xref: /openbmc/linux/arch/x86/kvm/mmu/mmu.c (revision a701d28e)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This module enables machines with Intel VT-x extensions to run virtual
6  * machines without emulation or binary translation.
7  *
8  * MMU support
9  *
10  * Copyright (C) 2006 Qumranet, Inc.
11  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
12  *
13  * Authors:
14  *   Yaniv Kamay  <yaniv@qumranet.com>
15  *   Avi Kivity   <avi@qumranet.com>
16  */
17 
18 #include "irq.h"
19 #include "ioapic.h"
20 #include "mmu.h"
21 #include "mmu_internal.h"
22 #include "tdp_mmu.h"
23 #include "x86.h"
24 #include "kvm_cache_regs.h"
25 #include "kvm_emulate.h"
26 #include "cpuid.h"
27 #include "spte.h"
28 
29 #include <linux/kvm_host.h>
30 #include <linux/types.h>
31 #include <linux/string.h>
32 #include <linux/mm.h>
33 #include <linux/highmem.h>
34 #include <linux/moduleparam.h>
35 #include <linux/export.h>
36 #include <linux/swap.h>
37 #include <linux/hugetlb.h>
38 #include <linux/compiler.h>
39 #include <linux/srcu.h>
40 #include <linux/slab.h>
41 #include <linux/sched/signal.h>
42 #include <linux/uaccess.h>
43 #include <linux/hash.h>
44 #include <linux/kern_levels.h>
45 #include <linux/kthread.h>
46 
47 #include <asm/page.h>
48 #include <asm/memtype.h>
49 #include <asm/cmpxchg.h>
50 #include <asm/io.h>
51 #include <asm/vmx.h>
52 #include <asm/kvm_page_track.h>
53 #include "trace.h"
54 
55 extern bool itlb_multihit_kvm_mitigation;
56 
57 static int __read_mostly nx_huge_pages = -1;
58 #ifdef CONFIG_PREEMPT_RT
59 /* Recovery can cause latency spikes, disable it for PREEMPT_RT.  */
60 static uint __read_mostly nx_huge_pages_recovery_ratio = 0;
61 #else
62 static uint __read_mostly nx_huge_pages_recovery_ratio = 60;
63 #endif
64 
65 static int set_nx_huge_pages(const char *val, const struct kernel_param *kp);
66 static int set_nx_huge_pages_recovery_ratio(const char *val, const struct kernel_param *kp);
67 
68 static const struct kernel_param_ops nx_huge_pages_ops = {
69 	.set = set_nx_huge_pages,
70 	.get = param_get_bool,
71 };
72 
73 static const struct kernel_param_ops nx_huge_pages_recovery_ratio_ops = {
74 	.set = set_nx_huge_pages_recovery_ratio,
75 	.get = param_get_uint,
76 };
77 
78 module_param_cb(nx_huge_pages, &nx_huge_pages_ops, &nx_huge_pages, 0644);
79 __MODULE_PARM_TYPE(nx_huge_pages, "bool");
80 module_param_cb(nx_huge_pages_recovery_ratio, &nx_huge_pages_recovery_ratio_ops,
81 		&nx_huge_pages_recovery_ratio, 0644);
82 __MODULE_PARM_TYPE(nx_huge_pages_recovery_ratio, "uint");
83 
84 static bool __read_mostly force_flush_and_sync_on_reuse;
85 module_param_named(flush_on_reuse, force_flush_and_sync_on_reuse, bool, 0644);
86 
87 /*
88  * When setting this variable to true it enables Two-Dimensional-Paging
89  * where the hardware walks 2 page tables:
90  * 1. the guest-virtual to guest-physical
91  * 2. while doing 1. it walks guest-physical to host-physical
92  * If the hardware supports that we don't need to do shadow paging.
93  */
94 bool tdp_enabled = false;
95 
96 static int max_huge_page_level __read_mostly;
97 static int max_tdp_level __read_mostly;
98 
99 enum {
100 	AUDIT_PRE_PAGE_FAULT,
101 	AUDIT_POST_PAGE_FAULT,
102 	AUDIT_PRE_PTE_WRITE,
103 	AUDIT_POST_PTE_WRITE,
104 	AUDIT_PRE_SYNC,
105 	AUDIT_POST_SYNC
106 };
107 
108 #ifdef MMU_DEBUG
109 bool dbg = 0;
110 module_param(dbg, bool, 0644);
111 #endif
112 
113 #define PTE_PREFETCH_NUM		8
114 
115 #define PT32_LEVEL_BITS 10
116 
117 #define PT32_LEVEL_SHIFT(level) \
118 		(PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
119 
120 #define PT32_LVL_OFFSET_MASK(level) \
121 	(PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
122 						* PT32_LEVEL_BITS))) - 1))
123 
124 #define PT32_INDEX(address, level)\
125 	(((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
126 
127 
128 #define PT32_BASE_ADDR_MASK PAGE_MASK
129 #define PT32_DIR_BASE_ADDR_MASK \
130 	(PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
131 #define PT32_LVL_ADDR_MASK(level) \
132 	(PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
133 					    * PT32_LEVEL_BITS))) - 1))
134 
135 #include <trace/events/kvm.h>
136 
137 /* make pte_list_desc fit well in cache line */
138 #define PTE_LIST_EXT 3
139 
140 struct pte_list_desc {
141 	u64 *sptes[PTE_LIST_EXT];
142 	struct pte_list_desc *more;
143 };
144 
145 struct kvm_shadow_walk_iterator {
146 	u64 addr;
147 	hpa_t shadow_addr;
148 	u64 *sptep;
149 	int level;
150 	unsigned index;
151 };
152 
153 #define for_each_shadow_entry_using_root(_vcpu, _root, _addr, _walker)     \
154 	for (shadow_walk_init_using_root(&(_walker), (_vcpu),              \
155 					 (_root), (_addr));                \
156 	     shadow_walk_okay(&(_walker));			           \
157 	     shadow_walk_next(&(_walker)))
158 
159 #define for_each_shadow_entry(_vcpu, _addr, _walker)            \
160 	for (shadow_walk_init(&(_walker), _vcpu, _addr);	\
161 	     shadow_walk_okay(&(_walker));			\
162 	     shadow_walk_next(&(_walker)))
163 
164 #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte)	\
165 	for (shadow_walk_init(&(_walker), _vcpu, _addr);		\
166 	     shadow_walk_okay(&(_walker)) &&				\
167 		({ spte = mmu_spte_get_lockless(_walker.sptep); 1; });	\
168 	     __shadow_walk_next(&(_walker), spte))
169 
170 static struct kmem_cache *pte_list_desc_cache;
171 struct kmem_cache *mmu_page_header_cache;
172 static struct percpu_counter kvm_total_used_mmu_pages;
173 
174 static void mmu_spte_set(u64 *sptep, u64 spte);
175 static union kvm_mmu_page_role
176 kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu);
177 
178 #define CREATE_TRACE_POINTS
179 #include "mmutrace.h"
180 
181 
182 static inline bool kvm_available_flush_tlb_with_range(void)
183 {
184 	return kvm_x86_ops.tlb_remote_flush_with_range;
185 }
186 
187 static void kvm_flush_remote_tlbs_with_range(struct kvm *kvm,
188 		struct kvm_tlb_range *range)
189 {
190 	int ret = -ENOTSUPP;
191 
192 	if (range && kvm_x86_ops.tlb_remote_flush_with_range)
193 		ret = kvm_x86_ops.tlb_remote_flush_with_range(kvm, range);
194 
195 	if (ret)
196 		kvm_flush_remote_tlbs(kvm);
197 }
198 
199 void kvm_flush_remote_tlbs_with_address(struct kvm *kvm,
200 		u64 start_gfn, u64 pages)
201 {
202 	struct kvm_tlb_range range;
203 
204 	range.start_gfn = start_gfn;
205 	range.pages = pages;
206 
207 	kvm_flush_remote_tlbs_with_range(kvm, &range);
208 }
209 
210 bool is_nx_huge_page_enabled(void)
211 {
212 	return READ_ONCE(nx_huge_pages);
213 }
214 
215 static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn,
216 			   unsigned int access)
217 {
218 	u64 mask = make_mmio_spte(vcpu, gfn, access);
219 
220 	trace_mark_mmio_spte(sptep, gfn, mask);
221 	mmu_spte_set(sptep, mask);
222 }
223 
224 static gfn_t get_mmio_spte_gfn(u64 spte)
225 {
226 	u64 gpa = spte & shadow_nonpresent_or_rsvd_lower_gfn_mask;
227 
228 	gpa |= (spte >> SHADOW_NONPRESENT_OR_RSVD_MASK_LEN)
229 	       & shadow_nonpresent_or_rsvd_mask;
230 
231 	return gpa >> PAGE_SHIFT;
232 }
233 
234 static unsigned get_mmio_spte_access(u64 spte)
235 {
236 	return spte & shadow_mmio_access_mask;
237 }
238 
239 static bool set_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
240 			  kvm_pfn_t pfn, unsigned int access)
241 {
242 	if (unlikely(is_noslot_pfn(pfn))) {
243 		mark_mmio_spte(vcpu, sptep, gfn, access);
244 		return true;
245 	}
246 
247 	return false;
248 }
249 
250 static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte)
251 {
252 	u64 kvm_gen, spte_gen, gen;
253 
254 	gen = kvm_vcpu_memslots(vcpu)->generation;
255 	if (unlikely(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS))
256 		return false;
257 
258 	kvm_gen = gen & MMIO_SPTE_GEN_MASK;
259 	spte_gen = get_mmio_spte_generation(spte);
260 
261 	trace_check_mmio_spte(spte, kvm_gen, spte_gen);
262 	return likely(kvm_gen == spte_gen);
263 }
264 
265 static gpa_t translate_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
266                                   struct x86_exception *exception)
267 {
268 	/* Check if guest physical address doesn't exceed guest maximum */
269 	if (kvm_vcpu_is_illegal_gpa(vcpu, gpa)) {
270 		exception->error_code |= PFERR_RSVD_MASK;
271 		return UNMAPPED_GVA;
272 	}
273 
274         return gpa;
275 }
276 
277 static int is_cpuid_PSE36(void)
278 {
279 	return 1;
280 }
281 
282 static int is_nx(struct kvm_vcpu *vcpu)
283 {
284 	return vcpu->arch.efer & EFER_NX;
285 }
286 
287 static gfn_t pse36_gfn_delta(u32 gpte)
288 {
289 	int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
290 
291 	return (gpte & PT32_DIR_PSE36_MASK) << shift;
292 }
293 
294 #ifdef CONFIG_X86_64
295 static void __set_spte(u64 *sptep, u64 spte)
296 {
297 	WRITE_ONCE(*sptep, spte);
298 }
299 
300 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
301 {
302 	WRITE_ONCE(*sptep, spte);
303 }
304 
305 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
306 {
307 	return xchg(sptep, spte);
308 }
309 
310 static u64 __get_spte_lockless(u64 *sptep)
311 {
312 	return READ_ONCE(*sptep);
313 }
314 #else
315 union split_spte {
316 	struct {
317 		u32 spte_low;
318 		u32 spte_high;
319 	};
320 	u64 spte;
321 };
322 
323 static void count_spte_clear(u64 *sptep, u64 spte)
324 {
325 	struct kvm_mmu_page *sp =  sptep_to_sp(sptep);
326 
327 	if (is_shadow_present_pte(spte))
328 		return;
329 
330 	/* Ensure the spte is completely set before we increase the count */
331 	smp_wmb();
332 	sp->clear_spte_count++;
333 }
334 
335 static void __set_spte(u64 *sptep, u64 spte)
336 {
337 	union split_spte *ssptep, sspte;
338 
339 	ssptep = (union split_spte *)sptep;
340 	sspte = (union split_spte)spte;
341 
342 	ssptep->spte_high = sspte.spte_high;
343 
344 	/*
345 	 * If we map the spte from nonpresent to present, We should store
346 	 * the high bits firstly, then set present bit, so cpu can not
347 	 * fetch this spte while we are setting the spte.
348 	 */
349 	smp_wmb();
350 
351 	WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
352 }
353 
354 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
355 {
356 	union split_spte *ssptep, sspte;
357 
358 	ssptep = (union split_spte *)sptep;
359 	sspte = (union split_spte)spte;
360 
361 	WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
362 
363 	/*
364 	 * If we map the spte from present to nonpresent, we should clear
365 	 * present bit firstly to avoid vcpu fetch the old high bits.
366 	 */
367 	smp_wmb();
368 
369 	ssptep->spte_high = sspte.spte_high;
370 	count_spte_clear(sptep, spte);
371 }
372 
373 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
374 {
375 	union split_spte *ssptep, sspte, orig;
376 
377 	ssptep = (union split_spte *)sptep;
378 	sspte = (union split_spte)spte;
379 
380 	/* xchg acts as a barrier before the setting of the high bits */
381 	orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
382 	orig.spte_high = ssptep->spte_high;
383 	ssptep->spte_high = sspte.spte_high;
384 	count_spte_clear(sptep, spte);
385 
386 	return orig.spte;
387 }
388 
389 /*
390  * The idea using the light way get the spte on x86_32 guest is from
391  * gup_get_pte (mm/gup.c).
392  *
393  * An spte tlb flush may be pending, because kvm_set_pte_rmapp
394  * coalesces them and we are running out of the MMU lock.  Therefore
395  * we need to protect against in-progress updates of the spte.
396  *
397  * Reading the spte while an update is in progress may get the old value
398  * for the high part of the spte.  The race is fine for a present->non-present
399  * change (because the high part of the spte is ignored for non-present spte),
400  * but for a present->present change we must reread the spte.
401  *
402  * All such changes are done in two steps (present->non-present and
403  * non-present->present), hence it is enough to count the number of
404  * present->non-present updates: if it changed while reading the spte,
405  * we might have hit the race.  This is done using clear_spte_count.
406  */
407 static u64 __get_spte_lockless(u64 *sptep)
408 {
409 	struct kvm_mmu_page *sp =  sptep_to_sp(sptep);
410 	union split_spte spte, *orig = (union split_spte *)sptep;
411 	int count;
412 
413 retry:
414 	count = sp->clear_spte_count;
415 	smp_rmb();
416 
417 	spte.spte_low = orig->spte_low;
418 	smp_rmb();
419 
420 	spte.spte_high = orig->spte_high;
421 	smp_rmb();
422 
423 	if (unlikely(spte.spte_low != orig->spte_low ||
424 	      count != sp->clear_spte_count))
425 		goto retry;
426 
427 	return spte.spte;
428 }
429 #endif
430 
431 static bool spte_has_volatile_bits(u64 spte)
432 {
433 	if (!is_shadow_present_pte(spte))
434 		return false;
435 
436 	/*
437 	 * Always atomically update spte if it can be updated
438 	 * out of mmu-lock, it can ensure dirty bit is not lost,
439 	 * also, it can help us to get a stable is_writable_pte()
440 	 * to ensure tlb flush is not missed.
441 	 */
442 	if (spte_can_locklessly_be_made_writable(spte) ||
443 	    is_access_track_spte(spte))
444 		return true;
445 
446 	if (spte_ad_enabled(spte)) {
447 		if ((spte & shadow_accessed_mask) == 0 ||
448 	    	    (is_writable_pte(spte) && (spte & shadow_dirty_mask) == 0))
449 			return true;
450 	}
451 
452 	return false;
453 }
454 
455 /* Rules for using mmu_spte_set:
456  * Set the sptep from nonpresent to present.
457  * Note: the sptep being assigned *must* be either not present
458  * or in a state where the hardware will not attempt to update
459  * the spte.
460  */
461 static void mmu_spte_set(u64 *sptep, u64 new_spte)
462 {
463 	WARN_ON(is_shadow_present_pte(*sptep));
464 	__set_spte(sptep, new_spte);
465 }
466 
467 /*
468  * Update the SPTE (excluding the PFN), but do not track changes in its
469  * accessed/dirty status.
470  */
471 static u64 mmu_spte_update_no_track(u64 *sptep, u64 new_spte)
472 {
473 	u64 old_spte = *sptep;
474 
475 	WARN_ON(!is_shadow_present_pte(new_spte));
476 
477 	if (!is_shadow_present_pte(old_spte)) {
478 		mmu_spte_set(sptep, new_spte);
479 		return old_spte;
480 	}
481 
482 	if (!spte_has_volatile_bits(old_spte))
483 		__update_clear_spte_fast(sptep, new_spte);
484 	else
485 		old_spte = __update_clear_spte_slow(sptep, new_spte);
486 
487 	WARN_ON(spte_to_pfn(old_spte) != spte_to_pfn(new_spte));
488 
489 	return old_spte;
490 }
491 
492 /* Rules for using mmu_spte_update:
493  * Update the state bits, it means the mapped pfn is not changed.
494  *
495  * Whenever we overwrite a writable spte with a read-only one we
496  * should flush remote TLBs. Otherwise rmap_write_protect
497  * will find a read-only spte, even though the writable spte
498  * might be cached on a CPU's TLB, the return value indicates this
499  * case.
500  *
501  * Returns true if the TLB needs to be flushed
502  */
503 static bool mmu_spte_update(u64 *sptep, u64 new_spte)
504 {
505 	bool flush = false;
506 	u64 old_spte = mmu_spte_update_no_track(sptep, new_spte);
507 
508 	if (!is_shadow_present_pte(old_spte))
509 		return false;
510 
511 	/*
512 	 * For the spte updated out of mmu-lock is safe, since
513 	 * we always atomically update it, see the comments in
514 	 * spte_has_volatile_bits().
515 	 */
516 	if (spte_can_locklessly_be_made_writable(old_spte) &&
517 	      !is_writable_pte(new_spte))
518 		flush = true;
519 
520 	/*
521 	 * Flush TLB when accessed/dirty states are changed in the page tables,
522 	 * to guarantee consistency between TLB and page tables.
523 	 */
524 
525 	if (is_accessed_spte(old_spte) && !is_accessed_spte(new_spte)) {
526 		flush = true;
527 		kvm_set_pfn_accessed(spte_to_pfn(old_spte));
528 	}
529 
530 	if (is_dirty_spte(old_spte) && !is_dirty_spte(new_spte)) {
531 		flush = true;
532 		kvm_set_pfn_dirty(spte_to_pfn(old_spte));
533 	}
534 
535 	return flush;
536 }
537 
538 /*
539  * Rules for using mmu_spte_clear_track_bits:
540  * It sets the sptep from present to nonpresent, and track the
541  * state bits, it is used to clear the last level sptep.
542  * Returns non-zero if the PTE was previously valid.
543  */
544 static int mmu_spte_clear_track_bits(u64 *sptep)
545 {
546 	kvm_pfn_t pfn;
547 	u64 old_spte = *sptep;
548 
549 	if (!spte_has_volatile_bits(old_spte))
550 		__update_clear_spte_fast(sptep, 0ull);
551 	else
552 		old_spte = __update_clear_spte_slow(sptep, 0ull);
553 
554 	if (!is_shadow_present_pte(old_spte))
555 		return 0;
556 
557 	pfn = spte_to_pfn(old_spte);
558 
559 	/*
560 	 * KVM does not hold the refcount of the page used by
561 	 * kvm mmu, before reclaiming the page, we should
562 	 * unmap it from mmu first.
563 	 */
564 	WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn)));
565 
566 	if (is_accessed_spte(old_spte))
567 		kvm_set_pfn_accessed(pfn);
568 
569 	if (is_dirty_spte(old_spte))
570 		kvm_set_pfn_dirty(pfn);
571 
572 	return 1;
573 }
574 
575 /*
576  * Rules for using mmu_spte_clear_no_track:
577  * Directly clear spte without caring the state bits of sptep,
578  * it is used to set the upper level spte.
579  */
580 static void mmu_spte_clear_no_track(u64 *sptep)
581 {
582 	__update_clear_spte_fast(sptep, 0ull);
583 }
584 
585 static u64 mmu_spte_get_lockless(u64 *sptep)
586 {
587 	return __get_spte_lockless(sptep);
588 }
589 
590 /* Restore an acc-track PTE back to a regular PTE */
591 static u64 restore_acc_track_spte(u64 spte)
592 {
593 	u64 new_spte = spte;
594 	u64 saved_bits = (spte >> SHADOW_ACC_TRACK_SAVED_BITS_SHIFT)
595 			 & SHADOW_ACC_TRACK_SAVED_BITS_MASK;
596 
597 	WARN_ON_ONCE(spte_ad_enabled(spte));
598 	WARN_ON_ONCE(!is_access_track_spte(spte));
599 
600 	new_spte &= ~shadow_acc_track_mask;
601 	new_spte &= ~(SHADOW_ACC_TRACK_SAVED_BITS_MASK <<
602 		      SHADOW_ACC_TRACK_SAVED_BITS_SHIFT);
603 	new_spte |= saved_bits;
604 
605 	return new_spte;
606 }
607 
608 /* Returns the Accessed status of the PTE and resets it at the same time. */
609 static bool mmu_spte_age(u64 *sptep)
610 {
611 	u64 spte = mmu_spte_get_lockless(sptep);
612 
613 	if (!is_accessed_spte(spte))
614 		return false;
615 
616 	if (spte_ad_enabled(spte)) {
617 		clear_bit((ffs(shadow_accessed_mask) - 1),
618 			  (unsigned long *)sptep);
619 	} else {
620 		/*
621 		 * Capture the dirty status of the page, so that it doesn't get
622 		 * lost when the SPTE is marked for access tracking.
623 		 */
624 		if (is_writable_pte(spte))
625 			kvm_set_pfn_dirty(spte_to_pfn(spte));
626 
627 		spte = mark_spte_for_access_track(spte);
628 		mmu_spte_update_no_track(sptep, spte);
629 	}
630 
631 	return true;
632 }
633 
634 static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
635 {
636 	/*
637 	 * Prevent page table teardown by making any free-er wait during
638 	 * kvm_flush_remote_tlbs() IPI to all active vcpus.
639 	 */
640 	local_irq_disable();
641 
642 	/*
643 	 * Make sure a following spte read is not reordered ahead of the write
644 	 * to vcpu->mode.
645 	 */
646 	smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES);
647 }
648 
649 static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
650 {
651 	/*
652 	 * Make sure the write to vcpu->mode is not reordered in front of
653 	 * reads to sptes.  If it does, kvm_mmu_commit_zap_page() can see us
654 	 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
655 	 */
656 	smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE);
657 	local_irq_enable();
658 }
659 
660 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu, bool maybe_indirect)
661 {
662 	int r;
663 
664 	/* 1 rmap, 1 parent PTE per level, and the prefetched rmaps. */
665 	r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
666 				       1 + PT64_ROOT_MAX_LEVEL + PTE_PREFETCH_NUM);
667 	if (r)
668 		return r;
669 	r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_shadow_page_cache,
670 				       PT64_ROOT_MAX_LEVEL);
671 	if (r)
672 		return r;
673 	if (maybe_indirect) {
674 		r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_gfn_array_cache,
675 					       PT64_ROOT_MAX_LEVEL);
676 		if (r)
677 			return r;
678 	}
679 	return kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
680 					  PT64_ROOT_MAX_LEVEL);
681 }
682 
683 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
684 {
685 	kvm_mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache);
686 	kvm_mmu_free_memory_cache(&vcpu->arch.mmu_shadow_page_cache);
687 	kvm_mmu_free_memory_cache(&vcpu->arch.mmu_gfn_array_cache);
688 	kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache);
689 }
690 
691 static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
692 {
693 	return kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
694 }
695 
696 static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
697 {
698 	kmem_cache_free(pte_list_desc_cache, pte_list_desc);
699 }
700 
701 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
702 {
703 	if (!sp->role.direct)
704 		return sp->gfns[index];
705 
706 	return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
707 }
708 
709 static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
710 {
711 	if (!sp->role.direct) {
712 		sp->gfns[index] = gfn;
713 		return;
714 	}
715 
716 	if (WARN_ON(gfn != kvm_mmu_page_get_gfn(sp, index)))
717 		pr_err_ratelimited("gfn mismatch under direct page %llx "
718 				   "(expected %llx, got %llx)\n",
719 				   sp->gfn,
720 				   kvm_mmu_page_get_gfn(sp, index), gfn);
721 }
722 
723 /*
724  * Return the pointer to the large page information for a given gfn,
725  * handling slots that are not large page aligned.
726  */
727 static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
728 					      struct kvm_memory_slot *slot,
729 					      int level)
730 {
731 	unsigned long idx;
732 
733 	idx = gfn_to_index(gfn, slot->base_gfn, level);
734 	return &slot->arch.lpage_info[level - 2][idx];
735 }
736 
737 static void update_gfn_disallow_lpage_count(struct kvm_memory_slot *slot,
738 					    gfn_t gfn, int count)
739 {
740 	struct kvm_lpage_info *linfo;
741 	int i;
742 
743 	for (i = PG_LEVEL_2M; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) {
744 		linfo = lpage_info_slot(gfn, slot, i);
745 		linfo->disallow_lpage += count;
746 		WARN_ON(linfo->disallow_lpage < 0);
747 	}
748 }
749 
750 void kvm_mmu_gfn_disallow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
751 {
752 	update_gfn_disallow_lpage_count(slot, gfn, 1);
753 }
754 
755 void kvm_mmu_gfn_allow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
756 {
757 	update_gfn_disallow_lpage_count(slot, gfn, -1);
758 }
759 
760 static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
761 {
762 	struct kvm_memslots *slots;
763 	struct kvm_memory_slot *slot;
764 	gfn_t gfn;
765 
766 	kvm->arch.indirect_shadow_pages++;
767 	gfn = sp->gfn;
768 	slots = kvm_memslots_for_spte_role(kvm, sp->role);
769 	slot = __gfn_to_memslot(slots, gfn);
770 
771 	/* the non-leaf shadow pages are keeping readonly. */
772 	if (sp->role.level > PG_LEVEL_4K)
773 		return kvm_slot_page_track_add_page(kvm, slot, gfn,
774 						    KVM_PAGE_TRACK_WRITE);
775 
776 	kvm_mmu_gfn_disallow_lpage(slot, gfn);
777 }
778 
779 void account_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp)
780 {
781 	if (sp->lpage_disallowed)
782 		return;
783 
784 	++kvm->stat.nx_lpage_splits;
785 	list_add_tail(&sp->lpage_disallowed_link,
786 		      &kvm->arch.lpage_disallowed_mmu_pages);
787 	sp->lpage_disallowed = true;
788 }
789 
790 static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
791 {
792 	struct kvm_memslots *slots;
793 	struct kvm_memory_slot *slot;
794 	gfn_t gfn;
795 
796 	kvm->arch.indirect_shadow_pages--;
797 	gfn = sp->gfn;
798 	slots = kvm_memslots_for_spte_role(kvm, sp->role);
799 	slot = __gfn_to_memslot(slots, gfn);
800 	if (sp->role.level > PG_LEVEL_4K)
801 		return kvm_slot_page_track_remove_page(kvm, slot, gfn,
802 						       KVM_PAGE_TRACK_WRITE);
803 
804 	kvm_mmu_gfn_allow_lpage(slot, gfn);
805 }
806 
807 void unaccount_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp)
808 {
809 	--kvm->stat.nx_lpage_splits;
810 	sp->lpage_disallowed = false;
811 	list_del(&sp->lpage_disallowed_link);
812 }
813 
814 static struct kvm_memory_slot *
815 gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
816 			    bool no_dirty_log)
817 {
818 	struct kvm_memory_slot *slot;
819 
820 	slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
821 	if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
822 		return NULL;
823 	if (no_dirty_log && slot->dirty_bitmap)
824 		return NULL;
825 
826 	return slot;
827 }
828 
829 /*
830  * About rmap_head encoding:
831  *
832  * If the bit zero of rmap_head->val is clear, then it points to the only spte
833  * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct
834  * pte_list_desc containing more mappings.
835  */
836 
837 /*
838  * Returns the number of pointers in the rmap chain, not counting the new one.
