xref: /openbmc/linux/arch/x86/kvm/mmu/mmu.c (revision 84b102f5)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This module enables machines with Intel VT-x extensions to run virtual
6  * machines without emulation or binary translation.
7  *
8  * MMU support
9  *
10  * Copyright (C) 2006 Qumranet, Inc.
11  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
12  *
13  * Authors:
14  *   Yaniv Kamay  <yaniv@qumranet.com>
15  *   Avi Kivity   <avi@qumranet.com>
16  */
17 
18 #include "irq.h"
19 #include "ioapic.h"
20 #include "mmu.h"
21 #include "mmu_internal.h"
22 #include "tdp_mmu.h"
23 #include "x86.h"
24 #include "kvm_cache_regs.h"
25 #include "kvm_emulate.h"
26 #include "cpuid.h"
27 #include "spte.h"
28 
29 #include <linux/kvm_host.h>
30 #include <linux/types.h>
31 #include <linux/string.h>
32 #include <linux/mm.h>
33 #include <linux/highmem.h>
34 #include <linux/moduleparam.h>
35 #include <linux/export.h>
36 #include <linux/swap.h>
37 #include <linux/hugetlb.h>
38 #include <linux/compiler.h>
39 #include <linux/srcu.h>
40 #include <linux/slab.h>
41 #include <linux/sched/signal.h>
42 #include <linux/uaccess.h>
43 #include <linux/hash.h>
44 #include <linux/kern_levels.h>
45 #include <linux/kthread.h>
46 
47 #include <asm/page.h>
48 #include <asm/memtype.h>
49 #include <asm/cmpxchg.h>
50 #include <asm/io.h>
51 #include <asm/vmx.h>
52 #include <asm/kvm_page_track.h>
53 #include "trace.h"
54 
55 extern bool itlb_multihit_kvm_mitigation;
56 
57 static int __read_mostly nx_huge_pages = -1;
58 #ifdef CONFIG_PREEMPT_RT
59 /* Recovery can cause latency spikes, disable it for PREEMPT_RT.  */
60 static uint __read_mostly nx_huge_pages_recovery_ratio = 0;
61 #else
62 static uint __read_mostly nx_huge_pages_recovery_ratio = 60;
63 #endif
64 
65 static int set_nx_huge_pages(const char *val, const struct kernel_param *kp);
66 static int set_nx_huge_pages_recovery_ratio(const char *val, const struct kernel_param *kp);
67 
68 static const struct kernel_param_ops nx_huge_pages_ops = {
69 	.set = set_nx_huge_pages,
70 	.get = param_get_bool,
71 };
72 
73 static const struct kernel_param_ops nx_huge_pages_recovery_ratio_ops = {
74 	.set = set_nx_huge_pages_recovery_ratio,
75 	.get = param_get_uint,
76 };
77 
78 module_param_cb(nx_huge_pages, &nx_huge_pages_ops, &nx_huge_pages, 0644);
79 __MODULE_PARM_TYPE(nx_huge_pages, "bool");
80 module_param_cb(nx_huge_pages_recovery_ratio, &nx_huge_pages_recovery_ratio_ops,
81 		&nx_huge_pages_recovery_ratio, 0644);
82 __MODULE_PARM_TYPE(nx_huge_pages_recovery_ratio, "uint");
83 
84 static bool __read_mostly force_flush_and_sync_on_reuse;
85 module_param_named(flush_on_reuse, force_flush_and_sync_on_reuse, bool, 0644);
86 
87 /*
88  * When setting this variable to true it enables Two-Dimensional-Paging
89  * where the hardware walks 2 page tables:
90  * 1. the guest-virtual to guest-physical
91  * 2. while doing 1. it walks guest-physical to host-physical
92  * If the hardware supports that we don't need to do shadow paging.
93  */
94 bool tdp_enabled = false;
95 
96 static int max_huge_page_level __read_mostly;
97 static int max_tdp_level __read_mostly;
98 
99 enum {
100 	AUDIT_PRE_PAGE_FAULT,
101 	AUDIT_POST_PAGE_FAULT,
102 	AUDIT_PRE_PTE_WRITE,
103 	AUDIT_POST_PTE_WRITE,
104 	AUDIT_PRE_SYNC,
105 	AUDIT_POST_SYNC
106 };
107 
108 #ifdef MMU_DEBUG
109 bool dbg = 0;
110 module_param(dbg, bool, 0644);
111 #endif
112 
113 #define PTE_PREFETCH_NUM		8
114 
115 #define PT32_LEVEL_BITS 10
116 
117 #define PT32_LEVEL_SHIFT(level) \
118 		(PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
119 
120 #define PT32_LVL_OFFSET_MASK(level) \
121 	(PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
122 						* PT32_LEVEL_BITS))) - 1))
123 
124 #define PT32_INDEX(address, level)\
125 	(((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
126 
127 
128 #define PT32_BASE_ADDR_MASK PAGE_MASK
129 #define PT32_DIR_BASE_ADDR_MASK \
130 	(PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
131 #define PT32_LVL_ADDR_MASK(level) \
132 	(PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
133 					    * PT32_LEVEL_BITS))) - 1))
134 
135 #include <trace/events/kvm.h>
136 
137 /* make pte_list_desc fit well in cache line */
138 #define PTE_LIST_EXT 3
139 
140 struct pte_list_desc {
141 	u64 *sptes[PTE_LIST_EXT];
142 	struct pte_list_desc *more;
143 };
144 
145 struct kvm_shadow_walk_iterator {
146 	u64 addr;
147 	hpa_t shadow_addr;
148 	u64 *sptep;
149 	int level;
150 	unsigned index;
151 };
152 
153 #define for_each_shadow_entry_using_root(_vcpu, _root, _addr, _walker)     \
154 	for (shadow_walk_init_using_root(&(_walker), (_vcpu),              \
155 					 (_root), (_addr));                \
156 	     shadow_walk_okay(&(_walker));			           \
157 	     shadow_walk_next(&(_walker)))
158 
159 #define for_each_shadow_entry(_vcpu, _addr, _walker)            \
160 	for (shadow_walk_init(&(_walker), _vcpu, _addr);	\
161 	     shadow_walk_okay(&(_walker));			\
162 	     shadow_walk_next(&(_walker)))
163 
164 #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte)	\
165 	for (shadow_walk_init(&(_walker), _vcpu, _addr);		\
166 	     shadow_walk_okay(&(_walker)) &&				\
167 		({ spte = mmu_spte_get_lockless(_walker.sptep); 1; });	\
168 	     __shadow_walk_next(&(_walker), spte))
169 
170 static struct kmem_cache *pte_list_desc_cache;
171 struct kmem_cache *mmu_page_header_cache;
172 static struct percpu_counter kvm_total_used_mmu_pages;
173 
174 static void mmu_spte_set(u64 *sptep, u64 spte);
175 static union kvm_mmu_page_role
176 kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu);
177 
178 #define CREATE_TRACE_POINTS
179 #include "mmutrace.h"
180 
181 
182 static inline bool kvm_available_flush_tlb_with_range(void)
183 {
184 	return kvm_x86_ops.tlb_remote_flush_with_range;
185 }
186 
187 static void kvm_flush_remote_tlbs_with_range(struct kvm *kvm,
188 		struct kvm_tlb_range *range)
189 {
190 	int ret = -ENOTSUPP;
191 
192 	if (range && kvm_x86_ops.tlb_remote_flush_with_range)
193 		ret = kvm_x86_ops.tlb_remote_flush_with_range(kvm, range);
194 
195 	if (ret)
196 		kvm_flush_remote_tlbs(kvm);
197 }
198 
199 void kvm_flush_remote_tlbs_with_address(struct kvm *kvm,
200 		u64 start_gfn, u64 pages)
201 {
202 	struct kvm_tlb_range range;
203 
204 	range.start_gfn = start_gfn;
205 	range.pages = pages;
206 
207 	kvm_flush_remote_tlbs_with_range(kvm, &range);
208 }
209 
210 bool is_nx_huge_page_enabled(void)
211 {
212 	return READ_ONCE(nx_huge_pages);
213 }
214 
215 static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn,
216 			   unsigned int access)
217 {
218 	u64 mask = make_mmio_spte(vcpu, gfn, access);
219 
220 	trace_mark_mmio_spte(sptep, gfn, mask);
221 	mmu_spte_set(sptep, mask);
222 }
223 
224 static gfn_t get_mmio_spte_gfn(u64 spte)
225 {
226 	u64 gpa = spte & shadow_nonpresent_or_rsvd_lower_gfn_mask;
227 
228 	gpa |= (spte >> SHADOW_NONPRESENT_OR_RSVD_MASK_LEN)
229 	       & shadow_nonpresent_or_rsvd_mask;
230 
231 	return gpa >> PAGE_SHIFT;
232 }
233 
234 static unsigned get_mmio_spte_access(u64 spte)
235 {
236 	return spte & shadow_mmio_access_mask;
237 }
238 
239 static bool set_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
240 			  kvm_pfn_t pfn, unsigned int access)
241 {
242 	if (unlikely(is_noslot_pfn(pfn))) {
243 		mark_mmio_spte(vcpu, sptep, gfn, access);
244 		return true;
245 	}
246 
247 	return false;
248 }
249 
250 static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte)
251 {
252 	u64 kvm_gen, spte_gen, gen;
253 
254 	gen = kvm_vcpu_memslots(vcpu)->generation;
255 	if (unlikely(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS))
256 		return false;
257 
258 	kvm_gen = gen & MMIO_SPTE_GEN_MASK;
259 	spte_gen = get_mmio_spte_generation(spte);
260 
261 	trace_check_mmio_spte(spte, kvm_gen, spte_gen);
262 	return likely(kvm_gen == spte_gen);
263 }
264 
265 static gpa_t translate_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
266                                   struct x86_exception *exception)
267 {
268 	/* Check if guest physical address doesn't exceed guest maximum */
269 	if (kvm_vcpu_is_illegal_gpa(vcpu, gpa)) {
270 		exception->error_code |= PFERR_RSVD_MASK;
271 		return UNMAPPED_GVA;
272 	}
273 
274         return gpa;
275 }
276 
277 static int is_cpuid_PSE36(void)
278 {
279 	return 1;
280 }
281 
282 static int is_nx(struct kvm_vcpu *vcpu)
283 {
284 	return vcpu->arch.efer & EFER_NX;
285 }
286 
287 static gfn_t pse36_gfn_delta(u32 gpte)
288 {
289 	int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
290 
291 	return (gpte & PT32_DIR_PSE36_MASK) << shift;
292 }
293 
294 #ifdef CONFIG_X86_64
295 static void __set_spte(u64 *sptep, u64 spte)
296 {
297 	WRITE_ONCE(*sptep, spte);
298 }
299 
300 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
301 {
302 	WRITE_ONCE(*sptep, spte);
303 }
304 
305 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
306 {
307 	return xchg(sptep, spte);
308 }
309 
310 static u64 __get_spte_lockless(u64 *sptep)
311 {
312 	return READ_ONCE(*sptep);
313 }
314 #else
315 union split_spte {
316 	struct {
317 		u32 spte_low;
318 		u32 spte_high;
319 	};
320 	u64 spte;
321 };
322 
323 static void count_spte_clear(u64 *sptep, u64 spte)
324 {
325 	struct kvm_mmu_page *sp =  sptep_to_sp(sptep);
326 
327 	if (is_shadow_present_pte(spte))
328 		return;
329 
330 	/* Ensure the spte is completely set before we increase the count */
331 	smp_wmb();
332 	sp->clear_spte_count++;
333 }
334 
335 static void __set_spte(u64 *sptep, u64 spte)
336 {
337 	union split_spte *ssptep, sspte;
338 
339 	ssptep = (union split_spte *)sptep;
340 	sspte = (union split_spte)spte;
341 
342 	ssptep->spte_high = sspte.spte_high;
343 
344 	/*
345 	 * If we map the spte from nonpresent to present, We should store
346 	 * the high bits firstly, then set present bit, so cpu can not
347 	 * fetch this spte while we are setting the spte.
348 	 */
349 	smp_wmb();
350 
351 	WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
352 }
353 
354 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
355 {
356 	union split_spte *ssptep, sspte;
357 
358 	ssptep = (union split_spte *)sptep;
359 	sspte = (union split_spte)spte;
360 
361 	WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
362 
363 	/*
364 	 * If we map the spte from present to nonpresent, we should clear
365 	 * present bit firstly to avoid vcpu fetch the old high bits.
366 	 */
367 	smp_wmb();
368 
369 	ssptep->spte_high = sspte.spte_high;
370 	count_spte_clear(sptep, spte);
371 }
372 
373 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
374 {
375 	union split_spte *ssptep, sspte, orig;
376 
377 	ssptep = (union split_spte *)sptep;
378 	sspte = (union split_spte)spte;
379 
380 	/* xchg acts as a barrier before the setting of the high bits */
381 	orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
382 	orig.spte_high = ssptep->spte_high;
383 	ssptep->spte_high = sspte.spte_high;
384 	count_spte_clear(sptep, spte);
385 
386 	return orig.spte;
387 }
388 
389 /*
390  * The idea using the light way get the spte on x86_32 guest is from
391  * gup_get_pte (mm/gup.c).
392  *
393  * An spte tlb flush may be pending, because kvm_set_pte_rmapp
394  * coalesces them and we are running out of the MMU lock.  Therefore
395  * we need to protect against in-progress updates of the spte.
396  *
397  * Reading the spte while an update is in progress may get the old value
398  * for the high part of the spte.  The race is fine for a present->non-present
399  * change (because the high part of the spte is ignored for non-present spte),
400  * but for a present->present change we must reread the spte.
401  *
402  * All such changes are done in two steps (present->non-present and
403  * non-present->present), hence it is enough to count the number of
404  * present->non-present updates: if it changed while reading the spte,
405  * we might have hit the race.  This is done using clear_spte_count.
406  */
407 static u64 __get_spte_lockless(u64 *sptep)
408 {
409 	struct kvm_mmu_page *sp =  sptep_to_sp(sptep);
410 	union split_spte spte, *orig = (union split_spte *)sptep;
411 	int count;
412 
413 retry:
414 	count = sp->clear_spte_count;
415 	smp_rmb();
416 
417 	spte.spte_low = orig->spte_low;
418 	smp_rmb();
419 
420 	spte.spte_high = orig->spte_high;
421 	smp_rmb();
422 
423 	if (unlikely(spte.spte_low != orig->spte_low ||
424 	      count != sp->clear_spte_count))
425 		goto retry;
426 
427 	return spte.spte;
428 }
429 #endif
430 
431 static bool spte_has_volatile_bits(u64 spte)
432 {
433 	if (!is_shadow_present_pte(spte))
434 		return false;
435 
436 	/*
437 	 * Always atomically update spte if it can be updated
438 	 * out of mmu-lock, it can ensure dirty bit is not lost,
439 	 * also, it can help us to get a stable is_writable_pte()
440 	 * to ensure tlb flush is not missed.
441 	 */
442 	if (spte_can_locklessly_be_made_writable(spte) ||
443 	    is_access_track_spte(spte))
444 		return true;
445 
446 	if (spte_ad_enabled(spte)) {
447 		if ((spte & shadow_accessed_mask) == 0 ||
448 	    	    (is_writable_pte(spte) && (spte & shadow_dirty_mask) == 0))
449 			return true;
450 	}
451 
452 	return false;
453 }
454 
455 /* Rules for using mmu_spte_set:
456  * Set the sptep from nonpresent to present.
457  * Note: the sptep being assigned *must* be either not present
458  * or in a state where the hardware will not attempt to update
459  * the spte.
460  */
461 static void mmu_spte_set(u64 *sptep, u64 new_spte)
462 {
463 	WARN_ON(is_shadow_present_pte(*sptep));
464 	__set_spte(sptep, new_spte);
465 }
466 
467 /*
468  * Update the SPTE (excluding the PFN), but do not track changes in its
469  * accessed/dirty status.
470  */
471 static u64 mmu_spte_update_no_track(u64 *sptep, u64 new_spte)
472 {
473 	u64 old_spte = *sptep;
474 
475 	WARN_ON(!is_shadow_present_pte(new_spte));
476 
477 	if (!is_shadow_present_pte(old_spte)) {
478 		mmu_spte_set(sptep, new_spte);
479 		return old_spte;
480 	}
481 
482 	if (!spte_has_volatile_bits(old_spte))
483 		__update_clear_spte_fast(sptep, new_spte);
484 	else
485 		old_spte = __update_clear_spte_slow(sptep, new_spte);
486 
487 	WARN_ON(spte_to_pfn(old_spte) != spte_to_pfn(new_spte));
488 
489 	return old_spte;
490 }
491 
492 /* Rules for using mmu_spte_update:
493  * Update the state bits, it means the mapped pfn is not changed.
494  *
495  * Whenever we overwrite a writable spte with a read-only one we
496  * should flush remote TLBs. Otherwise rmap_write_protect
497  * will find a read-only spte, even though the writable spte
498  * might be cached on a CPU's TLB, the return value indicates this
499  * case.
500  *
501  * Returns true if the TLB needs to be flushed
502  */
503 static bool mmu_spte_update(u64 *sptep, u64 new_spte)
504 {
505 	bool flush = false;
506 	u64 old_spte = mmu_spte_update_no_track(sptep, new_spte);
507 
508 	if (!is_shadow_present_pte(old_spte))
509 		return false;
510 
511 	/*
512 	 * For the spte updated out of mmu-lock is safe, since
513 	 * we always atomically update it, see the comments in
514 	 * spte_has_volatile_bits().
515 	 */
516 	if (spte_can_locklessly_be_made_writable(old_spte) &&
517 	      !is_writable_pte(new_spte))
518 		flush = true;
519 
520 	/*
521 	 * Flush TLB when accessed/dirty states are changed in the page tables,
522 	 * to guarantee consistency between TLB and page tables.
523 	 */
524 
525 	if (is_accessed_spte(old_spte) && !is_accessed_spte(new_spte)) {
526 		flush = true;
527 		kvm_set_pfn_accessed(spte_to_pfn(old_spte));
528 	}
529 
530 	if (is_dirty_spte(old_spte) && !is_dirty_spte(new_spte)) {
531 		flush = true;
532 		kvm_set_pfn_dirty(spte_to_pfn(old_spte));
533 	}
534 
535 	return flush;
536 }
537 
538 /*
539  * Rules for using mmu_spte_clear_track_bits:
540  * It sets the sptep from present to nonpresent, and track the
541  * state bits, it is used to clear the last level sptep.
542  * Returns non-zero if the PTE was previously valid.
543  */
544 static int mmu_spte_clear_track_bits(u64 *sptep)
545 {
546 	kvm_pfn_t pfn;
547 	u64 old_spte = *sptep;
548 
549 	if (!spte_has_volatile_bits(old_spte))
550 		__update_clear_spte_fast(sptep, 0ull);
551 	else
552 		old_spte = __update_clear_spte_slow(sptep, 0ull);
553 
554 	if (!is_shadow_present_pte(old_spte))
555 		return 0;
556 
557 	pfn = spte_to_pfn(old_spte);
558 
559 	/*
560 	 * KVM does not hold the refcount of the page used by
561 	 * kvm mmu, before reclaiming the page, we should
562 	 * unmap it from mmu first.
563 	 */
564 	WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn)));
565 
566 	if (is_accessed_spte(old_spte))
567 		kvm_set_pfn_accessed(pfn);
568 
569 	if (is_dirty_spte(old_spte))
570 		kvm_set_pfn_dirty(pfn);
571 
572 	return 1;
573 }
574 
575 /*
576  * Rules for using mmu_spte_clear_no_track:
577  * Directly clear spte without caring the state bits of sptep,
578  * it is used to set the upper level spte.
579  */
580 static void mmu_spte_clear_no_track(u64 *sptep)
581 {
582 	__update_clear_spte_fast(sptep, 0ull);
583 }
584 
585 static u64 mmu_spte_get_lockless(u64 *sptep)
586 {
587 	return __get_spte_lockless(sptep);
588 }
589 
590 /* Restore an acc-track PTE back to a regular PTE */
591 static u64 restore_acc_track_spte(u64 spte)
592 {
593 	u64 new_spte = spte;
594 	u64 saved_bits = (spte >> SHADOW_ACC_TRACK_SAVED_BITS_SHIFT)
595 			 & SHADOW_ACC_TRACK_SAVED_BITS_MASK;
596 
597 	WARN_ON_ONCE(spte_ad_enabled(spte));
598 	WARN_ON_ONCE(!is_access_track_spte(spte));
599 
600 	new_spte &= ~shadow_acc_track_mask;
601 	new_spte &= ~(SHADOW_ACC_TRACK_SAVED_BITS_MASK <<
602 		      SHADOW_ACC_TRACK_SAVED_BITS_SHIFT);
603 	new_spte |= saved_bits;
604 
605 	return new_spte;
606 }
607 
608 /* Returns the Accessed status of the PTE and resets it at the same time. */
609 static bool mmu_spte_age(u64 *sptep)
610 {
611 	u64 spte = mmu_spte_get_lockless(sptep);
612 
613 	if (!is_accessed_spte(spte))
614 		return false;
615 
616 	if (spte_ad_enabled(spte)) {
617 		clear_bit((ffs(shadow_accessed_mask) - 1),
618 			  (unsigned long *)sptep);
619 	} else {
620 		/*
621 		 * Capture the dirty status of the page, so that it doesn't get
622 		 * lost when the SPTE is marked for access tracking.
623 		 */
624 		if (is_writable_pte(spte))
625 			kvm_set_pfn_dirty(spte_to_pfn(spte));
626 
627 		spte = mark_spte_for_access_track(spte);
628 		mmu_spte_update_no_track(sptep, spte);
629 	}
630 
631 	return true;
632 }
633 
634 static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
635 {
636 	/*
637 	 * Prevent page table teardown by making any free-er wait during
638 	 * kvm_flush_remote_tlbs() IPI to all active vcpus.
639 	 */
640 	local_irq_disable();
641 
642 	/*
643 	 * Make sure a following spte read is not reordered ahead of the write
644 	 * to vcpu->mode.
645 	 */
646 	smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES);
647 }
648 
649 static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
650 {
651 	/*
652 	 * Make sure the write to vcpu->mode is not reordered in front of
653 	 * reads to sptes.  If it does, kvm_mmu_commit_zap_page() can see us
654 	 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
655 	 */
656 	smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE);
657 	local_irq_enable();
658 }
659 
660 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu, bool maybe_indirect)
661 {
662 	int r;
663 
664 	/* 1 rmap, 1 parent PTE per level, and the prefetched rmaps. */
665 	r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
666 				       1 + PT64_ROOT_MAX_LEVEL + PTE_PREFETCH_NUM);
667 	if (r)
668 		return r;
669 	r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_shadow_page_cache,
670 				       PT64_ROOT_MAX_LEVEL);
671 	if (r)
672 		return r;
673 	if (maybe_indirect) {
674 		r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_gfn_array_cache,
675 					       PT64_ROOT_MAX_LEVEL);
676 		if (r)
677 			return r;
678 	}
679 	return kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
680 					  PT64_ROOT_MAX_LEVEL);
681 }
682 
683 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
684 {
685 	kvm_mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache);
686 	kvm_mmu_free_memory_cache(&vcpu->arch.mmu_shadow_page_cache);
687 	kvm_mmu_free_memory_cache(&vcpu->arch.mmu_gfn_array_cache);
688 	kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache);
689 }
690 
691 static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
692 {
693 	return kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
694 }
695 
696 static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
697 {
698 	kmem_cache_free(pte_list_desc_cache, pte_list_desc);
699 }
700 
701 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
702 {
703 	if (!sp->role.direct)
704 		return sp->gfns[index];
705 
706 	return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
707 }
708 
709 static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
710 {
711 	if (!sp->role.direct) {
712 		sp->gfns[index] = gfn;
713 		return;
714 	}
715 
716 	if (WARN_ON(gfn != kvm_mmu_page_get_gfn(sp, index)))
717 		pr_err_ratelimited("gfn mismatch under direct page %llx "
718 				   "(expected %llx, got %llx)\n",
719 				   sp->gfn,
720 				   kvm_mmu_page_get_gfn(sp, index), gfn);
721 }
722 
723 /*
724  * Return the pointer to the large page information for a given gfn,
725  * handling slots that are not large page aligned.
726  */
727 static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
728 					      struct kvm_memory_slot *slot,
729 					      int level)
730 {
731 	unsigned long idx;
732 
733 	idx = gfn_to_index(gfn, slot->base_gfn, level);
734 	return &slot->arch.lpage_info[level - 2][idx];
735 }
736 
737 static void update_gfn_disallow_lpage_count(struct kvm_memory_slot *slot,
738 					    gfn_t gfn, int count)
739 {
740 	struct kvm_lpage_info *linfo;
741 	int i;
742 
743 	for (i = PG_LEVEL_2M; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) {
744 		linfo = lpage_info_slot(gfn, slot, i);
745 		linfo->disallow_lpage += count;
746 		WARN_ON(linfo->disallow_lpage < 0);
747 	}
748 }
749 
750 void kvm_mmu_gfn_disallow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
751 {
752 	update_gfn_disallow_lpage_count(slot, gfn, 1);
753 }
754 
755 void kvm_mmu_gfn_allow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
756 {
757 	update_gfn_disallow_lpage_count(slot, gfn, -1);
758 }
759 
760 static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
761 {
762 	struct kvm_memslots *slots;
763 	struct kvm_memory_slot *slot;
764 	gfn_t gfn;
765 
766 	kvm->arch.indirect_shadow_pages++;
767 	gfn = sp->gfn;
768 	slots = kvm_memslots_for_spte_role(kvm, sp->role);
769 	slot = __gfn_to_memslot(slots, gfn);
770 
771 	/* the non-leaf shadow pages are keeping readonly. */
772 	if (sp->role.level > PG_LEVEL_4K)
773 		return kvm_slot_page_track_add_page(kvm, slot, gfn,
774 						    KVM_PAGE_TRACK_WRITE);
775 
776 	kvm_mmu_gfn_disallow_lpage(slot, gfn);
777 }
778 
779 void account_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp)
780 {
781 	if (sp->lpage_disallowed)
782 		return;
783 
784 	++kvm->stat.nx_lpage_splits;
785 	list_add_tail(&sp->lpage_disallowed_link,
786 		      &kvm->arch.lpage_disallowed_mmu_pages);
787 	sp->lpage_disallowed = true;
788 }
789 
790 static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
791 {
792 	struct kvm_memslots *slots;
793 	struct kvm_memory_slot *slot;
794 	gfn_t gfn;
795 
796 	kvm->arch.indirect_shadow_pages--;
797 	gfn = sp->gfn;
798 	slots = kvm_memslots_for_spte_role(kvm, sp->role);
799 	slot = __gfn_to_memslot(slots, gfn);
800 	if (sp->role.level > PG_LEVEL_4K)
801 		return kvm_slot_page_track_remove_page(kvm, slot, gfn,
802 						       KVM_PAGE_TRACK_WRITE);
803 
804 	kvm_mmu_gfn_allow_lpage(slot, gfn);
805 }
806 
807 void unaccount_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp)
808 {
809 	--kvm->stat.nx_lpage_splits;
810 	sp->lpage_disallowed = false;
811 	list_del(&sp->lpage_disallowed_link);
812 }
813 
814 static struct kvm_memory_slot *
815 gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
816 			    bool no_dirty_log)
817 {
818 	struct kvm_memory_slot *slot;
819 
820 	slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
821 	if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
822 		return NULL;
823 	if (no_dirty_log && kvm_slot_dirty_track_enabled(slot))
824 		return NULL;
825 
826 	return slot;
827 }
828 
829 /*
830  * About rmap_head encoding:
831  *
832  * If the bit zero of rmap_head->val is clear, then it points to the only spte
833  * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct
834  * pte_list_desc containing more mappings.
835  */
836 
837 /*
838  * Returns the number of pointers in the rmap chain, not counting the new one.
