1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * This module enables machines with Intel VT-x extensions to run virtual 6 * machines without emulation or binary translation. 7 * 8 * MMU support 9 * 10 * Copyright (C) 2006 Qumranet, Inc. 11 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 12 * 13 * Authors: 14 * Yaniv Kamay <yaniv@qumranet.com> 15 * Avi Kivity <avi@qumranet.com> 16 */ 17 18 #include "irq.h" 19 #include "ioapic.h" 20 #include "mmu.h" 21 #include "mmu_internal.h" 22 #include "tdp_mmu.h" 23 #include "x86.h" 24 #include "kvm_cache_regs.h" 25 #include "kvm_emulate.h" 26 #include "cpuid.h" 27 #include "spte.h" 28 29 #include <linux/kvm_host.h> 30 #include <linux/types.h> 31 #include <linux/string.h> 32 #include <linux/mm.h> 33 #include <linux/highmem.h> 34 #include <linux/moduleparam.h> 35 #include <linux/export.h> 36 #include <linux/swap.h> 37 #include <linux/hugetlb.h> 38 #include <linux/compiler.h> 39 #include <linux/srcu.h> 40 #include <linux/slab.h> 41 #include <linux/sched/signal.h> 42 #include <linux/uaccess.h> 43 #include <linux/hash.h> 44 #include <linux/kern_levels.h> 45 #include <linux/kthread.h> 46 47 #include <asm/page.h> 48 #include <asm/memtype.h> 49 #include <asm/cmpxchg.h> 50 #include <asm/io.h> 51 #include <asm/vmx.h> 52 #include <asm/kvm_page_track.h> 53 #include "trace.h" 54 55 extern bool itlb_multihit_kvm_mitigation; 56 57 static int __read_mostly nx_huge_pages = -1; 58 #ifdef CONFIG_PREEMPT_RT 59 /* Recovery can cause latency spikes, disable it for PREEMPT_RT. */ 60 static uint __read_mostly nx_huge_pages_recovery_ratio = 0; 61 #else 62 static uint __read_mostly nx_huge_pages_recovery_ratio = 60; 63 #endif 64 65 static int set_nx_huge_pages(const char *val, const struct kernel_param *kp); 66 static int set_nx_huge_pages_recovery_ratio(const char *val, const struct kernel_param *kp); 67 68 static const struct kernel_param_ops nx_huge_pages_ops = { 69 .set = set_nx_huge_pages, 70 .get = param_get_bool, 71 }; 72 73 static const struct kernel_param_ops nx_huge_pages_recovery_ratio_ops = { 74 .set = set_nx_huge_pages_recovery_ratio, 75 .get = param_get_uint, 76 }; 77 78 module_param_cb(nx_huge_pages, &nx_huge_pages_ops, &nx_huge_pages, 0644); 79 __MODULE_PARM_TYPE(nx_huge_pages, "bool"); 80 module_param_cb(nx_huge_pages_recovery_ratio, &nx_huge_pages_recovery_ratio_ops, 81 &nx_huge_pages_recovery_ratio, 0644); 82 __MODULE_PARM_TYPE(nx_huge_pages_recovery_ratio, "uint"); 83 84 static bool __read_mostly force_flush_and_sync_on_reuse; 85 module_param_named(flush_on_reuse, force_flush_and_sync_on_reuse, bool, 0644); 86 87 /* 88 * When setting this variable to true it enables Two-Dimensional-Paging 89 * where the hardware walks 2 page tables: 90 * 1. the guest-virtual to guest-physical 91 * 2. while doing 1. it walks guest-physical to host-physical 92 * If the hardware supports that we don't need to do shadow paging. 93 */ 94 bool tdp_enabled = false; 95 96 static int max_huge_page_level __read_mostly; 97 static int max_tdp_level __read_mostly; 98 99 enum { 100 AUDIT_PRE_PAGE_FAULT, 101 AUDIT_POST_PAGE_FAULT, 102 AUDIT_PRE_PTE_WRITE, 103 AUDIT_POST_PTE_WRITE, 104 AUDIT_PRE_SYNC, 105 AUDIT_POST_SYNC 106 }; 107 108 #ifdef MMU_DEBUG 109 bool dbg = 0; 110 module_param(dbg, bool, 0644); 111 #endif 112 113 #define PTE_PREFETCH_NUM 8 114 115 #define PT32_LEVEL_BITS 10 116 117 #define PT32_LEVEL_SHIFT(level) \ 118 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS) 119 120 #define PT32_LVL_OFFSET_MASK(level) \ 121 (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \ 122 * PT32_LEVEL_BITS))) - 1)) 123 124 #define PT32_INDEX(address, level)\ 125 (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1)) 126 127 128 #define PT32_BASE_ADDR_MASK PAGE_MASK 129 #define PT32_DIR_BASE_ADDR_MASK \ 130 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1)) 131 #define PT32_LVL_ADDR_MASK(level) \ 132 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \ 133 * PT32_LEVEL_BITS))) - 1)) 134 135 #include <trace/events/kvm.h> 136 137 /* make pte_list_desc fit well in cache line */ 138 #define PTE_LIST_EXT 3 139 140 struct pte_list_desc { 141 u64 *sptes[PTE_LIST_EXT]; 142 struct pte_list_desc *more; 143 }; 144 145 struct kvm_shadow_walk_iterator { 146 u64 addr; 147 hpa_t shadow_addr; 148 u64 *sptep; 149 int level; 150 unsigned index; 151 }; 152 153 #define for_each_shadow_entry_using_root(_vcpu, _root, _addr, _walker) \ 154 for (shadow_walk_init_using_root(&(_walker), (_vcpu), \ 155 (_root), (_addr)); \ 156 shadow_walk_okay(&(_walker)); \ 157 shadow_walk_next(&(_walker))) 158 159 #define for_each_shadow_entry(_vcpu, _addr, _walker) \ 160 for (shadow_walk_init(&(_walker), _vcpu, _addr); \ 161 shadow_walk_okay(&(_walker)); \ 162 shadow_walk_next(&(_walker))) 163 164 #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte) \ 165 for (shadow_walk_init(&(_walker), _vcpu, _addr); \ 166 shadow_walk_okay(&(_walker)) && \ 167 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; }); \ 168 __shadow_walk_next(&(_walker), spte)) 169 170 static struct kmem_cache *pte_list_desc_cache; 171 struct kmem_cache *mmu_page_header_cache; 172 static struct percpu_counter kvm_total_used_mmu_pages; 173 174 static void mmu_spte_set(u64 *sptep, u64 spte); 175 static union kvm_mmu_page_role 176 kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu); 177 178 #define CREATE_TRACE_POINTS 179 #include "mmutrace.h" 180 181 182 static inline bool kvm_available_flush_tlb_with_range(void) 183 { 184 return kvm_x86_ops.tlb_remote_flush_with_range; 185 } 186 187 static void kvm_flush_remote_tlbs_with_range(struct kvm *kvm, 188 struct kvm_tlb_range *range) 189 { 190 int ret = -ENOTSUPP; 191 192 if (range && kvm_x86_ops.tlb_remote_flush_with_range) 193 ret = kvm_x86_ops.tlb_remote_flush_with_range(kvm, range); 194 195 if (ret) 196 kvm_flush_remote_tlbs(kvm); 197 } 198 199 void kvm_flush_remote_tlbs_with_address(struct kvm *kvm, 200 u64 start_gfn, u64 pages) 201 { 202 struct kvm_tlb_range range; 203 204 range.start_gfn = start_gfn; 205 range.pages = pages; 206 207 kvm_flush_remote_tlbs_with_range(kvm, &range); 208 } 209 210 bool is_nx_huge_page_enabled(void) 211 { 212 return READ_ONCE(nx_huge_pages); 213 } 214 215 static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn, 216 unsigned int access) 217 { 218 u64 mask = make_mmio_spte(vcpu, gfn, access); 219 220 trace_mark_mmio_spte(sptep, gfn, mask); 221 mmu_spte_set(sptep, mask); 222 } 223 224 static gfn_t get_mmio_spte_gfn(u64 spte) 225 { 226 u64 gpa = spte & shadow_nonpresent_or_rsvd_lower_gfn_mask; 227 228 gpa |= (spte >> SHADOW_NONPRESENT_OR_RSVD_MASK_LEN) 229 & shadow_nonpresent_or_rsvd_mask; 230 231 return gpa >> PAGE_SHIFT; 232 } 233 234 static unsigned get_mmio_spte_access(u64 spte) 235 { 236 return spte & shadow_mmio_access_mask; 237 } 238 239 static bool set_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn, 240 kvm_pfn_t pfn, unsigned int access) 241 { 242 if (unlikely(is_noslot_pfn(pfn))) { 243 mark_mmio_spte(vcpu, sptep, gfn, access); 244 return true; 245 } 246 247 return false; 248 } 249 250 static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte) 251 { 252 u64 kvm_gen, spte_gen, gen; 253 254 gen = kvm_vcpu_memslots(vcpu)->generation; 255 if (unlikely(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS)) 256 return false; 257 258 kvm_gen = gen & MMIO_SPTE_GEN_MASK; 259 spte_gen = get_mmio_spte_generation(spte); 260 261 trace_check_mmio_spte(spte, kvm_gen, spte_gen); 262 return likely(kvm_gen == spte_gen); 263 } 264 265 static gpa_t translate_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access, 266 struct x86_exception *exception) 267 { 268 /* Check if guest physical address doesn't exceed guest maximum */ 269 if (kvm_vcpu_is_illegal_gpa(vcpu, gpa)) { 270 exception->error_code |= PFERR_RSVD_MASK; 271 return UNMAPPED_GVA; 272 } 273 274 return gpa; 275 } 276 277 static int is_cpuid_PSE36(void) 278 { 279 return 1; 280 } 281 282 static int is_nx(struct kvm_vcpu *vcpu) 283 { 284 return vcpu->arch.efer & EFER_NX; 285 } 286 287 static gfn_t pse36_gfn_delta(u32 gpte) 288 { 289 int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT; 290 291 return (gpte & PT32_DIR_PSE36_MASK) << shift; 292 } 293 294 #ifdef CONFIG_X86_64 295 static void __set_spte(u64 *sptep, u64 spte) 296 { 297 WRITE_ONCE(*sptep, spte); 298 } 299 300 static void __update_clear_spte_fast(u64 *sptep, u64 spte) 301 { 302 WRITE_ONCE(*sptep, spte); 303 } 304 305 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte) 306 { 307 return xchg(sptep, spte); 308 } 309 310 static u64 __get_spte_lockless(u64 *sptep) 311 { 312 return READ_ONCE(*sptep); 313 } 314 #else 315 union split_spte { 316 struct { 317 u32 spte_low; 318 u32 spte_high; 319 }; 320 u64 spte; 321 }; 322 323 static void count_spte_clear(u64 *sptep, u64 spte) 324 { 325 struct kvm_mmu_page *sp = sptep_to_sp(sptep); 326 327 if (is_shadow_present_pte(spte)) 328 return; 329 330 /* Ensure the spte is completely set before we increase the count */ 331 smp_wmb(); 332 sp->clear_spte_count++; 333 } 334 335 static void __set_spte(u64 *sptep, u64 spte) 336 { 337 union split_spte *ssptep, sspte; 338 339 ssptep = (union split_spte *)sptep; 340 sspte = (union split_spte)spte; 341 342 ssptep->spte_high = sspte.spte_high; 343 344 /* 345 * If we map the spte from nonpresent to present, We should store 346 * the high bits firstly, then set present bit, so cpu can not 347 * fetch this spte while we are setting the spte. 348 */ 349 smp_wmb(); 350 351 WRITE_ONCE(ssptep->spte_low, sspte.spte_low); 352 } 353 354 static void __update_clear_spte_fast(u64 *sptep, u64 spte) 355 { 356 union split_spte *ssptep, sspte; 357 358 ssptep = (union split_spte *)sptep; 359 sspte = (union split_spte)spte; 360 361 WRITE_ONCE(ssptep->spte_low, sspte.spte_low); 362 363 /* 364 * If we map the spte from present to nonpresent, we should clear 365 * present bit firstly to avoid vcpu fetch the old high bits. 366 */ 367 smp_wmb(); 368 369 ssptep->spte_high = sspte.spte_high; 370 count_spte_clear(sptep, spte); 371 } 372 373 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte) 374 { 375 union split_spte *ssptep, sspte, orig; 376 377 ssptep = (union split_spte *)sptep; 378 sspte = (union split_spte)spte; 379 380 /* xchg acts as a barrier before the setting of the high bits */ 381 orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low); 382 orig.spte_high = ssptep->spte_high; 383 ssptep->spte_high = sspte.spte_high; 384 count_spte_clear(sptep, spte); 385 386 return orig.spte; 387 } 388 389 /* 390 * The idea using the light way get the spte on x86_32 guest is from 391 * gup_get_pte (mm/gup.c). 392 * 393 * An spte tlb flush may be pending, because kvm_set_pte_rmapp 394 * coalesces them and we are running out of the MMU lock. Therefore 395 * we need to protect against in-progress updates of the spte. 396 * 397 * Reading the spte while an update is in progress may get the old value 398 * for the high part of the spte. The race is fine for a present->non-present 399 * change (because the high part of the spte is ignored for non-present spte), 400 * but for a present->present change we must reread the spte. 401 * 402 * All such changes are done in two steps (present->non-present and 403 * non-present->present), hence it is enough to count the number of 404 * present->non-present updates: if it changed while reading the spte, 405 * we might have hit the race. This is done using clear_spte_count. 406 */ 407 static u64 __get_spte_lockless(u64 *sptep) 408 { 409 struct kvm_mmu_page *sp = sptep_to_sp(sptep); 410 union split_spte spte, *orig = (union split_spte *)sptep; 411 int count; 412 413 retry: 414 count = sp->clear_spte_count; 415 smp_rmb(); 416 417 spte.spte_low = orig->spte_low; 418 smp_rmb(); 419 420 spte.spte_high = orig->spte_high; 421 smp_rmb(); 422 423 if (unlikely(spte.spte_low != orig->spte_low || 424 count != sp->clear_spte_count)) 425 goto retry; 426 427 return spte.spte; 428 } 429 #endif 430 431 static bool spte_has_volatile_bits(u64 spte) 432 { 433 if (!is_shadow_present_pte(spte)) 434 return false; 435 436 /* 437 * Always atomically update spte if it can be updated 438 * out of mmu-lock, it can ensure dirty bit is not lost, 439 * also, it can help us to get a stable is_writable_pte() 440 * to ensure tlb flush is not missed. 441 */ 442 if (spte_can_locklessly_be_made_writable(spte) || 443 is_access_track_spte(spte)) 444 return true; 445 446 if (spte_ad_enabled(spte)) { 447 if ((spte & shadow_accessed_mask) == 0 || 448 (is_writable_pte(spte) && (spte & shadow_dirty_mask) == 0)) 449 return true; 450 } 451 452 return false; 453 } 454 455 /* Rules for using mmu_spte_set: 456 * Set the sptep from nonpresent to present. 457 * Note: the sptep being assigned *must* be either not present 458 * or in a state where the hardware will not attempt to update 459 * the spte. 460 */ 461 static void mmu_spte_set(u64 *sptep, u64 new_spte) 462 { 463 WARN_ON(is_shadow_present_pte(*sptep)); 464 __set_spte(sptep, new_spte); 465 } 466 467 /* 468 * Update the SPTE (excluding the PFN), but do not track changes in its 469 * accessed/dirty status. 470 */ 471 static u64 mmu_spte_update_no_track(u64 *sptep, u64 new_spte) 472 { 473 u64 old_spte = *sptep; 474 475 WARN_ON(!is_shadow_present_pte(new_spte)); 476 477 if (!is_shadow_present_pte(old_spte)) { 478 mmu_spte_set(sptep, new_spte); 479 return old_spte; 480 } 481 482 if (!spte_has_volatile_bits(old_spte)) 483 __update_clear_spte_fast(sptep, new_spte); 484 else 485 old_spte = __update_clear_spte_slow(sptep, new_spte); 486 487 WARN_ON(spte_to_pfn(old_spte) != spte_to_pfn(new_spte)); 488 489 return old_spte; 490 } 491 492 /* Rules for using mmu_spte_update: 493 * Update the state bits, it means the mapped pfn is not changed. 494 * 495 * Whenever we overwrite a writable spte with a read-only one we 496 * should flush remote TLBs. Otherwise rmap_write_protect 497 * will find a read-only spte, even though the writable spte 498 * might be cached on a CPU's TLB, the return value indicates this 499 * case. 500 * 501 * Returns true if the TLB needs to be flushed 502 */ 503 static bool mmu_spte_update(u64 *sptep, u64 new_spte) 504 { 505 bool flush = false; 506 u64 old_spte = mmu_spte_update_no_track(sptep, new_spte); 507 508 if (!is_shadow_present_pte(old_spte)) 509 return false; 510 511 /* 512 * For the spte updated out of mmu-lock is safe, since 513 * we always atomically update it, see the comments in 514 * spte_has_volatile_bits(). 515 */ 516 if (spte_can_locklessly_be_made_writable(old_spte) && 517 !is_writable_pte(new_spte)) 518 flush = true; 519 520 /* 521 * Flush TLB when accessed/dirty states are changed in the page tables, 522 * to guarantee consistency between TLB and page tables. 523 */ 524 525 if (is_accessed_spte(old_spte) && !is_accessed_spte(new_spte)) { 526 flush = true; 527 kvm_set_pfn_accessed(spte_to_pfn(old_spte)); 528 } 529 530 if (is_dirty_spte(old_spte) && !is_dirty_spte(new_spte)) { 531 flush = true; 532 kvm_set_pfn_dirty(spte_to_pfn(old_spte)); 533 } 534 535 return flush; 536 } 537 538 /* 539 * Rules for using mmu_spte_clear_track_bits: 540 * It sets the sptep from present to nonpresent, and track the 541 * state bits, it is used to clear the last level sptep. 542 * Returns non-zero if the PTE was previously valid. 543 */ 544 static int mmu_spte_clear_track_bits(u64 *sptep) 545 { 546 kvm_pfn_t pfn; 547 u64 old_spte = *sptep; 548 549 if (!spte_has_volatile_bits(old_spte)) 550 __update_clear_spte_fast(sptep, 0ull); 551 else 552 old_spte = __update_clear_spte_slow(sptep, 0ull); 553 554 if (!is_shadow_present_pte(old_spte)) 555 return 0; 556 557 pfn = spte_to_pfn(old_spte); 558 559 /* 560 * KVM does not hold the refcount of the page used by 561 * kvm mmu, before reclaiming the page, we should 562 * unmap it from mmu first. 563 */ 564 WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn))); 565 566 if (is_accessed_spte(old_spte)) 567 kvm_set_pfn_accessed(pfn); 568 569 if (is_dirty_spte(old_spte)) 570 kvm_set_pfn_dirty(pfn); 571 572 return 1; 573 } 574 575 /* 576 * Rules for using mmu_spte_clear_no_track: 577 * Directly clear spte without caring the state bits of sptep, 578 * it is used to set the upper level spte. 579 */ 580 static void mmu_spte_clear_no_track(u64 *sptep) 581 { 582 __update_clear_spte_fast(sptep, 0ull); 583 } 584 585 static u64 mmu_spte_get_lockless(u64 *sptep) 586 { 587 return __get_spte_lockless(sptep); 588 } 589 590 /* Restore an acc-track PTE back to a regular PTE */ 591 static u64 restore_acc_track_spte(u64 spte) 592 { 593 u64 new_spte = spte; 594 u64 saved_bits = (spte >> SHADOW_ACC_TRACK_SAVED_BITS_SHIFT) 595 & SHADOW_ACC_TRACK_SAVED_BITS_MASK; 596 597 WARN_ON_ONCE(spte_ad_enabled(spte)); 598 WARN_ON_ONCE(!is_access_track_spte(spte)); 599 600 new_spte &= ~shadow_acc_track_mask; 601 new_spte &= ~(SHADOW_ACC_TRACK_SAVED_BITS_MASK << 602 SHADOW_ACC_TRACK_SAVED_BITS_SHIFT); 603 new_spte |= saved_bits; 604 605 return new_spte; 606 } 607 608 /* Returns the Accessed status of the PTE and resets it at the same time. */ 609 static bool mmu_spte_age(u64 *sptep) 610 { 611 u64 spte = mmu_spte_get_lockless(sptep); 612 613 if (!is_accessed_spte(spte)) 614 return false; 615 616 if (spte_ad_enabled(spte)) { 617 clear_bit((ffs(shadow_accessed_mask) - 1), 618 (unsigned long *)sptep); 619 } else { 620 /* 621 * Capture the dirty status of the page, so that it doesn't get 622 * lost when the SPTE is marked for access tracking. 623 */ 624 if (is_writable_pte(spte)) 625 kvm_set_pfn_dirty(spte_to_pfn(spte)); 626 627 spte = mark_spte_for_access_track(spte); 628 mmu_spte_update_no_track(sptep, spte); 629 } 630 631 return true; 632 } 633 634 static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu) 635 { 636 /* 637 * Prevent page table teardown by making any free-er wait during 638 * kvm_flush_remote_tlbs() IPI to all active vcpus. 639 */ 640 local_irq_disable(); 641 642 /* 643 * Make sure a following spte read is not reordered ahead of the write 644 * to vcpu->mode. 645 */ 646 smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES); 647 } 648 649 static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu) 650 { 651 /* 652 * Make sure the write to vcpu->mode is not reordered in front of 653 * reads to sptes. If it does, kvm_mmu_commit_zap_page() can see us 654 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table. 655 */ 656 smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE); 657 local_irq_enable(); 658 } 659 660 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu, bool maybe_indirect) 661 { 662 int r; 663 664 /* 1 rmap, 1 parent PTE per level, and the prefetched rmaps. */ 665 r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache, 666 1 + PT64_ROOT_MAX_LEVEL + PTE_PREFETCH_NUM); 667 if (r) 668 return r; 669 r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_shadow_page_cache, 670 PT64_ROOT_MAX_LEVEL); 671 if (r) 672 return r; 673 if (maybe_indirect) { 674 r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_gfn_array_cache, 675 PT64_ROOT_MAX_LEVEL); 676 if (r) 677 return r; 678 } 679 return kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache, 680 PT64_ROOT_MAX_LEVEL); 681 } 682 683 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu) 684 { 685 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache); 686 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_shadow_page_cache); 687 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_gfn_array_cache); 688 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache); 689 } 690 691 static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu) 692 { 693 return kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache); 694 } 695 696 static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc) 697 { 698 kmem_cache_free(pte_list_desc_cache, pte_list_desc); 699 } 700 701 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index) 702 { 703 if (!sp->role.direct) 704 return sp->gfns[index]; 705 706 return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS)); 707 } 708 709 static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn) 710 { 711 if (!sp->role.direct) { 712 sp->gfns[index] = gfn; 713 return; 714 } 715 716 if (WARN_ON(gfn != kvm_mmu_page_get_gfn(sp, index))) 717 pr_err_ratelimited("gfn mismatch under direct page %llx " 718 "(expected %llx, got %llx)\n", 719 sp->gfn, 720 kvm_mmu_page_get_gfn(sp, index), gfn); 721 } 722 723 /* 724 * Return the pointer to the large page information for a given gfn, 725 * handling slots that are not large page aligned. 726 */ 727 static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn, 728 struct kvm_memory_slot *slot, 729 int level) 730 { 731 unsigned long idx; 732 733 idx = gfn_to_index(gfn, slot->base_gfn, level); 734 return &slot->arch.lpage_info[level - 2][idx]; 735 } 736 737 static void update_gfn_disallow_lpage_count(struct kvm_memory_slot *slot, 738 gfn_t gfn, int count) 739 { 740 struct kvm_lpage_info *linfo; 741 int i; 742 743 for (i = PG_LEVEL_2M; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) { 744 linfo = lpage_info_slot(gfn, slot, i); 745 linfo->disallow_lpage += count; 746 WARN_ON(linfo->disallow_lpage < 0); 747 } 748 } 749 750 void kvm_mmu_gfn_disallow_lpage(struct kvm_memory_slot *slot, gfn_t gfn) 751 { 752 update_gfn_disallow_lpage_count(slot, gfn, 1); 753 } 754 755 void kvm_mmu_gfn_allow_lpage(struct kvm_memory_slot *slot, gfn_t gfn) 756 { 757 update_gfn_disallow_lpage_count(slot, gfn, -1); 758 } 759 760 static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp) 761 { 762 struct kvm_memslots *slots; 763 struct kvm_memory_slot *slot; 764 gfn_t gfn; 765 766 kvm->arch.indirect_shadow_pages++; 767 gfn = sp->gfn; 768 slots = kvm_memslots_for_spte_role(kvm, sp->role); 769 slot = __gfn_to_memslot(slots, gfn); 770 771 /* the non-leaf shadow pages are keeping readonly. */ 772 if (sp->role.level > PG_LEVEL_4K) 773 return kvm_slot_page_track_add_page(kvm, slot, gfn, 774 KVM_PAGE_TRACK_WRITE); 775 776 kvm_mmu_gfn_disallow_lpage(slot, gfn); 777 } 778 779 void account_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp) 780 { 781 if (sp->lpage_disallowed) 782 return; 783 784 ++kvm->stat.nx_lpage_splits; 785 list_add_tail(&sp->lpage_disallowed_link, 786 &kvm->arch.lpage_disallowed_mmu_pages); 787 sp->lpage_disallowed = true; 788 } 789 790 static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp) 791 { 792 struct kvm_memslots *slots; 793 struct kvm_memory_slot *slot; 794 gfn_t gfn; 795 796 kvm->arch.indirect_shadow_pages--; 797 gfn = sp->gfn; 798 slots = kvm_memslots_for_spte_role(kvm, sp->role); 799 slot = __gfn_to_memslot(slots, gfn); 800 if (sp->role.level > PG_LEVEL_4K) 801 return kvm_slot_page_track_remove_page(kvm, slot, gfn, 802 KVM_PAGE_TRACK_WRITE); 803 804 kvm_mmu_gfn_allow_lpage(slot, gfn); 805 } 806 807 void unaccount_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp) 808 { 809 --kvm->stat.nx_lpage_splits; 810 sp->lpage_disallowed = false; 811 list_del(&sp->lpage_disallowed_link); 812 } 813 814 static struct kvm_memory_slot * 815 gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn, 816 bool no_dirty_log) 817 { 818 struct kvm_memory_slot *slot; 819 820 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 821 if (!slot || slot->flags & KVM_MEMSLOT_INVALID) 822 return NULL; 823 if (no_dirty_log && kvm_slot_dirty_track_enabled(slot)) 824 return NULL; 825 826 return slot; 827 } 828 829 /* 830 * About rmap_head encoding: 831 * 832 * If the bit zero of rmap_head->val is clear, then it points to the only spte 833 * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct 834 * pte_list_desc containing more mappings. 