839  */
840 static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
841 			struct kvm_rmap_head *rmap_head)
842 {
843 	struct pte_list_desc *desc;
844 	int i, count = 0;
845 
846 	if (!rmap_head->val) {
847 		rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
848 		rmap_head->val = (unsigned long)spte;
849 	} else if (!(rmap_head->val & 1)) {
850 		rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
851 		desc = mmu_alloc_pte_list_desc(vcpu);
852 		desc->sptes[0] = (u64 *)rmap_head->val;
853 		desc->sptes[1] = spte;
854 		rmap_head->val = (unsigned long)desc | 1;
855 		++count;
856 	} else {
857 		rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
858 		desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
859 		while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
860 			desc = desc->more;
861 			count += PTE_LIST_EXT;
862 		}
863 		if (desc->sptes[PTE_LIST_EXT-1]) {
864 			desc->more = mmu_alloc_pte_list_desc(vcpu);
865 			desc = desc->more;
866 		}
867 		for (i = 0; desc->sptes[i]; ++i)
868 			++count;
869 		desc->sptes[i] = spte;
870 	}
871 	return count;
872 }
873 
874 static void
875 pte_list_desc_remove_entry(struct kvm_rmap_head *rmap_head,
876 			   struct pte_list_desc *desc, int i,
877 			   struct pte_list_desc *prev_desc)
878 {
879 	int j;
880 
881 	for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
882 		;
883 	desc->sptes[i] = desc->sptes[j];
884 	desc->sptes[j] = NULL;
885 	if (j != 0)
886 		return;
887 	if (!prev_desc && !desc->more)
888 		rmap_head->val = 0;
889 	else
890 		if (prev_desc)
891 			prev_desc->more = desc->more;
892 		else
893 			rmap_head->val = (unsigned long)desc->more | 1;
894 	mmu_free_pte_list_desc(desc);
895 }
896 
897 static void __pte_list_remove(u64 *spte, struct kvm_rmap_head *rmap_head)
898 {
899 	struct pte_list_desc *desc;
900 	struct pte_list_desc *prev_desc;
901 	int i;
902 
903 	if (!rmap_head->val) {
904 		pr_err("%s: %p 0->BUG\n", __func__, spte);
905 		BUG();
906 	} else if (!(rmap_head->val & 1)) {
907 		rmap_printk("%s:  %p 1->0\n", __func__, spte);
908 		if ((u64 *)rmap_head->val != spte) {
909 			pr_err("%s:  %p 1->BUG\n", __func__, spte);
910 			BUG();
911 		}
912 		rmap_head->val = 0;
913 	} else {
914 		rmap_printk("%s:  %p many->many\n", __func__, spte);
915 		desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
916 		prev_desc = NULL;
917 		while (desc) {
918 			for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i) {
919 				if (desc->sptes[i] == spte) {
920 					pte_list_desc_remove_entry(rmap_head,
921 							desc, i, prev_desc);
922 					return;
923 				}
924 			}
925 			prev_desc = desc;
926 			desc = desc->more;
927 		}
928 		pr_err("%s: %p many->many\n", __func__, spte);
929 		BUG();
930 	}
931 }
932 
933 static void pte_list_remove(struct kvm_rmap_head *rmap_head, u64 *sptep)
934 {
935 	mmu_spte_clear_track_bits(sptep);
936 	__pte_list_remove(sptep, rmap_head);
937 }
938 
939 static struct kvm_rmap_head *__gfn_to_rmap(gfn_t gfn, int level,
940 					   struct kvm_memory_slot *slot)
941 {
942 	unsigned long idx;
943 
944 	idx = gfn_to_index(gfn, slot->base_gfn, level);
945 	return &slot->arch.rmap[level - PG_LEVEL_4K][idx];
946 }
947 
948 static struct kvm_rmap_head *gfn_to_rmap(struct kvm *kvm, gfn_t gfn,
949 					 struct kvm_mmu_page *sp)
950 {
951 	struct kvm_memslots *slots;
952 	struct kvm_memory_slot *slot;
953 
954 	slots = kvm_memslots_for_spte_role(kvm, sp->role);
955 	slot = __gfn_to_memslot(slots, gfn);
956 	return __gfn_to_rmap(gfn, sp->role.level, slot);
957 }
958 
959 static bool rmap_can_add(struct kvm_vcpu *vcpu)
960 {
961 	struct kvm_mmu_memory_cache *mc;
962 
963 	mc = &vcpu->arch.mmu_pte_list_desc_cache;
964 	return kvm_mmu_memory_cache_nr_free_objects(mc);
965 }
966 
967 static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
968 {
969 	struct kvm_mmu_page *sp;
970 	struct kvm_rmap_head *rmap_head;
971 
972 	sp = sptep_to_sp(spte);
973 	kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
974 	rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
975 	return pte_list_add(vcpu, spte, rmap_head);
976 }
977 
978 static void rmap_remove(struct kvm *kvm, u64 *spte)
979 {
980 	struct kvm_mmu_page *sp;
981 	gfn_t gfn;
982 	struct kvm_rmap_head *rmap_head;
983 
984 	sp = sptep_to_sp(spte);
985 	gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
986 	rmap_head = gfn_to_rmap(kvm, gfn, sp);
987 	__pte_list_remove(spte, rmap_head);
988 }
989 
990 /*
991  * Used by the following functions to iterate through the sptes linked by a
992  * rmap.  All fields are private and not assumed to be used outside.
993  */
994 struct rmap_iterator {
995 	/* private fields */
996 	struct pte_list_desc *desc;	/* holds the sptep if not NULL */
997 	int pos;			/* index of the sptep */
998 };
999 
1000 /*
1001  * Iteration must be started by this function.  This should also be used after
1002  * removing/dropping sptes from the rmap link because in such cases the
1003  * information in the iterator may not be valid.
1004  *
1005  * Returns sptep if found, NULL otherwise.
1006  */
1007 static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head,
1008 			   struct rmap_iterator *iter)
1009 {
1010 	u64 *sptep;
1011 
1012 	if (!rmap_head->val)
1013 		return NULL;
1014 
1015 	if (!(rmap_head->val & 1)) {
1016 		iter->desc = NULL;
1017 		sptep = (u64 *)rmap_head->val;
1018 		goto out;
1019 	}
1020 
1021 	iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1022 	iter->pos = 0;
1023 	sptep = iter->desc->sptes[iter->pos];
1024 out:
1025 	BUG_ON(!is_shadow_present_pte(*sptep));
1026 	return sptep;
1027 }
1028 
1029 /*
1030  * Must be used with a valid iterator: e.g. after rmap_get_first().
1031  *
1032  * Returns sptep if found, NULL otherwise.
1033  */
1034 static u64 *rmap_get_next(struct rmap_iterator *iter)
1035 {
1036 	u64 *sptep;
1037 
1038 	if (iter->desc) {
1039 		if (iter->pos < PTE_LIST_EXT - 1) {
1040 			++iter->pos;
1041 			sptep = iter->desc->sptes[iter->pos];
1042 			if (sptep)
1043 				goto out;
1044 		}
1045 
1046 		iter->desc = iter->desc->more;
1047 
1048 		if (iter->desc) {
1049 			iter->pos = 0;
1050 			/* desc->sptes[0] cannot be NULL */
1051 			sptep = iter->desc->sptes[iter->pos];
1052 			goto out;
1053 		}
1054 	}
1055 
1056 	return NULL;
1057 out:
1058 	BUG_ON(!is_shadow_present_pte(*sptep));
1059 	return sptep;
1060 }
1061 
1062 #define for_each_rmap_spte(_rmap_head_, _iter_, _spte_)			\
1063 	for (_spte_ = rmap_get_first(_rmap_head_, _iter_);		\
1064 	     _spte_; _spte_ = rmap_get_next(_iter_))
1065 
1066 static void drop_spte(struct kvm *kvm, u64 *sptep)
1067 {
1068 	if (mmu_spte_clear_track_bits(sptep))
1069 		rmap_remove(kvm, sptep);
1070 }
1071 
1072 
1073 static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
1074 {
1075 	if (is_large_pte(*sptep)) {
1076 		WARN_ON(sptep_to_sp(sptep)->role.level == PG_LEVEL_4K);
1077 		drop_spte(kvm, sptep);
1078 		--kvm->stat.lpages;
1079 		return true;
1080 	}
1081 
1082 	return false;
1083 }
1084 
1085 static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1086 {
1087 	if (__drop_large_spte(vcpu->kvm, sptep)) {
1088 		struct kvm_mmu_page *sp = sptep_to_sp(sptep);
1089 
1090 		kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn,
1091 			KVM_PAGES_PER_HPAGE(sp->role.level));
1092 	}
1093 }
1094 
1095 /*
1096  * Write-protect on the specified @sptep, @pt_protect indicates whether
1097  * spte write-protection is caused by protecting shadow page table.
1098  *
1099  * Note: write protection is difference between dirty logging and spte
1100  * protection:
1101  * - for dirty logging, the spte can be set to writable at anytime if
1102  *   its dirty bitmap is properly set.
1103  * - for spte protection, the spte can be writable only after unsync-ing
1104  *   shadow page.
1105  *
1106  * Return true if tlb need be flushed.
1107  */
1108 static bool spte_write_protect(u64 *sptep, bool pt_protect)
1109 {
1110 	u64 spte = *sptep;
1111 
1112 	if (!is_writable_pte(spte) &&
1113 	      !(pt_protect && spte_can_locklessly_be_made_writable(spte)))
1114 		return false;
1115 
1116 	rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);
1117 
1118 	if (pt_protect)
1119 		spte &= ~SPTE_MMU_WRITEABLE;
1120 	spte = spte & ~PT_WRITABLE_MASK;
1121 
1122 	return mmu_spte_update(sptep, spte);
1123 }
1124 
1125 static bool __rmap_write_protect(struct kvm *kvm,
1126 				 struct kvm_rmap_head *rmap_head,
1127 				 bool pt_protect)
1128 {
1129 	u64 *sptep;
1130 	struct rmap_iterator iter;
1131 	bool flush = false;
1132 
1133 	for_each_rmap_spte(rmap_head, &iter, sptep)
1134 		flush |= spte_write_protect(sptep, pt_protect);
1135 
1136 	return flush;
1137 }
1138 
1139 static bool spte_clear_dirty(u64 *sptep)
1140 {
1141 	u64 spte = *sptep;
1142 
1143 	rmap_printk("rmap_clear_dirty: spte %p %llx\n", sptep, *sptep);
1144 
1145 	MMU_WARN_ON(!spte_ad_enabled(spte));
1146 	spte &= ~shadow_dirty_mask;
1147 	return mmu_spte_update(sptep, spte);
1148 }
1149 
1150 static bool spte_wrprot_for_clear_dirty(u64 *sptep)
1151 {
1152 	bool was_writable = test_and_clear_bit(PT_WRITABLE_SHIFT,
1153 					       (unsigned long *)sptep);
1154 	if (was_writable && !spte_ad_enabled(*sptep))
1155 		kvm_set_pfn_dirty(spte_to_pfn(*sptep));
1156 
1157 	return was_writable;
1158 }
1159 
1160 /*
1161  * Gets the GFN ready for another round of dirty logging by clearing the
1162  *	- D bit on ad-enabled SPTEs, and
1163  *	- W bit on ad-disabled SPTEs.
1164  * Returns true iff any D or W bits were cleared.
1165  */
1166 static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1167 {
1168 	u64 *sptep;
1169 	struct rmap_iterator iter;
1170 	bool flush = false;
1171 
1172 	for_each_rmap_spte(rmap_head, &iter, sptep)
1173 		if (spte_ad_need_write_protect(*sptep))
1174 			flush |= spte_wrprot_for_clear_dirty(sptep);
1175 		else
1176 			flush |= spte_clear_dirty(sptep);
1177 
1178 	return flush;
1179 }
1180 
1181 static bool spte_set_dirty(u64 *sptep)
1182 {
1183 	u64 spte = *sptep;
1184 
1185 	rmap_printk("rmap_set_dirty: spte %p %llx\n", sptep, *sptep);
1186 
1187 	/*
1188 	 * Similar to the !kvm_x86_ops.slot_disable_log_dirty case,
1189 	 * do not bother adding back write access to pages marked
1190 	 * SPTE_AD_WRPROT_ONLY_MASK.
1191 	 */
1192 	spte |= shadow_dirty_mask;
1193 
1194 	return mmu_spte_update(sptep, spte);
1195 }
1196 
1197 static bool __rmap_set_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1198 {
1199 	u64 *sptep;
1200 	struct rmap_iterator iter;
1201 	bool flush = false;
1202 
1203 	for_each_rmap_spte(rmap_head, &iter, sptep)
1204 		if (spte_ad_enabled(*sptep))
1205 			flush |= spte_set_dirty(sptep);
1206 
1207 	return flush;
1208 }
1209 
1210 /**
1211  * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1212  * @kvm: kvm instance
1213  * @slot: slot to protect
1214  * @gfn_offset: start of the BITS_PER_LONG pages we care about
1215  * @mask: indicates which pages we should protect
1216  *
1217  * Used when we do not need to care about huge page mappings: e.g. during dirty
1218  * logging we do not have any such mappings.
1219  */
1220 static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1221 				     struct kvm_memory_slot *slot,
1222 				     gfn_t gfn_offset, unsigned long mask)
1223 {
1224 	struct kvm_rmap_head *rmap_head;
1225 
1226 	if (kvm->arch.tdp_mmu_enabled)
1227 		kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot,
1228 				slot->base_gfn + gfn_offset, mask, true);
1229 	while (mask) {
1230 		rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1231 					  PG_LEVEL_4K, slot);
1232 		__rmap_write_protect(kvm, rmap_head, false);
1233 
1234 		/* clear the first set bit */
1235 		mask &= mask - 1;
1236 	}
1237 }
1238 
1239 /**
1240  * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages, or write
1241  * protect the page if the D-bit isn't supported.
1242  * @kvm: kvm instance
1243  * @slot: slot to clear D-bit
1244  * @gfn_offset: start of the BITS_PER_LONG pages we care about
1245  * @mask: indicates which pages we should clear D-bit
1246  *
1247  * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap.
1248  */
1249 void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
1250 				     struct kvm_memory_slot *slot,
1251 				     gfn_t gfn_offset, unsigned long mask)
1252 {
1253 	struct kvm_rmap_head *rmap_head;
1254 
1255 	if (kvm->arch.tdp_mmu_enabled)
1256 		kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot,
1257 				slot->base_gfn + gfn_offset, mask, false);
1258 	while (mask) {
1259 		rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1260 					  PG_LEVEL_4K, slot);
1261 		__rmap_clear_dirty(kvm, rmap_head);
1262 
1263 		/* clear the first set bit */
1264 		mask &= mask - 1;
1265 	}
1266 }
1267 EXPORT_SYMBOL_GPL(kvm_mmu_clear_dirty_pt_masked);
1268 
1269 /**
1270  * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
1271  * PT level pages.
1272  *
1273  * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
1274  * enable dirty logging for them.
1275  *
1276  * Used when we do not need to care about huge page mappings: e.g. during dirty
1277  * logging we do not have any such mappings.
1278  */
1279 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1280 				struct kvm_memory_slot *slot,
1281 				gfn_t gfn_offset, unsigned long mask)
1282 {
1283 	if (kvm_x86_ops.enable_log_dirty_pt_masked)
1284 		kvm_x86_ops.enable_log_dirty_pt_masked(kvm, slot, gfn_offset,
1285 				mask);
1286 	else
1287 		kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
1288 }
1289 
1290 bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
1291 				    struct kvm_memory_slot *slot, u64 gfn)
1292 {
1293 	struct kvm_rmap_head *rmap_head;
1294 	int i;
1295 	bool write_protected = false;
1296 
1297 	for (i = PG_LEVEL_4K; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) {
1298 		rmap_head = __gfn_to_rmap(gfn, i, slot);
1299 		write_protected |= __rmap_write_protect(kvm, rmap_head, true);
1300 	}
1301 
1302 	if (kvm->arch.tdp_mmu_enabled)
1303 		write_protected |=
1304 			kvm_tdp_mmu_write_protect_gfn(kvm, slot, gfn);
1305 
1306 	return write_protected;
1307 }
1308 
1309 static bool rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn)
1310 {
1311 	struct kvm_memory_slot *slot;
1312 
1313 	slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1314 	return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn);
1315 }
1316 
1317 static bool kvm_zap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1318 {
1319 	u64 *sptep;
1320 	struct rmap_iterator iter;
1321 	bool flush = false;
1322 
1323 	while ((sptep = rmap_get_first(rmap_head, &iter))) {
1324 		rmap_printk("%s: spte %p %llx.\n", __func__, sptep, *sptep);
1325 
1326 		pte_list_remove(rmap_head, sptep);
1327 		flush = true;
1328 	}
1329 
1330 	return flush;
1331 }
1332 
1333 static int kvm_unmap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1334 			   struct kvm_memory_slot *slot, gfn_t gfn, int level,
1335 			   unsigned long data)
1336 {
1337 	return kvm_zap_rmapp(kvm, rmap_head);
1338 }
1339 
1340 static int kvm_set_pte_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1341 			     struct kvm_memory_slot *slot, gfn_t gfn, int level,
1342 			     unsigned long data)
1343 {
1344 	u64 *sptep;
1345 	struct rmap_iterator iter;
1346 	int need_flush = 0;
1347 	u64 new_spte;
1348 	pte_t *ptep = (pte_t *)data;
1349 	kvm_pfn_t new_pfn;
1350 
1351 	WARN_ON(pte_huge(*ptep));
1352 	new_pfn = pte_pfn(*ptep);
1353 
1354 restart:
1355 	for_each_rmap_spte(rmap_head, &iter, sptep) {
1356 		rmap_printk("kvm_set_pte_rmapp: spte %p %llx gfn %llx (%d)\n",
1357 			    sptep, *sptep, gfn, level);
1358 
1359 		need_flush = 1;
1360 
1361 		if (pte_write(*ptep)) {
1362 			pte_list_remove(rmap_head, sptep);
1363 			goto restart;
1364 		} else {
1365 			new_spte = kvm_mmu_changed_pte_notifier_make_spte(
1366 					*sptep, new_pfn);
1367 
1368 			mmu_spte_clear_track_bits(sptep);
1369 			mmu_spte_set(sptep, new_spte);
1370 		}
1371 	}
1372 
1373 	if (need_flush && kvm_available_flush_tlb_with_range()) {
1374 		kvm_flush_remote_tlbs_with_address(kvm, gfn, 1);
1375 		return 0;
1376 	}
1377 
1378 	return need_flush;
1379 }
1380 
1381 struct slot_rmap_walk_iterator {
1382 	/* input fields. */
1383 	struct kvm_memory_slot *slot;
1384 	gfn_t start_gfn;
1385 	gfn_t end_gfn;
1386 	int start_level;
1387 	int end_level;
1388 
1389 	/* output fields. */
1390 	gfn_t gfn;
1391 	struct kvm_rmap_head *rmap;
1392 	int level;
1393 
1394 	/* private field. */
1395 	struct kvm_rmap_head *end_rmap;
1396 };
1397 
1398 static void
1399 rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level)
1400 {
1401 	iterator->level = level;
1402 	iterator->gfn = iterator->start_gfn;
1403 	iterator->rmap = __gfn_to_rmap(iterator->gfn, level, iterator->slot);
1404 	iterator->end_rmap = __gfn_to_rmap(iterator->end_gfn, level,
1405 					   iterator->slot);
1406 }
1407 
1408 static void
1409 slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator,
1410 		    struct kvm_memory_slot *slot, int start_level,
1411 		    int end_level, gfn_t start_gfn, gfn_t end_gfn)
1412 {
1413 	iterator->slot = slot;
1414 	iterator->start_level = start_level;
1415 	iterator->end_level = end_level;
1416 	iterator->start_gfn = start_gfn;
1417 	iterator->end_gfn = end_gfn;
1418 
1419 	rmap_walk_init_level(iterator, iterator->start_level);
1420 }
1421 
1422 static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator)
1423 {
1424 	return !!iterator->rmap;
1425 }
1426 
1427 static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
1428 {
1429 	if (++iterator->rmap <= iterator->end_rmap) {
1430 		iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level));
1431 		return;
1432 	}
1433 
1434 	if (++iterator->level > iterator->end_level) {
1435 		iterator->rmap = NULL;
1436 		return;
1437 	}
1438 
1439 	rmap_walk_init_level(iterator, iterator->level);
1440 }
1441 
1442 #define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_,	\
1443 	   _start_gfn, _end_gfn, _iter_)				\
1444 	for (slot_rmap_walk_init(_iter_, _slot_, _start_level_,		\
1445 				 _end_level_, _start_gfn, _end_gfn);	\
1446 	     slot_rmap_walk_okay(_iter_);				\
1447 	     slot_rmap_walk_next(_iter_))
1448 
1449 static int kvm_handle_hva_range(struct kvm *kvm,
1450 				unsigned long start,
1451 				unsigned long end,
1452 				unsigned long data,
1453 				int (*handler)(struct kvm *kvm,
1454 					       struct kvm_rmap_head *rmap_head,
1455 					       struct kvm_memory_slot *slot,
1456 					       gfn_t gfn,
1457 					       int level,
1458 					       unsigned long data))
1459 {
1460 	struct kvm_memslots *slots;
1461 	struct kvm_memory_slot *memslot;
1462 	struct slot_rmap_walk_iterator iterator;
1463 	int ret = 0;
1464 	int i;
1465 
1466 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
1467 		slots = __kvm_memslots(kvm, i);
1468 		kvm_for_each_memslot(memslot, slots) {
1469 			unsigned long hva_start, hva_end;
1470 			gfn_t gfn_start, gfn_end;
1471 
1472 			hva_start = max(start, memslot->userspace_addr);
1473 			hva_end = min(end, memslot->userspace_addr +
1474 				      (memslot->npages << PAGE_SHIFT));
1475 			if (hva_start >= hva_end)
1476 				continue;
1477 			/*
1478 			 * {gfn(page) | page intersects with [hva_start, hva_end)} =
1479 			 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
1480 			 */
1481 			gfn_start = hva_to_gfn_memslot(hva_start, memslot);
1482 			gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
1483 
1484 			for_each_slot_rmap_range(memslot, PG_LEVEL_4K,
1485 						 KVM_MAX_HUGEPAGE_LEVEL,
1486 						 gfn_start, gfn_end - 1,
1487 						 &iterator)
1488 				ret |= handler(kvm, iterator.rmap, memslot,
1489 					       iterator.gfn, iterator.level, data);
1490 		}
1491 	}
1492 
1493 	return ret;
1494 }
1495 
1496 static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
1497 			  unsigned long data,
1498 			  int (*handler)(struct kvm *kvm,
1499 					 struct kvm_rmap_head *rmap_head,
1500 					 struct kvm_memory_slot *slot,
1501 					 gfn_t gfn, int level,
1502 					 unsigned long data))
1503 {
1504 	return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
1505 }
1506 
1507 int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end,
1508 			unsigned flags)
1509 {
1510 	int r;
1511 
1512 	r = kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
1513 
1514 	if (kvm->arch.tdp_mmu_enabled)
1515 		r |= kvm_tdp_mmu_zap_hva_range(kvm, start, end);
1516 
1517 	return r;
1518 }
1519 
1520 int kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1521 {
1522 	int r;
1523 
1524 	r = kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
1525 
1526 	if (kvm->arch.tdp_mmu_enabled)
1527 		r |= kvm_tdp_mmu_set_spte_hva(kvm, hva, &pte);
1528 
1529 	return r;
1530 }
1531 
1532 static int kvm_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1533 			 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1534 			 unsigned long data)
1535 {
1536 	u64 *sptep;
1537 	struct rmap_iterator iter;
1538 	int young = 0;
1539 
1540 	for_each_rmap_spte(rmap_head, &iter, sptep)
1541 		young |= mmu_spte_age(sptep);
1542 
1543 	trace_kvm_age_page(gfn, level, slot, young);
1544 	return young;
1545 }
1546 
1547 static int kvm_test_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1548 			      struct kvm_memory_slot *slot, gfn_t gfn,
1549 			      int level, unsigned long data)
1550 {
1551 	u64 *sptep;
1552 	struct rmap_iterator iter;
1553 
1554 	for_each_rmap_spte(rmap_head, &iter, sptep)
1555 		if (is_accessed_spte(*sptep))
1556 			return 1;
1557 	return 0;
1558 }
1559 
1560 #define RMAP_RECYCLE_THRESHOLD 1000
1561 
1562 static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1563 {
1564 	struct kvm_rmap_head *rmap_head;
1565 	struct kvm_mmu_page *sp;
1566 
1567 	sp = sptep_to_sp(spte);
1568 
1569 	rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
1570 
1571 	kvm_unmap_rmapp(vcpu->kvm, rmap_head, NULL, gfn, sp->role.level, 0);
1572 	kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn,
1573 			KVM_PAGES_PER_HPAGE(sp->role.level));
1574 }
1575 
1576 int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
1577 {
1578 	int young = false;
1579 
1580 	young = kvm_handle_hva_range(kvm, start, end, 0, kvm_age_rmapp);
1581 	if (kvm->arch.tdp_mmu_enabled)
1582 		young |= kvm_tdp_mmu_age_hva_range(kvm, start, end);
1583 
1584 	return young;
1585 }
1586 
1587 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1588 {
1589 	int young = false;
1590 
1591 	young = kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
1592 	if (kvm->arch.tdp_mmu_enabled)
1593 		young |= kvm_tdp_mmu_test_age_hva(kvm, hva);
1594 
1595 	return young;
1596 }
1597 
1598 #ifdef MMU_DEBUG
1599 static int is_empty_shadow_page(u64 *spt)
1600 {
1601 	u64 *pos;
1602 	u64 *end;
1603 
1604 	for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
1605 		if (is_shadow_present_pte(*pos)) {
1606 			printk(KERN_ERR "%s: %p %llx\n", __func__,
1607 			       pos, *pos);
1608 			return 0;
1609 		}
1610 	return 1;
1611 }
1612 #endif
1613 
1614 /*
1615  * This value is the sum of all of the kvm instances's
1616  * kvm->arch.n_used_mmu_pages values.  We need a global,
1617  * aggregate version in order to make the slab shrinker
1618  * faster
1619  */
1620 static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, unsigned long nr)
1621 {
1622 	kvm->arch.n_used_mmu_pages += nr;
1623 	percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1624 }
1625 
1626 static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
1627 {
1628 	MMU_WARN_ON(!is_empty_shadow_page(sp->spt));
1629 	hlist_del(&sp->hash_link);
1630 	list_del(&sp->link);
1631 	free_page((unsigned long)sp->spt);
1632 	if (!sp->role.direct)
1633 		free_page((unsigned long)sp->gfns);
1634 	kmem_cache_free(mmu_page_header_cache, sp);
1635 }
1636 
1637 static unsigned kvm_page_table_hashfn(gfn_t gfn)
1638 {
1639 	return hash_64(gfn, KVM_MMU_HASH_SHIFT);
1640 }
1641 
1642 static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
1643 				    struct kvm_mmu_page *sp, u64 *parent_pte)
1644 {
1645 	if (!parent_pte)
1646 		return;
1647 
1648 	pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
1649 }
1650 
1651 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
1652 				       u64 *parent_pte)
1653 {
1654 	__pte_list_remove(parent_pte, &sp->parent_ptes);
1655 }
1656 
1657 static void drop_parent_pte(struct kvm_mmu_page *sp,
1658 			    u64 *parent_pte)
1659 {
1660 	mmu_page_remove_parent_pte(sp, parent_pte);
1661 	mmu_spte_clear_no_track(parent_pte);
1662 }
1663 
1664 static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu, int direct)
1665 {
1666 	struct kvm_mmu_page *sp;
1667 
1668 	sp = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
1669 	sp->spt = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_shadow_page_cache);
1670 	if (!direct)
1671 		sp->gfns = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_gfn_array_cache);
1672 	set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
1673 
1674 	/*
1675 	 * active_mmu_pages must be a FIFO list, as kvm_zap_obsolete_pages()
1676 	 * depends on valid pages being added to the head of the list.  See
1677 	 * comments in kvm_zap_obsolete_pages().
