xref: /openbmc/linux/arch/x86/kvm/mmu/mmu.c (revision 7ce05074)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This module enables machines with Intel VT-x extensions to run virtual
6  * machines without emulation or binary translation.
7  *
8  * MMU support
9  *
10  * Copyright (C) 2006 Qumranet, Inc.
11  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
12  *
13  * Authors:
14  *   Yaniv Kamay  <yaniv@qumranet.com>
15  *   Avi Kivity   <avi@qumranet.com>
16  */
17 
18 #include "irq.h"
19 #include "ioapic.h"
20 #include "mmu.h"
21 #include "mmu_internal.h"
22 #include "tdp_mmu.h"
23 #include "x86.h"
24 #include "kvm_cache_regs.h"
25 #include "kvm_emulate.h"
26 #include "cpuid.h"
27 #include "spte.h"
28 
29 #include <linux/kvm_host.h>
30 #include <linux/types.h>
31 #include <linux/string.h>
32 #include <linux/mm.h>
33 #include <linux/highmem.h>
34 #include <linux/moduleparam.h>
35 #include <linux/export.h>
36 #include <linux/swap.h>
37 #include <linux/hugetlb.h>
38 #include <linux/compiler.h>
39 #include <linux/srcu.h>
40 #include <linux/slab.h>
41 #include <linux/sched/signal.h>
42 #include <linux/uaccess.h>
43 #include <linux/hash.h>
44 #include <linux/kern_levels.h>
45 #include <linux/kthread.h>
46 
47 #include <asm/page.h>
48 #include <asm/memtype.h>
49 #include <asm/cmpxchg.h>
50 #include <asm/io.h>
51 #include <asm/set_memory.h>
52 #include <asm/vmx.h>
53 #include <asm/kvm_page_track.h>
54 #include "trace.h"
55 
56 #include "paging.h"
57 
58 extern bool itlb_multihit_kvm_mitigation;
59 
60 int __read_mostly nx_huge_pages = -1;
61 #ifdef CONFIG_PREEMPT_RT
62 /* Recovery can cause latency spikes, disable it for PREEMPT_RT.  */
63 static uint __read_mostly nx_huge_pages_recovery_ratio = 0;
64 #else
65 static uint __read_mostly nx_huge_pages_recovery_ratio = 60;
66 #endif
67 
68 static int set_nx_huge_pages(const char *val, const struct kernel_param *kp);
69 static int set_nx_huge_pages_recovery_ratio(const char *val, const struct kernel_param *kp);
70 
71 static const struct kernel_param_ops nx_huge_pages_ops = {
72 	.set = set_nx_huge_pages,
73 	.get = param_get_bool,
74 };
75 
76 static const struct kernel_param_ops nx_huge_pages_recovery_ratio_ops = {
77 	.set = set_nx_huge_pages_recovery_ratio,
78 	.get = param_get_uint,
79 };
80 
81 module_param_cb(nx_huge_pages, &nx_huge_pages_ops, &nx_huge_pages, 0644);
82 __MODULE_PARM_TYPE(nx_huge_pages, "bool");
83 module_param_cb(nx_huge_pages_recovery_ratio, &nx_huge_pages_recovery_ratio_ops,
84 		&nx_huge_pages_recovery_ratio, 0644);
85 __MODULE_PARM_TYPE(nx_huge_pages_recovery_ratio, "uint");
86 
87 static bool __read_mostly force_flush_and_sync_on_reuse;
88 module_param_named(flush_on_reuse, force_flush_and_sync_on_reuse, bool, 0644);
89 
90 /*
91  * When setting this variable to true it enables Two-Dimensional-Paging
92  * where the hardware walks 2 page tables:
93  * 1. the guest-virtual to guest-physical
94  * 2. while doing 1. it walks guest-physical to host-physical
95  * If the hardware supports that we don't need to do shadow paging.
96  */
97 bool tdp_enabled = false;
98 
99 static int max_huge_page_level __read_mostly;
100 static int max_tdp_level __read_mostly;
101 
102 enum {
103 	AUDIT_PRE_PAGE_FAULT,
104 	AUDIT_POST_PAGE_FAULT,
105 	AUDIT_PRE_PTE_WRITE,
106 	AUDIT_POST_PTE_WRITE,
107 	AUDIT_PRE_SYNC,
108 	AUDIT_POST_SYNC
109 };
110 
111 #ifdef MMU_DEBUG
112 bool dbg = 0;
113 module_param(dbg, bool, 0644);
114 #endif
115 
116 #define PTE_PREFETCH_NUM		8
117 
118 #define PT32_LEVEL_BITS 10
119 
120 #define PT32_LEVEL_SHIFT(level) \
121 		(PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
122 
123 #define PT32_LVL_OFFSET_MASK(level) \
124 	(PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
125 						* PT32_LEVEL_BITS))) - 1))
126 
127 #define PT32_INDEX(address, level)\
128 	(((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
129 
130 
131 #define PT32_BASE_ADDR_MASK PAGE_MASK
132 #define PT32_DIR_BASE_ADDR_MASK \
133 	(PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
134 #define PT32_LVL_ADDR_MASK(level) \
135 	(PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
136 					    * PT32_LEVEL_BITS))) - 1))
137 
138 #include <trace/events/kvm.h>
139 
140 /* make pte_list_desc fit well in cache line */
141 #define PTE_LIST_EXT 3
142 
143 struct pte_list_desc {
144 	u64 *sptes[PTE_LIST_EXT];
145 	struct pte_list_desc *more;
146 };
147 
148 struct kvm_shadow_walk_iterator {
149 	u64 addr;
150 	hpa_t shadow_addr;
151 	u64 *sptep;
152 	int level;
153 	unsigned index;
154 };
155 
156 #define for_each_shadow_entry_using_root(_vcpu, _root, _addr, _walker)     \
157 	for (shadow_walk_init_using_root(&(_walker), (_vcpu),              \
158 					 (_root), (_addr));                \
159 	     shadow_walk_okay(&(_walker));			           \
160 	     shadow_walk_next(&(_walker)))
161 
162 #define for_each_shadow_entry(_vcpu, _addr, _walker)            \
163 	for (shadow_walk_init(&(_walker), _vcpu, _addr);	\
164 	     shadow_walk_okay(&(_walker));			\
165 	     shadow_walk_next(&(_walker)))
166 
167 #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte)	\
168 	for (shadow_walk_init(&(_walker), _vcpu, _addr);		\
169 	     shadow_walk_okay(&(_walker)) &&				\
170 		({ spte = mmu_spte_get_lockless(_walker.sptep); 1; });	\
171 	     __shadow_walk_next(&(_walker), spte))
172 
173 static struct kmem_cache *pte_list_desc_cache;
174 struct kmem_cache *mmu_page_header_cache;
175 static struct percpu_counter kvm_total_used_mmu_pages;
176 
177 static void mmu_spte_set(u64 *sptep, u64 spte);
178 static union kvm_mmu_page_role
179 kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu);
180 
181 struct kvm_mmu_role_regs {
182 	const unsigned long cr0;
183 	const unsigned long cr4;
184 	const u64 efer;
185 };
186 
187 #define CREATE_TRACE_POINTS
188 #include "mmutrace.h"
189 
190 /*
191  * Yes, lot's of underscores.  They're a hint that you probably shouldn't be
192  * reading from the role_regs.  Once the mmu_role is constructed, it becomes
193  * the single source of truth for the MMU's state.
