1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * This module enables machines with Intel VT-x extensions to run virtual 6 * machines without emulation or binary translation. 7 * 8 * MMU support 9 * 10 * Copyright (C) 2006 Qumranet, Inc. 11 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 12 * 13 * Authors: 14 * Yaniv Kamay <yaniv@qumranet.com> 15 * Avi Kivity <avi@qumranet.com> 16 */ 17 18 #include "irq.h" 19 #include "ioapic.h" 20 #include "mmu.h" 21 #include "mmu_internal.h" 22 #include "tdp_mmu.h" 23 #include "x86.h" 24 #include "kvm_cache_regs.h" 25 #include "kvm_emulate.h" 26 #include "cpuid.h" 27 #include "spte.h" 28 29 #include <linux/kvm_host.h> 30 #include <linux/types.h> 31 #include <linux/string.h> 32 #include <linux/mm.h> 33 #include <linux/highmem.h> 34 #include <linux/moduleparam.h> 35 #include <linux/export.h> 36 #include <linux/swap.h> 37 #include <linux/hugetlb.h> 38 #include <linux/compiler.h> 39 #include <linux/srcu.h> 40 #include <linux/slab.h> 41 #include <linux/sched/signal.h> 42 #include <linux/uaccess.h> 43 #include <linux/hash.h> 44 #include <linux/kern_levels.h> 45 #include <linux/kthread.h> 46 47 #include <asm/page.h> 48 #include <asm/memtype.h> 49 #include <asm/cmpxchg.h> 50 #include <asm/io.h> 51 #include <asm/set_memory.h> 52 #include <asm/vmx.h> 53 #include <asm/kvm_page_track.h> 54 #include "trace.h" 55 56 #include "paging.h" 57 58 extern bool itlb_multihit_kvm_mitigation; 59 60 int __read_mostly nx_huge_pages = -1; 61 static uint __read_mostly nx_huge_pages_recovery_period_ms; 62 #ifdef CONFIG_PREEMPT_RT 63 /* Recovery can cause latency spikes, disable it for PREEMPT_RT. */ 64 static uint __read_mostly nx_huge_pages_recovery_ratio = 0; 65 #else 66 static uint __read_mostly nx_huge_pages_recovery_ratio = 60; 67 #endif 68 69 static int set_nx_huge_pages(const char *val, const struct kernel_param *kp); 70 static int set_nx_huge_pages_recovery_param(const char *val, const struct kernel_param *kp); 71 72 static const struct kernel_param_ops nx_huge_pages_ops = { 73 .set = set_nx_huge_pages, 74 .get = param_get_bool, 75 }; 76 77 static const struct kernel_param_ops nx_huge_pages_recovery_param_ops = { 78 .set = set_nx_huge_pages_recovery_param, 79 .get = param_get_uint, 80 }; 81 82 module_param_cb(nx_huge_pages, &nx_huge_pages_ops, &nx_huge_pages, 0644); 83 __MODULE_PARM_TYPE(nx_huge_pages, "bool"); 84 module_param_cb(nx_huge_pages_recovery_ratio, &nx_huge_pages_recovery_param_ops, 85 &nx_huge_pages_recovery_ratio, 0644); 86 __MODULE_PARM_TYPE(nx_huge_pages_recovery_ratio, "uint"); 87 module_param_cb(nx_huge_pages_recovery_period_ms, &nx_huge_pages_recovery_param_ops, 88 &nx_huge_pages_recovery_period_ms, 0644); 89 __MODULE_PARM_TYPE(nx_huge_pages_recovery_period_ms, "uint"); 90 91 static bool __read_mostly force_flush_and_sync_on_reuse; 92 module_param_named(flush_on_reuse, force_flush_and_sync_on_reuse, bool, 0644); 93 94 /* 95 * When setting this variable to true it enables Two-Dimensional-Paging 96 * where the hardware walks 2 page tables: 97 * 1. the guest-virtual to guest-physical 98 * 2. while doing 1. it walks guest-physical to host-physical 99 * If the hardware supports that we don't need to do shadow paging. 100 */ 101 bool tdp_enabled = false; 102 103 static int max_huge_page_level __read_mostly; 104 static int tdp_root_level __read_mostly; 105 static int max_tdp_level __read_mostly; 106 107 enum { 108 AUDIT_PRE_PAGE_FAULT, 109 AUDIT_POST_PAGE_FAULT, 110 AUDIT_PRE_PTE_WRITE, 111 AUDIT_POST_PTE_WRITE, 112 AUDIT_PRE_SYNC, 113 AUDIT_POST_SYNC 114 }; 115 116 #ifdef MMU_DEBUG 117 bool dbg = 0; 118 module_param(dbg, bool, 0644); 119 #endif 120 121 #define PTE_PREFETCH_NUM 8 122 123 #define PT32_LEVEL_BITS 10 124 125 #define PT32_LEVEL_SHIFT(level) \ 126 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS) 127 128 #define PT32_LVL_OFFSET_MASK(level) \ 129 (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \ 130 * PT32_LEVEL_BITS))) - 1)) 131 132 #define PT32_INDEX(address, level)\ 133 (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1)) 134 135 136 #define PT32_BASE_ADDR_MASK PAGE_MASK 137 #define PT32_DIR_BASE_ADDR_MASK \ 138 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1)) 139 #define PT32_LVL_ADDR_MASK(level) \ 140 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \ 141 * PT32_LEVEL_BITS))) - 1)) 142 143 #include <trace/events/kvm.h> 144 145 /* make pte_list_desc fit well in cache lines */ 146 #define PTE_LIST_EXT 14 147 148 /* 149 * Slight optimization of cacheline layout, by putting `more' and `spte_count' 150 * at the start; then accessing it will only use one single cacheline for 151 * either full (entries==PTE_LIST_EXT) case or entries<=6. 152 */ 153 struct pte_list_desc { 154 struct pte_list_desc *more; 155 /* 156 * Stores number of entries stored in the pte_list_desc. No need to be 157 * u64 but just for easier alignment. When PTE_LIST_EXT, means full. 158 */ 159 u64 spte_count; 160 u64 *sptes[PTE_LIST_EXT]; 161 }; 162 163 struct kvm_shadow_walk_iterator { 164 u64 addr; 165 hpa_t shadow_addr; 166 u64 *sptep; 167 int level; 168 unsigned index; 169 }; 170 171 #define for_each_shadow_entry_using_root(_vcpu, _root, _addr, _walker) \ 172 for (shadow_walk_init_using_root(&(_walker), (_vcpu), \ 173 (_root), (_addr)); \ 174 shadow_walk_okay(&(_walker)); \ 175 shadow_walk_next(&(_walker))) 176 177 #define for_each_shadow_entry(_vcpu, _addr, _walker) \ 178 for (shadow_walk_init(&(_walker), _vcpu, _addr); \ 179 shadow_walk_okay(&(_walker)); \ 180 shadow_walk_next(&(_walker))) 181 182 #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte) \ 183 for (shadow_walk_init(&(_walker), _vcpu, _addr); \ 184 shadow_walk_okay(&(_walker)) && \ 185 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; }); \ 186 __shadow_walk_next(&(_walker), spte)) 187 188 static struct kmem_cache *pte_list_desc_cache; 189 struct kmem_cache *mmu_page_header_cache; 190 static struct percpu_counter kvm_total_used_mmu_pages; 191 192 static void mmu_spte_set(u64 *sptep, u64 spte); 193 static union kvm_mmu_page_role 194 kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu); 195 196 struct kvm_mmu_role_regs { 197 const unsigned long cr0; 198 const unsigned long cr4; 199 const u64 efer; 200 }; 201 202 #define CREATE_TRACE_POINTS 203 #include "mmutrace.h" 204 205 /* 206 * Yes, lot's of underscores. They're a hint that you probably shouldn't be 207 * reading from the role_regs. Once the mmu_role is constructed, it becomes 208 * the single source of truth for the MMU's state. 209 */ 210 #define BUILD_MMU_ROLE_REGS_ACCESSOR(reg, name, flag) \ 211 static inline bool __maybe_unused ____is_##reg##_##name(struct kvm_mmu_role_regs *regs)\ 212 { \ 213 return !!(regs->reg & flag); \ 214 } 215 BUILD_MMU_ROLE_REGS_ACCESSOR(cr0, pg, X86_CR0_PG); 216 BUILD_MMU_ROLE_REGS_ACCESSOR(cr0, wp, X86_CR0_WP); 217 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pse, X86_CR4_PSE); 218 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pae, X86_CR4_PAE); 219 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, smep, X86_CR4_SMEP); 220 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, smap, X86_CR4_SMAP); 221 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pke, X86_CR4_PKE); 222 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, la57, X86_CR4_LA57); 223 BUILD_MMU_ROLE_REGS_ACCESSOR(efer, nx, EFER_NX); 224 BUILD_MMU_ROLE_REGS_ACCESSOR(efer, lma, EFER_LMA); 225 226 /* 227 * The MMU itself (with a valid role) is the single source of truth for the 228 * MMU. Do not use the regs used to build the MMU/role, nor the vCPU. The 229 * regs don't account for dependencies, e.g. clearing CR4 bits if CR0.PG=1, 230 * and the vCPU may be incorrect/irrelevant. 231 */ 232 #define BUILD_MMU_ROLE_ACCESSOR(base_or_ext, reg, name) \ 233 static inline bool __maybe_unused is_##reg##_##name(struct kvm_mmu *mmu) \ 234 { \ 235 return !!(mmu->mmu_role. base_or_ext . reg##_##name); \ 236 } 237 BUILD_MMU_ROLE_ACCESSOR(ext, cr0, pg); 238 BUILD_MMU_ROLE_ACCESSOR(base, cr0, wp); 239 BUILD_MMU_ROLE_ACCESSOR(ext, cr4, pse); 240 BUILD_MMU_ROLE_ACCESSOR(ext, cr4, pae); 241 BUILD_MMU_ROLE_ACCESSOR(ext, cr4, smep); 242 BUILD_MMU_ROLE_ACCESSOR(ext, cr4, smap); 243 BUILD_MMU_ROLE_ACCESSOR(ext, cr4, pke); 244 BUILD_MMU_ROLE_ACCESSOR(ext, cr4, la57); 245 BUILD_MMU_ROLE_ACCESSOR(base, efer, nx); 246 247 static struct kvm_mmu_role_regs vcpu_to_role_regs(struct kvm_vcpu *vcpu) 248 { 249 struct kvm_mmu_role_regs regs = { 250 .cr0 = kvm_read_cr0_bits(vcpu, KVM_MMU_CR0_ROLE_BITS), 251 .cr4 = kvm_read_cr4_bits(vcpu, KVM_MMU_CR4_ROLE_BITS), 252 .efer = vcpu->arch.efer, 253 }; 254 255 return regs; 256 } 257 258 static int role_regs_to_root_level(struct kvm_mmu_role_regs *regs) 259 { 260 if (!____is_cr0_pg(regs)) 261 return 0; 262 else if (____is_efer_lma(regs)) 263 return ____is_cr4_la57(regs) ? PT64_ROOT_5LEVEL : 264 PT64_ROOT_4LEVEL; 265 else if (____is_cr4_pae(regs)) 266 return PT32E_ROOT_LEVEL; 267 else 268 return PT32_ROOT_LEVEL; 269 } 270 271 static inline bool kvm_available_flush_tlb_with_range(void) 272 { 273 return kvm_x86_ops.tlb_remote_flush_with_range; 274 } 275 276 static void kvm_flush_remote_tlbs_with_range(struct kvm *kvm, 277 struct kvm_tlb_range *range) 278 { 279 int ret = -ENOTSUPP; 280 281 if (range && kvm_x86_ops.tlb_remote_flush_with_range) 282 ret = static_call(kvm_x86_tlb_remote_flush_with_range)(kvm, range); 283 284 if (ret) 285 kvm_flush_remote_tlbs(kvm); 286 } 287 288 void kvm_flush_remote_tlbs_with_address(struct kvm *kvm, 289 u64 start_gfn, u64 pages) 290 { 291 struct kvm_tlb_range range; 292 293 range.start_gfn = start_gfn; 294 range.pages = pages; 295 296 kvm_flush_remote_tlbs_with_range(kvm, &range); 297 } 298 299 static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn, 300 unsigned int access) 301 { 302 u64 spte = make_mmio_spte(vcpu, gfn, access); 303 304 trace_mark_mmio_spte(sptep, gfn, spte); 305 mmu_spte_set(sptep, spte); 306 } 307 308 static gfn_t get_mmio_spte_gfn(u64 spte) 309 { 310 u64 gpa = spte & shadow_nonpresent_or_rsvd_lower_gfn_mask; 311 312 gpa |= (spte >> SHADOW_NONPRESENT_OR_RSVD_MASK_LEN) 313 & shadow_nonpresent_or_rsvd_mask; 314 315 return gpa >> PAGE_SHIFT; 316 } 317 318 static unsigned get_mmio_spte_access(u64 spte) 319 { 320 return spte & shadow_mmio_access_mask; 321 } 322 323 static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte) 324 { 325 u64 kvm_gen, spte_gen, gen; 326 327 gen = kvm_vcpu_memslots(vcpu)->generation; 328 if (unlikely(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS)) 329 return false; 330 331 kvm_gen = gen & MMIO_SPTE_GEN_MASK; 332 spte_gen = get_mmio_spte_generation(spte); 333 334 trace_check_mmio_spte(spte, kvm_gen, spte_gen); 335 return likely(kvm_gen == spte_gen); 336 } 337 338 static gpa_t translate_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access, 339 struct x86_exception *exception) 340 { 341 return gpa; 342 } 343 344 static int is_cpuid_PSE36(void) 345 { 346 return 1; 347 } 348 349 static gfn_t pse36_gfn_delta(u32 gpte) 350 { 351 int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT; 352 353 return (gpte & PT32_DIR_PSE36_MASK) << shift; 354 } 355 356 #ifdef CONFIG_X86_64 357 static void __set_spte(u64 *sptep, u64 spte) 358 { 359 WRITE_ONCE(*sptep, spte); 360 } 361 362 static void __update_clear_spte_fast(u64 *sptep, u64 spte) 363 { 364 WRITE_ONCE(*sptep, spte); 365 } 366 367 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte) 368 { 369 return xchg(sptep, spte); 370 } 371 372 static u64 __get_spte_lockless(u64 *sptep) 373 { 374 return READ_ONCE(*sptep); 375 } 376 #else 377 union split_spte { 378 struct { 379 u32 spte_low; 380 u32 spte_high; 381 }; 382 u64 spte; 383 }; 384 385 static void count_spte_clear(u64 *sptep, u64 spte) 386 { 387 struct kvm_mmu_page *sp = sptep_to_sp(sptep); 388 389 if (is_shadow_present_pte(spte)) 390 return; 391 392 /* Ensure the spte is completely set before we increase the count */ 393 smp_wmb(); 394 sp->clear_spte_count++; 395 } 396 397 static void __set_spte(u64 *sptep, u64 spte) 398 { 399 union split_spte *ssptep, sspte; 400 401 ssptep = (union split_spte *)sptep; 402 sspte = (union split_spte)spte; 403 404 ssptep->spte_high = sspte.spte_high; 405 406 /* 407 * If we map the spte from nonpresent to present, We should store 408 * the high bits firstly, then set present bit, so cpu can not 409 * fetch this spte while we are setting the spte. 410 */ 411 smp_wmb(); 412 413 WRITE_ONCE(ssptep->spte_low, sspte.spte_low); 414 } 415 416 static void __update_clear_spte_fast(u64 *sptep, u64 spte) 417 { 418 union split_spte *ssptep, sspte; 419 420 ssptep = (union split_spte *)sptep; 421 sspte = (union split_spte)spte; 422 423 WRITE_ONCE(ssptep->spte_low, sspte.spte_low); 424 425 /* 426 * If we map the spte from present to nonpresent, we should clear 427 * present bit firstly to avoid vcpu fetch the old high bits. 428 */ 429 smp_wmb(); 430 431 ssptep->spte_high = sspte.spte_high; 432 count_spte_clear(sptep, spte); 433 } 434 435 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte) 436 { 437 union split_spte *ssptep, sspte, orig; 438 439 ssptep = (union split_spte *)sptep; 440 sspte = (union split_spte)spte; 441 442 /* xchg acts as a barrier before the setting of the high bits */ 443 orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low); 444 orig.spte_high = ssptep->spte_high; 445 ssptep->spte_high = sspte.spte_high; 446 count_spte_clear(sptep, spte); 447 448 return orig.spte; 449 } 450 451 /* 452 * The idea using the light way get the spte on x86_32 guest is from 453 * gup_get_pte (mm/gup.c). 454 * 455 * An spte tlb flush may be pending, because kvm_set_pte_rmapp 456 * coalesces them and we are running out of the MMU lock. Therefore 457 * we need to protect against in-progress updates of the spte. 458 * 459 * Reading the spte while an update is in progress may get the old value 460 * for the high part of the spte. The race is fine for a present->non-present 461 * change (because the high part of the spte is ignored for non-present spte), 462 * but for a present->present change we must reread the spte. 463 * 464 * All such changes are done in two steps (present->non-present and 465 * non-present->present), hence it is enough to count the number of 466 * present->non-present updates: if it changed while reading the spte, 467 * we might have hit the race. This is done using clear_spte_count. 468 */ 469 static u64 __get_spte_lockless(u64 *sptep) 470 { 471 struct kvm_mmu_page *sp = sptep_to_sp(sptep); 472 union split_spte spte, *orig = (union split_spte *)sptep; 473 int count; 474 475 retry: 476 count = sp->clear_spte_count; 477 smp_rmb(); 478 479 spte.spte_low = orig->spte_low; 480 smp_rmb(); 481 482 spte.spte_high = orig->spte_high; 483 smp_rmb(); 484 485 if (unlikely(spte.spte_low != orig->spte_low || 486 count != sp->clear_spte_count)) 487 goto retry; 488 489 return spte.spte; 490 } 491 #endif 492 493 static bool spte_has_volatile_bits(u64 spte) 494 { 495 if (!is_shadow_present_pte(spte)) 496 return false; 497 498 /* 499 * Always atomically update spte if it can be updated 500 * out of mmu-lock, it can ensure dirty bit is not lost, 501 * also, it can help us to get a stable is_writable_pte() 502 * to ensure tlb flush is not missed. 503 */ 504 if (spte_can_locklessly_be_made_writable(spte) || 505 is_access_track_spte(spte)) 506 return true; 507 508 if (spte_ad_enabled(spte)) { 509 if ((spte & shadow_accessed_mask) == 0 || 510 (is_writable_pte(spte) && (spte & shadow_dirty_mask) == 0)) 511 return true; 512 } 513 514 return false; 515 } 516 517 /* Rules for using mmu_spte_set: 518 * Set the sptep from nonpresent to present. 519 * Note: the sptep being assigned *must* be either not present 520 * or in a state where the hardware will not attempt to update 521 * the spte. 522 */ 523 static void mmu_spte_set(u64 *sptep, u64 new_spte) 524 { 525 WARN_ON(is_shadow_present_pte(*sptep)); 526 __set_spte(sptep, new_spte); 527 } 528 529 /* 530 * Update the SPTE (excluding the PFN), but do not track changes in its 531 * accessed/dirty status. 532 */ 533 static u64 mmu_spte_update_no_track(u64 *sptep, u64 new_spte) 534 { 535 u64 old_spte = *sptep; 536 537 WARN_ON(!is_shadow_present_pte(new_spte)); 538 539 if (!is_shadow_present_pte(old_spte)) { 540 mmu_spte_set(sptep, new_spte); 541 return old_spte; 542 } 543 544 if (!spte_has_volatile_bits(old_spte)) 545 __update_clear_spte_fast(sptep, new_spte); 546 else 547 old_spte = __update_clear_spte_slow(sptep, new_spte); 548 549 WARN_ON(spte_to_pfn(old_spte) != spte_to_pfn(new_spte)); 550 551 return old_spte; 552 } 553 554 /* Rules for using mmu_spte_update: 555 * Update the state bits, it means the mapped pfn is not changed. 556 * 557 * Whenever we overwrite a writable spte with a read-only one we 558 * should flush remote TLBs. Otherwise rmap_write_protect 559 * will find a read-only spte, even though the writable spte 560 * might be cached on a CPU's TLB, the return value indicates this 561 * case. 562 * 563 * Returns true if the TLB needs to be flushed 564 */ 565 static bool mmu_spte_update(u64 *sptep, u64 new_spte) 566 { 567 bool flush = false; 568 u64 old_spte = mmu_spte_update_no_track(sptep, new_spte); 569 570 if (!is_shadow_present_pte(old_spte)) 571 return false; 572 573 /* 574 * For the spte updated out of mmu-lock is safe, since 575 * we always atomically update it, see the comments in 576 * spte_has_volatile_bits(). 577 */ 578 if (spte_can_locklessly_be_made_writable(old_spte) && 579 !is_writable_pte(new_spte)) 580 flush = true; 581 582 /* 583 * Flush TLB when accessed/dirty states are changed in the page tables, 584 * to guarantee consistency between TLB and page tables. 585 */ 586 587 if (is_accessed_spte(old_spte) && !is_accessed_spte(new_spte)) { 588 flush = true; 589 kvm_set_pfn_accessed(spte_to_pfn(old_spte)); 590 } 591 592 if (is_dirty_spte(old_spte) && !is_dirty_spte(new_spte)) { 593 flush = true; 594 kvm_set_pfn_dirty(spte_to_pfn(old_spte)); 595 } 596 597 return flush; 598 } 599 600 /* 601 * Rules for using mmu_spte_clear_track_bits: 602 * It sets the sptep from present to nonpresent, and track the 603 * state bits, it is used to clear the last level sptep. 604 * Returns the old PTE. 605 */ 606 static int mmu_spte_clear_track_bits(struct kvm *kvm, u64 *sptep) 607 { 608 kvm_pfn_t pfn; 609 u64 old_spte = *sptep; 610 int level = sptep_to_sp(sptep)->role.level; 611 612 if (!spte_has_volatile_bits(old_spte)) 613 __update_clear_spte_fast(sptep, 0ull); 614 else 615 old_spte = __update_clear_spte_slow(sptep, 0ull); 616 617 if (!is_shadow_present_pte(old_spte)) 618 return old_spte; 619 620 kvm_update_page_stats(kvm, level, -1); 621 622 pfn = spte_to_pfn(old_spte); 623 624 /* 625 * KVM does not hold the refcount of the page used by 626 * kvm mmu, before reclaiming the page, we should 627 * unmap it from mmu first. 628 */ 629 WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn))); 630 631 if (is_accessed_spte(old_spte)) 632 kvm_set_pfn_accessed(pfn); 633 634 if (is_dirty_spte(old_spte)) 635 kvm_set_pfn_dirty(pfn); 636 637 return old_spte; 638 } 639 640 /* 641 * Rules for using mmu_spte_clear_no_track: 642 * Directly clear spte without caring the state bits of sptep, 643 * it is used to set the upper level spte. 644 */ 645 static void mmu_spte_clear_no_track(u64 *sptep) 646 { 647 __update_clear_spte_fast(sptep, 0ull); 648 } 649 650 static u64 mmu_spte_get_lockless(u64 *sptep) 651 { 652 return __get_spte_lockless(sptep); 653 } 654 655 /* Restore an acc-track PTE back to a regular PTE */ 656 static u64 restore_acc_track_spte(u64 spte) 657 { 658 u64 new_spte = spte; 659 u64 saved_bits = (spte >> SHADOW_ACC_TRACK_SAVED_BITS_SHIFT) 660 & SHADOW_ACC_TRACK_SAVED_BITS_MASK; 661 662 WARN_ON_ONCE(spte_ad_enabled(spte)); 663 WARN_ON_ONCE(!is_access_track_spte(spte)); 664 665 new_spte &= ~shadow_acc_track_mask; 666 new_spte &= ~(SHADOW_ACC_TRACK_SAVED_BITS_MASK << 667 SHADOW_ACC_TRACK_SAVED_BITS_SHIFT); 668 new_spte |= saved_bits; 669 670 return new_spte; 671 } 672 673 /* Returns the Accessed status of the PTE and resets it at the same time. */ 674 static bool mmu_spte_age(u64 *sptep) 675 { 676 u64 spte = mmu_spte_get_lockless(sptep); 677 678 if (!is_accessed_spte(spte)) 679 return false; 680 681 if (spte_ad_enabled(spte)) { 682 clear_bit((ffs(shadow_accessed_mask) - 1), 683 (unsigned long *)sptep); 684 } else { 685 /* 686 * Capture the dirty status of the page, so that it doesn't get 687 * lost when the SPTE is marked for access tracking. 688 */ 689 if (is_writable_pte(spte)) 690 kvm_set_pfn_dirty(spte_to_pfn(spte)); 691 692 spte = mark_spte_for_access_track(spte); 693 mmu_spte_update_no_track(sptep, spte); 694 } 695 696 return true; 697 } 698 699 static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu) 700 { 701 if (is_tdp_mmu(vcpu->arch.mmu)) { 702 kvm_tdp_mmu_walk_lockless_begin(); 703 } else { 704 /* 705 * Prevent page table teardown by making any free-er wait during 706 * kvm_flush_remote_tlbs() IPI to all active vcpus. 707 */ 708 local_irq_disable(); 709 710 /* 711 * Make sure a following spte read is not reordered ahead of the write 712 * to vcpu->mode. 713 */ 714 smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES); 715 } 716 } 717 718 static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu) 719 { 720 if (is_tdp_mmu(vcpu->arch.mmu)) { 721 kvm_tdp_mmu_walk_lockless_end(); 722 } else { 723 /* 724 * Make sure the write to vcpu->mode is not reordered in front of 725 * reads to sptes. If it does, kvm_mmu_commit_zap_page() can see us 726 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table. 727 */ 728 smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE); 729 local_irq_enable(); 730 } 731 } 732 733 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu, bool maybe_indirect) 734 { 735 int r; 736 737 /* 1 rmap, 1 parent PTE per level, and the prefetched rmaps. */ 738 r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache, 739 1 + PT64_ROOT_MAX_LEVEL + PTE_PREFETCH_NUM); 740 if (r) 741 return r; 742 r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_shadow_page_cache, 743 PT64_ROOT_MAX_LEVEL); 744 if (r) 745 return r; 746 if (maybe_indirect) { 747 r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_gfn_array_cache, 748 PT64_ROOT_MAX_LEVEL); 749 if (r) 750 return r; 751 } 752 return kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache, 753 PT64_ROOT_MAX_LEVEL); 754 } 755 756 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu) 757 { 758 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache); 759 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_shadow_page_cache); 760 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_gfn_array_cache); 761 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache); 762 } 763 764 static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu) 765 { 766 return kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache); 767 } 768 769 static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc) 770 { 771 kmem_cache_free(pte_list_desc_cache, pte_list_desc); 772 } 773 774 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index) 775 { 776 if (!sp->role.direct) 777 return sp->gfns[index]; 778 779 return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS)); 780 } 781 782 static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn) 783 { 784 if (!sp->role.direct) { 785 sp->gfns[index] = gfn; 786 return; 787 } 788 789 if (WARN_ON(gfn != kvm_mmu_page_get_gfn(sp, index))) 790 pr_err_ratelimited("gfn mismatch under direct page %llx " 791 "(expected %llx, got %llx)\n", 792 sp->gfn, 793 kvm_mmu_page_get_gfn(sp, index), gfn); 794 } 795 796 /* 797 * Return the pointer to the large page information for a given gfn, 798 * handling slots that are not large page aligned. 