839  */
840 static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
841 			struct kvm_rmap_head *rmap_head)
842 {
843 	struct pte_list_desc *desc;
844 	int i, count = 0;
845 
846 	if (!rmap_head->val) {
847 		rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
848 		rmap_head->val = (unsigned long)spte;
849 	} else if (!(rmap_head->val & 1)) {
850 		rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
851 		desc = mmu_alloc_pte_list_desc(vcpu);
852 		desc->sptes[0] = (u64 *)rmap_head->val;
853 		desc->sptes[1] = spte;
854 		rmap_head->val = (unsigned long)desc | 1;
855 		++count;
856 	} else {
857 		rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
858 		desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
859 		while (desc->sptes[PTE_LIST_EXT-1]) {
860 			count += PTE_LIST_EXT;
861 
862 			if (!desc->more) {
863 				desc->more = mmu_alloc_pte_list_desc(vcpu);
864 				desc = desc->more;
865 				break;
866 			}
867 			desc = desc->more;
868 		}
869 		for (i = 0; desc->sptes[i]; ++i)
870 			++count;
871 		desc->sptes[i] = spte;
872 	}
873 	return count;
874 }
875 
876 static void
877 pte_list_desc_remove_entry(struct kvm_rmap_head *rmap_head,
878 			   struct pte_list_desc *desc, int i,
879 			   struct pte_list_desc *prev_desc)
880 {
881 	int j;
882 
883 	for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
884 		;
885 	desc->sptes[i] = desc->sptes[j];
886 	desc->sptes[j] = NULL;
887 	if (j != 0)
888 		return;
889 	if (!prev_desc && !desc->more)
890 		rmap_head->val = 0;
891 	else
892 		if (prev_desc)
893 			prev_desc->more = desc->more;
894 		else
895 			rmap_head->val = (unsigned long)desc->more | 1;
896 	mmu_free_pte_list_desc(desc);
897 }
898 
899 static void __pte_list_remove(u64 *spte, struct kvm_rmap_head *rmap_head)
900 {
901 	struct pte_list_desc *desc;
902 	struct pte_list_desc *prev_desc;
903 	int i;
904 
905 	if (!rmap_head->val) {
906 		pr_err("%s: %p 0->BUG\n", __func__, spte);
907 		BUG();
908 	} else if (!(rmap_head->val & 1)) {
909 		rmap_printk("%s:  %p 1->0\n", __func__, spte);
910 		if ((u64 *)rmap_head->val != spte) {
911 			pr_err("%s:  %p 1->BUG\n", __func__, spte);
912 			BUG();
913 		}
914 		rmap_head->val = 0;
915 	} else {
916 		rmap_printk("%s:  %p many->many\n", __func__, spte);
917 		desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
918 		prev_desc = NULL;
919 		while (desc) {
920 			for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i) {
921 				if (desc->sptes[i] == spte) {
922 					pte_list_desc_remove_entry(rmap_head,
923 							desc, i, prev_desc);
924 					return;
925 				}
926 			}
927 			prev_desc = desc;
928 			desc = desc->more;
929 		}
930 		pr_err("%s: %p many->many\n", __func__, spte);
931 		BUG();
932 	}
933 }
934 
935 static void pte_list_remove(struct kvm_rmap_head *rmap_head, u64 *sptep)
936 {
937 	mmu_spte_clear_track_bits(sptep);
938 	__pte_list_remove(sptep, rmap_head);
939 }
940 
941 static struct kvm_rmap_head *__gfn_to_rmap(gfn_t gfn, int level,
942 					   struct kvm_memory_slot *slot)
943 {
944 	unsigned long idx;
945 
946 	idx = gfn_to_index(gfn, slot->base_gfn, level);
947 	return &slot->arch.rmap[level - PG_LEVEL_4K][idx];
948 }
949 
950 static struct kvm_rmap_head *gfn_to_rmap(struct kvm *kvm, gfn_t gfn,
951 					 struct kvm_mmu_page *sp)
952 {
953 	struct kvm_memslots *slots;
954 	struct kvm_memory_slot *slot;
955 
956 	slots = kvm_memslots_for_spte_role(kvm, sp->role);
957 	slot = __gfn_to_memslot(slots, gfn);
958 	return __gfn_to_rmap(gfn, sp->role.level, slot);
959 }
960 
961 static bool rmap_can_add(struct kvm_vcpu *vcpu)
962 {
963 	struct kvm_mmu_memory_cache *mc;
964 
965 	mc = &vcpu->arch.mmu_pte_list_desc_cache;
966 	return kvm_mmu_memory_cache_nr_free_objects(mc);
967 }
968 
969 static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
970 {
971 	struct kvm_mmu_page *sp;
972 	struct kvm_rmap_head *rmap_head;
973 
974 	sp = sptep_to_sp(spte);
975 	kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
976 	rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
977 	return pte_list_add(vcpu, spte, rmap_head);
978 }
979 
980 static void rmap_remove(struct kvm *kvm, u64 *spte)
981 {
982 	struct kvm_mmu_page *sp;
983 	gfn_t gfn;
984 	struct kvm_rmap_head *rmap_head;
985 
986 	sp = sptep_to_sp(spte);
987 	gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
988 	rmap_head = gfn_to_rmap(kvm, gfn, sp);
989 	__pte_list_remove(spte, rmap_head);
990 }
991 
992 /*
993  * Used by the following functions to iterate through the sptes linked by a
994  * rmap.  All fields are private and not assumed to be used outside.
995  */
996 struct rmap_iterator {
997 	/* private fields */
998 	struct pte_list_desc *desc;	/* holds the sptep if not NULL */
999 	int pos;			/* index of the sptep */
1000 };
1001 
1002 /*
1003  * Iteration must be started by this function.  This should also be used after
1004  * removing/dropping sptes from the rmap link because in such cases the
1005  * information in the iterator may not be valid.
1006  *
1007  * Returns sptep if found, NULL otherwise.
1008  */
1009 static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head,
1010 			   struct rmap_iterator *iter)
1011 {
1012 	u64 *sptep;
1013 
1014 	if (!rmap_head->val)
1015 		return NULL;
1016 
1017 	if (!(rmap_head->val & 1)) {
1018 		iter->desc = NULL;
1019 		sptep = (u64 *)rmap_head->val;
1020 		goto out;
1021 	}
1022 
1023 	iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1024 	iter->pos = 0;
1025 	sptep = iter->desc->sptes[iter->pos];
1026 out:
1027 	BUG_ON(!is_shadow_present_pte(*sptep));
1028 	return sptep;
1029 }
1030 
1031 /*
1032  * Must be used with a valid iterator: e.g. after rmap_get_first().
1033  *
1034  * Returns sptep if found, NULL otherwise.
1035  */
1036 static u64 *rmap_get_next(struct rmap_iterator *iter)
1037 {
1038 	u64 *sptep;
1039 
1040 	if (iter->desc) {
1041 		if (iter->pos < PTE_LIST_EXT - 1) {
1042 			++iter->pos;
1043 			sptep = iter->desc->sptes[iter->pos];
1044 			if (sptep)
1045 				goto out;
1046 		}
1047 
1048 		iter->desc = iter->desc->more;
1049 
1050 		if (iter->desc) {
1051 			iter->pos = 0;
1052 			/* desc->sptes[0] cannot be NULL */
1053 			sptep = iter->desc->sptes[iter->pos];
1054 			goto out;
1055 		}
1056 	}
1057 
1058 	return NULL;
1059 out:
1060 	BUG_ON(!is_shadow_present_pte(*sptep));
1061 	return sptep;
1062 }
1063 
1064 #define for_each_rmap_spte(_rmap_head_, _iter_, _spte_)			\
1065 	for (_spte_ = rmap_get_first(_rmap_head_, _iter_);		\
1066 	     _spte_; _spte_ = rmap_get_next(_iter_))
1067 
1068 static void drop_spte(struct kvm *kvm, u64 *sptep)
1069 {
1070 	if (mmu_spte_clear_track_bits(sptep))
1071 		rmap_remove(kvm, sptep);
1072 }
1073 
1074 
1075 static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
1076 {
1077 	if (is_large_pte(*sptep)) {
1078 		WARN_ON(sptep_to_sp(sptep)->role.level == PG_LEVEL_4K);
1079 		drop_spte(kvm, sptep);
1080 		--kvm->stat.lpages;
1081 		return true;
1082 	}
1083 
1084 	return false;
1085 }
1086 
1087 static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1088 {
1089 	if (__drop_large_spte(vcpu->kvm, sptep)) {
1090 		struct kvm_mmu_page *sp = sptep_to_sp(sptep);
1091 
1092 		kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn,
1093 			KVM_PAGES_PER_HPAGE(sp->role.level));
1094 	}
1095 }
1096 
1097 /*
1098  * Write-protect on the specified @sptep, @pt_protect indicates whether
1099  * spte write-protection is caused by protecting shadow page table.
1100  *
1101  * Note: write protection is difference between dirty logging and spte
1102  * protection:
1103  * - for dirty logging, the spte can be set to writable at anytime if
1104  *   its dirty bitmap is properly set.
1105  * - for spte protection, the spte can be writable only after unsync-ing
1106  *   shadow page.
1107  *
1108  * Return true if tlb need be flushed.
1109  */
1110 static bool spte_write_protect(u64 *sptep, bool pt_protect)
1111 {
1112 	u64 spte = *sptep;
1113 
1114 	if (!is_writable_pte(spte) &&
1115 	      !(pt_protect && spte_can_locklessly_be_made_writable(spte)))
1116 		return false;
1117 
1118 	rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);
1119 
1120 	if (pt_protect)
1121 		spte &= ~SPTE_MMU_WRITEABLE;
1122 	spte = spte & ~PT_WRITABLE_MASK;
1123 
1124 	return mmu_spte_update(sptep, spte);
1125 }
1126 
1127 static bool __rmap_write_protect(struct kvm *kvm,
1128 				 struct kvm_rmap_head *rmap_head,
1129 				 bool pt_protect)
1130 {
1131 	u64 *sptep;
1132 	struct rmap_iterator iter;
1133 	bool flush = false;
1134 
1135 	for_each_rmap_spte(rmap_head, &iter, sptep)
1136 		flush |= spte_write_protect(sptep, pt_protect);
1137 
1138 	return flush;
1139 }
1140 
1141 static bool spte_clear_dirty(u64 *sptep)
1142 {
1143 	u64 spte = *sptep;
1144 
1145 	rmap_printk("rmap_clear_dirty: spte %p %llx\n", sptep, *sptep);
1146 
1147 	MMU_WARN_ON(!spte_ad_enabled(spte));
1148 	spte &= ~shadow_dirty_mask;
1149 	return mmu_spte_update(sptep, spte);
1150 }
1151 
1152 static bool spte_wrprot_for_clear_dirty(u64 *sptep)
1153 {
1154 	bool was_writable = test_and_clear_bit(PT_WRITABLE_SHIFT,
1155 					       (unsigned long *)sptep);
1156 	if (was_writable && !spte_ad_enabled(*sptep))
1157 		kvm_set_pfn_dirty(spte_to_pfn(*sptep));
1158 
1159 	return was_writable;
1160 }
1161 
1162 /*
1163  * Gets the GFN ready for another round of dirty logging by clearing the
1164  *	- D bit on ad-enabled SPTEs, and
1165  *	- W bit on ad-disabled SPTEs.
1166  * Returns true iff any D or W bits were cleared.
1167  */
1168 static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1169 {
1170 	u64 *sptep;
1171 	struct rmap_iterator iter;
1172 	bool flush = false;
1173 
1174 	for_each_rmap_spte(rmap_head, &iter, sptep)
1175 		if (spte_ad_need_write_protect(*sptep))
1176 			flush |= spte_wrprot_for_clear_dirty(sptep);
1177 		else
1178 			flush |= spte_clear_dirty(sptep);
1179 
1180 	return flush;
1181 }
1182 
1183 static bool spte_set_dirty(u64 *sptep)
1184 {
1185 	u64 spte = *sptep;
1186 
1187 	rmap_printk("rmap_set_dirty: spte %p %llx\n", sptep, *sptep);
1188 
1189 	/*
1190 	 * Similar to the !kvm_x86_ops.slot_disable_log_dirty case,
1191 	 * do not bother adding back write access to pages marked
1192 	 * SPTE_AD_WRPROT_ONLY_MASK.
1193 	 */
1194 	spte |= shadow_dirty_mask;
1195 
1196 	return mmu_spte_update(sptep, spte);
1197 }
1198 
1199 static bool __rmap_set_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1200 {
1201 	u64 *sptep;
1202 	struct rmap_iterator iter;
1203 	bool flush = false;
1204 
1205 	for_each_rmap_spte(rmap_head, &iter, sptep)
1206 		if (spte_ad_enabled(*sptep))
1207 			flush |= spte_set_dirty(sptep);
1208 
1209 	return flush;
1210 }
1211 
1212 /**
1213  * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1214  * @kvm: kvm instance
1215  * @slot: slot to protect
1216  * @gfn_offset: start of the BITS_PER_LONG pages we care about
1217  * @mask: indicates which pages we should protect
1218  *
1219  * Used when we do not need to care about huge page mappings: e.g. during dirty
1220  * logging we do not have any such mappings.
1221  */
1222 static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1223 				     struct kvm_memory_slot *slot,
1224 				     gfn_t gfn_offset, unsigned long mask)
1225 {
1226 	struct kvm_rmap_head *rmap_head;
1227 
1228 	if (kvm->arch.tdp_mmu_enabled)
1229 		kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot,
1230 				slot->base_gfn + gfn_offset, mask, true);
1231 	while (mask) {
1232 		rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1233 					  PG_LEVEL_4K, slot);
1234 		__rmap_write_protect(kvm, rmap_head, false);
1235 
1236 		/* clear the first set bit */
1237 		mask &= mask - 1;
1238 	}
1239 }
1240 
1241 /**
1242  * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages, or write
1243  * protect the page if the D-bit isn't supported.
1244  * @kvm: kvm instance
1245  * @slot: slot to clear D-bit
1246  * @gfn_offset: start of the BITS_PER_LONG pages we care about
1247  * @mask: indicates which pages we should clear D-bit
1248  *
1249  * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap.
1250  */
1251 void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
1252 				     struct kvm_memory_slot *slot,
1253 				     gfn_t gfn_offset, unsigned long mask)
1254 {
1255 	struct kvm_rmap_head *rmap_head;
1256 
1257 	if (kvm->arch.tdp_mmu_enabled)
1258 		kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot,
1259 				slot->base_gfn + gfn_offset, mask, false);
1260 	while (mask) {
1261 		rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1262 					  PG_LEVEL_4K, slot);
1263 		__rmap_clear_dirty(kvm, rmap_head);
1264 
1265 		/* clear the first set bit */
1266 		mask &= mask - 1;
1267 	}
1268 }
1269 EXPORT_SYMBOL_GPL(kvm_mmu_clear_dirty_pt_masked);
1270 
1271 /**
1272  * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
1273  * PT level pages.
1274  *
1275  * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
1276  * enable dirty logging for them.
1277  *
1278  * Used when we do not need to care about huge page mappings: e.g. during dirty
1279  * logging we do not have any such mappings.
1280  */
1281 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1282 				struct kvm_memory_slot *slot,
1283 				gfn_t gfn_offset, unsigned long mask)
1284 {
1285 	if (kvm_x86_ops.enable_log_dirty_pt_masked)
1286 		kvm_x86_ops.enable_log_dirty_pt_masked(kvm, slot, gfn_offset,
1287 				mask);
1288 	else
1289 		kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
1290 }
1291 
1292 int kvm_cpu_dirty_log_size(void)
1293 {
1294 	if (kvm_x86_ops.cpu_dirty_log_size)
1295 		return kvm_x86_ops.cpu_dirty_log_size();
1296 
1297 	return 0;
1298 }
1299 
1300 bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
1301 				    struct kvm_memory_slot *slot, u64 gfn)
1302 {
1303 	struct kvm_rmap_head *rmap_head;
1304 	int i;
1305 	bool write_protected = false;
1306 
1307 	for (i = PG_LEVEL_4K; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) {
1308 		rmap_head = __gfn_to_rmap(gfn, i, slot);
1309 		write_protected |= __rmap_write_protect(kvm, rmap_head, true);
1310 	}
1311 
1312 	if (kvm->arch.tdp_mmu_enabled)
1313 		write_protected |=
1314 			kvm_tdp_mmu_write_protect_gfn(kvm, slot, gfn);
1315 
1316 	return write_protected;
1317 }
1318 
1319 static bool rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn)
1320 {
1321 	struct kvm_memory_slot *slot;
1322 
1323 	slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1324 	return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn);
1325 }
1326 
1327 static bool kvm_zap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1328 {
1329 	u64 *sptep;
1330 	struct rmap_iterator iter;
1331 	bool flush = false;
1332 
1333 	while ((sptep = rmap_get_first(rmap_head, &iter))) {
1334 		rmap_printk("%s: spte %p %llx.\n", __func__, sptep, *sptep);
1335 
1336 		pte_list_remove(rmap_head, sptep);
1337 		flush = true;
1338 	}
1339 
1340 	return flush;
1341 }
1342 
1343 static int kvm_unmap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1344 			   struct kvm_memory_slot *slot, gfn_t gfn, int level,
1345 			   unsigned long data)
1346 {
1347 	return kvm_zap_rmapp(kvm, rmap_head);
1348 }
1349 
1350 static int kvm_set_pte_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1351 			     struct kvm_memory_slot *slot, gfn_t gfn, int level,
1352 			     unsigned long data)
1353 {
1354 	u64 *sptep;
1355 	struct rmap_iterator iter;
1356 	int need_flush = 0;
1357 	u64 new_spte;
1358 	pte_t *ptep = (pte_t *)data;
1359 	kvm_pfn_t new_pfn;
1360 
1361 	WARN_ON(pte_huge(*ptep));
1362 	new_pfn = pte_pfn(*ptep);
1363 
1364 restart:
1365 	for_each_rmap_spte(rmap_head, &iter, sptep) {
1366 		rmap_printk("kvm_set_pte_rmapp: spte %p %llx gfn %llx (%d)\n",
1367 			    sptep, *sptep, gfn, level);
1368 
1369 		need_flush = 1;
1370 
1371 		if (pte_write(*ptep)) {
1372 			pte_list_remove(rmap_head, sptep);
1373 			goto restart;
1374 		} else {
1375 			new_spte = kvm_mmu_changed_pte_notifier_make_spte(
1376 					*sptep, new_pfn);
1377 
1378 			mmu_spte_clear_track_bits(sptep);
1379 			mmu_spte_set(sptep, new_spte);
1380 		}
1381 	}
1382 
1383 	if (need_flush && kvm_available_flush_tlb_with_range()) {
1384 		kvm_flush_remote_tlbs_with_address(kvm, gfn, 1);
1385 		return 0;
1386 	}
1387 
1388 	return need_flush;
1389 }
1390 
1391 struct slot_rmap_walk_iterator {
1392 	/* input fields. */
1393 	struct kvm_memory_slot *slot;
1394 	gfn_t start_gfn;
1395 	gfn_t end_gfn;
1396 	int start_level;
1397 	int end_level;
1398 
1399 	/* output fields. */
1400 	gfn_t gfn;
1401 	struct kvm_rmap_head *rmap;
1402 	int level;
1403 
1404 	/* private field. */
1405 	struct kvm_rmap_head *end_rmap;
1406 };
1407 
1408 static void
1409 rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level)
1410 {
1411 	iterator->level = level;
1412 	iterator->gfn = iterator->start_gfn;
1413 	iterator->rmap = __gfn_to_rmap(iterator->gfn, level, iterator->slot);
1414 	iterator->end_rmap = __gfn_to_rmap(iterator->end_gfn, level,
1415 					   iterator->slot);
1416 }
1417 
1418 static void
1419 slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator,
1420 		    struct kvm_memory_slot *slot, int start_level,
1421 		    int end_level, gfn_t start_gfn, gfn_t end_gfn)
1422 {
1423 	iterator->slot = slot;
1424 	iterator->start_level = start_level;
1425 	iterator->end_level = end_level;
1426 	iterator->start_gfn = start_gfn;
1427 	iterator->end_gfn = end_gfn;
1428 
1429 	rmap_walk_init_level(iterator, iterator->start_level);
1430 }
1431 
1432 static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator)
1433 {
1434 	return !!iterator->rmap;
1435 }
1436 
1437 static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
1438 {
1439 	if (++iterator->rmap <= iterator->end_rmap) {
1440 		iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level));
1441 		return;
1442 	}
1443 
1444 	if (++iterator->level > iterator->end_level) {
1445 		iterator->rmap = NULL;
1446 		return;
1447 	}
1448 
1449 	rmap_walk_init_level(iterator, iterator->level);
1450 }
1451 
1452 #define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_,	\
1453 	   _start_gfn, _end_gfn, _iter_)				\
1454 	for (slot_rmap_walk_init(_iter_, _slot_, _start_level_,		\
1455 				 _end_level_, _start_gfn, _end_gfn);	\
1456 	     slot_rmap_walk_okay(_iter_);				\
1457 	     slot_rmap_walk_next(_iter_))
1458 
1459 static int kvm_handle_hva_range(struct kvm *kvm,
1460 				unsigned long start,
1461 				unsigned long end,
1462 				unsigned long data,
1463 				int (*handler)(struct kvm *kvm,
1464 					       struct kvm_rmap_head *rmap_head,
1465 					       struct kvm_memory_slot *slot,
1466 					       gfn_t gfn,
1467 					       int level,
1468 					       unsigned long data))
1469 {
1470 	struct kvm_memslots *slots;
1471 	struct kvm_memory_slot *memslot;
1472 	struct slot_rmap_walk_iterator iterator;
1473 	int ret = 0;
1474 	int i;
1475 
1476 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
1477 		slots = __kvm_memslots(kvm, i);
1478 		kvm_for_each_memslot(memslot, slots) {
1479 			unsigned long hva_start, hva_end;
1480 			gfn_t gfn_start, gfn_end;
1481 
1482 			hva_start = max(start, memslot->userspace_addr);
1483 			hva_end = min(end, memslot->userspace_addr +
1484 				      (memslot->npages << PAGE_SHIFT));
1485 			if (hva_start >= hva_end)
1486 				continue;
1487 			/*
1488 			 * {gfn(page) | page intersects with [hva_start, hva_end)} =
1489 			 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
1490 			 */
1491 			gfn_start = hva_to_gfn_memslot(hva_start, memslot);
1492 			gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
1493 
1494 			for_each_slot_rmap_range(memslot, PG_LEVEL_4K,
1495 						 KVM_MAX_HUGEPAGE_LEVEL,
1496 						 gfn_start, gfn_end - 1,
1497 						 &iterator)
1498 				ret |= handler(kvm, iterator.rmap, memslot,
1499 					       iterator.gfn, iterator.level, data);
1500 		}
1501 	}
1502 
1503 	return ret;
1504 }
1505 
1506 static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
1507 			  unsigned long data,
1508 			  int (*handler)(struct kvm *kvm,
1509 					 struct kvm_rmap_head *rmap_head,
1510 					 struct kvm_memory_slot *slot,
1511 					 gfn_t gfn, int level,
1512 					 unsigned long data))
1513 {
1514 	return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
1515 }
1516 
1517 int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end,
1518 			unsigned flags)
1519 {
1520 	int r;
1521 
1522 	r = kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
1523 
1524 	if (kvm->arch.tdp_mmu_enabled)
1525 		r |= kvm_tdp_mmu_zap_hva_range(kvm, start, end);
1526 
1527 	return r;
1528 }
1529 
1530 int kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1531 {
1532 	int r;
1533 
1534 	r = kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
1535 
1536 	if (kvm->arch.tdp_mmu_enabled)
1537 		r |= kvm_tdp_mmu_set_spte_hva(kvm, hva, &pte);
1538 
1539 	return r;
1540 }
1541 
1542 static int kvm_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1543 			 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1544 			 unsigned long data)
1545 {
1546 	u64 *sptep;
1547 	struct rmap_iterator iter;
1548 	int young = 0;
1549 
1550 	for_each_rmap_spte(rmap_head, &iter, sptep)
1551 		young |= mmu_spte_age(sptep);
1552 
1553 	trace_kvm_age_page(gfn, level, slot, young);
1554 	return young;
1555 }
1556 
1557 static int kvm_test_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1558 			      struct kvm_memory_slot *slot, gfn_t gfn,
1559 			      int level, unsigned long data)
1560 {
1561 	u64 *sptep;
1562 	struct rmap_iterator iter;
1563 
1564 	for_each_rmap_spte(rmap_head, &iter, sptep)
1565 		if (is_accessed_spte(*sptep))
1566 			return 1;
1567 	return 0;
1568 }
1569 
1570 #define RMAP_RECYCLE_THRESHOLD 1000
1571 
1572 static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1573 {
1574 	struct kvm_rmap_head *rmap_head;
1575 	struct kvm_mmu_page *sp;
1576 
1577 	sp = sptep_to_sp(spte);
1578 
1579 	rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
1580 
1581 	kvm_unmap_rmapp(vcpu->kvm, rmap_head, NULL, gfn, sp->role.level, 0);
1582 	kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn,
1583 			KVM_PAGES_PER_HPAGE(sp->role.level));
1584 }
1585 
1586 int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
1587 {
1588 	int young = false;
1589 
1590 	young = kvm_handle_hva_range(kvm, start, end, 0, kvm_age_rmapp);
1591 	if (kvm->arch.tdp_mmu_enabled)
1592 		young |= kvm_tdp_mmu_age_hva_range(kvm, start, end);
1593 
1594 	return young;
1595 }
1596 
1597 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1598 {
1599 	int young = false;
1600 
1601 	young = kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
1602 	if (kvm->arch.tdp_mmu_enabled)
1603 		young |= kvm_tdp_mmu_test_age_hva(kvm, hva);
1604 
1605 	return young;
1606 }
1607 
1608 #ifdef MMU_DEBUG
1609 static int is_empty_shadow_page(u64 *spt)
1610 {
1611 	u64 *pos;
1612 	u64 *end;
1613 
1614 	for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
1615 		if (is_shadow_present_pte(*pos)) {
1616 			printk(KERN_ERR "%s: %p %llx\n", __func__,
1617 			       pos, *pos);
1618 			return 0;
1619 		}
1620 	return 1;
1621 }
1622 #endif
1623 
1624 /*
1625  * This value is the sum of all of the kvm instances's
1626  * kvm->arch.n_used_mmu_pages values.  We need a global,
1627  * aggregate version in order to make the slab shrinker
1628  * faster
1629  */
1630 static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, unsigned long nr)
1631 {
1632 	kvm->arch.n_used_mmu_pages += nr;
1633 	percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1634 }
1635 
1636 static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
1637 {
1638 	MMU_WARN_ON(!is_empty_shadow_page(sp->spt));
1639 	hlist_del(&sp->hash_link);
1640 	list_del(&sp->link);
1641 	free_page((unsigned long)sp->spt);
1642 	if (!sp->role.direct)
1643 		free_page((unsigned long)sp->gfns);
1644 	kmem_cache_free(mmu_page_header_cache, sp);
1645 }
1646 
1647 static unsigned kvm_page_table_hashfn(gfn_t gfn)
1648 {
1649 	return hash_64(gfn, KVM_MMU_HASH_SHIFT);
1650 }
1651 
1652 static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
1653 				    struct kvm_mmu_page *sp, u64 *parent_pte)
1654 {
1655 	if (!parent_pte)
1656 		return;
1657 
1658 	pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
1659 }
1660 
1661 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
1662 				       u64 *parent_pte)
1663 {
1664 	__pte_list_remove(parent_pte, &sp->parent_ptes);
1665 }
1666 
1667 static void drop_parent_pte(struct kvm_mmu_page *sp,
1668 			    u64 *parent_pte)
1669 {
1670 	mmu_page_remove_parent_pte(sp, parent_pte);
1671 	mmu_spte_clear_no_track(parent_pte);
1672 }
1673 
1674 static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu, int direct)
1675 {
1676 	struct kvm_mmu_page *sp;
1677 
1678 	sp = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
1679 	sp->spt = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_shadow_page_cache);
1680 	if (!direct)
1681 		sp->gfns = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_gfn_array_cache);
1682 	set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
1683 
1684 	/*
1685 	 * active_mmu_pages must be a FIFO list, as kvm_zap_obsolete_pages()
1686 	 * depends on valid pages being added to the head of the list.  See
1687 	 * comments in kvm_zap_obsolete_pages().