194  */
195 #define BUILD_MMU_ROLE_REGS_ACCESSOR(reg, name, flag)			\
196 static inline bool ____is_##reg##_##name(struct kvm_mmu_role_regs *regs)\
197 {									\
198 	return !!(regs->reg & flag);					\
199 }
200 BUILD_MMU_ROLE_REGS_ACCESSOR(cr0, pg, X86_CR0_PG);
201 BUILD_MMU_ROLE_REGS_ACCESSOR(cr0, wp, X86_CR0_WP);
202 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pse, X86_CR4_PSE);
203 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pae, X86_CR4_PAE);
204 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, smep, X86_CR4_SMEP);
205 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, smap, X86_CR4_SMAP);
206 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pke, X86_CR4_PKE);
207 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, la57, X86_CR4_LA57);
208 BUILD_MMU_ROLE_REGS_ACCESSOR(efer, nx, EFER_NX);
209 BUILD_MMU_ROLE_REGS_ACCESSOR(efer, lma, EFER_LMA);
210 
211 /*
212  * The MMU itself (with a valid role) is the single source of truth for the
213  * MMU.  Do not use the regs used to build the MMU/role, nor the vCPU.  The
214  * regs don't account for dependencies, e.g. clearing CR4 bits if CR0.PG=1,
215  * and the vCPU may be incorrect/irrelevant.
216  */
217 #define BUILD_MMU_ROLE_ACCESSOR(base_or_ext, reg, name)		\
218 static inline bool is_##reg##_##name(struct kvm_mmu *mmu)	\
219 {								\
220 	return !!(mmu->mmu_role. base_or_ext . reg##_##name);	\
221 }
222 BUILD_MMU_ROLE_ACCESSOR(ext,  cr0, pg);
223 BUILD_MMU_ROLE_ACCESSOR(base, cr0, wp);
224 BUILD_MMU_ROLE_ACCESSOR(ext,  cr4, pse);
225 BUILD_MMU_ROLE_ACCESSOR(ext,  cr4, pae);
226 BUILD_MMU_ROLE_ACCESSOR(ext,  cr4, smep);
227 BUILD_MMU_ROLE_ACCESSOR(ext,  cr4, smap);
228 BUILD_MMU_ROLE_ACCESSOR(ext,  cr4, pke);
229 BUILD_MMU_ROLE_ACCESSOR(ext,  cr4, la57);
230 BUILD_MMU_ROLE_ACCESSOR(base, efer, nx);
231 
232 static struct kvm_mmu_role_regs vcpu_to_role_regs(struct kvm_vcpu *vcpu)
233 {
234 	struct kvm_mmu_role_regs regs = {
235 		.cr0 = kvm_read_cr0_bits(vcpu, KVM_MMU_CR0_ROLE_BITS),
236 		.cr4 = kvm_read_cr4_bits(vcpu, KVM_MMU_CR4_ROLE_BITS),
237 		.efer = vcpu->arch.efer,
238 	};
239 
240 	return regs;
241 }
242 
243 static int role_regs_to_root_level(struct kvm_mmu_role_regs *regs)
244 {
245 	if (!____is_cr0_pg(regs))
246 		return 0;
247 	else if (____is_efer_lma(regs))
248 		return ____is_cr4_la57(regs) ? PT64_ROOT_5LEVEL :
249 					       PT64_ROOT_4LEVEL;
250 	else if (____is_cr4_pae(regs))
251 		return PT32E_ROOT_LEVEL;
252 	else
253 		return PT32_ROOT_LEVEL;
254 }
255 
256 static inline bool kvm_available_flush_tlb_with_range(void)
257 {
258 	return kvm_x86_ops.tlb_remote_flush_with_range;
259 }
260 
261 static void kvm_flush_remote_tlbs_with_range(struct kvm *kvm,
262 		struct kvm_tlb_range *range)
263 {
264 	int ret = -ENOTSUPP;
265 
266 	if (range && kvm_x86_ops.tlb_remote_flush_with_range)
267 		ret = static_call(kvm_x86_tlb_remote_flush_with_range)(kvm, range);
268 
269 	if (ret)
270 		kvm_flush_remote_tlbs(kvm);
271 }
272 
273 void kvm_flush_remote_tlbs_with_address(struct kvm *kvm,
274 		u64 start_gfn, u64 pages)
275 {
276 	struct kvm_tlb_range range;
277 
278 	range.start_gfn = start_gfn;
279 	range.pages = pages;
280 
281 	kvm_flush_remote_tlbs_with_range(kvm, &range);
282 }
283 
284 static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn,
285 			   unsigned int access)
286 {
287 	u64 spte = make_mmio_spte(vcpu, gfn, access);
288 
289 	trace_mark_mmio_spte(sptep, gfn, spte);
290 	mmu_spte_set(sptep, spte);
291 }
292 
293 static gfn_t get_mmio_spte_gfn(u64 spte)
294 {
295 	u64 gpa = spte & shadow_nonpresent_or_rsvd_lower_gfn_mask;
296 
297 	gpa |= (spte >> SHADOW_NONPRESENT_OR_RSVD_MASK_LEN)
298 	       & shadow_nonpresent_or_rsvd_mask;
299 
300 	return gpa >> PAGE_SHIFT;
301 }
302 
303 static unsigned get_mmio_spte_access(u64 spte)
304 {
305 	return spte & shadow_mmio_access_mask;
306 }
307 
308 static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte)
309 {
310 	u64 kvm_gen, spte_gen, gen;
311 
312 	gen = kvm_vcpu_memslots(vcpu)->generation;
313 	if (unlikely(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS))
314 		return false;
315 
316 	kvm_gen = gen & MMIO_SPTE_GEN_MASK;
317 	spte_gen = get_mmio_spte_generation(spte);
318 
319 	trace_check_mmio_spte(spte, kvm_gen, spte_gen);
320 	return likely(kvm_gen == spte_gen);
321 }
322 
323 static gpa_t translate_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
324                                   struct x86_exception *exception)
325 {
326 	/* Check if guest physical address doesn't exceed guest maximum */
327 	if (kvm_vcpu_is_illegal_gpa(vcpu, gpa)) {