835 */ 836 837 /* 838 * Returns the number of pointers in the rmap chain, not counting the new one. 839 */ 840 static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte, 841 struct kvm_rmap_head *rmap_head) 842 { 843 struct pte_list_desc *desc; 844 int i, count = 0; 845 846 if (!rmap_head->val) { 847 rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte); 848 rmap_head->val = (unsigned long)spte; 849 } else if (!(rmap_head->val & 1)) { 850 rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte); 851 desc = mmu_alloc_pte_list_desc(vcpu); 852 desc->sptes[0] = (u64 *)rmap_head->val; 853 desc->sptes[1] = spte; 854 rmap_head->val = (unsigned long)desc | 1; 855 ++count; 856 } else { 857 rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte); 858 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul); 859 while (desc->sptes[PTE_LIST_EXT-1]) { 860 count += PTE_LIST_EXT; 861 862 if (!desc->more) { 863 desc->more = mmu_alloc_pte_list_desc(vcpu); 864 desc = desc->more; 865 break; 866 } 867 desc = desc->more; 868 } 869 for (i = 0; desc->sptes[i]; ++i) 870 ++count; 871 desc->sptes[i] = spte; 872 } 873 return count; 874 } 875 876 static void 877 pte_list_desc_remove_entry(struct kvm_rmap_head *rmap_head, 878 struct pte_list_desc *desc, int i, 879 struct pte_list_desc *prev_desc) 880 { 881 int j; 882 883 for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j) 884 ; 885 desc->sptes[i] = desc->sptes[j]; 886 desc->sptes[j] = NULL; 887 if (j != 0) 888 return; 889 if (!prev_desc && !desc->more) 890 rmap_head->val = 0; 891 else 892 if (prev_desc) 893 prev_desc->more = desc->more; 894 else 895 rmap_head->val = (unsigned long)desc->more | 1; 896 mmu_free_pte_list_desc(desc); 897 } 898 899 static void __pte_list_remove(u64 *spte, struct kvm_rmap_head *rmap_head) 900 { 901 struct pte_list_desc *desc; 902 struct pte_list_desc *prev_desc; 903 int i; 904 905 if (!rmap_head->val) { 906 pr_err("%s: %p 0->BUG\n", __func__, spte); 907 BUG(); 908 } else if (!(rmap_head->val & 1)) { 909 rmap_printk("%s: %p 1->0\n", __func__, spte); 910 if ((u64 *)rmap_head->val != spte) { 911 pr_err("%s: %p 1->BUG\n", __func__, spte); 912 BUG(); 913 } 914 rmap_head->val = 0; 915 } else { 916 rmap_printk("%s: %p many->many\n", __func__, spte); 917 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul); 918 prev_desc = NULL; 919 while (desc) { 920 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i) { 921 if (desc->sptes[i] == spte) { 922 pte_list_desc_remove_entry(rmap_head, 923 desc, i, prev_desc); 924 return; 925 } 926 } 927 prev_desc = desc; 928 desc = desc->more; 929 } 930 pr_err("%s: %p many->many\n", __func__, spte); 931 BUG(); 932 } 933 } 934 935 static void pte_list_remove(struct kvm_rmap_head *rmap_head, u64 *sptep) 936 { 937 mmu_spte_clear_track_bits(sptep); 938 __pte_list_remove(sptep, rmap_head); 939 } 940 941 static struct kvm_rmap_head *__gfn_to_rmap(gfn_t gfn, int level, 942 struct kvm_memory_slot *slot) 943 { 944 unsigned long idx; 945 946 idx = gfn_to_index(gfn, slot->base_gfn, level); 947 return &slot->arch.rmap[level - PG_LEVEL_4K][idx]; 948 } 949 950 static struct kvm_rmap_head *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, 951 struct kvm_mmu_page *sp) 952 { 953 struct kvm_memslots *slots; 954 struct kvm_memory_slot *slot; 955 956 slots = kvm_memslots_for_spte_role(kvm, sp->role); 957 slot = __gfn_to_memslot(slots, gfn); 958 return __gfn_to_rmap(gfn, sp->role.level, slot); 959 } 960 961 static bool rmap_can_add(struct kvm_vcpu *vcpu) 962 { 963 struct kvm_mmu_memory_cache *mc; 964 965 mc = &vcpu->arch.mmu_pte_list_desc_cache; 966 return kvm_mmu_memory_cache_nr_free_objects(mc); 967 } 968 969 static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn) 970 { 971 struct kvm_mmu_page *sp; 972 struct kvm_rmap_head *rmap_head; 973 974 sp = sptep_to_sp(spte); 975 kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn); 976 rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp); 977 return pte_list_add(vcpu, spte, rmap_head); 978 } 979 980 static void rmap_remove(struct kvm *kvm, u64 *spte) 981 { 982 struct kvm_mmu_page *sp; 983 gfn_t gfn; 984 struct kvm_rmap_head *rmap_head; 985 986 sp = sptep_to_sp(spte); 987 gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt); 988 rmap_head = gfn_to_rmap(kvm, gfn, sp); 989 __pte_list_remove(spte, rmap_head); 990 } 991 992 /* 993 * Used by the following functions to iterate through the sptes linked by a 994 * rmap. All fields are private and not assumed to be used outside. 995 */ 996 struct rmap_iterator { 997 /* private fields */ 998 struct pte_list_desc *desc; /* holds the sptep if not NULL */ 999 int pos; /* index of the sptep */ 1000 }; 1001 1002 /* 1003 * Iteration must be started by this function. This should also be used after 1004 * removing/dropping sptes from the rmap link because in such cases the 1005 * information in the iterator may not be valid. 1006 * 1007 * Returns sptep if found, NULL otherwise. 1008 */ 1009 static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head, 1010 struct rmap_iterator *iter) 1011 { 1012 u64 *sptep; 1013 1014 if (!rmap_head->val) 1015 return NULL; 1016 1017 if (!(rmap_head->val & 1)) { 1018 iter->desc = NULL; 1019 sptep = (u64 *)rmap_head->val; 1020 goto out; 1021 } 1022 1023 iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul); 1024 iter->pos = 0; 1025 sptep = iter->desc->sptes[iter->pos]; 1026 out: 1027 BUG_ON(!is_shadow_present_pte(*sptep)); 1028 return sptep; 1029 } 1030 1031 /* 1032 * Must be used with a valid iterator: e.g. after rmap_get_first(). 1033 * 1034 * Returns sptep if found, NULL otherwise. 1035 */ 1036 static u64 *rmap_get_next(struct rmap_iterator *iter) 1037 { 1038 u64 *sptep; 1039 1040 if (iter->desc) { 1041 if (iter->pos < PTE_LIST_EXT - 1) { 1042 ++iter->pos; 1043 sptep = iter->desc->sptes[iter->pos]; 1044 if (sptep) 1045 goto out; 1046 } 1047 1048 iter->desc = iter->desc->more; 1049 1050 if (iter->desc) { 1051 iter->pos = 0; 1052 /* desc->sptes[0] cannot be NULL */ 1053 sptep = iter->desc->sptes[iter->pos]; 1054 goto out; 1055 } 1056 } 1057 1058 return NULL; 1059 out: 1060 BUG_ON(!is_shadow_present_pte(*sptep)); 1061 return sptep; 1062 } 1063 1064 #define for_each_rmap_spte(_rmap_head_, _iter_, _spte_) \ 1065 for (_spte_ = rmap_get_first(_rmap_head_, _iter_); \ 1066 _spte_; _spte_ = rmap_get_next(_iter_)) 1067 1068 static void drop_spte(struct kvm *kvm, u64 *sptep) 1069 { 1070 if (mmu_spte_clear_track_bits(sptep)) 1071 rmap_remove(kvm, sptep); 1072 } 1073 1074 1075 static bool __drop_large_spte(struct kvm *kvm, u64 *sptep) 1076 { 1077 if (is_large_pte(*sptep)) { 1078 WARN_ON(sptep_to_sp(sptep)->role.level == PG_LEVEL_4K); 1079 drop_spte(kvm, sptep); 1080 --kvm->stat.lpages; 1081 return true; 1082 } 1083 1084 return false; 1085 } 1086 1087 static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep) 1088 { 1089 if (__drop_large_spte(vcpu->kvm, sptep)) { 1090 struct kvm_mmu_page *sp = sptep_to_sp(sptep); 1091 1092 kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn, 1093 KVM_PAGES_PER_HPAGE(sp->role.level)); 1094 } 1095 } 1096 1097 /* 1098 * Write-protect on the specified @sptep, @pt_protect indicates whether 1099 * spte write-protection is caused by protecting shadow page table. 1100 * 1101 * Note: write protection is difference between dirty logging and spte 1102 * protection: 1103 * - for dirty logging, the spte can be set to writable at anytime if 1104 * its dirty bitmap is properly set. 1105 * - for spte protection, the spte can be writable only after unsync-ing 1106 * shadow page. 1107 * 1108 * Return true if tlb need be flushed. 1109 */ 1110 static bool spte_write_protect(u64 *sptep, bool pt_protect) 1111 { 1112 u64 spte = *sptep; 1113 1114 if (!is_writable_pte(spte) && 1115 !(pt_protect && spte_can_locklessly_be_made_writable(spte))) 1116 return false; 1117 1118 rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep); 1119 1120 if (pt_protect) 1121 spte &= ~SPTE_MMU_WRITEABLE; 1122 spte = spte & ~PT_WRITABLE_MASK; 1123 1124 return mmu_spte_update(sptep, spte); 1125 } 1126 1127 static bool __rmap_write_protect(struct kvm *kvm, 1128 struct kvm_rmap_head *rmap_head, 1129 bool pt_protect) 1130 { 1131 u64 *sptep; 1132 struct rmap_iterator iter; 1133 bool flush = false; 1134 1135 for_each_rmap_spte(rmap_head, &iter, sptep) 1136 flush |= spte_write_protect(sptep, pt_protect); 1137 1138 return flush; 1139 } 1140 1141 static bool spte_clear_dirty(u64 *sptep) 1142 { 1143 u64 spte = *sptep; 1144 1145 rmap_printk("rmap_clear_dirty: spte %p %llx\n", sptep, *sptep); 1146 1147 MMU_WARN_ON(!spte_ad_enabled(spte)); 1148 spte &= ~shadow_dirty_mask; 1149 return mmu_spte_update(sptep, spte); 1150 } 1151 1152 static bool spte_wrprot_for_clear_dirty(u64 *sptep) 1153 { 1154 bool was_writable = test_and_clear_bit(PT_WRITABLE_SHIFT, 1155 (unsigned long *)sptep); 1156 if (was_writable && !spte_ad_enabled(*sptep)) 1157 kvm_set_pfn_dirty(spte_to_pfn(*sptep)); 1158 1159 return was_writable; 1160 } 1161 1162 /* 1163 * Gets the GFN ready for another round of dirty logging by clearing the 1164 * - D bit on ad-enabled SPTEs, and 1165 * - W bit on ad-disabled SPTEs. 1166 * Returns true iff any D or W bits were cleared. 1167 */ 1168 static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head) 1169 { 1170 u64 *sptep; 1171 struct rmap_iterator iter; 1172 bool flush = false; 1173 1174 for_each_rmap_spte(rmap_head, &iter, sptep) 1175 if (spte_ad_need_write_protect(*sptep)) 1176 flush |= spte_wrprot_for_clear_dirty(sptep); 1177 else 1178 flush |= spte_clear_dirty(sptep); 1179 1180 return flush; 1181 } 1182 1183 static bool spte_set_dirty(u64 *sptep) 1184 { 1185 u64 spte = *sptep; 1186 1187 rmap_printk("rmap_set_dirty: spte %p %llx\n", sptep, *sptep); 1188 1189 /* 1190 * Similar to the !kvm_x86_ops.slot_disable_log_dirty case, 1191 * do not bother adding back write access to pages marked 1192 * SPTE_AD_WRPROT_ONLY_MASK. 1193 */ 1194 spte |= shadow_dirty_mask; 1195 1196 return mmu_spte_update(sptep, spte); 1197 } 1198 1199 static bool __rmap_set_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head) 1200 { 1201 u64 *sptep; 1202 struct rmap_iterator iter; 1203 bool flush = false; 1204 1205 for_each_rmap_spte(rmap_head, &iter, sptep) 1206 if (spte_ad_enabled(*sptep)) 1207 flush |= spte_set_dirty(sptep); 1208 1209 return flush; 1210 } 1211 1212 /** 1213 * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages 1214 * @kvm: kvm instance 1215 * @slot: slot to protect 1216 * @gfn_offset: start of the BITS_PER_LONG pages we care about 1217 * @mask: indicates which pages we should protect 1218 * 1219 * Used when we do not need to care about huge page mappings: e.g. during dirty 1220 * logging we do not have any such mappings. 1221 */ 1222 static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm, 1223 struct kvm_memory_slot *slot, 1224 gfn_t gfn_offset, unsigned long mask) 1225 { 1226 struct kvm_rmap_head *rmap_head; 1227 1228 if (kvm->arch.tdp_mmu_enabled) 1229 kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot, 1230 slot->base_gfn + gfn_offset, mask, true); 1231 while (mask) { 1232 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask), 1233 PG_LEVEL_4K, slot); 1234 __rmap_write_protect(kvm, rmap_head, false); 1235 1236 /* clear the first set bit */ 1237 mask &= mask - 1; 1238 } 1239 } 1240 1241 /** 1242 * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages, or write 1243 * protect the page if the D-bit isn't supported. 1244 * @kvm: kvm instance 1245 * @slot: slot to clear D-bit 1246 * @gfn_offset: start of the BITS_PER_LONG pages we care about 1247 * @mask: indicates which pages we should clear D-bit 1248 * 1249 * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap. 1250 */ 1251 void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm, 1252 struct kvm_memory_slot *slot, 1253 gfn_t gfn_offset, unsigned long mask) 1254 { 1255 struct kvm_rmap_head *rmap_head; 1256 1257 if (kvm->arch.tdp_mmu_enabled) 1258 kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot, 1259 slot->base_gfn + gfn_offset, mask, false); 1260 while (mask) { 1261 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask), 1262 PG_LEVEL_4K, slot); 1263 __rmap_clear_dirty(kvm, rmap_head); 1264 1265 /* clear the first set bit */ 1266 mask &= mask - 1; 1267 } 1268 } 1269 EXPORT_SYMBOL_GPL(kvm_mmu_clear_dirty_pt_masked); 1270 1271 /** 1272 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected 1273 * PT level pages. 1274 * 1275 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to 1276 * enable dirty logging for them. 1277 * 1278 * Used when we do not need to care about huge page mappings: e.g. during dirty 1279 * logging we do not have any such mappings. 1280 */ 1281 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm, 1282 struct kvm_memory_slot *slot, 1283 gfn_t gfn_offset, unsigned long mask) 1284 { 1285 if (kvm_x86_ops.enable_log_dirty_pt_masked) 1286 kvm_x86_ops.enable_log_dirty_pt_masked(kvm, slot, gfn_offset, 1287 mask); 1288 else 1289 kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask); 1290 } 1291 1292 int kvm_cpu_dirty_log_size(void) 1293 { 1294 if (kvm_x86_ops.cpu_dirty_log_size) 1295 return kvm_x86_ops.cpu_dirty_log_size(); 1296 1297 return 0; 1298 } 1299 1300 bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm, 1301 struct kvm_memory_slot *slot, u64 gfn) 1302 { 1303 struct kvm_rmap_head *rmap_head; 1304 int i; 1305 bool write_protected = false; 1306 1307 for (i = PG_LEVEL_4K; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) { 1308 rmap_head = __gfn_to_rmap(gfn, i, slot); 1309 write_protected |= __rmap_write_protect(kvm, rmap_head, true); 1310 } 1311 1312 if (kvm->arch.tdp_mmu_enabled) 1313 write_protected |= 1314 kvm_tdp_mmu_write_protect_gfn(kvm, slot, gfn); 1315 1316 return write_protected; 1317 } 1318 1319 static bool rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn) 1320 { 1321 struct kvm_memory_slot *slot; 1322 1323 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 1324 return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn); 1325 } 1326 1327 static bool kvm_zap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head) 1328 { 1329 u64 *sptep; 1330 struct rmap_iterator iter; 1331 bool flush = false; 1332 1333 while ((sptep = rmap_get_first(rmap_head, &iter))) { 1334 rmap_printk("%s: spte %p %llx.\n", __func__, sptep, *sptep); 1335 1336 pte_list_remove(rmap_head, sptep); 1337 flush = true; 1338 } 1339 1340 return flush; 1341 } 1342 1343 static int kvm_unmap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head, 1344 struct kvm_memory_slot *slot, gfn_t gfn, int level, 1345 unsigned long data) 1346 { 1347 return kvm_zap_rmapp(kvm, rmap_head); 1348 } 1349 1350 static int kvm_set_pte_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head, 1351 struct kvm_memory_slot *slot, gfn_t gfn, int level, 1352 unsigned long data) 1353 { 1354 u64 *sptep; 1355 struct rmap_iterator iter; 1356 int need_flush = 0; 1357 u64 new_spte; 1358 pte_t *ptep = (pte_t *)data; 1359 kvm_pfn_t new_pfn; 1360 1361 WARN_ON(pte_huge(*ptep)); 1362 new_pfn = pte_pfn(*ptep); 1363 1364 restart: 1365 for_each_rmap_spte(rmap_head, &iter, sptep) { 1366 rmap_printk("kvm_set_pte_rmapp: spte %p %llx gfn %llx (%d)\n", 1367 sptep, *sptep, gfn, level); 1368 1369 need_flush = 1; 1370 1371 if (pte_write(*ptep)) { 1372 pte_list_remove(rmap_head, sptep); 1373 goto restart; 1374 } else { 1375 new_spte = kvm_mmu_changed_pte_notifier_make_spte( 1376 *sptep, new_pfn); 1377 1378 mmu_spte_clear_track_bits(sptep); 1379 mmu_spte_set(sptep, new_spte); 1380 } 1381 } 1382 1383 if (need_flush && kvm_available_flush_tlb_with_range()) { 1384 kvm_flush_remote_tlbs_with_address(kvm, gfn, 1); 1385 return 0; 1386 } 1387 1388 return need_flush; 1389 } 1390 1391 struct slot_rmap_walk_iterator { 1392 /* input fields. */ 1393 struct kvm_memory_slot *slot; 1394 gfn_t start_gfn; 1395 gfn_t end_gfn; 1396 int start_level; 1397 int end_level; 1398 1399 /* output fields. */ 1400 gfn_t gfn; 1401 struct kvm_rmap_head *rmap; 1402 int level; 1403 1404 /* private field. */ 1405 struct kvm_rmap_head *end_rmap; 1406 }; 1407 1408 static void 1409 rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level) 1410 { 1411 iterator->level = level; 1412 iterator->gfn = iterator->start_gfn; 1413 iterator->rmap = __gfn_to_rmap(iterator->gfn, level, iterator->slot); 1414 iterator->end_rmap = __gfn_to_rmap(iterator->end_gfn, level, 1415 iterator->slot); 1416 } 1417 1418 static void 1419 slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator, 1420 struct kvm_memory_slot *slot, int start_level, 1421 int end_level, gfn_t start_gfn, gfn_t end_gfn) 1422 { 1423 iterator->slot = slot; 1424 iterator->start_level = start_level; 1425 iterator->end_level = end_level; 1426 iterator->start_gfn = start_gfn; 1427 iterator->end_gfn = end_gfn; 1428 1429 rmap_walk_init_level(iterator, iterator->start_level); 1430 } 1431 1432 static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator) 1433 { 1434 return !!iterator->rmap; 1435 } 1436 1437 static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator) 1438 { 1439 if (++iterator->rmap <= iterator->end_rmap) { 1440 iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level)); 1441 return; 1442 } 1443 1444 if (++iterator->level > iterator->end_level) { 1445 iterator->rmap = NULL; 1446 return; 1447 } 1448 1449 rmap_walk_init_level(iterator, iterator->level); 1450 } 1451 1452 #define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_, \ 1453 _start_gfn, _end_gfn, _iter_) \ 1454 for (slot_rmap_walk_init(_iter_, _slot_, _start_level_, \ 1455 _end_level_, _start_gfn, _end_gfn); \ 1456 slot_rmap_walk_okay(_iter_); \ 1457 slot_rmap_walk_next(_iter_)) 1458 1459 static int kvm_handle_hva_range(struct kvm *kvm, 1460 unsigned long start, 1461 unsigned long end, 1462 unsigned long data, 1463 int (*handler)(struct kvm *kvm, 1464 struct kvm_rmap_head *rmap_head, 1465 struct kvm_memory_slot *slot, 1466 gfn_t gfn, 1467 int level, 1468 unsigned long data)) 1469 { 1470 struct kvm_memslots *slots; 1471 struct kvm_memory_slot *memslot; 1472 struct slot_rmap_walk_iterator iterator; 1473 int ret = 0; 1474 int i; 1475 1476 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { 1477 slots = __kvm_memslots(kvm, i); 1478 kvm_for_each_memslot(memslot, slots) { 1479 unsigned long hva_start, hva_end; 1480 gfn_t gfn_start, gfn_end; 1481 1482 hva_start = max(start, memslot->userspace_addr); 1483 hva_end = min(end, memslot->userspace_addr + 1484 (memslot->npages << PAGE_SHIFT)); 1485 if (hva_start >= hva_end) 1486 continue; 1487 /* 1488 * {gfn(page) | page intersects with [hva_start, hva_end)} = 1489 * {gfn_start, gfn_start+1, ..., gfn_end-1}. 1490 */ 1491 gfn_start = hva_to_gfn_memslot(hva_start, memslot); 1492 gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot); 1493 1494 for_each_slot_rmap_range(memslot, PG_LEVEL_4K, 1495 KVM_MAX_HUGEPAGE_LEVEL, 1496 gfn_start, gfn_end - 1, 1497 &iterator) 1498 ret |= handler(kvm, iterator.rmap, memslot, 1499 iterator.gfn, iterator.level, data); 1500 } 1501 } 1502 1503 return ret; 1504 } 1505 1506 static int kvm_handle_hva(struct kvm *kvm, unsigned long hva, 1507 unsigned long data, 1508 int (*handler)(struct kvm *kvm, 1509 struct kvm_rmap_head *rmap_head, 1510 struct kvm_memory_slot *slot, 1511 gfn_t gfn, int level, 1512 unsigned long data)) 1513 { 1514 return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler); 1515 } 1516 1517 int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end, 1518 unsigned flags) 1519 { 1520 int r; 1521 1522 r = kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp); 1523 1524 if (kvm->arch.tdp_mmu_enabled) 1525 r |= kvm_tdp_mmu_zap_hva_range(kvm, start, end); 1526 1527 return r; 1528 } 1529 1530 int kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte) 1531 { 1532 int r; 1533 1534 r = kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp); 1535 1536 if (kvm->arch.tdp_mmu_enabled) 1537 r |= kvm_tdp_mmu_set_spte_hva(kvm, hva, &pte); 1538 1539 return r; 1540 } 1541 1542 static int kvm_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head, 1543 struct kvm_memory_slot *slot, gfn_t gfn, int level, 1544 unsigned long data) 1545 { 1546 u64 *sptep; 1547 struct rmap_iterator iter; 1548 int young = 0; 1549 1550 for_each_rmap_spte(rmap_head, &iter, sptep) 1551 young |= mmu_spte_age(sptep); 1552 1553 trace_kvm_age_page(gfn, level, slot, young); 1554 return young; 1555 } 1556 1557 static int kvm_test_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head, 1558 struct kvm_memory_slot *slot, gfn_t gfn, 1559 int level, unsigned long data) 1560 { 1561 u64 *sptep; 1562 struct rmap_iterator iter; 1563 1564 for_each_rmap_spte(rmap_head, &iter, sptep) 1565 if (is_accessed_spte(*sptep)) 1566 return 1; 1567 return 0; 1568 } 1569 1570 #define RMAP_RECYCLE_THRESHOLD 1000 1571 1572 static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn) 1573 { 1574 struct kvm_rmap_head *rmap_head; 1575 struct kvm_mmu_page *sp; 1576 1577 sp = sptep_to_sp(spte); 1578 1579 rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp); 1580 1581 kvm_unmap_rmapp(vcpu->kvm, rmap_head, NULL, gfn, sp->role.level, 0); 1582 kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn, 1583 KVM_PAGES_PER_HPAGE(sp->role.level)); 1584 } 1585 1586 int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end) 1587 { 1588 int young = false; 1589 1590 young = kvm_handle_hva_range(kvm, start, end, 0, kvm_age_rmapp); 1591 if (kvm->arch.tdp_mmu_enabled) 1592 young |= kvm_tdp_mmu_age_hva_range(kvm, start, end); 1593 1594 return young; 1595 } 1596 1597 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva) 1598 { 1599 int young = false; 1600 1601 young = kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp); 1602 if (kvm->arch.tdp_mmu_enabled) 1603 young |= kvm_tdp_mmu_test_age_hva(kvm, hva); 1604 1605 return young; 1606 } 1607 1608 #ifdef MMU_DEBUG 1609 static int is_empty_shadow_page(u64 *spt) 1610 { 1611 u64 *pos; 1612 u64 *end; 1613 1614 for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++) 1615 if (is_shadow_present_pte(*pos)) { 1616 printk(KERN_ERR "%s: %p %llx\n", __func__, 1617 pos, *pos); 1618 return 0; 1619 } 1620 return 1; 1621 } 1622 #endif 1623 1624 /* 1625 * This value is the sum of all of the kvm instances's 1626 * kvm->arch.n_used_mmu_pages values. We need a global, 1627 * aggregate version in order to make the slab shrinker 1628 * faster 1629 */ 1630 static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, unsigned long nr) 1631 { 1632 kvm->arch.n_used_mmu_pages += nr; 1633 percpu_counter_add(&kvm_total_used_mmu_pages, nr); 1634 } 1635 1636 static void kvm_mmu_free_page(struct kvm_mmu_page *sp) 1637 { 1638 MMU_WARN_ON(!is_empty_shadow_page(sp->spt)); 1639 hlist_del(&sp->hash_link); 1640 list_del(&sp->link); 1641 free_page((unsigned long)sp->spt); 1642 if (!sp->role.direct) 1643 free_page((unsigned long)sp->gfns); 1644 kmem_cache_free(mmu_page_header_cache, sp); 1645 } 1646 1647 static unsigned kvm_page_table_hashfn(gfn_t gfn) 1648 { 1649 return hash_64(gfn, KVM_MMU_HASH_SHIFT); 1650 } 1651 1652 static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu, 1653 struct kvm_mmu_page *sp, u64 *parent_pte) 1654 { 1655 if (!parent_pte) 1656 return; 1657 1658 pte_list_add(vcpu, parent_pte, &sp->parent_ptes); 1659 } 1660 1661 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp, 1662 u64 *parent_pte) 1663 { 1664 __pte_list_remove(parent_pte, &sp->parent_ptes); 1665 } 1666 1667 static void drop_parent_pte(struct kvm_mmu_page *sp, 1668 u64 *parent_pte) 1669 { 1670 mmu_page_remove_parent_pte(sp, parent_pte); 1671 mmu_spte_clear_no_track(parent_pte); 1672 } 1673 1674 static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu, int direct) 1675 { 1676 struct kvm_mmu_page *sp; 1677 1678 sp = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache); 1679 sp->spt = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_shadow_page_cache); 1680 if (!direct) 1681 sp->gfns = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_gfn_array_cache); 1682 set_page_private(virt_to_page(sp->spt), (unsigned long)sp); 1683 1684 /* 1685 * active_mmu_pages must be a FIFO list, as kvm_zap_obsolete_pages() 1686 * depends on valid pages being added to the head of the list. See 1687 * comments in kvm_zap_obsolete_pages(). 