1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * This module enables machines with Intel VT-x extensions to run virtual 6 * machines without emulation or binary translation. 7 * 8 * MMU support 9 * 10 * Copyright (C) 2006 Qumranet, Inc. 11 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 12 * 13 * Authors: 14 * Yaniv Kamay <yaniv@qumranet.com> 15 * Avi Kivity <avi@qumranet.com> 16 */ 17 18 #include "irq.h" 19 #include "ioapic.h" 20 #include "mmu.h" 21 #include "mmu_internal.h" 22 #include "tdp_mmu.h" 23 #include "x86.h" 24 #include "kvm_cache_regs.h" 25 #include "kvm_emulate.h" 26 #include "cpuid.h" 27 #include "spte.h" 28 29 #include <linux/kvm_host.h> 30 #include <linux/types.h> 31 #include <linux/string.h> 32 #include <linux/mm.h> 33 #include <linux/highmem.h> 34 #include <linux/moduleparam.h> 35 #include <linux/export.h> 36 #include <linux/swap.h> 37 #include <linux/hugetlb.h> 38 #include <linux/compiler.h> 39 #include <linux/srcu.h> 40 #include <linux/slab.h> 41 #include <linux/sched/signal.h> 42 #include <linux/uaccess.h> 43 #include <linux/hash.h> 44 #include <linux/kern_levels.h> 45 #include <linux/kthread.h> 46 47 #include <asm/page.h> 48 #include <asm/memtype.h> 49 #include <asm/cmpxchg.h> 50 #include <asm/io.h> 51 #include <asm/set_memory.h> 52 #include <asm/vmx.h> 53 #include <asm/kvm_page_track.h> 54 #include "trace.h" 55 56 extern bool itlb_multihit_kvm_mitigation; 57 58 int __read_mostly nx_huge_pages = -1; 59 static uint __read_mostly nx_huge_pages_recovery_period_ms; 60 #ifdef CONFIG_PREEMPT_RT 61 /* Recovery can cause latency spikes, disable it for PREEMPT_RT. */ 62 static uint __read_mostly nx_huge_pages_recovery_ratio = 0; 63 #else 64 static uint __read_mostly nx_huge_pages_recovery_ratio = 60; 65 #endif 66 67 static int set_nx_huge_pages(const char *val, const struct kernel_param *kp); 68 static int set_nx_huge_pages_recovery_param(const char *val, const struct kernel_param *kp); 69 70 static const struct kernel_param_ops nx_huge_pages_ops = { 71 .set = set_nx_huge_pages, 72 .get = param_get_bool, 73 }; 74 75 static const struct kernel_param_ops nx_huge_pages_recovery_param_ops = { 76 .set = set_nx_huge_pages_recovery_param, 77 .get = param_get_uint, 78 }; 79 80 module_param_cb(nx_huge_pages, &nx_huge_pages_ops, &nx_huge_pages, 0644); 81 __MODULE_PARM_TYPE(nx_huge_pages, "bool"); 82 module_param_cb(nx_huge_pages_recovery_ratio, &nx_huge_pages_recovery_param_ops, 83 &nx_huge_pages_recovery_ratio, 0644); 84 __MODULE_PARM_TYPE(nx_huge_pages_recovery_ratio, "uint"); 85 module_param_cb(nx_huge_pages_recovery_period_ms, &nx_huge_pages_recovery_param_ops, 86 &nx_huge_pages_recovery_period_ms, 0644); 87 __MODULE_PARM_TYPE(nx_huge_pages_recovery_period_ms, "uint"); 88 89 static bool __read_mostly force_flush_and_sync_on_reuse; 90 module_param_named(flush_on_reuse, force_flush_and_sync_on_reuse, bool, 0644); 91 92 /* 93 * When setting this variable to true it enables Two-Dimensional-Paging 94 * where the hardware walks 2 page tables: 95 * 1. the guest-virtual to guest-physical 96 * 2. while doing 1. it walks guest-physical to host-physical 97 * If the hardware supports that we don't need to do shadow paging. 98 */ 99 bool tdp_enabled = false; 100 101 static int max_huge_page_level __read_mostly; 102 static int tdp_root_level __read_mostly; 103 static int max_tdp_level __read_mostly; 104 105 #ifdef MMU_DEBUG 106 bool dbg = 0; 107 module_param(dbg, bool, 0644); 108 #endif 109 110 #define PTE_PREFETCH_NUM 8 111 112 #include <trace/events/kvm.h> 113 114 /* make pte_list_desc fit well in cache lines */ 115 #define PTE_LIST_EXT 14 116 117 /* 118 * Slight optimization of cacheline layout, by putting `more' and `spte_count' 119 * at the start; then accessing it will only use one single cacheline for 120 * either full (entries==PTE_LIST_EXT) case or entries<=6. 121 */ 122 struct pte_list_desc { 123 struct pte_list_desc *more; 124 /* 125 * Stores number of entries stored in the pte_list_desc. No need to be 126 * u64 but just for easier alignment. When PTE_LIST_EXT, means full. 127 */ 128 u64 spte_count; 129 u64 *sptes[PTE_LIST_EXT]; 130 }; 131 132 struct kvm_shadow_walk_iterator { 133 u64 addr; 134 hpa_t shadow_addr; 135 u64 *sptep; 136 int level; 137 unsigned index; 138 }; 139 140 #define for_each_shadow_entry_using_root(_vcpu, _root, _addr, _walker) \ 141 for (shadow_walk_init_using_root(&(_walker), (_vcpu), \ 142 (_root), (_addr)); \ 143 shadow_walk_okay(&(_walker)); \ 144 shadow_walk_next(&(_walker))) 145 146 #define for_each_shadow_entry(_vcpu, _addr, _walker) \ 147 for (shadow_walk_init(&(_walker), _vcpu, _addr); \ 148 shadow_walk_okay(&(_walker)); \ 149 shadow_walk_next(&(_walker))) 150 151 #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte) \ 152 for (shadow_walk_init(&(_walker), _vcpu, _addr); \ 153 shadow_walk_okay(&(_walker)) && \ 154 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; }); \ 155 __shadow_walk_next(&(_walker), spte)) 156 157 static struct kmem_cache *pte_list_desc_cache; 158 struct kmem_cache *mmu_page_header_cache; 159 static struct percpu_counter kvm_total_used_mmu_pages; 160 161 static void mmu_spte_set(u64 *sptep, u64 spte); 162 163 struct kvm_mmu_role_regs { 164 const unsigned long cr0; 165 const unsigned long cr4; 166 const u64 efer; 167 }; 168 169 #define CREATE_TRACE_POINTS 170 #include "mmutrace.h" 171 172 /* 173 * Yes, lot's of underscores. They're a hint that you probably shouldn't be 174 * reading from the role_regs. Once the root_role is constructed, it becomes 175 * the single source of truth for the MMU's state. 176 */ 177 #define BUILD_MMU_ROLE_REGS_ACCESSOR(reg, name, flag) \ 178 static inline bool __maybe_unused \ 179 ____is_##reg##_##name(const struct kvm_mmu_role_regs *regs) \ 180 { \ 181 return !!(regs->reg & flag); \ 182 } 183 BUILD_MMU_ROLE_REGS_ACCESSOR(cr0, pg, X86_CR0_PG); 184 BUILD_MMU_ROLE_REGS_ACCESSOR(cr0, wp, X86_CR0_WP); 185 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pse, X86_CR4_PSE); 186 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pae, X86_CR4_PAE); 187 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, smep, X86_CR4_SMEP); 188 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, smap, X86_CR4_SMAP); 189 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pke, X86_CR4_PKE); 190 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, la57, X86_CR4_LA57); 191 BUILD_MMU_ROLE_REGS_ACCESSOR(efer, nx, EFER_NX); 192 BUILD_MMU_ROLE_REGS_ACCESSOR(efer, lma, EFER_LMA); 193 194 /* 195 * The MMU itself (with a valid role) is the single source of truth for the 196 * MMU. Do not use the regs used to build the MMU/role, nor the vCPU. The 197 * regs don't account for dependencies, e.g. clearing CR4 bits if CR0.PG=1, 198 * and the vCPU may be incorrect/irrelevant. 199 */ 200 #define BUILD_MMU_ROLE_ACCESSOR(base_or_ext, reg, name) \ 201 static inline bool __maybe_unused is_##reg##_##name(struct kvm_mmu *mmu) \ 202 { \ 203 return !!(mmu->cpu_role. base_or_ext . reg##_##name); \ 204 } 205 BUILD_MMU_ROLE_ACCESSOR(base, cr0, wp); 206 BUILD_MMU_ROLE_ACCESSOR(ext, cr4, pse); 207 BUILD_MMU_ROLE_ACCESSOR(ext, cr4, smep); 208 BUILD_MMU_ROLE_ACCESSOR(ext, cr4, smap); 209 BUILD_MMU_ROLE_ACCESSOR(ext, cr4, pke); 210 BUILD_MMU_ROLE_ACCESSOR(ext, cr4, la57); 211 BUILD_MMU_ROLE_ACCESSOR(base, efer, nx); 212 BUILD_MMU_ROLE_ACCESSOR(ext, efer, lma); 213 214 static inline bool is_cr0_pg(struct kvm_mmu *mmu) 215 { 216 return mmu->cpu_role.base.level > 0; 217 } 218 219 static inline bool is_cr4_pae(struct kvm_mmu *mmu) 220 { 221 return !mmu->cpu_role.base.has_4_byte_gpte; 222 } 223 224 static struct kvm_mmu_role_regs vcpu_to_role_regs(struct kvm_vcpu *vcpu) 225 { 226 struct kvm_mmu_role_regs regs = { 227 .cr0 = kvm_read_cr0_bits(vcpu, KVM_MMU_CR0_ROLE_BITS), 228 .cr4 = kvm_read_cr4_bits(vcpu, KVM_MMU_CR4_ROLE_BITS), 229 .efer = vcpu->arch.efer, 230 }; 231 232 return regs; 233 } 234 235 static inline bool kvm_available_flush_tlb_with_range(void) 236 { 237 return kvm_x86_ops.tlb_remote_flush_with_range; 238 } 239 240 static void kvm_flush_remote_tlbs_with_range(struct kvm *kvm, 241 struct kvm_tlb_range *range) 242 { 243 int ret = -ENOTSUPP; 244 245 if (range && kvm_x86_ops.tlb_remote_flush_with_range) 246 ret = static_call(kvm_x86_tlb_remote_flush_with_range)(kvm, range); 247 248 if (ret) 249 kvm_flush_remote_tlbs(kvm); 250 } 251 252 void kvm_flush_remote_tlbs_with_address(struct kvm *kvm, 253 u64 start_gfn, u64 pages) 254 { 255 struct kvm_tlb_range range; 256 257 range.start_gfn = start_gfn; 258 range.pages = pages; 259 260 kvm_flush_remote_tlbs_with_range(kvm, &range); 261 } 262 263 static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn, 264 unsigned int access) 265 { 266 u64 spte = make_mmio_spte(vcpu, gfn, access); 267 268 trace_mark_mmio_spte(sptep, gfn, spte); 269 mmu_spte_set(sptep, spte); 270 } 271 272 static gfn_t get_mmio_spte_gfn(u64 spte) 273 { 274 u64 gpa = spte & shadow_nonpresent_or_rsvd_lower_gfn_mask; 275 276 gpa |= (spte >> SHADOW_NONPRESENT_OR_RSVD_MASK_LEN) 277 & shadow_nonpresent_or_rsvd_mask; 278 279 return gpa >> PAGE_SHIFT; 280 } 281 282 static unsigned get_mmio_spte_access(u64 spte) 283 { 284 return spte & shadow_mmio_access_mask; 285 } 286 287 static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte) 288 { 289 u64 kvm_gen, spte_gen, gen; 290 291 gen = kvm_vcpu_memslots(vcpu)->generation; 292 if (unlikely(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS)) 293 return false; 294 295 kvm_gen = gen & MMIO_SPTE_GEN_MASK; 296 spte_gen = get_mmio_spte_generation(spte); 297 298 trace_check_mmio_spte(spte, kvm_gen, spte_gen); 299 return likely(kvm_gen == spte_gen); 300 } 301 302 static int is_cpuid_PSE36(void) 303 { 304 return 1; 305 } 306 307 #ifdef CONFIG_X86_64 308 static void __set_spte(u64 *sptep, u64 spte) 309 { 310 WRITE_ONCE(*sptep, spte); 311 } 312 313 static void __update_clear_spte_fast(u64 *sptep, u64 spte) 314 { 315 WRITE_ONCE(*sptep, spte); 316 } 317 318 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte) 319 { 320 return xchg(sptep, spte); 321 } 322 323 static u64 __get_spte_lockless(u64 *sptep) 324 { 325 return READ_ONCE(*sptep); 326 } 327 #else 328 union split_spte { 329 struct { 330 u32 spte_low; 331 u32 spte_high; 332 }; 333 u64 spte; 334 }; 335 336 static void count_spte_clear(u64 *sptep, u64 spte) 337 { 338 struct kvm_mmu_page *sp = sptep_to_sp(sptep); 339 340 if (is_shadow_present_pte(spte)) 341 return; 342 343 /* Ensure the spte is completely set before we increase the count */ 344 smp_wmb(); 345 sp->clear_spte_count++; 346 } 347 348 static void __set_spte(u64 *sptep, u64 spte) 349 { 350 union split_spte *ssptep, sspte; 351 352 ssptep = (union split_spte *)sptep; 353 sspte = (union split_spte)spte; 354 355 ssptep->spte_high = sspte.spte_high; 356 357 /* 358 * If we map the spte from nonpresent to present, We should store 359 * the high bits firstly, then set present bit, so cpu can not 360 * fetch this spte while we are setting the spte. 361 */ 362 smp_wmb(); 363 364 WRITE_ONCE(ssptep->spte_low, sspte.spte_low); 365 } 366 367 static void __update_clear_spte_fast(u64 *sptep, u64 spte) 368 { 369 union split_spte *ssptep, sspte; 370 371 ssptep = (union split_spte *)sptep; 372 sspte = (union split_spte)spte; 373 374 WRITE_ONCE(ssptep->spte_low, sspte.spte_low); 375 376 /* 377 * If we map the spte from present to nonpresent, we should clear 378 * present bit firstly to avoid vcpu fetch the old high bits. 379 */ 380 smp_wmb(); 381 382 ssptep->spte_high = sspte.spte_high; 383 count_spte_clear(sptep, spte); 384 } 385 386 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte) 387 { 388 union split_spte *ssptep, sspte, orig; 389 390 ssptep = (union split_spte *)sptep; 391 sspte = (union split_spte)spte; 392 393 /* xchg acts as a barrier before the setting of the high bits */ 394 orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low); 395 orig.spte_high = ssptep->spte_high; 396 ssptep->spte_high = sspte.spte_high; 397 count_spte_clear(sptep, spte); 398 399 return orig.spte; 400 } 401 402 /* 403 * The idea using the light way get the spte on x86_32 guest is from 404 * gup_get_pte (mm/gup.c). 405 * 406 * An spte tlb flush may be pending, because kvm_set_pte_rmap 407 * coalesces them and we are running out of the MMU lock. Therefore 408 * we need to protect against in-progress updates of the spte. 409 * 410 * Reading the spte while an update is in progress may get the old value 411 * for the high part of the spte. The race is fine for a present->non-present 412 * change (because the high part of the spte is ignored for non-present spte), 413 * but for a present->present change we must reread the spte. 414 * 415 * All such changes are done in two steps (present->non-present and 416 * non-present->present), hence it is enough to count the number of 417 * present->non-present updates: if it changed while reading the spte, 418 * we might have hit the race. This is done using clear_spte_count. 419 */ 420 static u64 __get_spte_lockless(u64 *sptep) 421 { 422 struct kvm_mmu_page *sp = sptep_to_sp(sptep); 423 union split_spte spte, *orig = (union split_spte *)sptep; 424 int count; 425 426 retry: 427 count = sp->clear_spte_count; 428 smp_rmb(); 429 430 spte.spte_low = orig->spte_low; 431 smp_rmb(); 432 433 spte.spte_high = orig->spte_high; 434 smp_rmb(); 435 436 if (unlikely(spte.spte_low != orig->spte_low || 437 count != sp->clear_spte_count)) 438 goto retry; 439 440 return spte.spte; 441 } 442 #endif 443 444 /* Rules for using mmu_spte_set: 445 * Set the sptep from nonpresent to present. 446 * Note: the sptep being assigned *must* be either not present 447 * or in a state where the hardware will not attempt to update 448 * the spte. 449 */ 450 static void mmu_spte_set(u64 *sptep, u64 new_spte) 451 { 452 WARN_ON(is_shadow_present_pte(*sptep)); 453 __set_spte(sptep, new_spte); 454 } 455 456 /* 457 * Update the SPTE (excluding the PFN), but do not track changes in its 458 * accessed/dirty status. 459 */ 460 static u64 mmu_spte_update_no_track(u64 *sptep, u64 new_spte) 461 { 462 u64 old_spte = *sptep; 463 464 WARN_ON(!is_shadow_present_pte(new_spte)); 465 check_spte_writable_invariants(new_spte); 466 467 if (!is_shadow_present_pte(old_spte)) { 468 mmu_spte_set(sptep, new_spte); 469 return old_spte; 470 } 471 472 if (!spte_has_volatile_bits(old_spte)) 473 __update_clear_spte_fast(sptep, new_spte); 474 else 475 old_spte = __update_clear_spte_slow(sptep, new_spte); 476 477 WARN_ON(spte_to_pfn(old_spte) != spte_to_pfn(new_spte)); 478 479 return old_spte; 480 } 481 482 /* Rules for using mmu_spte_update: 483 * Update the state bits, it means the mapped pfn is not changed. 484 * 485 * Whenever an MMU-writable SPTE is overwritten with a read-only SPTE, remote 486 * TLBs must be flushed. Otherwise rmap_write_protect will find a read-only 487 * spte, even though the writable spte might be cached on a CPU's TLB. 488 * 489 * Returns true if the TLB needs to be flushed 490 */ 491 static bool mmu_spte_update(u64 *sptep, u64 new_spte) 492 { 493 bool flush = false; 494 u64 old_spte = mmu_spte_update_no_track(sptep, new_spte); 495 496 if (!is_shadow_present_pte(old_spte)) 497 return false; 498 499 /* 500 * For the spte updated out of mmu-lock is safe, since 501 * we always atomically update it, see the comments in 502 * spte_has_volatile_bits(). 503 */ 504 if (is_mmu_writable_spte(old_spte) && 505 !is_writable_pte(new_spte)) 506 flush = true; 507 508 /* 509 * Flush TLB when accessed/dirty states are changed in the page tables, 510 * to guarantee consistency between TLB and page tables. 511 */ 512 513 if (is_accessed_spte(old_spte) && !is_accessed_spte(new_spte)) { 514 flush = true; 515 kvm_set_pfn_accessed(spte_to_pfn(old_spte)); 516 } 517 518 if (is_dirty_spte(old_spte) && !is_dirty_spte(new_spte)) { 519 flush = true; 520 kvm_set_pfn_dirty(spte_to_pfn(old_spte)); 521 } 522 523 return flush; 524 } 525 526 /* 527 * Rules for using mmu_spte_clear_track_bits: 528 * It sets the sptep from present to nonpresent, and track the 529 * state bits, it is used to clear the last level sptep. 530 * Returns the old PTE. 531 */ 532 static u64 mmu_spte_clear_track_bits(struct kvm *kvm, u64 *sptep) 533 { 534 kvm_pfn_t pfn; 535 u64 old_spte = *sptep; 536 int level = sptep_to_sp(sptep)->role.level; 537 struct page *page; 538 539 if (!is_shadow_present_pte(old_spte) || 540 !spte_has_volatile_bits(old_spte)) 541 __update_clear_spte_fast(sptep, 0ull); 542 else 543 old_spte = __update_clear_spte_slow(sptep, 0ull); 544 545 if (!is_shadow_present_pte(old_spte)) 546 return old_spte; 547 548 kvm_update_page_stats(kvm, level, -1); 549 550 pfn = spte_to_pfn(old_spte); 551 552 /* 553 * KVM doesn't hold a reference to any pages mapped into the guest, and 554 * instead uses the mmu_notifier to ensure that KVM unmaps any pages 555 * before they are reclaimed. Sanity check that, if the pfn is backed 556 * by a refcounted page, the refcount is elevated. 557 */ 558 page = kvm_pfn_to_refcounted_page(pfn); 559 WARN_ON(page && !page_count(page)); 560 561 if (is_accessed_spte(old_spte)) 562 kvm_set_pfn_accessed(pfn); 563 564 if (is_dirty_spte(old_spte)) 565 kvm_set_pfn_dirty(pfn); 566 567 return old_spte; 568 } 569 570 /* 571 * Rules for using mmu_spte_clear_no_track: 572 * Directly clear spte without caring the state bits of sptep, 573 * it is used to set the upper level spte. 574 */ 575 static void mmu_spte_clear_no_track(u64 *sptep) 576 { 577 __update_clear_spte_fast(sptep, 0ull); 578 } 579 580 static u64 mmu_spte_get_lockless(u64 *sptep) 581 { 582 return __get_spte_lockless(sptep); 583 } 584 585 /* Returns the Accessed status of the PTE and resets it at the same time. */ 586 static bool mmu_spte_age(u64 *sptep) 587 { 588 u64 spte = mmu_spte_get_lockless(sptep); 589 590 if (!is_accessed_spte(spte)) 591 return false; 592 593 if (spte_ad_enabled(spte)) { 594 clear_bit((ffs(shadow_accessed_mask) - 1), 595 (unsigned long *)sptep); 596 } else { 597 /* 598 * Capture the dirty status of the page, so that it doesn't get 599 * lost when the SPTE is marked for access tracking. 600 */ 601 if (is_writable_pte(spte)) 602 kvm_set_pfn_dirty(spte_to_pfn(spte)); 603 604 spte = mark_spte_for_access_track(spte); 605 mmu_spte_update_no_track(sptep, spte); 606 } 607 608 return true; 609 } 610 611 static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu) 612 { 613 if (is_tdp_mmu(vcpu->arch.mmu)) { 614 kvm_tdp_mmu_walk_lockless_begin(); 615 } else { 616 /* 617 * Prevent page table teardown by making any free-er wait during 618 * kvm_flush_remote_tlbs() IPI to all active vcpus. 619 */ 620 local_irq_disable(); 621 622 /* 623 * Make sure a following spte read is not reordered ahead of the write 624 * to vcpu->mode. 625 */ 626 smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES); 627 } 628 } 629 630 static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu) 631 { 632 if (is_tdp_mmu(vcpu->arch.mmu)) { 633 kvm_tdp_mmu_walk_lockless_end(); 634 } else { 635 /* 636 * Make sure the write to vcpu->mode is not reordered in front of 637 * reads to sptes. If it does, kvm_mmu_commit_zap_page() can see us 638 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table. 639 */ 640 smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE); 641 local_irq_enable(); 642 } 643 } 644 645 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu, bool maybe_indirect) 646 { 647 int r; 648 649 /* 1 rmap, 1 parent PTE per level, and the prefetched rmaps. */ 650 r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache, 651 1 + PT64_ROOT_MAX_LEVEL + PTE_PREFETCH_NUM); 652 if (r) 653 return r; 654 r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_shadow_page_cache, 655 PT64_ROOT_MAX_LEVEL); 656 if (r) 657 return r; 658 if (maybe_indirect) { 659 r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_shadowed_info_cache, 660 PT64_ROOT_MAX_LEVEL); 661 if (r) 662 return r; 663 } 664 return kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache, 665 PT64_ROOT_MAX_LEVEL); 666 } 667 668 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu) 669 { 670 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache); 671 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_shadow_page_cache); 672 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_shadowed_info_cache); 673 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache); 674 } 675 676 static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc) 677 { 678 kmem_cache_free(pte_list_desc_cache, pte_list_desc); 679 } 680 681 static bool sp_has_gptes(struct kvm_mmu_page *sp); 682 683 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index) 684 { 685 if (sp->role.passthrough) 686 return sp->gfn; 687 688 if (!sp->role.direct) 689 return sp->shadowed_translation[index] >> PAGE_SHIFT; 690 691 return sp->gfn + (index << ((sp->role.level - 1) * SPTE_LEVEL_BITS)); 692 } 693 694 /* 695 * For leaf SPTEs, fetch the *guest* access permissions being shadowed. Note 696 * that the SPTE itself may have a more constrained access permissions that 697 * what the guest enforces. For example, a guest may create an executable 698 * huge PTE but KVM may disallow execution to mitigate iTLB multihit. 699 */ 700 static u32 kvm_mmu_page_get_access(struct kvm_mmu_page *sp, int index) 701 { 702 if (sp_has_gptes(sp)) 703 return sp->shadowed_translation[index] & ACC_ALL; 704 705 /* 706 * For direct MMUs (e.g. TDP or non-paging guests) or passthrough SPs, 707 * KVM is not shadowing any guest page tables, so the "guest access 708 * permissions" are just ACC_ALL. 709 * 710 * For direct SPs in indirect MMUs (shadow paging), i.e. when KVM 711 * is shadowing a guest huge page with small pages, the guest access 712 * permissions being shadowed are the access permissions of the huge 713 * page. 714 * 715 * In both cases, sp->role.access contains the correct access bits. 716 */ 717 return sp->role.access; 718 } 719 720 static void kvm_mmu_page_set_translation(struct kvm_mmu_page *sp, int index, 721 gfn_t gfn, unsigned int access) 722 { 723 if (sp_has_gptes(sp)) { 724 sp->shadowed_translation[index] = (gfn << PAGE_SHIFT) | access; 725 return; 726 } 727 728 WARN_ONCE(access != kvm_mmu_page_get_access(sp, index), 729 "access mismatch under %s page %llx (expected %u, got %u)\n", 730 sp->role.passthrough ? "passthrough" : "direct", 731 sp->gfn, kvm_mmu_page_get_access(sp, index), access); 732 733 WARN_ONCE(gfn != kvm_mmu_page_get_gfn(sp, index), 734 "gfn mismatch under %s page %llx (expected %llx, got %llx)\n", 735 sp->role.passthrough ? "passthrough" : "direct", 736 sp->gfn, kvm_mmu_page_get_gfn(sp, index), gfn); 737 } 738 739 static void kvm_mmu_page_set_access(struct kvm_mmu_page *sp, int index, 740 unsigned int access) 741 { 742 gfn_t gfn = kvm_mmu_page_get_gfn(sp, index); 743 744 kvm_mmu_page_set_translation(sp, index, gfn, access); 745 } 746 747 /* 748 * Return the pointer to the large page information for a given gfn, 749 * handling slots that are not large page aligned. 750 */ 751 static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn, 752 const struct kvm_memory_slot *slot, int level) 753 { 754 unsigned long idx; 755 756 idx = gfn_to_index(gfn, slot->base_gfn, level); 757 return &slot->arch.lpage_info[level - 2][idx]; 758 } 759 760 static void update_gfn_disallow_lpage_count(const struct kvm_memory_slot *slot, 761 gfn_t gfn, int count) 762 { 763 struct kvm_lpage_info *linfo; 764 int i; 765 766 for (i = PG_LEVEL_2M; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) { 767 linfo = lpage_info_slot(gfn, slot, i); 768 linfo->disallow_lpage += count; 769 WARN_ON(linfo->disallow_lpage < 0); 770 } 771 } 772 773 void kvm_mmu_gfn_disallow_lpage(const struct kvm_memory_slot *slot, gfn_t gfn) 774 { 775 update_gfn_disallow_lpage_count(slot, gfn, 1); 776 } 777 778 void kvm_mmu_gfn_allow_lpage(const struct kvm_memory_slot *slot, gfn_t gfn) 779 { 780 update_gfn_disallow_lpage_count(slot, gfn, -1); 781 } 782 783 static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp) 784 { 785 struct kvm_memslots *slots; 786 struct kvm_memory_slot *slot; 787 gfn_t gfn; 788 789 kvm->arch.indirect_shadow_pages++; 790 gfn = sp->gfn; 791 slots = kvm_memslots_for_spte_role(kvm, sp->role); 792 slot = __gfn_to_memslot(slots, gfn); 793 794 /* the non-leaf shadow pages are keeping readonly. */ 795 if (sp->role.level > PG_LEVEL_4K) 796 return kvm_slot_page_track_add_page(kvm, slot, gfn, 797 KVM_PAGE_TRACK_WRITE); 798 799 kvm_mmu_gfn_disallow_lpage(slot, gfn); 800 801 if (kvm_mmu_slot_gfn_write_protect(kvm, slot, gfn, PG_LEVEL_4K)) 802 kvm_flush_remote_tlbs_with_address(kvm, gfn, 1); 803 } 804 805 void account_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp) 806 { 807 if (sp->lpage_disallowed) 808 return; 809 810 ++kvm->stat.nx_lpage_splits; 811 list_add_tail(&sp->lpage_disallowed_link, 812 &kvm->arch.lpage_disallowed_mmu_pages); 813 sp->lpage_disallowed = true; 814 } 815 816 static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp) 817 { 818 struct kvm_memslots *slots; 819 struct kvm_memory_slot *slot; 820 gfn_t gfn; 821 822 kvm->arch.indirect_shadow_pages--; 823 gfn = sp->gfn; 824 slots = kvm_memslots_for_spte_role(kvm, sp->role); 825 slot = __gfn_to_memslot(slots, gfn); 826 if (sp->role.level > PG_LEVEL_4K) 827 return kvm_slot_page_track_remove_page(kvm, slot, gfn, 828 KVM_PAGE_TRACK_WRITE); 829 830 kvm_mmu_gfn_allow_lpage(slot, gfn); 831 } 832 833 void unaccount_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp) 834 { 835 --kvm->stat.nx_lpage_splits; 836 sp->lpage_disallowed = false; 837 list_del(&sp->lpage_disallowed_link); 838 } 839 840 static struct kvm_memory_slot * 841 gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn, 842 bool no_dirty_log) 843 { 844 struct kvm_memory_slot *slot; 845 846 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 847 if (!slot || slot->flags & KVM_MEMSLOT_INVALID) 848 return NULL; 849 if (no_dirty_log && kvm_slot_dirty_track_enabled(slot)) 850 return NULL; 851 852 return slot; 853 } 854 855 /* 856 * About rmap_head encoding: 857 * 858 * If the bit zero of rmap_head->val is clear, then it points to the only spte 859 * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct 860 * pte_list_desc containing more mappings. 861 */ 862 863 /* 864 * Returns the number of pointers in the rmap chain, not counting the new one. 865 */ 866 static int pte_list_add(struct kvm_mmu_memory_cache *cache, u64 *spte, 867 struct kvm_rmap_head *rmap_head) 868 { 869 struct pte_list_desc *desc; 870 int count = 0; 871 872 if (!rmap_head->val) { 873 rmap_printk("%p %llx 0->1\n", spte, *spte); 874 rmap_head->val = (unsigned long)spte; 875 } else if (!