799 */ 800 static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn, 801 const struct kvm_memory_slot *slot, int level) 802 { 803 unsigned long idx; 804 805 idx = gfn_to_index(gfn, slot->base_gfn, level); 806 return &slot->arch.lpage_info[level - 2][idx]; 807 } 808 809 static void update_gfn_disallow_lpage_count(const struct kvm_memory_slot *slot, 810 gfn_t gfn, int count) 811 { 812 struct kvm_lpage_info *linfo; 813 int i; 814 815 for (i = PG_LEVEL_2M; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) { 816 linfo = lpage_info_slot(gfn, slot, i); 817 linfo->disallow_lpage += count; 818 WARN_ON(linfo->disallow_lpage < 0); 819 } 820 } 821 822 void kvm_mmu_gfn_disallow_lpage(const struct kvm_memory_slot *slot, gfn_t gfn) 823 { 824 update_gfn_disallow_lpage_count(slot, gfn, 1); 825 } 826 827 void kvm_mmu_gfn_allow_lpage(const struct kvm_memory_slot *slot, gfn_t gfn) 828 { 829 update_gfn_disallow_lpage_count(slot, gfn, -1); 830 } 831 832 static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp) 833 { 834 struct kvm_memslots *slots; 835 struct kvm_memory_slot *slot; 836 gfn_t gfn; 837 838 kvm->arch.indirect_shadow_pages++; 839 gfn = sp->gfn; 840 slots = kvm_memslots_for_spte_role(kvm, sp->role); 841 slot = __gfn_to_memslot(slots, gfn); 842 843 /* the non-leaf shadow pages are keeping readonly. */ 844 if (sp->role.level > PG_LEVEL_4K) 845 return kvm_slot_page_track_add_page(kvm, slot, gfn, 846 KVM_PAGE_TRACK_WRITE); 847 848 kvm_mmu_gfn_disallow_lpage(slot, gfn); 849 } 850 851 void account_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp) 852 { 853 if (sp->lpage_disallowed) 854 return; 855 856 ++kvm->stat.nx_lpage_splits; 857 list_add_tail(&sp->lpage_disallowed_link, 858 &kvm->arch.lpage_disallowed_mmu_pages); 859 sp->lpage_disallowed = true; 860 } 861 862 static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp) 863 { 864 struct kvm_memslots *slots; 865 struct kvm_memory_slot *slot; 866 gfn_t gfn; 867 868 kvm->arch.indirect_shadow_pages--; 869 gfn = sp->gfn; 870 slots = kvm_memslots_for_spte_role(kvm, sp->role); 871 slot = __gfn_to_memslot(slots, gfn); 872 if (sp->role.level > PG_LEVEL_4K) 873 return kvm_slot_page_track_remove_page(kvm, slot, gfn, 874 KVM_PAGE_TRACK_WRITE); 875 876 kvm_mmu_gfn_allow_lpage(slot, gfn); 877 } 878 879 void unaccount_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp) 880 { 881 --kvm->stat.nx_lpage_splits; 882 sp->lpage_disallowed = false; 883 list_del(&sp->lpage_disallowed_link); 884 } 885 886 static struct kvm_memory_slot * 887 gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn, 888 bool no_dirty_log) 889 { 890 struct kvm_memory_slot *slot; 891 892 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 893 if (!slot || slot->flags & KVM_MEMSLOT_INVALID) 894 return NULL; 895 if (no_dirty_log && kvm_slot_dirty_track_enabled(slot)) 896 return NULL; 897 898 return slot; 899 } 900 901 /* 902 * About rmap_head encoding: 903 * 904 * If the bit zero of rmap_head->val is clear, then it points to the only spte 905 * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct 906 * pte_list_desc containing more mappings. 907 */ 908 909 /* 910 * Returns the number of pointers in the rmap chain, not counting the new one. 911 */ 912 static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte, 913 struct kvm_rmap_head *rmap_head) 914 { 915 struct pte_list_desc *desc; 916 int count = 0; 917 918 if (!rmap_head->val) { 919 rmap_printk("%p %llx 0->1\n", spte, *spte); 920 rmap_head->val = (unsigned long)spte; 921 } else if (!(rmap_head->val & 1)) { 922 rmap_printk("%p %llx 1->many\n", spte, *spte); 923 desc = mmu_alloc_pte_list_desc(vcpu); 924 desc->sptes[0] = (u64 *)rmap_head->val; 925 desc->sptes[1] = spte; 926 desc->spte_count = 2; 927 rmap_head->val = (unsigned long)desc | 1; 928 ++count; 929 } else { 930 rmap_printk("%p %llx many->many\n", spte, *spte); 931 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul); 932 while (desc->spte_count == PTE_LIST_EXT) { 933 count += PTE_LIST_EXT; 934 if (!desc->more) { 935 desc->more = mmu_alloc_pte_list_desc(vcpu); 936 desc = desc->more; 937 desc->spte_count = 0; 938 break; 939 } 940 desc = desc->more; 941 } 942 count += desc->spte_count; 943 desc->sptes[desc->spte_count++] = spte; 944 } 945 return count; 946 } 947 948 static void 949 pte_list_desc_remove_entry(struct kvm_rmap_head *rmap_head, 950 struct pte_list_desc *desc, int i, 951 struct pte_list_desc *prev_desc) 952 { 953 int j = desc->spte_count - 1; 954 955 desc->sptes[i] = desc->sptes[j]; 956 desc->sptes[j] = NULL; 957 desc->spte_count--; 958 if (desc->spte_count) 959 return; 960 if (!prev_desc && !desc->more) 961 rmap_head->val = 0; 962 else 963 if (prev_desc) 964 prev_desc->more = desc->more; 965 else 966 rmap_head->val = (unsigned long)desc->more | 1; 967 mmu_free_pte_list_desc(desc); 968 } 969 970 static void __pte_list_remove(u64 *spte, struct kvm_rmap_head *rmap_head) 971 { 972 struct pte_list_desc *desc; 973 struct pte_list_desc *prev_desc; 974 int i; 975 976 if (!rmap_head->val) { 977 pr_err("%s: %p 0->BUG\n", __func__, spte); 978 BUG(); 979 } else if (!(rmap_head->val & 1)) { 980 rmap_printk("%p 1->0\n", spte); 981 if ((u64 *)rmap_head->val != spte) { 982 pr_err("%s: %p 1->BUG\n", __func__, spte); 983 BUG(); 984 } 985 rmap_head->val = 0; 986 } else { 987 rmap_printk("%p many->many\n", spte); 988 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul); 989 prev_desc = NULL; 990 while (desc) { 991 for (i = 0; i < desc->spte_count; ++i) { 992 if (desc->sptes[i] == spte) { 993 pte_list_desc_remove_entry(rmap_head, 994 desc, i, prev_desc); 995 return; 996 } 997 } 998 prev_desc = desc; 999 desc = desc->more; 1000 } 1001 pr_err("%s: %p many->many\n", __func__, spte); 1002 BUG(); 1003 } 1004 } 1005 1006 static void pte_list_remove(struct kvm *kvm, struct kvm_rmap_head *rmap_head, 1007 u64 *sptep) 1008 { 1009 mmu_spte_clear_track_bits(kvm, sptep); 1010 __pte_list_remove(sptep, rmap_head); 1011 } 1012 1013 /* Return true if rmap existed, false otherwise */ 1014 static bool pte_list_destroy(struct kvm *kvm, struct kvm_rmap_head *rmap_head) 1015 { 1016 struct pte_list_desc *desc, *next; 1017 int i; 1018 1019 if (!rmap_head->val) 1020 return false; 1021 1022 if (!(rmap_head->val & 1)) { 1023 mmu_spte_clear_track_bits(kvm, (u64 *)rmap_head->val); 1024 goto out; 1025 } 1026 1027 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul); 1028 1029 for (; desc; desc = next) { 1030 for (i = 0; i < desc->spte_count; i++) 1031 mmu_spte_clear_track_bits(kvm, desc->sptes[i]); 1032 next = desc->more; 1033 mmu_free_pte_list_desc(desc); 1034 } 1035 out: 1036 /* rmap_head is meaningless now, remember to reset it */ 1037 rmap_head->val = 0; 1038 return true; 1039 } 1040 1041 unsigned int pte_list_count(struct kvm_rmap_head *rmap_head) 1042 { 1043 struct pte_list_desc *desc; 1044 unsigned int count = 0; 1045 1046 if (!rmap_head->val) 1047 return 0; 1048 else if (!(rmap_head->val & 1)) 1049 return 1; 1050 1051 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul); 1052 1053 while (desc) { 1054 count += desc->spte_count; 1055 desc = desc->more; 1056 } 1057 1058 return count; 1059 } 1060 1061 static struct kvm_rmap_head *gfn_to_rmap(gfn_t gfn, int level, 1062 const struct kvm_memory_slot *slot) 1063 { 1064 unsigned long idx; 1065 1066 idx = gfn_to_index(gfn, slot->base_gfn, level); 1067 return &slot->arch.rmap[level - PG_LEVEL_4K][idx]; 1068 } 1069 1070 static bool rmap_can_add(struct kvm_vcpu *vcpu) 1071 { 1072 struct kvm_mmu_memory_cache *mc; 1073 1074 mc = &vcpu->arch.mmu_pte_list_desc_cache; 1075 return kvm_mmu_memory_cache_nr_free_objects(mc); 1076 } 1077 1078 static void rmap_remove(struct kvm *kvm, u64 *spte) 1079 { 1080 struct kvm_memslots *slots; 1081 struct kvm_memory_slot *slot; 1082 struct kvm_mmu_page *sp; 1083 gfn_t gfn; 1084 struct kvm_rmap_head *rmap_head; 1085 1086 sp = sptep_to_sp(spte); 1087 gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt); 1088 1089 /* 1090 * Unlike rmap_add, rmap_remove does not run in the context of a vCPU 1091 * so we have to determine which memslots to use based on context 1092 * information in sp->role. 1093 */ 1094 slots = kvm_memslots_for_spte_role(kvm, sp->role); 1095 1096 slot = __gfn_to_memslot(slots, gfn); 1097 rmap_head = gfn_to_rmap(gfn, sp->role.level, slot); 1098 1099 __pte_list_remove(spte, rmap_head); 1100 } 1101 1102 /* 1103 * Used by the following functions to iterate through the sptes linked by a 1104 * rmap. All fields are private and not assumed to be used outside. 1105 */ 1106 struct rmap_iterator { 1107 /* private fields */ 1108 struct pte_list_desc *desc; /* holds the sptep if not NULL */ 1109 int pos; /* index of the sptep */ 1110 }; 1111 1112 /* 1113 * Iteration must be started by this function. This should also be used after 1114 * removing/dropping sptes from the rmap link because in such cases the 1115 * information in the iterator may not be valid. 1116 * 1117 * Returns sptep if found, NULL otherwise. 1118 */ 1119 static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head, 1120 struct rmap_iterator *iter) 1121 { 1122 u64 *sptep; 1123 1124 if (!rmap_head->val) 1125 return NULL; 1126 1127 if (!(rmap_head->val & 1)) { 1128 iter->desc = NULL; 1129 sptep = (u64 *)rmap_head->val; 1130 goto out; 1131 } 1132 1133 iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul); 1134 iter->pos = 0; 1135 sptep = iter->desc->sptes[iter->pos]; 1136 out: 1137 BUG_ON(!is_shadow_present_pte(*sptep)); 1138 return sptep; 1139 } 1140 1141 /* 1142 * Must be used with a valid iterator: e.g. after rmap_get_first(). 1143 * 1144 * Returns sptep if found, NULL otherwise. 1145 */ 1146 static u64 *rmap_get_next(struct rmap_iterator *iter) 1147 { 1148 u64 *sptep; 1149 1150 if (iter->desc) { 1151 if (iter->pos < PTE_LIST_EXT - 1) { 1152 ++iter->pos; 1153 sptep = iter->desc->sptes[iter->pos]; 1154 if (sptep) 1155 goto out; 1156 } 1157 1158 iter->desc = iter->desc->more; 1159 1160 if (iter->desc) { 1161 iter->pos = 0; 1162 /* desc->sptes[0] cannot be NULL */ 1163 sptep = iter->desc->sptes[iter->pos]; 1164 goto out; 1165 } 1166 } 1167 1168 return NULL; 1169 out: 1170 BUG_ON(!is_shadow_present_pte(*sptep)); 1171 return sptep; 1172 } 1173 1174 #define for_each_rmap_spte(_rmap_head_, _iter_, _spte_) \ 1175 for (_spte_ = rmap_get_first(_rmap_head_, _iter_); \ 1176 _spte_; _spte_ = rmap_get_next(_iter_)) 1177 1178 static void drop_spte(struct kvm *kvm, u64 *sptep) 1179 { 1180 u64 old_spte = mmu_spte_clear_track_bits(kvm, sptep); 1181 1182 if (is_shadow_present_pte(old_spte)) 1183 rmap_remove(kvm, sptep); 1184 } 1185 1186 1187 static bool __drop_large_spte(struct kvm *kvm, u64 *sptep) 1188 { 1189 if (is_large_pte(*sptep)) { 1190 WARN_ON(sptep_to_sp(sptep)->role.level == PG_LEVEL_4K); 1191 drop_spte(kvm, sptep); 1192 return true; 1193 } 1194 1195 return false; 1196 } 1197 1198 static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep) 1199 { 1200 if (__drop_large_spte(vcpu->kvm, sptep)) { 1201 struct kvm_mmu_page *sp = sptep_to_sp(sptep); 1202 1203 kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn, 1204 KVM_PAGES_PER_HPAGE(sp->role.level)); 1205 } 1206 } 1207 1208 /* 1209 * Write-protect on the specified @sptep, @pt_protect indicates whether 1210 * spte write-protection is caused by protecting shadow page table. 1211 * 1212 * Note: write protection is difference between dirty logging and spte 1213 * protection: 1214 * - for dirty logging, the spte can be set to writable at anytime if 1215 * its dirty bitmap is properly set. 1216 * - for spte protection, the spte can be writable only after unsync-ing 1217 * shadow page. 1218 * 1219 * Return true if tlb need be flushed. 1220 */ 1221 static bool spte_write_protect(u64 *sptep, bool pt_protect) 1222 { 1223 u64 spte = *sptep; 1224 1225 if (!is_writable_pte(spte) && 1226 !(pt_protect && spte_can_locklessly_be_made_writable(spte))) 1227 return false; 1228 1229 rmap_printk("spte %p %llx\n", sptep, *sptep); 1230 1231 if (pt_protect) 1232 spte &= ~shadow_mmu_writable_mask; 1233 spte = spte & ~PT_WRITABLE_MASK; 1234 1235 return mmu_spte_update(sptep, spte); 1236 } 1237 1238 static bool __rmap_write_protect(struct kvm *kvm, 1239 struct kvm_rmap_head *rmap_head, 1240 bool pt_protect) 1241 { 1242 u64 *sptep; 1243 struct rmap_iterator iter; 1244 bool flush = false; 1245 1246 for_each_rmap_spte(rmap_head, &iter, sptep) 1247 flush |= spte_write_protect(sptep, pt_protect); 1248 1249 return flush; 1250 } 1251 1252 static bool spte_clear_dirty(u64 *sptep) 1253 { 1254 u64 spte = *sptep; 1255 1256 rmap_printk("spte %p %llx\n", sptep, *sptep); 1257 1258 MMU_WARN_ON(!spte_ad_enabled(spte)); 1259 spte &= ~shadow_dirty_mask; 1260 return mmu_spte_update(sptep, spte); 1261 } 1262 1263 static bool spte_wrprot_for_clear_dirty(u64 *sptep) 1264 { 1265 bool was_writable = test_and_clear_bit(PT_WRITABLE_SHIFT, 1266 (unsigned long *)sptep); 1267 if (was_writable && !spte_ad_enabled(*sptep)) 1268 kvm_set_pfn_dirty(spte_to_pfn(*sptep)); 1269 1270 return was_writable; 1271 } 1272 1273 /* 1274 * Gets the GFN ready for another round of dirty logging by clearing the 1275 * - D bit on ad-enabled SPTEs, and 1276 * - W bit on ad-disabled SPTEs. 1277 * Returns true iff any D or W bits were cleared. 1278 */ 1279 static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head, 1280 const struct kvm_memory_slot *slot) 1281 { 1282 u64 *sptep; 1283 struct rmap_iterator iter; 1284 bool flush = false; 1285 1286 for_each_rmap_spte(rmap_head, &iter, sptep) 1287 if (spte_ad_need_write_protect(*sptep)) 1288 flush |= spte_wrprot_for_clear_dirty(sptep); 1289 else 1290 flush |= spte_clear_dirty(sptep); 1291 1292 return flush; 1293 } 1294 1295 /** 1296 * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages 1297 * @kvm: kvm instance 1298 * @slot: slot to protect 1299 * @gfn_offset: start of the BITS_PER_LONG pages we care about 1300 * @mask: indicates which pages we should protect 1301 * 1302 * Used when we do not need to care about huge page mappings. 1303 */ 1304 static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm, 1305 struct kvm_memory_slot *slot, 1306 gfn_t gfn_offset, unsigned long mask) 1307 { 1308 struct kvm_rmap_head *rmap_head; 1309 1310 if (is_tdp_mmu_enabled(kvm)) 1311 kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot, 1312 slot->base_gfn + gfn_offset, mask, true); 1313 1314 if (!kvm_memslots_have_rmaps(kvm)) 1315 return; 1316 1317 while (mask) { 1318 rmap_head = gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask), 1319 PG_LEVEL_4K, slot); 1320 __rmap_write_protect(kvm, rmap_head, false); 1321 1322 /* clear the first set bit */ 1323 mask &= mask - 1; 1324 } 1325 } 1326 1327 /** 1328 * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages, or write 1329 * protect the page if the D-bit isn't supported. 1330 * @kvm: kvm instance 1331 * @slot: slot to clear D-bit 1332 * @gfn_offset: start of the BITS_PER_LONG pages we care about 1333 * @mask: indicates which pages we should clear D-bit 1334 * 1335 * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap. 1336 */ 1337 static void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm, 1338 struct kvm_memory_slot *slot, 1339 gfn_t gfn_offset, unsigned long mask) 1340 { 1341 struct kvm_rmap_head *rmap_head; 1342 1343 if (is_tdp_mmu_enabled(kvm)) 1344 kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot, 1345 slot->base_gfn + gfn_offset, mask, false); 1346 1347 if (!kvm_memslots_have_rmaps(kvm)) 1348 return; 1349 1350 while (mask) { 1351 rmap_head = gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask), 1352 PG_LEVEL_4K, slot); 1353 __rmap_clear_dirty(kvm, rmap_head, slot); 1354 1355 /* clear the first set bit */ 1356 mask &= mask - 1; 1357 } 1358 } 1359 1360 /** 1361 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected 1362 * PT level pages. 1363 * 1364 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to 1365 * enable dirty logging for them. 1366 * 1367 * We need to care about huge page mappings: e.g. during dirty logging we may 1368 * have such mappings. 1369 */ 1370 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm, 1371 struct kvm_memory_slot *slot, 1372 gfn_t gfn_offset, unsigned long mask) 1373 { 1374 /* 1375 * Huge pages are NOT write protected when we start dirty logging in 1376 * initially-all-set mode; must write protect them here so that they 1377 * are split to 4K on the first write. 1378 * 1379 * The gfn_offset is guaranteed to be aligned to 64, but the base_gfn 1380 * of memslot has no such restriction, so the range can cross two large 1381 * pages. 1382 */ 1383 if (kvm_dirty_log_manual_protect_and_init_set(kvm)) { 1384 gfn_t start = slot->base_gfn + gfn_offset + __ffs(mask); 1385 gfn_t end = slot->base_gfn + gfn_offset + __fls(mask); 1386 1387 kvm_mmu_slot_gfn_write_protect(kvm, slot, start, PG_LEVEL_2M); 1388 1389 /* Cross two large pages? */ 1390 if (ALIGN(start << PAGE_SHIFT, PMD_SIZE) != 1391 ALIGN(end << PAGE_SHIFT, PMD_SIZE)) 1392 kvm_mmu_slot_gfn_write_protect(kvm, slot, end, 1393 PG_LEVEL_2M); 1394 } 1395 1396 /* Now handle 4K PTEs. */ 1397 if (kvm_x86_ops.cpu_dirty_log_size) 1398 kvm_mmu_clear_dirty_pt_masked(kvm, slot, gfn_offset, mask); 1399 else 1400 kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask); 1401 } 1402 1403 int kvm_cpu_dirty_log_size(void) 1404 { 1405 return kvm_x86_ops.cpu_dirty_log_size; 1406 } 1407 1408 bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm, 1409 struct kvm_memory_slot *slot, u64 gfn, 1410 int min_level) 1411 { 1412 struct kvm_rmap_head *rmap_head; 1413 int i; 1414 bool write_protected = false; 1415 1416 if (kvm_memslots_have_rmaps(kvm)) { 1417 for (i = min_level; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) { 1418 rmap_head = gfn_to_rmap(gfn, i, slot); 1419 write_protected |= __rmap_write_protect(kvm, rmap_head, true); 1420 } 1421 } 1422 1423 if (is_tdp_mmu_enabled(kvm)) 1424 write_protected |= 1425 kvm_tdp_mmu_write_protect_gfn(kvm, slot, gfn, min_level); 1426 1427 return write_protected; 1428 } 1429 1430 static bool rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn) 1431 { 1432 struct kvm_memory_slot *slot; 1433 1434 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 1435 return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn, PG_LEVEL_4K); 1436 } 1437 1438 static bool kvm_zap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head, 1439 const struct kvm_memory_slot *slot) 1440 { 1441 return pte_list_destroy(kvm, rmap_head); 1442 } 1443 1444 static bool kvm_unmap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head, 1445 struct kvm_memory_slot *slot, gfn_t gfn, int level, 1446 pte_t unused) 1447 { 1448 return kvm_zap_rmapp(kvm, rmap_head, slot); 1449 } 1450 1451 static bool kvm_set_pte_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head, 1452 struct kvm_memory_slot *slot, gfn_t gfn, int level, 1453 pte_t pte) 1454 { 1455 u64 *sptep; 1456 struct rmap_iterator iter; 1457 int need_flush = 0; 1458 u64 new_spte; 1459 kvm_pfn_t new_pfn; 1460 1461 WARN_ON(pte_huge(pte)); 1462 new_pfn = pte_pfn(pte); 1463 1464 restart: 1465 for_each_rmap_spte(rmap_head, &iter, sptep) { 1466 rmap_printk("spte %p %llx gfn %llx (%d)\n", 1467 sptep, *sptep, gfn, level); 1468 1469 need_flush = 1; 1470 1471 if (pte_write(pte)) { 1472 pte_list_remove(kvm, rmap_head, sptep); 1473 goto restart; 1474 } else { 1475 new_spte = kvm_mmu_changed_pte_notifier_make_spte( 1476 *sptep, new_pfn); 1477 1478 mmu_spte_clear_track_bits(kvm, sptep); 1479 mmu_spte_set(sptep, new_spte); 1480 } 1481 } 1482 1483 if (need_flush && kvm_available_flush_tlb_with_range()) { 1484 kvm_flush_remote_tlbs_with_address(kvm, gfn, 1); 1485 return 0; 1486 } 1487 1488 return need_flush; 1489 } 1490 1491 struct slot_rmap_walk_iterator { 1492 /* input fields. */ 1493 const struct kvm_memory_slot *slot; 1494 gfn_t start_gfn; 1495 gfn_t end_gfn; 1496 int start_level; 1497 int end_level; 1498 1499 /* output fields. */ 1500 gfn_t gfn; 1501 struct kvm_rmap_head *rmap; 1502 int level; 1503 1504 /* private field. */ 1505 struct kvm_rmap_head *end_rmap; 1506 }; 1507 1508 static void 1509 rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level) 1510 { 1511 iterator->level = level; 1512 iterator->gfn = iterator->start_gfn; 1513 iterator->rmap = gfn_to_rmap(iterator->gfn, level, iterator->slot); 1514 iterator->end_rmap = gfn_to_rmap(iterator->end_gfn, level, iterator->slot); 1515 } 1516 1517 static void 1518 slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator, 1519 const struct kvm_memory_slot *slot, int start_level, 1520 int end_level, gfn_t start_gfn, gfn_t end_gfn) 1521 { 1522 iterator->slot = slot; 1523 iterator->start_level = start_level; 1524 iterator->end_level = end_level; 1525 iterator->start_gfn = start_gfn; 1526 iterator->end_gfn = end_gfn; 1527 1528 rmap_walk_init_level(iterator, iterator->start_level); 1529 } 1530 1531 static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator) 1532 { 1533 return !!iterator->rmap; 1534 } 1535 1536 static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator) 1537 { 1538 if (++iterator->rmap <= iterator->end_rmap) { 1539 iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level)); 1540 return; 1541 } 1542 1543 if (++iterator->level > iterator->end_level) { 1544 iterator->rmap = NULL; 1545 return; 1546 } 1547 1548 rmap_walk_init_level(iterator, iterator->level); 1549 } 1550 1551 #define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_, \ 1552 _start_gfn, _end_gfn, _iter_) \ 1553 for (slot_rmap_walk_init(_iter_, _slot_, _start_level_, \ 1554 _end_level_, _start_gfn, _end_gfn); \ 1555 slot_rmap_walk_okay(_iter_); \ 1556 slot_rmap_walk_next(_iter_)) 1557 1558 typedef bool (*rmap_handler_t)(struct kvm *kvm, struct kvm_rmap_head *rmap_head, 1559 struct kvm_memory_slot *slot, gfn_t gfn, 1560 int level, pte_t pte); 1561 1562 static __always_inline bool kvm_handle_gfn_range(struct kvm *kvm, 1563 struct kvm_gfn_range *range, 1564 rmap_handler_t handler) 1565 { 1566 struct slot_rmap_walk_iterator iterator; 1567 bool ret = false; 1568 1569 for_each_slot_rmap_range(range->slot, PG_LEVEL_4K, KVM_MAX_HUGEPAGE_LEVEL, 1570 range->start, range->end - 1, &iterator) 1571 ret |= handler(kvm, iterator.rmap, range->slot, iterator.gfn, 1572 iterator.level, range->pte); 1573 1574 return ret; 1575 } 1576 1577 bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range) 1578 { 1579 bool flush = false; 1580 1581 if (kvm_memslots_have_rmaps(kvm)) 1582 flush = kvm_handle_gfn_range(kvm, range, kvm_unmap_rmapp); 1583 1584 if (is_tdp_mmu_enabled(kvm)) 1585 flush = kvm_tdp_mmu_unmap_gfn_range(kvm, range, flush); 1586 1587 return flush; 1588 } 1589 1590 bool kvm_set_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range) 1591 { 1592 bool flush = false; 1593 1594 if (kvm_memslots_have_rmaps(kvm)) 1595 flush = kvm_handle_gfn_range(kvm, range, kvm_set_pte_rmapp); 1596 1597 if (is_tdp_mmu_enabled(kvm)) 1598 flush |= kvm_tdp_mmu_set_spte_gfn(kvm, range); 1599 1600 return flush; 1601 } 1602 1603 static bool kvm_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head, 1604 struct kvm_memory_slot *slot, gfn_t gfn, int level, 1605 pte_t unused) 1606 { 1607 u64 *sptep; 1608 struct rmap_iterator iter; 1609 int young = 0; 1610 1611 for_each_rmap_spte(rmap_head, &iter, sptep) 1612 young |= mmu_spte_age(sptep); 1613 1614 return young; 1615 } 1616 1617 static bool kvm_test_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head, 1618 struct kvm_memory_slot *slot, gfn_t gfn, 1619 int level, pte_t unused) 1620 { 1621 u64 *sptep; 1622 struct rmap_iterator iter; 1623 1624 for_each_rmap_spte(rmap_head, &iter, sptep) 1625 if (is_accessed_spte(*sptep)) 1626 return 1; 1627 return 0; 1628 } 1629 1630 #define RMAP_RECYCLE_THRESHOLD 1000 1631 1632 static void rmap_add(struct kvm_vcpu *vcpu, struct kvm_memory_slot *slot, 1633 u64 *spte, gfn_t gfn) 1634 { 1635 struct kvm_mmu_page *sp; 1636 struct kvm_rmap_head *rmap_head; 1637 int rmap_count; 1638 1639 sp = sptep_to_sp(spte); 1640 kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn); 1641 rmap_head = gfn_to_rmap(gfn, sp->role.level, slot); 1642 rmap_count = pte_list_add(vcpu, spte, rmap_head); 1643 1644 if (rmap_count > RMAP_RECYCLE_THRESHOLD) { 1645 kvm_unmap_rmapp(vcpu->kvm, rmap_head, NULL, gfn, sp->role.level, __pte(0)); 1646 kvm_flush_remote_tlbs_with_address( 1647 vcpu->kvm, sp->gfn, KVM_PAGES_PER_HPAGE(sp->role.level)); 1648 } 1649 } 1650 1651 bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range) 1652 { 1653 bool young = false; 1654 1655 if (kvm_memslots_have_rmaps(kvm)) 1656 young = kvm_handle_gfn_range(kvm, range, kvm_age_rmapp); 1657 1658 if (is_tdp_mmu_enabled(kvm)) 1659 young |= kvm_tdp_mmu_age_gfn_range(kvm, range); 1660 1661 return young; 1662 } 1663 1664 bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range) 1665 { 1666 bool young = false; 1667 1668 if (kvm_memslots_have_rmaps(kvm)) 1669 young = kvm_handle_gfn_range(kvm, range, kvm_test_age_rmapp); 1670 1671 if (is_tdp_mmu_enabled(kvm)) 1672 young |= kvm_tdp_mmu_test_age_gfn(kvm, range); 1673 1674 return young; 1675 } 1676 1677 #ifdef MMU_DEBUG 1678 static int is_empty_shadow_page(u64 *spt) 1679 { 1680 u64 *pos; 1681 u64 *end; 1682 1683 for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++) 1684 if (is_shadow_present_pte(*pos)) { 1685 printk(KERN_ERR "%s: %p %llx\n", __func__, 1686 pos, *pos); 1687 return 0; 1688 } 1689 return 1; 1690 } 1691 #endif 1692 1693 /* 1694 * This value is the sum of all of the kvm instances's 1695 * kvm->arch.n_used_mmu_pages values. We need a global, 1696 * aggregate version in order to make the slab shrinker 1697 * faster 1698 */ 1699 static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, long nr) 1700 { 1701 kvm->arch.n_used_mmu_pages += nr; 1702 percpu_counter_add(&kvm_total_used_mmu_pages, nr); 1703 } 1704 1705 static void kvm_mmu_free_page(struct kvm_mmu_page *sp) 1706 { 1707 MMU_WARN_ON(!is_empty_shadow_page(sp->spt)); 1708 hlist_del(&sp->hash_link); 1709 list_del(&sp->link); 1710 free_page((unsigned long)sp->spt); 1711 if (!sp->role.direct) 1712 free_page((unsigned long)sp->gfns); 1713 kmem_cache_free(mmu_page_header_cache, sp); 1714 } 1715 1716 static unsigned kvm_page_table_hashfn(gfn_t gfn) 1717 { 1718 return hash_64(gfn, KVM_MMU_HASH_SHIFT); 1719 } 1720 1721 static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu, 1722 struct kvm_mmu_page *sp, u64 *parent_pte) 1723 { 1724 if (!parent_pte) 1725 return; 1726 1727 pte_list_add(vcpu, parent_pte, &sp->parent_ptes); 1728 } 1729 1730 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp, 1731 u64 *parent_pte) 1732 { 1733 __pte_list_remove(parent_pte, &sp->parent_ptes); 1734 } 1735 1736 static void drop_parent_pte(struct kvm_mmu_page *sp, 1737 u64 *parent_pte) 1738 { 1739 mmu_page_remove_parent_pte(sp, parent_pte); 1740 mmu_spte_clear_no_track(parent_pte); 1741 } 1742 1743 static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu, int direct) 1744 { 1745 struct kvm_mmu_page *sp; 1746 1747 sp = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache); 1748 sp->spt = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_shadow_page_cache); 1749 if (!direct) 1750 sp->gfns = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_gfn_array_cache); 1751 set_page_private(virt_to_page(sp->spt), (unsigned long)sp); 1752 1753 /* 1754 * active_mmu_pages must be a FIFO list, as kvm_zap_obsolete_pages() 1755 * depends on valid pages being added to the head of the list. See 1756 * comments in kvm_zap_obsolete_pages(). 