1688 */ 1689 sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen; 1690 list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages); 1691 kvm_mod_used_mmu_pages(vcpu->kvm, +1); 1692 return sp; 1693 } 1694 1695 static void mark_unsync(u64 *spte); 1696 static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp) 1697 { 1698 u64 *sptep; 1699 struct rmap_iterator iter; 1700 1701 for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) { 1702 mark_unsync(sptep); 1703 } 1704 } 1705 1706 static void mark_unsync(u64 *spte) 1707 { 1708 struct kvm_mmu_page *sp; 1709 unsigned int index; 1710 1711 sp = sptep_to_sp(spte); 1712 index = spte - sp->spt; 1713 if (__test_and_set_bit(index, sp->unsync_child_bitmap)) 1714 return; 1715 if (sp->unsync_children++) 1716 return; 1717 kvm_mmu_mark_parents_unsync(sp); 1718 } 1719 1720 static int nonpaging_sync_page(struct kvm_vcpu *vcpu, 1721 struct kvm_mmu_page *sp) 1722 { 1723 return 0; 1724 } 1725 1726 static void nonpaging_update_pte(struct kvm_vcpu *vcpu, 1727 struct kvm_mmu_page *sp, u64 *spte, 1728 const void *pte) 1729 { 1730 WARN_ON(1); 1731 } 1732 1733 #define KVM_PAGE_ARRAY_NR 16 1734 1735 struct kvm_mmu_pages { 1736 struct mmu_page_and_offset { 1737 struct kvm_mmu_page *sp; 1738 unsigned int idx; 1739 } page[KVM_PAGE_ARRAY_NR]; 1740 unsigned int nr; 1741 }; 1742 1743 static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp, 1744 int idx) 1745 { 1746 int i; 1747 1748 if (sp->unsync) 1749 for (i=0; i < pvec->nr; i++) 1750 if (pvec->page[i].sp == sp) 1751 return 0; 1752 1753 pvec->page[pvec->nr].sp = sp; 1754 pvec->page[pvec->nr].idx = idx; 1755 pvec->nr++; 1756 return (pvec->nr == KVM_PAGE_ARRAY_NR); 1757 } 1758 1759 static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx) 1760 { 1761 --sp->unsync_children; 1762 WARN_ON((int)sp->unsync_children < 0); 1763 __clear_bit(idx, sp->unsync_child_bitmap); 1764 } 1765 1766 static int __mmu_unsync_walk(struct kvm_mmu_page *sp, 1767 struct kvm_mmu_pages *pvec) 1768 { 1769 int i, ret, nr_unsync_leaf = 0; 1770 1771 for_each_set_bit(i, sp->unsync_child_bitmap, 512) { 1772 struct kvm_mmu_page *child; 1773 u64 ent = sp->spt[i]; 1774 1775 if (!is_shadow_present_pte(ent) || is_large_pte(ent)) { 1776 clear_unsync_child_bit(sp, i); 1777 continue; 1778 } 1779 1780 child = to_shadow_page(ent & PT64_BASE_ADDR_MASK); 1781 1782 if (child->unsync_children) { 1783 if (mmu_pages_add(pvec, child, i)) 1784 return -ENOSPC; 1785 1786 ret = __mmu_unsync_walk(child, pvec); 1787 if (!ret) { 1788 clear_unsync_child_bit(sp, i); 1789 continue; 1790 } else if (ret > 0) { 1791 nr_unsync_leaf += ret; 1792 } else 1793 return ret; 1794 } else if (child->unsync) { 1795 nr_unsync_leaf++; 1796 if (mmu_pages_add(pvec, child, i)) 1797 return -ENOSPC; 1798 } else 1799 clear_unsync_child_bit(sp, i); 1800 } 1801 1802 return nr_unsync_leaf; 1803 } 1804 1805 #define INVALID_INDEX (-1) 1806 1807 static int mmu_unsync_walk(struct kvm_mmu_page *sp, 1808 struct kvm_mmu_pages *pvec) 1809 { 1810 pvec->nr = 0; 1811 if (!sp->unsync_children) 1812 return 0; 1813 1814 mmu_pages_add(pvec, sp, INVALID_INDEX); 1815 return __mmu_unsync_walk(sp, pvec); 1816 } 1817 1818 static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp) 1819 { 1820 WARN_ON(!sp->unsync); 1821 trace_kvm_mmu_sync_page(sp); 1822 sp->unsync = 0; 1823 --kvm->stat.mmu_unsync; 1824 } 1825 1826 static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp, 1827 struct list_head *invalid_list); 1828 static void kvm_mmu_commit_zap_page(struct kvm *kvm, 1829 struct list_head *invalid_list); 1830 1831 #define for_each_valid_sp(_kvm, _sp, _list) \ 1832 hlist_for_each_entry(_sp, _list, hash_link) \ 1833 if (is_obsolete_sp((_kvm), (_sp))) { \ 1834 } else 1835 1836 #define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn) \ 1837 for_each_valid_sp(_kvm, _sp, \ 1838 &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)]) \ 1839 if ((_sp)->gfn != (_gfn) || (_sp)->role.direct) {} else 1840 1841 static inline bool is_ept_sp(struct kvm_mmu_page *sp) 1842 { 1843 return sp->role.cr0_wp && sp->role.smap_andnot_wp; 1844 } 1845 1846 /* @sp->gfn should be write-protected at the call site */ 1847 static bool __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp, 1848 struct list_head *invalid_list) 1849 { 1850 if ((!is_ept_sp(sp) && sp->role.gpte_is_8_bytes != !!is_pae(vcpu)) || 1851 vcpu->arch.mmu->sync_page(vcpu, sp) == 0) { 1852 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list); 1853 return false; 1854 } 1855 1856 return true; 1857 } 1858 1859 static bool kvm_mmu_remote_flush_or_zap(struct kvm *kvm, 1860 struct list_head *invalid_list, 1861 bool remote_flush) 1862 { 1863 if (!remote_flush && list_empty(invalid_list)) 1864 return false; 1865 1866 if (!list_empty(invalid_list)) 1867 kvm_mmu_commit_zap_page(kvm, invalid_list); 1868 else 1869 kvm_flush_remote_tlbs(kvm); 1870 return true; 1871 } 1872 1873 static void kvm_mmu_flush_or_zap(struct kvm_vcpu *vcpu, 1874 struct list_head *invalid_list, 1875 bool remote_flush, bool local_flush) 1876 { 1877 if (kvm_mmu_remote_flush_or_zap(vcpu->kvm, invalid_list, remote_flush)) 1878 return; 1879 1880 if (local_flush) 1881 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 1882 } 1883 1884 #ifdef CONFIG_KVM_MMU_AUDIT 1885 #include "mmu_audit.c" 1886 #else 1887 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { } 1888 static void mmu_audit_disable(void) { } 1889 #endif 1890 1891 static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp) 1892 { 1893 return sp->role.invalid || 1894 unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen); 1895 } 1896 1897 static bool kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp, 1898 struct list_head *invalid_list) 1899 { 1900 kvm_unlink_unsync_page(vcpu->kvm, sp); 1901 return __kvm_sync_page(vcpu, sp, invalid_list); 1902 } 1903 1904 /* @gfn should be write-protected at the call site */ 1905 static bool kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn, 1906 struct list_head *invalid_list) 1907 { 1908 struct kvm_mmu_page *s; 1909 bool ret = false; 1910 1911 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) { 1912 if (!s->unsync) 1913 continue; 1914 1915 WARN_ON(s->role.level != PG_LEVEL_4K); 1916 ret |= kvm_sync_page(vcpu, s, invalid_list); 1917 } 1918 1919 return ret; 1920 } 1921 1922 struct mmu_page_path { 1923 struct kvm_mmu_page *parent[PT64_ROOT_MAX_LEVEL]; 1924 unsigned int idx[PT64_ROOT_MAX_LEVEL]; 1925 }; 1926 1927 #define for_each_sp(pvec, sp, parents, i) \ 1928 for (i = mmu_pages_first(&pvec, &parents); \ 1929 i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \ 1930 i = mmu_pages_next(&pvec, &parents, i)) 1931 1932 static int mmu_pages_next(struct kvm_mmu_pages *pvec, 1933 struct mmu_page_path *parents, 1934 int i) 1935 { 1936 int n; 1937 1938 for (n = i+1; n < pvec->nr; n++) { 1939 struct kvm_mmu_page *sp = pvec->page[n].sp; 1940 unsigned idx = pvec->page[n].idx; 1941 int level = sp->role.level; 1942 1943 parents->idx[level-1] = idx; 1944 if (level == PG_LEVEL_4K) 1945 break; 1946 1947 parents->parent[level-2] = sp; 1948 } 1949 1950 return n; 1951 } 1952 1953 static int mmu_pages_first(struct kvm_mmu_pages *pvec, 1954 struct mmu_page_path *parents) 1955 { 1956 struct kvm_mmu_page *sp; 1957 int level; 1958 1959 if (pvec->nr == 0) 1960 return 0; 1961 1962 WARN_ON(pvec->page[0].idx != INVALID_INDEX); 1963 1964 sp = pvec->page[0].sp; 1965 level = sp->role.level; 1966 WARN_ON(level == PG_LEVEL_4K); 1967 1968 parents->parent[level-2] = sp; 1969 1970 /* Also set up a sentinel. Further entries in pvec are all 1971 * children of sp, so this element is never overwritten. 1972 */ 1973 parents->parent[level-1] = NULL; 1974 return mmu_pages_next(pvec, parents, 0); 1975 } 1976 1977 static void mmu_pages_clear_parents(struct mmu_page_path *parents) 1978 { 1979 struct kvm_mmu_page *sp; 1980 unsigned int level = 0; 1981 1982 do { 1983 unsigned int idx = parents->idx[level]; 1984 sp = parents->parent[level]; 1985 if (!sp) 1986 return; 1987 1988 WARN_ON(idx == INVALID_INDEX); 1989 clear_unsync_child_bit(sp, idx); 1990 level++; 1991 } while (!sp->unsync_children); 1992 } 1993 1994 static void mmu_sync_children(struct kvm_vcpu *vcpu, 1995 struct kvm_mmu_page *parent) 1996 { 1997 int i; 1998 struct kvm_mmu_page *sp; 1999 struct mmu_page_path parents; 2000 struct kvm_mmu_pages pages; 2001 LIST_HEAD(invalid_list); 2002 bool flush = false; 2003 2004 while (mmu_unsync_walk(parent, &pages)) { 2005 bool protected = false; 2006 2007 for_each_sp(pages, sp, parents, i) 2008 protected |= rmap_write_protect(vcpu, sp->gfn); 2009 2010 if (protected) { 2011 kvm_flush_remote_tlbs(vcpu->kvm); 2012 flush = false; 2013 } 2014 2015 for_each_sp(pages, sp, parents, i) { 2016 flush |= kvm_sync_page(vcpu, sp, &invalid_list); 2017 mmu_pages_clear_parents(&parents); 2018 } 2019 if (need_resched() || spin_needbreak(&vcpu->kvm->mmu_lock)) { 2020 kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush); 2021 cond_resched_lock(&vcpu->kvm->mmu_lock); 2022 flush = false; 2023 } 2024 } 2025 2026 kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush); 2027 } 2028 2029 static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp) 2030 { 2031 atomic_set(&sp->write_flooding_count, 0); 2032 } 2033 2034 static void clear_sp_write_flooding_count(u64 *spte) 2035 { 2036 __clear_sp_write_flooding_count(sptep_to_sp(spte)); 2037 } 2038 2039 static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu, 2040 gfn_t gfn, 2041 gva_t gaddr, 2042 unsigned level, 2043 int direct, 2044 unsigned int access) 2045 { 2046 bool direct_mmu = vcpu->arch.mmu->direct_map; 2047 union kvm_mmu_page_role role; 2048 struct hlist_head *sp_list; 2049 unsigned quadrant; 2050 struct kvm_mmu_page *sp; 2051 bool need_sync = false; 2052 bool flush = false; 2053 int collisions = 0; 2054 LIST_HEAD(invalid_list); 2055 2056 role = vcpu->arch.mmu->mmu_role.base; 2057 role.level = level; 2058 role.direct = direct; 2059 if (role.direct) 2060 role.gpte_is_8_bytes = true; 2061 role.access = access; 2062 if (!direct_mmu && vcpu->arch.mmu->root_level <= PT32_ROOT_LEVEL) { 2063 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level)); 2064 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1; 2065 role.quadrant = quadrant; 2066 } 2067 2068 sp_list = &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]; 2069 for_each_valid_sp(vcpu->kvm, sp, sp_list) { 2070 if (sp->gfn != gfn) { 2071 collisions++; 2072 continue; 2073 } 2074 2075 if (!need_sync && sp->unsync) 2076 need_sync = true; 2077 2078 if (sp->role.word != role.word) 2079 continue; 2080 2081 if (direct_mmu) 2082 goto trace_get_page; 2083 2084 if (sp->unsync) { 2085 /* The page is good, but __kvm_sync_page might still end 2086 * up zapping it. If so, break in order to rebuild it. 2087 */ 2088 if (!__kvm_sync_page(vcpu, sp, &invalid_list)) 2089 break; 2090 2091 WARN_ON(!list_empty(&invalid_list)); 2092 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 2093 } 2094 2095 if (sp->unsync_children) 2096 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu); 2097 2098 __clear_sp_write_flooding_count(sp); 2099 2100 trace_get_page: 2101 trace_kvm_mmu_get_page(sp, false); 2102 goto out; 2103 } 2104 2105 ++vcpu->kvm->stat.mmu_cache_miss; 2106 2107 sp = kvm_mmu_alloc_page(vcpu, direct); 2108 2109 sp->gfn = gfn; 2110 sp->role = role; 2111 hlist_add_head(&sp->hash_link, sp_list); 2112 if (!direct) { 2113 /* 2114 * we should do write protection before syncing pages 2115 * otherwise the content of the synced shadow page may 2116 * be inconsistent with guest page table. 2117 */ 2118 account_shadowed(vcpu->kvm, sp); 2119 if (level == PG_LEVEL_4K && rmap_write_protect(vcpu, gfn)) 2120 kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn, 1); 2121 2122 if (level > PG_LEVEL_4K && need_sync) 2123 flush |= kvm_sync_pages(vcpu, gfn, &invalid_list); 2124 } 2125 trace_kvm_mmu_get_page(sp, true); 2126 2127 kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush); 2128 out: 2129 if (collisions > vcpu->kvm->stat.max_mmu_page_hash_collisions) 2130 vcpu->kvm->stat.max_mmu_page_hash_collisions = collisions; 2131 return sp; 2132 } 2133 2134 static void shadow_walk_init_using_root(struct kvm_shadow_walk_iterator *iterator, 2135 struct kvm_vcpu *vcpu, hpa_t root, 2136 u64 addr) 2137 { 2138 iterator->addr = addr; 2139 iterator->shadow_addr = root; 2140 iterator->level = vcpu->arch.mmu->shadow_root_level; 2141 2142 if (iterator->level == PT64_ROOT_4LEVEL && 2143 vcpu->arch.mmu->root_level < PT64_ROOT_4LEVEL && 2144 !vcpu->arch.mmu->direct_map) 2145 --iterator->level; 2146 2147 if (iterator->level == PT32E_ROOT_LEVEL) { 2148 /* 2149 * prev_root is currently only used for 64-bit hosts. So only 2150 * the active root_hpa is valid here. 2151 */ 2152 BUG_ON(root != vcpu->arch.mmu->root_hpa); 2153 2154 iterator->shadow_addr 2155 = vcpu->arch.mmu->pae_root[(addr >> 30) & 3]; 2156 iterator->shadow_addr &= PT64_BASE_ADDR_MASK; 2157 --iterator->level; 2158 if (!iterator->shadow_addr) 2159 iterator->level = 0; 2160 } 2161 } 2162 2163 static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator, 2164 struct kvm_vcpu *vcpu, u64 addr) 2165 { 2166 shadow_walk_init_using_root(iterator, vcpu, vcpu->arch.mmu->root_hpa, 2167 addr); 2168 } 2169 2170 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator) 2171 { 2172 if (iterator->level < PG_LEVEL_4K) 2173 return false; 2174 2175 iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level); 2176 iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index; 2177 return true; 2178 } 2179 2180 static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator, 2181 u64 spte) 2182 { 2183 if (is_last_spte(spte, iterator->level)) { 2184 iterator->level = 0; 2185 return; 2186 } 2187 2188 iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK; 2189 --iterator->level; 2190 } 2191 2192 static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator) 2193 { 2194 __shadow_walk_next(iterator, *iterator->sptep); 2195 } 2196 2197 static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep, 2198 struct kvm_mmu_page *sp) 2199 { 2200 u64 spte; 2201 2202 BUILD_BUG_ON(VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK); 2203 2204 spte = make_nonleaf_spte(sp->spt, sp_ad_disabled(sp)); 2205 2206 mmu_spte_set(sptep, spte); 2207 2208 mmu_page_add_parent_pte(vcpu, sp, sptep); 2209 2210 if (sp->unsync_children || sp->unsync) 2211 mark_unsync(sptep); 2212 } 2213 2214 static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep, 2215 unsigned direct_access) 2216 { 2217 if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) { 2218 struct kvm_mmu_page *child; 2219 2220 /* 2221 * For the direct sp, if the guest pte's dirty bit 2222 * changed form clean to dirty, it will corrupt the 2223 * sp's access: allow writable in the read-only sp, 2224 * so we should update the spte at this point to get 2225 * a new sp with the correct access. 2226 */ 2227 child = to_shadow_page(*sptep & PT64_BASE_ADDR_MASK); 2228 if (child->role.access == direct_access) 2229 return; 2230 2231 drop_parent_pte(child, sptep); 2232 kvm_flush_remote_tlbs_with_address(vcpu->kvm, child->gfn, 1); 2233 } 2234 } 2235 2236 /* Returns the number of zapped non-leaf child shadow pages. */ 2237 static int mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp, 2238 u64 *spte, struct list_head *invalid_list) 2239 { 2240 u64 pte; 2241 struct kvm_mmu_page *child; 2242 2243 pte = *spte; 2244 if (is_shadow_present_pte(pte)) { 2245 if (is_last_spte(pte, sp->role.level)) { 2246 drop_spte(kvm, spte); 2247 if (is_large_pte(pte)) 2248 --kvm->stat.lpages; 2249 } else { 2250 child = to_shadow_page(pte & PT64_BASE_ADDR_MASK); 2251 drop_parent_pte(child, spte); 2252 2253 /* 2254 * Recursively zap nested TDP SPs, parentless SPs are 2255 * unlikely to be used again in the near future. This 2256 * avoids retaining a large number of stale nested SPs. 2257 */ 2258 if (tdp_enabled && invalid_list && 2259 child->role.guest_mode && !child->parent_ptes.val) 2260 return kvm_mmu_prepare_zap_page(kvm, child, 2261 invalid_list); 2262 } 2263 } else if (is_mmio_spte(pte)) { 2264 mmu_spte_clear_no_track(spte); 2265 } 2266 return 0; 2267 } 2268 2269 static int kvm_mmu_page_unlink_children(struct kvm *kvm, 2270 struct kvm_mmu_page *sp, 2271 struct list_head *invalid_list) 2272 { 2273 int zapped = 0; 2274 unsigned i; 2275 2276 for (i = 0; i < PT64_ENT_PER_PAGE; ++i) 2277 zapped += mmu_page_zap_pte(kvm, sp, sp->spt + i, invalid_list); 2278 2279 return zapped; 2280 } 2281 2282 static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp) 2283 { 2284 u64 *sptep; 2285 struct rmap_iterator iter; 2286 2287 while ((sptep = rmap_get_first(&sp->parent_ptes, &iter))) 2288 drop_parent_pte(sp, sptep); 2289 } 2290 2291 static int mmu_zap_unsync_children(struct kvm *kvm, 2292 struct kvm_mmu_page *parent, 2293 struct list_head *invalid_list) 2294 { 2295 int i, zapped = 0; 2296 struct mmu_page_path parents; 2297 struct kvm_mmu_pages pages; 2298 2299 if (parent->role.level == PG_LEVEL_4K) 2300 return 0; 2301 2302 while (mmu_unsync_walk(parent, &pages)) { 2303 struct kvm_mmu_page *sp; 2304 2305 for_each_sp(pages, sp, parents, i) { 2306 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list); 2307 mmu_pages_clear_parents(&parents); 2308 zapped++; 2309 } 2310 } 2311 2312 return zapped; 2313 } 2314 2315 static bool __kvm_mmu_prepare_zap_page(struct kvm *kvm, 2316 struct kvm_mmu_page *sp, 2317 struct list_head *invalid_list, 2318 int *nr_zapped) 2319 { 2320 bool list_unstable; 2321 2322 trace_kvm_mmu_prepare_zap_page(sp); 2323 ++kvm->stat.mmu_shadow_zapped; 2324 *nr_zapped = mmu_zap_unsync_children(kvm, sp, invalid_list); 2325 *nr_zapped += kvm_mmu_page_unlink_children(kvm, sp, invalid_list); 2326 kvm_mmu_unlink_parents(kvm, sp); 2327 2328 /* Zapping children means active_mmu_pages has become unstable. */ 2329 list_unstable = *nr_zapped; 2330 2331 if (!sp->role.invalid && !sp->role.direct) 2332 unaccount_shadowed(kvm, sp); 2333 2334 if (sp->unsync) 2335 kvm_unlink_unsync_page(kvm, sp); 2336 if (!sp->root_count) { 2337 /* Count self */ 2338 (*nr_zapped)++; 2339 2340 /* 2341 * Already invalid pages (previously active roots) are not on 2342 * the active page list. See list_del() in the "else" case of 2343 * !sp->root_count. 2344 */ 2345 if (sp->role.invalid) 2346 list_add(&sp->link, invalid_list); 2347 else 2348 list_move(&sp->link, invalid_list); 2349 kvm_mod_used_mmu_pages(kvm, -1); 2350 } else { 2351 /* 2352 * Remove the active root from the active page list, the root 2353 * will be explicitly freed when the root_count hits zero. 2354 */ 2355 list_del(&sp->link); 2356 2357 /* 2358 * Obsolete pages cannot be used on any vCPUs, see the comment 2359 * in kvm_mmu_zap_all_fast(). Note, is_obsolete_sp() also 2360 * treats invalid shadow pages as being obsolete. 2361 */ 2362 if (!is_obsolete_sp(kvm, sp)) 2363 kvm_reload_remote_mmus(kvm); 2364 } 2365 2366 if (sp->lpage_disallowed) 2367 unaccount_huge_nx_page(kvm, sp); 2368 2369 sp->role.invalid = 1; 2370 return list_unstable; 2371 } 2372 2373 static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp, 2374 struct list_head *invalid_list) 2375 { 2376 int nr_zapped; 2377 2378 __kvm_mmu_prepare_zap_page(kvm, sp, invalid_list, &nr_zapped); 2379 return nr_zapped; 2380 } 2381 2382 static void kvm_mmu_commit_zap_page(struct kvm *kvm, 2383 struct list_head *invalid_list) 2384 { 2385 struct kvm_mmu_page *sp, *nsp; 2386 2387 if (list_empty(invalid_list)) 2388 return; 2389 2390 /* 2391 * We need to make sure everyone sees our modifications to 2392 * the page tables and see changes to vcpu->mode here. The barrier 2393 * in the kvm_flush_remote_tlbs() achieves this. This pairs 2394 * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end. 2395 * 2396 * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit 2397 * guest mode and/or lockless shadow page table walks. 2398 */ 2399 kvm_flush_remote_tlbs(kvm); 2400 2401 list_for_each_entry_safe(sp, nsp, invalid_list, link) { 2402 WARN_ON(!sp->role.invalid || sp->root_count); 2403 kvm_mmu_free_page(sp); 2404 } 2405 } 2406 2407 static unsigned long kvm_mmu_zap_oldest_mmu_pages(struct kvm *kvm, 2408 unsigned long nr_to_zap) 2409 { 2410 unsigned long total_zapped = 0; 2411 struct kvm_mmu_page *sp, *tmp; 2412 LIST_HEAD(invalid_list); 2413 bool unstable; 2414 int nr_zapped; 2415 2416 if (list_empty(&kvm->arch.active_mmu_pages)) 2417 return 0; 2418 2419 restart: 2420 list_for_each_entry_safe(sp, tmp, &kvm->arch.active_mmu_pages, link) { 2421 /* 2422 * Don't zap active root pages, the page itself can't be freed 2423 * and zapping it will just force vCPUs to realloc and reload. 