xref: /openbmc/linux/arch/x86/kvm/mmu/mmu.c (revision a89aa749ece9c6fee7932163472d2ee0efd6ddd3)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This module enables machines with Intel VT-x extensions to run virtual
6  * machines without emulation or binary translation.
7  *
8  * MMU support
9  *
10  * Copyright (C) 2006 Qumranet, Inc.
11  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
12  *
13  * Authors:
14  *   Yaniv Kamay  <yaniv@qumranet.com>
15  *   Avi Kivity   <avi@qumranet.com>
16  */
17 
18 #include "irq.h"
19 #include "mmu.h"
20 #include "x86.h"
21 #include "kvm_cache_regs.h"
22 #include "kvm_emulate.h"
23 #include "cpuid.h"
24 
25 #include <linux/kvm_host.h>
26 #include <linux/types.h>
27 #include <linux/string.h>
28 #include <linux/mm.h>
29 #include <linux/highmem.h>
30 #include <linux/moduleparam.h>
31 #include <linux/export.h>
32 #include <linux/swap.h>
33 #include <linux/hugetlb.h>
34 #include <linux/compiler.h>
35 #include <linux/srcu.h>
36 #include <linux/slab.h>
37 #include <linux/sched/signal.h>
38 #include <linux/uaccess.h>
39 #include <linux/hash.h>
40 #include <linux/kern_levels.h>
41 #include <linux/kthread.h>
42 
43 #include <asm/page.h>
44 #include <asm/memtype.h>
45 #include <asm/cmpxchg.h>
46 #include <asm/e820/api.h>
47 #include <asm/io.h>
48 #include <asm/vmx.h>
49 #include <asm/kvm_page_track.h>
50 #include "trace.h"
51 
52 extern bool itlb_multihit_kvm_mitigation;
53 
54 static int __read_mostly nx_huge_pages = -1;
55 #ifdef CONFIG_PREEMPT_RT
56 /* Recovery can cause latency spikes, disable it for PREEMPT_RT.  */
57 static uint __read_mostly nx_huge_pages_recovery_ratio = 0;
58 #else
59 static uint __read_mostly nx_huge_pages_recovery_ratio = 60;
60 #endif
61 
62 static int set_nx_huge_pages(const char *val, const struct kernel_param *kp);
63 static int set_nx_huge_pages_recovery_ratio(const char *val, const struct kernel_param *kp);
64 
65 static struct kernel_param_ops nx_huge_pages_ops = {
66 	.set = set_nx_huge_pages,
67 	.get = param_get_bool,
68 };
69 
70 static struct kernel_param_ops nx_huge_pages_recovery_ratio_ops = {
71 	.set = set_nx_huge_pages_recovery_ratio,
72 	.get = param_get_uint,
73 };
74 
75 module_param_cb(nx_huge_pages, &nx_huge_pages_ops, &nx_huge_pages, 0644);
76 __MODULE_PARM_TYPE(nx_huge_pages, "bool");
77 module_param_cb(nx_huge_pages_recovery_ratio, &nx_huge_pages_recovery_ratio_ops,
78 		&nx_huge_pages_recovery_ratio, 0644);
79 __MODULE_PARM_TYPE(nx_huge_pages_recovery_ratio, "uint");
80 
81 /*
82  * When setting this variable to true it enables Two-Dimensional-Paging
83  * where the hardware walks 2 page tables:
84  * 1. the guest-virtual to guest-physical
85  * 2. while doing 1. it walks guest-physical to host-physical
86  * If the hardware supports that we don't need to do shadow paging.
87  */
88 bool tdp_enabled = false;
89 
90 static int max_page_level __read_mostly;
91 
92 enum {
93 	AUDIT_PRE_PAGE_FAULT,
94 	AUDIT_POST_PAGE_FAULT,
95 	AUDIT_PRE_PTE_WRITE,
96 	AUDIT_POST_PTE_WRITE,
97 	AUDIT_PRE_SYNC,
98 	AUDIT_POST_SYNC
99 };
100 
101 #undef MMU_DEBUG
102 
103 #ifdef MMU_DEBUG
104 static bool dbg = 0;
105 module_param(dbg, bool, 0644);
106 
107 #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
108 #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
109 #define MMU_WARN_ON(x) WARN_ON(x)
110 #else
111 #define pgprintk(x...) do { } while (0)
112 #define rmap_printk(x...) do { } while (0)
113 #define MMU_WARN_ON(x) do { } while (0)
114 #endif
115 
116 #define PTE_PREFETCH_NUM		8
117 
118 #define PT_FIRST_AVAIL_BITS_SHIFT 10
119 #define PT64_SECOND_AVAIL_BITS_SHIFT 54
120 
121 /*
122  * The mask used to denote special SPTEs, which can be either MMIO SPTEs or
123  * Access Tracking SPTEs.
124  */
125 #define SPTE_SPECIAL_MASK (3ULL << 52)
126 #define SPTE_AD_ENABLED_MASK (0ULL << 52)
127 #define SPTE_AD_DISABLED_MASK (1ULL << 52)
128 #define SPTE_AD_WRPROT_ONLY_MASK (2ULL << 52)
129 #define SPTE_MMIO_MASK (3ULL << 52)
130 
131 #define PT64_LEVEL_BITS 9
132 
133 #define PT64_LEVEL_SHIFT(level) \
134 		(PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
135 
136 #define PT64_INDEX(address, level)\
137 	(((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
138 
139 
140 #define PT32_LEVEL_BITS 10
141 
142 #define PT32_LEVEL_SHIFT(level) \
143 		(PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
144 
145 #define PT32_LVL_OFFSET_MASK(level) \
146 	(PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
147 						* PT32_LEVEL_BITS))) - 1))
148 
149 #define PT32_INDEX(address, level)\
150 	(((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
151 
152 
153 #ifdef CONFIG_DYNAMIC_PHYSICAL_MASK
154 #define PT64_BASE_ADDR_MASK (physical_mask & ~(u64)(PAGE_SIZE-1))
155 #else
156 #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
157 #endif
158 #define PT64_LVL_ADDR_MASK(level) \
159 	(PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
160 						* PT64_LEVEL_BITS))) - 1))
161 #define PT64_LVL_OFFSET_MASK(level) \
162 	(PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
163 						* PT64_LEVEL_BITS))) - 1))
164 
165 #define PT32_BASE_ADDR_MASK PAGE_MASK
166 #define PT32_DIR_BASE_ADDR_MASK \
167 	(PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
168 #define PT32_LVL_ADDR_MASK(level) \
169 	(PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
170 					    * PT32_LEVEL_BITS))) - 1))
171 
172 #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | shadow_user_mask \
173 			| shadow_x_mask | shadow_nx_mask | shadow_me_mask)
174 
175 #define ACC_EXEC_MASK    1
176 #define ACC_WRITE_MASK   PT_WRITABLE_MASK
177 #define ACC_USER_MASK    PT_USER_MASK
178 #define ACC_ALL          (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
179 
180 /* The mask for the R/X bits in EPT PTEs */
181 #define PT64_EPT_READABLE_MASK			0x1ull
182 #define PT64_EPT_EXECUTABLE_MASK		0x4ull
183 
184 #include <trace/events/kvm.h>
185 
186 #define SPTE_HOST_WRITEABLE	(1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
187 #define SPTE_MMU_WRITEABLE	(1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
188 
189 #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
190 
191 /* make pte_list_desc fit well in cache line */
192 #define PTE_LIST_EXT 3
193 
194 /*
195  * Return values of handle_mmio_page_fault and mmu.page_fault:
196  * RET_PF_RETRY: let CPU fault again on the address.
197  * RET_PF_EMULATE: mmio page fault, emulate the instruction directly.
198  *
199  * For handle_mmio_page_fault only:
200  * RET_PF_INVALID: the spte is invalid, let the real page fault path update it.
201  */
202 enum {
203 	RET_PF_RETRY = 0,
204 	RET_PF_EMULATE = 1,
205 	RET_PF_INVALID = 2,
206 };
207 
208 struct pte_list_desc {
209 	u64 *sptes[PTE_LIST_EXT];
210 	struct pte_list_desc *more;
211 };
212 
213 struct kvm_shadow_walk_iterator {
214 	u64 addr;
215 	hpa_t shadow_addr;
216 	u64 *sptep;
217 	int level;
218 	unsigned index;
219 };
220 
221 #define for_each_shadow_entry_using_root(_vcpu, _root, _addr, _walker)     \
222 	for (shadow_walk_init_using_root(&(_walker), (_vcpu),              \
223 					 (_root), (_addr));                \
224 	     shadow_walk_okay(&(_walker));			           \
225 	     shadow_walk_next(&(_walker)))
226 
227 #define for_each_shadow_entry(_vcpu, _addr, _walker)            \
228 	for (shadow_walk_init(&(_walker), _vcpu, _addr);	\
229 	     shadow_walk_okay(&(_walker));			\
230 	     shadow_walk_next(&(_walker)))
231 
232 #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte)	\
233 	for (shadow_walk_init(&(_walker), _vcpu, _addr);		\
234 	     shadow_walk_okay(&(_walker)) &&				\
235 		({ spte = mmu_spte_get_lockless(_walker.sptep); 1; });	\
236 	     __shadow_walk_next(&(_walker), spte))
237 
238 static struct kmem_cache *pte_list_desc_cache;
239 static struct kmem_cache *mmu_page_header_cache;
240 static struct percpu_counter kvm_total_used_mmu_pages;
241 
242 static u64 __read_mostly shadow_nx_mask;
243 static u64 __read_mostly shadow_x_mask;	/* mutual exclusive with nx_mask */
244 static u64 __read_mostly shadow_user_mask;
245 static u64 __read_mostly shadow_accessed_mask;
246 static u64 __read_mostly shadow_dirty_mask;
247 static u64 __read_mostly shadow_mmio_mask;
248 static u64 __read_mostly shadow_mmio_value;
249 static u64 __read_mostly shadow_mmio_access_mask;
250 static u64 __read_mostly shadow_present_mask;
251 static u64 __read_mostly shadow_me_mask;
252 
253 /*
254  * SPTEs used by MMUs without A/D bits are marked with SPTE_AD_DISABLED_MASK;
255  * shadow_acc_track_mask is the set of bits to be cleared in non-accessed
256  * pages.
257  */
258 static u64 __read_mostly shadow_acc_track_mask;
259 
260 /*
261  * The mask/shift to use for saving the original R/X bits when marking the PTE
262  * as not-present for access tracking purposes. We do not save the W bit as the
263  * PTEs being access tracked also need to be dirty tracked, so the W bit will be
264  * restored only when a write is attempted to the page.
265  */
266 static const u64 shadow_acc_track_saved_bits_mask = PT64_EPT_READABLE_MASK |
267 						    PT64_EPT_EXECUTABLE_MASK;
268 static const u64 shadow_acc_track_saved_bits_shift = PT64_SECOND_AVAIL_BITS_SHIFT;
269 
270 /*
271  * This mask must be set on all non-zero Non-Present or Reserved SPTEs in order
272  * to guard against L1TF attacks.
273  */
274 static u64 __read_mostly shadow_nonpresent_or_rsvd_mask;
275 
276 /*
277  * The number of high-order 1 bits to use in the mask above.
278  */
279 static const u64 shadow_nonpresent_or_rsvd_mask_len = 5;
280 
281 /*
282  * In some cases, we need to preserve the GFN of a non-present or reserved
283  * SPTE when we usurp the upper five bits of the physical address space to
284  * defend against L1TF, e.g. for MMIO SPTEs.  To preserve the GFN, we'll
285  * shift bits of the GFN that overlap with shadow_nonpresent_or_rsvd_mask
286  * left into the reserved bits, i.e. the GFN in the SPTE will be split into
287  * high and low parts.  This mask covers the lower bits of the GFN.
288  */
289 static u64 __read_mostly shadow_nonpresent_or_rsvd_lower_gfn_mask;
290 
291 /*
292  * The number of non-reserved physical address bits irrespective of features
293  * that repurpose legal bits, e.g. MKTME.
294  */
295 static u8 __read_mostly shadow_phys_bits;
296 
297 static void mmu_spte_set(u64 *sptep, u64 spte);
298 static bool is_executable_pte(u64 spte);
299 static union kvm_mmu_page_role
300 kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu);
301 
302 #define CREATE_TRACE_POINTS
303 #include "mmutrace.h"
304 
305 
306 static inline bool kvm_available_flush_tlb_with_range(void)
307 {
308 	return kvm_x86_ops.tlb_remote_flush_with_range;
309 }
310 
311 static void kvm_flush_remote_tlbs_with_range(struct kvm *kvm,
312 		struct kvm_tlb_range *range)
313 {
314 	int ret = -ENOTSUPP;
315 
316 	if (range && kvm_x86_ops.tlb_remote_flush_with_range)
317 		ret = kvm_x86_ops.tlb_remote_flush_with_range(kvm, range);
318 
319 	if (ret)
320 		kvm_flush_remote_tlbs(kvm);
321 }
322 
323 static void kvm_flush_remote_tlbs_with_address(struct kvm *kvm,
324 		u64 start_gfn, u64 pages)
325 {
326 	struct kvm_tlb_range range;
327 
328 	range.start_gfn = start_gfn;
329 	range.pages = pages;
330 
331 	kvm_flush_remote_tlbs_with_range(kvm, &range);
332 }
333 
334 void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask, u64 mmio_value, u64 access_mask)
335 {
336 	BUG_ON((u64)(unsigned)access_mask != access_mask);
337 	BUG_ON((mmio_mask & mmio_value) != mmio_value);
338 	shadow_mmio_value = mmio_value | SPTE_MMIO_MASK;
339 	shadow_mmio_mask = mmio_mask | SPTE_SPECIAL_MASK;
340 	shadow_mmio_access_mask = access_mask;
341 }
342 EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
343 
344 static bool is_mmio_spte(u64 spte)
345 {
346 	return (spte & shadow_mmio_mask) == shadow_mmio_value;
347 }
348 
349 static inline bool sp_ad_disabled(struct kvm_mmu_page *sp)
350 {
351 	return sp->role.ad_disabled;
352 }
353 
354 static inline bool kvm_vcpu_ad_need_write_protect(struct kvm_vcpu *vcpu)
355 {
356 	/*
357 	 * When using the EPT page-modification log, the GPAs in the log
358 	 * would come from L2 rather than L1.  Therefore, we need to rely
359 	 * on write protection to record dirty pages.  This also bypasses
360 	 * PML, since writes now result in a vmexit.
361 	 */
362 	return vcpu->arch.mmu == &vcpu->arch.guest_mmu;
363 }
364 
365 static inline bool spte_ad_enabled(u64 spte)
366 {
367 	MMU_WARN_ON(is_mmio_spte(spte));
368 	return (spte & SPTE_SPECIAL_MASK) != SPTE_AD_DISABLED_MASK;
369 }
370 
371 static inline bool spte_ad_need_write_protect(u64 spte)
372 {
373 	MMU_WARN_ON(is_mmio_spte(spte));
374 	return (spte & SPTE_SPECIAL_MASK) != SPTE_AD_ENABLED_MASK;
375 }
376 
377 static bool is_nx_huge_page_enabled(void)
378 {
379 	return READ_ONCE(nx_huge_pages);
380 }
381 
382 static inline u64 spte_shadow_accessed_mask(u64 spte)
383 {
384 	MMU_WARN_ON(is_mmio_spte(spte));
385 	return spte_ad_enabled(spte) ? shadow_accessed_mask : 0;
386 }
387 
388 static inline u64 spte_shadow_dirty_mask(u64 spte)
389 {
390 	MMU_WARN_ON(is_mmio_spte(spte));
391 	return spte_ad_enabled(spte) ? shadow_dirty_mask : 0;
392 }
393 
394 static inline bool is_access_track_spte(u64 spte)
395 {
396 	return !spte_ad_enabled(spte) && (spte & shadow_acc_track_mask) == 0;
397 }
398 
399 /*
400  * Due to limited space in PTEs, the MMIO generation is a 19 bit subset of
401  * the memslots generation and is derived as follows:
402  *
403  * Bits 0-8 of the MMIO generation are propagated to spte bits 3-11
404  * Bits 9-18 of the MMIO generation are propagated to spte bits 52-61
405  *
406  * The KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS flag is intentionally not included in
407  * the MMIO generation number, as doing so would require stealing a bit from
408  * the "real" generation number and thus effectively halve the maximum number
409  * of MMIO generations that can be handled before encountering a wrap (which
410  * requires a full MMU zap).  The flag is instead explicitly queried when
411  * checking for MMIO spte cache hits.
412  */
413 #define MMIO_SPTE_GEN_MASK		GENMASK_ULL(17, 0)
414 
415 #define MMIO_SPTE_GEN_LOW_START		3
416 #define MMIO_SPTE_GEN_LOW_END		11
417 #define MMIO_SPTE_GEN_LOW_MASK		GENMASK_ULL(MMIO_SPTE_GEN_LOW_END, \
418 						    MMIO_SPTE_GEN_LOW_START)
419 
420 #define MMIO_SPTE_GEN_HIGH_START	PT64_SECOND_AVAIL_BITS_SHIFT
421 #define MMIO_SPTE_GEN_HIGH_END		62
422 #define MMIO_SPTE_GEN_HIGH_MASK		GENMASK_ULL(MMIO_SPTE_GEN_HIGH_END, \
423 						    MMIO_SPTE_GEN_HIGH_START)
424 
425 static u64 generation_mmio_spte_mask(u64 gen)
426 {
427 	u64 mask;
428 
429 	WARN_ON(gen & ~MMIO_SPTE_GEN_MASK);
430 	BUILD_BUG_ON((MMIO_SPTE_GEN_HIGH_MASK | MMIO_SPTE_GEN_LOW_MASK) & SPTE_SPECIAL_MASK);
431 
432 	mask = (gen << MMIO_SPTE_GEN_LOW_START) & MMIO_SPTE_GEN_LOW_MASK;
433 	mask |= (gen << MMIO_SPTE_GEN_HIGH_START) & MMIO_SPTE_GEN_HIGH_MASK;
434 	return mask;
435 }
436 
437 static u64 get_mmio_spte_generation(u64 spte)
438 {
439 	u64 gen;
440 
441 	gen = (spte & MMIO_SPTE_GEN_LOW_MASK) >> MMIO_SPTE_GEN_LOW_START;
442 	gen |= (spte & MMIO_SPTE_GEN_HIGH_MASK) >> MMIO_SPTE_GEN_HIGH_START;
443 	return gen;
444 }
445 
446 static u64 make_mmio_spte(struct kvm_vcpu *vcpu, u64 gfn, unsigned int access)
447 {
448 
449 	u64 gen = kvm_vcpu_memslots(vcpu)->generation & MMIO_SPTE_GEN_MASK;
450 	u64 mask = generation_mmio_spte_mask(gen);
451 	u64 gpa = gfn << PAGE_SHIFT;
452 
453 	access &= shadow_mmio_access_mask;
454 	mask |= shadow_mmio_value | access;
455 	mask |= gpa | shadow_nonpresent_or_rsvd_mask;
456 	mask |= (gpa & shadow_nonpresent_or_rsvd_mask)
457 		<< shadow_nonpresent_or_rsvd_mask_len;
458 
459 	return mask;
460 }
461 
462 static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn,
463 			   unsigned int access)
464 {
465 	u64 mask = make_mmio_spte(vcpu, gfn, access);
466 	unsigned int gen = get_mmio_spte_generation(mask);
467 
468 	access = mask & ACC_ALL;
469 
470 	trace_mark_mmio_spte(sptep, gfn, access, gen);
471 	mmu_spte_set(sptep, mask);
472 }
473 
474 static gfn_t get_mmio_spte_gfn(u64 spte)
475 {
476 	u64 gpa = spte & shadow_nonpresent_or_rsvd_lower_gfn_mask;
477 
478 	gpa |= (spte >> shadow_nonpresent_or_rsvd_mask_len)
479 	       & shadow_nonpresent_or_rsvd_mask;
480 
481 	return gpa >> PAGE_SHIFT;
482 }
483 
484 static unsigned get_mmio_spte_access(u64 spte)
485 {
486 	return spte & shadow_mmio_access_mask;
487 }
488 
489 static bool set_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
490 			  kvm_pfn_t pfn, unsigned int access)
491 {
492 	if (unlikely(is_noslot_pfn(pfn))) {
493 		mark_mmio_spte(vcpu, sptep, gfn, access);
494 		return true;
495 	}
496 
497 	return false;
498 }
499 
500 static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte)
501 {
502 	u64 kvm_gen, spte_gen, gen;
503 
504 	gen = kvm_vcpu_memslots(vcpu)->generation;
505 	if (unlikely(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS))
506 		return false;
507 
508 	kvm_gen = gen & MMIO_SPTE_GEN_MASK;
509 	spte_gen = get_mmio_spte_generation(spte);
510 
511 	trace_check_mmio_spte(spte, kvm_gen, spte_gen);
512 	return likely(kvm_gen == spte_gen);
513 }
514 
515 /*
516  * Sets the shadow PTE masks used by the MMU.
517  *
518  * Assumptions:
519  *  - Setting either @accessed_mask or @dirty_mask requires setting both
520  *  - At least one of @accessed_mask or @acc_track_mask must be set
521  */
522 void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
523 		u64 dirty_mask, u64 nx_mask, u64 x_mask, u64 p_mask,
524 		u64 acc_track_mask, u64 me_mask)
525 {
526 	BUG_ON(!dirty_mask != !accessed_mask);
527 	BUG_ON(!accessed_mask && !acc_track_mask);
528 	BUG_ON(acc_track_mask & SPTE_SPECIAL_MASK);
529 
530 	shadow_user_mask = user_mask;
531 	shadow_accessed_mask = accessed_mask;
532 	shadow_dirty_mask = dirty_mask;
533 	shadow_nx_mask = nx_mask;
534 	shadow_x_mask = x_mask;
535 	shadow_present_mask = p_mask;
536 	shadow_acc_track_mask = acc_track_mask;
537 	shadow_me_mask = me_mask;
538 }
539 EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
540 
541 static u8 kvm_get_shadow_phys_bits(void)
542 {
543 	/*
544 	 * boot_cpu_data.x86_phys_bits is reduced when MKTME or SME are detected
545 	 * in CPU detection code, but the processor treats those reduced bits as
546 	 * 'keyID' thus they are not reserved bits. Therefore KVM needs to look at
547 	 * the physical address bits reported by CPUID.
548 	 */
549 	if (likely(boot_cpu_data.extended_cpuid_level >= 0x80000008))
550 		return cpuid_eax(0x80000008) & 0xff;
551 
552 	/*
553 	 * Quite weird to have VMX or SVM but not MAXPHYADDR; probably a VM with
554 	 * custom CPUID.  Proceed with whatever the kernel found since these features
555 	 * aren't virtualizable (SME/SEV also require CPUIDs higher than 0x80000008).
556 	 */
557 	return boot_cpu_data.x86_phys_bits;
558 }
559 
560 static void kvm_mmu_reset_all_pte_masks(void)
561 {
562 	u8 low_phys_bits;
563 
564 	shadow_user_mask = 0;
565 	shadow_accessed_mask = 0;
566 	shadow_dirty_mask = 0;
567 	shadow_nx_mask = 0;
568 	shadow_x_mask = 0;
569 	shadow_mmio_mask = 0;
570 	shadow_present_mask = 0;
571 	shadow_acc_track_mask = 0;
572 
573 	shadow_phys_bits = kvm_get_shadow_phys_bits();
574 
575 	/*
576 	 * If the CPU has 46 or less physical address bits, then set an
577 	 * appropriate mask to guard against L1TF attacks. Otherwise, it is
578 	 * assumed that the CPU is not vulnerable to L1TF.
579 	 *
580 	 * Some Intel CPUs address the L1 cache using more PA bits than are
581 	 * reported by CPUID. Use the PA width of the L1 cache when possible
582 	 * to achieve more effective mitigation, e.g. if system RAM overlaps
583 	 * the most significant bits of legal physical address space.
584 	 */
585 	shadow_nonpresent_or_rsvd_mask = 0;
586 	low_phys_bits = boot_cpu_data.x86_cache_bits;
587 	if (boot_cpu_data.x86_cache_bits <
588 	    52 - shadow_nonpresent_or_rsvd_mask_len) {
589 		shadow_nonpresent_or_rsvd_mask =
590 			rsvd_bits(boot_cpu_data.x86_cache_bits -
591 				  shadow_nonpresent_or_rsvd_mask_len,
592 				  boot_cpu_data.x86_cache_bits - 1);
593 		low_phys_bits -= shadow_nonpresent_or_rsvd_mask_len;
594 	} else
595 		WARN_ON_ONCE(boot_cpu_has_bug(X86_BUG_L1TF));
596 
597 	shadow_nonpresent_or_rsvd_lower_gfn_mask =
598 		GENMASK_ULL(low_phys_bits - 1, PAGE_SHIFT);
599 }
600 
601 static int is_cpuid_PSE36(void)
602 {
603 	return 1;
604 }
605 
606 static int is_nx(struct kvm_vcpu *vcpu)
607 {
608 	return vcpu->arch.efer & EFER_NX;
609 }
610 
611 static int is_shadow_present_pte(u64 pte)
612 {
613 	return (pte != 0) && !is_mmio_spte(pte);
614 }
615 
616 static int is_large_pte(u64 pte)
617 {
618 	return pte & PT_PAGE_SIZE_MASK;
619 }
620 
621 static int is_last_spte(u64 pte, int level)
622 {
623 	if (level == PT_PAGE_TABLE_LEVEL)
624 		return 1;
625 	if (is_large_pte(pte))
626 		return 1;
627 	return 0;
628 }
629 
630 static bool is_executable_pte(u64 spte)
631 {
632 	return (spte & (shadow_x_mask | shadow_nx_mask)) == shadow_x_mask;
633 }
634 
635 static kvm_pfn_t spte_to_pfn(u64 pte)
636 {
637 	return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
638 }
639 
640 static gfn_t pse36_gfn_delta(u32 gpte)
641 {
642 	int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
643 
644 	return (gpte & PT32_DIR_PSE36_MASK) << shift;
645 }
646 
647 #ifdef CONFIG_X86_64
648 static void __set_spte(u64 *sptep, u64 spte)
649 {
650 	WRITE_ONCE(*sptep, spte);
651 }
652 
653 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
654 {
655 	WRITE_ONCE(*sptep, spte);
656 }
657 
658 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
659 {
660 	return xchg(sptep, spte);
661 }
662 
663 static u64 __get_spte_lockless(u64 *sptep)
664 {
665 	return READ_ONCE(*sptep);
666 }
667 #else
668 union split_spte {
669 	struct {
670 		u32 spte_low;
671 		u32 spte_high;
672 	};
673 	u64 spte;
674 };
675 
676 static void count_spte_clear(u64 *sptep, u64 spte)
677 {
678 	struct kvm_mmu_page *sp =  page_header(__pa(sptep));
679 
680 	if (is_shadow_present_pte(spte))
681 		return;
682 
683 	/* Ensure the spte is completely set before we increase the count */
684 	smp_wmb();
685 	sp->clear_spte_count++;
686 }
687 
688 static void __set_spte(u64 *sptep, u64 spte)
689 {
690 	union split_spte *ssptep, sspte;
691 
692 	ssptep = (union split_spte *)sptep;
693 	sspte = (union split_spte)spte;
694 
695 	ssptep->spte_high = sspte.spte_high;
696 
697 	/*
698 	 * If we map the spte from nonpresent to present, We should store
699 	 * the high bits firstly, then set present bit, so cpu can not
700 	 * fetch this spte while we are setting the spte.
701 	 */
702 	smp_wmb();
703 
704 	WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
705 }
706 
707 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
708 {
709 	union split_spte *ssptep, sspte;
710 
711 	ssptep = (union split_spte *)sptep;
712 	sspte = (union split_spte)spte;
713 
714 	WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
715 
716 	/*
717 	 * If we map the spte from present to nonpresent, we should clear
718 	 * present bit firstly to avoid vcpu fetch the old high bits.
719 	 */
720 	smp_wmb();
721 
722 	ssptep->spte_high = sspte.spte_high;
723 	count_spte_clear(sptep, spte);
724 }
725 
726 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
727 {
728 	union split_spte *ssptep, sspte, orig;
729 
730 	ssptep = (union split_spte *)sptep;
731 	sspte = (union split_spte)spte;
732 
733 	/* xchg acts as a barrier before the setting of the high bits */
734 	orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
735 	orig.spte_high = ssptep->spte_high;
736 	ssptep->spte_high = sspte.spte_high;
737 	count_spte_clear(sptep, spte);
738 
739 	return orig.spte;
740 }
741 
742 /*
743  * The idea using the light way get the spte on x86_32 guest is from
744  * gup_get_pte (mm/gup.c).
745  *
746  * An spte tlb flush may be pending, because kvm_set_pte_rmapp
747  * coalesces them and we are running out of the MMU lock.  Therefore
748  * we need to protect against in-progress updates of the spte.
749  *
750  * Reading the spte while an update is in progress may get the old value
751  * for the high part of the spte.  The race is fine for a present->non-present
752  * change (because the high part of the spte is ignored for non-present spte),
753  * but for a present->present change we must reread the spte.
754  *
755  * All such changes are done in two steps (present->non-present and
756  * non-present->present), hence it is enough to count the number of
757  * present->non-present updates: if it changed while reading the spte,
758  * we might have hit the race.  This is done using clear_spte_count.