(rmap_head->val & 1)) { 876 rmap_printk("%p %llx 1->many\n", spte, *spte); 877 desc = kvm_mmu_memory_cache_alloc(cache); 878 desc->sptes[0] = (u64 *)rmap_head->val; 879 desc->sptes[1] = spte; 880 desc->spte_count = 2; 881 rmap_head->val = (unsigned long)desc | 1; 882 ++count; 883 } else { 884 rmap_printk("%p %llx many->many\n", spte, *spte); 885 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul); 886 while (desc->spte_count == PTE_LIST_EXT) { 887 count += PTE_LIST_EXT; 888 if (!desc->more) { 889 desc->more = kvm_mmu_memory_cache_alloc(cache); 890 desc = desc->more; 891 desc->spte_count = 0; 892 break; 893 } 894 desc = desc->more; 895 } 896 count += desc->spte_count; 897 desc->sptes[desc->spte_count++] = spte; 898 } 899 return count; 900 } 901 902 static void 903 pte_list_desc_remove_entry(struct kvm_rmap_head *rmap_head, 904 struct pte_list_desc *desc, int i, 905 struct pte_list_desc *prev_desc) 906 { 907 int j = desc->spte_count - 1; 908 909 desc->sptes[i] = desc->sptes[j]; 910 desc->sptes[j] = NULL; 911 desc->spte_count--; 912 if (desc->spte_count) 913 return; 914 if (!prev_desc && !desc->more) 915 rmap_head->val = 0; 916 else 917 if (prev_desc) 918 prev_desc->more = desc->more; 919 else 920 rmap_head->val = (unsigned long)desc->more | 1; 921 mmu_free_pte_list_desc(desc); 922 } 923 924 static void pte_list_remove(u64 *spte, struct kvm_rmap_head *rmap_head) 925 { 926 struct pte_list_desc *desc; 927 struct pte_list_desc *prev_desc; 928 int i; 929 930 if (!rmap_head->val) { 931 pr_err("%s: %p 0->BUG\n", __func__, spte); 932 BUG(); 933 } else if (!(rmap_head->val & 1)) { 934 rmap_printk("%p 1->0\n", spte); 935 if ((u64 *)rmap_head->val != spte) { 936 pr_err("%s: %p 1->BUG\n", __func__, spte); 937 BUG(); 938 } 939 rmap_head->val = 0; 940 } else { 941 rmap_printk("%p many->many\n", spte); 942 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul); 943 prev_desc = NULL; 944 while (desc) { 945 for (i = 0; i < desc->spte_count; ++i) { 946 if (desc->sptes[i] == spte) { 947 pte_list_desc_remove_entry(rmap_head, 948 desc, i, prev_desc); 949 return; 950 } 951 } 952 prev_desc = desc; 953 desc = desc->more; 954 } 955 pr_err("%s: %p many->many\n", __func__, spte); 956 BUG(); 957 } 958 } 959 960 static void kvm_zap_one_rmap_spte(struct kvm *kvm, 961 struct kvm_rmap_head *rmap_head, u64 *sptep) 962 { 963 mmu_spte_clear_track_bits(kvm, sptep); 964 pte_list_remove(sptep, rmap_head); 965 } 966 967 /* Return true if at least one SPTE was zapped, false otherwise */ 968 static bool kvm_zap_all_rmap_sptes(struct kvm *kvm, 969 struct kvm_rmap_head *rmap_head) 970 { 971 struct pte_list_desc *desc, *next; 972 int i; 973 974 if (!rmap_head->val) 975 return false; 976 977 if (!(rmap_head->val & 1)) { 978 mmu_spte_clear_track_bits(kvm, (u64 *)rmap_head->val); 979 goto out; 980 } 981 982 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul); 983 984 for (; desc; desc = next) { 985 for (i = 0; i < desc->spte_count; i++) 986 mmu_spte_clear_track_bits(kvm, desc->sptes[i]); 987 next = desc->more; 988 mmu_free_pte_list_desc(desc); 989 } 990 out: 991 /* rmap_head is meaningless now, remember to reset it */ 992 rmap_head->val = 0; 993 return true; 994 } 995 996 unsigned int pte_list_count(struct kvm_rmap_head *rmap_head) 997 { 998 struct pte_list_desc *desc; 999 unsigned int count = 0; 1000 1001 if (!rmap_head->val) 1002 return 0; 1003 else if (!(rmap_head->val & 1)) 1004 return 1; 1005 1006 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul); 1007 1008 while (desc) { 1009 count += desc->spte_count; 1010 desc = desc->more; 1011 } 1012 1013 return count; 1014 } 1015 1016 static struct kvm_rmap_head *gfn_to_rmap(gfn_t gfn, int level, 1017 const struct kvm_memory_slot *slot) 1018 { 1019 unsigned long idx; 1020 1021 idx = gfn_to_index(gfn, slot->base_gfn, level); 1022 return &slot->arch.rmap[level - PG_LEVEL_4K][idx]; 1023 } 1024 1025 static bool rmap_can_add(struct kvm_vcpu *vcpu) 1026 { 1027 struct kvm_mmu_memory_cache *mc; 1028 1029 mc = &vcpu->arch.mmu_pte_list_desc_cache; 1030 return kvm_mmu_memory_cache_nr_free_objects(mc); 1031 } 1032 1033 static void rmap_remove(struct kvm *kvm, u64 *spte) 1034 { 1035 struct kvm_memslots *slots; 1036 struct kvm_memory_slot *slot; 1037 struct kvm_mmu_page *sp; 1038 gfn_t gfn; 1039 struct kvm_rmap_head *rmap_head; 1040 1041 sp = sptep_to_sp(spte); 1042 gfn = kvm_mmu_page_get_gfn(sp, spte_index(spte)); 1043 1044 /* 1045 * Unlike rmap_add, rmap_remove does not run in the context of a vCPU 1046 * so we have to determine which memslots to use based on context 1047 * information in sp->role. 1048 */ 1049 slots = kvm_memslots_for_spte_role(kvm, sp->role); 1050 1051 slot = __gfn_to_memslot(slots, gfn); 1052 rmap_head = gfn_to_rmap(gfn, sp->role.level, slot); 1053 1054 pte_list_remove(spte, rmap_head); 1055 } 1056 1057 /* 1058 * Used by the following functions to iterate through the sptes linked by a 1059 * rmap. All fields are private and not assumed to be used outside. 1060 */ 1061 struct rmap_iterator { 1062 /* private fields */ 1063 struct pte_list_desc *desc; /* holds the sptep if not NULL */ 1064 int pos; /* index of the sptep */ 1065 }; 1066 1067 /* 1068 * Iteration must be started by this function. This should also be used after 1069 * removing/dropping sptes from the rmap link because in such cases the 1070 * information in the iterator may not be valid. 1071 * 1072 * Returns sptep if found, NULL otherwise. 1073 */ 1074 static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head, 1075 struct rmap_iterator *iter) 1076 { 1077 u64 *sptep; 1078 1079 if (!rmap_head->val) 1080 return NULL; 1081 1082 if (!(rmap_head->val & 1)) { 1083 iter->desc = NULL; 1084 sptep = (u64 *)rmap_head->val; 1085 goto out; 1086 } 1087 1088 iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul); 1089 iter->pos = 0; 1090 sptep = iter->desc->sptes[iter->pos]; 1091 out: 1092 BUG_ON(!is_shadow_present_pte(*sptep)); 1093 return sptep; 1094 } 1095 1096 /* 1097 * Must be used with a valid iterator: e.g. after rmap_get_first(). 1098 * 1099 * Returns sptep if found, NULL otherwise. 1100 */ 1101 static u64 *rmap_get_next(struct rmap_iterator *iter) 1102 { 1103 u64 *sptep; 1104 1105 if (iter->desc) { 1106 if (iter->pos < PTE_LIST_EXT - 1) { 1107 ++iter->pos; 1108 sptep = iter->desc->sptes[iter->pos]; 1109 if (sptep) 1110 goto out; 1111 } 1112 1113 iter->desc = iter->desc->more; 1114 1115 if (iter->desc) { 1116 iter->pos = 0; 1117 /* desc->sptes[0] cannot be NULL */ 1118 sptep = iter->desc->sptes[iter->pos]; 1119 goto out; 1120 } 1121 } 1122 1123 return NULL; 1124 out: 1125 BUG_ON(!is_shadow_present_pte(*sptep)); 1126 return sptep; 1127 } 1128 1129 #define for_each_rmap_spte(_rmap_head_, _iter_, _spte_) \ 1130 for (_spte_ = rmap_get_first(_rmap_head_, _iter_); \ 1131 _spte_; _spte_ = rmap_get_next(_iter_)) 1132 1133 static void drop_spte(struct kvm *kvm, u64 *sptep) 1134 { 1135 u64 old_spte = mmu_spte_clear_track_bits(kvm, sptep); 1136 1137 if (is_shadow_present_pte(old_spte)) 1138 rmap_remove(kvm, sptep); 1139 } 1140 1141 static void drop_large_spte(struct kvm *kvm, u64 *sptep, bool flush) 1142 { 1143 struct kvm_mmu_page *sp; 1144 1145 sp = sptep_to_sp(sptep); 1146 WARN_ON(sp->role.level == PG_LEVEL_4K); 1147 1148 drop_spte(kvm, sptep); 1149 1150 if (flush) 1151 kvm_flush_remote_tlbs_with_address(kvm, sp->gfn, 1152 KVM_PAGES_PER_HPAGE(sp->role.level)); 1153 } 1154 1155 /* 1156 * Write-protect on the specified @sptep, @pt_protect indicates whether 1157 * spte write-protection is caused by protecting shadow page table. 1158 * 1159 * Note: write protection is difference between dirty logging and spte 1160 * protection: 1161 * - for dirty logging, the spte can be set to writable at anytime if 1162 * its dirty bitmap is properly set. 1163 * - for spte protection, the spte can be writable only after unsync-ing 1164 * shadow page. 1165 * 1166 * Return true if tlb need be flushed. 1167 */ 1168 static bool spte_write_protect(u64 *sptep, bool pt_protect) 1169 { 1170 u64 spte = *sptep; 1171 1172 if (!is_writable_pte(spte) && 1173 !(pt_protect && is_mmu_writable_spte(spte))) 1174 return false; 1175 1176 rmap_printk("spte %p %llx\n", sptep, *sptep); 1177 1178 if (pt_protect) 1179 spte &= ~shadow_mmu_writable_mask; 1180 spte = spte & ~PT_WRITABLE_MASK; 1181 1182 return mmu_spte_update(sptep, spte); 1183 } 1184 1185 static bool rmap_write_protect(struct kvm_rmap_head *rmap_head, 1186 bool pt_protect) 1187 { 1188 u64 *sptep; 1189 struct rmap_iterator iter; 1190 bool flush = false; 1191 1192 for_each_rmap_spte(rmap_head, &iter, sptep) 1193 flush |= spte_write_protect(sptep, pt_protect); 1194 1195 return flush; 1196 } 1197 1198 static bool spte_clear_dirty(u64 *sptep) 1199 { 1200 u64 spte = *sptep; 1201 1202 rmap_printk("spte %p %llx\n", sptep, *sptep); 1203 1204 MMU_WARN_ON(!spte_ad_enabled(spte)); 1205 spte &= ~shadow_dirty_mask; 1206 return mmu_spte_update(sptep, spte); 1207 } 1208 1209 static bool spte_wrprot_for_clear_dirty(u64 *sptep) 1210 { 1211 bool was_writable = test_and_clear_bit(PT_WRITABLE_SHIFT, 1212 (unsigned long *)sptep); 1213 if (was_writable && !spte_ad_enabled(*sptep)) 1214 kvm_set_pfn_dirty(spte_to_pfn(*sptep)); 1215 1216 return was_writable; 1217 } 1218 1219 /* 1220 * Gets the GFN ready for another round of dirty logging by clearing the 1221 * - D bit on ad-enabled SPTEs, and 1222 * - W bit on ad-disabled SPTEs. 1223 * Returns true iff any D or W bits were cleared. 1224 */ 1225 static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head, 1226 const struct kvm_memory_slot *slot) 1227 { 1228 u64 *sptep; 1229 struct rmap_iterator iter; 1230 bool flush = false; 1231 1232 for_each_rmap_spte(rmap_head, &iter, sptep) 1233 if (spte_ad_need_write_protect(*sptep)) 1234 flush |= spte_wrprot_for_clear_dirty(sptep); 1235 else 1236 flush |= spte_clear_dirty(sptep); 1237 1238 return flush; 1239 } 1240 1241 /** 1242 * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages 1243 * @kvm: kvm instance 1244 * @slot: slot to protect 1245 * @gfn_offset: start of the BITS_PER_LONG pages we care about 1246 * @mask: indicates which pages we should protect 1247 * 1248 * Used when we do not need to care about huge page mappings. 1249 */ 1250 static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm, 1251 struct kvm_memory_slot *slot, 1252 gfn_t gfn_offset, unsigned long mask) 1253 { 1254 struct kvm_rmap_head *rmap_head; 1255 1256 if (is_tdp_mmu_enabled(kvm)) 1257 kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot, 1258 slot->base_gfn + gfn_offset, mask, true); 1259 1260 if (!kvm_memslots_have_rmaps(kvm)) 1261 return; 1262 1263 while (mask) { 1264 rmap_head = gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask), 1265 PG_LEVEL_4K, slot); 1266 rmap_write_protect(rmap_head, false); 1267 1268 /* clear the first set bit */ 1269 mask &= mask - 1; 1270 } 1271 } 1272 1273 /** 1274 * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages, or write 1275 * protect the page if the D-bit isn't supported. 1276 * @kvm: kvm instance 1277 * @slot: slot to clear D-bit 1278 * @gfn_offset: start of the BITS_PER_LONG pages we care about 1279 * @mask: indicates which pages we should clear D-bit 1280 * 1281 * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap. 1282 */ 1283 static void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm, 1284 struct kvm_memory_slot *slot, 1285 gfn_t gfn_offset, unsigned long mask) 1286 { 1287 struct kvm_rmap_head *rmap_head; 1288 1289 if (is_tdp_mmu_enabled(kvm)) 1290 kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot, 1291 slot->base_gfn + gfn_offset, mask, false); 1292 1293 if (!kvm_memslots_have_rmaps(kvm)) 1294 return; 1295 1296 while (mask) { 1297 rmap_head = gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask), 1298 PG_LEVEL_4K, slot); 1299 __rmap_clear_dirty(kvm, rmap_head, slot); 1300 1301 /* clear the first set bit */ 1302 mask &= mask - 1; 1303 } 1304 } 1305 1306 /** 1307 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected 1308 * PT level pages. 1309 * 1310 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to 1311 * enable dirty logging for them. 1312 * 1313 * We need to care about huge page mappings: e.g. during dirty logging we may 1314 * have such mappings. 1315 */ 1316 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm, 1317 struct kvm_memory_slot *slot, 1318 gfn_t gfn_offset, unsigned long mask) 1319 { 1320 /* 1321 * Huge pages are NOT write protected when we start dirty logging in 1322 * initially-all-set mode; must write protect them here so that they 1323 * are split to 4K on the first write. 1324 * 1325 * The gfn_offset is guaranteed to be aligned to 64, but the base_gfn 1326 * of memslot has no such restriction, so the range can cross two large 1327 * pages. 1328 */ 1329 if (kvm_dirty_log_manual_protect_and_init_set(kvm)) { 1330 gfn_t start = slot->base_gfn + gfn_offset + __ffs(mask); 1331 gfn_t end = slot->base_gfn + gfn_offset + __fls(mask); 1332 1333 if (READ_ONCE(eager_page_split)) 1334 kvm_mmu_try_split_huge_pages(kvm, slot, start, end, PG_LEVEL_4K); 1335 1336 kvm_mmu_slot_gfn_write_protect(kvm, slot, start, PG_LEVEL_2M); 1337 1338 /* Cross two large pages? */ 1339 if (ALIGN(start << PAGE_SHIFT, PMD_SIZE) != 1340 ALIGN(end << PAGE_SHIFT, PMD_SIZE)) 1341 kvm_mmu_slot_gfn_write_protect(kvm, slot, end, 1342 PG_LEVEL_2M); 1343 } 1344 1345 /* Now handle 4K PTEs. */ 1346 if (kvm_x86_ops.cpu_dirty_log_size) 1347 kvm_mmu_clear_dirty_pt_masked(kvm, slot, gfn_offset, mask); 1348 else 1349 kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask); 1350 } 1351 1352 int kvm_cpu_dirty_log_size(void) 1353 { 1354 return kvm_x86_ops.cpu_dirty_log_size; 1355 } 1356 1357 bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm, 1358 struct kvm_memory_slot *slot, u64 gfn, 1359 int min_level) 1360 { 1361 struct kvm_rmap_head *rmap_head; 1362 int i; 1363 bool write_protected = false; 1364 1365 if (kvm_memslots_have_rmaps(kvm)) { 1366 for (i = min_level; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) { 1367 rmap_head = gfn_to_rmap(gfn, i, slot); 1368 write_protected |= rmap_write_protect(rmap_head, true); 1369 } 1370 } 1371 1372 if (is_tdp_mmu_enabled(kvm)) 1373 write_protected |= 1374 kvm_tdp_mmu_write_protect_gfn(kvm, slot, gfn, min_level); 1375 1376 return write_protected; 1377 } 1378 1379 static bool kvm_vcpu_write_protect_gfn(struct kvm_vcpu *vcpu, u64 gfn) 1380 { 1381 struct kvm_memory_slot *slot; 1382 1383 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 1384 return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn, PG_LEVEL_4K); 1385 } 1386 1387 static bool __kvm_zap_rmap(struct kvm *kvm, struct kvm_rmap_head *rmap_head, 1388 const struct kvm_memory_slot *slot) 1389 { 1390 return kvm_zap_all_rmap_sptes(kvm, rmap_head); 1391 } 1392 1393 static bool kvm_zap_rmap(struct kvm *kvm, struct kvm_rmap_head *rmap_head, 1394 struct kvm_memory_slot *slot, gfn_t gfn, int level, 1395 pte_t unused) 1396 { 1397 return __kvm_zap_rmap(kvm, rmap_head, slot); 1398 } 1399 1400 static bool kvm_set_pte_rmap(struct kvm *kvm, struct kvm_rmap_head *rmap_head, 1401 struct kvm_memory_slot *slot, gfn_t gfn, int level, 1402 pte_t pte) 1403 { 1404 u64 *sptep; 1405 struct rmap_iterator iter; 1406 bool need_flush = false; 1407 u64 new_spte; 1408 kvm_pfn_t new_pfn; 1409 1410 WARN_ON(pte_huge(pte)); 1411 new_pfn = pte_pfn(pte); 1412 1413 restart: 1414 for_each_rmap_spte(rmap_head, &iter, sptep) { 1415 rmap_printk("spte %p %llx gfn %llx (%d)\n", 1416 sptep, *sptep, gfn, level); 1417 1418 need_flush = true; 1419 1420 if (pte_write(pte)) { 1421 kvm_zap_one_rmap_spte(kvm, rmap_head, sptep); 1422 goto restart; 1423 } else { 1424 new_spte = kvm_mmu_changed_pte_notifier_make_spte( 1425 *sptep, new_pfn); 1426 1427 mmu_spte_clear_track_bits(kvm, sptep); 1428 mmu_spte_set(sptep, new_spte); 1429 } 1430 } 1431 1432 if (need_flush && kvm_available_flush_tlb_with_range()) { 1433 kvm_flush_remote_tlbs_with_address(kvm, gfn, 1); 1434 return false; 1435 } 1436 1437 return need_flush; 1438 } 1439 1440 struct slot_rmap_walk_iterator { 1441 /* input fields. */ 1442 const struct kvm_memory_slot *slot; 1443 gfn_t start_gfn; 1444 gfn_t end_gfn; 1445 int start_level; 1446 int end_level; 1447 1448 /* output fields. */ 1449 gfn_t gfn; 1450 struct kvm_rmap_head *rmap; 1451 int level; 1452 1453 /* private field. */ 1454 struct kvm_rmap_head *end_rmap; 1455 }; 1456 1457 static void 1458 rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level) 1459 { 1460 iterator->level = level; 1461 iterator->gfn = iterator->start_gfn; 1462 iterator->rmap = gfn_to_rmap(iterator->gfn, level, iterator->slot); 1463 iterator->end_rmap = gfn_to_rmap(iterator->end_gfn, level, iterator->slot); 1464 } 1465 1466 static void 1467 slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator, 1468 const struct kvm_memory_slot *slot, int start_level, 1469 int end_level, gfn_t start_gfn, gfn_t end_gfn) 1470 { 1471 iterator->slot = slot; 1472 iterator->start_level = start_level; 1473 iterator->end_level = end_level; 1474 iterator->start_gfn = start_gfn; 1475 iterator->end_gfn = end_gfn; 1476 1477 rmap_walk_init_level(iterator, iterator->start_level); 1478 } 1479 1480 static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator) 1481 { 1482 return !!iterator->rmap; 1483 } 1484 1485 static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator) 1486 { 1487 while (++iterator->rmap <= iterator->end_rmap) { 1488 iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level)); 1489 1490 if (iterator->rmap->val) 1491 return; 1492 } 1493 1494 if (++iterator->level > iterator->end_level) { 1495 iterator->rmap = NULL; 1496 return; 1497 } 1498 1499 rmap_walk_init_level(iterator, iterator->level); 1500 } 1501 1502 #define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_, \ 1503 _start_gfn, _end_gfn, _iter_) \ 1504 for (slot_rmap_walk_init(_iter_, _slot_, _start_level_, \ 1505 _end_level_, _start_gfn, _end_gfn); \ 1506 slot_rmap_walk_okay(_iter_); \ 1507 slot_rmap_walk_next(_iter_)) 1508 1509 typedef bool (*rmap_handler_t)(struct kvm *kvm, struct kvm_rmap_head *rmap_head, 1510 struct kvm_memory_slot *slot, gfn_t gfn, 1511 int level, pte_t pte); 1512 1513 static __always_inline bool kvm_handle_gfn_range(struct kvm *kvm, 1514 struct kvm_gfn_range *range, 1515 rmap_handler_t handler) 1516 { 1517 struct slot_rmap_walk_iterator iterator; 1518 bool ret = false; 1519 1520 for_each_slot_rmap_range(range->slot, PG_LEVEL_4K, KVM_MAX_HUGEPAGE_LEVEL, 1521 range->start, range->end - 1, &iterator) 1522 ret |= handler(kvm, iterator.rmap, range->slot, iterator.gfn, 1523 iterator.level, range->pte); 1524 1525 return ret; 1526 } 1527 1528 bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range) 1529 { 1530 bool flush = false; 1531 1532 if (kvm_memslots_have_rmaps(kvm)) 1533 flush = kvm_handle_gfn_range(kvm, range, kvm_zap_rmap); 1534 1535 if (is_tdp_mmu_enabled(kvm)) 1536 flush = kvm_tdp_mmu_unmap_gfn_range(kvm, range, flush); 1537 1538 return flush; 1539 } 1540 1541 bool kvm_set_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range) 1542 { 1543 bool flush = false; 1544 1545 if (kvm_memslots_have_rmaps(kvm)) 1546 flush = kvm_handle_gfn_range(kvm, range, kvm_set_pte_rmap); 1547 1548 if (is_tdp_mmu_enabled(kvm)) 1549 flush |= kvm_tdp_mmu_set_spte_gfn(kvm, range); 1550 1551 return flush; 1552 } 1553 1554 static bool kvm_age_rmap(struct kvm *kvm, struct kvm_rmap_head *rmap_head, 1555 struct kvm_memory_slot *slot, gfn_t gfn, int level, 1556 pte_t unused) 1557 { 1558 u64 *sptep; 1559 struct rmap_iterator iter; 1560 int young = 0; 1561 1562 for_each_rmap_spte(rmap_head, &iter, sptep) 1563 young |= mmu_spte_age(sptep); 1564 1565 return young; 1566 } 1567 1568 static bool kvm_test_age_rmap(struct kvm *kvm, struct kvm_rmap_head *rmap_head, 1569 struct kvm_memory_slot *slot, gfn_t gfn, 1570 int level, pte_t unused) 1571 { 1572 u64 *sptep; 1573 struct rmap_iterator iter; 1574 1575 for_each_rmap_spte(rmap_head, &iter, sptep) 1576 if (is_accessed_spte(*sptep)) 1577 return true; 1578 return false; 1579 } 1580 1581 #define RMAP_RECYCLE_THRESHOLD 1000 1582 1583 static void __rmap_add(struct kvm *kvm, 1584 struct kvm_mmu_memory_cache *cache, 1585 const struct kvm_memory_slot *slot, 1586 u64 *spte, gfn_t gfn, unsigned int access) 1587 { 1588 struct kvm_mmu_page *sp; 1589 struct kvm_rmap_head *rmap_head; 1590 int rmap_count; 1591 1592 sp = sptep_to_sp(spte); 1593 kvm_mmu_page_set_translation(sp, spte_index(spte), gfn, access); 1594 kvm_update_page_stats(kvm, sp->role.level, 1); 1595 1596 rmap_head = gfn_to_rmap(gfn, sp->role.level, slot); 1597 rmap_count = pte_list_add(cache, spte, rmap_head); 1598 1599 if (rmap_count > kvm->stat.max_mmu_rmap_size) 1600 kvm->stat.max_mmu_rmap_size = rmap_count; 1601 if (rmap_count > RMAP_RECYCLE_THRESHOLD) { 1602 kvm_zap_all_rmap_sptes(kvm, rmap_head); 1603 kvm_flush_remote_tlbs_with_address( 1604 kvm, sp->gfn, KVM_PAGES_PER_HPAGE(sp->role.level)); 1605 } 1606 } 1607 1608 static void rmap_add(struct kvm_vcpu *vcpu, const struct kvm_memory_slot *slot, 1609 u64 *spte, gfn_t gfn, unsigned int access) 1610 { 1611 struct kvm_mmu_memory_cache *cache = &vcpu->arch.mmu_pte_list_desc_cache; 1612 1613 __rmap_add(vcpu->kvm, cache, slot, spte, gfn, access); 1614 } 1615 1616 bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range) 1617 { 1618 bool young = false; 1619 1620 if (kvm_memslots_have_rmaps(kvm)) 1621 young = kvm_handle_gfn_range(kvm, range, kvm_age_rmap); 1622 1623 if (is_tdp_mmu_enabled(kvm)) 1624 young |= kvm_tdp_mmu_age_gfn_range(kvm, range); 1625 1626 return young; 1627 } 1628 1629 bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range) 1630 { 1631 bool young = false; 1632 1633 if (kvm_memslots_have_rmaps(kvm)) 1634 young = kvm_handle_gfn_range(kvm, range, kvm_test_age_rmap); 1635 1636 if (is_tdp_mmu_enabled(kvm)) 1637 young |= kvm_tdp_mmu_test_age_gfn(kvm, range); 1638 1639 return young; 1640 } 1641 1642 #ifdef MMU_DEBUG 1643 static int is_empty_shadow_page(u64 *spt) 1644 { 1645 u64 *pos; 1646 u64 *end; 1647 1648 for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++) 1649 if (is_shadow_present_pte(*pos)) { 1650 printk(KERN_ERR "%s: %p %llx\n", __func__, 1651 pos, *pos); 1652 return 0; 1653 } 1654 return 1; 1655 } 1656 #endif 1657 1658 /* 1659 * This value is the sum of all of the kvm instances's 1660 * kvm->arch.n_used_mmu_pages values. We need a global, 1661 * aggregate version in order to make the slab shrinker 1662 * faster 1663 */ 1664 static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, long nr) 1665 { 1666 kvm->arch.n_used_mmu_pages += nr; 1667 percpu_counter_add(&kvm_total_used_mmu_pages, nr); 1668 } 1669 1670 static void kvm_mmu_free_shadow_page(struct kvm_mmu_page *sp) 1671 { 1672 MMU_WARN_ON(!is_empty_shadow_page(sp->spt)); 1673 hlist_del(&sp->hash_link); 1674 list_del(&sp->link); 1675 free_page((unsigned long)sp->spt); 1676 if (!sp->role.direct) 1677 free_page((unsigned long)sp->shadowed_translation); 1678 kmem_cache_free(mmu_page_header_cache, sp); 1679 } 1680 1681 static unsigned kvm_page_table_hashfn(gfn_t gfn) 1682 { 1683 return hash_64(gfn, KVM_MMU_HASH_SHIFT); 1684 } 1685 1686 static void mmu_page_add_parent_pte(struct kvm_mmu_memory_cache *cache, 1687 struct kvm_mmu_page *sp, u64 *parent_pte) 1688 { 1689 if (!parent_pte) 1690 return; 1691 1692 pte_list_add(cache, parent_pte, &sp->parent_ptes); 1693 } 1694 1695 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp, 1696 u64 *parent_pte) 1697 { 1698 pte_list_remove(parent_pte, &sp->parent_ptes); 1699 } 1700 1701 static void drop_parent_pte(struct kvm_mmu_page *sp, 1702 u64 *parent_pte) 1703 { 1704 mmu_page_remove_parent_pte(sp, parent_pte); 1705 mmu_spte_clear_no_track(parent_pte); 1706 } 1707 1708 static void mark_unsync(u64 *spte); 1709 static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp) 1710 { 1711 u64 *sptep; 1712 struct rmap_iterator iter; 1713 1714 for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) { 1715 mark_unsync(sptep); 1716 } 1717 } 1718 1719 static void mark_unsync(u64 *spte) 1720 { 1721 struct kvm_mmu_page *sp; 1722 1723 sp = sptep_to_sp(spte); 1724 if (__test_and_set_bit(spte_index(spte), sp->unsync_child_bitmap)) 1725 return; 1726 if (sp->unsync_children++) 1727 return; 1728 kvm_mmu_mark_parents_unsync(sp); 1729 } 1730 1731 static int nonpaging_sync_page(struct kvm_vcpu *vcpu, 1732 struct kvm_mmu_page *sp) 1733 { 1734 return -1; 1735 } 1736 1737 #define KVM_PAGE_ARRAY_NR 16 1738 1739 struct kvm_mmu_pages { 1740 struct mmu_page_and_offset { 1741 struct kvm_mmu_page *sp; 1742 unsigned int idx; 1743 } page[KVM_PAGE_ARRAY_NR]; 1744 unsigned int nr; 1745 }; 1746 1747 static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp, 1748 int idx) 1749 { 1750 int i; 1751 1752 if (sp->unsync) 1753 for (i=0; i < pvec->nr; i++) 1754 if (pvec->page[i].sp == sp) 1755 return 0; 1756 1757 pvec->page[pvec->nr].sp = sp; 1758 pvec->page[pvec->nr].idx = idx; 1759 pvec->nr++; 1760 return (pvec->nr == KVM_PAGE_ARRAY_NR); 1761 } 1762 1763 static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx) 1764 { 1765 --sp->unsync_children; 1766 WARN_ON((int)sp->unsync_children < 0); 1767 __clear_bit(idx, sp->unsync_child_bitmap); 1768 } 1769 1770 static int __mmu_unsync_walk(struct kvm_mmu_page *sp, 1771 struct kvm_mmu_pages *pvec) 1772 { 1773 int i, ret, nr_unsync_leaf = 0; 1774 1775 for_each_set_bit(i, sp->unsync_child_bitmap, 512) { 1776 struct kvm_mmu_page *child; 1777 u64 ent = sp->spt[i]; 1778 1779 if (!is_shadow_present_pte(ent) || is_large_pte(ent)) { 1780 clear_unsync_child_bit(sp, i); 1781 continue; 1782 } 1783 1784 child = to_shadow_page(ent & SPTE_BASE_ADDR_MASK); 1785 1786 if (child->unsync_children) { 1787 if (mmu_pages_add(pvec, child, i)) 1788 return -ENOSPC; 1789 1790 ret = __mmu_unsync_walk(child, pvec); 1791 if (!ret) { 1792 clear_unsync_child_bit(sp, i); 1793 continue; 1794 } else if (ret > 0) { 1795 nr_unsync_leaf += ret; 1796 } else 1797 return ret; 1798 } else if (child->unsync) { 1799 nr_unsync_leaf++; 1800 if (mmu_pages_add(pvec, child, i)) 1801 return -ENOSPC; 1802 } else 1803 clear_unsync_child_bit(sp, i); 1804 } 1805 1806 return nr_unsync_leaf; 1807 } 1808 1809 #define INVALID_INDEX (-1) 1810 1811 static int mmu_unsync_walk(struct kvm_mmu_page *sp, 1812 struct kvm_mmu_pages *pvec) 1813 { 1814 pvec->nr = 0; 1815 if (!sp->unsync_children) 1816 return 0; 1817 1818 mmu_pages_add(pvec, sp, INVALID_INDEX); 1819 return __mmu_unsync_walk(sp, pvec); 1820 } 1821 1822 static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp) 1823 { 1824 WARN_ON(!sp->unsync); 1825 trace_kvm_mmu_sync_page(sp); 1826 sp->unsync = 0; 1827 --kvm->stat.mmu_unsync; 1828 } 1829 1830 static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp, 1831 struct list_head *invalid_list); 1832 static void kvm_mmu_commit_zap_page(struct kvm *kvm, 1833 struct list_head *invalid_list); 1834 1835 static bool sp_has_gptes(struct kvm_mmu_page *sp) 1836 { 1837 if (sp->role.direct) 1838 return false; 1839 1840 if (sp->role.passthrough) 1841 return false; 1842 1843 return true; 1844 } 1845 1846 #define for_each_valid_sp(_kvm, _sp, _list) \ 1847 hlist_for_each_entry(_sp, _list, hash_link) \ 1848 if (is_obsolete_sp((_kvm), (_sp))) { \ 1849 } else 1850 1851 #define for_each_gfn_valid_sp_with_gptes(_kvm, _sp, _gfn) \ 1852 for_each_valid_sp(_kvm, _sp, \ 1853 &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)]) \ 1854 if ((_sp)->gfn != (_gfn) || !sp_has_gptes(_sp)) {} else 1855 1856 static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp, 1857 struct list_head *invalid_list) 1858 { 1859 int ret = vcpu->arch.mmu->sync_page(vcpu, sp); 1860 1861 if (ret < 0) 1862 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list); 1863 return ret; 1864 } 1865 1866 static bool kvm_mmu_remote_flush_or_zap(struct kvm *kvm, 1867 struct list_head *invalid_list, 1868 bool remote_flush) 1869 { 1870 if (!remote_flush && list_empty(invalid_list)) 1871 return false; 1872 1873 if (!list_empty(invalid_list)) 1874 kvm_mmu_commit_zap_page(kvm, invalid_list); 1875 else 1876 kvm_flush_remote_tlbs(kvm); 1877 return true; 1878 } 1879 1880 static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp) 1881 { 1882 if (sp->role.invalid) 1883 return true; 1884 1885 /* TDP MMU pages due not use the MMU generation. */ 1886 return !sp->tdp_mmu_page && 1887 unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen); 1888 } 1889 1890 struct mmu_page_path { 1891 struct kvm_mmu_page *parent[PT64_ROOT_MAX_LEVEL]; 1892 unsigned int idx[PT64_ROOT_MAX_LEVEL]; 1893 }; 1894 1895 #define for_each_sp(pvec, sp, parents, i) \ 1896 for (i = mmu_pages_first(&pvec, &parents); \ 1897 i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \ 1898 i = mmu_pages_next(&pvec, &parents, i)) 1899 1900 static int mmu_pages_next(struct kvm_mmu_pages *pvec, 1901 struct mmu_page_path *parents, 1902 int i) 1903 { 1904 int n; 1905 1906 for (n = i+1; n < pvec->nr; n++) { 1907 struct kvm_mmu_page *sp = pvec->page[n].sp; 1908 unsigned idx = pvec->page[n].idx; 1909 int level = sp->role.level; 1910 1911 parents->idx[level-1] = idx; 1912 if (level == PG_LEVEL_4K) 1913 break; 1914 1915 parents->parent[level-2] = sp; 1916 } 1917 1918 return n; 1919 } 1920 1921 static int mmu_pages_first(struct kvm_mmu_pages *pvec, 1922 struct mmu_page_path *parents) 1923 { 1924 struct kvm_mmu_page *sp; 1925 int level; 1926 1927 if (pvec->nr == 0) 1928 return 0; 1929 1930 WARN_ON(pvec->page[0].idx != INVALID_INDEX); 1931 1932 sp = pvec->page[0].sp; 1933 level = sp->role.level; 1934 WARN_ON(level == PG_LEVEL_4K); 1935 1936 parents->parent[level-2] = sp; 1937 1938 /* Also set up a sentinel. Further entries in pvec are all 1939 * children of sp, so this element is never overwritten. 