2424 */ 2425 if (sp->root_count) 2426 continue; 2427 2428 unstable = __kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list, 2429 &nr_zapped); 2430 total_zapped += nr_zapped; 2431 if (total_zapped >= nr_to_zap) 2432 break; 2433 2434 if (unstable) 2435 goto restart; 2436 } 2437 2438 kvm_mmu_commit_zap_page(kvm, &invalid_list); 2439 2440 kvm->stat.mmu_recycled += total_zapped; 2441 return total_zapped; 2442 } 2443 2444 static inline unsigned long kvm_mmu_available_pages(struct kvm *kvm) 2445 { 2446 if (kvm->arch.n_max_mmu_pages > kvm->arch.n_used_mmu_pages) 2447 return kvm->arch.n_max_mmu_pages - 2448 kvm->arch.n_used_mmu_pages; 2449 2450 return 0; 2451 } 2452 2453 static int make_mmu_pages_available(struct kvm_vcpu *vcpu) 2454 { 2455 unsigned long avail = kvm_mmu_available_pages(vcpu->kvm); 2456 2457 if (likely(avail >= KVM_MIN_FREE_MMU_PAGES)) 2458 return 0; 2459 2460 kvm_mmu_zap_oldest_mmu_pages(vcpu->kvm, KVM_REFILL_PAGES - avail); 2461 2462 if (!kvm_mmu_available_pages(vcpu->kvm)) 2463 return -ENOSPC; 2464 return 0; 2465 } 2466 2467 /* 2468 * Changing the number of mmu pages allocated to the vm 2469 * Note: if goal_nr_mmu_pages is too small, you will get dead lock 2470 */ 2471 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long goal_nr_mmu_pages) 2472 { 2473 spin_lock(&kvm->mmu_lock); 2474 2475 if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) { 2476 kvm_mmu_zap_oldest_mmu_pages(kvm, kvm->arch.n_used_mmu_pages - 2477 goal_nr_mmu_pages); 2478 2479 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages; 2480 } 2481 2482 kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages; 2483 2484 spin_unlock(&kvm->mmu_lock); 2485 } 2486 2487 int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn) 2488 { 2489 struct kvm_mmu_page *sp; 2490 LIST_HEAD(invalid_list); 2491 int r; 2492 2493 pgprintk("%s: looking for gfn %llx\n", __func__, gfn); 2494 r = 0; 2495 spin_lock(&kvm->mmu_lock); 2496 for_each_gfn_indirect_valid_sp(kvm, sp, gfn) { 2497 pgprintk("%s: gfn %llx role %x\n", __func__, gfn, 2498 sp->role.word); 2499 r = 1; 2500 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list); 2501 } 2502 kvm_mmu_commit_zap_page(kvm, &invalid_list); 2503 spin_unlock(&kvm->mmu_lock); 2504 2505 return r; 2506 } 2507 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page); 2508 2509 static void kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp) 2510 { 2511 trace_kvm_mmu_unsync_page(sp); 2512 ++vcpu->kvm->stat.mmu_unsync; 2513 sp->unsync = 1; 2514 2515 kvm_mmu_mark_parents_unsync(sp); 2516 } 2517 2518 bool mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn, 2519 bool can_unsync) 2520 { 2521 struct kvm_mmu_page *sp; 2522 2523 if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE)) 2524 return true; 2525 2526 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) { 2527 if (!can_unsync) 2528 return true; 2529 2530 if (sp->unsync) 2531 continue; 2532 2533 WARN_ON(sp->role.level != PG_LEVEL_4K); 2534 kvm_unsync_page(vcpu, sp); 2535 } 2536 2537 /* 2538 * We need to ensure that the marking of unsync pages is visible 2539 * before the SPTE is updated to allow writes because 2540 * kvm_mmu_sync_roots() checks the unsync flags without holding 2541 * the MMU lock and so can race with this. If the SPTE was updated 2542 * before the page had been marked as unsync-ed, something like the 2543 * following could happen: 2544 * 2545 * CPU 1 CPU 2 2546 * --------------------------------------------------------------------- 2547 * 1.2 Host updates SPTE 2548 * to be writable 2549 * 2.1 Guest writes a GPTE for GVA X. 2550 * (GPTE being in the guest page table shadowed 2551 * by the SP from CPU 1.) 2552 * This reads SPTE during the page table walk. 2553 * Since SPTE.W is read as 1, there is no 2554 * fault. 2555 * 2556 * 2.2 Guest issues TLB flush. 2557 * That causes a VM Exit. 2558 * 2559 * 2.3 kvm_mmu_sync_pages() reads sp->unsync. 2560 * Since it is false, so it just returns. 2561 * 2562 * 2.4 Guest accesses GVA X. 2563 * Since the mapping in the SP was not updated, 2564 * so the old mapping for GVA X incorrectly 2565 * gets used. 2566 * 1.1 Host marks SP 2567 * as unsync 2568 * (sp->unsync = true) 2569 * 2570 * The write barrier below ensures that 1.1 happens before 1.2 and thus 2571 * the situation in 2.4 does not arise. The implicit barrier in 2.2 2572 * pairs with this write barrier. 2573 */ 2574 smp_wmb(); 2575 2576 return false; 2577 } 2578 2579 static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep, 2580 unsigned int pte_access, int level, 2581 gfn_t gfn, kvm_pfn_t pfn, bool speculative, 2582 bool can_unsync, bool host_writable) 2583 { 2584 u64 spte; 2585 struct kvm_mmu_page *sp; 2586 int ret; 2587 2588 if (set_mmio_spte(vcpu, sptep, gfn, pfn, pte_access)) 2589 return 0; 2590 2591 sp = sptep_to_sp(sptep); 2592 2593 ret = make_spte(vcpu, pte_access, level, gfn, pfn, *sptep, speculative, 2594 can_unsync, host_writable, sp_ad_disabled(sp), &spte); 2595 2596 if (spte & PT_WRITABLE_MASK) 2597 kvm_vcpu_mark_page_dirty(vcpu, gfn); 2598 2599 if (*sptep == spte) 2600 ret |= SET_SPTE_SPURIOUS; 2601 else if (mmu_spte_update(sptep, spte)) 2602 ret |= SET_SPTE_NEED_REMOTE_TLB_FLUSH; 2603 return ret; 2604 } 2605 2606 static int mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep, 2607 unsigned int pte_access, bool write_fault, int level, 2608 gfn_t gfn, kvm_pfn_t pfn, bool speculative, 2609 bool host_writable) 2610 { 2611 int was_rmapped = 0; 2612 int rmap_count; 2613 int set_spte_ret; 2614 int ret = RET_PF_FIXED; 2615 bool flush = false; 2616 2617 pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__, 2618 *sptep, write_fault, gfn); 2619 2620 if (is_shadow_present_pte(*sptep)) { 2621 /* 2622 * If we overwrite a PTE page pointer with a 2MB PMD, unlink 2623 * the parent of the now unreachable PTE. 2624 */ 2625 if (level > PG_LEVEL_4K && !is_large_pte(*sptep)) { 2626 struct kvm_mmu_page *child; 2627 u64 pte = *sptep; 2628 2629 child = to_shadow_page(pte & PT64_BASE_ADDR_MASK); 2630 drop_parent_pte(child, sptep); 2631 flush = true; 2632 } else if (pfn != spte_to_pfn(*sptep)) { 2633 pgprintk("hfn old %llx new %llx\n", 2634 spte_to_pfn(*sptep), pfn); 2635 drop_spte(vcpu->kvm, sptep); 2636 flush = true; 2637 } else 2638 was_rmapped = 1; 2639 } 2640 2641 set_spte_ret = set_spte(vcpu, sptep, pte_access, level, gfn, pfn, 2642 speculative, true, host_writable); 2643 if (set_spte_ret & SET_SPTE_WRITE_PROTECTED_PT) { 2644 if (write_fault) 2645 ret = RET_PF_EMULATE; 2646 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 2647 } 2648 2649 if (set_spte_ret & SET_SPTE_NEED_REMOTE_TLB_FLUSH || flush) 2650 kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn, 2651 KVM_PAGES_PER_HPAGE(level)); 2652 2653 if (unlikely(is_mmio_spte(*sptep))) 2654 ret = RET_PF_EMULATE; 2655 2656 /* 2657 * The fault is fully spurious if and only if the new SPTE and old SPTE 2658 * are identical, and emulation is not required. 2659 */ 2660 if ((set_spte_ret & SET_SPTE_SPURIOUS) && ret == RET_PF_FIXED) { 2661 WARN_ON_ONCE(!was_rmapped); 2662 return RET_PF_SPURIOUS; 2663 } 2664 2665 pgprintk("%s: setting spte %llx\n", __func__, *sptep); 2666 trace_kvm_mmu_set_spte(level, gfn, sptep); 2667 if (!was_rmapped && is_large_pte(*sptep)) 2668 ++vcpu->kvm->stat.lpages; 2669 2670 if (is_shadow_present_pte(*sptep)) { 2671 if (!was_rmapped) { 2672 rmap_count = rmap_add(vcpu, sptep, gfn); 2673 if (rmap_count > RMAP_RECYCLE_THRESHOLD) 2674 rmap_recycle(vcpu, sptep, gfn); 2675 } 2676 } 2677 2678 return ret; 2679 } 2680 2681 static kvm_pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn, 2682 bool no_dirty_log) 2683 { 2684 struct kvm_memory_slot *slot; 2685 2686 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log); 2687 if (!slot) 2688 return KVM_PFN_ERR_FAULT; 2689 2690 return gfn_to_pfn_memslot_atomic(slot, gfn); 2691 } 2692 2693 static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu, 2694 struct kvm_mmu_page *sp, 2695 u64 *start, u64 *end) 2696 { 2697 struct page *pages[PTE_PREFETCH_NUM]; 2698 struct kvm_memory_slot *slot; 2699 unsigned int access = sp->role.access; 2700 int i, ret; 2701 gfn_t gfn; 2702 2703 gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt); 2704 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK); 2705 if (!slot) 2706 return -1; 2707 2708 ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start); 2709 if (ret <= 0) 2710 return -1; 2711 2712 for (i = 0; i < ret; i++, gfn++, start++) { 2713 mmu_set_spte(vcpu, start, access, false, sp->role.level, gfn, 2714 page_to_pfn(pages[i]), true, true); 2715 put_page(pages[i]); 2716 } 2717 2718 return 0; 2719 } 2720 2721 static void __direct_pte_prefetch(struct kvm_vcpu *vcpu, 2722 struct kvm_mmu_page *sp, u64 *sptep) 2723 { 2724 u64 *spte, *start = NULL; 2725 int i; 2726 2727 WARN_ON(!sp->role.direct); 2728 2729 i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1); 2730 spte = sp->spt + i; 2731 2732 for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) { 2733 if (is_shadow_present_pte(*spte) || spte == sptep) { 2734 if (!start) 2735 continue; 2736 if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0) 2737 break; 2738 start = NULL; 2739 } else if (!start) 2740 start = spte; 2741 } 2742 } 2743 2744 static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep) 2745 { 2746 struct kvm_mmu_page *sp; 2747 2748 sp = sptep_to_sp(sptep); 2749 2750 /* 2751 * Without accessed bits, there's no way to distinguish between 2752 * actually accessed translations and prefetched, so disable pte 2753 * prefetch if accessed bits aren't available. 2754 */ 2755 if (sp_ad_disabled(sp)) 2756 return; 2757 2758 if (sp->role.level > PG_LEVEL_4K) 2759 return; 2760 2761 __direct_pte_prefetch(vcpu, sp, sptep); 2762 } 2763 2764 static int host_pfn_mapping_level(struct kvm_vcpu *vcpu, gfn_t gfn, 2765 kvm_pfn_t pfn, struct kvm_memory_slot *slot) 2766 { 2767 unsigned long hva; 2768 pte_t *pte; 2769 int level; 2770 2771 if (!PageCompound(pfn_to_page(pfn)) && !kvm_is_zone_device_pfn(pfn)) 2772 return PG_LEVEL_4K; 2773 2774 /* 2775 * Note, using the already-retrieved memslot and __gfn_to_hva_memslot() 2776 * is not solely for performance, it's also necessary to avoid the 2777 * "writable" check in __gfn_to_hva_many(), which will always fail on 2778 * read-only memslots due to gfn_to_hva() assuming writes. Earlier 2779 * page fault steps have already verified the guest isn't writing a 2780 * read-only memslot. 2781 */ 2782 hva = __gfn_to_hva_memslot(slot, gfn); 2783 2784 pte = lookup_address_in_mm(vcpu->kvm->mm, hva, &level); 2785 if (unlikely(!pte)) 2786 return PG_LEVEL_4K; 2787 2788 return level; 2789 } 2790 2791 int kvm_mmu_hugepage_adjust(struct kvm_vcpu *vcpu, gfn_t gfn, 2792 int max_level, kvm_pfn_t *pfnp, 2793 bool huge_page_disallowed, int *req_level) 2794 { 2795 struct kvm_memory_slot *slot; 2796 struct kvm_lpage_info *linfo; 2797 kvm_pfn_t pfn = *pfnp; 2798 kvm_pfn_t mask; 2799 int level; 2800 2801 *req_level = PG_LEVEL_4K; 2802 2803 if (unlikely(max_level == PG_LEVEL_4K)) 2804 return PG_LEVEL_4K; 2805 2806 if (is_error_noslot_pfn(pfn) || kvm_is_reserved_pfn(pfn)) 2807 return PG_LEVEL_4K; 2808 2809 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, true); 2810 if (!slot) 2811 return PG_LEVEL_4K; 2812 2813 max_level = min(max_level, max_huge_page_level); 2814 for ( ; max_level > PG_LEVEL_4K; max_level--) { 2815 linfo = lpage_info_slot(gfn, slot, max_level); 2816 if (!linfo->disallow_lpage) 2817 break; 2818 } 2819 2820 if (max_level == PG_LEVEL_4K) 2821 return PG_LEVEL_4K; 2822 2823 level = host_pfn_mapping_level(vcpu, gfn, pfn, slot); 2824 if (level == PG_LEVEL_4K) 2825 return level; 2826 2827 *req_level = level = min(level, max_level); 2828 2829 /* 2830 * Enforce the iTLB multihit workaround after capturing the requested 2831 * level, which will be used to do precise, accurate accounting. 2832 */ 2833 if (huge_page_disallowed) 2834 return PG_LEVEL_4K; 2835 2836 /* 2837 * mmu_notifier_retry() was successful and mmu_lock is held, so 2838 * the pmd can't be split from under us. 2839 */ 2840 mask = KVM_PAGES_PER_HPAGE(level) - 1; 2841 VM_BUG_ON((gfn & mask) != (pfn & mask)); 2842 *pfnp = pfn & ~mask; 2843 2844 return level; 2845 } 2846 2847 void disallowed_hugepage_adjust(u64 spte, gfn_t gfn, int cur_level, 2848 kvm_pfn_t *pfnp, int *goal_levelp) 2849 { 2850 int level = *goal_levelp; 2851 2852 if (cur_level == level && level > PG_LEVEL_4K && 2853 is_shadow_present_pte(spte) && 2854 !is_large_pte(spte)) { 2855 /* 2856 * A small SPTE exists for this pfn, but FNAME(fetch) 2857 * and __direct_map would like to create a large PTE 2858 * instead: just force them to go down another level, 2859 * patching back for them into pfn the next 9 bits of 2860 * the address. 2861 */ 2862 u64 page_mask = KVM_PAGES_PER_HPAGE(level) - 2863 KVM_PAGES_PER_HPAGE(level - 1); 2864 *pfnp |= gfn & page_mask; 2865 (*goal_levelp)--; 2866 } 2867 } 2868 2869 static int __direct_map(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code, 2870 int map_writable, int max_level, kvm_pfn_t pfn, 2871 bool prefault, bool is_tdp) 2872 { 2873 bool nx_huge_page_workaround_enabled = is_nx_huge_page_enabled(); 2874 bool write = error_code & PFERR_WRITE_MASK; 2875 bool exec = error_code & PFERR_FETCH_MASK; 2876 bool huge_page_disallowed = exec && nx_huge_page_workaround_enabled; 2877 struct kvm_shadow_walk_iterator it; 2878 struct kvm_mmu_page *sp; 2879 int level, req_level, ret; 2880 gfn_t gfn = gpa >> PAGE_SHIFT; 2881 gfn_t base_gfn = gfn; 2882 2883 if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa))) 2884 return RET_PF_RETRY; 2885 2886 level = kvm_mmu_hugepage_adjust(vcpu, gfn, max_level, &pfn, 2887 huge_page_disallowed, &req_level); 2888 2889 trace_kvm_mmu_spte_requested(gpa, level, pfn); 2890 for_each_shadow_entry(vcpu, gpa, it) { 2891 /* 2892 * We cannot overwrite existing page tables with an NX 2893 * large page, as the leaf could be executable. 2894 */ 2895 if (nx_huge_page_workaround_enabled) 2896 disallowed_hugepage_adjust(*it.sptep, gfn, it.level, 2897 &pfn, &level); 2898 2899 base_gfn = gfn & ~(KVM_PAGES_PER_HPAGE(it.level) - 1); 2900 if (it.level == level) 2901 break; 2902 2903 drop_large_spte(vcpu, it.sptep); 2904 if (!is_shadow_present_pte(*it.sptep)) { 2905 sp = kvm_mmu_get_page(vcpu, base_gfn, it.addr, 2906 it.level - 1, true, ACC_ALL); 2907 2908 link_shadow_page(vcpu, it.sptep, sp); 2909 if (is_tdp && huge_page_disallowed && 2910 req_level >= it.level) 2911 account_huge_nx_page(vcpu->kvm, sp); 2912 } 2913 } 2914 2915 ret = mmu_set_spte(vcpu, it.sptep, ACC_ALL, 2916 write, level, base_gfn, pfn, prefault, 2917 map_writable); 2918 if (ret == RET_PF_SPURIOUS) 2919 return ret; 2920 2921 direct_pte_prefetch(vcpu, it.sptep); 2922 ++vcpu->stat.pf_fixed; 2923 return ret; 2924 } 2925 2926 static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk) 2927 { 2928 send_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, PAGE_SHIFT, tsk); 2929 } 2930 2931 static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, kvm_pfn_t pfn) 2932 { 2933 /* 2934 * Do not cache the mmio info caused by writing the readonly gfn 2935 * into the spte otherwise read access on readonly gfn also can 2936 * caused mmio page fault and treat it as mmio access. 2937 */ 2938 if (pfn == KVM_PFN_ERR_RO_FAULT) 2939 return RET_PF_EMULATE; 2940 2941 if (pfn == KVM_PFN_ERR_HWPOISON) { 2942 kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current); 2943 return RET_PF_RETRY; 2944 } 2945 2946 return -EFAULT; 2947 } 2948 2949 static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn, 2950 kvm_pfn_t pfn, unsigned int access, 2951 int *ret_val) 2952 { 2953 /* The pfn is invalid, report the error! */ 2954 if (unlikely(is_error_pfn(pfn))) { 2955 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn); 2956 return true; 2957 } 2958 2959 if (unlikely(is_noslot_pfn(pfn))) 2960 vcpu_cache_mmio_info(vcpu, gva, gfn, 2961 access & shadow_mmio_access_mask); 2962 2963 return false; 2964 } 2965 2966 static bool page_fault_can_be_fast(u32 error_code) 2967 { 2968 /* 2969 * Do not fix the mmio spte with invalid generation number which 2970 * need to be updated by slow page fault path. 2971 */ 2972 if (unlikely(error_code & PFERR_RSVD_MASK)) 2973 return false; 2974 2975 /* See if the page fault is due to an NX violation */ 2976 if (unlikely(((error_code & (PFERR_FETCH_MASK | PFERR_PRESENT_MASK)) 2977 == (PFERR_FETCH_MASK | PFERR_PRESENT_MASK)))) 2978 return false; 2979 2980 /* 2981 * #PF can be fast if: 2982 * 1. The shadow page table entry is not present, which could mean that 2983 * the fault is potentially caused by access tracking (if enabled). 2984 * 2. The shadow page table entry is present and the fault 2985 * is caused by write-protect, that means we just need change the W 2986 * bit of the spte which can be done out of mmu-lock. 2987 * 2988 * However, if access tracking is disabled we know that a non-present 2989 * page must be a genuine page fault where we have to create a new SPTE. 2990 * So, if access tracking is disabled, we return true only for write 2991 * accesses to a present page. 2992 */ 2993 2994 return shadow_acc_track_mask != 0 || 2995 ((error_code & (PFERR_WRITE_MASK | PFERR_PRESENT_MASK)) 2996 == (PFERR_WRITE_MASK | PFERR_PRESENT_MASK)); 2997 } 2998 2999 /* 3000 * Returns true if the SPTE was fixed successfully. Otherwise, 3001 * someone else modified the SPTE from its original value. 3002 */ 3003 static bool 3004 fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp, 3005 u64 *sptep, u64 old_spte, u64 new_spte) 3006 { 3007 gfn_t gfn; 3008 3009 WARN_ON(!sp->role.direct); 3010 3011 /* 3012 * Theoretically we could also set dirty bit (and flush TLB) here in 3013 * order to eliminate unnecessary PML logging. See comments in 3014 * set_spte. But fast_page_fault is very unlikely to happen with PML 3015 * enabled, so we do not do this. This might result in the same GPA 3016 * to be logged in PML buffer again when the write really happens, and 3017 * eventually to be called by mark_page_dirty twice. But it's also no 3018 * harm. This also avoids the TLB flush needed after setting dirty bit 3019 * so non-PML cases won't be impacted. 3020 * 3021 * Compare with set_spte where instead shadow_dirty_mask is set. 3022 */ 3023 if (cmpxchg64(sptep, old_spte, new_spte) != old_spte) 3024 return false; 3025 3026 if (is_writable_pte(new_spte) && !is_writable_pte(old_spte)) { 3027 /* 3028 * The gfn of direct spte is stable since it is 3029 * calculated by sp->gfn. 3030 */ 3031 gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt); 3032 kvm_vcpu_mark_page_dirty(vcpu, gfn); 3033 } 3034 3035 return true; 3036 } 3037 3038 static bool is_access_allowed(u32 fault_err_code, u64 spte) 3039 { 3040 if (fault_err_code & PFERR_FETCH_MASK) 3041 return is_executable_pte(spte); 3042 3043 if (fault_err_code & PFERR_WRITE_MASK) 3044 return is_writable_pte(spte); 3045 3046 /* Fault was on Read access */ 3047 return spte & PT_PRESENT_MASK; 3048 } 3049 3050 /* 3051 * Returns one of RET_PF_INVALID, RET_PF_FIXED or RET_PF_SPURIOUS. 3052 */ 3053 static int fast_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, 3054 u32 error_code) 3055 { 3056 struct kvm_shadow_walk_iterator iterator; 3057 struct kvm_mmu_page *sp; 3058 int ret = RET_PF_INVALID; 3059 u64 spte = 0ull; 3060 uint retry_count = 0; 3061 3062 if (!page_fault_can_be_fast(error_code)) 3063 return ret; 3064 3065 walk_shadow_page_lockless_begin(vcpu); 3066 3067 do { 3068 u64 new_spte; 3069 3070 for_each_shadow_entry_lockless(vcpu, cr2_or_gpa, iterator, spte) 3071 if (!is_shadow_present_pte(spte)) 3072 break; 3073 3074 sp = sptep_to_sp(iterator.sptep); 3075 if (!is_last_spte(spte, sp->role.level)) 3076 break; 3077 3078 /* 3079 * Check whether the memory access that caused the fault would 3080 * still cause it if it were to be performed right now. If not, 3081 * then this is a spurious fault caused by TLB lazily flushed, 3082 * or some other CPU has already fixed the PTE after the 3083 * current CPU took the fault. 3084 * 3085 * Need not check the access of upper level table entries since 3086 * they are always ACC_ALL. 3087 */ 3088 if (is_access_allowed(error_code, spte)) { 3089 ret = RET_PF_SPURIOUS; 3090 break; 3091 } 3092 3093 new_spte = spte; 3094 3095 if (is_access_track_spte(spte)) 3096 new_spte = restore_acc_track_spte(new_spte); 3097 3098 /* 3099 * Currently, to simplify the code, write-protection can 3100 * be removed in the fast path only if the SPTE was 3101 * write-protected for dirty-logging or access tracking. 3102 */ 3103 if ((error_code & PFERR_WRITE_MASK) && 3104 spte_can_locklessly_be_made_writable(spte)) { 3105 new_spte |= PT_WRITABLE_MASK; 3106 3107 /* 3108 * Do not fix write-permission on the large spte. Since 3109 * we only dirty the first page into the dirty-bitmap in 3110 * fast_pf_fix_direct_spte(), other pages are missed 3111 * if its slot has dirty logging enabled. 3112 * 3113 * Instead, we let the slow page fault path create a 3114 * normal spte to fix the access. 3115 * 3116 * See the comments in kvm_arch_commit_memory_region(). 3117 */ 3118 if (sp->role.level > PG_LEVEL_4K) 3119 break; 3120 } 3121 3122 /* Verify that the fault can be handled in the fast path */ 3123 if (new_spte == spte || 3124 !is_access_allowed(error_code, new_spte)) 3125 break; 3126 3127 /* 3128 * Currently, fast page fault only works for direct mapping 3129 * since the gfn is not stable for indirect shadow page. See 3130 * Documentation/virt/kvm/locking.rst to get more detail. 3131 */ 3132 if (fast_pf_fix_direct_spte(vcpu, sp, iterator.sptep, spte, 3133 new_spte)) { 3134 ret = RET_PF_FIXED; 3135 break; 3136 } 3137 3138 if (++retry_count > 4) { 3139 printk_once(KERN_WARNING 3140 "kvm: Fast #PF retrying more than 4 times.\n"); 3141 break; 3142 } 3143 3144 } while (true); 3145 3146 trace_fast_page_fault(vcpu, cr2_or_gpa, error_code, iterator.sptep, 3147 spte, ret); 3148 walk_shadow_page_lockless_end(vcpu); 3149 3150 return ret; 3151 } 3152 3153 static void mmu_free_root_page(struct kvm *kvm, hpa_t *root_hpa, 3154 struct list_head *invalid_list) 3155 { 3156 struct kvm_mmu_page *sp; 3157 3158 if (!VALID_PAGE(*root_hpa)) 3159 return; 3160 3161 sp = to_shadow_page(*root_hpa & PT64_BASE_ADDR_MASK); 3162 3163 if (kvm_mmu_put_root(kvm, sp)) { 3164 if (sp->tdp_mmu_page) 3165 kvm_tdp_mmu_free_root(kvm, sp); 3166 else if (sp->role.invalid) 3167 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list); 3168 } 3169 3170 *root_hpa = INVALID_PAGE; 3171 } 3172 3173 /* roots_to_free must be some combination of the KVM_MMU_ROOT_* flags */ 3174 void kvm_mmu_free_roots(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, 3175 ulong roots_to_free) 3176 { 3177 struct kvm *kvm = vcpu->kvm; 3178 int i; 3179 LIST_HEAD(invalid_list); 3180 bool free_active_root = roots_to_free & KVM_MMU_ROOT_CURRENT; 3181 3182 BUILD_BUG_ON(KVM_MMU_NUM_PREV_ROOTS >= BITS_PER_LONG); 3183 3184 /* Before acquiring the MMU lock, see if we need to do any real work. */ 3185 if (!