759  */
760 static u64 __get_spte_lockless(u64 *sptep)
761 {
762 	struct kvm_mmu_page *sp =  page_header(__pa(sptep));
763 	union split_spte spte, *orig = (union split_spte *)sptep;
764 	int count;
765 
766 retry:
767 	count = sp->clear_spte_count;
768 	smp_rmb();
769 
770 	spte.spte_low = orig->spte_low;
771 	smp_rmb();
772 
773 	spte.spte_high = orig->spte_high;
774 	smp_rmb();
775 
776 	if (unlikely(spte.spte_low != orig->spte_low ||
777 	      count != sp->clear_spte_count))
778 		goto retry;
779 
780 	return spte.spte;
781 }
782 #endif
783 
784 static bool spte_can_locklessly_be_made_writable(u64 spte)
785 {
786 	return (spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE)) ==
787 		(SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE);
788 }
789 
790 static bool spte_has_volatile_bits(u64 spte)
791 {
792 	if (!is_shadow_present_pte(spte))
793 		return false;
794 
795 	/*
796 	 * Always atomically update spte if it can be updated
797 	 * out of mmu-lock, it can ensure dirty bit is not lost,
798 	 * also, it can help us to get a stable is_writable_pte()
799 	 * to ensure tlb flush is not missed.
800 	 */
801 	if (spte_can_locklessly_be_made_writable(spte) ||
802 	    is_access_track_spte(spte))
803 		return true;
804 
805 	if (spte_ad_enabled(spte)) {
806 		if ((spte & shadow_accessed_mask) == 0 ||
807 	    	    (is_writable_pte(spte) && (spte & shadow_dirty_mask) == 0))
808 			return true;
809 	}
810 
811 	return false;
812 }
813 
814 static bool is_accessed_spte(u64 spte)
815 {
816 	u64 accessed_mask = spte_shadow_accessed_mask(spte);
817 
818 	return accessed_mask ? spte & accessed_mask
819 			     : !is_access_track_spte(spte);
820 }
821 
822 static bool is_dirty_spte(u64 spte)
823 {
824 	u64 dirty_mask = spte_shadow_dirty_mask(spte);
825 
826 	return dirty_mask ? spte & dirty_mask : spte & PT_WRITABLE_MASK;
827 }
828 
829 /* Rules for using mmu_spte_set:
830  * Set the sptep from nonpresent to present.
831  * Note: the sptep being assigned *must* be either not present
832  * or in a state where the hardware will not attempt to update
833  * the spte.
834  */
835 static void mmu_spte_set(u64 *sptep, u64 new_spte)
836 {
837 	WARN_ON(is_shadow_present_pte(*sptep));
838 	__set_spte(sptep, new_spte);
839 }
840 
841 /*
842  * Update the SPTE (excluding the PFN), but do not track changes in its
843  * accessed/dirty status.
844  */
845 static u64 mmu_spte_update_no_track(u64 *sptep, u64 new_spte)
846 {
847 	u64 old_spte = *sptep;
848 
849 	WARN_ON(!is_shadow_present_pte(new_spte));
850 
851 	if (!is_shadow_present_pte(old_spte)) {
852 		mmu_spte_set(sptep, new_spte);
853 		return old_spte;
854 	}
855 
856 	if (!spte_has_volatile_bits(old_spte))
857 		__update_clear_spte_fast(sptep, new_spte);
858 	else
859 		old_spte = __update_clear_spte_slow(sptep, new_spte);
860 
861 	WARN_ON(spte_to_pfn(old_spte) != spte_to_pfn(new_spte));
862 
863 	return old_spte;
864 }
865 
866 /* Rules for using mmu_spte_update:
867  * Update the state bits, it means the mapped pfn is not changed.
868  *
869  * Whenever we overwrite a writable spte with a read-only one we
870  * should flush remote TLBs. Otherwise rmap_write_protect
871  * will find a read-only spte, even though the writable spte
872  * might be cached on a CPU's TLB, the return value indicates this
873  * case.
874  *
875  * Returns true if the TLB needs to be flushed
876  */
877 static bool mmu_spte_update(u64 *sptep, u64 new_spte)
878 {
879 	bool flush = false;
880 	u64 old_spte = mmu_spte_update_no_track(sptep, new_spte);
881 
882 	if (!is_shadow_present_pte(old_spte))
883 		return false;
884 
885 	/*
886 	 * For the spte updated out of mmu-lock is safe, since
887 	 * we always atomically update it, see the comments in
888 	 * spte_has_volatile_bits().
889 	 */
890 	if (spte_can_locklessly_be_made_writable(old_spte) &&
891 	      !is_writable_pte(new_spte))
892 		flush = true;
893 
894 	/*
895 	 * Flush TLB when accessed/dirty states are changed in the page tables,
896 	 * to guarantee consistency between TLB and page tables.
897 	 */
898 
899 	if (is_accessed_spte(old_spte) && !is_accessed_spte(new_spte)) {
900 		flush = true;
901 		kvm_set_pfn_accessed(spte_to_pfn(old_spte));
902 	}
903 
904 	if (is_dirty_spte(old_spte) && !is_dirty_spte(new_spte)) {
905 		flush = true;
906 		kvm_set_pfn_dirty(spte_to_pfn(old_spte));
907 	}
908 
909 	return flush;
910 }
911 
912 /*
913  * Rules for using mmu_spte_clear_track_bits:
914  * It sets the sptep from present to nonpresent, and track the
915  * state bits, it is used to clear the last level sptep.
916  * Returns non-zero if the PTE was previously valid.
917  */
918 static int mmu_spte_clear_track_bits(u64 *sptep)
919 {
920 	kvm_pfn_t pfn;
921 	u64 old_spte = *sptep;
922 
923 	if (!spte_has_volatile_bits(old_spte))
924 		__update_clear_spte_fast(sptep, 0ull);
925 	else
926 		old_spte = __update_clear_spte_slow(sptep, 0ull);
927 
928 	if (!is_shadow_present_pte(old_spte))
929 		return 0;
930 
931 	pfn = spte_to_pfn(old_spte);
932 
933 	/*
934 	 * KVM does not hold the refcount of the page used by
935 	 * kvm mmu, before reclaiming the page, we should
936 	 * unmap it from mmu first.
937 	 */
938 	WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn)));
939 
940 	if (is_accessed_spte(old_spte))
941 		kvm_set_pfn_accessed(pfn);
942 
943 	if (is_dirty_spte(old_spte))
944 		kvm_set_pfn_dirty(pfn);
945 
946 	return 1;
947 }
948 
949 /*
950  * Rules for using mmu_spte_clear_no_track:
951  * Directly clear spte without caring the state bits of sptep,
952  * it is used to set the upper level spte.
953  */
954 static void mmu_spte_clear_no_track(u64 *sptep)
955 {
956 	__update_clear_spte_fast(sptep, 0ull);
957 }
958 
959 static u64 mmu_spte_get_lockless(u64 *sptep)
960 {
961 	return __get_spte_lockless(sptep);
962 }
963 
964 static u64 mark_spte_for_access_track(u64 spte)
965 {
966 	if (spte_ad_enabled(spte))
967 		return spte & ~shadow_accessed_mask;
968 
969 	if (is_access_track_spte(spte))
970 		return spte;
971 
972 	/*
973 	 * Making an Access Tracking PTE will result in removal of write access
974 	 * from the PTE. So, verify that we will be able to restore the write
975 	 * access in the fast page fault path later on.
976 	 */
977 	WARN_ONCE((spte & PT_WRITABLE_MASK) &&
978 		  !spte_can_locklessly_be_made_writable(spte),
979 		  "kvm: Writable SPTE is not locklessly dirty-trackable\n");
980 
981 	WARN_ONCE(spte & (shadow_acc_track_saved_bits_mask <<
982 			  shadow_acc_track_saved_bits_shift),
983 		  "kvm: Access Tracking saved bit locations are not zero\n");
984 
985 	spte |= (spte & shadow_acc_track_saved_bits_mask) <<
986 		shadow_acc_track_saved_bits_shift;
987 	spte &= ~shadow_acc_track_mask;
988 
989 	return spte;
990 }
991 
992 /* Restore an acc-track PTE back to a regular PTE */
993 static u64 restore_acc_track_spte(u64 spte)
994 {
995 	u64 new_spte = spte;
996 	u64 saved_bits = (spte >> shadow_acc_track_saved_bits_shift)
997 			 & shadow_acc_track_saved_bits_mask;
998 
999 	WARN_ON_ONCE(spte_ad_enabled(spte));
1000 	WARN_ON_ONCE(!is_access_track_spte(spte));
1001 
1002 	new_spte &= ~shadow_acc_track_mask;
1003 	new_spte &= ~(shadow_acc_track_saved_bits_mask <<
1004 		      shadow_acc_track_saved_bits_shift);
1005 	new_spte |= saved_bits;
1006 
1007 	return new_spte;
1008 }
1009 
1010 /* Returns the Accessed status of the PTE and resets it at the same time. */
1011 static bool mmu_spte_age(u64 *sptep)
1012 {
1013 	u64 spte = mmu_spte_get_lockless(sptep);
1014 
1015 	if (!is_accessed_spte(spte))
1016 		return false;
1017 
1018 	if (spte_ad_enabled(spte)) {
1019 		clear_bit((ffs(shadow_accessed_mask) - 1),
1020 			  (unsigned long *)sptep);
1021 	} else {
1022 		/*
1023 		 * Capture the dirty status of the page, so that it doesn't get
1024 		 * lost when the SPTE is marked for access tracking.
1025 		 */
1026 		if (is_writable_pte(spte))
1027 			kvm_set_pfn_dirty(spte_to_pfn(spte));
1028 
1029 		spte = mark_spte_for_access_track(spte);
1030 		mmu_spte_update_no_track(sptep, spte);
1031 	}
1032 
1033 	return true;
1034 }
1035 
1036 static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
1037 {
1038 	/*
1039 	 * Prevent page table teardown by making any free-er wait during
1040 	 * kvm_flush_remote_tlbs() IPI to all active vcpus.
1041 	 */
1042 	local_irq_disable();
1043 
1044 	/*
1045 	 * Make sure a following spte read is not reordered ahead of the write
1046 	 * to vcpu->mode.
1047 	 */
1048 	smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES);
1049 }
1050 
1051 static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
1052 {
1053 	/*
1054 	 * Make sure the write to vcpu->mode is not reordered in front of
1055 	 * reads to sptes.  If it does, kvm_mmu_commit_zap_page() can see us
1056 	 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
1057 	 */
1058 	smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE);
1059 	local_irq_enable();
1060 }
1061 
1062 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
1063 				  struct kmem_cache *base_cache, int min)
1064 {
1065 	void *obj;
1066 
1067 	if (cache->nobjs >= min)
1068 		return 0;
1069 	while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
1070 		obj = kmem_cache_zalloc(base_cache, GFP_KERNEL_ACCOUNT);
1071 		if (!obj)
1072 			return cache->nobjs >= min ? 0 : -ENOMEM;
1073 		cache->objects[cache->nobjs++] = obj;
1074 	}
1075 	return 0;
1076 }
1077 
1078 static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
1079 {
1080 	return cache->nobjs;
1081 }
1082 
1083 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
1084 				  struct kmem_cache *cache)
1085 {
1086 	while (mc->nobjs)
1087 		kmem_cache_free(cache, mc->objects[--mc->nobjs]);
1088 }
1089 
1090 static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
1091 				       int min)
1092 {
1093 	void *page;
1094 
1095 	if (cache->nobjs >= min)
1096 		return 0;
1097 	while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
1098 		page = (void *)__get_free_page(GFP_KERNEL_ACCOUNT);
1099 		if (!page)
1100 			return cache->nobjs >= min ? 0 : -ENOMEM;
1101 		cache->objects[cache->nobjs++] = page;
1102 	}
1103 	return 0;
1104 }
1105 
1106 static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
1107 {
1108 	while (mc->nobjs)
1109 		free_page((unsigned long)mc->objects[--mc->nobjs]);
1110 }
1111 
1112 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
1113 {
1114 	int r;
1115 
1116 	r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
1117 				   pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
1118 	if (r)
1119 		goto out;
1120 	r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
1121 	if (r)
1122 		goto out;
1123 	r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
1124 				   mmu_page_header_cache, 4);
1125 out:
1126 	return r;
1127 }
1128 
1129 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
1130 {
1131 	mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
1132 				pte_list_desc_cache);
1133 	mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
1134 	mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
1135 				mmu_page_header_cache);
1136 }
1137 
1138 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
1139 {
1140 	void *p;
1141 
1142 	BUG_ON(!mc->nobjs);
1143 	p = mc->objects[--mc->nobjs];
1144 	return p;
1145 }
1146 
1147 static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
1148 {
1149 	return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
1150 }
1151 
1152 static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
1153 {
1154 	kmem_cache_free(pte_list_desc_cache, pte_list_desc);
1155 }
1156 
1157 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
1158 {
1159 	if (!sp->role.direct)
1160 		return sp->gfns[index];
1161 
1162 	return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
1163 }
1164 
1165 static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
1166 {
1167 	if (!sp->role.direct) {
1168 		sp->gfns[index] = gfn;
1169 		return;
1170 	}
1171 
1172 	if (WARN_ON(gfn != kvm_mmu_page_get_gfn(sp, index)))
1173 		pr_err_ratelimited("gfn mismatch under direct page %llx "
1174 				   "(expected %llx, got %llx)\n",
1175 				   sp->gfn,
1176 				   kvm_mmu_page_get_gfn(sp, index), gfn);
1177 }
1178 
1179 /*
1180  * Return the pointer to the large page information for a given gfn,
1181  * handling slots that are not large page aligned.
1182  */
1183 static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
1184 					      struct kvm_memory_slot *slot,
1185 					      int level)
1186 {
1187 	unsigned long idx;
1188 
1189 	idx = gfn_to_index(gfn, slot->base_gfn, level);
1190 	return &slot->arch.lpage_info[level - 2][idx];
1191 }
1192 
1193 static void update_gfn_disallow_lpage_count(struct kvm_memory_slot *slot,
1194 					    gfn_t gfn, int count)
1195 {
1196 	struct kvm_lpage_info *linfo;
1197 	int i;
1198 
1199 	for (i = PT_DIRECTORY_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
1200 		linfo = lpage_info_slot(gfn, slot, i);
1201 		linfo->disallow_lpage += count;
1202 		WARN_ON(linfo->disallow_lpage < 0);
1203 	}
1204 }
1205 
1206 void kvm_mmu_gfn_disallow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
1207 {
1208 	update_gfn_disallow_lpage_count(slot, gfn, 1);
1209 }
1210 
1211 void kvm_mmu_gfn_allow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
1212 {
1213 	update_gfn_disallow_lpage_count(slot, gfn, -1);
1214 }
1215 
1216 static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
1217 {
1218 	struct kvm_memslots *slots;
1219 	struct kvm_memory_slot *slot;
1220 	gfn_t gfn;
1221 
1222 	kvm->arch.indirect_shadow_pages++;
1223 	gfn = sp->gfn;
1224 	slots = kvm_memslots_for_spte_role(kvm, sp->role);
1225 	slot = __gfn_to_memslot(slots, gfn);
1226 
1227 	/* the non-leaf shadow pages are keeping readonly. */
1228 	if (sp->role.level > PT_PAGE_TABLE_LEVEL)
1229 		return kvm_slot_page_track_add_page(kvm, slot, gfn,
1230 						    KVM_PAGE_TRACK_WRITE);
1231 
1232 	kvm_mmu_gfn_disallow_lpage(slot, gfn);
1233 }
1234 
1235 static void account_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1236 {
1237 	if (sp->lpage_disallowed)
1238 		return;
1239 
1240 	++kvm->stat.nx_lpage_splits;
1241 	list_add_tail(&sp->lpage_disallowed_link,
1242 		      &kvm->arch.lpage_disallowed_mmu_pages);
1243 	sp->lpage_disallowed = true;
1244 }
1245 
1246 static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
1247 {
1248 	struct kvm_memslots *slots;
1249 	struct kvm_memory_slot *slot;
1250 	gfn_t gfn;
1251 
1252 	kvm->arch.indirect_shadow_pages--;
1253 	gfn = sp->gfn;
1254 	slots = kvm_memslots_for_spte_role(kvm, sp->role);
1255 	slot = __gfn_to_memslot(slots, gfn);
1256 	if (sp->role.level > PT_PAGE_TABLE_LEVEL)
1257 		return kvm_slot_page_track_remove_page(kvm, slot, gfn,
1258 						       KVM_PAGE_TRACK_WRITE);
1259 
1260 	kvm_mmu_gfn_allow_lpage(slot, gfn);
1261 }
1262 
1263 static void unaccount_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1264 {
1265 	--kvm->stat.nx_lpage_splits;
1266 	sp->lpage_disallowed = false;
1267 	list_del(&sp->lpage_disallowed_link);
1268 }
1269 
1270 static struct kvm_memory_slot *
1271 gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
1272 			    bool no_dirty_log)
1273 {
1274 	struct kvm_memory_slot *slot;
1275 
1276 	slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1277 	if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1278 		return NULL;
1279 	if (no_dirty_log && slot->dirty_bitmap)
1280 		return NULL;
1281 
1282 	return slot;
1283 }
1284 
1285 /*
1286  * About rmap_head encoding:
1287  *
1288  * If the bit zero of rmap_head->val is clear, then it points to the only spte
1289  * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct
1290  * pte_list_desc containing more mappings.
1291  */
1292 
1293 /*
1294  * Returns the number of pointers in the rmap chain, not counting the new one.
1295  */
1296 static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
1297 			struct kvm_rmap_head *rmap_head)
1298 {
1299 	struct pte_list_desc *desc;
1300 	int i, count = 0;
1301 
1302 	if (!rmap_head->val) {
1303 		rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
1304 		rmap_head->val = (unsigned long)spte;
1305 	} else if (!(rmap_head->val & 1)) {
1306 		rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
1307 		desc = mmu_alloc_pte_list_desc(vcpu);
1308 		desc->sptes[0] = (u64 *)rmap_head->val;
1309 		desc->sptes[1] = spte;
1310 		rmap_head->val = (unsigned long)desc | 1;
1311 		++count;
1312 	} else {
1313 		rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
1314 		desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1315 		while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
1316 			desc = desc->more;
1317 			count += PTE_LIST_EXT;
1318 		}
1319 		if (desc->sptes[PTE_LIST_EXT-1]) {
1320 			desc->more = mmu_alloc_pte_list_desc(vcpu);
1321 			desc = desc->more;
1322 		}
1323 		for (i = 0; desc->sptes[i]; ++i)
1324 			++count;
1325 		desc->sptes[i] = spte;
1326 	}
1327 	return count;
1328 }
1329 
1330 static void
1331 pte_list_desc_remove_entry(struct kvm_rmap_head *rmap_head,
1332 			   struct pte_list_desc *desc, int i,
1333 			   struct pte_list_desc *prev_desc)
1334 {
1335 	int j;
1336 
1337 	for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
1338 		;
1339 	desc->sptes[i] = desc->sptes[j];
1340 	desc->sptes[j] = NULL;
1341 	if (j != 0)
1342 		return;
1343 	if (!prev_desc && !desc->more)
1344 		rmap_head->val = 0;
1345 	else
1346 		if (prev_desc)
1347 			prev_desc->more = desc->more;
1348 		else
1349 			rmap_head->val = (unsigned long)desc->more | 1;
1350 	mmu_free_pte_list_desc(desc);
1351 }
1352 
1353 static void __pte_list_remove(u64 *spte, struct kvm_rmap_head *rmap_head)
1354 {
1355 	struct pte_list_desc *desc;
1356 	struct pte_list_desc *prev_desc;
1357 	int i;
1358 
1359 	if (!rmap_head->val) {
1360 		pr_err("%s: %p 0->BUG\n", __func__, spte);
1361 		BUG();
1362 	} else if (!(rmap_head->val & 1)) {
1363 		rmap_printk("%s:  %p 1->0\n", __func__, spte);
1364 		if ((u64 *)rmap_head->val != spte) {
1365 			pr_err("%s:  %p 1->BUG\n", __func__, spte);
1366 			BUG();
1367 		}
1368 		rmap_head->val = 0;
1369 	} else {
1370 		rmap_printk("%s:  %p many->many\n", __func__, spte);
1371 		desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1372 		prev_desc = NULL;
1373 		while (desc) {
1374 			for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i) {
1375 				if (desc->sptes[i] == spte) {
1376 					pte_list_desc_remove_entry(rmap_head,
1377 							desc, i, prev_desc);
1378 					return;
1379 				}
1380 			}
1381 			prev_desc = desc;
1382 			desc = desc->more;
1383 		}
1384 		pr_err("%s: %p many->many\n", __func__, spte);
1385 		BUG();
1386 	}
1387 }
1388 
1389 static void pte_list_remove(struct kvm_rmap_head *rmap_head, u64 *sptep)
1390 {
1391 	mmu_spte_clear_track_bits(sptep);
1392 	__pte_list_remove(sptep, rmap_head);
1393 }
1394 
1395 static struct kvm_rmap_head *__gfn_to_rmap(gfn_t gfn, int level,
1396 					   struct kvm_memory_slot *slot)
1397 {
1398 	unsigned long idx;
1399 
1400 	idx = gfn_to_index(gfn, slot->base_gfn, level);
1401 	return &slot->arch.rmap[level - PT_PAGE_TABLE_LEVEL][idx];
1402 }
1403 
1404 static struct kvm_rmap_head *gfn_to_rmap(struct kvm *kvm, gfn_t gfn,
1405 					 struct kvm_mmu_page *sp)
1406 {
1407 	struct kvm_memslots *slots;
1408 	struct kvm_memory_slot *slot;
1409 
1410 	slots = kvm_memslots_for_spte_role(kvm, sp->role);
1411 	slot = __gfn_to_memslot(slots, gfn);
1412 	return __gfn_to_rmap(gfn, sp->role.level, slot);
1413 }
1414 
1415 static bool rmap_can_add(struct kvm_vcpu *vcpu)
1416 {
1417 	struct kvm_mmu_memory_cache *cache;
1418 
1419 	cache = &vcpu->arch.mmu_pte_list_desc_cache;
1420 	return mmu_memory_cache_free_objects(cache);
1421 }
1422 
1423 static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1424 {
1425 	struct kvm_mmu_page *sp;
1426 	struct kvm_rmap_head *rmap_head;
1427 
1428 	sp = page_header(__pa(spte));
1429 	kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
1430 	rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
1431 	return pte_list_add(vcpu, spte, rmap_head);
1432 }
1433 
1434 static void rmap_remove(struct kvm *kvm, u64 *spte)
1435 {
1436 	struct kvm_mmu_page *sp;
1437 	gfn_t gfn;
1438 	struct kvm_rmap_head *rmap_head;
1439 
1440 	sp = page_header(__pa(spte));
1441 	gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
1442 	rmap_head = gfn_to_rmap(kvm, gfn, sp);
1443 	__pte_list_remove(spte, rmap_head);
1444 }
1445 
1446 /*
1447  * Used by the following functions to iterate through the sptes linked by a
1448  * rmap.  All fields are private and not assumed to be used outside.
1449  */
1450 struct rmap_iterator {
1451 	/* private fields */
1452 	struct pte_list_desc *desc;	/* holds the sptep if not NULL */
1453 	int pos;			/* index of the sptep */
1454 };
1455 
1456 /*
1457  * Iteration must be started by this function.  This should also be used after
1458  * removing/dropping sptes from the rmap link because in such cases the
1459  * information in the iterator may not be valid.
1460  *
1461  * Returns sptep if found, NULL otherwise.
1462  */
1463 static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head,
1464 			   struct rmap_iterator *iter)
1465 {
1466 	u64 *sptep;
1467 
1468 	if (!rmap_head->val)
1469 		return NULL;
1470 
1471 	if (!(rmap_head->val & 1)) {
1472 		iter->desc = NULL;
1473 		sptep = (u64 *)rmap_head->val;
1474 		goto out;
1475 	}
1476 
1477 	iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1478 	iter->pos = 0;
1479 	sptep = iter->desc->sptes[iter->pos];
1480 out:
1481 	BUG_ON(!is_shadow_present_pte(*sptep));
1482 	return sptep;
1483 }
1484 
1485 /*
1486  * Must be used with a valid iterator: e.g. after rmap_get_first().
1487  *
1488  * Returns sptep if found, NULL otherwise.
1489  */
1490 static u64 *rmap_get_next(struct rmap_iterator *iter)
1491 {
1492 	u64 *sptep;
1493 
1494 	if (iter->desc) {
1495 		if (iter->pos < PTE_LIST_EXT - 1) {
1496 			++iter->pos;
1497 			sptep = iter->desc->sptes[iter->pos];
1498 			if (sptep)
1499 				goto out;
1500 		}
1501 
1502 		iter->desc = iter->desc->more;
1503 
1504 		if (iter->desc) {
1505 			iter->pos = 0;
1506 			/* desc->sptes[0] cannot be NULL */
1507 			sptep = iter->desc->sptes[iter->pos];
1508 			goto out;
1509 		}
1510 	}
1511 
1512 	return NULL;
1513 out:
1514 	BUG_ON(!is_shadow_present_pte(*sptep));
1515 	return sptep;
1516 }
1517 
1518 #define for_each_rmap_spte(_rmap_head_, _iter_, _spte_)			\
1519 	for (_spte_ = rmap_get_first(_rmap_head_, _iter_);		\
1520 	     _spte_; _spte_ = rmap_get_next(_iter_))
1521 
1522 static void drop_spte(struct kvm *kvm, u64 *sptep)
1523 {
1524 	if (mmu_spte_clear_track_bits(sptep))
1525 		rmap_remove(kvm, sptep);
1526 }
1527 
1528 
1529 static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
1530 {
1531 	if (is_large_pte(*sptep)) {
1532 		WARN_ON(page_header(__pa(sptep))->role.level ==
1533 			PT_PAGE_TABLE_LEVEL);
1534 		drop_spte(kvm, sptep);
1535 		--kvm->stat.lpages;
1536 		return true;
1537 	}
1538 
1539 	return false;
1540 }
1541 
1542 static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1543 {
1544 	if (__drop_large_spte(vcpu->kvm, sptep)) {
1545 		struct kvm_mmu_page *sp = page_header(__pa(sptep));
1546 
1547 		kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn,
1548 			KVM_PAGES_PER_HPAGE(sp->role.level));
1549 	}
1550 }
1551 
1552 /*
1553  * Write-protect on the specified @sptep, @pt_protect indicates whether
1554  * spte write-protection is caused by protecting shadow page table.
1555  *
1556  * Note: write protection is difference between dirty logging and spte
1557  * protection:
1558  * - for dirty logging, the spte can be set to writable at anytime if
1559  *   its dirty bitmap is properly set.
1560  * - for spte protection, the spte can be writable only after unsync-ing
1561  *   shadow page.
1562  *
1563  * Return true if tlb need be flushed.
1564  */
1565 static bool spte_write_protect(u64 *sptep, bool pt_protect)
1566 {
1567 	u64 spte = *sptep;
1568 
1569 	if (!is_writable_pte(spte) &&
1570 	      !(pt_protect && spte_can_locklessly_be_made_writable(spte)))
1571 		return false;
1572 
1573 	rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);
1574 
1575 	if (pt_protect)
1576 		spte &= ~SPTE_MMU_WRITEABLE;
1577 	spte = spte & ~PT_WRITABLE_MASK;
1578 
1579 	return mmu_spte_update(sptep, spte);
1580 }
1581 
1582 static bool __rmap_write_protect(struct kvm *kvm,
1583 				 struct kvm_rmap_head *rmap_head,
1584 				 bool pt_protect)
1585 {
1586 	u64 *sptep;
1587 	struct rmap_iterator iter;
1588 	bool flush = false;
1589 
1590 	for_each_rmap_spte(rmap_head, &iter, sptep)
1591 		flush |= spte_write_protect(sptep, pt_protect);
1592 
1593 	return flush;
1594 }
1595 
1596 static bool spte_clear_dirty(u64 *sptep)
1597 {
1598 	u64 spte = *sptep;
1599 
1600 	rmap_printk("rmap_clear_dirty: spte %p %llx\n", sptep, *sptep);
1601 
1602 	MMU_WARN_ON(!spte_ad_enabled(spte));
1603 	spte &= ~shadow_dirty_mask;
1604 	return mmu_spte_update(sptep, spte);
1605 }
1606 
1607 static bool spte_wrprot_for_clear_dirty(u64 *sptep)
1608 {
1609 	bool was_writable = test_and_clear_bit(PT_WRITABLE_SHIFT,
1610 					       (unsigned long *)sptep);
1611 	if (was_writable && !spte_ad_enabled(*sptep))
1612 		kvm_set_pfn_dirty(spte_to_pfn(*sptep));
1613 
1614 	return was_writable;
1615 }
1616 
1617 /*
1618  * Gets the GFN ready for another round of dirty logging by clearing the
1619  *	- D bit on ad-enabled SPTEs, and
1620  *	- W bit on ad-disabled SPTEs.
1621  * Returns true iff any D or W bits were cleared.
1622  */
1623 static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1624 {
1625 	u64 *sptep;
1626 	struct rmap_iterator iter;
1627 	bool flush = false;
1628 
1629 	for_each_rmap_spte(rmap_head, &iter, sptep)
1630 		if (spte_ad_need_write_protect(*sptep))
1631 			flush |= spte_wrprot_for_clear_dirty(sptep);
1632 		else
1633 			flush |= spte_clear_dirty(sptep);
1634 
1635 	return flush;
1636 }
1637 
1638 static bool spte_set_dirty(u64 *sptep)
1639 {
1640 	u64 spte = *sptep;
1641 
1642 	rmap_printk("rmap_set_dirty: spte %p %llx\n", sptep, *sptep);
1643 
1644 	/*
1645 	 * Similar to the !kvm_x86_ops.slot_disable_log_dirty case,
1646 	 * do not bother adding back write access to pages marked
1647 	 * SPTE_AD_WRPROT_ONLY_MASK.