1940 */ 1941 parents->parent[level-1] = NULL; 1942 return mmu_pages_next(pvec, parents, 0); 1943 } 1944 1945 static void mmu_pages_clear_parents(struct mmu_page_path *parents) 1946 { 1947 struct kvm_mmu_page *sp; 1948 unsigned int level = 0; 1949 1950 do { 1951 unsigned int idx = parents->idx[level]; 1952 sp = parents->parent[level]; 1953 if (!sp) 1954 return; 1955 1956 WARN_ON(idx == INVALID_INDEX); 1957 clear_unsync_child_bit(sp, idx); 1958 level++; 1959 } while (!sp->unsync_children); 1960 } 1961 1962 static int mmu_sync_children(struct kvm_vcpu *vcpu, 1963 struct kvm_mmu_page *parent, bool can_yield) 1964 { 1965 int i; 1966 struct kvm_mmu_page *sp; 1967 struct mmu_page_path parents; 1968 struct kvm_mmu_pages pages; 1969 LIST_HEAD(invalid_list); 1970 bool flush = false; 1971 1972 while (mmu_unsync_walk(parent, &pages)) { 1973 bool protected = false; 1974 1975 for_each_sp(pages, sp, parents, i) 1976 protected |= kvm_vcpu_write_protect_gfn(vcpu, sp->gfn); 1977 1978 if (protected) { 1979 kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, true); 1980 flush = false; 1981 } 1982 1983 for_each_sp(pages, sp, parents, i) { 1984 kvm_unlink_unsync_page(vcpu->kvm, sp); 1985 flush |= kvm_sync_page(vcpu, sp, &invalid_list) > 0; 1986 mmu_pages_clear_parents(&parents); 1987 } 1988 if (need_resched() || rwlock_needbreak(&vcpu->kvm->mmu_lock)) { 1989 kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, flush); 1990 if (!can_yield) { 1991 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu); 1992 return -EINTR; 1993 } 1994 1995 cond_resched_rwlock_write(&vcpu->kvm->mmu_lock); 1996 flush = false; 1997 } 1998 } 1999 2000 kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, flush); 2001 return 0; 2002 } 2003 2004 static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp) 2005 { 2006 atomic_set(&sp->write_flooding_count, 0); 2007 } 2008 2009 static void clear_sp_write_flooding_count(u64 *spte) 2010 { 2011 __clear_sp_write_flooding_count(sptep_to_sp(spte)); 2012 } 2013 2014 /* 2015 * The vCPU is required when finding indirect shadow pages; the shadow 2016 * page may already exist and syncing it needs the vCPU pointer in 2017 * order to read guest page tables. Direct shadow pages are never 2018 * unsync, thus @vcpu can be NULL if @role.direct is true. 2019 */ 2020 static struct kvm_mmu_page *kvm_mmu_find_shadow_page(struct kvm *kvm, 2021 struct kvm_vcpu *vcpu, 2022 gfn_t gfn, 2023 struct hlist_head *sp_list, 2024 union kvm_mmu_page_role role) 2025 { 2026 struct kvm_mmu_page *sp; 2027 int ret; 2028 int collisions = 0; 2029 LIST_HEAD(invalid_list); 2030 2031 for_each_valid_sp(kvm, sp, sp_list) { 2032 if (sp->gfn != gfn) { 2033 collisions++; 2034 continue; 2035 } 2036 2037 if (sp->role.word != role.word) { 2038 /* 2039 * If the guest is creating an upper-level page, zap 2040 * unsync pages for the same gfn. While it's possible 2041 * the guest is using recursive page tables, in all 2042 * likelihood the guest has stopped using the unsync 2043 * page and is installing a completely unrelated page. 2044 * Unsync pages must not be left as is, because the new 2045 * upper-level page will be write-protected. 2046 */ 2047 if (role.level > PG_LEVEL_4K && sp->unsync) 2048 kvm_mmu_prepare_zap_page(kvm, sp, 2049 &invalid_list); 2050 continue; 2051 } 2052 2053 /* unsync and write-flooding only apply to indirect SPs. */ 2054 if (sp->role.direct) 2055 goto out; 2056 2057 if (sp->unsync) { 2058 if (KVM_BUG_ON(!vcpu, kvm)) 2059 break; 2060 2061 /* 2062 * The page is good, but is stale. kvm_sync_page does 2063 * get the latest guest state, but (unlike mmu_unsync_children) 2064 * it doesn't write-protect the page or mark it synchronized! 2065 * This way the validity of the mapping is ensured, but the 2066 * overhead of write protection is not incurred until the 2067 * guest invalidates the TLB mapping. This allows multiple 2068 * SPs for a single gfn to be unsync. 2069 * 2070 * If the sync fails, the page is zapped. If so, break 2071 * in order to rebuild it. 2072 */ 2073 ret = kvm_sync_page(vcpu, sp, &invalid_list); 2074 if (ret < 0) 2075 break; 2076 2077 WARN_ON(!list_empty(&invalid_list)); 2078 if (ret > 0) 2079 kvm_flush_remote_tlbs(kvm); 2080 } 2081 2082 __clear_sp_write_flooding_count(sp); 2083 2084 goto out; 2085 } 2086 2087 sp = NULL; 2088 ++kvm->stat.mmu_cache_miss; 2089 2090 out: 2091 kvm_mmu_commit_zap_page(kvm, &invalid_list); 2092 2093 if (collisions > kvm->stat.max_mmu_page_hash_collisions) 2094 kvm->stat.max_mmu_page_hash_collisions = collisions; 2095 return sp; 2096 } 2097 2098 /* Caches used when allocating a new shadow page. */ 2099 struct shadow_page_caches { 2100 struct kvm_mmu_memory_cache *page_header_cache; 2101 struct kvm_mmu_memory_cache *shadow_page_cache; 2102 struct kvm_mmu_memory_cache *shadowed_info_cache; 2103 }; 2104 2105 static struct kvm_mmu_page *kvm_mmu_alloc_shadow_page(struct kvm *kvm, 2106 struct shadow_page_caches *caches, 2107 gfn_t gfn, 2108 struct hlist_head *sp_list, 2109 union kvm_mmu_page_role role) 2110 { 2111 struct kvm_mmu_page *sp; 2112 2113 sp = kvm_mmu_memory_cache_alloc(caches->page_header_cache); 2114 sp->spt = kvm_mmu_memory_cache_alloc(caches->shadow_page_cache); 2115 if (!role.direct) 2116 sp->shadowed_translation = kvm_mmu_memory_cache_alloc(caches->shadowed_info_cache); 2117 2118 set_page_private(virt_to_page(sp->spt), (unsigned long)sp); 2119 2120 /* 2121 * active_mmu_pages must be a FIFO list, as kvm_zap_obsolete_pages() 2122 * depends on valid pages being added to the head of the list. See 2123 * comments in kvm_zap_obsolete_pages(). 2124 */ 2125 sp->mmu_valid_gen = kvm->arch.mmu_valid_gen; 2126 list_add(&sp->link, &kvm->arch.active_mmu_pages); 2127 kvm_mod_used_mmu_pages(kvm, +1); 2128 2129 sp->gfn = gfn; 2130 sp->role = role; 2131 hlist_add_head(&sp->hash_link, sp_list); 2132 if (sp_has_gptes(sp)) 2133 account_shadowed(kvm, sp); 2134 2135 return sp; 2136 } 2137 2138 /* Note, @vcpu may be NULL if @role.direct is true; see kvm_mmu_find_shadow_page. */ 2139 static struct kvm_mmu_page *__kvm_mmu_get_shadow_page(struct kvm *kvm, 2140 struct kvm_vcpu *vcpu, 2141 struct shadow_page_caches *caches, 2142 gfn_t gfn, 2143 union kvm_mmu_page_role role) 2144 { 2145 struct hlist_head *sp_list; 2146 struct kvm_mmu_page *sp; 2147 bool created = false; 2148 2149 sp_list = &kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]; 2150 2151 sp = kvm_mmu_find_shadow_page(kvm, vcpu, gfn, sp_list, role); 2152 if (!sp) { 2153 created = true; 2154 sp = kvm_mmu_alloc_shadow_page(kvm, caches, gfn, sp_list, role); 2155 } 2156 2157 trace_kvm_mmu_get_page(sp, created); 2158 return sp; 2159 } 2160 2161 static struct kvm_mmu_page *kvm_mmu_get_shadow_page(struct kvm_vcpu *vcpu, 2162 gfn_t gfn, 2163 union kvm_mmu_page_role role) 2164 { 2165 struct shadow_page_caches caches = { 2166 .page_header_cache = &vcpu->arch.mmu_page_header_cache, 2167 .shadow_page_cache = &vcpu->arch.mmu_shadow_page_cache, 2168 .shadowed_info_cache = &vcpu->arch.mmu_shadowed_info_cache, 2169 }; 2170 2171 return __kvm_mmu_get_shadow_page(vcpu->kvm, vcpu, &caches, gfn, role); 2172 } 2173 2174 static union kvm_mmu_page_role kvm_mmu_child_role(u64 *sptep, bool direct, 2175 unsigned int access) 2176 { 2177 struct kvm_mmu_page *parent_sp = sptep_to_sp(sptep); 2178 union kvm_mmu_page_role role; 2179 2180 role = parent_sp->role; 2181 role.level--; 2182 role.access = access; 2183 role.direct = direct; 2184 role.passthrough = 0; 2185 2186 /* 2187 * If the guest has 4-byte PTEs then that means it's using 32-bit, 2188 * 2-level, non-PAE paging. KVM shadows such guests with PAE paging 2189 * (i.e. 8-byte PTEs). The difference in PTE size means that KVM must 2190 * shadow each guest page table with multiple shadow page tables, which 2191 * requires extra bookkeeping in the role. 2192 * 2193 * Specifically, to shadow the guest's page directory (which covers a 2194 * 4GiB address space), KVM uses 4 PAE page directories, each mapping 2195 * 1GiB of the address space. @role.quadrant encodes which quarter of 2196 * the address space each maps. 2197 * 2198 * To shadow the guest's page tables (which each map a 4MiB region), KVM 2199 * uses 2 PAE page tables, each mapping a 2MiB region. For these, 2200 * @role.quadrant encodes which half of the region they map. 2201 * 2202 * Concretely, a 4-byte PDE consumes bits 31:22, while an 8-byte PDE 2203 * consumes bits 29:21. To consume bits 31:30, KVM's uses 4 shadow 2204 * PDPTEs; those 4 PAE page directories are pre-allocated and their 2205 * quadrant is assigned in mmu_alloc_root(). A 4-byte PTE consumes 2206 * bits 21:12, while an 8-byte PTE consumes bits 20:12. To consume 2207 * bit 21 in the PTE (the child here), KVM propagates that bit to the 2208 * quadrant, i.e. sets quadrant to '0' or '1'. The parent 8-byte PDE 2209 * covers bit 21 (see above), thus the quadrant is calculated from the 2210 * _least_ significant bit of the PDE index. 2211 */ 2212 if (role.has_4_byte_gpte) { 2213 WARN_ON_ONCE(role.level != PG_LEVEL_4K); 2214 role.quadrant = spte_index(sptep) & 1; 2215 } 2216 2217 return role; 2218 } 2219 2220 static struct kvm_mmu_page *kvm_mmu_get_child_sp(struct kvm_vcpu *vcpu, 2221 u64 *sptep, gfn_t gfn, 2222 bool direct, unsigned int access) 2223 { 2224 union kvm_mmu_page_role role; 2225 2226 if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) 2227 return ERR_PTR(-EEXIST); 2228 2229 role = kvm_mmu_child_role(sptep, direct, access); 2230 return kvm_mmu_get_shadow_page(vcpu, gfn, role); 2231 } 2232 2233 static void shadow_walk_init_using_root(struct kvm_shadow_walk_iterator *iterator, 2234 struct kvm_vcpu *vcpu, hpa_t root, 2235 u64 addr) 2236 { 2237 iterator->addr = addr; 2238 iterator->shadow_addr = root; 2239 iterator->level = vcpu->arch.mmu->root_role.level; 2240 2241 if (iterator->level >= PT64_ROOT_4LEVEL && 2242 vcpu->arch.mmu->cpu_role.base.level < PT64_ROOT_4LEVEL && 2243 !vcpu->arch.mmu->root_role.direct) 2244 iterator->level = PT32E_ROOT_LEVEL; 2245 2246 if (iterator->level == PT32E_ROOT_LEVEL) { 2247 /* 2248 * prev_root is currently only used for 64-bit hosts. So only 2249 * the active root_hpa is valid here. 2250 */ 2251 BUG_ON(root != vcpu->arch.mmu->root.hpa); 2252 2253 iterator->shadow_addr 2254 = vcpu->arch.mmu->pae_root[(addr >> 30) & 3]; 2255 iterator->shadow_addr &= SPTE_BASE_ADDR_MASK; 2256 --iterator->level; 2257 if (!iterator->shadow_addr) 2258 iterator->level = 0; 2259 } 2260 } 2261 2262 static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator, 2263 struct kvm_vcpu *vcpu, u64 addr) 2264 { 2265 shadow_walk_init_using_root(iterator, vcpu, vcpu->arch.mmu->root.hpa, 2266 addr); 2267 } 2268 2269 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator) 2270 { 2271 if (iterator->level < PG_LEVEL_4K) 2272 return false; 2273 2274 iterator->index = SPTE_INDEX(iterator->addr, iterator->level); 2275 iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index; 2276 return true; 2277 } 2278 2279 static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator, 2280 u64 spte) 2281 { 2282 if (!is_shadow_present_pte(spte) || is_last_spte(spte, iterator->level)) { 2283 iterator->level = 0; 2284 return; 2285 } 2286 2287 iterator->shadow_addr = spte & SPTE_BASE_ADDR_MASK; 2288 --iterator->level; 2289 } 2290 2291 static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator) 2292 { 2293 __shadow_walk_next(iterator, *iterator->sptep); 2294 } 2295 2296 static void __link_shadow_page(struct kvm *kvm, 2297 struct kvm_mmu_memory_cache *cache, u64 *sptep, 2298 struct kvm_mmu_page *sp, bool flush) 2299 { 2300 u64 spte; 2301 2302 BUILD_BUG_ON(VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK); 2303 2304 /* 2305 * If an SPTE is present already, it must be a leaf and therefore 2306 * a large one. Drop it, and flush the TLB if needed, before 2307 * installing sp. 2308 */ 2309 if (is_shadow_present_pte(*sptep)) 2310 drop_large_spte(kvm, sptep, flush); 2311 2312 spte = make_nonleaf_spte(sp->spt, sp_ad_disabled(sp)); 2313 2314 mmu_spte_set(sptep, spte); 2315 2316 mmu_page_add_parent_pte(cache, sp, sptep); 2317 2318 if (sp->unsync_children || sp->unsync) 2319 mark_unsync(sptep); 2320 } 2321 2322 static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep, 2323 struct kvm_mmu_page *sp) 2324 { 2325 __link_shadow_page(vcpu->kvm, &vcpu->arch.mmu_pte_list_desc_cache, sptep, sp, true); 2326 } 2327 2328 static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep, 2329 unsigned direct_access) 2330 { 2331 if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) { 2332 struct kvm_mmu_page *child; 2333 2334 /* 2335 * For the direct sp, if the guest pte's dirty bit 2336 * changed form clean to dirty, it will corrupt the 2337 * sp's access: allow writable in the read-only sp, 2338 * so we should update the spte at this point to get 2339 * a new sp with the correct access. 2340 */ 2341 child = to_shadow_page(*sptep & SPTE_BASE_ADDR_MASK); 2342 if (child->role.access == direct_access) 2343 return; 2344 2345 drop_parent_pte(child, sptep); 2346 kvm_flush_remote_tlbs_with_address(vcpu->kvm, child->gfn, 1); 2347 } 2348 } 2349 2350 /* Returns the number of zapped non-leaf child shadow pages. */ 2351 static int mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp, 2352 u64 *spte, struct list_head *invalid_list) 2353 { 2354 u64 pte; 2355 struct kvm_mmu_page *child; 2356 2357 pte = *spte; 2358 if (is_shadow_present_pte(pte)) { 2359 if (is_last_spte(pte, sp->role.level)) { 2360 drop_spte(kvm, spte); 2361 } else { 2362 child = to_shadow_page(pte & SPTE_BASE_ADDR_MASK); 2363 drop_parent_pte(child, spte); 2364 2365 /* 2366 * Recursively zap nested TDP SPs, parentless SPs are 2367 * unlikely to be used again in the near future. This 2368 * avoids retaining a large number of stale nested SPs. 2369 */ 2370 if (tdp_enabled && invalid_list && 2371 child->role.guest_mode && !child->parent_ptes.val) 2372 return kvm_mmu_prepare_zap_page(kvm, child, 2373 invalid_list); 2374 } 2375 } else if (is_mmio_spte(pte)) { 2376 mmu_spte_clear_no_track(spte); 2377 } 2378 return 0; 2379 } 2380 2381 static int kvm_mmu_page_unlink_children(struct kvm *kvm, 2382 struct kvm_mmu_page *sp, 2383 struct list_head *invalid_list) 2384 { 2385 int zapped = 0; 2386 unsigned i; 2387 2388 for (i = 0; i < SPTE_ENT_PER_PAGE; ++i) 2389 zapped += mmu_page_zap_pte(kvm, sp, sp->spt + i, invalid_list); 2390 2391 return zapped; 2392 } 2393 2394 static void kvm_mmu_unlink_parents(struct kvm_mmu_page *sp) 2395 { 2396 u64 *sptep; 2397 struct rmap_iterator iter; 2398 2399 while ((sptep = rmap_get_first(&sp->parent_ptes, &iter))) 2400 drop_parent_pte(sp, sptep); 2401 } 2402 2403 static int mmu_zap_unsync_children(struct kvm *kvm, 2404 struct kvm_mmu_page *parent, 2405 struct list_head *invalid_list) 2406 { 2407 int i, zapped = 0; 2408 struct mmu_page_path parents; 2409 struct kvm_mmu_pages pages; 2410 2411 if (parent->role.level == PG_LEVEL_4K) 2412 return 0; 2413 2414 while (mmu_unsync_walk(parent, &pages)) { 2415 struct kvm_mmu_page *sp; 2416 2417 for_each_sp(pages, sp, parents, i) { 2418 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list); 2419 mmu_pages_clear_parents(&parents); 2420 zapped++; 2421 } 2422 } 2423 2424 return zapped; 2425 } 2426 2427 static bool __kvm_mmu_prepare_zap_page(struct kvm *kvm, 2428 struct kvm_mmu_page *sp, 2429 struct list_head *invalid_list, 2430 int *nr_zapped) 2431 { 2432 bool list_unstable, zapped_root = false; 2433 2434 trace_kvm_mmu_prepare_zap_page(sp); 2435 ++kvm->stat.mmu_shadow_zapped; 2436 *nr_zapped = mmu_zap_unsync_children(kvm, sp, invalid_list); 2437 *nr_zapped += kvm_mmu_page_unlink_children(kvm, sp, invalid_list); 2438 kvm_mmu_unlink_parents(sp); 2439 2440 /* Zapping children means active_mmu_pages has become unstable. */ 2441 list_unstable = *nr_zapped; 2442 2443 if (!sp->role.invalid && sp_has_gptes(sp)) 2444 unaccount_shadowed(kvm, sp); 2445 2446 if (sp->unsync) 2447 kvm_unlink_unsync_page(kvm, sp); 2448 if (!sp->root_count) { 2449 /* Count self */ 2450 (*nr_zapped)++; 2451 2452 /* 2453 * Already invalid pages (previously active roots) are not on 2454 * the active page list. See list_del() in the "else" case of 2455 * !sp->root_count. 2456 */ 2457 if (sp->role.invalid) 2458 list_add(&sp->link, invalid_list); 2459 else 2460 list_move(&sp->link, invalid_list); 2461 kvm_mod_used_mmu_pages(kvm, -1); 2462 } else { 2463 /* 2464 * Remove the active root from the active page list, the root 2465 * will be explicitly freed when the root_count hits zero. 2466 */ 2467 list_del(&sp->link); 2468 2469 /* 2470 * Obsolete pages cannot be used on any vCPUs, see the comment 2471 * in kvm_mmu_zap_all_fast(). Note, is_obsolete_sp() also 2472 * treats invalid shadow pages as being obsolete. 2473 */ 2474 zapped_root = !is_obsolete_sp(kvm, sp); 2475 } 2476 2477 if (sp->lpage_disallowed) 2478 unaccount_huge_nx_page(kvm, sp); 2479 2480 sp->role.invalid = 1; 2481 2482 /* 2483 * Make the request to free obsolete roots after marking the root 2484 * invalid, otherwise other vCPUs may not see it as invalid. 2485 */ 2486 if (zapped_root) 2487 kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_FREE_OBSOLETE_ROOTS); 2488 return list_unstable; 2489 } 2490 2491 static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp, 2492 struct list_head *invalid_list) 2493 { 2494 int nr_zapped; 2495 2496 __kvm_mmu_prepare_zap_page(kvm, sp, invalid_list, &nr_zapped); 2497 return nr_zapped; 2498 } 2499 2500 static void kvm_mmu_commit_zap_page(struct kvm *kvm, 2501 struct list_head *invalid_list) 2502 { 2503 struct kvm_mmu_page *sp, *nsp; 2504 2505 if (list_empty(invalid_list)) 2506 return; 2507 2508 /* 2509 * We need to make sure everyone sees our modifications to 2510 * the page tables and see changes to vcpu->mode here. The barrier 2511 * in the kvm_flush_remote_tlbs() achieves this. This pairs 2512 * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end. 2513 * 2514 * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit 2515 * guest mode and/or lockless shadow page table walks. 2516 */ 2517 kvm_flush_remote_tlbs(kvm); 2518 2519 list_for_each_entry_safe(sp, nsp, invalid_list, link) { 2520 WARN_ON(!sp->role.invalid || sp->root_count); 2521 kvm_mmu_free_shadow_page(sp); 2522 } 2523 } 2524 2525 static unsigned long kvm_mmu_zap_oldest_mmu_pages(struct kvm *kvm, 2526 unsigned long nr_to_zap) 2527 { 2528 unsigned long total_zapped = 0; 2529 struct kvm_mmu_page *sp, *tmp; 2530 LIST_HEAD(invalid_list); 2531 bool unstable; 2532 int nr_zapped; 2533 2534 if (list_empty(&kvm->arch.active_mmu_pages)) 2535 return 0; 2536 2537 restart: 2538 list_for_each_entry_safe_reverse(sp, tmp, &kvm->arch.active_mmu_pages, link) { 2539 /* 2540 * Don't zap active root pages, the page itself can't be freed 2541 * and zapping it will just force vCPUs to realloc and reload. 2542 */ 2543 if (sp->root_count) 2544 continue; 2545 2546 unstable = __kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list, 2547 &nr_zapped); 2548 total_zapped += nr_zapped; 2549 if (total_zapped >= nr_to_zap) 2550 break; 2551 2552 if (unstable) 2553 goto restart; 2554 } 2555 2556 kvm_mmu_commit_zap_page(kvm, &invalid_list); 2557 2558 kvm->stat.mmu_recycled += total_zapped; 2559 return total_zapped; 2560 } 2561 2562 static inline unsigned long kvm_mmu_available_pages(struct kvm *kvm) 2563 { 2564 if (kvm->arch.n_max_mmu_pages > kvm->arch.n_used_mmu_pages) 2565 return kvm->arch.n_max_mmu_pages - 2566 kvm->arch.n_used_mmu_pages; 2567 2568 return 0; 2569 } 2570 2571 static int make_mmu_pages_available(struct kvm_vcpu *vcpu) 2572 { 2573 unsigned long avail = kvm_mmu_available_pages(vcpu->kvm); 2574 2575 if (likely(avail >= KVM_MIN_FREE_MMU_PAGES)) 2576 return 0; 2577 2578 kvm_mmu_zap_oldest_mmu_pages(vcpu->kvm, KVM_REFILL_PAGES - avail); 2579 2580 /* 2581 * Note, this check is intentionally soft, it only guarantees that one 2582 * page is available, while the caller may end up allocating as many as 2583 * four pages, e.g. for PAE roots or for 5-level paging. Temporarily 2584 * exceeding the (arbitrary by default) limit will not harm the host, 2585 * being too aggressive may unnecessarily kill the guest, and getting an 2586 * exact count is far more trouble than it's worth, especially in the 2587 * page fault paths. 2588 */ 2589 if (!kvm_mmu_available_pages(vcpu->kvm)) 2590 return -ENOSPC; 2591 return 0; 2592 } 2593 2594 /* 2595 * Changing the number of mmu pages allocated to the vm 2596 * Note: if goal_nr_mmu_pages is too small, you will get dead lock 2597 */ 2598 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long goal_nr_mmu_pages) 2599 { 2600 write_lock(&kvm->mmu_lock); 2601 2602 if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) { 2603 kvm_mmu_zap_oldest_mmu_pages(kvm, kvm->arch.n_used_mmu_pages - 2604 goal_nr_mmu_pages); 2605 2606 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages; 2607 } 2608 2609 kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages; 2610 2611 write_unlock(&kvm->mmu_lock); 2612 } 2613 2614 int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn) 2615 { 2616 struct kvm_mmu_page *sp; 2617 LIST_HEAD(invalid_list); 2618 int r; 2619 2620 pgprintk("%s: looking for gfn %llx\n", __func__, gfn); 2621 r = 0; 2622 write_lock(&kvm->mmu_lock); 2623 for_each_gfn_valid_sp_with_gptes(kvm, sp, gfn) { 2624 pgprintk("%s: gfn %llx role %x\n", __func__, gfn, 2625 sp->role.word); 2626 r = 1; 2627 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list); 2628 } 2629 kvm_mmu_commit_zap_page(kvm, &invalid_list); 2630 write_unlock(&kvm->mmu_lock); 2631 2632 return r; 2633 } 2634 2635 static int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva) 2636 { 2637 gpa_t gpa; 2638 int r; 2639 2640 if (vcpu->arch.mmu->root_role.direct) 2641 return 0; 2642 2643 gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL); 2644 2645 r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT); 2646 2647 return r; 2648 } 2649 2650 static void kvm_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp) 2651 { 2652 trace_kvm_mmu_unsync_page(sp); 2653 ++kvm->stat.mmu_unsync; 2654 sp->unsync = 1; 2655 2656 kvm_mmu_mark_parents_unsync(sp); 2657 } 2658 2659 /* 2660 * Attempt to unsync any shadow pages that can be reached by the specified gfn, 2661 * KVM is creating a writable mapping for said gfn. Returns 0 if all pages 2662 * were marked unsync (or if there is no shadow page), -EPERM if the SPTE must 2663 * be write-protected. 2664 */ 2665 int mmu_try_to_unsync_pages(struct kvm *kvm, const struct kvm_memory_slot *slot, 2666 gfn_t gfn, bool can_unsync, bool prefetch) 2667 { 2668 struct kvm_mmu_page *sp; 2669 bool locked = false; 2670 2671 /* 2672 * Force write-protection if the page is being tracked. Note, the page 2673 * track machinery is used to write-protect upper-level shadow pages, 2674 * i.e. this guards the role.level == 4K assertion below! 2675 */ 2676 if (kvm_slot_page_track_is_active(kvm, slot, gfn, KVM_PAGE_TRACK_WRITE)) 2677 return -EPERM; 2678 2679 /* 2680 * The page is not write-tracked, mark existing shadow pages unsync 2681 * unless KVM is synchronizing an unsync SP (can_unsync = false). In 2682 * that case, KVM must complete emulation of the guest TLB flush before 2683 * allowing shadow pages to become unsync (writable by the guest). 2684 */ 2685 for_each_gfn_valid_sp_with_gptes(kvm, sp, gfn) { 2686 if (!can_unsync) 2687 return -EPERM; 2688 2689 if (sp->unsync) 2690 continue; 2691 2692 if (prefetch) 2693 return -EEXIST; 2694 2695 /* 2696 * TDP MMU page faults require an additional spinlock as they 2697 * run with mmu_lock held for read, not write, and the unsync 2698 * logic is not thread safe. Take the spinklock regardless of 2699 * the MMU type to avoid extra conditionals/parameters, there's 2700 * no meaningful penalty if mmu_lock is held for write. 2701 */ 2702 if (!locked) { 2703 locked = true; 2704 spin_lock(&kvm->arch.mmu_unsync_pages_lock); 2705 2706 /* 2707 * Recheck after taking the spinlock, a different vCPU 2708 * may have since marked the page unsync. A false 2709 * positive on the unprotected check above is not 2710 * possible as clearing sp->unsync _must_ hold mmu_lock 2711 * for write, i.e. unsync cannot transition from 0->1 2712 * while this CPU holds mmu_lock for read (or write). 