(free_active_root && VALID_PAGE(mmu->root_hpa))) { 3186 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 3187 if ((roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) && 3188 VALID_PAGE(mmu->prev_roots[i].hpa)) 3189 break; 3190 3191 if (i == KVM_MMU_NUM_PREV_ROOTS) 3192 return; 3193 } 3194 3195 spin_lock(&kvm->mmu_lock); 3196 3197 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 3198 if (roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) 3199 mmu_free_root_page(kvm, &mmu->prev_roots[i].hpa, 3200 &invalid_list); 3201 3202 if (free_active_root) { 3203 if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL && 3204 (mmu->root_level >= PT64_ROOT_4LEVEL || mmu->direct_map)) { 3205 mmu_free_root_page(kvm, &mmu->root_hpa, &invalid_list); 3206 } else { 3207 for (i = 0; i < 4; ++i) 3208 if (mmu->pae_root[i] != 0) 3209 mmu_free_root_page(kvm, 3210 &mmu->pae_root[i], 3211 &invalid_list); 3212 mmu->root_hpa = INVALID_PAGE; 3213 } 3214 mmu->root_pgd = 0; 3215 } 3216 3217 kvm_mmu_commit_zap_page(kvm, &invalid_list); 3218 spin_unlock(&kvm->mmu_lock); 3219 } 3220 EXPORT_SYMBOL_GPL(kvm_mmu_free_roots); 3221 3222 static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn) 3223 { 3224 int ret = 0; 3225 3226 if (!kvm_vcpu_is_visible_gfn(vcpu, root_gfn)) { 3227 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 3228 ret = 1; 3229 } 3230 3231 return ret; 3232 } 3233 3234 static hpa_t mmu_alloc_root(struct kvm_vcpu *vcpu, gfn_t gfn, gva_t gva, 3235 u8 level, bool direct) 3236 { 3237 struct kvm_mmu_page *sp; 3238 3239 spin_lock(&vcpu->kvm->mmu_lock); 3240 3241 if (make_mmu_pages_available(vcpu)) { 3242 spin_unlock(&vcpu->kvm->mmu_lock); 3243 return INVALID_PAGE; 3244 } 3245 sp = kvm_mmu_get_page(vcpu, gfn, gva, level, direct, ACC_ALL); 3246 ++sp->root_count; 3247 3248 spin_unlock(&vcpu->kvm->mmu_lock); 3249 return __pa(sp->spt); 3250 } 3251 3252 static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu) 3253 { 3254 u8 shadow_root_level = vcpu->arch.mmu->shadow_root_level; 3255 hpa_t root; 3256 unsigned i; 3257 3258 if (vcpu->kvm->arch.tdp_mmu_enabled) { 3259 root = kvm_tdp_mmu_get_vcpu_root_hpa(vcpu); 3260 3261 if (!VALID_PAGE(root)) 3262 return -ENOSPC; 3263 vcpu->arch.mmu->root_hpa = root; 3264 } else if (shadow_root_level >= PT64_ROOT_4LEVEL) { 3265 root = mmu_alloc_root(vcpu, 0, 0, shadow_root_level, 3266 true); 3267 3268 if (!VALID_PAGE(root)) 3269 return -ENOSPC; 3270 vcpu->arch.mmu->root_hpa = root; 3271 } else if (shadow_root_level == PT32E_ROOT_LEVEL) { 3272 for (i = 0; i < 4; ++i) { 3273 MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu->pae_root[i])); 3274 3275 root = mmu_alloc_root(vcpu, i << (30 - PAGE_SHIFT), 3276 i << 30, PT32_ROOT_LEVEL, true); 3277 if (!VALID_PAGE(root)) 3278 return -ENOSPC; 3279 vcpu->arch.mmu->pae_root[i] = root | PT_PRESENT_MASK; 3280 } 3281 vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->pae_root); 3282 } else 3283 BUG(); 3284 3285 /* root_pgd is ignored for direct MMUs. */ 3286 vcpu->arch.mmu->root_pgd = 0; 3287 3288 return 0; 3289 } 3290 3291 static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu) 3292 { 3293 u64 pdptr, pm_mask; 3294 gfn_t root_gfn, root_pgd; 3295 hpa_t root; 3296 int i; 3297 3298 root_pgd = vcpu->arch.mmu->get_guest_pgd(vcpu); 3299 root_gfn = root_pgd >> PAGE_SHIFT; 3300 3301 if (mmu_check_root(vcpu, root_gfn)) 3302 return 1; 3303 3304 /* 3305 * Do we shadow a long mode page table? If so we need to 3306 * write-protect the guests page table root. 3307 */ 3308 if (vcpu->arch.mmu->root_level >= PT64_ROOT_4LEVEL) { 3309 MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu->root_hpa)); 3310 3311 root = mmu_alloc_root(vcpu, root_gfn, 0, 3312 vcpu->arch.mmu->shadow_root_level, false); 3313 if (!VALID_PAGE(root)) 3314 return -ENOSPC; 3315 vcpu->arch.mmu->root_hpa = root; 3316 goto set_root_pgd; 3317 } 3318 3319 /* 3320 * We shadow a 32 bit page table. This may be a legacy 2-level 3321 * or a PAE 3-level page table. In either case we need to be aware that 3322 * the shadow page table may be a PAE or a long mode page table. 3323 */ 3324 pm_mask = PT_PRESENT_MASK; 3325 if (vcpu->arch.mmu->shadow_root_level == PT64_ROOT_4LEVEL) 3326 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK; 3327 3328 for (i = 0; i < 4; ++i) { 3329 MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu->pae_root[i])); 3330 if (vcpu->arch.mmu->root_level == PT32E_ROOT_LEVEL) { 3331 pdptr = vcpu->arch.mmu->get_pdptr(vcpu, i); 3332 if (!(pdptr & PT_PRESENT_MASK)) { 3333 vcpu->arch.mmu->pae_root[i] = 0; 3334 continue; 3335 } 3336 root_gfn = pdptr >> PAGE_SHIFT; 3337 if (mmu_check_root(vcpu, root_gfn)) 3338 return 1; 3339 } 3340 3341 root = mmu_alloc_root(vcpu, root_gfn, i << 30, 3342 PT32_ROOT_LEVEL, false); 3343 if (!VALID_PAGE(root)) 3344 return -ENOSPC; 3345 vcpu->arch.mmu->pae_root[i] = root | pm_mask; 3346 } 3347 vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->pae_root); 3348 3349 /* 3350 * If we shadow a 32 bit page table with a long mode page 3351 * table we enter this path. 3352 */ 3353 if (vcpu->arch.mmu->shadow_root_level == PT64_ROOT_4LEVEL) { 3354 if (vcpu->arch.mmu->lm_root == NULL) { 3355 /* 3356 * The additional page necessary for this is only 3357 * allocated on demand. 3358 */ 3359 3360 u64 *lm_root; 3361 3362 lm_root = (void*)get_zeroed_page(GFP_KERNEL_ACCOUNT); 3363 if (lm_root == NULL) 3364 return 1; 3365 3366 lm_root[0] = __pa(vcpu->arch.mmu->pae_root) | pm_mask; 3367 3368 vcpu->arch.mmu->lm_root = lm_root; 3369 } 3370 3371 vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->lm_root); 3372 } 3373 3374 set_root_pgd: 3375 vcpu->arch.mmu->root_pgd = root_pgd; 3376 3377 return 0; 3378 } 3379 3380 static int mmu_alloc_roots(struct kvm_vcpu *vcpu) 3381 { 3382 if (vcpu->arch.mmu->direct_map) 3383 return mmu_alloc_direct_roots(vcpu); 3384 else 3385 return mmu_alloc_shadow_roots(vcpu); 3386 } 3387 3388 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu) 3389 { 3390 int i; 3391 struct kvm_mmu_page *sp; 3392 3393 if (vcpu->arch.mmu->direct_map) 3394 return; 3395 3396 if (!VALID_PAGE(vcpu->arch.mmu->root_hpa)) 3397 return; 3398 3399 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY); 3400 3401 if (vcpu->arch.mmu->root_level >= PT64_ROOT_4LEVEL) { 3402 hpa_t root = vcpu->arch.mmu->root_hpa; 3403 sp = to_shadow_page(root); 3404 3405 /* 3406 * Even if another CPU was marking the SP as unsync-ed 3407 * simultaneously, any guest page table changes are not 3408 * guaranteed to be visible anyway until this VCPU issues a TLB 3409 * flush strictly after those changes are made. We only need to 3410 * ensure that the other CPU sets these flags before any actual 3411 * changes to the page tables are made. The comments in 3412 * mmu_need_write_protect() describe what could go wrong if this 3413 * requirement isn't satisfied. 3414 */ 3415 if (!smp_load_acquire(&sp->unsync) && 3416 !smp_load_acquire(&sp->unsync_children)) 3417 return; 3418 3419 spin_lock(&vcpu->kvm->mmu_lock); 3420 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC); 3421 3422 mmu_sync_children(vcpu, sp); 3423 3424 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC); 3425 spin_unlock(&vcpu->kvm->mmu_lock); 3426 return; 3427 } 3428 3429 spin_lock(&vcpu->kvm->mmu_lock); 3430 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC); 3431 3432 for (i = 0; i < 4; ++i) { 3433 hpa_t root = vcpu->arch.mmu->pae_root[i]; 3434 3435 if (root && VALID_PAGE(root)) { 3436 root &= PT64_BASE_ADDR_MASK; 3437 sp = to_shadow_page(root); 3438 mmu_sync_children(vcpu, sp); 3439 } 3440 } 3441 3442 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC); 3443 spin_unlock(&vcpu->kvm->mmu_lock); 3444 } 3445 EXPORT_SYMBOL_GPL(kvm_mmu_sync_roots); 3446 3447 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gpa_t vaddr, 3448 u32 access, struct x86_exception *exception) 3449 { 3450 if (exception) 3451 exception->error_code = 0; 3452 return vaddr; 3453 } 3454 3455 static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gpa_t vaddr, 3456 u32 access, 3457 struct x86_exception *exception) 3458 { 3459 if (exception) 3460 exception->error_code = 0; 3461 return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception); 3462 } 3463 3464 static bool 3465 __is_rsvd_bits_set(struct rsvd_bits_validate *rsvd_check, u64 pte, int level) 3466 { 3467 int bit7 = (pte >> 7) & 1; 3468 3469 return pte & rsvd_check->rsvd_bits_mask[bit7][level-1]; 3470 } 3471 3472 static bool __is_bad_mt_xwr(struct rsvd_bits_validate *rsvd_check, u64 pte) 3473 { 3474 return rsvd_check->bad_mt_xwr & BIT_ULL(pte & 0x3f); 3475 } 3476 3477 static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct) 3478 { 3479 /* 3480 * A nested guest cannot use the MMIO cache if it is using nested 3481 * page tables, because cr2 is a nGPA while the cache stores GPAs. 3482 */ 3483 if (mmu_is_nested(vcpu)) 3484 return false; 3485 3486 if (direct) 3487 return vcpu_match_mmio_gpa(vcpu, addr); 3488 3489 return vcpu_match_mmio_gva(vcpu, addr); 3490 } 3491 3492 /* 3493 * Return the level of the lowest level SPTE added to sptes. 3494 * That SPTE may be non-present. 3495 */ 3496 static int get_walk(struct kvm_vcpu *vcpu, u64 addr, u64 *sptes, int *root_level) 3497 { 3498 struct kvm_shadow_walk_iterator iterator; 3499 int leaf = -1; 3500 u64 spte; 3501 3502 walk_shadow_page_lockless_begin(vcpu); 3503 3504 for (shadow_walk_init(&iterator, vcpu, addr), 3505 *root_level = iterator.level; 3506 shadow_walk_okay(&iterator); 3507 __shadow_walk_next(&iterator, spte)) { 3508 leaf = iterator.level; 3509 spte = mmu_spte_get_lockless(iterator.sptep); 3510 3511 sptes[leaf] = spte; 3512 3513 if (!is_shadow_present_pte(spte)) 3514 break; 3515 } 3516 3517 walk_shadow_page_lockless_end(vcpu); 3518 3519 return leaf; 3520 } 3521 3522 /* return true if reserved bit(s) are detected on a valid, non-MMIO SPTE. */ 3523 static bool get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep) 3524 { 3525 u64 sptes[PT64_ROOT_MAX_LEVEL + 1]; 3526 struct rsvd_bits_validate *rsvd_check; 3527 int root, leaf, level; 3528 bool reserved = false; 3529 3530 if (!VALID_PAGE(vcpu->arch.mmu->root_hpa)) { 3531 *sptep = 0ull; 3532 return reserved; 3533 } 3534 3535 if (is_tdp_mmu_root(vcpu->kvm, vcpu->arch.mmu->root_hpa)) 3536 leaf = kvm_tdp_mmu_get_walk(vcpu, addr, sptes, &root); 3537 else 3538 leaf = get_walk(vcpu, addr, sptes, &root); 3539 3540 if (unlikely(leaf < 0)) { 3541 *sptep = 0ull; 3542 return reserved; 3543 } 3544 3545 *sptep = sptes[leaf]; 3546 3547 /* 3548 * Skip reserved bits checks on the terminal leaf if it's not a valid 3549 * SPTE. Note, this also (intentionally) skips MMIO SPTEs, which, by 3550 * design, always have reserved bits set. The purpose of the checks is 3551 * to detect reserved bits on non-MMIO SPTEs. i.e. buggy SPTEs. 3552 */ 3553 if (!is_shadow_present_pte(sptes[leaf])) 3554 leaf++; 3555 3556 rsvd_check = &vcpu->arch.mmu->shadow_zero_check; 3557 3558 for (level = root; level >= leaf; level--) 3559 /* 3560 * Use a bitwise-OR instead of a logical-OR to aggregate the 3561 * reserved bit and EPT's invalid memtype/XWR checks to avoid 3562 * adding a Jcc in the loop. 3563 */ 3564 reserved |= __is_bad_mt_xwr(rsvd_check, sptes[level]) | 3565 __is_rsvd_bits_set(rsvd_check, sptes[level], level); 3566 3567 if (reserved) { 3568 pr_err("%s: detect reserved bits on spte, addr 0x%llx, dump hierarchy:\n", 3569 __func__, addr); 3570 for (level = root; level >= leaf; level--) 3571 pr_err("------ spte 0x%llx level %d.\n", 3572 sptes[level], level); 3573 } 3574 3575 return reserved; 3576 } 3577 3578 static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct) 3579 { 3580 u64 spte; 3581 bool reserved; 3582 3583 if (mmio_info_in_cache(vcpu, addr, direct)) 3584 return RET_PF_EMULATE; 3585 3586 reserved = get_mmio_spte(vcpu, addr, &spte); 3587 if (WARN_ON(reserved)) 3588 return -EINVAL; 3589 3590 if (is_mmio_spte(spte)) { 3591 gfn_t gfn = get_mmio_spte_gfn(spte); 3592 unsigned int access = get_mmio_spte_access(spte); 3593 3594 if (!check_mmio_spte(vcpu, spte)) 3595 return RET_PF_INVALID; 3596 3597 if (direct) 3598 addr = 0; 3599 3600 trace_handle_mmio_page_fault(addr, gfn, access); 3601 vcpu_cache_mmio_info(vcpu, addr, gfn, access); 3602 return RET_PF_EMULATE; 3603 } 3604 3605 /* 3606 * If the page table is zapped by other cpus, let CPU fault again on 3607 * the address. 3608 */ 3609 return RET_PF_RETRY; 3610 } 3611 3612 static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu, 3613 u32 error_code, gfn_t gfn) 3614 { 3615 if (unlikely(error_code & PFERR_RSVD_MASK)) 3616 return false; 3617 3618 if (!(error_code & PFERR_PRESENT_MASK) || 3619 !(error_code & PFERR_WRITE_MASK)) 3620 return false; 3621 3622 /* 3623 * guest is writing the page which is write tracked which can 3624 * not be fixed by page fault handler. 3625 */ 3626 if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE)) 3627 return true; 3628 3629 return false; 3630 } 3631 3632 static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr) 3633 { 3634 struct kvm_shadow_walk_iterator iterator; 3635 u64 spte; 3636 3637 walk_shadow_page_lockless_begin(vcpu); 3638 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) { 3639 clear_sp_write_flooding_count(iterator.sptep); 3640 if (!is_shadow_present_pte(spte)) 3641 break; 3642 } 3643 walk_shadow_page_lockless_end(vcpu); 3644 } 3645 3646 static bool kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, 3647 gfn_t gfn) 3648 { 3649 struct kvm_arch_async_pf arch; 3650 3651 arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id; 3652 arch.gfn = gfn; 3653 arch.direct_map = vcpu->arch.mmu->direct_map; 3654 arch.cr3 = vcpu->arch.mmu->get_guest_pgd(vcpu); 3655 3656 return kvm_setup_async_pf(vcpu, cr2_or_gpa, 3657 kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch); 3658 } 3659 3660 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn, 3661 gpa_t cr2_or_gpa, kvm_pfn_t *pfn, bool write, 3662 bool *writable) 3663 { 3664 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 3665 bool async; 3666 3667 /* Don't expose private memslots to L2. */ 3668 if (is_guest_mode(vcpu) && !kvm_is_visible_memslot(slot)) { 3669 *pfn = KVM_PFN_NOSLOT; 3670 *writable = false; 3671 return false; 3672 } 3673 3674 async = false; 3675 *pfn = __gfn_to_pfn_memslot(slot, gfn, false, &async, write, writable); 3676 if (!async) 3677 return false; /* *pfn has correct page already */ 3678 3679 if (!prefault && kvm_can_do_async_pf(vcpu)) { 3680 trace_kvm_try_async_get_page(cr2_or_gpa, gfn); 3681 if (kvm_find_async_pf_gfn(vcpu, gfn)) { 3682 trace_kvm_async_pf_doublefault(cr2_or_gpa, gfn); 3683 kvm_make_request(KVM_REQ_APF_HALT, vcpu); 3684 return true; 3685 } else if (kvm_arch_setup_async_pf(vcpu, cr2_or_gpa, gfn)) 3686 return true; 3687 } 3688 3689 *pfn = __gfn_to_pfn_memslot(slot, gfn, false, NULL, write, writable); 3690 return false; 3691 } 3692 3693 static int direct_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code, 3694 bool prefault, int max_level, bool is_tdp) 3695 { 3696 bool write = error_code & PFERR_WRITE_MASK; 3697 bool map_writable; 3698 3699 gfn_t gfn = gpa >> PAGE_SHIFT; 3700 unsigned long mmu_seq; 3701 kvm_pfn_t pfn; 3702 int r; 3703 3704 if (page_fault_handle_page_track(vcpu, error_code, gfn)) 3705 return RET_PF_EMULATE; 3706 3707 if (!is_tdp_mmu_root(vcpu->kvm, vcpu->arch.mmu->root_hpa)) { 3708 r = fast_page_fault(vcpu, gpa, error_code); 3709 if (r != RET_PF_INVALID) 3710 return r; 3711 } 3712 3713 r = mmu_topup_memory_caches(vcpu, false); 3714 if (r) 3715 return r; 3716 3717 mmu_seq = vcpu->kvm->mmu_notifier_seq; 3718 smp_rmb(); 3719 3720 if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable)) 3721 return RET_PF_RETRY; 3722 3723 if (handle_abnormal_pfn(vcpu, is_tdp ? 0 : gpa, gfn, pfn, ACC_ALL, &r)) 3724 return r; 3725 3726 r = RET_PF_RETRY; 3727 spin_lock(&vcpu->kvm->mmu_lock); 3728 if (mmu_notifier_retry(vcpu->kvm, mmu_seq)) 3729 goto out_unlock; 3730 r = make_mmu_pages_available(vcpu); 3731 if (r) 3732 goto out_unlock; 3733 3734 if (is_tdp_mmu_root(vcpu->kvm, vcpu->arch.mmu->root_hpa)) 3735 r = kvm_tdp_mmu_map(vcpu, gpa, error_code, map_writable, max_level, 3736 pfn, prefault); 3737 else 3738 r = __direct_map(vcpu, gpa, error_code, map_writable, max_level, pfn, 3739 prefault, is_tdp); 3740 3741 out_unlock: 3742 spin_unlock(&vcpu->kvm->mmu_lock); 3743 kvm_release_pfn_clean(pfn); 3744 return r; 3745 } 3746 3747 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa, 3748 u32 error_code, bool prefault) 3749 { 3750 pgprintk("%s: gva %lx error %x\n", __func__, gpa, error_code); 3751 3752 /* This path builds a PAE pagetable, we can map 2mb pages at maximum. */ 3753 return direct_page_fault(vcpu, gpa & PAGE_MASK, error_code, prefault, 3754 PG_LEVEL_2M, false); 3755 } 3756 3757 int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code, 3758 u64 fault_address, char *insn, int insn_len) 3759 { 3760 int r = 1; 3761 u32 flags = vcpu->arch.apf.host_apf_flags; 3762 3763 #ifndef CONFIG_X86_64 3764 /* A 64-bit CR2 should be impossible on 32-bit KVM. */ 3765 if (WARN_ON_ONCE(fault_address >> 32)) 3766 return -EFAULT; 3767 #endif 3768 3769 vcpu->arch.l1tf_flush_l1d = true; 3770 if (!flags) { 3771 trace_kvm_page_fault(fault_address, error_code); 3772 3773 if (kvm_event_needs_reinjection(vcpu)) 3774 kvm_mmu_unprotect_page_virt(vcpu, fault_address); 3775 r = kvm_mmu_page_fault(vcpu, fault_address, error_code, insn, 3776 insn_len); 3777 } else if (flags & KVM_PV_REASON_PAGE_NOT_PRESENT) { 3778 vcpu->arch.apf.host_apf_flags = 0; 3779 local_irq_disable(); 3780 kvm_async_pf_task_wait_schedule(fault_address); 3781 local_irq_enable(); 3782 } else { 3783 WARN_ONCE(1, "Unexpected host async PF flags: %x\n", flags); 3784 } 3785 3786 return r; 3787 } 3788 EXPORT_SYMBOL_GPL(kvm_handle_page_fault); 3789 3790 int kvm_tdp_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code, 3791 bool prefault) 3792 { 3793 int max_level; 3794 3795 for (max_level = KVM_MAX_HUGEPAGE_LEVEL; 3796 max_level > PG_LEVEL_4K; 3797 max_level--) { 3798 int page_num = KVM_PAGES_PER_HPAGE(max_level); 3799 gfn_t base = (gpa >> PAGE_SHIFT) & ~(page_num - 1); 3800 3801 if (kvm_mtrr_check_gfn_range_consistency(vcpu, base, page_num)) 3802 break; 3803 } 3804 3805 return direct_page_fault(vcpu, gpa, error_code, prefault, 3806 max_level, true); 3807 } 3808 3809 static void nonpaging_init_context(struct kvm_vcpu *vcpu, 3810 struct kvm_mmu *context) 3811 { 3812 context->page_fault = nonpaging_page_fault; 3813 context->gva_to_gpa = nonpaging_gva_to_gpa; 3814 context->sync_page = nonpaging_sync_page; 3815 context->invlpg = NULL; 3816 context->update_pte = nonpaging_update_pte; 3817 context->root_level = 0; 3818 context->shadow_root_level = PT32E_ROOT_LEVEL; 3819 context->direct_map = true; 3820 context->nx = false; 3821 } 3822 3823 static inline bool is_root_usable(struct kvm_mmu_root_info *root, gpa_t pgd, 3824 union kvm_mmu_page_role role) 3825 { 3826 return (role.direct || pgd == root->pgd) && 3827 VALID_PAGE(root->hpa) && to_shadow_page(root->hpa) && 3828 role.word == to_shadow_page(root->hpa)->role.word; 3829 } 3830 3831 /* 3832 * Find out if a previously cached root matching the new pgd/role is available. 3833 * The current root is also inserted into the cache. 3834 * If a matching root was found, it is assigned to kvm_mmu->root_hpa and true is 3835 * returned. 3836 * Otherwise, the LRU root from the cache is assigned to kvm_mmu->root_hpa and 3837 * false is returned. This root should now be freed by the caller. 3838 */ 3839 static bool cached_root_available(struct kvm_vcpu *vcpu, gpa_t new_pgd, 3840 union kvm_mmu_page_role new_role) 3841 { 3842 uint i; 3843 struct kvm_mmu_root_info root; 3844 struct kvm_mmu *mmu = vcpu->arch.mmu; 3845 3846 root.pgd = mmu->root_pgd; 3847 root.hpa = mmu->root_hpa; 3848 3849 if (is_root_usable(&root, new_pgd, new_role)) 3850 return true; 3851 3852 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) { 3853 swap(root, mmu->prev_roots[i]); 3854 3855 if (is_root_usable(&root, new_pgd, new_role)) 3856 break; 3857 } 3858 3859 mmu->root_hpa = root.hpa; 3860 mmu->root_pgd = root.pgd; 3861 3862 return i < KVM_MMU_NUM_PREV_ROOTS; 3863 } 3864 3865 static bool fast_pgd_switch(struct kvm_vcpu *vcpu, gpa_t new_pgd, 3866 union kvm_mmu_page_role new_role) 3867 { 3868 struct kvm_mmu *mmu = vcpu->arch.mmu; 3869 3870 /* 3871 * For now, limit the fast switch to 64-bit hosts+VMs in order to avoid 3872 * having to deal with PDPTEs. We may add support for 32-bit hosts/VMs 3873 * later if necessary. 3874 */ 3875 if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL && 3876 mmu->root_level >= PT64_ROOT_4LEVEL) 3877 return cached_root_available(vcpu, new_pgd, new_role); 3878 3879 return false; 3880 } 3881 3882 static void __kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd, 3883 union kvm_mmu_page_role new_role, 3884 bool skip_tlb_flush, bool skip_mmu_sync) 3885 { 3886 if (!fast_pgd_switch(vcpu, new_pgd, new_role)) { 3887 kvm_mmu_free_roots(vcpu, vcpu->arch.mmu, KVM_MMU_ROOT_CURRENT); 3888 return; 3889 } 3890 3891 /* 3892 * It's possible that the cached previous root page is obsolete because 3893 * of a change in the MMU generation number. However, changing the 3894 * generation number is accompanied by KVM_REQ_MMU_RELOAD, which will 3895 * free the root set here and allocate a new one. 3896 */ 3897 kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu); 3898 3899 if (!skip_mmu_sync || force_flush_and_sync_on_reuse) 3900 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu); 3901 if (!skip_tlb_flush || force_flush_and_sync_on_reuse) 3902 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 3903 3904 /* 3905 * The last MMIO access's GVA and GPA are cached in the VCPU. When 3906 * switching to a new CR3, that GVA->GPA mapping may no longer be 3907 * valid. So clear any cached MMIO info even when we don't need to sync 3908 * the shadow page tables. 3909 */ 3910 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY); 3911 3912 /* 3913 * If this is a direct root page, it doesn't have a write flooding 3914 * count. Otherwise, clear the write flooding count. 