1648 	 */
1649 	spte |= shadow_dirty_mask;
1650 
1651 	return mmu_spte_update(sptep, spte);
1652 }
1653 
1654 static bool __rmap_set_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1655 {
1656 	u64 *sptep;
1657 	struct rmap_iterator iter;
1658 	bool flush = false;
1659 
1660 	for_each_rmap_spte(rmap_head, &iter, sptep)
1661 		if (spte_ad_enabled(*sptep))
1662 			flush |= spte_set_dirty(sptep);
1663 
1664 	return flush;
1665 }
1666 
1667 /**
1668  * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1669  * @kvm: kvm instance
1670  * @slot: slot to protect
1671  * @gfn_offset: start of the BITS_PER_LONG pages we care about
1672  * @mask: indicates which pages we should protect
1673  *
1674  * Used when we do not need to care about huge page mappings: e.g. during dirty
1675  * logging we do not have any such mappings.
1676  */
1677 static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1678 				     struct kvm_memory_slot *slot,
1679 				     gfn_t gfn_offset, unsigned long mask)
1680 {
1681 	struct kvm_rmap_head *rmap_head;
1682 
1683 	while (mask) {
1684 		rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1685 					  PT_PAGE_TABLE_LEVEL, slot);
1686 		__rmap_write_protect(kvm, rmap_head, false);
1687 
1688 		/* clear the first set bit */
1689 		mask &= mask - 1;
1690 	}
1691 }
1692 
1693 /**
1694  * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages, or write
1695  * protect the page if the D-bit isn't supported.
1696  * @kvm: kvm instance
1697  * @slot: slot to clear D-bit
1698  * @gfn_offset: start of the BITS_PER_LONG pages we care about
1699  * @mask: indicates which pages we should clear D-bit
1700  *
1701  * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap.
1702  */
1703 void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
1704 				     struct kvm_memory_slot *slot,
1705 				     gfn_t gfn_offset, unsigned long mask)
1706 {
1707 	struct kvm_rmap_head *rmap_head;
1708 
1709 	while (mask) {
1710 		rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1711 					  PT_PAGE_TABLE_LEVEL, slot);
1712 		__rmap_clear_dirty(kvm, rmap_head);
1713 
1714 		/* clear the first set bit */
1715 		mask &= mask - 1;
1716 	}
1717 }
1718 EXPORT_SYMBOL_GPL(kvm_mmu_clear_dirty_pt_masked);
1719 
1720 /**
1721  * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
1722  * PT level pages.
1723  *
1724  * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
1725  * enable dirty logging for them.
1726  *
1727  * Used when we do not need to care about huge page mappings: e.g. during dirty
1728  * logging we do not have any such mappings.
1729  */
1730 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1731 				struct kvm_memory_slot *slot,
1732 				gfn_t gfn_offset, unsigned long mask)
1733 {
1734 	if (kvm_x86_ops.enable_log_dirty_pt_masked)
1735 		kvm_x86_ops.enable_log_dirty_pt_masked(kvm, slot, gfn_offset,
1736 				mask);
1737 	else
1738 		kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
1739 }
1740 
1741 /**
1742  * kvm_arch_write_log_dirty - emulate dirty page logging
1743  * @vcpu: Guest mode vcpu
1744  *
1745  * Emulate arch specific page modification logging for the
1746  * nested hypervisor
1747  */
1748 int kvm_arch_write_log_dirty(struct kvm_vcpu *vcpu)
1749 {
1750 	if (kvm_x86_ops.write_log_dirty)
1751 		return kvm_x86_ops.write_log_dirty(vcpu);
1752 
1753 	return 0;
1754 }
1755 
1756 bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
1757 				    struct kvm_memory_slot *slot, u64 gfn)
1758 {
1759 	struct kvm_rmap_head *rmap_head;
1760 	int i;
1761 	bool write_protected = false;
1762 
1763 	for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
1764 		rmap_head = __gfn_to_rmap(gfn, i, slot);
1765 		write_protected |= __rmap_write_protect(kvm, rmap_head, true);
1766 	}
1767 
1768 	return write_protected;
1769 }
1770 
1771 static bool rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn)
1772 {
1773 	struct kvm_memory_slot *slot;
1774 
1775 	slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1776 	return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn);
1777 }
1778 
1779 static bool kvm_zap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1780 {
1781 	u64 *sptep;
1782 	struct rmap_iterator iter;
1783 	bool flush = false;
1784 
1785 	while ((sptep = rmap_get_first(rmap_head, &iter))) {
1786 		rmap_printk("%s: spte %p %llx.\n", __func__, sptep, *sptep);
1787 
1788 		pte_list_remove(rmap_head, sptep);
1789 		flush = true;
1790 	}
1791 
1792 	return flush;
1793 }
1794 
1795 static int kvm_unmap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1796 			   struct kvm_memory_slot *slot, gfn_t gfn, int level,
1797 			   unsigned long data)
1798 {
1799 	return kvm_zap_rmapp(kvm, rmap_head);
1800 }
1801 
1802 static int kvm_set_pte_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1803 			     struct kvm_memory_slot *slot, gfn_t gfn, int level,
1804 			     unsigned long data)
1805 {
1806 	u64 *sptep;
1807 	struct rmap_iterator iter;
1808 	int need_flush = 0;
1809 	u64 new_spte;
1810 	pte_t *ptep = (pte_t *)data;
1811 	kvm_pfn_t new_pfn;
1812 
1813 	WARN_ON(pte_huge(*ptep));
1814 	new_pfn = pte_pfn(*ptep);
1815 
1816 restart:
1817 	for_each_rmap_spte(rmap_head, &iter, sptep) {
1818 		rmap_printk("kvm_set_pte_rmapp: spte %p %llx gfn %llx (%d)\n",
1819 			    sptep, *sptep, gfn, level);
1820 
1821 		need_flush = 1;
1822 
1823 		if (pte_write(*ptep)) {
1824 			pte_list_remove(rmap_head, sptep);
1825 			goto restart;
1826 		} else {
1827 			new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
1828 			new_spte |= (u64)new_pfn << PAGE_SHIFT;
1829 
1830 			new_spte &= ~PT_WRITABLE_MASK;
1831 			new_spte &= ~SPTE_HOST_WRITEABLE;
1832 
1833 			new_spte = mark_spte_for_access_track(new_spte);
1834 
1835 			mmu_spte_clear_track_bits(sptep);
1836 			mmu_spte_set(sptep, new_spte);
1837 		}
1838 	}
1839 
1840 	if (need_flush && kvm_available_flush_tlb_with_range()) {
1841 		kvm_flush_remote_tlbs_with_address(kvm, gfn, 1);
1842 		return 0;
1843 	}
1844 
1845 	return need_flush;
1846 }
1847 
1848 struct slot_rmap_walk_iterator {
1849 	/* input fields. */
1850 	struct kvm_memory_slot *slot;
1851 	gfn_t start_gfn;
1852 	gfn_t end_gfn;
1853 	int start_level;
1854 	int end_level;
1855 
1856 	/* output fields. */
1857 	gfn_t gfn;
1858 	struct kvm_rmap_head *rmap;
1859 	int level;
1860 
1861 	/* private field. */
1862 	struct kvm_rmap_head *end_rmap;
1863 };
1864 
1865 static void
1866 rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level)
1867 {
1868 	iterator->level = level;
1869 	iterator->gfn = iterator->start_gfn;
1870 	iterator->rmap = __gfn_to_rmap(iterator->gfn, level, iterator->slot);
1871 	iterator->end_rmap = __gfn_to_rmap(iterator->end_gfn, level,
1872 					   iterator->slot);
1873 }
1874 
1875 static void
1876 slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator,
1877 		    struct kvm_memory_slot *slot, int start_level,
1878 		    int end_level, gfn_t start_gfn, gfn_t end_gfn)
1879 {
1880 	iterator->slot = slot;
1881 	iterator->start_level = start_level;
1882 	iterator->end_level = end_level;
1883 	iterator->start_gfn = start_gfn;
1884 	iterator->end_gfn = end_gfn;
1885 
1886 	rmap_walk_init_level(iterator, iterator->start_level);
1887 }
1888 
1889 static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator)
1890 {
1891 	return !!iterator->rmap;
1892 }
1893 
1894 static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
1895 {
1896 	if (++iterator->rmap <= iterator->end_rmap) {
1897 		iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level));
1898 		return;
1899 	}
1900 
1901 	if (++iterator->level > iterator->end_level) {
1902 		iterator->rmap = NULL;
1903 		return;
1904 	}
1905 
1906 	rmap_walk_init_level(iterator, iterator->level);
1907 }
1908 
1909 #define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_,	\
1910 	   _start_gfn, _end_gfn, _iter_)				\
1911 	for (slot_rmap_walk_init(_iter_, _slot_, _start_level_,		\
1912 				 _end_level_, _start_gfn, _end_gfn);	\
1913 	     slot_rmap_walk_okay(_iter_);				\
1914 	     slot_rmap_walk_next(_iter_))
1915 
1916 static int kvm_handle_hva_range(struct kvm *kvm,
1917 				unsigned long start,
1918 				unsigned long end,
1919 				unsigned long data,
1920 				int (*handler)(struct kvm *kvm,
1921 					       struct kvm_rmap_head *rmap_head,
1922 					       struct kvm_memory_slot *slot,
1923 					       gfn_t gfn,
1924 					       int level,
1925 					       unsigned long data))
1926 {
1927 	struct kvm_memslots *slots;
1928 	struct kvm_memory_slot *memslot;
1929 	struct slot_rmap_walk_iterator iterator;
1930 	int ret = 0;
1931 	int i;
1932 
1933 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
1934 		slots = __kvm_memslots(kvm, i);
1935 		kvm_for_each_memslot(memslot, slots) {
1936 			unsigned long hva_start, hva_end;
1937 			gfn_t gfn_start, gfn_end;
1938 
1939 			hva_start = max(start, memslot->userspace_addr);
1940 			hva_end = min(end, memslot->userspace_addr +
1941 				      (memslot->npages << PAGE_SHIFT));
1942 			if (hva_start >= hva_end)
1943 				continue;
1944 			/*
1945 			 * {gfn(page) | page intersects with [hva_start, hva_end)} =
1946 			 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
1947 			 */
1948 			gfn_start = hva_to_gfn_memslot(hva_start, memslot);
1949 			gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
1950 
1951 			for_each_slot_rmap_range(memslot, PT_PAGE_TABLE_LEVEL,
1952 						 PT_MAX_HUGEPAGE_LEVEL,
1953 						 gfn_start, gfn_end - 1,
1954 						 &iterator)
1955 				ret |= handler(kvm, iterator.rmap, memslot,
1956 					       iterator.gfn, iterator.level, data);
1957 		}
1958 	}
1959 
1960 	return ret;
1961 }
1962 
1963 static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
1964 			  unsigned long data,
1965 			  int (*handler)(struct kvm *kvm,
1966 					 struct kvm_rmap_head *rmap_head,
1967 					 struct kvm_memory_slot *slot,
1968 					 gfn_t gfn, int level,
1969 					 unsigned long data))
1970 {
1971 	return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
1972 }
1973 
1974 int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
1975 {
1976 	return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
1977 }
1978 
1979 int kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1980 {
1981 	return kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
1982 }
1983 
1984 static int kvm_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1985 			 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1986 			 unsigned long data)
1987 {
1988 	u64 *sptep;
1989 	struct rmap_iterator uninitialized_var(iter);
1990 	int young = 0;
1991 
1992 	for_each_rmap_spte(rmap_head, &iter, sptep)
1993 		young |= mmu_spte_age(sptep);
1994 
1995 	trace_kvm_age_page(gfn, level, slot, young);
1996 	return young;
1997 }
1998 
1999 static int kvm_test_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
2000 			      struct kvm_memory_slot *slot, gfn_t gfn,
2001 			      int level, unsigned long data)
2002 {
2003 	u64 *sptep;
2004 	struct rmap_iterator iter;
2005 
2006 	for_each_rmap_spte(rmap_head, &iter, sptep)
2007 		if (is_accessed_spte(*sptep))
2008 			return 1;
2009 	return 0;
2010 }
2011 
2012 #define RMAP_RECYCLE_THRESHOLD 1000
2013 
2014 static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
2015 {
2016 	struct kvm_rmap_head *rmap_head;
2017 	struct kvm_mmu_page *sp;
2018 
2019 	sp = page_header(__pa(spte));
2020 
2021 	rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
2022 
2023 	kvm_unmap_rmapp(vcpu->kvm, rmap_head, NULL, gfn, sp->role.level, 0);
2024 	kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn,
2025 			KVM_PAGES_PER_HPAGE(sp->role.level));
2026 }
2027 
2028 int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
2029 {
2030 	return kvm_handle_hva_range(kvm, start, end, 0, kvm_age_rmapp);
2031 }
2032 
2033 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
2034 {
2035 	return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
2036 }
2037 
2038 #ifdef MMU_DEBUG
2039 static int is_empty_shadow_page(u64 *spt)
2040 {
2041 	u64 *pos;
2042 	u64 *end;
2043 
2044 	for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
2045 		if (is_shadow_present_pte(*pos)) {
2046 			printk(KERN_ERR "%s: %p %llx\n", __func__,
2047 			       pos, *pos);
2048 			return 0;
2049 		}
2050 	return 1;
2051 }
2052 #endif
2053 
2054 /*
2055  * This value is the sum of all of the kvm instances's
2056  * kvm->arch.n_used_mmu_pages values.  We need a global,
2057  * aggregate version in order to make the slab shrinker
2058  * faster
2059  */
2060 static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, unsigned long nr)
2061 {
2062 	kvm->arch.n_used_mmu_pages += nr;
2063 	percpu_counter_add(&kvm_total_used_mmu_pages, nr);
2064 }
2065 
2066 static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
2067 {
2068 	MMU_WARN_ON(!is_empty_shadow_page(sp->spt));
2069 	hlist_del(&sp->hash_link);
2070 	list_del(&sp->link);
2071 	free_page((unsigned long)sp->spt);
2072 	if (!sp->role.direct)
2073 		free_page((unsigned long)sp->gfns);
2074 	kmem_cache_free(mmu_page_header_cache, sp);
2075 }
2076 
2077 static unsigned kvm_page_table_hashfn(gfn_t gfn)
2078 {
2079 	return hash_64(gfn, KVM_MMU_HASH_SHIFT);
2080 }
2081 
2082 static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
2083 				    struct kvm_mmu_page *sp, u64 *parent_pte)
2084 {
2085 	if (!parent_pte)
2086 		return;
2087 
2088 	pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
2089 }
2090 
2091 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
2092 				       u64 *parent_pte)
2093 {
2094 	__pte_list_remove(parent_pte, &sp->parent_ptes);
2095 }
2096 
2097 static void drop_parent_pte(struct kvm_mmu_page *sp,
2098 			    u64 *parent_pte)
2099 {
2100 	mmu_page_remove_parent_pte(sp, parent_pte);
2101 	mmu_spte_clear_no_track(parent_pte);
2102 }
2103 
2104 static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu, int direct)
2105 {
2106 	struct kvm_mmu_page *sp;
2107 
2108 	sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
2109 	sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
2110 	if (!direct)
2111 		sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
2112 	set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
2113 
2114 	/*
2115 	 * active_mmu_pages must be a FIFO list, as kvm_zap_obsolete_pages()
2116 	 * depends on valid pages being added to the head of the list.  See
2117 	 * comments in kvm_zap_obsolete_pages().
2118 	 */
2119 	sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
2120 	list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
2121 	kvm_mod_used_mmu_pages(vcpu->kvm, +1);
2122 	return sp;
2123 }
2124 
2125 static void mark_unsync(u64 *spte);
2126 static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
2127 {
2128 	u64 *sptep;
2129 	struct rmap_iterator iter;
2130 
2131 	for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) {
2132 		mark_unsync(sptep);
2133 	}
2134 }
2135 
2136 static void mark_unsync(u64 *spte)
2137 {
2138 	struct kvm_mmu_page *sp;
2139 	unsigned int index;
2140 
2141 	sp = page_header(__pa(spte));
2142 	index = spte - sp->spt;
2143 	if (__test_and_set_bit(index, sp->unsync_child_bitmap))
2144 		return;
2145 	if (sp->unsync_children++)
2146 		return;
2147 	kvm_mmu_mark_parents_unsync(sp);
2148 }
2149 
2150 static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
2151 			       struct kvm_mmu_page *sp)
2152 {
2153 	return 0;
2154 }
2155 
2156 static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva, hpa_t root)
2157 {
2158 }
2159 
2160 static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
2161 				 struct kvm_mmu_page *sp, u64 *spte,
2162 				 const void *pte)
2163 {
2164 	WARN_ON(1);
2165 }
2166 
2167 #define KVM_PAGE_ARRAY_NR 16
2168 
2169 struct kvm_mmu_pages {
2170 	struct mmu_page_and_offset {
2171 		struct kvm_mmu_page *sp;
2172 		unsigned int idx;
2173 	} page[KVM_PAGE_ARRAY_NR];
2174 	unsigned int nr;
2175 };
2176 
2177 static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
2178 			 int idx)
2179 {
2180 	int i;
2181 
2182 	if (sp->unsync)
2183 		for (i=0; i < pvec->nr; i++)
2184 			if (pvec->page[i].sp == sp)
2185 				return 0;
2186 
2187 	pvec->page[pvec->nr].sp = sp;
2188 	pvec->page[pvec->nr].idx = idx;
2189 	pvec->nr++;
2190 	return (pvec->nr == KVM_PAGE_ARRAY_NR);
2191 }
2192 
2193 static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx)
2194 {
2195 	--sp->unsync_children;
2196 	WARN_ON((int)sp->unsync_children < 0);
2197 	__clear_bit(idx, sp->unsync_child_bitmap);
2198 }
2199 
2200 static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
2201 			   struct kvm_mmu_pages *pvec)
2202 {
2203 	int i, ret, nr_unsync_leaf = 0;
2204 
2205 	for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
2206 		struct kvm_mmu_page *child;
2207 		u64 ent = sp->spt[i];
2208 
2209 		if (!is_shadow_present_pte(ent) || is_large_pte(ent)) {
2210 			clear_unsync_child_bit(sp, i);
2211 			continue;
2212 		}
2213 
2214 		child = page_header(ent & PT64_BASE_ADDR_MASK);
2215 
2216 		if (child->unsync_children) {
2217 			if (mmu_pages_add(pvec, child, i))
2218 				return -ENOSPC;
2219 
2220 			ret = __mmu_unsync_walk(child, pvec);
2221 			if (!ret) {
2222 				clear_unsync_child_bit(sp, i);
2223 				continue;
2224 			} else if (ret > 0) {
2225 				nr_unsync_leaf += ret;
2226 			} else
2227 				return ret;
2228 		} else if (child->unsync) {
2229 			nr_unsync_leaf++;
2230 			if (mmu_pages_add(pvec, child, i))
2231 				return -ENOSPC;
2232 		} else
2233 			clear_unsync_child_bit(sp, i);
2234 	}
2235 
2236 	return nr_unsync_leaf;
2237 }
2238 
2239 #define INVALID_INDEX (-1)
2240 
2241 static int mmu_unsync_walk(struct kvm_mmu_page *sp,
2242 			   struct kvm_mmu_pages *pvec)
2243 {
2244 	pvec->nr = 0;
2245 	if (!sp->unsync_children)
2246 		return 0;
2247 
2248 	mmu_pages_add(pvec, sp, INVALID_INDEX);
2249 	return __mmu_unsync_walk(sp, pvec);
2250 }
2251 
2252 static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
2253 {
2254 	WARN_ON(!sp->unsync);
2255 	trace_kvm_mmu_sync_page(sp);
2256 	sp->unsync = 0;
2257 	--kvm->stat.mmu_unsync;
2258 }
2259 
2260 static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2261 				     struct list_head *invalid_list);
2262 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2263 				    struct list_head *invalid_list);
2264 
2265 
2266 #define for_each_valid_sp(_kvm, _sp, _gfn)				\
2267 	hlist_for_each_entry(_sp,					\
2268 	  &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)], hash_link) \
2269 		if (is_obsolete_sp((_kvm), (_sp))) {			\
2270 		} else
2271 
2272 #define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn)			\
2273 	for_each_valid_sp(_kvm, _sp, _gfn)				\
2274 		if ((_sp)->gfn != (_gfn) || (_sp)->role.direct) {} else
2275 
2276 static inline bool is_ept_sp(struct kvm_mmu_page *sp)
2277 {
2278 	return sp->role.cr0_wp && sp->role.smap_andnot_wp;
2279 }
2280 
2281 /* @sp->gfn should be write-protected at the call site */
2282 static bool __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
2283 			    struct list_head *invalid_list)
2284 {
2285 	if ((!is_ept_sp(sp) && sp->role.gpte_is_8_bytes != !!is_pae(vcpu)) ||
2286 	    vcpu->arch.mmu->sync_page(vcpu, sp) == 0) {
2287 		kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
2288 		return false;
2289 	}
2290 
2291 	return true;
2292 }
2293 
2294 static bool kvm_mmu_remote_flush_or_zap(struct kvm *kvm,
2295 					struct list_head *invalid_list,
2296 					bool remote_flush)
2297 {
2298 	if (!remote_flush && list_empty(invalid_list))
2299 		return false;
2300 
2301 	if (!list_empty(invalid_list))
2302 		kvm_mmu_commit_zap_page(kvm, invalid_list);
2303 	else
2304 		kvm_flush_remote_tlbs(kvm);
2305 	return true;
2306 }
2307 
2308 static void kvm_mmu_flush_or_zap(struct kvm_vcpu *vcpu,
2309 				 struct list_head *invalid_list,
2310 				 bool remote_flush, bool local_flush)
2311 {
2312 	if (kvm_mmu_remote_flush_or_zap(vcpu->kvm, invalid_list, remote_flush))
2313 		return;
2314 
2315 	if (local_flush)
2316 		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2317 }
2318 
2319 #ifdef CONFIG_KVM_MMU_AUDIT
2320 #include "mmu_audit.c"
2321 #else
2322 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
2323 static void mmu_audit_disable(void) { }
2324 #endif
2325 
2326 static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
2327 {
2328 	return sp->role.invalid ||
2329 	       unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
2330 }
2331 
2332 static bool kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
2333 			 struct list_head *invalid_list)
2334 {
2335 	kvm_unlink_unsync_page(vcpu->kvm, sp);
2336 	return __kvm_sync_page(vcpu, sp, invalid_list);
2337 }
2338 
2339 /* @gfn should be write-protected at the call site */
2340 static bool kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn,
2341 			   struct list_head *invalid_list)
2342 {
2343 	struct kvm_mmu_page *s;
2344 	bool ret = false;
2345 
2346 	for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
2347 		if (!s->unsync)
2348 			continue;
2349 
2350 		WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
2351 		ret |= kvm_sync_page(vcpu, s, invalid_list);
2352 	}
2353 
2354 	return ret;
2355 }
2356 
2357 struct mmu_page_path {
2358 	struct kvm_mmu_page *parent[PT64_ROOT_MAX_LEVEL];
2359 	unsigned int idx[PT64_ROOT_MAX_LEVEL];
2360 };
2361 
2362 #define for_each_sp(pvec, sp, parents, i)			\
2363 		for (i = mmu_pages_first(&pvec, &parents);	\
2364 			i < pvec.nr && ({ sp = pvec.page[i].sp; 1;});	\
2365 			i = mmu_pages_next(&pvec, &parents, i))
2366 
2367 static int mmu_pages_next(struct kvm_mmu_pages *pvec,
2368 			  struct mmu_page_path *parents,
2369 			  int i)
2370 {
2371 	int n;
2372 
2373 	for (n = i+1; n < pvec->nr; n++) {
2374 		struct kvm_mmu_page *sp = pvec->page[n].sp;
2375 		unsigned idx = pvec->page[n].idx;
2376 		int level = sp->role.level;
2377 
2378 		parents->idx[level-1] = idx;
2379 		if (level == PT_PAGE_TABLE_LEVEL)
2380 			break;
2381 
2382 		parents->parent[level-2] = sp;
2383 	}
2384 
2385 	return n;
2386 }
2387 
2388 static int mmu_pages_first(struct kvm_mmu_pages *pvec,
2389 			   struct mmu_page_path *parents)
2390 {
2391 	struct kvm_mmu_page *sp;
2392 	int level;
2393 
2394 	if (pvec->nr == 0)
2395 		return 0;
2396 
2397 	WARN_ON(pvec->page[0].idx != INVALID_INDEX);
2398 
2399 	sp = pvec->page[0].sp;
2400 	level = sp->role.level;
2401 	WARN_ON(level == PT_PAGE_TABLE_LEVEL);
2402 
2403 	parents->parent[level-2] = sp;
2404 
2405 	/* Also set up a sentinel.  Further entries in pvec are all
2406 	 * children of sp, so this element is never overwritten.
2407 	 */
2408 	parents->parent[level-1] = NULL;
2409 	return mmu_pages_next(pvec, parents, 0);
2410 }
2411 
2412 static void mmu_pages_clear_parents(struct mmu_page_path *parents)
2413 {
2414 	struct kvm_mmu_page *sp;
2415 	unsigned int level = 0;
2416 
2417 	do {
2418 		unsigned int idx = parents->idx[level];
2419 		sp = parents->parent[level];
2420 		if (!sp)
2421 			return;
2422 
2423 		WARN_ON(idx == INVALID_INDEX);
2424 		clear_unsync_child_bit(sp, idx);
2425 		level++;
2426 	} while (!sp->unsync_children);
2427 }
2428 
2429 static void mmu_sync_children(struct kvm_vcpu *vcpu,
2430 			      struct kvm_mmu_page *parent)
2431 {
2432 	int i;
2433 	struct kvm_mmu_page *sp;
2434 	struct mmu_page_path parents;
2435 	struct kvm_mmu_pages pages;
2436 	LIST_HEAD(invalid_list);
2437 	bool flush = false;
2438 
2439 	while (mmu_unsync_walk(parent, &pages)) {
2440 		bool protected = false;
2441 
2442 		for_each_sp(pages, sp, parents, i)
2443 			protected |= rmap_write_protect(vcpu, sp->gfn);
2444 
2445 		if (protected) {
2446 			kvm_flush_remote_tlbs(vcpu->kvm);
2447 			flush = false;
2448 		}
2449 
2450 		for_each_sp(pages, sp, parents, i) {
2451 			flush |= kvm_sync_page(vcpu, sp, &invalid_list);
2452 			mmu_pages_clear_parents(&parents);
2453 		}
2454 		if (need_resched() || spin_needbreak(&vcpu->kvm->mmu_lock)) {
2455 			kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2456 			cond_resched_lock(&vcpu->kvm->mmu_lock);
2457 			flush = false;
2458 		}
2459 	}
2460 
2461 	kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2462 }
2463 
2464 static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
2465 {
2466 	atomic_set(&sp->write_flooding_count,  0);
2467 }
2468 
2469 static void clear_sp_write_flooding_count(u64 *spte)
2470 {
2471 	struct kvm_mmu_page *sp =  page_header(__pa(spte));
2472 
2473 	__clear_sp_write_flooding_count(sp);
2474 }
2475 
2476 static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
2477 					     gfn_t gfn,
2478 					     gva_t gaddr,
2479 					     unsigned level,
2480 					     int direct,
2481 					     unsigned int access)
2482 {
2483 	union kvm_mmu_page_role role;
2484 	unsigned quadrant;
2485 	struct kvm_mmu_page *sp;
2486 	bool need_sync = false;
2487 	bool flush = false;
2488 	int collisions = 0;
2489 	LIST_HEAD(invalid_list);
2490 
2491 	role = vcpu->arch.mmu->mmu_role.base;
2492 	role.level = level;
2493 	role.direct = direct;
2494 	if (role.direct)
2495 		role.gpte_is_8_bytes = true;
2496 	role.access = access;
2497 	if (!vcpu->arch.mmu->direct_map
2498 	    && vcpu->arch.mmu->root_level <= PT32_ROOT_LEVEL) {
2499 		quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
2500 		quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
2501 		role.quadrant = quadrant;
2502 	}
2503 	for_each_valid_sp(vcpu->kvm, sp, gfn) {
2504 		if (sp->gfn != gfn) {
2505 			collisions++;
2506 			continue;
2507 		}
2508 
2509 		if (!need_sync && sp->unsync)
2510 			need_sync = true;
2511 
2512 		if (sp->role.word != role.word)
2513 			continue;
2514 
2515 		if (sp->unsync) {
2516 			/* The page is good, but __kvm_sync_page might still end
2517 			 * up zapping it.  If so, break in order to rebuild it.
2518 			 */
2519 			if (!__kvm_sync_page(vcpu, sp, &invalid_list))
2520 				break;
2521 
2522 			WARN_ON(!list_empty(&invalid_list));
2523 			kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2524 		}
2525 
2526 		if (sp->unsync_children)
2527 			kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
2528 
2529 		__clear_sp_write_flooding_count(sp);
2530 		trace_kvm_mmu_get_page(sp, false);
2531 		goto out;
2532 	}
2533 
2534 	++vcpu->kvm->stat.mmu_cache_miss;
2535 
2536 	sp = kvm_mmu_alloc_page(vcpu, direct);
2537 
2538 	sp->gfn = gfn;
2539 	sp->role = role;
2540 	hlist_add_head(&sp->hash_link,
2541 		&vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
2542 	if (!direct) {
2543 		/*
2544 		 * we should do write protection before syncing pages
2545 		 * otherwise the content of the synced shadow page may
2546 		 * be inconsistent with guest page table.