328 		exception->error_code |= PFERR_RSVD_MASK;
329 		return UNMAPPED_GVA;
330 	}
331 
332         return gpa;
333 }
334 
335 static int is_cpuid_PSE36(void)
336 {
337 	return 1;
338 }
339 
340 static gfn_t pse36_gfn_delta(u32 gpte)
341 {
342 	int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
343 
344 	return (gpte & PT32_DIR_PSE36_MASK) << shift;
345 }
346 
347 #ifdef CONFIG_X86_64
348 static void __set_spte(u64 *sptep, u64 spte)
349 {
350 	WRITE_ONCE(*sptep, spte);
351 }
352 
353 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
354 {
355 	WRITE_ONCE(*sptep, spte);
356 }
357 
358 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
359 {
360 	return xchg(sptep, spte);
361 }
362 
363 static u64 __get_spte_lockless(u64 *sptep)
364 {
365 	return READ_ONCE(*sptep);
366 }
367 #else
368 union split_spte {
369 	struct {
370 		u32 spte_low;
371 		u32 spte_high;
372 	};
373 	u64 spte;
374 };
375 
376 static void count_spte_clear(u64 *sptep, u64 spte)
377 {
378 	struct kvm_mmu_page *sp =  sptep_to_sp(sptep);
379 
380 	if (is_shadow_present_pte(spte))
381 		return;
382 
383 	/* Ensure the spte is completely set before we increase the count */
384 	smp_wmb();
385 	sp->clear_spte_count++;
386 }
387 
388 static void __set_spte(u64 *sptep, u64 spte)
389 {
390 	union split_spte *ssptep, sspte;
391 
392 	ssptep = (union split_spte *)sptep;
393 	sspte = (union split_spte)spte;
394 
395 	ssptep->spte_high = sspte.spte_high;
396 
397 	/*
398 	 * If we map the spte from nonpresent to present, We should store
399 	 * the high bits firstly, then set present bit, so cpu can not
400 	 * fetch this spte while we are setting the spte.
401 	 */
402 	smp_wmb();
403 
404 	WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
405 }
406 
407 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
408 {
409 	union split_spte *ssptep, sspte;
410 
411 	ssptep = (union split_spte *)sptep;
412 	sspte = (union split_spte)spte;
413 
414 	WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
415 
416 	/*
417 	 * If we map the spte from present to nonpresent, we should clear
418 	 * present bit firstly to avoid vcpu fetch the old high bits.
419 	 */
420 	smp_wmb();
421 
422 	ssptep->spte_high = sspte.spte_high;
423 	count_spte_clear(sptep, spte);
424 }
425 
426 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
427 {
428 	union split_spte *ssptep, sspte, orig;
429 
430 	ssptep = (union split_spte *)sptep;
431 	sspte = (union split_spte)spte;
432 
433 	/* xchg acts as a barrier before the setting of the high bits */
434 	orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
435 	orig.spte_high = ssptep->spte_high;
436 	ssptep->spte_high = sspte.spte_high;
437 	count_spte_clear(sptep, spte);
438 
439 	return orig.spte;
440 }
441 
442 /*
443  * The idea using the light way get the spte on x86_32 guest is from
444  * gup_get_pte (mm/gup.c).
445  *
446  * An spte tlb flush may be pending, because kvm_set_pte_rmapp
447  * coalesces them and we are running out of the MMU lock.  Therefore
448  * we need to protect against in-progress updates of the spte.
449  *
450  * Reading the spte while an update is in progress may get the old value
451  * for the high part of the spte.  The race is fine for a present->non-present
452  * change (because the high part of the spte is ignored for non-present spte),
453  * but for a present->present change we must reread the spte.
454  *
455  * All such changes are done in two steps (present->non-present and
456  * non-present->present), hence it is enough to count the number of
457  * present->non-present updates: if it changed while reading the spte,
458  * we might have hit the race.  This is done using clear_spte_count.
459  */
460 static u64 __get_spte_lockless(u64 *sptep)
461 {
462 	struct kvm_mmu_page *sp =  sptep_to_sp(sptep);
463 	union split_spte spte, *orig = (union split_spte *)sptep;
464 	int count;
465 
466 retry:
467 	count = sp->clear_spte_count;
468 	smp_rmb();
469 
470 	spte.spte_low = orig->spte_low;
471 	smp_rmb();
472 
473 	spte.spte_high = orig->spte_high;
474 	smp_rmb();
475 
476 	if (unlikely(spte.spte_low != orig->spte_low ||
477 	      count != sp->clear_spte_count))
478 		goto retry;
479 
480 	return spte.spte;
481 }
482 #endif
483 
484 static bool spte_has_volatile_bits(u64 spte)
485 {
486 	if (!is_shadow_present_pte(spte))
487 		return false;
488 
489 	/*
490 	 * Always atomically update spte if it can be updated
491 	 * out of mmu-lock, it can ensure dirty bit is not lost,
492 	 * also, it can help us to get a stable is_writable_pte()
493 	 * to ensure tlb flush is not missed.