1678 	 */
1679 	sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
1680 	list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
1681 	kvm_mod_used_mmu_pages(vcpu->kvm, +1);
1682 	return sp;
1683 }
1684 
1685 static void mark_unsync(u64 *spte);
1686 static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
1687 {
1688 	u64 *sptep;
1689 	struct rmap_iterator iter;
1690 
1691 	for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) {
1692 		mark_unsync(sptep);
1693 	}
1694 }
1695 
1696 static void mark_unsync(u64 *spte)
1697 {
1698 	struct kvm_mmu_page *sp;
1699 	unsigned int index;
1700 
1701 	sp = sptep_to_sp(spte);
1702 	index = spte - sp->spt;
1703 	if (__test_and_set_bit(index, sp->unsync_child_bitmap))
1704 		return;
1705 	if (sp->unsync_children++)
1706 		return;
1707 	kvm_mmu_mark_parents_unsync(sp);
1708 }
1709 
1710 static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
1711 			       struct kvm_mmu_page *sp)
1712 {
1713 	return 0;
1714 }
1715 
1716 static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
1717 				 struct kvm_mmu_page *sp, u64 *spte,
1718 				 const void *pte)
1719 {
1720 	WARN_ON(1);
1721 }
1722 
1723 #define KVM_PAGE_ARRAY_NR 16
1724 
1725 struct kvm_mmu_pages {
1726 	struct mmu_page_and_offset {
1727 		struct kvm_mmu_page *sp;
1728 		unsigned int idx;
1729 	} page[KVM_PAGE_ARRAY_NR];
1730 	unsigned int nr;
1731 };
1732 
1733 static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
1734 			 int idx)
1735 {
1736 	int i;
1737 
1738 	if (sp->unsync)
1739 		for (i=0; i < pvec->nr; i++)
1740 			if (pvec->page[i].sp == sp)
1741 				return 0;
1742 
1743 	pvec->page[pvec->nr].sp = sp;
1744 	pvec->page[pvec->nr].idx = idx;
1745 	pvec->nr++;
1746 	return (pvec->nr == KVM_PAGE_ARRAY_NR);
1747 }
1748 
1749 static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx)
1750 {
1751 	--sp->unsync_children;
1752 	WARN_ON((int)sp->unsync_children < 0);
1753 	__clear_bit(idx, sp->unsync_child_bitmap);
1754 }
1755 
1756 static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
1757 			   struct kvm_mmu_pages *pvec)
1758 {
1759 	int i, ret, nr_unsync_leaf = 0;
1760 
1761 	for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
1762 		struct kvm_mmu_page *child;
1763 		u64 ent = sp->spt[i];
1764 
1765 		if (!is_shadow_present_pte(ent) || is_large_pte(ent)) {
1766 			clear_unsync_child_bit(sp, i);
1767 			continue;
1768 		}
1769 
1770 		child = to_shadow_page(ent & PT64_BASE_ADDR_MASK);
1771 
1772 		if (child->unsync_children) {
1773 			if (mmu_pages_add(pvec, child, i))
1774 				return -ENOSPC;
1775 
1776 			ret = __mmu_unsync_walk(child, pvec);
1777 			if (!ret) {
1778 				clear_unsync_child_bit(sp, i);
1779 				continue;
1780 			} else if (ret > 0) {
1781 				nr_unsync_leaf += ret;
1782 			} else
1783 				return ret;
1784 		} else if (child->unsync) {
1785 			nr_unsync_leaf++;
1786 			if (mmu_pages_add(pvec, child, i))
1787 				return -ENOSPC;
1788 		} else
1789 			clear_unsync_child_bit(sp, i);
1790 	}
1791 
1792 	return nr_unsync_leaf;
1793 }
1794 
1795 #define INVALID_INDEX (-1)
1796 
1797 static int mmu_unsync_walk(struct kvm_mmu_page *sp,
1798 			   struct kvm_mmu_pages *pvec)
1799 {
1800 	pvec->nr = 0;
1801 	if (!sp->unsync_children)
1802 		return 0;
1803 
1804 	mmu_pages_add(pvec, sp, INVALID_INDEX);
1805 	return __mmu_unsync_walk(sp, pvec);
1806 }
1807 
1808 static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1809 {
1810 	WARN_ON(!sp->unsync);
1811 	trace_kvm_mmu_sync_page(sp);
1812 	sp->unsync = 0;
1813 	--kvm->stat.mmu_unsync;
1814 }
1815 
1816 static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1817 				     struct list_head *invalid_list);
1818 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1819 				    struct list_head *invalid_list);
1820 
1821 #define for_each_valid_sp(_kvm, _sp, _list)				\
1822 	hlist_for_each_entry(_sp, _list, hash_link)			\
1823 		if (is_obsolete_sp((_kvm), (_sp))) {			\
1824 		} else
1825 
1826 #define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn)			\
1827 	for_each_valid_sp(_kvm, _sp,					\
1828 	  &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)])	\
1829 		if ((_sp)->gfn != (_gfn) || (_sp)->role.direct) {} else
1830 
1831 static inline bool is_ept_sp(struct kvm_mmu_page *sp)
1832 {
1833 	return sp->role.cr0_wp && sp->role.smap_andnot_wp;
1834 }
1835 
1836 /* @sp->gfn should be write-protected at the call site */
1837 static bool __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1838 			    struct list_head *invalid_list)
1839 {
1840 	if ((!is_ept_sp(sp) && sp->role.gpte_is_8_bytes != !!is_pae(vcpu)) ||
1841 	    vcpu->arch.mmu->sync_page(vcpu, sp) == 0) {
1842 		kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1843 		return false;
1844 	}
1845 
1846 	return true;
1847 }
1848 
1849 static bool kvm_mmu_remote_flush_or_zap(struct kvm *kvm,
1850 					struct list_head *invalid_list,
1851 					bool remote_flush)
1852 {
1853 	if (!remote_flush && list_empty(invalid_list))
1854 		return false;
1855 
1856 	if (!list_empty(invalid_list))
1857 		kvm_mmu_commit_zap_page(kvm, invalid_list);
1858 	else
1859 		kvm_flush_remote_tlbs(kvm);
1860 	return true;
1861 }
1862 
1863 static void kvm_mmu_flush_or_zap(struct kvm_vcpu *vcpu,
1864 				 struct list_head *invalid_list,
1865 				 bool remote_flush, bool local_flush)
1866 {
1867 	if (kvm_mmu_remote_flush_or_zap(vcpu->kvm, invalid_list, remote_flush))
1868 		return;
1869 
1870 	if (local_flush)
1871 		kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1872 }
1873 
1874 #ifdef CONFIG_KVM_MMU_AUDIT
1875 #include "mmu_audit.c"
1876 #else
1877 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
1878 static void mmu_audit_disable(void) { }
1879 #endif
1880 
1881 static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
1882 {
1883 	return sp->role.invalid ||
1884 	       unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
1885 }
1886 
1887 static bool kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1888 			 struct list_head *invalid_list)
1889 {
1890 	kvm_unlink_unsync_page(vcpu->kvm, sp);
1891 	return __kvm_sync_page(vcpu, sp, invalid_list);
1892 }
1893 
1894 /* @gfn should be write-protected at the call site */
1895 static bool kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn,
1896 			   struct list_head *invalid_list)
1897 {
1898 	struct kvm_mmu_page *s;
1899 	bool ret = false;
1900 
1901 	for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
1902 		if (!s->unsync)
1903 			continue;
1904 
1905 		WARN_ON(s->role.level != PG_LEVEL_4K);
1906 		ret |= kvm_sync_page(vcpu, s, invalid_list);
1907 	}
1908 
1909 	return ret;
1910 }
1911 
1912 struct mmu_page_path {
1913 	struct kvm_mmu_page *parent[PT64_ROOT_MAX_LEVEL];
1914 	unsigned int idx[PT64_ROOT_MAX_LEVEL];
1915 };
1916 
1917 #define for_each_sp(pvec, sp, parents, i)			\
1918 		for (i = mmu_pages_first(&pvec, &parents);	\
1919 			i < pvec.nr && ({ sp = pvec.page[i].sp; 1;});	\
1920 			i = mmu_pages_next(&pvec, &parents, i))
1921 
1922 static int mmu_pages_next(struct kvm_mmu_pages *pvec,
1923 			  struct mmu_page_path *parents,
1924 			  int i)
1925 {
1926 	int n;
1927 
1928 	for (n = i+1; n < pvec->nr; n++) {
1929 		struct kvm_mmu_page *sp = pvec->page[n].sp;
1930 		unsigned idx = pvec->page[n].idx;
1931 		int level = sp->role.level;
1932 
1933 		parents->idx[level-1] = idx;
1934 		if (level == PG_LEVEL_4K)
1935 			break;
1936 
1937 		parents->parent[level-2] = sp;
1938 	}
1939 
1940 	return n;
1941 }
1942 
1943 static int mmu_pages_first(struct kvm_mmu_pages *pvec,
1944 			   struct mmu_page_path *parents)
1945 {
1946 	struct kvm_mmu_page *sp;
1947 	int level;
1948 
1949 	if (pvec->nr == 0)
1950 		return 0;
1951 
1952 	WARN_ON(pvec->page[0].idx != INVALID_INDEX);
1953 
1954 	sp = pvec->page[0].sp;
1955 	level = sp->role.level;
1956 	WARN_ON(level == PG_LEVEL_4K);
1957 
1958 	parents->parent[level-2] = sp;
1959 
1960 	/* Also set up a sentinel.  Further entries in pvec are all
1961 	 * children of sp, so this element is never overwritten.
1962 	 */
1963 	parents->parent[level-1] = NULL;
1964 	return mmu_pages_next(pvec, parents, 0);
1965 }
1966 
1967 static void mmu_pages_clear_parents(struct mmu_page_path *parents)
1968 {
1969 	struct kvm_mmu_page *sp;
1970 	unsigned int level = 0;
1971 
1972 	do {
1973 		unsigned int idx = parents->idx[level];
1974 		sp = parents->parent[level];
1975 		if (!sp)
1976 			return;
1977 
1978 		WARN_ON(idx == INVALID_INDEX);
1979 		clear_unsync_child_bit(sp, idx);
1980 		level++;
1981 	} while (!sp->unsync_children);
1982 }
1983 
1984 static void mmu_sync_children(struct kvm_vcpu *vcpu,
1985 			      struct kvm_mmu_page *parent)
1986 {
1987 	int i;
1988 	struct kvm_mmu_page *sp;
1989 	struct mmu_page_path parents;
1990 	struct kvm_mmu_pages pages;
1991 	LIST_HEAD(invalid_list);
1992 	bool flush = false;
1993 
1994 	while (mmu_unsync_walk(parent, &pages)) {
1995 		bool protected = false;
1996 
1997 		for_each_sp(pages, sp, parents, i)
1998 			protected |= rmap_write_protect(vcpu, sp->gfn);
1999 
2000 		if (protected) {
2001 			kvm_flush_remote_tlbs(vcpu->kvm);
2002 			flush = false;
2003 		}
2004 
2005 		for_each_sp(pages, sp, parents, i) {
2006 			flush |= kvm_sync_page(vcpu, sp, &invalid_list);
2007 			mmu_pages_clear_parents(&parents);
2008 		}
2009 		if (need_resched() || spin_needbreak(&vcpu->kvm->mmu_lock)) {
2010 			kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2011 			cond_resched_lock(&vcpu->kvm->mmu_lock);
2012 			flush = false;
2013 		}
2014 	}
2015 
2016 	kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2017 }
2018 
2019 static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
2020 {
2021 	atomic_set(&sp->write_flooding_count,  0);
2022 }
2023 
2024 static void clear_sp_write_flooding_count(u64 *spte)
2025 {
2026 	__clear_sp_write_flooding_count(sptep_to_sp(spte));
2027 }
2028 
2029 static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
2030 					     gfn_t gfn,
2031 					     gva_t gaddr,
2032 					     unsigned level,
2033 					     int direct,
2034 					     unsigned int access)
2035 {
2036 	bool direct_mmu = vcpu->arch.mmu->direct_map;
2037 	union kvm_mmu_page_role role;
2038 	struct hlist_head *sp_list;
2039 	unsigned quadrant;
2040 	struct kvm_mmu_page *sp;
2041 	bool need_sync = false;
2042 	bool flush = false;
2043 	int collisions = 0;
2044 	LIST_HEAD(invalid_list);
2045 
2046 	role = vcpu->arch.mmu->mmu_role.base;
2047 	role.level = level;
2048 	role.direct = direct;
2049 	if (role.direct)
2050 		role.gpte_is_8_bytes = true;
2051 	role.access = access;
2052 	if (!direct_mmu && vcpu->arch.mmu->root_level <= PT32_ROOT_LEVEL) {
2053 		quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
2054 		quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
2055 		role.quadrant = quadrant;
2056 	}
2057 
2058 	sp_list = &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)];
2059 	for_each_valid_sp(vcpu->kvm, sp, sp_list) {
2060 		if (sp->gfn != gfn) {
2061 			collisions++;
2062 			continue;
2063 		}
2064 
2065 		if (!need_sync && sp->unsync)
2066 			need_sync = true;
2067 
2068 		if (sp->role.word != role.word)
2069 			continue;
2070 
2071 		if (direct_mmu)
2072 			goto trace_get_page;
2073 
2074 		if (sp->unsync) {
2075 			/* The page is good, but __kvm_sync_page might still end
2076 			 * up zapping it.  If so, break in order to rebuild it.
2077 			 */
2078 			if (!__kvm_sync_page(vcpu, sp, &invalid_list))
2079 				break;
2080 
2081 			WARN_ON(!list_empty(&invalid_list));
2082 			kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
2083 		}
2084 
2085 		if (sp->unsync_children)
2086 			kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
2087 
2088 		__clear_sp_write_flooding_count(sp);
2089 
2090 trace_get_page:
2091 		trace_kvm_mmu_get_page(sp, false);
2092 		goto out;
2093 	}
2094 
2095 	++vcpu->kvm->stat.mmu_cache_miss;
2096 
2097 	sp = kvm_mmu_alloc_page(vcpu, direct);
2098 
2099 	sp->gfn = gfn;
2100 	sp->role = role;
2101 	hlist_add_head(&sp->hash_link, sp_list);
2102 	if (!direct) {
2103 		/*
2104 		 * we should do write protection before syncing pages
2105 		 * otherwise the content of the synced shadow page may
2106 		 * be inconsistent with guest page table.
2107 		 */
2108 		account_shadowed(vcpu->kvm, sp);
2109 		if (level == PG_LEVEL_4K && rmap_write_protect(vcpu, gfn))
2110 			kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn, 1);
2111 
2112 		if (level > PG_LEVEL_4K && need_sync)
2113 			flush |= kvm_sync_pages(vcpu, gfn, &invalid_list);
2114 	}
2115 	trace_kvm_mmu_get_page(sp, true);
2116 
2117 	kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2118 out:
2119 	if (collisions > vcpu->kvm->stat.max_mmu_page_hash_collisions)
2120 		vcpu->kvm->stat.max_mmu_page_hash_collisions = collisions;
2121 	return sp;
2122 }
2123 
2124 static void shadow_walk_init_using_root(struct kvm_shadow_walk_iterator *iterator,
2125 					struct kvm_vcpu *vcpu, hpa_t root,
2126 					u64 addr)
2127 {
2128 	iterator->addr = addr;
2129 	iterator->shadow_addr = root;
2130 	iterator->level = vcpu->arch.mmu->shadow_root_level;
2131 
2132 	if (iterator->level == PT64_ROOT_4LEVEL &&
2133 	    vcpu->arch.mmu->root_level < PT64_ROOT_4LEVEL &&
2134 	    !vcpu->arch.mmu->direct_map)
2135 		--iterator->level;
2136 
2137 	if (iterator->level == PT32E_ROOT_LEVEL) {
2138 		/*
2139 		 * prev_root is currently only used for 64-bit hosts. So only
2140 		 * the active root_hpa is valid here.
2141 		 */
2142 		BUG_ON(root != vcpu->arch.mmu->root_hpa);
2143 
2144 		iterator->shadow_addr
2145 			= vcpu->arch.mmu->pae_root[(addr >> 30) & 3];
2146 		iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
2147 		--iterator->level;
2148 		if (!iterator->shadow_addr)
2149 			iterator->level = 0;
2150 	}
2151 }
2152 
2153 static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
2154 			     struct kvm_vcpu *vcpu, u64 addr)
2155 {
2156 	shadow_walk_init_using_root(iterator, vcpu, vcpu->arch.mmu->root_hpa,
2157 				    addr);
2158 }
2159 
2160 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
2161 {
2162 	if (iterator->level < PG_LEVEL_4K)
2163 		return false;
2164 
2165 	iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
2166 	iterator->sptep	= ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
2167 	return true;
2168 }
2169 
2170 static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
2171 			       u64 spte)
2172 {
2173 	if (is_last_spte(spte, iterator->level)) {
2174 		iterator->level = 0;
2175 		return;
2176 	}
2177 
2178 	iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2179 	--iterator->level;
2180 }
2181 
2182 static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
2183 {
2184 	__shadow_walk_next(iterator, *iterator->sptep);
2185 }
2186 
2187 static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep,
2188 			     struct kvm_mmu_page *sp)
2189 {
2190 	u64 spte;
2191 
2192 	BUILD_BUG_ON(VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);
2193 
2194 	spte = make_nonleaf_spte(sp->spt, sp_ad_disabled(sp));
2195 
2196 	mmu_spte_set(sptep, spte);
2197 
2198 	mmu_page_add_parent_pte(vcpu, sp, sptep);
2199 
2200 	if (sp->unsync_children || sp->unsync)
2201 		mark_unsync(sptep);
2202 }
2203 
2204 static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2205 				   unsigned direct_access)
2206 {
2207 	if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
2208 		struct kvm_mmu_page *child;
2209 
2210 		/*
2211 		 * For the direct sp, if the guest pte's dirty bit
2212 		 * changed form clean to dirty, it will corrupt the
2213 		 * sp's access: allow writable in the read-only sp,
2214 		 * so we should update the spte at this point to get
2215 		 * a new sp with the correct access.
2216 		 */
2217 		child = to_shadow_page(*sptep & PT64_BASE_ADDR_MASK);
2218 		if (child->role.access == direct_access)
2219 			return;
2220 
2221 		drop_parent_pte(child, sptep);
2222 		kvm_flush_remote_tlbs_with_address(vcpu->kvm, child->gfn, 1);
2223 	}
2224 }
2225 
2226 /* Returns the number of zapped non-leaf child shadow pages. */
2227 static int mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
2228 			    u64 *spte, struct list_head *invalid_list)
2229 {
2230 	u64 pte;
2231 	struct kvm_mmu_page *child;
2232 
2233 	pte = *spte;
2234 	if (is_shadow_present_pte(pte)) {
2235 		if (is_last_spte(pte, sp->role.level)) {
2236 			drop_spte(kvm, spte);
2237 			if (is_large_pte(pte))
2238 				--kvm->stat.lpages;
2239 		} else {
2240 			child = to_shadow_page(pte & PT64_BASE_ADDR_MASK);
2241 			drop_parent_pte(child, spte);
2242 
2243 			/*
2244 			 * Recursively zap nested TDP SPs, parentless SPs are
2245 			 * unlikely to be used again in the near future.  This
2246 			 * avoids retaining a large number of stale nested SPs.
2247 			 */
2248 			if (tdp_enabled && invalid_list &&
2249 			    child->role.guest_mode && !child->parent_ptes.val)
2250 				return kvm_mmu_prepare_zap_page(kvm, child,
2251 								invalid_list);
2252 		}
2253 	} else if (is_mmio_spte(pte)) {
2254 		mmu_spte_clear_no_track(spte);
2255 	}
2256 	return 0;
2257 }
2258 
2259 static int kvm_mmu_page_unlink_children(struct kvm *kvm,
2260 					struct kvm_mmu_page *sp,
2261 					struct list_head *invalid_list)
2262 {
2263 	int zapped = 0;
2264 	unsigned i;
2265 
2266 	for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2267 		zapped += mmu_page_zap_pte(kvm, sp, sp->spt + i, invalid_list);
2268 
2269 	return zapped;
2270 }
2271 
2272 static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
2273 {
2274 	u64 *sptep;
2275 	struct rmap_iterator iter;
2276 
2277 	while ((sptep = rmap_get_first(&sp->parent_ptes, &iter)))
2278 		drop_parent_pte(sp, sptep);
2279 }
2280 
2281 static int mmu_zap_unsync_children(struct kvm *kvm,
2282 				   struct kvm_mmu_page *parent,
2283 				   struct list_head *invalid_list)
2284 {
2285 	int i, zapped = 0;
2286 	struct mmu_page_path parents;
2287 	struct kvm_mmu_pages pages;
2288 
2289 	if (parent->role.level == PG_LEVEL_4K)
2290 		return 0;
2291 
2292 	while (mmu_unsync_walk(parent, &pages)) {
2293 		struct kvm_mmu_page *sp;
2294 
2295 		for_each_sp(pages, sp, parents, i) {
2296 			kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2297 			mmu_pages_clear_parents(&parents);
2298 			zapped++;
2299 		}
2300 	}
2301 
2302 	return zapped;
2303 }
2304 
2305 static bool __kvm_mmu_prepare_zap_page(struct kvm *kvm,
2306 				       struct kvm_mmu_page *sp,
2307 				       struct list_head *invalid_list,
2308 				       int *nr_zapped)
2309 {
2310 	bool list_unstable;
2311 
2312 	trace_kvm_mmu_prepare_zap_page(sp);
2313 	++kvm->stat.mmu_shadow_zapped;
2314 	*nr_zapped = mmu_zap_unsync_children(kvm, sp, invalid_list);
2315 	*nr_zapped += kvm_mmu_page_unlink_children(kvm, sp, invalid_list);
2316 	kvm_mmu_unlink_parents(kvm, sp);
2317 
2318 	/* Zapping children means active_mmu_pages has become unstable. */
2319 	list_unstable = *nr_zapped;
2320 
2321 	if (!sp->role.invalid && !sp->role.direct)
2322 		unaccount_shadowed(kvm, sp);
2323 
2324 	if (sp->unsync)
2325 		kvm_unlink_unsync_page(kvm, sp);
2326 	if (!sp->root_count) {
2327 		/* Count self */
2328 		(*nr_zapped)++;
2329 
2330 		/*
2331 		 * Already invalid pages (previously active roots) are not on
2332 		 * the active page list.  See list_del() in the "else" case of
2333 		 * !sp->root_count.
2334 		 */
2335 		if (sp->role.invalid)
2336 			list_add(&sp->link, invalid_list);
2337 		else
2338 			list_move(&sp->link, invalid_list);
2339 		kvm_mod_used_mmu_pages(kvm, -1);
2340 	} else {
2341 		/*
2342 		 * Remove the active root from the active page list, the root
2343 		 * will be explicitly freed when the root_count hits zero.
2344 		 */
2345 		list_del(&sp->link);
2346 
2347 		/*
2348 		 * Obsolete pages cannot be used on any vCPUs, see the comment
2349 		 * in kvm_mmu_zap_all_fast().  Note, is_obsolete_sp() also
2350 		 * treats invalid shadow pages as being obsolete.
2351 		 */
2352 		if (!is_obsolete_sp(kvm, sp))
2353 			kvm_reload_remote_mmus(kvm);
2354 	}
2355 
2356 	if (sp->lpage_disallowed)
2357 		unaccount_huge_nx_page(kvm, sp);
2358 
2359 	sp->role.invalid = 1;
2360 	return list_unstable;
2361 }
2362 
2363 static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2364 				     struct list_head *invalid_list)
2365 {
2366 	int nr_zapped;
2367 
2368 	__kvm_mmu_prepare_zap_page(kvm, sp, invalid_list, &nr_zapped);
2369 	return nr_zapped;
2370 }
2371 
2372 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2373 				    struct list_head *invalid_list)
2374 {
2375 	struct kvm_mmu_page *sp, *nsp;
2376 
2377 	if (list_empty(invalid_list))
2378 		return;
2379 
2380 	/*
2381 	 * We need to make sure everyone sees our modifications to
2382 	 * the page tables and see changes to vcpu->mode here. The barrier
2383 	 * in the kvm_flush_remote_tlbs() achieves this. This pairs
2384 	 * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end.
2385 	 *
2386 	 * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit
2387 	 * guest mode and/or lockless shadow page table walks.
2388 	 */
2389 	kvm_flush_remote_tlbs(kvm);
2390 
2391 	list_for_each_entry_safe(sp, nsp, invalid_list, link) {
2392 		WARN_ON(!sp->role.invalid || sp->root_count);
2393 		kvm_mmu_free_page(sp);
2394 	}
2395 }
2396 
2397 static unsigned long kvm_mmu_zap_oldest_mmu_pages(struct kvm *kvm,
2398 						  unsigned long nr_to_zap)
2399 {
2400 	unsigned long total_zapped = 0;
2401 	struct kvm_mmu_page *sp, *tmp;
2402 	LIST_HEAD(invalid_list);
2403 	bool unstable;
2404 	int nr_zapped;
2405 
2406 	if (list_empty(&kvm->arch.active_mmu_pages))
2407 		return 0;
2408 
2409 restart:
2410 	list_for_each_entry_safe(sp, tmp, &kvm->arch.active_mmu_pages, link) {
2411 		/*
2412 		 * Don't zap active root pages, the page itself can't be freed
2413 		 * and zapping it will just force vCPUs to realloc and reload.
2414 		 */
2415 		if (sp->root_count)
2416 			continue;
2417 
2418 		unstable = __kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list,
2419 						      &nr_zapped);
2420 		total_zapped += nr_zapped;
2421 		if (total_zapped >= nr_to_zap)
2422 			break;
2423 
2424 		if (unstable)
2425 			goto restart;
2426 	}
2427 
2428 	kvm_mmu_commit_zap_page(kvm, &invalid_list);
2429 
2430 	kvm->stat.mmu_recycled += total_zapped;
2431 	return total_zapped;
2432 }
2433 
2434 static inline unsigned long kvm_mmu_available_pages(struct kvm *kvm)
2435 {
2436 	if (kvm->arch.n_max_mmu_pages > kvm->arch.n_used_mmu_pages)
2437 		return kvm->arch.n_max_mmu_pages -
2438 			kvm->arch.n_used_mmu_pages;
2439 
2440 	return 0;
2441 }
2442 
2443 static int make_mmu_pages_available(struct kvm_vcpu *vcpu)
2444 {
2445 	unsigned long avail = kvm_mmu_available_pages(vcpu->kvm);
2446 
2447 	if (likely(avail >= KVM_MIN_FREE_MMU_PAGES))
2448 		return 0;
2449 
2450 	kvm_mmu_zap_oldest_mmu_pages(vcpu->kvm, KVM_REFILL_PAGES - avail);
2451 
2452 	if (!kvm_mmu_available_pages(vcpu->kvm))
2453 		return -ENOSPC;
2454 	return 0;
2455 }
2456 
2457 /*
2458  * Changing the number of mmu pages allocated to the vm
2459  * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2460  */
2461 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long goal_nr_mmu_pages)
2462 {
2463 	spin_lock(&kvm->mmu_lock);
2464 
2465 	if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2466 		kvm_mmu_zap_oldest_mmu_pages(kvm, kvm->arch.n_used_mmu_pages -
2467 						  goal_nr_mmu_pages);
2468 
2469 		goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2470 	}
2471 
2472 	kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2473 
2474 	spin_unlock(&kvm->mmu_lock);
2475 }
2476 
2477 int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2478 {
2479 	struct kvm_mmu_page *sp;
2480 	LIST_HEAD(invalid_list);
2481 	int r;
2482 
2483 	pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
2484 	r = 0;
2485 	spin_lock(&kvm->mmu_lock);
2486 	for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
2487 		pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
2488 			 sp->role.word);
2489 		r = 1;
2490 		kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2491 	}
2492 	kvm_mmu_commit_zap_page(kvm, &invalid_list);
2493 	spin_unlock(&kvm->mmu_lock);
2494 
2495 	return r;
2496 }
2497 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
2498 
2499 static void kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2500 {
2501 	trace_kvm_mmu_unsync_page(sp);
2502 	++vcpu->kvm->stat.mmu_unsync;
2503 	sp->unsync = 1;
2504 
2505 	kvm_mmu_mark_parents_unsync(sp);
2506 }
2507 
2508 bool mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
2509 			    bool can_unsync)
2510 {
2511 	struct kvm_mmu_page *sp;
2512 
2513 	if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
2514 		return true;
2515 
2516 	for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
2517 		if (!can_unsync)
2518 			return true;
2519 
2520 		if (sp->unsync)
2521 			continue;
2522 
2523 		WARN_ON(sp->role.level != PG_LEVEL_4K);
2524 		kvm_unsync_page(vcpu, sp);
2525 	}
2526 
2527 	/*
2528 	 * We need to ensure that the marking of unsync pages is visible
2529 	 * before the SPTE is updated to allow writes because
2530 	 * kvm_mmu_sync_roots() checks the unsync flags without holding
2531 	 * the MMU lock and so can race with this. If the SPTE was updated
2532 	 * before the page had been marked as unsync-ed, something like the
2533 	 * following could happen:
2534 	 *
2535 	 * CPU 1                    CPU 2
2536 	 * ---------------------------------------------------------------------
2537 	 * 1.2 Host updates SPTE
2538 	 *     to be writable
2539 	 *                      2.1 Guest writes a GPTE for GVA X.