2713 */ 2714 if (READ_ONCE(sp->unsync)) 2715 continue; 2716 } 2717 2718 WARN_ON(sp->role.level != PG_LEVEL_4K); 2719 kvm_unsync_page(kvm, sp); 2720 } 2721 if (locked) 2722 spin_unlock(&kvm->arch.mmu_unsync_pages_lock); 2723 2724 /* 2725 * We need to ensure that the marking of unsync pages is visible 2726 * before the SPTE is updated to allow writes because 2727 * kvm_mmu_sync_roots() checks the unsync flags without holding 2728 * the MMU lock and so can race with this. If the SPTE was updated 2729 * before the page had been marked as unsync-ed, something like the 2730 * following could happen: 2731 * 2732 * CPU 1 CPU 2 2733 * --------------------------------------------------------------------- 2734 * 1.2 Host updates SPTE 2735 * to be writable 2736 * 2.1 Guest writes a GPTE for GVA X. 2737 * (GPTE being in the guest page table shadowed 2738 * by the SP from CPU 1.) 2739 * This reads SPTE during the page table walk. 2740 * Since SPTE.W is read as 1, there is no 2741 * fault. 2742 * 2743 * 2.2 Guest issues TLB flush. 2744 * That causes a VM Exit. 2745 * 2746 * 2.3 Walking of unsync pages sees sp->unsync is 2747 * false and skips the page. 2748 * 2749 * 2.4 Guest accesses GVA X. 2750 * Since the mapping in the SP was not updated, 2751 * so the old mapping for GVA X incorrectly 2752 * gets used. 2753 * 1.1 Host marks SP 2754 * as unsync 2755 * (sp->unsync = true) 2756 * 2757 * The write barrier below ensures that 1.1 happens before 1.2 and thus 2758 * the situation in 2.4 does not arise. It pairs with the read barrier 2759 * in is_unsync_root(), placed between 2.1's load of SPTE.W and 2.3. 2760 */ 2761 smp_wmb(); 2762 2763 return 0; 2764 } 2765 2766 static int mmu_set_spte(struct kvm_vcpu *vcpu, struct kvm_memory_slot *slot, 2767 u64 *sptep, unsigned int pte_access, gfn_t gfn, 2768 kvm_pfn_t pfn, struct kvm_page_fault *fault) 2769 { 2770 struct kvm_mmu_page *sp = sptep_to_sp(sptep); 2771 int level = sp->role.level; 2772 int was_rmapped = 0; 2773 int ret = RET_PF_FIXED; 2774 bool flush = false; 2775 bool wrprot; 2776 u64 spte; 2777 2778 /* Prefetching always gets a writable pfn. */ 2779 bool host_writable = !fault || fault->map_writable; 2780 bool prefetch = !fault || fault->prefetch; 2781 bool write_fault = fault && fault->write; 2782 2783 pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__, 2784 *sptep, write_fault, gfn); 2785 2786 if (unlikely(is_noslot_pfn(pfn))) { 2787 vcpu->stat.pf_mmio_spte_created++; 2788 mark_mmio_spte(vcpu, sptep, gfn, pte_access); 2789 return RET_PF_EMULATE; 2790 } 2791 2792 if (is_shadow_present_pte(*sptep)) { 2793 /* 2794 * If we overwrite a PTE page pointer with a 2MB PMD, unlink 2795 * the parent of the now unreachable PTE. 2796 */ 2797 if (level > PG_LEVEL_4K && !is_large_pte(*sptep)) { 2798 struct kvm_mmu_page *child; 2799 u64 pte = *sptep; 2800 2801 child = to_shadow_page(pte & SPTE_BASE_ADDR_MASK); 2802 drop_parent_pte(child, sptep); 2803 flush = true; 2804 } else if (pfn != spte_to_pfn(*sptep)) { 2805 pgprintk("hfn old %llx new %llx\n", 2806 spte_to_pfn(*sptep), pfn); 2807 drop_spte(vcpu->kvm, sptep); 2808 flush = true; 2809 } else 2810 was_rmapped = 1; 2811 } 2812 2813 wrprot = make_spte(vcpu, sp, slot, pte_access, gfn, pfn, *sptep, prefetch, 2814 true, host_writable, &spte); 2815 2816 if (*sptep == spte) { 2817 ret = RET_PF_SPURIOUS; 2818 } else { 2819 flush |= mmu_spte_update(sptep, spte); 2820 trace_kvm_mmu_set_spte(level, gfn, sptep); 2821 } 2822 2823 if (wrprot) { 2824 if (write_fault) 2825 ret = RET_PF_EMULATE; 2826 } 2827 2828 if (flush) 2829 kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn, 2830 KVM_PAGES_PER_HPAGE(level)); 2831 2832 pgprintk("%s: setting spte %llx\n", __func__, *sptep); 2833 2834 if (!was_rmapped) { 2835 WARN_ON_ONCE(ret == RET_PF_SPURIOUS); 2836 rmap_add(vcpu, slot, sptep, gfn, pte_access); 2837 } else { 2838 /* Already rmapped but the pte_access bits may have changed. */ 2839 kvm_mmu_page_set_access(sp, spte_index(sptep), pte_access); 2840 } 2841 2842 return ret; 2843 } 2844 2845 static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu, 2846 struct kvm_mmu_page *sp, 2847 u64 *start, u64 *end) 2848 { 2849 struct page *pages[PTE_PREFETCH_NUM]; 2850 struct kvm_memory_slot *slot; 2851 unsigned int access = sp->role.access; 2852 int i, ret; 2853 gfn_t gfn; 2854 2855 gfn = kvm_mmu_page_get_gfn(sp, spte_index(start)); 2856 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK); 2857 if (!slot) 2858 return -1; 2859 2860 ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start); 2861 if (ret <= 0) 2862 return -1; 2863 2864 for (i = 0; i < ret; i++, gfn++, start++) { 2865 mmu_set_spte(vcpu, slot, start, access, gfn, 2866 page_to_pfn(pages[i]), NULL); 2867 put_page(pages[i]); 2868 } 2869 2870 return 0; 2871 } 2872 2873 static void __direct_pte_prefetch(struct kvm_vcpu *vcpu, 2874 struct kvm_mmu_page *sp, u64 *sptep) 2875 { 2876 u64 *spte, *start = NULL; 2877 int i; 2878 2879 WARN_ON(!sp->role.direct); 2880 2881 i = spte_index(sptep) & ~(PTE_PREFETCH_NUM - 1); 2882 spte = sp->spt + i; 2883 2884 for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) { 2885 if (is_shadow_present_pte(*spte) || spte == sptep) { 2886 if (!start) 2887 continue; 2888 if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0) 2889 return; 2890 start = NULL; 2891 } else if (!start) 2892 start = spte; 2893 } 2894 if (start) 2895 direct_pte_prefetch_many(vcpu, sp, start, spte); 2896 } 2897 2898 static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep) 2899 { 2900 struct kvm_mmu_page *sp; 2901 2902 sp = sptep_to_sp(sptep); 2903 2904 /* 2905 * Without accessed bits, there's no way to distinguish between 2906 * actually accessed translations and prefetched, so disable pte 2907 * prefetch if accessed bits aren't available. 2908 */ 2909 if (sp_ad_disabled(sp)) 2910 return; 2911 2912 if (sp->role.level > PG_LEVEL_4K) 2913 return; 2914 2915 /* 2916 * If addresses are being invalidated, skip prefetching to avoid 2917 * accidentally prefetching those addresses. 2918 */ 2919 if (unlikely(vcpu->kvm->mmu_invalidate_in_progress)) 2920 return; 2921 2922 __direct_pte_prefetch(vcpu, sp, sptep); 2923 } 2924 2925 /* 2926 * Lookup the mapping level for @gfn in the current mm. 2927 * 2928 * WARNING! Use of host_pfn_mapping_level() requires the caller and the end 2929 * consumer to be tied into KVM's handlers for MMU notifier events! 2930 * 2931 * There are several ways to safely use this helper: 2932 * 2933 * - Check mmu_invalidate_retry_hva() after grabbing the mapping level, before 2934 * consuming it. In this case, mmu_lock doesn't need to be held during the 2935 * lookup, but it does need to be held while checking the MMU notifier. 2936 * 2937 * - Hold mmu_lock AND ensure there is no in-progress MMU notifier invalidation 2938 * event for the hva. This can be done by explicit checking the MMU notifier 2939 * or by ensuring that KVM already has a valid mapping that covers the hva. 2940 * 2941 * - Do not use the result to install new mappings, e.g. use the host mapping 2942 * level only to decide whether or not to zap an entry. In this case, it's 2943 * not required to hold mmu_lock (though it's highly likely the caller will 2944 * want to hold mmu_lock anyways, e.g. to modify SPTEs). 2945 * 2946 * Note! The lookup can still race with modifications to host page tables, but 2947 * the above "rules" ensure KVM will not _consume_ the result of the walk if a 2948 * race with the primary MMU occurs. 2949 */ 2950 static int host_pfn_mapping_level(struct kvm *kvm, gfn_t gfn, 2951 const struct kvm_memory_slot *slot) 2952 { 2953 int level = PG_LEVEL_4K; 2954 unsigned long hva; 2955 unsigned long flags; 2956 pgd_t pgd; 2957 p4d_t p4d; 2958 pud_t pud; 2959 pmd_t pmd; 2960 2961 /* 2962 * Note, using the already-retrieved memslot and __gfn_to_hva_memslot() 2963 * is not solely for performance, it's also necessary to avoid the 2964 * "writable" check in __gfn_to_hva_many(), which will always fail on 2965 * read-only memslots due to gfn_to_hva() assuming writes. Earlier 2966 * page fault steps have already verified the guest isn't writing a 2967 * read-only memslot. 2968 */ 2969 hva = __gfn_to_hva_memslot(slot, gfn); 2970 2971 /* 2972 * Disable IRQs to prevent concurrent tear down of host page tables, 2973 * e.g. if the primary MMU promotes a P*D to a huge page and then frees 2974 * the original page table. 2975 */ 2976 local_irq_save(flags); 2977 2978 /* 2979 * Read each entry once. As above, a non-leaf entry can be promoted to 2980 * a huge page _during_ this walk. Re-reading the entry could send the 2981 * walk into the weeks, e.g. p*d_large() returns false (sees the old 2982 * value) and then p*d_offset() walks into the target huge page instead 2983 * of the old page table (sees the new value). 2984 */ 2985 pgd = READ_ONCE(*pgd_offset(kvm->mm, hva)); 2986 if (pgd_none(pgd)) 2987 goto out; 2988 2989 p4d = READ_ONCE(*p4d_offset(&pgd, hva)); 2990 if (p4d_none(p4d) || !p4d_present(p4d)) 2991 goto out; 2992 2993 pud = READ_ONCE(*pud_offset(&p4d, hva)); 2994 if (pud_none(pud) || !pud_present(pud)) 2995 goto out; 2996 2997 if (pud_large(pud)) { 2998 level = PG_LEVEL_1G; 2999 goto out; 3000 } 3001 3002 pmd = READ_ONCE(*pmd_offset(&pud, hva)); 3003 if (pmd_none(pmd) || !pmd_present(pmd)) 3004 goto out; 3005 3006 if (pmd_large(pmd)) 3007 level = PG_LEVEL_2M; 3008 3009 out: 3010 local_irq_restore(flags); 3011 return level; 3012 } 3013 3014 int kvm_mmu_max_mapping_level(struct kvm *kvm, 3015 const struct kvm_memory_slot *slot, gfn_t gfn, 3016 int max_level) 3017 { 3018 struct kvm_lpage_info *linfo; 3019 int host_level; 3020 3021 max_level = min(max_level, max_huge_page_level); 3022 for ( ; max_level > PG_LEVEL_4K; max_level--) { 3023 linfo = lpage_info_slot(gfn, slot, max_level); 3024 if (!linfo->disallow_lpage) 3025 break; 3026 } 3027 3028 if (max_level == PG_LEVEL_4K) 3029 return PG_LEVEL_4K; 3030 3031 host_level = host_pfn_mapping_level(kvm, gfn, slot); 3032 return min(host_level, max_level); 3033 } 3034 3035 void kvm_mmu_hugepage_adjust(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault) 3036 { 3037 struct kvm_memory_slot *slot = fault->slot; 3038 kvm_pfn_t mask; 3039 3040 fault->huge_page_disallowed = fault->exec && fault->nx_huge_page_workaround_enabled; 3041 3042 if (unlikely(fault->max_level == PG_LEVEL_4K)) 3043 return; 3044 3045 if (is_error_noslot_pfn(fault->pfn)) 3046 return; 3047 3048 if (kvm_slot_dirty_track_enabled(slot)) 3049 return; 3050 3051 /* 3052 * Enforce the iTLB multihit workaround after capturing the requested 3053 * level, which will be used to do precise, accurate accounting. 3054 */ 3055 fault->req_level = kvm_mmu_max_mapping_level(vcpu->kvm, slot, 3056 fault->gfn, fault->max_level); 3057 if (fault->req_level == PG_LEVEL_4K || fault->huge_page_disallowed) 3058 return; 3059 3060 /* 3061 * mmu_invalidate_retry() was successful and mmu_lock is held, so 3062 * the pmd can't be split from under us. 3063 */ 3064 fault->goal_level = fault->req_level; 3065 mask = KVM_PAGES_PER_HPAGE(fault->goal_level) - 1; 3066 VM_BUG_ON((fault->gfn & mask) != (fault->pfn & mask)); 3067 fault->pfn &= ~mask; 3068 } 3069 3070 void disallowed_hugepage_adjust(struct kvm_page_fault *fault, u64 spte, int cur_level) 3071 { 3072 if (cur_level > PG_LEVEL_4K && 3073 cur_level == fault->goal_level && 3074 is_shadow_present_pte(spte) && 3075 !is_large_pte(spte)) { 3076 /* 3077 * A small SPTE exists for this pfn, but FNAME(fetch) 3078 * and __direct_map would like to create a large PTE 3079 * instead: just force them to go down another level, 3080 * patching back for them into pfn the next 9 bits of 3081 * the address. 3082 */ 3083 u64 page_mask = KVM_PAGES_PER_HPAGE(cur_level) - 3084 KVM_PAGES_PER_HPAGE(cur_level - 1); 3085 fault->pfn |= fault->gfn & page_mask; 3086 fault->goal_level--; 3087 } 3088 } 3089 3090 static int __direct_map(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault) 3091 { 3092 struct kvm_shadow_walk_iterator it; 3093 struct kvm_mmu_page *sp; 3094 int ret; 3095 gfn_t base_gfn = fault->gfn; 3096 3097 kvm_mmu_hugepage_adjust(vcpu, fault); 3098 3099 trace_kvm_mmu_spte_requested(fault); 3100 for_each_shadow_entry(vcpu, fault->addr, it) { 3101 /* 3102 * We cannot overwrite existing page tables with an NX 3103 * large page, as the leaf could be executable. 3104 */ 3105 if (fault->nx_huge_page_workaround_enabled) 3106 disallowed_hugepage_adjust(fault, *it.sptep, it.level); 3107 3108 base_gfn = fault->gfn & ~(KVM_PAGES_PER_HPAGE(it.level) - 1); 3109 if (it.level == fault->goal_level) 3110 break; 3111 3112 sp = kvm_mmu_get_child_sp(vcpu, it.sptep, base_gfn, true, ACC_ALL); 3113 if (sp == ERR_PTR(-EEXIST)) 3114 continue; 3115 3116 link_shadow_page(vcpu, it.sptep, sp); 3117 if (fault->is_tdp && fault->huge_page_disallowed && 3118 fault->req_level >= it.level) 3119 account_huge_nx_page(vcpu->kvm, sp); 3120 } 3121 3122 if (WARN_ON_ONCE(it.level != fault->goal_level)) 3123 return -EFAULT; 3124 3125 ret = mmu_set_spte(vcpu, fault->slot, it.sptep, ACC_ALL, 3126 base_gfn, fault->pfn, fault); 3127 if (ret == RET_PF_SPURIOUS) 3128 return ret; 3129 3130 direct_pte_prefetch(vcpu, it.sptep); 3131 return ret; 3132 } 3133 3134 static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk) 3135 { 3136 send_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, PAGE_SHIFT, tsk); 3137 } 3138 3139 static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, kvm_pfn_t pfn) 3140 { 3141 /* 3142 * Do not cache the mmio info caused by writing the readonly gfn 3143 * into the spte otherwise read access on readonly gfn also can 3144 * caused mmio page fault and treat it as mmio access. 3145 */ 3146 if (pfn == KVM_PFN_ERR_RO_FAULT) 3147 return RET_PF_EMULATE; 3148 3149 if (pfn == KVM_PFN_ERR_HWPOISON) { 3150 kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current); 3151 return RET_PF_RETRY; 3152 } 3153 3154 return -EFAULT; 3155 } 3156 3157 static int handle_abnormal_pfn(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault, 3158 unsigned int access) 3159 { 3160 /* The pfn is invalid, report the error! */ 3161 if (unlikely(is_error_pfn(fault->pfn))) 3162 return kvm_handle_bad_page(vcpu, fault->gfn, fault->pfn); 3163 3164 if (unlikely(!fault->slot)) { 3165 gva_t gva = fault->is_tdp ? 0 : fault->addr; 3166 3167 vcpu_cache_mmio_info(vcpu, gva, fault->gfn, 3168 access & shadow_mmio_access_mask); 3169 /* 3170 * If MMIO caching is disabled, emulate immediately without 3171 * touching the shadow page tables as attempting to install an 3172 * MMIO SPTE will just be an expensive nop. Do not cache MMIO 3173 * whose gfn is greater than host.MAXPHYADDR, any guest that 3174 * generates such gfns is running nested and is being tricked 3175 * by L0 userspace (you can observe gfn > L1.MAXPHYADDR if 3176 * and only if L1's MAXPHYADDR is inaccurate with respect to 3177 * the hardware's). 3178 */ 3179 if (unlikely(!enable_mmio_caching) || 3180 unlikely(fault->gfn > kvm_mmu_max_gfn())) 3181 return RET_PF_EMULATE; 3182 } 3183 3184 return RET_PF_CONTINUE; 3185 } 3186 3187 static bool page_fault_can_be_fast(struct kvm_page_fault *fault) 3188 { 3189 /* 3190 * Page faults with reserved bits set, i.e. faults on MMIO SPTEs, only 3191 * reach the common page fault handler if the SPTE has an invalid MMIO 3192 * generation number. Refreshing the MMIO generation needs to go down 3193 * the slow path. Note, EPT Misconfigs do NOT set the PRESENT flag! 3194 */ 3195 if (fault->rsvd) 3196 return false; 3197 3198 /* 3199 * #PF can be fast if: 3200 * 3201 * 1. The shadow page table entry is not present and A/D bits are 3202 * disabled _by KVM_, which could mean that the fault is potentially 3203 * caused by access tracking (if enabled). If A/D bits are enabled 3204 * by KVM, but disabled by L1 for L2, KVM is forced to disable A/D 3205 * bits for L2 and employ access tracking, but the fast page fault 3206 * mechanism only supports direct MMUs. 3207 * 2. The shadow page table entry is present, the access is a write, 3208 * and no reserved bits are set (MMIO SPTEs cannot be "fixed"), i.e. 3209 * the fault was caused by a write-protection violation. If the 3210 * SPTE is MMU-writable (determined later), the fault can be fixed 3211 * by setting the Writable bit, which can be done out of mmu_lock. 3212 */ 3213 if (!fault->present) 3214 return !kvm_ad_enabled(); 3215 3216 /* 3217 * Note, instruction fetches and writes are mutually exclusive, ignore 3218 * the "exec" flag. 3219 */ 3220 return fault->write; 3221 } 3222 3223 /* 3224 * Returns true if the SPTE was fixed successfully. Otherwise, 3225 * someone else modified the SPTE from its original value. 3226 */ 3227 static bool 3228 fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault, 3229 u64 *sptep, u64 old_spte, u64 new_spte) 3230 { 3231 /* 3232 * Theoretically we could also set dirty bit (and flush TLB) here in 3233 * order to eliminate unnecessary PML logging. See comments in 3234 * set_spte. But fast_page_fault is very unlikely to happen with PML 3235 * enabled, so we do not do this. This might result in the same GPA 3236 * to be logged in PML buffer again when the write really happens, and 3237 * eventually to be called by mark_page_dirty twice. But it's also no 3238 * harm. This also avoids the TLB flush needed after setting dirty bit 3239 * so non-PML cases won't be impacted. 3240 * 3241 * Compare with set_spte where instead shadow_dirty_mask is set. 3242 */ 3243 if (!try_cmpxchg64(sptep, &old_spte, new_spte)) 3244 return false; 3245 3246 if (is_writable_pte(new_spte) && !is_writable_pte(old_spte)) 3247 mark_page_dirty_in_slot(vcpu->kvm, fault->slot, fault->gfn); 3248 3249 return true; 3250 } 3251 3252 static bool is_access_allowed(struct kvm_page_fault *fault, u64 spte) 3253 { 3254 if (fault->exec) 3255 return is_executable_pte(spte); 3256 3257 if (fault->write) 3258 return is_writable_pte(spte); 3259 3260 /* Fault was on Read access */ 3261 return spte & PT_PRESENT_MASK; 3262 } 3263 3264 /* 3265 * Returns the last level spte pointer of the shadow page walk for the given 3266 * gpa, and sets *spte to the spte value. This spte may be non-preset. If no 3267 * walk could be performed, returns NULL and *spte does not contain valid data. 3268 * 3269 * Contract: 3270 * - Must be called between walk_shadow_page_lockless_{begin,end}. 3271 * - The returned sptep must not be used after walk_shadow_page_lockless_end. 3272 */ 3273 static u64 *fast_pf_get_last_sptep(struct kvm_vcpu *vcpu, gpa_t gpa, u64 *spte) 3274 { 3275 struct kvm_shadow_walk_iterator iterator; 3276 u64 old_spte; 3277 u64 *sptep = NULL; 3278 3279 for_each_shadow_entry_lockless(vcpu, gpa, iterator, old_spte) { 3280 sptep = iterator.sptep; 3281 *spte = old_spte; 3282 } 3283 3284 return sptep; 3285 } 3286 3287 /* 3288 * Returns one of RET_PF_INVALID, RET_PF_FIXED or RET_PF_SPURIOUS. 3289 */ 3290 static int fast_page_fault(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault) 3291 { 3292 struct kvm_mmu_page *sp; 3293 int ret = RET_PF_INVALID; 3294 u64 spte = 0ull; 3295 u64 *sptep = NULL; 3296 uint retry_count = 0; 3297 3298 if (!page_fault_can_be_fast(fault)) 3299 return ret; 3300 3301 walk_shadow_page_lockless_begin(vcpu); 3302 3303 do { 3304 u64 new_spte; 3305 3306 if (is_tdp_mmu(vcpu->arch.mmu)) 3307 sptep = kvm_tdp_mmu_fast_pf_get_last_sptep(vcpu, fault->addr, &spte); 3308 else 3309 sptep = fast_pf_get_last_sptep(vcpu, fault->addr, &spte); 3310 3311 if (!is_shadow_present_pte(spte)) 3312 break; 3313 3314 sp = sptep_to_sp(sptep); 3315 if (!is_last_spte(spte, sp->role.level)) 3316 break; 3317 3318 /* 3319 * Check whether the memory access that caused the fault would 3320 * still cause it if it were to be performed right now. If not, 3321 * then this is a spurious fault caused by TLB lazily flushed, 3322 * or some other CPU has already fixed the PTE after the 3323 * current CPU took the fault. 3324 * 3325 * Need not check the access of upper level table entries since 3326 * they are always ACC_ALL. 3327 */ 3328 if (is_access_allowed(fault, spte)) { 3329 ret = RET_PF_SPURIOUS; 3330 break; 3331 } 3332 3333 new_spte = spte; 3334 3335 /* 3336 * KVM only supports fixing page faults outside of MMU lock for 3337 * direct MMUs, nested MMUs are always indirect, and KVM always 3338 * uses A/D bits for non-nested MMUs. Thus, if A/D bits are 3339 * enabled, the SPTE can't be an access-tracked SPTE. 3340 */ 3341 if (unlikely(!kvm_ad_enabled()) && is_access_track_spte(spte)) 3342 new_spte = restore_acc_track_spte(new_spte); 3343 3344 /* 3345 * To keep things simple, only SPTEs that are MMU-writable can 3346 * be made fully writable outside of mmu_lock, e.g. only SPTEs 3347 * that were write-protected for dirty-logging or access 3348 * tracking are handled here. Don't bother checking if the 3349 * SPTE is writable to prioritize running with A/D bits enabled. 3350 * The is_access_allowed() check above handles the common case 3351 * of the fault being spurious, and the SPTE is known to be 3352 * shadow-present, i.e. except for access tracking restoration 3353 * making the new SPTE writable, the check is wasteful. 3354 */ 3355 if (fault->write && is_mmu_writable_spte(spte)) { 3356 new_spte |= PT_WRITABLE_MASK; 3357 3358 /* 3359 * Do not fix write-permission on the large spte when 3360 * dirty logging is enabled. Since we only dirty the 3361 * first page into the dirty-bitmap in 3362 * fast_pf_fix_direct_spte(), other pages are missed 3363 * if its slot has dirty logging enabled. 3364 * 3365 * Instead, we let the slow page fault path create a 3366 * normal spte to fix the access. 3367 */ 3368 if (sp->role.level > PG_LEVEL_4K && 3369 kvm_slot_dirty_track_enabled(fault->slot)) 3370 break; 3371 } 3372 3373 /* Verify that the fault can be handled in the fast path */ 3374 if (new_spte == spte || 3375 !is_access_allowed(fault, new_spte)) 3376 break; 3377 3378 /* 3379 * Currently, fast page fault only works for direct mapping 3380 * since the gfn is not stable for indirect shadow page. See 3381 * Documentation/virt/kvm/locking.rst to get more detail. 3382 */ 3383 if (fast_pf_fix_direct_spte(vcpu, fault, sptep, spte, new_spte)) { 3384 ret = RET_PF_FIXED; 3385 break; 3386 } 3387 3388 if (++retry_count > 4) { 3389 printk_once(KERN_WARNING 3390 "kvm: Fast #PF retrying more than 4 times.\n"); 3391 break; 3392 } 3393 3394 } while (true); 3395 3396 trace_fast_page_fault(vcpu, fault, sptep, spte, ret); 3397 walk_shadow_page_lockless_end(vcpu); 3398 3399 if (ret != RET_PF_INVALID) 3400 vcpu->stat.pf_fast++; 3401 3402 return ret; 3403 } 3404 3405 static void mmu_free_root_page(struct kvm *kvm, hpa_t *root_hpa, 3406 struct list_head *invalid_list) 3407 { 3408 struct kvm_mmu_page *sp; 3409 3410 if (!VALID_PAGE(*root_hpa)) 3411 return; 3412 3413 sp = to_shadow_page(*root_hpa & SPTE_BASE_ADDR_MASK); 3414 if (WARN_ON(!sp)) 3415 return; 3416 3417 if (is_tdp_mmu_page(sp)) 3418 kvm_tdp_mmu_put_root(kvm, sp, false); 3419 else if (!--sp->root_count && sp->role.invalid) 3420 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list); 3421 3422 *root_hpa = INVALID_PAGE; 3423 } 3424 3425 /* roots_to_free must be some combination of the KVM_MMU_ROOT_* flags */ 3426 void kvm_mmu_free_roots(struct kvm *kvm, struct kvm_mmu *mmu, 3427 ulong roots_to_free) 3428 { 3429 int i; 3430 LIST_HEAD(invalid_list); 3431 bool free_active_root; 3432 3433 BUILD_BUG_ON(KVM_MMU_NUM_PREV_ROOTS >= BITS_PER_LONG); 3434 3435 /* Before acquiring the MMU lock, see if we need to do any real work. */ 3436 free_active_root = (roots_to_free & KVM_MMU_ROOT_CURRENT) 3437 && VALID_PAGE(mmu->root.hpa); 3438 3439 if (!free_active_root) { 3440 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 3441 if ((roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) && 3442 VALID_PAGE(mmu->prev_roots[i].hpa)) 3443 break; 3444 3445 if (i == KVM_MMU_NUM_PREV_ROOTS) 3446 return; 3447 } 3448 3449 write_lock(&kvm->mmu_lock); 3450 3451 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 3452 if (roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) 3453 mmu_free_root_page(kvm, &mmu->prev_roots[i].hpa, 3454 &invalid_list); 3455 3456 if (free_active_root) { 3457 if (to_shadow_page(mmu->root.hpa)) { 3458 mmu_free_root_page(kvm, &mmu->root.hpa, &invalid_list); 3459 } else if (mmu->pae_root) { 3460 for (i = 0; i < 4; ++i) { 3461 if (!IS_VALID_PAE_ROOT(mmu->pae_root[i])) 3462 continue; 3463 3464 mmu_free_root_page(kvm, &mmu->pae_root[i], 3465 &invalid_list); 3466 mmu->pae_root[i] = INVALID_PAE_ROOT; 3467 } 3468 } 3469 mmu->root.hpa = INVALID_PAGE; 3470 mmu->root.pgd = 0; 3471 } 3472 3473 kvm_mmu_commit_zap_page(kvm, &invalid_list); 3474 write_unlock(&kvm->mmu_lock); 3475 } 3476 EXPORT_SYMBOL_GPL(kvm_mmu_free_roots); 3477 3478 void kvm_mmu_free_guest_mode_roots(struct kvm *kvm, struct kvm_mmu *mmu) 3479 { 3480 unsigned long roots_to_free = 0; 3481 hpa_t root_hpa; 3482 int i; 3483 3484 /* 3485 * This should not be called while L2 is active, L2 can't invalidate 3486 * _only_ its own roots, e.g. INVVPID unconditionally exits. 3487 */ 3488 WARN_ON_ONCE(mmu->root_role.guest_mode); 3489 3490 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) { 3491 root_hpa = mmu->prev_roots[i].hpa; 3492 if (!VALID_PAGE(root_hpa)) 3493 continue; 3494 3495 if (!to_shadow_page(root_hpa) || 3496 to_shadow_page(root_hpa)->role.guest_mode) 3497 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i); 3498 } 3499 3500 kvm_mmu_free_roots(kvm, mmu, roots_to_free); 3501 } 3502 EXPORT_SYMBOL_GPL(kvm_mmu_free_guest_mode_roots); 3503 3504 3505 static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn) 3506 { 3507 int ret = 0; 3508 3509 if (!kvm_vcpu_is_visible_gfn(vcpu, root_gfn)) { 3510 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 3511 ret = 1; 3512 } 3513 3514 return ret; 3515 } 3516 3517 static hpa_t mmu_alloc_root(struct kvm_vcpu *vcpu, gfn_t gfn, int quadrant, 3518 u8 level) 3519 { 3520 union kvm_mmu_page_role role = vcpu->arch.mmu->root_role; 3521 struct kvm_mmu_page *sp; 3522 3523 role.level = level; 3524 role.quadrant = quadrant; 3525 3526 WARN_ON_ONCE(quadrant && !role.has_4_byte_gpte); 3527 WARN_ON_ONCE(role.direct && role.has_4_byte_gpte); 3528 3529 sp = kvm_mmu_get_shadow_page(vcpu, gfn, role); 3530 ++sp->root_count; 3531 3532 return __pa(sp->spt); 3533 } 3534 3535 static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu) 3536 { 3537 struct kvm_mmu *mmu = vcpu->arch.mmu; 3538 u8 shadow_root_level = mmu->root_role.level; 3539 hpa_t root; 3540 unsigned i; 3541 int r; 3542 3543 write_lock(&vcpu->kvm->mmu_lock); 3544 r = make_mmu_pages_available(vcpu); 3545 if (r < 0) 3546 goto out_unlock; 3547 3548 if (is_tdp_mmu_enabled(vcpu->kvm)) { 3549 root = kvm_tdp_mmu_get_vcpu_root_hpa(vcpu); 3550 mmu->root.hpa = root; 3551 } else if (shadow_root_level >= PT64_ROOT_4LEVEL) { 3552 root = mmu_alloc_root(vcpu, 0, 0, shadow_root_level); 3553 mmu->root.hpa = root; 3554 } else if (shadow_root_level == PT32E_ROOT_LEVEL) { 3555 if (WARN_ON_ONCE(!mmu->pae_root)) { 3556 r = -EIO; 3557 goto out_unlock; 3558 } 3559 3560 for (i = 0; i < 4; ++i) { 3561 WARN_ON_ONCE(IS_VALID_PAE_ROOT(mmu->pae_root[i])); 3562 3563 root = mmu_alloc_root(vcpu, i << (30 - PAGE_SHIFT), 0, 3564 PT32_ROOT_LEVEL); 3565 mmu->pae_root[i] = root | PT_PRESENT_MASK | 3566 shadow_me_value; 3567 } 3568 mmu->root.hpa = __pa(mmu->pae_root); 3569 } else { 3570 WARN_ONCE(1, "Bad TDP root level = %d\n", shadow_root_level); 3571 r = -EIO; 3572 goto out_unlock; 3573 } 3574 3575 /* root.pgd is ignored for direct MMUs. */ 3576 mmu->root.pgd = 0; 3577 out_unlock: 3578 write_unlock(&vcpu->kvm->mmu_lock); 3579 return r; 3580 } 3581 3582 static int mmu_first_shadow_root_alloc(struct kvm *kvm) 3583 { 3584 struct kvm_memslots *slots; 3585 struct kvm_memory_slot *slot; 3586 int r = 0, i, bkt; 3587 3588 /* 3589 * Check if this is the first shadow root being allocated before 3590 * taking the lock. 3591 */ 3592 if (kvm_shadow_root_allocated(kvm)) 3593 return 0; 3594 3595 mutex_lock(&kvm->slots_arch_lock); 3596 3597 /* Recheck, under the lock, whether this is the first shadow root. */ 3598 if (kvm_shadow_root_allocated(kvm)) 3599 goto out_unlock; 3600 3601 /* 3602 * Check if anything actually needs to be allocated, e.g. all metadata 3603 * will be allocated upfront if TDP is disabled. 