494 	 */
495 	if (spte_can_locklessly_be_made_writable(spte) ||
496 	    is_access_track_spte(spte))
497 		return true;
498 
499 	if (spte_ad_enabled(spte)) {
500 		if ((spte & shadow_accessed_mask) == 0 ||
501 	    	    (is_writable_pte(spte) && (spte & shadow_dirty_mask) == 0))
502 			return true;
503 	}
504 
505 	return false;
506 }
507 
508 /* Rules for using mmu_spte_set:
509  * Set the sptep from nonpresent to present.
510  * Note: the sptep being assigned *must* be either not present
511  * or in a state where the hardware will not attempt to update
512  * the spte.
513  */
514 static void mmu_spte_set(u64 *sptep, u64 new_spte)
515 {
516 	WARN_ON(is_shadow_present_pte(*sptep));
517 	__set_spte(sptep, new_spte);
518 }
519 
520 /*
521  * Update the SPTE (excluding the PFN), but do not track changes in its
522  * accessed/dirty status.
523  */
524 static u64 mmu_spte_update_no_track(u64 *sptep, u64 new_spte)
525 {
526 	u64 old_spte = *sptep;
527 
528 	WARN_ON(!is_shadow_present_pte(new_spte));
529 
530 	if (!is_shadow_present_pte(old_spte)) {
531 		mmu_spte_set(sptep, new_spte);
532 		return old_spte;
533 	}
534 
535 	if (!spte_has_volatile_bits(old_spte))
536 		__update_clear_spte_fast(sptep, new_spte);
537 	else
538 		old_spte = __update_clear_spte_slow(sptep, new_spte);
539 
540 	WARN_ON(spte_to_pfn(old_spte) != spte_to_pfn(new_spte));
541 
542 	return old_spte;
543 }
544 
545 /* Rules for using mmu_spte_update:
546  * Update the state bits, it means the mapped pfn is not changed.
547  *
548  * Whenever we overwrite a writable spte with a read-only one we
549  * should flush remote TLBs. Otherwise rmap_write_protect
550  * will find a read-only spte, even though the writable spte
551  * might be cached on a CPU's TLB, the return value indicates this
552  * case.
553  *
554  * Returns true if the TLB needs to be flushed
555  */
556 static bool mmu_spte_update(u64 *sptep, u64 new_spte)
557 {
558 	bool flush = false;
559 	u64 old_spte = mmu_spte_update_no_track(sptep, new_spte);
560 
561 	if (!is_shadow_present_pte(old_spte))
562 		return false;
563 
564 	/*
565 	 * For the spte updated out of mmu-lock is safe, since
566 	 * we always atomically update it, see the comments in
567 	 * spte_has_volatile_bits().
568 	 */
569 	if (spte_can_locklessly_be_made_writable(old_spte) &&
570 	      !is_writable_pte(new_spte))
571 		flush = true;
572 
573 	/*
574 	 * Flush TLB when accessed/dirty states are changed in the page tables,
575 	 * to guarantee consistency between TLB and page tables.
576 	 */
577 
578 	if (is_accessed_spte(old_spte) && !is_accessed_spte(new_spte)) {
579 		flush = true;
580 		kvm_set_pfn_accessed(spte_to_pfn(old_spte));
581 	}
582 
583 	if (is_dirty_spte(old_spte) && !is_dirty_spte(new_spte)) {
584 		flush = true;
585 		kvm_set_pfn_dirty(spte_to_pfn(old_spte));
586 	}
587 
588 	return flush;
589 }
590 
591 /*
592  * Rules for using mmu_spte_clear_track_bits:
593  * It sets the sptep from present to nonpresent, and track the
594  * state bits, it is used to clear the last level sptep.
595  * Returns non-zero if the PTE was previously valid.
596  */
597 static int mmu_spte_clear_track_bits(u64 *sptep)
598 {
599 	kvm_pfn_t pfn;
600 	u64 old_spte = *sptep;
601 
602 	if (!spte_has_volatile_bits(old_spte))
603 		__update_clear_spte_fast(sptep, 0ull);
604 	else
605 		old_spte = __update_clear_spte_slow(sptep, 0ull);
606 
607 	if (!is_shadow_present_pte(old_spte))
608 		return 0;
609 
610 	pfn = spte_to_pfn(old_spte);
611 
612 	/*
613 	 * KVM does not hold the refcount of the page used by
614 	 * kvm mmu, before reclaiming the page, we should
615 	 * unmap it from mmu first.
616 	 */
617 	WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn)));
618 
619 	if (is_accessed_spte(old_spte))
620 		kvm_set_pfn_accessed(pfn);
621 
622 	if (is_dirty_spte(old_spte))
623 		kvm_set_pfn_dirty(pfn);
624 
625 	return 1;
626 }
627 
628 /*
629  * Rules for using mmu_spte_clear_no_track:
630  * Directly clear spte without caring the state bits of sptep,
631  * it is used to set the upper level spte.
632  */
633 static void mmu_spte_clear_no_track(u64 *sptep)
634 {
635 	__update_clear_spte_fast(sptep, 0ull);
636 }
637 
638 static u64 mmu_spte_get_lockless(u64 *sptep)
639 {
640 	return __get_spte_lockless(sptep);
641 }
642 
643 /* Restore an acc-track PTE back to a regular PTE */
644 static u64 restore_acc_track_spte(u64 spte)
645 {
646 	u64 new_spte = spte;
647 	u64 saved_bits = (spte >> SHADOW_ACC_TRACK_SAVED_BITS_SHIFT)
648 			 & SHADOW_ACC_TRACK_SAVED_BITS_MASK;
649 
650 	WARN_ON_ONCE(spte_ad_enabled(spte));
651 	WARN_ON_ONCE(!is_access_track_spte(spte));
652 
653 	new_spte &= ~shadow_acc_track_mask;
654 	new_spte &= ~(SHADOW_ACC_TRACK_SAVED_BITS_MASK <<
655 		      SHADOW_ACC_TRACK_SAVED_BITS_SHIFT);
656 	new_spte |= saved_bits;
657 
658 	return new_spte;
659 }
660 
661 /* Returns the Accessed status of the PTE and resets it at the same time. */
662 static bool mmu_spte_age(u64 *sptep)
663 {
664 	u64 spte = mmu_spte_get_lockless(sptep);
665 
666 	if (!is_accessed_spte(spte))
667 		return false;
668 
669 	if (spte_ad_enabled(spte)) {
670 		clear_bit((ffs(shadow_accessed_mask) - 1),
671 			  (unsigned long *)sptep);
672 	} else {
673 		/*
674 		 * Capture the dirty status of the page, so that it doesn't get
675 		 * lost when the SPTE is marked for access tracking.