2547 		 */
2548 		account_shadowed(vcpu->kvm, sp);
2549 		if (level == PT_PAGE_TABLE_LEVEL &&
2550 		      rmap_write_protect(vcpu, gfn))
2551 			kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn, 1);
2552 
2553 		if (level > PT_PAGE_TABLE_LEVEL && need_sync)
2554 			flush |= kvm_sync_pages(vcpu, gfn, &invalid_list);
2555 	}
2556 	clear_page(sp->spt);
2557 	trace_kvm_mmu_get_page(sp, true);
2558 
2559 	kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2560 out:
2561 	if (collisions > vcpu->kvm->stat.max_mmu_page_hash_collisions)
2562 		vcpu->kvm->stat.max_mmu_page_hash_collisions = collisions;
2563 	return sp;
2564 }
2565 
2566 static void shadow_walk_init_using_root(struct kvm_shadow_walk_iterator *iterator,
2567 					struct kvm_vcpu *vcpu, hpa_t root,
2568 					u64 addr)
2569 {
2570 	iterator->addr = addr;
2571 	iterator->shadow_addr = root;
2572 	iterator->level = vcpu->arch.mmu->shadow_root_level;
2573 
2574 	if (iterator->level == PT64_ROOT_4LEVEL &&
2575 	    vcpu->arch.mmu->root_level < PT64_ROOT_4LEVEL &&
2576 	    !vcpu->arch.mmu->direct_map)
2577 		--iterator->level;
2578 
2579 	if (iterator->level == PT32E_ROOT_LEVEL) {
2580 		/*
2581 		 * prev_root is currently only used for 64-bit hosts. So only
2582 		 * the active root_hpa is valid here.
2583 		 */
2584 		BUG_ON(root != vcpu->arch.mmu->root_hpa);
2585 
2586 		iterator->shadow_addr
2587 			= vcpu->arch.mmu->pae_root[(addr >> 30) & 3];
2588 		iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
2589 		--iterator->level;
2590 		if (!iterator->shadow_addr)
2591 			iterator->level = 0;
2592 	}
2593 }
2594 
2595 static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
2596 			     struct kvm_vcpu *vcpu, u64 addr)
2597 {
2598 	shadow_walk_init_using_root(iterator, vcpu, vcpu->arch.mmu->root_hpa,
2599 				    addr);
2600 }
2601 
2602 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
2603 {
2604 	if (iterator->level < PT_PAGE_TABLE_LEVEL)
2605 		return false;
2606 
2607 	iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
2608 	iterator->sptep	= ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
2609 	return true;
2610 }
2611 
2612 static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
2613 			       u64 spte)
2614 {
2615 	if (is_last_spte(spte, iterator->level)) {
2616 		iterator->level = 0;
2617 		return;
2618 	}
2619 
2620 	iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2621 	--iterator->level;
2622 }
2623 
2624 static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
2625 {
2626 	__shadow_walk_next(iterator, *iterator->sptep);
2627 }
2628 
2629 static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep,
2630 			     struct kvm_mmu_page *sp)
2631 {
2632 	u64 spte;
2633 
2634 	BUILD_BUG_ON(VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);
2635 
2636 	spte = __pa(sp->spt) | shadow_present_mask | PT_WRITABLE_MASK |
2637 	       shadow_user_mask | shadow_x_mask | shadow_me_mask;
2638 
2639 	if (sp_ad_disabled(sp))
2640 		spte |= SPTE_AD_DISABLED_MASK;
2641 	else
2642 		spte |= shadow_accessed_mask;
2643 
2644 	mmu_spte_set(sptep, spte);
2645 
2646 	mmu_page_add_parent_pte(vcpu, sp, sptep);
2647 
2648 	if (sp->unsync_children || sp->unsync)
2649 		mark_unsync(sptep);
2650 }
2651 
2652 static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2653 				   unsigned direct_access)
2654 {
2655 	if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
2656 		struct kvm_mmu_page *child;
2657 
2658 		/*
2659 		 * For the direct sp, if the guest pte's dirty bit
2660 		 * changed form clean to dirty, it will corrupt the
2661 		 * sp's access: allow writable in the read-only sp,
2662 		 * so we should update the spte at this point to get
2663 		 * a new sp with the correct access.
2664 		 */
2665 		child = page_header(*sptep & PT64_BASE_ADDR_MASK);
2666 		if (child->role.access == direct_access)
2667 			return;
2668 
2669 		drop_parent_pte(child, sptep);
2670 		kvm_flush_remote_tlbs_with_address(vcpu->kvm, child->gfn, 1);
2671 	}
2672 }
2673 
2674 static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
2675 			     u64 *spte)
2676 {
2677 	u64 pte;
2678 	struct kvm_mmu_page *child;
2679 
2680 	pte = *spte;
2681 	if (is_shadow_present_pte(pte)) {
2682 		if (is_last_spte(pte, sp->role.level)) {
2683 			drop_spte(kvm, spte);
2684 			if (is_large_pte(pte))
2685 				--kvm->stat.lpages;
2686 		} else {
2687 			child = page_header(pte & PT64_BASE_ADDR_MASK);
2688 			drop_parent_pte(child, spte);
2689 		}
2690 		return true;
2691 	}
2692 
2693 	if (is_mmio_spte(pte))
2694 		mmu_spte_clear_no_track(spte);
2695 
2696 	return false;
2697 }
2698 
2699 static void kvm_mmu_page_unlink_children(struct kvm *kvm,
2700 					 struct kvm_mmu_page *sp)
2701 {
2702 	unsigned i;
2703 
2704 	for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2705 		mmu_page_zap_pte(kvm, sp, sp->spt + i);
2706 }
2707 
2708 static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
2709 {
2710 	u64 *sptep;
2711 	struct rmap_iterator iter;
2712 
2713 	while ((sptep = rmap_get_first(&sp->parent_ptes, &iter)))
2714 		drop_parent_pte(sp, sptep);
2715 }
2716 
2717 static int mmu_zap_unsync_children(struct kvm *kvm,
2718 				   struct kvm_mmu_page *parent,
2719 				   struct list_head *invalid_list)
2720 {
2721 	int i, zapped = 0;
2722 	struct mmu_page_path parents;
2723 	struct kvm_mmu_pages pages;
2724 
2725 	if (parent->role.level == PT_PAGE_TABLE_LEVEL)
2726 		return 0;
2727 
2728 	while (mmu_unsync_walk(parent, &pages)) {
2729 		struct kvm_mmu_page *sp;
2730 
2731 		for_each_sp(pages, sp, parents, i) {
2732 			kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2733 			mmu_pages_clear_parents(&parents);
2734 			zapped++;
2735 		}
2736 	}
2737 
2738 	return zapped;
2739 }
2740 
2741 static bool __kvm_mmu_prepare_zap_page(struct kvm *kvm,
2742 				       struct kvm_mmu_page *sp,
2743 				       struct list_head *invalid_list,
2744 				       int *nr_zapped)
2745 {
2746 	bool list_unstable;
2747 
2748 	trace_kvm_mmu_prepare_zap_page(sp);
2749 	++kvm->stat.mmu_shadow_zapped;
2750 	*nr_zapped = mmu_zap_unsync_children(kvm, sp, invalid_list);
2751 	kvm_mmu_page_unlink_children(kvm, sp);
2752 	kvm_mmu_unlink_parents(kvm, sp);
2753 
2754 	/* Zapping children means active_mmu_pages has become unstable. */
2755 	list_unstable = *nr_zapped;
2756 
2757 	if (!sp->role.invalid && !sp->role.direct)
2758 		unaccount_shadowed(kvm, sp);
2759 
2760 	if (sp->unsync)
2761 		kvm_unlink_unsync_page(kvm, sp);
2762 	if (!sp->root_count) {
2763 		/* Count self */
2764 		(*nr_zapped)++;
2765 		list_move(&sp->link, invalid_list);
2766 		kvm_mod_used_mmu_pages(kvm, -1);
2767 	} else {
2768 		list_move(&sp->link, &kvm->arch.active_mmu_pages);
2769 
2770 		/*
2771 		 * Obsolete pages cannot be used on any vCPUs, see the comment
2772 		 * in kvm_mmu_zap_all_fast().  Note, is_obsolete_sp() also
2773 		 * treats invalid shadow pages as being obsolete.
2774 		 */
2775 		if (!is_obsolete_sp(kvm, sp))
2776 			kvm_reload_remote_mmus(kvm);
2777 	}
2778 
2779 	if (sp->lpage_disallowed)
2780 		unaccount_huge_nx_page(kvm, sp);
2781 
2782 	sp->role.invalid = 1;
2783 	return list_unstable;
2784 }
2785 
2786 static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2787 				     struct list_head *invalid_list)
2788 {
2789 	int nr_zapped;
2790 
2791 	__kvm_mmu_prepare_zap_page(kvm, sp, invalid_list, &nr_zapped);
2792 	return nr_zapped;
2793 }
2794 
2795 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2796 				    struct list_head *invalid_list)
2797 {
2798 	struct kvm_mmu_page *sp, *nsp;
2799 
2800 	if (list_empty(invalid_list))
2801 		return;
2802 
2803 	/*
2804 	 * We need to make sure everyone sees our modifications to
2805 	 * the page tables and see changes to vcpu->mode here. The barrier
2806 	 * in the kvm_flush_remote_tlbs() achieves this. This pairs
2807 	 * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end.
2808 	 *
2809 	 * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit
2810 	 * guest mode and/or lockless shadow page table walks.
2811 	 */
2812 	kvm_flush_remote_tlbs(kvm);
2813 
2814 	list_for_each_entry_safe(sp, nsp, invalid_list, link) {
2815 		WARN_ON(!sp->role.invalid || sp->root_count);
2816 		kvm_mmu_free_page(sp);
2817 	}
2818 }
2819 
2820 static bool prepare_zap_oldest_mmu_page(struct kvm *kvm,
2821 					struct list_head *invalid_list)
2822 {
2823 	struct kvm_mmu_page *sp;
2824 
2825 	if (list_empty(&kvm->arch.active_mmu_pages))
2826 		return false;
2827 
2828 	sp = list_last_entry(&kvm->arch.active_mmu_pages,
2829 			     struct kvm_mmu_page, link);
2830 	return kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2831 }
2832 
2833 static int make_mmu_pages_available(struct kvm_vcpu *vcpu)
2834 {
2835 	LIST_HEAD(invalid_list);
2836 
2837 	if (likely(kvm_mmu_available_pages(vcpu->kvm) >= KVM_MIN_FREE_MMU_PAGES))
2838 		return 0;
2839 
2840 	while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES) {
2841 		if (!prepare_zap_oldest_mmu_page(vcpu->kvm, &invalid_list))
2842 			break;
2843 
2844 		++vcpu->kvm->stat.mmu_recycled;
2845 	}
2846 	kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2847 
2848 	if (!kvm_mmu_available_pages(vcpu->kvm))
2849 		return -ENOSPC;
2850 	return 0;
2851 }
2852 
2853 /*
2854  * Changing the number of mmu pages allocated to the vm
2855  * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2856  */
2857 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long goal_nr_mmu_pages)
2858 {
2859 	LIST_HEAD(invalid_list);
2860 
2861 	spin_lock(&kvm->mmu_lock);
2862 
2863 	if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2864 		/* Need to free some mmu pages to achieve the goal. */
2865 		while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages)
2866 			if (!prepare_zap_oldest_mmu_page(kvm, &invalid_list))
2867 				break;
2868 
2869 		kvm_mmu_commit_zap_page(kvm, &invalid_list);
2870 		goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2871 	}
2872 
2873 	kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2874 
2875 	spin_unlock(&kvm->mmu_lock);
2876 }
2877 
2878 int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2879 {
2880 	struct kvm_mmu_page *sp;
2881 	LIST_HEAD(invalid_list);
2882 	int r;
2883 
2884 	pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
2885 	r = 0;
2886 	spin_lock(&kvm->mmu_lock);
2887 	for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
2888 		pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
2889 			 sp->role.word);
2890 		r = 1;
2891 		kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2892 	}
2893 	kvm_mmu_commit_zap_page(kvm, &invalid_list);
2894 	spin_unlock(&kvm->mmu_lock);
2895 
2896 	return r;
2897 }
2898 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
2899 
2900 static void kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2901 {
2902 	trace_kvm_mmu_unsync_page(sp);
2903 	++vcpu->kvm->stat.mmu_unsync;
2904 	sp->unsync = 1;
2905 
2906 	kvm_mmu_mark_parents_unsync(sp);
2907 }
2908 
2909 static bool mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
2910 				   bool can_unsync)
2911 {
2912 	struct kvm_mmu_page *sp;
2913 
2914 	if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
2915 		return true;
2916 
2917 	for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
2918 		if (!can_unsync)
2919 			return true;
2920 
2921 		if (sp->unsync)
2922 			continue;
2923 
2924 		WARN_ON(sp->role.level != PT_PAGE_TABLE_LEVEL);
2925 		kvm_unsync_page(vcpu, sp);
2926 	}
2927 
2928 	/*
2929 	 * We need to ensure that the marking of unsync pages is visible
2930 	 * before the SPTE is updated to allow writes because
2931 	 * kvm_mmu_sync_roots() checks the unsync flags without holding
2932 	 * the MMU lock and so can race with this. If the SPTE was updated
2933 	 * before the page had been marked as unsync-ed, something like the
2934 	 * following could happen:
2935 	 *
2936 	 * CPU 1                    CPU 2
2937 	 * ---------------------------------------------------------------------
2938 	 * 1.2 Host updates SPTE
2939 	 *     to be writable
2940 	 *                      2.1 Guest writes a GPTE for GVA X.
2941 	 *                          (GPTE being in the guest page table shadowed
2942 	 *                           by the SP from CPU 1.)
2943 	 *                          This reads SPTE during the page table walk.
2944 	 *                          Since SPTE.W is read as 1, there is no
2945 	 *                          fault.
2946 	 *
2947 	 *                      2.2 Guest issues TLB flush.
2948 	 *                          That causes a VM Exit.
2949 	 *
2950 	 *                      2.3 kvm_mmu_sync_pages() reads sp->unsync.
2951 	 *                          Since it is false, so it just returns.
2952 	 *
2953 	 *                      2.4 Guest accesses GVA X.
2954 	 *                          Since the mapping in the SP was not updated,
2955 	 *                          so the old mapping for GVA X incorrectly
2956 	 *                          gets used.
2957 	 * 1.1 Host marks SP
2958 	 *     as unsync
2959 	 *     (sp->unsync = true)
2960 	 *
2961 	 * The write barrier below ensures that 1.1 happens before 1.2 and thus
2962 	 * the situation in 2.4 does not arise. The implicit barrier in 2.2
2963 	 * pairs with this write barrier.
2964 	 */
2965 	smp_wmb();
2966 
2967 	return false;
2968 }
2969 
2970 static bool kvm_is_mmio_pfn(kvm_pfn_t pfn)
2971 {
2972 	if (pfn_valid(pfn))
2973 		return !is_zero_pfn(pfn) && PageReserved(pfn_to_page(pfn)) &&
2974 			/*
2975 			 * Some reserved pages, such as those from NVDIMM
2976 			 * DAX devices, are not for MMIO, and can be mapped
2977 			 * with cached memory type for better performance.
2978 			 * However, the above check misconceives those pages
2979 			 * as MMIO, and results in KVM mapping them with UC
2980 			 * memory type, which would hurt the performance.
2981 			 * Therefore, we check the host memory type in addition
2982 			 * and only treat UC/UC-/WC pages as MMIO.
2983 			 */
2984 			(!pat_enabled() || pat_pfn_immune_to_uc_mtrr(pfn));
2985 
2986 	return !e820__mapped_raw_any(pfn_to_hpa(pfn),
2987 				     pfn_to_hpa(pfn + 1) - 1,
2988 				     E820_TYPE_RAM);
2989 }
2990 
2991 /* Bits which may be returned by set_spte() */
2992 #define SET_SPTE_WRITE_PROTECTED_PT	BIT(0)
2993 #define SET_SPTE_NEED_REMOTE_TLB_FLUSH	BIT(1)
2994 
2995 static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2996 		    unsigned int pte_access, int level,
2997 		    gfn_t gfn, kvm_pfn_t pfn, bool speculative,
2998 		    bool can_unsync, bool host_writable)
2999 {
3000 	u64 spte = 0;
3001 	int ret = 0;
3002 	struct kvm_mmu_page *sp;
3003 
3004 	if (set_mmio_spte(vcpu, sptep, gfn, pfn, pte_access))
3005 		return 0;
3006 
3007 	sp = page_header(__pa(sptep));
3008 	if (sp_ad_disabled(sp))
3009 		spte |= SPTE_AD_DISABLED_MASK;
3010 	else if (kvm_vcpu_ad_need_write_protect(vcpu))
3011 		spte |= SPTE_AD_WRPROT_ONLY_MASK;
3012 
3013 	/*
3014 	 * For the EPT case, shadow_present_mask is 0 if hardware
3015 	 * supports exec-only page table entries.  In that case,
3016 	 * ACC_USER_MASK and shadow_user_mask are used to represent
3017 	 * read access.  See FNAME(gpte_access) in paging_tmpl.h.
3018 	 */
3019 	spte |= shadow_present_mask;
3020 	if (!speculative)
3021 		spte |= spte_shadow_accessed_mask(spte);
3022 
3023 	if (level > PT_PAGE_TABLE_LEVEL && (pte_access & ACC_EXEC_MASK) &&
3024 	    is_nx_huge_page_enabled()) {
3025 		pte_access &= ~ACC_EXEC_MASK;
3026 	}
3027 
3028 	if (pte_access & ACC_EXEC_MASK)
3029 		spte |= shadow_x_mask;
3030 	else
3031 		spte |= shadow_nx_mask;
3032 
3033 	if (pte_access & ACC_USER_MASK)
3034 		spte |= shadow_user_mask;
3035 
3036 	if (level > PT_PAGE_TABLE_LEVEL)
3037 		spte |= PT_PAGE_SIZE_MASK;
3038 	if (tdp_enabled)
3039 		spte |= kvm_x86_ops.get_mt_mask(vcpu, gfn,
3040 			kvm_is_mmio_pfn(pfn));
3041 
3042 	if (host_writable)
3043 		spte |= SPTE_HOST_WRITEABLE;
3044 	else
3045 		pte_access &= ~ACC_WRITE_MASK;
3046 
3047 	if (!kvm_is_mmio_pfn(pfn))
3048 		spte |= shadow_me_mask;
3049 
3050 	spte |= (u64)pfn << PAGE_SHIFT;
3051 
3052 	if (pte_access & ACC_WRITE_MASK) {
3053 		spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
3054 
3055 		/*
3056 		 * Optimization: for pte sync, if spte was writable the hash
3057 		 * lookup is unnecessary (and expensive). Write protection
3058 		 * is responsibility of mmu_get_page / kvm_sync_page.
3059 		 * Same reasoning can be applied to dirty page accounting.
3060 		 */
3061 		if (!can_unsync && is_writable_pte(*sptep))
3062 			goto set_pte;
3063 
3064 		if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
3065 			pgprintk("%s: found shadow page for %llx, marking ro\n",
3066 				 __func__, gfn);
3067 			ret |= SET_SPTE_WRITE_PROTECTED_PT;
3068 			pte_access &= ~ACC_WRITE_MASK;
3069 			spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
3070 		}
3071 	}
3072 
3073 	if (pte_access & ACC_WRITE_MASK) {
3074 		kvm_vcpu_mark_page_dirty(vcpu, gfn);
3075 		spte |= spte_shadow_dirty_mask(spte);
3076 	}
3077 
3078 	if (speculative)
3079 		spte = mark_spte_for_access_track(spte);
3080 
3081 set_pte:
3082 	if (mmu_spte_update(sptep, spte))
3083 		ret |= SET_SPTE_NEED_REMOTE_TLB_FLUSH;
3084 	return ret;
3085 }
3086 
3087 static int mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
3088 			unsigned int pte_access, int write_fault, int level,
3089 			gfn_t gfn, kvm_pfn_t pfn, bool speculative,
3090 			bool host_writable)
3091 {
3092 	int was_rmapped = 0;
3093 	int rmap_count;
3094 	int set_spte_ret;
3095 	int ret = RET_PF_RETRY;
3096 	bool flush = false;
3097 
3098 	pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
3099 		 *sptep, write_fault, gfn);
3100 
3101 	if (is_shadow_present_pte(*sptep)) {
3102 		/*
3103 		 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
3104 		 * the parent of the now unreachable PTE.
3105 		 */
3106 		if (level > PT_PAGE_TABLE_LEVEL &&
3107 		    !is_large_pte(*sptep)) {
3108 			struct kvm_mmu_page *child;
3109 			u64 pte = *sptep;
3110 
3111 			child = page_header(pte & PT64_BASE_ADDR_MASK);
3112 			drop_parent_pte(child, sptep);
3113 			flush = true;
3114 		} else if (pfn != spte_to_pfn(*sptep)) {
3115 			pgprintk("hfn old %llx new %llx\n",
3116 				 spte_to_pfn(*sptep), pfn);
3117 			drop_spte(vcpu->kvm, sptep);
3118 			flush = true;
3119 		} else
3120 			was_rmapped = 1;
3121 	}
3122 
3123 	set_spte_ret = set_spte(vcpu, sptep, pte_access, level, gfn, pfn,
3124 				speculative, true, host_writable);
3125 	if (set_spte_ret & SET_SPTE_WRITE_PROTECTED_PT) {
3126 		if (write_fault)
3127 			ret = RET_PF_EMULATE;
3128 		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
3129 	}
3130 
3131 	if (set_spte_ret & SET_SPTE_NEED_REMOTE_TLB_FLUSH || flush)
3132 		kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn,
3133 				KVM_PAGES_PER_HPAGE(level));
3134 
3135 	if (unlikely(is_mmio_spte(*sptep)))
3136 		ret = RET_PF_EMULATE;
3137 
3138 	pgprintk("%s: setting spte %llx\n", __func__, *sptep);
3139 	trace_kvm_mmu_set_spte(level, gfn, sptep);
3140 	if (!was_rmapped && is_large_pte(*sptep))
3141 		++vcpu->kvm->stat.lpages;
3142 
3143 	if (is_shadow_present_pte(*sptep)) {
3144 		if (!was_rmapped) {
3145 			rmap_count = rmap_add(vcpu, sptep, gfn);
3146 			if (rmap_count > RMAP_RECYCLE_THRESHOLD)
3147 				rmap_recycle(vcpu, sptep, gfn);
3148 		}
3149 	}
3150 
3151 	return ret;
3152 }
3153 
3154 static kvm_pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
3155 				     bool no_dirty_log)
3156 {
3157 	struct kvm_memory_slot *slot;
3158 
3159 	slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
3160 	if (!slot)
3161 		return KVM_PFN_ERR_FAULT;
3162 
3163 	return gfn_to_pfn_memslot_atomic(slot, gfn);
3164 }
3165 
3166 static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
3167 				    struct kvm_mmu_page *sp,
3168 				    u64 *start, u64 *end)
3169 {
3170 	struct page *pages[PTE_PREFETCH_NUM];
3171 	struct kvm_memory_slot *slot;
3172 	unsigned int access = sp->role.access;
3173 	int i, ret;
3174 	gfn_t gfn;
3175 
3176 	gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
3177 	slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK);
3178 	if (!slot)
3179 		return -1;
3180 
3181 	ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start);
3182 	if (ret <= 0)
3183 		return -1;
3184 
3185 	for (i = 0; i < ret; i++, gfn++, start++) {
3186 		mmu_set_spte(vcpu, start, access, 0, sp->role.level, gfn,
3187 			     page_to_pfn(pages[i]), true, true);
3188 		put_page(pages[i]);
3189 	}
3190 
3191 	return 0;
3192 }
3193 
3194 static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
3195 				  struct kvm_mmu_page *sp, u64 *sptep)
3196 {
3197 	u64 *spte, *start = NULL;
3198 	int i;
3199 
3200 	WARN_ON(!sp->role.direct);
3201 
3202 	i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
3203 	spte = sp->spt + i;
3204 
3205 	for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
3206 		if (is_shadow_present_pte(*spte) || spte == sptep) {
3207 			if (!start)
3208 				continue;
3209 			if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
3210 				break;
3211 			start = NULL;
3212 		} else if (!start)
3213 			start = spte;
3214 	}
3215 }
3216 
3217 static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
3218 {
3219 	struct kvm_mmu_page *sp;
3220 
3221 	sp = page_header(__pa(sptep));
3222 
3223 	/*
3224 	 * Without accessed bits, there's no way to distinguish between
3225 	 * actually accessed translations and prefetched, so disable pte
3226 	 * prefetch if accessed bits aren't available.
3227 	 */
3228 	if (sp_ad_disabled(sp))
3229 		return;
3230 
3231 	if (sp->role.level > PT_PAGE_TABLE_LEVEL)
3232 		return;
3233 
3234 	__direct_pte_prefetch(vcpu, sp, sptep);
3235 }
3236 
3237 static int host_pfn_mapping_level(struct kvm_vcpu *vcpu, gfn_t gfn,
3238 				  kvm_pfn_t pfn, struct kvm_memory_slot *slot)
3239 {
3240 	unsigned long hva;
3241 	pte_t *pte;
3242 	int level;
3243 
3244 	BUILD_BUG_ON(PT_PAGE_TABLE_LEVEL != (int)PG_LEVEL_4K ||
3245 		     PT_DIRECTORY_LEVEL != (int)PG_LEVEL_2M ||
3246 		     PT_PDPE_LEVEL != (int)PG_LEVEL_1G);
3247 
3248 	if (!PageCompound(pfn_to_page(pfn)) && !kvm_is_zone_device_pfn(pfn))
3249 		return PT_PAGE_TABLE_LEVEL;
3250 
3251 	/*
3252 	 * Note, using the already-retrieved memslot and __gfn_to_hva_memslot()
3253 	 * is not solely for performance, it's also necessary to avoid the
3254 	 * "writable" check in __gfn_to_hva_many(), which will always fail on
3255 	 * read-only memslots due to gfn_to_hva() assuming writes.  Earlier
3256 	 * page fault steps have already verified the guest isn't writing a
3257 	 * read-only memslot.
3258 	 */
3259 	hva = __gfn_to_hva_memslot(slot, gfn);
3260 
3261 	pte = lookup_address_in_mm(vcpu->kvm->mm, hva, &level);
3262 	if (unlikely(!pte))
3263 		return PT_PAGE_TABLE_LEVEL;
3264 
3265 	return level;
3266 }
3267 
3268 static int kvm_mmu_hugepage_adjust(struct kvm_vcpu *vcpu, gfn_t gfn,
3269 				   int max_level, kvm_pfn_t *pfnp)
3270 {
3271 	struct kvm_memory_slot *slot;
3272 	struct kvm_lpage_info *linfo;
3273 	kvm_pfn_t pfn = *pfnp;
3274 	kvm_pfn_t mask;
3275 	int level;
3276 
3277 	if (unlikely(max_level == PT_PAGE_TABLE_LEVEL))
3278 		return PT_PAGE_TABLE_LEVEL;
3279 
3280 	if (is_error_noslot_pfn(pfn) || kvm_is_reserved_pfn(pfn))
3281 		return PT_PAGE_TABLE_LEVEL;
3282 
3283 	slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, true);
3284 	if (!slot)
3285 		return PT_PAGE_TABLE_LEVEL;
3286 
3287 	max_level = min(max_level, max_page_level);
3288 	for ( ; max_level > PT_PAGE_TABLE_LEVEL; max_level--) {
3289 		linfo = lpage_info_slot(gfn, slot, max_level);
3290 		if (!linfo->disallow_lpage)
3291 			break;
3292 	}
3293 
3294 	if (max_level == PT_PAGE_TABLE_LEVEL)
3295 		return PT_PAGE_TABLE_LEVEL;
3296 
3297 	level = host_pfn_mapping_level(vcpu, gfn, pfn, slot);
3298 	if (level == PT_PAGE_TABLE_LEVEL)
3299 		return level;
3300 
3301 	level = min(level, max_level);
3302 
3303 	/*
3304 	 * mmu_notifier_retry() was successful and mmu_lock is held, so
3305 	 * the pmd can't be split from under us.
3306 	 */
3307 	mask = KVM_PAGES_PER_HPAGE(level) - 1;
3308 	VM_BUG_ON((gfn & mask) != (pfn & mask));
3309 	*pfnp = pfn & ~mask;
3310 
3311 	return level;
3312 }
3313 
3314 static void disallowed_hugepage_adjust(struct kvm_shadow_walk_iterator it,
3315 				       gfn_t gfn, kvm_pfn_t *pfnp, int *levelp)
3316 {
3317 	int level = *levelp;
3318 	u64 spte = *it.sptep;
3319 
3320 	if (it.level == level && level > PT_PAGE_TABLE_LEVEL &&
3321 	    is_nx_huge_page_enabled() &&
3322 	    is_shadow_present_pte(spte) &&
3323 	    !is_large_pte(spte)) {
3324 		/*
3325 		 * A small SPTE exists for this pfn, but FNAME(fetch)
3326 		 * and __direct_map would like to create a large PTE
3327 		 * instead: just force them to go down another level,
3328 		 * patching back for them into pfn the next 9 bits of
3329 		 * the address.
3330 		 */
3331 		u64 page_mask = KVM_PAGES_PER_HPAGE(level) - KVM_PAGES_PER_HPAGE(level - 1);
3332 		*pfnp |= gfn & page_mask;
3333 		(*levelp)--;
3334 	}
3335 }
3336 
3337 static int __direct_map(struct kvm_vcpu *vcpu, gpa_t gpa, int write,
3338 			int map_writable, int max_level, kvm_pfn_t pfn,
3339 			bool prefault, bool account_disallowed_nx_lpage)
3340 {
3341 	struct kvm_shadow_walk_iterator it;
3342 	struct kvm_mmu_page *sp;
3343 	int level, ret;
3344 	gfn_t gfn = gpa >> PAGE_SHIFT;
3345 	gfn_t base_gfn = gfn;
3346 
3347 	if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa)))
3348 		return RET_PF_RETRY;
3349 
3350 	level = kvm_mmu_hugepage_adjust(vcpu, gfn, max_level, &pfn);
3351 
3352 	trace_kvm_mmu_spte_requested(gpa, level, pfn);
3353 	for_each_shadow_entry(vcpu, gpa, it) {
3354 		/*
3355 		 * We cannot overwrite existing page tables with an NX
3356 		 * large page, as the leaf could be executable.