2540 	 *                          (GPTE being in the guest page table shadowed
2541 	 *                           by the SP from CPU 1.)
2542 	 *                          This reads SPTE during the page table walk.
2543 	 *                          Since SPTE.W is read as 1, there is no
2544 	 *                          fault.
2545 	 *
2546 	 *                      2.2 Guest issues TLB flush.
2547 	 *                          That causes a VM Exit.
2548 	 *
2549 	 *                      2.3 kvm_mmu_sync_pages() reads sp->unsync.
2550 	 *                          Since it is false, so it just returns.
2551 	 *
2552 	 *                      2.4 Guest accesses GVA X.
2553 	 *                          Since the mapping in the SP was not updated,
2554 	 *                          so the old mapping for GVA X incorrectly
2555 	 *                          gets used.
2556 	 * 1.1 Host marks SP
2557 	 *     as unsync
2558 	 *     (sp->unsync = true)
2559 	 *
2560 	 * The write barrier below ensures that 1.1 happens before 1.2 and thus
2561 	 * the situation in 2.4 does not arise. The implicit barrier in 2.2
2562 	 * pairs with this write barrier.
2563 	 */
2564 	smp_wmb();
2565 
2566 	return false;
2567 }
2568 
2569 static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2570 		    unsigned int pte_access, int level,
2571 		    gfn_t gfn, kvm_pfn_t pfn, bool speculative,
2572 		    bool can_unsync, bool host_writable)
2573 {
2574 	u64 spte;
2575 	struct kvm_mmu_page *sp;
2576 	int ret;
2577 
2578 	if (set_mmio_spte(vcpu, sptep, gfn, pfn, pte_access))
2579 		return 0;
2580 
2581 	sp = sptep_to_sp(sptep);
2582 
2583 	ret = make_spte(vcpu, pte_access, level, gfn, pfn, *sptep, speculative,
2584 			can_unsync, host_writable, sp_ad_disabled(sp), &spte);
2585 
2586 	if (spte & PT_WRITABLE_MASK)
2587 		kvm_vcpu_mark_page_dirty(vcpu, gfn);
2588 
2589 	if (*sptep == spte)
2590 		ret |= SET_SPTE_SPURIOUS;
2591 	else if (mmu_spte_update(sptep, spte))
2592 		ret |= SET_SPTE_NEED_REMOTE_TLB_FLUSH;
2593 	return ret;
2594 }
2595 
2596 static int mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2597 			unsigned int pte_access, bool write_fault, int level,
2598 			gfn_t gfn, kvm_pfn_t pfn, bool speculative,
2599 			bool host_writable)
2600 {
2601 	int was_rmapped = 0;
2602 	int rmap_count;
2603 	int set_spte_ret;
2604 	int ret = RET_PF_FIXED;
2605 	bool flush = false;
2606 
2607 	pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
2608 		 *sptep, write_fault, gfn);
2609 
2610 	if (is_shadow_present_pte(*sptep)) {
2611 		/*
2612 		 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2613 		 * the parent of the now unreachable PTE.
2614 		 */
2615 		if (level > PG_LEVEL_4K && !is_large_pte(*sptep)) {
2616 			struct kvm_mmu_page *child;
2617 			u64 pte = *sptep;
2618 
2619 			child = to_shadow_page(pte & PT64_BASE_ADDR_MASK);
2620 			drop_parent_pte(child, sptep);
2621 			flush = true;
2622 		} else if (pfn != spte_to_pfn(*sptep)) {
2623 			pgprintk("hfn old %llx new %llx\n",
2624 				 spte_to_pfn(*sptep), pfn);
2625 			drop_spte(vcpu->kvm, sptep);
2626 			flush = true;
2627 		} else
2628 			was_rmapped = 1;
2629 	}
2630 
2631 	set_spte_ret = set_spte(vcpu, sptep, pte_access, level, gfn, pfn,
2632 				speculative, true, host_writable);
2633 	if (set_spte_ret & SET_SPTE_WRITE_PROTECTED_PT) {
2634 		if (write_fault)
2635 			ret = RET_PF_EMULATE;
2636 		kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
2637 	}
2638 
2639 	if (set_spte_ret & SET_SPTE_NEED_REMOTE_TLB_FLUSH || flush)
2640 		kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn,
2641 				KVM_PAGES_PER_HPAGE(level));
2642 
2643 	if (unlikely(is_mmio_spte(*sptep)))
2644 		ret = RET_PF_EMULATE;
2645 
2646 	/*
2647 	 * The fault is fully spurious if and only if the new SPTE and old SPTE
2648 	 * are identical, and emulation is not required.
2649 	 */
2650 	if ((set_spte_ret & SET_SPTE_SPURIOUS) && ret == RET_PF_FIXED) {
2651 		WARN_ON_ONCE(!was_rmapped);
2652 		return RET_PF_SPURIOUS;
2653 	}
2654 
2655 	pgprintk("%s: setting spte %llx\n", __func__, *sptep);
2656 	trace_kvm_mmu_set_spte(level, gfn, sptep);
2657 	if (!was_rmapped && is_large_pte(*sptep))
2658 		++vcpu->kvm->stat.lpages;
2659 
2660 	if (is_shadow_present_pte(*sptep)) {
2661 		if (!was_rmapped) {
2662 			rmap_count = rmap_add(vcpu, sptep, gfn);
2663 			if (rmap_count > RMAP_RECYCLE_THRESHOLD)
2664 				rmap_recycle(vcpu, sptep, gfn);
2665 		}
2666 	}
2667 
2668 	return ret;
2669 }
2670 
2671 static kvm_pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
2672 				     bool no_dirty_log)
2673 {
2674 	struct kvm_memory_slot *slot;
2675 
2676 	slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
2677 	if (!slot)
2678 		return KVM_PFN_ERR_FAULT;
2679 
2680 	return gfn_to_pfn_memslot_atomic(slot, gfn);
2681 }
2682 
2683 static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2684 				    struct kvm_mmu_page *sp,
2685 				    u64 *start, u64 *end)
2686 {
2687 	struct page *pages[PTE_PREFETCH_NUM];
2688 	struct kvm_memory_slot *slot;
2689 	unsigned int access = sp->role.access;
2690 	int i, ret;
2691 	gfn_t gfn;
2692 
2693 	gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
2694 	slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK);
2695 	if (!slot)
2696 		return -1;
2697 
2698 	ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start);
2699 	if (ret <= 0)
2700 		return -1;
2701 
2702 	for (i = 0; i < ret; i++, gfn++, start++) {
2703 		mmu_set_spte(vcpu, start, access, false, sp->role.level, gfn,
2704 			     page_to_pfn(pages[i]), true, true);
2705 		put_page(pages[i]);
2706 	}
2707 
2708 	return 0;
2709 }
2710 
2711 static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
2712 				  struct kvm_mmu_page *sp, u64 *sptep)
2713 {
2714 	u64 *spte, *start = NULL;
2715 	int i;
2716 
2717 	WARN_ON(!sp->role.direct);
2718 
2719 	i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
2720 	spte = sp->spt + i;
2721 
2722 	for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
2723 		if (is_shadow_present_pte(*spte) || spte == sptep) {
2724 			if (!start)
2725 				continue;
2726 			if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2727 				break;
2728 			start = NULL;
2729 		} else if (!start)
2730 			start = spte;
2731 	}
2732 }
2733 
2734 static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
2735 {
2736 	struct kvm_mmu_page *sp;
2737 
2738 	sp = sptep_to_sp(sptep);
2739 
2740 	/*
2741 	 * Without accessed bits, there's no way to distinguish between
2742 	 * actually accessed translations and prefetched, so disable pte
2743 	 * prefetch if accessed bits aren't available.
2744 	 */
2745 	if (sp_ad_disabled(sp))
2746 		return;
2747 
2748 	if (sp->role.level > PG_LEVEL_4K)
2749 		return;
2750 
2751 	__direct_pte_prefetch(vcpu, sp, sptep);
2752 }
2753 
2754 static int host_pfn_mapping_level(struct kvm_vcpu *vcpu, gfn_t gfn,
2755 				  kvm_pfn_t pfn, struct kvm_memory_slot *slot)
2756 {
2757 	unsigned long hva;
2758 	pte_t *pte;
2759 	int level;
2760 
2761 	if (!PageCompound(pfn_to_page(pfn)) && !kvm_is_zone_device_pfn(pfn))
2762 		return PG_LEVEL_4K;
2763 
2764 	/*
2765 	 * Note, using the already-retrieved memslot and __gfn_to_hva_memslot()
2766 	 * is not solely for performance, it's also necessary to avoid the
2767 	 * "writable" check in __gfn_to_hva_many(), which will always fail on
2768 	 * read-only memslots due to gfn_to_hva() assuming writes.  Earlier
2769 	 * page fault steps have already verified the guest isn't writing a
2770 	 * read-only memslot.
2771 	 */
2772 	hva = __gfn_to_hva_memslot(slot, gfn);
2773 
2774 	pte = lookup_address_in_mm(vcpu->kvm->mm, hva, &level);
2775 	if (unlikely(!pte))
2776 		return PG_LEVEL_4K;
2777 
2778 	return level;
2779 }
2780 
2781 int kvm_mmu_hugepage_adjust(struct kvm_vcpu *vcpu, gfn_t gfn,
2782 			    int max_level, kvm_pfn_t *pfnp,
2783 			    bool huge_page_disallowed, int *req_level)
2784 {
2785 	struct kvm_memory_slot *slot;
2786 	struct kvm_lpage_info *linfo;
2787 	kvm_pfn_t pfn = *pfnp;
2788 	kvm_pfn_t mask;
2789 	int level;
2790 
2791 	*req_level = PG_LEVEL_4K;
2792 
2793 	if (unlikely(max_level == PG_LEVEL_4K))
2794 		return PG_LEVEL_4K;
2795 
2796 	if (is_error_noslot_pfn(pfn) || kvm_is_reserved_pfn(pfn))
2797 		return PG_LEVEL_4K;
2798 
2799 	slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, true);
2800 	if (!slot)
2801 		return PG_LEVEL_4K;
2802 
2803 	max_level = min(max_level, max_huge_page_level);
2804 	for ( ; max_level > PG_LEVEL_4K; max_level--) {
2805 		linfo = lpage_info_slot(gfn, slot, max_level);
2806 		if (!linfo->disallow_lpage)
2807 			break;
2808 	}
2809 
2810 	if (max_level == PG_LEVEL_4K)
2811 		return PG_LEVEL_4K;
2812 
2813 	level = host_pfn_mapping_level(vcpu, gfn, pfn, slot);
2814 	if (level == PG_LEVEL_4K)
2815 		return level;
2816 
2817 	*req_level = level = min(level, max_level);
2818 
2819 	/*
2820 	 * Enforce the iTLB multihit workaround after capturing the requested
2821 	 * level, which will be used to do precise, accurate accounting.
2822 	 */
2823 	if (huge_page_disallowed)
2824 		return PG_LEVEL_4K;
2825 
2826 	/*
2827 	 * mmu_notifier_retry() was successful and mmu_lock is held, so
2828 	 * the pmd can't be split from under us.
2829 	 */
2830 	mask = KVM_PAGES_PER_HPAGE(level) - 1;
2831 	VM_BUG_ON((gfn & mask) != (pfn & mask));
2832 	*pfnp = pfn & ~mask;
2833 
2834 	return level;
2835 }
2836 
2837 void disallowed_hugepage_adjust(u64 spte, gfn_t gfn, int cur_level,
2838 				kvm_pfn_t *pfnp, int *goal_levelp)
2839 {
2840 	int level = *goal_levelp;
2841 
2842 	if (cur_level == level && level > PG_LEVEL_4K &&
2843 	    is_shadow_present_pte(spte) &&
2844 	    !is_large_pte(spte)) {
2845 		/*
2846 		 * A small SPTE exists for this pfn, but FNAME(fetch)
2847 		 * and __direct_map would like to create a large PTE
2848 		 * instead: just force them to go down another level,
2849 		 * patching back for them into pfn the next 9 bits of
2850 		 * the address.
2851 		 */
2852 		u64 page_mask = KVM_PAGES_PER_HPAGE(level) -
2853 				KVM_PAGES_PER_HPAGE(level - 1);
2854 		*pfnp |= gfn & page_mask;
2855 		(*goal_levelp)--;
2856 	}
2857 }
2858 
2859 static int __direct_map(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
2860 			int map_writable, int max_level, kvm_pfn_t pfn,
2861 			bool prefault, bool is_tdp)
2862 {
2863 	bool nx_huge_page_workaround_enabled = is_nx_huge_page_enabled();
2864 	bool write = error_code & PFERR_WRITE_MASK;
2865 	bool exec = error_code & PFERR_FETCH_MASK;
2866 	bool huge_page_disallowed = exec && nx_huge_page_workaround_enabled;
2867 	struct kvm_shadow_walk_iterator it;
2868 	struct kvm_mmu_page *sp;
2869 	int level, req_level, ret;
2870 	gfn_t gfn = gpa >> PAGE_SHIFT;
2871 	gfn_t base_gfn = gfn;
2872 
2873 	if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa)))
2874 		return RET_PF_RETRY;
2875 
2876 	level = kvm_mmu_hugepage_adjust(vcpu, gfn, max_level, &pfn,
2877 					huge_page_disallowed, &req_level);
2878 
2879 	trace_kvm_mmu_spte_requested(gpa, level, pfn);
2880 	for_each_shadow_entry(vcpu, gpa, it) {
2881 		/*
2882 		 * We cannot overwrite existing page tables with an NX
2883 		 * large page, as the leaf could be executable.
2884 		 */
2885 		if (nx_huge_page_workaround_enabled)
2886 			disallowed_hugepage_adjust(*it.sptep, gfn, it.level,
2887 						   &pfn, &level);
2888 
2889 		base_gfn = gfn & ~(KVM_PAGES_PER_HPAGE(it.level) - 1);
2890 		if (it.level == level)
2891 			break;
2892 
2893 		drop_large_spte(vcpu, it.sptep);
2894 		if (!is_shadow_present_pte(*it.sptep)) {
2895 			sp = kvm_mmu_get_page(vcpu, base_gfn, it.addr,
2896 					      it.level - 1, true, ACC_ALL);
2897 
2898 			link_shadow_page(vcpu, it.sptep, sp);
2899 			if (is_tdp && huge_page_disallowed &&
2900 			    req_level >= it.level)
2901 				account_huge_nx_page(vcpu->kvm, sp);
2902 		}
2903 	}
2904 
2905 	ret = mmu_set_spte(vcpu, it.sptep, ACC_ALL,
2906 			   write, level, base_gfn, pfn, prefault,
2907 			   map_writable);
2908 	if (ret == RET_PF_SPURIOUS)
2909 		return ret;
2910 
2911 	direct_pte_prefetch(vcpu, it.sptep);
2912 	++vcpu->stat.pf_fixed;
2913 	return ret;
2914 }
2915 
2916 static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
2917 {
2918 	send_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, PAGE_SHIFT, tsk);
2919 }
2920 
2921 static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, kvm_pfn_t pfn)
2922 {
2923 	/*
2924 	 * Do not cache the mmio info caused by writing the readonly gfn
2925 	 * into the spte otherwise read access on readonly gfn also can
2926 	 * caused mmio page fault and treat it as mmio access.
2927 	 */
2928 	if (pfn == KVM_PFN_ERR_RO_FAULT)
2929 		return RET_PF_EMULATE;
2930 
2931 	if (pfn == KVM_PFN_ERR_HWPOISON) {
2932 		kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current);
2933 		return RET_PF_RETRY;
2934 	}
2935 
2936 	return -EFAULT;
2937 }
2938 
2939 static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
2940 				kvm_pfn_t pfn, unsigned int access,
2941 				int *ret_val)
2942 {
2943 	/* The pfn is invalid, report the error! */
2944 	if (unlikely(is_error_pfn(pfn))) {
2945 		*ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
2946 		return true;
2947 	}
2948 
2949 	if (unlikely(is_noslot_pfn(pfn)))
2950 		vcpu_cache_mmio_info(vcpu, gva, gfn,
2951 				     access & shadow_mmio_access_mask);
2952 
2953 	return false;
2954 }
2955 
2956 static bool page_fault_can_be_fast(u32 error_code)
2957 {
2958 	/*
2959 	 * Do not fix the mmio spte with invalid generation number which
2960 	 * need to be updated by slow page fault path.
2961 	 */
2962 	if (unlikely(error_code & PFERR_RSVD_MASK))
2963 		return false;
2964 
2965 	/* See if the page fault is due to an NX violation */
2966 	if (unlikely(((error_code & (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))
2967 		      == (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))))
2968 		return false;
2969 
2970 	/*
2971 	 * #PF can be fast if:
2972 	 * 1. The shadow page table entry is not present, which could mean that
2973 	 *    the fault is potentially caused by access tracking (if enabled).
2974 	 * 2. The shadow page table entry is present and the fault
2975 	 *    is caused by write-protect, that means we just need change the W
2976 	 *    bit of the spte which can be done out of mmu-lock.
2977 	 *
2978 	 * However, if access tracking is disabled we know that a non-present
2979 	 * page must be a genuine page fault where we have to create a new SPTE.
2980 	 * So, if access tracking is disabled, we return true only for write
2981 	 * accesses to a present page.
2982 	 */
2983 
2984 	return shadow_acc_track_mask != 0 ||
2985 	       ((error_code & (PFERR_WRITE_MASK | PFERR_PRESENT_MASK))
2986 		== (PFERR_WRITE_MASK | PFERR_PRESENT_MASK));
2987 }
2988 
2989 /*
2990  * Returns true if the SPTE was fixed successfully. Otherwise,
2991  * someone else modified the SPTE from its original value.
2992  */
2993 static bool
2994 fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
2995 			u64 *sptep, u64 old_spte, u64 new_spte)
2996 {
2997 	gfn_t gfn;
2998 
2999 	WARN_ON(!sp->role.direct);
3000 
3001 	/*
3002 	 * Theoretically we could also set dirty bit (and flush TLB) here in
3003 	 * order to eliminate unnecessary PML logging. See comments in
3004 	 * set_spte. But fast_page_fault is very unlikely to happen with PML
3005 	 * enabled, so we do not do this. This might result in the same GPA
3006 	 * to be logged in PML buffer again when the write really happens, and
3007 	 * eventually to be called by mark_page_dirty twice. But it's also no
3008 	 * harm. This also avoids the TLB flush needed after setting dirty bit
3009 	 * so non-PML cases won't be impacted.
3010 	 *
3011 	 * Compare with set_spte where instead shadow_dirty_mask is set.
3012 	 */
3013 	if (cmpxchg64(sptep, old_spte, new_spte) != old_spte)
3014 		return false;
3015 
3016 	if (is_writable_pte(new_spte) && !is_writable_pte(old_spte)) {
3017 		/*
3018 		 * The gfn of direct spte is stable since it is
3019 		 * calculated by sp->gfn.
3020 		 */
3021 		gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
3022 		kvm_vcpu_mark_page_dirty(vcpu, gfn);
3023 	}
3024 
3025 	return true;
3026 }
3027 
3028 static bool is_access_allowed(u32 fault_err_code, u64 spte)
3029 {
3030 	if (fault_err_code & PFERR_FETCH_MASK)
3031 		return is_executable_pte(spte);
3032 
3033 	if (fault_err_code & PFERR_WRITE_MASK)
3034 		return is_writable_pte(spte);
3035 
3036 	/* Fault was on Read access */
3037 	return spte & PT_PRESENT_MASK;
3038 }
3039 
3040 /*
3041  * Returns one of RET_PF_INVALID, RET_PF_FIXED or RET_PF_SPURIOUS.
3042  */
3043 static int fast_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
3044 			   u32 error_code)
3045 {
3046 	struct kvm_shadow_walk_iterator iterator;
3047 	struct kvm_mmu_page *sp;
3048 	int ret = RET_PF_INVALID;
3049 	u64 spte = 0ull;
3050 	uint retry_count = 0;
3051 
3052 	if (!page_fault_can_be_fast(error_code))
3053 		return ret;
3054 
3055 	walk_shadow_page_lockless_begin(vcpu);
3056 
3057 	do {
3058 		u64 new_spte;
3059 
3060 		for_each_shadow_entry_lockless(vcpu, cr2_or_gpa, iterator, spte)
3061 			if (!is_shadow_present_pte(spte))
3062 				break;
3063 
3064 		sp = sptep_to_sp(iterator.sptep);
3065 		if (!is_last_spte(spte, sp->role.level))
3066 			break;
3067 
3068 		/*
3069 		 * Check whether the memory access that caused the fault would
3070 		 * still cause it if it were to be performed right now. If not,
3071 		 * then this is a spurious fault caused by TLB lazily flushed,
3072 		 * or some other CPU has already fixed the PTE after the
3073 		 * current CPU took the fault.
3074 		 *
3075 		 * Need not check the access of upper level table entries since
3076 		 * they are always ACC_ALL.
3077 		 */
3078 		if (is_access_allowed(error_code, spte)) {
3079 			ret = RET_PF_SPURIOUS;
3080 			break;
3081 		}
3082 
3083 		new_spte = spte;
3084 
3085 		if (is_access_track_spte(spte))
3086 			new_spte = restore_acc_track_spte(new_spte);
3087 
3088 		/*
3089 		 * Currently, to simplify the code, write-protection can
3090 		 * be removed in the fast path only if the SPTE was
3091 		 * write-protected for dirty-logging or access tracking.
3092 		 */
3093 		if ((error_code & PFERR_WRITE_MASK) &&
3094 		    spte_can_locklessly_be_made_writable(spte)) {
3095 			new_spte |= PT_WRITABLE_MASK;
3096 
3097 			/*
3098 			 * Do not fix write-permission on the large spte.  Since
3099 			 * we only dirty the first page into the dirty-bitmap in
3100 			 * fast_pf_fix_direct_spte(), other pages are missed
3101 			 * if its slot has dirty logging enabled.
3102 			 *
3103 			 * Instead, we let the slow page fault path create a
3104 			 * normal spte to fix the access.
3105 			 *
3106 			 * See the comments in kvm_arch_commit_memory_region().
3107 			 */
3108 			if (sp->role.level > PG_LEVEL_4K)
3109 				break;
3110 		}
3111 
3112 		/* Verify that the fault can be handled in the fast path */
3113 		if (new_spte == spte ||
3114 		    !is_access_allowed(error_code, new_spte))
3115 			break;
3116 
3117 		/*
3118 		 * Currently, fast page fault only works for direct mapping
3119 		 * since the gfn is not stable for indirect shadow page. See
3120 		 * Documentation/virt/kvm/locking.rst to get more detail.
3121 		 */
3122 		if (fast_pf_fix_direct_spte(vcpu, sp, iterator.sptep, spte,
3123 					    new_spte)) {
3124 			ret = RET_PF_FIXED;
3125 			break;
3126 		}
3127 
3128 		if (++retry_count > 4) {
3129 			printk_once(KERN_WARNING
3130 				"kvm: Fast #PF retrying more than 4 times.\n");
3131 			break;
3132 		}
3133 
3134 	} while (true);
3135 
3136 	trace_fast_page_fault(vcpu, cr2_or_gpa, error_code, iterator.sptep,
3137 			      spte, ret);
3138 	walk_shadow_page_lockless_end(vcpu);
3139 
3140 	return ret;
3141 }
3142 
3143 static void mmu_free_root_page(struct kvm *kvm, hpa_t *root_hpa,
3144 			       struct list_head *invalid_list)
3145 {
3146 	struct kvm_mmu_page *sp;
3147 
3148 	if (!VALID_PAGE(*root_hpa))
3149 		return;
3150 
3151 	sp = to_shadow_page(*root_hpa & PT64_BASE_ADDR_MASK);
3152 
3153 	if (kvm_mmu_put_root(kvm, sp)) {
3154 		if (sp->tdp_mmu_page)
3155 			kvm_tdp_mmu_free_root(kvm, sp);
3156 		else if (sp->role.invalid)
3157 			kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
3158 	}
3159 
3160 	*root_hpa = INVALID_PAGE;
3161 }
3162 
3163 /* roots_to_free must be some combination of the KVM_MMU_ROOT_* flags */
3164 void kvm_mmu_free_roots(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
3165 			ulong roots_to_free)
3166 {
3167 	struct kvm *kvm = vcpu->kvm;
3168 	int i;
3169 	LIST_HEAD(invalid_list);
3170 	bool free_active_root = roots_to_free & KVM_MMU_ROOT_CURRENT;
3171 
3172 	BUILD_BUG_ON(KVM_MMU_NUM_PREV_ROOTS >= BITS_PER_LONG);
3173 
3174 	/* Before acquiring the MMU lock, see if we need to do any real work. */
3175 	if (!(free_active_root && VALID_PAGE(mmu->root_hpa))) {
3176 		for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
3177 			if ((roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) &&
3178 			    VALID_PAGE(mmu->prev_roots[i].hpa))
3179 				break;
3180 
3181 		if (i == KVM_MMU_NUM_PREV_ROOTS)
3182 			return;
3183 	}
3184 
3185 	spin_lock(&kvm->mmu_lock);
3186 
3187 	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
3188 		if (roots_to_free & KVM_MMU_ROOT_PREVIOUS(i))
3189 			mmu_free_root_page(kvm, &mmu->prev_roots[i].hpa,
3190 					   &invalid_list);
3191 
3192 	if (free_active_root) {
3193 		if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
3194 		    (mmu->root_level >= PT64_ROOT_4LEVEL || mmu->direct_map)) {
3195 			mmu_free_root_page(kvm, &mmu->root_hpa, &invalid_list);
3196 		} else {
3197 			for (i = 0; i < 4; ++i)
3198 				if (mmu->pae_root[i] != 0)
3199 					mmu_free_root_page(kvm,
3200 							   &mmu->pae_root[i],
3201 							   &invalid_list);
3202 			mmu->root_hpa = INVALID_PAGE;
3203 		}
3204 		mmu->root_pgd = 0;
3205 	}
3206 
3207 	kvm_mmu_commit_zap_page(kvm, &invalid_list);
3208 	spin_unlock(&kvm->mmu_lock);
3209 }
3210 EXPORT_SYMBOL_GPL(kvm_mmu_free_roots);
3211 
3212 static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
3213 {
3214 	int ret = 0;
3215 
3216 	if (!kvm_vcpu_is_visible_gfn(vcpu, root_gfn)) {
3217 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3218 		ret = 1;
3219 	}
3220 
3221 	return ret;
3222 }
3223 
3224 static hpa_t mmu_alloc_root(struct kvm_vcpu *vcpu, gfn_t gfn, gva_t gva,
3225 			    u8 level, bool direct)
3226 {
3227 	struct kvm_mmu_page *sp;
3228 
3229 	spin_lock(&vcpu->kvm->mmu_lock);
3230 
3231 	if (make_mmu_pages_available(vcpu)) {
3232 		spin_unlock(&vcpu->kvm->mmu_lock);
3233 		return INVALID_PAGE;
3234 	}
3235 	sp = kvm_mmu_get_page(vcpu, gfn, gva, level, direct, ACC_ALL);
3236 	++sp->root_count;
3237 
3238 	spin_unlock(&vcpu->kvm->mmu_lock);
3239 	return __pa(sp->spt);
3240 }
3241 
3242 static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
3243 {
3244 	u8 shadow_root_level = vcpu->arch.mmu->shadow_root_level;
3245 	hpa_t root;
3246 	unsigned i;
3247 
3248 	if (vcpu->kvm->arch.tdp_mmu_enabled) {
3249 		root = kvm_tdp_mmu_get_vcpu_root_hpa(vcpu);
3250 
3251 		if (!VALID_PAGE(root))
3252 			return -ENOSPC;
3253 		vcpu->arch.mmu->root_hpa = root;
3254 	} else if (shadow_root_level >= PT64_ROOT_4LEVEL) {
3255 		root = mmu_alloc_root(vcpu, 0, 0, shadow_root_level,
3256 				      true);
3257 
3258 		if (!VALID_PAGE(root))
3259 			return -ENOSPC;
3260 		vcpu->arch.mmu->root_hpa = root;
3261 	} else if (shadow_root_level == PT32E_ROOT_LEVEL) {
3262 		for (i = 0; i < 4; ++i) {
3263 			MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu->pae_root[i]));
3264 
3265 			root = mmu_alloc_root(vcpu, i << (30 - PAGE_SHIFT),
3266 					      i << 30, PT32_ROOT_LEVEL, true);
3267 			if (!VALID_PAGE(root))
3268 				return -ENOSPC;
3269 			vcpu->arch.mmu->pae_root[i] = root | PT_PRESENT_MASK;
3270 		}
3271 		vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->pae_root);
3272 	} else
3273 		BUG();
3274 
3275 	/* root_pgd is ignored for direct MMUs. */
3276 	vcpu->arch.mmu->root_pgd = 0;
3277 
3278 	return 0;
3279 }
3280 
3281 static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
3282 {
3283 	u64 pdptr, pm_mask;
3284 	gfn_t root_gfn, root_pgd;
3285 	hpa_t root;
3286 	int i;
3287 
3288 	root_pgd = vcpu->arch.mmu->get_guest_pgd(vcpu);
3289 	root_gfn = root_pgd >> PAGE_SHIFT;
3290 
3291 	if (mmu_check_root(vcpu, root_gfn))
3292 		return 1;
3293 
3294 	/*
3295 	 * Do we shadow a long mode page table? If so we need to
3296 	 * write-protect the guests page table root.