1757 */ 1758 sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen; 1759 list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages); 1760 kvm_mod_used_mmu_pages(vcpu->kvm, +1); 1761 return sp; 1762 } 1763 1764 static void mark_unsync(u64 *spte); 1765 static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp) 1766 { 1767 u64 *sptep; 1768 struct rmap_iterator iter; 1769 1770 for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) { 1771 mark_unsync(sptep); 1772 } 1773 } 1774 1775 static void mark_unsync(u64 *spte) 1776 { 1777 struct kvm_mmu_page *sp; 1778 unsigned int index; 1779 1780 sp = sptep_to_sp(spte); 1781 index = spte - sp->spt; 1782 if (__test_and_set_bit(index, sp->unsync_child_bitmap)) 1783 return; 1784 if (sp->unsync_children++) 1785 return; 1786 kvm_mmu_mark_parents_unsync(sp); 1787 } 1788 1789 static int nonpaging_sync_page(struct kvm_vcpu *vcpu, 1790 struct kvm_mmu_page *sp) 1791 { 1792 return -1; 1793 } 1794 1795 #define KVM_PAGE_ARRAY_NR 16 1796 1797 struct kvm_mmu_pages { 1798 struct mmu_page_and_offset { 1799 struct kvm_mmu_page *sp; 1800 unsigned int idx; 1801 } page[KVM_PAGE_ARRAY_NR]; 1802 unsigned int nr; 1803 }; 1804 1805 static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp, 1806 int idx) 1807 { 1808 int i; 1809 1810 if (sp->unsync) 1811 for (i=0; i < pvec->nr; i++) 1812 if (pvec->page[i].sp == sp) 1813 return 0; 1814 1815 pvec->page[pvec->nr].sp = sp; 1816 pvec->page[pvec->nr].idx = idx; 1817 pvec->nr++; 1818 return (pvec->nr == KVM_PAGE_ARRAY_NR); 1819 } 1820 1821 static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx) 1822 { 1823 --sp->unsync_children; 1824 WARN_ON((int)sp->unsync_children < 0); 1825 __clear_bit(idx, sp->unsync_child_bitmap); 1826 } 1827 1828 static int __mmu_unsync_walk(struct kvm_mmu_page *sp, 1829 struct kvm_mmu_pages *pvec) 1830 { 1831 int i, ret, nr_unsync_leaf = 0; 1832 1833 for_each_set_bit(i, sp->unsync_child_bitmap, 512) { 1834 struct kvm_mmu_page *child; 1835 u64 ent = sp->spt[i]; 1836 1837 if (!is_shadow_present_pte(ent) || is_large_pte(ent)) { 1838 clear_unsync_child_bit(sp, i); 1839 continue; 1840 } 1841 1842 child = to_shadow_page(ent & PT64_BASE_ADDR_MASK); 1843 1844 if (child->unsync_children) { 1845 if (mmu_pages_add(pvec, child, i)) 1846 return -ENOSPC; 1847 1848 ret = __mmu_unsync_walk(child, pvec); 1849 if (!ret) { 1850 clear_unsync_child_bit(sp, i); 1851 continue; 1852 } else if (ret > 0) { 1853 nr_unsync_leaf += ret; 1854 } else 1855 return ret; 1856 } else if (child->unsync) { 1857 nr_unsync_leaf++; 1858 if (mmu_pages_add(pvec, child, i)) 1859 return -ENOSPC; 1860 } else 1861 clear_unsync_child_bit(sp, i); 1862 } 1863 1864 return nr_unsync_leaf; 1865 } 1866 1867 #define INVALID_INDEX (-1) 1868 1869 static int mmu_unsync_walk(struct kvm_mmu_page *sp, 1870 struct kvm_mmu_pages *pvec) 1871 { 1872 pvec->nr = 0; 1873 if (!sp->unsync_children) 1874 return 0; 1875 1876 mmu_pages_add(pvec, sp, INVALID_INDEX); 1877 return __mmu_unsync_walk(sp, pvec); 1878 } 1879 1880 static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp) 1881 { 1882 WARN_ON(!sp->unsync); 1883 trace_kvm_mmu_sync_page(sp); 1884 sp->unsync = 0; 1885 --kvm->stat.mmu_unsync; 1886 } 1887 1888 static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp, 1889 struct list_head *invalid_list); 1890 static void kvm_mmu_commit_zap_page(struct kvm *kvm, 1891 struct list_head *invalid_list); 1892 1893 #define for_each_valid_sp(_kvm, _sp, _list) \ 1894 hlist_for_each_entry(_sp, _list, hash_link) \ 1895 if (is_obsolete_sp((_kvm), (_sp))) { \ 1896 } else 1897 1898 #define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn) \ 1899 for_each_valid_sp(_kvm, _sp, \ 1900 &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)]) \ 1901 if ((_sp)->gfn != (_gfn) || (_sp)->role.direct) {} else 1902 1903 static bool kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp, 1904 struct list_head *invalid_list) 1905 { 1906 int ret = vcpu->arch.mmu->sync_page(vcpu, sp); 1907 1908 if (ret < 0) { 1909 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list); 1910 return false; 1911 } 1912 1913 return !!ret; 1914 } 1915 1916 static bool kvm_mmu_remote_flush_or_zap(struct kvm *kvm, 1917 struct list_head *invalid_list, 1918 bool remote_flush) 1919 { 1920 if (!remote_flush && list_empty(invalid_list)) 1921 return false; 1922 1923 if (!list_empty(invalid_list)) 1924 kvm_mmu_commit_zap_page(kvm, invalid_list); 1925 else 1926 kvm_flush_remote_tlbs(kvm); 1927 return true; 1928 } 1929 1930 #ifdef CONFIG_KVM_MMU_AUDIT 1931 #include "mmu_audit.c" 1932 #else 1933 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { } 1934 static void mmu_audit_disable(void) { } 1935 #endif 1936 1937 static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp) 1938 { 1939 if (sp->role.invalid) 1940 return true; 1941 1942 /* TDP MMU pages due not use the MMU generation. */ 1943 return !sp->tdp_mmu_page && 1944 unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen); 1945 } 1946 1947 struct mmu_page_path { 1948 struct kvm_mmu_page *parent[PT64_ROOT_MAX_LEVEL]; 1949 unsigned int idx[PT64_ROOT_MAX_LEVEL]; 1950 }; 1951 1952 #define for_each_sp(pvec, sp, parents, i) \ 1953 for (i = mmu_pages_first(&pvec, &parents); \ 1954 i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \ 1955 i = mmu_pages_next(&pvec, &parents, i)) 1956 1957 static int mmu_pages_next(struct kvm_mmu_pages *pvec, 1958 struct mmu_page_path *parents, 1959 int i) 1960 { 1961 int n; 1962 1963 for (n = i+1; n < pvec->nr; n++) { 1964 struct kvm_mmu_page *sp = pvec->page[n].sp; 1965 unsigned idx = pvec->page[n].idx; 1966 int level = sp->role.level; 1967 1968 parents->idx[level-1] = idx; 1969 if (level == PG_LEVEL_4K) 1970 break; 1971 1972 parents->parent[level-2] = sp; 1973 } 1974 1975 return n; 1976 } 1977 1978 static int mmu_pages_first(struct kvm_mmu_pages *pvec, 1979 struct mmu_page_path *parents) 1980 { 1981 struct kvm_mmu_page *sp; 1982 int level; 1983 1984 if (pvec->nr == 0) 1985 return 0; 1986 1987 WARN_ON(pvec->page[0].idx != INVALID_INDEX); 1988 1989 sp = pvec->page[0].sp; 1990 level = sp->role.level; 1991 WARN_ON(level == PG_LEVEL_4K); 1992 1993 parents->parent[level-2] = sp; 1994 1995 /* Also set up a sentinel. Further entries in pvec are all 1996 * children of sp, so this element is never overwritten. 1997 */ 1998 parents->parent[level-1] = NULL; 1999 return mmu_pages_next(pvec, parents, 0); 2000 } 2001 2002 static void mmu_pages_clear_parents(struct mmu_page_path *parents) 2003 { 2004 struct kvm_mmu_page *sp; 2005 unsigned int level = 0; 2006 2007 do { 2008 unsigned int idx = parents->idx[level]; 2009 sp = parents->parent[level]; 2010 if (!sp) 2011 return; 2012 2013 WARN_ON(idx == INVALID_INDEX); 2014 clear_unsync_child_bit(sp, idx); 2015 level++; 2016 } while (!sp->unsync_children); 2017 } 2018 2019 static int mmu_sync_children(struct kvm_vcpu *vcpu, 2020 struct kvm_mmu_page *parent, bool can_yield) 2021 { 2022 int i; 2023 struct kvm_mmu_page *sp; 2024 struct mmu_page_path parents; 2025 struct kvm_mmu_pages pages; 2026 LIST_HEAD(invalid_list); 2027 bool flush = false; 2028 2029 while (mmu_unsync_walk(parent, &pages)) { 2030 bool protected = false; 2031 2032 for_each_sp(pages, sp, parents, i) 2033 protected |= rmap_write_protect(vcpu, sp->gfn); 2034 2035 if (protected) { 2036 kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, true); 2037 flush = false; 2038 } 2039 2040 for_each_sp(pages, sp, parents, i) { 2041 kvm_unlink_unsync_page(vcpu->kvm, sp); 2042 flush |= kvm_sync_page(vcpu, sp, &invalid_list); 2043 mmu_pages_clear_parents(&parents); 2044 } 2045 if (need_resched() || rwlock_needbreak(&vcpu->kvm->mmu_lock)) { 2046 kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, flush); 2047 if (!can_yield) { 2048 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu); 2049 return -EINTR; 2050 } 2051 2052 cond_resched_rwlock_write(&vcpu->kvm->mmu_lock); 2053 flush = false; 2054 } 2055 } 2056 2057 kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, flush); 2058 return 0; 2059 } 2060 2061 static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp) 2062 { 2063 atomic_set(&sp->write_flooding_count, 0); 2064 } 2065 2066 static void clear_sp_write_flooding_count(u64 *spte) 2067 { 2068 __clear_sp_write_flooding_count(sptep_to_sp(spte)); 2069 } 2070 2071 static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu, 2072 gfn_t gfn, 2073 gva_t gaddr, 2074 unsigned level, 2075 int direct, 2076 unsigned int access) 2077 { 2078 bool direct_mmu = vcpu->arch.mmu->direct_map; 2079 union kvm_mmu_page_role role; 2080 struct hlist_head *sp_list; 2081 unsigned quadrant; 2082 struct kvm_mmu_page *sp; 2083 int collisions = 0; 2084 LIST_HEAD(invalid_list); 2085 2086 role = vcpu->arch.mmu->mmu_role.base; 2087 role.level = level; 2088 role.direct = direct; 2089 if (role.direct) 2090 role.gpte_is_8_bytes = true; 2091 role.access = access; 2092 if (!direct_mmu && vcpu->arch.mmu->root_level <= PT32_ROOT_LEVEL) { 2093 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level)); 2094 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1; 2095 role.quadrant = quadrant; 2096 } 2097 2098 sp_list = &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]; 2099 for_each_valid_sp(vcpu->kvm, sp, sp_list) { 2100 if (sp->gfn != gfn) { 2101 collisions++; 2102 continue; 2103 } 2104 2105 if (sp->role.word != role.word) { 2106 /* 2107 * If the guest is creating an upper-level page, zap 2108 * unsync pages for the same gfn. While it's possible 2109 * the guest is using recursive page tables, in all 2110 * likelihood the guest has stopped using the unsync 2111 * page and is installing a completely unrelated page. 2112 * Unsync pages must not be left as is, because the new 2113 * upper-level page will be write-protected. 2114 */ 2115 if (level > PG_LEVEL_4K && sp->unsync) 2116 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, 2117 &invalid_list); 2118 continue; 2119 } 2120 2121 if (direct_mmu) 2122 goto trace_get_page; 2123 2124 if (sp->unsync) { 2125 /* 2126 * The page is good, but is stale. kvm_sync_page does 2127 * get the latest guest state, but (unlike mmu_unsync_children) 2128 * it doesn't write-protect the page or mark it synchronized! 2129 * This way the validity of the mapping is ensured, but the 2130 * overhead of write protection is not incurred until the 2131 * guest invalidates the TLB mapping. This allows multiple 2132 * SPs for a single gfn to be unsync. 2133 * 2134 * If the sync fails, the page is zapped. If so, break 2135 * in order to rebuild it. 2136 */ 2137 if (!kvm_sync_page(vcpu, sp, &invalid_list)) 2138 break; 2139 2140 WARN_ON(!list_empty(&invalid_list)); 2141 kvm_flush_remote_tlbs(vcpu->kvm); 2142 } 2143 2144 __clear_sp_write_flooding_count(sp); 2145 2146 trace_get_page: 2147 trace_kvm_mmu_get_page(sp, false); 2148 goto out; 2149 } 2150 2151 ++vcpu->kvm->stat.mmu_cache_miss; 2152 2153 sp = kvm_mmu_alloc_page(vcpu, direct); 2154 2155 sp->gfn = gfn; 2156 sp->role = role; 2157 hlist_add_head(&sp->hash_link, sp_list); 2158 if (!direct) { 2159 account_shadowed(vcpu->kvm, sp); 2160 if (level == PG_LEVEL_4K && rmap_write_protect(vcpu, gfn)) 2161 kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn, 1); 2162 } 2163 trace_kvm_mmu_get_page(sp, true); 2164 out: 2165 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list); 2166 2167 if (collisions > vcpu->kvm->stat.max_mmu_page_hash_collisions) 2168 vcpu->kvm->stat.max_mmu_page_hash_collisions = collisions; 2169 return sp; 2170 } 2171 2172 static void shadow_walk_init_using_root(struct kvm_shadow_walk_iterator *iterator, 2173 struct kvm_vcpu *vcpu, hpa_t root, 2174 u64 addr) 2175 { 2176 iterator->addr = addr; 2177 iterator->shadow_addr = root; 2178 iterator->level = vcpu->arch.mmu->shadow_root_level; 2179 2180 if (iterator->level >= PT64_ROOT_4LEVEL && 2181 vcpu->arch.mmu->root_level < PT64_ROOT_4LEVEL && 2182 !vcpu->arch.mmu->direct_map) 2183 iterator->level = PT32E_ROOT_LEVEL; 2184 2185 if (iterator->level == PT32E_ROOT_LEVEL) { 2186 /* 2187 * prev_root is currently only used for 64-bit hosts. So only 2188 * the active root_hpa is valid here. 2189 */ 2190 BUG_ON(root != vcpu->arch.mmu->root_hpa); 2191 2192 iterator->shadow_addr 2193 = vcpu->arch.mmu->pae_root[(addr >> 30) & 3]; 2194 iterator->shadow_addr &= PT64_BASE_ADDR_MASK; 2195 --iterator->level; 2196 if (!iterator->shadow_addr) 2197 iterator->level = 0; 2198 } 2199 } 2200 2201 static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator, 2202 struct kvm_vcpu *vcpu, u64 addr) 2203 { 2204 shadow_walk_init_using_root(iterator, vcpu, vcpu->arch.mmu->root_hpa, 2205 addr); 2206 } 2207 2208 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator) 2209 { 2210 if (iterator->level < PG_LEVEL_4K) 2211 return false; 2212 2213 iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level); 2214 iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index; 2215 return true; 2216 } 2217 2218 static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator, 2219 u64 spte) 2220 { 2221 if (!is_shadow_present_pte(spte) || is_last_spte(spte, iterator->level)) { 2222 iterator->level = 0; 2223 return; 2224 } 2225 2226 iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK; 2227 --iterator->level; 2228 } 2229 2230 static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator) 2231 { 2232 __shadow_walk_next(iterator, *iterator->sptep); 2233 } 2234 2235 static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep, 2236 struct kvm_mmu_page *sp) 2237 { 2238 u64 spte; 2239 2240 BUILD_BUG_ON(VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK); 2241 2242 spte = make_nonleaf_spte(sp->spt, sp_ad_disabled(sp)); 2243 2244 mmu_spte_set(sptep, spte); 2245 2246 mmu_page_add_parent_pte(vcpu, sp, sptep); 2247 2248 if (sp->unsync_children || sp->unsync) 2249 mark_unsync(sptep); 2250 } 2251 2252 static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep, 2253 unsigned direct_access) 2254 { 2255 if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) { 2256 struct kvm_mmu_page *child; 2257 2258 /* 2259 * For the direct sp, if the guest pte's dirty bit 2260 * changed form clean to dirty, it will corrupt the 2261 * sp's access: allow writable in the read-only sp, 2262 * so we should update the spte at this point to get 2263 * a new sp with the correct access. 2264 */ 2265 child = to_shadow_page(*sptep & PT64_BASE_ADDR_MASK); 2266 if (child->role.access == direct_access) 2267 return; 2268 2269 drop_parent_pte(child, sptep); 2270 kvm_flush_remote_tlbs_with_address(vcpu->kvm, child->gfn, 1); 2271 } 2272 } 2273 2274 /* Returns the number of zapped non-leaf child shadow pages. */ 2275 static int mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp, 2276 u64 *spte, struct list_head *invalid_list) 2277 { 2278 u64 pte; 2279 struct kvm_mmu_page *child; 2280 2281 pte = *spte; 2282 if (is_shadow_present_pte(pte)) { 2283 if (is_last_spte(pte, sp->role.level)) { 2284 drop_spte(kvm, spte); 2285 } else { 2286 child = to_shadow_page(pte & PT64_BASE_ADDR_MASK); 2287 drop_parent_pte(child, spte); 2288 2289 /* 2290 * Recursively zap nested TDP SPs, parentless SPs are 2291 * unlikely to be used again in the near future. This 2292 * avoids retaining a large number of stale nested SPs. 2293 */ 2294 if (tdp_enabled && invalid_list && 2295 child->role.guest_mode && !child->parent_ptes.val) 2296 return kvm_mmu_prepare_zap_page(kvm, child, 2297 invalid_list); 2298 } 2299 } else if (is_mmio_spte(pte)) { 2300 mmu_spte_clear_no_track(spte); 2301 } 2302 return 0; 2303 } 2304 2305 static int kvm_mmu_page_unlink_children(struct kvm *kvm, 2306 struct kvm_mmu_page *sp, 2307 struct list_head *invalid_list) 2308 { 2309 int zapped = 0; 2310 unsigned i; 2311 2312 for (i = 0; i < PT64_ENT_PER_PAGE; ++i) 2313 zapped += mmu_page_zap_pte(kvm, sp, sp->spt + i, invalid_list); 2314 2315 return zapped; 2316 } 2317 2318 static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp) 2319 { 2320 u64 *sptep; 2321 struct rmap_iterator iter; 2322 2323 while ((sptep = rmap_get_first(&sp->parent_ptes, &iter))) 2324 drop_parent_pte(sp, sptep); 2325 } 2326 2327 static int mmu_zap_unsync_children(struct kvm *kvm, 2328 struct kvm_mmu_page *parent, 2329 struct list_head *invalid_list) 2330 { 2331 int i, zapped = 0; 2332 struct mmu_page_path parents; 2333 struct kvm_mmu_pages pages; 2334 2335 if (parent->role.level == PG_LEVEL_4K) 2336 return 0; 2337 2338 while (mmu_unsync_walk(parent, &pages)) { 2339 struct kvm_mmu_page *sp; 2340 2341 for_each_sp(pages, sp, parents, i) { 2342 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list); 2343 mmu_pages_clear_parents(&parents); 2344 zapped++; 2345 } 2346 } 2347 2348 return zapped; 2349 } 2350 2351 static bool __kvm_mmu_prepare_zap_page(struct kvm *kvm, 2352 struct kvm_mmu_page *sp, 2353 struct list_head *invalid_list, 2354 int *nr_zapped) 2355 { 2356 bool list_unstable; 2357 2358 trace_kvm_mmu_prepare_zap_page(sp); 2359 ++kvm->stat.mmu_shadow_zapped; 2360 *nr_zapped = mmu_zap_unsync_children(kvm, sp, invalid_list); 2361 *nr_zapped += kvm_mmu_page_unlink_children(kvm, sp, invalid_list); 2362 kvm_mmu_unlink_parents(kvm, sp); 2363 2364 /* Zapping children means active_mmu_pages has become unstable. */ 2365 list_unstable = *nr_zapped; 2366 2367 if (!sp->role.invalid && !sp->role.direct) 2368 unaccount_shadowed(kvm, sp); 2369 2370 if (sp->unsync) 2371 kvm_unlink_unsync_page(kvm, sp); 2372 if (!sp->root_count) { 2373 /* Count self */ 2374 (*nr_zapped)++; 2375 2376 /* 2377 * Already invalid pages (previously active roots) are not on 2378 * the active page list. See list_del() in the "else" case of 2379 * !sp->root_count. 2380 */ 2381 if (sp->role.invalid) 2382 list_add(&sp->link, invalid_list); 2383 else 2384 list_move(&sp->link, invalid_list); 2385 kvm_mod_used_mmu_pages(kvm, -1); 2386 } else { 2387 /* 2388 * Remove the active root from the active page list, the root 2389 * will be explicitly freed when the root_count hits zero. 2390 */ 2391 list_del(&sp->link); 2392 2393 /* 2394 * Obsolete pages cannot be used on any vCPUs, see the comment 2395 * in kvm_mmu_zap_all_fast(). Note, is_obsolete_sp() also 2396 * treats invalid shadow pages as being obsolete. 2397 */ 2398 if (!is_obsolete_sp(kvm, sp)) 2399 kvm_reload_remote_mmus(kvm); 2400 } 2401 2402 if (sp->lpage_disallowed) 2403 unaccount_huge_nx_page(kvm, sp); 2404 2405 sp->role.invalid = 1; 2406 return list_unstable; 2407 } 2408 2409 static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp, 2410 struct list_head *invalid_list) 2411 { 2412 int nr_zapped; 2413 2414 __kvm_mmu_prepare_zap_page(kvm, sp, invalid_list, &nr_zapped); 2415 return nr_zapped; 2416 } 2417 2418 static void kvm_mmu_commit_zap_page(struct kvm *kvm, 2419 struct list_head *invalid_list) 2420 { 2421 struct kvm_mmu_page *sp, *nsp; 2422 2423 if (list_empty(invalid_list)) 2424 return; 2425 2426 /* 2427 * We need to make sure everyone sees our modifications to 2428 * the page tables and see changes to vcpu->mode here. The barrier 2429 * in the kvm_flush_remote_tlbs() achieves this. This pairs 2430 * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end. 2431 * 2432 * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit 2433 * guest mode and/or lockless shadow page table walks. 2434 */ 2435 kvm_flush_remote_tlbs(kvm); 2436 2437 list_for_each_entry_safe(sp, nsp, invalid_list, link) { 2438 WARN_ON(!sp->role.invalid || sp->root_count); 2439 kvm_mmu_free_page(sp); 2440 } 2441 } 2442 2443 static unsigned long kvm_mmu_zap_oldest_mmu_pages(struct kvm *kvm, 2444 unsigned long nr_to_zap) 2445 { 2446 unsigned long total_zapped = 0; 2447 struct kvm_mmu_page *sp, *tmp; 2448 LIST_HEAD(invalid_list); 2449 bool unstable; 2450 int nr_zapped; 2451 2452 if (list_empty(&kvm->arch.active_mmu_pages)) 2453 return 0; 2454 2455 restart: 2456 list_for_each_entry_safe_reverse(sp, tmp, &kvm->arch.active_mmu_pages, link) { 2457 /* 2458 * Don't zap active root pages, the page itself can't be freed 2459 * and zapping it will just force vCPUs to realloc and reload. 2460 */ 2461 if (sp->root_count) 2462 continue; 2463 2464 unstable = __kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list, 2465 &nr_zapped); 2466 total_zapped += nr_zapped; 2467 if (total_zapped >= nr_to_zap) 2468 break; 2469 2470 if (unstable) 2471 goto restart; 2472 } 2473 2474 kvm_mmu_commit_zap_page(kvm, &invalid_list); 2475 2476 kvm->stat.mmu_recycled += total_zapped; 2477 return total_zapped; 2478 } 2479 2480 static inline unsigned long kvm_mmu_available_pages(struct kvm *kvm) 2481 { 2482 if (kvm->arch.n_max_mmu_pages > kvm->arch.n_used_mmu_pages) 2483 return kvm->arch.n_max_mmu_pages - 2484 kvm->arch.n_used_mmu_pages; 2485 2486 return 0; 2487 } 2488 2489 static int make_mmu_pages_available(struct kvm_vcpu *vcpu) 2490 { 2491 unsigned long avail = kvm_mmu_available_pages(vcpu->kvm); 2492 2493 if (likely(avail >= KVM_MIN_FREE_MMU_PAGES)) 2494 return 0; 2495 2496 kvm_mmu_zap_oldest_mmu_pages(vcpu->kvm, KVM_REFILL_PAGES - avail); 2497 2498 /* 2499 * Note, this check is intentionally soft, it only guarantees that one 2500 * page is available, while the caller may end up allocating as many as 2501 * four pages, e.g. for PAE roots or for 5-level paging. Temporarily 2502 * exceeding the (arbitrary by default) limit will not harm the host, 2503 * being too aggressive may unnecessarily kill the guest, and getting an 2504 * exact count is far more trouble than it's worth, especially in the 2505 * page fault paths. 