3357 		 */
3358 		disallowed_hugepage_adjust(it, gfn, &pfn, &level);
3359 
3360 		base_gfn = gfn & ~(KVM_PAGES_PER_HPAGE(it.level) - 1);
3361 		if (it.level == level)
3362 			break;
3363 
3364 		drop_large_spte(vcpu, it.sptep);
3365 		if (!is_shadow_present_pte(*it.sptep)) {
3366 			sp = kvm_mmu_get_page(vcpu, base_gfn, it.addr,
3367 					      it.level - 1, true, ACC_ALL);
3368 
3369 			link_shadow_page(vcpu, it.sptep, sp);
3370 			if (account_disallowed_nx_lpage)
3371 				account_huge_nx_page(vcpu->kvm, sp);
3372 		}
3373 	}
3374 
3375 	ret = mmu_set_spte(vcpu, it.sptep, ACC_ALL,
3376 			   write, level, base_gfn, pfn, prefault,
3377 			   map_writable);
3378 	direct_pte_prefetch(vcpu, it.sptep);
3379 	++vcpu->stat.pf_fixed;
3380 	return ret;
3381 }
3382 
3383 static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
3384 {
3385 	send_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, PAGE_SHIFT, tsk);
3386 }
3387 
3388 static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, kvm_pfn_t pfn)
3389 {
3390 	/*
3391 	 * Do not cache the mmio info caused by writing the readonly gfn
3392 	 * into the spte otherwise read access on readonly gfn also can
3393 	 * caused mmio page fault and treat it as mmio access.
3394 	 */
3395 	if (pfn == KVM_PFN_ERR_RO_FAULT)
3396 		return RET_PF_EMULATE;
3397 
3398 	if (pfn == KVM_PFN_ERR_HWPOISON) {
3399 		kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current);
3400 		return RET_PF_RETRY;
3401 	}
3402 
3403 	return -EFAULT;
3404 }
3405 
3406 static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
3407 				kvm_pfn_t pfn, unsigned int access,
3408 				int *ret_val)
3409 {
3410 	/* The pfn is invalid, report the error! */
3411 	if (unlikely(is_error_pfn(pfn))) {
3412 		*ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
3413 		return true;
3414 	}
3415 
3416 	if (unlikely(is_noslot_pfn(pfn)))
3417 		vcpu_cache_mmio_info(vcpu, gva, gfn,
3418 				     access & shadow_mmio_access_mask);
3419 
3420 	return false;
3421 }
3422 
3423 static bool page_fault_can_be_fast(u32 error_code)
3424 {
3425 	/*
3426 	 * Do not fix the mmio spte with invalid generation number which
3427 	 * need to be updated by slow page fault path.
3428 	 */
3429 	if (unlikely(error_code & PFERR_RSVD_MASK))
3430 		return false;
3431 
3432 	/* See if the page fault is due to an NX violation */
3433 	if (unlikely(((error_code & (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))
3434 		      == (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))))
3435 		return false;
3436 
3437 	/*
3438 	 * #PF can be fast if:
3439 	 * 1. The shadow page table entry is not present, which could mean that
3440 	 *    the fault is potentially caused by access tracking (if enabled).
3441 	 * 2. The shadow page table entry is present and the fault
3442 	 *    is caused by write-protect, that means we just need change the W
3443 	 *    bit of the spte which can be done out of mmu-lock.
3444 	 *
3445 	 * However, if access tracking is disabled we know that a non-present
3446 	 * page must be a genuine page fault where we have to create a new SPTE.
3447 	 * So, if access tracking is disabled, we return true only for write
3448 	 * accesses to a present page.
3449 	 */
3450 
3451 	return shadow_acc_track_mask != 0 ||
3452 	       ((error_code & (PFERR_WRITE_MASK | PFERR_PRESENT_MASK))
3453 		== (PFERR_WRITE_MASK | PFERR_PRESENT_MASK));
3454 }
3455 
3456 /*
3457  * Returns true if the SPTE was fixed successfully. Otherwise,
3458  * someone else modified the SPTE from its original value.
3459  */
3460 static bool
3461 fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
3462 			u64 *sptep, u64 old_spte, u64 new_spte)
3463 {
3464 	gfn_t gfn;
3465 
3466 	WARN_ON(!sp->role.direct);
3467 
3468 	/*
3469 	 * Theoretically we could also set dirty bit (and flush TLB) here in
3470 	 * order to eliminate unnecessary PML logging. See comments in
3471 	 * set_spte. But fast_page_fault is very unlikely to happen with PML
3472 	 * enabled, so we do not do this. This might result in the same GPA
3473 	 * to be logged in PML buffer again when the write really happens, and
3474 	 * eventually to be called by mark_page_dirty twice. But it's also no
3475 	 * harm. This also avoids the TLB flush needed after setting dirty bit
3476 	 * so non-PML cases won't be impacted.
3477 	 *
3478 	 * Compare with set_spte where instead shadow_dirty_mask is set.
3479 	 */
3480 	if (cmpxchg64(sptep, old_spte, new_spte) != old_spte)
3481 		return false;
3482 
3483 	if (is_writable_pte(new_spte) && !is_writable_pte(old_spte)) {
3484 		/*
3485 		 * The gfn of direct spte is stable since it is
3486 		 * calculated by sp->gfn.
3487 		 */
3488 		gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
3489 		kvm_vcpu_mark_page_dirty(vcpu, gfn);
3490 	}
3491 
3492 	return true;
3493 }
3494 
3495 static bool is_access_allowed(u32 fault_err_code, u64 spte)
3496 {
3497 	if (fault_err_code & PFERR_FETCH_MASK)
3498 		return is_executable_pte(spte);
3499 
3500 	if (fault_err_code & PFERR_WRITE_MASK)
3501 		return is_writable_pte(spte);
3502 
3503 	/* Fault was on Read access */
3504 	return spte & PT_PRESENT_MASK;
3505 }
3506 
3507 /*
3508  * Return value:
3509  * - true: let the vcpu to access on the same address again.
3510  * - false: let the real page fault path to fix it.
3511  */
3512 static bool fast_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
3513 			    u32 error_code)
3514 {
3515 	struct kvm_shadow_walk_iterator iterator;
3516 	struct kvm_mmu_page *sp;
3517 	bool fault_handled = false;
3518 	u64 spte = 0ull;
3519 	uint retry_count = 0;
3520 
3521 	if (!page_fault_can_be_fast(error_code))
3522 		return false;
3523 
3524 	walk_shadow_page_lockless_begin(vcpu);
3525 
3526 	do {
3527 		u64 new_spte;
3528 
3529 		for_each_shadow_entry_lockless(vcpu, cr2_or_gpa, iterator, spte)
3530 			if (!is_shadow_present_pte(spte))
3531 				break;
3532 
3533 		sp = page_header(__pa(iterator.sptep));
3534 		if (!is_last_spte(spte, sp->role.level))
3535 			break;
3536 
3537 		/*
3538 		 * Check whether the memory access that caused the fault would
3539 		 * still cause it if it were to be performed right now. If not,
3540 		 * then this is a spurious fault caused by TLB lazily flushed,
3541 		 * or some other CPU has already fixed the PTE after the
3542 		 * current CPU took the fault.
3543 		 *
3544 		 * Need not check the access of upper level table entries since
3545 		 * they are always ACC_ALL.
3546 		 */
3547 		if (is_access_allowed(error_code, spte)) {
3548 			fault_handled = true;
3549 			break;
3550 		}
3551 
3552 		new_spte = spte;
3553 
3554 		if (is_access_track_spte(spte))
3555 			new_spte = restore_acc_track_spte(new_spte);
3556 
3557 		/*
3558 		 * Currently, to simplify the code, write-protection can
3559 		 * be removed in the fast path only if the SPTE was
3560 		 * write-protected for dirty-logging or access tracking.
3561 		 */
3562 		if ((error_code & PFERR_WRITE_MASK) &&
3563 		    spte_can_locklessly_be_made_writable(spte)) {
3564 			new_spte |= PT_WRITABLE_MASK;
3565 
3566 			/*
3567 			 * Do not fix write-permission on the large spte.  Since
3568 			 * we only dirty the first page into the dirty-bitmap in
3569 			 * fast_pf_fix_direct_spte(), other pages are missed
3570 			 * if its slot has dirty logging enabled.
3571 			 *
3572 			 * Instead, we let the slow page fault path create a
3573 			 * normal spte to fix the access.
3574 			 *
3575 			 * See the comments in kvm_arch_commit_memory_region().
3576 			 */
3577 			if (sp->role.level > PT_PAGE_TABLE_LEVEL)
3578 				break;
3579 		}
3580 
3581 		/* Verify that the fault can be handled in the fast path */
3582 		if (new_spte == spte ||
3583 		    !is_access_allowed(error_code, new_spte))
3584 			break;
3585 
3586 		/*
3587 		 * Currently, fast page fault only works for direct mapping
3588 		 * since the gfn is not stable for indirect shadow page. See
3589 		 * Documentation/virt/kvm/locking.txt to get more detail.
3590 		 */
3591 		fault_handled = fast_pf_fix_direct_spte(vcpu, sp,
3592 							iterator.sptep, spte,
3593 							new_spte);
3594 		if (fault_handled)
3595 			break;
3596 
3597 		if (++retry_count > 4) {
3598 			printk_once(KERN_WARNING
3599 				"kvm: Fast #PF retrying more than 4 times.\n");
3600 			break;
3601 		}
3602 
3603 	} while (true);
3604 
3605 	trace_fast_page_fault(vcpu, cr2_or_gpa, error_code, iterator.sptep,
3606 			      spte, fault_handled);
3607 	walk_shadow_page_lockless_end(vcpu);
3608 
3609 	return fault_handled;
3610 }
3611 
3612 static void mmu_free_root_page(struct kvm *kvm, hpa_t *root_hpa,
3613 			       struct list_head *invalid_list)
3614 {
3615 	struct kvm_mmu_page *sp;
3616 
3617 	if (!VALID_PAGE(*root_hpa))
3618 		return;
3619 
3620 	sp = page_header(*root_hpa & PT64_BASE_ADDR_MASK);
3621 	--sp->root_count;
3622 	if (!sp->root_count && sp->role.invalid)
3623 		kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
3624 
3625 	*root_hpa = INVALID_PAGE;
3626 }
3627 
3628 /* roots_to_free must be some combination of the KVM_MMU_ROOT_* flags */
3629 void kvm_mmu_free_roots(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
3630 			ulong roots_to_free)
3631 {
3632 	int i;
3633 	LIST_HEAD(invalid_list);
3634 	bool free_active_root = roots_to_free & KVM_MMU_ROOT_CURRENT;
3635 
3636 	BUILD_BUG_ON(KVM_MMU_NUM_PREV_ROOTS >= BITS_PER_LONG);
3637 
3638 	/* Before acquiring the MMU lock, see if we need to do any real work. */
3639 	if (!(free_active_root && VALID_PAGE(mmu->root_hpa))) {
3640 		for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
3641 			if ((roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) &&
3642 			    VALID_PAGE(mmu->prev_roots[i].hpa))
3643 				break;
3644 
3645 		if (i == KVM_MMU_NUM_PREV_ROOTS)
3646 			return;
3647 	}
3648 
3649 	spin_lock(&vcpu->kvm->mmu_lock);
3650 
3651 	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
3652 		if (roots_to_free & KVM_MMU_ROOT_PREVIOUS(i))
3653 			mmu_free_root_page(vcpu->kvm, &mmu->prev_roots[i].hpa,
3654 					   &invalid_list);
3655 
3656 	if (free_active_root) {
3657 		if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
3658 		    (mmu->root_level >= PT64_ROOT_4LEVEL || mmu->direct_map)) {
3659 			mmu_free_root_page(vcpu->kvm, &mmu->root_hpa,
3660 					   &invalid_list);
3661 		} else {
3662 			for (i = 0; i < 4; ++i)
3663 				if (mmu->pae_root[i] != 0)
3664 					mmu_free_root_page(vcpu->kvm,
3665 							   &mmu->pae_root[i],
3666 							   &invalid_list);
3667 			mmu->root_hpa = INVALID_PAGE;
3668 		}
3669 		mmu->root_cr3 = 0;
3670 	}
3671 
3672 	kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3673 	spin_unlock(&vcpu->kvm->mmu_lock);
3674 }
3675 EXPORT_SYMBOL_GPL(kvm_mmu_free_roots);
3676 
3677 static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
3678 {
3679 	int ret = 0;
3680 
3681 	if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
3682 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3683 		ret = 1;
3684 	}
3685 
3686 	return ret;
3687 }
3688 
3689 static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
3690 {
3691 	struct kvm_mmu_page *sp;
3692 	unsigned i;
3693 
3694 	if (vcpu->arch.mmu->shadow_root_level >= PT64_ROOT_4LEVEL) {
3695 		spin_lock(&vcpu->kvm->mmu_lock);
3696 		if(make_mmu_pages_available(vcpu) < 0) {
3697 			spin_unlock(&vcpu->kvm->mmu_lock);
3698 			return -ENOSPC;
3699 		}
3700 		sp = kvm_mmu_get_page(vcpu, 0, 0,
3701 				vcpu->arch.mmu->shadow_root_level, 1, ACC_ALL);
3702 		++sp->root_count;
3703 		spin_unlock(&vcpu->kvm->mmu_lock);
3704 		vcpu->arch.mmu->root_hpa = __pa(sp->spt);
3705 	} else if (vcpu->arch.mmu->shadow_root_level == PT32E_ROOT_LEVEL) {
3706 		for (i = 0; i < 4; ++i) {
3707 			hpa_t root = vcpu->arch.mmu->pae_root[i];
3708 
3709 			MMU_WARN_ON(VALID_PAGE(root));
3710 			spin_lock(&vcpu->kvm->mmu_lock);
3711 			if (make_mmu_pages_available(vcpu) < 0) {
3712 				spin_unlock(&vcpu->kvm->mmu_lock);
3713 				return -ENOSPC;
3714 			}
3715 			sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
3716 					i << 30, PT32_ROOT_LEVEL, 1, ACC_ALL);
3717 			root = __pa(sp->spt);
3718 			++sp->root_count;
3719 			spin_unlock(&vcpu->kvm->mmu_lock);
3720 			vcpu->arch.mmu->pae_root[i] = root | PT_PRESENT_MASK;
3721 		}
3722 		vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->pae_root);
3723 	} else
3724 		BUG();
3725 
3726 	/* root_cr3 is ignored for direct MMUs. */
3727 	vcpu->arch.mmu->root_cr3 = 0;
3728 
3729 	return 0;
3730 }
3731 
3732 static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
3733 {
3734 	struct kvm_mmu_page *sp;
3735 	u64 pdptr, pm_mask;
3736 	gfn_t root_gfn, root_cr3;
3737 	int i;
3738 
3739 	root_cr3 = vcpu->arch.mmu->get_guest_pgd(vcpu);
3740 	root_gfn = root_cr3 >> PAGE_SHIFT;
3741 
3742 	if (mmu_check_root(vcpu, root_gfn))
3743 		return 1;
3744 
3745 	/*
3746 	 * Do we shadow a long mode page table? If so we need to
3747 	 * write-protect the guests page table root.
3748 	 */
3749 	if (vcpu->arch.mmu->root_level >= PT64_ROOT_4LEVEL) {
3750 		hpa_t root = vcpu->arch.mmu->root_hpa;
3751 
3752 		MMU_WARN_ON(VALID_PAGE(root));
3753 
3754 		spin_lock(&vcpu->kvm->mmu_lock);
3755 		if (make_mmu_pages_available(vcpu) < 0) {
3756 			spin_unlock(&vcpu->kvm->mmu_lock);
3757 			return -ENOSPC;
3758 		}
3759 		sp = kvm_mmu_get_page(vcpu, root_gfn, 0,
3760 				vcpu->arch.mmu->shadow_root_level, 0, ACC_ALL);
3761 		root = __pa(sp->spt);
3762 		++sp->root_count;
3763 		spin_unlock(&vcpu->kvm->mmu_lock);
3764 		vcpu->arch.mmu->root_hpa = root;
3765 		goto set_root_cr3;
3766 	}
3767 
3768 	/*
3769 	 * We shadow a 32 bit page table. This may be a legacy 2-level
3770 	 * or a PAE 3-level page table. In either case we need to be aware that
3771 	 * the shadow page table may be a PAE or a long mode page table.
3772 	 */
3773 	pm_mask = PT_PRESENT_MASK;
3774 	if (vcpu->arch.mmu->shadow_root_level == PT64_ROOT_4LEVEL)
3775 		pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
3776 
3777 	for (i = 0; i < 4; ++i) {
3778 		hpa_t root = vcpu->arch.mmu->pae_root[i];
3779 
3780 		MMU_WARN_ON(VALID_PAGE(root));
3781 		if (vcpu->arch.mmu->root_level == PT32E_ROOT_LEVEL) {
3782 			pdptr = vcpu->arch.mmu->get_pdptr(vcpu, i);
3783 			if (!(pdptr & PT_PRESENT_MASK)) {
3784 				vcpu->arch.mmu->pae_root[i] = 0;
3785 				continue;
3786 			}
3787 			root_gfn = pdptr >> PAGE_SHIFT;
3788 			if (mmu_check_root(vcpu, root_gfn))
3789 				return 1;
3790 		}
3791 		spin_lock(&vcpu->kvm->mmu_lock);
3792 		if (make_mmu_pages_available(vcpu) < 0) {
3793 			spin_unlock(&vcpu->kvm->mmu_lock);
3794 			return -ENOSPC;
3795 		}
3796 		sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30, PT32_ROOT_LEVEL,
3797 				      0, ACC_ALL);
3798 		root = __pa(sp->spt);
3799 		++sp->root_count;
3800 		spin_unlock(&vcpu->kvm->mmu_lock);
3801 
3802 		vcpu->arch.mmu->pae_root[i] = root | pm_mask;
3803 	}
3804 	vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->pae_root);
3805 
3806 	/*
3807 	 * If we shadow a 32 bit page table with a long mode page
3808 	 * table we enter this path.
3809 	 */
3810 	if (vcpu->arch.mmu->shadow_root_level == PT64_ROOT_4LEVEL) {
3811 		if (vcpu->arch.mmu->lm_root == NULL) {
3812 			/*
3813 			 * The additional page necessary for this is only
3814 			 * allocated on demand.
3815 			 */
3816 
3817 			u64 *lm_root;
3818 
3819 			lm_root = (void*)get_zeroed_page(GFP_KERNEL_ACCOUNT);
3820 			if (lm_root == NULL)
3821 				return 1;
3822 
3823 			lm_root[0] = __pa(vcpu->arch.mmu->pae_root) | pm_mask;
3824 
3825 			vcpu->arch.mmu->lm_root = lm_root;
3826 		}
3827 
3828 		vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->lm_root);
3829 	}
3830 
3831 set_root_cr3:
3832 	vcpu->arch.mmu->root_cr3 = root_cr3;
3833 
3834 	return 0;
3835 }
3836 
3837 static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
3838 {
3839 	if (vcpu->arch.mmu->direct_map)
3840 		return mmu_alloc_direct_roots(vcpu);
3841 	else
3842 		return mmu_alloc_shadow_roots(vcpu);
3843 }
3844 
3845 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3846 {
3847 	int i;
3848 	struct kvm_mmu_page *sp;
3849 
3850 	if (vcpu->arch.mmu->direct_map)
3851 		return;
3852 
3853 	if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
3854 		return;
3855 
3856 	vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
3857 
3858 	if (vcpu->arch.mmu->root_level >= PT64_ROOT_4LEVEL) {
3859 		hpa_t root = vcpu->arch.mmu->root_hpa;
3860 		sp = page_header(root);
3861 
3862 		/*
3863 		 * Even if another CPU was marking the SP as unsync-ed
3864 		 * simultaneously, any guest page table changes are not
3865 		 * guaranteed to be visible anyway until this VCPU issues a TLB
3866 		 * flush strictly after those changes are made. We only need to
3867 		 * ensure that the other CPU sets these flags before any actual
3868 		 * changes to the page tables are made. The comments in
3869 		 * mmu_need_write_protect() describe what could go wrong if this
3870 		 * requirement isn't satisfied.
3871 		 */
3872 		if (!smp_load_acquire(&sp->unsync) &&
3873 		    !smp_load_acquire(&sp->unsync_children))
3874 			return;
3875 
3876 		spin_lock(&vcpu->kvm->mmu_lock);
3877 		kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3878 
3879 		mmu_sync_children(vcpu, sp);
3880 
3881 		kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3882 		spin_unlock(&vcpu->kvm->mmu_lock);
3883 		return;
3884 	}
3885 
3886 	spin_lock(&vcpu->kvm->mmu_lock);
3887 	kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3888 
3889 	for (i = 0; i < 4; ++i) {
3890 		hpa_t root = vcpu->arch.mmu->pae_root[i];
3891 
3892 		if (root && VALID_PAGE(root)) {
3893 			root &= PT64_BASE_ADDR_MASK;
3894 			sp = page_header(root);
3895 			mmu_sync_children(vcpu, sp);
3896 		}
3897 	}
3898 
3899 	kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3900 	spin_unlock(&vcpu->kvm->mmu_lock);
3901 }
3902 EXPORT_SYMBOL_GPL(kvm_mmu_sync_roots);
3903 
3904 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gpa_t vaddr,
3905 				  u32 access, struct x86_exception *exception)
3906 {
3907 	if (exception)
3908 		exception->error_code = 0;
3909 	return vaddr;
3910 }
3911 
3912 static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gpa_t vaddr,
3913 					 u32 access,
3914 					 struct x86_exception *exception)
3915 {
3916 	if (exception)
3917 		exception->error_code = 0;
3918 	return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception);
3919 }
3920 
3921 static bool
3922 __is_rsvd_bits_set(struct rsvd_bits_validate *rsvd_check, u64 pte, int level)
3923 {
3924 	int bit7 = (pte >> 7) & 1;
3925 
3926 	return pte & rsvd_check->rsvd_bits_mask[bit7][level-1];
3927 }
3928 
3929 static bool __is_bad_mt_xwr(struct rsvd_bits_validate *rsvd_check, u64 pte)
3930 {
3931 	return rsvd_check->bad_mt_xwr & BIT_ULL(pte & 0x3f);
3932 }
3933 
3934 static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3935 {
3936 	/*
3937 	 * A nested guest cannot use the MMIO cache if it is using nested
3938 	 * page tables, because cr2 is a nGPA while the cache stores GPAs.
3939 	 */
3940 	if (mmu_is_nested(vcpu))
3941 		return false;
3942 
3943 	if (direct)
3944 		return vcpu_match_mmio_gpa(vcpu, addr);
3945 
3946 	return vcpu_match_mmio_gva(vcpu, addr);
3947 }
3948 
3949 /* return true if reserved bit is detected on spte. */
3950 static bool
3951 walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep)
3952 {
3953 	struct kvm_shadow_walk_iterator iterator;
3954 	u64 sptes[PT64_ROOT_MAX_LEVEL], spte = 0ull;
3955 	struct rsvd_bits_validate *rsvd_check;
3956 	int root, leaf;
3957 	bool reserved = false;
3958 
3959 	rsvd_check = &vcpu->arch.mmu->shadow_zero_check;
3960 
3961 	walk_shadow_page_lockless_begin(vcpu);
3962 
3963 	for (shadow_walk_init(&iterator, vcpu, addr),
3964 		 leaf = root = iterator.level;
3965 	     shadow_walk_okay(&iterator);
3966 	     __shadow_walk_next(&iterator, spte)) {
3967 		spte = mmu_spte_get_lockless(iterator.sptep);
3968 
3969 		sptes[leaf - 1] = spte;
3970 		leaf--;
3971 
3972 		if (!is_shadow_present_pte(spte))
3973 			break;
3974 
3975 		/*
3976 		 * Use a bitwise-OR instead of a logical-OR to aggregate the
3977 		 * reserved bit and EPT's invalid memtype/XWR checks to avoid
3978 		 * adding a Jcc in the loop.
3979 		 */
3980 		reserved |= __is_bad_mt_xwr(rsvd_check, spte) |
3981 			    __is_rsvd_bits_set(rsvd_check, spte, iterator.level);
3982 	}
3983 
3984 	walk_shadow_page_lockless_end(vcpu);
3985 
3986 	if (reserved) {
3987 		pr_err("%s: detect reserved bits on spte, addr 0x%llx, dump hierarchy:\n",
3988 		       __func__, addr);
3989 		while (root > leaf) {
3990 			pr_err("------ spte 0x%llx level %d.\n",
3991 			       sptes[root - 1], root);
3992 			root--;
3993 		}
3994 	}
3995 
3996 	*sptep = spte;
3997 	return reserved;
3998 }
3999 
4000 static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct)
4001 {
4002 	u64 spte;
4003 	bool reserved;
4004 
4005 	if (mmio_info_in_cache(vcpu, addr, direct))
4006 		return RET_PF_EMULATE;
4007 
4008 	reserved = walk_shadow_page_get_mmio_spte(vcpu, addr, &spte);
4009 	if (WARN_ON(reserved))
4010 		return -EINVAL;
4011 
4012 	if (is_mmio_spte(spte)) {
4013 		gfn_t gfn = get_mmio_spte_gfn(spte);
4014 		unsigned int access = get_mmio_spte_access(spte);
4015 
4016 		if (!check_mmio_spte(vcpu, spte))
4017 			return RET_PF_INVALID;
4018 
4019 		if (direct)
4020 			addr = 0;
4021 
4022 		trace_handle_mmio_page_fault(addr, gfn, access);
4023 		vcpu_cache_mmio_info(vcpu, addr, gfn, access);
4024 		return RET_PF_EMULATE;
4025 	}
4026 
4027 	/*
4028 	 * If the page table is zapped by other cpus, let CPU fault again on
4029 	 * the address.
4030 	 */
4031 	return RET_PF_RETRY;
4032 }
4033 
4034 static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu,
4035 					 u32 error_code, gfn_t gfn)
4036 {
4037 	if (unlikely(error_code & PFERR_RSVD_MASK))
4038 		return false;
4039 
4040 	if (!(error_code & PFERR_PRESENT_MASK) ||
4041 	      !(error_code & PFERR_WRITE_MASK))
4042 		return false;
4043 
4044 	/*
4045 	 * guest is writing the page which is write tracked which can
4046 	 * not be fixed by page fault handler.
4047 	 */
4048 	if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
4049 		return true;
4050 
4051 	return false;
4052 }
4053 
4054 static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr)
4055 {
4056 	struct kvm_shadow_walk_iterator iterator;
4057 	u64 spte;
4058 
4059 	walk_shadow_page_lockless_begin(vcpu);
4060 	for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
4061 		clear_sp_write_flooding_count(iterator.sptep);
4062 		if (!is_shadow_present_pte(spte))
4063 			break;
4064 	}
4065 	walk_shadow_page_lockless_end(vcpu);
4066 }
4067 
4068 static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
4069 				   gfn_t gfn)
4070 {
4071 	struct kvm_arch_async_pf arch;
4072 
4073 	arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
4074 	arch.gfn = gfn;
4075 	arch.direct_map = vcpu->arch.mmu->direct_map;
4076 	arch.cr3 = vcpu->arch.mmu->get_guest_pgd(vcpu);
4077 
4078 	return kvm_setup_async_pf(vcpu, cr2_or_gpa,
4079 				  kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch);
4080 }
4081 
4082 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
4083 			 gpa_t cr2_or_gpa, kvm_pfn_t *pfn, bool write,
4084 			 bool *writable)
4085 {
4086 	struct kvm_memory_slot *slot;
4087 	bool async;
4088 
4089 	/*
4090 	 * Don't expose private memslots to L2.