3297 	 */
3298 	if (vcpu->arch.mmu->root_level >= PT64_ROOT_4LEVEL) {
3299 		MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu->root_hpa));
3300 
3301 		root = mmu_alloc_root(vcpu, root_gfn, 0,
3302 				      vcpu->arch.mmu->shadow_root_level, false);
3303 		if (!VALID_PAGE(root))
3304 			return -ENOSPC;
3305 		vcpu->arch.mmu->root_hpa = root;
3306 		goto set_root_pgd;
3307 	}
3308 
3309 	/*
3310 	 * We shadow a 32 bit page table. This may be a legacy 2-level
3311 	 * or a PAE 3-level page table. In either case we need to be aware that
3312 	 * the shadow page table may be a PAE or a long mode page table.
3313 	 */
3314 	pm_mask = PT_PRESENT_MASK;
3315 	if (vcpu->arch.mmu->shadow_root_level == PT64_ROOT_4LEVEL)
3316 		pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
3317 
3318 	for (i = 0; i < 4; ++i) {
3319 		MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu->pae_root[i]));
3320 		if (vcpu->arch.mmu->root_level == PT32E_ROOT_LEVEL) {
3321 			pdptr = vcpu->arch.mmu->get_pdptr(vcpu, i);
3322 			if (!(pdptr & PT_PRESENT_MASK)) {
3323 				vcpu->arch.mmu->pae_root[i] = 0;
3324 				continue;
3325 			}
3326 			root_gfn = pdptr >> PAGE_SHIFT;
3327 			if (mmu_check_root(vcpu, root_gfn))
3328 				return 1;
3329 		}
3330 
3331 		root = mmu_alloc_root(vcpu, root_gfn, i << 30,
3332 				      PT32_ROOT_LEVEL, false);
3333 		if (!VALID_PAGE(root))
3334 			return -ENOSPC;
3335 		vcpu->arch.mmu->pae_root[i] = root | pm_mask;
3336 	}
3337 	vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->pae_root);
3338 
3339 	/*
3340 	 * If we shadow a 32 bit page table with a long mode page
3341 	 * table we enter this path.
3342 	 */
3343 	if (vcpu->arch.mmu->shadow_root_level == PT64_ROOT_4LEVEL) {
3344 		if (vcpu->arch.mmu->lm_root == NULL) {
3345 			/*
3346 			 * The additional page necessary for this is only
3347 			 * allocated on demand.
3348 			 */
3349 
3350 			u64 *lm_root;
3351 
3352 			lm_root = (void*)get_zeroed_page(GFP_KERNEL_ACCOUNT);
3353 			if (lm_root == NULL)
3354 				return 1;
3355 
3356 			lm_root[0] = __pa(vcpu->arch.mmu->pae_root) | pm_mask;
3357 
3358 			vcpu->arch.mmu->lm_root = lm_root;
3359 		}
3360 
3361 		vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->lm_root);
3362 	}
3363 
3364 set_root_pgd:
3365 	vcpu->arch.mmu->root_pgd = root_pgd;
3366 
3367 	return 0;
3368 }
3369 
3370 static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
3371 {
3372 	if (vcpu->arch.mmu->direct_map)
3373 		return mmu_alloc_direct_roots(vcpu);
3374 	else
3375 		return mmu_alloc_shadow_roots(vcpu);
3376 }
3377 
3378 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3379 {
3380 	int i;
3381 	struct kvm_mmu_page *sp;
3382 
3383 	if (vcpu->arch.mmu->direct_map)
3384 		return;
3385 
3386 	if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
3387 		return;
3388 
3389 	vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
3390 
3391 	if (vcpu->arch.mmu->root_level >= PT64_ROOT_4LEVEL) {
3392 		hpa_t root = vcpu->arch.mmu->root_hpa;
3393 		sp = to_shadow_page(root);
3394 
3395 		/*
3396 		 * Even if another CPU was marking the SP as unsync-ed
3397 		 * simultaneously, any guest page table changes are not
3398 		 * guaranteed to be visible anyway until this VCPU issues a TLB
3399 		 * flush strictly after those changes are made. We only need to
3400 		 * ensure that the other CPU sets these flags before any actual
3401 		 * changes to the page tables are made. The comments in
3402 		 * mmu_need_write_protect() describe what could go wrong if this
3403 		 * requirement isn't satisfied.
3404 		 */
3405 		if (!smp_load_acquire(&sp->unsync) &&
3406 		    !smp_load_acquire(&sp->unsync_children))
3407 			return;
3408 
3409 		spin_lock(&vcpu->kvm->mmu_lock);
3410 		kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3411 
3412 		mmu_sync_children(vcpu, sp);
3413 
3414 		kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3415 		spin_unlock(&vcpu->kvm->mmu_lock);
3416 		return;
3417 	}
3418 
3419 	spin_lock(&vcpu->kvm->mmu_lock);
3420 	kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3421 
3422 	for (i = 0; i < 4; ++i) {
3423 		hpa_t root = vcpu->arch.mmu->pae_root[i];
3424 
3425 		if (root && VALID_PAGE(root)) {
3426 			root &= PT64_BASE_ADDR_MASK;
3427 			sp = to_shadow_page(root);
3428 			mmu_sync_children(vcpu, sp);
3429 		}
3430 	}
3431 
3432 	kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3433 	spin_unlock(&vcpu->kvm->mmu_lock);
3434 }
3435 EXPORT_SYMBOL_GPL(kvm_mmu_sync_roots);
3436 
3437 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gpa_t vaddr,
3438 				  u32 access, struct x86_exception *exception)
3439 {
3440 	if (exception)
3441 		exception->error_code = 0;
3442 	return vaddr;
3443 }
3444 
3445 static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gpa_t vaddr,
3446 					 u32 access,
3447 					 struct x86_exception *exception)
3448 {
3449 	if (exception)
3450 		exception->error_code = 0;
3451 	return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception);
3452 }
3453 
3454 static bool
3455 __is_rsvd_bits_set(struct rsvd_bits_validate *rsvd_check, u64 pte, int level)
3456 {
3457 	int bit7 = (pte >> 7) & 1;
3458 
3459 	return pte & rsvd_check->rsvd_bits_mask[bit7][level-1];
3460 }
3461 
3462 static bool __is_bad_mt_xwr(struct rsvd_bits_validate *rsvd_check, u64 pte)
3463 {
3464 	return rsvd_check->bad_mt_xwr & BIT_ULL(pte & 0x3f);
3465 }
3466 
3467 static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3468 {
3469 	/*
3470 	 * A nested guest cannot use the MMIO cache if it is using nested
3471 	 * page tables, because cr2 is a nGPA while the cache stores GPAs.
3472 	 */
3473 	if (mmu_is_nested(vcpu))
3474 		return false;
3475 
3476 	if (direct)
3477 		return vcpu_match_mmio_gpa(vcpu, addr);
3478 
3479 	return vcpu_match_mmio_gva(vcpu, addr);
3480 }
3481 
3482 /*
3483  * Return the level of the lowest level SPTE added to sptes.
3484  * That SPTE may be non-present.
3485  */
3486 static int get_walk(struct kvm_vcpu *vcpu, u64 addr, u64 *sptes)
3487 {
3488 	struct kvm_shadow_walk_iterator iterator;
3489 	int leaf = vcpu->arch.mmu->root_level;
3490 	u64 spte;
3491 
3492 
3493 	walk_shadow_page_lockless_begin(vcpu);
3494 
3495 	for (shadow_walk_init(&iterator, vcpu, addr);
3496 	     shadow_walk_okay(&iterator);
3497 	     __shadow_walk_next(&iterator, spte)) {
3498 		leaf = iterator.level;
3499 		spte = mmu_spte_get_lockless(iterator.sptep);
3500 
3501 		sptes[leaf - 1] = spte;
3502 
3503 		if (!is_shadow_present_pte(spte))
3504 			break;
3505 
3506 	}
3507 
3508 	walk_shadow_page_lockless_end(vcpu);
3509 
3510 	return leaf;
3511 }
3512 
3513 /* return true if reserved bit is detected on spte. */
3514 static bool get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep)
3515 {
3516 	u64 sptes[PT64_ROOT_MAX_LEVEL];
3517 	struct rsvd_bits_validate *rsvd_check;
3518 	int root = vcpu->arch.mmu->root_level;
3519 	int leaf;
3520 	int level;
3521 	bool reserved = false;
3522 
3523 	if (!VALID_PAGE(vcpu->arch.mmu->root_hpa)) {
3524 		*sptep = 0ull;
3525 		return reserved;
3526 	}
3527 
3528 	if (is_tdp_mmu_root(vcpu->kvm, vcpu->arch.mmu->root_hpa))
3529 		leaf = kvm_tdp_mmu_get_walk(vcpu, addr, sptes);
3530 	else
3531 		leaf = get_walk(vcpu, addr, sptes);
3532 
3533 	rsvd_check = &vcpu->arch.mmu->shadow_zero_check;
3534 
3535 	for (level = root; level >= leaf; level--) {
3536 		if (!is_shadow_present_pte(sptes[level - 1]))
3537 			break;
3538 		/*
3539 		 * Use a bitwise-OR instead of a logical-OR to aggregate the
3540 		 * reserved bit and EPT's invalid memtype/XWR checks to avoid
3541 		 * adding a Jcc in the loop.
3542 		 */
3543 		reserved |= __is_bad_mt_xwr(rsvd_check, sptes[level - 1]) |
3544 			    __is_rsvd_bits_set(rsvd_check, sptes[level - 1],
3545 					       level);
3546 	}
3547 
3548 	if (reserved) {
3549 		pr_err("%s: detect reserved bits on spte, addr 0x%llx, dump hierarchy:\n",
3550 		       __func__, addr);
3551 		for (level = root; level >= leaf; level--)
3552 			pr_err("------ spte 0x%llx level %d.\n",
3553 			       sptes[level - 1], level);
3554 	}
3555 
3556 	*sptep = sptes[leaf - 1];
3557 
3558 	return reserved;
3559 }
3560 
3561 static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3562 {
3563 	u64 spte;
3564 	bool reserved;
3565 
3566 	if (mmio_info_in_cache(vcpu, addr, direct))
3567 		return RET_PF_EMULATE;
3568 
3569 	reserved = get_mmio_spte(vcpu, addr, &spte);
3570 	if (WARN_ON(reserved))
3571 		return -EINVAL;
3572 
3573 	if (is_mmio_spte(spte)) {
3574 		gfn_t gfn = get_mmio_spte_gfn(spte);
3575 		unsigned int access = get_mmio_spte_access(spte);
3576 
3577 		if (!check_mmio_spte(vcpu, spte))
3578 			return RET_PF_INVALID;
3579 
3580 		if (direct)
3581 			addr = 0;
3582 
3583 		trace_handle_mmio_page_fault(addr, gfn, access);
3584 		vcpu_cache_mmio_info(vcpu, addr, gfn, access);
3585 		return RET_PF_EMULATE;
3586 	}
3587 
3588 	/*
3589 	 * If the page table is zapped by other cpus, let CPU fault again on
3590 	 * the address.
3591 	 */
3592 	return RET_PF_RETRY;
3593 }
3594 
3595 static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu,
3596 					 u32 error_code, gfn_t gfn)
3597 {
3598 	if (unlikely(error_code & PFERR_RSVD_MASK))
3599 		return false;
3600 
3601 	if (!(error_code & PFERR_PRESENT_MASK) ||
3602 	      !(error_code & PFERR_WRITE_MASK))
3603 		return false;
3604 
3605 	/*
3606 	 * guest is writing the page which is write tracked which can
3607 	 * not be fixed by page fault handler.
3608 	 */
3609 	if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
3610 		return true;
3611 
3612 	return false;
3613 }
3614 
3615 static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr)
3616 {
3617 	struct kvm_shadow_walk_iterator iterator;
3618 	u64 spte;
3619 
3620 	walk_shadow_page_lockless_begin(vcpu);
3621 	for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
3622 		clear_sp_write_flooding_count(iterator.sptep);
3623 		if (!is_shadow_present_pte(spte))
3624 			break;
3625 	}
3626 	walk_shadow_page_lockless_end(vcpu);
3627 }
3628 
3629 static bool kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
3630 				    gfn_t gfn)
3631 {
3632 	struct kvm_arch_async_pf arch;
3633 
3634 	arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
3635 	arch.gfn = gfn;
3636 	arch.direct_map = vcpu->arch.mmu->direct_map;
3637 	arch.cr3 = vcpu->arch.mmu->get_guest_pgd(vcpu);
3638 
3639 	return kvm_setup_async_pf(vcpu, cr2_or_gpa,
3640 				  kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch);
3641 }
3642 
3643 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
3644 			 gpa_t cr2_or_gpa, kvm_pfn_t *pfn, bool write,
3645 			 bool *writable)
3646 {
3647 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3648 	bool async;
3649 
3650 	/* Don't expose private memslots to L2. */
3651 	if (is_guest_mode(vcpu) && !kvm_is_visible_memslot(slot)) {
3652 		*pfn = KVM_PFN_NOSLOT;
3653 		*writable = false;
3654 		return false;
3655 	}
3656 
3657 	async = false;
3658 	*pfn = __gfn_to_pfn_memslot(slot, gfn, false, &async, write, writable);
3659 	if (!async)
3660 		return false; /* *pfn has correct page already */
3661 
3662 	if (!prefault && kvm_can_do_async_pf(vcpu)) {
3663 		trace_kvm_try_async_get_page(cr2_or_gpa, gfn);
3664 		if (kvm_find_async_pf_gfn(vcpu, gfn)) {
3665 			trace_kvm_async_pf_doublefault(cr2_or_gpa, gfn);
3666 			kvm_make_request(KVM_REQ_APF_HALT, vcpu);
3667 			return true;
3668 		} else if (kvm_arch_setup_async_pf(vcpu, cr2_or_gpa, gfn))
3669 			return true;
3670 	}
3671 
3672 	*pfn = __gfn_to_pfn_memslot(slot, gfn, false, NULL, write, writable);
3673 	return false;
3674 }
3675 
3676 static int direct_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
3677 			     bool prefault, int max_level, bool is_tdp)
3678 {
3679 	bool write = error_code & PFERR_WRITE_MASK;
3680 	bool map_writable;
3681 
3682 	gfn_t gfn = gpa >> PAGE_SHIFT;
3683 	unsigned long mmu_seq;
3684 	kvm_pfn_t pfn;
3685 	int r;
3686 
3687 	if (page_fault_handle_page_track(vcpu, error_code, gfn))
3688 		return RET_PF_EMULATE;
3689 
3690 	if (!is_tdp_mmu_root(vcpu->kvm, vcpu->arch.mmu->root_hpa)) {
3691 		r = fast_page_fault(vcpu, gpa, error_code);
3692 		if (r != RET_PF_INVALID)
3693 			return r;
3694 	}
3695 
3696 	r = mmu_topup_memory_caches(vcpu, false);
3697 	if (r)
3698 		return r;
3699 
3700 	mmu_seq = vcpu->kvm->mmu_notifier_seq;
3701 	smp_rmb();
3702 
3703 	if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
3704 		return RET_PF_RETRY;
3705 
3706 	if (handle_abnormal_pfn(vcpu, is_tdp ? 0 : gpa, gfn, pfn, ACC_ALL, &r))
3707 		return r;
3708 
3709 	r = RET_PF_RETRY;
3710 	spin_lock(&vcpu->kvm->mmu_lock);
3711 	if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
3712 		goto out_unlock;
3713 	r = make_mmu_pages_available(vcpu);
3714 	if (r)
3715 		goto out_unlock;
3716 
3717 	if (is_tdp_mmu_root(vcpu->kvm, vcpu->arch.mmu->root_hpa))
3718 		r = kvm_tdp_mmu_map(vcpu, gpa, error_code, map_writable, max_level,
3719 				    pfn, prefault);
3720 	else
3721 		r = __direct_map(vcpu, gpa, error_code, map_writable, max_level, pfn,
3722 				 prefault, is_tdp);
3723 
3724 out_unlock:
3725 	spin_unlock(&vcpu->kvm->mmu_lock);
3726 	kvm_release_pfn_clean(pfn);
3727 	return r;
3728 }
3729 
3730 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa,
3731 				u32 error_code, bool prefault)
3732 {
3733 	pgprintk("%s: gva %lx error %x\n", __func__, gpa, error_code);
3734 
3735 	/* This path builds a PAE pagetable, we can map 2mb pages at maximum. */
3736 	return direct_page_fault(vcpu, gpa & PAGE_MASK, error_code, prefault,
3737 				 PG_LEVEL_2M, false);
3738 }
3739 
3740 int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code,
3741 				u64 fault_address, char *insn, int insn_len)
3742 {
3743 	int r = 1;
3744 	u32 flags = vcpu->arch.apf.host_apf_flags;
3745 
3746 #ifndef CONFIG_X86_64
3747 	/* A 64-bit CR2 should be impossible on 32-bit KVM. */
3748 	if (WARN_ON_ONCE(fault_address >> 32))
3749 		return -EFAULT;
3750 #endif
3751 
3752 	vcpu->arch.l1tf_flush_l1d = true;
3753 	if (!flags) {
3754 		trace_kvm_page_fault(fault_address, error_code);
3755 
3756 		if (kvm_event_needs_reinjection(vcpu))
3757 			kvm_mmu_unprotect_page_virt(vcpu, fault_address);
3758 		r = kvm_mmu_page_fault(vcpu, fault_address, error_code, insn,
3759 				insn_len);
3760 	} else if (flags & KVM_PV_REASON_PAGE_NOT_PRESENT) {
3761 		vcpu->arch.apf.host_apf_flags = 0;
3762 		local_irq_disable();
3763 		kvm_async_pf_task_wait_schedule(fault_address);
3764 		local_irq_enable();
3765 	} else {
3766 		WARN_ONCE(1, "Unexpected host async PF flags: %x\n", flags);
3767 	}
3768 
3769 	return r;
3770 }
3771 EXPORT_SYMBOL_GPL(kvm_handle_page_fault);
3772 
3773 int kvm_tdp_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
3774 		       bool prefault)
3775 {
3776 	int max_level;
3777 
3778 	for (max_level = KVM_MAX_HUGEPAGE_LEVEL;
3779 	     max_level > PG_LEVEL_4K;
3780 	     max_level--) {
3781 		int page_num = KVM_PAGES_PER_HPAGE(max_level);
3782 		gfn_t base = (gpa >> PAGE_SHIFT) & ~(page_num - 1);
3783 
3784 		if (kvm_mtrr_check_gfn_range_consistency(vcpu, base, page_num))
3785 			break;
3786 	}
3787 
3788 	return direct_page_fault(vcpu, gpa, error_code, prefault,
3789 				 max_level, true);
3790 }
3791 
3792 static void nonpaging_init_context(struct kvm_vcpu *vcpu,
3793 				   struct kvm_mmu *context)
3794 {
3795 	context->page_fault = nonpaging_page_fault;
3796 	context->gva_to_gpa = nonpaging_gva_to_gpa;
3797 	context->sync_page = nonpaging_sync_page;
3798 	context->invlpg = NULL;
3799 	context->update_pte = nonpaging_update_pte;
3800 	context->root_level = 0;
3801 	context->shadow_root_level = PT32E_ROOT_LEVEL;
3802 	context->direct_map = true;
3803 	context->nx = false;
3804 }
3805 
3806 static inline bool is_root_usable(struct kvm_mmu_root_info *root, gpa_t pgd,
3807 				  union kvm_mmu_page_role role)
3808 {
3809 	return (role.direct || pgd == root->pgd) &&
3810 	       VALID_PAGE(root->hpa) && to_shadow_page(root->hpa) &&
3811 	       role.word == to_shadow_page(root->hpa)->role.word;
3812 }
3813 
3814 /*
3815  * Find out if a previously cached root matching the new pgd/role is available.
3816  * The current root is also inserted into the cache.
3817  * If a matching root was found, it is assigned to kvm_mmu->root_hpa and true is
3818  * returned.
3819  * Otherwise, the LRU root from the cache is assigned to kvm_mmu->root_hpa and
3820  * false is returned. This root should now be freed by the caller.
3821  */
3822 static bool cached_root_available(struct kvm_vcpu *vcpu, gpa_t new_pgd,
3823 				  union kvm_mmu_page_role new_role)
3824 {
3825 	uint i;
3826 	struct kvm_mmu_root_info root;
3827 	struct kvm_mmu *mmu = vcpu->arch.mmu;
3828 
3829 	root.pgd = mmu->root_pgd;
3830 	root.hpa = mmu->root_hpa;
3831 
3832 	if (is_root_usable(&root, new_pgd, new_role))
3833 		return true;
3834 
3835 	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
3836 		swap(root, mmu->prev_roots[i]);
3837 
3838 		if (is_root_usable(&root, new_pgd, new_role))
3839 			break;
3840 	}
3841 
3842 	mmu->root_hpa = root.hpa;
3843 	mmu->root_pgd = root.pgd;
3844 
3845 	return i < KVM_MMU_NUM_PREV_ROOTS;
3846 }
3847 
3848 static bool fast_pgd_switch(struct kvm_vcpu *vcpu, gpa_t new_pgd,
3849 			    union kvm_mmu_page_role new_role)
3850 {
3851 	struct kvm_mmu *mmu = vcpu->arch.mmu;
3852 
3853 	/*
3854 	 * For now, limit the fast switch to 64-bit hosts+VMs in order to avoid
3855 	 * having to deal with PDPTEs. We may add support for 32-bit hosts/VMs
3856 	 * later if necessary.
3857 	 */
3858 	if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
3859 	    mmu->root_level >= PT64_ROOT_4LEVEL)
3860 		return cached_root_available(vcpu, new_pgd, new_role);
3861 
3862 	return false;
3863 }
3864 
3865 static void __kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd,
3866 			      union kvm_mmu_page_role new_role,
3867 			      bool skip_tlb_flush, bool skip_mmu_sync)
3868 {
3869 	if (!fast_pgd_switch(vcpu, new_pgd, new_role)) {
3870 		kvm_mmu_free_roots(vcpu, vcpu->arch.mmu, KVM_MMU_ROOT_CURRENT);
3871 		return;
3872 	}
3873 
3874 	/*
3875 	 * It's possible that the cached previous root page is obsolete because
3876 	 * of a change in the MMU generation number. However, changing the
3877 	 * generation number is accompanied by KVM_REQ_MMU_RELOAD, which will
3878 	 * free the root set here and allocate a new one.
3879 	 */
3880 	kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu);
3881 
3882 	if (!skip_mmu_sync || force_flush_and_sync_on_reuse)
3883 		kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
3884 	if (!skip_tlb_flush || force_flush_and_sync_on_reuse)
3885 		kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
3886 
3887 	/*
3888 	 * The last MMIO access's GVA and GPA are cached in the VCPU. When
3889 	 * switching to a new CR3, that GVA->GPA mapping may no longer be
3890 	 * valid. So clear any cached MMIO info even when we don't need to sync
3891 	 * the shadow page tables.
3892 	 */
3893 	vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
3894 
3895 	/*
3896 	 * If this is a direct root page, it doesn't have a write flooding
3897 	 * count. Otherwise, clear the write flooding count.
3898 	 */
3899 	if (!new_role.direct)
3900 		__clear_sp_write_flooding_count(
3901 				to_shadow_page(vcpu->arch.mmu->root_hpa));
3902 }
3903 
3904 void kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd, bool skip_tlb_flush,
3905 		     bool skip_mmu_sync)
3906 {
3907 	__kvm_mmu_new_pgd(vcpu, new_pgd, kvm_mmu_calc_root_page_role(vcpu),
3908 			  skip_tlb_flush, skip_mmu_sync);
3909 }
3910 EXPORT_SYMBOL_GPL(kvm_mmu_new_pgd);
3911 
3912 static unsigned long get_cr3(struct kvm_vcpu *vcpu)
3913 {
3914 	return kvm_read_cr3(vcpu);
3915 }
3916 
3917 static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
3918 			   unsigned int access, int *nr_present)
3919 {
3920 	if (unlikely(is_mmio_spte(*sptep))) {
3921 		if (gfn != get_mmio_spte_gfn(*sptep)) {
3922 			mmu_spte_clear_no_track(sptep);
3923 			return true;
3924 		}
3925 
3926 		(*nr_present)++;
3927 		mark_mmio_spte(vcpu, sptep, gfn, access);
3928 		return true;
3929 	}
3930 
3931 	return false;
3932 }
3933 
3934 static inline bool is_last_gpte(struct kvm_mmu *mmu,
3935 				unsigned level, unsigned gpte)
3936 {
3937 	/*
3938 	 * The RHS has bit 7 set iff level < mmu->last_nonleaf_level.
3939 	 * If it is clear, there are no large pages at this level, so clear
3940 	 * PT_PAGE_SIZE_MASK in gpte if that is the case.
3941 	 */
3942 	gpte &= level - mmu->last_nonleaf_level;
3943 
3944 	/*
3945 	 * PG_LEVEL_4K always terminates.  The RHS has bit 7 set
3946 	 * iff level <= PG_LEVEL_4K, which for our purpose means
3947 	 * level == PG_LEVEL_4K; set PT_PAGE_SIZE_MASK in gpte then.
