On the 7121 * other hand, if any memslot has logging enabled, chances are 7122 * good that all of them do, in which case unaccount_nx_huge_page() 7123 * is much cheaper than zapping the page. 7124 * 7125 * If a memslot update is in progress, reading an incorrect value 7126 * of kvm->nr_memslots_dirty_logging is not a problem: if it is 7127 * becoming zero, gfn_to_memslot() will be done unnecessarily; if 7128 * it is becoming nonzero, the page will be zapped unnecessarily. 7129 * Either way, this only affects efficiency in racy situations, 7130 * and not correctness. 7131 */ 7132 slot = NULL; 7133 if (atomic_read(&kvm->nr_memslots_dirty_logging)) { 7134 struct kvm_memslots *slots; 7135 7136 slots = kvm_memslots_for_spte_role(kvm, sp->role); 7137 slot = __gfn_to_memslot(slots, sp->gfn); 7138 WARN_ON_ONCE(!slot); 7139 } 7140 7141 if (slot && kvm_slot_dirty_track_enabled(slot)) 7142 unaccount_nx_huge_page(kvm, sp); 7143 else if (is_tdp_mmu_page(sp)) 7144 flush |= kvm_tdp_mmu_zap_sp(kvm, sp); 7145 else 7146 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list); 7147 WARN_ON_ONCE(sp->nx_huge_page_disallowed); 7148 7149 if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) { 7150 kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush); 7151 rcu_read_unlock(); 7152 7153 cond_resched_rwlock_write(&kvm->mmu_lock); 7154 flush = false; 7155 7156 rcu_read_lock(); 7157 } 7158 } 7159 kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush); 7160 7161 rcu_read_unlock(); 7162 7163 write_unlock(&kvm->mmu_lock); 7164 srcu_read_unlock(&kvm->srcu, rcu_idx); 7165 } 7166 7167 static long get_nx_huge_page_recovery_timeout(u64 start_time) 7168 { 7169 bool enabled; 7170 uint period; 7171 7172 enabled = calc_nx_huge_pages_recovery_period(&period); 7173 7174 return enabled ? start_time + msecs_to_jiffies(period) - get_jiffies_64() 7175 : MAX_SCHEDULE_TIMEOUT; 7176 } 7177 7178 static int kvm_nx_huge_page_recovery_worker(struct kvm *kvm, uintptr_t data) 7179 { 7180 u64 start_time; 7181 long remaining_time; 7182 7183 while (true) { 7184 start_time = get_jiffies_64(); 7185 remaining_time = get_nx_huge_page_recovery_timeout(start_time); 7186 7187 set_current_state(TASK_INTERRUPTIBLE); 7188 while (!kthread_should_stop() && remaining_time > 0) { 7189 schedule_timeout(remaining_time); 7190 remaining_time = get_nx_huge_page_recovery_timeout(start_time); 7191 set_current_state(TASK_INTERRUPTIBLE); 7192 } 7193 7194 set_current_state(TASK_RUNNING); 7195 7196 if (kthread_should_stop()) 7197 return 0; 7198 7199 kvm_recover_nx_huge_pages(kvm); 7200 } 7201 } 7202 7203 int kvm_mmu_post_init_vm(struct kvm *kvm) 7204 { 7205 int err; 7206 7207 if (nx_hugepage_mitigation_hard_disabled) 7208 return 0; 7209 7210 err = kvm_vm_create_worker_thread(kvm, kvm_nx_huge_page_recovery_worker, 0, 7211 "kvm-nx-lpage-recovery", 7212 &kvm->arch.nx_huge_page_recovery_thread); 7213 if (!err) 7214 kthread_unpark(kvm->arch.nx_huge_page_recovery_thread); 7215 7216 return err; 7217 } 7218 7219 void kvm_mmu_pre_destroy_vm(struct kvm *kvm) 7220 { 7221 if (kvm->arch.nx_huge_page_recovery_thread) 7222 kthread_stop(kvm->arch.nx_huge_page_recovery_thread); 7223 } 7224