676 		 */
677 		if (is_writable_pte(spte))
678 			kvm_set_pfn_dirty(spte_to_pfn(spte));
679 
680 		spte = mark_spte_for_access_track(spte);
681 		mmu_spte_update_no_track(sptep, spte);
682 	}
683 
684 	return true;
685 }
686 
687 static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
688 {
689 	/*
690 	 * Prevent page table teardown by making any free-er wait during
691 	 * kvm_flush_remote_tlbs() IPI to all active vcpus.
692 	 */
693 	local_irq_disable();
694 
695 	/*
696 	 * Make sure a following spte read is not reordered ahead of the write
697 	 * to vcpu->mode.
698 	 */
699 	smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES);
700 }
701 
702 static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
703 {
704 	/*
705 	 * Make sure the write to vcpu->mode is not reordered in front of
706 	 * reads to sptes.  If it does, kvm_mmu_commit_zap_page() can see us
707 	 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
708 	 */
709 	smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE);
710 	local_irq_enable();
711 }
712 
713 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu, bool maybe_indirect)
714 {
715 	int r;
716 
717 	/* 1 rmap, 1 parent PTE per level, and the prefetched rmaps. */
718 	r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
719 				       1 + PT64_ROOT_MAX_LEVEL + PTE_PREFETCH_NUM);
720 	if (r)
721 		return r;
722 	r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_shadow_page_cache,
723 				       PT64_ROOT_MAX_LEVEL);
724 	if (r)
725 		return r;
726 	if (maybe_indirect) {
727 		r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_gfn_array_cache,
728 					       PT64_ROOT_MAX_LEVEL);
729 		if (r)
730 			return r;
731 	}
732 	return kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
733 					  PT64_ROOT_MAX_LEVEL);
734 }
735 
736 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
737 {
738 	kvm_mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache);
739 	kvm_mmu_free_memory_cache(&vcpu->arch.mmu_shadow_page_cache);
740 	kvm_mmu_free_memory_cache(&vcpu->arch.mmu_gfn_array_cache);
741 	kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache);
742 }
743 
744 static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
745 {
746 	return kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
747 }
748 
749 static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
750 {
751 	kmem_cache_free(pte_list_desc_cache, pte_list_desc);
752 }
753 
754 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
755 {
756 	if (!sp->role.direct)
757 		return sp->gfns[index];
758 
759 	return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
760 }
761 
762 static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
763 {
764 	if (!sp->role.direct) {
765 		sp->gfns[index] = gfn;
766 		return;
767 	}
768 
769 	if (WARN_ON(gfn != kvm_mmu_page_get_gfn(sp, index)))
770 		pr_err_ratelimited("gfn mismatch under direct page %llx "
771 				   "(expected %llx, got %llx)\n",
772 				   sp->gfn,
773 				   kvm_mmu_page_get_gfn(sp, index), gfn);
774 }
775 
776 /*
777  * Return the pointer to the large page information for a given gfn,
778  * handling slots that are not large page aligned.
779  */
780 static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
781 		const struct kvm_memory_slot *slot, int level)
782 {
783 	unsigned long idx;
784 
785 	idx = gfn_to_index(gfn, slot->base_gfn, level);
786 	return &slot->arch.lpage_info[level - 2][idx];
787 }
788 
789 static void update_gfn_disallow_lpage_count(struct kvm_memory_slot *slot,
790 					    gfn_t gfn, int count)
791 {
792 	struct kvm_lpage_info *linfo;
793 	int i;
794 
795 	for (i = PG_LEVEL_2M; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) {
796 		linfo = lpage_info_slot(gfn, slot, i);
797 		linfo->disallow_lpage += count;
798 		WARN_ON(linfo->disallow_lpage < 0);
799 	}
800 }
801 
802 void kvm_mmu_gfn_disallow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
803 {
804 	update_gfn_disallow_lpage_count(slot, gfn, 1);
805 }
806 
807 void kvm_mmu_gfn_allow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
808 {
809 	update_gfn_disallow_lpage_count(slot, gfn, -1);
810 }
811 
812 static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
813 {
814 	struct kvm_memslots *slots;
815 	struct kvm_memory_slot *slot;
816 	gfn_t gfn;
817 
818 	kvm->arch.indirect_shadow_pages++;
819 	gfn = sp->gfn;
820 	slots = kvm_memslots_for_spte_role(kvm, sp->role);
821 	slot = __gfn_to_memslot(slots, gfn);
822 
823 	/* the non-leaf shadow pages are keeping readonly. */
824 	if (sp->role.level > PG_LEVEL_4K)
825 		return kvm_slot_page_track_add_page(kvm, slot, gfn,
826 						    KVM_PAGE_TRACK_WRITE);
827 
828 	kvm_mmu_gfn_disallow_lpage(slot, gfn);
829 }
830 
831 void account_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp)
832 {
833 	if (sp->lpage_disallowed)
834 		return;
835 
836 	++kvm->stat.nx_lpage_splits;
837 	list_add_tail(&sp->lpage_disallowed_link,
838 		      &kvm->arch.lpage_disallowed_mmu_pages);
839 	sp->lpage_disallowed = true;
840 }
841 
842 static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
843 {
844 	struct kvm_memslots *slots;
845 	struct kvm_memory_slot *slot;
846 	gfn_t gfn;
847 
848 	kvm->arch.indirect_shadow_pages--;
849 	gfn = sp->gfn;
850 	slots = kvm_memslots_for_spte_role(kvm, sp->role);
851 	slot = __gfn_to_memslot(slots, gfn);
852 	if (sp->role.level > PG_LEVEL_4K)
853 		return kvm_slot_page_track_remove_page(kvm, slot, gfn,
854 						       KVM_PAGE_TRACK_WRITE);
855 
856 	kvm_mmu_gfn_allow_lpage(slot, gfn);
857 }
858 
859 void unaccount_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp)
860 {
861 	--kvm->stat.nx_lpage_splits;
862 	sp->lpage_disallowed = false;
863 	list_del(&sp->lpage_disallowed_link);
864 }
865 
866 static struct kvm_memory_slot *
867 gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
868 			    bool no_dirty_log)
869 {
870 	struct kvm_memory_slot *slot;
871 
872 	slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
873 	if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
874 		return NULL;
875 	if (no_dirty_log && kvm_slot_dirty_track_enabled(slot))
876 		return NULL;
877 
878 	return slot;
879 }
880 
881 /*
882  * About rmap_head encoding:
883  *
884  * If the bit zero of rmap_head->val is clear, then it points to the only spte
885  * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct
886  * pte_list_desc containing more mappings.