2506 */ 2507 if (!kvm_mmu_available_pages(vcpu->kvm)) 2508 return -ENOSPC; 2509 return 0; 2510 } 2511 2512 /* 2513 * Changing the number of mmu pages allocated to the vm 2514 * Note: if goal_nr_mmu_pages is too small, you will get dead lock 2515 */ 2516 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long goal_nr_mmu_pages) 2517 { 2518 write_lock(&kvm->mmu_lock); 2519 2520 if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) { 2521 kvm_mmu_zap_oldest_mmu_pages(kvm, kvm->arch.n_used_mmu_pages - 2522 goal_nr_mmu_pages); 2523 2524 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages; 2525 } 2526 2527 kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages; 2528 2529 write_unlock(&kvm->mmu_lock); 2530 } 2531 2532 int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn) 2533 { 2534 struct kvm_mmu_page *sp; 2535 LIST_HEAD(invalid_list); 2536 int r; 2537 2538 pgprintk("%s: looking for gfn %llx\n", __func__, gfn); 2539 r = 0; 2540 write_lock(&kvm->mmu_lock); 2541 for_each_gfn_indirect_valid_sp(kvm, sp, gfn) { 2542 pgprintk("%s: gfn %llx role %x\n", __func__, gfn, 2543 sp->role.word); 2544 r = 1; 2545 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list); 2546 } 2547 kvm_mmu_commit_zap_page(kvm, &invalid_list); 2548 write_unlock(&kvm->mmu_lock); 2549 2550 return r; 2551 } 2552 2553 static int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva) 2554 { 2555 gpa_t gpa; 2556 int r; 2557 2558 if (vcpu->arch.mmu->direct_map) 2559 return 0; 2560 2561 gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL); 2562 2563 r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT); 2564 2565 return r; 2566 } 2567 2568 static void kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp) 2569 { 2570 trace_kvm_mmu_unsync_page(sp); 2571 ++vcpu->kvm->stat.mmu_unsync; 2572 sp->unsync = 1; 2573 2574 kvm_mmu_mark_parents_unsync(sp); 2575 } 2576 2577 /* 2578 * Attempt to unsync any shadow pages that can be reached by the specified gfn, 2579 * KVM is creating a writable mapping for said gfn. Returns 0 if all pages 2580 * were marked unsync (or if there is no shadow page), -EPERM if the SPTE must 2581 * be write-protected. 2582 */ 2583 int mmu_try_to_unsync_pages(struct kvm_vcpu *vcpu, struct kvm_memory_slot *slot, 2584 gfn_t gfn, bool can_unsync, bool prefetch) 2585 { 2586 struct kvm_mmu_page *sp; 2587 bool locked = false; 2588 2589 /* 2590 * Force write-protection if the page is being tracked. Note, the page 2591 * track machinery is used to write-protect upper-level shadow pages, 2592 * i.e. this guards the role.level == 4K assertion below! 2593 */ 2594 if (kvm_slot_page_track_is_active(vcpu, slot, gfn, KVM_PAGE_TRACK_WRITE)) 2595 return -EPERM; 2596 2597 /* 2598 * The page is not write-tracked, mark existing shadow pages unsync 2599 * unless KVM is synchronizing an unsync SP (can_unsync = false). In 2600 * that case, KVM must complete emulation of the guest TLB flush before 2601 * allowing shadow pages to become unsync (writable by the guest). 2602 */ 2603 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) { 2604 if (!can_unsync) 2605 return -EPERM; 2606 2607 if (sp->unsync) 2608 continue; 2609 2610 if (prefetch) 2611 return -EEXIST; 2612 2613 /* 2614 * TDP MMU page faults require an additional spinlock as they 2615 * run with mmu_lock held for read, not write, and the unsync 2616 * logic is not thread safe. Take the spinklock regardless of 2617 * the MMU type to avoid extra conditionals/parameters, there's 2618 * no meaningful penalty if mmu_lock is held for write. 2619 */ 2620 if (!locked) { 2621 locked = true; 2622 spin_lock(&vcpu->kvm->arch.mmu_unsync_pages_lock); 2623 2624 /* 2625 * Recheck after taking the spinlock, a different vCPU 2626 * may have since marked the page unsync. A false 2627 * positive on the unprotected check above is not 2628 * possible as clearing sp->unsync _must_ hold mmu_lock 2629 * for write, i.e. unsync cannot transition from 0->1 2630 * while this CPU holds mmu_lock for read (or write). 2631 */ 2632 if (READ_ONCE(sp->unsync)) 2633 continue; 2634 } 2635 2636 WARN_ON(sp->role.level != PG_LEVEL_4K); 2637 kvm_unsync_page(vcpu, sp); 2638 } 2639 if (locked) 2640 spin_unlock(&vcpu->kvm->arch.mmu_unsync_pages_lock); 2641 2642 /* 2643 * We need to ensure that the marking of unsync pages is visible 2644 * before the SPTE is updated to allow writes because 2645 * kvm_mmu_sync_roots() checks the unsync flags without holding 2646 * the MMU lock and so can race with this. If the SPTE was updated 2647 * before the page had been marked as unsync-ed, something like the 2648 * following could happen: 2649 * 2650 * CPU 1 CPU 2 2651 * --------------------------------------------------------------------- 2652 * 1.2 Host updates SPTE 2653 * to be writable 2654 * 2.1 Guest writes a GPTE for GVA X. 2655 * (GPTE being in the guest page table shadowed 2656 * by the SP from CPU 1.) 2657 * This reads SPTE during the page table walk. 2658 * Since SPTE.W is read as 1, there is no 2659 * fault. 2660 * 2661 * 2.2 Guest issues TLB flush. 2662 * That causes a VM Exit. 2663 * 2664 * 2.3 Walking of unsync pages sees sp->unsync is 2665 * false and skips the page. 2666 * 2667 * 2.4 Guest accesses GVA X. 2668 * Since the mapping in the SP was not updated, 2669 * so the old mapping for GVA X incorrectly 2670 * gets used. 2671 * 1.1 Host marks SP 2672 * as unsync 2673 * (sp->unsync = true) 2674 * 2675 * The write barrier below ensures that 1.1 happens before 1.2 and thus 2676 * the situation in 2.4 does not arise. It pairs with the read barrier 2677 * in is_unsync_root(), placed between 2.1's load of SPTE.W and 2.3. 2678 */ 2679 smp_wmb(); 2680 2681 return 0; 2682 } 2683 2684 static int mmu_set_spte(struct kvm_vcpu *vcpu, struct kvm_memory_slot *slot, 2685 u64 *sptep, unsigned int pte_access, gfn_t gfn, 2686 kvm_pfn_t pfn, struct kvm_page_fault *fault) 2687 { 2688 struct kvm_mmu_page *sp = sptep_to_sp(sptep); 2689 int level = sp->role.level; 2690 int was_rmapped = 0; 2691 int ret = RET_PF_FIXED; 2692 bool flush = false; 2693 bool wrprot; 2694 u64 spte; 2695 2696 /* Prefetching always gets a writable pfn. */ 2697 bool host_writable = !fault || fault->map_writable; 2698 bool prefetch = !fault || fault->prefetch; 2699 bool write_fault = fault && fault->write; 2700 2701 pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__, 2702 *sptep, write_fault, gfn); 2703 2704 if (unlikely(is_noslot_pfn(pfn))) { 2705 mark_mmio_spte(vcpu, sptep, gfn, pte_access); 2706 return RET_PF_EMULATE; 2707 } 2708 2709 if (is_shadow_present_pte(*sptep)) { 2710 /* 2711 * If we overwrite a PTE page pointer with a 2MB PMD, unlink 2712 * the parent of the now unreachable PTE. 2713 */ 2714 if (level > PG_LEVEL_4K && !is_large_pte(*sptep)) { 2715 struct kvm_mmu_page *child; 2716 u64 pte = *sptep; 2717 2718 child = to_shadow_page(pte & PT64_BASE_ADDR_MASK); 2719 drop_parent_pte(child, sptep); 2720 flush = true; 2721 } else if (pfn != spte_to_pfn(*sptep)) { 2722 pgprintk("hfn old %llx new %llx\n", 2723 spte_to_pfn(*sptep), pfn); 2724 drop_spte(vcpu->kvm, sptep); 2725 flush = true; 2726 } else 2727 was_rmapped = 1; 2728 } 2729 2730 wrprot = make_spte(vcpu, sp, slot, pte_access, gfn, pfn, *sptep, prefetch, 2731 true, host_writable, &spte); 2732 2733 if (*sptep == spte) { 2734 ret = RET_PF_SPURIOUS; 2735 } else { 2736 trace_kvm_mmu_set_spte(level, gfn, sptep); 2737 flush |= mmu_spte_update(sptep, spte); 2738 } 2739 2740 if (wrprot) { 2741 if (write_fault) 2742 ret = RET_PF_EMULATE; 2743 } 2744 2745 if (flush) 2746 kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn, 2747 KVM_PAGES_PER_HPAGE(level)); 2748 2749 pgprintk("%s: setting spte %llx\n", __func__, *sptep); 2750 2751 if (!was_rmapped) { 2752 WARN_ON_ONCE(ret == RET_PF_SPURIOUS); 2753 kvm_update_page_stats(vcpu->kvm, level, 1); 2754 rmap_add(vcpu, slot, sptep, gfn); 2755 } 2756 2757 return ret; 2758 } 2759 2760 static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu, 2761 struct kvm_mmu_page *sp, 2762 u64 *start, u64 *end) 2763 { 2764 struct page *pages[PTE_PREFETCH_NUM]; 2765 struct kvm_memory_slot *slot; 2766 unsigned int access = sp->role.access; 2767 int i, ret; 2768 gfn_t gfn; 2769 2770 gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt); 2771 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK); 2772 if (!slot) 2773 return -1; 2774 2775 ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start); 2776 if (ret <= 0) 2777 return -1; 2778 2779 for (i = 0; i < ret; i++, gfn++, start++) { 2780 mmu_set_spte(vcpu, slot, start, access, gfn, 2781 page_to_pfn(pages[i]), NULL); 2782 put_page(pages[i]); 2783 } 2784 2785 return 0; 2786 } 2787 2788 static void __direct_pte_prefetch(struct kvm_vcpu *vcpu, 2789 struct kvm_mmu_page *sp, u64 *sptep) 2790 { 2791 u64 *spte, *start = NULL; 2792 int i; 2793 2794 WARN_ON(!sp->role.direct); 2795 2796 i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1); 2797 spte = sp->spt + i; 2798 2799 for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) { 2800 if (is_shadow_present_pte(*spte) || spte == sptep) { 2801 if (!start) 2802 continue; 2803 if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0) 2804 return; 2805 start = NULL; 2806 } else if (!start) 2807 start = spte; 2808 } 2809 if (start) 2810 direct_pte_prefetch_many(vcpu, sp, start, spte); 2811 } 2812 2813 static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep) 2814 { 2815 struct kvm_mmu_page *sp; 2816 2817 sp = sptep_to_sp(sptep); 2818 2819 /* 2820 * Without accessed bits, there's no way to distinguish between 2821 * actually accessed translations and prefetched, so disable pte 2822 * prefetch if accessed bits aren't available. 2823 */ 2824 if (sp_ad_disabled(sp)) 2825 return; 2826 2827 if (sp->role.level > PG_LEVEL_4K) 2828 return; 2829 2830 /* 2831 * If addresses are being invalidated, skip prefetching to avoid 2832 * accidentally prefetching those addresses. 2833 */ 2834 if (unlikely(vcpu->kvm->mmu_notifier_count)) 2835 return; 2836 2837 __direct_pte_prefetch(vcpu, sp, sptep); 2838 } 2839 2840 static int host_pfn_mapping_level(struct kvm *kvm, gfn_t gfn, kvm_pfn_t pfn, 2841 const struct kvm_memory_slot *slot) 2842 { 2843 unsigned long hva; 2844 pte_t *pte; 2845 int level; 2846 2847 if (!PageCompound(pfn_to_page(pfn)) && !kvm_is_zone_device_pfn(pfn)) 2848 return PG_LEVEL_4K; 2849 2850 /* 2851 * Note, using the already-retrieved memslot and __gfn_to_hva_memslot() 2852 * is not solely for performance, it's also necessary to avoid the 2853 * "writable" check in __gfn_to_hva_many(), which will always fail on 2854 * read-only memslots due to gfn_to_hva() assuming writes. Earlier 2855 * page fault steps have already verified the guest isn't writing a 2856 * read-only memslot. 2857 */ 2858 hva = __gfn_to_hva_memslot(slot, gfn); 2859 2860 pte = lookup_address_in_mm(kvm->mm, hva, &level); 2861 if (unlikely(!pte)) 2862 return PG_LEVEL_4K; 2863 2864 return level; 2865 } 2866 2867 int kvm_mmu_max_mapping_level(struct kvm *kvm, 2868 const struct kvm_memory_slot *slot, gfn_t gfn, 2869 kvm_pfn_t pfn, int max_level) 2870 { 2871 struct kvm_lpage_info *linfo; 2872 int host_level; 2873 2874 max_level = min(max_level, max_huge_page_level); 2875 for ( ; max_level > PG_LEVEL_4K; max_level--) { 2876 linfo = lpage_info_slot(gfn, slot, max_level); 2877 if (!linfo->disallow_lpage) 2878 break; 2879 } 2880 2881 if (max_level == PG_LEVEL_4K) 2882 return PG_LEVEL_4K; 2883 2884 host_level = host_pfn_mapping_level(kvm, gfn, pfn, slot); 2885 return min(host_level, max_level); 2886 } 2887 2888 void kvm_mmu_hugepage_adjust(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault) 2889 { 2890 struct kvm_memory_slot *slot = fault->slot; 2891 kvm_pfn_t mask; 2892 2893 fault->huge_page_disallowed = fault->exec && fault->nx_huge_page_workaround_enabled; 2894 2895 if (unlikely(fault->max_level == PG_LEVEL_4K)) 2896 return; 2897 2898 if (is_error_noslot_pfn(fault->pfn) || kvm_is_reserved_pfn(fault->pfn)) 2899 return; 2900 2901 if (kvm_slot_dirty_track_enabled(slot)) 2902 return; 2903 2904 /* 2905 * Enforce the iTLB multihit workaround after capturing the requested 2906 * level, which will be used to do precise, accurate accounting. 2907 */ 2908 fault->req_level = kvm_mmu_max_mapping_level(vcpu->kvm, slot, 2909 fault->gfn, fault->pfn, 2910 fault->max_level); 2911 if (fault->req_level == PG_LEVEL_4K || fault->huge_page_disallowed) 2912 return; 2913 2914 /* 2915 * mmu_notifier_retry() was successful and mmu_lock is held, so 2916 * the pmd can't be split from under us. 2917 */ 2918 fault->goal_level = fault->req_level; 2919 mask = KVM_PAGES_PER_HPAGE(fault->goal_level) - 1; 2920 VM_BUG_ON((fault->gfn & mask) != (fault->pfn & mask)); 2921 fault->pfn &= ~mask; 2922 } 2923 2924 void disallowed_hugepage_adjust(struct kvm_page_fault *fault, u64 spte, int cur_level) 2925 { 2926 if (cur_level > PG_LEVEL_4K && 2927 cur_level == fault->goal_level && 2928 is_shadow_present_pte(spte) && 2929 !is_large_pte(spte)) { 2930 /* 2931 * A small SPTE exists for this pfn, but FNAME(fetch) 2932 * and __direct_map would like to create a large PTE 2933 * instead: just force them to go down another level, 2934 * patching back for them into pfn the next 9 bits of 2935 * the address. 2936 */ 2937 u64 page_mask = KVM_PAGES_PER_HPAGE(cur_level) - 2938 KVM_PAGES_PER_HPAGE(cur_level - 1); 2939 fault->pfn |= fault->gfn & page_mask; 2940 fault->goal_level--; 2941 } 2942 } 2943 2944 static int __direct_map(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault) 2945 { 2946 struct kvm_shadow_walk_iterator it; 2947 struct kvm_mmu_page *sp; 2948 int ret; 2949 gfn_t base_gfn = fault->gfn; 2950 2951 kvm_mmu_hugepage_adjust(vcpu, fault); 2952 2953 trace_kvm_mmu_spte_requested(fault); 2954 for_each_shadow_entry(vcpu, fault->addr, it) { 2955 /* 2956 * We cannot overwrite existing page tables with an NX 2957 * large page, as the leaf could be executable. 2958 */ 2959 if (fault->nx_huge_page_workaround_enabled) 2960 disallowed_hugepage_adjust(fault, *it.sptep, it.level); 2961 2962 base_gfn = fault->gfn & ~(KVM_PAGES_PER_HPAGE(it.level) - 1); 2963 if (it.level == fault->goal_level) 2964 break; 2965 2966 drop_large_spte(vcpu, it.sptep); 2967 if (is_shadow_present_pte(*it.sptep)) 2968 continue; 2969 2970 sp = kvm_mmu_get_page(vcpu, base_gfn, it.addr, 2971 it.level - 1, true, ACC_ALL); 2972 2973 link_shadow_page(vcpu, it.sptep, sp); 2974 if (fault->is_tdp && fault->huge_page_disallowed && 2975 fault->req_level >= it.level) 2976 account_huge_nx_page(vcpu->kvm, sp); 2977 } 2978 2979 if (WARN_ON_ONCE(it.level != fault->goal_level)) 2980 return -EFAULT; 2981 2982 ret = mmu_set_spte(vcpu, fault->slot, it.sptep, ACC_ALL, 2983 base_gfn, fault->pfn, fault); 2984 if (ret == RET_PF_SPURIOUS) 2985 return ret; 2986 2987 direct_pte_prefetch(vcpu, it.sptep); 2988 ++vcpu->stat.pf_fixed; 2989 return ret; 2990 } 2991 2992 static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk) 2993 { 2994 send_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, PAGE_SHIFT, tsk); 2995 } 2996 2997 static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, kvm_pfn_t pfn) 2998 { 2999 /* 3000 * Do not cache the mmio info caused by writing the readonly gfn 3001 * into the spte otherwise read access on readonly gfn also can 3002 * caused mmio page fault and treat it as mmio access. 3003 */ 3004 if (pfn == KVM_PFN_ERR_RO_FAULT) 3005 return RET_PF_EMULATE; 3006 3007 if (pfn == KVM_PFN_ERR_HWPOISON) { 3008 kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current); 3009 return RET_PF_RETRY; 3010 } 3011 3012 return -EFAULT; 3013 } 3014 3015 static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault, 3016 unsigned int access, int *ret_val) 3017 { 3018 /* The pfn is invalid, report the error! */ 3019 if (unlikely(is_error_pfn(fault->pfn))) { 3020 *ret_val = kvm_handle_bad_page(vcpu, fault->gfn, fault->pfn); 3021 return true; 3022 } 3023 3024 if (unlikely(!fault->slot)) { 3025 gva_t gva = fault->is_tdp ? 0 : fault->addr; 3026 3027 vcpu_cache_mmio_info(vcpu, gva, fault->gfn, 3028 access & shadow_mmio_access_mask); 3029 /* 3030 * If MMIO caching is disabled, emulate immediately without 3031 * touching the shadow page tables as attempting to install an 3032 * MMIO SPTE will just be an expensive nop. 3033 */ 3034 if (unlikely(!shadow_mmio_value)) { 3035 *ret_val = RET_PF_EMULATE; 3036 return true; 3037 } 3038 } 3039 3040 return false; 3041 } 3042 3043 static bool page_fault_can_be_fast(struct kvm_page_fault *fault) 3044 { 3045 /* 3046 * Do not fix the mmio spte with invalid generation number which 3047 * need to be updated by slow page fault path. 3048 */ 3049 if (fault->rsvd) 3050 return false; 3051 3052 /* See if the page fault is due to an NX violation */ 3053 if (unlikely(fault->exec && fault->present)) 3054 return false; 3055 3056 /* 3057 * #PF can be fast if: 3058 * 1. The shadow page table entry is not present, which could mean that 3059 * the fault is potentially caused by access tracking (if enabled). 3060 * 2. The shadow page table entry is present and the fault 3061 * is caused by write-protect, that means we just need change the W 3062 * bit of the spte which can be done out of mmu-lock. 3063 * 3064 * However, if access tracking is disabled we know that a non-present 3065 * page must be a genuine page fault where we have to create a new SPTE. 3066 * So, if access tracking is disabled, we return true only for write 3067 * accesses to a present page. 3068 */ 3069 3070 return shadow_acc_track_mask != 0 || (fault->write && fault->present); 3071 } 3072 3073 /* 3074 * Returns true if the SPTE was fixed successfully. Otherwise, 3075 * someone else modified the SPTE from its original value. 3076 */ 3077 static bool 3078 fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault, 3079 u64 *sptep, u64 old_spte, u64 new_spte) 3080 { 3081 /* 3082 * Theoretically we could also set dirty bit (and flush TLB) here in 3083 * order to eliminate unnecessary PML logging. See comments in 3084 * set_spte. But fast_page_fault is very unlikely to happen with PML 3085 * enabled, so we do not do this. This might result in the same GPA 3086 * to be logged in PML buffer again when the write really happens, and 3087 * eventually to be called by mark_page_dirty twice. But it's also no 3088 * harm. This also avoids the TLB flush needed after setting dirty bit 3089 * so non-PML cases won't be impacted. 3090 * 3091 * Compare with set_spte where instead shadow_dirty_mask is set. 3092 */ 3093 if (cmpxchg64(sptep, old_spte, new_spte) != old_spte) 3094 return false; 3095 3096 if (is_writable_pte(new_spte) && !is_writable_pte(old_spte)) 3097 mark_page_dirty_in_slot(vcpu->kvm, fault->slot, fault->gfn); 3098 3099 return true; 3100 } 3101 3102 static bool is_access_allowed(struct kvm_page_fault *fault, u64 spte) 3103 { 3104 if (fault->exec) 3105 return is_executable_pte(spte); 3106 3107 if (fault->write) 3108 return is_writable_pte(spte); 3109 3110 /* Fault was on Read access */ 3111 return spte & PT_PRESENT_MASK; 3112 } 3113 3114 /* 3115 * Returns the last level spte pointer of the shadow page walk for the given 3116 * gpa, and sets *spte to the spte value. This spte may be non-preset. If no 3117 * walk could be performed, returns NULL and *spte does not contain valid data. 3118 * 3119 * Contract: 3120 * - Must be called between walk_shadow_page_lockless_{begin,end}. 3121 * - The returned sptep must not be used after walk_shadow_page_lockless_end. 3122 */ 3123 static u64 *fast_pf_get_last_sptep(struct kvm_vcpu *vcpu, gpa_t gpa, u64 *spte) 3124 { 3125 struct kvm_shadow_walk_iterator iterator; 3126 u64 old_spte; 3127 u64 *sptep = NULL; 3128 3129 for_each_shadow_entry_lockless(vcpu, gpa, iterator, old_spte) { 3130 sptep = iterator.sptep; 3131 *spte = old_spte; 3132 } 3133 3134 return sptep; 3135 } 3136 3137 /* 3138 * Returns one of RET_PF_INVALID, RET_PF_FIXED or RET_PF_SPURIOUS. 3139 */ 3140 static int fast_page_fault(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault) 3141 { 3142 struct kvm_mmu_page *sp; 3143 int ret = RET_PF_INVALID; 3144 u64 spte = 0ull; 3145 u64 *sptep = NULL; 3146 uint retry_count = 0; 3147 3148 if (!page_fault_can_be_fast(fault)) 3149 return ret; 3150 3151 walk_shadow_page_lockless_begin(vcpu); 3152 3153 do { 3154 u64 new_spte; 3155 3156 if (is_tdp_mmu(vcpu->arch.mmu)) 3157 sptep = kvm_tdp_mmu_fast_pf_get_last_sptep(vcpu, fault->addr, &spte); 3158 else 3159 sptep = fast_pf_get_last_sptep(vcpu, fault->addr, &spte); 3160 3161 if (!is_shadow_present_pte(spte)) 3162 break; 3163 3164 sp = sptep_to_sp(sptep); 3165 if (!is_last_spte(spte, sp->role.level)) 3166 break; 3167 3168 /* 3169 * Check whether the memory access that caused the fault would 3170 * still cause it if it were to be performed right now. If not, 3171 * then this is a spurious fault caused by TLB lazily flushed, 3172 * or some other CPU has already fixed the PTE after the 3173 * current CPU took the fault. 3174 * 3175 * Need not check the access of upper level table entries since 3176 * they are always ACC_ALL. 3177 */ 3178 if (is_access_allowed(fault, spte)) { 3179 ret = RET_PF_SPURIOUS; 3180 break; 3181 } 3182 3183 new_spte = spte; 3184 3185 if (is_access_track_spte(spte)) 3186 new_spte = restore_acc_track_spte(new_spte); 3187 3188 /* 3189 * Currently, to simplify the code, write-protection can 3190 * be removed in the fast path only if the SPTE was 3191 * write-protected for dirty-logging or access tracking. 3192 */ 3193 if (fault->write && 3194 spte_can_locklessly_be_made_writable(spte)) { 3195 new_spte |= PT_WRITABLE_MASK; 3196 3197 /* 3198 * Do not fix write-permission on the large spte when 3199 * dirty logging is enabled. Since we only dirty the 3200 * first page into the dirty-bitmap in 3201 * fast_pf_fix_direct_spte(), other pages are missed 3202 * if its slot has dirty logging enabled. 3203 * 3204 * Instead, we let the slow page fault path create a 3205 * normal spte to fix the access. 3206 */ 3207 if (sp->role.level > PG_LEVEL_4K && 3208 kvm_slot_dirty_track_enabled(fault->slot)) 3209 break; 3210 } 3211 3212 /* Verify that the fault can be handled in the fast path */ 3213 if (new_spte == spte || 3214 !is_access_allowed(fault, new_spte)) 3215 break; 3216 3217 /* 3218 * Currently, fast page fault only works for direct mapping 3219 * since the gfn is not stable for indirect shadow page. See 3220 * Documentation/virt/kvm/locking.rst to get more detail. 3221 */ 3222 if (fast_pf_fix_direct_spte(vcpu, fault, sptep, spte, new_spte)) { 3223 ret = RET_PF_FIXED; 3224 break; 3225 } 3226 3227 if (++retry_count > 4) { 3228 printk_once(KERN_WARNING 3229 "kvm: Fast #PF retrying more than 4 times.\n"); 3230 break; 3231 } 3232 3233 } while (true); 3234 3235 trace_fast_page_fault(vcpu, fault, sptep, spte, ret); 3236 walk_shadow_page_lockless_end(vcpu); 3237 3238 return ret; 3239 } 3240 3241 static void mmu_free_root_page(struct kvm *kvm, hpa_t *root_hpa, 3242 struct list_head *invalid_list) 3243 { 3244 struct kvm_mmu_page *sp; 3245 3246 if (!VALID_PAGE(*root_hpa)) 3247 return; 3248 3249 sp = to_shadow_page(*root_hpa & PT64_BASE_ADDR_MASK); 3250 3251 if (is_tdp_mmu_page(sp)) 3252 kvm_tdp_mmu_put_root(kvm, sp, false); 3253 else if (!--sp->root_count && sp->role.invalid) 3254 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list); 3255 3256 *root_hpa = INVALID_PAGE; 3257 } 3258 3259 /* roots_to_free must be some combination of the KVM_MMU_ROOT_* flags */ 3260 void kvm_mmu_free_roots(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, 3261 ulong roots_to_free) 3262 { 3263 struct kvm *kvm = vcpu->kvm; 3264 int i; 3265 LIST_HEAD(invalid_list); 3266 bool free_active_root = roots_to_free & KVM_MMU_ROOT_CURRENT; 3267 3268 BUILD_BUG_ON(KVM_MMU_NUM_PREV_ROOTS >= BITS_PER_LONG); 3269 3270 /* Before acquiring the MMU lock, see if we need to do any real work. */ 3271 if (!