3604 */ 3605 if (kvm_memslots_have_rmaps(kvm) && 3606 kvm_page_track_write_tracking_enabled(kvm)) 3607 goto out_success; 3608 3609 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { 3610 slots = __kvm_memslots(kvm, i); 3611 kvm_for_each_memslot(slot, bkt, slots) { 3612 /* 3613 * Both of these functions are no-ops if the target is 3614 * already allocated, so unconditionally calling both 3615 * is safe. Intentionally do NOT free allocations on 3616 * failure to avoid having to track which allocations 3617 * were made now versus when the memslot was created. 3618 * The metadata is guaranteed to be freed when the slot 3619 * is freed, and will be kept/used if userspace retries 3620 * KVM_RUN instead of killing the VM. 3621 */ 3622 r = memslot_rmap_alloc(slot, slot->npages); 3623 if (r) 3624 goto out_unlock; 3625 r = kvm_page_track_write_tracking_alloc(slot); 3626 if (r) 3627 goto out_unlock; 3628 } 3629 } 3630 3631 /* 3632 * Ensure that shadow_root_allocated becomes true strictly after 3633 * all the related pointers are set. 3634 */ 3635 out_success: 3636 smp_store_release(&kvm->arch.shadow_root_allocated, true); 3637 3638 out_unlock: 3639 mutex_unlock(&kvm->slots_arch_lock); 3640 return r; 3641 } 3642 3643 static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu) 3644 { 3645 struct kvm_mmu *mmu = vcpu->arch.mmu; 3646 u64 pdptrs[4], pm_mask; 3647 gfn_t root_gfn, root_pgd; 3648 int quadrant, i, r; 3649 hpa_t root; 3650 3651 root_pgd = mmu->get_guest_pgd(vcpu); 3652 root_gfn = root_pgd >> PAGE_SHIFT; 3653 3654 if (mmu_check_root(vcpu, root_gfn)) 3655 return 1; 3656 3657 /* 3658 * On SVM, reading PDPTRs might access guest memory, which might fault 3659 * and thus might sleep. Grab the PDPTRs before acquiring mmu_lock. 3660 */ 3661 if (mmu->cpu_role.base.level == PT32E_ROOT_LEVEL) { 3662 for (i = 0; i < 4; ++i) { 3663 pdptrs[i] = mmu->get_pdptr(vcpu, i); 3664 if (!(pdptrs[i] & PT_PRESENT_MASK)) 3665 continue; 3666 3667 if (mmu_check_root(vcpu, pdptrs[i] >> PAGE_SHIFT)) 3668 return 1; 3669 } 3670 } 3671 3672 r = mmu_first_shadow_root_alloc(vcpu->kvm); 3673 if (r) 3674 return r; 3675 3676 write_lock(&vcpu->kvm->mmu_lock); 3677 r = make_mmu_pages_available(vcpu); 3678 if (r < 0) 3679 goto out_unlock; 3680 3681 /* 3682 * Do we shadow a long mode page table? If so we need to 3683 * write-protect the guests page table root. 3684 */ 3685 if (mmu->cpu_role.base.level >= PT64_ROOT_4LEVEL) { 3686 root = mmu_alloc_root(vcpu, root_gfn, 0, 3687 mmu->root_role.level); 3688 mmu->root.hpa = root; 3689 goto set_root_pgd; 3690 } 3691 3692 if (WARN_ON_ONCE(!mmu->pae_root)) { 3693 r = -EIO; 3694 goto out_unlock; 3695 } 3696 3697 /* 3698 * We shadow a 32 bit page table. This may be a legacy 2-level 3699 * or a PAE 3-level page table. In either case we need to be aware that 3700 * the shadow page table may be a PAE or a long mode page table. 3701 */ 3702 pm_mask = PT_PRESENT_MASK | shadow_me_value; 3703 if (mmu->root_role.level >= PT64_ROOT_4LEVEL) { 3704 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK; 3705 3706 if (WARN_ON_ONCE(!mmu->pml4_root)) { 3707 r = -EIO; 3708 goto out_unlock; 3709 } 3710 mmu->pml4_root[0] = __pa(mmu->pae_root) | pm_mask; 3711 3712 if (mmu->root_role.level == PT64_ROOT_5LEVEL) { 3713 if (WARN_ON_ONCE(!mmu->pml5_root)) { 3714 r = -EIO; 3715 goto out_unlock; 3716 } 3717 mmu->pml5_root[0] = __pa(mmu->pml4_root) | pm_mask; 3718 } 3719 } 3720 3721 for (i = 0; i < 4; ++i) { 3722 WARN_ON_ONCE(IS_VALID_PAE_ROOT(mmu->pae_root[i])); 3723 3724 if (mmu->cpu_role.base.level == PT32E_ROOT_LEVEL) { 3725 if (!(pdptrs[i] & PT_PRESENT_MASK)) { 3726 mmu->pae_root[i] = INVALID_PAE_ROOT; 3727 continue; 3728 } 3729 root_gfn = pdptrs[i] >> PAGE_SHIFT; 3730 } 3731 3732 /* 3733 * If shadowing 32-bit non-PAE page tables, each PAE page 3734 * directory maps one quarter of the guest's non-PAE page 3735 * directory. Othwerise each PAE page direct shadows one guest 3736 * PAE page directory so that quadrant should be 0. 3737 */ 3738 quadrant = (mmu->cpu_role.base.level == PT32_ROOT_LEVEL) ? i : 0; 3739 3740 root = mmu_alloc_root(vcpu, root_gfn, quadrant, PT32_ROOT_LEVEL); 3741 mmu->pae_root[i] = root | pm_mask; 3742 } 3743 3744 if (mmu->root_role.level == PT64_ROOT_5LEVEL) 3745 mmu->root.hpa = __pa(mmu->pml5_root); 3746 else if (mmu->root_role.level == PT64_ROOT_4LEVEL) 3747 mmu->root.hpa = __pa(mmu->pml4_root); 3748 else 3749 mmu->root.hpa = __pa(mmu->pae_root); 3750 3751 set_root_pgd: 3752 mmu->root.pgd = root_pgd; 3753 out_unlock: 3754 write_unlock(&vcpu->kvm->mmu_lock); 3755 3756 return r; 3757 } 3758 3759 static int mmu_alloc_special_roots(struct kvm_vcpu *vcpu) 3760 { 3761 struct kvm_mmu *mmu = vcpu->arch.mmu; 3762 bool need_pml5 = mmu->root_role.level > PT64_ROOT_4LEVEL; 3763 u64 *pml5_root = NULL; 3764 u64 *pml4_root = NULL; 3765 u64 *pae_root; 3766 3767 /* 3768 * When shadowing 32-bit or PAE NPT with 64-bit NPT, the PML4 and PDP 3769 * tables are allocated and initialized at root creation as there is no 3770 * equivalent level in the guest's NPT to shadow. Allocate the tables 3771 * on demand, as running a 32-bit L1 VMM on 64-bit KVM is very rare. 3772 */ 3773 if (mmu->root_role.direct || 3774 mmu->cpu_role.base.level >= PT64_ROOT_4LEVEL || 3775 mmu->root_role.level < PT64_ROOT_4LEVEL) 3776 return 0; 3777 3778 /* 3779 * NPT, the only paging mode that uses this horror, uses a fixed number 3780 * of levels for the shadow page tables, e.g. all MMUs are 4-level or 3781 * all MMus are 5-level. Thus, this can safely require that pml5_root 3782 * is allocated if the other roots are valid and pml5 is needed, as any 3783 * prior MMU would also have required pml5. 3784 */ 3785 if (mmu->pae_root && mmu->pml4_root && (!need_pml5 || mmu->pml5_root)) 3786 return 0; 3787 3788 /* 3789 * The special roots should always be allocated in concert. Yell and 3790 * bail if KVM ends up in a state where only one of the roots is valid. 3791 */ 3792 if (WARN_ON_ONCE(!tdp_enabled || mmu->pae_root || mmu->pml4_root || 3793 (need_pml5 && mmu->pml5_root))) 3794 return -EIO; 3795 3796 /* 3797 * Unlike 32-bit NPT, the PDP table doesn't need to be in low mem, and 3798 * doesn't need to be decrypted. 3799 */ 3800 pae_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT); 3801 if (!pae_root) 3802 return -ENOMEM; 3803 3804 #ifdef CONFIG_X86_64 3805 pml4_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT); 3806 if (!pml4_root) 3807 goto err_pml4; 3808 3809 if (need_pml5) { 3810 pml5_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT); 3811 if (!pml5_root) 3812 goto err_pml5; 3813 } 3814 #endif 3815 3816 mmu->pae_root = pae_root; 3817 mmu->pml4_root = pml4_root; 3818 mmu->pml5_root = pml5_root; 3819 3820 return 0; 3821 3822 #ifdef CONFIG_X86_64 3823 err_pml5: 3824 free_page((unsigned long)pml4_root); 3825 err_pml4: 3826 free_page((unsigned long)pae_root); 3827 return -ENOMEM; 3828 #endif 3829 } 3830 3831 static bool is_unsync_root(hpa_t root) 3832 { 3833 struct kvm_mmu_page *sp; 3834 3835 if (!VALID_PAGE(root)) 3836 return false; 3837 3838 /* 3839 * The read barrier orders the CPU's read of SPTE.W during the page table 3840 * walk before the reads of sp->unsync/sp->unsync_children here. 3841 * 3842 * Even if another CPU was marking the SP as unsync-ed simultaneously, 3843 * any guest page table changes are not guaranteed to be visible anyway 3844 * until this VCPU issues a TLB flush strictly after those changes are 3845 * made. We only need to ensure that the other CPU sets these flags 3846 * before any actual changes to the page tables are made. The comments 3847 * in mmu_try_to_unsync_pages() describe what could go wrong if this 3848 * requirement isn't satisfied. 3849 */ 3850 smp_rmb(); 3851 sp = to_shadow_page(root); 3852 3853 /* 3854 * PAE roots (somewhat arbitrarily) aren't backed by shadow pages, the 3855 * PDPTEs for a given PAE root need to be synchronized individually. 3856 */ 3857 if (WARN_ON_ONCE(!sp)) 3858 return false; 3859 3860 if (sp->unsync || sp->unsync_children) 3861 return true; 3862 3863 return false; 3864 } 3865 3866 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu) 3867 { 3868 int i; 3869 struct kvm_mmu_page *sp; 3870 3871 if (vcpu->arch.mmu->root_role.direct) 3872 return; 3873 3874 if (!VALID_PAGE(vcpu->arch.mmu->root.hpa)) 3875 return; 3876 3877 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY); 3878 3879 if (vcpu->arch.mmu->cpu_role.base.level >= PT64_ROOT_4LEVEL) { 3880 hpa_t root = vcpu->arch.mmu->root.hpa; 3881 sp = to_shadow_page(root); 3882 3883 if (!is_unsync_root(root)) 3884 return; 3885 3886 write_lock(&vcpu->kvm->mmu_lock); 3887 mmu_sync_children(vcpu, sp, true); 3888 write_unlock(&vcpu->kvm->mmu_lock); 3889 return; 3890 } 3891 3892 write_lock(&vcpu->kvm->mmu_lock); 3893 3894 for (i = 0; i < 4; ++i) { 3895 hpa_t root = vcpu->arch.mmu->pae_root[i]; 3896 3897 if (IS_VALID_PAE_ROOT(root)) { 3898 root &= SPTE_BASE_ADDR_MASK; 3899 sp = to_shadow_page(root); 3900 mmu_sync_children(vcpu, sp, true); 3901 } 3902 } 3903 3904 write_unlock(&vcpu->kvm->mmu_lock); 3905 } 3906 3907 void kvm_mmu_sync_prev_roots(struct kvm_vcpu *vcpu) 3908 { 3909 unsigned long roots_to_free = 0; 3910 int i; 3911 3912 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 3913 if (is_unsync_root(vcpu->arch.mmu->prev_roots[i].hpa)) 3914 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i); 3915 3916 /* sync prev_roots by simply freeing them */ 3917 kvm_mmu_free_roots(vcpu->kvm, vcpu->arch.mmu, roots_to_free); 3918 } 3919 3920 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, 3921 gpa_t vaddr, u64 access, 3922 struct x86_exception *exception) 3923 { 3924 if (exception) 3925 exception->error_code = 0; 3926 return kvm_translate_gpa(vcpu, mmu, vaddr, access, exception); 3927 } 3928 3929 static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct) 3930 { 3931 /* 3932 * A nested guest cannot use the MMIO cache if it is using nested 3933 * page tables, because cr2 is a nGPA while the cache stores GPAs. 3934 */ 3935 if (mmu_is_nested(vcpu)) 3936 return false; 3937 3938 if (direct) 3939 return vcpu_match_mmio_gpa(vcpu, addr); 3940 3941 return vcpu_match_mmio_gva(vcpu, addr); 3942 } 3943 3944 /* 3945 * Return the level of the lowest level SPTE added to sptes. 3946 * That SPTE may be non-present. 3947 * 3948 * Must be called between walk_shadow_page_lockless_{begin,end}. 3949 */ 3950 static int get_walk(struct kvm_vcpu *vcpu, u64 addr, u64 *sptes, int *root_level) 3951 { 3952 struct kvm_shadow_walk_iterator iterator; 3953 int leaf = -1; 3954 u64 spte; 3955 3956 for (shadow_walk_init(&iterator, vcpu, addr), 3957 *root_level = iterator.level; 3958 shadow_walk_okay(&iterator); 3959 __shadow_walk_next(&iterator, spte)) { 3960 leaf = iterator.level; 3961 spte = mmu_spte_get_lockless(iterator.sptep); 3962 3963 sptes[leaf] = spte; 3964 } 3965 3966 return leaf; 3967 } 3968 3969 /* return true if reserved bit(s) are detected on a valid, non-MMIO SPTE. */ 3970 static bool get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep) 3971 { 3972 u64 sptes[PT64_ROOT_MAX_LEVEL + 1]; 3973 struct rsvd_bits_validate *rsvd_check; 3974 int root, leaf, level; 3975 bool reserved = false; 3976 3977 walk_shadow_page_lockless_begin(vcpu); 3978 3979 if (is_tdp_mmu(vcpu->arch.mmu)) 3980 leaf = kvm_tdp_mmu_get_walk(vcpu, addr, sptes, &root); 3981 else 3982 leaf = get_walk(vcpu, addr, sptes, &root); 3983 3984 walk_shadow_page_lockless_end(vcpu); 3985 3986 if (unlikely(leaf < 0)) { 3987 *sptep = 0ull; 3988 return reserved; 3989 } 3990 3991 *sptep = sptes[leaf]; 3992 3993 /* 3994 * Skip reserved bits checks on the terminal leaf if it's not a valid 3995 * SPTE. Note, this also (intentionally) skips MMIO SPTEs, which, by 3996 * design, always have reserved bits set. The purpose of the checks is 3997 * to detect reserved bits on non-MMIO SPTEs. i.e. buggy SPTEs. 3998 */ 3999 if (!is_shadow_present_pte(sptes[leaf])) 4000 leaf++; 4001 4002 rsvd_check = &vcpu->arch.mmu->shadow_zero_check; 4003 4004 for (level = root; level >= leaf; level--) 4005 reserved |= is_rsvd_spte(rsvd_check, sptes[level], level); 4006 4007 if (reserved) { 4008 pr_err("%s: reserved bits set on MMU-present spte, addr 0x%llx, hierarchy:\n", 4009 __func__, addr); 4010 for (level = root; level >= leaf; level--) 4011 pr_err("------ spte = 0x%llx level = %d, rsvd bits = 0x%llx", 4012 sptes[level], level, 4013 get_rsvd_bits(rsvd_check, sptes[level], level)); 4014 } 4015 4016 return reserved; 4017 } 4018 4019 static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct) 4020 { 4021 u64 spte; 4022 bool reserved; 4023 4024 if (mmio_info_in_cache(vcpu, addr, direct)) 4025 return RET_PF_EMULATE; 4026 4027 reserved = get_mmio_spte(vcpu, addr, &spte); 4028 if (WARN_ON(reserved)) 4029 return -EINVAL; 4030 4031 if (is_mmio_spte(spte)) { 4032 gfn_t gfn = get_mmio_spte_gfn(spte); 4033 unsigned int access = get_mmio_spte_access(spte); 4034 4035 if (!check_mmio_spte(vcpu, spte)) 4036 return RET_PF_INVALID; 4037 4038 if (direct) 4039 addr = 0; 4040 4041 trace_handle_mmio_page_fault(addr, gfn, access); 4042 vcpu_cache_mmio_info(vcpu, addr, gfn, access); 4043 return RET_PF_EMULATE; 4044 } 4045 4046 /* 4047 * If the page table is zapped by other cpus, let CPU fault again on 4048 * the address. 4049 */ 4050 return RET_PF_RETRY; 4051 } 4052 4053 static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu, 4054 struct kvm_page_fault *fault) 4055 { 4056 if (unlikely(fault->rsvd)) 4057 return false; 4058 4059 if (!fault->present || !fault->write) 4060 return false; 4061 4062 /* 4063 * guest is writing the page which is write tracked which can 4064 * not be fixed by page fault handler. 4065 */ 4066 if (kvm_slot_page_track_is_active(vcpu->kvm, fault->slot, fault->gfn, KVM_PAGE_TRACK_WRITE)) 4067 return true; 4068 4069 return false; 4070 } 4071 4072 static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr) 4073 { 4074 struct kvm_shadow_walk_iterator iterator; 4075 u64 spte; 4076 4077 walk_shadow_page_lockless_begin(vcpu); 4078 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) 4079 clear_sp_write_flooding_count(iterator.sptep); 4080 walk_shadow_page_lockless_end(vcpu); 4081 } 4082 4083 static u32 alloc_apf_token(struct kvm_vcpu *vcpu) 4084 { 4085 /* make sure the token value is not 0 */ 4086 u32 id = vcpu->arch.apf.id; 4087 4088 if (id << 12 == 0) 4089 vcpu->arch.apf.id = 1; 4090 4091 return (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id; 4092 } 4093 4094 static bool kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, 4095 gfn_t gfn) 4096 { 4097 struct kvm_arch_async_pf arch; 4098 4099 arch.token = alloc_apf_token(vcpu); 4100 arch.gfn = gfn; 4101 arch.direct_map = vcpu->arch.mmu->root_role.direct; 4102 arch.cr3 = vcpu->arch.mmu->get_guest_pgd(vcpu); 4103 4104 return kvm_setup_async_pf(vcpu, cr2_or_gpa, 4105 kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch); 4106 } 4107 4108 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work) 4109 { 4110 int r; 4111 4112 if ((vcpu->arch.mmu->root_role.direct != work->arch.direct_map) || 4113 work->wakeup_all) 4114 return; 4115 4116 r = kvm_mmu_reload(vcpu); 4117 if (unlikely(r)) 4118 return; 4119 4120 if (!vcpu->arch.mmu->root_role.direct && 4121 work->arch.cr3 != vcpu->arch.mmu->get_guest_pgd(vcpu)) 4122 return; 4123 4124 kvm_mmu_do_page_fault(vcpu, work->cr2_or_gpa, 0, true); 4125 } 4126 4127 static int kvm_faultin_pfn(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault) 4128 { 4129 struct kvm_memory_slot *slot = fault->slot; 4130 bool async; 4131 4132 /* 4133 * Retry the page fault if the gfn hit a memslot that is being deleted 4134 * or moved. This ensures any existing SPTEs for the old memslot will 4135 * be zapped before KVM inserts a new MMIO SPTE for the gfn. 4136 */ 4137 if (slot && (slot->flags & KVM_MEMSLOT_INVALID)) 4138 return RET_PF_RETRY; 4139 4140 if (!kvm_is_visible_memslot(slot)) { 4141 /* Don't expose private memslots to L2. */ 4142 if (is_guest_mode(vcpu)) { 4143 fault->slot = NULL; 4144 fault->pfn = KVM_PFN_NOSLOT; 4145 fault->map_writable = false; 4146 return RET_PF_CONTINUE; 4147 } 4148 /* 4149 * If the APIC access page exists but is disabled, go directly 4150 * to emulation without caching the MMIO access or creating a 4151 * MMIO SPTE. That way the cache doesn't need to be purged 4152 * when the AVIC is re-enabled. 4153 */ 4154 if (slot && slot->id == APIC_ACCESS_PAGE_PRIVATE_MEMSLOT && 4155 !kvm_apicv_activated(vcpu->kvm)) 4156 return RET_PF_EMULATE; 4157 } 4158 4159 async = false; 4160 fault->pfn = __gfn_to_pfn_memslot(slot, fault->gfn, false, &async, 4161 fault->write, &fault->map_writable, 4162 &fault->hva); 4163 if (!async) 4164 return RET_PF_CONTINUE; /* *pfn has correct page already */ 4165 4166 if (!fault->prefetch && kvm_can_do_async_pf(vcpu)) { 4167 trace_kvm_try_async_get_page(fault->addr, fault->gfn); 4168 if (kvm_find_async_pf_gfn(vcpu, fault->gfn)) { 4169 trace_kvm_async_pf_repeated_fault(fault->addr, fault->gfn); 4170 kvm_make_request(KVM_REQ_APF_HALT, vcpu); 4171 return RET_PF_RETRY; 4172 } else if (kvm_arch_setup_async_pf(vcpu, fault->addr, fault->gfn)) { 4173 return RET_PF_RETRY; 4174 } 4175 } 4176 4177 fault->pfn = __gfn_to_pfn_memslot(slot, fault->gfn, false, NULL, 4178 fault->write, &fault->map_writable, 4179 &fault->hva); 4180 return RET_PF_CONTINUE; 4181 } 4182 4183 /* 4184 * Returns true if the page fault is stale and needs to be retried, i.e. if the 4185 * root was invalidated by a memslot update or a relevant mmu_notifier fired. 4186 */ 4187 static bool is_page_fault_stale(struct kvm_vcpu *vcpu, 4188 struct kvm_page_fault *fault, int mmu_seq) 4189 { 4190 struct kvm_mmu_page *sp = to_shadow_page(vcpu->arch.mmu->root.hpa); 4191 4192 /* Special roots, e.g. pae_root, are not backed by shadow pages. */ 4193 if (sp && is_obsolete_sp(vcpu->kvm, sp)) 4194 return true; 4195 4196 /* 4197 * Roots without an associated shadow page are considered invalid if 4198 * there is a pending request to free obsolete roots. The request is 4199 * only a hint that the current root _may_ be obsolete and needs to be 4200 * reloaded, e.g. if the guest frees a PGD that KVM is tracking as a 4201 * previous root, then __kvm_mmu_prepare_zap_page() signals all vCPUs 4202 * to reload even if no vCPU is actively using the root. 4203 */ 4204 if (!sp && kvm_test_request(KVM_REQ_MMU_FREE_OBSOLETE_ROOTS, vcpu)) 4205 return true; 4206 4207 return fault->slot && 4208 mmu_invalidate_retry_hva(vcpu->kvm, mmu_seq, fault->hva); 4209 } 4210 4211 static int direct_page_fault(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault) 4212 { 4213 bool is_tdp_mmu_fault = is_tdp_mmu(vcpu->arch.mmu); 4214 4215 unsigned long mmu_seq; 4216 int r; 4217 4218 fault->gfn = fault->addr >> PAGE_SHIFT; 4219 fault->slot = kvm_vcpu_gfn_to_memslot(vcpu, fault->gfn); 4220 4221 if (page_fault_handle_page_track(vcpu, fault)) 4222 return RET_PF_EMULATE; 4223 4224 r = fast_page_fault(vcpu, fault); 4225 if (r != RET_PF_INVALID) 4226 return r; 4227 4228 r = mmu_topup_memory_caches(vcpu, false); 4229 if (r) 4230 return r; 4231 4232 mmu_seq = vcpu->kvm->mmu_invalidate_seq; 4233 smp_rmb(); 4234 4235 r = kvm_faultin_pfn(vcpu, fault); 4236 if (r != RET_PF_CONTINUE) 4237 return r; 4238 4239 r = handle_abnormal_pfn(vcpu, fault, ACC_ALL); 4240 if (r != RET_PF_CONTINUE) 4241 return r; 4242 4243 r = RET_PF_RETRY; 4244 4245 if (is_tdp_mmu_fault) 4246 read_lock(&vcpu->kvm->mmu_lock); 4247 else 4248 write_lock(&vcpu->kvm->mmu_lock); 4249 4250 if (is_page_fault_stale(vcpu, fault, mmu_seq)) 4251 goto out_unlock; 4252 4253 r = make_mmu_pages_available(vcpu); 4254 if (r) 4255 goto out_unlock; 4256 4257 if (is_tdp_mmu_fault) 4258 r = kvm_tdp_mmu_map(vcpu, fault); 4259 else 4260 r = __direct_map(vcpu, fault); 4261 4262 out_unlock: 4263 if (is_tdp_mmu_fault) 4264 read_unlock(&vcpu->kvm->mmu_lock); 4265 else 4266 write_unlock(&vcpu->kvm->mmu_lock); 4267 kvm_release_pfn_clean(fault->pfn); 4268 return r; 4269 } 4270 4271 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, 4272 struct kvm_page_fault *fault) 4273 { 4274 pgprintk("%s: gva %lx error %x\n", __func__, fault->addr, fault->error_code); 4275 4276 /* This path builds a PAE pagetable, we can map 2mb pages at maximum. */ 4277 fault->max_level = PG_LEVEL_2M; 4278 return direct_page_fault(vcpu, fault); 4279 } 4280 4281 int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code, 4282 u64 fault_address, char *insn, int insn_len) 4283 { 4284 int r = 1; 4285 u32 flags = vcpu->arch.apf.host_apf_flags; 4286 4287 #ifndef CONFIG_X86_64 4288 /* A 64-bit CR2 should be impossible on 32-bit KVM. */ 4289 if (WARN_ON_ONCE(fault_address >> 32)) 4290 return -EFAULT; 4291 #endif 4292 4293 vcpu->arch.l1tf_flush_l1d = true; 4294 if (!flags) { 4295 trace_kvm_page_fault(fault_address, error_code); 4296 4297 if (kvm_event_needs_reinjection(vcpu)) 4298 kvm_mmu_unprotect_page_virt(vcpu, fault_address); 4299 r = kvm_mmu_page_fault(vcpu, fault_address, error_code, insn, 4300 insn_len); 4301 } else if (flags & KVM_PV_REASON_PAGE_NOT_PRESENT) { 4302 vcpu->arch.apf.host_apf_flags = 0; 4303 local_irq_disable(); 4304 kvm_async_pf_task_wait_schedule(fault_address); 4305 local_irq_enable(); 4306 } else { 4307 WARN_ONCE(1, "Unexpected host async PF flags: %x\n", flags); 4308 } 4309 4310 return r; 4311 } 4312 EXPORT_SYMBOL_GPL(kvm_handle_page_fault); 4313 4314 int kvm_tdp_page_fault(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault) 4315 { 4316 /* 4317 * If the guest's MTRRs may be used to compute the "real" memtype, 4318 * restrict the mapping level to ensure KVM uses a consistent memtype 4319 * across the entire mapping. If the host MTRRs are ignored by TDP 4320 * (shadow_memtype_mask is non-zero), and the VM has non-coherent DMA 4321 * (DMA doesn't snoop CPU caches), KVM's ABI is to honor the memtype 4322 * from the guest's MTRRs so that guest accesses to memory that is 4323 * DMA'd aren't cached against the guest's wishes. 4324 * 4325 * Note, KVM may still ultimately ignore guest MTRRs for certain PFNs, 4326 * e.g. KVM will force UC memtype for host MMIO. 4327 */ 4328 if (shadow_memtype_mask && kvm_arch_has_noncoherent_dma(vcpu->kvm)) { 4329 for ( ; fault->max_level > PG_LEVEL_4K; --fault->max_level) { 4330 int page_num = KVM_PAGES_PER_HPAGE(fault->max_level); 4331 gfn_t base = (fault->addr >> PAGE_SHIFT) & ~(page_num - 1); 4332 4333 if (kvm_mtrr_check_gfn_range_consistency(vcpu, base, page_num)) 4334 break; 4335 } 4336 } 4337 4338 return direct_page_fault(vcpu, fault); 4339 } 4340 4341 static void nonpaging_init_context(struct kvm_mmu *context) 4342 { 4343 context->page_fault = nonpaging_page_fault; 4344 context->gva_to_gpa = nonpaging_gva_to_gpa; 4345 context->sync_page = nonpaging_sync_page; 4346 context->invlpg = NULL; 4347 } 4348 4349 static inline bool is_root_usable(struct kvm_mmu_root_info *root, gpa_t pgd, 4350 union kvm_mmu_page_role role) 4351 { 4352 return (role.direct || pgd == root->pgd) && 4353 VALID_PAGE(root->hpa) && 4354 role.word == to_shadow_page(root->hpa)->role.word; 4355 } 4356 4357 /* 4358 * Find out if a previously cached root matching the new pgd/role is available, 4359 * and insert the current root as the MRU in the cache. 4360 * If a matching root is found, it is assigned to kvm_mmu->root and 4361 * true is returned. 4362 * If no match is found, kvm_mmu->root is left invalid, the LRU root is 4363 * evicted to make room for the current root, and false is returned. 4364 */ 4365 static bool cached_root_find_and_keep_current(struct kvm *kvm, struct kvm_mmu *mmu, 4366 gpa_t new_pgd, 4367 union kvm_mmu_page_role new_role) 4368 { 4369 uint i; 4370 4371 if (is_root_usable(&mmu->root, new_pgd, new_role)) 4372 return true; 4373 4374 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) { 4375 /* 4376 * The swaps end up rotating the cache like this: 4377 * C 0 1 2 3 (on entry to the function) 4378 * 0 C 1 2 3 4379 * 1 C 0 2 3 4380 * 2 C 0 1 3 4381 * 3 C 0 1 2 (on exit from the loop) 4382 */ 4383 swap(mmu->root, mmu->prev_roots[i]); 4384 if (is_root_usable(&mmu->root, new_pgd, new_role)) 4385 return true; 4386 } 4387 4388 kvm_mmu_free_roots(kvm, mmu, KVM_MMU_ROOT_CURRENT); 4389 return false; 4390 } 4391 4392 /* 4393 * Find out if a previously cached root matching the new pgd/role is available. 4394 * On entry, mmu->root is invalid. 4395 * If a matching root is found, it is assigned to kvm_mmu->root, the LRU entry 4396 * of the cache becomes invalid, and true is returned. 4397 * If no match is found, kvm_mmu->root is left invalid and false is returned. 4398 */ 4399 static bool cached_root_find_without_current(struct kvm *kvm, struct kvm_mmu *mmu, 4400 gpa_t new_pgd, 4401 union kvm_mmu_page_role new_role) 4402 { 4403 uint i; 4404 4405 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 4406 if (is_root_usable(&mmu->prev_roots[i], new_pgd, new_role)) 4407 goto hit; 4408 4409 return false; 4410 4411 hit: 4412 swap(mmu->root, mmu->prev_roots[i]); 4413 /* Bubble up the remaining roots. */ 4414 for (; i < KVM_MMU_NUM_PREV_ROOTS - 1; i++) 4415 mmu->prev_roots[i] = mmu->prev_roots[i + 1]; 4416 mmu->prev_roots[i].hpa = INVALID_PAGE; 4417 return true; 4418 } 4419 4420 static bool fast_pgd_switch(struct kvm *kvm, struct kvm_mmu *mmu, 4421 gpa_t new_pgd, union kvm_mmu_page_role new_role) 4422 { 4423 /* 4424 * For now, limit the caching to 64-bit hosts+VMs in order to avoid 4425 * having to deal with PDPTEs. We may add support for 32-bit hosts/VMs 4426 * later if necessary. 