887  */
888 
889 /*
890  * Returns the number of pointers in the rmap chain, not counting the new one.
891  */
892 static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
893 			struct kvm_rmap_head *rmap_head)
894 {
895 	struct pte_list_desc *desc;
896 	int i, count = 0;
897 
898 	if (!rmap_head->val) {
899 		rmap_printk("%p %llx 0->1\n", spte, *spte);
900 		rmap_head->val = (unsigned long)spte;
901 	} else if (!(rmap_head->val & 1)) {
902 		rmap_printk("%p %llx 1->many\n", spte, *spte);
903 		desc = mmu_alloc_pte_list_desc(vcpu);
904 		desc->sptes[0] = (u64 *)rmap_head->val;
905 		desc->sptes[1] = spte;
906 		rmap_head->val = (unsigned long)desc | 1;
907 		++count;
908 	} else {
909 		rmap_printk("%p %llx many->many\n", spte, *spte);
910 		desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
911 		while (desc->sptes[PTE_LIST_EXT-1]) {
912 			count += PTE_LIST_EXT;
913 
914 			if (!desc->more) {
915 				desc->more = mmu_alloc_pte_list_desc(vcpu);
916 				desc = desc->more;
917 				break;
918 			}
919 			desc = desc->more;
920 		}
921 		for (i = 0; desc->sptes[i]; ++i)
922 			++count;
923 		desc->sptes[i] = spte;
924 	}
925 	return count;
926 }
927 
928 static void
929 pte_list_desc_remove_entry(struct kvm_rmap_head *rmap_head,
930 			   struct pte_list_desc *desc, int i,
931 			   struct pte_list_desc *prev_desc)
932 {
933 	int j;
934 
935 	for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
936 		;
937 	desc->sptes[i] = desc->sptes[j];
938 	desc->sptes[j] = NULL;
939 	if (j != 0)
940 		return;
941 	if (!prev_desc && !desc->more)
942 		rmap_head->val = 0;
943 	else
944 		if (prev_desc)
945 			prev_desc->more = desc->more;
946 		else
947 			rmap_head->val = (unsigned long)desc->more | 1;
948 	mmu_free_pte_list_desc(desc);
949 }
950 
951 static void __pte_list_remove(u64 *spte, struct kvm_rmap_head *rmap_head)
952 {
953 	struct pte_list_desc *desc;
954 	struct pte_list_desc *prev_desc;
955 	int i;
956 
957 	if (!rmap_head->val) {
958 		pr_err("%s: %p 0->BUG\n", __func__, spte);
959 		BUG();
960 	} else if (!(rmap_head->val & 1)) {
961 		rmap_printk("%p 1->0\n", spte);
962 		if ((u64 *)rmap_head->val != spte) {
963 			pr_err("%s:  %p 1->BUG\n", __func__, spte);
964 			BUG();
965 		}
966 		rmap_head->val = 0;
967 	} else {
968 		rmap_printk("%p many->many\n", spte);
969 		desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
970 		prev_desc = NULL;
971 		while (desc) {
972 			for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i) {
973 				if (desc->sptes[i] == spte) {
974 					pte_list_desc_remove_entry(rmap_head,
975 							desc, i, prev_desc);
976 					return;
977 				}
978 			}
979 			prev_desc = desc;
980 			desc = desc->more;
981 		}
982 		pr_err("%s: %p many->many\n", __func__, spte);
983 		BUG();
984 	}
985 }
986 
987 static void pte_list_remove(struct kvm_rmap_head *rmap_head, u64 *sptep)
988 {
989 	mmu_spte_clear_track_bits(sptep);
990 	__pte_list_remove(sptep, rmap_head);
991 }
992 
993 static struct kvm_rmap_head *__gfn_to_rmap(gfn_t gfn, int level,
994 					   struct kvm_memory_slot *slot)
995 {
996 	unsigned long idx;
997 
998 	idx = gfn_to_index(gfn, slot->base_gfn, level);
999 	return &slot->arch.rmap[level - PG_LEVEL_4K][idx];
1000 }
1001 
1002 static struct kvm_rmap_head *gfn_to_rmap(struct kvm *kvm, gfn_t gfn,
1003 					 struct kvm_mmu_page *sp)
1004 {
1005 	struct kvm_memslots *slots;
1006 	struct kvm_memory_slot *slot;
1007 
1008 	slots = kvm_memslots_for_spte_role(kvm, sp->role);
1009 	slot = __gfn_to_memslot(slots, gfn);
1010 	return __gfn_to_rmap(gfn, sp->role.level, slot);
1011 }
1012 
1013 static bool rmap_can_add(struct kvm_vcpu *vcpu)
1014 {
1015 	struct kvm_mmu_memory_cache *mc;
1016 
1017 	mc = &vcpu->arch.mmu_pte_list_desc_cache;
1018 	return kvm_mmu_memory_cache_nr_free_objects(mc);
1019 }
1020 
1021 static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1022 {
1023 	struct kvm_mmu_page *sp;
1024 	struct kvm_rmap_head *rmap_head;
1025 
1026 	sp = sptep_to_sp(spte);
1027 	kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
1028 	rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
1029 	return pte_list_add(vcpu, spte, rmap_head);
1030 }
1031 
1032 static void rmap_remove(struct kvm *kvm, u64 *spte)
1033 {
1034 	struct kvm_mmu_page *sp;
1035 	gfn_t gfn;
1036 	struct kvm_rmap_head *rmap_head;
1037 
1038 	sp = sptep_to_sp(spte);
1039 	gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
1040 	rmap_head = gfn_to_rmap(kvm, gfn, sp);
1041 	__pte_list_remove(spte, rmap_head);
1042 }
1043 
1044 /*
1045  * Used by the following functions to iterate through the sptes linked by a
1046  * rmap.  All fields are private and not assumed to be used outside.