4091 	 */
4092 	if (is_guest_mode(vcpu) && !kvm_is_visible_gfn(vcpu->kvm, gfn)) {
4093 		*pfn = KVM_PFN_NOSLOT;
4094 		return false;
4095 	}
4096 
4097 	slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
4098 	async = false;
4099 	*pfn = __gfn_to_pfn_memslot(slot, gfn, false, &async, write, writable);
4100 	if (!async)
4101 		return false; /* *pfn has correct page already */
4102 
4103 	if (!prefault && kvm_can_do_async_pf(vcpu)) {
4104 		trace_kvm_try_async_get_page(cr2_or_gpa, gfn);
4105 		if (kvm_find_async_pf_gfn(vcpu, gfn)) {
4106 			trace_kvm_async_pf_doublefault(cr2_or_gpa, gfn);
4107 			kvm_make_request(KVM_REQ_APF_HALT, vcpu);
4108 			return true;
4109 		} else if (kvm_arch_setup_async_pf(vcpu, cr2_or_gpa, gfn))
4110 			return true;
4111 	}
4112 
4113 	*pfn = __gfn_to_pfn_memslot(slot, gfn, false, NULL, write, writable);
4114 	return false;
4115 }
4116 
4117 static int direct_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
4118 			     bool prefault, int max_level, bool is_tdp)
4119 {
4120 	bool write = error_code & PFERR_WRITE_MASK;
4121 	bool exec = error_code & PFERR_FETCH_MASK;
4122 	bool lpage_disallowed = exec && is_nx_huge_page_enabled();
4123 	bool map_writable;
4124 
4125 	gfn_t gfn = gpa >> PAGE_SHIFT;
4126 	unsigned long mmu_seq;
4127 	kvm_pfn_t pfn;
4128 	int r;
4129 
4130 	if (page_fault_handle_page_track(vcpu, error_code, gfn))
4131 		return RET_PF_EMULATE;
4132 
4133 	r = mmu_topup_memory_caches(vcpu);
4134 	if (r)
4135 		return r;
4136 
4137 	if (lpage_disallowed)
4138 		max_level = PT_PAGE_TABLE_LEVEL;
4139 
4140 	if (fast_page_fault(vcpu, gpa, error_code))
4141 		return RET_PF_RETRY;
4142 
4143 	mmu_seq = vcpu->kvm->mmu_notifier_seq;
4144 	smp_rmb();
4145 
4146 	if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
4147 		return RET_PF_RETRY;
4148 
4149 	if (handle_abnormal_pfn(vcpu, is_tdp ? 0 : gpa, gfn, pfn, ACC_ALL, &r))
4150 		return r;
4151 
4152 	r = RET_PF_RETRY;
4153 	spin_lock(&vcpu->kvm->mmu_lock);
4154 	if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
4155 		goto out_unlock;
4156 	if (make_mmu_pages_available(vcpu) < 0)
4157 		goto out_unlock;
4158 	r = __direct_map(vcpu, gpa, write, map_writable, max_level, pfn,
4159 			 prefault, is_tdp && lpage_disallowed);
4160 
4161 out_unlock:
4162 	spin_unlock(&vcpu->kvm->mmu_lock);
4163 	kvm_release_pfn_clean(pfn);
4164 	return r;
4165 }
4166 
4167 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa,
4168 				u32 error_code, bool prefault)
4169 {
4170 	pgprintk("%s: gva %lx error %x\n", __func__, gpa, error_code);
4171 
4172 	/* This path builds a PAE pagetable, we can map 2mb pages at maximum. */
4173 	return direct_page_fault(vcpu, gpa & PAGE_MASK, error_code, prefault,
4174 				 PT_DIRECTORY_LEVEL, false);
4175 }
4176 
4177 int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code,
4178 				u64 fault_address, char *insn, int insn_len)
4179 {
4180 	int r = 1;
4181 
4182 #ifndef CONFIG_X86_64
4183 	/* A 64-bit CR2 should be impossible on 32-bit KVM. */
4184 	if (WARN_ON_ONCE(fault_address >> 32))
4185 		return -EFAULT;
4186 #endif
4187 
4188 	vcpu->arch.l1tf_flush_l1d = true;
4189 	switch (vcpu->arch.apf.host_apf_reason) {
4190 	default:
4191 		trace_kvm_page_fault(fault_address, error_code);
4192 
4193 		if (kvm_event_needs_reinjection(vcpu))
4194 			kvm_mmu_unprotect_page_virt(vcpu, fault_address);
4195 		r = kvm_mmu_page_fault(vcpu, fault_address, error_code, insn,
4196 				insn_len);
4197 		break;
4198 	case KVM_PV_REASON_PAGE_NOT_PRESENT:
4199 		vcpu->arch.apf.host_apf_reason = 0;
4200 		local_irq_disable();
4201 		kvm_async_pf_task_wait(fault_address, 0);
4202 		local_irq_enable();
4203 		break;
4204 	case KVM_PV_REASON_PAGE_READY:
4205 		vcpu->arch.apf.host_apf_reason = 0;
4206 		local_irq_disable();
4207 		kvm_async_pf_task_wake(fault_address);
4208 		local_irq_enable();
4209 		break;
4210 	}
4211 	return r;
4212 }
4213 EXPORT_SYMBOL_GPL(kvm_handle_page_fault);
4214 
4215 int kvm_tdp_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
4216 		       bool prefault)
4217 {
4218 	int max_level;
4219 
4220 	for (max_level = PT_MAX_HUGEPAGE_LEVEL;
4221 	     max_level > PT_PAGE_TABLE_LEVEL;
4222 	     max_level--) {
4223 		int page_num = KVM_PAGES_PER_HPAGE(max_level);
4224 		gfn_t base = (gpa >> PAGE_SHIFT) & ~(page_num - 1);
4225 
4226 		if (kvm_mtrr_check_gfn_range_consistency(vcpu, base, page_num))
4227 			break;
4228 	}
4229 
4230 	return direct_page_fault(vcpu, gpa, error_code, prefault,
4231 				 max_level, true);
4232 }
4233 
4234 static void nonpaging_init_context(struct kvm_vcpu *vcpu,
4235 				   struct kvm_mmu *context)
4236 {
4237 	context->page_fault = nonpaging_page_fault;
4238 	context->gva_to_gpa = nonpaging_gva_to_gpa;
4239 	context->sync_page = nonpaging_sync_page;
4240 	context->invlpg = nonpaging_invlpg;
4241 	context->update_pte = nonpaging_update_pte;
4242 	context->root_level = 0;
4243 	context->shadow_root_level = PT32E_ROOT_LEVEL;
4244 	context->direct_map = true;
4245 	context->nx = false;
4246 }
4247 
4248 static inline bool is_root_usable(struct kvm_mmu_root_info *root, gpa_t cr3,
4249 				  union kvm_mmu_page_role role)
4250 {
4251 	return (role.direct || cr3 == root->cr3) &&
4252 	       VALID_PAGE(root->hpa) && page_header(root->hpa) &&
4253 	       role.word == page_header(root->hpa)->role.word;
4254 }
4255 
4256 /*
4257  * Find out if a previously cached root matching the new CR3/role is available.
4258  * The current root is also inserted into the cache.
4259  * If a matching root was found, it is assigned to kvm_mmu->root_hpa and true is
4260  * returned.
4261  * Otherwise, the LRU root from the cache is assigned to kvm_mmu->root_hpa and
4262  * false is returned. This root should now be freed by the caller.
4263  */
4264 static bool cached_root_available(struct kvm_vcpu *vcpu, gpa_t new_cr3,
4265 				  union kvm_mmu_page_role new_role)
4266 {
4267 	uint i;
4268 	struct kvm_mmu_root_info root;
4269 	struct kvm_mmu *mmu = vcpu->arch.mmu;
4270 
4271 	root.cr3 = mmu->root_cr3;
4272 	root.hpa = mmu->root_hpa;
4273 
4274 	if (is_root_usable(&root, new_cr3, new_role))
4275 		return true;
4276 
4277 	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
4278 		swap(root, mmu->prev_roots[i]);
4279 
4280 		if (is_root_usable(&root, new_cr3, new_role))
4281 			break;
4282 	}
4283 
4284 	mmu->root_hpa = root.hpa;
4285 	mmu->root_cr3 = root.cr3;
4286 
4287 	return i < KVM_MMU_NUM_PREV_ROOTS;
4288 }
4289 
4290 static bool fast_cr3_switch(struct kvm_vcpu *vcpu, gpa_t new_cr3,
4291 			    union kvm_mmu_page_role new_role,
4292 			    bool skip_tlb_flush)
4293 {
4294 	struct kvm_mmu *mmu = vcpu->arch.mmu;
4295 
4296 	/*
4297 	 * For now, limit the fast switch to 64-bit hosts+VMs in order to avoid
4298 	 * having to deal with PDPTEs. We may add support for 32-bit hosts/VMs
4299 	 * later if necessary.
4300 	 */
4301 	if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
4302 	    mmu->root_level >= PT64_ROOT_4LEVEL) {
4303 		if (mmu_check_root(vcpu, new_cr3 >> PAGE_SHIFT))
4304 			return false;
4305 
4306 		if (cached_root_available(vcpu, new_cr3, new_role)) {
4307 			/*
4308 			 * It is possible that the cached previous root page is
4309 			 * obsolete because of a change in the MMU generation
4310 			 * number. However, changing the generation number is
4311 			 * accompanied by KVM_REQ_MMU_RELOAD, which will free
4312 			 * the root set here and allocate a new one.
4313 			 */
4314 			kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu);
4315 			if (!skip_tlb_flush) {
4316 				kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
4317 				kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
4318 			}
4319 
4320 			/*
4321 			 * The last MMIO access's GVA and GPA are cached in the
4322 			 * VCPU. When switching to a new CR3, that GVA->GPA
4323 			 * mapping may no longer be valid. So clear any cached
4324 			 * MMIO info even when we don't need to sync the shadow
4325 			 * page tables.
4326 			 */
4327 			vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
4328 
4329 			__clear_sp_write_flooding_count(
4330 				page_header(mmu->root_hpa));
4331 
4332 			return true;
4333 		}
4334 	}
4335 
4336 	return false;
4337 }
4338 
4339 static void __kvm_mmu_new_cr3(struct kvm_vcpu *vcpu, gpa_t new_cr3,
4340 			      union kvm_mmu_page_role new_role,
4341 			      bool skip_tlb_flush)
4342 {
4343 	if (!fast_cr3_switch(vcpu, new_cr3, new_role, skip_tlb_flush))
4344 		kvm_mmu_free_roots(vcpu, vcpu->arch.mmu,
4345 				   KVM_MMU_ROOT_CURRENT);
4346 }
4347 
4348 void kvm_mmu_new_cr3(struct kvm_vcpu *vcpu, gpa_t new_cr3, bool skip_tlb_flush)
4349 {
4350 	__kvm_mmu_new_cr3(vcpu, new_cr3, kvm_mmu_calc_root_page_role(vcpu),
4351 			  skip_tlb_flush);
4352 }
4353 EXPORT_SYMBOL_GPL(kvm_mmu_new_cr3);
4354 
4355 static unsigned long get_cr3(struct kvm_vcpu *vcpu)
4356 {
4357 	return kvm_read_cr3(vcpu);
4358 }
4359 
4360 static void inject_page_fault(struct kvm_vcpu *vcpu,
4361 			      struct x86_exception *fault)
4362 {
4363 	vcpu->arch.mmu->inject_page_fault(vcpu, fault);
4364 }
4365 
4366 static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
4367 			   unsigned int access, int *nr_present)
4368 {
4369 	if (unlikely(is_mmio_spte(*sptep))) {
4370 		if (gfn != get_mmio_spte_gfn(*sptep)) {
4371 			mmu_spte_clear_no_track(sptep);
4372 			return true;
4373 		}
4374 
4375 		(*nr_present)++;
4376 		mark_mmio_spte(vcpu, sptep, gfn, access);
4377 		return true;
4378 	}
4379 
4380 	return false;
4381 }
4382 
4383 static inline bool is_last_gpte(struct kvm_mmu *mmu,
4384 				unsigned level, unsigned gpte)
4385 {
4386 	/*
4387 	 * The RHS has bit 7 set iff level < mmu->last_nonleaf_level.
4388 	 * If it is clear, there are no large pages at this level, so clear
4389 	 * PT_PAGE_SIZE_MASK in gpte if that is the case.
4390 	 */
4391 	gpte &= level - mmu->last_nonleaf_level;
4392 
4393 	/*
4394 	 * PT_PAGE_TABLE_LEVEL always terminates.  The RHS has bit 7 set
4395 	 * iff level <= PT_PAGE_TABLE_LEVEL, which for our purpose means
4396 	 * level == PT_PAGE_TABLE_LEVEL; set PT_PAGE_SIZE_MASK in gpte then.
4397 	 */
4398 	gpte |= level - PT_PAGE_TABLE_LEVEL - 1;
4399 
4400 	return gpte & PT_PAGE_SIZE_MASK;
4401 }
4402 
4403 #define PTTYPE_EPT 18 /* arbitrary */
4404 #define PTTYPE PTTYPE_EPT
4405 #include "paging_tmpl.h"
4406 #undef PTTYPE
4407 
4408 #define PTTYPE 64
4409 #include "paging_tmpl.h"
4410 #undef PTTYPE
4411 
4412 #define PTTYPE 32
4413 #include "paging_tmpl.h"
4414 #undef PTTYPE
4415 
4416 static void
4417 __reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
4418 			struct rsvd_bits_validate *rsvd_check,
4419 			int maxphyaddr, int level, bool nx, bool gbpages,
4420 			bool pse, bool amd)
4421 {
4422 	u64 exb_bit_rsvd = 0;
4423 	u64 gbpages_bit_rsvd = 0;
4424 	u64 nonleaf_bit8_rsvd = 0;
4425 
4426 	rsvd_check->bad_mt_xwr = 0;
4427 
4428 	if (!nx)
4429 		exb_bit_rsvd = rsvd_bits(63, 63);
4430 	if (!gbpages)
4431 		gbpages_bit_rsvd = rsvd_bits(7, 7);
4432 
4433 	/*
4434 	 * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
4435 	 * leaf entries) on AMD CPUs only.
4436 	 */
4437 	if (amd)
4438 		nonleaf_bit8_rsvd = rsvd_bits(8, 8);
4439 
4440 	switch (level) {
4441 	case PT32_ROOT_LEVEL:
4442 		/* no rsvd bits for 2 level 4K page table entries */
4443 		rsvd_check->rsvd_bits_mask[0][1] = 0;
4444 		rsvd_check->rsvd_bits_mask[0][0] = 0;
4445 		rsvd_check->rsvd_bits_mask[1][0] =
4446 			rsvd_check->rsvd_bits_mask[0][0];
4447 
4448 		if (!pse) {
4449 			rsvd_check->rsvd_bits_mask[1][1] = 0;
4450 			break;
4451 		}
4452 
4453 		if (is_cpuid_PSE36())
4454 			/* 36bits PSE 4MB page */
4455 			rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
4456 		else
4457 			/* 32 bits PSE 4MB page */
4458 			rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
4459 		break;
4460 	case PT32E_ROOT_LEVEL:
4461 		rsvd_check->rsvd_bits_mask[0][2] =
4462 			rsvd_bits(maxphyaddr, 63) |
4463 			rsvd_bits(5, 8) | rsvd_bits(1, 2);	/* PDPTE */
4464 		rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4465 			rsvd_bits(maxphyaddr, 62);	/* PDE */
4466 		rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
4467 			rsvd_bits(maxphyaddr, 62); 	/* PTE */
4468 		rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
4469 			rsvd_bits(maxphyaddr, 62) |
4470 			rsvd_bits(13, 20);		/* large page */
4471 		rsvd_check->rsvd_bits_mask[1][0] =
4472 			rsvd_check->rsvd_bits_mask[0][0];
4473 		break;
4474 	case PT64_ROOT_5LEVEL:
4475 		rsvd_check->rsvd_bits_mask[0][4] = exb_bit_rsvd |
4476 			nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
4477 			rsvd_bits(maxphyaddr, 51);
4478 		rsvd_check->rsvd_bits_mask[1][4] =
4479 			rsvd_check->rsvd_bits_mask[0][4];
4480 		/* fall through */
4481 	case PT64_ROOT_4LEVEL:
4482 		rsvd_check->rsvd_bits_mask[0][3] = exb_bit_rsvd |
4483 			nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
4484 			rsvd_bits(maxphyaddr, 51);
4485 		rsvd_check->rsvd_bits_mask[0][2] = exb_bit_rsvd |
4486 			nonleaf_bit8_rsvd | gbpages_bit_rsvd |
4487 			rsvd_bits(maxphyaddr, 51);
4488 		rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4489 			rsvd_bits(maxphyaddr, 51);
4490 		rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
4491 			rsvd_bits(maxphyaddr, 51);
4492 		rsvd_check->rsvd_bits_mask[1][3] =
4493 			rsvd_check->rsvd_bits_mask[0][3];
4494 		rsvd_check->rsvd_bits_mask[1][2] = exb_bit_rsvd |
4495 			gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51) |
4496 			rsvd_bits(13, 29);
4497 		rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
4498 			rsvd_bits(maxphyaddr, 51) |
4499 			rsvd_bits(13, 20);		/* large page */
4500 		rsvd_check->rsvd_bits_mask[1][0] =
4501 			rsvd_check->rsvd_bits_mask[0][0];
4502 		break;
4503 	}
4504 }
4505 
4506 static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
4507 				  struct kvm_mmu *context)
4508 {
4509 	__reset_rsvds_bits_mask(vcpu, &context->guest_rsvd_check,
4510 				cpuid_maxphyaddr(vcpu), context->root_level,
4511 				context->nx,
4512 				guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
4513 				is_pse(vcpu),
4514 				guest_cpuid_is_amd_or_hygon(vcpu));
4515 }
4516 
4517 static void
4518 __reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check,
4519 			    int maxphyaddr, bool execonly)
4520 {
4521 	u64 bad_mt_xwr;
4522 
4523 	rsvd_check->rsvd_bits_mask[0][4] =
4524 		rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
4525 	rsvd_check->rsvd_bits_mask[0][3] =
4526 		rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
4527 	rsvd_check->rsvd_bits_mask[0][2] =
4528 		rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
4529 	rsvd_check->rsvd_bits_mask[0][1] =
4530 		rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
4531 	rsvd_check->rsvd_bits_mask[0][0] = rsvd_bits(maxphyaddr, 51);
4532 
4533 	/* large page */
4534 	rsvd_check->rsvd_bits_mask[1][4] = rsvd_check->rsvd_bits_mask[0][4];
4535 	rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3];
4536 	rsvd_check->rsvd_bits_mask[1][2] =
4537 		rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 29);
4538 	rsvd_check->rsvd_bits_mask[1][1] =
4539 		rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 20);
4540 	rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0];
4541 
4542 	bad_mt_xwr = 0xFFull << (2 * 8);	/* bits 3..5 must not be 2 */
4543 	bad_mt_xwr |= 0xFFull << (3 * 8);	/* bits 3..5 must not be 3 */
4544 	bad_mt_xwr |= 0xFFull << (7 * 8);	/* bits 3..5 must not be 7 */
4545 	bad_mt_xwr |= REPEAT_BYTE(1ull << 2);	/* bits 0..2 must not be 010 */
4546 	bad_mt_xwr |= REPEAT_BYTE(1ull << 6);	/* bits 0..2 must not be 110 */
4547 	if (!execonly) {
4548 		/* bits 0..2 must not be 100 unless VMX capabilities allow it */
4549 		bad_mt_xwr |= REPEAT_BYTE(1ull << 4);
4550 	}
4551 	rsvd_check->bad_mt_xwr = bad_mt_xwr;
4552 }
4553 
4554 static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
4555 		struct kvm_mmu *context, bool execonly)
4556 {
4557 	__reset_rsvds_bits_mask_ept(&context->guest_rsvd_check,
4558 				    cpuid_maxphyaddr(vcpu), execonly);
4559 }
4560 
4561 /*
4562  * the page table on host is the shadow page table for the page
4563  * table in guest or amd nested guest, its mmu features completely
4564  * follow the features in guest.
4565  */
4566 void
4567 reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
4568 {
4569 	bool uses_nx = context->nx ||
4570 		context->mmu_role.base.smep_andnot_wp;
4571 	struct rsvd_bits_validate *shadow_zero_check;
4572 	int i;
4573 
4574 	/*
4575 	 * Passing "true" to the last argument is okay; it adds a check
4576 	 * on bit 8 of the SPTEs which KVM doesn't use anyway.
4577 	 */
4578 	shadow_zero_check = &context->shadow_zero_check;
4579 	__reset_rsvds_bits_mask(vcpu, shadow_zero_check,
4580 				shadow_phys_bits,
4581 				context->shadow_root_level, uses_nx,
4582 				guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
4583 				is_pse(vcpu), true);
4584 
4585 	if (!shadow_me_mask)
4586 		return;
4587 
4588 	for (i = context->shadow_root_level; --i >= 0;) {
4589 		shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
4590 		shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
4591 	}
4592 
4593 }
4594 EXPORT_SYMBOL_GPL(reset_shadow_zero_bits_mask);
4595 
4596 static inline bool boot_cpu_is_amd(void)
4597 {
4598 	WARN_ON_ONCE(!tdp_enabled);
4599 	return shadow_x_mask == 0;
4600 }
4601 
4602 /*
4603  * the direct page table on host, use as much mmu features as
4604  * possible, however, kvm currently does not do execution-protection.
4605  */
4606 static void
4607 reset_tdp_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4608 				struct kvm_mmu *context)
4609 {
4610 	struct rsvd_bits_validate *shadow_zero_check;
4611 	int i;
4612 
4613 	shadow_zero_check = &context->shadow_zero_check;
4614 
4615 	if (boot_cpu_is_amd())
4616 		__reset_rsvds_bits_mask(vcpu, shadow_zero_check,
4617 					shadow_phys_bits,
4618 					context->shadow_root_level, false,
4619 					boot_cpu_has(X86_FEATURE_GBPAGES),
4620 					true, true);
4621 	else
4622 		__reset_rsvds_bits_mask_ept(shadow_zero_check,
4623 					    shadow_phys_bits,
4624 					    false);
4625 
4626 	if (!shadow_me_mask)
4627 		return;
4628 
4629 	for (i = context->shadow_root_level; --i >= 0;) {
4630 		shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
4631 		shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
4632 	}
4633 }
4634 
4635 /*
4636  * as the comments in reset_shadow_zero_bits_mask() except it
4637  * is the shadow page table for intel nested guest.
4638  */
4639 static void
4640 reset_ept_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4641 				struct kvm_mmu *context, bool execonly)
4642 {
4643 	__reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
4644 				    shadow_phys_bits, execonly);
4645 }
4646 
4647 #define BYTE_MASK(access) \
4648 	((1 & (access) ? 2 : 0) | \
4649 	 (2 & (access) ? 4 : 0) | \
4650 	 (3 & (access) ? 8 : 0) | \
4651 	 (4 & (access) ? 16 : 0) | \
4652 	 (5 & (access) ? 32 : 0) | \
4653 	 (6 & (access) ? 64 : 0) | \
4654 	 (7 & (access) ? 128 : 0))
4655 
4656 
4657 static void update_permission_bitmask(struct kvm_vcpu *vcpu,
4658 				      struct kvm_mmu *mmu, bool ept)
4659 {
4660 	unsigned byte;
4661 
4662 	const u8 x = BYTE_MASK(ACC_EXEC_MASK);
4663 	const u8 w = BYTE_MASK(ACC_WRITE_MASK);
4664 	const u8 u = BYTE_MASK(ACC_USER_MASK);
4665 
4666 	bool cr4_smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP) != 0;
4667 	bool cr4_smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP) != 0;
4668 	bool cr0_wp = is_write_protection(vcpu);
4669 
4670 	for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
4671 		unsigned pfec = byte << 1;
4672 
4673 		/*
4674 		 * Each "*f" variable has a 1 bit for each UWX value
4675 		 * that causes a fault with the given PFEC.
4676 		 */
4677 
4678 		/* Faults from writes to non-writable pages */
4679 		u8 wf = (pfec & PFERR_WRITE_MASK) ? (u8)~w : 0;
4680 		/* Faults from user mode accesses to supervisor pages */
4681 		u8 uf = (pfec & PFERR_USER_MASK) ? (u8)~u : 0;
4682 		/* Faults from fetches of non-executable pages*/
4683 		u8 ff = (pfec & PFERR_FETCH_MASK) ? (u8)~x : 0;
4684 		/* Faults from kernel mode fetches of user pages */
4685 		u8 smepf = 0;
4686 		/* Faults from kernel mode accesses of user pages */
4687 		u8 smapf = 0;
4688 
4689 		if (!ept) {
4690 			/* Faults from kernel mode accesses to user pages */
4691 			u8 kf = (pfec & PFERR_USER_MASK) ? 0 : u;
4692 
4693 			/* Not really needed: !nx will cause pte.nx to fault */
4694 			if (!mmu->nx)
4695 				ff = 0;
4696 
4697 			/* Allow supervisor writes if !cr0.wp */
4698 			if (!cr0_wp)
4699 				wf = (pfec & PFERR_USER_MASK) ? wf : 0;
4700 
4701 			/* Disallow supervisor fetches of user code if cr4.smep */
4702 			if (cr4_smep)
4703 				smepf = (pfec & PFERR_FETCH_MASK) ? kf : 0;
4704 
4705 			/*
4706 			 * SMAP:kernel-mode data accesses from user-mode
4707 			 * mappings should fault. A fault is considered
4708 			 * as a SMAP violation if all of the following
4709 			 * conditions are true:
4710 			 *   - X86_CR4_SMAP is set in CR4
4711 			 *   - A user page is accessed
4712 			 *   - The access is not a fetch
4713 			 *   - Page fault in kernel mode
4714 			 *   - if CPL = 3 or X86_EFLAGS_AC is clear
4715 			 *
4716 			 * Here, we cover the first three conditions.
4717 			 * The fourth is computed dynamically in permission_fault();
4718 			 * PFERR_RSVD_MASK bit will be set in PFEC if the access is
4719 			 * *not* subject to SMAP restrictions.
4720 			 */
4721 			if (cr4_smap)
4722 				smapf = (pfec & (PFERR_RSVD_MASK|PFERR_FETCH_MASK)) ? 0 : kf;
4723 		}
4724 
4725 		mmu->permissions[byte] = ff | uf | wf | smepf | smapf;
4726 	}
4727 }
4728 
4729 /*
4730 * PKU is an additional mechanism by which the paging controls access to
4731 * user-mode addresses based on the value in the PKRU register.  Protection
4732 * key violations are reported through a bit in the page fault error code.
4733 * Unlike other bits of the error code, the PK bit is not known at the
4734 * call site of e.g. gva_to_gpa; it must be computed directly in
4735 * permission_fault based on two bits of PKRU, on some machine state (CR4,
4736 * CR0, EFER, CPL), and on other bits of the error code and the page tables.
4737 *
4738 * In particular the following conditions come from the error code, the
4739 * page tables and the machine state:
4740 * - PK is always zero unless CR4.PKE=1 and EFER.LMA=1
4741 * - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch)
4742 * - PK is always zero if U=0 in the page tables
4743 * - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access.
4744 *
4745 * The PKRU bitmask caches the result of these four conditions.  The error
4746 * code (minus the P bit) and the page table's U bit form an index into the
4747 * PKRU bitmask.  Two bits of the PKRU bitmask are then extracted and ANDed
4748 * with the two bits of the PKRU register corresponding to the protection key.
4749 * For the first three conditions above the bits will be 00, thus masking
4750 * away both AD and WD.  For all reads or if the last condition holds, WD
4751 * only will be masked away.
4752 */
4753 static void update_pkru_bitmask(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
4754 				bool ept)
4755 {
4756 	unsigned bit;
4757 	bool wp;
4758 
4759 	if (ept) {
4760 		mmu->pkru_mask = 0;
4761 		return;
4762 	}
4763 
4764 	/* PKEY is enabled only if CR4.PKE and EFER.LMA are both set. */
4765 	if (!kvm_read_cr4_bits(vcpu, X86_CR4_PKE) || !is_long_mode(vcpu)) {
4766 		mmu->pkru_mask = 0;
4767 		return;
4768 	}
4769 
4770 	wp = is_write_protection(vcpu);
4771 
4772 	for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) {
4773 		unsigned pfec, pkey_bits;
4774 		bool check_pkey, check_write, ff, uf, wf, pte_user;
4775 
4776 		pfec = bit << 1;
4777 		ff = pfec & PFERR_FETCH_MASK;
4778 		uf = pfec & PFERR_USER_MASK;
4779 		wf = pfec & PFERR_WRITE_MASK;
4780 
4781 		/* PFEC.RSVD is replaced by ACC_USER_MASK. */
4782 		pte_user = pfec & PFERR_RSVD_MASK;
4783 
4784 		/*
4785 		 * Only need to check the access which is not an
4786 		 * instruction fetch and is to a user page.
4787 		 */
4788 		check_pkey = (!ff && pte_user);
4789 		/*
4790 		 * write access is controlled by PKRU if it is a
4791 		 * user access or CR0.WP = 1.
4792 		 */
4793 		check_write = check_pkey && wf && (uf || wp);
4794 
4795 		/* PKRU.AD stops both read and write access. */
4796 		pkey_bits = !!check_pkey;
4797 		/* PKRU.WD stops write access. */
4798 		pkey_bits |= (!!check_write) << 1;
4799 
4800 		mmu->pkru_mask |= (pkey_bits & 3) << pfec;
4801 	}
4802 }
4803 
4804 static void update_last_nonleaf_level(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
4805 {
4806 	unsigned root_level = mmu->root_level;
4807 
4808 	mmu->last_nonleaf_level = root_level;
4809 	if (root_level == PT32_ROOT_LEVEL && is_pse(vcpu))
4810 		mmu->last_nonleaf_level++;
4811 }
4812 
4813 static void paging64_init_context_common(struct kvm_vcpu *vcpu,
4814 					 struct kvm_mmu *context,
4815 					 int level)
4816 {
4817 	context->nx = is_nx(vcpu);
4818 	context->root_level = level;
4819 
4820 	reset_rsvds_bits_mask(vcpu, context);
4821 	update_permission_bitmask(vcpu, context, false);
4822 	update_pkru_bitmask(vcpu, context, false);
4823 	update_last_nonleaf_level(vcpu, context);
4824 
4825 	MMU_WARN_ON(!is_pae(vcpu));
4826 	context->page_fault = paging64_page_fault;
4827 	context->gva_to_gpa = paging64_gva_to_gpa;
4828 	context->sync_page = paging64_sync_page;
4829 	context->invlpg = paging64_invlpg;
4830 	context->update_pte = paging64_update_pte;
4831 	context->shadow_root_level = level;
4832 	context->direct_map = false;
4833 }
4834 
4835 static void paging64_init_context(struct kvm_vcpu *vcpu,
4836 				  struct kvm_mmu *context)
4837 {
4838 	int root_level = is_la57_mode(vcpu) ?