(free_active_root && VALID_PAGE(mmu->root_hpa))) { 3272 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 3273 if ((roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) && 3274 VALID_PAGE(mmu->prev_roots[i].hpa)) 3275 break; 3276 3277 if (i == KVM_MMU_NUM_PREV_ROOTS) 3278 return; 3279 } 3280 3281 write_lock(&kvm->mmu_lock); 3282 3283 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 3284 if (roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) 3285 mmu_free_root_page(kvm, &mmu->prev_roots[i].hpa, 3286 &invalid_list); 3287 3288 if (free_active_root) { 3289 if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL && 3290 (mmu->root_level >= PT64_ROOT_4LEVEL || mmu->direct_map)) { 3291 mmu_free_root_page(kvm, &mmu->root_hpa, &invalid_list); 3292 } else if (mmu->pae_root) { 3293 for (i = 0; i < 4; ++i) { 3294 if (!IS_VALID_PAE_ROOT(mmu->pae_root[i])) 3295 continue; 3296 3297 mmu_free_root_page(kvm, &mmu->pae_root[i], 3298 &invalid_list); 3299 mmu->pae_root[i] = INVALID_PAE_ROOT; 3300 } 3301 } 3302 mmu->root_hpa = INVALID_PAGE; 3303 mmu->root_pgd = 0; 3304 } 3305 3306 kvm_mmu_commit_zap_page(kvm, &invalid_list); 3307 write_unlock(&kvm->mmu_lock); 3308 } 3309 EXPORT_SYMBOL_GPL(kvm_mmu_free_roots); 3310 3311 void kvm_mmu_free_guest_mode_roots(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu) 3312 { 3313 unsigned long roots_to_free = 0; 3314 hpa_t root_hpa; 3315 int i; 3316 3317 /* 3318 * This should not be called while L2 is active, L2 can't invalidate 3319 * _only_ its own roots, e.g. INVVPID unconditionally exits. 3320 */ 3321 WARN_ON_ONCE(mmu->mmu_role.base.guest_mode); 3322 3323 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) { 3324 root_hpa = mmu->prev_roots[i].hpa; 3325 if (!VALID_PAGE(root_hpa)) 3326 continue; 3327 3328 if (!to_shadow_page(root_hpa) || 3329 to_shadow_page(root_hpa)->role.guest_mode) 3330 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i); 3331 } 3332 3333 kvm_mmu_free_roots(vcpu, mmu, roots_to_free); 3334 } 3335 EXPORT_SYMBOL_GPL(kvm_mmu_free_guest_mode_roots); 3336 3337 3338 static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn) 3339 { 3340 int ret = 0; 3341 3342 if (!kvm_vcpu_is_visible_gfn(vcpu, root_gfn)) { 3343 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 3344 ret = 1; 3345 } 3346 3347 return ret; 3348 } 3349 3350 static hpa_t mmu_alloc_root(struct kvm_vcpu *vcpu, gfn_t gfn, gva_t gva, 3351 u8 level, bool direct) 3352 { 3353 struct kvm_mmu_page *sp; 3354 3355 sp = kvm_mmu_get_page(vcpu, gfn, gva, level, direct, ACC_ALL); 3356 ++sp->root_count; 3357 3358 return __pa(sp->spt); 3359 } 3360 3361 static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu) 3362 { 3363 struct kvm_mmu *mmu = vcpu->arch.mmu; 3364 u8 shadow_root_level = mmu->shadow_root_level; 3365 hpa_t root; 3366 unsigned i; 3367 int r; 3368 3369 write_lock(&vcpu->kvm->mmu_lock); 3370 r = make_mmu_pages_available(vcpu); 3371 if (r < 0) 3372 goto out_unlock; 3373 3374 if (is_tdp_mmu_enabled(vcpu->kvm)) { 3375 root = kvm_tdp_mmu_get_vcpu_root_hpa(vcpu); 3376 mmu->root_hpa = root; 3377 } else if (shadow_root_level >= PT64_ROOT_4LEVEL) { 3378 root = mmu_alloc_root(vcpu, 0, 0, shadow_root_level, true); 3379 mmu->root_hpa = root; 3380 } else if (shadow_root_level == PT32E_ROOT_LEVEL) { 3381 if (WARN_ON_ONCE(!mmu->pae_root)) { 3382 r = -EIO; 3383 goto out_unlock; 3384 } 3385 3386 for (i = 0; i < 4; ++i) { 3387 WARN_ON_ONCE(IS_VALID_PAE_ROOT(mmu->pae_root[i])); 3388 3389 root = mmu_alloc_root(vcpu, i << (30 - PAGE_SHIFT), 3390 i << 30, PT32_ROOT_LEVEL, true); 3391 mmu->pae_root[i] = root | PT_PRESENT_MASK | 3392 shadow_me_mask; 3393 } 3394 mmu->root_hpa = __pa(mmu->pae_root); 3395 } else { 3396 WARN_ONCE(1, "Bad TDP root level = %d\n", shadow_root_level); 3397 r = -EIO; 3398 goto out_unlock; 3399 } 3400 3401 /* root_pgd is ignored for direct MMUs. */ 3402 mmu->root_pgd = 0; 3403 out_unlock: 3404 write_unlock(&vcpu->kvm->mmu_lock); 3405 return r; 3406 } 3407 3408 static int mmu_first_shadow_root_alloc(struct kvm *kvm) 3409 { 3410 struct kvm_memslots *slots; 3411 struct kvm_memory_slot *slot; 3412 int r = 0, i; 3413 3414 /* 3415 * Check if this is the first shadow root being allocated before 3416 * taking the lock. 3417 */ 3418 if (kvm_shadow_root_allocated(kvm)) 3419 return 0; 3420 3421 mutex_lock(&kvm->slots_arch_lock); 3422 3423 /* Recheck, under the lock, whether this is the first shadow root. */ 3424 if (kvm_shadow_root_allocated(kvm)) 3425 goto out_unlock; 3426 3427 /* 3428 * Check if anything actually needs to be allocated, e.g. all metadata 3429 * will be allocated upfront if TDP is disabled. 3430 */ 3431 if (kvm_memslots_have_rmaps(kvm) && 3432 kvm_page_track_write_tracking_enabled(kvm)) 3433 goto out_success; 3434 3435 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { 3436 slots = __kvm_memslots(kvm, i); 3437 kvm_for_each_memslot(slot, slots) { 3438 /* 3439 * Both of these functions are no-ops if the target is 3440 * already allocated, so unconditionally calling both 3441 * is safe. Intentionally do NOT free allocations on 3442 * failure to avoid having to track which allocations 3443 * were made now versus when the memslot was created. 3444 * The metadata is guaranteed to be freed when the slot 3445 * is freed, and will be kept/used if userspace retries 3446 * KVM_RUN instead of killing the VM. 3447 */ 3448 r = memslot_rmap_alloc(slot, slot->npages); 3449 if (r) 3450 goto out_unlock; 3451 r = kvm_page_track_write_tracking_alloc(slot); 3452 if (r) 3453 goto out_unlock; 3454 } 3455 } 3456 3457 /* 3458 * Ensure that shadow_root_allocated becomes true strictly after 3459 * all the related pointers are set. 3460 */ 3461 out_success: 3462 smp_store_release(&kvm->arch.shadow_root_allocated, true); 3463 3464 out_unlock: 3465 mutex_unlock(&kvm->slots_arch_lock); 3466 return r; 3467 } 3468 3469 static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu) 3470 { 3471 struct kvm_mmu *mmu = vcpu->arch.mmu; 3472 u64 pdptrs[4], pm_mask; 3473 gfn_t root_gfn, root_pgd; 3474 hpa_t root; 3475 unsigned i; 3476 int r; 3477 3478 root_pgd = mmu->get_guest_pgd(vcpu); 3479 root_gfn = root_pgd >> PAGE_SHIFT; 3480 3481 if (mmu_check_root(vcpu, root_gfn)) 3482 return 1; 3483 3484 /* 3485 * On SVM, reading PDPTRs might access guest memory, which might fault 3486 * and thus might sleep. Grab the PDPTRs before acquiring mmu_lock. 3487 */ 3488 if (mmu->root_level == PT32E_ROOT_LEVEL) { 3489 for (i = 0; i < 4; ++i) { 3490 pdptrs[i] = mmu->get_pdptr(vcpu, i); 3491 if (!(pdptrs[i] & PT_PRESENT_MASK)) 3492 continue; 3493 3494 if (mmu_check_root(vcpu, pdptrs[i] >> PAGE_SHIFT)) 3495 return 1; 3496 } 3497 } 3498 3499 r = mmu_first_shadow_root_alloc(vcpu->kvm); 3500 if (r) 3501 return r; 3502 3503 write_lock(&vcpu->kvm->mmu_lock); 3504 r = make_mmu_pages_available(vcpu); 3505 if (r < 0) 3506 goto out_unlock; 3507 3508 /* 3509 * Do we shadow a long mode page table? If so we need to 3510 * write-protect the guests page table root. 3511 */ 3512 if (mmu->root_level >= PT64_ROOT_4LEVEL) { 3513 root = mmu_alloc_root(vcpu, root_gfn, 0, 3514 mmu->shadow_root_level, false); 3515 mmu->root_hpa = root; 3516 goto set_root_pgd; 3517 } 3518 3519 if (WARN_ON_ONCE(!mmu->pae_root)) { 3520 r = -EIO; 3521 goto out_unlock; 3522 } 3523 3524 /* 3525 * We shadow a 32 bit page table. This may be a legacy 2-level 3526 * or a PAE 3-level page table. In either case we need to be aware that 3527 * the shadow page table may be a PAE or a long mode page table. 3528 */ 3529 pm_mask = PT_PRESENT_MASK | shadow_me_mask; 3530 if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL) { 3531 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK; 3532 3533 if (WARN_ON_ONCE(!mmu->pml4_root)) { 3534 r = -EIO; 3535 goto out_unlock; 3536 } 3537 mmu->pml4_root[0] = __pa(mmu->pae_root) | pm_mask; 3538 3539 if (mmu->shadow_root_level == PT64_ROOT_5LEVEL) { 3540 if (WARN_ON_ONCE(!mmu->pml5_root)) { 3541 r = -EIO; 3542 goto out_unlock; 3543 } 3544 mmu->pml5_root[0] = __pa(mmu->pml4_root) | pm_mask; 3545 } 3546 } 3547 3548 for (i = 0; i < 4; ++i) { 3549 WARN_ON_ONCE(IS_VALID_PAE_ROOT(mmu->pae_root[i])); 3550 3551 if (mmu->root_level == PT32E_ROOT_LEVEL) { 3552 if (!(pdptrs[i] & PT_PRESENT_MASK)) { 3553 mmu->pae_root[i] = INVALID_PAE_ROOT; 3554 continue; 3555 } 3556 root_gfn = pdptrs[i] >> PAGE_SHIFT; 3557 } 3558 3559 root = mmu_alloc_root(vcpu, root_gfn, i << 30, 3560 PT32_ROOT_LEVEL, false); 3561 mmu->pae_root[i] = root | pm_mask; 3562 } 3563 3564 if (mmu->shadow_root_level == PT64_ROOT_5LEVEL) 3565 mmu->root_hpa = __pa(mmu->pml5_root); 3566 else if (mmu->shadow_root_level == PT64_ROOT_4LEVEL) 3567 mmu->root_hpa = __pa(mmu->pml4_root); 3568 else 3569 mmu->root_hpa = __pa(mmu->pae_root); 3570 3571 set_root_pgd: 3572 mmu->root_pgd = root_pgd; 3573 out_unlock: 3574 write_unlock(&vcpu->kvm->mmu_lock); 3575 3576 return 0; 3577 } 3578 3579 static int mmu_alloc_special_roots(struct kvm_vcpu *vcpu) 3580 { 3581 struct kvm_mmu *mmu = vcpu->arch.mmu; 3582 bool need_pml5 = mmu->shadow_root_level > PT64_ROOT_4LEVEL; 3583 u64 *pml5_root = NULL; 3584 u64 *pml4_root = NULL; 3585 u64 *pae_root; 3586 3587 /* 3588 * When shadowing 32-bit or PAE NPT with 64-bit NPT, the PML4 and PDP 3589 * tables are allocated and initialized at root creation as there is no 3590 * equivalent level in the guest's NPT to shadow. Allocate the tables 3591 * on demand, as running a 32-bit L1 VMM on 64-bit KVM is very rare. 3592 */ 3593 if (mmu->direct_map || mmu->root_level >= PT64_ROOT_4LEVEL || 3594 mmu->shadow_root_level < PT64_ROOT_4LEVEL) 3595 return 0; 3596 3597 /* 3598 * NPT, the only paging mode that uses this horror, uses a fixed number 3599 * of levels for the shadow page tables, e.g. all MMUs are 4-level or 3600 * all MMus are 5-level. Thus, this can safely require that pml5_root 3601 * is allocated if the other roots are valid and pml5 is needed, as any 3602 * prior MMU would also have required pml5. 3603 */ 3604 if (mmu->pae_root && mmu->pml4_root && (!need_pml5 || mmu->pml5_root)) 3605 return 0; 3606 3607 /* 3608 * The special roots should always be allocated in concert. Yell and 3609 * bail if KVM ends up in a state where only one of the roots is valid. 3610 */ 3611 if (WARN_ON_ONCE(!tdp_enabled || mmu->pae_root || mmu->pml4_root || 3612 (need_pml5 && mmu->pml5_root))) 3613 return -EIO; 3614 3615 /* 3616 * Unlike 32-bit NPT, the PDP table doesn't need to be in low mem, and 3617 * doesn't need to be decrypted. 3618 */ 3619 pae_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT); 3620 if (!pae_root) 3621 return -ENOMEM; 3622 3623 #ifdef CONFIG_X86_64 3624 pml4_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT); 3625 if (!pml4_root) 3626 goto err_pml4; 3627 3628 if (need_pml5) { 3629 pml5_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT); 3630 if (!pml5_root) 3631 goto err_pml5; 3632 } 3633 #endif 3634 3635 mmu->pae_root = pae_root; 3636 mmu->pml4_root = pml4_root; 3637 mmu->pml5_root = pml5_root; 3638 3639 return 0; 3640 3641 #ifdef CONFIG_X86_64 3642 err_pml5: 3643 free_page((unsigned long)pml4_root); 3644 err_pml4: 3645 free_page((unsigned long)pae_root); 3646 return -ENOMEM; 3647 #endif 3648 } 3649 3650 static bool is_unsync_root(hpa_t root) 3651 { 3652 struct kvm_mmu_page *sp; 3653 3654 if (!VALID_PAGE(root)) 3655 return false; 3656 3657 /* 3658 * The read barrier orders the CPU's read of SPTE.W during the page table 3659 * walk before the reads of sp->unsync/sp->unsync_children here. 3660 * 3661 * Even if another CPU was marking the SP as unsync-ed simultaneously, 3662 * any guest page table changes are not guaranteed to be visible anyway 3663 * until this VCPU issues a TLB flush strictly after those changes are 3664 * made. We only need to ensure that the other CPU sets these flags 3665 * before any actual changes to the page tables are made. The comments 3666 * in mmu_try_to_unsync_pages() describe what could go wrong if this 3667 * requirement isn't satisfied. 3668 */ 3669 smp_rmb(); 3670 sp = to_shadow_page(root); 3671 if (sp->unsync || sp->unsync_children) 3672 return true; 3673 3674 return false; 3675 } 3676 3677 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu) 3678 { 3679 int i; 3680 struct kvm_mmu_page *sp; 3681 3682 if (vcpu->arch.mmu->direct_map) 3683 return; 3684 3685 if (!VALID_PAGE(vcpu->arch.mmu->root_hpa)) 3686 return; 3687 3688 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY); 3689 3690 if (vcpu->arch.mmu->root_level >= PT64_ROOT_4LEVEL) { 3691 hpa_t root = vcpu->arch.mmu->root_hpa; 3692 sp = to_shadow_page(root); 3693 3694 if (!is_unsync_root(root)) 3695 return; 3696 3697 write_lock(&vcpu->kvm->mmu_lock); 3698 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC); 3699 3700 mmu_sync_children(vcpu, sp, true); 3701 3702 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC); 3703 write_unlock(&vcpu->kvm->mmu_lock); 3704 return; 3705 } 3706 3707 write_lock(&vcpu->kvm->mmu_lock); 3708 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC); 3709 3710 for (i = 0; i < 4; ++i) { 3711 hpa_t root = vcpu->arch.mmu->pae_root[i]; 3712 3713 if (IS_VALID_PAE_ROOT(root)) { 3714 root &= PT64_BASE_ADDR_MASK; 3715 sp = to_shadow_page(root); 3716 mmu_sync_children(vcpu, sp, true); 3717 } 3718 } 3719 3720 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC); 3721 write_unlock(&vcpu->kvm->mmu_lock); 3722 } 3723 3724 void kvm_mmu_sync_prev_roots(struct kvm_vcpu *vcpu) 3725 { 3726 unsigned long roots_to_free = 0; 3727 int i; 3728 3729 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 3730 if (is_unsync_root(vcpu->arch.mmu->prev_roots[i].hpa)) 3731 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i); 3732 3733 /* sync prev_roots by simply freeing them */ 3734 kvm_mmu_free_roots(vcpu, vcpu->arch.mmu, roots_to_free); 3735 } 3736 3737 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gpa_t vaddr, 3738 u32 access, struct x86_exception *exception) 3739 { 3740 if (exception) 3741 exception->error_code = 0; 3742 return vaddr; 3743 } 3744 3745 static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gpa_t vaddr, 3746 u32 access, 3747 struct x86_exception *exception) 3748 { 3749 if (exception) 3750 exception->error_code = 0; 3751 return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception); 3752 } 3753 3754 static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct) 3755 { 3756 /* 3757 * A nested guest cannot use the MMIO cache if it is using nested 3758 * page tables, because cr2 is a nGPA while the cache stores GPAs. 3759 */ 3760 if (mmu_is_nested(vcpu)) 3761 return false; 3762 3763 if (direct) 3764 return vcpu_match_mmio_gpa(vcpu, addr); 3765 3766 return vcpu_match_mmio_gva(vcpu, addr); 3767 } 3768 3769 /* 3770 * Return the level of the lowest level SPTE added to sptes. 3771 * That SPTE may be non-present. 3772 * 3773 * Must be called between walk_shadow_page_lockless_{begin,end}. 3774 */ 3775 static int get_walk(struct kvm_vcpu *vcpu, u64 addr, u64 *sptes, int *root_level) 3776 { 3777 struct kvm_shadow_walk_iterator iterator; 3778 int leaf = -1; 3779 u64 spte; 3780 3781 for (shadow_walk_init(&iterator, vcpu, addr), 3782 *root_level = iterator.level; 3783 shadow_walk_okay(&iterator); 3784 __shadow_walk_next(&iterator, spte)) { 3785 leaf = iterator.level; 3786 spte = mmu_spte_get_lockless(iterator.sptep); 3787 3788 sptes[leaf] = spte; 3789 } 3790 3791 return leaf; 3792 } 3793 3794 /* return true if reserved bit(s) are detected on a valid, non-MMIO SPTE. */ 3795 static bool get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep) 3796 { 3797 u64 sptes[PT64_ROOT_MAX_LEVEL + 1]; 3798 struct rsvd_bits_validate *rsvd_check; 3799 int root, leaf, level; 3800 bool reserved = false; 3801 3802 walk_shadow_page_lockless_begin(vcpu); 3803 3804 if (is_tdp_mmu(vcpu->arch.mmu)) 3805 leaf = kvm_tdp_mmu_get_walk(vcpu, addr, sptes, &root); 3806 else 3807 leaf = get_walk(vcpu, addr, sptes, &root); 3808 3809 walk_shadow_page_lockless_end(vcpu); 3810 3811 if (unlikely(leaf < 0)) { 3812 *sptep = 0ull; 3813 return reserved; 3814 } 3815 3816 *sptep = sptes[leaf]; 3817 3818 /* 3819 * Skip reserved bits checks on the terminal leaf if it's not a valid 3820 * SPTE. Note, this also (intentionally) skips MMIO SPTEs, which, by 3821 * design, always have reserved bits set. The purpose of the checks is 3822 * to detect reserved bits on non-MMIO SPTEs. i.e. buggy SPTEs. 3823 */ 3824 if (!is_shadow_present_pte(sptes[leaf])) 3825 leaf++; 3826 3827 rsvd_check = &vcpu->arch.mmu->shadow_zero_check; 3828 3829 for (level = root; level >= leaf; level--) 3830 reserved |= is_rsvd_spte(rsvd_check, sptes[level], level); 3831 3832 if (reserved) { 3833 pr_err("%s: reserved bits set on MMU-present spte, addr 0x%llx, hierarchy:\n", 3834 __func__, addr); 3835 for (level = root; level >= leaf; level--) 3836 pr_err("------ spte = 0x%llx level = %d, rsvd bits = 0x%llx", 3837 sptes[level], level, 3838 get_rsvd_bits(rsvd_check, sptes[level], level)); 3839 } 3840 3841 return reserved; 3842 } 3843 3844 static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct) 3845 { 3846 u64 spte; 3847 bool reserved; 3848 3849 if (mmio_info_in_cache(vcpu, addr, direct)) 3850 return RET_PF_EMULATE; 3851 3852 reserved = get_mmio_spte(vcpu, addr, &spte); 3853 if (WARN_ON(reserved)) 3854 return -EINVAL; 3855 3856 if (is_mmio_spte(spte)) { 3857 gfn_t gfn = get_mmio_spte_gfn(spte); 3858 unsigned int access = get_mmio_spte_access(spte); 3859 3860 if (!check_mmio_spte(vcpu, spte)) 3861 return RET_PF_INVALID; 3862 3863 if (direct) 3864 addr = 0; 3865 3866 trace_handle_mmio_page_fault(addr, gfn, access); 3867 vcpu_cache_mmio_info(vcpu, addr, gfn, access); 3868 return RET_PF_EMULATE; 3869 } 3870 3871 /* 3872 * If the page table is zapped by other cpus, let CPU fault again on 3873 * the address. 3874 */ 3875 return RET_PF_RETRY; 3876 } 3877 3878 static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu, 3879 struct kvm_page_fault *fault) 3880 { 3881 if (unlikely(fault->rsvd)) 3882 return false; 3883 3884 if (!fault->present || !fault->write) 3885 return false; 3886 3887 /* 3888 * guest is writing the page which is write tracked which can 3889 * not be fixed by page fault handler. 3890 */ 3891 if (kvm_slot_page_track_is_active(vcpu, fault->slot, fault->gfn, KVM_PAGE_TRACK_WRITE)) 3892 return true; 3893 3894 return false; 3895 } 3896 3897 static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr) 3898 { 3899 struct kvm_shadow_walk_iterator iterator; 3900 u64 spte; 3901 3902 walk_shadow_page_lockless_begin(vcpu); 3903 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) 3904 clear_sp_write_flooding_count(iterator.sptep); 3905 walk_shadow_page_lockless_end(vcpu); 3906 } 3907 3908 static bool kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, 3909 gfn_t gfn) 3910 { 3911 struct kvm_arch_async_pf arch; 3912 3913 arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id; 3914 arch.gfn = gfn; 3915 arch.direct_map = vcpu->arch.mmu->direct_map; 3916 arch.cr3 = vcpu->arch.mmu->get_guest_pgd(vcpu); 3917 3918 return kvm_setup_async_pf(vcpu, cr2_or_gpa, 3919 kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch); 3920 } 3921 3922 static bool kvm_faultin_pfn(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault, int *r) 3923 { 3924 struct kvm_memory_slot *slot = fault->slot; 3925 bool async; 3926 3927 /* 3928 * Retry the page fault if the gfn hit a memslot that is being deleted 3929 * or moved. This ensures any existing SPTEs for the old memslot will 3930 * be zapped before KVM inserts a new MMIO SPTE for the gfn. 3931 */ 3932 if (slot && (slot->flags & KVM_MEMSLOT_INVALID)) 3933 goto out_retry; 3934 3935 if (!kvm_is_visible_memslot(slot)) { 3936 /* Don't expose private memslots to L2. */ 3937 if (is_guest_mode(vcpu)) { 3938 fault->slot = NULL; 3939 fault->pfn = KVM_PFN_NOSLOT; 3940 fault->map_writable = false; 3941 return false; 3942 } 3943 /* 3944 * If the APIC access page exists but is disabled, go directly 3945 * to emulation without caching the MMIO access or creating a 3946 * MMIO SPTE. That way the cache doesn't need to be purged 3947 * when the AVIC is re-enabled. 3948 */ 3949 if (slot && slot->id == APIC_ACCESS_PAGE_PRIVATE_MEMSLOT && 3950 !kvm_apicv_activated(vcpu->kvm)) { 3951 *r = RET_PF_EMULATE; 3952 return true; 3953 } 3954 } 3955 3956 async = false; 3957 fault->pfn = __gfn_to_pfn_memslot(slot, fault->gfn, false, &async, 3958 fault->write, &fault->map_writable, 3959 &fault->hva); 3960 if (!async) 3961 return false; /* *pfn has correct page already */ 3962 3963 if (!fault->prefetch && kvm_can_do_async_pf(vcpu)) { 3964 trace_kvm_try_async_get_page(fault->addr, fault->gfn); 3965 if (kvm_find_async_pf_gfn(vcpu, fault->gfn)) { 3966 trace_kvm_async_pf_doublefault(fault->addr, fault->gfn); 3967 kvm_make_request(KVM_REQ_APF_HALT, vcpu); 3968 goto out_retry; 3969 } else if (kvm_arch_setup_async_pf(vcpu, fault->addr, fault->gfn)) 3970 goto out_retry; 3971 } 3972 3973 fault->pfn = __gfn_to_pfn_memslot(slot, fault->gfn, false, NULL, 3974 fault->write, &fault->map_writable, 3975 &fault->hva); 3976 return false; 3977 3978 out_retry: 3979 *r = RET_PF_RETRY; 3980 return true; 3981 } 3982 3983 /* 3984 * Returns true if the page fault is stale and needs to be retried, i.e. if the 3985 * root was invalidated by a memslot update or a relevant mmu_notifier fired. 3986 */ 3987 static bool is_page_fault_stale(struct kvm_vcpu *vcpu, 3988 struct kvm_page_fault *fault, int mmu_seq) 3989 { 3990 struct kvm_mmu_page *sp = to_shadow_page(vcpu->arch.mmu->root_hpa); 3991 3992 /* Special roots, e.g. pae_root, are not backed by shadow pages. */ 3993 if (sp && is_obsolete_sp(vcpu->kvm, sp)) 3994 return true; 3995 3996 /* 3997 * Roots without an associated shadow page are considered invalid if 3998 * there is a pending request to free obsolete roots. The request is 3999 * only a hint that the current root _may_ be obsolete and needs to be 4000 * reloaded, e.g. if the guest frees a PGD that KVM is tracking as a 4001 * previous root, then __kvm_mmu_prepare_zap_page() signals all vCPUs 4002 * to reload even if no vCPU is actively using the root. 4003 */ 4004 if (!sp && kvm_test_request(KVM_REQ_MMU_RELOAD, vcpu)) 4005 return true; 4006 4007 return fault->slot && 4008 mmu_notifier_retry_hva(vcpu->kvm, mmu_seq, fault->hva); 4009 } 4010 4011 static int direct_page_fault(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault) 4012 { 4013 bool is_tdp_mmu_fault = is_tdp_mmu(vcpu->arch.mmu); 4014 4015 unsigned long mmu_seq; 4016 int r; 4017 4018 fault->gfn = fault->addr >> PAGE_SHIFT; 4019 fault->slot = kvm_vcpu_gfn_to_memslot(vcpu, fault->gfn); 4020 4021 if (page_fault_handle_page_track(vcpu, fault)) 4022 return RET_PF_EMULATE; 4023 4024 r = fast_page_fault(vcpu, fault); 4025 if (r != RET_PF_INVALID) 4026 return r; 4027 4028 r = mmu_topup_memory_caches(vcpu, false); 4029 if (r) 4030 return r; 4031 4032 mmu_seq = vcpu->kvm->mmu_notifier_seq; 4033 smp_rmb(); 4034 4035 if (kvm_faultin_pfn(vcpu, fault, &r)) 4036 return r; 4037 4038 if (handle_abnormal_pfn(vcpu, fault, ACC_ALL, &r)) 4039 return r; 4040 4041 r = RET_PF_RETRY; 4042 4043 if (is_tdp_mmu_fault) 4044 read_lock(&vcpu->kvm->mmu_lock); 4045 else 4046 write_lock(&vcpu->kvm->mmu_lock); 4047 4048 if (is_page_fault_stale(vcpu, fault, mmu_seq)) 4049 goto out_unlock; 4050 4051 r = make_mmu_pages_available(vcpu); 4052 if (r) 4053 goto out_unlock; 4054 4055 if (is_tdp_mmu_fault) 4056 r = kvm_tdp_mmu_map(vcpu, fault); 4057 else 4058 r = __direct_map(vcpu, fault); 4059 4060 out_unlock: 4061 if (is_tdp_mmu_fault) 4062 read_unlock(&vcpu->kvm->mmu_lock); 4063 else 4064 write_unlock(&vcpu->kvm->mmu_lock); 4065 kvm_release_pfn_clean(fault->pfn); 4066 return r; 4067 } 4068 4069 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, 4070 struct kvm_page_fault *fault) 4071 { 4072 pgprintk("%s: gva %lx error %x\n", __func__, fault->addr, fault->error_code); 4073 4074 /* This path builds a PAE pagetable, we can map 2mb pages at maximum. */ 4075 fault->max_level = PG_LEVEL_2M; 4076 return direct_page_fault(vcpu, fault); 4077 } 4078 4079 int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code, 4080 u64 fault_address, char *insn, int insn_len) 4081 { 4082 int r = 1; 4083 u32 flags = vcpu->arch.apf.host_apf_flags; 4084 4085 #ifndef CONFIG_X86_64 4086 /* A 64-bit CR2 should be impossible on 32-bit KVM. */ 4087 if (WARN_ON_ONCE(fault_address >> 32)) 4088 return -EFAULT; 4089 #endif 4090 4091 vcpu->arch.l1tf_flush_l1d = true; 4092 if (!flags) { 4093 trace_kvm_page_fault(fault_address, error_code); 4094 4095 if (kvm_event_needs_reinjection(vcpu)) 4096 kvm_mmu_unprotect_page_virt(vcpu, fault_address); 4097 r = kvm_mmu_page_fault(vcpu, fault_address, error_code, insn, 4098 insn_len); 4099 } else if (flags & KVM_PV_REASON_PAGE_NOT_PRESENT) { 4100 vcpu->arch.apf.host_apf_flags = 0; 4101 local_irq_disable(); 4102 kvm_async_pf_task_wait_schedule(fault_address); 4103 local_irq_enable(); 4104 } else { 4105 WARN_ONCE(1, "Unexpected host async PF flags: %x\n", flags); 4106 } 4107 4108 return r; 4109 } 4110 EXPORT_SYMBOL_GPL(kvm_handle_page_fault); 4111 4112 int kvm_tdp_page_fault(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault) 4113 { 4114 while (fault->max_level > PG_LEVEL_4K) { 4115 int page_num = KVM_PAGES_PER_HPAGE(fault->max_level); 4116 gfn_t base = (fault->addr >> PAGE_SHIFT) & ~(page_num - 1); 4117 4118 if (kvm_mtrr_check_gfn_range_consistency(vcpu, base, page_num)) 4119 break; 4120 4121 --fault->max_level; 4122 } 4123 4124 return direct_page_fault(vcpu, fault); 4125 } 4126 4127 static void nonpaging_init_context(struct kvm_mmu *context) 4128 { 4129 context->page_fault = nonpaging_page_fault; 4130 context->gva_to_gpa = nonpaging_gva_to_gpa; 4131 context->sync_page = nonpaging_sync_page; 4132 context->invlpg = NULL; 4133 context->direct_map = true; 4134 } 4135 4136 static inline bool is_root_usable(struct kvm_mmu_root_info *root, gpa_t pgd, 4137 union kvm_mmu_page_role role) 4138 { 4139 return (role.direct || pgd == root->pgd) && 4140 VALID_PAGE(root->hpa) && to_shadow_page(root->hpa) && 4141 role.word == to_shadow_page(root->hpa)->role.word; 4142 } 4143 4144 /* 4145 * Find out if a previously cached root matching the new pgd/role is available. 