1688 	 */
1689 	sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
1690 	list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
1691 	kvm_mod_used_mmu_pages(vcpu->kvm, +1);
1692 	return sp;
1693 }
1694 
1695 static void mark_unsync(u64 *spte);
1696 static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
1697 {
1698 	u64 *sptep;
1699 	struct rmap_iterator iter;
1700 
1701 	for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) {
1702 		mark_unsync(sptep);
1703 	}
1704 }
1705 
1706 static void mark_unsync(u64 *spte)
1707 {
1708 	struct kvm_mmu_page *sp;
1709 	unsigned int index;
1710 
1711 	sp = sptep_to_sp(spte);
1712 	index = spte - sp->spt;
1713 	if (__test_and_set_bit(index, sp->unsync_child_bitmap))
1714 		return;
1715 	if (sp->unsync_children++)
1716 		return;
1717 	kvm_mmu_mark_parents_unsync(sp);
1718 }
1719 
1720 static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
1721 			       struct kvm_mmu_page *sp)
1722 {
1723 	return 0;
1724 }
1725 
1726 static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
1727 				 struct kvm_mmu_page *sp, u64 *spte,
1728 				 const void *pte)
1729 {
1730 	WARN_ON(1);
1731 }
1732 
1733 #define KVM_PAGE_ARRAY_NR 16
1734 
1735 struct kvm_mmu_pages {
1736 	struct mmu_page_and_offset {
1737 		struct kvm_mmu_page *sp;
1738 		unsigned int idx;
1739 	} page[KVM_PAGE_ARRAY_NR];
1740 	unsigned int nr;
1741 };
1742 
1743 static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
1744 			 int idx)
1745 {
1746 	int i;
1747 
1748 	if (sp->unsync)
1749 		for (i=0; i < pvec->nr; i++)
1750 			if (pvec->page[i].sp == sp)
1751 				return 0;
1752 
1753 	pvec->page[pvec->nr].sp = sp;
1754 	pvec->page[pvec->nr].idx = idx;
1755 	pvec->nr++;
1756 	return (pvec->nr == KVM_PAGE_ARRAY_NR);
1757 }
1758 
1759 static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx)
1760 {
1761 	--sp->unsync_children;
1762 	WARN_ON((int)sp->unsync_children < 0);
1763 	__clear_bit(idx, sp->unsync_child_bitmap);
1764 }
1765 
1766 static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
1767 			   struct kvm_mmu_pages *pvec)
1768 {
1769 	int i, ret, nr_unsync_leaf = 0;
1770 
1771 	for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
1772 		struct kvm_mmu_page *child;
1773 		u64 ent = sp->spt[i];
1774 
1775 		if (!is_shadow_present_pte(ent) || is_large_pte(ent)) {
1776 			clear_unsync_child_bit(sp, i);
1777 			continue;
1778 		}
1779 
1780 		child = to_shadow_page(ent & PT64_BASE_ADDR_MASK);
1781 
1782 		if (child->unsync_children) {
1783 			if (mmu_pages_add(pvec, child, i))
1784 				return -ENOSPC;
1785 
1786 			ret = __mmu_unsync_walk(child, pvec);
1787 			if (!ret) {
1788 				clear_unsync_child_bit(sp, i);
1789 				continue;
1790 			} else if (ret > 0) {
1791 				nr_unsync_leaf += ret;
1792 			} else
1793 				return ret;
1794 		} else if (child->unsync) {
1795 			nr_unsync_leaf++;
1796 			if (mmu_pages_add(pvec, child, i))
1797 				return -ENOSPC;
1798 		} else
1799 			clear_unsync_child_bit(sp, i);
1800 	}
1801 
1802 	return nr_unsync_leaf;
1803 }
1804 
1805 #define INVALID_INDEX (-1)
1806 
1807 static int mmu_unsync_walk(struct kvm_mmu_page *sp,
1808 			   struct kvm_mmu_pages *pvec)
1809 {
1810 	pvec->nr = 0;
1811 	if (!sp->unsync_children)
1812 		return 0;
1813 
1814 	mmu_pages_add(pvec, sp, INVALID_INDEX);
1815 	return __mmu_unsync_walk(sp, pvec);
1816 }
1817 
1818 static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1819 {
1820 	WARN_ON(!sp->unsync);
1821 	trace_kvm_mmu_sync_page(sp);
1822 	sp->unsync = 0;
1823 	--kvm->stat.mmu_unsync;
1824 }
1825 
1826 static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1827 				     struct list_head *invalid_list);
1828 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1829 				    struct list_head *invalid_list);
1830 
1831 #define for_each_valid_sp(_kvm, _sp, _list)				\
1832 	hlist_for_each_entry(_sp, _list, hash_link)			\
1833 		if (is_obsolete_sp((_kvm), (_sp))) {			\
1834 		} else
1835 
1836 #define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn)			\
1837 	for_each_valid_sp(_kvm, _sp,					\
1838 	  &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)])	\
1839 		if ((_sp)->gfn != (_gfn) || (_sp)->role.direct) {} else
1840 
1841 static inline bool is_ept_sp(struct kvm_mmu_page *sp)
1842 {
1843 	return sp->role.cr0_wp && sp->role.smap_andnot_wp;
1844 }
1845 
1846 /* @sp->gfn should be write-protected at the call site */
1847 static bool __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1848 			    struct list_head *invalid_list)
1849 {
1850 	if ((!is_ept_sp(sp) && sp->role.gpte_is_8_bytes != !!is_pae(vcpu)) ||
1851 	    vcpu->arch.mmu->sync_page(vcpu, sp) == 0) {
1852 		kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1853 		return false;
1854 	}
1855 
1856 	return true;
1857 }
1858 
1859 static bool kvm_mmu_remote_flush_or_zap(struct kvm *kvm,
1860 					struct list_head *invalid_list,
1861 					bool remote_flush)
1862 {
1863 	if (!remote_flush && list_empty(invalid_list))
1864 		return false;
1865 
1866 	if (!list_empty(invalid_list))
1867 		kvm_mmu_commit_zap_page(kvm, invalid_list);
1868 	else
1869 		kvm_flush_remote_tlbs(kvm);
1870 	return true;
1871 }
1872 
1873 static void kvm_mmu_flush_or_zap(struct kvm_vcpu *vcpu,
1874 				 struct list_head *invalid_list,
1875 				 bool remote_flush, bool local_flush)
1876 {
1877 	if (kvm_mmu_remote_flush_or_zap(vcpu->kvm, invalid_list, remote_flush))
1878 		return;
1879 
1880 	if (local_flush)
1881 		kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1882 }
1883 
1884 #ifdef CONFIG_KVM_MMU_AUDIT
1885 #include "mmu_audit.c"
1886 #else
1887 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
1888 static void mmu_audit_disable(void) { }
1889 #endif
1890 
1891 static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
1892 {
1893 	return sp->role.invalid ||
1894 	       unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
1895 }
1896 
1897 static bool kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1898 			 struct list_head *invalid_list)
1899 {
1900 	kvm_unlink_unsync_page(vcpu->kvm, sp);
1901 	return __kvm_sync_page(vcpu, sp, invalid_list);
1902 }
1903 
1904 /* @gfn should be write-protected at the call site */
1905 static bool kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn,
1906 			   struct list_head *invalid_list)
1907 {
1908 	struct kvm_mmu_page *s;
1909 	bool ret = false;
1910 
1911 	for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
1912 		if (!s->unsync)
1913 			continue;
1914 
1915 		WARN_ON(s->role.level != PG_LEVEL_4K);
1916 		ret |= kvm_sync_page(vcpu, s, invalid_list);
1917 	}
1918 
1919 	return ret;
1920 }
1921 
1922 struct mmu_page_path {
1923 	struct kvm_mmu_page *parent[PT64_ROOT_MAX_LEVEL];
1924 	unsigned int idx[PT64_ROOT_MAX_LEVEL];
1925 };
1926 
1927 #define for_each_sp(pvec, sp, parents, i)			\
1928 		for (i = mmu_pages_first(&pvec, &parents);	\
1929 			i < pvec.nr && ({ sp = pvec.page[i].sp; 1;});	\
1930 			i = mmu_pages_next(&pvec, &parents, i))
1931 
1932 static int mmu_pages_next(struct kvm_mmu_pages *pvec,
1933 			  struct mmu_page_path *parents,
1934 			  int i)
1935 {
1936 	int n;
1937 
1938 	for (n = i+1; n < pvec->nr; n++) {
1939 		struct kvm_mmu_page *sp = pvec->page[n].sp;
1940 		unsigned idx = pvec->page[n].idx;
1941 		int level = sp->role.level;
1942 
1943 		parents->idx[level-1] = idx;
1944 		if (level == PG_LEVEL_4K)
1945 			break;
1946 
1947 		parents->parent[level-2] = sp;
1948 	}
1949 
1950 	return n;
1951 }
1952 
1953 static int mmu_pages_first(struct kvm_mmu_pages *pvec,
1954 			   struct mmu_page_path *parents)
1955 {
1956 	struct kvm_mmu_page *sp;
1957 	int level;
1958 
1959 	if (pvec->nr == 0)
1960 		return 0;
1961 
1962 	WARN_ON(pvec->page[0].idx != INVALID_INDEX);
1963 
1964 	sp = pvec->page[0].sp;
1965 	level = sp->role.level;
1966 	WARN_ON(level == PG_LEVEL_4K);
1967 
1968 	parents->parent[level-2] = sp;
1969 
1970 	/* Also set up a sentinel.  Further entries in pvec are all
1971 	 * children of sp, so this element is never overwritten.
1972 	 */
1973 	parents->parent[level-1] = NULL;
1974 	return mmu_pages_next(pvec, parents, 0);
1975 }
1976 
1977 static void mmu_pages_clear_parents(struct mmu_page_path *parents)
1978 {
1979 	struct kvm_mmu_page *sp;
1980 	unsigned int level = 0;
1981 
1982 	do {
1983 		unsigned int idx = parents->idx[level];
1984 		sp = parents->parent[level];
1985 		if (!sp)
1986 			return;
1987 
1988 		WARN_ON(idx == INVALID_INDEX);
1989 		clear_unsync_child_bit(sp, idx);
1990 		level++;
1991 	} while (!sp->unsync_children);
1992 }
1993 
1994 static void mmu_sync_children(struct kvm_vcpu *vcpu,
1995 			      struct kvm_mmu_page *parent)
1996 {
1997 	int i;
1998 	struct kvm_mmu_page *sp;
1999 	struct mmu_page_path parents;
2000 	struct kvm_mmu_pages pages;
2001 	LIST_HEAD(invalid_list);
2002 	bool flush = false;
2003 
2004 	while (mmu_unsync_walk(parent, &pages)) {
2005 		bool protected = false;
2006 
2007 		for_each_sp(pages, sp, parents, i)
2008 			protected |= rmap_write_protect(vcpu, sp->gfn);
2009 
2010 		if (protected) {
2011 			kvm_flush_remote_tlbs(vcpu->kvm);
2012 			flush = false;
2013 		}
2014 
2015 		for_each_sp(pages, sp, parents, i) {
2016 			flush |= kvm_sync_page(vcpu, sp, &invalid_list);
2017 			mmu_pages_clear_parents(&parents);
2018 		}
2019 		if (need_resched() || spin_needbreak(&vcpu->kvm->mmu_lock)) {
2020 			kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2021 			cond_resched_lock(&vcpu->kvm->mmu_lock);
2022 			flush = false;
2023 		}
2024 	}
2025 
2026 	kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2027 }
2028 
2029 static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
2030 {
2031 	atomic_set(&sp->write_flooding_count,  0);
2032 }
2033 
2034 static void clear_sp_write_flooding_count(u64 *spte)
2035 {
2036 	__clear_sp_write_flooding_count(sptep_to_sp(spte));
2037 }
2038 
2039 static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
2040 					     gfn_t gfn,
2041 					     gva_t gaddr,
2042 					     unsigned level,
2043 					     int direct,
2044 					     unsigned int access)
2045 {
2046 	bool direct_mmu = vcpu->arch.mmu->direct_map;
2047 	union kvm_mmu_page_role role;
2048 	struct hlist_head *sp_list;
2049 	unsigned quadrant;
2050 	struct kvm_mmu_page *sp;
2051 	bool need_sync = false;
2052 	bool flush = false;
2053 	int collisions = 0;
2054 	LIST_HEAD(invalid_list);
2055 
2056 	role = vcpu->arch.mmu->mmu_role.base;
2057 	role.level = level;
2058 	role.direct = direct;
2059 	if (role.direct)
2060 		role.gpte_is_8_bytes = true;
2061 	role.access = access;
2062 	if (!direct_mmu && vcpu->arch.mmu->root_level <= PT32_ROOT_LEVEL) {
2063 		quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
2064 		quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
2065 		role.quadrant = quadrant;
2066 	}
2067 
2068 	sp_list = &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)];
2069 	for_each_valid_sp(vcpu->kvm, sp, sp_list) {
2070 		if (sp->gfn != gfn) {
2071 			collisions++;
2072 			continue;
2073 		}
2074 
2075 		if (!need_sync && sp->unsync)
2076 			need_sync = true;
2077 
2078 		if (sp->role.word != role.word)
2079 			continue;
2080 
2081 		if (direct_mmu)
2082 			goto trace_get_page;
2083 
2084 		if (sp->unsync) {
2085 			/* The page is good, but __kvm_sync_page might still end
2086 			 * up zapping it.  If so, break in order to rebuild it.
2087 			 */
2088 			if (!__kvm_sync_page(vcpu, sp, &invalid_list))
2089 				break;
2090 
2091 			WARN_ON(!list_empty(&invalid_list));
2092 			kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
2093 		}
2094 
2095 		if (sp->unsync_children)
2096 			kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
2097 
2098 		__clear_sp_write_flooding_count(sp);
2099 
2100 trace_get_page:
2101 		trace_kvm_mmu_get_page(sp, false);
2102 		goto out;
2103 	}
2104 
2105 	++vcpu->kvm->stat.mmu_cache_miss;
2106 
2107 	sp = kvm_mmu_alloc_page(vcpu, direct);
2108 
2109 	sp->gfn = gfn;
2110 	sp->role = role;
2111 	hlist_add_head(&sp->hash_link, sp_list);
2112 	if (!direct) {
2113 		/*
2114 		 * we should do write protection before syncing pages
2115 		 * otherwise the content of the synced shadow page may
2116 		 * be inconsistent with guest page table.
2117 		 */
2118 		account_shadowed(vcpu->kvm, sp);
2119 		if (level == PG_LEVEL_4K && rmap_write_protect(vcpu, gfn))
2120 			kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn, 1);
2121 
2122 		if (level > PG_LEVEL_4K && need_sync)
2123 			flush |= kvm_sync_pages(vcpu, gfn, &invalid_list);
2124 	}
2125 	trace_kvm_mmu_get_page(sp, true);
2126 
2127 	kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2128 out:
2129 	if (collisions > vcpu->kvm->stat.max_mmu_page_hash_collisions)
2130 		vcpu->kvm->stat.max_mmu_page_hash_collisions = collisions;
2131 	return sp;
2132 }
2133 
2134 static void shadow_walk_init_using_root(struct kvm_shadow_walk_iterator *iterator,
2135 					struct kvm_vcpu *vcpu, hpa_t root,
2136 					u64 addr)
2137 {
2138 	iterator->addr = addr;
2139 	iterator->shadow_addr = root;
2140 	iterator->level = vcpu->arch.mmu->shadow_root_level;
2141 
2142 	if (iterator->level == PT64_ROOT_4LEVEL &&
2143 	    vcpu->arch.mmu->root_level < PT64_ROOT_4LEVEL &&
2144 	    !vcpu->arch.mmu->direct_map)
2145 		--iterator->level;
2146 
2147 	if (iterator->level == PT32E_ROOT_LEVEL) {
2148 		/*
2149 		 * prev_root is currently only used for 64-bit hosts. So only
2150 		 * the active root_hpa is valid here.
2151 		 */
2152 		BUG_ON(root != vcpu->arch.mmu->root_hpa);
2153 
2154 		iterator->shadow_addr
2155 			= vcpu->arch.mmu->pae_root[(addr >> 30) & 3];
2156 		iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
2157 		--iterator->level;
2158 		if (!iterator->shadow_addr)
2159 			iterator->level = 0;
2160 	}
2161 }
2162 
2163 static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
2164 			     struct kvm_vcpu *vcpu, u64 addr)
2165 {
2166 	shadow_walk_init_using_root(iterator, vcpu, vcpu->arch.mmu->root_hpa,
2167 				    addr);
2168 }
2169 
2170 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
2171 {
2172 	if (iterator->level < PG_LEVEL_4K)
2173 		return false;
2174 
2175 	iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
2176 	iterator->sptep	= ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
2177 	return true;
2178 }
2179 
2180 static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
2181 			       u64 spte)
2182 {
2183 	if (is_last_spte(spte, iterator->level)) {
2184 		iterator->level = 0;
2185 		return;
2186 	}
2187 
2188 	iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2189 	--iterator->level;
2190 }
2191 
2192 static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
2193 {
2194 	__shadow_walk_next(iterator, *iterator->sptep);
2195 }
2196 
2197 static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep,
2198 			     struct kvm_mmu_page *sp)
2199 {
2200 	u64 spte;
2201 
2202 	BUILD_BUG_ON(VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);
2203 
2204 	spte = make_nonleaf_spte(sp->spt, sp_ad_disabled(sp));
2205 
2206 	mmu_spte_set(sptep, spte);
2207 
2208 	mmu_page_add_parent_pte(vcpu, sp, sptep);
2209 
2210 	if (sp->unsync_children || sp->unsync)
2211 		mark_unsync(sptep);
2212 }
2213 
2214 static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2215 				   unsigned direct_access)
2216 {
2217 	if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
2218 		struct kvm_mmu_page *child;
2219 
2220 		/*
2221 		 * For the direct sp, if the guest pte's dirty bit
2222 		 * changed form clean to dirty, it will corrupt the
2223 		 * sp's access: allow writable in the read-only sp,
2224 		 * so we should update the spte at this point to get
2225 		 * a new sp with the correct access.
2226 		 */
2227 		child = to_shadow_page(*sptep & PT64_BASE_ADDR_MASK);
2228 		if (child->role.access == direct_access)
2229 			return;
2230 
2231 		drop_parent_pte(child, sptep);
2232 		kvm_flush_remote_tlbs_with_address(vcpu->kvm, child->gfn, 1);
2233 	}
2234 }
2235 
2236 /* Returns the number of zapped non-leaf child shadow pages. */
2237 static int mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
2238 			    u64 *spte, struct list_head *invalid_list)
2239 {
2240 	u64 pte;
2241 	struct kvm_mmu_page *child;
2242 
2243 	pte = *spte;
2244 	if (is_shadow_present_pte(pte)) {
2245 		if (is_last_spte(pte, sp->role.level)) {
2246 			drop_spte(kvm, spte);
2247 			if (is_large_pte(pte))
2248 				--kvm->stat.lpages;
2249 		} else {
2250 			child = to_shadow_page(pte & PT64_BASE_ADDR_MASK);
2251 			drop_parent_pte(child, spte);
2252 
2253 			/*
2254 			 * Recursively zap nested TDP SPs, parentless SPs are
2255 			 * unlikely to be used again in the near future.  This
2256 			 * avoids retaining a large number of stale nested SPs.
2257 			 */
2258 			if (tdp_enabled && invalid_list &&
2259 			    child->role.guest_mode && !child->parent_ptes.val)
2260 				return kvm_mmu_prepare_zap_page(kvm, child,
2261 								invalid_list);
2262 		}
2263 	} else if (is_mmio_spte(pte)) {
2264 		mmu_spte_clear_no_track(spte);
2265 	}
2266 	return 0;
2267 }
2268 
2269 static int kvm_mmu_page_unlink_children(struct kvm *kvm,
2270 					struct kvm_mmu_page *sp,
2271 					struct list_head *invalid_list)
2272 {
2273 	int zapped = 0;
2274 	unsigned i;
2275 
2276 	for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2277 		zapped += mmu_page_zap_pte(kvm, sp, sp->spt + i, invalid_list);
2278 
2279 	return zapped;
2280 }
2281 
2282 static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
2283 {
2284 	u64 *sptep;
2285 	struct rmap_iterator iter;
2286 
2287 	while ((sptep = rmap_get_first(&sp->parent_ptes, &iter)))
2288 		drop_parent_pte(sp, sptep);
2289 }
2290 
2291 static int mmu_zap_unsync_children(struct kvm *kvm,
2292 				   struct kvm_mmu_page *parent,
2293 				   struct list_head *invalid_list)
2294 {
2295 	int i, zapped = 0;
2296 	struct mmu_page_path parents;
2297 	struct kvm_mmu_pages pages;
2298 
2299 	if (parent->role.level == PG_LEVEL_4K)
2300 		return 0;
2301 
2302 	while (mmu_unsync_walk(parent, &pages)) {
2303 		struct kvm_mmu_page *sp;
2304 
2305 		for_each_sp(pages, sp, parents, i) {
2306 			kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2307 			mmu_pages_clear_parents(&parents);
2308 			zapped++;
2309 		}
2310 	}
2311 
2312 	return zapped;
2313 }
2314 
2315 static bool __kvm_mmu_prepare_zap_page(struct kvm *kvm,
2316 				       struct kvm_mmu_page *sp,
2317 				       struct list_head *invalid_list,
2318 				       int *nr_zapped)
2319 {
2320 	bool list_unstable;
2321 
2322 	trace_kvm_mmu_prepare_zap_page(sp);
2323 	++kvm->stat.mmu_shadow_zapped;
2324 	*nr_zapped = mmu_zap_unsync_children(kvm, sp, invalid_list);
2325 	*nr_zapped += kvm_mmu_page_unlink_children(kvm, sp, invalid_list);
2326 	kvm_mmu_unlink_parents(kvm, sp);
2327 
2328 	/* Zapping children means active_mmu_pages has become unstable. */
2329 	list_unstable = *nr_zapped;
2330 
2331 	if (!sp->role.invalid && !sp->role.direct)
2332 		unaccount_shadowed(kvm, sp);
2333 
2334 	if (sp->unsync)
2335 		kvm_unlink_unsync_page(kvm, sp);
2336 	if (!sp->root_count) {
2337 		/* Count self */
2338 		(*nr_zapped)++;
2339 
2340 		/*
2341 		 * Already invalid pages (previously active roots) are not on
2342 		 * the active page list.  See list_del() in the "else" case of
2343 		 * !sp->root_count.
2344 		 */
2345 		if (sp->role.invalid)
2346 			list_add(&sp->link, invalid_list);
2347 		else
2348 			list_move(&sp->link, invalid_list);
2349 		kvm_mod_used_mmu_pages(kvm, -1);
2350 	} else {
2351 		/*
2352 		 * Remove the active root from the active page list, the root
2353 		 * will be explicitly freed when the root_count hits zero.
2354 		 */
2355 		list_del(&sp->link);
2356 
2357 		/*
2358 		 * Obsolete pages cannot be used on any vCPUs, see the comment
2359 		 * in kvm_mmu_zap_all_fast().  Note, is_obsolete_sp() also
2360 		 * treats invalid shadow pages as being obsolete.
2361 		 */
2362 		if (!is_obsolete_sp(kvm, sp))
2363 			kvm_reload_remote_mmus(kvm);
2364 	}
2365 
2366 	if (sp->lpage_disallowed)
2367 		unaccount_huge_nx_page(kvm, sp);
2368 
2369 	sp->role.invalid = 1;
2370 	return list_unstable;
2371 }
2372 
2373 static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2374 				     struct list_head *invalid_list)
2375 {
2376 	int nr_zapped;
2377 
2378 	__kvm_mmu_prepare_zap_page(kvm, sp, invalid_list, &nr_zapped);
2379 	return nr_zapped;
2380 }
2381 
2382 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2383 				    struct list_head *invalid_list)
2384 {
2385 	struct kvm_mmu_page *sp, *nsp;
2386 
2387 	if (list_empty(invalid_list))
2388 		return;
2389 
2390 	/*
2391 	 * We need to make sure everyone sees our modifications to
2392 	 * the page tables and see changes to vcpu->mode here. The barrier
2393 	 * in the kvm_flush_remote_tlbs() achieves this. This pairs
2394 	 * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end.
2395 	 *
2396 	 * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit
2397 	 * guest mode and/or lockless shadow page table walks.
2398 	 */
2399 	kvm_flush_remote_tlbs(kvm);
2400 
2401 	list_for_each_entry_safe(sp, nsp, invalid_list, link) {
2402 		WARN_ON(!sp->role.invalid || sp->root_count);
2403 		kvm_mmu_free_page(sp);
2404 	}
2405 }
2406 
2407 static unsigned long kvm_mmu_zap_oldest_mmu_pages(struct kvm *kvm,
2408 						  unsigned long nr_to_zap)
2409 {
2410 	unsigned long total_zapped = 0;
2411 	struct kvm_mmu_page *sp, *tmp;
2412 	LIST_HEAD(invalid_list);
2413 	bool unstable;
2414 	int nr_zapped;
2415 
2416 	if (list_empty(&kvm->arch.active_mmu_pages))
2417 		return 0;
2418 
2419 restart:
2420 	list_for_each_entry_safe(sp, tmp, &kvm->arch.active_mmu_pages, link) {
2421 		/*
2422 		 * Don't zap active root pages, the page itself can't be freed
2423 		 * and zapping it will just force vCPUs to realloc and reload.
2424 		 */
2425 		if (sp->root_count)
2426 			continue;
2427 
2428 		unstable = __kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list,
2429 						      &nr_zapped);
2430 		total_zapped += nr_zapped;
2431 		if (total_zapped >= nr_to_zap)
2432 			break;
2433 
2434 		if (unstable)
2435 			goto restart;
2436 	}
2437 
2438 	kvm_mmu_commit_zap_page(kvm, &invalid_list);
2439 
2440 	kvm->stat.mmu_recycled += total_zapped;
2441 	return total_zapped;
2442 }
2443 
2444 static inline unsigned long kvm_mmu_available_pages(struct kvm *kvm)
2445 {
2446 	if (kvm->arch.n_max_mmu_pages > kvm->arch.n_used_mmu_pages)
2447 		return kvm->arch.n_max_mmu_pages -
2448 			kvm->arch.n_used_mmu_pages;
2449 
2450 	return 0;
2451 }
2452 
2453 static int make_mmu_pages_available(struct kvm_vcpu *vcpu)
2454 {
2455 	unsigned long avail = kvm_mmu_available_pages(vcpu->kvm);
2456 
2457 	if (likely(avail >= KVM_MIN_FREE_MMU_PAGES))
2458 		return 0;
2459 
2460 	kvm_mmu_zap_oldest_mmu_pages(vcpu->kvm, KVM_REFILL_PAGES - avail);
2461 
2462 	if (!kvm_mmu_available_pages(vcpu->kvm))
2463 		return -ENOSPC;
2464 	return 0;
2465 }
2466 
2467 /*
2468  * Changing the number of mmu pages allocated to the vm
2469  * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2470  */
2471 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long goal_nr_mmu_pages)
2472 {
2473 	spin_lock(&kvm->mmu_lock);
2474 
2475 	if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2476 		kvm_mmu_zap_oldest_mmu_pages(kvm, kvm->arch.n_used_mmu_pages -
2477 						  goal_nr_mmu_pages);
2478 
2479 		goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2480 	}
2481 
2482 	kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2483 
2484 	spin_unlock(&kvm->mmu_lock);
2485 }
2486 
2487 int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2488 {
2489 	struct kvm_mmu_page *sp;
2490 	LIST_HEAD(invalid_list);
2491 	int r;
2492 
2493 	pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
2494 	r = 0;
2495 	spin_lock(&kvm->mmu_lock);
2496 	for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
2497 		pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
2498 			 sp->role.word);
2499 		r = 1;
2500 		kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2501 	}
2502 	kvm_mmu_commit_zap_page(kvm, &invalid_list);
2503 	spin_unlock(&kvm->mmu_lock);
2504 
2505 	return r;
2506 }
2507 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
2508 
2509 static void kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2510 {
2511 	trace_kvm_mmu_unsync_page(sp);
2512 	++vcpu->kvm->stat.mmu_unsync;
2513 	sp->unsync = 1;
2514 
2515 	kvm_mmu_mark_parents_unsync(sp);
2516 }
2517 
2518 bool mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
2519 			    bool can_unsync)
2520 {
2521 	struct kvm_mmu_page *sp;
2522 
2523 	if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
2524 		return true;
2525 
2526 	for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
2527 		if (!can_unsync)
2528 			return true;
2529 
2530 		if (sp->unsync)
2531 			continue;
2532 
2533 		WARN_ON(sp->role.level != PG_LEVEL_4K);
2534 		kvm_unsync_page(vcpu, sp);
2535 	}
2536 
2537 	/*
2538 	 * We need to ensure that the marking of unsync pages is visible
2539 	 * before the SPTE is updated to allow writes because
2540 	 * kvm_mmu_sync_roots() checks the unsync flags without holding
2541 	 * the MMU lock and so can race with this. If the SPTE was updated
2542 	 * before the page had been marked as unsync-ed, something like the
2543 	 * following could happen:
2544 	 *
2545 	 * CPU 1                    CPU 2
2546 	 * ---------------------------------------------------------------------
2547 	 * 1.2 Host updates SPTE
2548 	 *     to be writable
2549 	 *                      2.1 Guest writes a GPTE for GVA X.