4839 			 PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4840 
4841 	paging64_init_context_common(vcpu, context, root_level);
4842 }
4843 
4844 static void paging32_init_context(struct kvm_vcpu *vcpu,
4845 				  struct kvm_mmu *context)
4846 {
4847 	context->nx = false;
4848 	context->root_level = PT32_ROOT_LEVEL;
4849 
4850 	reset_rsvds_bits_mask(vcpu, context);
4851 	update_permission_bitmask(vcpu, context, false);
4852 	update_pkru_bitmask(vcpu, context, false);
4853 	update_last_nonleaf_level(vcpu, context);
4854 
4855 	context->page_fault = paging32_page_fault;
4856 	context->gva_to_gpa = paging32_gva_to_gpa;
4857 	context->sync_page = paging32_sync_page;
4858 	context->invlpg = paging32_invlpg;
4859 	context->update_pte = paging32_update_pte;
4860 	context->shadow_root_level = PT32E_ROOT_LEVEL;
4861 	context->direct_map = false;
4862 }
4863 
4864 static void paging32E_init_context(struct kvm_vcpu *vcpu,
4865 				   struct kvm_mmu *context)
4866 {
4867 	paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
4868 }
4869 
4870 static union kvm_mmu_extended_role kvm_calc_mmu_role_ext(struct kvm_vcpu *vcpu)
4871 {
4872 	union kvm_mmu_extended_role ext = {0};
4873 
4874 	ext.cr0_pg = !!is_paging(vcpu);
4875 	ext.cr4_pae = !!is_pae(vcpu);
4876 	ext.cr4_smep = !!kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
4877 	ext.cr4_smap = !!kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
4878 	ext.cr4_pse = !!is_pse(vcpu);
4879 	ext.cr4_pke = !!kvm_read_cr4_bits(vcpu, X86_CR4_PKE);
4880 	ext.maxphyaddr = cpuid_maxphyaddr(vcpu);
4881 
4882 	ext.valid = 1;
4883 
4884 	return ext;
4885 }
4886 
4887 static union kvm_mmu_role kvm_calc_mmu_role_common(struct kvm_vcpu *vcpu,
4888 						   bool base_only)
4889 {
4890 	union kvm_mmu_role role = {0};
4891 
4892 	role.base.access = ACC_ALL;
4893 	role.base.nxe = !!is_nx(vcpu);
4894 	role.base.cr0_wp = is_write_protection(vcpu);
4895 	role.base.smm = is_smm(vcpu);
4896 	role.base.guest_mode = is_guest_mode(vcpu);
4897 
4898 	if (base_only)
4899 		return role;
4900 
4901 	role.ext = kvm_calc_mmu_role_ext(vcpu);
4902 
4903 	return role;
4904 }
4905 
4906 static union kvm_mmu_role
4907 kvm_calc_tdp_mmu_root_page_role(struct kvm_vcpu *vcpu, bool base_only)
4908 {
4909 	union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, base_only);
4910 
4911 	role.base.ad_disabled = (shadow_accessed_mask == 0);
4912 	role.base.level = kvm_x86_ops.get_tdp_level(vcpu);
4913 	role.base.direct = true;
4914 	role.base.gpte_is_8_bytes = true;
4915 
4916 	return role;
4917 }
4918 
4919 static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
4920 {
4921 	struct kvm_mmu *context = vcpu->arch.mmu;
4922 	union kvm_mmu_role new_role =
4923 		kvm_calc_tdp_mmu_root_page_role(vcpu, false);
4924 
4925 	if (new_role.as_u64 == context->mmu_role.as_u64)
4926 		return;
4927 
4928 	context->mmu_role.as_u64 = new_role.as_u64;
4929 	context->page_fault = kvm_tdp_page_fault;
4930 	context->sync_page = nonpaging_sync_page;
4931 	context->invlpg = nonpaging_invlpg;
4932 	context->update_pte = nonpaging_update_pte;
4933 	context->shadow_root_level = kvm_x86_ops.get_tdp_level(vcpu);
4934 	context->direct_map = true;
4935 	context->get_guest_pgd = get_cr3;
4936 	context->get_pdptr = kvm_pdptr_read;
4937 	context->inject_page_fault = kvm_inject_page_fault;
4938 
4939 	if (!is_paging(vcpu)) {
4940 		context->nx = false;
4941 		context->gva_to_gpa = nonpaging_gva_to_gpa;
4942 		context->root_level = 0;
4943 	} else if (is_long_mode(vcpu)) {
4944 		context->nx = is_nx(vcpu);
4945 		context->root_level = is_la57_mode(vcpu) ?
4946 				PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4947 		reset_rsvds_bits_mask(vcpu, context);
4948 		context->gva_to_gpa = paging64_gva_to_gpa;
4949 	} else if (is_pae(vcpu)) {
4950 		context->nx = is_nx(vcpu);
4951 		context->root_level = PT32E_ROOT_LEVEL;
4952 		reset_rsvds_bits_mask(vcpu, context);
4953 		context->gva_to_gpa = paging64_gva_to_gpa;
4954 	} else {
4955 		context->nx = false;
4956 		context->root_level = PT32_ROOT_LEVEL;
4957 		reset_rsvds_bits_mask(vcpu, context);
4958 		context->gva_to_gpa = paging32_gva_to_gpa;
4959 	}
4960 
4961 	update_permission_bitmask(vcpu, context, false);
4962 	update_pkru_bitmask(vcpu, context, false);
4963 	update_last_nonleaf_level(vcpu, context);
4964 	reset_tdp_shadow_zero_bits_mask(vcpu, context);
4965 }
4966 
4967 static union kvm_mmu_role
4968 kvm_calc_shadow_mmu_root_page_role(struct kvm_vcpu *vcpu, bool base_only)
4969 {
4970 	union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, base_only);
4971 
4972 	role.base.smep_andnot_wp = role.ext.cr4_smep &&
4973 		!is_write_protection(vcpu);
4974 	role.base.smap_andnot_wp = role.ext.cr4_smap &&
4975 		!is_write_protection(vcpu);
4976 	role.base.direct = !is_paging(vcpu);
4977 	role.base.gpte_is_8_bytes = !!is_pae(vcpu);
4978 
4979 	if (!is_long_mode(vcpu))
4980 		role.base.level = PT32E_ROOT_LEVEL;
4981 	else if (is_la57_mode(vcpu))
4982 		role.base.level = PT64_ROOT_5LEVEL;
4983 	else
4984 		role.base.level = PT64_ROOT_4LEVEL;
4985 
4986 	return role;
4987 }
4988 
4989 void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu)
4990 {
4991 	struct kvm_mmu *context = vcpu->arch.mmu;
4992 	union kvm_mmu_role new_role =
4993 		kvm_calc_shadow_mmu_root_page_role(vcpu, false);
4994 
4995 	if (new_role.as_u64 == context->mmu_role.as_u64)
4996 		return;
4997 
4998 	if (!is_paging(vcpu))
4999 		nonpaging_init_context(vcpu, context);
5000 	else if (is_long_mode(vcpu))
5001 		paging64_init_context(vcpu, context);
5002 	else if (is_pae(vcpu))
5003 		paging32E_init_context(vcpu, context);
5004 	else
5005 		paging32_init_context(vcpu, context);
5006 
5007 	context->mmu_role.as_u64 = new_role.as_u64;
5008 	reset_shadow_zero_bits_mask(vcpu, context);
5009 }
5010 EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
5011 
5012 static union kvm_mmu_role
5013 kvm_calc_shadow_ept_root_page_role(struct kvm_vcpu *vcpu, bool accessed_dirty,
5014 				   bool execonly, u8 level)
5015 {
5016 	union kvm_mmu_role role = {0};
5017 
5018 	/* SMM flag is inherited from root_mmu */
5019 	role.base.smm = vcpu->arch.root_mmu.mmu_role.base.smm;
5020 
5021 	role.base.level = level;
5022 	role.base.gpte_is_8_bytes = true;
5023 	role.base.direct = false;
5024 	role.base.ad_disabled = !accessed_dirty;
5025 	role.base.guest_mode = true;
5026 	role.base.access = ACC_ALL;
5027 
5028 	/*
5029 	 * WP=1 and NOT_WP=1 is an impossible combination, use WP and the
5030 	 * SMAP variation to denote shadow EPT entries.
5031 	 */
5032 	role.base.cr0_wp = true;
5033 	role.base.smap_andnot_wp = true;
5034 
5035 	role.ext = kvm_calc_mmu_role_ext(vcpu);
5036 	role.ext.execonly = execonly;
5037 
5038 	return role;
5039 }
5040 
5041 void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly,
5042 			     bool accessed_dirty, gpa_t new_eptp)
5043 {
5044 	struct kvm_mmu *context = vcpu->arch.mmu;
5045 	u8 level = vmx_eptp_page_walk_level(new_eptp);
5046 	union kvm_mmu_role new_role =
5047 		kvm_calc_shadow_ept_root_page_role(vcpu, accessed_dirty,
5048 						   execonly, level);
5049 
5050 	__kvm_mmu_new_cr3(vcpu, new_eptp, new_role.base, false);
5051 
5052 	if (new_role.as_u64 == context->mmu_role.as_u64)
5053 		return;
5054 
5055 	context->shadow_root_level = level;
5056 
5057 	context->nx = true;
5058 	context->ept_ad = accessed_dirty;
5059 	context->page_fault = ept_page_fault;
5060 	context->gva_to_gpa = ept_gva_to_gpa;
5061 	context->sync_page = ept_sync_page;
5062 	context->invlpg = ept_invlpg;
5063 	context->update_pte = ept_update_pte;
5064 	context->root_level = level;
5065 	context->direct_map = false;
5066 	context->mmu_role.as_u64 = new_role.as_u64;
5067 
5068 	update_permission_bitmask(vcpu, context, true);
5069 	update_pkru_bitmask(vcpu, context, true);
5070 	update_last_nonleaf_level(vcpu, context);
5071 	reset_rsvds_bits_mask_ept(vcpu, context, execonly);
5072 	reset_ept_shadow_zero_bits_mask(vcpu, context, execonly);
5073 }
5074 EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);
5075 
5076 static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
5077 {
5078 	struct kvm_mmu *context = vcpu->arch.mmu;
5079 
5080 	kvm_init_shadow_mmu(vcpu);
5081 	context->get_guest_pgd     = get_cr3;
5082 	context->get_pdptr         = kvm_pdptr_read;
5083 	context->inject_page_fault = kvm_inject_page_fault;
5084 }
5085 
5086 static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
5087 {
5088 	union kvm_mmu_role new_role = kvm_calc_mmu_role_common(vcpu, false);
5089 	struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
5090 
5091 	if (new_role.as_u64 == g_context->mmu_role.as_u64)
5092 		return;
5093 
5094 	g_context->mmu_role.as_u64 = new_role.as_u64;
5095 	g_context->get_guest_pgd     = get_cr3;
5096 	g_context->get_pdptr         = kvm_pdptr_read;
5097 	g_context->inject_page_fault = kvm_inject_page_fault;
5098 
5099 	/*
5100 	 * Note that arch.mmu->gva_to_gpa translates l2_gpa to l1_gpa using
5101 	 * L1's nested page tables (e.g. EPT12). The nested translation
5102 	 * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using
5103 	 * L2's page tables as the first level of translation and L1's
5104 	 * nested page tables as the second level of translation. Basically
5105 	 * the gva_to_gpa functions between mmu and nested_mmu are swapped.
5106 	 */
5107 	if (!is_paging(vcpu)) {
5108 		g_context->nx = false;
5109 		g_context->root_level = 0;
5110 		g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
5111 	} else if (is_long_mode(vcpu)) {
5112 		g_context->nx = is_nx(vcpu);
5113 		g_context->root_level = is_la57_mode(vcpu) ?
5114 					PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
5115 		reset_rsvds_bits_mask(vcpu, g_context);
5116 		g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
5117 	} else if (is_pae(vcpu)) {
5118 		g_context->nx = is_nx(vcpu);
5119 		g_context->root_level = PT32E_ROOT_LEVEL;
5120 		reset_rsvds_bits_mask(vcpu, g_context);
5121 		g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
5122 	} else {
5123 		g_context->nx = false;
5124 		g_context->root_level = PT32_ROOT_LEVEL;
5125 		reset_rsvds_bits_mask(vcpu, g_context);
5126 		g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
5127 	}
5128 
5129 	update_permission_bitmask(vcpu, g_context, false);
5130 	update_pkru_bitmask(vcpu, g_context, false);
5131 	update_last_nonleaf_level(vcpu, g_context);
5132 }
5133 
5134 void kvm_init_mmu(struct kvm_vcpu *vcpu, bool reset_roots)
5135 {
5136 	if (reset_roots) {
5137 		uint i;
5138 
5139 		vcpu->arch.mmu->root_hpa = INVALID_PAGE;
5140 
5141 		for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5142 			vcpu->arch.mmu->prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
5143 	}
5144 
5145 	if (mmu_is_nested(vcpu))
5146 		init_kvm_nested_mmu(vcpu);
5147 	else if (tdp_enabled)
5148 		init_kvm_tdp_mmu(vcpu);
5149 	else
5150 		init_kvm_softmmu(vcpu);
5151 }
5152 EXPORT_SYMBOL_GPL(kvm_init_mmu);
5153 
5154 static union kvm_mmu_page_role
5155 kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu)
5156 {
5157 	union kvm_mmu_role role;
5158 
5159 	if (tdp_enabled)
5160 		role = kvm_calc_tdp_mmu_root_page_role(vcpu, true);
5161 	else
5162 		role = kvm_calc_shadow_mmu_root_page_role(vcpu, true);
5163 
5164 	return role.base;
5165 }
5166 
5167 void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
5168 {
5169 	kvm_mmu_unload(vcpu);
5170 	kvm_init_mmu(vcpu, true);
5171 }
5172 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
5173 
5174 int kvm_mmu_load(struct kvm_vcpu *vcpu)
5175 {
5176 	int r;
5177 
5178 	r = mmu_topup_memory_caches(vcpu);
5179 	if (r)
5180 		goto out;
5181 	r = mmu_alloc_roots(vcpu);
5182 	kvm_mmu_sync_roots(vcpu);
5183 	if (r)
5184 		goto out;
5185 	kvm_mmu_load_pgd(vcpu);
5186 	kvm_x86_ops.tlb_flush(vcpu, true);
5187 out:
5188 	return r;
5189 }
5190 EXPORT_SYMBOL_GPL(kvm_mmu_load);
5191 
5192 void kvm_mmu_unload(struct kvm_vcpu *vcpu)
5193 {
5194 	kvm_mmu_free_roots(vcpu, &vcpu->arch.root_mmu, KVM_MMU_ROOTS_ALL);
5195 	WARN_ON(VALID_PAGE(vcpu->arch.root_mmu.root_hpa));
5196 	kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
5197 	WARN_ON(VALID_PAGE(vcpu->arch.guest_mmu.root_hpa));
5198 }
5199 EXPORT_SYMBOL_GPL(kvm_mmu_unload);
5200 
5201 static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
5202 				  struct kvm_mmu_page *sp, u64 *spte,
5203 				  const void *new)
5204 {
5205 	if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
5206 		++vcpu->kvm->stat.mmu_pde_zapped;
5207 		return;
5208         }
5209 
5210 	++vcpu->kvm->stat.mmu_pte_updated;
5211 	vcpu->arch.mmu->update_pte(vcpu, sp, spte, new);
5212 }
5213 
5214 static bool need_remote_flush(u64 old, u64 new)
5215 {
5216 	if (!is_shadow_present_pte(old))
5217 		return false;
5218 	if (!is_shadow_present_pte(new))
5219 		return true;
5220 	if ((old ^ new) & PT64_BASE_ADDR_MASK)
5221 		return true;
5222 	old ^= shadow_nx_mask;
5223 	new ^= shadow_nx_mask;
5224 	return (old & ~new & PT64_PERM_MASK) != 0;
5225 }
5226 
5227 static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
5228 				    int *bytes)
5229 {
5230 	u64 gentry = 0;
5231 	int r;
5232 
5233 	/*
5234 	 * Assume that the pte write on a page table of the same type
5235 	 * as the current vcpu paging mode since we update the sptes only
5236 	 * when they have the same mode.
5237 	 */
5238 	if (is_pae(vcpu) && *bytes == 4) {
5239 		/* Handle a 32-bit guest writing two halves of a 64-bit gpte */
5240 		*gpa &= ~(gpa_t)7;
5241 		*bytes = 8;
5242 	}
5243 
5244 	if (*bytes == 4 || *bytes == 8) {
5245 		r = kvm_vcpu_read_guest_atomic(vcpu, *gpa, &gentry, *bytes);
5246 		if (r)
5247 			gentry = 0;
5248 	}
5249 
5250 	return gentry;
5251 }
5252 
5253 /*
5254  * If we're seeing too many writes to a page, it may no longer be a page table,
5255  * or we may be forking, in which case it is better to unmap the page.
5256  */
5257 static bool detect_write_flooding(struct kvm_mmu_page *sp)
5258 {
5259 	/*
5260 	 * Skip write-flooding detected for the sp whose level is 1, because
5261 	 * it can become unsync, then the guest page is not write-protected.
5262 	 */
5263 	if (sp->role.level == PT_PAGE_TABLE_LEVEL)
5264 		return false;
5265 
5266 	atomic_inc(&sp->write_flooding_count);
5267 	return atomic_read(&sp->write_flooding_count) >= 3;
5268 }
5269 
5270 /*
5271  * Misaligned accesses are too much trouble to fix up; also, they usually
5272  * indicate a page is not used as a page table.
5273  */
5274 static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
5275 				    int bytes)
5276 {
5277 	unsigned offset, pte_size, misaligned;
5278 
5279 	pgprintk("misaligned: gpa %llx bytes %d role %x\n",
5280 		 gpa, bytes, sp->role.word);
5281 
5282 	offset = offset_in_page(gpa);
5283 	pte_size = sp->role.gpte_is_8_bytes ? 8 : 4;
5284 
5285 	/*
5286 	 * Sometimes, the OS only writes the last one bytes to update status
5287 	 * bits, for example, in linux, andb instruction is used in clear_bit().
5288 	 */
5289 	if (!(offset & (pte_size - 1)) && bytes == 1)
5290 		return false;
5291 
5292 	misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
5293 	misaligned |= bytes < 4;
5294 
5295 	return misaligned;
5296 }
5297 
5298 static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
5299 {
5300 	unsigned page_offset, quadrant;
5301 	u64 *spte;
5302 	int level;
5303 
5304 	page_offset = offset_in_page(gpa);
5305 	level = sp->role.level;
5306 	*nspte = 1;
5307 	if (!sp->role.gpte_is_8_bytes) {
5308 		page_offset <<= 1;	/* 32->64 */
5309 		/*
5310 		 * A 32-bit pde maps 4MB while the shadow pdes map
5311 		 * only 2MB.  So we need to double the offset again
5312 		 * and zap two pdes instead of one.
5313 		 */
5314 		if (level == PT32_ROOT_LEVEL) {
5315 			page_offset &= ~7; /* kill rounding error */
5316 			page_offset <<= 1;
5317 			*nspte = 2;
5318 		}
5319 		quadrant = page_offset >> PAGE_SHIFT;
5320 		page_offset &= ~PAGE_MASK;
5321 		if (quadrant != sp->role.quadrant)
5322 			return NULL;
5323 	}
5324 
5325 	spte = &sp->spt[page_offset / sizeof(*spte)];
5326 	return spte;
5327 }
5328 
5329 /*
5330  * Ignore various flags when determining if a SPTE can be immediately
5331  * overwritten for the current MMU.
5332  *  - level: explicitly checked in mmu_pte_write_new_pte(), and will never
5333  *    match the current MMU role, as MMU's level tracks the root level.
5334  *  - access: updated based on the new guest PTE
5335  *  - quadrant: handled by get_written_sptes()
5336  *  - invalid: always false (loop only walks valid shadow pages)
5337  */
5338 static const union kvm_mmu_page_role role_ign = {
5339 	.level = 0xf,
5340 	.access = 0x7,
5341 	.quadrant = 0x3,
5342 	.invalid = 0x1,
5343 };
5344 
5345 static void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
5346 			      const u8 *new, int bytes,
5347 			      struct kvm_page_track_notifier_node *node)
5348 {
5349 	gfn_t gfn = gpa >> PAGE_SHIFT;
5350 	struct kvm_mmu_page *sp;
5351 	LIST_HEAD(invalid_list);
5352 	u64 entry, gentry, *spte;
5353 	int npte;
5354 	bool remote_flush, local_flush;
5355 
5356 	/*
5357 	 * If we don't have indirect shadow pages, it means no page is
5358 	 * write-protected, so we can exit simply.
5359 	 */
5360 	if (!READ_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
5361 		return;
5362 
5363 	remote_flush = local_flush = false;
5364 
5365 	pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
5366 
5367 	/*
5368 	 * No need to care whether allocation memory is successful
5369 	 * or not since pte prefetch is skiped if it does not have
5370 	 * enough objects in the cache.
5371 	 */
5372 	mmu_topup_memory_caches(vcpu);
5373 
5374 	spin_lock(&vcpu->kvm->mmu_lock);
5375 
5376 	gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, &bytes);
5377 
5378 	++vcpu->kvm->stat.mmu_pte_write;
5379 	kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
5380 
5381 	for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
5382 		if (detect_write_misaligned(sp, gpa, bytes) ||
5383 		      detect_write_flooding(sp)) {
5384 			kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
5385 			++vcpu->kvm->stat.mmu_flooded;
5386 			continue;
5387 		}
5388 
5389 		spte = get_written_sptes(sp, gpa, &npte);
5390 		if (!spte)
5391 			continue;
5392 
5393 		local_flush = true;
5394 		while (npte--) {
5395 			u32 base_role = vcpu->arch.mmu->mmu_role.base.word;
5396 
5397 			entry = *spte;
5398 			mmu_page_zap_pte(vcpu->kvm, sp, spte);
5399 			if (gentry &&
5400 			    !((sp->role.word ^ base_role) & ~role_ign.word) &&
5401 			    rmap_can_add(vcpu))
5402 				mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
5403 			if (need_remote_flush(entry, *spte))
5404 				remote_flush = true;
5405 			++spte;
5406 		}
5407 	}
5408 	kvm_mmu_flush_or_zap(vcpu, &invalid_list, remote_flush, local_flush);
5409 	kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
5410 	spin_unlock(&vcpu->kvm->mmu_lock);
5411 }
5412 
5413 int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
5414 {
5415 	gpa_t gpa;
5416 	int r;
5417 
5418 	if (vcpu->arch.mmu->direct_map)
5419 		return 0;
5420 
5421 	gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
5422 
5423 	r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
5424 
5425 	return r;
5426 }
5427 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
5428 
5429 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 error_code,
5430 		       void *insn, int insn_len)
5431 {
5432 	int r, emulation_type = EMULTYPE_PF;
5433 	bool direct = vcpu->arch.mmu->direct_map;
5434 
5435 	if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa)))
5436 		return RET_PF_RETRY;
5437 
5438 	r = RET_PF_INVALID;
5439 	if (unlikely(error_code & PFERR_RSVD_MASK)) {
5440 		r = handle_mmio_page_fault(vcpu, cr2_or_gpa, direct);
5441 		if (r == RET_PF_EMULATE)
5442 			goto emulate;
5443 	}
5444 
5445 	if (r == RET_PF_INVALID) {
5446 		r = kvm_mmu_do_page_fault(vcpu, cr2_or_gpa,
5447 					  lower_32_bits(error_code), false);
5448 		WARN_ON(r == RET_PF_INVALID);
5449 	}
5450 
5451 	if (r == RET_PF_RETRY)
5452 		return 1;
5453 	if (r < 0)
5454 		return r;
5455 
5456 	/*
5457 	 * Before emulating the instruction, check if the error code
5458 	 * was due to a RO violation while translating the guest page.
5459 	 * This can occur when using nested virtualization with nested
5460 	 * paging in both guests. If true, we simply unprotect the page
5461 	 * and resume the guest.
5462 	 */
5463 	if (vcpu->arch.mmu->direct_map &&
5464 	    (error_code & PFERR_NESTED_GUEST_PAGE) == PFERR_NESTED_GUEST_PAGE) {
5465 		kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(cr2_or_gpa));
5466 		return 1;
5467 	}
5468 
5469 	/*
5470 	 * vcpu->arch.mmu.page_fault returned RET_PF_EMULATE, but we can still
5471 	 * optimistically try to just unprotect the page and let the processor
5472 	 * re-execute the instruction that caused the page fault.  Do not allow
5473 	 * retrying MMIO emulation, as it's not only pointless but could also
5474 	 * cause us to enter an infinite loop because the processor will keep
5475 	 * faulting on the non-existent MMIO address.  Retrying an instruction
5476 	 * from a nested guest is also pointless and dangerous as we are only
5477 	 * explicitly shadowing L1's page tables, i.e. unprotecting something
5478 	 * for L1 isn't going to magically fix whatever issue cause L2 to fail.
5479 	 */
5480 	if (!mmio_info_in_cache(vcpu, cr2_or_gpa, direct) && !is_guest_mode(vcpu))
5481 		emulation_type |= EMULTYPE_ALLOW_RETRY_PF;
5482 emulate:
5483 	/*
5484 	 * On AMD platforms, under certain conditions insn_len may be zero on #NPF.
5485 	 * This can happen if a guest gets a page-fault on data access but the HW
5486 	 * table walker is not able to read the instruction page (e.g instruction
5487 	 * page is not present in memory). In those cases we simply restart the
5488 	 * guest, with the exception of AMD Erratum 1096 which is unrecoverable.
5489 	 */
5490 	if (unlikely(insn && !insn_len)) {
5491 		if (!kvm_x86_ops.need_emulation_on_page_fault(vcpu))
5492 			return 1;
5493 	}
5494 
5495 	return x86_emulate_instruction(vcpu, cr2_or_gpa, emulation_type, insn,
5496 				       insn_len);
5497 }
5498 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
5499 
5500 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
5501 {
5502 	struct kvm_mmu *mmu = vcpu->arch.mmu;
5503 	int i;
5504 
5505 	/* INVLPG on a * non-canonical address is a NOP according to the SDM.  */
5506 	if (is_noncanonical_address(gva, vcpu))
5507 		return;
5508 
5509 	mmu->invlpg(vcpu, gva, mmu->root_hpa);
5510 
5511 	/*
5512 	 * INVLPG is required to invalidate any global mappings for the VA,
5513 	 * irrespective of PCID. Since it would take us roughly similar amount
5514 	 * of work to determine whether any of the prev_root mappings of the VA
5515 	 * is marked global, or to just sync it blindly, so we might as well
5516 	 * just always sync it.
5517 	 *
5518 	 * Mappings not reachable via the current cr3 or the prev_roots will be
5519 	 * synced when switching to that cr3, so nothing needs to be done here
5520 	 * for them.
5521 	 */
5522 	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5523 		if (VALID_PAGE(mmu->prev_roots[i].hpa))
5524 			mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
5525 
5526 	kvm_x86_ops.tlb_flush_gva(vcpu, gva);
5527 	++vcpu->stat.invlpg;
5528 }
5529 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
5530 
5531 void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid)
5532 {
5533 	struct kvm_mmu *mmu = vcpu->arch.mmu;
5534 	bool tlb_flush = false;
5535 	uint i;
5536 
5537 	if (pcid == kvm_get_active_pcid(vcpu)) {
5538 		mmu->invlpg(vcpu, gva, mmu->root_hpa);
5539 		tlb_flush = true;
5540 	}
5541 
5542 	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
5543 		if (VALID_PAGE(mmu->prev_roots[i].hpa) &&
5544 		    pcid == kvm_get_pcid(vcpu, mmu->prev_roots[i].cr3)) {
5545 			mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
5546 			tlb_flush = true;
5547 		}
5548 	}
5549 
5550 	if (tlb_flush)
5551 		kvm_x86_ops.tlb_flush_gva(vcpu, gva);
5552 
5553 	++vcpu->stat.invlpg;
5554 
5555 	/*
5556 	 * Mappings not reachable via the current cr3 or the prev_roots will be
5557 	 * synced when switching to that cr3, so nothing needs to be done here
5558 	 * for them.
5559 	 */
5560 }
5561 EXPORT_SYMBOL_GPL(kvm_mmu_invpcid_gva);
5562 
5563 void kvm_configure_mmu(bool enable_tdp, int tdp_page_level)
5564 {
5565 	tdp_enabled = enable_tdp;
5566 
5567 	/*
5568 	 * max_page_level reflects the capabilities of KVM's MMU irrespective
5569 	 * of kernel support, e.g. KVM may be capable of using 1GB pages when
5570 	 * the kernel is not.  But, KVM never creates a page size greater than
5571 	 * what is used by the kernel for any given HVA, i.e. the kernel's
5572 	 * capabilities are ultimately consulted by kvm_mmu_hugepage_adjust().
5573 	 */
5574 	if (tdp_enabled)
5575 		max_page_level = tdp_page_level;
5576 	else if (boot_cpu_has(X86_FEATURE_GBPAGES))
5577 		max_page_level = PT_PDPE_LEVEL;
5578 	else
5579 		max_page_level = PT_DIRECTORY_LEVEL;
5580 }
5581 EXPORT_SYMBOL_GPL(kvm_configure_mmu);
5582 
5583 /* The return value indicates if tlb flush on all vcpus is needed. */
5584 typedef bool (*slot_level_handler) (struct kvm *kvm, struct kvm_rmap_head *rmap_head);
5585 
5586 /* The caller should hold mmu-lock before calling this function. */
5587 static __always_inline bool
5588 slot_handle_level_range(struct kvm *kvm, struct kvm_memory_slot *memslot,
5589 			slot_level_handler fn, int start_level, int end_level,
5590 			gfn_t start_gfn, gfn_t end_gfn, bool lock_flush_tlb)
5591 {
5592 	struct slot_rmap_walk_iterator iterator;
5593 	bool flush = false;
5594 
5595 	for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn,
5596 			end_gfn, &iterator) {
5597 		if (iterator.rmap)
5598 			flush |= fn(kvm, iterator.rmap);
5599 
5600 		if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
5601 			if (flush && lock_flush_tlb) {
5602 				kvm_flush_remote_tlbs_with_address(kvm,
5603 						start_gfn,
5604 						iterator.gfn - start_gfn + 1);
5605 				flush = false;
5606 			}
5607 			cond_resched_lock(&kvm->mmu_lock);
5608 		}
5609 	}
5610 
5611 	if (flush && lock_flush_tlb) {
5612 		kvm_flush_remote_tlbs_with_address(kvm, start_gfn,
5613 						   end_gfn - start_gfn + 1);
5614 		flush = false;
5615 	}
5616 
5617 	return flush;
5618 }
5619 
5620 static __always_inline bool
5621 slot_handle_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5622 		  slot_level_handler fn, int start_level, int end_level,
5623 		  bool lock_flush_tlb)
5624 {
5625 	return slot_handle_level_range(kvm, memslot, fn, start_level,
5626 			end_level, memslot->base_gfn,
5627 			memslot->base_gfn + memslot->npages - 1,
5628 			lock_flush_tlb);
5629 }
5630 
5631 static __always_inline bool
5632 slot_handle_all_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5633 		      slot_level_handler fn, bool lock_flush_tlb)
5634 {
5635 	return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
5636 				 PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
5637 }
5638 
5639 static __always_inline bool
5640 slot_handle_large_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5641 			slot_level_handler fn, bool lock_flush_tlb)
5642 {
5643 	return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL + 1,
5644 				 PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
5645 }
5646 
5647 static __always_inline bool
5648 slot_handle_leaf(struct kvm *kvm, struct kvm_memory_slot *memslot,
5649 		 slot_level_handler fn, bool lock_flush_tlb)
5650 {
5651 	return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
5652 				 PT_PAGE_TABLE_LEVEL, lock_flush_tlb);
5653 }
5654 
5655 static void free_mmu_pages(struct kvm_mmu *mmu)
5656 {
5657 	free_page((unsigned long)mmu->pae_root);
5658 	free_page((unsigned long)mmu->lm_root);
5659 }
5660 
5661 static int alloc_mmu_pages(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
5662 {
5663 	struct page *page;
5664 	int i;
5665 
5666 	/*
5667 	 * When using PAE paging, the four PDPTEs are treated as 'root' pages,
5668 	 * while the PDP table is a per-vCPU construct that's allocated at MMU
5669 	 * creation.  When emulating 32-bit mode, cr3 is only 32 bits even on
5670 	 * x86_64.  Therefore we need to allocate the PDP table in the first
5671 	 * 4GB of memory, which happens to fit the DMA32 zone.  Except for
5672 	 * SVM's 32-bit NPT support, TDP paging doesn't use PAE paging and can
5673 	 * skip allocating the PDP table.