4146 * The current root is also inserted into the cache. 4147 * If a matching root was found, it is assigned to kvm_mmu->root_hpa and true is 4148 * returned. 4149 * Otherwise, the LRU root from the cache is assigned to kvm_mmu->root_hpa and 4150 * false is returned. This root should now be freed by the caller. 4151 */ 4152 static bool cached_root_available(struct kvm_vcpu *vcpu, gpa_t new_pgd, 4153 union kvm_mmu_page_role new_role) 4154 { 4155 uint i; 4156 struct kvm_mmu_root_info root; 4157 struct kvm_mmu *mmu = vcpu->arch.mmu; 4158 4159 root.pgd = mmu->root_pgd; 4160 root.hpa = mmu->root_hpa; 4161 4162 if (is_root_usable(&root, new_pgd, new_role)) 4163 return true; 4164 4165 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) { 4166 swap(root, mmu->prev_roots[i]); 4167 4168 if (is_root_usable(&root, new_pgd, new_role)) 4169 break; 4170 } 4171 4172 mmu->root_hpa = root.hpa; 4173 mmu->root_pgd = root.pgd; 4174 4175 return i < KVM_MMU_NUM_PREV_ROOTS; 4176 } 4177 4178 static bool fast_pgd_switch(struct kvm_vcpu *vcpu, gpa_t new_pgd, 4179 union kvm_mmu_page_role new_role) 4180 { 4181 struct kvm_mmu *mmu = vcpu->arch.mmu; 4182 4183 /* 4184 * For now, limit the fast switch to 64-bit hosts+VMs in order to avoid 4185 * having to deal with PDPTEs. We may add support for 32-bit hosts/VMs 4186 * later if necessary. 4187 */ 4188 if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL && 4189 mmu->root_level >= PT64_ROOT_4LEVEL) 4190 return cached_root_available(vcpu, new_pgd, new_role); 4191 4192 return false; 4193 } 4194 4195 static void __kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd, 4196 union kvm_mmu_page_role new_role) 4197 { 4198 if (!fast_pgd_switch(vcpu, new_pgd, new_role)) { 4199 kvm_mmu_free_roots(vcpu, vcpu->arch.mmu, KVM_MMU_ROOT_CURRENT); 4200 return; 4201 } 4202 4203 /* 4204 * It's possible that the cached previous root page is obsolete because 4205 * of a change in the MMU generation number. However, changing the 4206 * generation number is accompanied by KVM_REQ_MMU_RELOAD, which will 4207 * free the root set here and allocate a new one. 4208 */ 4209 kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu); 4210 4211 if (force_flush_and_sync_on_reuse) { 4212 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu); 4213 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 4214 } 4215 4216 /* 4217 * The last MMIO access's GVA and GPA are cached in the VCPU. When 4218 * switching to a new CR3, that GVA->GPA mapping may no longer be 4219 * valid. So clear any cached MMIO info even when we don't need to sync 4220 * the shadow page tables. 4221 */ 4222 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY); 4223 4224 /* 4225 * If this is a direct root page, it doesn't have a write flooding 4226 * count. Otherwise, clear the write flooding count. 4227 */ 4228 if (!new_role.direct) 4229 __clear_sp_write_flooding_count( 4230 to_shadow_page(vcpu->arch.mmu->root_hpa)); 4231 } 4232 4233 void kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd) 4234 { 4235 __kvm_mmu_new_pgd(vcpu, new_pgd, kvm_mmu_calc_root_page_role(vcpu)); 4236 } 4237 EXPORT_SYMBOL_GPL(kvm_mmu_new_pgd); 4238 4239 static unsigned long get_cr3(struct kvm_vcpu *vcpu) 4240 { 4241 return kvm_read_cr3(vcpu); 4242 } 4243 4244 static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn, 4245 unsigned int access) 4246 { 4247 if (unlikely(is_mmio_spte(*sptep))) { 4248 if (gfn != get_mmio_spte_gfn(*sptep)) { 4249 mmu_spte_clear_no_track(sptep); 4250 return true; 4251 } 4252 4253 mark_mmio_spte(vcpu, sptep, gfn, access); 4254 return true; 4255 } 4256 4257 return false; 4258 } 4259 4260 #define PTTYPE_EPT 18 /* arbitrary */ 4261 #define PTTYPE PTTYPE_EPT 4262 #include "paging_tmpl.h" 4263 #undef PTTYPE 4264 4265 #define PTTYPE 64 4266 #include "paging_tmpl.h" 4267 #undef PTTYPE 4268 4269 #define PTTYPE 32 4270 #include "paging_tmpl.h" 4271 #undef PTTYPE 4272 4273 static void 4274 __reset_rsvds_bits_mask(struct rsvd_bits_validate *rsvd_check, 4275 u64 pa_bits_rsvd, int level, bool nx, bool gbpages, 4276 bool pse, bool amd) 4277 { 4278 u64 gbpages_bit_rsvd = 0; 4279 u64 nonleaf_bit8_rsvd = 0; 4280 u64 high_bits_rsvd; 4281 4282 rsvd_check->bad_mt_xwr = 0; 4283 4284 if (!gbpages) 4285 gbpages_bit_rsvd = rsvd_bits(7, 7); 4286 4287 if (level == PT32E_ROOT_LEVEL) 4288 high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 62); 4289 else 4290 high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 51); 4291 4292 /* Note, NX doesn't exist in PDPTEs, this is handled below. */ 4293 if (!nx) 4294 high_bits_rsvd |= rsvd_bits(63, 63); 4295 4296 /* 4297 * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for 4298 * leaf entries) on AMD CPUs only. 4299 */ 4300 if (amd) 4301 nonleaf_bit8_rsvd = rsvd_bits(8, 8); 4302 4303 switch (level) { 4304 case PT32_ROOT_LEVEL: 4305 /* no rsvd bits for 2 level 4K page table entries */ 4306 rsvd_check->rsvd_bits_mask[0][1] = 0; 4307 rsvd_check->rsvd_bits_mask[0][0] = 0; 4308 rsvd_check->rsvd_bits_mask[1][0] = 4309 rsvd_check->rsvd_bits_mask[0][0]; 4310 4311 if (!pse) { 4312 rsvd_check->rsvd_bits_mask[1][1] = 0; 4313 break; 4314 } 4315 4316 if (is_cpuid_PSE36()) 4317 /* 36bits PSE 4MB page */ 4318 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21); 4319 else 4320 /* 32 bits PSE 4MB page */ 4321 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21); 4322 break; 4323 case PT32E_ROOT_LEVEL: 4324 rsvd_check->rsvd_bits_mask[0][2] = rsvd_bits(63, 63) | 4325 high_bits_rsvd | 4326 rsvd_bits(5, 8) | 4327 rsvd_bits(1, 2); /* PDPTE */ 4328 rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd; /* PDE */ 4329 rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd; /* PTE */ 4330 rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd | 4331 rsvd_bits(13, 20); /* large page */ 4332 rsvd_check->rsvd_bits_mask[1][0] = 4333 rsvd_check->rsvd_bits_mask[0][0]; 4334 break; 4335 case PT64_ROOT_5LEVEL: 4336 rsvd_check->rsvd_bits_mask[0][4] = high_bits_rsvd | 4337 nonleaf_bit8_rsvd | 4338 rsvd_bits(7, 7); 4339 rsvd_check->rsvd_bits_mask[1][4] = 4340 rsvd_check->rsvd_bits_mask[0][4]; 4341 fallthrough; 4342 case PT64_ROOT_4LEVEL: 4343 rsvd_check->rsvd_bits_mask[0][3] = high_bits_rsvd | 4344 nonleaf_bit8_rsvd | 4345 rsvd_bits(7, 7); 4346 rsvd_check->rsvd_bits_mask[0][2] = high_bits_rsvd | 4347 gbpages_bit_rsvd; 4348 rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd; 4349 rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd; 4350 rsvd_check->rsvd_bits_mask[1][3] = 4351 rsvd_check->rsvd_bits_mask[0][3]; 4352 rsvd_check->rsvd_bits_mask[1][2] = high_bits_rsvd | 4353 gbpages_bit_rsvd | 4354 rsvd_bits(13, 29); 4355 rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd | 4356 rsvd_bits(13, 20); /* large page */ 4357 rsvd_check->rsvd_bits_mask[1][0] = 4358 rsvd_check->rsvd_bits_mask[0][0]; 4359 break; 4360 } 4361 } 4362 4363 static bool guest_can_use_gbpages(struct kvm_vcpu *vcpu) 4364 { 4365 /* 4366 * If TDP is enabled, let the guest use GBPAGES if they're supported in 4367 * hardware. The hardware page walker doesn't let KVM disable GBPAGES, 4368 * i.e. won't treat them as reserved, and KVM doesn't redo the GVA->GPA 4369 * walk for performance and complexity reasons. Not to mention KVM 4370 * _can't_ solve the problem because GVA->GPA walks aren't visible to 4371 * KVM once a TDP translation is installed. Mimic hardware behavior so 4372 * that KVM's is at least consistent, i.e. doesn't randomly inject #PF. 4373 */ 4374 return tdp_enabled ? boot_cpu_has(X86_FEATURE_GBPAGES) : 4375 guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES); 4376 } 4377 4378 static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu, 4379 struct kvm_mmu *context) 4380 { 4381 __reset_rsvds_bits_mask(&context->guest_rsvd_check, 4382 vcpu->arch.reserved_gpa_bits, 4383 context->root_level, is_efer_nx(context), 4384 guest_can_use_gbpages(vcpu), 4385 is_cr4_pse(context), 4386 guest_cpuid_is_amd_or_hygon(vcpu)); 4387 } 4388 4389 static void 4390 __reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check, 4391 u64 pa_bits_rsvd, bool execonly) 4392 { 4393 u64 high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 51); 4394 u64 bad_mt_xwr; 4395 4396 rsvd_check->rsvd_bits_mask[0][4] = high_bits_rsvd | rsvd_bits(3, 7); 4397 rsvd_check->rsvd_bits_mask[0][3] = high_bits_rsvd | rsvd_bits(3, 7); 4398 rsvd_check->rsvd_bits_mask[0][2] = high_bits_rsvd | rsvd_bits(3, 6); 4399 rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd | rsvd_bits(3, 6); 4400 rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd; 4401 4402 /* large page */ 4403 rsvd_check->rsvd_bits_mask[1][4] = rsvd_check->rsvd_bits_mask[0][4]; 4404 rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3]; 4405 rsvd_check->rsvd_bits_mask[1][2] = high_bits_rsvd | rsvd_bits(12, 29); 4406 rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd | rsvd_bits(12, 20); 4407 rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0]; 4408 4409 bad_mt_xwr = 0xFFull << (2 * 8); /* bits 3..5 must not be 2 */ 4410 bad_mt_xwr |= 0xFFull << (3 * 8); /* bits 3..5 must not be 3 */ 4411 bad_mt_xwr |= 0xFFull << (7 * 8); /* bits 3..5 must not be 7 */ 4412 bad_mt_xwr |= REPEAT_BYTE(1ull << 2); /* bits 0..2 must not be 010 */ 4413 bad_mt_xwr |= REPEAT_BYTE(1ull << 6); /* bits 0..2 must not be 110 */ 4414 if (!execonly) { 4415 /* bits 0..2 must not be 100 unless VMX capabilities allow it */ 4416 bad_mt_xwr |= REPEAT_BYTE(1ull << 4); 4417 } 4418 rsvd_check->bad_mt_xwr = bad_mt_xwr; 4419 } 4420 4421 static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu, 4422 struct kvm_mmu *context, bool execonly) 4423 { 4424 __reset_rsvds_bits_mask_ept(&context->guest_rsvd_check, 4425 vcpu->arch.reserved_gpa_bits, execonly); 4426 } 4427 4428 static inline u64 reserved_hpa_bits(void) 4429 { 4430 return rsvd_bits(shadow_phys_bits, 63); 4431 } 4432 4433 /* 4434 * the page table on host is the shadow page table for the page 4435 * table in guest or amd nested guest, its mmu features completely 4436 * follow the features in guest. 4437 */ 4438 static void reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, 4439 struct kvm_mmu *context) 4440 { 4441 /* 4442 * KVM uses NX when TDP is disabled to handle a variety of scenarios, 4443 * notably for huge SPTEs if iTLB multi-hit mitigation is enabled and 4444 * to generate correct permissions for CR0.WP=0/CR4.SMEP=1/EFER.NX=0. 4445 * The iTLB multi-hit workaround can be toggled at any time, so assume 4446 * NX can be used by any non-nested shadow MMU to avoid having to reset 4447 * MMU contexts. Note, KVM forces EFER.NX=1 when TDP is disabled. 4448 */ 4449 bool uses_nx = is_efer_nx(context) || !tdp_enabled; 4450 4451 /* @amd adds a check on bit of SPTEs, which KVM shouldn't use anyways. */ 4452 bool is_amd = true; 4453 /* KVM doesn't use 2-level page tables for the shadow MMU. */ 4454 bool is_pse = false; 4455 struct rsvd_bits_validate *shadow_zero_check; 4456 int i; 4457 4458 WARN_ON_ONCE(context->shadow_root_level < PT32E_ROOT_LEVEL); 4459 4460 shadow_zero_check = &context->shadow_zero_check; 4461 __reset_rsvds_bits_mask(shadow_zero_check, reserved_hpa_bits(), 4462 context->shadow_root_level, uses_nx, 4463 guest_can_use_gbpages(vcpu), is_pse, is_amd); 4464 4465 if (!shadow_me_mask) 4466 return; 4467 4468 for (i = context->shadow_root_level; --i >= 0;) { 4469 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask; 4470 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask; 4471 } 4472 4473 } 4474 4475 static inline bool boot_cpu_is_amd(void) 4476 { 4477 WARN_ON_ONCE(!tdp_enabled); 4478 return shadow_x_mask == 0; 4479 } 4480 4481 /* 4482 * the direct page table on host, use as much mmu features as 4483 * possible, however, kvm currently does not do execution-protection. 4484 */ 4485 static void 4486 reset_tdp_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, 4487 struct kvm_mmu *context) 4488 { 4489 struct rsvd_bits_validate *shadow_zero_check; 4490 int i; 4491 4492 shadow_zero_check = &context->shadow_zero_check; 4493 4494 if (boot_cpu_is_amd()) 4495 __reset_rsvds_bits_mask(shadow_zero_check, reserved_hpa_bits(), 4496 context->shadow_root_level, false, 4497 boot_cpu_has(X86_FEATURE_GBPAGES), 4498 false, true); 4499 else 4500 __reset_rsvds_bits_mask_ept(shadow_zero_check, 4501 reserved_hpa_bits(), false); 4502 4503 if (!shadow_me_mask) 4504 return; 4505 4506 for (i = context->shadow_root_level; --i >= 0;) { 4507 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask; 4508 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask; 4509 } 4510 } 4511 4512 /* 4513 * as the comments in reset_shadow_zero_bits_mask() except it 4514 * is the shadow page table for intel nested guest. 4515 */ 4516 static void 4517 reset_ept_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, 4518 struct kvm_mmu *context, bool execonly) 4519 { 4520 __reset_rsvds_bits_mask_ept(&context->shadow_zero_check, 4521 reserved_hpa_bits(), execonly); 4522 } 4523 4524 #define BYTE_MASK(access) \ 4525 ((1 & (access) ? 2 : 0) | \ 4526 (2 & (access) ? 4 : 0) | \ 4527 (3 & (access) ? 8 : 0) | \ 4528 (4 & (access) ? 16 : 0) | \ 4529 (5 & (access) ? 32 : 0) | \ 4530 (6 & (access) ? 64 : 0) | \ 4531 (7 & (access) ? 128 : 0)) 4532 4533 4534 static void update_permission_bitmask(struct kvm_mmu *mmu, bool ept) 4535 { 4536 unsigned byte; 4537 4538 const u8 x = BYTE_MASK(ACC_EXEC_MASK); 4539 const u8 w = BYTE_MASK(ACC_WRITE_MASK); 4540 const u8 u = BYTE_MASK(ACC_USER_MASK); 4541 4542 bool cr4_smep = is_cr4_smep(mmu); 4543 bool cr4_smap = is_cr4_smap(mmu); 4544 bool cr0_wp = is_cr0_wp(mmu); 4545 bool efer_nx = is_efer_nx(mmu); 4546 4547 for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) { 4548 unsigned pfec = byte << 1; 4549 4550 /* 4551 * Each "*f" variable has a 1 bit for each UWX value 4552 * that causes a fault with the given PFEC. 4553 */ 4554 4555 /* Faults from writes to non-writable pages */ 4556 u8 wf = (pfec & PFERR_WRITE_MASK) ? (u8)~w : 0; 4557 /* Faults from user mode accesses to supervisor pages */ 4558 u8 uf = (pfec & PFERR_USER_MASK) ? (u8)~u : 0; 4559 /* Faults from fetches of non-executable pages*/ 4560 u8 ff = (pfec & PFERR_FETCH_MASK) ? (u8)~x : 0; 4561 /* Faults from kernel mode fetches of user pages */ 4562 u8 smepf = 0; 4563 /* Faults from kernel mode accesses of user pages */ 4564 u8 smapf = 0; 4565 4566 if (!ept) { 4567 /* Faults from kernel mode accesses to user pages */ 4568 u8 kf = (pfec & PFERR_USER_MASK) ? 0 : u; 4569 4570 /* Not really needed: !nx will cause pte.nx to fault */ 4571 if (!efer_nx) 4572 ff = 0; 4573 4574 /* Allow supervisor writes if !cr0.wp */ 4575 if (!cr0_wp) 4576 wf = (pfec & PFERR_USER_MASK) ? wf : 0; 4577 4578 /* Disallow supervisor fetches of user code if cr4.smep */ 4579 if (cr4_smep) 4580 smepf = (pfec & PFERR_FETCH_MASK) ? kf : 0; 4581 4582 /* 4583 * SMAP:kernel-mode data accesses from user-mode 4584 * mappings should fault. A fault is considered 4585 * as a SMAP violation if all of the following 4586 * conditions are true: 4587 * - X86_CR4_SMAP is set in CR4 4588 * - A user page is accessed 4589 * - The access is not a fetch 4590 * - Page fault in kernel mode 4591 * - if CPL = 3 or X86_EFLAGS_AC is clear 4592 * 4593 * Here, we cover the first three conditions. 4594 * The fourth is computed dynamically in permission_fault(); 4595 * PFERR_RSVD_MASK bit will be set in PFEC if the access is 4596 * *not* subject to SMAP restrictions. 4597 */ 4598 if (cr4_smap) 4599 smapf = (pfec & (PFERR_RSVD_MASK|PFERR_FETCH_MASK)) ? 0 : kf; 4600 } 4601 4602 mmu->permissions[byte] = ff | uf | wf | smepf | smapf; 4603 } 4604 } 4605 4606 /* 4607 * PKU is an additional mechanism by which the paging controls access to 4608 * user-mode addresses based on the value in the PKRU register. Protection 4609 * key violations are reported through a bit in the page fault error code. 4610 * Unlike other bits of the error code, the PK bit is not known at the 4611 * call site of e.g. gva_to_gpa; it must be computed directly in 4612 * permission_fault based on two bits of PKRU, on some machine state (CR4, 4613 * CR0, EFER, CPL), and on other bits of the error code and the page tables. 4614 * 4615 * In particular the following conditions come from the error code, the 4616 * page tables and the machine state: 4617 * - PK is always zero unless CR4.PKE=1 and EFER.LMA=1 4618 * - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch) 4619 * - PK is always zero if U=0 in the page tables 4620 * - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access. 4621 * 4622 * The PKRU bitmask caches the result of these four conditions. The error 4623 * code (minus the P bit) and the page table's U bit form an index into the 4624 * PKRU bitmask. Two bits of the PKRU bitmask are then extracted and ANDed 4625 * with the two bits of the PKRU register corresponding to the protection key. 4626 * For the first three conditions above the bits will be 00, thus masking 4627 * away both AD and WD. For all reads or if the last condition holds, WD 4628 * only will be masked away. 4629 */ 4630 static void update_pkru_bitmask(struct kvm_mmu *mmu) 4631 { 4632 unsigned bit; 4633 bool wp; 4634 4635 mmu->pkru_mask = 0; 4636 4637 if (!is_cr4_pke(mmu)) 4638 return; 4639 4640 wp = is_cr0_wp(mmu); 4641 4642 for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) { 4643 unsigned pfec, pkey_bits; 4644 bool check_pkey, check_write, ff, uf, wf, pte_user; 4645 4646 pfec = bit << 1; 4647 ff = pfec & PFERR_FETCH_MASK; 4648 uf = pfec & PFERR_USER_MASK; 4649 wf = pfec & PFERR_WRITE_MASK; 4650 4651 /* PFEC.RSVD is replaced by ACC_USER_MASK. */ 4652 pte_user = pfec & PFERR_RSVD_MASK; 4653 4654 /* 4655 * Only need to check the access which is not an 4656 * instruction fetch and is to a user page. 4657 */ 4658 check_pkey = (!ff && pte_user); 4659 /* 4660 * write access is controlled by PKRU if it is a 4661 * user access or CR0.WP = 1. 4662 */ 4663 check_write = check_pkey && wf && (uf || wp); 4664 4665 /* PKRU.AD stops both read and write access. */ 4666 pkey_bits = !!check_pkey; 4667 /* PKRU.WD stops write access. */ 4668 pkey_bits |= (!!check_write) << 1; 4669 4670 mmu->pkru_mask |= (pkey_bits & 3) << pfec; 4671 } 4672 } 4673 4674 static void reset_guest_paging_metadata(struct kvm_vcpu *vcpu, 4675 struct kvm_mmu *mmu) 4676 { 4677 if (!is_cr0_pg(mmu)) 4678 return; 4679 4680 reset_rsvds_bits_mask(vcpu, mmu); 4681 update_permission_bitmask(mmu, false); 4682 update_pkru_bitmask(mmu); 4683 } 4684 4685 static void paging64_init_context(struct kvm_mmu *context) 4686 { 4687 context->page_fault = paging64_page_fault; 4688 context->gva_to_gpa = paging64_gva_to_gpa; 4689 context->sync_page = paging64_sync_page; 4690 context->invlpg = paging64_invlpg; 4691 context->direct_map = false; 4692 } 4693 4694 static void paging32_init_context(struct kvm_mmu *context) 4695 { 4696 context->page_fault = paging32_page_fault; 4697 context->gva_to_gpa = paging32_gva_to_gpa; 4698 context->sync_page = paging32_sync_page; 4699 context->invlpg = paging32_invlpg; 4700 context->direct_map = false; 4701 } 4702 4703 static union kvm_mmu_extended_role kvm_calc_mmu_role_ext(struct kvm_vcpu *vcpu, 4704 struct kvm_mmu_role_regs *regs) 4705 { 4706 union kvm_mmu_extended_role ext = {0}; 4707 4708 if (____is_cr0_pg(regs)) { 4709 ext.cr0_pg = 1; 4710 ext.cr4_pae = ____is_cr4_pae(regs); 4711 ext.cr4_smep = ____is_cr4_smep(regs); 4712 ext.cr4_smap = ____is_cr4_smap(regs); 4713 ext.cr4_pse = ____is_cr4_pse(regs); 4714 4715 /* PKEY and LA57 are active iff long mode is active. */ 4716 ext.cr4_pke = ____is_efer_lma(regs) && ____is_cr4_pke(regs); 4717 ext.cr4_la57 = ____is_efer_lma(regs) && ____is_cr4_la57(regs); 4718 ext.efer_lma = ____is_efer_lma(regs); 4719 } 4720 4721 ext.valid = 1; 4722 4723 return ext; 4724 } 4725 4726 static union kvm_mmu_role kvm_calc_mmu_role_common(struct kvm_vcpu *vcpu, 4727 struct kvm_mmu_role_regs *regs, 4728 bool base_only) 4729 { 4730 union kvm_mmu_role role = {0}; 4731 4732 role.base.access = ACC_ALL; 4733 if (____is_cr0_pg(regs)) { 4734 role.base.efer_nx = ____is_efer_nx(regs); 4735 role.base.cr0_wp = ____is_cr0_wp(regs); 4736 } 4737 role.base.smm = is_smm(vcpu); 4738 role.base.guest_mode = is_guest_mode(vcpu); 4739 4740 if (base_only) 4741 return role; 4742 4743 role.ext = kvm_calc_mmu_role_ext(vcpu, regs); 4744 4745 return role; 4746 } 4747 4748 static inline int kvm_mmu_get_tdp_level(struct kvm_vcpu *vcpu) 4749 { 4750 /* tdp_root_level is architecture forced level, use it if nonzero */ 4751 if (tdp_root_level) 4752 return tdp_root_level; 4753 4754 /* Use 5-level TDP if and only if it's useful/necessary. */ 4755 if (max_tdp_level == 5 && cpuid_maxphyaddr(vcpu) <= 48) 4756 return 4; 4757 4758 return max_tdp_level; 4759 } 4760 4761 static union kvm_mmu_role 4762 kvm_calc_tdp_mmu_root_page_role(struct kvm_vcpu *vcpu, 4763 struct kvm_mmu_role_regs *regs, bool base_only) 4764 { 4765 union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, regs, base_only); 4766 4767 role.base.ad_disabled = (shadow_accessed_mask == 0); 4768 role.base.level = kvm_mmu_get_tdp_level(vcpu); 4769 role.base.direct = true; 4770 role.base.gpte_is_8_bytes = true; 4771 4772 return role; 4773 } 4774 4775 static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu) 4776 { 4777 struct kvm_mmu *context = &vcpu->arch.root_mmu; 4778 struct kvm_mmu_role_regs regs = vcpu_to_role_regs(vcpu); 4779 union kvm_mmu_role new_role = 4780 kvm_calc_tdp_mmu_root_page_role(vcpu, ®s, false); 4781 4782 if (new_role.as_u64 == context->mmu_role.as_u64) 4783 return; 4784 4785 context->mmu_role.as_u64 = new_role.as_u64; 4786 context->page_fault = kvm_tdp_page_fault; 4787 context->sync_page = nonpaging_sync_page; 4788 context->invlpg = NULL; 4789 context->shadow_root_level = kvm_mmu_get_tdp_level(vcpu); 4790 context->direct_map = true; 4791 context->get_guest_pgd = get_cr3; 4792 context->get_pdptr = kvm_pdptr_read; 4793 context->inject_page_fault = kvm_inject_page_fault; 4794 context->root_level = role_regs_to_root_level(®s); 4795 4796 if (!is_cr0_pg(context)) 4797 context->gva_to_gpa = nonpaging_gva_to_gpa; 4798 else if (is_cr4_pae(context)) 4799 context->gva_to_gpa = paging64_gva_to_gpa; 4800 else 4801 context->gva_to_gpa = paging32_gva_to_gpa; 4802 4803 reset_guest_paging_metadata(vcpu, context); 4804 reset_tdp_shadow_zero_bits_mask(vcpu, context); 4805 } 4806 4807 static union kvm_mmu_role 4808 kvm_calc_shadow_root_page_role_common(struct kvm_vcpu *vcpu, 4809 struct kvm_mmu_role_regs *regs, bool base_only) 4810 { 4811 union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, regs, base_only); 4812 4813 role.base.smep_andnot_wp = role.ext.cr4_smep && !____is_cr0_wp(regs); 4814 role.base.smap_andnot_wp = role.ext.cr4_smap && !