2550 	 *                          (GPTE being in the guest page table shadowed
2551 	 *                           by the SP from CPU 1.)
2552 	 *                          This reads SPTE during the page table walk.
2553 	 *                          Since SPTE.W is read as 1, there is no
2554 	 *                          fault.
2555 	 *
2556 	 *                      2.2 Guest issues TLB flush.
2557 	 *                          That causes a VM Exit.
2558 	 *
2559 	 *                      2.3 kvm_mmu_sync_pages() reads sp->unsync.
2560 	 *                          Since it is false, so it just returns.
2561 	 *
2562 	 *                      2.4 Guest accesses GVA X.
2563 	 *                          Since the mapping in the SP was not updated,
2564 	 *                          so the old mapping for GVA X incorrectly
2565 	 *                          gets used.
2566 	 * 1.1 Host marks SP
2567 	 *     as unsync
2568 	 *     (sp->unsync = true)
2569 	 *
2570 	 * The write barrier below ensures that 1.1 happens before 1.2 and thus
2571 	 * the situation in 2.4 does not arise. The implicit barrier in 2.2
2572 	 * pairs with this write barrier.
2573 	 */
2574 	smp_wmb();
2575 
2576 	return false;
2577 }
2578 
2579 static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2580 		    unsigned int pte_access, int level,
2581 		    gfn_t gfn, kvm_pfn_t pfn, bool speculative,
2582 		    bool can_unsync, bool host_writable)
2583 {
2584 	u64 spte;
2585 	struct kvm_mmu_page *sp;
2586 	int ret;
2587 
2588 	if (set_mmio_spte(vcpu, sptep, gfn, pfn, pte_access))
2589 		return 0;
2590 
2591 	sp = sptep_to_sp(sptep);
2592 
2593 	ret = make_spte(vcpu, pte_access, level, gfn, pfn, *sptep, speculative,
2594 			can_unsync, host_writable, sp_ad_disabled(sp), &spte);
2595 
2596 	if (spte & PT_WRITABLE_MASK)
2597 		kvm_vcpu_mark_page_dirty(vcpu, gfn);
2598 
2599 	if (*sptep == spte)
2600 		ret |= SET_SPTE_SPURIOUS;
2601 	else if (mmu_spte_update(sptep, spte))
2602 		ret |= SET_SPTE_NEED_REMOTE_TLB_FLUSH;
2603 	return ret;
2604 }
2605 
2606 static int mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2607 			unsigned int pte_access, bool write_fault, int level,
2608 			gfn_t gfn, kvm_pfn_t pfn, bool speculative,
2609 			bool host_writable)
2610 {
2611 	int was_rmapped = 0;
2612 	int rmap_count;
2613 	int set_spte_ret;
2614 	int ret = RET_PF_FIXED;
2615 	bool flush = false;
2616 
2617 	pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
2618 		 *sptep, write_fault, gfn);
2619 
2620 	if (is_shadow_present_pte(*sptep)) {
2621 		/*
2622 		 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2623 		 * the parent of the now unreachable PTE.
2624 		 */
2625 		if (level > PG_LEVEL_4K && !is_large_pte(*sptep)) {
2626 			struct kvm_mmu_page *child;
2627 			u64 pte = *sptep;
2628 
2629 			child = to_shadow_page(pte & PT64_BASE_ADDR_MASK);
2630 			drop_parent_pte(child, sptep);
2631 			flush = true;
2632 		} else if (pfn != spte_to_pfn(*sptep)) {
2633 			pgprintk("hfn old %llx new %llx\n",
2634 				 spte_to_pfn(*sptep), pfn);
2635 			drop_spte(vcpu->kvm, sptep);
2636 			flush = true;
2637 		} else
2638 			was_rmapped = 1;
2639 	}
2640 
2641 	set_spte_ret = set_spte(vcpu, sptep, pte_access, level, gfn, pfn,
2642 				speculative, true, host_writable);
2643 	if (set_spte_ret & SET_SPTE_WRITE_PROTECTED_PT) {
2644 		if (write_fault)
2645 			ret = RET_PF_EMULATE;
2646 		kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
2647 	}
2648 
2649 	if (set_spte_ret & SET_SPTE_NEED_REMOTE_TLB_FLUSH || flush)
2650 		kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn,
2651 				KVM_PAGES_PER_HPAGE(level));
2652 
2653 	if (unlikely(is_mmio_spte(*sptep)))
2654 		ret = RET_PF_EMULATE;
2655 
2656 	/*
2657 	 * The fault is fully spurious if and only if the new SPTE and old SPTE
2658 	 * are identical, and emulation is not required.
2659 	 */
2660 	if ((set_spte_ret & SET_SPTE_SPURIOUS) && ret == RET_PF_FIXED) {
2661 		WARN_ON_ONCE(!was_rmapped);
2662 		return RET_PF_SPURIOUS;
2663 	}
2664 
2665 	pgprintk("%s: setting spte %llx\n", __func__, *sptep);
2666 	trace_kvm_mmu_set_spte(level, gfn, sptep);
2667 	if (!was_rmapped && is_large_pte(*sptep))
2668 		++vcpu->kvm->stat.lpages;
2669 
2670 	if (is_shadow_present_pte(*sptep)) {
2671 		if (!was_rmapped) {
2672 			rmap_count = rmap_add(vcpu, sptep, gfn);
2673 			if (rmap_count > RMAP_RECYCLE_THRESHOLD)
2674 				rmap_recycle(vcpu, sptep, gfn);
2675 		}
2676 	}
2677 
2678 	return ret;
2679 }
2680 
2681 static kvm_pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
2682 				     bool no_dirty_log)
2683 {
2684 	struct kvm_memory_slot *slot;
2685 
2686 	slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
2687 	if (!slot)
2688 		return KVM_PFN_ERR_FAULT;
2689 
2690 	return gfn_to_pfn_memslot_atomic(slot, gfn);
2691 }
2692 
2693 static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2694 				    struct kvm_mmu_page *sp,
2695 				    u64 *start, u64 *end)
2696 {
2697 	struct page *pages[PTE_PREFETCH_NUM];
2698 	struct kvm_memory_slot *slot;
2699 	unsigned int access = sp->role.access;
2700 	int i, ret;
2701 	gfn_t gfn;
2702 
2703 	gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
2704 	slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK);
2705 	if (!slot)
2706 		return -1;
2707 
2708 	ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start);
2709 	if (ret <= 0)
2710 		return -1;
2711 
2712 	for (i = 0; i < ret; i++, gfn++, start++) {
2713 		mmu_set_spte(vcpu, start, access, false, sp->role.level, gfn,
2714 			     page_to_pfn(pages[i]), true, true);
2715 		put_page(pages[i]);
2716 	}
2717 
2718 	return 0;
2719 }
2720 
2721 static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
2722 				  struct kvm_mmu_page *sp, u64 *sptep)
2723 {
2724 	u64 *spte, *start = NULL;
2725 	int i;
2726 
2727 	WARN_ON(!sp->role.direct);
2728 
2729 	i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
2730 	spte = sp->spt + i;
2731 
2732 	for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
2733 		if (is_shadow_present_pte(*spte) || spte == sptep) {
2734 			if (!start)
2735 				continue;
2736 			if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2737 				break;
2738 			start = NULL;
2739 		} else if (!start)
2740 			start = spte;
2741 	}
2742 }
2743 
2744 static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
2745 {
2746 	struct kvm_mmu_page *sp;
2747 
2748 	sp = sptep_to_sp(sptep);
2749 
2750 	/*
2751 	 * Without accessed bits, there's no way to distinguish between
2752 	 * actually accessed translations and prefetched, so disable pte
2753 	 * prefetch if accessed bits aren't available.
2754 	 */
2755 	if (sp_ad_disabled(sp))
2756 		return;
2757 
2758 	if (sp->role.level > PG_LEVEL_4K)
2759 		return;
2760 
2761 	__direct_pte_prefetch(vcpu, sp, sptep);
2762 }
2763 
2764 static int host_pfn_mapping_level(struct kvm_vcpu *vcpu, gfn_t gfn,
2765 				  kvm_pfn_t pfn, struct kvm_memory_slot *slot)
2766 {
2767 	unsigned long hva;
2768 	pte_t *pte;
2769 	int level;
2770 
2771 	if (!PageCompound(pfn_to_page(pfn)) && !kvm_is_zone_device_pfn(pfn))
2772 		return PG_LEVEL_4K;
2773 
2774 	/*
2775 	 * Note, using the already-retrieved memslot and __gfn_to_hva_memslot()
2776 	 * is not solely for performance, it's also necessary to avoid the
2777 	 * "writable" check in __gfn_to_hva_many(), which will always fail on
2778 	 * read-only memslots due to gfn_to_hva() assuming writes.  Earlier
2779 	 * page fault steps have already verified the guest isn't writing a
2780 	 * read-only memslot.
2781 	 */
2782 	hva = __gfn_to_hva_memslot(slot, gfn);
2783 
2784 	pte = lookup_address_in_mm(vcpu->kvm->mm, hva, &level);
2785 	if (unlikely(!pte))
2786 		return PG_LEVEL_4K;
2787 
2788 	return level;
2789 }
2790 
2791 int kvm_mmu_hugepage_adjust(struct kvm_vcpu *vcpu, gfn_t gfn,
2792 			    int max_level, kvm_pfn_t *pfnp,
2793 			    bool huge_page_disallowed, int *req_level)
2794 {
2795 	struct kvm_memory_slot *slot;
2796 	struct kvm_lpage_info *linfo;
2797 	kvm_pfn_t pfn = *pfnp;
2798 	kvm_pfn_t mask;
2799 	int level;
2800 
2801 	*req_level = PG_LEVEL_4K;
2802 
2803 	if (unlikely(max_level == PG_LEVEL_4K))
2804 		return PG_LEVEL_4K;
2805 
2806 	if (is_error_noslot_pfn(pfn) || kvm_is_reserved_pfn(pfn))
2807 		return PG_LEVEL_4K;
2808 
2809 	slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, true);
2810 	if (!slot)
2811 		return PG_LEVEL_4K;
2812 
2813 	max_level = min(max_level, max_huge_page_level);
2814 	for ( ; max_level > PG_LEVEL_4K; max_level--) {
2815 		linfo = lpage_info_slot(gfn, slot, max_level);
2816 		if (!linfo->disallow_lpage)
2817 			break;
2818 	}
2819 
2820 	if (max_level == PG_LEVEL_4K)
2821 		return PG_LEVEL_4K;
2822 
2823 	level = host_pfn_mapping_level(vcpu, gfn, pfn, slot);
2824 	if (level == PG_LEVEL_4K)
2825 		return level;
2826 
2827 	*req_level = level = min(level, max_level);
2828 
2829 	/*
2830 	 * Enforce the iTLB multihit workaround after capturing the requested
2831 	 * level, which will be used to do precise, accurate accounting.
2832 	 */
2833 	if (huge_page_disallowed)
2834 		return PG_LEVEL_4K;
2835 
2836 	/*
2837 	 * mmu_notifier_retry() was successful and mmu_lock is held, so
2838 	 * the pmd can't be split from under us.
2839 	 */
2840 	mask = KVM_PAGES_PER_HPAGE(level) - 1;
2841 	VM_BUG_ON((gfn & mask) != (pfn & mask));
2842 	*pfnp = pfn & ~mask;
2843 
2844 	return level;
2845 }
2846 
2847 void disallowed_hugepage_adjust(u64 spte, gfn_t gfn, int cur_level,
2848 				kvm_pfn_t *pfnp, int *goal_levelp)
2849 {
2850 	int level = *goal_levelp;
2851 
2852 	if (cur_level == level && level > PG_LEVEL_4K &&
2853 	    is_shadow_present_pte(spte) &&
2854 	    !is_large_pte(spte)) {
2855 		/*
2856 		 * A small SPTE exists for this pfn, but FNAME(fetch)
2857 		 * and __direct_map would like to create a large PTE
2858 		 * instead: just force them to go down another level,
2859 		 * patching back for them into pfn the next 9 bits of
2860 		 * the address.
2861 		 */
2862 		u64 page_mask = KVM_PAGES_PER_HPAGE(level) -
2863 				KVM_PAGES_PER_HPAGE(level - 1);
2864 		*pfnp |= gfn & page_mask;
2865 		(*goal_levelp)--;
2866 	}
2867 }
2868 
2869 static int __direct_map(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
2870 			int map_writable, int max_level, kvm_pfn_t pfn,
2871 			bool prefault, bool is_tdp)
2872 {
2873 	bool nx_huge_page_workaround_enabled = is_nx_huge_page_enabled();
2874 	bool write = error_code & PFERR_WRITE_MASK;
2875 	bool exec = error_code & PFERR_FETCH_MASK;
2876 	bool huge_page_disallowed = exec && nx_huge_page_workaround_enabled;
2877 	struct kvm_shadow_walk_iterator it;
2878 	struct kvm_mmu_page *sp;
2879 	int level, req_level, ret;
2880 	gfn_t gfn = gpa >> PAGE_SHIFT;
2881 	gfn_t base_gfn = gfn;
2882 
2883 	if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa)))
2884 		return RET_PF_RETRY;
2885 
2886 	level = kvm_mmu_hugepage_adjust(vcpu, gfn, max_level, &pfn,
2887 					huge_page_disallowed, &req_level);
2888 
2889 	trace_kvm_mmu_spte_requested(gpa, level, pfn);
2890 	for_each_shadow_entry(vcpu, gpa, it) {
2891 		/*
2892 		 * We cannot overwrite existing page tables with an NX
2893 		 * large page, as the leaf could be executable.
2894 		 */
2895 		if (nx_huge_page_workaround_enabled)
2896 			disallowed_hugepage_adjust(*it.sptep, gfn, it.level,
2897 						   &pfn, &level);
2898 
2899 		base_gfn = gfn & ~(KVM_PAGES_PER_HPAGE(it.level) - 1);
2900 		if (it.level == level)
2901 			break;
2902 
2903 		drop_large_spte(vcpu, it.sptep);
2904 		if (!is_shadow_present_pte(*it.sptep)) {
2905 			sp = kvm_mmu_get_page(vcpu, base_gfn, it.addr,
2906 					      it.level - 1, true, ACC_ALL);
2907 
2908 			link_shadow_page(vcpu, it.sptep, sp);
2909 			if (is_tdp && huge_page_disallowed &&
2910 			    req_level >= it.level)
2911 				account_huge_nx_page(vcpu->kvm, sp);
2912 		}
2913 	}
2914 
2915 	ret = mmu_set_spte(vcpu, it.sptep, ACC_ALL,
2916 			   write, level, base_gfn, pfn, prefault,
2917 			   map_writable);
2918 	if (ret == RET_PF_SPURIOUS)
2919 		return ret;
2920 
2921 	direct_pte_prefetch(vcpu, it.sptep);
2922 	++vcpu->stat.pf_fixed;
2923 	return ret;
2924 }
2925 
2926 static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
2927 {
2928 	send_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, PAGE_SHIFT, tsk);
2929 }
2930 
2931 static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, kvm_pfn_t pfn)
2932 {
2933 	/*
2934 	 * Do not cache the mmio info caused by writing the readonly gfn
2935 	 * into the spte otherwise read access on readonly gfn also can
2936 	 * caused mmio page fault and treat it as mmio access.
2937 	 */
2938 	if (pfn == KVM_PFN_ERR_RO_FAULT)
2939 		return RET_PF_EMULATE;
2940 
2941 	if (pfn == KVM_PFN_ERR_HWPOISON) {
2942 		kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current);
2943 		return RET_PF_RETRY;
2944 	}
2945 
2946 	return -EFAULT;
2947 }
2948 
2949 static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
2950 				kvm_pfn_t pfn, unsigned int access,
2951 				int *ret_val)
2952 {
2953 	/* The pfn is invalid, report the error! */
2954 	if (unlikely(is_error_pfn(pfn))) {
2955 		*ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
2956 		return true;
2957 	}
2958 
2959 	if (unlikely(is_noslot_pfn(pfn)))
2960 		vcpu_cache_mmio_info(vcpu, gva, gfn,
2961 				     access & shadow_mmio_access_mask);
2962 
2963 	return false;
2964 }
2965 
2966 static bool page_fault_can_be_fast(u32 error_code)
2967 {
2968 	/*
2969 	 * Do not fix the mmio spte with invalid generation number which
2970 	 * need to be updated by slow page fault path.
2971 	 */
2972 	if (unlikely(error_code & PFERR_RSVD_MASK))
2973 		return false;
2974 
2975 	/* See if the page fault is due to an NX violation */
2976 	if (unlikely(((error_code & (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))
2977 		      == (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))))
2978 		return false;
2979 
2980 	/*
2981 	 * #PF can be fast if:
2982 	 * 1. The shadow page table entry is not present, which could mean that
2983 	 *    the fault is potentially caused by access tracking (if enabled).
2984 	 * 2. The shadow page table entry is present and the fault
2985 	 *    is caused by write-protect, that means we just need change the W
2986 	 *    bit of the spte which can be done out of mmu-lock.
2987 	 *
2988 	 * However, if access tracking is disabled we know that a non-present
2989 	 * page must be a genuine page fault where we have to create a new SPTE.
2990 	 * So, if access tracking is disabled, we return true only for write
2991 	 * accesses to a present page.
2992 	 */
2993 
2994 	return shadow_acc_track_mask != 0 ||
2995 	       ((error_code & (PFERR_WRITE_MASK | PFERR_PRESENT_MASK))
2996 		== (PFERR_WRITE_MASK | PFERR_PRESENT_MASK));
2997 }
2998 
2999 /*
3000  * Returns true if the SPTE was fixed successfully. Otherwise,
3001  * someone else modified the SPTE from its original value.
3002  */
3003 static bool
3004 fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
3005 			u64 *sptep, u64 old_spte, u64 new_spte)
3006 {
3007 	gfn_t gfn;
3008 
3009 	WARN_ON(!sp->role.direct);
3010 
3011 	/*
3012 	 * Theoretically we could also set dirty bit (and flush TLB) here in
3013 	 * order to eliminate unnecessary PML logging. See comments in
3014 	 * set_spte. But fast_page_fault is very unlikely to happen with PML
3015 	 * enabled, so we do not do this. This might result in the same GPA
3016 	 * to be logged in PML buffer again when the write really happens, and
3017 	 * eventually to be called by mark_page_dirty twice. But it's also no
3018 	 * harm. This also avoids the TLB flush needed after setting dirty bit
3019 	 * so non-PML cases won't be impacted.
3020 	 *
3021 	 * Compare with set_spte where instead shadow_dirty_mask is set.
3022 	 */
3023 	if (cmpxchg64(sptep, old_spte, new_spte) != old_spte)
3024 		return false;
3025 
3026 	if (is_writable_pte(new_spte) && !is_writable_pte(old_spte)) {
3027 		/*
3028 		 * The gfn of direct spte is stable since it is
3029 		 * calculated by sp->gfn.
3030 		 */
3031 		gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
3032 		kvm_vcpu_mark_page_dirty(vcpu, gfn);
3033 	}
3034 
3035 	return true;
3036 }
3037 
3038 static bool is_access_allowed(u32 fault_err_code, u64 spte)
3039 {
3040 	if (fault_err_code & PFERR_FETCH_MASK)
3041 		return is_executable_pte(spte);
3042 
3043 	if (fault_err_code & PFERR_WRITE_MASK)
3044 		return is_writable_pte(spte);
3045 
3046 	/* Fault was on Read access */
3047 	return spte & PT_PRESENT_MASK;
3048 }
3049 
3050 /*
3051  * Returns one of RET_PF_INVALID, RET_PF_FIXED or RET_PF_SPURIOUS.
3052  */
3053 static int fast_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
3054 			   u32 error_code)
3055 {
3056 	struct kvm_shadow_walk_iterator iterator;
3057 	struct kvm_mmu_page *sp;
3058 	int ret = RET_PF_INVALID;
3059 	u64 spte = 0ull;
3060 	uint retry_count = 0;
3061 
3062 	if (!page_fault_can_be_fast(error_code))
3063 		return ret;
3064 
3065 	walk_shadow_page_lockless_begin(vcpu);
3066 
3067 	do {
3068 		u64 new_spte;
3069 
3070 		for_each_shadow_entry_lockless(vcpu, cr2_or_gpa, iterator, spte)
3071 			if (!is_shadow_present_pte(spte))
3072 				break;
3073 
3074 		sp = sptep_to_sp(iterator.sptep);
3075 		if (!is_last_spte(spte, sp->role.level))
3076 			break;
3077 
3078 		/*
3079 		 * Check whether the memory access that caused the fault would
3080 		 * still cause it if it were to be performed right now. If not,
3081 		 * then this is a spurious fault caused by TLB lazily flushed,
3082 		 * or some other CPU has already fixed the PTE after the
3083 		 * current CPU took the fault.
3084 		 *
3085 		 * Need not check the access of upper level table entries since
3086 		 * they are always ACC_ALL.
3087 		 */
3088 		if (is_access_allowed(error_code, spte)) {
3089 			ret = RET_PF_SPURIOUS;
3090 			break;
3091 		}
3092 
3093 		new_spte = spte;
3094 
3095 		if (is_access_track_spte(spte))
3096 			new_spte = restore_acc_track_spte(new_spte);
3097 
3098 		/*
3099 		 * Currently, to simplify the code, write-protection can
3100 		 * be removed in the fast path only if the SPTE was
3101 		 * write-protected for dirty-logging or access tracking.
3102 		 */
3103 		if ((error_code & PFERR_WRITE_MASK) &&
3104 		    spte_can_locklessly_be_made_writable(spte)) {
3105 			new_spte |= PT_WRITABLE_MASK;
3106 
3107 			/*
3108 			 * Do not fix write-permission on the large spte.  Since
3109 			 * we only dirty the first page into the dirty-bitmap in
3110 			 * fast_pf_fix_direct_spte(), other pages are missed
3111 			 * if its slot has dirty logging enabled.
3112 			 *
3113 			 * Instead, we let the slow page fault path create a
3114 			 * normal spte to fix the access.
3115 			 *
3116 			 * See the comments in kvm_arch_commit_memory_region().
3117 			 */
3118 			if (sp->role.level > PG_LEVEL_4K)
3119 				break;
3120 		}
3121 
3122 		/* Verify that the fault can be handled in the fast path */
3123 		if (new_spte == spte ||
3124 		    !is_access_allowed(error_code, new_spte))
3125 			break;
3126 
3127 		/*
3128 		 * Currently, fast page fault only works for direct mapping
3129 		 * since the gfn is not stable for indirect shadow page. See
3130 		 * Documentation/virt/kvm/locking.rst to get more detail.
3131 		 */
3132 		if (fast_pf_fix_direct_spte(vcpu, sp, iterator.sptep, spte,
3133 					    new_spte)) {
3134 			ret = RET_PF_FIXED;
3135 			break;
3136 		}
3137 
3138 		if (++retry_count > 4) {
3139 			printk_once(KERN_WARNING
3140 				"kvm: Fast #PF retrying more than 4 times.\n");
3141 			break;
3142 		}
3143 
3144 	} while (true);
3145 
3146 	trace_fast_page_fault(vcpu, cr2_or_gpa, error_code, iterator.sptep,
3147 			      spte, ret);
3148 	walk_shadow_page_lockless_end(vcpu);
3149 
3150 	return ret;
3151 }
3152 
3153 static void mmu_free_root_page(struct kvm *kvm, hpa_t *root_hpa,
3154 			       struct list_head *invalid_list)
3155 {
3156 	struct kvm_mmu_page *sp;
3157 
3158 	if (!VALID_PAGE(*root_hpa))
3159 		return;
3160 
3161 	sp = to_shadow_page(*root_hpa & PT64_BASE_ADDR_MASK);
3162 
3163 	if (kvm_mmu_put_root(kvm, sp)) {
3164 		if (sp->tdp_mmu_page)
3165 			kvm_tdp_mmu_free_root(kvm, sp);
3166 		else if (sp->role.invalid)
3167 			kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
3168 	}
3169 
3170 	*root_hpa = INVALID_PAGE;
3171 }
3172 
3173 /* roots_to_free must be some combination of the KVM_MMU_ROOT_* flags */
3174 void kvm_mmu_free_roots(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
3175 			ulong roots_to_free)
3176 {
3177 	struct kvm *kvm = vcpu->kvm;
3178 	int i;
3179 	LIST_HEAD(invalid_list);
3180 	bool free_active_root = roots_to_free & KVM_MMU_ROOT_CURRENT;
3181 
3182 	BUILD_BUG_ON(KVM_MMU_NUM_PREV_ROOTS >= BITS_PER_LONG);
3183 
3184 	/* Before acquiring the MMU lock, see if we need to do any real work. */
3185 	if (!(free_active_root && VALID_PAGE(mmu->root_hpa))) {
3186 		for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
3187 			if ((roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) &&
3188 			    VALID_PAGE(mmu->prev_roots[i].hpa))
3189 				break;
3190 
3191 		if (i == KVM_MMU_NUM_PREV_ROOTS)
3192 			return;
3193 	}
3194 
3195 	spin_lock(&kvm->mmu_lock);
3196 
3197 	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
3198 		if (roots_to_free & KVM_MMU_ROOT_PREVIOUS(i))
3199 			mmu_free_root_page(kvm, &mmu->prev_roots[i].hpa,
3200 					   &invalid_list);
3201 
3202 	if (free_active_root) {
3203 		if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
3204 		    (mmu->root_level >= PT64_ROOT_4LEVEL || mmu->direct_map)) {
3205 			mmu_free_root_page(kvm, &mmu->root_hpa, &invalid_list);
3206 		} else {
3207 			for (i = 0; i < 4; ++i)
3208 				if (mmu->pae_root[i] != 0)
3209 					mmu_free_root_page(kvm,
3210 							   &mmu->pae_root[i],
3211 							   &invalid_list);
3212 			mmu->root_hpa = INVALID_PAGE;
3213 		}
3214 		mmu->root_pgd = 0;
3215 	}
3216 
3217 	kvm_mmu_commit_zap_page(kvm, &invalid_list);
3218 	spin_unlock(&kvm->mmu_lock);
3219 }
3220 EXPORT_SYMBOL_GPL(kvm_mmu_free_roots);
3221 
3222 static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
3223 {
3224 	int ret = 0;
3225 
3226 	if (!kvm_vcpu_is_visible_gfn(vcpu, root_gfn)) {
3227 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3228 		ret = 1;
3229 	}
3230 
3231 	return ret;
3232 }
3233 
3234 static hpa_t mmu_alloc_root(struct kvm_vcpu *vcpu, gfn_t gfn, gva_t gva,
3235 			    u8 level, bool direct)
3236 {
3237 	struct kvm_mmu_page *sp;
3238 
3239 	spin_lock(&vcpu->kvm->mmu_lock);
3240 
3241 	if (make_mmu_pages_available(vcpu)) {
3242 		spin_unlock(&vcpu->kvm->mmu_lock);
3243 		return INVALID_PAGE;
3244 	}
3245 	sp = kvm_mmu_get_page(vcpu, gfn, gva, level, direct, ACC_ALL);
3246 	++sp->root_count;
3247 
3248 	spin_unlock(&vcpu->kvm->mmu_lock);
3249 	return __pa(sp->spt);
3250 }
3251 
3252 static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
3253 {
3254 	u8 shadow_root_level = vcpu->arch.mmu->shadow_root_level;
3255 	hpa_t root;
3256 	unsigned i;
3257 
3258 	if (vcpu->kvm->arch.tdp_mmu_enabled) {
3259 		root = kvm_tdp_mmu_get_vcpu_root_hpa(vcpu);
3260 
3261 		if (!VALID_PAGE(root))
3262 			return -ENOSPC;
3263 		vcpu->arch.mmu->root_hpa = root;
3264 	} else if (shadow_root_level >= PT64_ROOT_4LEVEL) {
3265 		root = mmu_alloc_root(vcpu, 0, 0, shadow_root_level,
3266 				      true);
3267 
3268 		if (!VALID_PAGE(root))
3269 			return -ENOSPC;
3270 		vcpu->arch.mmu->root_hpa = root;
3271 	} else if (shadow_root_level == PT32E_ROOT_LEVEL) {
3272 		for (i = 0; i < 4; ++i) {
3273 			MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu->pae_root[i]));
3274 
3275 			root = mmu_alloc_root(vcpu, i << (30 - PAGE_SHIFT),
3276 					      i << 30, PT32_ROOT_LEVEL, true);
3277 			if (!VALID_PAGE(root))
3278 				return -ENOSPC;
3279 			vcpu->arch.mmu->pae_root[i] = root | PT_PRESENT_MASK;
3280 		}
3281 		vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->pae_root);
3282 	} else
3283 		BUG();
3284 
3285 	/* root_pgd is ignored for direct MMUs. */
3286 	vcpu->arch.mmu->root_pgd = 0;
3287 
3288 	return 0;
3289 }
3290 
3291 static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
3292 {
3293 	u64 pdptr, pm_mask;
3294 	gfn_t root_gfn, root_pgd;
3295 	hpa_t root;
3296 	int i;
3297 
3298 	root_pgd = vcpu->arch.mmu->get_guest_pgd(vcpu);
3299 	root_gfn = root_pgd >> PAGE_SHIFT;
3300 
3301 	if (mmu_check_root(vcpu, root_gfn))
3302 		return 1;
3303 
3304 	/*
3305 	 * Do we shadow a long mode page table? If so we need to
3306 	 * write-protect the guests page table root.