3948 	 */
3949 	gpte |= level - PG_LEVEL_4K - 1;
3950 
3951 	return gpte & PT_PAGE_SIZE_MASK;
3952 }
3953 
3954 #define PTTYPE_EPT 18 /* arbitrary */
3955 #define PTTYPE PTTYPE_EPT
3956 #include "paging_tmpl.h"
3957 #undef PTTYPE
3958 
3959 #define PTTYPE 64
3960 #include "paging_tmpl.h"
3961 #undef PTTYPE
3962 
3963 #define PTTYPE 32
3964 #include "paging_tmpl.h"
3965 #undef PTTYPE
3966 
3967 static void
3968 __reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
3969 			struct rsvd_bits_validate *rsvd_check,
3970 			int maxphyaddr, int level, bool nx, bool gbpages,
3971 			bool pse, bool amd)
3972 {
3973 	u64 exb_bit_rsvd = 0;
3974 	u64 gbpages_bit_rsvd = 0;
3975 	u64 nonleaf_bit8_rsvd = 0;
3976 
3977 	rsvd_check->bad_mt_xwr = 0;
3978 
3979 	if (!nx)
3980 		exb_bit_rsvd = rsvd_bits(63, 63);
3981 	if (!gbpages)
3982 		gbpages_bit_rsvd = rsvd_bits(7, 7);
3983 
3984 	/*
3985 	 * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
3986 	 * leaf entries) on AMD CPUs only.
3987 	 */
3988 	if (amd)
3989 		nonleaf_bit8_rsvd = rsvd_bits(8, 8);
3990 
3991 	switch (level) {
3992 	case PT32_ROOT_LEVEL:
3993 		/* no rsvd bits for 2 level 4K page table entries */
3994 		rsvd_check->rsvd_bits_mask[0][1] = 0;
3995 		rsvd_check->rsvd_bits_mask[0][0] = 0;
3996 		rsvd_check->rsvd_bits_mask[1][0] =
3997 			rsvd_check->rsvd_bits_mask[0][0];
3998 
3999 		if (!pse) {
4000 			rsvd_check->rsvd_bits_mask[1][1] = 0;
4001 			break;
4002 		}
4003 
4004 		if (is_cpuid_PSE36())
4005 			/* 36bits PSE 4MB page */
4006 			rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
4007 		else
4008 			/* 32 bits PSE 4MB page */
4009 			rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
4010 		break;
4011 	case PT32E_ROOT_LEVEL:
4012 		rsvd_check->rsvd_bits_mask[0][2] =
4013 			rsvd_bits(maxphyaddr, 63) |
4014 			rsvd_bits(5, 8) | rsvd_bits(1, 2);	/* PDPTE */
4015 		rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4016 			rsvd_bits(maxphyaddr, 62);	/* PDE */
4017 		rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
4018 			rsvd_bits(maxphyaddr, 62); 	/* PTE */
4019 		rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
4020 			rsvd_bits(maxphyaddr, 62) |
4021 			rsvd_bits(13, 20);		/* large page */
4022 		rsvd_check->rsvd_bits_mask[1][0] =
4023 			rsvd_check->rsvd_bits_mask[0][0];
4024 		break;
4025 	case PT64_ROOT_5LEVEL:
4026 		rsvd_check->rsvd_bits_mask[0][4] = exb_bit_rsvd |
4027 			nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
4028 			rsvd_bits(maxphyaddr, 51);
4029 		rsvd_check->rsvd_bits_mask[1][4] =
4030 			rsvd_check->rsvd_bits_mask[0][4];
4031 		fallthrough;
4032 	case PT64_ROOT_4LEVEL:
4033 		rsvd_check->rsvd_bits_mask[0][3] = exb_bit_rsvd |
4034 			nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
4035 			rsvd_bits(maxphyaddr, 51);
4036 		rsvd_check->rsvd_bits_mask[0][2] = exb_bit_rsvd |
4037 			gbpages_bit_rsvd |
4038 			rsvd_bits(maxphyaddr, 51);
4039 		rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4040 			rsvd_bits(maxphyaddr, 51);
4041 		rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
4042 			rsvd_bits(maxphyaddr, 51);
4043 		rsvd_check->rsvd_bits_mask[1][3] =
4044 			rsvd_check->rsvd_bits_mask[0][3];
4045 		rsvd_check->rsvd_bits_mask[1][2] = exb_bit_rsvd |
4046 			gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51) |
4047 			rsvd_bits(13, 29);
4048 		rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
4049 			rsvd_bits(maxphyaddr, 51) |
4050 			rsvd_bits(13, 20);		/* large page */
4051 		rsvd_check->rsvd_bits_mask[1][0] =
4052 			rsvd_check->rsvd_bits_mask[0][0];
4053 		break;
4054 	}
4055 }
4056 
4057 static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
4058 				  struct kvm_mmu *context)
4059 {
4060 	__reset_rsvds_bits_mask(vcpu, &context->guest_rsvd_check,
4061 				cpuid_maxphyaddr(vcpu), context->root_level,
4062 				context->nx,
4063 				guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
4064 				is_pse(vcpu),
4065 				guest_cpuid_is_amd_or_hygon(vcpu));
4066 }
4067 
4068 static void
4069 __reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check,
4070 			    int maxphyaddr, bool execonly)
4071 {
4072 	u64 bad_mt_xwr;
4073 
4074 	rsvd_check->rsvd_bits_mask[0][4] =
4075 		rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
4076 	rsvd_check->rsvd_bits_mask[0][3] =
4077 		rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
4078 	rsvd_check->rsvd_bits_mask[0][2] =
4079 		rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
4080 	rsvd_check->rsvd_bits_mask[0][1] =
4081 		rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
4082 	rsvd_check->rsvd_bits_mask[0][0] = rsvd_bits(maxphyaddr, 51);
4083 
4084 	/* large page */
4085 	rsvd_check->rsvd_bits_mask[1][4] = rsvd_check->rsvd_bits_mask[0][4];
4086 	rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3];
4087 	rsvd_check->rsvd_bits_mask[1][2] =
4088 		rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 29);
4089 	rsvd_check->rsvd_bits_mask[1][1] =
4090 		rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 20);
4091 	rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0];
4092 
4093 	bad_mt_xwr = 0xFFull << (2 * 8);	/* bits 3..5 must not be 2 */
4094 	bad_mt_xwr |= 0xFFull << (3 * 8);	/* bits 3..5 must not be 3 */
4095 	bad_mt_xwr |= 0xFFull << (7 * 8);	/* bits 3..5 must not be 7 */
4096 	bad_mt_xwr |= REPEAT_BYTE(1ull << 2);	/* bits 0..2 must not be 010 */
4097 	bad_mt_xwr |= REPEAT_BYTE(1ull << 6);	/* bits 0..2 must not be 110 */
4098 	if (!execonly) {
4099 		/* bits 0..2 must not be 100 unless VMX capabilities allow it */
4100 		bad_mt_xwr |= REPEAT_BYTE(1ull << 4);
4101 	}
4102 	rsvd_check->bad_mt_xwr = bad_mt_xwr;
4103 }
4104 
4105 static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
4106 		struct kvm_mmu *context, bool execonly)
4107 {
4108 	__reset_rsvds_bits_mask_ept(&context->guest_rsvd_check,
4109 				    cpuid_maxphyaddr(vcpu), execonly);
4110 }
4111 
4112 /*
4113  * the page table on host is the shadow page table for the page
4114  * table in guest or amd nested guest, its mmu features completely
4115  * follow the features in guest.
4116  */
4117 void
4118 reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
4119 {
4120 	bool uses_nx = context->nx ||
4121 		context->mmu_role.base.smep_andnot_wp;
4122 	struct rsvd_bits_validate *shadow_zero_check;
4123 	int i;
4124 
4125 	/*
4126 	 * Passing "true" to the last argument is okay; it adds a check
4127 	 * on bit 8 of the SPTEs which KVM doesn't use anyway.
4128 	 */
4129 	shadow_zero_check = &context->shadow_zero_check;
4130 	__reset_rsvds_bits_mask(vcpu, shadow_zero_check,
4131 				shadow_phys_bits,
4132 				context->shadow_root_level, uses_nx,
4133 				guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
4134 				is_pse(vcpu), true);
4135 
4136 	if (!shadow_me_mask)
4137 		return;
4138 
4139 	for (i = context->shadow_root_level; --i >= 0;) {
4140 		shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
4141 		shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
4142 	}
4143 
4144 }
4145 EXPORT_SYMBOL_GPL(reset_shadow_zero_bits_mask);
4146 
4147 static inline bool boot_cpu_is_amd(void)
4148 {
4149 	WARN_ON_ONCE(!tdp_enabled);
4150 	return shadow_x_mask == 0;
4151 }
4152 
4153 /*
4154  * the direct page table on host, use as much mmu features as
4155  * possible, however, kvm currently does not do execution-protection.
4156  */
4157 static void
4158 reset_tdp_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4159 				struct kvm_mmu *context)
4160 {
4161 	struct rsvd_bits_validate *shadow_zero_check;
4162 	int i;
4163 
4164 	shadow_zero_check = &context->shadow_zero_check;
4165 
4166 	if (boot_cpu_is_amd())
4167 		__reset_rsvds_bits_mask(vcpu, shadow_zero_check,
4168 					shadow_phys_bits,
4169 					context->shadow_root_level, false,
4170 					boot_cpu_has(X86_FEATURE_GBPAGES),
4171 					true, true);
4172 	else
4173 		__reset_rsvds_bits_mask_ept(shadow_zero_check,
4174 					    shadow_phys_bits,
4175 					    false);
4176 
4177 	if (!shadow_me_mask)
4178 		return;
4179 
4180 	for (i = context->shadow_root_level; --i >= 0;) {
4181 		shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
4182 		shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
4183 	}
4184 }
4185 
4186 /*
4187  * as the comments in reset_shadow_zero_bits_mask() except it
4188  * is the shadow page table for intel nested guest.
4189  */
4190 static void
4191 reset_ept_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4192 				struct kvm_mmu *context, bool execonly)
4193 {
4194 	__reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
4195 				    shadow_phys_bits, execonly);
4196 }
4197 
4198 #define BYTE_MASK(access) \
4199 	((1 & (access) ? 2 : 0) | \
4200 	 (2 & (access) ? 4 : 0) | \
4201 	 (3 & (access) ? 8 : 0) | \
4202 	 (4 & (access) ? 16 : 0) | \
4203 	 (5 & (access) ? 32 : 0) | \
4204 	 (6 & (access) ? 64 : 0) | \
4205 	 (7 & (access) ? 128 : 0))
4206 
4207 
4208 static void update_permission_bitmask(struct kvm_vcpu *vcpu,
4209 				      struct kvm_mmu *mmu, bool ept)
4210 {
4211 	unsigned byte;
4212 
4213 	const u8 x = BYTE_MASK(ACC_EXEC_MASK);
4214 	const u8 w = BYTE_MASK(ACC_WRITE_MASK);
4215 	const u8 u = BYTE_MASK(ACC_USER_MASK);
4216 
4217 	bool cr4_smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP) != 0;
4218 	bool cr4_smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP) != 0;
4219 	bool cr0_wp = is_write_protection(vcpu);
4220 
4221 	for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
4222 		unsigned pfec = byte << 1;
4223 
4224 		/*
4225 		 * Each "*f" variable has a 1 bit for each UWX value
4226 		 * that causes a fault with the given PFEC.
4227 		 */
4228 
4229 		/* Faults from writes to non-writable pages */
4230 		u8 wf = (pfec & PFERR_WRITE_MASK) ? (u8)~w : 0;
4231 		/* Faults from user mode accesses to supervisor pages */
4232 		u8 uf = (pfec & PFERR_USER_MASK) ? (u8)~u : 0;
4233 		/* Faults from fetches of non-executable pages*/
4234 		u8 ff = (pfec & PFERR_FETCH_MASK) ? (u8)~x : 0;
4235 		/* Faults from kernel mode fetches of user pages */
4236 		u8 smepf = 0;
4237 		/* Faults from kernel mode accesses of user pages */
4238 		u8 smapf = 0;
4239 
4240 		if (!ept) {
4241 			/* Faults from kernel mode accesses to user pages */
4242 			u8 kf = (pfec & PFERR_USER_MASK) ? 0 : u;
4243 
4244 			/* Not really needed: !nx will cause pte.nx to fault */
4245 			if (!mmu->nx)
4246 				ff = 0;
4247 
4248 			/* Allow supervisor writes if !cr0.wp */
4249 			if (!cr0_wp)
4250 				wf = (pfec & PFERR_USER_MASK) ? wf : 0;
4251 
4252 			/* Disallow supervisor fetches of user code if cr4.smep */
4253 			if (cr4_smep)
4254 				smepf = (pfec & PFERR_FETCH_MASK) ? kf : 0;
4255 
4256 			/*
4257 			 * SMAP:kernel-mode data accesses from user-mode
4258 			 * mappings should fault. A fault is considered
4259 			 * as a SMAP violation if all of the following
4260 			 * conditions are true:
4261 			 *   - X86_CR4_SMAP is set in CR4
4262 			 *   - A user page is accessed
4263 			 *   - The access is not a fetch
4264 			 *   - Page fault in kernel mode
4265 			 *   - if CPL = 3 or X86_EFLAGS_AC is clear
4266 			 *
4267 			 * Here, we cover the first three conditions.
4268 			 * The fourth is computed dynamically in permission_fault();
4269 			 * PFERR_RSVD_MASK bit will be set in PFEC if the access is
4270 			 * *not* subject to SMAP restrictions.
4271 			 */
4272 			if (cr4_smap)
4273 				smapf = (pfec & (PFERR_RSVD_MASK|PFERR_FETCH_MASK)) ? 0 : kf;
4274 		}
4275 
4276 		mmu->permissions[byte] = ff | uf | wf | smepf | smapf;
4277 	}
4278 }
4279 
4280 /*
4281 * PKU is an additional mechanism by which the paging controls access to
4282 * user-mode addresses based on the value in the PKRU register.  Protection
4283 * key violations are reported through a bit in the page fault error code.
4284 * Unlike other bits of the error code, the PK bit is not known at the
4285 * call site of e.g. gva_to_gpa; it must be computed directly in
4286 * permission_fault based on two bits of PKRU, on some machine state (CR4,
4287 * CR0, EFER, CPL), and on other bits of the error code and the page tables.
4288 *
4289 * In particular the following conditions come from the error code, the
4290 * page tables and the machine state:
4291 * - PK is always zero unless CR4.PKE=1 and EFER.LMA=1
4292 * - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch)
4293 * - PK is always zero if U=0 in the page tables
4294 * - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access.
4295 *
4296 * The PKRU bitmask caches the result of these four conditions.  The error
4297 * code (minus the P bit) and the page table's U bit form an index into the
4298 * PKRU bitmask.  Two bits of the PKRU bitmask are then extracted and ANDed
4299 * with the two bits of the PKRU register corresponding to the protection key.
4300 * For the first three conditions above the bits will be 00, thus masking
4301 * away both AD and WD.  For all reads or if the last condition holds, WD
4302 * only will be masked away.
4303 */
4304 static void update_pkru_bitmask(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
4305 				bool ept)
4306 {
4307 	unsigned bit;
4308 	bool wp;
4309 
4310 	if (ept) {
4311 		mmu->pkru_mask = 0;
4312 		return;
4313 	}
4314 
4315 	/* PKEY is enabled only if CR4.PKE and EFER.LMA are both set. */
4316 	if (!kvm_read_cr4_bits(vcpu, X86_CR4_PKE) || !is_long_mode(vcpu)) {
4317 		mmu->pkru_mask = 0;
4318 		return;
4319 	}
4320 
4321 	wp = is_write_protection(vcpu);
4322 
4323 	for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) {
4324 		unsigned pfec, pkey_bits;
4325 		bool check_pkey, check_write, ff, uf, wf, pte_user;
4326 
4327 		pfec = bit << 1;
4328 		ff = pfec & PFERR_FETCH_MASK;
4329 		uf = pfec & PFERR_USER_MASK;
4330 		wf = pfec & PFERR_WRITE_MASK;
4331 
4332 		/* PFEC.RSVD is replaced by ACC_USER_MASK. */
4333 		pte_user = pfec & PFERR_RSVD_MASK;
4334 
4335 		/*
4336 		 * Only need to check the access which is not an
4337 		 * instruction fetch and is to a user page.
4338 		 */
4339 		check_pkey = (!ff && pte_user);
4340 		/*
4341 		 * write access is controlled by PKRU if it is a
4342 		 * user access or CR0.WP = 1.
4343 		 */
4344 		check_write = check_pkey && wf && (uf || wp);
4345 
4346 		/* PKRU.AD stops both read and write access. */
4347 		pkey_bits = !!check_pkey;
4348 		/* PKRU.WD stops write access. */
4349 		pkey_bits |= (!!check_write) << 1;
4350 
4351 		mmu->pkru_mask |= (pkey_bits & 3) << pfec;
4352 	}
4353 }
4354 
4355 static void update_last_nonleaf_level(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
4356 {
4357 	unsigned root_level = mmu->root_level;
4358 
4359 	mmu->last_nonleaf_level = root_level;
4360 	if (root_level == PT32_ROOT_LEVEL && is_pse(vcpu))
4361 		mmu->last_nonleaf_level++;
4362 }
4363 
4364 static void paging64_init_context_common(struct kvm_vcpu *vcpu,
4365 					 struct kvm_mmu *context,
4366 					 int level)
4367 {
4368 	context->nx = is_nx(vcpu);
4369 	context->root_level = level;
4370 
4371 	reset_rsvds_bits_mask(vcpu, context);
4372 	update_permission_bitmask(vcpu, context, false);
4373 	update_pkru_bitmask(vcpu, context, false);
4374 	update_last_nonleaf_level(vcpu, context);
4375 
4376 	MMU_WARN_ON(!is_pae(vcpu));
4377 	context->page_fault = paging64_page_fault;
4378 	context->gva_to_gpa = paging64_gva_to_gpa;
4379 	context->sync_page = paging64_sync_page;
4380 	context->invlpg = paging64_invlpg;
4381 	context->update_pte = paging64_update_pte;
4382 	context->shadow_root_level = level;
4383 	context->direct_map = false;
4384 }
4385 
4386 static void paging64_init_context(struct kvm_vcpu *vcpu,
4387 				  struct kvm_mmu *context)
4388 {
4389 	int root_level = is_la57_mode(vcpu) ?
4390 			 PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4391 
4392 	paging64_init_context_common(vcpu, context, root_level);
4393 }
4394 
4395 static void paging32_init_context(struct kvm_vcpu *vcpu,
4396 				  struct kvm_mmu *context)
4397 {
4398 	context->nx = false;
4399 	context->root_level = PT32_ROOT_LEVEL;
4400 
4401 	reset_rsvds_bits_mask(vcpu, context);
4402 	update_permission_bitmask(vcpu, context, false);
4403 	update_pkru_bitmask(vcpu, context, false);
4404 	update_last_nonleaf_level(vcpu, context);
4405 
4406 	context->page_fault = paging32_page_fault;
4407 	context->gva_to_gpa = paging32_gva_to_gpa;
4408 	context->sync_page = paging32_sync_page;
4409 	context->invlpg = paging32_invlpg;
4410 	context->update_pte = paging32_update_pte;
4411 	context->shadow_root_level = PT32E_ROOT_LEVEL;
4412 	context->direct_map = false;
4413 }
4414 
4415 static void paging32E_init_context(struct kvm_vcpu *vcpu,
4416 				   struct kvm_mmu *context)
4417 {
4418 	paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
4419 }
4420 
4421 static union kvm_mmu_extended_role kvm_calc_mmu_role_ext(struct kvm_vcpu *vcpu)
4422 {
4423 	union kvm_mmu_extended_role ext = {0};
4424 
4425 	ext.cr0_pg = !!is_paging(vcpu);
4426 	ext.cr4_pae = !!is_pae(vcpu);
4427 	ext.cr4_smep = !!kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
4428 	ext.cr4_smap = !!kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
4429 	ext.cr4_pse = !!is_pse(vcpu);
4430 	ext.cr4_pke = !!kvm_read_cr4_bits(vcpu, X86_CR4_PKE);
4431 	ext.maxphyaddr = cpuid_maxphyaddr(vcpu);
4432 
4433 	ext.valid = 1;
4434 
4435 	return ext;
4436 }
4437 
4438 static union kvm_mmu_role kvm_calc_mmu_role_common(struct kvm_vcpu *vcpu,
4439 						   bool base_only)
4440 {
4441 	union kvm_mmu_role role = {0};
4442 
4443 	role.base.access = ACC_ALL;
4444 	role.base.nxe = !!is_nx(vcpu);
4445 	role.base.cr0_wp = is_write_protection(vcpu);
4446 	role.base.smm = is_smm(vcpu);
4447 	role.base.guest_mode = is_guest_mode(vcpu);
4448 
4449 	if (base_only)
4450 		return role;
4451 
4452 	role.ext = kvm_calc_mmu_role_ext(vcpu);
4453 
4454 	return role;
4455 }
4456 
4457 static inline int kvm_mmu_get_tdp_level(struct kvm_vcpu *vcpu)
4458 {
4459 	/* Use 5-level TDP if and only if it's useful/necessary. */
4460 	if (max_tdp_level == 5 && cpuid_maxphyaddr(vcpu) <= 48)
4461 		return 4;
4462 
4463 	return max_tdp_level;
4464 }
4465 
4466 static union kvm_mmu_role
4467 kvm_calc_tdp_mmu_root_page_role(struct kvm_vcpu *vcpu, bool base_only)
4468 {
4469 	union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, base_only);
4470 
4471 	role.base.ad_disabled = (shadow_accessed_mask == 0);
4472 	role.base.level = kvm_mmu_get_tdp_level(vcpu);
4473 	role.base.direct = true;
4474 	role.base.gpte_is_8_bytes = true;
4475 
4476 	return role;
4477 }
4478 
4479 static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
4480 {
4481 	struct kvm_mmu *context = &vcpu->arch.root_mmu;
4482 	union kvm_mmu_role new_role =
4483 		kvm_calc_tdp_mmu_root_page_role(vcpu, false);
4484 
4485 	if (new_role.as_u64 == context->mmu_role.as_u64)
4486 		return;
4487 
4488 	context->mmu_role.as_u64 = new_role.as_u64;
4489 	context->page_fault = kvm_tdp_page_fault;
4490 	context->sync_page = nonpaging_sync_page;
4491 	context->invlpg = NULL;
4492 	context->update_pte = nonpaging_update_pte;
4493 	context->shadow_root_level = kvm_mmu_get_tdp_level(vcpu);
4494 	context->direct_map = true;
4495 	context->get_guest_pgd = get_cr3;
4496 	context->get_pdptr = kvm_pdptr_read;
4497 	context->inject_page_fault = kvm_inject_page_fault;
4498 
4499 	if (!is_paging(vcpu)) {
4500 		context->nx = false;
4501 		context->gva_to_gpa = nonpaging_gva_to_gpa;
4502 		context->root_level = 0;
4503 	} else if (is_long_mode(vcpu)) {
4504 		context->nx = is_nx(vcpu);
4505 		context->root_level = is_la57_mode(vcpu) ?
4506 				PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4507 		reset_rsvds_bits_mask(vcpu, context);
4508 		context->gva_to_gpa = paging64_gva_to_gpa;
4509 	} else if (is_pae(vcpu)) {
4510 		context->nx = is_nx(vcpu);
4511 		context->root_level = PT32E_ROOT_LEVEL;
4512 		reset_rsvds_bits_mask(vcpu, context);
4513 		context->gva_to_gpa = paging64_gva_to_gpa;
4514 	} else {
4515 		context->nx = false;
4516 		context->root_level = PT32_ROOT_LEVEL;
4517 		reset_rsvds_bits_mask(vcpu, context);
4518 		context->gva_to_gpa = paging32_gva_to_gpa;
4519 	}
4520 
4521 	update_permission_bitmask(vcpu, context, false);
4522 	update_pkru_bitmask(vcpu, context, false);
4523 	update_last_nonleaf_level(vcpu, context);
4524 	reset_tdp_shadow_zero_bits_mask(vcpu, context);
4525 }
4526 
4527 static union kvm_mmu_role
4528 kvm_calc_shadow_root_page_role_common(struct kvm_vcpu *vcpu, bool base_only)
4529 {
4530 	union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, base_only);
4531 
4532 	role.base.smep_andnot_wp = role.ext.cr4_smep &&
4533 		!is_write_protection(vcpu);
4534 	role.base.smap_andnot_wp = role.ext.cr4_smap &&
4535 		!is_write_protection(vcpu);
4536 	role.base.gpte_is_8_bytes = !!is_pae(vcpu);
4537 
4538 	return role;
4539 }
4540 
4541 static union kvm_mmu_role
4542 kvm_calc_shadow_mmu_root_page_role(struct kvm_vcpu *vcpu, bool base_only)
4543 {
4544 	union kvm_mmu_role role =
4545 		kvm_calc_shadow_root_page_role_common(vcpu, base_only);
4546 
4547 	role.base.direct = !is_paging(vcpu);
4548 
4549 	if (!is_long_mode(vcpu))
4550 		role.base.level = PT32E_ROOT_LEVEL;
4551 	else if (is_la57_mode(vcpu))
4552 		role.base.level = PT64_ROOT_5LEVEL;
4553 	else
4554 		role.base.level = PT64_ROOT_4LEVEL;
4555 
4556 	return role;
4557 }
4558 
4559 static void shadow_mmu_init_context(struct kvm_vcpu *vcpu, struct kvm_mmu *context,
4560 				    u32 cr0, u32 cr4, u32 efer,
4561 				    union kvm_mmu_role new_role)
4562 {
4563 	if (!(cr0 & X86_CR0_PG))
4564 		nonpaging_init_context(vcpu, context);
4565 	else if (efer & EFER_LMA)
4566 		paging64_init_context(vcpu, context);
4567 	else if (cr4 & X86_CR4_PAE)
4568 		paging32E_init_context(vcpu, context);
4569 	else
4570 		paging32_init_context(vcpu, context);
4571 
4572 	context->mmu_role.as_u64 = new_role.as_u64;
4573 	reset_shadow_zero_bits_mask(vcpu, context);
4574 }
4575 
4576 static void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, u32 cr0, u32 cr4, u32 efer)
4577 {
4578 	struct kvm_mmu *context = &vcpu->arch.root_mmu;
4579 	union kvm_mmu_role new_role =
4580 		kvm_calc_shadow_mmu_root_page_role(vcpu, false);
4581 
4582 	if (new_role.as_u64 != context->mmu_role.as_u64)
4583 		shadow_mmu_init_context(vcpu, context, cr0, cr4, efer, new_role);
4584 }
4585 
4586 static union kvm_mmu_role
4587 kvm_calc_shadow_npt_root_page_role(struct kvm_vcpu *vcpu)
4588 {
4589 	union kvm_mmu_role role =
4590 		kvm_calc_shadow_root_page_role_common(vcpu, false);
4591 
4592 	role.base.direct = false;
4593 	role.base.level = kvm_mmu_get_tdp_level(vcpu);
4594 
4595 	return role;
4596 }
4597 
4598 void kvm_init_shadow_npt_mmu(struct kvm_vcpu *vcpu, u32 cr0, u32 cr4, u32 efer,
4599 			     gpa_t nested_cr3)
4600 {
4601 	struct kvm_mmu *context = &vcpu->arch.guest_mmu;
4602 	union kvm_mmu_role new_role = kvm_calc_shadow_npt_root_page_role(vcpu);
4603 
4604 	context->shadow_root_level = new_role.base.level;
4605 
4606 	__kvm_mmu_new_pgd(vcpu, nested_cr3, new_role.base, false, false);
4607 
4608 	if (new_role.as_u64 != context->mmu_role.as_u64)
4609 		shadow_mmu_init_context(vcpu, context, cr0, cr4, efer, new_role);
4610 }
4611 EXPORT_SYMBOL_GPL(kvm_init_shadow_npt_mmu);
4612 
4613 static union kvm_mmu_role
4614 kvm_calc_shadow_ept_root_page_role(struct kvm_vcpu *vcpu, bool accessed_dirty,
4615 				   bool execonly, u8 level)
4616 {
4617 	union kvm_mmu_role role = {0};
4618 
4619 	/* SMM flag is inherited from root_mmu */
4620 	role.base.smm = vcpu->arch.root_mmu.mmu_role.base.smm;
4621 
4622 	role.base.level = level;
4623 	role.base.gpte_is_8_bytes = true;
4624 	role.base.direct = false;
4625 	role.base.ad_disabled = !accessed_dirty;
4626 	role.base.guest_mode = true;
4627 	role.base.access = ACC_ALL;
4628 
4629 	/*
4630 	 * WP=1 and NOT_WP=1 is an impossible combination, use WP and the
4631 	 * SMAP variation to denote shadow EPT entries.