____is_cr0_wp(regs); 4815 role.base.gpte_is_8_bytes = ____is_cr0_pg(regs) && ____is_cr4_pae(regs); 4816 4817 return role; 4818 } 4819 4820 static union kvm_mmu_role 4821 kvm_calc_shadow_mmu_root_page_role(struct kvm_vcpu *vcpu, 4822 struct kvm_mmu_role_regs *regs, bool base_only) 4823 { 4824 union kvm_mmu_role role = 4825 kvm_calc_shadow_root_page_role_common(vcpu, regs, base_only); 4826 4827 role.base.direct = !____is_cr0_pg(regs); 4828 4829 if (!____is_efer_lma(regs)) 4830 role.base.level = PT32E_ROOT_LEVEL; 4831 else if (____is_cr4_la57(regs)) 4832 role.base.level = PT64_ROOT_5LEVEL; 4833 else 4834 role.base.level = PT64_ROOT_4LEVEL; 4835 4836 return role; 4837 } 4838 4839 static void shadow_mmu_init_context(struct kvm_vcpu *vcpu, struct kvm_mmu *context, 4840 struct kvm_mmu_role_regs *regs, 4841 union kvm_mmu_role new_role) 4842 { 4843 if (new_role.as_u64 == context->mmu_role.as_u64) 4844 return; 4845 4846 context->mmu_role.as_u64 = new_role.as_u64; 4847 4848 if (!is_cr0_pg(context)) 4849 nonpaging_init_context(context); 4850 else if (is_cr4_pae(context)) 4851 paging64_init_context(context); 4852 else 4853 paging32_init_context(context); 4854 context->root_level = role_regs_to_root_level(regs); 4855 4856 reset_guest_paging_metadata(vcpu, context); 4857 context->shadow_root_level = new_role.base.level; 4858 4859 reset_shadow_zero_bits_mask(vcpu, context); 4860 } 4861 4862 static void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, 4863 struct kvm_mmu_role_regs *regs) 4864 { 4865 struct kvm_mmu *context = &vcpu->arch.root_mmu; 4866 union kvm_mmu_role new_role = 4867 kvm_calc_shadow_mmu_root_page_role(vcpu, regs, false); 4868 4869 shadow_mmu_init_context(vcpu, context, regs, new_role); 4870 } 4871 4872 static union kvm_mmu_role 4873 kvm_calc_shadow_npt_root_page_role(struct kvm_vcpu *vcpu, 4874 struct kvm_mmu_role_regs *regs) 4875 { 4876 union kvm_mmu_role role = 4877 kvm_calc_shadow_root_page_role_common(vcpu, regs, false); 4878 4879 role.base.direct = false; 4880 role.base.level = kvm_mmu_get_tdp_level(vcpu); 4881 4882 return role; 4883 } 4884 4885 void kvm_init_shadow_npt_mmu(struct kvm_vcpu *vcpu, unsigned long cr0, 4886 unsigned long cr4, u64 efer, gpa_t nested_cr3) 4887 { 4888 struct kvm_mmu *context = &vcpu->arch.guest_mmu; 4889 struct kvm_mmu_role_regs regs = { 4890 .cr0 = cr0, 4891 .cr4 = cr4 & ~X86_CR4_PKE, 4892 .efer = efer, 4893 }; 4894 union kvm_mmu_role new_role; 4895 4896 new_role = kvm_calc_shadow_npt_root_page_role(vcpu, ®s); 4897 4898 __kvm_mmu_new_pgd(vcpu, nested_cr3, new_role.base); 4899 4900 shadow_mmu_init_context(vcpu, context, ®s, new_role); 4901 } 4902 EXPORT_SYMBOL_GPL(kvm_init_shadow_npt_mmu); 4903 4904 static union kvm_mmu_role 4905 kvm_calc_shadow_ept_root_page_role(struct kvm_vcpu *vcpu, bool accessed_dirty, 4906 bool execonly, u8 level) 4907 { 4908 union kvm_mmu_role role = {0}; 4909 4910 /* SMM flag is inherited from root_mmu */ 4911 role.base.smm = vcpu->arch.root_mmu.mmu_role.base.smm; 4912 4913 role.base.level = level; 4914 role.base.gpte_is_8_bytes = true; 4915 role.base.direct = false; 4916 role.base.ad_disabled = !accessed_dirty; 4917 role.base.guest_mode = true; 4918 role.base.access = ACC_ALL; 4919 4920 /* EPT, and thus nested EPT, does not consume CR0, CR4, nor EFER. */ 4921 role.ext.word = 0; 4922 role.ext.execonly = execonly; 4923 role.ext.valid = 1; 4924 4925 return role; 4926 } 4927 4928 void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly, 4929 bool accessed_dirty, gpa_t new_eptp) 4930 { 4931 struct kvm_mmu *context = &vcpu->arch.guest_mmu; 4932 u8 level = vmx_eptp_page_walk_level(new_eptp); 4933 union kvm_mmu_role new_role = 4934 kvm_calc_shadow_ept_root_page_role(vcpu, accessed_dirty, 4935 execonly, level); 4936 4937 __kvm_mmu_new_pgd(vcpu, new_eptp, new_role.base); 4938 4939 if (new_role.as_u64 == context->mmu_role.as_u64) 4940 return; 4941 4942 context->mmu_role.as_u64 = new_role.as_u64; 4943 4944 context->shadow_root_level = level; 4945 4946 context->ept_ad = accessed_dirty; 4947 context->page_fault = ept_page_fault; 4948 context->gva_to_gpa = ept_gva_to_gpa; 4949 context->sync_page = ept_sync_page; 4950 context->invlpg = ept_invlpg; 4951 context->root_level = level; 4952 context->direct_map = false; 4953 4954 update_permission_bitmask(context, true); 4955 context->pkru_mask = 0; 4956 reset_rsvds_bits_mask_ept(vcpu, context, execonly); 4957 reset_ept_shadow_zero_bits_mask(vcpu, context, execonly); 4958 } 4959 EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu); 4960 4961 static void init_kvm_softmmu(struct kvm_vcpu *vcpu) 4962 { 4963 struct kvm_mmu *context = &vcpu->arch.root_mmu; 4964 struct kvm_mmu_role_regs regs = vcpu_to_role_regs(vcpu); 4965 4966 kvm_init_shadow_mmu(vcpu, ®s); 4967 4968 context->get_guest_pgd = get_cr3; 4969 context->get_pdptr = kvm_pdptr_read; 4970 context->inject_page_fault = kvm_inject_page_fault; 4971 } 4972 4973 static union kvm_mmu_role 4974 kvm_calc_nested_mmu_role(struct kvm_vcpu *vcpu, struct kvm_mmu_role_regs *regs) 4975 { 4976 union kvm_mmu_role role; 4977 4978 role = kvm_calc_shadow_root_page_role_common(vcpu, regs, false); 4979 4980 /* 4981 * Nested MMUs are used only for walking L2's gva->gpa, they never have 4982 * shadow pages of their own and so "direct" has no meaning. Set it 4983 * to "true" to try to detect bogus usage of the nested MMU. 4984 */ 4985 role.base.direct = true; 4986 role.base.level = role_regs_to_root_level(regs); 4987 return role; 4988 } 4989 4990 static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu) 4991 { 4992 struct kvm_mmu_role_regs regs = vcpu_to_role_regs(vcpu); 4993 union kvm_mmu_role new_role = kvm_calc_nested_mmu_role(vcpu, ®s); 4994 struct kvm_mmu *g_context = &vcpu->arch.nested_mmu; 4995 4996 if (new_role.as_u64 == g_context->mmu_role.as_u64) 4997 return; 4998 4999 g_context->mmu_role.as_u64 = new_role.as_u64; 5000 g_context->get_guest_pgd = get_cr3; 5001 g_context->get_pdptr = kvm_pdptr_read; 5002 g_context->inject_page_fault = kvm_inject_page_fault; 5003 g_context->root_level = new_role.base.level; 5004 5005 /* 5006 * L2 page tables are never shadowed, so there is no need to sync 5007 * SPTEs. 5008 */ 5009 g_context->invlpg = NULL; 5010 5011 /* 5012 * Note that arch.mmu->gva_to_gpa translates l2_gpa to l1_gpa using 5013 * L1's nested page tables (e.g. EPT12). The nested translation 5014 * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using 5015 * L2's page tables as the first level of translation and L1's 5016 * nested page tables as the second level of translation. Basically 5017 * the gva_to_gpa functions between mmu and nested_mmu are swapped. 5018 */ 5019 if (!is_paging(vcpu)) 5020 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested; 5021 else if (is_long_mode(vcpu)) 5022 g_context->gva_to_gpa = paging64_gva_to_gpa_nested; 5023 else if (is_pae(vcpu)) 5024 g_context->gva_to_gpa = paging64_gva_to_gpa_nested; 5025 else 5026 g_context->gva_to_gpa = paging32_gva_to_gpa_nested; 5027 5028 reset_guest_paging_metadata(vcpu, g_context); 5029 } 5030 5031 void kvm_init_mmu(struct kvm_vcpu *vcpu) 5032 { 5033 if (mmu_is_nested(vcpu)) 5034 init_kvm_nested_mmu(vcpu); 5035 else if (tdp_enabled) 5036 init_kvm_tdp_mmu(vcpu); 5037 else 5038 init_kvm_softmmu(vcpu); 5039 } 5040 EXPORT_SYMBOL_GPL(kvm_init_mmu); 5041 5042 static union kvm_mmu_page_role 5043 kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu) 5044 { 5045 struct kvm_mmu_role_regs regs = vcpu_to_role_regs(vcpu); 5046 union kvm_mmu_role role; 5047 5048 if (tdp_enabled) 5049 role = kvm_calc_tdp_mmu_root_page_role(vcpu, ®s, true); 5050 else 5051 role = kvm_calc_shadow_mmu_root_page_role(vcpu, ®s, true); 5052 5053 return role.base; 5054 } 5055 5056 void kvm_mmu_after_set_cpuid(struct kvm_vcpu *vcpu) 5057 { 5058 /* 5059 * Invalidate all MMU roles to force them to reinitialize as CPUID 5060 * information is factored into reserved bit calculations. 5061 * 5062 * Correctly handling multiple vCPU models with respect to paging and 5063 * physical address properties) in a single VM would require tracking 5064 * all relevant CPUID information in kvm_mmu_page_role. That is very 5065 * undesirable as it would increase the memory requirements for 5066 * gfn_track (see struct kvm_mmu_page_role comments). For now that 5067 * problem is swept under the rug; KVM's CPUID API is horrific and 5068 * it's all but impossible to solve it without introducing a new API. 5069 */ 5070 vcpu->arch.root_mmu.mmu_role.ext.valid = 0; 5071 vcpu->arch.guest_mmu.mmu_role.ext.valid = 0; 5072 vcpu->arch.nested_mmu.mmu_role.ext.valid = 0; 5073 kvm_mmu_reset_context(vcpu); 5074 5075 /* 5076 * Changing guest CPUID after KVM_RUN is forbidden, see the comment in 5077 * kvm_arch_vcpu_ioctl(). 5078 */ 5079 KVM_BUG_ON(vcpu->arch.last_vmentry_cpu != -1, vcpu->kvm); 5080 } 5081 5082 void kvm_mmu_reset_context(struct kvm_vcpu *vcpu) 5083 { 5084 kvm_mmu_unload(vcpu); 5085 kvm_init_mmu(vcpu); 5086 } 5087 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context); 5088 5089 int kvm_mmu_load(struct kvm_vcpu *vcpu) 5090 { 5091 int r; 5092 5093 r = mmu_topup_memory_caches(vcpu, !vcpu->arch.mmu->direct_map); 5094 if (r) 5095 goto out; 5096 r = mmu_alloc_special_roots(vcpu); 5097 if (r) 5098 goto out; 5099 if (vcpu->arch.mmu->direct_map) 5100 r = mmu_alloc_direct_roots(vcpu); 5101 else 5102 r = mmu_alloc_shadow_roots(vcpu); 5103 if (r) 5104 goto out; 5105 5106 kvm_mmu_sync_roots(vcpu); 5107 5108 kvm_mmu_load_pgd(vcpu); 5109 static_call(kvm_x86_tlb_flush_current)(vcpu); 5110 out: 5111 return r; 5112 } 5113 5114 void kvm_mmu_unload(struct kvm_vcpu *vcpu) 5115 { 5116 kvm_mmu_free_roots(vcpu, &vcpu->arch.root_mmu, KVM_MMU_ROOTS_ALL); 5117 WARN_ON(VALID_PAGE(vcpu->arch.root_mmu.root_hpa)); 5118 kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL); 5119 WARN_ON(VALID_PAGE(vcpu->arch.guest_mmu.root_hpa)); 5120 } 5121 5122 static bool need_remote_flush(u64 old, u64 new) 5123 { 5124 if (!is_shadow_present_pte(old)) 5125 return false; 5126 if (!is_shadow_present_pte(new)) 5127 return true; 5128 if ((old ^ new) & PT64_BASE_ADDR_MASK) 5129 return true; 5130 old ^= shadow_nx_mask; 5131 new ^= shadow_nx_mask; 5132 return (old & ~new & PT64_PERM_MASK) != 0; 5133 } 5134 5135 static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa, 5136 int *bytes) 5137 { 5138 u64 gentry = 0; 5139 int r; 5140 5141 /* 5142 * Assume that the pte write on a page table of the same type 5143 * as the current vcpu paging mode since we update the sptes only 5144 * when they have the same mode. 5145 */ 5146 if (is_pae(vcpu) && *bytes == 4) { 5147 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */ 5148 *gpa &= ~(gpa_t)7; 5149 *bytes = 8; 5150 } 5151 5152 if (*bytes == 4 || *bytes == 8) { 5153 r = kvm_vcpu_read_guest_atomic(vcpu, *gpa, &gentry, *bytes); 5154 if (r) 5155 gentry = 0; 5156 } 5157 5158 return gentry; 5159 } 5160 5161 /* 5162 * If we're seeing too many writes to a page, it may no longer be a page table, 5163 * or we may be forking, in which case it is better to unmap the page. 5164 */ 5165 static bool detect_write_flooding(struct kvm_mmu_page *sp) 5166 { 5167 /* 5168 * Skip write-flooding detected for the sp whose level is 1, because 5169 * it can become unsync, then the guest page is not write-protected. 5170 */ 5171 if (sp->role.level == PG_LEVEL_4K) 5172 return false; 5173 5174 atomic_inc(&sp->write_flooding_count); 5175 return atomic_read(&sp->write_flooding_count) >= 3; 5176 } 5177 5178 /* 5179 * Misaligned accesses are too much trouble to fix up; also, they usually 5180 * indicate a page is not used as a page table. 5181 */ 5182 static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa, 5183 int bytes) 5184 { 5185 unsigned offset, pte_size, misaligned; 5186 5187 pgprintk("misaligned: gpa %llx bytes %d role %x\n", 5188 gpa, bytes, sp->role.word); 5189 5190 offset = offset_in_page(gpa); 5191 pte_size = sp->role.gpte_is_8_bytes ? 8 : 4; 5192 5193 /* 5194 * Sometimes, the OS only writes the last one bytes to update status 5195 * bits, for example, in linux, andb instruction is used in clear_bit(). 5196 */ 5197 if (!(offset & (pte_size - 1)) && bytes == 1) 5198 return false; 5199 5200 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1); 5201 misaligned |= bytes < 4; 5202 5203 return misaligned; 5204 } 5205 5206 static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte) 5207 { 5208 unsigned page_offset, quadrant; 5209 u64 *spte; 5210 int level; 5211 5212 page_offset = offset_in_page(gpa); 5213 level = sp->role.level; 5214 *nspte = 1; 5215 if (!sp->role.gpte_is_8_bytes) { 5216 page_offset <<= 1; /* 32->64 */ 5217 /* 5218 * A 32-bit pde maps 4MB while the shadow pdes map 5219 * only 2MB. So we need to double the offset again 5220 * and zap two pdes instead of one. 5221 */ 5222 if (level == PT32_ROOT_LEVEL) { 5223 page_offset &= ~7; /* kill rounding error */ 5224 page_offset <<= 1; 5225 *nspte = 2; 5226 } 5227 quadrant = page_offset >> PAGE_SHIFT; 5228 page_offset &= ~PAGE_MASK; 5229 if (quadrant != sp->role.quadrant) 5230 return NULL; 5231 } 5232 5233 spte = &sp->spt[page_offset / sizeof(*spte)]; 5234 return spte; 5235 } 5236 5237 static void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa, 5238 const u8 *new, int bytes, 5239 struct kvm_page_track_notifier_node *node) 5240 { 5241 gfn_t gfn = gpa >> PAGE_SHIFT; 5242 struct kvm_mmu_page *sp; 5243 LIST_HEAD(invalid_list); 5244 u64 entry, gentry, *spte; 5245 int npte; 5246 bool flush = false; 5247 5248 /* 5249 * If we don't have indirect shadow pages, it means no page is 5250 * write-protected, so we can exit simply. 5251 */ 5252 if (!READ_ONCE(vcpu->kvm->arch.indirect_shadow_pages)) 5253 return; 5254 5255 pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes); 5256 5257 /* 5258 * No need to care whether allocation memory is successful 5259 * or not since pte prefetch is skipped if it does not have 5260 * enough objects in the cache. 5261 */ 5262 mmu_topup_memory_caches(vcpu, true); 5263 5264 write_lock(&vcpu->kvm->mmu_lock); 5265 5266 gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, &bytes); 5267 5268 ++vcpu->kvm->stat.mmu_pte_write; 5269 kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE); 5270 5271 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) { 5272 if (detect_write_misaligned(sp, gpa, bytes) || 5273 detect_write_flooding(sp)) { 5274 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list); 5275 ++vcpu->kvm->stat.mmu_flooded; 5276 continue; 5277 } 5278 5279 spte = get_written_sptes(sp, gpa, &npte); 5280 if (!spte) 5281 continue; 5282 5283 while (npte--) { 5284 entry = *spte; 5285 mmu_page_zap_pte(vcpu->kvm, sp, spte, NULL); 5286 if (gentry && sp->role.level != PG_LEVEL_4K) 5287 ++vcpu->kvm->stat.mmu_pde_zapped; 5288 if (need_remote_flush(entry, *spte)) 5289 flush = true; 5290 ++spte; 5291 } 5292 } 5293 kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, flush); 5294 kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE); 5295 write_unlock(&vcpu->kvm->mmu_lock); 5296 } 5297 5298 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 error_code, 5299 void *insn, int insn_len) 5300 { 5301 int r, emulation_type = EMULTYPE_PF; 5302 bool direct = vcpu->arch.mmu->direct_map; 5303 5304 if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa))) 5305 return RET_PF_RETRY; 5306 5307 r = RET_PF_INVALID; 5308 if (unlikely(error_code & PFERR_RSVD_MASK)) { 5309 r = handle_mmio_page_fault(vcpu, cr2_or_gpa, direct); 5310 if (r == RET_PF_EMULATE) 5311 goto emulate; 5312 } 5313 5314 if (r == RET_PF_INVALID) { 5315 r = kvm_mmu_do_page_fault(vcpu, cr2_or_gpa, 5316 lower_32_bits(error_code), false); 5317 if (KVM_BUG_ON(r == RET_PF_INVALID, vcpu->kvm)) 5318 return -EIO; 5319 } 5320 5321 if (r < 0) 5322 return r; 5323 if (r != RET_PF_EMULATE) 5324 return 1; 5325 5326 /* 5327 * Before emulating the instruction, check if the error code 5328 * was due to a RO violation while translating the guest page. 5329 * This can occur when using nested virtualization with nested 5330 * paging in both guests. If true, we simply unprotect the page 5331 * and resume the guest. 5332 */ 5333 if (vcpu->arch.mmu->direct_map && 5334 (error_code & PFERR_NESTED_GUEST_PAGE) == PFERR_NESTED_GUEST_PAGE) { 5335 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(cr2_or_gpa)); 5336 return 1; 5337 } 5338 5339 /* 5340 * vcpu->arch.mmu.page_fault returned RET_PF_EMULATE, but we can still 5341 * optimistically try to just unprotect the page and let the processor 5342 * re-execute the instruction that caused the page fault. Do not allow 5343 * retrying MMIO emulation, as it's not only pointless but could also 5344 * cause us to enter an infinite loop because the processor will keep 5345 * faulting on the non-existent MMIO address. Retrying an instruction 5346 * from a nested guest is also pointless and dangerous as we are only 5347 * explicitly shadowing L1's page tables, i.e. unprotecting something 5348 * for L1 isn't going to magically fix whatever issue cause L2 to fail. 5349 */ 5350 if (!mmio_info_in_cache(vcpu, cr2_or_gpa, direct) && !is_guest_mode(vcpu)) 5351 emulation_type |= EMULTYPE_ALLOW_RETRY_PF; 5352 emulate: 5353 return x86_emulate_instruction(vcpu, cr2_or_gpa, emulation_type, insn, 5354 insn_len); 5355 } 5356 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault); 5357 5358 void kvm_mmu_invalidate_gva(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, 5359 gva_t gva, hpa_t root_hpa) 5360 { 5361 int i; 5362 5363 /* It's actually a GPA for vcpu->arch.guest_mmu. */ 5364 if (mmu != &vcpu->arch.guest_mmu) { 5365 /* INVLPG on a non-canonical address is a NOP according to the SDM. */ 5366 if (is_noncanonical_address(gva, vcpu)) 5367 return; 5368 5369 static_call(kvm_x86_tlb_flush_gva)(vcpu, gva); 5370 } 5371 5372 if (!mmu->invlpg) 5373 return; 5374 5375 if (root_hpa == INVALID_PAGE) { 5376 mmu->invlpg(vcpu, gva, mmu->root_hpa); 5377 5378 /* 5379 * INVLPG is required to invalidate any global mappings for the VA, 5380 * irrespective of PCID. Since it would take us roughly similar amount 5381 * of work to determine whether any of the prev_root mappings of the VA 5382 * is marked global, or to just sync it blindly, so we might as well 5383 * just always sync it. 5384 * 5385 * Mappings not reachable via the current cr3 or the prev_roots will be 5386 * synced when switching to that cr3, so nothing needs to be done here 5387 * for them. 5388 */ 5389 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 5390 if (VALID_PAGE(mmu->prev_roots[i].hpa)) 5391 mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa); 5392 } else { 5393 mmu->invlpg(vcpu, gva, root_hpa); 5394 } 5395 } 5396 5397 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva) 5398 { 5399 kvm_mmu_invalidate_gva(vcpu, vcpu->arch.walk_mmu, gva, INVALID_PAGE); 5400 ++vcpu->stat.invlpg; 5401 } 5402 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg); 5403 5404 5405 void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid) 5406 { 5407 struct kvm_mmu *mmu = vcpu->arch.mmu; 5408 bool tlb_flush = false; 5409 uint i; 5410 5411 if (pcid == kvm_get_active_pcid(vcpu)) { 5412 mmu->invlpg(vcpu, gva, mmu->root_hpa); 5413 tlb_flush = true; 5414 } 5415 5416 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) { 5417 if (VALID_PAGE(mmu->prev_roots[i].hpa) && 5418 pcid == kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd)) { 5419 mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa); 5420 tlb_flush = true; 5421 } 5422 } 5423 5424 if (tlb_flush) 5425 static_call(kvm_x86_tlb_flush_gva)(vcpu, gva); 5426 5427 ++vcpu->stat.invlpg; 5428 5429 /* 5430 * Mappings not reachable via the current cr3 or the prev_roots will be 5431 * synced when switching to that cr3, so nothing needs to be done here 5432 * for them. 5433 */ 5434 } 5435 5436 void kvm_configure_mmu(bool enable_tdp, int tdp_forced_root_level, 5437 int tdp_max_root_level, int tdp_huge_page_level) 5438 { 5439 tdp_enabled = enable_tdp; 5440 tdp_root_level = tdp_forced_root_level; 5441 max_tdp_level = tdp_max_root_level; 5442 5443 /* 5444 * max_huge_page_level reflects KVM's MMU capabilities irrespective 5445 * of kernel support, e.g. KVM may be capable of using 1GB pages when 5446 * the kernel is not. But, KVM never creates a page size greater than 5447 * what is used by the kernel for any given HVA, i.e. the kernel's 5448 * capabilities are ultimately consulted by kvm_mmu_hugepage_adjust(). 5449 */ 5450 if (tdp_enabled) 5451 max_huge_page_level = tdp_huge_page_level; 5452 else if (boot_cpu_has(X86_FEATURE_GBPAGES)) 5453 max_huge_page_level = PG_LEVEL_1G; 5454 else 5455 max_huge_page_level = PG_LEVEL_2M; 5456 } 5457 EXPORT_SYMBOL_GPL(kvm_configure_mmu); 5458 5459 /* The return value indicates if tlb flush on all vcpus is needed. */ 5460 typedef bool (*slot_level_handler) (struct kvm *kvm, 5461 struct kvm_rmap_head *rmap_head, 5462 const struct kvm_memory_slot *slot); 5463 5464 /* The caller should hold mmu-lock before calling this function. */ 5465 static __always_inline bool 5466 slot_handle_level_range(struct kvm *kvm, const struct kvm_memory_slot *memslot, 5467 slot_level_handler fn, int start_level, int end_level, 5468 gfn_t start_gfn, gfn_t end_gfn, bool flush_on_yield, 5469 bool flush) 5470 { 5471 struct slot_rmap_walk_iterator iterator; 5472 5473 for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn, 5474 end_gfn, &iterator) { 5475 if (iterator.rmap) 5476 flush |= fn(kvm, iterator.rmap, memslot); 5477 5478 if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) { 5479 if (flush && flush_on_yield) { 5480 kvm_flush_remote_tlbs_with_address(kvm, 5481 start_gfn, 5482 iterator.gfn - start_gfn + 1); 5483 flush = false; 5484 } 5485 cond_resched_rwlock_write(&kvm->mmu_lock); 5486 } 5487 } 5488 5489 return flush; 5490 } 5491 5492 static __always_inline bool 5493 slot_handle_level(struct kvm *kvm, const struct kvm_memory_slot *memslot, 5494 slot_level_handler fn, int start_level, int end_level, 5495 bool flush_on_yield) 5496 { 5497 return slot_handle_level_range(kvm, memslot, fn, start_level, 5498 end_level, memslot->base_gfn, 5499 memslot->base_gfn + memslot->npages - 1, 5500 flush_on_yield, false); 5501 } 5502 5503 static __always_inline bool 5504 slot_handle_level_4k(struct kvm *kvm, const struct kvm_memory_slot *memslot, 5505 slot_level_handler fn, bool flush_on_yield) 5506 { 5507 return slot_handle_level(kvm, memslot, fn, PG_LEVEL_4K, 5508 PG_LEVEL_4K, flush_on_yield); 5509 } 5510 5511 static void free_mmu_pages(struct kvm_mmu *mmu) 5512 { 5513 if (!tdp_enabled && mmu->pae_root) 5514 set_memory_encrypted((unsigned long)mmu->pae_root, 1); 5515 free_page((unsigned long)mmu->pae_root); 5516 free_page((unsigned long)mmu->pml4_root); 5517 free_page((unsigned long)mmu->pml5_root); 5518 } 5519 5520 static int __kvm_mmu_create(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu) 5521 { 5522 struct page *page; 5523 int i; 5524 5525 mmu->root_hpa = INVALID_PAGE; 5526 mmu->root_pgd = 0; 5527 mmu->translate_gpa = translate_gpa; 5528 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 5529 mmu->prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID; 5530 5531 /* 5532 * When using PAE paging, the four PDPTEs are treated as 'root' pages, 5533 * while the PDP table is a per-vCPU construct that's allocated at MMU 5534 * creation. When emulating 32-bit mode, cr3 is only 32 bits even on 5535 * x86_64. Therefore we need to allocate the PDP table in the first 5536 * 4GB of memory, which happens to fit the DMA32 zone. TDP paging 5537 * generally doesn't use PAE paging and can skip allocating the PDP 5538 * table. The main exception, handled here, is SVM's 32-bit NPT. The 5539 * other exception is for shadowing L1's 32-bit or PAE NPT on 64-bit 5540 * KVM; that horror is handled on-demand by mmu_alloc_shadow_roots(). 5541 */ 5542 if (tdp_enabled && kvm_mmu_get_tdp_level(vcpu) > PT32E_ROOT_LEVEL) 5543 return 0; 5544 5545 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_DMA32); 5546 if (!page) 5547 return -ENOMEM; 5548 5549 mmu->pae_root = page_address(page); 5550 5551 /* 5552 * CR3 is only 32 bits when PAE paging is used, thus it's impossible to 5553 * get the CPU to treat the PDPTEs as encrypted. Decrypt the page so 5554 * that KVM's writes and the CPU's reads get along. Note, this is 5555 * only necessary when using shadow paging, as 64-bit NPT can get at 5556 * the C-bit even when shadowing 32-bit NPT, and SME isn't supported 5557 * by 32-bit kernels (when KVM itself uses 32-bit NPT). 