3307 	 */
3308 	if (vcpu->arch.mmu->root_level >= PT64_ROOT_4LEVEL) {
3309 		MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu->root_hpa));
3310 
3311 		root = mmu_alloc_root(vcpu, root_gfn, 0,
3312 				      vcpu->arch.mmu->shadow_root_level, false);
3313 		if (!VALID_PAGE(root))
3314 			return -ENOSPC;
3315 		vcpu->arch.mmu->root_hpa = root;
3316 		goto set_root_pgd;
3317 	}
3318 
3319 	/*
3320 	 * We shadow a 32 bit page table. This may be a legacy 2-level
3321 	 * or a PAE 3-level page table. In either case we need to be aware that
3322 	 * the shadow page table may be a PAE or a long mode page table.
3323 	 */
3324 	pm_mask = PT_PRESENT_MASK;
3325 	if (vcpu->arch.mmu->shadow_root_level == PT64_ROOT_4LEVEL)
3326 		pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
3327 
3328 	for (i = 0; i < 4; ++i) {
3329 		MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu->pae_root[i]));
3330 		if (vcpu->arch.mmu->root_level == PT32E_ROOT_LEVEL) {
3331 			pdptr = vcpu->arch.mmu->get_pdptr(vcpu, i);
3332 			if (!(pdptr & PT_PRESENT_MASK)) {
3333 				vcpu->arch.mmu->pae_root[i] = 0;
3334 				continue;
3335 			}
3336 			root_gfn = pdptr >> PAGE_SHIFT;
3337 			if (mmu_check_root(vcpu, root_gfn))
3338 				return 1;
3339 		}
3340 
3341 		root = mmu_alloc_root(vcpu, root_gfn, i << 30,
3342 				      PT32_ROOT_LEVEL, false);
3343 		if (!VALID_PAGE(root))
3344 			return -ENOSPC;
3345 		vcpu->arch.mmu->pae_root[i] = root | pm_mask;
3346 	}
3347 	vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->pae_root);
3348 
3349 	/*
3350 	 * If we shadow a 32 bit page table with a long mode page
3351 	 * table we enter this path.
3352 	 */
3353 	if (vcpu->arch.mmu->shadow_root_level == PT64_ROOT_4LEVEL) {
3354 		if (vcpu->arch.mmu->lm_root == NULL) {
3355 			/*
3356 			 * The additional page necessary for this is only
3357 			 * allocated on demand.
3358 			 */
3359 
3360 			u64 *lm_root;
3361 
3362 			lm_root = (void*)get_zeroed_page(GFP_KERNEL_ACCOUNT);
3363 			if (lm_root == NULL)
3364 				return 1;
3365 
3366 			lm_root[0] = __pa(vcpu->arch.mmu->pae_root) | pm_mask;
3367 
3368 			vcpu->arch.mmu->lm_root = lm_root;
3369 		}
3370 
3371 		vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->lm_root);
3372 	}
3373 
3374 set_root_pgd:
3375 	vcpu->arch.mmu->root_pgd = root_pgd;
3376 
3377 	return 0;
3378 }
3379 
3380 static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
3381 {
3382 	if (vcpu->arch.mmu->direct_map)
3383 		return mmu_alloc_direct_roots(vcpu);
3384 	else
3385 		return mmu_alloc_shadow_roots(vcpu);
3386 }
3387 
3388 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3389 {
3390 	int i;
3391 	struct kvm_mmu_page *sp;
3392 
3393 	if (vcpu->arch.mmu->direct_map)
3394 		return;
3395 
3396 	if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
3397 		return;
3398 
3399 	vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
3400 
3401 	if (vcpu->arch.mmu->root_level >= PT64_ROOT_4LEVEL) {
3402 		hpa_t root = vcpu->arch.mmu->root_hpa;
3403 		sp = to_shadow_page(root);
3404 
3405 		/*
3406 		 * Even if another CPU was marking the SP as unsync-ed
3407 		 * simultaneously, any guest page table changes are not
3408 		 * guaranteed to be visible anyway until this VCPU issues a TLB
3409 		 * flush strictly after those changes are made. We only need to
3410 		 * ensure that the other CPU sets these flags before any actual
3411 		 * changes to the page tables are made. The comments in
3412 		 * mmu_need_write_protect() describe what could go wrong if this
3413 		 * requirement isn't satisfied.
3414 		 */
3415 		if (!smp_load_acquire(&sp->unsync) &&
3416 		    !smp_load_acquire(&sp->unsync_children))
3417 			return;
3418 
3419 		spin_lock(&vcpu->kvm->mmu_lock);
3420 		kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3421 
3422 		mmu_sync_children(vcpu, sp);
3423 
3424 		kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3425 		spin_unlock(&vcpu->kvm->mmu_lock);
3426 		return;
3427 	}
3428 
3429 	spin_lock(&vcpu->kvm->mmu_lock);
3430 	kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3431 
3432 	for (i = 0; i < 4; ++i) {
3433 		hpa_t root = vcpu->arch.mmu->pae_root[i];
3434 
3435 		if (root && VALID_PAGE(root)) {
3436 			root &= PT64_BASE_ADDR_MASK;
3437 			sp = to_shadow_page(root);
3438 			mmu_sync_children(vcpu, sp);
3439 		}
3440 	}
3441 
3442 	kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3443 	spin_unlock(&vcpu->kvm->mmu_lock);
3444 }
3445 EXPORT_SYMBOL_GPL(kvm_mmu_sync_roots);
3446 
3447 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gpa_t vaddr,
3448 				  u32 access, struct x86_exception *exception)
3449 {
3450 	if (exception)
3451 		exception->error_code = 0;
3452 	return vaddr;
3453 }
3454 
3455 static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gpa_t vaddr,
3456 					 u32 access,
3457 					 struct x86_exception *exception)
3458 {
3459 	if (exception)
3460 		exception->error_code = 0;
3461 	return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception);
3462 }
3463 
3464 static bool
3465 __is_rsvd_bits_set(struct rsvd_bits_validate *rsvd_check, u64 pte, int level)
3466 {
3467 	int bit7 = (pte >> 7) & 1;
3468 
3469 	return pte & rsvd_check->rsvd_bits_mask[bit7][level-1];
3470 }
3471 
3472 static bool __is_bad_mt_xwr(struct rsvd_bits_validate *rsvd_check, u64 pte)
3473 {
3474 	return rsvd_check->bad_mt_xwr & BIT_ULL(pte & 0x3f);
3475 }
3476 
3477 static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3478 {
3479 	/*
3480 	 * A nested guest cannot use the MMIO cache if it is using nested
3481 	 * page tables, because cr2 is a nGPA while the cache stores GPAs.
3482 	 */
3483 	if (mmu_is_nested(vcpu))
3484 		return false;
3485 
3486 	if (direct)
3487 		return vcpu_match_mmio_gpa(vcpu, addr);
3488 
3489 	return vcpu_match_mmio_gva(vcpu, addr);
3490 }
3491 
3492 /*
3493  * Return the level of the lowest level SPTE added to sptes.
3494  * That SPTE may be non-present.
3495  */
3496 static int get_walk(struct kvm_vcpu *vcpu, u64 addr, u64 *sptes, int *root_level)
3497 {
3498 	struct kvm_shadow_walk_iterator iterator;
3499 	int leaf = -1;
3500 	u64 spte;
3501 
3502 	walk_shadow_page_lockless_begin(vcpu);
3503 
3504 	for (shadow_walk_init(&iterator, vcpu, addr),
3505 	     *root_level = iterator.level;
3506 	     shadow_walk_okay(&iterator);
3507 	     __shadow_walk_next(&iterator, spte)) {
3508 		leaf = iterator.level;
3509 		spte = mmu_spte_get_lockless(iterator.sptep);
3510 
3511 		sptes[leaf] = spte;
3512 
3513 		if (!is_shadow_present_pte(spte))
3514 			break;
3515 	}
3516 
3517 	walk_shadow_page_lockless_end(vcpu);
3518 
3519 	return leaf;
3520 }
3521 
3522 /* return true if reserved bit(s) are detected on a valid, non-MMIO SPTE. */
3523 static bool get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep)
3524 {
3525 	u64 sptes[PT64_ROOT_MAX_LEVEL + 1];
3526 	struct rsvd_bits_validate *rsvd_check;
3527 	int root, leaf, level;
3528 	bool reserved = false;
3529 
3530 	if (!VALID_PAGE(vcpu->arch.mmu->root_hpa)) {
3531 		*sptep = 0ull;
3532 		return reserved;
3533 	}
3534 
3535 	if (is_tdp_mmu_root(vcpu->kvm, vcpu->arch.mmu->root_hpa))
3536 		leaf = kvm_tdp_mmu_get_walk(vcpu, addr, sptes, &root);
3537 	else
3538 		leaf = get_walk(vcpu, addr, sptes, &root);
3539 
3540 	if (unlikely(leaf < 0)) {
3541 		*sptep = 0ull;
3542 		return reserved;
3543 	}
3544 
3545 	*sptep = sptes[leaf];
3546 
3547 	/*
3548 	 * Skip reserved bits checks on the terminal leaf if it's not a valid
3549 	 * SPTE.  Note, this also (intentionally) skips MMIO SPTEs, which, by
3550 	 * design, always have reserved bits set.  The purpose of the checks is
3551 	 * to detect reserved bits on non-MMIO SPTEs. i.e. buggy SPTEs.
3552 	 */
3553 	if (!is_shadow_present_pte(sptes[leaf]))
3554 		leaf++;
3555 
3556 	rsvd_check = &vcpu->arch.mmu->shadow_zero_check;
3557 
3558 	for (level = root; level >= leaf; level--)
3559 		/*
3560 		 * Use a bitwise-OR instead of a logical-OR to aggregate the
3561 		 * reserved bit and EPT's invalid memtype/XWR checks to avoid
3562 		 * adding a Jcc in the loop.
3563 		 */
3564 		reserved |= __is_bad_mt_xwr(rsvd_check, sptes[level]) |
3565 			    __is_rsvd_bits_set(rsvd_check, sptes[level], level);
3566 
3567 	if (reserved) {
3568 		pr_err("%s: detect reserved bits on spte, addr 0x%llx, dump hierarchy:\n",
3569 		       __func__, addr);
3570 		for (level = root; level >= leaf; level--)
3571 			pr_err("------ spte 0x%llx level %d.\n",
3572 			       sptes[level], level);
3573 	}
3574 
3575 	return reserved;
3576 }
3577 
3578 static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3579 {
3580 	u64 spte;
3581 	bool reserved;
3582 
3583 	if (mmio_info_in_cache(vcpu, addr, direct))
3584 		return RET_PF_EMULATE;
3585 
3586 	reserved = get_mmio_spte(vcpu, addr, &spte);
3587 	if (WARN_ON(reserved))
3588 		return -EINVAL;
3589 
3590 	if (is_mmio_spte(spte)) {
3591 		gfn_t gfn = get_mmio_spte_gfn(spte);
3592 		unsigned int access = get_mmio_spte_access(spte);
3593 
3594 		if (!check_mmio_spte(vcpu, spte))
3595 			return RET_PF_INVALID;
3596 
3597 		if (direct)
3598 			addr = 0;
3599 
3600 		trace_handle_mmio_page_fault(addr, gfn, access);
3601 		vcpu_cache_mmio_info(vcpu, addr, gfn, access);
3602 		return RET_PF_EMULATE;
3603 	}
3604 
3605 	/*
3606 	 * If the page table is zapped by other cpus, let CPU fault again on
3607 	 * the address.
3608 	 */
3609 	return RET_PF_RETRY;
3610 }
3611 
3612 static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu,
3613 					 u32 error_code, gfn_t gfn)
3614 {
3615 	if (unlikely(error_code & PFERR_RSVD_MASK))
3616 		return false;
3617 
3618 	if (!(error_code & PFERR_PRESENT_MASK) ||
3619 	      !(error_code & PFERR_WRITE_MASK))
3620 		return false;
3621 
3622 	/*
3623 	 * guest is writing the page which is write tracked which can
3624 	 * not be fixed by page fault handler.
3625 	 */
3626 	if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
3627 		return true;
3628 
3629 	return false;
3630 }
3631 
3632 static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr)
3633 {
3634 	struct kvm_shadow_walk_iterator iterator;
3635 	u64 spte;
3636 
3637 	walk_shadow_page_lockless_begin(vcpu);
3638 	for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
3639 		clear_sp_write_flooding_count(iterator.sptep);
3640 		if (!is_shadow_present_pte(spte))
3641 			break;
3642 	}
3643 	walk_shadow_page_lockless_end(vcpu);
3644 }
3645 
3646 static bool kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
3647 				    gfn_t gfn)
3648 {
3649 	struct kvm_arch_async_pf arch;
3650 
3651 	arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
3652 	arch.gfn = gfn;
3653 	arch.direct_map = vcpu->arch.mmu->direct_map;
3654 	arch.cr3 = vcpu->arch.mmu->get_guest_pgd(vcpu);
3655 
3656 	return kvm_setup_async_pf(vcpu, cr2_or_gpa,
3657 				  kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch);
3658 }
3659 
3660 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
3661 			 gpa_t cr2_or_gpa, kvm_pfn_t *pfn, bool write,
3662 			 bool *writable)
3663 {
3664 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3665 	bool async;
3666 
3667 	/* Don't expose private memslots to L2. */
3668 	if (is_guest_mode(vcpu) && !kvm_is_visible_memslot(slot)) {
3669 		*pfn = KVM_PFN_NOSLOT;
3670 		*writable = false;
3671 		return false;
3672 	}
3673 
3674 	async = false;
3675 	*pfn = __gfn_to_pfn_memslot(slot, gfn, false, &async, write, writable);
3676 	if (!async)
3677 		return false; /* *pfn has correct page already */
3678 
3679 	if (!prefault && kvm_can_do_async_pf(vcpu)) {
3680 		trace_kvm_try_async_get_page(cr2_or_gpa, gfn);
3681 		if (kvm_find_async_pf_gfn(vcpu, gfn)) {
3682 			trace_kvm_async_pf_doublefault(cr2_or_gpa, gfn);
3683 			kvm_make_request(KVM_REQ_APF_HALT, vcpu);
3684 			return true;
3685 		} else if (kvm_arch_setup_async_pf(vcpu, cr2_or_gpa, gfn))
3686 			return true;
3687 	}
3688 
3689 	*pfn = __gfn_to_pfn_memslot(slot, gfn, false, NULL, write, writable);
3690 	return false;
3691 }
3692 
3693 static int direct_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
3694 			     bool prefault, int max_level, bool is_tdp)
3695 {
3696 	bool write = error_code & PFERR_WRITE_MASK;
3697 	bool map_writable;
3698 
3699 	gfn_t gfn = gpa >> PAGE_SHIFT;
3700 	unsigned long mmu_seq;
3701 	kvm_pfn_t pfn;
3702 	int r;
3703 
3704 	if (page_fault_handle_page_track(vcpu, error_code, gfn))
3705 		return RET_PF_EMULATE;
3706 
3707 	if (!is_tdp_mmu_root(vcpu->kvm, vcpu->arch.mmu->root_hpa)) {
3708 		r = fast_page_fault(vcpu, gpa, error_code);
3709 		if (r != RET_PF_INVALID)
3710 			return r;
3711 	}
3712 
3713 	r = mmu_topup_memory_caches(vcpu, false);
3714 	if (r)
3715 		return r;
3716 
3717 	mmu_seq = vcpu->kvm->mmu_notifier_seq;
3718 	smp_rmb();
3719 
3720 	if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
3721 		return RET_PF_RETRY;
3722 
3723 	if (handle_abnormal_pfn(vcpu, is_tdp ? 0 : gpa, gfn, pfn, ACC_ALL, &r))
3724 		return r;
3725 
3726 	r = RET_PF_RETRY;
3727 	spin_lock(&vcpu->kvm->mmu_lock);
3728 	if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
3729 		goto out_unlock;
3730 	r = make_mmu_pages_available(vcpu);
3731 	if (r)
3732 		goto out_unlock;
3733 
3734 	if (is_tdp_mmu_root(vcpu->kvm, vcpu->arch.mmu->root_hpa))
3735 		r = kvm_tdp_mmu_map(vcpu, gpa, error_code, map_writable, max_level,
3736 				    pfn, prefault);
3737 	else
3738 		r = __direct_map(vcpu, gpa, error_code, map_writable, max_level, pfn,
3739 				 prefault, is_tdp);
3740 
3741 out_unlock:
3742 	spin_unlock(&vcpu->kvm->mmu_lock);
3743 	kvm_release_pfn_clean(pfn);
3744 	return r;
3745 }
3746 
3747 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa,
3748 				u32 error_code, bool prefault)
3749 {
3750 	pgprintk("%s: gva %lx error %x\n", __func__, gpa, error_code);
3751 
3752 	/* This path builds a PAE pagetable, we can map 2mb pages at maximum. */
3753 	return direct_page_fault(vcpu, gpa & PAGE_MASK, error_code, prefault,
3754 				 PG_LEVEL_2M, false);
3755 }
3756 
3757 int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code,
3758 				u64 fault_address, char *insn, int insn_len)
3759 {
3760 	int r = 1;
3761 	u32 flags = vcpu->arch.apf.host_apf_flags;
3762 
3763 #ifndef CONFIG_X86_64
3764 	/* A 64-bit CR2 should be impossible on 32-bit KVM. */
3765 	if (WARN_ON_ONCE(fault_address >> 32))
3766 		return -EFAULT;
3767 #endif
3768 
3769 	vcpu->arch.l1tf_flush_l1d = true;
3770 	if (!flags) {
3771 		trace_kvm_page_fault(fault_address, error_code);
3772 
3773 		if (kvm_event_needs_reinjection(vcpu))
3774 			kvm_mmu_unprotect_page_virt(vcpu, fault_address);
3775 		r = kvm_mmu_page_fault(vcpu, fault_address, error_code, insn,
3776 				insn_len);
3777 	} else if (flags & KVM_PV_REASON_PAGE_NOT_PRESENT) {
3778 		vcpu->arch.apf.host_apf_flags = 0;
3779 		local_irq_disable();
3780 		kvm_async_pf_task_wait_schedule(fault_address);
3781 		local_irq_enable();
3782 	} else {
3783 		WARN_ONCE(1, "Unexpected host async PF flags: %x\n", flags);
3784 	}
3785 
3786 	return r;
3787 }
3788 EXPORT_SYMBOL_GPL(kvm_handle_page_fault);
3789 
3790 int kvm_tdp_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
3791 		       bool prefault)
3792 {
3793 	int max_level;
3794 
3795 	for (max_level = KVM_MAX_HUGEPAGE_LEVEL;
3796 	     max_level > PG_LEVEL_4K;
3797 	     max_level--) {
3798 		int page_num = KVM_PAGES_PER_HPAGE(max_level);
3799 		gfn_t base = (gpa >> PAGE_SHIFT) & ~(page_num - 1);
3800 
3801 		if (kvm_mtrr_check_gfn_range_consistency(vcpu, base, page_num))
3802 			break;
3803 	}
3804 
3805 	return direct_page_fault(vcpu, gpa, error_code, prefault,
3806 				 max_level, true);
3807 }
3808 
3809 static void nonpaging_init_context(struct kvm_vcpu *vcpu,
3810 				   struct kvm_mmu *context)
3811 {
3812 	context->page_fault = nonpaging_page_fault;
3813 	context->gva_to_gpa = nonpaging_gva_to_gpa;
3814 	context->sync_page = nonpaging_sync_page;
3815 	context->invlpg = NULL;
3816 	context->update_pte = nonpaging_update_pte;
3817 	context->root_level = 0;
3818 	context->shadow_root_level = PT32E_ROOT_LEVEL;
3819 	context->direct_map = true;
3820 	context->nx = false;
3821 }
3822 
3823 static inline bool is_root_usable(struct kvm_mmu_root_info *root, gpa_t pgd,
3824 				  union kvm_mmu_page_role role)
3825 {
3826 	return (role.direct || pgd == root->pgd) &&
3827 	       VALID_PAGE(root->hpa) && to_shadow_page(root->hpa) &&
3828 	       role.word == to_shadow_page(root->hpa)->role.word;
3829 }
3830 
3831 /*
3832  * Find out if a previously cached root matching the new pgd/role is available.
3833  * The current root is also inserted into the cache.
3834  * If a matching root was found, it is assigned to kvm_mmu->root_hpa and true is
3835  * returned.
3836  * Otherwise, the LRU root from the cache is assigned to kvm_mmu->root_hpa and
3837  * false is returned. This root should now be freed by the caller.
3838  */
3839 static bool cached_root_available(struct kvm_vcpu *vcpu, gpa_t new_pgd,
3840 				  union kvm_mmu_page_role new_role)
3841 {
3842 	uint i;
3843 	struct kvm_mmu_root_info root;
3844 	struct kvm_mmu *mmu = vcpu->arch.mmu;
3845 
3846 	root.pgd = mmu->root_pgd;
3847 	root.hpa = mmu->root_hpa;
3848 
3849 	if (is_root_usable(&root, new_pgd, new_role))
3850 		return true;
3851 
3852 	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
3853 		swap(root, mmu->prev_roots[i]);
3854 
3855 		if (is_root_usable(&root, new_pgd, new_role))
3856 			break;
3857 	}
3858 
3859 	mmu->root_hpa = root.hpa;
3860 	mmu->root_pgd = root.pgd;
3861 
3862 	return i < KVM_MMU_NUM_PREV_ROOTS;
3863 }
3864 
3865 static bool fast_pgd_switch(struct kvm_vcpu *vcpu, gpa_t new_pgd,
3866 			    union kvm_mmu_page_role new_role)
3867 {
3868 	struct kvm_mmu *mmu = vcpu->arch.mmu;
3869 
3870 	/*
3871 	 * For now, limit the fast switch to 64-bit hosts+VMs in order to avoid
3872 	 * having to deal with PDPTEs. We may add support for 32-bit hosts/VMs
3873 	 * later if necessary.
3874 	 */
3875 	if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
3876 	    mmu->root_level >= PT64_ROOT_4LEVEL)
3877 		return cached_root_available(vcpu, new_pgd, new_role);
3878 
3879 	return false;
3880 }
3881 
3882 static void __kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd,
3883 			      union kvm_mmu_page_role new_role,
3884 			      bool skip_tlb_flush, bool skip_mmu_sync)
3885 {
3886 	if (!fast_pgd_switch(vcpu, new_pgd, new_role)) {
3887 		kvm_mmu_free_roots(vcpu, vcpu->arch.mmu, KVM_MMU_ROOT_CURRENT);
3888 		return;
3889 	}
3890 
3891 	/*
3892 	 * It's possible that the cached previous root page is obsolete because
3893 	 * of a change in the MMU generation number. However, changing the
3894 	 * generation number is accompanied by KVM_REQ_MMU_RELOAD, which will
3895 	 * free the root set here and allocate a new one.
3896 	 */
3897 	kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu);
3898 
3899 	if (!skip_mmu_sync || force_flush_and_sync_on_reuse)
3900 		kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
3901 	if (!skip_tlb_flush || force_flush_and_sync_on_reuse)
3902 		kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
3903 
3904 	/*
3905 	 * The last MMIO access's GVA and GPA are cached in the VCPU. When
3906 	 * switching to a new CR3, that GVA->GPA mapping may no longer be
3907 	 * valid. So clear any cached MMIO info even when we don't need to sync
3908 	 * the shadow page tables.
3909 	 */
3910 	vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
3911 
3912 	/*
3913 	 * If this is a direct root page, it doesn't have a write flooding
3914 	 * count. Otherwise, clear the write flooding count.
3915 	 */
3916 	if (!new_role.direct)
3917 		__clear_sp_write_flooding_count(
3918 				to_shadow_page(vcpu->arch.mmu->root_hpa));
3919 }
3920 
3921 void kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd, bool skip_tlb_flush,
3922 		     bool skip_mmu_sync)
3923 {
3924 	__kvm_mmu_new_pgd(vcpu, new_pgd, kvm_mmu_calc_root_page_role(vcpu),
3925 			  skip_tlb_flush, skip_mmu_sync);
3926 }
3927 EXPORT_SYMBOL_GPL(kvm_mmu_new_pgd);
3928 
3929 static unsigned long get_cr3(struct kvm_vcpu *vcpu)
3930 {
3931 	return kvm_read_cr3(vcpu);
3932 }
3933 
3934 static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
3935 			   unsigned int access, int *nr_present)
3936 {
3937 	if (unlikely(is_mmio_spte(*sptep))) {
3938 		if (gfn != get_mmio_spte_gfn(*sptep)) {
3939 			mmu_spte_clear_no_track(sptep);
3940 			return true;
3941 		}
3942 
3943 		(*nr_present)++;
3944 		mark_mmio_spte(vcpu, sptep, gfn, access);
3945 		return true;
3946 	}
3947 
3948 	return false;
3949 }
3950 
3951 static inline bool is_last_gpte(struct kvm_mmu *mmu,
3952 				unsigned level, unsigned gpte)
3953 {
3954 	/*
3955 	 * The RHS has bit 7 set iff level < mmu->last_nonleaf_level.
3956 	 * If it is clear, there are no large pages at this level, so clear
3957 	 * PT_PAGE_SIZE_MASK in gpte if that is the case.
3958 	 */
3959 	gpte &= level - mmu->last_nonleaf_level;
3960 
3961 	/*
3962 	 * PG_LEVEL_4K always terminates.  The RHS has bit 7 set
3963 	 * iff level <= PG_LEVEL_4K, which for our purpose means
3964 	 * level == PG_LEVEL_4K; set PT_PAGE_SIZE_MASK in gpte then.