5674 	 */
5675 	if (tdp_enabled && kvm_x86_ops.get_tdp_level(vcpu) > PT32E_ROOT_LEVEL)
5676 		return 0;
5677 
5678 	page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_DMA32);
5679 	if (!page)
5680 		return -ENOMEM;
5681 
5682 	mmu->pae_root = page_address(page);
5683 	for (i = 0; i < 4; ++i)
5684 		mmu->pae_root[i] = INVALID_PAGE;
5685 
5686 	return 0;
5687 }
5688 
5689 int kvm_mmu_create(struct kvm_vcpu *vcpu)
5690 {
5691 	uint i;
5692 	int ret;
5693 
5694 	vcpu->arch.mmu = &vcpu->arch.root_mmu;
5695 	vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
5696 
5697 	vcpu->arch.root_mmu.root_hpa = INVALID_PAGE;
5698 	vcpu->arch.root_mmu.root_cr3 = 0;
5699 	vcpu->arch.root_mmu.translate_gpa = translate_gpa;
5700 	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5701 		vcpu->arch.root_mmu.prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
5702 
5703 	vcpu->arch.guest_mmu.root_hpa = INVALID_PAGE;
5704 	vcpu->arch.guest_mmu.root_cr3 = 0;
5705 	vcpu->arch.guest_mmu.translate_gpa = translate_gpa;
5706 	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5707 		vcpu->arch.guest_mmu.prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
5708 
5709 	vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
5710 
5711 	ret = alloc_mmu_pages(vcpu, &vcpu->arch.guest_mmu);
5712 	if (ret)
5713 		return ret;
5714 
5715 	ret = alloc_mmu_pages(vcpu, &vcpu->arch.root_mmu);
5716 	if (ret)
5717 		goto fail_allocate_root;
5718 
5719 	return ret;
5720  fail_allocate_root:
5721 	free_mmu_pages(&vcpu->arch.guest_mmu);
5722 	return ret;
5723 }
5724 
5725 #define BATCH_ZAP_PAGES	10
5726 static void kvm_zap_obsolete_pages(struct kvm *kvm)
5727 {
5728 	struct kvm_mmu_page *sp, *node;
5729 	int nr_zapped, batch = 0;
5730 
5731 restart:
5732 	list_for_each_entry_safe_reverse(sp, node,
5733 	      &kvm->arch.active_mmu_pages, link) {
5734 		/*
5735 		 * No obsolete valid page exists before a newly created page
5736 		 * since active_mmu_pages is a FIFO list.
5737 		 */
5738 		if (!is_obsolete_sp(kvm, sp))
5739 			break;
5740 
5741 		/*
5742 		 * Skip invalid pages with a non-zero root count, zapping pages
5743 		 * with a non-zero root count will never succeed, i.e. the page
5744 		 * will get thrown back on active_mmu_pages and we'll get stuck
5745 		 * in an infinite loop.
5746 		 */
5747 		if (sp->role.invalid && sp->root_count)
5748 			continue;
5749 
5750 		/*
5751 		 * No need to flush the TLB since we're only zapping shadow
5752 		 * pages with an obsolete generation number and all vCPUS have
5753 		 * loaded a new root, i.e. the shadow pages being zapped cannot
5754 		 * be in active use by the guest.
5755 		 */
5756 		if (batch >= BATCH_ZAP_PAGES &&
5757 		    cond_resched_lock(&kvm->mmu_lock)) {
5758 			batch = 0;
5759 			goto restart;
5760 		}
5761 
5762 		if (__kvm_mmu_prepare_zap_page(kvm, sp,
5763 				&kvm->arch.zapped_obsolete_pages, &nr_zapped)) {
5764 			batch += nr_zapped;
5765 			goto restart;
5766 		}
5767 	}
5768 
5769 	/*
5770 	 * Trigger a remote TLB flush before freeing the page tables to ensure
5771 	 * KVM is not in the middle of a lockless shadow page table walk, which
5772 	 * may reference the pages.
5773 	 */
5774 	kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
5775 }
5776 
5777 /*
5778  * Fast invalidate all shadow pages and use lock-break technique
5779  * to zap obsolete pages.
5780  *
5781  * It's required when memslot is being deleted or VM is being
5782  * destroyed, in these cases, we should ensure that KVM MMU does
5783  * not use any resource of the being-deleted slot or all slots
5784  * after calling the function.
5785  */
5786 static void kvm_mmu_zap_all_fast(struct kvm *kvm)
5787 {
5788 	lockdep_assert_held(&kvm->slots_lock);
5789 
5790 	spin_lock(&kvm->mmu_lock);
5791 	trace_kvm_mmu_zap_all_fast(kvm);
5792 
5793 	/*
5794 	 * Toggle mmu_valid_gen between '0' and '1'.  Because slots_lock is
5795 	 * held for the entire duration of zapping obsolete pages, it's
5796 	 * impossible for there to be multiple invalid generations associated
5797 	 * with *valid* shadow pages at any given time, i.e. there is exactly
5798 	 * one valid generation and (at most) one invalid generation.
5799 	 */
5800 	kvm->arch.mmu_valid_gen = kvm->arch.mmu_valid_gen ? 0 : 1;
5801 
5802 	/*
5803 	 * Notify all vcpus to reload its shadow page table and flush TLB.
5804 	 * Then all vcpus will switch to new shadow page table with the new
5805 	 * mmu_valid_gen.
5806 	 *
5807 	 * Note: we need to do this under the protection of mmu_lock,
5808 	 * otherwise, vcpu would purge shadow page but miss tlb flush.
5809 	 */
5810 	kvm_reload_remote_mmus(kvm);
5811 
5812 	kvm_zap_obsolete_pages(kvm);
5813 	spin_unlock(&kvm->mmu_lock);
5814 }
5815 
5816 static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
5817 {
5818 	return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
5819 }
5820 
5821 static void kvm_mmu_invalidate_zap_pages_in_memslot(struct kvm *kvm,
5822 			struct kvm_memory_slot *slot,
5823 			struct kvm_page_track_notifier_node *node)
5824 {
5825 	kvm_mmu_zap_all_fast(kvm);
5826 }
5827 
5828 void kvm_mmu_init_vm(struct kvm *kvm)
5829 {
5830 	struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5831 
5832 	node->track_write = kvm_mmu_pte_write;
5833 	node->track_flush_slot = kvm_mmu_invalidate_zap_pages_in_memslot;
5834 	kvm_page_track_register_notifier(kvm, node);
5835 }
5836 
5837 void kvm_mmu_uninit_vm(struct kvm *kvm)
5838 {
5839 	struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5840 
5841 	kvm_page_track_unregister_notifier(kvm, node);
5842 }
5843 
5844 void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
5845 {
5846 	struct kvm_memslots *slots;
5847 	struct kvm_memory_slot *memslot;
5848 	int i;
5849 
5850 	spin_lock(&kvm->mmu_lock);
5851 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
5852 		slots = __kvm_memslots(kvm, i);
5853 		kvm_for_each_memslot(memslot, slots) {
5854 			gfn_t start, end;
5855 
5856 			start = max(gfn_start, memslot->base_gfn);
5857 			end = min(gfn_end, memslot->base_gfn + memslot->npages);
5858 			if (start >= end)
5859 				continue;
5860 
5861 			slot_handle_level_range(kvm, memslot, kvm_zap_rmapp,
5862 						PT_PAGE_TABLE_LEVEL, PT_MAX_HUGEPAGE_LEVEL,
5863 						start, end - 1, true);
5864 		}
5865 	}
5866 
5867 	spin_unlock(&kvm->mmu_lock);
5868 }
5869 
5870 static bool slot_rmap_write_protect(struct kvm *kvm,
5871 				    struct kvm_rmap_head *rmap_head)
5872 {
5873 	return __rmap_write_protect(kvm, rmap_head, false);
5874 }
5875 
5876 void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
5877 				      struct kvm_memory_slot *memslot,
5878 				      int start_level)
5879 {
5880 	bool flush;
5881 
5882 	spin_lock(&kvm->mmu_lock);
5883 	flush = slot_handle_level(kvm, memslot, slot_rmap_write_protect,
5884 				start_level, PT_MAX_HUGEPAGE_LEVEL, false);
5885 	spin_unlock(&kvm->mmu_lock);
5886 
5887 	/*
5888 	 * We can flush all the TLBs out of the mmu lock without TLB
5889 	 * corruption since we just change the spte from writable to
5890 	 * readonly so that we only need to care the case of changing
5891 	 * spte from present to present (changing the spte from present
5892 	 * to nonpresent will flush all the TLBs immediately), in other
5893 	 * words, the only case we care is mmu_spte_update() where we
5894 	 * have checked SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE
5895 	 * instead of PT_WRITABLE_MASK, that means it does not depend
5896 	 * on PT_WRITABLE_MASK anymore.
5897 	 */
5898 	if (flush)
5899 		kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
5900 }
5901 
5902 static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
5903 					 struct kvm_rmap_head *rmap_head)
5904 {
5905 	u64 *sptep;
5906 	struct rmap_iterator iter;
5907 	int need_tlb_flush = 0;
5908 	kvm_pfn_t pfn;
5909 	struct kvm_mmu_page *sp;
5910 
5911 restart:
5912 	for_each_rmap_spte(rmap_head, &iter, sptep) {
5913 		sp = page_header(__pa(sptep));
5914 		pfn = spte_to_pfn(*sptep);
5915 
5916 		/*
5917 		 * We cannot do huge page mapping for indirect shadow pages,
5918 		 * which are found on the last rmap (level = 1) when not using
5919 		 * tdp; such shadow pages are synced with the page table in
5920 		 * the guest, and the guest page table is using 4K page size
5921 		 * mapping if the indirect sp has level = 1.
5922 		 */
5923 		if (sp->role.direct && !kvm_is_reserved_pfn(pfn) &&
5924 		    (kvm_is_zone_device_pfn(pfn) ||
5925 		     PageCompound(pfn_to_page(pfn)))) {
5926 			pte_list_remove(rmap_head, sptep);
5927 
5928 			if (kvm_available_flush_tlb_with_range())
5929 				kvm_flush_remote_tlbs_with_address(kvm, sp->gfn,
5930 					KVM_PAGES_PER_HPAGE(sp->role.level));
5931 			else
5932 				need_tlb_flush = 1;
5933 
5934 			goto restart;
5935 		}
5936 	}
5937 
5938 	return need_tlb_flush;
5939 }
5940 
5941 void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
5942 				   const struct kvm_memory_slot *memslot)
5943 {
5944 	/* FIXME: const-ify all uses of struct kvm_memory_slot.  */
5945 	spin_lock(&kvm->mmu_lock);
5946 	slot_handle_leaf(kvm, (struct kvm_memory_slot *)memslot,
5947 			 kvm_mmu_zap_collapsible_spte, true);
5948 	spin_unlock(&kvm->mmu_lock);
5949 }
5950 
5951 void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
5952 					struct kvm_memory_slot *memslot)
5953 {
5954 	/*
5955 	 * All current use cases for flushing the TLBs for a specific memslot
5956 	 * are related to dirty logging, and do the TLB flush out of mmu_lock.
5957 	 * The interaction between the various operations on memslot must be
5958 	 * serialized by slots_locks to ensure the TLB flush from one operation
5959 	 * is observed by any other operation on the same memslot.
5960 	 */
5961 	lockdep_assert_held(&kvm->slots_lock);
5962 	kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn,
5963 					   memslot->npages);
5964 }
5965 
5966 void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
5967 				   struct kvm_memory_slot *memslot)
5968 {
5969 	bool flush;
5970 
5971 	spin_lock(&kvm->mmu_lock);
5972 	flush = slot_handle_leaf(kvm, memslot, __rmap_clear_dirty, false);
5973 	spin_unlock(&kvm->mmu_lock);
5974 
5975 	/*
5976 	 * It's also safe to flush TLBs out of mmu lock here as currently this
5977 	 * function is only used for dirty logging, in which case flushing TLB
5978 	 * out of mmu lock also guarantees no dirty pages will be lost in
5979 	 * dirty_bitmap.
5980 	 */
5981 	if (flush)
5982 		kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
5983 }
5984 EXPORT_SYMBOL_GPL(kvm_mmu_slot_leaf_clear_dirty);
5985 
5986 void kvm_mmu_slot_largepage_remove_write_access(struct kvm *kvm,
5987 					struct kvm_memory_slot *memslot)
5988 {
5989 	bool flush;
5990 
5991 	spin_lock(&kvm->mmu_lock);
5992 	flush = slot_handle_large_level(kvm, memslot, slot_rmap_write_protect,
5993 					false);
5994 	spin_unlock(&kvm->mmu_lock);
5995 
5996 	if (flush)
5997 		kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
5998 }
5999 EXPORT_SYMBOL_GPL(kvm_mmu_slot_largepage_remove_write_access);
6000 
6001 void kvm_mmu_slot_set_dirty(struct kvm *kvm,
6002 			    struct kvm_memory_slot *memslot)
6003 {
6004 	bool flush;
6005 
6006 	spin_lock(&kvm->mmu_lock);
6007 	flush = slot_handle_all_level(kvm, memslot, __rmap_set_dirty, false);
6008 	spin_unlock(&kvm->mmu_lock);
6009 
6010 	if (flush)
6011 		kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
6012 }
6013 EXPORT_SYMBOL_GPL(kvm_mmu_slot_set_dirty);
6014 
6015 void kvm_mmu_zap_all(struct kvm *kvm)
6016 {
6017 	struct kvm_mmu_page *sp, *node;
6018 	LIST_HEAD(invalid_list);
6019 	int ign;
6020 
6021 	spin_lock(&kvm->mmu_lock);
6022 restart:
6023 	list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link) {
6024 		if (sp->role.invalid && sp->root_count)
6025 			continue;
6026 		if (__kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list, &ign))
6027 			goto restart;
6028 		if (cond_resched_lock(&kvm->mmu_lock))
6029 			goto restart;
6030 	}
6031 
6032 	kvm_mmu_commit_zap_page(kvm, &invalid_list);
6033 	spin_unlock(&kvm->mmu_lock);
6034 }
6035 
6036 void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen)
6037 {
6038 	WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
6039 
6040 	gen &= MMIO_SPTE_GEN_MASK;
6041 
6042 	/*
6043 	 * Generation numbers are incremented in multiples of the number of
6044 	 * address spaces in order to provide unique generations across all
6045 	 * address spaces.  Strip what is effectively the address space
6046 	 * modifier prior to checking for a wrap of the MMIO generation so
6047 	 * that a wrap in any address space is detected.
6048 	 */
6049 	gen &= ~((u64)KVM_ADDRESS_SPACE_NUM - 1);
6050 
6051 	/*
6052 	 * The very rare case: if the MMIO generation number has wrapped,
6053 	 * zap all shadow pages.
6054 	 */
6055 	if (unlikely(gen == 0)) {
6056 		kvm_debug_ratelimited("kvm: zapping shadow pages for mmio generation wraparound\n");
6057 		kvm_mmu_zap_all_fast(kvm);
6058 	}
6059 }
6060 
6061 static unsigned long
6062 mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
6063 {
6064 	struct kvm *kvm;
6065 	int nr_to_scan = sc->nr_to_scan;
6066 	unsigned long freed = 0;
6067 
6068 	mutex_lock(&kvm_lock);
6069 
6070 	list_for_each_entry(kvm, &vm_list, vm_list) {
6071 		int idx;
6072 		LIST_HEAD(invalid_list);
6073 
6074 		/*
6075 		 * Never scan more than sc->nr_to_scan VM instances.
6076 		 * Will not hit this condition practically since we do not try
6077 		 * to shrink more than one VM and it is very unlikely to see
6078 		 * !n_used_mmu_pages so many times.
6079 		 */
6080 		if (!nr_to_scan--)
6081 			break;
6082 		/*
6083 		 * n_used_mmu_pages is accessed without holding kvm->mmu_lock
6084 		 * here. We may skip a VM instance errorneosly, but we do not
6085 		 * want to shrink a VM that only started to populate its MMU
6086 		 * anyway.
6087 		 */
6088 		if (!kvm->arch.n_used_mmu_pages &&
6089 		    !kvm_has_zapped_obsolete_pages(kvm))
6090 			continue;
6091 
6092 		idx = srcu_read_lock(&kvm->srcu);
6093 		spin_lock(&kvm->mmu_lock);
6094 
6095 		if (kvm_has_zapped_obsolete_pages(kvm)) {
6096 			kvm_mmu_commit_zap_page(kvm,
6097 			      &kvm->arch.zapped_obsolete_pages);
6098 			goto unlock;
6099 		}
6100 
6101 		if (prepare_zap_oldest_mmu_page(kvm, &invalid_list))
6102 			freed++;
6103 		kvm_mmu_commit_zap_page(kvm, &invalid_list);
6104 
6105 unlock:
6106 		spin_unlock(&kvm->mmu_lock);
6107 		srcu_read_unlock(&kvm->srcu, idx);
6108 
6109 		/*
6110 		 * unfair on small ones
6111 		 * per-vm shrinkers cry out
6112 		 * sadness comes quickly
6113 		 */
6114 		list_move_tail(&kvm->vm_list, &vm_list);
6115 		break;
6116 	}
6117 
6118 	mutex_unlock(&kvm_lock);
6119 	return freed;
6120 }
6121 
6122 static unsigned long
6123 mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
6124 {
6125 	return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
6126 }
6127 
6128 static struct shrinker mmu_shrinker = {
6129 	.count_objects = mmu_shrink_count,
6130 	.scan_objects = mmu_shrink_scan,
6131 	.seeks = DEFAULT_SEEKS * 10,
6132 };
6133 
6134 static void mmu_destroy_caches(void)
6135 {
6136 	kmem_cache_destroy(pte_list_desc_cache);
6137 	kmem_cache_destroy(mmu_page_header_cache);
6138 }
6139 
6140 static void kvm_set_mmio_spte_mask(void)
6141 {
6142 	u64 mask;
6143 
6144 	/*
6145 	 * Set the reserved bits and the present bit of an paging-structure
6146 	 * entry to generate page fault with PFER.RSV = 1.
6147 	 */
6148 
6149 	/*
6150 	 * Mask the uppermost physical address bit, which would be reserved as
6151 	 * long as the supported physical address width is less than 52.
6152 	 */
6153 	mask = 1ull << 51;
6154 
6155 	/* Set the present bit. */
6156 	mask |= 1ull;
6157 
6158 	/*
6159 	 * If reserved bit is not supported, clear the present bit to disable
6160 	 * mmio page fault.
6161 	 */
6162 	if (shadow_phys_bits == 52)
6163 		mask &= ~1ull;
6164 
6165 	kvm_mmu_set_mmio_spte_mask(mask, mask, ACC_WRITE_MASK | ACC_USER_MASK);
6166 }
6167 
6168 static bool get_nx_auto_mode(void)
6169 {
6170 	/* Return true when CPU has the bug, and mitigations are ON */
6171 	return boot_cpu_has_bug(X86_BUG_ITLB_MULTIHIT) && !cpu_mitigations_off();
6172 }
6173 
6174 static void __set_nx_huge_pages(bool val)
6175 {
6176 	nx_huge_pages = itlb_multihit_kvm_mitigation = val;
6177 }
6178 
6179 static int set_nx_huge_pages(const char *val, const struct kernel_param *kp)
6180 {
6181 	bool old_val = nx_huge_pages;
6182 	bool new_val;
6183 
6184 	/* In "auto" mode deploy workaround only if CPU has the bug. */
6185 	if (sysfs_streq(val, "off"))
6186 		new_val = 0;
6187 	else if (sysfs_streq(val, "force"))
6188 		new_val = 1;
6189 	else if (sysfs_streq(val, "auto"))
6190 		new_val = get_nx_auto_mode();
6191 	else if (strtobool(val, &new_val) < 0)
6192 		return -EINVAL;
6193 
6194 	__set_nx_huge_pages(new_val);
6195 
6196 	if (new_val != old_val) {
6197 		struct kvm *kvm;
6198 
6199 		mutex_lock(&kvm_lock);
6200 
6201 		list_for_each_entry(kvm, &vm_list, vm_list) {
6202 			mutex_lock(&kvm->slots_lock);
6203 			kvm_mmu_zap_all_fast(kvm);
6204 			mutex_unlock(&kvm->slots_lock);
6205 
6206 			wake_up_process(kvm->arch.nx_lpage_recovery_thread);
6207 		}
6208 		mutex_unlock(&kvm_lock);
6209 	}
6210 
6211 	return 0;
6212 }
6213 
6214 int kvm_mmu_module_init(void)
6215 {
6216 	int ret = -ENOMEM;
6217 
6218 	if (nx_huge_pages == -1)
6219 		__set_nx_huge_pages(get_nx_auto_mode());
6220 
6221 	/*
6222 	 * MMU roles use union aliasing which is, generally speaking, an
6223 	 * undefined behavior. However, we supposedly know how compilers behave
6224 	 * and the current status quo is unlikely to change. Guardians below are
6225 	 * supposed to let us know if the assumption becomes false.
6226 	 */
6227 	BUILD_BUG_ON(sizeof(union kvm_mmu_page_role) != sizeof(u32));
6228 	BUILD_BUG_ON(sizeof(union kvm_mmu_extended_role) != sizeof(u32));
6229 	BUILD_BUG_ON(sizeof(union kvm_mmu_role) != sizeof(u64));
6230 
6231 	kvm_mmu_reset_all_pte_masks();
6232 
6233 	kvm_set_mmio_spte_mask();
6234 
6235 	pte_list_desc_cache = kmem_cache_create("pte_list_desc",
6236 					    sizeof(struct pte_list_desc),
6237 					    0, SLAB_ACCOUNT, NULL);
6238 	if (!pte_list_desc_cache)
6239 		goto out;
6240 
6241 	mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
6242 						  sizeof(struct kvm_mmu_page),
6243 						  0, SLAB_ACCOUNT, NULL);
6244 	if (!mmu_page_header_cache)
6245 		goto out;
6246 
6247 	if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
6248 		goto out;
6249 
6250 	ret = register_shrinker(&mmu_shrinker);
6251 	if (ret)
6252 		goto out;
6253 
6254 	return 0;
6255 
6256 out:
6257 	mmu_destroy_caches();
6258 	return ret;
6259 }
6260 
6261 /*
6262  * Calculate mmu pages needed for kvm.
6263  */
6264 unsigned long kvm_mmu_calculate_default_mmu_pages(struct kvm *kvm)
6265 {
6266 	unsigned long nr_mmu_pages;
6267 	unsigned long nr_pages = 0;
6268 	struct kvm_memslots *slots;
6269 	struct kvm_memory_slot *memslot;
6270 	int i;
6271 
6272 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
6273 		slots = __kvm_memslots(kvm, i);
6274 
6275 		kvm_for_each_memslot(memslot, slots)
6276 			nr_pages += memslot->npages;
6277 	}
6278 
6279 	nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
6280 	nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES);
6281 
6282 	return nr_mmu_pages;
6283 }
6284 
6285 void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
6286 {
6287 	kvm_mmu_unload(vcpu);
6288 	free_mmu_pages(&vcpu->arch.root_mmu);
6289 	free_mmu_pages(&vcpu->arch.guest_mmu);
6290 	mmu_free_memory_caches(vcpu);
6291 }
6292 
6293 void kvm_mmu_module_exit(void)
6294 {
6295 	mmu_destroy_caches();
6296 	percpu_counter_destroy(&kvm_total_used_mmu_pages);
6297 	unregister_shrinker(&mmu_shrinker);
6298 	mmu_audit_disable();
6299 }
6300 
6301 static int set_nx_huge_pages_recovery_ratio(const char *val, const struct kernel_param *kp)
6302 {
6303 	unsigned int old_val;
6304 	int err;
6305 
6306 	old_val = nx_huge_pages_recovery_ratio;
6307 	err = param_set_uint(val, kp);
6308 	if (err)
6309 		return err;
6310 
6311 	if (READ_ONCE(nx_huge_pages) &&
6312 	    !old_val && nx_huge_pages_recovery_ratio) {
6313 		struct kvm *kvm;
6314 
6315 		mutex_lock(&kvm_lock);
6316 
6317 		list_for_each_entry(kvm, &vm_list, vm_list)
6318 			wake_up_process(kvm->arch.nx_lpage_recovery_thread);
6319 
6320 		mutex_unlock(&kvm_lock);
6321 	}
6322 
6323 	return err;
6324 }
6325 
6326 static void kvm_recover_nx_lpages(struct kvm *kvm)
6327 {
6328 	int rcu_idx;
6329 	struct kvm_mmu_page *sp;
6330 	unsigned int ratio;
6331 	LIST_HEAD(invalid_list);
6332 	ulong to_zap;
6333 
6334 	rcu_idx = srcu_read_lock(&kvm->srcu);
6335 	spin_lock(&kvm->mmu_lock);
6336 
6337 	ratio = READ_ONCE(nx_huge_pages_recovery_ratio);
6338 	to_zap = ratio ? DIV_ROUND_UP(kvm->stat.nx_lpage_splits, ratio) : 0;
6339 	while (to_zap && !list_empty(&kvm->arch.lpage_disallowed_mmu_pages)) {
6340 		/*
6341 		 * We use a separate list instead of just using active_mmu_pages
6342 		 * because the number of lpage_disallowed pages is expected to
6343 		 * be relatively small compared to the total.
6344 		 */
6345 		sp = list_first_entry(&kvm->arch.lpage_disallowed_mmu_pages,
6346 				      struct kvm_mmu_page,
6347 				      lpage_disallowed_link);
6348 		WARN_ON_ONCE(!sp->lpage_disallowed);
6349 		kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
6350 		WARN_ON_ONCE(sp->lpage_disallowed);
6351 
6352 		if (!--to_zap || need_resched() || spin_needbreak(&kvm->mmu_lock)) {
6353 			kvm_mmu_commit_zap_page(kvm, &invalid_list);
6354 			if (to_zap)
6355 				cond_resched_lock(&kvm->mmu_lock);
6356 		}
6357 	}
6358 
6359 	spin_unlock(&kvm->mmu_lock);
6360 	srcu_read_unlock(&kvm->srcu, rcu_idx);
6361 }
6362 
6363 static long get_nx_lpage_recovery_timeout(u64 start_time)
6364 {
6365 	return READ_ONCE(nx_huge_pages) && READ_ONCE(nx_huge_pages_recovery_ratio)
6366 		? start_time + 60 * HZ - get_jiffies_64()
6367 		: MAX_SCHEDULE_TIMEOUT;
6368 }
6369 
6370 static int kvm_nx_lpage_recovery_worker(struct kvm *kvm, uintptr_t data)
6371 {
6372 	u64 start_time;
6373 	long remaining_time;
6374 
6375 	while (true) {
6376 		start_time = get_jiffies_64();
6377 		remaining_time = get_nx_lpage_recovery_timeout(start_time);
6378 
6379 		set_current_state(TASK_INTERRUPTIBLE);
6380 		while (!kthread_should_stop() && remaining_time > 0) {
6381 			schedule_timeout(remaining_time);
6382 			remaining_time = get_nx_lpage_recovery_timeout(start_time);
6383 			set_current_state(TASK_INTERRUPTIBLE);
6384 		}
6385 
6386 		set_current_state(TASK_RUNNING);
6387 
6388 		if (kthread_should_stop())
6389 			return 0;
6390 
6391 		kvm_recover_nx_lpages(kvm);
6392 	}
6393 }
6394 
6395 int kvm_mmu_post_init_vm(struct kvm *kvm)
6396 {
6397 	int err;
6398 
6399 	err = kvm_vm_create_worker_thread(kvm, kvm_nx_lpage_recovery_worker, 0,
6400 					  "kvm-nx-lpage-recovery",
6401 					  &kvm->arch.nx_lpage_recovery_thread);
6402 	if (!err)
6403 		kthread_unpark(kvm->arch.nx_lpage_recovery_thread);
6404 
6405 	return err;
6406 }
6407 
6408 void kvm_mmu_pre_destroy_vm(struct kvm *kvm)
6409 {
6410 	if (kvm->arch.nx_lpage_recovery_thread)
6411 		kthread_stop(kvm->arch.nx_lpage_recovery_thread);
6412 }
6413