3915 */ 3916 if (!new_role.direct) 3917 __clear_sp_write_flooding_count( 3918 to_shadow_page(vcpu->arch.mmu->root_hpa)); 3919 } 3920 3921 void kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd, bool skip_tlb_flush, 3922 bool skip_mmu_sync) 3923 { 3924 __kvm_mmu_new_pgd(vcpu, new_pgd, kvm_mmu_calc_root_page_role(vcpu), 3925 skip_tlb_flush, skip_mmu_sync); 3926 } 3927 EXPORT_SYMBOL_GPL(kvm_mmu_new_pgd); 3928 3929 static unsigned long get_cr3(struct kvm_vcpu *vcpu) 3930 { 3931 return kvm_read_cr3(vcpu); 3932 } 3933 3934 static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn, 3935 unsigned int access, int *nr_present) 3936 { 3937 if (unlikely(is_mmio_spte(*sptep))) { 3938 if (gfn != get_mmio_spte_gfn(*sptep)) { 3939 mmu_spte_clear_no_track(sptep); 3940 return true; 3941 } 3942 3943 (*nr_present)++; 3944 mark_mmio_spte(vcpu, sptep, gfn, access); 3945 return true; 3946 } 3947 3948 return false; 3949 } 3950 3951 static inline bool is_last_gpte(struct kvm_mmu *mmu, 3952 unsigned level, unsigned gpte) 3953 { 3954 /* 3955 * The RHS has bit 7 set iff level < mmu->last_nonleaf_level. 3956 * If it is clear, there are no large pages at this level, so clear 3957 * PT_PAGE_SIZE_MASK in gpte if that is the case. 3958 */ 3959 gpte &= level - mmu->last_nonleaf_level; 3960 3961 /* 3962 * PG_LEVEL_4K always terminates. The RHS has bit 7 set 3963 * iff level <= PG_LEVEL_4K, which for our purpose means 3964 * level == PG_LEVEL_4K; set PT_PAGE_SIZE_MASK in gpte then. 3965 */ 3966 gpte |= level - PG_LEVEL_4K - 1; 3967 3968 return gpte & PT_PAGE_SIZE_MASK; 3969 } 3970 3971 #define PTTYPE_EPT 18 /* arbitrary */ 3972 #define PTTYPE PTTYPE_EPT 3973 #include "paging_tmpl.h" 3974 #undef PTTYPE 3975 3976 #define PTTYPE 64 3977 #include "paging_tmpl.h" 3978 #undef PTTYPE 3979 3980 #define PTTYPE 32 3981 #include "paging_tmpl.h" 3982 #undef PTTYPE 3983 3984 static void 3985 __reset_rsvds_bits_mask(struct kvm_vcpu *vcpu, 3986 struct rsvd_bits_validate *rsvd_check, 3987 int maxphyaddr, int level, bool nx, bool gbpages, 3988 bool pse, bool amd) 3989 { 3990 u64 exb_bit_rsvd = 0; 3991 u64 gbpages_bit_rsvd = 0; 3992 u64 nonleaf_bit8_rsvd = 0; 3993 3994 rsvd_check->bad_mt_xwr = 0; 3995 3996 if (!nx) 3997 exb_bit_rsvd = rsvd_bits(63, 63); 3998 if (!gbpages) 3999 gbpages_bit_rsvd = rsvd_bits(7, 7); 4000 4001 /* 4002 * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for 4003 * leaf entries) on AMD CPUs only. 4004 */ 4005 if (amd) 4006 nonleaf_bit8_rsvd = rsvd_bits(8, 8); 4007 4008 switch (level) { 4009 case PT32_ROOT_LEVEL: 4010 /* no rsvd bits for 2 level 4K page table entries */ 4011 rsvd_check->rsvd_bits_mask[0][1] = 0; 4012 rsvd_check->rsvd_bits_mask[0][0] = 0; 4013 rsvd_check->rsvd_bits_mask[1][0] = 4014 rsvd_check->rsvd_bits_mask[0][0]; 4015 4016 if (!pse) { 4017 rsvd_check->rsvd_bits_mask[1][1] = 0; 4018 break; 4019 } 4020 4021 if (is_cpuid_PSE36()) 4022 /* 36bits PSE 4MB page */ 4023 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21); 4024 else 4025 /* 32 bits PSE 4MB page */ 4026 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21); 4027 break; 4028 case PT32E_ROOT_LEVEL: 4029 rsvd_check->rsvd_bits_mask[0][2] = 4030 rsvd_bits(maxphyaddr, 63) | 4031 rsvd_bits(5, 8) | rsvd_bits(1, 2); /* PDPTE */ 4032 rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd | 4033 rsvd_bits(maxphyaddr, 62); /* PDE */ 4034 rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd | 4035 rsvd_bits(maxphyaddr, 62); /* PTE */ 4036 rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd | 4037 rsvd_bits(maxphyaddr, 62) | 4038 rsvd_bits(13, 20); /* large page */ 4039 rsvd_check->rsvd_bits_mask[1][0] = 4040 rsvd_check->rsvd_bits_mask[0][0]; 4041 break; 4042 case PT64_ROOT_5LEVEL: 4043 rsvd_check->rsvd_bits_mask[0][4] = exb_bit_rsvd | 4044 nonleaf_bit8_rsvd | rsvd_bits(7, 7) | 4045 rsvd_bits(maxphyaddr, 51); 4046 rsvd_check->rsvd_bits_mask[1][4] = 4047 rsvd_check->rsvd_bits_mask[0][4]; 4048 fallthrough; 4049 case PT64_ROOT_4LEVEL: 4050 rsvd_check->rsvd_bits_mask[0][3] = exb_bit_rsvd | 4051 nonleaf_bit8_rsvd | rsvd_bits(7, 7) | 4052 rsvd_bits(maxphyaddr, 51); 4053 rsvd_check->rsvd_bits_mask[0][2] = exb_bit_rsvd | 4054 gbpages_bit_rsvd | 4055 rsvd_bits(maxphyaddr, 51); 4056 rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd | 4057 rsvd_bits(maxphyaddr, 51); 4058 rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd | 4059 rsvd_bits(maxphyaddr, 51); 4060 rsvd_check->rsvd_bits_mask[1][3] = 4061 rsvd_check->rsvd_bits_mask[0][3]; 4062 rsvd_check->rsvd_bits_mask[1][2] = exb_bit_rsvd | 4063 gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51) | 4064 rsvd_bits(13, 29); 4065 rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd | 4066 rsvd_bits(maxphyaddr, 51) | 4067 rsvd_bits(13, 20); /* large page */ 4068 rsvd_check->rsvd_bits_mask[1][0] = 4069 rsvd_check->rsvd_bits_mask[0][0]; 4070 break; 4071 } 4072 } 4073 4074 static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu, 4075 struct kvm_mmu *context) 4076 { 4077 __reset_rsvds_bits_mask(vcpu, &context->guest_rsvd_check, 4078 cpuid_maxphyaddr(vcpu), context->root_level, 4079 context->nx, 4080 guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES), 4081 is_pse(vcpu), 4082 guest_cpuid_is_amd_or_hygon(vcpu)); 4083 } 4084 4085 static void 4086 __reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check, 4087 int maxphyaddr, bool execonly) 4088 { 4089 u64 bad_mt_xwr; 4090 4091 rsvd_check->rsvd_bits_mask[0][4] = 4092 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7); 4093 rsvd_check->rsvd_bits_mask[0][3] = 4094 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7); 4095 rsvd_check->rsvd_bits_mask[0][2] = 4096 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6); 4097 rsvd_check->rsvd_bits_mask[0][1] = 4098 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6); 4099 rsvd_check->rsvd_bits_mask[0][0] = rsvd_bits(maxphyaddr, 51); 4100 4101 /* large page */ 4102 rsvd_check->rsvd_bits_mask[1][4] = rsvd_check->rsvd_bits_mask[0][4]; 4103 rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3]; 4104 rsvd_check->rsvd_bits_mask[1][2] = 4105 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 29); 4106 rsvd_check->rsvd_bits_mask[1][1] = 4107 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 20); 4108 rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0]; 4109 4110 bad_mt_xwr = 0xFFull << (2 * 8); /* bits 3..5 must not be 2 */ 4111 bad_mt_xwr |= 0xFFull << (3 * 8); /* bits 3..5 must not be 3 */ 4112 bad_mt_xwr |= 0xFFull << (7 * 8); /* bits 3..5 must not be 7 */ 4113 bad_mt_xwr |= REPEAT_BYTE(1ull << 2); /* bits 0..2 must not be 010 */ 4114 bad_mt_xwr |= REPEAT_BYTE(1ull << 6); /* bits 0..2 must not be 110 */ 4115 if (!execonly) { 4116 /* bits 0..2 must not be 100 unless VMX capabilities allow it */ 4117 bad_mt_xwr |= REPEAT_BYTE(1ull << 4); 4118 } 4119 rsvd_check->bad_mt_xwr = bad_mt_xwr; 4120 } 4121 4122 static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu, 4123 struct kvm_mmu *context, bool execonly) 4124 { 4125 __reset_rsvds_bits_mask_ept(&context->guest_rsvd_check, 4126 cpuid_maxphyaddr(vcpu), execonly); 4127 } 4128 4129 /* 4130 * the page table on host is the shadow page table for the page 4131 * table in guest or amd nested guest, its mmu features completely 4132 * follow the features in guest. 4133 */ 4134 void 4135 reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, struct kvm_mmu *context) 4136 { 4137 bool uses_nx = context->nx || 4138 context->mmu_role.base.smep_andnot_wp; 4139 struct rsvd_bits_validate *shadow_zero_check; 4140 int i; 4141 4142 /* 4143 * Passing "true" to the last argument is okay; it adds a check 4144 * on bit 8 of the SPTEs which KVM doesn't use anyway. 4145 */ 4146 shadow_zero_check = &context->shadow_zero_check; 4147 __reset_rsvds_bits_mask(vcpu, shadow_zero_check, 4148 shadow_phys_bits, 4149 context->shadow_root_level, uses_nx, 4150 guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES), 4151 is_pse(vcpu), true); 4152 4153 if (!shadow_me_mask) 4154 return; 4155 4156 for (i = context->shadow_root_level; --i >= 0;) { 4157 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask; 4158 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask; 4159 } 4160 4161 } 4162 EXPORT_SYMBOL_GPL(reset_shadow_zero_bits_mask); 4163 4164 static inline bool boot_cpu_is_amd(void) 4165 { 4166 WARN_ON_ONCE(!tdp_enabled); 4167 return shadow_x_mask == 0; 4168 } 4169 4170 /* 4171 * the direct page table on host, use as much mmu features as 4172 * possible, however, kvm currently does not do execution-protection. 4173 */ 4174 static void 4175 reset_tdp_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, 4176 struct kvm_mmu *context) 4177 { 4178 struct rsvd_bits_validate *shadow_zero_check; 4179 int i; 4180 4181 shadow_zero_check = &context->shadow_zero_check; 4182 4183 if (boot_cpu_is_amd()) 4184 __reset_rsvds_bits_mask(vcpu, shadow_zero_check, 4185 shadow_phys_bits, 4186 context->shadow_root_level, false, 4187 boot_cpu_has(X86_FEATURE_GBPAGES), 4188 true, true); 4189 else 4190 __reset_rsvds_bits_mask_ept(shadow_zero_check, 4191 shadow_phys_bits, 4192 false); 4193 4194 if (!shadow_me_mask) 4195 return; 4196 4197 for (i = context->shadow_root_level; --i >= 0;) { 4198 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask; 4199 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask; 4200 } 4201 } 4202 4203 /* 4204 * as the comments in reset_shadow_zero_bits_mask() except it 4205 * is the shadow page table for intel nested guest. 4206 */ 4207 static void 4208 reset_ept_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, 4209 struct kvm_mmu *context, bool execonly) 4210 { 4211 __reset_rsvds_bits_mask_ept(&context->shadow_zero_check, 4212 shadow_phys_bits, execonly); 4213 } 4214 4215 #define BYTE_MASK(access) \ 4216 ((1 & (access) ? 2 : 0) | \ 4217 (2 & (access) ? 4 : 0) | \ 4218 (3 & (access) ? 8 : 0) | \ 4219 (4 & (access) ? 16 : 0) | \ 4220 (5 & (access) ? 32 : 0) | \ 4221 (6 & (access) ? 64 : 0) | \ 4222 (7 & (access) ? 128 : 0)) 4223 4224 4225 static void update_permission_bitmask(struct kvm_vcpu *vcpu, 4226 struct kvm_mmu *mmu, bool ept) 4227 { 4228 unsigned byte; 4229 4230 const u8 x = BYTE_MASK(ACC_EXEC_MASK); 4231 const u8 w = BYTE_MASK(ACC_WRITE_MASK); 4232 const u8 u = BYTE_MASK(ACC_USER_MASK); 4233 4234 bool cr4_smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP) != 0; 4235 bool cr4_smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP) != 0; 4236 bool cr0_wp = is_write_protection(vcpu); 4237 4238 for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) { 4239 unsigned pfec = byte << 1; 4240 4241 /* 4242 * Each "*f" variable has a 1 bit for each UWX value 4243 * that causes a fault with the given PFEC. 4244 */ 4245 4246 /* Faults from writes to non-writable pages */ 4247 u8 wf = (pfec & PFERR_WRITE_MASK) ? (u8)~w : 0; 4248 /* Faults from user mode accesses to supervisor pages */ 4249 u8 uf = (pfec & PFERR_USER_MASK) ? (u8)~u : 0; 4250 /* Faults from fetches of non-executable pages*/ 4251 u8 ff = (pfec & PFERR_FETCH_MASK) ? (u8)~x : 0; 4252 /* Faults from kernel mode fetches of user pages */ 4253 u8 smepf = 0; 4254 /* Faults from kernel mode accesses of user pages */ 4255 u8 smapf = 0; 4256 4257 if (!ept) { 4258 /* Faults from kernel mode accesses to user pages */ 4259 u8 kf = (pfec & PFERR_USER_MASK) ? 0 : u; 4260 4261 /* Not really needed: !nx will cause pte.nx to fault */ 4262 if (!mmu->nx) 4263 ff = 0; 4264 4265 /* Allow supervisor writes if !cr0.wp */ 4266 if (!cr0_wp) 4267 wf = (pfec & PFERR_USER_MASK) ? wf : 0; 4268 4269 /* Disallow supervisor fetches of user code if cr4.smep */ 4270 if (cr4_smep) 4271 smepf = (pfec & PFERR_FETCH_MASK) ? kf : 0; 4272 4273 /* 4274 * SMAP:kernel-mode data accesses from user-mode 4275 * mappings should fault. A fault is considered 4276 * as a SMAP violation if all of the following 4277 * conditions are true: 4278 * - X86_CR4_SMAP is set in CR4 4279 * - A user page is accessed 4280 * - The access is not a fetch 4281 * - Page fault in kernel mode 4282 * - if CPL = 3 or X86_EFLAGS_AC is clear 4283 * 4284 * Here, we cover the first three conditions. 4285 * The fourth is computed dynamically in permission_fault(); 4286 * PFERR_RSVD_MASK bit will be set in PFEC if the access is 4287 * *not* subject to SMAP restrictions. 4288 */ 4289 if (cr4_smap) 4290 smapf = (pfec & (PFERR_RSVD_MASK|PFERR_FETCH_MASK)) ? 0 : kf; 4291 } 4292 4293 mmu->permissions[byte] = ff | uf | wf | smepf | smapf; 4294 } 4295 } 4296 4297 /* 4298 * PKU is an additional mechanism by which the paging controls access to 4299 * user-mode addresses based on the value in the PKRU register. Protection 4300 * key violations are reported through a bit in the page fault error code. 4301 * Unlike other bits of the error code, the PK bit is not known at the 4302 * call site of e.g. gva_to_gpa; it must be computed directly in 4303 * permission_fault based on two bits of PKRU, on some machine state (CR4, 4304 * CR0, EFER, CPL), and on other bits of the error code and the page tables. 4305 * 4306 * In particular the following conditions come from the error code, the 4307 * page tables and the machine state: 4308 * - PK is always zero unless CR4.PKE=1 and EFER.LMA=1 4309 * - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch) 4310 * - PK is always zero if U=0 in the page tables 4311 * - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access. 4312 * 4313 * The PKRU bitmask caches the result of these four conditions. The error 4314 * code (minus the P bit) and the page table's U bit form an index into the 4315 * PKRU bitmask. Two bits of the PKRU bitmask are then extracted and ANDed 4316 * with the two bits of the PKRU register corresponding to the protection key. 4317 * For the first three conditions above the bits will be 00, thus masking 4318 * away both AD and WD. For all reads or if the last condition holds, WD 4319 * only will be masked away. 4320 */ 4321 static void update_pkru_bitmask(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, 4322 bool ept) 4323 { 4324 unsigned bit; 4325 bool wp; 4326 4327 if (ept) { 4328 mmu->pkru_mask = 0; 4329 return; 4330 } 4331 4332 /* PKEY is enabled only if CR4.PKE and EFER.LMA are both set. */ 4333 if (!kvm_read_cr4_bits(vcpu, X86_CR4_PKE) || !is_long_mode(vcpu)) { 4334 mmu->pkru_mask = 0; 4335 return; 4336 } 4337 4338 wp = is_write_protection(vcpu); 4339 4340 for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) { 4341 unsigned pfec, pkey_bits; 4342 bool check_pkey, check_write, ff, uf, wf, pte_user; 4343 4344 pfec = bit << 1; 4345 ff = pfec & PFERR_FETCH_MASK; 4346 uf = pfec & PFERR_USER_MASK; 4347 wf = pfec & PFERR_WRITE_MASK; 4348 4349 /* PFEC.RSVD is replaced by ACC_USER_MASK. */ 4350 pte_user = pfec & PFERR_RSVD_MASK; 4351 4352 /* 4353 * Only need to check the access which is not an 4354 * instruction fetch and is to a user page. 4355 */ 4356 check_pkey = (!ff && pte_user); 4357 /* 4358 * write access is controlled by PKRU if it is a 4359 * user access or CR0.WP = 1. 4360 */ 4361 check_write = check_pkey && wf && (uf || wp); 4362 4363 /* PKRU.AD stops both read and write access. */ 4364 pkey_bits = !!check_pkey; 4365 /* PKRU.WD stops write access. */ 4366 pkey_bits |= (!!check_write) << 1; 4367 4368 mmu->pkru_mask |= (pkey_bits & 3) << pfec; 4369 } 4370 } 4371 4372 static void update_last_nonleaf_level(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu) 4373 { 4374 unsigned root_level = mmu->root_level; 4375 4376 mmu->last_nonleaf_level = root_level; 4377 if (root_level == PT32_ROOT_LEVEL && is_pse(vcpu)) 4378 mmu->last_nonleaf_level++; 4379 } 4380 4381 static void paging64_init_context_common(struct kvm_vcpu *vcpu, 4382 struct kvm_mmu *context, 4383 int level) 4384 { 4385 context->nx = is_nx(vcpu); 4386 context->root_level = level; 4387 4388 reset_rsvds_bits_mask(vcpu, context); 4389 update_permission_bitmask(vcpu, context, false); 4390 update_pkru_bitmask(vcpu, context, false); 4391 update_last_nonleaf_level(vcpu, context); 4392 4393 MMU_WARN_ON(!is_pae(vcpu)); 4394 context->page_fault = paging64_page_fault; 4395 context->gva_to_gpa = paging64_gva_to_gpa; 4396 context->sync_page = paging64_sync_page; 4397 context->invlpg = paging64_invlpg; 4398 context->update_pte = paging64_update_pte; 4399 context->shadow_root_level = level; 4400 context->direct_map = false; 4401 } 4402 4403 static void paging64_init_context(struct kvm_vcpu *vcpu, 4404 struct kvm_mmu *context) 4405 { 4406 int root_level = is_la57_mode(vcpu) ? 4407 PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL; 4408 4409 paging64_init_context_common(vcpu, context, root_level); 4410 } 4411 4412 static void paging32_init_context(struct kvm_vcpu *vcpu, 4413 struct kvm_mmu *context) 4414 { 4415 context->nx = false; 4416 context->root_level = PT32_ROOT_LEVEL; 4417 4418 reset_rsvds_bits_mask(vcpu, context); 4419 update_permission_bitmask(vcpu, context, false); 4420 update_pkru_bitmask(vcpu, context, false); 4421 update_last_nonleaf_level(vcpu, context); 4422 4423 context->page_fault = paging32_page_fault; 4424 context->gva_to_gpa = paging32_gva_to_gpa; 4425 context->sync_page = paging32_sync_page; 4426 context->invlpg = paging32_invlpg; 4427 context->update_pte = paging32_update_pte; 4428 context->shadow_root_level = PT32E_ROOT_LEVEL; 4429 context->direct_map = false; 4430 } 4431 4432 static void paging32E_init_context(struct kvm_vcpu *vcpu, 4433 struct kvm_mmu *context) 4434 { 4435 paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL); 4436 } 4437 4438 static union kvm_mmu_extended_role kvm_calc_mmu_role_ext(struct kvm_vcpu *vcpu) 4439 { 4440 union kvm_mmu_extended_role ext = {0}; 4441 4442 ext.cr0_pg = !!is_paging(vcpu); 4443 ext.cr4_pae = !!is_pae(vcpu); 4444 ext.cr4_smep = !!kvm_read_cr4_bits(vcpu, X86_CR4_SMEP); 4445 ext.cr4_smap = !!kvm_read_cr4_bits(vcpu, X86_CR4_SMAP); 4446 ext.cr4_pse = !!is_pse(vcpu); 4447 ext.cr4_pke = !!kvm_read_cr4_bits(vcpu, X86_CR4_PKE); 4448 ext.maxphyaddr = cpuid_maxphyaddr(vcpu); 4449 4450 ext.valid = 1; 4451 4452 return ext; 4453 } 4454 4455 static union kvm_mmu_role kvm_calc_mmu_role_common(struct kvm_vcpu *vcpu, 4456 bool base_only) 4457 { 4458 union kvm_mmu_role role = {0}; 4459 4460 role.base.access = ACC_ALL; 4461 role.base.nxe = !!is_nx(vcpu); 4462 role.base.cr0_wp = is_write_protection(vcpu); 4463 role.base.smm = is_smm(vcpu); 4464 role.base.guest_mode = is_guest_mode(vcpu); 4465 4466 if (base_only) 4467 return role; 4468 4469 role.ext = kvm_calc_mmu_role_ext(vcpu); 4470 4471 return role; 4472 } 4473 4474 static inline int kvm_mmu_get_tdp_level(struct kvm_vcpu *vcpu) 4475 { 4476 /* Use 5-level TDP if and only if it's useful/necessary. */ 4477 if (max_tdp_level == 5 && cpuid_maxphyaddr(vcpu) <= 48) 4478 return 4; 4479 4480 return max_tdp_level; 4481 } 4482 4483 static union kvm_mmu_role 4484 kvm_calc_tdp_mmu_root_page_role(struct kvm_vcpu *vcpu, bool base_only) 4485 { 4486 union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, base_only); 4487 4488 role.base.ad_disabled = (shadow_accessed_mask == 0); 4489 role.base.level = kvm_mmu_get_tdp_level(vcpu); 4490 role.base.direct = true; 4491 role.base.gpte_is_8_bytes = true; 4492 4493 return role; 4494 } 4495 4496 static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu) 4497 { 4498 struct kvm_mmu *context = &vcpu->arch.root_mmu; 4499 union kvm_mmu_role new_role = 4500 kvm_calc_tdp_mmu_root_page_role(vcpu, false); 4501 4502 if (new_role.as_u64 == context->mmu_role.as_u64) 4503 return; 4504 4505 context->mmu_role.as_u64 = new_role.as_u64; 4506 context->page_fault = kvm_tdp_page_fault; 4507 context->sync_page = nonpaging_sync_page; 4508 context->invlpg = NULL; 4509 context->update_pte = nonpaging_update_pte; 4510 context->shadow_root_level = kvm_mmu_get_tdp_level(vcpu); 4511 context->direct_map = true; 4512 context->get_guest_pgd = get_cr3; 4513 context->get_pdptr = kvm_pdptr_read; 4514 context->inject_page_fault = kvm_inject_page_fault; 4515 4516 if (!is_paging(vcpu)) { 4517 context->nx = false; 4518 context->gva_to_gpa = nonpaging_gva_to_gpa; 4519 context->root_level = 0; 4520 } else if (is_long_mode(vcpu)) { 4521 context->nx = is_nx(vcpu); 4522 context->root_level = is_la57_mode(vcpu) ? 4523 PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL; 4524 reset_rsvds_bits_mask(vcpu, context); 4525 context->gva_to_gpa = paging64_gva_to_gpa; 4526 } else if (is_pae(vcpu)) { 4527 context->nx = is_nx(vcpu); 4528 context->root_level = PT32E_ROOT_LEVEL; 4529 reset_rsvds_bits_mask(vcpu, context); 4530 context->gva_to_gpa = paging64_gva_to_gpa; 4531 } else { 4532 context->nx = false; 4533 context->root_level = PT32_ROOT_LEVEL; 4534 reset_rsvds_bits_mask(vcpu, context); 4535 context->gva_to_gpa = paging32_gva_to_gpa; 4536 } 4537 4538 update_permission_bitmask(vcpu, context, false); 4539 update_pkru_bitmask(vcpu, context, false); 4540 update_last_nonleaf_level(vcpu, context); 4541 reset_tdp_shadow_zero_bits_mask(vcpu, context); 4542 } 4543 4544 static union kvm_mmu_role 4545 kvm_calc_shadow_root_page_role_common(struct kvm_vcpu *vcpu, bool base_only) 4546 { 4547 union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, base_only); 4548 4549 role.base.smep_andnot_wp = role.ext.cr4_smep && 4550 !is_write_protection(vcpu); 4551 role.base.smap_andnot_wp = role.ext.cr4_smap && 4552 !is_write_protection(vcpu); 4553 role.base.gpte_is_8_bytes = !!is_pae(vcpu); 4554 4555 return role; 4556 } 4557 4558 static union kvm_mmu_role 4559 kvm_calc_shadow_mmu_root_page_role(struct kvm_vcpu *vcpu, bool base_only) 4560 { 4561 union kvm_mmu_role role = 4562 kvm_calc_shadow_root_page_role_common(vcpu, base_only); 4563 4564 role.base.direct = !is_paging(vcpu); 4565 4566 if (!is_long_mode(vcpu)) 4567 role.base.level = PT32E_ROOT_LEVEL; 4568 else if (is_la57_mode(vcpu)) 4569 role.base.level = PT64_ROOT_5LEVEL; 4570 else 4571 role.base.level = PT64_ROOT_4LEVEL; 4572 4573 return role; 4574 } 4575 4576 static void shadow_mmu_init_context(struct kvm_vcpu *vcpu, struct kvm_mmu *context, 4577 u32 cr0, u32 cr4, u32 efer, 4578 union kvm_mmu_role new_role) 4579 { 4580 if (!