3965 	 */
3966 	gpte |= level - PG_LEVEL_4K - 1;
3967 
3968 	return gpte & PT_PAGE_SIZE_MASK;
3969 }
3970 
3971 #define PTTYPE_EPT 18 /* arbitrary */
3972 #define PTTYPE PTTYPE_EPT
3973 #include "paging_tmpl.h"
3974 #undef PTTYPE
3975 
3976 #define PTTYPE 64
3977 #include "paging_tmpl.h"
3978 #undef PTTYPE
3979 
3980 #define PTTYPE 32
3981 #include "paging_tmpl.h"
3982 #undef PTTYPE
3983 
3984 static void
3985 __reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
3986 			struct rsvd_bits_validate *rsvd_check,
3987 			int maxphyaddr, int level, bool nx, bool gbpages,
3988 			bool pse, bool amd)
3989 {
3990 	u64 exb_bit_rsvd = 0;
3991 	u64 gbpages_bit_rsvd = 0;
3992 	u64 nonleaf_bit8_rsvd = 0;
3993 
3994 	rsvd_check->bad_mt_xwr = 0;
3995 
3996 	if (!nx)
3997 		exb_bit_rsvd = rsvd_bits(63, 63);
3998 	if (!gbpages)
3999 		gbpages_bit_rsvd = rsvd_bits(7, 7);
4000 
4001 	/*
4002 	 * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
4003 	 * leaf entries) on AMD CPUs only.
4004 	 */
4005 	if (amd)
4006 		nonleaf_bit8_rsvd = rsvd_bits(8, 8);
4007 
4008 	switch (level) {
4009 	case PT32_ROOT_LEVEL:
4010 		/* no rsvd bits for 2 level 4K page table entries */
4011 		rsvd_check->rsvd_bits_mask[0][1] = 0;
4012 		rsvd_check->rsvd_bits_mask[0][0] = 0;
4013 		rsvd_check->rsvd_bits_mask[1][0] =
4014 			rsvd_check->rsvd_bits_mask[0][0];
4015 
4016 		if (!pse) {
4017 			rsvd_check->rsvd_bits_mask[1][1] = 0;
4018 			break;
4019 		}
4020 
4021 		if (is_cpuid_PSE36())
4022 			/* 36bits PSE 4MB page */
4023 			rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
4024 		else
4025 			/* 32 bits PSE 4MB page */
4026 			rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
4027 		break;
4028 	case PT32E_ROOT_LEVEL:
4029 		rsvd_check->rsvd_bits_mask[0][2] =
4030 			rsvd_bits(maxphyaddr, 63) |
4031 			rsvd_bits(5, 8) | rsvd_bits(1, 2);	/* PDPTE */
4032 		rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4033 			rsvd_bits(maxphyaddr, 62);	/* PDE */
4034 		rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
4035 			rsvd_bits(maxphyaddr, 62); 	/* PTE */
4036 		rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
4037 			rsvd_bits(maxphyaddr, 62) |
4038 			rsvd_bits(13, 20);		/* large page */
4039 		rsvd_check->rsvd_bits_mask[1][0] =
4040 			rsvd_check->rsvd_bits_mask[0][0];
4041 		break;
4042 	case PT64_ROOT_5LEVEL:
4043 		rsvd_check->rsvd_bits_mask[0][4] = exb_bit_rsvd |
4044 			nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
4045 			rsvd_bits(maxphyaddr, 51);
4046 		rsvd_check->rsvd_bits_mask[1][4] =
4047 			rsvd_check->rsvd_bits_mask[0][4];
4048 		fallthrough;
4049 	case PT64_ROOT_4LEVEL:
4050 		rsvd_check->rsvd_bits_mask[0][3] = exb_bit_rsvd |
4051 			nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
4052 			rsvd_bits(maxphyaddr, 51);
4053 		rsvd_check->rsvd_bits_mask[0][2] = exb_bit_rsvd |
4054 			gbpages_bit_rsvd |
4055 			rsvd_bits(maxphyaddr, 51);
4056 		rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4057 			rsvd_bits(maxphyaddr, 51);
4058 		rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
4059 			rsvd_bits(maxphyaddr, 51);
4060 		rsvd_check->rsvd_bits_mask[1][3] =
4061 			rsvd_check->rsvd_bits_mask[0][3];
4062 		rsvd_check->rsvd_bits_mask[1][2] = exb_bit_rsvd |
4063 			gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51) |
4064 			rsvd_bits(13, 29);
4065 		rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
4066 			rsvd_bits(maxphyaddr, 51) |
4067 			rsvd_bits(13, 20);		/* large page */
4068 		rsvd_check->rsvd_bits_mask[1][0] =
4069 			rsvd_check->rsvd_bits_mask[0][0];
4070 		break;
4071 	}
4072 }
4073 
4074 static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
4075 				  struct kvm_mmu *context)
4076 {
4077 	__reset_rsvds_bits_mask(vcpu, &context->guest_rsvd_check,
4078 				cpuid_maxphyaddr(vcpu), context->root_level,
4079 				context->nx,
4080 				guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
4081 				is_pse(vcpu),
4082 				guest_cpuid_is_amd_or_hygon(vcpu));
4083 }
4084 
4085 static void
4086 __reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check,
4087 			    int maxphyaddr, bool execonly)
4088 {
4089 	u64 bad_mt_xwr;
4090 
4091 	rsvd_check->rsvd_bits_mask[0][4] =
4092 		rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
4093 	rsvd_check->rsvd_bits_mask[0][3] =
4094 		rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
4095 	rsvd_check->rsvd_bits_mask[0][2] =
4096 		rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
4097 	rsvd_check->rsvd_bits_mask[0][1] =
4098 		rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
4099 	rsvd_check->rsvd_bits_mask[0][0] = rsvd_bits(maxphyaddr, 51);
4100 
4101 	/* large page */
4102 	rsvd_check->rsvd_bits_mask[1][4] = rsvd_check->rsvd_bits_mask[0][4];
4103 	rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3];
4104 	rsvd_check->rsvd_bits_mask[1][2] =
4105 		rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 29);
4106 	rsvd_check->rsvd_bits_mask[1][1] =
4107 		rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 20);
4108 	rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0];
4109 
4110 	bad_mt_xwr = 0xFFull << (2 * 8);	/* bits 3..5 must not be 2 */
4111 	bad_mt_xwr |= 0xFFull << (3 * 8);	/* bits 3..5 must not be 3 */
4112 	bad_mt_xwr |= 0xFFull << (7 * 8);	/* bits 3..5 must not be 7 */
4113 	bad_mt_xwr |= REPEAT_BYTE(1ull << 2);	/* bits 0..2 must not be 010 */
4114 	bad_mt_xwr |= REPEAT_BYTE(1ull << 6);	/* bits 0..2 must not be 110 */
4115 	if (!execonly) {
4116 		/* bits 0..2 must not be 100 unless VMX capabilities allow it */
4117 		bad_mt_xwr |= REPEAT_BYTE(1ull << 4);
4118 	}
4119 	rsvd_check->bad_mt_xwr = bad_mt_xwr;
4120 }
4121 
4122 static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
4123 		struct kvm_mmu *context, bool execonly)
4124 {
4125 	__reset_rsvds_bits_mask_ept(&context->guest_rsvd_check,
4126 				    cpuid_maxphyaddr(vcpu), execonly);
4127 }
4128 
4129 /*
4130  * the page table on host is the shadow page table for the page
4131  * table in guest or amd nested guest, its mmu features completely
4132  * follow the features in guest.
4133  */
4134 void
4135 reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
4136 {
4137 	bool uses_nx = context->nx ||
4138 		context->mmu_role.base.smep_andnot_wp;
4139 	struct rsvd_bits_validate *shadow_zero_check;
4140 	int i;
4141 
4142 	/*
4143 	 * Passing "true" to the last argument is okay; it adds a check
4144 	 * on bit 8 of the SPTEs which KVM doesn't use anyway.
4145 	 */
4146 	shadow_zero_check = &context->shadow_zero_check;
4147 	__reset_rsvds_bits_mask(vcpu, shadow_zero_check,
4148 				shadow_phys_bits,
4149 				context->shadow_root_level, uses_nx,
4150 				guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
4151 				is_pse(vcpu), true);
4152 
4153 	if (!shadow_me_mask)
4154 		return;
4155 
4156 	for (i = context->shadow_root_level; --i >= 0;) {
4157 		shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
4158 		shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
4159 	}
4160 
4161 }
4162 EXPORT_SYMBOL_GPL(reset_shadow_zero_bits_mask);
4163 
4164 static inline bool boot_cpu_is_amd(void)
4165 {
4166 	WARN_ON_ONCE(!tdp_enabled);
4167 	return shadow_x_mask == 0;
4168 }
4169 
4170 /*
4171  * the direct page table on host, use as much mmu features as
4172  * possible, however, kvm currently does not do execution-protection.
4173  */
4174 static void
4175 reset_tdp_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4176 				struct kvm_mmu *context)
4177 {
4178 	struct rsvd_bits_validate *shadow_zero_check;
4179 	int i;
4180 
4181 	shadow_zero_check = &context->shadow_zero_check;
4182 
4183 	if (boot_cpu_is_amd())
4184 		__reset_rsvds_bits_mask(vcpu, shadow_zero_check,
4185 					shadow_phys_bits,
4186 					context->shadow_root_level, false,
4187 					boot_cpu_has(X86_FEATURE_GBPAGES),
4188 					true, true);
4189 	else
4190 		__reset_rsvds_bits_mask_ept(shadow_zero_check,
4191 					    shadow_phys_bits,
4192 					    false);
4193 
4194 	if (!shadow_me_mask)
4195 		return;
4196 
4197 	for (i = context->shadow_root_level; --i >= 0;) {
4198 		shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
4199 		shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
4200 	}
4201 }
4202 
4203 /*
4204  * as the comments in reset_shadow_zero_bits_mask() except it
4205  * is the shadow page table for intel nested guest.
4206  */
4207 static void
4208 reset_ept_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4209 				struct kvm_mmu *context, bool execonly)
4210 {
4211 	__reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
4212 				    shadow_phys_bits, execonly);
4213 }
4214 
4215 #define BYTE_MASK(access) \
4216 	((1 & (access) ? 2 : 0) | \
4217 	 (2 & (access) ? 4 : 0) | \
4218 	 (3 & (access) ? 8 : 0) | \
4219 	 (4 & (access) ? 16 : 0) | \
4220 	 (5 & (access) ? 32 : 0) | \
4221 	 (6 & (access) ? 64 : 0) | \
4222 	 (7 & (access) ? 128 : 0))
4223 
4224 
4225 static void update_permission_bitmask(struct kvm_vcpu *vcpu,
4226 				      struct kvm_mmu *mmu, bool ept)
4227 {
4228 	unsigned byte;
4229 
4230 	const u8 x = BYTE_MASK(ACC_EXEC_MASK);
4231 	const u8 w = BYTE_MASK(ACC_WRITE_MASK);
4232 	const u8 u = BYTE_MASK(ACC_USER_MASK);
4233 
4234 	bool cr4_smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP) != 0;
4235 	bool cr4_smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP) != 0;
4236 	bool cr0_wp = is_write_protection(vcpu);
4237 
4238 	for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
4239 		unsigned pfec = byte << 1;
4240 
4241 		/*
4242 		 * Each "*f" variable has a 1 bit for each UWX value
4243 		 * that causes a fault with the given PFEC.
4244 		 */
4245 
4246 		/* Faults from writes to non-writable pages */
4247 		u8 wf = (pfec & PFERR_WRITE_MASK) ? (u8)~w : 0;
4248 		/* Faults from user mode accesses to supervisor pages */
4249 		u8 uf = (pfec & PFERR_USER_MASK) ? (u8)~u : 0;
4250 		/* Faults from fetches of non-executable pages*/
4251 		u8 ff = (pfec & PFERR_FETCH_MASK) ? (u8)~x : 0;
4252 		/* Faults from kernel mode fetches of user pages */
4253 		u8 smepf = 0;
4254 		/* Faults from kernel mode accesses of user pages */
4255 		u8 smapf = 0;
4256 
4257 		if (!ept) {
4258 			/* Faults from kernel mode accesses to user pages */
4259 			u8 kf = (pfec & PFERR_USER_MASK) ? 0 : u;
4260 
4261 			/* Not really needed: !nx will cause pte.nx to fault */
4262 			if (!mmu->nx)
4263 				ff = 0;
4264 
4265 			/* Allow supervisor writes if !cr0.wp */
4266 			if (!cr0_wp)
4267 				wf = (pfec & PFERR_USER_MASK) ? wf : 0;
4268 
4269 			/* Disallow supervisor fetches of user code if cr4.smep */
4270 			if (cr4_smep)
4271 				smepf = (pfec & PFERR_FETCH_MASK) ? kf : 0;
4272 
4273 			/*
4274 			 * SMAP:kernel-mode data accesses from user-mode
4275 			 * mappings should fault. A fault is considered
4276 			 * as a SMAP violation if all of the following
4277 			 * conditions are true:
4278 			 *   - X86_CR4_SMAP is set in CR4
4279 			 *   - A user page is accessed
4280 			 *   - The access is not a fetch
4281 			 *   - Page fault in kernel mode
4282 			 *   - if CPL = 3 or X86_EFLAGS_AC is clear
4283 			 *
4284 			 * Here, we cover the first three conditions.
4285 			 * The fourth is computed dynamically in permission_fault();
4286 			 * PFERR_RSVD_MASK bit will be set in PFEC if the access is
4287 			 * *not* subject to SMAP restrictions.
4288 			 */
4289 			if (cr4_smap)
4290 				smapf = (pfec & (PFERR_RSVD_MASK|PFERR_FETCH_MASK)) ? 0 : kf;
4291 		}
4292 
4293 		mmu->permissions[byte] = ff | uf | wf | smepf | smapf;
4294 	}
4295 }
4296 
4297 /*
4298 * PKU is an additional mechanism by which the paging controls access to
4299 * user-mode addresses based on the value in the PKRU register.  Protection
4300 * key violations are reported through a bit in the page fault error code.
4301 * Unlike other bits of the error code, the PK bit is not known at the
4302 * call site of e.g. gva_to_gpa; it must be computed directly in
4303 * permission_fault based on two bits of PKRU, on some machine state (CR4,
4304 * CR0, EFER, CPL), and on other bits of the error code and the page tables.
4305 *
4306 * In particular the following conditions come from the error code, the
4307 * page tables and the machine state:
4308 * - PK is always zero unless CR4.PKE=1 and EFER.LMA=1
4309 * - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch)
4310 * - PK is always zero if U=0 in the page tables
4311 * - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access.
4312 *
4313 * The PKRU bitmask caches the result of these four conditions.  The error
4314 * code (minus the P bit) and the page table's U bit form an index into the
4315 * PKRU bitmask.  Two bits of the PKRU bitmask are then extracted and ANDed
4316 * with the two bits of the PKRU register corresponding to the protection key.
4317 * For the first three conditions above the bits will be 00, thus masking
4318 * away both AD and WD.  For all reads or if the last condition holds, WD
4319 * only will be masked away.
4320 */
4321 static void update_pkru_bitmask(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
4322 				bool ept)
4323 {
4324 	unsigned bit;
4325 	bool wp;
4326 
4327 	if (ept) {
4328 		mmu->pkru_mask = 0;
4329 		return;
4330 	}
4331 
4332 	/* PKEY is enabled only if CR4.PKE and EFER.LMA are both set. */
4333 	if (!kvm_read_cr4_bits(vcpu, X86_CR4_PKE) || !is_long_mode(vcpu)) {
4334 		mmu->pkru_mask = 0;
4335 		return;
4336 	}
4337 
4338 	wp = is_write_protection(vcpu);
4339 
4340 	for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) {
4341 		unsigned pfec, pkey_bits;
4342 		bool check_pkey, check_write, ff, uf, wf, pte_user;
4343 
4344 		pfec = bit << 1;
4345 		ff = pfec & PFERR_FETCH_MASK;
4346 		uf = pfec & PFERR_USER_MASK;
4347 		wf = pfec & PFERR_WRITE_MASK;
4348 
4349 		/* PFEC.RSVD is replaced by ACC_USER_MASK. */
4350 		pte_user = pfec & PFERR_RSVD_MASK;
4351 
4352 		/*
4353 		 * Only need to check the access which is not an
4354 		 * instruction fetch and is to a user page.
4355 		 */
4356 		check_pkey = (!ff && pte_user);
4357 		/*
4358 		 * write access is controlled by PKRU if it is a
4359 		 * user access or CR0.WP = 1.
4360 		 */
4361 		check_write = check_pkey && wf && (uf || wp);
4362 
4363 		/* PKRU.AD stops both read and write access. */
4364 		pkey_bits = !!check_pkey;
4365 		/* PKRU.WD stops write access. */
4366 		pkey_bits |= (!!check_write) << 1;
4367 
4368 		mmu->pkru_mask |= (pkey_bits & 3) << pfec;
4369 	}
4370 }
4371 
4372 static void update_last_nonleaf_level(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
4373 {
4374 	unsigned root_level = mmu->root_level;
4375 
4376 	mmu->last_nonleaf_level = root_level;
4377 	if (root_level == PT32_ROOT_LEVEL && is_pse(vcpu))
4378 		mmu->last_nonleaf_level++;
4379 }
4380 
4381 static void paging64_init_context_common(struct kvm_vcpu *vcpu,
4382 					 struct kvm_mmu *context,
4383 					 int level)
4384 {
4385 	context->nx = is_nx(vcpu);
4386 	context->root_level = level;
4387 
4388 	reset_rsvds_bits_mask(vcpu, context);
4389 	update_permission_bitmask(vcpu, context, false);
4390 	update_pkru_bitmask(vcpu, context, false);
4391 	update_last_nonleaf_level(vcpu, context);
4392 
4393 	MMU_WARN_ON(!is_pae(vcpu));
4394 	context->page_fault = paging64_page_fault;
4395 	context->gva_to_gpa = paging64_gva_to_gpa;
4396 	context->sync_page = paging64_sync_page;
4397 	context->invlpg = paging64_invlpg;
4398 	context->update_pte = paging64_update_pte;
4399 	context->shadow_root_level = level;
4400 	context->direct_map = false;
4401 }
4402 
4403 static void paging64_init_context(struct kvm_vcpu *vcpu,
4404 				  struct kvm_mmu *context)
4405 {
4406 	int root_level = is_la57_mode(vcpu) ?
4407 			 PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4408 
4409 	paging64_init_context_common(vcpu, context, root_level);
4410 }
4411 
4412 static void paging32_init_context(struct kvm_vcpu *vcpu,
4413 				  struct kvm_mmu *context)
4414 {
4415 	context->nx = false;
4416 	context->root_level = PT32_ROOT_LEVEL;
4417 
4418 	reset_rsvds_bits_mask(vcpu, context);
4419 	update_permission_bitmask(vcpu, context, false);
4420 	update_pkru_bitmask(vcpu, context, false);
4421 	update_last_nonleaf_level(vcpu, context);
4422 
4423 	context->page_fault = paging32_page_fault;
4424 	context->gva_to_gpa = paging32_gva_to_gpa;
4425 	context->sync_page = paging32_sync_page;
4426 	context->invlpg = paging32_invlpg;
4427 	context->update_pte = paging32_update_pte;
4428 	context->shadow_root_level = PT32E_ROOT_LEVEL;
4429 	context->direct_map = false;
4430 }
4431 
4432 static void paging32E_init_context(struct kvm_vcpu *vcpu,
4433 				   struct kvm_mmu *context)
4434 {
4435 	paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
4436 }
4437 
4438 static union kvm_mmu_extended_role kvm_calc_mmu_role_ext(struct kvm_vcpu *vcpu)
4439 {
4440 	union kvm_mmu_extended_role ext = {0};
4441 
4442 	ext.cr0_pg = !!is_paging(vcpu);
4443 	ext.cr4_pae = !!is_pae(vcpu);
4444 	ext.cr4_smep = !!kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
4445 	ext.cr4_smap = !!kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
4446 	ext.cr4_pse = !!is_pse(vcpu);
4447 	ext.cr4_pke = !!kvm_read_cr4_bits(vcpu, X86_CR4_PKE);
4448 	ext.maxphyaddr = cpuid_maxphyaddr(vcpu);
4449 
4450 	ext.valid = 1;
4451 
4452 	return ext;
4453 }
4454 
4455 static union kvm_mmu_role kvm_calc_mmu_role_common(struct kvm_vcpu *vcpu,
4456 						   bool base_only)
4457 {
4458 	union kvm_mmu_role role = {0};
4459 
4460 	role.base.access = ACC_ALL;
4461 	role.base.nxe = !!is_nx(vcpu);
4462 	role.base.cr0_wp = is_write_protection(vcpu);
4463 	role.base.smm = is_smm(vcpu);
4464 	role.base.guest_mode = is_guest_mode(vcpu);
4465 
4466 	if (base_only)
4467 		return role;
4468 
4469 	role.ext = kvm_calc_mmu_role_ext(vcpu);
4470 
4471 	return role;
4472 }
4473 
4474 static inline int kvm_mmu_get_tdp_level(struct kvm_vcpu *vcpu)
4475 {
4476 	/* Use 5-level TDP if and only if it's useful/necessary. */
4477 	if (max_tdp_level == 5 && cpuid_maxphyaddr(vcpu) <= 48)
4478 		return 4;
4479 
4480 	return max_tdp_level;
4481 }
4482 
4483 static union kvm_mmu_role
4484 kvm_calc_tdp_mmu_root_page_role(struct kvm_vcpu *vcpu, bool base_only)
4485 {
4486 	union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, base_only);
4487 
4488 	role.base.ad_disabled = (shadow_accessed_mask == 0);
4489 	role.base.level = kvm_mmu_get_tdp_level(vcpu);
4490 	role.base.direct = true;
4491 	role.base.gpte_is_8_bytes = true;
4492 
4493 	return role;
4494 }
4495 
4496 static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
4497 {
4498 	struct kvm_mmu *context = &vcpu->arch.root_mmu;
4499 	union kvm_mmu_role new_role =
4500 		kvm_calc_tdp_mmu_root_page_role(vcpu, false);
4501 
4502 	if (new_role.as_u64 == context->mmu_role.as_u64)
4503 		return;
4504 
4505 	context->mmu_role.as_u64 = new_role.as_u64;
4506 	context->page_fault = kvm_tdp_page_fault;
4507 	context->sync_page = nonpaging_sync_page;
4508 	context->invlpg = NULL;
4509 	context->update_pte = nonpaging_update_pte;
4510 	context->shadow_root_level = kvm_mmu_get_tdp_level(vcpu);
4511 	context->direct_map = true;
4512 	context->get_guest_pgd = get_cr3;
4513 	context->get_pdptr = kvm_pdptr_read;
4514 	context->inject_page_fault = kvm_inject_page_fault;
4515 
4516 	if (!is_paging(vcpu)) {
4517 		context->nx = false;
4518 		context->gva_to_gpa = nonpaging_gva_to_gpa;
4519 		context->root_level = 0;
4520 	} else if (is_long_mode(vcpu)) {
4521 		context->nx = is_nx(vcpu);
4522 		context->root_level = is_la57_mode(vcpu) ?
4523 				PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4524 		reset_rsvds_bits_mask(vcpu, context);
4525 		context->gva_to_gpa = paging64_gva_to_gpa;
4526 	} else if (is_pae(vcpu)) {
4527 		context->nx = is_nx(vcpu);
4528 		context->root_level = PT32E_ROOT_LEVEL;
4529 		reset_rsvds_bits_mask(vcpu, context);
4530 		context->gva_to_gpa = paging64_gva_to_gpa;
4531 	} else {
4532 		context->nx = false;
4533 		context->root_level = PT32_ROOT_LEVEL;
4534 		reset_rsvds_bits_mask(vcpu, context);
4535 		context->gva_to_gpa = paging32_gva_to_gpa;
4536 	}
4537 
4538 	update_permission_bitmask(vcpu, context, false);
4539 	update_pkru_bitmask(vcpu, context, false);
4540 	update_last_nonleaf_level(vcpu, context);
4541 	reset_tdp_shadow_zero_bits_mask(vcpu, context);
4542 }
4543 
4544 static union kvm_mmu_role
4545 kvm_calc_shadow_root_page_role_common(struct kvm_vcpu *vcpu, bool base_only)
4546 {
4547 	union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, base_only);
4548 
4549 	role.base.smep_andnot_wp = role.ext.cr4_smep &&
4550 		!is_write_protection(vcpu);
4551 	role.base.smap_andnot_wp = role.ext.cr4_smap &&
4552 		!is_write_protection(vcpu);
4553 	role.base.gpte_is_8_bytes = !!is_pae(vcpu);
4554 
4555 	return role;
4556 }
4557 
4558 static union kvm_mmu_role
4559 kvm_calc_shadow_mmu_root_page_role(struct kvm_vcpu *vcpu, bool base_only)
4560 {
4561 	union kvm_mmu_role role =
4562 		kvm_calc_shadow_root_page_role_common(vcpu, base_only);
4563 
4564 	role.base.direct = !is_paging(vcpu);
4565 
4566 	if (!is_long_mode(vcpu))
4567 		role.base.level = PT32E_ROOT_LEVEL;
4568 	else if (is_la57_mode(vcpu))
4569 		role.base.level = PT64_ROOT_5LEVEL;
4570 	else
4571 		role.base.level = PT64_ROOT_4LEVEL;
4572 
4573 	return role;
4574 }
4575 
4576 static void shadow_mmu_init_context(struct kvm_vcpu *vcpu, struct kvm_mmu *context,
4577 				    u32 cr0, u32 cr4, u32 efer,
4578 				    union kvm_mmu_role new_role)
4579 {
4580 	if (!(cr0 & X86_CR0_PG))
4581 		nonpaging_init_context(vcpu, context);
4582 	else if (efer & EFER_LMA)
4583 		paging64_init_context(vcpu, context);
4584 	else if (cr4 & X86_CR4_PAE)
4585 		paging32E_init_context(vcpu, context);
4586 	else
4587 		paging32_init_context(vcpu, context);
4588 
4589 	context->mmu_role.as_u64 = new_role.as_u64;
4590 	reset_shadow_zero_bits_mask(vcpu, context);
4591 }
4592 
4593 static void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, u32 cr0, u32 cr4, u32 efer)
4594 {
4595 	struct kvm_mmu *context = &vcpu->arch.root_mmu;
4596 	union kvm_mmu_role new_role =
4597 		kvm_calc_shadow_mmu_root_page_role(vcpu, false);
4598 
4599 	if (new_role.as_u64 != context->mmu_role.as_u64)
4600 		shadow_mmu_init_context(vcpu, context, cr0, cr4, efer, new_role);
4601 }
4602 
4603 static union kvm_mmu_role
4604 kvm_calc_shadow_npt_root_page_role(struct kvm_vcpu *vcpu)
4605 {
4606 	union kvm_mmu_role role =
4607 		kvm_calc_shadow_root_page_role_common(vcpu, false);
4608 
4609 	role.base.direct = false;
4610 	role.base.level = kvm_mmu_get_tdp_level(vcpu);
4611 
4612 	return role;
4613 }
4614 
4615 void kvm_init_shadow_npt_mmu(struct kvm_vcpu *vcpu, u32 cr0, u32 cr4, u32 efer,
4616 			     gpa_t nested_cr3)
4617 {
4618 	struct kvm_mmu *context = &vcpu->arch.guest_mmu;
4619 	union kvm_mmu_role new_role = kvm_calc_shadow_npt_root_page_role(vcpu);
4620 
4621 	context->shadow_root_level = new_role.base.level;
4622 
4623 	__kvm_mmu_new_pgd(vcpu, nested_cr3, new_role.base, false, false);
4624 
4625 	if (new_role.as_u64 != context->mmu_role.as_u64)
4626 		shadow_mmu_init_context(vcpu, context, cr0, cr4, efer, new_role);
4627 }
4628 EXPORT_SYMBOL_GPL(kvm_init_shadow_npt_mmu);
4629 
4630 static union kvm_mmu_role
4631 kvm_calc_shadow_ept_root_page_role(struct kvm_vcpu *vcpu, bool accessed_dirty,
4632 				   bool execonly, u8 level)
4633 {
4634 	union kvm_mmu_role role = {0};
4635 
4636 	/* SMM flag is inherited from root_mmu */
4637 	role.base.smm = vcpu->arch.root_mmu.mmu_role.base.smm;
4638 
4639 	role.base.level = level;
4640 	role.base.gpte_is_8_bytes = true;
4641 	role.base.direct = false;
4642 	role.base.ad_disabled = !accessed_dirty;
4643 	role.base.guest_mode = true;
4644 	role.base.access = ACC_ALL;
4645 
4646 	/*
4647 	 * WP=1 and NOT_WP=1 is an impossible combination, use WP and the
4648 	 * SMAP variation to denote shadow EPT entries.