4427 */ 4428 if (VALID_PAGE(mmu->root.hpa) && !to_shadow_page(mmu->root.hpa)) 4429 kvm_mmu_free_roots(kvm, mmu, KVM_MMU_ROOT_CURRENT); 4430 4431 if (VALID_PAGE(mmu->root.hpa)) 4432 return cached_root_find_and_keep_current(kvm, mmu, new_pgd, new_role); 4433 else 4434 return cached_root_find_without_current(kvm, mmu, new_pgd, new_role); 4435 } 4436 4437 void kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd) 4438 { 4439 struct kvm_mmu *mmu = vcpu->arch.mmu; 4440 union kvm_mmu_page_role new_role = mmu->root_role; 4441 4442 if (!fast_pgd_switch(vcpu->kvm, mmu, new_pgd, new_role)) { 4443 /* kvm_mmu_ensure_valid_pgd will set up a new root. */ 4444 return; 4445 } 4446 4447 /* 4448 * It's possible that the cached previous root page is obsolete because 4449 * of a change in the MMU generation number. However, changing the 4450 * generation number is accompanied by KVM_REQ_MMU_FREE_OBSOLETE_ROOTS, 4451 * which will free the root set here and allocate a new one. 4452 */ 4453 kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu); 4454 4455 if (force_flush_and_sync_on_reuse) { 4456 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu); 4457 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 4458 } 4459 4460 /* 4461 * The last MMIO access's GVA and GPA are cached in the VCPU. When 4462 * switching to a new CR3, that GVA->GPA mapping may no longer be 4463 * valid. So clear any cached MMIO info even when we don't need to sync 4464 * the shadow page tables. 4465 */ 4466 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY); 4467 4468 /* 4469 * If this is a direct root page, it doesn't have a write flooding 4470 * count. Otherwise, clear the write flooding count. 4471 */ 4472 if (!new_role.direct) 4473 __clear_sp_write_flooding_count( 4474 to_shadow_page(vcpu->arch.mmu->root.hpa)); 4475 } 4476 EXPORT_SYMBOL_GPL(kvm_mmu_new_pgd); 4477 4478 static unsigned long get_cr3(struct kvm_vcpu *vcpu) 4479 { 4480 return kvm_read_cr3(vcpu); 4481 } 4482 4483 static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn, 4484 unsigned int access) 4485 { 4486 if (unlikely(is_mmio_spte(*sptep))) { 4487 if (gfn != get_mmio_spte_gfn(*sptep)) { 4488 mmu_spte_clear_no_track(sptep); 4489 return true; 4490 } 4491 4492 mark_mmio_spte(vcpu, sptep, gfn, access); 4493 return true; 4494 } 4495 4496 return false; 4497 } 4498 4499 #define PTTYPE_EPT 18 /* arbitrary */ 4500 #define PTTYPE PTTYPE_EPT 4501 #include "paging_tmpl.h" 4502 #undef PTTYPE 4503 4504 #define PTTYPE 64 4505 #include "paging_tmpl.h" 4506 #undef PTTYPE 4507 4508 #define PTTYPE 32 4509 #include "paging_tmpl.h" 4510 #undef PTTYPE 4511 4512 static void 4513 __reset_rsvds_bits_mask(struct rsvd_bits_validate *rsvd_check, 4514 u64 pa_bits_rsvd, int level, bool nx, bool gbpages, 4515 bool pse, bool amd) 4516 { 4517 u64 gbpages_bit_rsvd = 0; 4518 u64 nonleaf_bit8_rsvd = 0; 4519 u64 high_bits_rsvd; 4520 4521 rsvd_check->bad_mt_xwr = 0; 4522 4523 if (!gbpages) 4524 gbpages_bit_rsvd = rsvd_bits(7, 7); 4525 4526 if (level == PT32E_ROOT_LEVEL) 4527 high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 62); 4528 else 4529 high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 51); 4530 4531 /* Note, NX doesn't exist in PDPTEs, this is handled below. */ 4532 if (!nx) 4533 high_bits_rsvd |= rsvd_bits(63, 63); 4534 4535 /* 4536 * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for 4537 * leaf entries) on AMD CPUs only. 4538 */ 4539 if (amd) 4540 nonleaf_bit8_rsvd = rsvd_bits(8, 8); 4541 4542 switch (level) { 4543 case PT32_ROOT_LEVEL: 4544 /* no rsvd bits for 2 level 4K page table entries */ 4545 rsvd_check->rsvd_bits_mask[0][1] = 0; 4546 rsvd_check->rsvd_bits_mask[0][0] = 0; 4547 rsvd_check->rsvd_bits_mask[1][0] = 4548 rsvd_check->rsvd_bits_mask[0][0]; 4549 4550 if (!pse) { 4551 rsvd_check->rsvd_bits_mask[1][1] = 0; 4552 break; 4553 } 4554 4555 if (is_cpuid_PSE36()) 4556 /* 36bits PSE 4MB page */ 4557 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21); 4558 else 4559 /* 32 bits PSE 4MB page */ 4560 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21); 4561 break; 4562 case PT32E_ROOT_LEVEL: 4563 rsvd_check->rsvd_bits_mask[0][2] = rsvd_bits(63, 63) | 4564 high_bits_rsvd | 4565 rsvd_bits(5, 8) | 4566 rsvd_bits(1, 2); /* PDPTE */ 4567 rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd; /* PDE */ 4568 rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd; /* PTE */ 4569 rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd | 4570 rsvd_bits(13, 20); /* large page */ 4571 rsvd_check->rsvd_bits_mask[1][0] = 4572 rsvd_check->rsvd_bits_mask[0][0]; 4573 break; 4574 case PT64_ROOT_5LEVEL: 4575 rsvd_check->rsvd_bits_mask[0][4] = high_bits_rsvd | 4576 nonleaf_bit8_rsvd | 4577 rsvd_bits(7, 7); 4578 rsvd_check->rsvd_bits_mask[1][4] = 4579 rsvd_check->rsvd_bits_mask[0][4]; 4580 fallthrough; 4581 case PT64_ROOT_4LEVEL: 4582 rsvd_check->rsvd_bits_mask[0][3] = high_bits_rsvd | 4583 nonleaf_bit8_rsvd | 4584 rsvd_bits(7, 7); 4585 rsvd_check->rsvd_bits_mask[0][2] = high_bits_rsvd | 4586 gbpages_bit_rsvd; 4587 rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd; 4588 rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd; 4589 rsvd_check->rsvd_bits_mask[1][3] = 4590 rsvd_check->rsvd_bits_mask[0][3]; 4591 rsvd_check->rsvd_bits_mask[1][2] = high_bits_rsvd | 4592 gbpages_bit_rsvd | 4593 rsvd_bits(13, 29); 4594 rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd | 4595 rsvd_bits(13, 20); /* large page */ 4596 rsvd_check->rsvd_bits_mask[1][0] = 4597 rsvd_check->rsvd_bits_mask[0][0]; 4598 break; 4599 } 4600 } 4601 4602 static bool guest_can_use_gbpages(struct kvm_vcpu *vcpu) 4603 { 4604 /* 4605 * If TDP is enabled, let the guest use GBPAGES if they're supported in 4606 * hardware. The hardware page walker doesn't let KVM disable GBPAGES, 4607 * i.e. won't treat them as reserved, and KVM doesn't redo the GVA->GPA 4608 * walk for performance and complexity reasons. Not to mention KVM 4609 * _can't_ solve the problem because GVA->GPA walks aren't visible to 4610 * KVM once a TDP translation is installed. Mimic hardware behavior so 4611 * that KVM's is at least consistent, i.e. doesn't randomly inject #PF. 4612 */ 4613 return tdp_enabled ? boot_cpu_has(X86_FEATURE_GBPAGES) : 4614 guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES); 4615 } 4616 4617 static void reset_guest_rsvds_bits_mask(struct kvm_vcpu *vcpu, 4618 struct kvm_mmu *context) 4619 { 4620 __reset_rsvds_bits_mask(&context->guest_rsvd_check, 4621 vcpu->arch.reserved_gpa_bits, 4622 context->cpu_role.base.level, is_efer_nx(context), 4623 guest_can_use_gbpages(vcpu), 4624 is_cr4_pse(context), 4625 guest_cpuid_is_amd_or_hygon(vcpu)); 4626 } 4627 4628 static void 4629 __reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check, 4630 u64 pa_bits_rsvd, bool execonly, int huge_page_level) 4631 { 4632 u64 high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 51); 4633 u64 large_1g_rsvd = 0, large_2m_rsvd = 0; 4634 u64 bad_mt_xwr; 4635 4636 if (huge_page_level < PG_LEVEL_1G) 4637 large_1g_rsvd = rsvd_bits(7, 7); 4638 if (huge_page_level < PG_LEVEL_2M) 4639 large_2m_rsvd = rsvd_bits(7, 7); 4640 4641 rsvd_check->rsvd_bits_mask[0][4] = high_bits_rsvd | rsvd_bits(3, 7); 4642 rsvd_check->rsvd_bits_mask[0][3] = high_bits_rsvd | rsvd_bits(3, 7); 4643 rsvd_check->rsvd_bits_mask[0][2] = high_bits_rsvd | rsvd_bits(3, 6) | large_1g_rsvd; 4644 rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd | rsvd_bits(3, 6) | large_2m_rsvd; 4645 rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd; 4646 4647 /* large page */ 4648 rsvd_check->rsvd_bits_mask[1][4] = rsvd_check->rsvd_bits_mask[0][4]; 4649 rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3]; 4650 rsvd_check->rsvd_bits_mask[1][2] = high_bits_rsvd | rsvd_bits(12, 29) | large_1g_rsvd; 4651 rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd | rsvd_bits(12, 20) | large_2m_rsvd; 4652 rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0]; 4653 4654 bad_mt_xwr = 0xFFull << (2 * 8); /* bits 3..5 must not be 2 */ 4655 bad_mt_xwr |= 0xFFull << (3 * 8); /* bits 3..5 must not be 3 */ 4656 bad_mt_xwr |= 0xFFull << (7 * 8); /* bits 3..5 must not be 7 */ 4657 bad_mt_xwr |= REPEAT_BYTE(1ull << 2); /* bits 0..2 must not be 010 */ 4658 bad_mt_xwr |= REPEAT_BYTE(1ull << 6); /* bits 0..2 must not be 110 */ 4659 if (!execonly) { 4660 /* bits 0..2 must not be 100 unless VMX capabilities allow it */ 4661 bad_mt_xwr |= REPEAT_BYTE(1ull << 4); 4662 } 4663 rsvd_check->bad_mt_xwr = bad_mt_xwr; 4664 } 4665 4666 static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu, 4667 struct kvm_mmu *context, bool execonly, int huge_page_level) 4668 { 4669 __reset_rsvds_bits_mask_ept(&context->guest_rsvd_check, 4670 vcpu->arch.reserved_gpa_bits, execonly, 4671 huge_page_level); 4672 } 4673 4674 static inline u64 reserved_hpa_bits(void) 4675 { 4676 return rsvd_bits(shadow_phys_bits, 63); 4677 } 4678 4679 /* 4680 * the page table on host is the shadow page table for the page 4681 * table in guest or amd nested guest, its mmu features completely 4682 * follow the features in guest. 4683 */ 4684 static void reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, 4685 struct kvm_mmu *context) 4686 { 4687 /* @amd adds a check on bit of SPTEs, which KVM shouldn't use anyways. */ 4688 bool is_amd = true; 4689 /* KVM doesn't use 2-level page tables for the shadow MMU. */ 4690 bool is_pse = false; 4691 struct rsvd_bits_validate *shadow_zero_check; 4692 int i; 4693 4694 WARN_ON_ONCE(context->root_role.level < PT32E_ROOT_LEVEL); 4695 4696 shadow_zero_check = &context->shadow_zero_check; 4697 __reset_rsvds_bits_mask(shadow_zero_check, reserved_hpa_bits(), 4698 context->root_role.level, 4699 context->root_role.efer_nx, 4700 guest_can_use_gbpages(vcpu), is_pse, is_amd); 4701 4702 if (!shadow_me_mask) 4703 return; 4704 4705 for (i = context->root_role.level; --i >= 0;) { 4706 /* 4707 * So far shadow_me_value is a constant during KVM's life 4708 * time. Bits in shadow_me_value are allowed to be set. 4709 * Bits in shadow_me_mask but not in shadow_me_value are 4710 * not allowed to be set. 4711 */ 4712 shadow_zero_check->rsvd_bits_mask[0][i] |= shadow_me_mask; 4713 shadow_zero_check->rsvd_bits_mask[1][i] |= shadow_me_mask; 4714 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_value; 4715 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_value; 4716 } 4717 4718 } 4719 4720 static inline bool boot_cpu_is_amd(void) 4721 { 4722 WARN_ON_ONCE(!tdp_enabled); 4723 return shadow_x_mask == 0; 4724 } 4725 4726 /* 4727 * the direct page table on host, use as much mmu features as 4728 * possible, however, kvm currently does not do execution-protection. 4729 */ 4730 static void 4731 reset_tdp_shadow_zero_bits_mask(struct kvm_mmu *context) 4732 { 4733 struct rsvd_bits_validate *shadow_zero_check; 4734 int i; 4735 4736 shadow_zero_check = &context->shadow_zero_check; 4737 4738 if (boot_cpu_is_amd()) 4739 __reset_rsvds_bits_mask(shadow_zero_check, reserved_hpa_bits(), 4740 context->root_role.level, true, 4741 boot_cpu_has(X86_FEATURE_GBPAGES), 4742 false, true); 4743 else 4744 __reset_rsvds_bits_mask_ept(shadow_zero_check, 4745 reserved_hpa_bits(), false, 4746 max_huge_page_level); 4747 4748 if (!shadow_me_mask) 4749 return; 4750 4751 for (i = context->root_role.level; --i >= 0;) { 4752 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask; 4753 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask; 4754 } 4755 } 4756 4757 /* 4758 * as the comments in reset_shadow_zero_bits_mask() except it 4759 * is the shadow page table for intel nested guest. 4760 */ 4761 static void 4762 reset_ept_shadow_zero_bits_mask(struct kvm_mmu *context, bool execonly) 4763 { 4764 __reset_rsvds_bits_mask_ept(&context->shadow_zero_check, 4765 reserved_hpa_bits(), execonly, 4766 max_huge_page_level); 4767 } 4768 4769 #define BYTE_MASK(access) \ 4770 ((1 & (access) ? 2 : 0) | \ 4771 (2 & (access) ? 4 : 0) | \ 4772 (3 & (access) ? 8 : 0) | \ 4773 (4 & (access) ? 16 : 0) | \ 4774 (5 & (access) ? 32 : 0) | \ 4775 (6 & (access) ? 64 : 0) | \ 4776 (7 & (access) ? 128 : 0)) 4777 4778 4779 static void update_permission_bitmask(struct kvm_mmu *mmu, bool ept) 4780 { 4781 unsigned byte; 4782 4783 const u8 x = BYTE_MASK(ACC_EXEC_MASK); 4784 const u8 w = BYTE_MASK(ACC_WRITE_MASK); 4785 const u8 u = BYTE_MASK(ACC_USER_MASK); 4786 4787 bool cr4_smep = is_cr4_smep(mmu); 4788 bool cr4_smap = is_cr4_smap(mmu); 4789 bool cr0_wp = is_cr0_wp(mmu); 4790 bool efer_nx = is_efer_nx(mmu); 4791 4792 for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) { 4793 unsigned pfec = byte << 1; 4794 4795 /* 4796 * Each "*f" variable has a 1 bit for each UWX value 4797 * that causes a fault with the given PFEC. 4798 */ 4799 4800 /* Faults from writes to non-writable pages */ 4801 u8 wf = (pfec & PFERR_WRITE_MASK) ? (u8)~w : 0; 4802 /* Faults from user mode accesses to supervisor pages */ 4803 u8 uf = (pfec & PFERR_USER_MASK) ? (u8)~u : 0; 4804 /* Faults from fetches of non-executable pages*/ 4805 u8 ff = (pfec & PFERR_FETCH_MASK) ? (u8)~x : 0; 4806 /* Faults from kernel mode fetches of user pages */ 4807 u8 smepf = 0; 4808 /* Faults from kernel mode accesses of user pages */ 4809 u8 smapf = 0; 4810 4811 if (!ept) { 4812 /* Faults from kernel mode accesses to user pages */ 4813 u8 kf = (pfec & PFERR_USER_MASK) ? 0 : u; 4814 4815 /* Not really needed: !nx will cause pte.nx to fault */ 4816 if (!efer_nx) 4817 ff = 0; 4818 4819 /* Allow supervisor writes if !cr0.wp */ 4820 if (!cr0_wp) 4821 wf = (pfec & PFERR_USER_MASK) ? wf : 0; 4822 4823 /* Disallow supervisor fetches of user code if cr4.smep */ 4824 if (cr4_smep) 4825 smepf = (pfec & PFERR_FETCH_MASK) ? kf : 0; 4826 4827 /* 4828 * SMAP:kernel-mode data accesses from user-mode 4829 * mappings should fault. A fault is considered 4830 * as a SMAP violation if all of the following 4831 * conditions are true: 4832 * - X86_CR4_SMAP is set in CR4 4833 * - A user page is accessed 4834 * - The access is not a fetch 4835 * - The access is supervisor mode 4836 * - If implicit supervisor access or X86_EFLAGS_AC is clear 4837 * 4838 * Here, we cover the first four conditions. 4839 * The fifth is computed dynamically in permission_fault(); 4840 * PFERR_RSVD_MASK bit will be set in PFEC if the access is 4841 * *not* subject to SMAP restrictions. 4842 */ 4843 if (cr4_smap) 4844 smapf = (pfec & (PFERR_RSVD_MASK|PFERR_FETCH_MASK)) ? 0 : kf; 4845 } 4846 4847 mmu->permissions[byte] = ff | uf | wf | smepf | smapf; 4848 } 4849 } 4850 4851 /* 4852 * PKU is an additional mechanism by which the paging controls access to 4853 * user-mode addresses based on the value in the PKRU register. Protection 4854 * key violations are reported through a bit in the page fault error code. 4855 * Unlike other bits of the error code, the PK bit is not known at the 4856 * call site of e.g. gva_to_gpa; it must be computed directly in 4857 * permission_fault based on two bits of PKRU, on some machine state (CR4, 4858 * CR0, EFER, CPL), and on other bits of the error code and the page tables. 4859 * 4860 * In particular the following conditions come from the error code, the 4861 * page tables and the machine state: 4862 * - PK is always zero unless CR4.PKE=1 and EFER.LMA=1 4863 * - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch) 4864 * - PK is always zero if U=0 in the page tables 4865 * - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access. 4866 * 4867 * The PKRU bitmask caches the result of these four conditions. The error 4868 * code (minus the P bit) and the page table's U bit form an index into the 4869 * PKRU bitmask. Two bits of the PKRU bitmask are then extracted and ANDed 4870 * with the two bits of the PKRU register corresponding to the protection key. 4871 * For the first three conditions above the bits will be 00, thus masking 4872 * away both AD and WD. For all reads or if the last condition holds, WD 4873 * only will be masked away. 4874 */ 4875 static void update_pkru_bitmask(struct kvm_mmu *mmu) 4876 { 4877 unsigned bit; 4878 bool wp; 4879 4880 mmu->pkru_mask = 0; 4881 4882 if (!is_cr4_pke(mmu)) 4883 return; 4884 4885 wp = is_cr0_wp(mmu); 4886 4887 for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) { 4888 unsigned pfec, pkey_bits; 4889 bool check_pkey, check_write, ff, uf, wf, pte_user; 4890 4891 pfec = bit << 1; 4892 ff = pfec & PFERR_FETCH_MASK; 4893 uf = pfec & PFERR_USER_MASK; 4894 wf = pfec & PFERR_WRITE_MASK; 4895 4896 /* PFEC.RSVD is replaced by ACC_USER_MASK. */ 4897 pte_user = pfec & PFERR_RSVD_MASK; 4898 4899 /* 4900 * Only need to check the access which is not an 4901 * instruction fetch and is to a user page. 4902 */ 4903 check_pkey = (!ff && pte_user); 4904 /* 4905 * write access is controlled by PKRU if it is a 4906 * user access or CR0.WP = 1. 4907 */ 4908 check_write = check_pkey && wf && (uf || wp); 4909 4910 /* PKRU.AD stops both read and write access. */ 4911 pkey_bits = !!check_pkey; 4912 /* PKRU.WD stops write access. */ 4913 pkey_bits |= (!!check_write) << 1; 4914 4915 mmu->pkru_mask |= (pkey_bits & 3) << pfec; 4916 } 4917 } 4918 4919 static void reset_guest_paging_metadata(struct kvm_vcpu *vcpu, 4920 struct kvm_mmu *mmu) 4921 { 4922 if (!is_cr0_pg(mmu)) 4923 return; 4924 4925 reset_guest_rsvds_bits_mask(vcpu, mmu); 4926 update_permission_bitmask(mmu, false); 4927 update_pkru_bitmask(mmu); 4928 } 4929 4930 static void paging64_init_context(struct kvm_mmu *context) 4931 { 4932 context->page_fault = paging64_page_fault; 4933 context->gva_to_gpa = paging64_gva_to_gpa; 4934 context->sync_page = paging64_sync_page; 4935 context->invlpg = paging64_invlpg; 4936 } 4937 4938 static void paging32_init_context(struct kvm_mmu *context) 4939 { 4940 context->page_fault = paging32_page_fault; 4941 context->gva_to_gpa = paging32_gva_to_gpa; 4942 context->sync_page = paging32_sync_page; 4943 context->invlpg = paging32_invlpg; 4944 } 4945 4946 static union kvm_cpu_role 4947 kvm_calc_cpu_role(struct kvm_vcpu *vcpu, const struct kvm_mmu_role_regs *regs) 4948 { 4949 union kvm_cpu_role role = {0}; 4950 4951 role.base.access = ACC_ALL; 4952 role.base.smm = is_smm(vcpu); 4953 role.base.guest_mode = is_guest_mode(vcpu); 4954 role.ext.valid = 1; 4955 4956 if (!____is_cr0_pg(regs)) { 4957 role.base.direct = 1; 4958 return role; 4959 } 4960 4961 role.base.efer_nx = ____is_efer_nx(regs); 4962 role.base.cr0_wp = ____is_cr0_wp(regs); 4963 role.base.smep_andnot_wp = ____is_cr4_smep(regs) && !____is_cr0_wp(regs); 4964 role.base.smap_andnot_wp = ____is_cr4_smap(regs) && !____is_cr0_wp(regs); 4965 role.base.has_4_byte_gpte = !____is_cr4_pae(regs); 4966 4967 if (____is_efer_lma(regs)) 4968 role.base.level = ____is_cr4_la57(regs) ? PT64_ROOT_5LEVEL 4969 : PT64_ROOT_4LEVEL; 4970 else if (____is_cr4_pae(regs)) 4971 role.base.level = PT32E_ROOT_LEVEL; 4972 else 4973 role.base.level = PT32_ROOT_LEVEL; 4974 4975 role.ext.cr4_smep = ____is_cr4_smep(regs); 4976 role.ext.cr4_smap = ____is_cr4_smap(regs); 4977 role.ext.cr4_pse = ____is_cr4_pse(regs); 4978 4979 /* PKEY and LA57 are active iff long mode is active. */ 4980 role.ext.cr4_pke = ____is_efer_lma(regs) && ____is_cr4_pke(regs); 4981 role.ext.cr4_la57 = ____is_efer_lma(regs) && ____is_cr4_la57(regs); 4982 role.ext.efer_lma = ____is_efer_lma(regs); 4983 return role; 4984 } 4985 4986 static inline int kvm_mmu_get_tdp_level(struct kvm_vcpu *vcpu) 4987 { 4988 /* tdp_root_level is architecture forced level, use it if nonzero */ 4989 if (tdp_root_level) 4990 return tdp_root_level; 4991 4992 /* Use 5-level TDP if and only if it's useful/necessary. */ 4993 if (max_tdp_level == 5 && cpuid_maxphyaddr(vcpu) <= 48) 4994 return 4; 4995 4996 return max_tdp_level; 4997 } 4998 4999 static union kvm_mmu_page_role 5000 kvm_calc_tdp_mmu_root_page_role(struct kvm_vcpu *vcpu, 5001 union kvm_cpu_role cpu_role) 5002 { 5003 union kvm_mmu_page_role role = {0}; 5004 5005 role.access = ACC_ALL; 5006 role.cr0_wp = true; 5007 role.efer_nx = true; 5008 role.smm = cpu_role.base.smm; 5009 role.guest_mode = cpu_role.base.guest_mode; 5010 role.ad_disabled = !kvm_ad_enabled(); 5011 role.level = kvm_mmu_get_tdp_level(vcpu); 5012 role.direct = true; 5013 role.has_4_byte_gpte = false; 5014 5015 return role; 5016 } 5017 5018 static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu, 5019 union kvm_cpu_role cpu_role) 5020 { 5021 struct kvm_mmu *context = &vcpu->arch.root_mmu; 5022 union kvm_mmu_page_role root_role = kvm_calc_tdp_mmu_root_page_role(vcpu, cpu_role); 5023 5024 if (cpu_role.as_u64 == context->cpu_role.as_u64 && 5025 root_role.word == context->root_role.word) 5026 return; 5027 5028 context->cpu_role.as_u64 = cpu_role.as_u64; 5029 context->root_role.word = root_role.word; 5030 context->page_fault = kvm_tdp_page_fault; 5031 context->sync_page = nonpaging_sync_page; 5032 context->invlpg = NULL; 5033 context->get_guest_pgd = get_cr3; 5034 context->get_pdptr = kvm_pdptr_read; 5035 context->inject_page_fault = kvm_inject_page_fault; 5036 5037 if (!is_cr0_pg(context)) 5038 context->gva_to_gpa = nonpaging_gva_to_gpa; 5039 else if (is_cr4_pae(context)) 5040 context->gva_to_gpa = paging64_gva_to_gpa; 5041 else 5042 context->gva_to_gpa = paging32_gva_to_gpa; 5043 5044 reset_guest_paging_metadata(vcpu, context); 5045 reset_tdp_shadow_zero_bits_mask(context); 5046 } 5047 5048 static void shadow_mmu_init_context(struct kvm_vcpu *vcpu, struct kvm_mmu *context, 5049 union kvm_cpu_role cpu_role, 5050 union kvm_mmu_page_role root_role) 5051 { 5052 if (cpu_role.as_u64 == context->cpu_role.as_u64 && 5053 root_role.word == context->root_role.word) 5054 return; 5055 5056 context->cpu_role.as_u64 = cpu_role.as_u64; 5057 context->root_role.word = root_role.word; 5058 5059 if (!is_cr0_pg(context)) 5060 nonpaging_init_context(context); 5061 else if (is_cr4_pae(context)) 5062 paging64_init_context(context); 5063 else 5064 paging32_init_context(context); 5065 5066 reset_guest_paging_metadata(vcpu, context); 5067 reset_shadow_zero_bits_mask(vcpu, context); 5068 } 5069 5070 static void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, 5071 union kvm_cpu_role cpu_role) 5072 { 5073 struct kvm_mmu *context = &vcpu->arch.root_mmu; 5074 union kvm_mmu_page_role root_role; 5075 5076 root_role = cpu_role.base; 5077 5078 /* KVM uses PAE paging whenever the guest isn't using 64-bit paging. */ 5079 root_role.level = max_t(u32, root_role.level, PT32E_ROOT_LEVEL); 5080 5081 /* 5082 * KVM forces EFER.NX=1 when TDP is disabled, reflect it in the MMU role. 5083 * KVM uses NX when TDP is disabled to handle a variety of scenarios, 5084 * notably for huge SPTEs if iTLB multi-hit mitigation is enabled and 5085 * to generate correct permissions for CR0.WP=0/CR4.SMEP=1/EFER.NX=0. 5086 * The iTLB multi-hit workaround can be toggled at any time, so assume 5087 * NX can be used by any non-nested shadow MMU to avoid having to reset 5088 * MMU contexts. 5089 */ 5090 root_role.efer_nx = true; 5091 5092 shadow_mmu_init_context(vcpu, context, cpu_role, root_role); 5093 } 5094 5095 void kvm_init_shadow_npt_mmu(struct kvm_vcpu *vcpu, unsigned long cr0, 5096 unsigned long cr4, u64 efer, gpa_t nested_cr3) 5097 { 5098 struct kvm_mmu *context = &vcpu->arch.guest_mmu; 5099 struct kvm_mmu_role_regs regs = { 5100 .cr0 = cr0, 5101 .cr4 = cr4 & ~X86_CR4_PKE, 5102 .efer = efer, 5103 }; 5104 union kvm_cpu_role cpu_role = kvm_calc_cpu_role(vcpu, ®s); 5105 union kvm_mmu_page_role root_role; 5106 5107 /* NPT requires CR0.PG=1. */ 5108 WARN_ON_ONCE(cpu_role.base.direct); 5109 5110 root_role = cpu_role.base; 5111 root_role.level = kvm_mmu_get_tdp_level(vcpu); 5112 if (root_role.level == PT64_ROOT_5LEVEL && 5113 cpu_role.base.level == PT64_ROOT_4LEVEL) 5114 root_role.passthrough = 1; 5115 5116 shadow_mmu_init_context(vcpu, context, cpu_role, root_role); 5117 kvm_mmu_new_pgd(vcpu, nested_cr3); 5118 } 5119 EXPORT_SYMBOL_GPL(kvm_init_shadow_npt_mmu); 5120 5121 static union kvm_cpu_role 5122 kvm_calc_shadow_ept_root_page_role(struct kvm_vcpu *vcpu, bool accessed_dirty, 5123 bool execonly, u8 level) 5124 { 5125 union kvm_cpu_role role = {0}; 5126 5127 /* 5128 * KVM does not support SMM transfer monitors, and consequently does not 5129 * support the "entry to SMM" control either. role.base.smm is always 0. 5130 */ 5131 WARN_ON_ONCE(is_smm(vcpu)); 5132 role.base.level = level; 5133 role.base.has_4_byte_gpte = false; 5134 role.base.direct = false; 5135 role.base.ad_disabled = !accessed_dirty; 5136 role.base.guest_mode = true; 5137 role.base.access = ACC_ALL; 5138 5139 role.ext.word = 0; 5140 role.ext.execonly = execonly; 5141 role.ext.valid = 1; 5142 5143 return role; 5144 } 5145 5146 void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly, 5147 int huge_page_level, bool accessed_dirty, 5148 gpa_t new_eptp) 5149 { 5150 struct kvm_mmu *context = &vcpu->arch.guest_mmu; 5151 u8 level = vmx_eptp_page_walk_level(new_eptp); 5152 union kvm_cpu_role new_mode = 5153 kvm_calc_shadow_ept_root_page_role(vcpu, accessed_dirty, 5154 execonly, level); 5155 5156 if (new_mode.as_u64 != context->cpu_role.as_u64) { 5157 /* EPT, and thus nested EPT, does not consume CR0, CR4, nor EFER. */ 5158 context->cpu_role.as_u64 = new_mode.as_u64; 5159 context->root_role.word = new_mode.base.word; 5160 5161 context->page_fault = ept_page_fault; 5162 context->gva_to_gpa = ept_gva_to_gpa; 5163 context->sync_page = ept_sync_page; 5164 context->invlpg = ept_invlpg; 5165 5166 update_permission_bitmask(context, true); 5167 context->pkru_mask = 0; 5168 reset_rsvds_bits_mask_ept(vcpu, context, execonly, huge_page_level); 5169 reset_ept_shadow_zero_bits_mask(context, execonly); 5170 } 5171 5172 kvm_mmu_new_pgd(vcpu, new_eptp); 5173 } 5174 EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu); 5175 5176 static void init_kvm_softmmu(struct kvm_vcpu *vcpu, 5177 union kvm_cpu_role cpu_role) 5178 { 5179 struct kvm_mmu *context = &vcpu->arch.root_mmu; 5180 5181 kvm_init_shadow_mmu(vcpu, cpu_role); 5182 5183 context->get_guest_pgd = get_cr3; 5184 context->get_pdptr = kvm_pdptr_read; 5185 context->inject_page_fault = kvm_inject_page_fault; 5186 } 5187 5188 static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu, 5189 union kvm_cpu_role new_mode) 5190 { 5191 struct kvm_mmu *g_context = &vcpu->arch.nested_mmu; 5192 5193 if (new_mode.as_u64 == g_context->cpu_role.as_u64) 5194 return; 5195 5196 g_context->cpu_role.as_u64 = new_mode.as_u64; 5197 g_context->get_guest_pgd = get_cr3; 5198 g_context->get_pdptr = kvm_pdptr_read; 5199 g_context->inject_page_fault = kvm_inject_page_fault; 5200 5201 /* 5202 * L2 page tables are never shadowed, so there is no need to sync 5203 * SPTEs. 5204 */ 5205 g_context->invlpg = NULL; 5206 5207 /* 5208 * Note that arch.mmu->gva_to_gpa translates l2_gpa to l1_gpa using 5209 * L1's nested page tables (e.g. EPT12). The nested translation 5210 * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using 5211 * L2's page tables as the first level of translation and L1's 5212 * nested page tables as the second level of translation. Basically 5213 * the gva_to_gpa functions between mmu and nested_mmu are swapped. 