5558 */ 5559 if (!tdp_enabled) 5560 set_memory_decrypted((unsigned long)mmu->pae_root, 1); 5561 else 5562 WARN_ON_ONCE(shadow_me_mask); 5563 5564 for (i = 0; i < 4; ++i) 5565 mmu->pae_root[i] = INVALID_PAE_ROOT; 5566 5567 return 0; 5568 } 5569 5570 int kvm_mmu_create(struct kvm_vcpu *vcpu) 5571 { 5572 int ret; 5573 5574 vcpu->arch.mmu_pte_list_desc_cache.kmem_cache = pte_list_desc_cache; 5575 vcpu->arch.mmu_pte_list_desc_cache.gfp_zero = __GFP_ZERO; 5576 5577 vcpu->arch.mmu_page_header_cache.kmem_cache = mmu_page_header_cache; 5578 vcpu->arch.mmu_page_header_cache.gfp_zero = __GFP_ZERO; 5579 5580 vcpu->arch.mmu_shadow_page_cache.gfp_zero = __GFP_ZERO; 5581 5582 vcpu->arch.mmu = &vcpu->arch.root_mmu; 5583 vcpu->arch.walk_mmu = &vcpu->arch.root_mmu; 5584 5585 vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa; 5586 5587 ret = __kvm_mmu_create(vcpu, &vcpu->arch.guest_mmu); 5588 if (ret) 5589 return ret; 5590 5591 ret = __kvm_mmu_create(vcpu, &vcpu->arch.root_mmu); 5592 if (ret) 5593 goto fail_allocate_root; 5594 5595 return ret; 5596 fail_allocate_root: 5597 free_mmu_pages(&vcpu->arch.guest_mmu); 5598 return ret; 5599 } 5600 5601 #define BATCH_ZAP_PAGES 10 5602 static void kvm_zap_obsolete_pages(struct kvm *kvm) 5603 { 5604 struct kvm_mmu_page *sp, *node; 5605 int nr_zapped, batch = 0; 5606 5607 restart: 5608 list_for_each_entry_safe_reverse(sp, node, 5609 &kvm->arch.active_mmu_pages, link) { 5610 /* 5611 * No obsolete valid page exists before a newly created page 5612 * since active_mmu_pages is a FIFO list. 5613 */ 5614 if (!is_obsolete_sp(kvm, sp)) 5615 break; 5616 5617 /* 5618 * Invalid pages should never land back on the list of active 5619 * pages. Skip the bogus page, otherwise we'll get stuck in an 5620 * infinite loop if the page gets put back on the list (again). 5621 */ 5622 if (WARN_ON(sp->role.invalid)) 5623 continue; 5624 5625 /* 5626 * No need to flush the TLB since we're only zapping shadow 5627 * pages with an obsolete generation number and all vCPUS have 5628 * loaded a new root, i.e. the shadow pages being zapped cannot 5629 * be in active use by the guest. 5630 */ 5631 if (batch >= BATCH_ZAP_PAGES && 5632 cond_resched_rwlock_write(&kvm->mmu_lock)) { 5633 batch = 0; 5634 goto restart; 5635 } 5636 5637 if (__kvm_mmu_prepare_zap_page(kvm, sp, 5638 &kvm->arch.zapped_obsolete_pages, &nr_zapped)) { 5639 batch += nr_zapped; 5640 goto restart; 5641 } 5642 } 5643 5644 /* 5645 * Trigger a remote TLB flush before freeing the page tables to ensure 5646 * KVM is not in the middle of a lockless shadow page table walk, which 5647 * may reference the pages. 5648 */ 5649 kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages); 5650 } 5651 5652 /* 5653 * Fast invalidate all shadow pages and use lock-break technique 5654 * to zap obsolete pages. 5655 * 5656 * It's required when memslot is being deleted or VM is being 5657 * destroyed, in these cases, we should ensure that KVM MMU does 5658 * not use any resource of the being-deleted slot or all slots 5659 * after calling the function. 5660 */ 5661 static void kvm_mmu_zap_all_fast(struct kvm *kvm) 5662 { 5663 lockdep_assert_held(&kvm->slots_lock); 5664 5665 write_lock(&kvm->mmu_lock); 5666 trace_kvm_mmu_zap_all_fast(kvm); 5667 5668 /* 5669 * Toggle mmu_valid_gen between '0' and '1'. Because slots_lock is 5670 * held for the entire duration of zapping obsolete pages, it's 5671 * impossible for there to be multiple invalid generations associated 5672 * with *valid* shadow pages at any given time, i.e. there is exactly 5673 * one valid generation and (at most) one invalid generation. 5674 */ 5675 kvm->arch.mmu_valid_gen = kvm->arch.mmu_valid_gen ? 0 : 1; 5676 5677 /* In order to ensure all threads see this change when 5678 * handling the MMU reload signal, this must happen in the 5679 * same critical section as kvm_reload_remote_mmus, and 5680 * before kvm_zap_obsolete_pages as kvm_zap_obsolete_pages 5681 * could drop the MMU lock and yield. 5682 */ 5683 if (is_tdp_mmu_enabled(kvm)) 5684 kvm_tdp_mmu_invalidate_all_roots(kvm); 5685 5686 /* 5687 * Notify all vcpus to reload its shadow page table and flush TLB. 5688 * Then all vcpus will switch to new shadow page table with the new 5689 * mmu_valid_gen. 5690 * 5691 * Note: we need to do this under the protection of mmu_lock, 5692 * otherwise, vcpu would purge shadow page but miss tlb flush. 5693 */ 5694 kvm_reload_remote_mmus(kvm); 5695 5696 kvm_zap_obsolete_pages(kvm); 5697 5698 write_unlock(&kvm->mmu_lock); 5699 5700 if (is_tdp_mmu_enabled(kvm)) { 5701 read_lock(&kvm->mmu_lock); 5702 kvm_tdp_mmu_zap_invalidated_roots(kvm); 5703 read_unlock(&kvm->mmu_lock); 5704 } 5705 } 5706 5707 static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm) 5708 { 5709 return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages)); 5710 } 5711 5712 static void kvm_mmu_invalidate_zap_pages_in_memslot(struct kvm *kvm, 5713 struct kvm_memory_slot *slot, 5714 struct kvm_page_track_notifier_node *node) 5715 { 5716 kvm_mmu_zap_all_fast(kvm); 5717 } 5718 5719 void kvm_mmu_init_vm(struct kvm *kvm) 5720 { 5721 struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker; 5722 5723 spin_lock_init(&kvm->arch.mmu_unsync_pages_lock); 5724 5725 kvm_mmu_init_tdp_mmu(kvm); 5726 5727 node->track_write = kvm_mmu_pte_write; 5728 node->track_flush_slot = kvm_mmu_invalidate_zap_pages_in_memslot; 5729 kvm_page_track_register_notifier(kvm, node); 5730 } 5731 5732 void kvm_mmu_uninit_vm(struct kvm *kvm) 5733 { 5734 struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker; 5735 5736 kvm_page_track_unregister_notifier(kvm, node); 5737 5738 kvm_mmu_uninit_tdp_mmu(kvm); 5739 } 5740 5741 static bool __kvm_zap_rmaps(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end) 5742 { 5743 const struct kvm_memory_slot *memslot; 5744 struct kvm_memslots *slots; 5745 bool flush = false; 5746 gfn_t start, end; 5747 int i; 5748 5749 if (!kvm_memslots_have_rmaps(kvm)) 5750 return flush; 5751 5752 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { 5753 slots = __kvm_memslots(kvm, i); 5754 kvm_for_each_memslot(memslot, slots) { 5755 start = max(gfn_start, memslot->base_gfn); 5756 end = min(gfn_end, memslot->base_gfn + memslot->npages); 5757 if (start >= end) 5758 continue; 5759 5760 flush = slot_handle_level_range(kvm, memslot, kvm_zap_rmapp, 5761 PG_LEVEL_4K, KVM_MAX_HUGEPAGE_LEVEL, 5762 start, end - 1, true, flush); 5763 } 5764 } 5765 5766 return flush; 5767 } 5768 5769 /* 5770 * Invalidate (zap) SPTEs that cover GFNs from gfn_start and up to gfn_end 5771 * (not including it) 5772 */ 5773 void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end) 5774 { 5775 bool flush; 5776 int i; 5777 5778 write_lock(&kvm->mmu_lock); 5779 5780 kvm_inc_notifier_count(kvm, gfn_start, gfn_end); 5781 5782 flush = __kvm_zap_rmaps(kvm, gfn_start, gfn_end); 5783 5784 if (is_tdp_mmu_enabled(kvm)) { 5785 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) 5786 flush = kvm_tdp_mmu_zap_gfn_range(kvm, i, gfn_start, 5787 gfn_end, flush); 5788 } 5789 5790 if (flush) 5791 kvm_flush_remote_tlbs_with_address(kvm, gfn_start, 5792 gfn_end - gfn_start); 5793 5794 kvm_dec_notifier_count(kvm, gfn_start, gfn_end); 5795 5796 write_unlock(&kvm->mmu_lock); 5797 } 5798 5799 static bool slot_rmap_write_protect(struct kvm *kvm, 5800 struct kvm_rmap_head *rmap_head, 5801 const struct kvm_memory_slot *slot) 5802 { 5803 return __rmap_write_protect(kvm, rmap_head, false); 5804 } 5805 5806 void kvm_mmu_slot_remove_write_access(struct kvm *kvm, 5807 const struct kvm_memory_slot *memslot, 5808 int start_level) 5809 { 5810 bool flush = false; 5811 5812 if (kvm_memslots_have_rmaps(kvm)) { 5813 write_lock(&kvm->mmu_lock); 5814 flush = slot_handle_level(kvm, memslot, slot_rmap_write_protect, 5815 start_level, KVM_MAX_HUGEPAGE_LEVEL, 5816 false); 5817 write_unlock(&kvm->mmu_lock); 5818 } 5819 5820 if (is_tdp_mmu_enabled(kvm)) { 5821 read_lock(&kvm->mmu_lock); 5822 flush |= kvm_tdp_mmu_wrprot_slot(kvm, memslot, start_level); 5823 read_unlock(&kvm->mmu_lock); 5824 } 5825 5826 /* 5827 * We can flush all the TLBs out of the mmu lock without TLB 5828 * corruption since we just change the spte from writable to 5829 * readonly so that we only need to care the case of changing 5830 * spte from present to present (changing the spte from present 5831 * to nonpresent will flush all the TLBs immediately), in other 5832 * words, the only case we care is mmu_spte_update() where we 5833 * have checked Host-writable | MMU-writable instead of 5834 * PT_WRITABLE_MASK, that means it does not depend on PT_WRITABLE_MASK 5835 * anymore. 5836 */ 5837 if (flush) 5838 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot); 5839 } 5840 5841 static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm, 5842 struct kvm_rmap_head *rmap_head, 5843 const struct kvm_memory_slot *slot) 5844 { 5845 u64 *sptep; 5846 struct rmap_iterator iter; 5847 int need_tlb_flush = 0; 5848 kvm_pfn_t pfn; 5849 struct kvm_mmu_page *sp; 5850 5851 restart: 5852 for_each_rmap_spte(rmap_head, &iter, sptep) { 5853 sp = sptep_to_sp(sptep); 5854 pfn = spte_to_pfn(*sptep); 5855 5856 /* 5857 * We cannot do huge page mapping for indirect shadow pages, 5858 * which are found on the last rmap (level = 1) when not using 5859 * tdp; such shadow pages are synced with the page table in 5860 * the guest, and the guest page table is using 4K page size 5861 * mapping if the indirect sp has level = 1. 5862 */ 5863 if (sp->role.direct && !kvm_is_reserved_pfn(pfn) && 5864 sp->role.level < kvm_mmu_max_mapping_level(kvm, slot, sp->gfn, 5865 pfn, PG_LEVEL_NUM)) { 5866 pte_list_remove(kvm, rmap_head, sptep); 5867 5868 if (kvm_available_flush_tlb_with_range()) 5869 kvm_flush_remote_tlbs_with_address(kvm, sp->gfn, 5870 KVM_PAGES_PER_HPAGE(sp->role.level)); 5871 else 5872 need_tlb_flush = 1; 5873 5874 goto restart; 5875 } 5876 } 5877 5878 return need_tlb_flush; 5879 } 5880 5881 void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm, 5882 const struct kvm_memory_slot *slot) 5883 { 5884 if (kvm_memslots_have_rmaps(kvm)) { 5885 write_lock(&kvm->mmu_lock); 5886 /* 5887 * Zap only 4k SPTEs since the legacy MMU only supports dirty 5888 * logging at a 4k granularity and never creates collapsible 5889 * 2m SPTEs during dirty logging. 5890 */ 5891 if (slot_handle_level_4k(kvm, slot, kvm_mmu_zap_collapsible_spte, true)) 5892 kvm_arch_flush_remote_tlbs_memslot(kvm, slot); 5893 write_unlock(&kvm->mmu_lock); 5894 } 5895 5896 if (is_tdp_mmu_enabled(kvm)) { 5897 read_lock(&kvm->mmu_lock); 5898 kvm_tdp_mmu_zap_collapsible_sptes(kvm, slot); 5899 read_unlock(&kvm->mmu_lock); 5900 } 5901 } 5902 5903 void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm, 5904 const struct kvm_memory_slot *memslot) 5905 { 5906 /* 5907 * All current use cases for flushing the TLBs for a specific memslot 5908 * related to dirty logging, and many do the TLB flush out of mmu_lock. 5909 * The interaction between the various operations on memslot must be 5910 * serialized by slots_locks to ensure the TLB flush from one operation 5911 * is observed by any other operation on the same memslot. 5912 */ 5913 lockdep_assert_held(&kvm->slots_lock); 5914 kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn, 5915 memslot->npages); 5916 } 5917 5918 void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm, 5919 const struct kvm_memory_slot *memslot) 5920 { 5921 bool flush = false; 5922 5923 if (kvm_memslots_have_rmaps(kvm)) { 5924 write_lock(&kvm->mmu_lock); 5925 /* 5926 * Clear dirty bits only on 4k SPTEs since the legacy MMU only 5927 * support dirty logging at a 4k granularity. 5928 */ 5929 flush = slot_handle_level_4k(kvm, memslot, __rmap_clear_dirty, false); 5930 write_unlock(&kvm->mmu_lock); 5931 } 5932 5933 if (is_tdp_mmu_enabled(kvm)) { 5934 read_lock(&kvm->mmu_lock); 5935 flush |= kvm_tdp_mmu_clear_dirty_slot(kvm, memslot); 5936 read_unlock(&kvm->mmu_lock); 5937 } 5938 5939 /* 5940 * It's also safe to flush TLBs out of mmu lock here as currently this 5941 * function is only used for dirty logging, in which case flushing TLB 5942 * out of mmu lock also guarantees no dirty pages will be lost in 5943 * dirty_bitmap. 5944 */ 5945 if (flush) 5946 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot); 5947 } 5948 5949 void kvm_mmu_zap_all(struct kvm *kvm) 5950 { 5951 struct kvm_mmu_page *sp, *node; 5952 LIST_HEAD(invalid_list); 5953 int ign; 5954 5955 write_lock(&kvm->mmu_lock); 5956 restart: 5957 list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link) { 5958 if (WARN_ON(sp->role.invalid)) 5959 continue; 5960 if (__kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list, &ign)) 5961 goto restart; 5962 if (cond_resched_rwlock_write(&kvm->mmu_lock)) 5963 goto restart; 5964 } 5965 5966 kvm_mmu_commit_zap_page(kvm, &invalid_list); 5967 5968 if (is_tdp_mmu_enabled(kvm)) 5969 kvm_tdp_mmu_zap_all(kvm); 5970 5971 write_unlock(&kvm->mmu_lock); 5972 } 5973 5974 void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen) 5975 { 5976 WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS); 5977 5978 gen &= MMIO_SPTE_GEN_MASK; 5979 5980 /* 5981 * Generation numbers are incremented in multiples of the number of 5982 * address spaces in order to provide unique generations across all 5983 * address spaces. Strip what is effectively the address space 5984 * modifier prior to checking for a wrap of the MMIO generation so 5985 * that a wrap in any address space is detected. 5986 */ 5987 gen &= ~((u64)KVM_ADDRESS_SPACE_NUM - 1); 5988 5989 /* 5990 * The very rare case: if the MMIO generation number has wrapped, 5991 * zap all shadow pages. 5992 */ 5993 if (unlikely(gen == 0)) { 5994 kvm_debug_ratelimited("kvm: zapping shadow pages for mmio generation wraparound\n"); 5995 kvm_mmu_zap_all_fast(kvm); 5996 } 5997 } 5998 5999 static unsigned long 6000 mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc) 6001 { 6002 struct kvm *kvm; 6003 int nr_to_scan = sc->nr_to_scan; 6004 unsigned long freed = 0; 6005 6006 mutex_lock(&kvm_lock); 6007 6008 list_for_each_entry(kvm, &vm_list, vm_list) { 6009 int idx; 6010 LIST_HEAD(invalid_list); 6011 6012 /* 6013 * Never scan more than sc->nr_to_scan VM instances. 6014 * Will not hit this condition practically since we do not try 6015 * to shrink more than one VM and it is very unlikely to see 6016 * !n_used_mmu_pages so many times. 6017 */ 6018 if (!nr_to_scan--) 6019 break; 6020 /* 6021 * n_used_mmu_pages is accessed without holding kvm->mmu_lock 6022 * here. We may skip a VM instance errorneosly, but we do not 6023 * want to shrink a VM that only started to populate its MMU 6024 * anyway. 6025 */ 6026 if (!kvm->arch.n_used_mmu_pages && 6027 !kvm_has_zapped_obsolete_pages(kvm)) 6028 continue; 6029 6030 idx = srcu_read_lock(&kvm->srcu); 6031 write_lock(&kvm->mmu_lock); 6032 6033 if (kvm_has_zapped_obsolete_pages(kvm)) { 6034 kvm_mmu_commit_zap_page(kvm, 6035 &kvm->arch.zapped_obsolete_pages); 6036 goto unlock; 6037 } 6038 6039 freed = kvm_mmu_zap_oldest_mmu_pages(kvm, sc->nr_to_scan); 6040 6041 unlock: 6042 write_unlock(&kvm->mmu_lock); 6043 srcu_read_unlock(&kvm->srcu, idx); 6044 6045 /* 6046 * unfair on small ones 6047 * per-vm shrinkers cry out 6048 * sadness comes quickly 6049 */ 6050 list_move_tail(&kvm->vm_list, &vm_list); 6051 break; 6052 } 6053 6054 mutex_unlock(&kvm_lock); 6055 return freed; 6056 } 6057 6058 static unsigned long 6059 mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc) 6060 { 6061 return percpu_counter_read_positive(&kvm_total_used_mmu_pages); 6062 } 6063 6064 static struct shrinker mmu_shrinker = { 6065 .count_objects = mmu_shrink_count, 6066 .scan_objects = mmu_shrink_scan, 6067 .seeks = DEFAULT_SEEKS * 10, 6068 }; 6069 6070 static void mmu_destroy_caches(void) 6071 { 6072 kmem_cache_destroy(pte_list_desc_cache); 6073 kmem_cache_destroy(mmu_page_header_cache); 6074 } 6075 6076 static bool get_nx_auto_mode(void) 6077 { 6078 /* Return true when CPU has the bug, and mitigations are ON */ 6079 return boot_cpu_has_bug(X86_BUG_ITLB_MULTIHIT) && !cpu_mitigations_off(); 6080 } 6081 6082 static void __set_nx_huge_pages(bool val) 6083 { 6084 nx_huge_pages = itlb_multihit_kvm_mitigation = val; 6085 } 6086 6087 static int set_nx_huge_pages(const char *val, const struct kernel_param *kp) 6088 { 6089 bool old_val = nx_huge_pages; 6090 bool new_val; 6091 6092 /* In "auto" mode deploy workaround only if CPU has the bug. */ 6093 if (sysfs_streq(val, "off")) 6094 new_val = 0; 6095 else if (sysfs_streq(val, "force")) 6096 new_val = 1; 6097 else if (sysfs_streq(val, "auto")) 6098 new_val = get_nx_auto_mode(); 6099 else if (strtobool(val, &new_val) < 0) 6100 return -EINVAL; 6101 6102 __set_nx_huge_pages(new_val); 6103 6104 if (new_val != old_val) { 6105 struct kvm *kvm; 6106 6107 mutex_lock(&kvm_lock); 6108 6109 list_for_each_entry(kvm, &vm_list, vm_list) { 6110 mutex_lock(&kvm->slots_lock); 6111 kvm_mmu_zap_all_fast(kvm); 6112 mutex_unlock(&kvm->slots_lock); 6113 6114 wake_up_process(kvm->arch.nx_lpage_recovery_thread); 6115 } 6116 mutex_unlock(&kvm_lock); 6117 } 6118 6119 return 0; 6120 } 6121 6122 int kvm_mmu_module_init(void) 6123 { 6124 int ret = -ENOMEM; 6125 6126 if (nx_huge_pages == -1) 6127 __set_nx_huge_pages(get_nx_auto_mode()); 6128 6129 /* 6130 * MMU roles use union aliasing which is, generally speaking, an 6131 * undefined behavior. However, we supposedly know how compilers behave 6132 * and the current status quo is unlikely to change. Guardians below are 6133 * supposed to let us know if the assumption becomes false. 6134 */ 6135 BUILD_BUG_ON(sizeof(union kvm_mmu_page_role) != sizeof(u32)); 6136 BUILD_BUG_ON(sizeof(union kvm_mmu_extended_role) != sizeof(u32)); 6137 BUILD_BUG_ON(sizeof(union kvm_mmu_role) != sizeof(u64)); 6138 6139 kvm_mmu_reset_all_pte_masks(); 6140 6141 pte_list_desc_cache = kmem_cache_create("pte_list_desc", 6142 sizeof(struct pte_list_desc), 6143 0, SLAB_ACCOUNT, NULL); 6144 if (!pte_list_desc_cache) 6145 goto out; 6146 6147 mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header", 6148 sizeof(struct kvm_mmu_page), 6149 0, SLAB_ACCOUNT, NULL); 6150 if (!mmu_page_header_cache) 6151 goto out; 6152 6153 if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL)) 6154 goto out; 6155 6156 ret = register_shrinker(&mmu_shrinker); 6157 if (ret) 6158 goto out; 6159 6160 return 0; 6161 6162 out: 6163 mmu_destroy_caches(); 6164 return ret; 6165 } 6166 6167 /* 6168 * Calculate mmu pages needed for kvm. 6169 */ 6170 unsigned long kvm_mmu_calculate_default_mmu_pages(struct kvm *kvm) 6171 { 6172 unsigned long nr_mmu_pages; 6173 unsigned long nr_pages = 0; 6174 struct kvm_memslots *slots; 6175 struct kvm_memory_slot *memslot; 6176 int i; 6177 6178 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { 6179 slots = __kvm_memslots(kvm, i); 6180 6181 kvm_for_each_memslot(memslot, slots) 6182 nr_pages += memslot->npages; 6183 } 6184 6185 nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000; 6186 nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES); 6187 6188 return nr_mmu_pages; 6189 } 6190 6191 void kvm_mmu_destroy(struct kvm_vcpu *vcpu) 6192 { 6193 kvm_mmu_unload(vcpu); 6194 free_mmu_pages(&vcpu->arch.root_mmu); 6195 free_mmu_pages(&vcpu->arch.guest_mmu); 6196 mmu_free_memory_caches(vcpu); 6197 } 6198 6199 void kvm_mmu_module_exit(void) 6200 { 6201 mmu_destroy_caches(); 6202 percpu_counter_destroy(&kvm_total_used_mmu_pages); 6203 unregister_shrinker(&mmu_shrinker); 6204 mmu_audit_disable(); 6205 } 6206 6207 /* 6208 * Calculate the effective recovery period, accounting for '0' meaning "let KVM 6209 * select a halving time of 1 hour". Returns true if recovery is enabled. 6210 */ 6211 static bool calc_nx_huge_pages_recovery_period(uint *period) 6212 { 6213 /* 6214 * Use READ_ONCE to get the params, this may be called outside of the 6215 * param setters, e.g. by the kthread to compute its next timeout. 6216 */ 6217 bool enabled = READ_ONCE(nx_huge_pages); 6218 uint ratio = READ_ONCE(nx_huge_pages_recovery_ratio); 6219 6220 if (!enabled || !ratio) 6221 return false; 6222 6223 *period = READ_ONCE(nx_huge_pages_recovery_period_ms); 6224 if (!*period) { 6225 /* Make sure the period is not less than one second. */ 6226 ratio = min(ratio, 3600u); 6227 *period = 60 * 60 * 1000 / ratio; 6228 } 6229 return true; 6230 } 6231 6232 static int set_nx_huge_pages_recovery_param(const char *val, const struct kernel_param *kp) 6233 { 6234 bool was_recovery_enabled, is_recovery_enabled; 6235 uint old_period, new_period; 6236 int err; 6237 6238 was_recovery_enabled = calc_nx_huge_pages_recovery_period(&old_period); 6239 6240 err = param_set_uint(val, kp); 6241 if (err) 6242 return err; 6243 6244 is_recovery_enabled = calc_nx_huge_pages_recovery_period(&new_period); 6245 6246 if (is_recovery_enabled && 6247 (!was_recovery_enabled || old_period > new_period)) { 6248 struct kvm *kvm; 6249 6250 mutex_lock(&kvm_lock); 6251 6252 list_for_each_entry(kvm, &vm_list, vm_list) 6253 wake_up_process(kvm->arch.nx_lpage_recovery_thread); 6254 6255 mutex_unlock(&kvm_lock); 6256 } 6257 6258 return err; 6259 } 6260 6261 static void kvm_recover_nx_lpages(struct kvm *kvm) 6262 { 6263 unsigned long nx_lpage_splits = kvm->stat.nx_lpage_splits; 6264 int rcu_idx; 6265 struct kvm_mmu_page *sp; 6266 unsigned int ratio; 6267 LIST_HEAD(invalid_list); 6268 bool flush = false; 6269 ulong to_zap; 6270 6271 rcu_idx = srcu_read_lock(&kvm->srcu); 6272 write_lock(&kvm->mmu_lock); 6273 6274 ratio = READ_ONCE(nx_huge_pages_recovery_ratio); 6275 to_zap = ratio ? DIV_ROUND_UP(nx_lpage_splits, ratio) : 0; 6276 for ( ; to_zap; --to_zap) { 6277 if (list_empty(&kvm->arch.lpage_disallowed_mmu_pages)) 6278 break; 6279 6280 /* 6281 * We use a separate list instead of just using active_mmu_pages 6282 * because the number of lpage_disallowed pages is expected to 6283 * be relatively small compared to the total. 6284 */ 6285 sp = list_first_entry(&kvm->arch.lpage_disallowed_mmu_pages, 6286 struct kvm_mmu_page, 6287 lpage_disallowed_link); 6288 WARN_ON_ONCE(!sp->lpage_disallowed); 6289 if (is_tdp_mmu_page(sp)) { 6290 flush |= kvm_tdp_mmu_zap_sp(kvm, sp); 6291 } else { 6292 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list); 6293 WARN_ON_ONCE(sp->lpage_disallowed); 6294 } 6295 6296 if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) { 6297 kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush); 6298 cond_resched_rwlock_write(&kvm->mmu_lock); 6299 flush = false; 6300 } 6301 } 6302 kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush); 6303 6304 write_unlock(&kvm->mmu_lock); 6305 srcu_read_unlock(&kvm->srcu, rcu_idx); 6306 } 6307 6308 static long get_nx_lpage_recovery_timeout(u64 start_time) 6309 { 6310 bool enabled; 6311 uint period; 6312 6313 enabled = calc_nx_huge_pages_recovery_period(&period); 6314 6315 return enabled ? start_time + msecs_to_jiffies(period) - get_jiffies_64() 6316 : MAX_SCHEDULE_TIMEOUT; 6317 } 6318 6319 static int kvm_nx_lpage_recovery_worker(struct kvm *kvm, uintptr_t data) 6320 { 6321 u64 start_time; 6322 long remaining_time; 6323 6324 while (true) { 6325 start_time = get_jiffies_64(); 6326 remaining_time = get_nx_lpage_recovery_timeout(start_time); 6327 6328 set_current_state(TASK_INTERRUPTIBLE); 6329 while (!kthread_should_stop() && remaining_time > 0) { 6330 schedule_timeout(remaining_time); 6331 remaining_time = get_nx_lpage_recovery_timeout(start_time); 6332 set_current_state(TASK_INTERRUPTIBLE); 6333 } 6334 6335 set_current_state(TASK_RUNNING); 6336 6337 if (kthread_should_stop()) 6338 return 0; 6339 6340 kvm_recover_nx_lpages(kvm); 6341 } 6342 } 6343 6344 int kvm_mmu_post_init_vm(struct kvm *kvm) 6345 { 6346 int err; 6347 6348 err = kvm_vm_create_worker_thread(kvm, kvm_nx_lpage_recovery_worker, 0, 6349 "kvm-nx-lpage-recovery", 6350 &kvm->arch.nx_lpage_recovery_thread); 6351 if (!err) 6352 kthread_unpark(kvm->arch.nx_lpage_recovery_thread); 6353 6354 return err; 6355 } 6356 6357 void kvm_mmu_pre_destroy_vm(struct kvm *kvm) 6358 { 6359 if (kvm->arch.nx_lpage_recovery_thread) 6360 kthread_stop(kvm->arch.nx_lpage_recovery_thread); 6361 } 6362