4649 	 */
4650 	role.base.cr0_wp = true;
4651 	role.base.smap_andnot_wp = true;
4652 
4653 	role.ext = kvm_calc_mmu_role_ext(vcpu);
4654 	role.ext.execonly = execonly;
4655 
4656 	return role;
4657 }
4658 
4659 void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly,
4660 			     bool accessed_dirty, gpa_t new_eptp)
4661 {
4662 	struct kvm_mmu *context = &vcpu->arch.guest_mmu;
4663 	u8 level = vmx_eptp_page_walk_level(new_eptp);
4664 	union kvm_mmu_role new_role =
4665 		kvm_calc_shadow_ept_root_page_role(vcpu, accessed_dirty,
4666 						   execonly, level);
4667 
4668 	__kvm_mmu_new_pgd(vcpu, new_eptp, new_role.base, true, true);
4669 
4670 	if (new_role.as_u64 == context->mmu_role.as_u64)
4671 		return;
4672 
4673 	context->shadow_root_level = level;
4674 
4675 	context->nx = true;
4676 	context->ept_ad = accessed_dirty;
4677 	context->page_fault = ept_page_fault;
4678 	context->gva_to_gpa = ept_gva_to_gpa;
4679 	context->sync_page = ept_sync_page;
4680 	context->invlpg = ept_invlpg;
4681 	context->update_pte = ept_update_pte;
4682 	context->root_level = level;
4683 	context->direct_map = false;
4684 	context->mmu_role.as_u64 = new_role.as_u64;
4685 
4686 	update_permission_bitmask(vcpu, context, true);
4687 	update_pkru_bitmask(vcpu, context, true);
4688 	update_last_nonleaf_level(vcpu, context);
4689 	reset_rsvds_bits_mask_ept(vcpu, context, execonly);
4690 	reset_ept_shadow_zero_bits_mask(vcpu, context, execonly);
4691 }
4692 EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);
4693 
4694 static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
4695 {
4696 	struct kvm_mmu *context = &vcpu->arch.root_mmu;
4697 
4698 	kvm_init_shadow_mmu(vcpu,
4699 			    kvm_read_cr0_bits(vcpu, X86_CR0_PG),
4700 			    kvm_read_cr4_bits(vcpu, X86_CR4_PAE),
4701 			    vcpu->arch.efer);
4702 
4703 	context->get_guest_pgd     = get_cr3;
4704 	context->get_pdptr         = kvm_pdptr_read;
4705 	context->inject_page_fault = kvm_inject_page_fault;
4706 }
4707 
4708 static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
4709 {
4710 	union kvm_mmu_role new_role = kvm_calc_mmu_role_common(vcpu, false);
4711 	struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
4712 
4713 	if (new_role.as_u64 == g_context->mmu_role.as_u64)
4714 		return;
4715 
4716 	g_context->mmu_role.as_u64 = new_role.as_u64;
4717 	g_context->get_guest_pgd     = get_cr3;
4718 	g_context->get_pdptr         = kvm_pdptr_read;
4719 	g_context->inject_page_fault = kvm_inject_page_fault;
4720 
4721 	/*
4722 	 * L2 page tables are never shadowed, so there is no need to sync
4723 	 * SPTEs.
4724 	 */
4725 	g_context->invlpg            = NULL;
4726 
4727 	/*
4728 	 * Note that arch.mmu->gva_to_gpa translates l2_gpa to l1_gpa using
4729 	 * L1's nested page tables (e.g. EPT12). The nested translation
4730 	 * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using
4731 	 * L2's page tables as the first level of translation and L1's
4732 	 * nested page tables as the second level of translation. Basically
4733 	 * the gva_to_gpa functions between mmu and nested_mmu are swapped.
4734 	 */
4735 	if (!is_paging(vcpu)) {
4736 		g_context->nx = false;
4737 		g_context->root_level = 0;
4738 		g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
4739 	} else if (is_long_mode(vcpu)) {
4740 		g_context->nx = is_nx(vcpu);
4741 		g_context->root_level = is_la57_mode(vcpu) ?
4742 					PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4743 		reset_rsvds_bits_mask(vcpu, g_context);
4744 		g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4745 	} else if (is_pae(vcpu)) {
4746 		g_context->nx = is_nx(vcpu);
4747 		g_context->root_level = PT32E_ROOT_LEVEL;
4748 		reset_rsvds_bits_mask(vcpu, g_context);
4749 		g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4750 	} else {
4751 		g_context->nx = false;
4752 		g_context->root_level = PT32_ROOT_LEVEL;
4753 		reset_rsvds_bits_mask(vcpu, g_context);
4754 		g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
4755 	}
4756 
4757 	update_permission_bitmask(vcpu, g_context, false);
4758 	update_pkru_bitmask(vcpu, g_context, false);
4759 	update_last_nonleaf_level(vcpu, g_context);
4760 }
4761 
4762 void kvm_init_mmu(struct kvm_vcpu *vcpu, bool reset_roots)
4763 {
4764 	if (reset_roots) {
4765 		uint i;
4766 
4767 		vcpu->arch.mmu->root_hpa = INVALID_PAGE;
4768 
4769 		for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
4770 			vcpu->arch.mmu->prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
4771 	}
4772 
4773 	if (mmu_is_nested(vcpu))
4774 		init_kvm_nested_mmu(vcpu);
4775 	else if (tdp_enabled)
4776 		init_kvm_tdp_mmu(vcpu);
4777 	else
4778 		init_kvm_softmmu(vcpu);
4779 }
4780 EXPORT_SYMBOL_GPL(kvm_init_mmu);
4781 
4782 static union kvm_mmu_page_role
4783 kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu)
4784 {
4785 	union kvm_mmu_role role;
4786 
4787 	if (tdp_enabled)
4788 		role = kvm_calc_tdp_mmu_root_page_role(vcpu, true);
4789 	else
4790 		role = kvm_calc_shadow_mmu_root_page_role(vcpu, true);
4791 
4792 	return role.base;
4793 }
4794 
4795 void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
4796 {
4797 	kvm_mmu_unload(vcpu);
4798 	kvm_init_mmu(vcpu, true);
4799 }
4800 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
4801 
4802 int kvm_mmu_load(struct kvm_vcpu *vcpu)
4803 {
4804 	int r;
4805 
4806 	r = mmu_topup_memory_caches(vcpu, !vcpu->arch.mmu->direct_map);
4807 	if (r)
4808 		goto out;
4809 	r = mmu_alloc_roots(vcpu);
4810 	kvm_mmu_sync_roots(vcpu);
4811 	if (r)
4812 		goto out;
4813 	kvm_mmu_load_pgd(vcpu);
4814 	kvm_x86_ops.tlb_flush_current(vcpu);
4815 out:
4816 	return r;
4817 }
4818 EXPORT_SYMBOL_GPL(kvm_mmu_load);
4819 
4820 void kvm_mmu_unload(struct kvm_vcpu *vcpu)
4821 {
4822 	kvm_mmu_free_roots(vcpu, &vcpu->arch.root_mmu, KVM_MMU_ROOTS_ALL);
4823 	WARN_ON(VALID_PAGE(vcpu->arch.root_mmu.root_hpa));
4824 	kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
4825 	WARN_ON(VALID_PAGE(vcpu->arch.guest_mmu.root_hpa));
4826 }
4827 EXPORT_SYMBOL_GPL(kvm_mmu_unload);
4828 
4829 static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
4830 				  struct kvm_mmu_page *sp, u64 *spte,
4831 				  const void *new)
4832 {
4833 	if (sp->role.level != PG_LEVEL_4K) {
4834 		++vcpu->kvm->stat.mmu_pde_zapped;
4835 		return;
4836         }
4837 
4838 	++vcpu->kvm->stat.mmu_pte_updated;
4839 	vcpu->arch.mmu->update_pte(vcpu, sp, spte, new);
4840 }
4841 
4842 static bool need_remote_flush(u64 old, u64 new)
4843 {
4844 	if (!is_shadow_present_pte(old))
4845 		return false;
4846 	if (!is_shadow_present_pte(new))
4847 		return true;
4848 	if ((old ^ new) & PT64_BASE_ADDR_MASK)
4849 		return true;
4850 	old ^= shadow_nx_mask;
4851 	new ^= shadow_nx_mask;
4852 	return (old & ~new & PT64_PERM_MASK) != 0;
4853 }
4854 
4855 static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
4856 				    int *bytes)
4857 {
4858 	u64 gentry = 0;
4859 	int r;
4860 
4861 	/*
4862 	 * Assume that the pte write on a page table of the same type
4863 	 * as the current vcpu paging mode since we update the sptes only
4864 	 * when they have the same mode.
4865 	 */
4866 	if (is_pae(vcpu) && *bytes == 4) {
4867 		/* Handle a 32-bit guest writing two halves of a 64-bit gpte */
4868 		*gpa &= ~(gpa_t)7;
4869 		*bytes = 8;
4870 	}
4871 
4872 	if (*bytes == 4 || *bytes == 8) {
4873 		r = kvm_vcpu_read_guest_atomic(vcpu, *gpa, &gentry, *bytes);
4874 		if (r)
4875 			gentry = 0;
4876 	}
4877 
4878 	return gentry;
4879 }
4880 
4881 /*
4882  * If we're seeing too many writes to a page, it may no longer be a page table,
4883  * or we may be forking, in which case it is better to unmap the page.
4884  */
4885 static bool detect_write_flooding(struct kvm_mmu_page *sp)
4886 {
4887 	/*
4888 	 * Skip write-flooding detected for the sp whose level is 1, because
4889 	 * it can become unsync, then the guest page is not write-protected.
4890 	 */
4891 	if (sp->role.level == PG_LEVEL_4K)
4892 		return false;
4893 
4894 	atomic_inc(&sp->write_flooding_count);
4895 	return atomic_read(&sp->write_flooding_count) >= 3;
4896 }
4897 
4898 /*
4899  * Misaligned accesses are too much trouble to fix up; also, they usually
4900  * indicate a page is not used as a page table.
4901  */
4902 static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
4903 				    int bytes)
4904 {
4905 	unsigned offset, pte_size, misaligned;
4906 
4907 	pgprintk("misaligned: gpa %llx bytes %d role %x\n",
4908 		 gpa, bytes, sp->role.word);
4909 
4910 	offset = offset_in_page(gpa);
4911 	pte_size = sp->role.gpte_is_8_bytes ? 8 : 4;
4912 
4913 	/*
4914 	 * Sometimes, the OS only writes the last one bytes to update status
4915 	 * bits, for example, in linux, andb instruction is used in clear_bit().
4916 	 */
4917 	if (!(offset & (pte_size - 1)) && bytes == 1)
4918 		return false;
4919 
4920 	misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
4921 	misaligned |= bytes < 4;
4922 
4923 	return misaligned;
4924 }
4925 
4926 static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
4927 {
4928 	unsigned page_offset, quadrant;
4929 	u64 *spte;
4930 	int level;
4931 
4932 	page_offset = offset_in_page(gpa);
4933 	level = sp->role.level;
4934 	*nspte = 1;
4935 	if (!sp->role.gpte_is_8_bytes) {
4936 		page_offset <<= 1;	/* 32->64 */
4937 		/*
4938 		 * A 32-bit pde maps 4MB while the shadow pdes map
4939 		 * only 2MB.  So we need to double the offset again
4940 		 * and zap two pdes instead of one.
4941 		 */
4942 		if (level == PT32_ROOT_LEVEL) {
4943 			page_offset &= ~7; /* kill rounding error */
4944 			page_offset <<= 1;
4945 			*nspte = 2;
4946 		}
4947 		quadrant = page_offset >> PAGE_SHIFT;
4948 		page_offset &= ~PAGE_MASK;
4949 		if (quadrant != sp->role.quadrant)
4950 			return NULL;
4951 	}
4952 
4953 	spte = &sp->spt[page_offset / sizeof(*spte)];
4954 	return spte;
4955 }
4956 
4957 /*
4958  * Ignore various flags when determining if a SPTE can be immediately
4959  * overwritten for the current MMU.
4960  *  - level: explicitly checked in mmu_pte_write_new_pte(), and will never
4961  *    match the current MMU role, as MMU's level tracks the root level.
4962  *  - access: updated based on the new guest PTE
4963  *  - quadrant: handled by get_written_sptes()
4964  *  - invalid: always false (loop only walks valid shadow pages)
4965  */
4966 static const union kvm_mmu_page_role role_ign = {
4967 	.level = 0xf,
4968 	.access = 0x7,
4969 	.quadrant = 0x3,
4970 	.invalid = 0x1,
4971 };
4972 
4973 static void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
4974 			      const u8 *new, int bytes,
4975 			      struct kvm_page_track_notifier_node *node)
4976 {
4977 	gfn_t gfn = gpa >> PAGE_SHIFT;
4978 	struct kvm_mmu_page *sp;
4979 	LIST_HEAD(invalid_list);
4980 	u64 entry, gentry, *spte;
4981 	int npte;
4982 	bool remote_flush, local_flush;
4983 
4984 	/*
4985 	 * If we don't have indirect shadow pages, it means no page is
4986 	 * write-protected, so we can exit simply.
4987 	 */
4988 	if (!READ_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
4989 		return;
4990 
4991 	remote_flush = local_flush = false;
4992 
4993 	pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
4994 
4995 	/*
4996 	 * No need to care whether allocation memory is successful
4997 	 * or not since pte prefetch is skiped if it does not have
4998 	 * enough objects in the cache.
4999 	 */
5000 	mmu_topup_memory_caches(vcpu, true);
5001 
5002 	spin_lock(&vcpu->kvm->mmu_lock);
5003 
5004 	gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, &bytes);
5005 
5006 	++vcpu->kvm->stat.mmu_pte_write;
5007 	kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
5008 
5009 	for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
5010 		if (detect_write_misaligned(sp, gpa, bytes) ||
5011 		      detect_write_flooding(sp)) {
5012 			kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
5013 			++vcpu->kvm->stat.mmu_flooded;
5014 			continue;
5015 		}
5016 
5017 		spte = get_written_sptes(sp, gpa, &npte);
5018 		if (!spte)
5019 			continue;
5020 
5021 		local_flush = true;
5022 		while (npte--) {
5023 			u32 base_role = vcpu->arch.mmu->mmu_role.base.word;
5024 
5025 			entry = *spte;
5026 			mmu_page_zap_pte(vcpu->kvm, sp, spte, NULL);
5027 			if (gentry &&
5028 			    !((sp->role.word ^ base_role) & ~role_ign.word) &&
5029 			    rmap_can_add(vcpu))
5030 				mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
5031 			if (need_remote_flush(entry, *spte))
5032 				remote_flush = true;
5033 			++spte;
5034 		}
5035 	}
5036 	kvm_mmu_flush_or_zap(vcpu, &invalid_list, remote_flush, local_flush);
5037 	kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
5038 	spin_unlock(&vcpu->kvm->mmu_lock);
5039 }
5040 
5041 int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
5042 {
5043 	gpa_t gpa;
5044 	int r;
5045 
5046 	if (vcpu->arch.mmu->direct_map)
5047 		return 0;
5048 
5049 	gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
5050 
5051 	r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
5052 
5053 	return r;
5054 }
5055 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
5056 
5057 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 error_code,
5058 		       void *insn, int insn_len)
5059 {
5060 	int r, emulation_type = EMULTYPE_PF;
5061 	bool direct = vcpu->arch.mmu->direct_map;
5062 
5063 	if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa)))
5064 		return RET_PF_RETRY;
5065 
5066 	r = RET_PF_INVALID;
5067 	if (unlikely(error_code & PFERR_RSVD_MASK)) {
5068 		r = handle_mmio_page_fault(vcpu, cr2_or_gpa, direct);
5069 		if (r == RET_PF_EMULATE)
5070 			goto emulate;
5071 	}
5072 
5073 	if (r == RET_PF_INVALID) {
5074 		r = kvm_mmu_do_page_fault(vcpu, cr2_or_gpa,
5075 					  lower_32_bits(error_code), false);
5076 		if (WARN_ON_ONCE(r == RET_PF_INVALID))
5077 			return -EIO;
5078 	}
5079 
5080 	if (r < 0)
5081 		return r;
5082 	if (r != RET_PF_EMULATE)
5083 		return 1;
5084 
5085 	/*
5086 	 * Before emulating the instruction, check if the error code
5087 	 * was due to a RO violation while translating the guest page.
5088 	 * This can occur when using nested virtualization with nested
5089 	 * paging in both guests. If true, we simply unprotect the page
5090 	 * and resume the guest.
5091 	 */
5092 	if (vcpu->arch.mmu->direct_map &&
5093 	    (error_code & PFERR_NESTED_GUEST_PAGE) == PFERR_NESTED_GUEST_PAGE) {
5094 		kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(cr2_or_gpa));
5095 		return 1;
5096 	}
5097 
5098 	/*
5099 	 * vcpu->arch.mmu.page_fault returned RET_PF_EMULATE, but we can still
5100 	 * optimistically try to just unprotect the page and let the processor
5101 	 * re-execute the instruction that caused the page fault.  Do not allow
5102 	 * retrying MMIO emulation, as it's not only pointless but could also
5103 	 * cause us to enter an infinite loop because the processor will keep
5104 	 * faulting on the non-existent MMIO address.  Retrying an instruction
5105 	 * from a nested guest is also pointless and dangerous as we are only
5106 	 * explicitly shadowing L1's page tables, i.e. unprotecting something
5107 	 * for L1 isn't going to magically fix whatever issue cause L2 to fail.
5108 	 */
5109 	if (!mmio_info_in_cache(vcpu, cr2_or_gpa, direct) && !is_guest_mode(vcpu))
5110 		emulation_type |= EMULTYPE_ALLOW_RETRY_PF;
5111 emulate:
5112 	return x86_emulate_instruction(vcpu, cr2_or_gpa, emulation_type, insn,
5113 				       insn_len);
5114 }
5115 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
5116 
5117 void kvm_mmu_invalidate_gva(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
5118 			    gva_t gva, hpa_t root_hpa)
5119 {
5120 	int i;
5121 
5122 	/* It's actually a GPA for vcpu->arch.guest_mmu.  */
5123 	if (mmu != &vcpu->arch.guest_mmu) {
5124 		/* INVLPG on a non-canonical address is a NOP according to the SDM.  */
5125 		if (is_noncanonical_address(gva, vcpu))
5126 			return;
5127 
5128 		kvm_x86_ops.tlb_flush_gva(vcpu, gva);
5129 	}
5130 
5131 	if (!mmu->invlpg)
5132 		return;
5133 
5134 	if (root_hpa == INVALID_PAGE) {
5135 		mmu->invlpg(vcpu, gva, mmu->root_hpa);
5136 
5137 		/*
5138 		 * INVLPG is required to invalidate any global mappings for the VA,
5139 		 * irrespective of PCID. Since it would take us roughly similar amount
5140 		 * of work to determine whether any of the prev_root mappings of the VA
5141 		 * is marked global, or to just sync it blindly, so we might as well
5142 		 * just always sync it.
5143 		 *
5144 		 * Mappings not reachable via the current cr3 or the prev_roots will be
5145 		 * synced when switching to that cr3, so nothing needs to be done here
5146 		 * for them.
5147 		 */
5148 		for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5149 			if (VALID_PAGE(mmu->prev_roots[i].hpa))
5150 				mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
5151 	} else {
5152 		mmu->invlpg(vcpu, gva, root_hpa);
5153 	}
5154 }
5155 EXPORT_SYMBOL_GPL(kvm_mmu_invalidate_gva);
5156 
5157 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
5158 {
5159 	kvm_mmu_invalidate_gva(vcpu, vcpu->arch.mmu, gva, INVALID_PAGE);
5160 	++vcpu->stat.invlpg;
5161 }
5162 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
5163 
5164 
5165 void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid)
5166 {
5167 	struct kvm_mmu *mmu = vcpu->arch.mmu;
5168 	bool tlb_flush = false;
5169 	uint i;
5170 
5171 	if (pcid == kvm_get_active_pcid(vcpu)) {
5172 		mmu->invlpg(vcpu, gva, mmu->root_hpa);
5173 		tlb_flush = true;
5174 	}
5175 
5176 	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
5177 		if (VALID_PAGE(mmu->prev_roots[i].hpa) &&
5178 		    pcid == kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd)) {
5179 			mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
5180 			tlb_flush = true;
5181 		}
5182 	}
5183 
5184 	if (tlb_flush)
5185 		kvm_x86_ops.tlb_flush_gva(vcpu, gva);
5186 
5187 	++vcpu->stat.invlpg;
5188 
5189 	/*
5190 	 * Mappings not reachable via the current cr3 or the prev_roots will be
5191 	 * synced when switching to that cr3, so nothing needs to be done here
5192 	 * for them.
5193 	 */
5194 }
5195 EXPORT_SYMBOL_GPL(kvm_mmu_invpcid_gva);
5196 
5197 void kvm_configure_mmu(bool enable_tdp, int tdp_max_root_level,
5198 		       int tdp_huge_page_level)
5199 {
5200 	tdp_enabled = enable_tdp;
5201 	max_tdp_level = tdp_max_root_level;
5202 
5203 	/*
5204 	 * max_huge_page_level reflects KVM's MMU capabilities irrespective
5205 	 * of kernel support, e.g. KVM may be capable of using 1GB pages when
5206 	 * the kernel is not.  But, KVM never creates a page size greater than
5207 	 * what is used by the kernel for any given HVA, i.e. the kernel's
5208 	 * capabilities are ultimately consulted by kvm_mmu_hugepage_adjust().
5209 	 */
5210 	if (tdp_enabled)
5211 		max_huge_page_level = tdp_huge_page_level;
5212 	else if (boot_cpu_has(X86_FEATURE_GBPAGES))
5213 		max_huge_page_level = PG_LEVEL_1G;
5214 	else
5215 		max_huge_page_level = PG_LEVEL_2M;
5216 }
5217 EXPORT_SYMBOL_GPL(kvm_configure_mmu);
5218 
5219 /* The return value indicates if tlb flush on all vcpus is needed. */
5220 typedef bool (*slot_level_handler) (struct kvm *kvm, struct kvm_rmap_head *rmap_head);
5221 
5222 /* The caller should hold mmu-lock before calling this function. */
5223 static __always_inline bool
5224 slot_handle_level_range(struct kvm *kvm, struct kvm_memory_slot *memslot,
5225 			slot_level_handler fn, int start_level, int end_level,
5226 			gfn_t start_gfn, gfn_t end_gfn, bool lock_flush_tlb)
5227 {
5228 	struct slot_rmap_walk_iterator iterator;
5229 	bool flush = false;
5230 
5231 	for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn,
5232 			end_gfn, &iterator) {
5233 		if (iterator.rmap)
5234 			flush |= fn(kvm, iterator.rmap);
5235 
5236 		if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
5237 			if (flush && lock_flush_tlb) {
5238 				kvm_flush_remote_tlbs_with_address(kvm,
5239 						start_gfn,
5240 						iterator.gfn - start_gfn + 1);
5241 				flush = false;
5242 			}
5243 			cond_resched_lock(&kvm->mmu_lock);
5244 		}
5245 	}
5246 
5247 	if (flush && lock_flush_tlb) {
5248 		kvm_flush_remote_tlbs_with_address(kvm, start_gfn,
5249 						   end_gfn - start_gfn + 1);
5250 		flush = false;
5251 	}
5252 
5253 	return flush;
5254 }
5255 
5256 static __always_inline bool
5257 slot_handle_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5258 		  slot_level_handler fn, int start_level, int end_level,
5259 		  bool lock_flush_tlb)
5260 {
5261 	return slot_handle_level_range(kvm, memslot, fn, start_level,
5262 			end_level, memslot->base_gfn,
5263 			memslot->base_gfn + memslot->npages - 1,
5264 			lock_flush_tlb);
5265 }
5266 
5267 static __always_inline bool
5268 slot_handle_all_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5269 		      slot_level_handler fn, bool lock_flush_tlb)
5270 {
5271 	return slot_handle_level(kvm, memslot, fn, PG_LEVEL_4K,
5272 				 KVM_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
5273 }
5274 
5275 static __always_inline bool
5276 slot_handle_large_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5277 			slot_level_handler fn, bool lock_flush_tlb)
5278 {
5279 	return slot_handle_level(kvm, memslot, fn, PG_LEVEL_4K + 1,
5280 				 KVM_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
5281 }
5282 
5283 static __always_inline bool
5284 slot_handle_leaf(struct kvm *kvm, struct kvm_memory_slot *memslot,
5285 		 slot_level_handler fn, bool lock_flush_tlb)
5286 {
5287 	return slot_handle_level(kvm, memslot, fn, PG_LEVEL_4K,
5288 				 PG_LEVEL_4K, lock_flush_tlb);
5289 }
5290 
5291 static void free_mmu_pages(struct kvm_mmu *mmu)
5292 {
5293 	free_page((unsigned long)mmu->pae_root);
5294 	free_page((unsigned long)mmu->lm_root);
5295 }
5296 
5297 static int __kvm_mmu_create(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
5298 {
5299 	struct page *page;
5300 	int i;
5301 
5302 	mmu->root_hpa = INVALID_PAGE;
5303 	mmu->root_pgd = 0;
5304 	mmu->translate_gpa = translate_gpa;
5305 	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5306 		mmu->prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
5307 
5308 	/*
5309 	 * When using PAE paging, the four PDPTEs are treated as 'root' pages,
5310 	 * while the PDP table is a per-vCPU construct that's allocated at MMU
5311 	 * creation.  When emulating 32-bit mode, cr3 is only 32 bits even on
5312 	 * x86_64.  Therefore we need to allocate the PDP table in the first
5313 	 * 4GB of memory, which happens to fit the DMA32 zone.  Except for
5314 	 * SVM's 32-bit NPT support, TDP paging doesn't use PAE paging and can
5315 	 * skip allocating the PDP table.
5316 	 */
5317 	if (tdp_enabled && kvm_mmu_get_tdp_level(vcpu) > PT32E_ROOT_LEVEL)
5318 		return 0;
5319 
5320 	page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_DMA32);
5321 	if (!page)
5322 		return -ENOMEM;
5323 
5324 	mmu->pae_root = page_address(page);
5325 	for (i = 0; i < 4; ++i)
5326 		mmu->pae_root[i] = INVALID_PAGE;
5327 
5328 	return 0;
5329 }
5330 
5331 int kvm_mmu_create(struct kvm_vcpu *vcpu)
5332 {
5333 	int ret;
5334 
5335 	vcpu->arch.mmu_pte_list_desc_cache.kmem_cache = pte_list_desc_cache;
5336 	vcpu->arch.mmu_pte_list_desc_cache.gfp_zero = __GFP_ZERO;
5337 
5338 	vcpu->arch.mmu_page_header_cache.kmem_cache = mmu_page_header_cache;
5339 	vcpu->arch.mmu_page_header_cache.gfp_zero = __GFP_ZERO;
5340 
5341 	vcpu->arch.mmu_shadow_page_cache.gfp_zero = __GFP_ZERO;
5342 
5343 	vcpu->arch.mmu = &vcpu->arch.root_mmu;
5344 	vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
5345 
5346 	vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
5347 
5348 	ret = __kvm_mmu_create(vcpu, &vcpu->arch.guest_mmu);
5349 	if (ret)
5350 		return ret;
5351 
5352 	ret = __kvm_mmu_create(vcpu, &vcpu->arch.root_mmu);
5353 	if (ret)
5354 		goto fail_allocate_root;
5355 
5356 	return ret;
5357  fail_allocate_root:
5358 	free_mmu_pages(&vcpu->arch.guest_mmu);
5359 	return ret;
5360 }
5361 
5362 #define BATCH_ZAP_PAGES	10
5363 static void kvm_zap_obsolete_pages(struct kvm *kvm)
5364 {
5365 	struct kvm_mmu_page *sp, *node;
5366 	int nr_zapped, batch = 0;
5367 
5368 restart:
5369 	list_for_each_entry_safe_reverse(sp, node,
5370 	      &kvm->arch.active_mmu_pages, link) {
5371 		/*
5372 		 * No obsolete valid page exists before a newly created page
5373 		 * since active_mmu_pages is a FIFO list.