5214 */ 5215 if (!is_paging(vcpu)) 5216 g_context->gva_to_gpa = nonpaging_gva_to_gpa; 5217 else if (is_long_mode(vcpu)) 5218 g_context->gva_to_gpa = paging64_gva_to_gpa; 5219 else if (is_pae(vcpu)) 5220 g_context->gva_to_gpa = paging64_gva_to_gpa; 5221 else 5222 g_context->gva_to_gpa = paging32_gva_to_gpa; 5223 5224 reset_guest_paging_metadata(vcpu, g_context); 5225 } 5226 5227 void kvm_init_mmu(struct kvm_vcpu *vcpu) 5228 { 5229 struct kvm_mmu_role_regs regs = vcpu_to_role_regs(vcpu); 5230 union kvm_cpu_role cpu_role = kvm_calc_cpu_role(vcpu, ®s); 5231 5232 if (mmu_is_nested(vcpu)) 5233 init_kvm_nested_mmu(vcpu, cpu_role); 5234 else if (tdp_enabled) 5235 init_kvm_tdp_mmu(vcpu, cpu_role); 5236 else 5237 init_kvm_softmmu(vcpu, cpu_role); 5238 } 5239 EXPORT_SYMBOL_GPL(kvm_init_mmu); 5240 5241 void kvm_mmu_after_set_cpuid(struct kvm_vcpu *vcpu) 5242 { 5243 /* 5244 * Invalidate all MMU roles to force them to reinitialize as CPUID 5245 * information is factored into reserved bit calculations. 5246 * 5247 * Correctly handling multiple vCPU models with respect to paging and 5248 * physical address properties) in a single VM would require tracking 5249 * all relevant CPUID information in kvm_mmu_page_role. That is very 5250 * undesirable as it would increase the memory requirements for 5251 * gfn_track (see struct kvm_mmu_page_role comments). For now that 5252 * problem is swept under the rug; KVM's CPUID API is horrific and 5253 * it's all but impossible to solve it without introducing a new API. 5254 */ 5255 vcpu->arch.root_mmu.root_role.word = 0; 5256 vcpu->arch.guest_mmu.root_role.word = 0; 5257 vcpu->arch.nested_mmu.root_role.word = 0; 5258 vcpu->arch.root_mmu.cpu_role.ext.valid = 0; 5259 vcpu->arch.guest_mmu.cpu_role.ext.valid = 0; 5260 vcpu->arch.nested_mmu.cpu_role.ext.valid = 0; 5261 kvm_mmu_reset_context(vcpu); 5262 5263 /* 5264 * Changing guest CPUID after KVM_RUN is forbidden, see the comment in 5265 * kvm_arch_vcpu_ioctl(). 5266 */ 5267 KVM_BUG_ON(vcpu->arch.last_vmentry_cpu != -1, vcpu->kvm); 5268 } 5269 5270 void kvm_mmu_reset_context(struct kvm_vcpu *vcpu) 5271 { 5272 kvm_mmu_unload(vcpu); 5273 kvm_init_mmu(vcpu); 5274 } 5275 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context); 5276 5277 int kvm_mmu_load(struct kvm_vcpu *vcpu) 5278 { 5279 int r; 5280 5281 r = mmu_topup_memory_caches(vcpu, !vcpu->arch.mmu->root_role.direct); 5282 if (r) 5283 goto out; 5284 r = mmu_alloc_special_roots(vcpu); 5285 if (r) 5286 goto out; 5287 if (vcpu->arch.mmu->root_role.direct) 5288 r = mmu_alloc_direct_roots(vcpu); 5289 else 5290 r = mmu_alloc_shadow_roots(vcpu); 5291 if (r) 5292 goto out; 5293 5294 kvm_mmu_sync_roots(vcpu); 5295 5296 kvm_mmu_load_pgd(vcpu); 5297 5298 /* 5299 * Flush any TLB entries for the new root, the provenance of the root 5300 * is unknown. Even if KVM ensures there are no stale TLB entries 5301 * for a freed root, in theory another hypervisor could have left 5302 * stale entries. Flushing on alloc also allows KVM to skip the TLB 5303 * flush when freeing a root (see kvm_tdp_mmu_put_root()). 5304 */ 5305 static_call(kvm_x86_flush_tlb_current)(vcpu); 5306 out: 5307 return r; 5308 } 5309 5310 void kvm_mmu_unload(struct kvm_vcpu *vcpu) 5311 { 5312 struct kvm *kvm = vcpu->kvm; 5313 5314 kvm_mmu_free_roots(kvm, &vcpu->arch.root_mmu, KVM_MMU_ROOTS_ALL); 5315 WARN_ON(VALID_PAGE(vcpu->arch.root_mmu.root.hpa)); 5316 kvm_mmu_free_roots(kvm, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL); 5317 WARN_ON(VALID_PAGE(vcpu->arch.guest_mmu.root.hpa)); 5318 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY); 5319 } 5320 5321 static bool is_obsolete_root(struct kvm *kvm, hpa_t root_hpa) 5322 { 5323 struct kvm_mmu_page *sp; 5324 5325 if (!VALID_PAGE(root_hpa)) 5326 return false; 5327 5328 /* 5329 * When freeing obsolete roots, treat roots as obsolete if they don't 5330 * have an associated shadow page. This does mean KVM will get false 5331 * positives and free roots that don't strictly need to be freed, but 5332 * such false positives are relatively rare: 5333 * 5334 * (a) only PAE paging and nested NPT has roots without shadow pages 5335 * (b) remote reloads due to a memslot update obsoletes _all_ roots 5336 * (c) KVM doesn't track previous roots for PAE paging, and the guest 5337 * is unlikely to zap an in-use PGD. 5338 */ 5339 sp = to_shadow_page(root_hpa); 5340 return !sp || is_obsolete_sp(kvm, sp); 5341 } 5342 5343 static void __kvm_mmu_free_obsolete_roots(struct kvm *kvm, struct kvm_mmu *mmu) 5344 { 5345 unsigned long roots_to_free = 0; 5346 int i; 5347 5348 if (is_obsolete_root(kvm, mmu->root.hpa)) 5349 roots_to_free |= KVM_MMU_ROOT_CURRENT; 5350 5351 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) { 5352 if (is_obsolete_root(kvm, mmu->prev_roots[i].hpa)) 5353 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i); 5354 } 5355 5356 if (roots_to_free) 5357 kvm_mmu_free_roots(kvm, mmu, roots_to_free); 5358 } 5359 5360 void kvm_mmu_free_obsolete_roots(struct kvm_vcpu *vcpu) 5361 { 5362 __kvm_mmu_free_obsolete_roots(vcpu->kvm, &vcpu->arch.root_mmu); 5363 __kvm_mmu_free_obsolete_roots(vcpu->kvm, &vcpu->arch.guest_mmu); 5364 } 5365 5366 static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa, 5367 int *bytes) 5368 { 5369 u64 gentry = 0; 5370 int r; 5371 5372 /* 5373 * Assume that the pte write on a page table of the same type 5374 * as the current vcpu paging mode since we update the sptes only 5375 * when they have the same mode. 5376 */ 5377 if (is_pae(vcpu) && *bytes == 4) { 5378 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */ 5379 *gpa &= ~(gpa_t)7; 5380 *bytes = 8; 5381 } 5382 5383 if (*bytes == 4 || *bytes == 8) { 5384 r = kvm_vcpu_read_guest_atomic(vcpu, *gpa, &gentry, *bytes); 5385 if (r) 5386 gentry = 0; 5387 } 5388 5389 return gentry; 5390 } 5391 5392 /* 5393 * If we're seeing too many writes to a page, it may no longer be a page table, 5394 * or we may be forking, in which case it is better to unmap the page. 5395 */ 5396 static bool detect_write_flooding(struct kvm_mmu_page *sp) 5397 { 5398 /* 5399 * Skip write-flooding detected for the sp whose level is 1, because 5400 * it can become unsync, then the guest page is not write-protected. 5401 */ 5402 if (sp->role.level == PG_LEVEL_4K) 5403 return false; 5404 5405 atomic_inc(&sp->write_flooding_count); 5406 return atomic_read(&sp->write_flooding_count) >= 3; 5407 } 5408 5409 /* 5410 * Misaligned accesses are too much trouble to fix up; also, they usually 5411 * indicate a page is not used as a page table. 5412 */ 5413 static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa, 5414 int bytes) 5415 { 5416 unsigned offset, pte_size, misaligned; 5417 5418 pgprintk("misaligned: gpa %llx bytes %d role %x\n", 5419 gpa, bytes, sp->role.word); 5420 5421 offset = offset_in_page(gpa); 5422 pte_size = sp->role.has_4_byte_gpte ? 4 : 8; 5423 5424 /* 5425 * Sometimes, the OS only writes the last one bytes to update status 5426 * bits, for example, in linux, andb instruction is used in clear_bit(). 5427 */ 5428 if (!(offset & (pte_size - 1)) && bytes == 1) 5429 return false; 5430 5431 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1); 5432 misaligned |= bytes < 4; 5433 5434 return misaligned; 5435 } 5436 5437 static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte) 5438 { 5439 unsigned page_offset, quadrant; 5440 u64 *spte; 5441 int level; 5442 5443 page_offset = offset_in_page(gpa); 5444 level = sp->role.level; 5445 *nspte = 1; 5446 if (sp->role.has_4_byte_gpte) { 5447 page_offset <<= 1; /* 32->64 */ 5448 /* 5449 * A 32-bit pde maps 4MB while the shadow pdes map 5450 * only 2MB. So we need to double the offset again 5451 * and zap two pdes instead of one. 5452 */ 5453 if (level == PT32_ROOT_LEVEL) { 5454 page_offset &= ~7; /* kill rounding error */ 5455 page_offset <<= 1; 5456 *nspte = 2; 5457 } 5458 quadrant = page_offset >> PAGE_SHIFT; 5459 page_offset &= ~PAGE_MASK; 5460 if (quadrant != sp->role.quadrant) 5461 return NULL; 5462 } 5463 5464 spte = &sp->spt[page_offset / sizeof(*spte)]; 5465 return spte; 5466 } 5467 5468 static void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa, 5469 const u8 *new, int bytes, 5470 struct kvm_page_track_notifier_node *node) 5471 { 5472 gfn_t gfn = gpa >> PAGE_SHIFT; 5473 struct kvm_mmu_page *sp; 5474 LIST_HEAD(invalid_list); 5475 u64 entry, gentry, *spte; 5476 int npte; 5477 bool flush = false; 5478 5479 /* 5480 * If we don't have indirect shadow pages, it means no page is 5481 * write-protected, so we can exit simply. 5482 */ 5483 if (!READ_ONCE(vcpu->kvm->arch.indirect_shadow_pages)) 5484 return; 5485 5486 pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes); 5487 5488 write_lock(&vcpu->kvm->mmu_lock); 5489 5490 gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, &bytes); 5491 5492 ++vcpu->kvm->stat.mmu_pte_write; 5493 5494 for_each_gfn_valid_sp_with_gptes(vcpu->kvm, sp, gfn) { 5495 if (detect_write_misaligned(sp, gpa, bytes) || 5496 detect_write_flooding(sp)) { 5497 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list); 5498 ++vcpu->kvm->stat.mmu_flooded; 5499 continue; 5500 } 5501 5502 spte = get_written_sptes(sp, gpa, &npte); 5503 if (!spte) 5504 continue; 5505 5506 while (npte--) { 5507 entry = *spte; 5508 mmu_page_zap_pte(vcpu->kvm, sp, spte, NULL); 5509 if (gentry && sp->role.level != PG_LEVEL_4K) 5510 ++vcpu->kvm->stat.mmu_pde_zapped; 5511 if (is_shadow_present_pte(entry)) 5512 flush = true; 5513 ++spte; 5514 } 5515 } 5516 kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, flush); 5517 write_unlock(&vcpu->kvm->mmu_lock); 5518 } 5519 5520 int noinline kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 error_code, 5521 void *insn, int insn_len) 5522 { 5523 int r, emulation_type = EMULTYPE_PF; 5524 bool direct = vcpu->arch.mmu->root_role.direct; 5525 5526 if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root.hpa))) 5527 return RET_PF_RETRY; 5528 5529 r = RET_PF_INVALID; 5530 if (unlikely(error_code & PFERR_RSVD_MASK)) { 5531 r = handle_mmio_page_fault(vcpu, cr2_or_gpa, direct); 5532 if (r == RET_PF_EMULATE) 5533 goto emulate; 5534 } 5535 5536 if (r == RET_PF_INVALID) { 5537 r = kvm_mmu_do_page_fault(vcpu, cr2_or_gpa, 5538 lower_32_bits(error_code), false); 5539 if (KVM_BUG_ON(r == RET_PF_INVALID, vcpu->kvm)) 5540 return -EIO; 5541 } 5542 5543 if (r < 0) 5544 return r; 5545 if (r != RET_PF_EMULATE) 5546 return 1; 5547 5548 /* 5549 * Before emulating the instruction, check if the error code 5550 * was due to a RO violation while translating the guest page. 5551 * This can occur when using nested virtualization with nested 5552 * paging in both guests. If true, we simply unprotect the page 5553 * and resume the guest. 5554 */ 5555 if (vcpu->arch.mmu->root_role.direct && 5556 (error_code & PFERR_NESTED_GUEST_PAGE) == PFERR_NESTED_GUEST_PAGE) { 5557 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(cr2_or_gpa)); 5558 return 1; 5559 } 5560 5561 /* 5562 * vcpu->arch.mmu.page_fault returned RET_PF_EMULATE, but we can still 5563 * optimistically try to just unprotect the page and let the processor 5564 * re-execute the instruction that caused the page fault. Do not allow 5565 * retrying MMIO emulation, as it's not only pointless but could also 5566 * cause us to enter an infinite loop because the processor will keep 5567 * faulting on the non-existent MMIO address. Retrying an instruction 5568 * from a nested guest is also pointless and dangerous as we are only 5569 * explicitly shadowing L1's page tables, i.e. unprotecting something 5570 * for L1 isn't going to magically fix whatever issue cause L2 to fail. 5571 */ 5572 if (!mmio_info_in_cache(vcpu, cr2_or_gpa, direct) && !is_guest_mode(vcpu)) 5573 emulation_type |= EMULTYPE_ALLOW_RETRY_PF; 5574 emulate: 5575 return x86_emulate_instruction(vcpu, cr2_or_gpa, emulation_type, insn, 5576 insn_len); 5577 } 5578 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault); 5579 5580 void kvm_mmu_invalidate_gva(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, 5581 gva_t gva, hpa_t root_hpa) 5582 { 5583 int i; 5584 5585 /* It's actually a GPA for vcpu->arch.guest_mmu. */ 5586 if (mmu != &vcpu->arch.guest_mmu) { 5587 /* INVLPG on a non-canonical address is a NOP according to the SDM. */ 5588 if (is_noncanonical_address(gva, vcpu)) 5589 return; 5590 5591 static_call(kvm_x86_flush_tlb_gva)(vcpu, gva); 5592 } 5593 5594 if (!mmu->invlpg) 5595 return; 5596 5597 if (root_hpa == INVALID_PAGE) { 5598 mmu->invlpg(vcpu, gva, mmu->root.hpa); 5599 5600 /* 5601 * INVLPG is required to invalidate any global mappings for the VA, 5602 * irrespective of PCID. Since it would take us roughly similar amount 5603 * of work to determine whether any of the prev_root mappings of the VA 5604 * is marked global, or to just sync it blindly, so we might as well 5605 * just always sync it. 5606 * 5607 * Mappings not reachable via the current cr3 or the prev_roots will be 5608 * synced when switching to that cr3, so nothing needs to be done here 5609 * for them. 5610 */ 5611 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 5612 if (VALID_PAGE(mmu->prev_roots[i].hpa)) 5613 mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa); 5614 } else { 5615 mmu->invlpg(vcpu, gva, root_hpa); 5616 } 5617 } 5618 5619 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva) 5620 { 5621 kvm_mmu_invalidate_gva(vcpu, vcpu->arch.walk_mmu, gva, INVALID_PAGE); 5622 ++vcpu->stat.invlpg; 5623 } 5624 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg); 5625 5626 5627 void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid) 5628 { 5629 struct kvm_mmu *mmu = vcpu->arch.mmu; 5630 bool tlb_flush = false; 5631 uint i; 5632 5633 if (pcid == kvm_get_active_pcid(vcpu)) { 5634 if (mmu->invlpg) 5635 mmu->invlpg(vcpu, gva, mmu->root.hpa); 5636 tlb_flush = true; 5637 } 5638 5639 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) { 5640 if (VALID_PAGE(mmu->prev_roots[i].hpa) && 5641 pcid == kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd)) { 5642 if (mmu->invlpg) 5643 mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa); 5644 tlb_flush = true; 5645 } 5646 } 5647 5648 if (tlb_flush) 5649 static_call(kvm_x86_flush_tlb_gva)(vcpu, gva); 5650 5651 ++vcpu->stat.invlpg; 5652 5653 /* 5654 * Mappings not reachable via the current cr3 or the prev_roots will be 5655 * synced when switching to that cr3, so nothing needs to be done here 5656 * for them. 5657 */ 5658 } 5659 5660 void kvm_configure_mmu(bool enable_tdp, int tdp_forced_root_level, 5661 int tdp_max_root_level, int tdp_huge_page_level) 5662 { 5663 tdp_enabled = enable_tdp; 5664 tdp_root_level = tdp_forced_root_level; 5665 max_tdp_level = tdp_max_root_level; 5666 5667 /* 5668 * max_huge_page_level reflects KVM's MMU capabilities irrespective 5669 * of kernel support, e.g. KVM may be capable of using 1GB pages when 5670 * the kernel is not. But, KVM never creates a page size greater than 5671 * what is used by the kernel for any given HVA, i.e. the kernel's 5672 * capabilities are ultimately consulted by kvm_mmu_hugepage_adjust(). 5673 */ 5674 if (tdp_enabled) 5675 max_huge_page_level = tdp_huge_page_level; 5676 else if (boot_cpu_has(X86_FEATURE_GBPAGES)) 5677 max_huge_page_level = PG_LEVEL_1G; 5678 else 5679 max_huge_page_level = PG_LEVEL_2M; 5680 } 5681 EXPORT_SYMBOL_GPL(kvm_configure_mmu); 5682 5683 /* The return value indicates if tlb flush on all vcpus is needed. */ 5684 typedef bool (*slot_level_handler) (struct kvm *kvm, 5685 struct kvm_rmap_head *rmap_head, 5686 const struct kvm_memory_slot *slot); 5687 5688 /* The caller should hold mmu-lock before calling this function. */ 5689 static __always_inline bool 5690 slot_handle_level_range(struct kvm *kvm, const struct kvm_memory_slot *memslot, 5691 slot_level_handler fn, int start_level, int end_level, 5692 gfn_t start_gfn, gfn_t end_gfn, bool flush_on_yield, 5693 bool flush) 5694 { 5695 struct slot_rmap_walk_iterator iterator; 5696 5697 for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn, 5698 end_gfn, &iterator) { 5699 if (iterator.rmap) 5700 flush |= fn(kvm, iterator.rmap, memslot); 5701 5702 if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) { 5703 if (flush && flush_on_yield) { 5704 kvm_flush_remote_tlbs_with_address(kvm, 5705 start_gfn, 5706 iterator.gfn - start_gfn + 1); 5707 flush = false; 5708 } 5709 cond_resched_rwlock_write(&kvm->mmu_lock); 5710 } 5711 } 5712 5713 return flush; 5714 } 5715 5716 static __always_inline bool 5717 slot_handle_level(struct kvm *kvm, const struct kvm_memory_slot *memslot, 5718 slot_level_handler fn, int start_level, int end_level, 5719 bool flush_on_yield) 5720 { 5721 return slot_handle_level_range(kvm, memslot, fn, start_level, 5722 end_level, memslot->base_gfn, 5723 memslot->base_gfn + memslot->npages - 1, 5724 flush_on_yield, false); 5725 } 5726 5727 static __always_inline bool 5728 slot_handle_level_4k(struct kvm *kvm, const struct kvm_memory_slot *memslot, 5729 slot_level_handler fn, bool flush_on_yield) 5730 { 5731 return slot_handle_level(kvm, memslot, fn, PG_LEVEL_4K, 5732 PG_LEVEL_4K, flush_on_yield); 5733 } 5734 5735 static void free_mmu_pages(struct kvm_mmu *mmu) 5736 { 5737 if (!tdp_enabled && mmu->pae_root) 5738 set_memory_encrypted((unsigned long)mmu->pae_root, 1); 5739 free_page((unsigned long)mmu->pae_root); 5740 free_page((unsigned long)mmu->pml4_root); 5741 free_page((unsigned long)mmu->pml5_root); 5742 } 5743 5744 static int __kvm_mmu_create(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu) 5745 { 5746 struct page *page; 5747 int i; 5748 5749 mmu->root.hpa = INVALID_PAGE; 5750 mmu->root.pgd = 0; 5751 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 5752 mmu->prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID; 5753 5754 /* vcpu->arch.guest_mmu isn't used when !tdp_enabled. */ 5755 if (!tdp_enabled && mmu == &vcpu->arch.guest_mmu) 5756 return 0; 5757 5758 /* 5759 * When using PAE paging, the four PDPTEs are treated as 'root' pages, 5760 * while the PDP table is a per-vCPU construct that's allocated at MMU 5761 * creation. When emulating 32-bit mode, cr3 is only 32 bits even on 5762 * x86_64. Therefore we need to allocate the PDP table in the first 5763 * 4GB of memory, which happens to fit the DMA32 zone. TDP paging 5764 * generally doesn't use PAE paging and can skip allocating the PDP 5765 * table. The main exception, handled here, is SVM's 32-bit NPT. The 5766 * other exception is for shadowing L1's 32-bit or PAE NPT on 64-bit 5767 * KVM; that horror is handled on-demand by mmu_alloc_special_roots(). 5768 */ 5769 if (tdp_enabled && kvm_mmu_get_tdp_level(vcpu) > PT32E_ROOT_LEVEL) 5770 return 0; 5771 5772 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_DMA32); 5773 if (!page) 5774 return -ENOMEM; 5775 5776 mmu->pae_root = page_address(page); 5777 5778 /* 5779 * CR3 is only 32 bits when PAE paging is used, thus it's impossible to 5780 * get the CPU to treat the PDPTEs as encrypted. Decrypt the page so 5781 * that KVM's writes and the CPU's reads get along. Note, this is 5782 * only necessary when using shadow paging, as 64-bit NPT can get at 5783 * the C-bit even when shadowing 32-bit NPT, and SME isn't supported 5784 * by 32-bit kernels (when KVM itself uses 32-bit NPT). 5785 */ 5786 if (!tdp_enabled) 5787 set_memory_decrypted((unsigned long)mmu->pae_root, 1); 5788 else 5789 WARN_ON_ONCE(shadow_me_value); 5790 5791 for (i = 0; i < 4; ++i) 5792 mmu->pae_root[i] = INVALID_PAE_ROOT; 5793 5794 return 0; 5795 } 5796 5797 int kvm_mmu_create(struct kvm_vcpu *vcpu) 5798 { 5799 int ret; 5800 5801 vcpu->arch.mmu_pte_list_desc_cache.kmem_cache = pte_list_desc_cache; 5802 vcpu->arch.mmu_pte_list_desc_cache.gfp_zero = __GFP_ZERO; 5803 5804 vcpu->arch.mmu_page_header_cache.kmem_cache = mmu_page_header_cache; 5805 vcpu->arch.mmu_page_header_cache.gfp_zero = __GFP_ZERO; 5806 5807 vcpu->arch.mmu_shadow_page_cache.gfp_zero = __GFP_ZERO; 5808 5809 vcpu->arch.mmu = &vcpu->arch.root_mmu; 5810 vcpu->arch.walk_mmu = &vcpu->arch.root_mmu; 5811 5812 ret = __kvm_mmu_create(vcpu, &vcpu->arch.guest_mmu); 5813 if (ret) 5814 return ret; 5815 5816 ret = __kvm_mmu_create(vcpu, &vcpu->arch.root_mmu); 5817 if (ret) 5818 goto fail_allocate_root; 5819 5820 return ret; 5821 fail_allocate_root: 5822 free_mmu_pages(&vcpu->arch.guest_mmu); 5823 return ret; 5824 } 5825 5826 #define BATCH_ZAP_PAGES 10 5827 static void kvm_zap_obsolete_pages(struct kvm *kvm) 5828 { 5829 struct kvm_mmu_page *sp, *node; 5830 int nr_zapped, batch = 0; 5831 bool unstable; 5832 5833 restart: 5834 list_for_each_entry_safe_reverse(sp, node, 5835 &kvm->arch.active_mmu_pages, link) { 5836 /* 5837 * No obsolete valid page exists before a newly created page 5838 * since active_mmu_pages is a FIFO list. 5839 */ 5840 if (!is_obsolete_sp(kvm, sp)) 5841 break; 5842 5843 /* 5844 * Invalid pages should never land back on the list of active 5845 * pages. Skip the bogus page, otherwise we'll get stuck in an 5846 * infinite loop if the page gets put back on the list (again). 5847 */ 5848 if (WARN_ON(sp->role.invalid)) 5849 continue; 5850 5851 /* 5852 * No need to flush the TLB since we're only zapping shadow 5853 * pages with an obsolete generation number and all vCPUS have 5854 * loaded a new root, i.e. the shadow pages being zapped cannot 5855 * be in active use by the guest. 5856 */ 5857 if (batch >= BATCH_ZAP_PAGES && 5858 cond_resched_rwlock_write(&kvm->mmu_lock)) { 5859 batch = 0; 5860 goto restart; 5861 } 5862 5863 unstable = __kvm_mmu_prepare_zap_page(kvm, sp, 5864 &kvm->arch.zapped_obsolete_pages, &nr_zapped); 5865 batch += nr_zapped; 5866 5867 if (unstable) 5868 goto restart; 5869 } 5870 5871 /* 5872 * Kick all vCPUs (via remote TLB flush) before freeing the page tables 5873 * to ensure KVM is not in the middle of a lockless shadow page table 5874 * walk, which may reference the pages. The remote TLB flush itself is 5875 * not required and is simply a convenient way to kick vCPUs as needed. 5876 * KVM performs a local TLB flush when allocating a new root (see 5877 * kvm_mmu_load()), and the reload in the caller ensure no vCPUs are 5878 * running with an obsolete MMU. 5879 */ 5880 kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages); 5881 } 5882 5883 /* 5884 * Fast invalidate all shadow pages and use lock-break technique 5885 * to zap obsolete pages. 5886 * 5887 * It's required when memslot is being deleted or VM is being 5888 * destroyed, in these cases, we should ensure that KVM MMU does 5889 * not use any resource of the being-deleted slot or all slots 5890 * after calling the function. 5891 */ 5892 static void kvm_mmu_zap_all_fast(struct kvm *kvm) 5893 { 5894 lockdep_assert_held(&kvm->slots_lock); 5895 5896 write_lock(&kvm->mmu_lock); 5897 trace_kvm_mmu_zap_all_fast(kvm); 5898 5899 /* 5900 * Toggle mmu_valid_gen between '0' and '1'. Because slots_lock is 5901 * held for the entire duration of zapping obsolete pages, it's 5902 * impossible for there to be multiple invalid generations associated 5903 * with *valid* shadow pages at any given time, i.e. there is exactly 5904 * one valid generation and (at most) one invalid generation. 5905 */ 5906 kvm->arch.mmu_valid_gen = kvm->arch.mmu_valid_gen ? 0 : 1; 5907 5908 /* 5909 * In order to ensure all vCPUs drop their soon-to-be invalid roots, 5910 * invalidating TDP MMU roots must be done while holding mmu_lock for 5911 * write and in the same critical section as making the reload request, 5912 * e.g. before kvm_zap_obsolete_pages() could drop mmu_lock and yield. 5913 */ 5914 if (is_tdp_mmu_enabled(kvm)) 5915 kvm_tdp_mmu_invalidate_all_roots(kvm); 5916 5917 /* 5918 * Notify all vcpus to reload its shadow page table and flush TLB. 5919 * Then all vcpus will switch to new shadow page table with the new 5920 * mmu_valid_gen. 5921 * 5922 * Note: we need to do this under the protection of mmu_lock, 5923 * otherwise, vcpu would purge shadow page but miss tlb flush. 5924 */ 5925 kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_FREE_OBSOLETE_ROOTS); 5926 5927 kvm_zap_obsolete_pages(kvm); 5928 5929 write_unlock(&kvm->mmu_lock); 5930 5931 /* 5932 * Zap the invalidated TDP MMU roots, all SPTEs must be dropped before 5933 * returning to the caller, e.g. if the zap is in response to a memslot 5934 * deletion, mmu_notifier callbacks will be unable to reach the SPTEs 5935 * associated with the deleted memslot once the update completes, and 5936 * Deferring the zap until the final reference to the root is put would 5937 * lead to use-after-free. 5938 */ 5939 if (is_tdp_mmu_enabled(kvm)) 5940 kvm_tdp_mmu_zap_invalidated_roots(kvm); 5941 } 5942 5943 static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm) 5944 { 5945 return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages)); 5946 } 5947 5948 static void kvm_mmu_invalidate_zap_pages_in_memslot(struct kvm *kvm, 5949 struct kvm_memory_slot *slot, 5950 struct kvm_page_track_notifier_node *node) 5951 { 5952 kvm_mmu_zap_all_fast(kvm); 5953 } 5954 5955 int kvm_mmu_init_vm(struct kvm *kvm) 5956 { 5957 struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker; 5958 int r; 5959 5960 INIT_LIST_HEAD(&kvm->arch.active_mmu_pages); 5961 INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages); 5962 INIT_LIST_HEAD(&kvm->arch.lpage_disallowed_mmu_pages); 5963 spin_lock_init(&kvm->arch.mmu_unsync_pages_lock); 5964 5965 r = kvm_mmu_init_tdp_mmu(kvm); 5966 if (r < 0) 5967 return r; 5968 5969 node->track_write = kvm_mmu_pte_write; 5970 node->track_flush_slot = kvm_mmu_invalidate_zap_pages_in_memslot; 5971 kvm_page_track_register_notifier(kvm, node); 5972 5973 kvm->arch.split_page_header_cache.kmem_cache = mmu_page_header_cache; 5974 kvm->arch.split_page_header_cache.gfp_zero = __GFP_ZERO; 5975 5976 kvm->arch.split_shadow_page_cache.gfp_zero = __GFP_ZERO; 5977 5978 kvm->arch.split_desc_cache.kmem_cache = pte_list_desc_cache; 5979 kvm->arch.split_desc_cache.gfp_zero = __GFP_ZERO; 5980 5981 return 0; 5982 } 5983 5984 static void mmu_free_vm_memory_caches(struct kvm *kvm) 5985 { 5986 kvm_mmu_free_memory_cache(&kvm->arch.split_desc_cache); 5987 kvm_mmu_free_memory_cache(&kvm->arch.split_page_header_cache); 5988 kvm_mmu_free_memory_cache(&kvm->arch.split_shadow_page_cache); 5989 } 5990 5991 void kvm_mmu_uninit_vm(struct kvm *kvm) 5992 { 5993 struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker; 5994 5995 kvm_page_track_unregister_notifier(kvm, node); 5996 5997 kvm_mmu_uninit_tdp_mmu(kvm); 5998 5999 mmu_free_vm_memory_caches(kvm); 6000 } 6001 6002 static bool kvm_rmap_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end) 6003 { 6004 const struct kvm_memory_slot *memslot; 6005 struct kvm_memslots *slots; 6006 struct kvm_memslot_iter iter; 6007 bool flush = false; 6008 gfn_t start, end; 6009 int i; 6010 6011 if (!kvm_memslots_have_rmaps(kvm)) 6012 return flush; 6013 6014 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { 6015 slots = __kvm_memslots(kvm, i); 6016 6017 kvm_for_each_memslot_in_gfn_range(&iter, slots, gfn_start, gfn_end) { 6018 memslot = iter.slot; 6019 start = max(gfn_start, memslot->base_gfn); 6020 end = min(gfn_end, memslot->base_gfn + memslot->npages); 6021 if (WARN_ON_ONCE(start >= end)) 6022 continue; 6023 6024 flush = slot_handle_level_range(kvm, memslot, __kvm_zap_rmap, 6025 PG_LEVEL_4K, KVM_MAX_HUGEPAGE_LEVEL, 6026 start, end - 1, true, flush); 6027 } 6028 } 6029 6030 return flush; 6031 } 6032 6033 /* 6034 * Invalidate (zap) SPTEs that cover GFNs from gfn_start and up to gfn_end 6035 * (not including it) 6036 */ 6037 void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end) 6038 { 6039 bool flush; 6040 int i; 6041 6042 if (WARN_ON_ONCE(gfn_end <= gfn_start)) 6043 return; 6044 6045 write_lock(&kvm->mmu_lock); 6046 6047 kvm_mmu_invalidate_begin(kvm, gfn_start, gfn_end); 6048 6049 flush = kvm_rmap_zap_gfn_range(kvm, gfn_start, gfn_end); 6050 6051 if (is_tdp_mmu_enabled(kvm)) { 6052 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) 6053 flush = kvm_tdp_mmu_zap_leafs(kvm, i, gfn_start, 6054 gfn_end, true, flush); 6055 } 6056 6057 if (flush) 6058 kvm_flush_remote_tlbs_with_address(kvm, gfn_start, 6059 gfn_end - gfn_start); 6060 6061 kvm_mmu_invalidate_end(kvm, gfn_start, gfn_end); 6062 6063 write_unlock(&kvm->mmu_lock); 6064 } 6065 6066 static bool slot_rmap_write_protect(struct kvm *kvm, 6067 struct kvm_rmap_head *rmap_head, 6068 const struct kvm_memory_slot *slot) 6069 { 6070 return rmap_write_protect(rmap_head, false); 6071 } 6072 6073 void kvm_mmu_slot_remove_write_access(struct kvm *kvm, 6074 const struct kvm_memory_slot *memslot, 6075 int start_level) 6076 { 6077 if (kvm_memslots_have_rmaps(kvm)) { 6078 write_lock(&kvm->mmu_lock); 6079 slot_handle_level(kvm, memslot, slot_rmap_write_protect, 6080 start_level, KVM_MAX_HUGEPAGE_LEVEL, false); 6081 write_unlock(&kvm->mmu_lock); 6082 } 6083 6084 if (is_tdp_mmu_enabled(kvm)) { 6085 read_lock(&kvm->mmu_lock); 6086 kvm_tdp_mmu_wrprot_slot(kvm, memslot, start_level); 6087 read_unlock(&kvm->mmu_lock); 6088 } 6089 } 6090 6091 static inline bool need_topup(struct kvm_mmu_memory_cache *cache, int min) 6092 { 6093 return kvm_mmu_memory_cache_nr_free_objects(cache) < min; 6094 } 6095 6096 static bool need_topup_split_caches_or_resched(struct kvm *kvm) 6097 { 6098 if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) 6099 return true; 6100 6101 /* 6102 * In the worst case, SPLIT_DESC_CACHE_MIN_NR_OBJECTS descriptors are needed 6103 * to split a single huge page. Calculating how many are actually needed 6104 * is possible but not worth the complexity. 