(cr0 & X86_CR0_PG)) 4581 nonpaging_init_context(vcpu, context); 4582 else if (efer & EFER_LMA) 4583 paging64_init_context(vcpu, context); 4584 else if (cr4 & X86_CR4_PAE) 4585 paging32E_init_context(vcpu, context); 4586 else 4587 paging32_init_context(vcpu, context); 4588 4589 context->mmu_role.as_u64 = new_role.as_u64; 4590 reset_shadow_zero_bits_mask(vcpu, context); 4591 } 4592 4593 static void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, u32 cr0, u32 cr4, u32 efer) 4594 { 4595 struct kvm_mmu *context = &vcpu->arch.root_mmu; 4596 union kvm_mmu_role new_role = 4597 kvm_calc_shadow_mmu_root_page_role(vcpu, false); 4598 4599 if (new_role.as_u64 != context->mmu_role.as_u64) 4600 shadow_mmu_init_context(vcpu, context, cr0, cr4, efer, new_role); 4601 } 4602 4603 static union kvm_mmu_role 4604 kvm_calc_shadow_npt_root_page_role(struct kvm_vcpu *vcpu) 4605 { 4606 union kvm_mmu_role role = 4607 kvm_calc_shadow_root_page_role_common(vcpu, false); 4608 4609 role.base.direct = false; 4610 role.base.level = kvm_mmu_get_tdp_level(vcpu); 4611 4612 return role; 4613 } 4614 4615 void kvm_init_shadow_npt_mmu(struct kvm_vcpu *vcpu, u32 cr0, u32 cr4, u32 efer, 4616 gpa_t nested_cr3) 4617 { 4618 struct kvm_mmu *context = &vcpu->arch.guest_mmu; 4619 union kvm_mmu_role new_role = kvm_calc_shadow_npt_root_page_role(vcpu); 4620 4621 context->shadow_root_level = new_role.base.level; 4622 4623 __kvm_mmu_new_pgd(vcpu, nested_cr3, new_role.base, false, false); 4624 4625 if (new_role.as_u64 != context->mmu_role.as_u64) 4626 shadow_mmu_init_context(vcpu, context, cr0, cr4, efer, new_role); 4627 } 4628 EXPORT_SYMBOL_GPL(kvm_init_shadow_npt_mmu); 4629 4630 static union kvm_mmu_role 4631 kvm_calc_shadow_ept_root_page_role(struct kvm_vcpu *vcpu, bool accessed_dirty, 4632 bool execonly, u8 level) 4633 { 4634 union kvm_mmu_role role = {0}; 4635 4636 /* SMM flag is inherited from root_mmu */ 4637 role.base.smm = vcpu->arch.root_mmu.mmu_role.base.smm; 4638 4639 role.base.level = level; 4640 role.base.gpte_is_8_bytes = true; 4641 role.base.direct = false; 4642 role.base.ad_disabled = !accessed_dirty; 4643 role.base.guest_mode = true; 4644 role.base.access = ACC_ALL; 4645 4646 /* 4647 * WP=1 and NOT_WP=1 is an impossible combination, use WP and the 4648 * SMAP variation to denote shadow EPT entries. 4649 */ 4650 role.base.cr0_wp = true; 4651 role.base.smap_andnot_wp = true; 4652 4653 role.ext = kvm_calc_mmu_role_ext(vcpu); 4654 role.ext.execonly = execonly; 4655 4656 return role; 4657 } 4658 4659 void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly, 4660 bool accessed_dirty, gpa_t new_eptp) 4661 { 4662 struct kvm_mmu *context = &vcpu->arch.guest_mmu; 4663 u8 level = vmx_eptp_page_walk_level(new_eptp); 4664 union kvm_mmu_role new_role = 4665 kvm_calc_shadow_ept_root_page_role(vcpu, accessed_dirty, 4666 execonly, level); 4667 4668 __kvm_mmu_new_pgd(vcpu, new_eptp, new_role.base, true, true); 4669 4670 if (new_role.as_u64 == context->mmu_role.as_u64) 4671 return; 4672 4673 context->shadow_root_level = level; 4674 4675 context->nx = true; 4676 context->ept_ad = accessed_dirty; 4677 context->page_fault = ept_page_fault; 4678 context->gva_to_gpa = ept_gva_to_gpa; 4679 context->sync_page = ept_sync_page; 4680 context->invlpg = ept_invlpg; 4681 context->update_pte = ept_update_pte; 4682 context->root_level = level; 4683 context->direct_map = false; 4684 context->mmu_role.as_u64 = new_role.as_u64; 4685 4686 update_permission_bitmask(vcpu, context, true); 4687 update_pkru_bitmask(vcpu, context, true); 4688 update_last_nonleaf_level(vcpu, context); 4689 reset_rsvds_bits_mask_ept(vcpu, context, execonly); 4690 reset_ept_shadow_zero_bits_mask(vcpu, context, execonly); 4691 } 4692 EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu); 4693 4694 static void init_kvm_softmmu(struct kvm_vcpu *vcpu) 4695 { 4696 struct kvm_mmu *context = &vcpu->arch.root_mmu; 4697 4698 kvm_init_shadow_mmu(vcpu, 4699 kvm_read_cr0_bits(vcpu, X86_CR0_PG), 4700 kvm_read_cr4_bits(vcpu, X86_CR4_PAE), 4701 vcpu->arch.efer); 4702 4703 context->get_guest_pgd = get_cr3; 4704 context->get_pdptr = kvm_pdptr_read; 4705 context->inject_page_fault = kvm_inject_page_fault; 4706 } 4707 4708 static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu) 4709 { 4710 union kvm_mmu_role new_role = kvm_calc_mmu_role_common(vcpu, false); 4711 struct kvm_mmu *g_context = &vcpu->arch.nested_mmu; 4712 4713 if (new_role.as_u64 == g_context->mmu_role.as_u64) 4714 return; 4715 4716 g_context->mmu_role.as_u64 = new_role.as_u64; 4717 g_context->get_guest_pgd = get_cr3; 4718 g_context->get_pdptr = kvm_pdptr_read; 4719 g_context->inject_page_fault = kvm_inject_page_fault; 4720 4721 /* 4722 * L2 page tables are never shadowed, so there is no need to sync 4723 * SPTEs. 4724 */ 4725 g_context->invlpg = NULL; 4726 4727 /* 4728 * Note that arch.mmu->gva_to_gpa translates l2_gpa to l1_gpa using 4729 * L1's nested page tables (e.g. EPT12). The nested translation 4730 * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using 4731 * L2's page tables as the first level of translation and L1's 4732 * nested page tables as the second level of translation. Basically 4733 * the gva_to_gpa functions between mmu and nested_mmu are swapped. 4734 */ 4735 if (!is_paging(vcpu)) { 4736 g_context->nx = false; 4737 g_context->root_level = 0; 4738 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested; 4739 } else if (is_long_mode(vcpu)) { 4740 g_context->nx = is_nx(vcpu); 4741 g_context->root_level = is_la57_mode(vcpu) ? 4742 PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL; 4743 reset_rsvds_bits_mask(vcpu, g_context); 4744 g_context->gva_to_gpa = paging64_gva_to_gpa_nested; 4745 } else if (is_pae(vcpu)) { 4746 g_context->nx = is_nx(vcpu); 4747 g_context->root_level = PT32E_ROOT_LEVEL; 4748 reset_rsvds_bits_mask(vcpu, g_context); 4749 g_context->gva_to_gpa = paging64_gva_to_gpa_nested; 4750 } else { 4751 g_context->nx = false; 4752 g_context->root_level = PT32_ROOT_LEVEL; 4753 reset_rsvds_bits_mask(vcpu, g_context); 4754 g_context->gva_to_gpa = paging32_gva_to_gpa_nested; 4755 } 4756 4757 update_permission_bitmask(vcpu, g_context, false); 4758 update_pkru_bitmask(vcpu, g_context, false); 4759 update_last_nonleaf_level(vcpu, g_context); 4760 } 4761 4762 void kvm_init_mmu(struct kvm_vcpu *vcpu, bool reset_roots) 4763 { 4764 if (reset_roots) { 4765 uint i; 4766 4767 vcpu->arch.mmu->root_hpa = INVALID_PAGE; 4768 4769 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 4770 vcpu->arch.mmu->prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID; 4771 } 4772 4773 if (mmu_is_nested(vcpu)) 4774 init_kvm_nested_mmu(vcpu); 4775 else if (tdp_enabled) 4776 init_kvm_tdp_mmu(vcpu); 4777 else 4778 init_kvm_softmmu(vcpu); 4779 } 4780 EXPORT_SYMBOL_GPL(kvm_init_mmu); 4781 4782 static union kvm_mmu_page_role 4783 kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu) 4784 { 4785 union kvm_mmu_role role; 4786 4787 if (tdp_enabled) 4788 role = kvm_calc_tdp_mmu_root_page_role(vcpu, true); 4789 else 4790 role = kvm_calc_shadow_mmu_root_page_role(vcpu, true); 4791 4792 return role.base; 4793 } 4794 4795 void kvm_mmu_reset_context(struct kvm_vcpu *vcpu) 4796 { 4797 kvm_mmu_unload(vcpu); 4798 kvm_init_mmu(vcpu, true); 4799 } 4800 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context); 4801 4802 int kvm_mmu_load(struct kvm_vcpu *vcpu) 4803 { 4804 int r; 4805 4806 r = mmu_topup_memory_caches(vcpu, !vcpu->arch.mmu->direct_map); 4807 if (r) 4808 goto out; 4809 r = mmu_alloc_roots(vcpu); 4810 kvm_mmu_sync_roots(vcpu); 4811 if (r) 4812 goto out; 4813 kvm_mmu_load_pgd(vcpu); 4814 kvm_x86_ops.tlb_flush_current(vcpu); 4815 out: 4816 return r; 4817 } 4818 EXPORT_SYMBOL_GPL(kvm_mmu_load); 4819 4820 void kvm_mmu_unload(struct kvm_vcpu *vcpu) 4821 { 4822 kvm_mmu_free_roots(vcpu, &vcpu->arch.root_mmu, KVM_MMU_ROOTS_ALL); 4823 WARN_ON(VALID_PAGE(vcpu->arch.root_mmu.root_hpa)); 4824 kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL); 4825 WARN_ON(VALID_PAGE(vcpu->arch.guest_mmu.root_hpa)); 4826 } 4827 EXPORT_SYMBOL_GPL(kvm_mmu_unload); 4828 4829 static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu, 4830 struct kvm_mmu_page *sp, u64 *spte, 4831 const void *new) 4832 { 4833 if (sp->role.level != PG_LEVEL_4K) { 4834 ++vcpu->kvm->stat.mmu_pde_zapped; 4835 return; 4836 } 4837 4838 ++vcpu->kvm->stat.mmu_pte_updated; 4839 vcpu->arch.mmu->update_pte(vcpu, sp, spte, new); 4840 } 4841 4842 static bool need_remote_flush(u64 old, u64 new) 4843 { 4844 if (!is_shadow_present_pte(old)) 4845 return false; 4846 if (!is_shadow_present_pte(new)) 4847 return true; 4848 if ((old ^ new) & PT64_BASE_ADDR_MASK) 4849 return true; 4850 old ^= shadow_nx_mask; 4851 new ^= shadow_nx_mask; 4852 return (old & ~new & PT64_PERM_MASK) != 0; 4853 } 4854 4855 static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa, 4856 int *bytes) 4857 { 4858 u64 gentry = 0; 4859 int r; 4860 4861 /* 4862 * Assume that the pte write on a page table of the same type 4863 * as the current vcpu paging mode since we update the sptes only 4864 * when they have the same mode. 4865 */ 4866 if (is_pae(vcpu) && *bytes == 4) { 4867 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */ 4868 *gpa &= ~(gpa_t)7; 4869 *bytes = 8; 4870 } 4871 4872 if (*bytes == 4 || *bytes == 8) { 4873 r = kvm_vcpu_read_guest_atomic(vcpu, *gpa, &gentry, *bytes); 4874 if (r) 4875 gentry = 0; 4876 } 4877 4878 return gentry; 4879 } 4880 4881 /* 4882 * If we're seeing too many writes to a page, it may no longer be a page table, 4883 * or we may be forking, in which case it is better to unmap the page. 4884 */ 4885 static bool detect_write_flooding(struct kvm_mmu_page *sp) 4886 { 4887 /* 4888 * Skip write-flooding detected for the sp whose level is 1, because 4889 * it can become unsync, then the guest page is not write-protected. 4890 */ 4891 if (sp->role.level == PG_LEVEL_4K) 4892 return false; 4893 4894 atomic_inc(&sp->write_flooding_count); 4895 return atomic_read(&sp->write_flooding_count) >= 3; 4896 } 4897 4898 /* 4899 * Misaligned accesses are too much trouble to fix up; also, they usually 4900 * indicate a page is not used as a page table. 4901 */ 4902 static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa, 4903 int bytes) 4904 { 4905 unsigned offset, pte_size, misaligned; 4906 4907 pgprintk("misaligned: gpa %llx bytes %d role %x\n", 4908 gpa, bytes, sp->role.word); 4909 4910 offset = offset_in_page(gpa); 4911 pte_size = sp->role.gpte_is_8_bytes ? 8 : 4; 4912 4913 /* 4914 * Sometimes, the OS only writes the last one bytes to update status 4915 * bits, for example, in linux, andb instruction is used in clear_bit(). 4916 */ 4917 if (!(offset & (pte_size - 1)) && bytes == 1) 4918 return false; 4919 4920 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1); 4921 misaligned |= bytes < 4; 4922 4923 return misaligned; 4924 } 4925 4926 static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte) 4927 { 4928 unsigned page_offset, quadrant; 4929 u64 *spte; 4930 int level; 4931 4932 page_offset = offset_in_page(gpa); 4933 level = sp->role.level; 4934 *nspte = 1; 4935 if (!sp->role.gpte_is_8_bytes) { 4936 page_offset <<= 1; /* 32->64 */ 4937 /* 4938 * A 32-bit pde maps 4MB while the shadow pdes map 4939 * only 2MB. So we need to double the offset again 4940 * and zap two pdes instead of one. 4941 */ 4942 if (level == PT32_ROOT_LEVEL) { 4943 page_offset &= ~7; /* kill rounding error */ 4944 page_offset <<= 1; 4945 *nspte = 2; 4946 } 4947 quadrant = page_offset >> PAGE_SHIFT; 4948 page_offset &= ~PAGE_MASK; 4949 if (quadrant != sp->role.quadrant) 4950 return NULL; 4951 } 4952 4953 spte = &sp->spt[page_offset / sizeof(*spte)]; 4954 return spte; 4955 } 4956 4957 /* 4958 * Ignore various flags when determining if a SPTE can be immediately 4959 * overwritten for the current MMU. 4960 * - level: explicitly checked in mmu_pte_write_new_pte(), and will never 4961 * match the current MMU role, as MMU's level tracks the root level. 4962 * - access: updated based on the new guest PTE 4963 * - quadrant: handled by get_written_sptes() 4964 * - invalid: always false (loop only walks valid shadow pages) 4965 */ 4966 static const union kvm_mmu_page_role role_ign = { 4967 .level = 0xf, 4968 .access = 0x7, 4969 .quadrant = 0x3, 4970 .invalid = 0x1, 4971 }; 4972 4973 static void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa, 4974 const u8 *new, int bytes, 4975 struct kvm_page_track_notifier_node *node) 4976 { 4977 gfn_t gfn = gpa >> PAGE_SHIFT; 4978 struct kvm_mmu_page *sp; 4979 LIST_HEAD(invalid_list); 4980 u64 entry, gentry, *spte; 4981 int npte; 4982 bool remote_flush, local_flush; 4983 4984 /* 4985 * If we don't have indirect shadow pages, it means no page is 4986 * write-protected, so we can exit simply. 4987 */ 4988 if (!READ_ONCE(vcpu->kvm->arch.indirect_shadow_pages)) 4989 return; 4990 4991 remote_flush = local_flush = false; 4992 4993 pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes); 4994 4995 /* 4996 * No need to care whether allocation memory is successful 4997 * or not since pte prefetch is skiped if it does not have 4998 * enough objects in the cache. 4999 */ 5000 mmu_topup_memory_caches(vcpu, true); 5001 5002 spin_lock(&vcpu->kvm->mmu_lock); 5003 5004 gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, &bytes); 5005 5006 ++vcpu->kvm->stat.mmu_pte_write; 5007 kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE); 5008 5009 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) { 5010 if (detect_write_misaligned(sp, gpa, bytes) || 5011 detect_write_flooding(sp)) { 5012 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list); 5013 ++vcpu->kvm->stat.mmu_flooded; 5014 continue; 5015 } 5016 5017 spte = get_written_sptes(sp, gpa, &npte); 5018 if (!spte) 5019 continue; 5020 5021 local_flush = true; 5022 while (npte--) { 5023 u32 base_role = vcpu->arch.mmu->mmu_role.base.word; 5024 5025 entry = *spte; 5026 mmu_page_zap_pte(vcpu->kvm, sp, spte, NULL); 5027 if (gentry && 5028 !((sp->role.word ^ base_role) & ~role_ign.word) && 5029 rmap_can_add(vcpu)) 5030 mmu_pte_write_new_pte(vcpu, sp, spte, &gentry); 5031 if (need_remote_flush(entry, *spte)) 5032 remote_flush = true; 5033 ++spte; 5034 } 5035 } 5036 kvm_mmu_flush_or_zap(vcpu, &invalid_list, remote_flush, local_flush); 5037 kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE); 5038 spin_unlock(&vcpu->kvm->mmu_lock); 5039 } 5040 5041 int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva) 5042 { 5043 gpa_t gpa; 5044 int r; 5045 5046 if (vcpu->arch.mmu->direct_map) 5047 return 0; 5048 5049 gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL); 5050 5051 r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT); 5052 5053 return r; 5054 } 5055 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt); 5056 5057 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 error_code, 5058 void *insn, int insn_len) 5059 { 5060 int r, emulation_type = EMULTYPE_PF; 5061 bool direct = vcpu->arch.mmu->direct_map; 5062 5063 if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa))) 5064 return RET_PF_RETRY; 5065 5066 r = RET_PF_INVALID; 5067 if (unlikely(error_code & PFERR_RSVD_MASK)) { 5068 r = handle_mmio_page_fault(vcpu, cr2_or_gpa, direct); 5069 if (r == RET_PF_EMULATE) 5070 goto emulate; 5071 } 5072 5073 if (r == RET_PF_INVALID) { 5074 r = kvm_mmu_do_page_fault(vcpu, cr2_or_gpa, 5075 lower_32_bits(error_code), false); 5076 if (WARN_ON_ONCE(r == RET_PF_INVALID)) 5077 return -EIO; 5078 } 5079 5080 if (r < 0) 5081 return r; 5082 if (r != RET_PF_EMULATE) 5083 return 1; 5084 5085 /* 5086 * Before emulating the instruction, check if the error code 5087 * was due to a RO violation while translating the guest page. 5088 * This can occur when using nested virtualization with nested 5089 * paging in both guests. If true, we simply unprotect the page 5090 * and resume the guest. 5091 */ 5092 if (vcpu->arch.mmu->direct_map && 5093 (error_code & PFERR_NESTED_GUEST_PAGE) == PFERR_NESTED_GUEST_PAGE) { 5094 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(cr2_or_gpa)); 5095 return 1; 5096 } 5097 5098 /* 5099 * vcpu->arch.mmu.page_fault returned RET_PF_EMULATE, but we can still 5100 * optimistically try to just unprotect the page and let the processor 5101 * re-execute the instruction that caused the page fault. Do not allow 5102 * retrying MMIO emulation, as it's not only pointless but could also 5103 * cause us to enter an infinite loop because the processor will keep 5104 * faulting on the non-existent MMIO address. Retrying an instruction 5105 * from a nested guest is also pointless and dangerous as we are only 5106 * explicitly shadowing L1's page tables, i.e. unprotecting something 5107 * for L1 isn't going to magically fix whatever issue cause L2 to fail. 5108 */ 5109 if (!mmio_info_in_cache(vcpu, cr2_or_gpa, direct) && !is_guest_mode(vcpu)) 5110 emulation_type |= EMULTYPE_ALLOW_RETRY_PF; 5111 emulate: 5112 return x86_emulate_instruction(vcpu, cr2_or_gpa, emulation_type, insn, 5113 insn_len); 5114 } 5115 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault); 5116 5117 void kvm_mmu_invalidate_gva(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, 5118 gva_t gva, hpa_t root_hpa) 5119 { 5120 int i; 5121 5122 /* It's actually a GPA for vcpu->arch.guest_mmu. */ 5123 if (mmu != &vcpu->arch.guest_mmu) { 5124 /* INVLPG on a non-canonical address is a NOP according to the SDM. */ 5125 if (is_noncanonical_address(gva, vcpu)) 5126 return; 5127 5128 kvm_x86_ops.tlb_flush_gva(vcpu, gva); 5129 } 5130 5131 if (!mmu->invlpg) 5132 return; 5133 5134 if (root_hpa == INVALID_PAGE) { 5135 mmu->invlpg(vcpu, gva, mmu->root_hpa); 5136 5137 /* 5138 * INVLPG is required to invalidate any global mappings for the VA, 5139 * irrespective of PCID. Since it would take us roughly similar amount 5140 * of work to determine whether any of the prev_root mappings of the VA 5141 * is marked global, or to just sync it blindly, so we might as well 5142 * just always sync it. 5143 * 5144 * Mappings not reachable via the current cr3 or the prev_roots will be 5145 * synced when switching to that cr3, so nothing needs to be done here 5146 * for them. 5147 */ 5148 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 5149 if (VALID_PAGE(mmu->prev_roots[i].hpa)) 5150 mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa); 5151 } else { 5152 mmu->invlpg(vcpu, gva, root_hpa); 5153 } 5154 } 5155 EXPORT_SYMBOL_GPL(kvm_mmu_invalidate_gva); 5156 5157 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva) 5158 { 5159 kvm_mmu_invalidate_gva(vcpu, vcpu->arch.mmu, gva, INVALID_PAGE); 5160 ++vcpu->stat.invlpg; 5161 } 5162 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg); 5163 5164 5165 void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid) 5166 { 5167 struct kvm_mmu *mmu = vcpu->arch.mmu; 5168 bool tlb_flush = false; 5169 uint i; 5170 5171 if (pcid == kvm_get_active_pcid(vcpu)) { 5172 mmu->invlpg(vcpu, gva, mmu->root_hpa); 5173 tlb_flush = true; 5174 } 5175 5176 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) { 5177 if (VALID_PAGE(mmu->prev_roots[i].hpa) && 5178 pcid == kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd)) { 5179 mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa); 5180 tlb_flush = true; 5181 } 5182 } 5183 5184 if (tlb_flush) 5185 kvm_x86_ops.tlb_flush_gva(vcpu, gva); 5186 5187 ++vcpu->stat.invlpg; 5188 5189 /* 5190 * Mappings not reachable via the current cr3 or the prev_roots will be 5191 * synced when switching to that cr3, so nothing needs to be done here 5192 * for them. 5193 */ 5194 } 5195 EXPORT_SYMBOL_GPL(kvm_mmu_invpcid_gva); 5196 5197 void kvm_configure_mmu(bool enable_tdp, int tdp_max_root_level, 5198 int tdp_huge_page_level) 5199 { 5200 tdp_enabled = enable_tdp; 5201 max_tdp_level = tdp_max_root_level; 5202 5203 /* 5204 * max_huge_page_level reflects KVM's MMU capabilities irrespective 5205 * of kernel support, e.g. KVM may be capable of using 1GB pages when 5206 * the kernel is not. But, KVM never creates a page size greater than 5207 * what is used by the kernel for any given HVA, i.e. the kernel's 5208 * capabilities are ultimately consulted by kvm_mmu_hugepage_adjust(). 5209 */ 5210 if (tdp_enabled) 5211 max_huge_page_level = tdp_huge_page_level; 5212 else if (boot_cpu_has(X86_FEATURE_GBPAGES)) 5213 max_huge_page_level = PG_LEVEL_1G; 5214 else 5215 max_huge_page_level = PG_LEVEL_2M; 5216 } 5217 EXPORT_SYMBOL_GPL(kvm_configure_mmu); 5218 5219 /* The return value indicates if tlb flush on all vcpus is needed. */ 5220 typedef bool (*slot_level_handler) (struct kvm *kvm, struct kvm_rmap_head *rmap_head); 5221 5222 /* The caller should hold mmu-lock before calling this function. */ 5223 static __always_inline bool 5224 slot_handle_level_range(struct kvm *kvm, struct kvm_memory_slot *memslot, 5225 slot_level_handler fn, int start_level, int end_level, 5226 gfn_t start_gfn, gfn_t end_gfn, bool lock_flush_tlb) 5227 { 5228 struct slot_rmap_walk_iterator iterator; 5229 bool flush = false; 5230 5231 for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn, 5232 end_gfn, &iterator) { 5233 if (iterator.rmap) 5234 flush |= fn(kvm, iterator.rmap); 5235 5236 if (need_resched() || spin_needbreak(&kvm->mmu_lock)) { 5237 if (flush && lock_flush_tlb) { 5238 kvm_flush_remote_tlbs_with_address(kvm, 5239 start_gfn, 5240 iterator.gfn - start_gfn + 1); 5241 flush = false; 5242 } 5243 cond_resched_lock(&kvm->mmu_lock); 5244 } 5245 } 5246 5247 if (flush && lock_flush_tlb) { 5248 kvm_flush_remote_tlbs_with_address(kvm, start_gfn, 5249 end_gfn - start_gfn + 1); 5250 flush = false; 5251 } 5252 5253 return flush; 5254 } 5255 5256 static __always_inline bool 5257 slot_handle_level(struct kvm *kvm, struct kvm_memory_slot *memslot, 5258 slot_level_handler fn, int start_level, int end_level, 5259 bool lock_flush_tlb) 5260 { 5261 return slot_handle_level_range(kvm, memslot, fn, start_level, 5262 end_level, memslot->base_gfn, 5263 memslot->base_gfn + memslot->npages - 1, 5264 lock_flush_tlb); 5265 } 5266 5267 static __always_inline bool 5268 slot_handle_all_level(struct kvm *kvm, struct kvm_memory_slot *memslot, 5269 slot_level_handler fn, bool lock_flush_tlb) 5270 { 5271 return slot_handle_level(kvm, memslot, fn, PG_LEVEL_4K, 5272 KVM_MAX_HUGEPAGE_LEVEL, lock_flush_tlb); 5273 } 5274 5275 static __always_inline bool 5276 slot_handle_large_level(struct kvm *kvm, struct kvm_memory_slot *memslot, 5277 slot_level_handler fn, bool lock_flush_tlb) 5278 { 5279 return slot_handle_level(kvm, memslot, fn, PG_LEVEL_4K + 1, 5280 KVM_MAX_HUGEPAGE_LEVEL, lock_flush_tlb); 5281 } 5282 5283 static __always_inline bool 5284 slot_handle_leaf(struct kvm *kvm, struct kvm_memory_slot *memslot, 5285 slot_level_handler fn, bool lock_flush_tlb) 5286 { 5287 return slot_handle_level(kvm, memslot, fn, PG_LEVEL_4K, 5288 PG_LEVEL_4K, lock_flush_tlb); 5289 } 5290 5291 static void free_mmu_pages(struct kvm_mmu *mmu) 5292 { 5293 free_page((unsigned long)mmu->pae_root); 5294 free_page((unsigned long)mmu->lm_root); 5295 } 5296 5297 static int __kvm_mmu_create(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu) 5298 { 5299 struct page *page; 5300 int i; 5301 5302 mmu->root_hpa = INVALID_PAGE; 5303 mmu->root_pgd = 0; 5304 mmu->translate_gpa = translate_gpa; 5305 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 5306 mmu->prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID; 5307 5308 /* 5309 * When using PAE paging, the four PDPTEs are treated as 'root' pages, 5310 * while the PDP table is a per-vCPU construct that's allocated at MMU 5311 * creation. When emulating 32-bit mode, cr3 is only 32 bits even on 5312 * x86_64. Therefore we need to allocate the PDP table in the first 5313 * 4GB of memory, which happens to fit the DMA32 zone. Except for 5314 * SVM's 32-bit NPT support, TDP paging doesn't use PAE paging and can 5315 * skip allocating the PDP table. 