4632 	 */
4633 	role.base.cr0_wp = true;
4634 	role.base.smap_andnot_wp = true;
4635 
4636 	role.ext = kvm_calc_mmu_role_ext(vcpu);
4637 	role.ext.execonly = execonly;
4638 
4639 	return role;
4640 }
4641 
4642 void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly,
4643 			     bool accessed_dirty, gpa_t new_eptp)
4644 {
4645 	struct kvm_mmu *context = &vcpu->arch.guest_mmu;
4646 	u8 level = vmx_eptp_page_walk_level(new_eptp);
4647 	union kvm_mmu_role new_role =
4648 		kvm_calc_shadow_ept_root_page_role(vcpu, accessed_dirty,
4649 						   execonly, level);
4650 
4651 	__kvm_mmu_new_pgd(vcpu, new_eptp, new_role.base, true, true);
4652 
4653 	if (new_role.as_u64 == context->mmu_role.as_u64)
4654 		return;
4655 
4656 	context->shadow_root_level = level;
4657 
4658 	context->nx = true;
4659 	context->ept_ad = accessed_dirty;
4660 	context->page_fault = ept_page_fault;
4661 	context->gva_to_gpa = ept_gva_to_gpa;
4662 	context->sync_page = ept_sync_page;
4663 	context->invlpg = ept_invlpg;
4664 	context->update_pte = ept_update_pte;
4665 	context->root_level = level;
4666 	context->direct_map = false;
4667 	context->mmu_role.as_u64 = new_role.as_u64;
4668 
4669 	update_permission_bitmask(vcpu, context, true);
4670 	update_pkru_bitmask(vcpu, context, true);
4671 	update_last_nonleaf_level(vcpu, context);
4672 	reset_rsvds_bits_mask_ept(vcpu, context, execonly);
4673 	reset_ept_shadow_zero_bits_mask(vcpu, context, execonly);
4674 }
4675 EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);
4676 
4677 static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
4678 {
4679 	struct kvm_mmu *context = &vcpu->arch.root_mmu;
4680 
4681 	kvm_init_shadow_mmu(vcpu,
4682 			    kvm_read_cr0_bits(vcpu, X86_CR0_PG),
4683 			    kvm_read_cr4_bits(vcpu, X86_CR4_PAE),
4684 			    vcpu->arch.efer);
4685 
4686 	context->get_guest_pgd     = get_cr3;
4687 	context->get_pdptr         = kvm_pdptr_read;
4688 	context->inject_page_fault = kvm_inject_page_fault;
4689 }
4690 
4691 static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
4692 {
4693 	union kvm_mmu_role new_role = kvm_calc_mmu_role_common(vcpu, false);
4694 	struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
4695 
4696 	if (new_role.as_u64 == g_context->mmu_role.as_u64)
4697 		return;
4698 
4699 	g_context->mmu_role.as_u64 = new_role.as_u64;
4700 	g_context->get_guest_pgd     = get_cr3;
4701 	g_context->get_pdptr         = kvm_pdptr_read;
4702 	g_context->inject_page_fault = kvm_inject_page_fault;
4703 
4704 	/*
4705 	 * L2 page tables are never shadowed, so there is no need to sync
4706 	 * SPTEs.
4707 	 */
4708 	g_context->invlpg            = NULL;
4709 
4710 	/*
4711 	 * Note that arch.mmu->gva_to_gpa translates l2_gpa to l1_gpa using
4712 	 * L1's nested page tables (e.g. EPT12). The nested translation
4713 	 * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using
4714 	 * L2's page tables as the first level of translation and L1's
4715 	 * nested page tables as the second level of translation. Basically
4716 	 * the gva_to_gpa functions between mmu and nested_mmu are swapped.
4717 	 */
4718 	if (!is_paging(vcpu)) {
4719 		g_context->nx = false;
4720 		g_context->root_level = 0;
4721 		g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
4722 	} else if (is_long_mode(vcpu)) {
4723 		g_context->nx = is_nx(vcpu);
4724 		g_context->root_level = is_la57_mode(vcpu) ?
4725 					PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4726 		reset_rsvds_bits_mask(vcpu, g_context);
4727 		g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4728 	} else if (is_pae(vcpu)) {
4729 		g_context->nx = is_nx(vcpu);
4730 		g_context->root_level = PT32E_ROOT_LEVEL;
4731 		reset_rsvds_bits_mask(vcpu, g_context);
4732 		g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4733 	} else {
4734 		g_context->nx = false;
4735 		g_context->root_level = PT32_ROOT_LEVEL;
4736 		reset_rsvds_bits_mask(vcpu, g_context);
4737 		g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
4738 	}
4739 
4740 	update_permission_bitmask(vcpu, g_context, false);
4741 	update_pkru_bitmask(vcpu, g_context, false);
4742 	update_last_nonleaf_level(vcpu, g_context);
4743 }
4744 
4745 void kvm_init_mmu(struct kvm_vcpu *vcpu, bool reset_roots)
4746 {
4747 	if (reset_roots) {
4748 		uint i;
4749 
4750 		vcpu->arch.mmu->root_hpa = INVALID_PAGE;
4751 
4752 		for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
4753 			vcpu->arch.mmu->prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
4754 	}
4755 
4756 	if (mmu_is_nested(vcpu))
4757 		init_kvm_nested_mmu(vcpu);
4758 	else if (tdp_enabled)
4759 		init_kvm_tdp_mmu(vcpu);
4760 	else
4761 		init_kvm_softmmu(vcpu);
4762 }
4763 EXPORT_SYMBOL_GPL(kvm_init_mmu);
4764 
4765 static union kvm_mmu_page_role
4766 kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu)
4767 {
4768 	union kvm_mmu_role role;
4769 
4770 	if (tdp_enabled)
4771 		role = kvm_calc_tdp_mmu_root_page_role(vcpu, true);
4772 	else
4773 		role = kvm_calc_shadow_mmu_root_page_role(vcpu, true);
4774 
4775 	return role.base;
4776 }
4777 
4778 void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
4779 {
4780 	kvm_mmu_unload(vcpu);
4781 	kvm_init_mmu(vcpu, true);
4782 }
4783 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
4784 
4785 int kvm_mmu_load(struct kvm_vcpu *vcpu)
4786 {
4787 	int r;
4788 
4789 	r = mmu_topup_memory_caches(vcpu, !vcpu->arch.mmu->direct_map);
4790 	if (r)
4791 		goto out;
4792 	r = mmu_alloc_roots(vcpu);
4793 	kvm_mmu_sync_roots(vcpu);
4794 	if (r)
4795 		goto out;
4796 	kvm_mmu_load_pgd(vcpu);
4797 	kvm_x86_ops.tlb_flush_current(vcpu);
4798 out:
4799 	return r;
4800 }
4801 EXPORT_SYMBOL_GPL(kvm_mmu_load);
4802 
4803 void kvm_mmu_unload(struct kvm_vcpu *vcpu)
4804 {
4805 	kvm_mmu_free_roots(vcpu, &vcpu->arch.root_mmu, KVM_MMU_ROOTS_ALL);
4806 	WARN_ON(VALID_PAGE(vcpu->arch.root_mmu.root_hpa));
4807 	kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
4808 	WARN_ON(VALID_PAGE(vcpu->arch.guest_mmu.root_hpa));
4809 }
4810 EXPORT_SYMBOL_GPL(kvm_mmu_unload);
4811 
4812 static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
4813 				  struct kvm_mmu_page *sp, u64 *spte,
4814 				  const void *new)
4815 {
4816 	if (sp->role.level != PG_LEVEL_4K) {
4817 		++vcpu->kvm->stat.mmu_pde_zapped;
4818 		return;
4819         }
4820 
4821 	++vcpu->kvm->stat.mmu_pte_updated;
4822 	vcpu->arch.mmu->update_pte(vcpu, sp, spte, new);
4823 }
4824 
4825 static bool need_remote_flush(u64 old, u64 new)
4826 {
4827 	if (!is_shadow_present_pte(old))
4828 		return false;
4829 	if (!is_shadow_present_pte(new))
4830 		return true;
4831 	if ((old ^ new) & PT64_BASE_ADDR_MASK)
4832 		return true;
4833 	old ^= shadow_nx_mask;
4834 	new ^= shadow_nx_mask;
4835 	return (old & ~new & PT64_PERM_MASK) != 0;
4836 }
4837 
4838 static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
4839 				    int *bytes)
4840 {
4841 	u64 gentry = 0;
4842 	int r;
4843 
4844 	/*
4845 	 * Assume that the pte write on a page table of the same type
4846 	 * as the current vcpu paging mode since we update the sptes only
4847 	 * when they have the same mode.
4848 	 */
4849 	if (is_pae(vcpu) && *bytes == 4) {
4850 		/* Handle a 32-bit guest writing two halves of a 64-bit gpte */
4851 		*gpa &= ~(gpa_t)7;
4852 		*bytes = 8;
4853 	}
4854 
4855 	if (*bytes == 4 || *bytes == 8) {
4856 		r = kvm_vcpu_read_guest_atomic(vcpu, *gpa, &gentry, *bytes);
4857 		if (r)
4858 			gentry = 0;
4859 	}
4860 
4861 	return gentry;
4862 }
4863 
4864 /*
4865  * If we're seeing too many writes to a page, it may no longer be a page table,
4866  * or we may be forking, in which case it is better to unmap the page.
4867  */
4868 static bool detect_write_flooding(struct kvm_mmu_page *sp)
4869 {
4870 	/*
4871 	 * Skip write-flooding detected for the sp whose level is 1, because
4872 	 * it can become unsync, then the guest page is not write-protected.
4873 	 */
4874 	if (sp->role.level == PG_LEVEL_4K)
4875 		return false;
4876 
4877 	atomic_inc(&sp->write_flooding_count);
4878 	return atomic_read(&sp->write_flooding_count) >= 3;
4879 }
4880 
4881 /*
4882  * Misaligned accesses are too much trouble to fix up; also, they usually
4883  * indicate a page is not used as a page table.
4884  */
4885 static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
4886 				    int bytes)
4887 {
4888 	unsigned offset, pte_size, misaligned;
4889 
4890 	pgprintk("misaligned: gpa %llx bytes %d role %x\n",
4891 		 gpa, bytes, sp->role.word);
4892 
4893 	offset = offset_in_page(gpa);
4894 	pte_size = sp->role.gpte_is_8_bytes ? 8 : 4;
4895 
4896 	/*
4897 	 * Sometimes, the OS only writes the last one bytes to update status
4898 	 * bits, for example, in linux, andb instruction is used in clear_bit().
4899 	 */
4900 	if (!(offset & (pte_size - 1)) && bytes == 1)
4901 		return false;
4902 
4903 	misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
4904 	misaligned |= bytes < 4;
4905 
4906 	return misaligned;
4907 }
4908 
4909 static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
4910 {
4911 	unsigned page_offset, quadrant;
4912 	u64 *spte;
4913 	int level;
4914 
4915 	page_offset = offset_in_page(gpa);
4916 	level = sp->role.level;
4917 	*nspte = 1;
4918 	if (!sp->role.gpte_is_8_bytes) {
4919 		page_offset <<= 1;	/* 32->64 */
4920 		/*
4921 		 * A 32-bit pde maps 4MB while the shadow pdes map
4922 		 * only 2MB.  So we need to double the offset again
4923 		 * and zap two pdes instead of one.
4924 		 */
4925 		if (level == PT32_ROOT_LEVEL) {
4926 			page_offset &= ~7; /* kill rounding error */
4927 			page_offset <<= 1;
4928 			*nspte = 2;
4929 		}
4930 		quadrant = page_offset >> PAGE_SHIFT;
4931 		page_offset &= ~PAGE_MASK;
4932 		if (quadrant != sp->role.quadrant)
4933 			return NULL;
4934 	}
4935 
4936 	spte = &sp->spt[page_offset / sizeof(*spte)];
4937 	return spte;
4938 }
4939 
4940 /*
4941  * Ignore various flags when determining if a SPTE can be immediately
4942  * overwritten for the current MMU.
4943  *  - level: explicitly checked in mmu_pte_write_new_pte(), and will never
4944  *    match the current MMU role, as MMU's level tracks the root level.
4945  *  - access: updated based on the new guest PTE
4946  *  - quadrant: handled by get_written_sptes()
4947  *  - invalid: always false (loop only walks valid shadow pages)
4948  */
4949 static const union kvm_mmu_page_role role_ign = {
4950 	.level = 0xf,
4951 	.access = 0x7,
4952 	.quadrant = 0x3,
4953 	.invalid = 0x1,
4954 };
4955 
4956 static void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
4957 			      const u8 *new, int bytes,
4958 			      struct kvm_page_track_notifier_node *node)
4959 {
4960 	gfn_t gfn = gpa >> PAGE_SHIFT;
4961 	struct kvm_mmu_page *sp;
4962 	LIST_HEAD(invalid_list);
4963 	u64 entry, gentry, *spte;
4964 	int npte;
4965 	bool remote_flush, local_flush;
4966 
4967 	/*
4968 	 * If we don't have indirect shadow pages, it means no page is
4969 	 * write-protected, so we can exit simply.
4970 	 */
4971 	if (!READ_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
4972 		return;
4973 
4974 	remote_flush = local_flush = false;
4975 
4976 	pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
4977 
4978 	/*
4979 	 * No need to care whether allocation memory is successful
4980 	 * or not since pte prefetch is skiped if it does not have
4981 	 * enough objects in the cache.
4982 	 */
4983 	mmu_topup_memory_caches(vcpu, true);
4984 
4985 	spin_lock(&vcpu->kvm->mmu_lock);
4986 
4987 	gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, &bytes);
4988 
4989 	++vcpu->kvm->stat.mmu_pte_write;
4990 	kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
4991 
4992 	for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
4993 		if (detect_write_misaligned(sp, gpa, bytes) ||
4994 		      detect_write_flooding(sp)) {
4995 			kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
4996 			++vcpu->kvm->stat.mmu_flooded;
4997 			continue;
4998 		}
4999 
5000 		spte = get_written_sptes(sp, gpa, &npte);
5001 		if (!spte)
5002 			continue;
5003 
5004 		local_flush = true;
5005 		while (npte--) {
5006 			u32 base_role = vcpu->arch.mmu->mmu_role.base.word;
5007 
5008 			entry = *spte;
5009 			mmu_page_zap_pte(vcpu->kvm, sp, spte, NULL);
5010 			if (gentry &&
5011 			    !((sp->role.word ^ base_role) & ~role_ign.word) &&
5012 			    rmap_can_add(vcpu))
5013 				mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
5014 			if (need_remote_flush(entry, *spte))
5015 				remote_flush = true;
5016 			++spte;
5017 		}
5018 	}
5019 	kvm_mmu_flush_or_zap(vcpu, &invalid_list, remote_flush, local_flush);
5020 	kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
5021 	spin_unlock(&vcpu->kvm->mmu_lock);
5022 }
5023 
5024 int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
5025 {
5026 	gpa_t gpa;
5027 	int r;
5028 
5029 	if (vcpu->arch.mmu->direct_map)
5030 		return 0;
5031 
5032 	gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
5033 
5034 	r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
5035 
5036 	return r;
5037 }
5038 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
5039 
5040 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 error_code,
5041 		       void *insn, int insn_len)
5042 {
5043 	int r, emulation_type = EMULTYPE_PF;
5044 	bool direct = vcpu->arch.mmu->direct_map;
5045 
5046 	if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa)))
5047 		return RET_PF_RETRY;
5048 
5049 	r = RET_PF_INVALID;
5050 	if (unlikely(error_code & PFERR_RSVD_MASK)) {
5051 		r = handle_mmio_page_fault(vcpu, cr2_or_gpa, direct);
5052 		if (r == RET_PF_EMULATE)
5053 			goto emulate;
5054 	}
5055 
5056 	if (r == RET_PF_INVALID) {
5057 		r = kvm_mmu_do_page_fault(vcpu, cr2_or_gpa,
5058 					  lower_32_bits(error_code), false);
5059 		if (WARN_ON_ONCE(r == RET_PF_INVALID))
5060 			return -EIO;
5061 	}
5062 
5063 	if (r < 0)
5064 		return r;
5065 	if (r != RET_PF_EMULATE)
5066 		return 1;
5067 
5068 	/*
5069 	 * Before emulating the instruction, check if the error code
5070 	 * was due to a RO violation while translating the guest page.
5071 	 * This can occur when using nested virtualization with nested
5072 	 * paging in both guests. If true, we simply unprotect the page
5073 	 * and resume the guest.
5074 	 */
5075 	if (vcpu->arch.mmu->direct_map &&
5076 	    (error_code & PFERR_NESTED_GUEST_PAGE) == PFERR_NESTED_GUEST_PAGE) {
5077 		kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(cr2_or_gpa));
5078 		return 1;
5079 	}
5080 
5081 	/*
5082 	 * vcpu->arch.mmu.page_fault returned RET_PF_EMULATE, but we can still
5083 	 * optimistically try to just unprotect the page and let the processor
5084 	 * re-execute the instruction that caused the page fault.  Do not allow
5085 	 * retrying MMIO emulation, as it's not only pointless but could also
5086 	 * cause us to enter an infinite loop because the processor will keep
5087 	 * faulting on the non-existent MMIO address.  Retrying an instruction
5088 	 * from a nested guest is also pointless and dangerous as we are only
5089 	 * explicitly shadowing L1's page tables, i.e. unprotecting something
5090 	 * for L1 isn't going to magically fix whatever issue cause L2 to fail.
5091 	 */
5092 	if (!mmio_info_in_cache(vcpu, cr2_or_gpa, direct) && !is_guest_mode(vcpu))
5093 		emulation_type |= EMULTYPE_ALLOW_RETRY_PF;
5094 emulate:
5095 	return x86_emulate_instruction(vcpu, cr2_or_gpa, emulation_type, insn,
5096 				       insn_len);
5097 }
5098 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
5099 
5100 void kvm_mmu_invalidate_gva(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
5101 			    gva_t gva, hpa_t root_hpa)
5102 {
5103 	int i;
5104 
5105 	/* It's actually a GPA for vcpu->arch.guest_mmu.  */
5106 	if (mmu != &vcpu->arch.guest_mmu) {
5107 		/* INVLPG on a non-canonical address is a NOP according to the SDM.  */
5108 		if (is_noncanonical_address(gva, vcpu))
5109 			return;
5110 
5111 		kvm_x86_ops.tlb_flush_gva(vcpu, gva);
5112 	}
5113 
5114 	if (!mmu->invlpg)
5115 		return;
5116 
5117 	if (root_hpa == INVALID_PAGE) {
5118 		mmu->invlpg(vcpu, gva, mmu->root_hpa);
5119 
5120 		/*
5121 		 * INVLPG is required to invalidate any global mappings for the VA,
5122 		 * irrespective of PCID. Since it would take us roughly similar amount
5123 		 * of work to determine whether any of the prev_root mappings of the VA
5124 		 * is marked global, or to just sync it blindly, so we might as well
5125 		 * just always sync it.
5126 		 *
5127 		 * Mappings not reachable via the current cr3 or the prev_roots will be
5128 		 * synced when switching to that cr3, so nothing needs to be done here
5129 		 * for them.
5130 		 */
5131 		for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5132 			if (VALID_PAGE(mmu->prev_roots[i].hpa))
5133 				mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
5134 	} else {
5135 		mmu->invlpg(vcpu, gva, root_hpa);
5136 	}
5137 }
5138 EXPORT_SYMBOL_GPL(kvm_mmu_invalidate_gva);
5139 
5140 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
5141 {
5142 	kvm_mmu_invalidate_gva(vcpu, vcpu->arch.mmu, gva, INVALID_PAGE);
5143 	++vcpu->stat.invlpg;
5144 }
5145 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
5146 
5147 
5148 void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid)
5149 {
5150 	struct kvm_mmu *mmu = vcpu->arch.mmu;
5151 	bool tlb_flush = false;
5152 	uint i;
5153 
5154 	if (pcid == kvm_get_active_pcid(vcpu)) {
5155 		mmu->invlpg(vcpu, gva, mmu->root_hpa);
5156 		tlb_flush = true;
5157 	}
5158 
5159 	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
5160 		if (VALID_PAGE(mmu->prev_roots[i].hpa) &&
5161 		    pcid == kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd)) {
5162 			mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
5163 			tlb_flush = true;
5164 		}
5165 	}
5166 
5167 	if (tlb_flush)
5168 		kvm_x86_ops.tlb_flush_gva(vcpu, gva);
5169 
5170 	++vcpu->stat.invlpg;
5171 
5172 	/*
5173 	 * Mappings not reachable via the current cr3 or the prev_roots will be
5174 	 * synced when switching to that cr3, so nothing needs to be done here
5175 	 * for them.
5176 	 */
5177 }
5178 EXPORT_SYMBOL_GPL(kvm_mmu_invpcid_gva);
5179 
5180 void kvm_configure_mmu(bool enable_tdp, int tdp_max_root_level,
5181 		       int tdp_huge_page_level)
5182 {
5183 	tdp_enabled = enable_tdp;
5184 	max_tdp_level = tdp_max_root_level;
5185 
5186 	/*
5187 	 * max_huge_page_level reflects KVM's MMU capabilities irrespective
5188 	 * of kernel support, e.g. KVM may be capable of using 1GB pages when
5189 	 * the kernel is not.  But, KVM never creates a page size greater than
5190 	 * what is used by the kernel for any given HVA, i.e. the kernel's
5191 	 * capabilities are ultimately consulted by kvm_mmu_hugepage_adjust().
5192 	 */
5193 	if (tdp_enabled)
5194 		max_huge_page_level = tdp_huge_page_level;
5195 	else if (boot_cpu_has(X86_FEATURE_GBPAGES))
5196 		max_huge_page_level = PG_LEVEL_1G;
5197 	else
5198 		max_huge_page_level = PG_LEVEL_2M;
5199 }
5200 EXPORT_SYMBOL_GPL(kvm_configure_mmu);
5201 
5202 /* The return value indicates if tlb flush on all vcpus is needed. */
5203 typedef bool (*slot_level_handler) (struct kvm *kvm, struct kvm_rmap_head *rmap_head);
5204 
5205 /* The caller should hold mmu-lock before calling this function. */
5206 static __always_inline bool
5207 slot_handle_level_range(struct kvm *kvm, struct kvm_memory_slot *memslot,
5208 			slot_level_handler fn, int start_level, int end_level,
5209 			gfn_t start_gfn, gfn_t end_gfn, bool lock_flush_tlb)
5210 {
5211 	struct slot_rmap_walk_iterator iterator;
5212 	bool flush = false;
5213 
5214 	for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn,
5215 			end_gfn, &iterator) {
5216 		if (iterator.rmap)
5217 			flush |= fn(kvm, iterator.rmap);
5218 
5219 		if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
5220 			if (flush && lock_flush_tlb) {
5221 				kvm_flush_remote_tlbs_with_address(kvm,
5222 						start_gfn,
5223 						iterator.gfn - start_gfn + 1);
5224 				flush = false;
5225 			}
5226 			cond_resched_lock(&kvm->mmu_lock);
5227 		}
5228 	}
5229 
5230 	if (flush && lock_flush_tlb) {
5231 		kvm_flush_remote_tlbs_with_address(kvm, start_gfn,
5232 						   end_gfn - start_gfn + 1);
5233 		flush = false;
5234 	}
5235 
5236 	return flush;
5237 }
5238 
5239 static __always_inline bool
5240 slot_handle_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5241 		  slot_level_handler fn, int start_level, int end_level,
5242 		  bool lock_flush_tlb)
5243 {
5244 	return slot_handle_level_range(kvm, memslot, fn, start_level,
5245 			end_level, memslot->base_gfn,
5246 			memslot->base_gfn + memslot->npages - 1,
5247 			lock_flush_tlb);
5248 }
5249 
5250 static __always_inline bool
5251 slot_handle_all_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5252 		      slot_level_handler fn, bool lock_flush_tlb)
5253 {
5254 	return slot_handle_level(kvm, memslot, fn, PG_LEVEL_4K,
5255 				 KVM_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
5256 }
5257 
5258 static __always_inline bool
5259 slot_handle_large_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5260 			slot_level_handler fn, bool lock_flush_tlb)
5261 {
5262 	return slot_handle_level(kvm, memslot, fn, PG_LEVEL_4K + 1,
5263 				 KVM_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
5264 }
5265 
5266 static __always_inline bool
5267 slot_handle_leaf(struct kvm *kvm, struct kvm_memory_slot *memslot,
5268 		 slot_level_handler fn, bool lock_flush_tlb)
5269 {
5270 	return slot_handle_level(kvm, memslot, fn, PG_LEVEL_4K,
5271 				 PG_LEVEL_4K, lock_flush_tlb);
5272 }
5273 
5274 static void free_mmu_pages(struct kvm_mmu *mmu)
5275 {
5276 	free_page((unsigned long)mmu->pae_root);
5277 	free_page((unsigned long)mmu->lm_root);
5278 }
5279 
5280 static int __kvm_mmu_create(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
5281 {
5282 	struct page *page;
5283 	int i;
5284 
5285 	mmu->root_hpa = INVALID_PAGE;
5286 	mmu->root_pgd = 0;
5287 	mmu->translate_gpa = translate_gpa;
5288 	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5289 		mmu->prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
5290 
5291 	/*
5292 	 * When using PAE paging, the four PDPTEs are treated as 'root' pages,
5293 	 * while the PDP table is a per-vCPU construct that's allocated at MMU
5294 	 * creation.  When emulating 32-bit mode, cr3 is only 32 bits even on
5295 	 * x86_64.  Therefore we need to allocate the PDP table in the first
5296 	 * 4GB of memory, which happens to fit the DMA32 zone.  Except for
5297 	 * SVM's 32-bit NPT support, TDP paging doesn't use PAE paging and can
5298 	 * skip allocating the PDP table.
5299 	 */
5300 	if (tdp_enabled && kvm_mmu_get_tdp_level(vcpu) > PT32E_ROOT_LEVEL)
5301 		return 0;
5302 
5303 	page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_DMA32);
5304 	if (!page)
5305 		return -ENOMEM;
5306 
5307 	mmu->pae_root = page_address(page);
5308 	for (i = 0; i < 4; ++i)
5309 		mmu->pae_root[i] = INVALID_PAGE;
5310 
5311 	return 0;
5312 }
5313 
5314 int kvm_mmu_create(struct kvm_vcpu *vcpu)
5315 {
5316 	int ret;
5317 
5318 	vcpu->arch.mmu_pte_list_desc_cache.kmem_cache = pte_list_desc_cache;
5319 	vcpu->arch.mmu_pte_list_desc_cache.gfp_zero = __GFP_ZERO;
5320 
5321 	vcpu->arch.mmu_page_header_cache.kmem_cache = mmu_page_header_cache;
5322 	vcpu->arch.mmu_page_header_cache.gfp_zero = __GFP_ZERO;
5323 
5324 	vcpu->arch.mmu_shadow_page_cache.gfp_zero = __GFP_ZERO;
5325 
5326 	vcpu->arch.mmu = &vcpu->arch.root_mmu;
5327 	vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
5328 
5329 	vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
5330 
5331 	ret = __kvm_mmu_create(vcpu, &vcpu->arch.guest_mmu);
5332 	if (ret)
5333 		return ret;
5334 
5335 	ret = __kvm_mmu_create(vcpu, &vcpu->arch.root_mmu);
5336 	if (ret)
5337 		goto fail_allocate_root;
5338 
5339 	return ret;
5340  fail_allocate_root:
5341 	free_mmu_pages(&vcpu->arch.guest_mmu);
5342 	return ret;
5343 }
5344 
5345 #define BATCH_ZAP_PAGES	10
5346 static void kvm_zap_obsolete_pages(struct kvm *kvm)
5347 {
5348 	struct kvm_mmu_page *sp, *node;
5349 	int nr_zapped, batch = 0;
5350 
5351 restart:
5352 	list_for_each_entry_safe_reverse(sp, node,
5353 	      &kvm->arch.active_mmu_pages, link) {
5354 		/*
5355 		 * No obsolete valid page exists before a newly created page
5356 		 * since active_mmu_pages is a FIFO list.