6105 */ 6106 return need_topup(&kvm->arch.split_desc_cache, SPLIT_DESC_CACHE_MIN_NR_OBJECTS) || 6107 need_topup(&kvm->arch.split_page_header_cache, 1) || 6108 need_topup(&kvm->arch.split_shadow_page_cache, 1); 6109 } 6110 6111 static int topup_split_caches(struct kvm *kvm) 6112 { 6113 /* 6114 * Allocating rmap list entries when splitting huge pages for nested 6115 * MMUs is uncommon as KVM needs to use a list if and only if there is 6116 * more than one rmap entry for a gfn, i.e. requires an L1 gfn to be 6117 * aliased by multiple L2 gfns and/or from multiple nested roots with 6118 * different roles. Aliasing gfns when using TDP is atypical for VMMs; 6119 * a few gfns are often aliased during boot, e.g. when remapping BIOS, 6120 * but aliasing rarely occurs post-boot or for many gfns. If there is 6121 * only one rmap entry, rmap->val points directly at that one entry and 6122 * doesn't need to allocate a list. Buffer the cache by the default 6123 * capacity so that KVM doesn't have to drop mmu_lock to topup if KVM 6124 * encounters an aliased gfn or two. 6125 */ 6126 const int capacity = SPLIT_DESC_CACHE_MIN_NR_OBJECTS + 6127 KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE; 6128 int r; 6129 6130 lockdep_assert_held(&kvm->slots_lock); 6131 6132 r = __kvm_mmu_topup_memory_cache(&kvm->arch.split_desc_cache, capacity, 6133 SPLIT_DESC_CACHE_MIN_NR_OBJECTS); 6134 if (r) 6135 return r; 6136 6137 r = kvm_mmu_topup_memory_cache(&kvm->arch.split_page_header_cache, 1); 6138 if (r) 6139 return r; 6140 6141 return kvm_mmu_topup_memory_cache(&kvm->arch.split_shadow_page_cache, 1); 6142 } 6143 6144 static struct kvm_mmu_page *shadow_mmu_get_sp_for_split(struct kvm *kvm, u64 *huge_sptep) 6145 { 6146 struct kvm_mmu_page *huge_sp = sptep_to_sp(huge_sptep); 6147 struct shadow_page_caches caches = {}; 6148 union kvm_mmu_page_role role; 6149 unsigned int access; 6150 gfn_t gfn; 6151 6152 gfn = kvm_mmu_page_get_gfn(huge_sp, spte_index(huge_sptep)); 6153 access = kvm_mmu_page_get_access(huge_sp, spte_index(huge_sptep)); 6154 6155 /* 6156 * Note, huge page splitting always uses direct shadow pages, regardless 6157 * of whether the huge page itself is mapped by a direct or indirect 6158 * shadow page, since the huge page region itself is being directly 6159 * mapped with smaller pages. 6160 */ 6161 role = kvm_mmu_child_role(huge_sptep, /*direct=*/true, access); 6162 6163 /* Direct SPs do not require a shadowed_info_cache. */ 6164 caches.page_header_cache = &kvm->arch.split_page_header_cache; 6165 caches.shadow_page_cache = &kvm->arch.split_shadow_page_cache; 6166 6167 /* Safe to pass NULL for vCPU since requesting a direct SP. */ 6168 return __kvm_mmu_get_shadow_page(kvm, NULL, &caches, gfn, role); 6169 } 6170 6171 static void shadow_mmu_split_huge_page(struct kvm *kvm, 6172 const struct kvm_memory_slot *slot, 6173 u64 *huge_sptep) 6174 6175 { 6176 struct kvm_mmu_memory_cache *cache = &kvm->arch.split_desc_cache; 6177 u64 huge_spte = READ_ONCE(*huge_sptep); 6178 struct kvm_mmu_page *sp; 6179 bool flush = false; 6180 u64 *sptep, spte; 6181 gfn_t gfn; 6182 int index; 6183 6184 sp = shadow_mmu_get_sp_for_split(kvm, huge_sptep); 6185 6186 for (index = 0; index < SPTE_ENT_PER_PAGE; index++) { 6187 sptep = &sp->spt[index]; 6188 gfn = kvm_mmu_page_get_gfn(sp, index); 6189 6190 /* 6191 * The SP may already have populated SPTEs, e.g. if this huge 6192 * page is aliased by multiple sptes with the same access 6193 * permissions. These entries are guaranteed to map the same 6194 * gfn-to-pfn translation since the SP is direct, so no need to 6195 * modify them. 6196 * 6197 * However, if a given SPTE points to a lower level page table, 6198 * that lower level page table may only be partially populated. 6199 * Installing such SPTEs would effectively unmap a potion of the 6200 * huge page. Unmapping guest memory always requires a TLB flush 6201 * since a subsequent operation on the unmapped regions would 6202 * fail to detect the need to flush. 6203 */ 6204 if (is_shadow_present_pte(*sptep)) { 6205 flush |= !is_last_spte(*sptep, sp->role.level); 6206 continue; 6207 } 6208 6209 spte = make_huge_page_split_spte(kvm, huge_spte, sp->role, index); 6210 mmu_spte_set(sptep, spte); 6211 __rmap_add(kvm, cache, slot, sptep, gfn, sp->role.access); 6212 } 6213 6214 __link_shadow_page(kvm, cache, huge_sptep, sp, flush); 6215 } 6216 6217 static int shadow_mmu_try_split_huge_page(struct kvm *kvm, 6218 const struct kvm_memory_slot *slot, 6219 u64 *huge_sptep) 6220 { 6221 struct kvm_mmu_page *huge_sp = sptep_to_sp(huge_sptep); 6222 int level, r = 0; 6223 gfn_t gfn; 6224 u64 spte; 6225 6226 /* Grab information for the tracepoint before dropping the MMU lock. */ 6227 gfn = kvm_mmu_page_get_gfn(huge_sp, spte_index(huge_sptep)); 6228 level = huge_sp->role.level; 6229 spte = *huge_sptep; 6230 6231 if (kvm_mmu_available_pages(kvm) <= KVM_MIN_FREE_MMU_PAGES) { 6232 r = -ENOSPC; 6233 goto out; 6234 } 6235 6236 if (need_topup_split_caches_or_resched(kvm)) { 6237 write_unlock(&kvm->mmu_lock); 6238 cond_resched(); 6239 /* 6240 * If the topup succeeds, return -EAGAIN to indicate that the 6241 * rmap iterator should be restarted because the MMU lock was 6242 * dropped. 6243 */ 6244 r = topup_split_caches(kvm) ?: -EAGAIN; 6245 write_lock(&kvm->mmu_lock); 6246 goto out; 6247 } 6248 6249 shadow_mmu_split_huge_page(kvm, slot, huge_sptep); 6250 6251 out: 6252 trace_kvm_mmu_split_huge_page(gfn, spte, level, r); 6253 return r; 6254 } 6255 6256 static bool shadow_mmu_try_split_huge_pages(struct kvm *kvm, 6257 struct kvm_rmap_head *rmap_head, 6258 const struct kvm_memory_slot *slot) 6259 { 6260 struct rmap_iterator iter; 6261 struct kvm_mmu_page *sp; 6262 u64 *huge_sptep; 6263 int r; 6264 6265 restart: 6266 for_each_rmap_spte(rmap_head, &iter, huge_sptep) { 6267 sp = sptep_to_sp(huge_sptep); 6268 6269 /* TDP MMU is enabled, so rmap only contains nested MMU SPs. */ 6270 if (WARN_ON_ONCE(!sp->role.guest_mode)) 6271 continue; 6272 6273 /* The rmaps should never contain non-leaf SPTEs. */ 6274 if (WARN_ON_ONCE(!is_large_pte(*huge_sptep))) 6275 continue; 6276 6277 /* SPs with level >PG_LEVEL_4K should never by unsync. */ 6278 if (WARN_ON_ONCE(sp->unsync)) 6279 continue; 6280 6281 /* Don't bother splitting huge pages on invalid SPs. */ 6282 if (sp->role.invalid) 6283 continue; 6284 6285 r = shadow_mmu_try_split_huge_page(kvm, slot, huge_sptep); 6286 6287 /* 6288 * The split succeeded or needs to be retried because the MMU 6289 * lock was dropped. Either way, restart the iterator to get it 6290 * back into a consistent state. 6291 */ 6292 if (!r || r == -EAGAIN) 6293 goto restart; 6294 6295 /* The split failed and shouldn't be retried (e.g. -ENOMEM). */ 6296 break; 6297 } 6298 6299 return false; 6300 } 6301 6302 static void kvm_shadow_mmu_try_split_huge_pages(struct kvm *kvm, 6303 const struct kvm_memory_slot *slot, 6304 gfn_t start, gfn_t end, 6305 int target_level) 6306 { 6307 int level; 6308 6309 /* 6310 * Split huge pages starting with KVM_MAX_HUGEPAGE_LEVEL and working 6311 * down to the target level. This ensures pages are recursively split 6312 * all the way to the target level. There's no need to split pages 6313 * already at the target level. 6314 */ 6315 for (level = KVM_MAX_HUGEPAGE_LEVEL; level > target_level; level--) { 6316 slot_handle_level_range(kvm, slot, shadow_mmu_try_split_huge_pages, 6317 level, level, start, end - 1, true, false); 6318 } 6319 } 6320 6321 /* Must be called with the mmu_lock held in write-mode. */ 6322 void kvm_mmu_try_split_huge_pages(struct kvm *kvm, 6323 const struct kvm_memory_slot *memslot, 6324 u64 start, u64 end, 6325 int target_level) 6326 { 6327 if (!is_tdp_mmu_enabled(kvm)) 6328 return; 6329 6330 if (kvm_memslots_have_rmaps(kvm)) 6331 kvm_shadow_mmu_try_split_huge_pages(kvm, memslot, start, end, target_level); 6332 6333 kvm_tdp_mmu_try_split_huge_pages(kvm, memslot, start, end, target_level, false); 6334 6335 /* 6336 * A TLB flush is unnecessary at this point for the same resons as in 6337 * kvm_mmu_slot_try_split_huge_pages(). 6338 */ 6339 } 6340 6341 void kvm_mmu_slot_try_split_huge_pages(struct kvm *kvm, 6342 const struct kvm_memory_slot *memslot, 6343 int target_level) 6344 { 6345 u64 start = memslot->base_gfn; 6346 u64 end = start + memslot->npages; 6347 6348 if (!is_tdp_mmu_enabled(kvm)) 6349 return; 6350 6351 if (kvm_memslots_have_rmaps(kvm)) { 6352 write_lock(&kvm->mmu_lock); 6353 kvm_shadow_mmu_try_split_huge_pages(kvm, memslot, start, end, target_level); 6354 write_unlock(&kvm->mmu_lock); 6355 } 6356 6357 read_lock(&kvm->mmu_lock); 6358 kvm_tdp_mmu_try_split_huge_pages(kvm, memslot, start, end, target_level, true); 6359 read_unlock(&kvm->mmu_lock); 6360 6361 /* 6362 * No TLB flush is necessary here. KVM will flush TLBs after 6363 * write-protecting and/or clearing dirty on the newly split SPTEs to 6364 * ensure that guest writes are reflected in the dirty log before the 6365 * ioctl to enable dirty logging on this memslot completes. Since the 6366 * split SPTEs retain the write and dirty bits of the huge SPTE, it is 6367 * safe for KVM to decide if a TLB flush is necessary based on the split 6368 * SPTEs. 6369 */ 6370 } 6371 6372 static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm, 6373 struct kvm_rmap_head *rmap_head, 6374 const struct kvm_memory_slot *slot) 6375 { 6376 u64 *sptep; 6377 struct rmap_iterator iter; 6378 int need_tlb_flush = 0; 6379 struct kvm_mmu_page *sp; 6380 6381 restart: 6382 for_each_rmap_spte(rmap_head, &iter, sptep) { 6383 sp = sptep_to_sp(sptep); 6384 6385 /* 6386 * We cannot do huge page mapping for indirect shadow pages, 6387 * which are found on the last rmap (level = 1) when not using 6388 * tdp; such shadow pages are synced with the page table in 6389 * the guest, and the guest page table is using 4K page size 6390 * mapping if the indirect sp has level = 1. 6391 */ 6392 if (sp->role.direct && 6393 sp->role.level < kvm_mmu_max_mapping_level(kvm, slot, sp->gfn, 6394 PG_LEVEL_NUM)) { 6395 kvm_zap_one_rmap_spte(kvm, rmap_head, sptep); 6396 6397 if (kvm_available_flush_tlb_with_range()) 6398 kvm_flush_remote_tlbs_with_address(kvm, sp->gfn, 6399 KVM_PAGES_PER_HPAGE(sp->role.level)); 6400 else 6401 need_tlb_flush = 1; 6402 6403 goto restart; 6404 } 6405 } 6406 6407 return need_tlb_flush; 6408 } 6409 6410 static void kvm_rmap_zap_collapsible_sptes(struct kvm *kvm, 6411 const struct kvm_memory_slot *slot) 6412 { 6413 /* 6414 * Note, use KVM_MAX_HUGEPAGE_LEVEL - 1 since there's no need to zap 6415 * pages that are already mapped at the maximum hugepage level. 6416 */ 6417 if (slot_handle_level(kvm, slot, kvm_mmu_zap_collapsible_spte, 6418 PG_LEVEL_4K, KVM_MAX_HUGEPAGE_LEVEL - 1, true)) 6419 kvm_arch_flush_remote_tlbs_memslot(kvm, slot); 6420 } 6421 6422 void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm, 6423 const struct kvm_memory_slot *slot) 6424 { 6425 if (kvm_memslots_have_rmaps(kvm)) { 6426 write_lock(&kvm->mmu_lock); 6427 kvm_rmap_zap_collapsible_sptes(kvm, slot); 6428 write_unlock(&kvm->mmu_lock); 6429 } 6430 6431 if (is_tdp_mmu_enabled(kvm)) { 6432 read_lock(&kvm->mmu_lock); 6433 kvm_tdp_mmu_zap_collapsible_sptes(kvm, slot); 6434 read_unlock(&kvm->mmu_lock); 6435 } 6436 } 6437 6438 void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm, 6439 const struct kvm_memory_slot *memslot) 6440 { 6441 /* 6442 * All current use cases for flushing the TLBs for a specific memslot 6443 * related to dirty logging, and many do the TLB flush out of mmu_lock. 6444 * The interaction between the various operations on memslot must be 6445 * serialized by slots_locks to ensure the TLB flush from one operation 6446 * is observed by any other operation on the same memslot. 6447 */ 6448 lockdep_assert_held(&kvm->slots_lock); 6449 kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn, 6450 memslot->npages); 6451 } 6452 6453 void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm, 6454 const struct kvm_memory_slot *memslot) 6455 { 6456 if (kvm_memslots_have_rmaps(kvm)) { 6457 write_lock(&kvm->mmu_lock); 6458 /* 6459 * Clear dirty bits only on 4k SPTEs since the legacy MMU only 6460 * support dirty logging at a 4k granularity. 6461 */ 6462 slot_handle_level_4k(kvm, memslot, __rmap_clear_dirty, false); 6463 write_unlock(&kvm->mmu_lock); 6464 } 6465 6466 if (is_tdp_mmu_enabled(kvm)) { 6467 read_lock(&kvm->mmu_lock); 6468 kvm_tdp_mmu_clear_dirty_slot(kvm, memslot); 6469 read_unlock(&kvm->mmu_lock); 6470 } 6471 6472 /* 6473 * The caller will flush the TLBs after this function returns. 6474 * 6475 * It's also safe to flush TLBs out of mmu lock here as currently this 6476 * function is only used for dirty logging, in which case flushing TLB 6477 * out of mmu lock also guarantees no dirty pages will be lost in 6478 * dirty_bitmap. 6479 */ 6480 } 6481 6482 void kvm_mmu_zap_all(struct kvm *kvm) 6483 { 6484 struct kvm_mmu_page *sp, *node; 6485 LIST_HEAD(invalid_list); 6486 int ign; 6487 6488 write_lock(&kvm->mmu_lock); 6489 restart: 6490 list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link) { 6491 if (WARN_ON(sp->role.invalid)) 6492 continue; 6493 if (__kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list, &ign)) 6494 goto restart; 6495 if (cond_resched_rwlock_write(&kvm->mmu_lock)) 6496 goto restart; 6497 } 6498 6499 kvm_mmu_commit_zap_page(kvm, &invalid_list); 6500 6501 if (is_tdp_mmu_enabled(kvm)) 6502 kvm_tdp_mmu_zap_all(kvm); 6503 6504 write_unlock(&kvm->mmu_lock); 6505 } 6506 6507 void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen) 6508 { 6509 WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS); 6510 6511 gen &= MMIO_SPTE_GEN_MASK; 6512 6513 /* 6514 * Generation numbers are incremented in multiples of the number of 6515 * address spaces in order to provide unique generations across all 6516 * address spaces. Strip what is effectively the address space 6517 * modifier prior to checking for a wrap of the MMIO generation so 6518 * that a wrap in any address space is detected. 6519 */ 6520 gen &= ~((u64)KVM_ADDRESS_SPACE_NUM - 1); 6521 6522 /* 6523 * The very rare case: if the MMIO generation number has wrapped, 6524 * zap all shadow pages. 6525 */ 6526 if (unlikely(gen == 0)) { 6527 kvm_debug_ratelimited("kvm: zapping shadow pages for mmio generation wraparound\n"); 6528 kvm_mmu_zap_all_fast(kvm); 6529 } 6530 } 6531 6532 static unsigned long 6533 mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc) 6534 { 6535 struct kvm *kvm; 6536 int nr_to_scan = sc->nr_to_scan; 6537 unsigned long freed = 0; 6538 6539 mutex_lock(&kvm_lock); 6540 6541 list_for_each_entry(kvm, &vm_list, vm_list) { 6542 int idx; 6543 LIST_HEAD(invalid_list); 6544 6545 /* 6546 * Never scan more than sc->nr_to_scan VM instances. 6547 * Will not hit this condition practically since we do not try 6548 * to shrink more than one VM and it is very unlikely to see 6549 * !n_used_mmu_pages so many times. 6550 */ 6551 if (!nr_to_scan--) 6552 break; 6553 /* 6554 * n_used_mmu_pages is accessed without holding kvm->mmu_lock 6555 * here. We may skip a VM instance errorneosly, but we do not 6556 * want to shrink a VM that only started to populate its MMU 6557 * anyway. 6558 */ 6559 if (!kvm->arch.n_used_mmu_pages && 6560 !kvm_has_zapped_obsolete_pages(kvm)) 6561 continue; 6562 6563 idx = srcu_read_lock(&kvm->srcu); 6564 write_lock(&kvm->mmu_lock); 6565 6566 if (kvm_has_zapped_obsolete_pages(kvm)) { 6567 kvm_mmu_commit_zap_page(kvm, 6568 &kvm->arch.zapped_obsolete_pages); 6569 goto unlock; 6570 } 6571 6572 freed = kvm_mmu_zap_oldest_mmu_pages(kvm, sc->nr_to_scan); 6573 6574 unlock: 6575 write_unlock(&kvm->mmu_lock); 6576 srcu_read_unlock(&kvm->srcu, idx); 6577 6578 /* 6579 * unfair on small ones 6580 * per-vm shrinkers cry out 6581 * sadness comes quickly 6582 */ 6583 list_move_tail(&kvm->vm_list, &vm_list); 6584 break; 6585 } 6586 6587 mutex_unlock(&kvm_lock); 6588 return freed; 6589 } 6590 6591 static unsigned long 6592 mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc) 6593 { 6594 return percpu_counter_read_positive(&kvm_total_used_mmu_pages); 6595 } 6596 6597 static struct shrinker mmu_shrinker = { 6598 .count_objects = mmu_shrink_count, 6599 .scan_objects = mmu_shrink_scan, 6600 .seeks = DEFAULT_SEEKS * 10, 6601 }; 6602 6603 static void mmu_destroy_caches(void) 6604 { 6605 kmem_cache_destroy(pte_list_desc_cache); 6606 kmem_cache_destroy(mmu_page_header_cache); 6607 } 6608 6609 static bool get_nx_auto_mode(void) 6610 { 6611 /* Return true when CPU has the bug, and mitigations are ON */ 6612 return boot_cpu_has_bug(X86_BUG_ITLB_MULTIHIT) && !cpu_mitigations_off(); 6613 } 6614 6615 static void __set_nx_huge_pages(bool val) 6616 { 6617 nx_huge_pages = itlb_multihit_kvm_mitigation = val; 6618 } 6619 6620 static int set_nx_huge_pages(const char *val, const struct kernel_param *kp) 6621 { 6622 bool old_val = nx_huge_pages; 6623 bool new_val; 6624 6625 /* In "auto" mode deploy workaround only if CPU has the bug. */ 6626 if (sysfs_streq(val, "off")) 6627 new_val = 0; 6628 else if (sysfs_streq(val, "force")) 6629 new_val = 1; 6630 else if (sysfs_streq(val, "auto")) 6631 new_val = get_nx_auto_mode(); 6632 else if (strtobool(val, &new_val) < 0) 6633 return -EINVAL; 6634 6635 __set_nx_huge_pages(new_val); 6636 6637 if (new_val != old_val) { 6638 struct kvm *kvm; 6639 6640 mutex_lock(&kvm_lock); 6641 6642 list_for_each_entry(kvm, &vm_list, vm_list) { 6643 mutex_lock(&kvm->slots_lock); 6644 kvm_mmu_zap_all_fast(kvm); 6645 mutex_unlock(&kvm->slots_lock); 6646 6647 wake_up_process(kvm->arch.nx_lpage_recovery_thread); 6648 } 6649 mutex_unlock(&kvm_lock); 6650 } 6651 6652 return 0; 6653 } 6654 6655 /* 6656 * nx_huge_pages needs to be resolved to true/false when kvm.ko is loaded, as 6657 * its default value of -1 is technically undefined behavior for a boolean. 6658 * Forward the module init call to SPTE code so that it too can handle module 6659 * params that need to be resolved/snapshot. 6660 */ 6661 void __init kvm_mmu_x86_module_init(void) 6662 { 6663 if (nx_huge_pages == -1) 6664 __set_nx_huge_pages(get_nx_auto_mode()); 6665 6666 kvm_mmu_spte_module_init(); 6667 } 6668 6669 /* 6670 * The bulk of the MMU initialization is deferred until the vendor module is 6671 * loaded as many of the masks/values may be modified by VMX or SVM, i.e. need 6672 * to be reset when a potentially different vendor module is loaded. 6673 */ 6674 int kvm_mmu_vendor_module_init(void) 6675 { 6676 int ret = -ENOMEM; 6677 6678 /* 6679 * MMU roles use union aliasing which is, generally speaking, an 6680 * undefined behavior. However, we supposedly know how compilers behave 6681 * and the current status quo is unlikely to change. Guardians below are 6682 * supposed to let us know if the assumption becomes false. 6683 */ 6684 BUILD_BUG_ON(sizeof(union kvm_mmu_page_role) != sizeof(u32)); 6685 BUILD_BUG_ON(sizeof(union kvm_mmu_extended_role) != sizeof(u32)); 6686 BUILD_BUG_ON(sizeof(union kvm_cpu_role) != sizeof(u64)); 6687 6688 kvm_mmu_reset_all_pte_masks(); 6689 6690 pte_list_desc_cache = kmem_cache_create("pte_list_desc", 6691 sizeof(struct pte_list_desc), 6692 0, SLAB_ACCOUNT, NULL); 6693 if (!pte_list_desc_cache) 6694 goto out; 6695 6696 mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header", 6697 sizeof(struct kvm_mmu_page), 6698 0, SLAB_ACCOUNT, NULL); 6699 if (!mmu_page_header_cache) 6700 goto out; 6701 6702 if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL)) 6703 goto out; 6704 6705 ret = register_shrinker(&mmu_shrinker, "x86-mmu"); 6706 if (ret) 6707 goto out; 6708 6709 return 0; 6710 6711 out: 6712 mmu_destroy_caches(); 6713 return ret; 6714 } 6715 6716 void kvm_mmu_destroy(struct kvm_vcpu *vcpu) 6717 { 6718 kvm_mmu_unload(vcpu); 6719 free_mmu_pages(&vcpu->arch.root_mmu); 6720 free_mmu_pages(&vcpu->arch.guest_mmu); 6721 mmu_free_memory_caches(vcpu); 6722 } 6723 6724 void kvm_mmu_vendor_module_exit(void) 6725 { 6726 mmu_destroy_caches(); 6727 percpu_counter_destroy(&kvm_total_used_mmu_pages); 6728 unregister_shrinker(&mmu_shrinker); 6729 } 6730 6731 /* 6732 * Calculate the effective recovery period, accounting for '0' meaning "let KVM 6733 * select a halving time of 1 hour". Returns true if recovery is enabled. 6734 */ 6735 static bool calc_nx_huge_pages_recovery_period(uint *period) 6736 { 6737 /* 6738 * Use READ_ONCE to get the params, this may be called outside of the 6739 * param setters, e.g. by the kthread to compute its next timeout. 6740 */ 6741 bool enabled = READ_ONCE(nx_huge_pages); 6742 uint ratio = READ_ONCE(nx_huge_pages_recovery_ratio); 6743 6744 if (!enabled || !ratio) 6745 return false; 6746 6747 *period = READ_ONCE(nx_huge_pages_recovery_period_ms); 6748 if (!*period) { 6749 /* Make sure the period is not less than one second. */ 6750 ratio = min(ratio, 3600u); 6751 *period = 60 * 60 * 1000 / ratio; 6752 } 6753 return true; 6754 } 6755 6756 static int set_nx_huge_pages_recovery_param(const char *val, const struct kernel_param *kp) 6757 { 6758 bool was_recovery_enabled, is_recovery_enabled; 6759 uint old_period, new_period; 6760 int err; 6761 6762 was_recovery_enabled = calc_nx_huge_pages_recovery_period(&old_period); 6763 6764 err = param_set_uint(val, kp); 6765 if (err) 6766 return err; 6767 6768 is_recovery_enabled = calc_nx_huge_pages_recovery_period(&new_period); 6769 6770 if (is_recovery_enabled && 6771 (!was_recovery_enabled || old_period > new_period)) { 6772 struct kvm *kvm; 6773 6774 mutex_lock(&kvm_lock); 6775 6776 list_for_each_entry(kvm, &vm_list, vm_list) 6777 wake_up_process(kvm->arch.nx_lpage_recovery_thread); 6778 6779 mutex_unlock(&kvm_lock); 6780 } 6781 6782 return err; 6783 } 6784 6785 static void kvm_recover_nx_lpages(struct kvm *kvm) 6786 { 6787 unsigned long nx_lpage_splits = kvm->stat.nx_lpage_splits; 6788 int rcu_idx; 6789 struct kvm_mmu_page *sp; 6790 unsigned int ratio; 6791 LIST_HEAD(invalid_list); 6792 bool flush = false; 6793 ulong to_zap; 6794 6795 rcu_idx = srcu_read_lock(&kvm->srcu); 6796 write_lock(&kvm->mmu_lock); 6797 6798 /* 6799 * Zapping TDP MMU shadow pages, including the remote TLB flush, must 6800 * be done under RCU protection, because the pages are freed via RCU 6801 * callback. 6802 */ 6803 rcu_read_lock(); 6804 6805 ratio = READ_ONCE(nx_huge_pages_recovery_ratio); 6806 to_zap = ratio ? DIV_ROUND_UP(nx_lpage_splits, ratio) : 0; 6807 for ( ; to_zap; --to_zap) { 6808 if (list_empty(&kvm->arch.lpage_disallowed_mmu_pages)) 6809 break; 6810 6811 /* 6812 * We use a separate list instead of just using active_mmu_pages 6813 * because the number of lpage_disallowed pages is expected to 6814 * be relatively small compared to the total. 6815 */ 6816 sp = list_first_entry(&kvm->arch.lpage_disallowed_mmu_pages, 6817 struct kvm_mmu_page, 6818 lpage_disallowed_link); 6819 WARN_ON_ONCE(!sp->lpage_disallowed); 6820 if (is_tdp_mmu_page(sp)) { 6821 flush |= kvm_tdp_mmu_zap_sp(kvm, sp); 6822 } else { 6823 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list); 6824 WARN_ON_ONCE(sp->lpage_disallowed); 6825 } 6826 6827 if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) { 6828 kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush); 6829 rcu_read_unlock(); 6830 6831 cond_resched_rwlock_write(&kvm->mmu_lock); 6832 flush = false; 6833 6834 rcu_read_lock(); 6835 } 6836 } 6837 kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush); 6838 6839 rcu_read_unlock(); 6840 6841 write_unlock(&kvm->mmu_lock); 6842 srcu_read_unlock(&kvm->srcu, rcu_idx); 6843 } 6844 6845 static long get_nx_lpage_recovery_timeout(u64 start_time) 6846 { 6847 bool enabled; 6848 uint period; 6849 6850 enabled = calc_nx_huge_pages_recovery_period(&period); 6851 6852 return enabled ? start_time + msecs_to_jiffies(period) - get_jiffies_64() 6853 : MAX_SCHEDULE_TIMEOUT; 6854 } 6855 6856 static int kvm_nx_lpage_recovery_worker(struct kvm *kvm, uintptr_t data) 6857 { 6858 u64 start_time; 6859 long remaining_time; 6860 6861 while (true) { 6862 start_time = get_jiffies_64(); 6863 remaining_time = get_nx_lpage_recovery_timeout(start_time); 6864 6865 set_current_state(TASK_INTERRUPTIBLE); 6866 while (!kthread_should_stop() && remaining_time > 0) { 6867 schedule_timeout(remaining_time); 6868 remaining_time = get_nx_lpage_recovery_timeout(start_time); 6869 set_current_state(TASK_INTERRUPTIBLE); 6870 } 6871 6872 set_current_state(TASK_RUNNING); 6873 6874 if (kthread_should_stop()) 6875 return 0; 6876 6877 kvm_recover_nx_lpages(kvm); 6878 } 6879 } 6880 6881 int kvm_mmu_post_init_vm(struct kvm *kvm) 6882 { 6883 int err; 6884 6885 err = kvm_vm_create_worker_thread(kvm, kvm_nx_lpage_recovery_worker, 0, 6886 "kvm-nx-lpage-recovery", 6887 &kvm->arch.nx_lpage_recovery_thread); 6888 if (!err) 6889 kthread_unpark(kvm->arch.nx_lpage_recovery_thread); 6890 6891 return err; 6892 } 6893 6894 void kvm_mmu_pre_destroy_vm(struct kvm *kvm) 6895 { 6896 if (kvm->arch.nx_lpage_recovery_thread) 6897 kthread_stop(kvm->arch.nx_lpage_recovery_thread); 6898 } 6899