5316 */ 5317 if (tdp_enabled && kvm_mmu_get_tdp_level(vcpu) > PT32E_ROOT_LEVEL) 5318 return 0; 5319 5320 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_DMA32); 5321 if (!page) 5322 return -ENOMEM; 5323 5324 mmu->pae_root = page_address(page); 5325 for (i = 0; i < 4; ++i) 5326 mmu->pae_root[i] = INVALID_PAGE; 5327 5328 return 0; 5329 } 5330 5331 int kvm_mmu_create(struct kvm_vcpu *vcpu) 5332 { 5333 int ret; 5334 5335 vcpu->arch.mmu_pte_list_desc_cache.kmem_cache = pte_list_desc_cache; 5336 vcpu->arch.mmu_pte_list_desc_cache.gfp_zero = __GFP_ZERO; 5337 5338 vcpu->arch.mmu_page_header_cache.kmem_cache = mmu_page_header_cache; 5339 vcpu->arch.mmu_page_header_cache.gfp_zero = __GFP_ZERO; 5340 5341 vcpu->arch.mmu_shadow_page_cache.gfp_zero = __GFP_ZERO; 5342 5343 vcpu->arch.mmu = &vcpu->arch.root_mmu; 5344 vcpu->arch.walk_mmu = &vcpu->arch.root_mmu; 5345 5346 vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa; 5347 5348 ret = __kvm_mmu_create(vcpu, &vcpu->arch.guest_mmu); 5349 if (ret) 5350 return ret; 5351 5352 ret = __kvm_mmu_create(vcpu, &vcpu->arch.root_mmu); 5353 if (ret) 5354 goto fail_allocate_root; 5355 5356 return ret; 5357 fail_allocate_root: 5358 free_mmu_pages(&vcpu->arch.guest_mmu); 5359 return ret; 5360 } 5361 5362 #define BATCH_ZAP_PAGES 10 5363 static void kvm_zap_obsolete_pages(struct kvm *kvm) 5364 { 5365 struct kvm_mmu_page *sp, *node; 5366 int nr_zapped, batch = 0; 5367 5368 restart: 5369 list_for_each_entry_safe_reverse(sp, node, 5370 &kvm->arch.active_mmu_pages, link) { 5371 /* 5372 * No obsolete valid page exists before a newly created page 5373 * since active_mmu_pages is a FIFO list. 5374 */ 5375 if (!is_obsolete_sp(kvm, sp)) 5376 break; 5377 5378 /* 5379 * Invalid pages should never land back on the list of active 5380 * pages. Skip the bogus page, otherwise we'll get stuck in an 5381 * infinite loop if the page gets put back on the list (again). 5382 */ 5383 if (WARN_ON(sp->role.invalid)) 5384 continue; 5385 5386 /* 5387 * No need to flush the TLB since we're only zapping shadow 5388 * pages with an obsolete generation number and all vCPUS have 5389 * loaded a new root, i.e. the shadow pages being zapped cannot 5390 * be in active use by the guest. 5391 */ 5392 if (batch >= BATCH_ZAP_PAGES && 5393 cond_resched_lock(&kvm->mmu_lock)) { 5394 batch = 0; 5395 goto restart; 5396 } 5397 5398 if (__kvm_mmu_prepare_zap_page(kvm, sp, 5399 &kvm->arch.zapped_obsolete_pages, &nr_zapped)) { 5400 batch += nr_zapped; 5401 goto restart; 5402 } 5403 } 5404 5405 /* 5406 * Trigger a remote TLB flush before freeing the page tables to ensure 5407 * KVM is not in the middle of a lockless shadow page table walk, which 5408 * may reference the pages. 5409 */ 5410 kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages); 5411 } 5412 5413 /* 5414 * Fast invalidate all shadow pages and use lock-break technique 5415 * to zap obsolete pages. 5416 * 5417 * It's required when memslot is being deleted or VM is being 5418 * destroyed, in these cases, we should ensure that KVM MMU does 5419 * not use any resource of the being-deleted slot or all slots 5420 * after calling the function. 5421 */ 5422 static void kvm_mmu_zap_all_fast(struct kvm *kvm) 5423 { 5424 lockdep_assert_held(&kvm->slots_lock); 5425 5426 spin_lock(&kvm->mmu_lock); 5427 trace_kvm_mmu_zap_all_fast(kvm); 5428 5429 /* 5430 * Toggle mmu_valid_gen between '0' and '1'. Because slots_lock is 5431 * held for the entire duration of zapping obsolete pages, it's 5432 * impossible for there to be multiple invalid generations associated 5433 * with *valid* shadow pages at any given time, i.e. there is exactly 5434 * one valid generation and (at most) one invalid generation. 5435 */ 5436 kvm->arch.mmu_valid_gen = kvm->arch.mmu_valid_gen ? 0 : 1; 5437 5438 /* 5439 * Notify all vcpus to reload its shadow page table and flush TLB. 5440 * Then all vcpus will switch to new shadow page table with the new 5441 * mmu_valid_gen. 5442 * 5443 * Note: we need to do this under the protection of mmu_lock, 5444 * otherwise, vcpu would purge shadow page but miss tlb flush. 5445 */ 5446 kvm_reload_remote_mmus(kvm); 5447 5448 kvm_zap_obsolete_pages(kvm); 5449 5450 if (kvm->arch.tdp_mmu_enabled) 5451 kvm_tdp_mmu_zap_all(kvm); 5452 5453 spin_unlock(&kvm->mmu_lock); 5454 } 5455 5456 static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm) 5457 { 5458 return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages)); 5459 } 5460 5461 static void kvm_mmu_invalidate_zap_pages_in_memslot(struct kvm *kvm, 5462 struct kvm_memory_slot *slot, 5463 struct kvm_page_track_notifier_node *node) 5464 { 5465 kvm_mmu_zap_all_fast(kvm); 5466 } 5467 5468 void kvm_mmu_init_vm(struct kvm *kvm) 5469 { 5470 struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker; 5471 5472 kvm_mmu_init_tdp_mmu(kvm); 5473 5474 node->track_write = kvm_mmu_pte_write; 5475 node->track_flush_slot = kvm_mmu_invalidate_zap_pages_in_memslot; 5476 kvm_page_track_register_notifier(kvm, node); 5477 } 5478 5479 void kvm_mmu_uninit_vm(struct kvm *kvm) 5480 { 5481 struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker; 5482 5483 kvm_page_track_unregister_notifier(kvm, node); 5484 5485 kvm_mmu_uninit_tdp_mmu(kvm); 5486 } 5487 5488 void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end) 5489 { 5490 struct kvm_memslots *slots; 5491 struct kvm_memory_slot *memslot; 5492 int i; 5493 bool flush; 5494 5495 spin_lock(&kvm->mmu_lock); 5496 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { 5497 slots = __kvm_memslots(kvm, i); 5498 kvm_for_each_memslot(memslot, slots) { 5499 gfn_t start, end; 5500 5501 start = max(gfn_start, memslot->base_gfn); 5502 end = min(gfn_end, memslot->base_gfn + memslot->npages); 5503 if (start >= end) 5504 continue; 5505 5506 slot_handle_level_range(kvm, memslot, kvm_zap_rmapp, 5507 PG_LEVEL_4K, 5508 KVM_MAX_HUGEPAGE_LEVEL, 5509 start, end - 1, true); 5510 } 5511 } 5512 5513 if (kvm->arch.tdp_mmu_enabled) { 5514 flush = kvm_tdp_mmu_zap_gfn_range(kvm, gfn_start, gfn_end); 5515 if (flush) 5516 kvm_flush_remote_tlbs(kvm); 5517 } 5518 5519 spin_unlock(&kvm->mmu_lock); 5520 } 5521 5522 static bool slot_rmap_write_protect(struct kvm *kvm, 5523 struct kvm_rmap_head *rmap_head) 5524 { 5525 return __rmap_write_protect(kvm, rmap_head, false); 5526 } 5527 5528 void kvm_mmu_slot_remove_write_access(struct kvm *kvm, 5529 struct kvm_memory_slot *memslot, 5530 int start_level) 5531 { 5532 bool flush; 5533 5534 spin_lock(&kvm->mmu_lock); 5535 flush = slot_handle_level(kvm, memslot, slot_rmap_write_protect, 5536 start_level, KVM_MAX_HUGEPAGE_LEVEL, false); 5537 if (kvm->arch.tdp_mmu_enabled) 5538 flush |= kvm_tdp_mmu_wrprot_slot(kvm, memslot, PG_LEVEL_4K); 5539 spin_unlock(&kvm->mmu_lock); 5540 5541 /* 5542 * We can flush all the TLBs out of the mmu lock without TLB 5543 * corruption since we just change the spte from writable to 5544 * readonly so that we only need to care the case of changing 5545 * spte from present to present (changing the spte from present 5546 * to nonpresent will flush all the TLBs immediately), in other 5547 * words, the only case we care is mmu_spte_update() where we 5548 * have checked SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE 5549 * instead of PT_WRITABLE_MASK, that means it does not depend 5550 * on PT_WRITABLE_MASK anymore. 5551 */ 5552 if (flush) 5553 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot); 5554 } 5555 5556 static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm, 5557 struct kvm_rmap_head *rmap_head) 5558 { 5559 u64 *sptep; 5560 struct rmap_iterator iter; 5561 int need_tlb_flush = 0; 5562 kvm_pfn_t pfn; 5563 struct kvm_mmu_page *sp; 5564 5565 restart: 5566 for_each_rmap_spte(rmap_head, &iter, sptep) { 5567 sp = sptep_to_sp(sptep); 5568 pfn = spte_to_pfn(*sptep); 5569 5570 /* 5571 * We cannot do huge page mapping for indirect shadow pages, 5572 * which are found on the last rmap (level = 1) when not using 5573 * tdp; such shadow pages are synced with the page table in 5574 * the guest, and the guest page table is using 4K page size 5575 * mapping if the indirect sp has level = 1. 5576 */ 5577 if (sp->role.direct && !kvm_is_reserved_pfn(pfn) && 5578 (kvm_is_zone_device_pfn(pfn) || 5579 PageCompound(pfn_to_page(pfn)))) { 5580 pte_list_remove(rmap_head, sptep); 5581 5582 if (kvm_available_flush_tlb_with_range()) 5583 kvm_flush_remote_tlbs_with_address(kvm, sp->gfn, 5584 KVM_PAGES_PER_HPAGE(sp->role.level)); 5585 else 5586 need_tlb_flush = 1; 5587 5588 goto restart; 5589 } 5590 } 5591 5592 return need_tlb_flush; 5593 } 5594 5595 void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm, 5596 const struct kvm_memory_slot *memslot) 5597 { 5598 /* FIXME: const-ify all uses of struct kvm_memory_slot. */ 5599 spin_lock(&kvm->mmu_lock); 5600 slot_handle_leaf(kvm, (struct kvm_memory_slot *)memslot, 5601 kvm_mmu_zap_collapsible_spte, true); 5602 5603 if (kvm->arch.tdp_mmu_enabled) 5604 kvm_tdp_mmu_zap_collapsible_sptes(kvm, memslot); 5605 spin_unlock(&kvm->mmu_lock); 5606 } 5607 5608 void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm, 5609 struct kvm_memory_slot *memslot) 5610 { 5611 /* 5612 * All current use cases for flushing the TLBs for a specific memslot 5613 * are related to dirty logging, and do the TLB flush out of mmu_lock. 5614 * The interaction between the various operations on memslot must be 5615 * serialized by slots_locks to ensure the TLB flush from one operation 5616 * is observed by any other operation on the same memslot. 5617 */ 5618 lockdep_assert_held(&kvm->slots_lock); 5619 kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn, 5620 memslot->npages); 5621 } 5622 5623 void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm, 5624 struct kvm_memory_slot *memslot) 5625 { 5626 bool flush; 5627 5628 spin_lock(&kvm->mmu_lock); 5629 flush = slot_handle_leaf(kvm, memslot, __rmap_clear_dirty, false); 5630 if (kvm->arch.tdp_mmu_enabled) 5631 flush |= kvm_tdp_mmu_clear_dirty_slot(kvm, memslot); 5632 spin_unlock(&kvm->mmu_lock); 5633 5634 /* 5635 * It's also safe to flush TLBs out of mmu lock here as currently this 5636 * function is only used for dirty logging, in which case flushing TLB 5637 * out of mmu lock also guarantees no dirty pages will be lost in 5638 * dirty_bitmap. 5639 */ 5640 if (flush) 5641 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot); 5642 } 5643 EXPORT_SYMBOL_GPL(kvm_mmu_slot_leaf_clear_dirty); 5644 5645 void kvm_mmu_slot_largepage_remove_write_access(struct kvm *kvm, 5646 struct kvm_memory_slot *memslot) 5647 { 5648 bool flush; 5649 5650 spin_lock(&kvm->mmu_lock); 5651 flush = slot_handle_large_level(kvm, memslot, slot_rmap_write_protect, 5652 false); 5653 if (kvm->arch.tdp_mmu_enabled) 5654 flush |= kvm_tdp_mmu_wrprot_slot(kvm, memslot, PG_LEVEL_2M); 5655 spin_unlock(&kvm->mmu_lock); 5656 5657 if (flush) 5658 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot); 5659 } 5660 EXPORT_SYMBOL_GPL(kvm_mmu_slot_largepage_remove_write_access); 5661 5662 void kvm_mmu_slot_set_dirty(struct kvm *kvm, 5663 struct kvm_memory_slot *memslot) 5664 { 5665 bool flush; 5666 5667 spin_lock(&kvm->mmu_lock); 5668 flush = slot_handle_all_level(kvm, memslot, __rmap_set_dirty, false); 5669 if (kvm->arch.tdp_mmu_enabled) 5670 flush |= kvm_tdp_mmu_slot_set_dirty(kvm, memslot); 5671 spin_unlock(&kvm->mmu_lock); 5672 5673 if (flush) 5674 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot); 5675 } 5676 EXPORT_SYMBOL_GPL(kvm_mmu_slot_set_dirty); 5677 5678 void kvm_mmu_zap_all(struct kvm *kvm) 5679 { 5680 struct kvm_mmu_page *sp, *node; 5681 LIST_HEAD(invalid_list); 5682 int ign; 5683 5684 spin_lock(&kvm->mmu_lock); 5685 restart: 5686 list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link) { 5687 if (WARN_ON(sp->role.invalid)) 5688 continue; 5689 if (__kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list, &ign)) 5690 goto restart; 5691 if (cond_resched_lock(&kvm->mmu_lock)) 5692 goto restart; 5693 } 5694 5695 kvm_mmu_commit_zap_page(kvm, &invalid_list); 5696 5697 if (kvm->arch.tdp_mmu_enabled) 5698 kvm_tdp_mmu_zap_all(kvm); 5699 5700 spin_unlock(&kvm->mmu_lock); 5701 } 5702 5703 void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen) 5704 { 5705 WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS); 5706 5707 gen &= MMIO_SPTE_GEN_MASK; 5708 5709 /* 5710 * Generation numbers are incremented in multiples of the number of 5711 * address spaces in order to provide unique generations across all 5712 * address spaces. Strip what is effectively the address space 5713 * modifier prior to checking for a wrap of the MMIO generation so 5714 * that a wrap in any address space is detected. 5715 */ 5716 gen &= ~((u64)KVM_ADDRESS_SPACE_NUM - 1); 5717 5718 /* 5719 * The very rare case: if the MMIO generation number has wrapped, 5720 * zap all shadow pages. 5721 */ 5722 if (unlikely(gen == 0)) { 5723 kvm_debug_ratelimited("kvm: zapping shadow pages for mmio generation wraparound\n"); 5724 kvm_mmu_zap_all_fast(kvm); 5725 } 5726 } 5727 5728 static unsigned long 5729 mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc) 5730 { 5731 struct kvm *kvm; 5732 int nr_to_scan = sc->nr_to_scan; 5733 unsigned long freed = 0; 5734 5735 mutex_lock(&kvm_lock); 5736 5737 list_for_each_entry(kvm, &vm_list, vm_list) { 5738 int idx; 5739 LIST_HEAD(invalid_list); 5740 5741 /* 5742 * Never scan more than sc->nr_to_scan VM instances. 5743 * Will not hit this condition practically since we do not try 5744 * to shrink more than one VM and it is very unlikely to see 5745 * !n_used_mmu_pages so many times. 5746 */ 5747 if (!nr_to_scan--) 5748 break; 5749 /* 5750 * n_used_mmu_pages is accessed without holding kvm->mmu_lock 5751 * here. We may skip a VM instance errorneosly, but we do not 5752 * want to shrink a VM that only started to populate its MMU 5753 * anyway. 5754 */ 5755 if (!kvm->arch.n_used_mmu_pages && 5756 !kvm_has_zapped_obsolete_pages(kvm)) 5757 continue; 5758 5759 idx = srcu_read_lock(&kvm->srcu); 5760 spin_lock(&kvm->mmu_lock); 5761 5762 if (kvm_has_zapped_obsolete_pages(kvm)) { 5763 kvm_mmu_commit_zap_page(kvm, 5764 &kvm->arch.zapped_obsolete_pages); 5765 goto unlock; 5766 } 5767 5768 freed = kvm_mmu_zap_oldest_mmu_pages(kvm, sc->nr_to_scan); 5769 5770 unlock: 5771 spin_unlock(&kvm->mmu_lock); 5772 srcu_read_unlock(&kvm->srcu, idx); 5773 5774 /* 5775 * unfair on small ones 5776 * per-vm shrinkers cry out 5777 * sadness comes quickly 5778 */ 5779 list_move_tail(&kvm->vm_list, &vm_list); 5780 break; 5781 } 5782 5783 mutex_unlock(&kvm_lock); 5784 return freed; 5785 } 5786 5787 static unsigned long 5788 mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc) 5789 { 5790 return percpu_counter_read_positive(&kvm_total_used_mmu_pages); 5791 } 5792 5793 static struct shrinker mmu_shrinker = { 5794 .count_objects = mmu_shrink_count, 5795 .scan_objects = mmu_shrink_scan, 5796 .seeks = DEFAULT_SEEKS * 10, 5797 }; 5798 5799 static void mmu_destroy_caches(void) 5800 { 5801 kmem_cache_destroy(pte_list_desc_cache); 5802 kmem_cache_destroy(mmu_page_header_cache); 5803 } 5804 5805 static void kvm_set_mmio_spte_mask(void) 5806 { 5807 u64 mask; 5808 5809 /* 5810 * Set a reserved PA bit in MMIO SPTEs to generate page faults with 5811 * PFEC.RSVD=1 on MMIO accesses. 64-bit PTEs (PAE, x86-64, and EPT 5812 * paging) support a maximum of 52 bits of PA, i.e. if the CPU supports 5813 * 52-bit physical addresses then there are no reserved PA bits in the 5814 * PTEs and so the reserved PA approach must be disabled. 5815 */ 5816 if (shadow_phys_bits < 52) 5817 mask = BIT_ULL(51) | PT_PRESENT_MASK; 5818 else 5819 mask = 0; 5820 5821 kvm_mmu_set_mmio_spte_mask(mask, ACC_WRITE_MASK | ACC_USER_MASK); 5822 } 5823 5824 static bool get_nx_auto_mode(void) 5825 { 5826 /* Return true when CPU has the bug, and mitigations are ON */ 5827 return boot_cpu_has_bug(X86_BUG_ITLB_MULTIHIT) && !cpu_mitigations_off(); 5828 } 5829 5830 static void __set_nx_huge_pages(bool val) 5831 { 5832 nx_huge_pages = itlb_multihit_kvm_mitigation = val; 5833 } 5834 5835 static int set_nx_huge_pages(const char *val, const struct kernel_param *kp) 5836 { 5837 bool old_val = nx_huge_pages; 5838 bool new_val; 5839 5840 /* In "auto" mode deploy workaround only if CPU has the bug. */ 5841 if (sysfs_streq(val, "off")) 5842 new_val = 0; 5843 else if (sysfs_streq(val, "force")) 5844 new_val = 1; 5845 else if (sysfs_streq(val, "auto")) 5846 new_val = get_nx_auto_mode(); 5847 else if (strtobool(val, &new_val) < 0) 5848 return -EINVAL; 5849 5850 __set_nx_huge_pages(new_val); 5851 5852 if (new_val != old_val) { 5853 struct kvm *kvm; 5854 5855 mutex_lock(&kvm_lock); 5856 5857 list_for_each_entry(kvm, &vm_list, vm_list) { 5858 mutex_lock(&kvm->slots_lock); 5859 kvm_mmu_zap_all_fast(kvm); 5860 mutex_unlock(&kvm->slots_lock); 5861 5862 wake_up_process(kvm->arch.nx_lpage_recovery_thread); 5863 } 5864 mutex_unlock(&kvm_lock); 5865 } 5866 5867 return 0; 5868 } 5869 5870 int kvm_mmu_module_init(void) 5871 { 5872 int ret = -ENOMEM; 5873 5874 if (nx_huge_pages == -1) 5875 __set_nx_huge_pages(get_nx_auto_mode()); 5876 5877 /* 5878 * MMU roles use union aliasing which is, generally speaking, an 5879 * undefined behavior. However, we supposedly know how compilers behave 5880 * and the current status quo is unlikely to change. Guardians below are 5881 * supposed to let us know if the assumption becomes false. 5882 */ 5883 BUILD_BUG_ON(sizeof(union kvm_mmu_page_role) != sizeof(u32)); 5884 BUILD_BUG_ON(sizeof(union kvm_mmu_extended_role) != sizeof(u32)); 5885 BUILD_BUG_ON(sizeof(union kvm_mmu_role) != sizeof(u64)); 5886 5887 kvm_mmu_reset_all_pte_masks(); 5888 5889 kvm_set_mmio_spte_mask(); 5890 5891 pte_list_desc_cache = kmem_cache_create("pte_list_desc", 5892 sizeof(struct pte_list_desc), 5893 0, SLAB_ACCOUNT, NULL); 5894 if (!pte_list_desc_cache) 5895 goto out; 5896 5897 mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header", 5898 sizeof(struct kvm_mmu_page), 5899 0, SLAB_ACCOUNT, NULL); 5900 if (!mmu_page_header_cache) 5901 goto out; 5902 5903 if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL)) 5904 goto out; 5905 5906 ret = register_shrinker(&mmu_shrinker); 5907 if (ret) 5908 goto out; 5909 5910 return 0; 5911 5912 out: 5913 mmu_destroy_caches(); 5914 return ret; 5915 } 5916 5917 /* 5918 * Calculate mmu pages needed for kvm. 5919 */ 5920 unsigned long kvm_mmu_calculate_default_mmu_pages(struct kvm *kvm) 5921 { 5922 unsigned long nr_mmu_pages; 5923 unsigned long nr_pages = 0; 5924 struct kvm_memslots *slots; 5925 struct kvm_memory_slot *memslot; 5926 int i; 5927 5928 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { 5929 slots = __kvm_memslots(kvm, i); 5930 5931 kvm_for_each_memslot(memslot, slots) 5932 nr_pages += memslot->npages; 5933 } 5934 5935 nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000; 5936 nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES); 5937 5938 return nr_mmu_pages; 5939 } 5940 5941 void kvm_mmu_destroy(struct kvm_vcpu *vcpu) 5942 { 5943 kvm_mmu_unload(vcpu); 5944 free_mmu_pages(&vcpu->arch.root_mmu); 5945 free_mmu_pages(&vcpu->arch.guest_mmu); 5946 mmu_free_memory_caches(vcpu); 5947 } 5948 5949 void kvm_mmu_module_exit(void) 5950 { 5951 mmu_destroy_caches(); 5952 percpu_counter_destroy(&kvm_total_used_mmu_pages); 5953 unregister_shrinker(&mmu_shrinker); 5954 mmu_audit_disable(); 5955 } 5956 5957 static int set_nx_huge_pages_recovery_ratio(const char *val, const struct kernel_param *kp) 5958 { 5959 unsigned int old_val; 5960 int err; 5961 5962 old_val = nx_huge_pages_recovery_ratio; 5963 err = param_set_uint(val, kp); 5964 if (err) 5965 return err; 5966 5967 if (READ_ONCE(nx_huge_pages) && 5968 !old_val && nx_huge_pages_recovery_ratio) { 5969 struct kvm *kvm; 5970 5971 mutex_lock(&kvm_lock); 5972 5973 list_for_each_entry(kvm, &vm_list, vm_list) 5974 wake_up_process(kvm->arch.nx_lpage_recovery_thread); 5975 5976 mutex_unlock(&kvm_lock); 5977 } 5978 5979 return err; 5980 } 5981 5982 static void kvm_recover_nx_lpages(struct kvm *kvm) 5983 { 5984 int rcu_idx; 5985 struct kvm_mmu_page *sp; 5986 unsigned int ratio; 5987 LIST_HEAD(invalid_list); 5988 ulong to_zap; 5989 5990 rcu_idx = srcu_read_lock(&kvm->srcu); 5991 spin_lock(&kvm->mmu_lock); 5992 5993 ratio = READ_ONCE(nx_huge_pages_recovery_ratio); 5994 to_zap = ratio ? DIV_ROUND_UP(kvm->stat.nx_lpage_splits, ratio) : 0; 5995 for ( ; to_zap; --to_zap) { 5996 if (list_empty(&kvm->arch.lpage_disallowed_mmu_pages)) 5997 break; 5998 5999 /* 6000 * We use a separate list instead of just using active_mmu_pages 6001 * because the number of lpage_disallowed pages is expected to 6002 * be relatively small compared to the total. 6003 */ 6004 sp = list_first_entry(&kvm->arch.lpage_disallowed_mmu_pages, 6005 struct kvm_mmu_page, 6006 lpage_disallowed_link); 6007 WARN_ON_ONCE(!sp->lpage_disallowed); 6008 if (sp->tdp_mmu_page) 6009 kvm_tdp_mmu_zap_gfn_range(kvm, sp->gfn, 6010 sp->gfn + KVM_PAGES_PER_HPAGE(sp->role.level)); 6011 else { 6012 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list); 6013 WARN_ON_ONCE(sp->lpage_disallowed); 6014 } 6015 6016 if (need_resched() || spin_needbreak(&kvm->mmu_lock)) { 6017 kvm_mmu_commit_zap_page(kvm, &invalid_list); 6018 cond_resched_lock(&kvm->mmu_lock); 6019 } 6020 } 6021 kvm_mmu_commit_zap_page(kvm, &invalid_list); 6022 6023 spin_unlock(&kvm->mmu_lock); 6024 srcu_read_unlock(&kvm->srcu, rcu_idx); 6025 } 6026 6027 static long get_nx_lpage_recovery_timeout(u64 start_time) 6028 { 6029 return READ_ONCE(nx_huge_pages) && READ_ONCE(nx_huge_pages_recovery_ratio) 6030 ? start_time + 60 * HZ - get_jiffies_64() 6031 : MAX_SCHEDULE_TIMEOUT; 6032 } 6033 6034 static int kvm_nx_lpage_recovery_worker(struct kvm *kvm, uintptr_t data) 6035 { 6036 u64 start_time; 6037 long remaining_time; 6038 6039 while (true) { 6040 start_time = get_jiffies_64(); 6041 remaining_time = get_nx_lpage_recovery_timeout(start_time); 6042 6043 set_current_state(TASK_INTERRUPTIBLE); 6044 while (!kthread_should_stop() && remaining_time > 0) { 6045 schedule_timeout(remaining_time); 6046 remaining_time = get_nx_lpage_recovery_timeout(start_time); 6047 set_current_state(TASK_INTERRUPTIBLE); 6048 } 6049 6050 set_current_state(TASK_RUNNING); 6051 6052 if (kthread_should_stop()) 6053 return 0; 6054 6055 kvm_recover_nx_lpages(kvm); 6056 } 6057 } 6058 6059 int kvm_mmu_post_init_vm(struct kvm *kvm) 6060 { 6061 int err; 6062 6063 err = kvm_vm_create_worker_thread(kvm, kvm_nx_lpage_recovery_worker, 0, 6064 "kvm-nx-lpage-recovery", 6065 &kvm->arch.nx_lpage_recovery_thread); 6066 if (!err) 6067 kthread_unpark(kvm->arch.nx_lpage_recovery_thread); 6068 6069 return err; 6070 } 6071 6072 void kvm_mmu_pre_destroy_vm(struct kvm *kvm) 6073 { 6074 if (kvm->arch.nx_lpage_recovery_thread) 6075 kthread_stop(kvm->arch.nx_lpage_recovery_thread); 6076 } 6077