5357 		 */
5358 		if (!is_obsolete_sp(kvm, sp))
5359 			break;
5360 
5361 		/*
5362 		 * Invalid pages should never land back on the list of active
5363 		 * pages.  Skip the bogus page, otherwise we'll get stuck in an
5364 		 * infinite loop if the page gets put back on the list (again).
5365 		 */
5366 		if (WARN_ON(sp->role.invalid))
5367 			continue;
5368 
5369 		/*
5370 		 * No need to flush the TLB since we're only zapping shadow
5371 		 * pages with an obsolete generation number and all vCPUS have
5372 		 * loaded a new root, i.e. the shadow pages being zapped cannot
5373 		 * be in active use by the guest.
5374 		 */
5375 		if (batch >= BATCH_ZAP_PAGES &&
5376 		    cond_resched_lock(&kvm->mmu_lock)) {
5377 			batch = 0;
5378 			goto restart;
5379 		}
5380 
5381 		if (__kvm_mmu_prepare_zap_page(kvm, sp,
5382 				&kvm->arch.zapped_obsolete_pages, &nr_zapped)) {
5383 			batch += nr_zapped;
5384 			goto restart;
5385 		}
5386 	}
5387 
5388 	/*
5389 	 * Trigger a remote TLB flush before freeing the page tables to ensure
5390 	 * KVM is not in the middle of a lockless shadow page table walk, which
5391 	 * may reference the pages.
5392 	 */
5393 	kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
5394 }
5395 
5396 /*
5397  * Fast invalidate all shadow pages and use lock-break technique
5398  * to zap obsolete pages.
5399  *
5400  * It's required when memslot is being deleted or VM is being
5401  * destroyed, in these cases, we should ensure that KVM MMU does
5402  * not use any resource of the being-deleted slot or all slots
5403  * after calling the function.
5404  */
5405 static void kvm_mmu_zap_all_fast(struct kvm *kvm)
5406 {
5407 	lockdep_assert_held(&kvm->slots_lock);
5408 
5409 	spin_lock(&kvm->mmu_lock);
5410 	trace_kvm_mmu_zap_all_fast(kvm);
5411 
5412 	/*
5413 	 * Toggle mmu_valid_gen between '0' and '1'.  Because slots_lock is
5414 	 * held for the entire duration of zapping obsolete pages, it's
5415 	 * impossible for there to be multiple invalid generations associated
5416 	 * with *valid* shadow pages at any given time, i.e. there is exactly
5417 	 * one valid generation and (at most) one invalid generation.
5418 	 */
5419 	kvm->arch.mmu_valid_gen = kvm->arch.mmu_valid_gen ? 0 : 1;
5420 
5421 	/*
5422 	 * Notify all vcpus to reload its shadow page table and flush TLB.
5423 	 * Then all vcpus will switch to new shadow page table with the new
5424 	 * mmu_valid_gen.
5425 	 *
5426 	 * Note: we need to do this under the protection of mmu_lock,
5427 	 * otherwise, vcpu would purge shadow page but miss tlb flush.
5428 	 */
5429 	kvm_reload_remote_mmus(kvm);
5430 
5431 	kvm_zap_obsolete_pages(kvm);
5432 
5433 	if (kvm->arch.tdp_mmu_enabled)
5434 		kvm_tdp_mmu_zap_all(kvm);
5435 
5436 	spin_unlock(&kvm->mmu_lock);
5437 }
5438 
5439 static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
5440 {
5441 	return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
5442 }
5443 
5444 static void kvm_mmu_invalidate_zap_pages_in_memslot(struct kvm *kvm,
5445 			struct kvm_memory_slot *slot,
5446 			struct kvm_page_track_notifier_node *node)
5447 {
5448 	kvm_mmu_zap_all_fast(kvm);
5449 }
5450 
5451 void kvm_mmu_init_vm(struct kvm *kvm)
5452 {
5453 	struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5454 
5455 	kvm_mmu_init_tdp_mmu(kvm);
5456 
5457 	node->track_write = kvm_mmu_pte_write;
5458 	node->track_flush_slot = kvm_mmu_invalidate_zap_pages_in_memslot;
5459 	kvm_page_track_register_notifier(kvm, node);
5460 }
5461 
5462 void kvm_mmu_uninit_vm(struct kvm *kvm)
5463 {
5464 	struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5465 
5466 	kvm_page_track_unregister_notifier(kvm, node);
5467 
5468 	kvm_mmu_uninit_tdp_mmu(kvm);
5469 }
5470 
5471 void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
5472 {
5473 	struct kvm_memslots *slots;
5474 	struct kvm_memory_slot *memslot;
5475 	int i;
5476 	bool flush;
5477 
5478 	spin_lock(&kvm->mmu_lock);
5479 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
5480 		slots = __kvm_memslots(kvm, i);
5481 		kvm_for_each_memslot(memslot, slots) {
5482 			gfn_t start, end;
5483 
5484 			start = max(gfn_start, memslot->base_gfn);
5485 			end = min(gfn_end, memslot->base_gfn + memslot->npages);
5486 			if (start >= end)
5487 				continue;
5488 
5489 			slot_handle_level_range(kvm, memslot, kvm_zap_rmapp,
5490 						PG_LEVEL_4K,
5491 						KVM_MAX_HUGEPAGE_LEVEL,
5492 						start, end - 1, true);
5493 		}
5494 	}
5495 
5496 	if (kvm->arch.tdp_mmu_enabled) {
5497 		flush = kvm_tdp_mmu_zap_gfn_range(kvm, gfn_start, gfn_end);
5498 		if (flush)
5499 			kvm_flush_remote_tlbs(kvm);
5500 	}
5501 
5502 	spin_unlock(&kvm->mmu_lock);
5503 }
5504 
5505 static bool slot_rmap_write_protect(struct kvm *kvm,
5506 				    struct kvm_rmap_head *rmap_head)
5507 {
5508 	return __rmap_write_protect(kvm, rmap_head, false);
5509 }
5510 
5511 void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
5512 				      struct kvm_memory_slot *memslot,
5513 				      int start_level)
5514 {
5515 	bool flush;
5516 
5517 	spin_lock(&kvm->mmu_lock);
5518 	flush = slot_handle_level(kvm, memslot, slot_rmap_write_protect,
5519 				start_level, KVM_MAX_HUGEPAGE_LEVEL, false);
5520 	if (kvm->arch.tdp_mmu_enabled)
5521 		flush |= kvm_tdp_mmu_wrprot_slot(kvm, memslot, PG_LEVEL_4K);
5522 	spin_unlock(&kvm->mmu_lock);
5523 
5524 	/*
5525 	 * We can flush all the TLBs out of the mmu lock without TLB
5526 	 * corruption since we just change the spte from writable to
5527 	 * readonly so that we only need to care the case of changing
5528 	 * spte from present to present (changing the spte from present
5529 	 * to nonpresent will flush all the TLBs immediately), in other
5530 	 * words, the only case we care is mmu_spte_update() where we
5531 	 * have checked SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE
5532 	 * instead of PT_WRITABLE_MASK, that means it does not depend
5533 	 * on PT_WRITABLE_MASK anymore.
5534 	 */
5535 	if (flush)
5536 		kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
5537 }
5538 
5539 static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
5540 					 struct kvm_rmap_head *rmap_head)
5541 {
5542 	u64 *sptep;
5543 	struct rmap_iterator iter;
5544 	int need_tlb_flush = 0;
5545 	kvm_pfn_t pfn;
5546 	struct kvm_mmu_page *sp;
5547 
5548 restart:
5549 	for_each_rmap_spte(rmap_head, &iter, sptep) {
5550 		sp = sptep_to_sp(sptep);
5551 		pfn = spte_to_pfn(*sptep);
5552 
5553 		/*
5554 		 * We cannot do huge page mapping for indirect shadow pages,
5555 		 * which are found on the last rmap (level = 1) when not using
5556 		 * tdp; such shadow pages are synced with the page table in
5557 		 * the guest, and the guest page table is using 4K page size
5558 		 * mapping if the indirect sp has level = 1.
5559 		 */
5560 		if (sp->role.direct && !kvm_is_reserved_pfn(pfn) &&
5561 		    (kvm_is_zone_device_pfn(pfn) ||
5562 		     PageCompound(pfn_to_page(pfn)))) {
5563 			pte_list_remove(rmap_head, sptep);
5564 
5565 			if (kvm_available_flush_tlb_with_range())
5566 				kvm_flush_remote_tlbs_with_address(kvm, sp->gfn,
5567 					KVM_PAGES_PER_HPAGE(sp->role.level));
5568 			else
5569 				need_tlb_flush = 1;
5570 
5571 			goto restart;
5572 		}
5573 	}
5574 
5575 	return need_tlb_flush;
5576 }
5577 
5578 void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
5579 				   const struct kvm_memory_slot *memslot)
5580 {
5581 	/* FIXME: const-ify all uses of struct kvm_memory_slot.  */
5582 	spin_lock(&kvm->mmu_lock);
5583 	slot_handle_leaf(kvm, (struct kvm_memory_slot *)memslot,
5584 			 kvm_mmu_zap_collapsible_spte, true);
5585 
5586 	if (kvm->arch.tdp_mmu_enabled)
5587 		kvm_tdp_mmu_zap_collapsible_sptes(kvm, memslot);
5588 	spin_unlock(&kvm->mmu_lock);
5589 }
5590 
5591 void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
5592 					struct kvm_memory_slot *memslot)
5593 {
5594 	/*
5595 	 * All current use cases for flushing the TLBs for a specific memslot
5596 	 * are related to dirty logging, and do the TLB flush out of mmu_lock.
5597 	 * The interaction between the various operations on memslot must be
5598 	 * serialized by slots_locks to ensure the TLB flush from one operation
5599 	 * is observed by any other operation on the same memslot.
5600 	 */
5601 	lockdep_assert_held(&kvm->slots_lock);
5602 	kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn,
5603 					   memslot->npages);
5604 }
5605 
5606 void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
5607 				   struct kvm_memory_slot *memslot)
5608 {
5609 	bool flush;
5610 
5611 	spin_lock(&kvm->mmu_lock);
5612 	flush = slot_handle_leaf(kvm, memslot, __rmap_clear_dirty, false);
5613 	if (kvm->arch.tdp_mmu_enabled)
5614 		flush |= kvm_tdp_mmu_clear_dirty_slot(kvm, memslot);
5615 	spin_unlock(&kvm->mmu_lock);
5616 
5617 	/*
5618 	 * It's also safe to flush TLBs out of mmu lock here as currently this
5619 	 * function is only used for dirty logging, in which case flushing TLB
5620 	 * out of mmu lock also guarantees no dirty pages will be lost in
5621 	 * dirty_bitmap.
5622 	 */
5623 	if (flush)
5624 		kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
5625 }
5626 EXPORT_SYMBOL_GPL(kvm_mmu_slot_leaf_clear_dirty);
5627 
5628 void kvm_mmu_slot_largepage_remove_write_access(struct kvm *kvm,
5629 					struct kvm_memory_slot *memslot)
5630 {
5631 	bool flush;
5632 
5633 	spin_lock(&kvm->mmu_lock);
5634 	flush = slot_handle_large_level(kvm, memslot, slot_rmap_write_protect,
5635 					false);
5636 	if (kvm->arch.tdp_mmu_enabled)
5637 		flush |= kvm_tdp_mmu_wrprot_slot(kvm, memslot, PG_LEVEL_2M);
5638 	spin_unlock(&kvm->mmu_lock);
5639 
5640 	if (flush)
5641 		kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
5642 }
5643 EXPORT_SYMBOL_GPL(kvm_mmu_slot_largepage_remove_write_access);
5644 
5645 void kvm_mmu_slot_set_dirty(struct kvm *kvm,
5646 			    struct kvm_memory_slot *memslot)
5647 {
5648 	bool flush;
5649 
5650 	spin_lock(&kvm->mmu_lock);
5651 	flush = slot_handle_all_level(kvm, memslot, __rmap_set_dirty, false);
5652 	if (kvm->arch.tdp_mmu_enabled)
5653 		flush |= kvm_tdp_mmu_slot_set_dirty(kvm, memslot);
5654 	spin_unlock(&kvm->mmu_lock);
5655 
5656 	if (flush)
5657 		kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
5658 }
5659 EXPORT_SYMBOL_GPL(kvm_mmu_slot_set_dirty);
5660 
5661 void kvm_mmu_zap_all(struct kvm *kvm)
5662 {
5663 	struct kvm_mmu_page *sp, *node;
5664 	LIST_HEAD(invalid_list);
5665 	int ign;
5666 
5667 	spin_lock(&kvm->mmu_lock);
5668 restart:
5669 	list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link) {
5670 		if (WARN_ON(sp->role.invalid))
5671 			continue;
5672 		if (__kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list, &ign))
5673 			goto restart;
5674 		if (cond_resched_lock(&kvm->mmu_lock))
5675 			goto restart;
5676 	}
5677 
5678 	kvm_mmu_commit_zap_page(kvm, &invalid_list);
5679 
5680 	if (kvm->arch.tdp_mmu_enabled)
5681 		kvm_tdp_mmu_zap_all(kvm);
5682 
5683 	spin_unlock(&kvm->mmu_lock);
5684 }
5685 
5686 void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen)
5687 {
5688 	WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
5689 
5690 	gen &= MMIO_SPTE_GEN_MASK;
5691 
5692 	/*
5693 	 * Generation numbers are incremented in multiples of the number of
5694 	 * address spaces in order to provide unique generations across all
5695 	 * address spaces.  Strip what is effectively the address space
5696 	 * modifier prior to checking for a wrap of the MMIO generation so
5697 	 * that a wrap in any address space is detected.
5698 	 */
5699 	gen &= ~((u64)KVM_ADDRESS_SPACE_NUM - 1);
5700 
5701 	/*
5702 	 * The very rare case: if the MMIO generation number has wrapped,
5703 	 * zap all shadow pages.
5704 	 */
5705 	if (unlikely(gen == 0)) {
5706 		kvm_debug_ratelimited("kvm: zapping shadow pages for mmio generation wraparound\n");
5707 		kvm_mmu_zap_all_fast(kvm);
5708 	}
5709 }
5710 
5711 static unsigned long
5712 mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
5713 {
5714 	struct kvm *kvm;
5715 	int nr_to_scan = sc->nr_to_scan;
5716 	unsigned long freed = 0;
5717 
5718 	mutex_lock(&kvm_lock);
5719 
5720 	list_for_each_entry(kvm, &vm_list, vm_list) {
5721 		int idx;
5722 		LIST_HEAD(invalid_list);
5723 
5724 		/*
5725 		 * Never scan more than sc->nr_to_scan VM instances.
5726 		 * Will not hit this condition practically since we do not try
5727 		 * to shrink more than one VM and it is very unlikely to see
5728 		 * !n_used_mmu_pages so many times.
5729 		 */
5730 		if (!nr_to_scan--)
5731 			break;
5732 		/*
5733 		 * n_used_mmu_pages is accessed without holding kvm->mmu_lock
5734 		 * here. We may skip a VM instance errorneosly, but we do not
5735 		 * want to shrink a VM that only started to populate its MMU
5736 		 * anyway.
5737 		 */
5738 		if (!kvm->arch.n_used_mmu_pages &&
5739 		    !kvm_has_zapped_obsolete_pages(kvm))
5740 			continue;
5741 
5742 		idx = srcu_read_lock(&kvm->srcu);
5743 		spin_lock(&kvm->mmu_lock);
5744 
5745 		if (kvm_has_zapped_obsolete_pages(kvm)) {
5746 			kvm_mmu_commit_zap_page(kvm,
5747 			      &kvm->arch.zapped_obsolete_pages);
5748 			goto unlock;
5749 		}
5750 
5751 		freed = kvm_mmu_zap_oldest_mmu_pages(kvm, sc->nr_to_scan);
5752 
5753 unlock:
5754 		spin_unlock(&kvm->mmu_lock);
5755 		srcu_read_unlock(&kvm->srcu, idx);
5756 
5757 		/*
5758 		 * unfair on small ones
5759 		 * per-vm shrinkers cry out
5760 		 * sadness comes quickly
5761 		 */
5762 		list_move_tail(&kvm->vm_list, &vm_list);
5763 		break;
5764 	}
5765 
5766 	mutex_unlock(&kvm_lock);
5767 	return freed;
5768 }
5769 
5770 static unsigned long
5771 mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
5772 {
5773 	return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
5774 }
5775 
5776 static struct shrinker mmu_shrinker = {
5777 	.count_objects = mmu_shrink_count,
5778 	.scan_objects = mmu_shrink_scan,
5779 	.seeks = DEFAULT_SEEKS * 10,
5780 };
5781 
5782 static void mmu_destroy_caches(void)
5783 {
5784 	kmem_cache_destroy(pte_list_desc_cache);
5785 	kmem_cache_destroy(mmu_page_header_cache);
5786 }
5787 
5788 static void kvm_set_mmio_spte_mask(void)
5789 {
5790 	u64 mask;
5791 
5792 	/*
5793 	 * Set a reserved PA bit in MMIO SPTEs to generate page faults with
5794 	 * PFEC.RSVD=1 on MMIO accesses.  64-bit PTEs (PAE, x86-64, and EPT
5795 	 * paging) support a maximum of 52 bits of PA, i.e. if the CPU supports
5796 	 * 52-bit physical addresses then there are no reserved PA bits in the
5797 	 * PTEs and so the reserved PA approach must be disabled.
5798 	 */
5799 	if (shadow_phys_bits < 52)
5800 		mask = BIT_ULL(51) | PT_PRESENT_MASK;
5801 	else
5802 		mask = 0;
5803 
5804 	kvm_mmu_set_mmio_spte_mask(mask, ACC_WRITE_MASK | ACC_USER_MASK);
5805 }
5806 
5807 static bool get_nx_auto_mode(void)
5808 {
5809 	/* Return true when CPU has the bug, and mitigations are ON */
5810 	return boot_cpu_has_bug(X86_BUG_ITLB_MULTIHIT) && !cpu_mitigations_off();
5811 }
5812 
5813 static void __set_nx_huge_pages(bool val)
5814 {
5815 	nx_huge_pages = itlb_multihit_kvm_mitigation = val;
5816 }
5817 
5818 static int set_nx_huge_pages(const char *val, const struct kernel_param *kp)
5819 {
5820 	bool old_val = nx_huge_pages;
5821 	bool new_val;
5822 
5823 	/* In "auto" mode deploy workaround only if CPU has the bug. */
5824 	if (sysfs_streq(val, "off"))
5825 		new_val = 0;
5826 	else if (sysfs_streq(val, "force"))
5827 		new_val = 1;
5828 	else if (sysfs_streq(val, "auto"))
5829 		new_val = get_nx_auto_mode();
5830 	else if (strtobool(val, &new_val) < 0)
5831 		return -EINVAL;
5832 
5833 	__set_nx_huge_pages(new_val);
5834 
5835 	if (new_val != old_val) {
5836 		struct kvm *kvm;
5837 
5838 		mutex_lock(&kvm_lock);
5839 
5840 		list_for_each_entry(kvm, &vm_list, vm_list) {
5841 			mutex_lock(&kvm->slots_lock);
5842 			kvm_mmu_zap_all_fast(kvm);
5843 			mutex_unlock(&kvm->slots_lock);
5844 
5845 			wake_up_process(kvm->arch.nx_lpage_recovery_thread);
5846 		}
5847 		mutex_unlock(&kvm_lock);
5848 	}
5849 
5850 	return 0;
5851 }
5852 
5853 int kvm_mmu_module_init(void)
5854 {
5855 	int ret = -ENOMEM;
5856 
5857 	if (nx_huge_pages == -1)
5858 		__set_nx_huge_pages(get_nx_auto_mode());
5859 
5860 	/*
5861 	 * MMU roles use union aliasing which is, generally speaking, an
5862 	 * undefined behavior. However, we supposedly know how compilers behave
5863 	 * and the current status quo is unlikely to change. Guardians below are
5864 	 * supposed to let us know if the assumption becomes false.
5865 	 */
5866 	BUILD_BUG_ON(sizeof(union kvm_mmu_page_role) != sizeof(u32));
5867 	BUILD_BUG_ON(sizeof(union kvm_mmu_extended_role) != sizeof(u32));
5868 	BUILD_BUG_ON(sizeof(union kvm_mmu_role) != sizeof(u64));
5869 
5870 	kvm_mmu_reset_all_pte_masks();
5871 
5872 	kvm_set_mmio_spte_mask();
5873 
5874 	pte_list_desc_cache = kmem_cache_create("pte_list_desc",
5875 					    sizeof(struct pte_list_desc),
5876 					    0, SLAB_ACCOUNT, NULL);
5877 	if (!pte_list_desc_cache)
5878 		goto out;
5879 
5880 	mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
5881 						  sizeof(struct kvm_mmu_page),
5882 						  0, SLAB_ACCOUNT, NULL);
5883 	if (!mmu_page_header_cache)
5884 		goto out;
5885 
5886 	if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
5887 		goto out;
5888 
5889 	ret = register_shrinker(&mmu_shrinker);
5890 	if (ret)
5891 		goto out;
5892 
5893 	return 0;
5894 
5895 out:
5896 	mmu_destroy_caches();
5897 	return ret;
5898 }
5899 
5900 /*
5901  * Calculate mmu pages needed for kvm.
5902  */
5903 unsigned long kvm_mmu_calculate_default_mmu_pages(struct kvm *kvm)
5904 {
5905 	unsigned long nr_mmu_pages;
5906 	unsigned long nr_pages = 0;
5907 	struct kvm_memslots *slots;
5908 	struct kvm_memory_slot *memslot;
5909 	int i;
5910 
5911 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
5912 		slots = __kvm_memslots(kvm, i);
5913 
5914 		kvm_for_each_memslot(memslot, slots)
5915 			nr_pages += memslot->npages;
5916 	}
5917 
5918 	nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
5919 	nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES);
5920 
5921 	return nr_mmu_pages;
5922 }
5923 
5924 void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
5925 {
5926 	kvm_mmu_unload(vcpu);
5927 	free_mmu_pages(&vcpu->arch.root_mmu);
5928 	free_mmu_pages(&vcpu->arch.guest_mmu);
5929 	mmu_free_memory_caches(vcpu);
5930 }
5931 
5932 void kvm_mmu_module_exit(void)
5933 {
5934 	mmu_destroy_caches();
5935 	percpu_counter_destroy(&kvm_total_used_mmu_pages);
5936 	unregister_shrinker(&mmu_shrinker);
5937 	mmu_audit_disable();
5938 }
5939 
5940 static int set_nx_huge_pages_recovery_ratio(const char *val, const struct kernel_param *kp)
5941 {
5942 	unsigned int old_val;
5943 	int err;
5944 
5945 	old_val = nx_huge_pages_recovery_ratio;
5946 	err = param_set_uint(val, kp);
5947 	if (err)
5948 		return err;
5949 
5950 	if (READ_ONCE(nx_huge_pages) &&
5951 	    !old_val && nx_huge_pages_recovery_ratio) {
5952 		struct kvm *kvm;
5953 
5954 		mutex_lock(&kvm_lock);
5955 
5956 		list_for_each_entry(kvm, &vm_list, vm_list)
5957 			wake_up_process(kvm->arch.nx_lpage_recovery_thread);
5958 
5959 		mutex_unlock(&kvm_lock);
5960 	}
5961 
5962 	return err;
5963 }
5964 
5965 static void kvm_recover_nx_lpages(struct kvm *kvm)
5966 {
5967 	int rcu_idx;
5968 	struct kvm_mmu_page *sp;
5969 	unsigned int ratio;
5970 	LIST_HEAD(invalid_list);
5971 	ulong to_zap;
5972 
5973 	rcu_idx = srcu_read_lock(&kvm->srcu);
5974 	spin_lock(&kvm->mmu_lock);
5975 
5976 	ratio = READ_ONCE(nx_huge_pages_recovery_ratio);
5977 	to_zap = ratio ? DIV_ROUND_UP(kvm->stat.nx_lpage_splits, ratio) : 0;
5978 	for ( ; to_zap; --to_zap) {
5979 		if (list_empty(&kvm->arch.lpage_disallowed_mmu_pages))
5980 			break;
5981 
5982 		/*
5983 		 * We use a separate list instead of just using active_mmu_pages
5984 		 * because the number of lpage_disallowed pages is expected to
5985 		 * be relatively small compared to the total.
5986 		 */
5987 		sp = list_first_entry(&kvm->arch.lpage_disallowed_mmu_pages,
5988 				      struct kvm_mmu_page,
5989 				      lpage_disallowed_link);
5990 		WARN_ON_ONCE(!sp->lpage_disallowed);
5991 		if (sp->tdp_mmu_page)
5992 			kvm_tdp_mmu_zap_gfn_range(kvm, sp->gfn,
5993 				sp->gfn + KVM_PAGES_PER_HPAGE(sp->role.level));
5994 		else {
5995 			kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
5996 			WARN_ON_ONCE(sp->lpage_disallowed);
5997 		}
5998 
5999 		if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
6000 			kvm_mmu_commit_zap_page(kvm, &invalid_list);
6001 			cond_resched_lock(&kvm->mmu_lock);
6002 		}
6003 	}
6004 	kvm_mmu_commit_zap_page(kvm, &invalid_list);
6005 
6006 	spin_unlock(&kvm->mmu_lock);
6007 	srcu_read_unlock(&kvm->srcu, rcu_idx);
6008 }
6009 
6010 static long get_nx_lpage_recovery_timeout(u64 start_time)
6011 {
6012 	return READ_ONCE(nx_huge_pages) && READ_ONCE(nx_huge_pages_recovery_ratio)
6013 		? start_time + 60 * HZ - get_jiffies_64()
6014 		: MAX_SCHEDULE_TIMEOUT;
6015 }
6016 
6017 static int kvm_nx_lpage_recovery_worker(struct kvm *kvm, uintptr_t data)
6018 {
6019 	u64 start_time;
6020 	long remaining_time;
6021 
6022 	while (true) {
6023 		start_time = get_jiffies_64();
6024 		remaining_time = get_nx_lpage_recovery_timeout(start_time);
6025 
6026 		set_current_state(TASK_INTERRUPTIBLE);
6027 		while (!kthread_should_stop() && remaining_time > 0) {
6028 			schedule_timeout(remaining_time);
6029 			remaining_time = get_nx_lpage_recovery_timeout(start_time);
6030 			set_current_state(TASK_INTERRUPTIBLE);
6031 		}
6032 
6033 		set_current_state(TASK_RUNNING);
6034 
6035 		if (kthread_should_stop())
6036 			return 0;
6037 
6038 		kvm_recover_nx_lpages(kvm);
6039 	}
6040 }
6041 
6042 int kvm_mmu_post_init_vm(struct kvm *kvm)
6043 {
6044 	int err;
6045 
6046 	err = kvm_vm_create_worker_thread(kvm, kvm_nx_lpage_recovery_worker, 0,
6047 					  "kvm-nx-lpage-recovery",
6048 					  &kvm->arch.nx_lpage_recovery_thread);
6049 	if (!err)
6050 		kthread_unpark(kvm->arch.nx_lpage_recovery_thread);
6051 
6052 	return err;
6053 }
6054 
6055 void kvm_mmu_pre_destroy_vm(struct kvm *kvm)
6056 {
6057 	if (kvm->arch.nx_lpage_recovery_thread)
6058 		kthread_stop(kvm->arch.nx_lpage_recovery_thread);
6059 }
6060