1047  */
1048 struct rmap_iterator {
1049 	/* private fields */
1050 	struct pte_list_desc *desc;	/* holds the sptep if not NULL */
1051 	int pos;			/* index of the sptep */
1052 };
1053 
1054 /*
1055  * Iteration must be started by this function.  This should also be used after
1056  * removing/dropping sptes from the rmap link because in such cases the
1057  * information in the iterator may not be valid.
1058  *
1059  * Returns sptep if found, NULL otherwise.
1060  */
1061 static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head,
1062 			   struct rmap_iterator *iter)
1063 {
1064 	u64 *sptep;
1065 
1066 	if (!rmap_head->val)
1067 		return NULL;
1068 
1069 	if (!(rmap_head->val & 1)) {
1070 		iter->desc = NULL;
1071 		sptep = (u64 *)rmap_head->val;
1072 		goto out;
1073 	}
1074 
1075 	iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1076 	iter->pos = 0;
1077 	sptep = iter->desc->sptes[iter->pos];
1078 out:
1079 	BUG_ON(!is_shadow_present_pte(*sptep));
1080 	return sptep;
1081 }
1082 
1083 /*
1084  * Must be used with a valid iterator: e.g. after rmap_get_first().
1085  *
1086  * Returns sptep if found, NULL otherwise.
1087  */
1088 static u64 *rmap_get_next(struct rmap_iterator *iter)
1089 {
1090 	u64 *sptep;
1091 
1092 	if (iter->desc) {
1093 		if (iter->pos < PTE_LIST_EXT - 1) {
1094 			++iter->pos;
1095 			sptep = iter->desc->sptes[iter->pos];
1096 			if (sptep)
1097 				goto out;
1098 		}
1099 
1100 		iter->desc = iter->desc->more;
1101 
1102 		if (iter->desc) {
1103 			iter->pos = 0;
1104 			/* desc->sptes[0] cannot be NULL */
1105 			sptep = iter->desc->sptes[iter->pos];
1106 			goto out;
1107 		}
1108 	}
1109 
1110 	return NULL;
1111 out:
1112 	BUG_ON(!is_shadow_present_pte(*sptep));
1113 	return sptep;
1114 }
1115 
1116 #define for_each_rmap_spte(_rmap_head_, _iter_, _spte_)			\
1117 	for (_spte_ = rmap_get_first(_rmap_head_, _iter_);		\
1118 	     _spte_; _spte_ = rmap_get_next(_iter_))
1119 
1120 static void drop_spte(struct kvm *kvm, u64 *sptep)
1121 {
1122 	if (mmu_spte_clear_track_bits(sptep))
1123 		rmap_remove(kvm, sptep);
1124 }
1125 
1126 
1127 static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
1128 {
1129 	if (is_large_pte(*sptep)) {
1130 		WARN_ON(sptep_to_sp(sptep)->role.level == PG_LEVEL_4K);
1131 		drop_spte(kvm, sptep);
1132 		--kvm->stat.lpages;
1133 		return true;
1134 	}
1135 
1136 	return false;
1137 }
1138 
1139 static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1140 {
1141 	if (__drop_large_spte(vcpu->kvm, sptep)) {
1142 		struct kvm_mmu_page *sp = sptep_to_sp(sptep);
1143 
1144 		kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn,
1145 			KVM_PAGES_PER_HPAGE(sp->role.level));
1146 	}
1147 }
1148 
1149 /*
1150  * Write-protect on the specified @sptep, @pt_protect indicates whether
1151  * spte write-protection is caused by protecting shadow page table.
1152  *
1153  * Note: write protection is difference between dirty logging and spte
1154  * protection:
1155  * - for dirty logging, the spte can be set to writable at anytime if
1156  *   its dirty bitmap is properly set.
1157  * - for spte protection, the spte can be writable only after unsync-ing
1158  *   shadow page.
1159  *
1160  * Return true if tlb need be flushed.
1161  */
1162 static bool spte_write_protect(u64 *sptep, bool pt_protect)
1163 {
1164 	u64 spte = *sptep;
1165 
1166 	if (!is_writable_pte(spte) &&
1167 	      !(pt_protect && spte_can_locklessly_be_made_writable(spte)))
1168 		return false;
1169 
1170 	rmap_printk("spte %p %llx\n", sptep, *sptep);
1171 
1172 	if (pt_protect)
1173 		spte &= ~shadow_mmu_writable_mask;
1174 	spte = spte & ~PT_WRITABLE_MASK;
1175 
1176 	return mmu_spte_update(sptep, spte);
1177 }
1178 
1179 static bool __rmap_write_protect(struct kvm *kvm,
1180 				 struct kvm_rmap_head *rmap_head,
1181 				 bool pt_protect)
1182 {
1183 	u64 *sptep;
1184 	struct rmap_iterator iter;
1185 	bool flush = false;
1186 
1187 	for_each_rmap_spte(rmap_head, &iter, sptep)
1188 		flush |= spte_write_protect(sptep, pt_protect);
1189 
1190 	return flush;
1191 }
1192 
1193 static bool spte_clear_dirty(u64 *sptep)
1194 {
1195 	u64 spte = *sptep;
1196 
1197 	rmap_printk("spte %p %llx\n", sptep, *sptep);
1198 
1199 	MMU_WARN_ON(!spte_ad_enabled(spte));
1200 	spte &= ~shadow_dirty_mask;
1201 	return mmu_spte_update(sptep, spte);
1202 }
1203 
1204 static bool spte_wrprot_for_clear_dirty(u64 *sptep)
1205 {
1206 	bool was_writable = test_and_clear_bit(PT_WRITABLE_SHIFT,
1207 					       (unsigned long *)sptep);
1208 	if (was_writable && !spte_ad_enabled(*sptep))
1209 		kvm_set_pfn_dirty(spte_to_pfn(*sptep));
1210 
1211 	return was_writable;
1212 }
1213 
1214 /*
1215  * Gets the GFN ready for another round of dirty logging by clearing the
1216  *	- D bit on ad-enabled SPTEs, and
1217  *	- W bit on ad-disabled SPTEs.