5374 		 */
5375 		if (!is_obsolete_sp(kvm, sp))
5376 			break;
5377 
5378 		/*
5379 		 * Invalid pages should never land back on the list of active
5380 		 * pages.  Skip the bogus page, otherwise we'll get stuck in an
5381 		 * infinite loop if the page gets put back on the list (again).
5382 		 */
5383 		if (WARN_ON(sp->role.invalid))
5384 			continue;
5385 
5386 		/*
5387 		 * No need to flush the TLB since we're only zapping shadow
5388 		 * pages with an obsolete generation number and all vCPUS have
5389 		 * loaded a new root, i.e. the shadow pages being zapped cannot
5390 		 * be in active use by the guest.
5391 		 */
5392 		if (batch >= BATCH_ZAP_PAGES &&
5393 		    cond_resched_lock(&kvm->mmu_lock)) {
5394 			batch = 0;
5395 			goto restart;
5396 		}
5397 
5398 		if (__kvm_mmu_prepare_zap_page(kvm, sp,
5399 				&kvm->arch.zapped_obsolete_pages, &nr_zapped)) {
5400 			batch += nr_zapped;
5401 			goto restart;
5402 		}
5403 	}
5404 
5405 	/*
5406 	 * Trigger a remote TLB flush before freeing the page tables to ensure
5407 	 * KVM is not in the middle of a lockless shadow page table walk, which
5408 	 * may reference the pages.
5409 	 */
5410 	kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
5411 }
5412 
5413 /*
5414  * Fast invalidate all shadow pages and use lock-break technique
5415  * to zap obsolete pages.
5416  *
5417  * It's required when memslot is being deleted or VM is being
5418  * destroyed, in these cases, we should ensure that KVM MMU does
5419  * not use any resource of the being-deleted slot or all slots
5420  * after calling the function.
5421  */
5422 static void kvm_mmu_zap_all_fast(struct kvm *kvm)
5423 {
5424 	lockdep_assert_held(&kvm->slots_lock);
5425 
5426 	spin_lock(&kvm->mmu_lock);
5427 	trace_kvm_mmu_zap_all_fast(kvm);
5428 
5429 	/*
5430 	 * Toggle mmu_valid_gen between '0' and '1'.  Because slots_lock is
5431 	 * held for the entire duration of zapping obsolete pages, it's
5432 	 * impossible for there to be multiple invalid generations associated
5433 	 * with *valid* shadow pages at any given time, i.e. there is exactly
5434 	 * one valid generation and (at most) one invalid generation.
5435 	 */
5436 	kvm->arch.mmu_valid_gen = kvm->arch.mmu_valid_gen ? 0 : 1;
5437 
5438 	/*
5439 	 * Notify all vcpus to reload its shadow page table and flush TLB.
5440 	 * Then all vcpus will switch to new shadow page table with the new
5441 	 * mmu_valid_gen.
5442 	 *
5443 	 * Note: we need to do this under the protection of mmu_lock,
5444 	 * otherwise, vcpu would purge shadow page but miss tlb flush.
5445 	 */
5446 	kvm_reload_remote_mmus(kvm);
5447 
5448 	kvm_zap_obsolete_pages(kvm);
5449 
5450 	if (kvm->arch.tdp_mmu_enabled)
5451 		kvm_tdp_mmu_zap_all(kvm);
5452 
5453 	spin_unlock(&kvm->mmu_lock);
5454 }
5455 
5456 static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
5457 {
5458 	return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
5459 }
5460 
5461 static void kvm_mmu_invalidate_zap_pages_in_memslot(struct kvm *kvm,
5462 			struct kvm_memory_slot *slot,
5463 			struct kvm_page_track_notifier_node *node)
5464 {
5465 	kvm_mmu_zap_all_fast(kvm);
5466 }
5467 
5468 void kvm_mmu_init_vm(struct kvm *kvm)
5469 {
5470 	struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5471 
5472 	kvm_mmu_init_tdp_mmu(kvm);
5473 
5474 	node->track_write = kvm_mmu_pte_write;
5475 	node->track_flush_slot = kvm_mmu_invalidate_zap_pages_in_memslot;
5476 	kvm_page_track_register_notifier(kvm, node);
5477 }
5478 
5479 void kvm_mmu_uninit_vm(struct kvm *kvm)
5480 {
5481 	struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5482 
5483 	kvm_page_track_unregister_notifier(kvm, node);
5484 
5485 	kvm_mmu_uninit_tdp_mmu(kvm);
5486 }
5487 
5488 void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
5489 {
5490 	struct kvm_memslots *slots;
5491 	struct kvm_memory_slot *memslot;
5492 	int i;
5493 	bool flush;
5494 
5495 	spin_lock(&kvm->mmu_lock);
5496 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
5497 		slots = __kvm_memslots(kvm, i);
5498 		kvm_for_each_memslot(memslot, slots) {
5499 			gfn_t start, end;
5500 
5501 			start = max(gfn_start, memslot->base_gfn);
5502 			end = min(gfn_end, memslot->base_gfn + memslot->npages);
5503 			if (start >= end)
5504 				continue;
5505 
5506 			slot_handle_level_range(kvm, memslot, kvm_zap_rmapp,
5507 						PG_LEVEL_4K,
5508 						KVM_MAX_HUGEPAGE_LEVEL,
5509 						start, end - 1, true);
5510 		}
5511 	}
5512 
5513 	if (kvm->arch.tdp_mmu_enabled) {
5514 		flush = kvm_tdp_mmu_zap_gfn_range(kvm, gfn_start, gfn_end);
5515 		if (flush)
5516 			kvm_flush_remote_tlbs(kvm);
5517 	}
5518 
5519 	spin_unlock(&kvm->mmu_lock);
5520 }
5521 
5522 static bool slot_rmap_write_protect(struct kvm *kvm,
5523 				    struct kvm_rmap_head *rmap_head)
5524 {
5525 	return __rmap_write_protect(kvm, rmap_head, false);
5526 }
5527 
5528 void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
5529 				      struct kvm_memory_slot *memslot,
5530 				      int start_level)
5531 {
5532 	bool flush;
5533 
5534 	spin_lock(&kvm->mmu_lock);
5535 	flush = slot_handle_level(kvm, memslot, slot_rmap_write_protect,
5536 				start_level, KVM_MAX_HUGEPAGE_LEVEL, false);
5537 	if (kvm->arch.tdp_mmu_enabled)
5538 		flush |= kvm_tdp_mmu_wrprot_slot(kvm, memslot, PG_LEVEL_4K);
5539 	spin_unlock(&kvm->mmu_lock);
5540 
5541 	/*
5542 	 * We can flush all the TLBs out of the mmu lock without TLB
5543 	 * corruption since we just change the spte from writable to
5544 	 * readonly so that we only need to care the case of changing
5545 	 * spte from present to present (changing the spte from present
5546 	 * to nonpresent will flush all the TLBs immediately), in other
5547 	 * words, the only case we care is mmu_spte_update() where we
5548 	 * have checked SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE
5549 	 * instead of PT_WRITABLE_MASK, that means it does not depend
5550 	 * on PT_WRITABLE_MASK anymore.
5551 	 */
5552 	if (flush)
5553 		kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
5554 }
5555 
5556 static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
5557 					 struct kvm_rmap_head *rmap_head)
5558 {
5559 	u64 *sptep;
5560 	struct rmap_iterator iter;
5561 	int need_tlb_flush = 0;
5562 	kvm_pfn_t pfn;
5563 	struct kvm_mmu_page *sp;
5564 
5565 restart:
5566 	for_each_rmap_spte(rmap_head, &iter, sptep) {
5567 		sp = sptep_to_sp(sptep);
5568 		pfn = spte_to_pfn(*sptep);
5569 
5570 		/*
5571 		 * We cannot do huge page mapping for indirect shadow pages,
5572 		 * which are found on the last rmap (level = 1) when not using
5573 		 * tdp; such shadow pages are synced with the page table in
5574 		 * the guest, and the guest page table is using 4K page size
5575 		 * mapping if the indirect sp has level = 1.
5576 		 */
5577 		if (sp->role.direct && !kvm_is_reserved_pfn(pfn) &&
5578 		    (kvm_is_zone_device_pfn(pfn) ||
5579 		     PageCompound(pfn_to_page(pfn)))) {
5580 			pte_list_remove(rmap_head, sptep);
5581 
5582 			if (kvm_available_flush_tlb_with_range())
5583 				kvm_flush_remote_tlbs_with_address(kvm, sp->gfn,
5584 					KVM_PAGES_PER_HPAGE(sp->role.level));
5585 			else
5586 				need_tlb_flush = 1;
5587 
5588 			goto restart;
5589 		}
5590 	}
5591 
5592 	return need_tlb_flush;
5593 }
5594 
5595 void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
5596 				   const struct kvm_memory_slot *memslot)
5597 {
5598 	/* FIXME: const-ify all uses of struct kvm_memory_slot.  */
5599 	spin_lock(&kvm->mmu_lock);
5600 	slot_handle_leaf(kvm, (struct kvm_memory_slot *)memslot,
5601 			 kvm_mmu_zap_collapsible_spte, true);
5602 
5603 	if (kvm->arch.tdp_mmu_enabled)
5604 		kvm_tdp_mmu_zap_collapsible_sptes(kvm, memslot);
5605 	spin_unlock(&kvm->mmu_lock);
5606 }
5607 
5608 void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
5609 					struct kvm_memory_slot *memslot)
5610 {
5611 	/*
5612 	 * All current use cases for flushing the TLBs for a specific memslot
5613 	 * are related to dirty logging, and do the TLB flush out of mmu_lock.
5614 	 * The interaction between the various operations on memslot must be
5615 	 * serialized by slots_locks to ensure the TLB flush from one operation
5616 	 * is observed by any other operation on the same memslot.
5617 	 */
5618 	lockdep_assert_held(&kvm->slots_lock);
5619 	kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn,
5620 					   memslot->npages);
5621 }
5622 
5623 void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
5624 				   struct kvm_memory_slot *memslot)
5625 {
5626 	bool flush;
5627 
5628 	spin_lock(&kvm->mmu_lock);
5629 	flush = slot_handle_leaf(kvm, memslot, __rmap_clear_dirty, false);
5630 	if (kvm->arch.tdp_mmu_enabled)
5631 		flush |= kvm_tdp_mmu_clear_dirty_slot(kvm, memslot);
5632 	spin_unlock(&kvm->mmu_lock);
5633 
5634 	/*
5635 	 * It's also safe to flush TLBs out of mmu lock here as currently this
5636 	 * function is only used for dirty logging, in which case flushing TLB
5637 	 * out of mmu lock also guarantees no dirty pages will be lost in
5638 	 * dirty_bitmap.
5639 	 */
5640 	if (flush)
5641 		kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
5642 }
5643 EXPORT_SYMBOL_GPL(kvm_mmu_slot_leaf_clear_dirty);
5644 
5645 void kvm_mmu_slot_largepage_remove_write_access(struct kvm *kvm,
5646 					struct kvm_memory_slot *memslot)
5647 {
5648 	bool flush;
5649 
5650 	spin_lock(&kvm->mmu_lock);
5651 	flush = slot_handle_large_level(kvm, memslot, slot_rmap_write_protect,
5652 					false);
5653 	if (kvm->arch.tdp_mmu_enabled)
5654 		flush |= kvm_tdp_mmu_wrprot_slot(kvm, memslot, PG_LEVEL_2M);
5655 	spin_unlock(&kvm->mmu_lock);
5656 
5657 	if (flush)
5658 		kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
5659 }
5660 EXPORT_SYMBOL_GPL(kvm_mmu_slot_largepage_remove_write_access);
5661 
5662 void kvm_mmu_slot_set_dirty(struct kvm *kvm,
5663 			    struct kvm_memory_slot *memslot)
5664 {
5665 	bool flush;
5666 
5667 	spin_lock(&kvm->mmu_lock);
5668 	flush = slot_handle_all_level(kvm, memslot, __rmap_set_dirty, false);
5669 	if (kvm->arch.tdp_mmu_enabled)
5670 		flush |= kvm_tdp_mmu_slot_set_dirty(kvm, memslot);
5671 	spin_unlock(&kvm->mmu_lock);
5672 
5673 	if (flush)
5674 		kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
5675 }
5676 EXPORT_SYMBOL_GPL(kvm_mmu_slot_set_dirty);
5677 
5678 void kvm_mmu_zap_all(struct kvm *kvm)
5679 {
5680 	struct kvm_mmu_page *sp, *node;
5681 	LIST_HEAD(invalid_list);
5682 	int ign;
5683 
5684 	spin_lock(&kvm->mmu_lock);
5685 restart:
5686 	list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link) {
5687 		if (WARN_ON(sp->role.invalid))
5688 			continue;
5689 		if (__kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list, &ign))
5690 			goto restart;
5691 		if (cond_resched_lock(&kvm->mmu_lock))
5692 			goto restart;
5693 	}
5694 
5695 	kvm_mmu_commit_zap_page(kvm, &invalid_list);
5696 
5697 	if (kvm->arch.tdp_mmu_enabled)
5698 		kvm_tdp_mmu_zap_all(kvm);
5699 
5700 	spin_unlock(&kvm->mmu_lock);
5701 }
5702 
5703 void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen)
5704 {
5705 	WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
5706 
5707 	gen &= MMIO_SPTE_GEN_MASK;
5708 
5709 	/*
5710 	 * Generation numbers are incremented in multiples of the number of
5711 	 * address spaces in order to provide unique generations across all
5712 	 * address spaces.  Strip what is effectively the address space
5713 	 * modifier prior to checking for a wrap of the MMIO generation so
5714 	 * that a wrap in any address space is detected.
5715 	 */
5716 	gen &= ~((u64)KVM_ADDRESS_SPACE_NUM - 1);
5717 
5718 	/*
5719 	 * The very rare case: if the MMIO generation number has wrapped,
5720 	 * zap all shadow pages.
5721 	 */
5722 	if (unlikely(gen == 0)) {
5723 		kvm_debug_ratelimited("kvm: zapping shadow pages for mmio generation wraparound\n");
5724 		kvm_mmu_zap_all_fast(kvm);
5725 	}
5726 }
5727 
5728 static unsigned long
5729 mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
5730 {
5731 	struct kvm *kvm;
5732 	int nr_to_scan = sc->nr_to_scan;
5733 	unsigned long freed = 0;
5734 
5735 	mutex_lock(&kvm_lock);
5736 
5737 	list_for_each_entry(kvm, &vm_list, vm_list) {
5738 		int idx;
5739 		LIST_HEAD(invalid_list);
5740 
5741 		/*
5742 		 * Never scan more than sc->nr_to_scan VM instances.
5743 		 * Will not hit this condition practically since we do not try
5744 		 * to shrink more than one VM and it is very unlikely to see
5745 		 * !n_used_mmu_pages so many times.
5746 		 */
5747 		if (!nr_to_scan--)
5748 			break;
5749 		/*
5750 		 * n_used_mmu_pages is accessed without holding kvm->mmu_lock
5751 		 * here. We may skip a VM instance errorneosly, but we do not
5752 		 * want to shrink a VM that only started to populate its MMU
5753 		 * anyway.
5754 		 */
5755 		if (!kvm->arch.n_used_mmu_pages &&
5756 		    !kvm_has_zapped_obsolete_pages(kvm))
5757 			continue;
5758 
5759 		idx = srcu_read_lock(&kvm->srcu);
5760 		spin_lock(&kvm->mmu_lock);
5761 
5762 		if (kvm_has_zapped_obsolete_pages(kvm)) {
5763 			kvm_mmu_commit_zap_page(kvm,
5764 			      &kvm->arch.zapped_obsolete_pages);
5765 			goto unlock;
5766 		}
5767 
5768 		freed = kvm_mmu_zap_oldest_mmu_pages(kvm, sc->nr_to_scan);
5769 
5770 unlock:
5771 		spin_unlock(&kvm->mmu_lock);
5772 		srcu_read_unlock(&kvm->srcu, idx);
5773 
5774 		/*
5775 		 * unfair on small ones
5776 		 * per-vm shrinkers cry out
5777 		 * sadness comes quickly
5778 		 */
5779 		list_move_tail(&kvm->vm_list, &vm_list);
5780 		break;
5781 	}
5782 
5783 	mutex_unlock(&kvm_lock);
5784 	return freed;
5785 }
5786 
5787 static unsigned long
5788 mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
5789 {
5790 	return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
5791 }
5792 
5793 static struct shrinker mmu_shrinker = {
5794 	.count_objects = mmu_shrink_count,
5795 	.scan_objects = mmu_shrink_scan,
5796 	.seeks = DEFAULT_SEEKS * 10,
5797 };
5798 
5799 static void mmu_destroy_caches(void)
5800 {
5801 	kmem_cache_destroy(pte_list_desc_cache);
5802 	kmem_cache_destroy(mmu_page_header_cache);
5803 }
5804 
5805 static void kvm_set_mmio_spte_mask(void)
5806 {
5807 	u64 mask;
5808 
5809 	/*
5810 	 * Set a reserved PA bit in MMIO SPTEs to generate page faults with
5811 	 * PFEC.RSVD=1 on MMIO accesses.  64-bit PTEs (PAE, x86-64, and EPT
5812 	 * paging) support a maximum of 52 bits of PA, i.e. if the CPU supports
5813 	 * 52-bit physical addresses then there are no reserved PA bits in the
5814 	 * PTEs and so the reserved PA approach must be disabled.
5815 	 */
5816 	if (shadow_phys_bits < 52)
5817 		mask = BIT_ULL(51) | PT_PRESENT_MASK;
5818 	else
5819 		mask = 0;
5820 
5821 	kvm_mmu_set_mmio_spte_mask(mask, ACC_WRITE_MASK | ACC_USER_MASK);
5822 }
5823 
5824 static bool get_nx_auto_mode(void)
5825 {
5826 	/* Return true when CPU has the bug, and mitigations are ON */
5827 	return boot_cpu_has_bug(X86_BUG_ITLB_MULTIHIT) && !cpu_mitigations_off();
5828 }
5829 
5830 static void __set_nx_huge_pages(bool val)
5831 {
5832 	nx_huge_pages = itlb_multihit_kvm_mitigation = val;
5833 }
5834 
5835 static int set_nx_huge_pages(const char *val, const struct kernel_param *kp)
5836 {
5837 	bool old_val = nx_huge_pages;
5838 	bool new_val;
5839 
5840 	/* In "auto" mode deploy workaround only if CPU has the bug. */
5841 	if (sysfs_streq(val, "off"))
5842 		new_val = 0;
5843 	else if (sysfs_streq(val, "force"))
5844 		new_val = 1;
5845 	else if (sysfs_streq(val, "auto"))
5846 		new_val = get_nx_auto_mode();
5847 	else if (strtobool(val, &new_val) < 0)
5848 		return -EINVAL;
5849 
5850 	__set_nx_huge_pages(new_val);
5851 
5852 	if (new_val != old_val) {
5853 		struct kvm *kvm;
5854 
5855 		mutex_lock(&kvm_lock);
5856 
5857 		list_for_each_entry(kvm, &vm_list, vm_list) {
5858 			mutex_lock(&kvm->slots_lock);
5859 			kvm_mmu_zap_all_fast(kvm);
5860 			mutex_unlock(&kvm->slots_lock);
5861 
5862 			wake_up_process(kvm->arch.nx_lpage_recovery_thread);
5863 		}
5864 		mutex_unlock(&kvm_lock);
5865 	}
5866 
5867 	return 0;
5868 }
5869 
5870 int kvm_mmu_module_init(void)
5871 {
5872 	int ret = -ENOMEM;
5873 
5874 	if (nx_huge_pages == -1)
5875 		__set_nx_huge_pages(get_nx_auto_mode());
5876 
5877 	/*
5878 	 * MMU roles use union aliasing which is, generally speaking, an
5879 	 * undefined behavior. However, we supposedly know how compilers behave
5880 	 * and the current status quo is unlikely to change. Guardians below are
5881 	 * supposed to let us know if the assumption becomes false.
5882 	 */
5883 	BUILD_BUG_ON(sizeof(union kvm_mmu_page_role) != sizeof(u32));
5884 	BUILD_BUG_ON(sizeof(union kvm_mmu_extended_role) != sizeof(u32));
5885 	BUILD_BUG_ON(sizeof(union kvm_mmu_role) != sizeof(u64));
5886 
5887 	kvm_mmu_reset_all_pte_masks();
5888 
5889 	kvm_set_mmio_spte_mask();
5890 
5891 	pte_list_desc_cache = kmem_cache_create("pte_list_desc",
5892 					    sizeof(struct pte_list_desc),
5893 					    0, SLAB_ACCOUNT, NULL);
5894 	if (!pte_list_desc_cache)
5895 		goto out;
5896 
5897 	mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
5898 						  sizeof(struct kvm_mmu_page),
5899 						  0, SLAB_ACCOUNT, NULL);
5900 	if (!mmu_page_header_cache)
5901 		goto out;
5902 
5903 	if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
5904 		goto out;
5905 
5906 	ret = register_shrinker(&mmu_shrinker);
5907 	if (ret)
5908 		goto out;
5909 
5910 	return 0;
5911 
5912 out:
5913 	mmu_destroy_caches();
5914 	return ret;
5915 }
5916 
5917 /*
5918  * Calculate mmu pages needed for kvm.
5919  */
5920 unsigned long kvm_mmu_calculate_default_mmu_pages(struct kvm *kvm)
5921 {
5922 	unsigned long nr_mmu_pages;
5923 	unsigned long nr_pages = 0;
5924 	struct kvm_memslots *slots;
5925 	struct kvm_memory_slot *memslot;
5926 	int i;
5927 
5928 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
5929 		slots = __kvm_memslots(kvm, i);
5930 
5931 		kvm_for_each_memslot(memslot, slots)
5932 			nr_pages += memslot->npages;
5933 	}
5934 
5935 	nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
5936 	nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES);
5937 
5938 	return nr_mmu_pages;
5939 }
5940 
5941 void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
5942 {
5943 	kvm_mmu_unload(vcpu);
5944 	free_mmu_pages(&vcpu->arch.root_mmu);
5945 	free_mmu_pages(&vcpu->arch.guest_mmu);
5946 	mmu_free_memory_caches(vcpu);
5947 }
5948 
5949 void kvm_mmu_module_exit(void)
5950 {
5951 	mmu_destroy_caches();
5952 	percpu_counter_destroy(&kvm_total_used_mmu_pages);
5953 	unregister_shrinker(&mmu_shrinker);
5954 	mmu_audit_disable();
5955 }
5956 
5957 static int set_nx_huge_pages_recovery_ratio(const char *val, const struct kernel_param *kp)
5958 {
5959 	unsigned int old_val;
5960 	int err;
5961 
5962 	old_val = nx_huge_pages_recovery_ratio;
5963 	err = param_set_uint(val, kp);
5964 	if (err)
5965 		return err;
5966 
5967 	if (READ_ONCE(nx_huge_pages) &&
5968 	    !old_val && nx_huge_pages_recovery_ratio) {
5969 		struct kvm *kvm;
5970 
5971 		mutex_lock(&kvm_lock);
5972 
5973 		list_for_each_entry(kvm, &vm_list, vm_list)
5974 			wake_up_process(kvm->arch.nx_lpage_recovery_thread);
5975 
5976 		mutex_unlock(&kvm_lock);
5977 	}
5978 
5979 	return err;
5980 }
5981 
5982 static void kvm_recover_nx_lpages(struct kvm *kvm)
5983 {
5984 	int rcu_idx;
5985 	struct kvm_mmu_page *sp;
5986 	unsigned int ratio;
5987 	LIST_HEAD(invalid_list);
5988 	ulong to_zap;
5989 
5990 	rcu_idx = srcu_read_lock(&kvm->srcu);
5991 	spin_lock(&kvm->mmu_lock);
5992 
5993 	ratio = READ_ONCE(nx_huge_pages_recovery_ratio);
5994 	to_zap = ratio ? DIV_ROUND_UP(kvm->stat.nx_lpage_splits, ratio) : 0;
5995 	for ( ; to_zap; --to_zap) {
5996 		if (list_empty(&kvm->arch.lpage_disallowed_mmu_pages))
5997 			break;
5998 
5999 		/*
6000 		 * We use a separate list instead of just using active_mmu_pages
6001 		 * because the number of lpage_disallowed pages is expected to
6002 		 * be relatively small compared to the total.
6003 		 */
6004 		sp = list_first_entry(&kvm->arch.lpage_disallowed_mmu_pages,
6005 				      struct kvm_mmu_page,
6006 				      lpage_disallowed_link);
6007 		WARN_ON_ONCE(!sp->lpage_disallowed);
6008 		if (sp->tdp_mmu_page)
6009 			kvm_tdp_mmu_zap_gfn_range(kvm, sp->gfn,
6010 				sp->gfn + KVM_PAGES_PER_HPAGE(sp->role.level));
6011 		else {
6012 			kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
6013 			WARN_ON_ONCE(sp->lpage_disallowed);
6014 		}
6015 
6016 		if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
6017 			kvm_mmu_commit_zap_page(kvm, &invalid_list);
6018 			cond_resched_lock(&kvm->mmu_lock);
6019 		}
6020 	}
6021 	kvm_mmu_commit_zap_page(kvm, &invalid_list);
6022 
6023 	spin_unlock(&kvm->mmu_lock);
6024 	srcu_read_unlock(&kvm->srcu, rcu_idx);
6025 }
6026 
6027 static long get_nx_lpage_recovery_timeout(u64 start_time)
6028 {
6029 	return READ_ONCE(nx_huge_pages) && READ_ONCE(nx_huge_pages_recovery_ratio)
6030 		? start_time + 60 * HZ - get_jiffies_64()
6031 		: MAX_SCHEDULE_TIMEOUT;
6032 }
6033 
6034 static int kvm_nx_lpage_recovery_worker(struct kvm *kvm, uintptr_t data)
6035 {
6036 	u64 start_time;
6037 	long remaining_time;
6038 
6039 	while (true) {
6040 		start_time = get_jiffies_64();
6041 		remaining_time = get_nx_lpage_recovery_timeout(start_time);
6042 
6043 		set_current_state(TASK_INTERRUPTIBLE);
6044 		while (!kthread_should_stop() && remaining_time > 0) {
6045 			schedule_timeout(remaining_time);
6046 			remaining_time = get_nx_lpage_recovery_timeout(start_time);
6047 			set_current_state(TASK_INTERRUPTIBLE);
6048 		}
6049 
6050 		set_current_state(TASK_RUNNING);
6051 
6052 		if (kthread_should_stop())
6053 			return 0;
6054 
6055 		kvm_recover_nx_lpages(kvm);
6056 	}
6057 }
6058 
6059 int kvm_mmu_post_init_vm(struct kvm *kvm)
6060 {
6061 	int err;
6062 
6063 	err = kvm_vm_create_worker_thread(kvm, kvm_nx_lpage_recovery_worker, 0,
6064 					  "kvm-nx-lpage-recovery",
6065 					  &kvm->arch.nx_lpage_recovery_thread);
6066 	if (!err)
6067 		kthread_unpark(kvm->arch.nx_lpage_recovery_thread);
6068 
6069 	return err;
6070 }
6071 
6072 void kvm_mmu_pre_destroy_vm(struct kvm *kvm)
6073 {
6074 	if (kvm->arch.nx_lpage_recovery_thread)
6075 		kthread_stop(kvm->arch.nx_lpage_recovery_thread);
6076 }
6077