1218  * Returns true iff any D or W bits were cleared.
1219  */
1220 static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1221 			       struct kvm_memory_slot *slot)
1222 {
1223 	u64 *sptep;
1224 	struct rmap_iterator iter;
1225 	bool flush = false;
1226 
1227 	for_each_rmap_spte(rmap_head, &iter, sptep)
1228 		if (spte_ad_need_write_protect(*sptep))
1229 			flush |= spte_wrprot_for_clear_dirty(sptep);
1230 		else
1231 			flush |= spte_clear_dirty(sptep);
1232 
1233 	return flush;
1234 }
1235 
1236 /**
1237  * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1238  * @kvm: kvm instance
1239  * @slot: slot to protect
1240  * @gfn_offset: start of the BITS_PER_LONG pages we care about
1241  * @mask: indicates which pages we should protect
1242  *
1243  * Used when we do not need to care about huge page mappings.
1244  */
1245 static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1246 				     struct kvm_memory_slot *slot,
1247 				     gfn_t gfn_offset, unsigned long mask)
1248 {
1249 	struct kvm_rmap_head *rmap_head;
1250 
1251 	if (is_tdp_mmu_enabled(kvm))
1252 		kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot,
1253 				slot->base_gfn + gfn_offset, mask, true);
1254 
1255 	if (!kvm_memslots_have_rmaps(kvm))
1256 		return;
1257 
1258 	while (mask) {
1259 		rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1260 					  PG_LEVEL_4K, slot);
1261 		__rmap_write_protect(kvm, rmap_head, false);
1262 
1263 		/* clear the first set bit */
1264 		mask &= mask - 1;
1265 	}
1266 }
1267 
1268 /**
1269  * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages, or write
1270  * protect the page if the D-bit isn't supported.
1271  * @kvm: kvm instance
1272  * @slot: slot to clear D-bit
1273  * @gfn_offset: start of the BITS_PER_LONG pages we care about
1274  * @mask: indicates which pages we should clear D-bit
1275  *
1276  * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap.
1277  */
1278 static void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
1279 					 struct kvm_memory_slot *slot,
1280 					 gfn_t gfn_offset, unsigned long mask)
1281 {
1282 	struct kvm_rmap_head *rmap_head;
1283 
1284 	if (is_tdp_mmu_enabled(kvm))
1285 		kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot,
1286 				slot->base_gfn + gfn_offset, mask, false);
1287 
1288 	if (!kvm_memslots_have_rmaps(kvm))
1289 		return;
1290 
1291 	while (mask) {
1292 		rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1293 					  PG_LEVEL_4K, slot);
1294 		__rmap_clear_dirty(kvm, rmap_head, slot);
1295 
1296 		/* clear the first set bit */
1297 		mask &= mask - 1;
1298 	}
1299 }
1300 
1301 /**
1302  * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
1303  * PT level pages.
1304  *
1305  * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
1306  * enable dirty logging for them.
1307  *
1308  * We need to care about huge page mappings: e.g. during dirty logging we may
1309  * have such mappings.
1310  */
1311 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1312 				struct kvm_memory_slot *slot,
1313 				gfn_t gfn_offset, unsigned long mask)
1314 {
1315 	/*
1316 	 * Huge pages are NOT write protected when we start dirty logging in
1317 	 * initially-all-set mode; must write protect them here so that they
1318 	 * are split to 4K on the first write.
1319 	 *
1320 	 * The gfn_offset is guaranteed to be aligned to 64, but the base_gfn
1321 	 * of memslot has no such restriction, so the range can cross two large
1322 	 * pages.
1323 	 */
1324 	if (kvm_dirty_log_manual_protect_and_init_set(kvm)) {
1325 		gfn_t start = slot->base_gfn + gfn_offset + __ffs(mask);
1326 		gfn_t end = slot->base_gfn + gfn_offset + __fls(mask);
1327 
1328 		kvm_mmu_slot_gfn_write_protect(kvm, slot, start, PG_LEVEL_2M);
1329 
1330 		/* Cross two large pages? */
1331 		if (ALIGN(start << PAGE_SHIFT, PMD_SIZE) !=
1332 		    ALIGN(end << PAGE_SHIFT, PMD_SIZE))
1333 			kvm_mmu_slot_gfn_write_protect(kvm, slot, end,
1334 						       PG_LEVEL_2M);
1335 	}
1336 
1337 	/* Now handle 4K PTEs.  */
1338 	if (kvm_x86_ops.cpu_dirty_log_size)
1339 		kvm_mmu_clear_dirty_pt_masked(kvm, slot, gfn_offset, mask);
1340 	else
1341 		kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
1342 }
1343 
1344 int kvm_cpu_dirty_log_size(void)
1345 {
1346 	return kvm_x86_ops.cpu_dirty_log_size;
1347 }
1348 
1349 bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
1350 				    struct kvm_memory_slot *slot, u64 gfn,
1351 				    int min_level)
1352 {
1353 	struct kvm_rmap_head *rmap_head;
1354 	int i;
1355 	bool write_protected = false;
1356 
1357 	if (kvm_memslots_have_rmaps(kvm)) {
1358 		for (i = min_level; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) {
1359 			rmap_head = __gfn_to_rmap(gfn, i, slot);
1360 			write_protected |= __rmap_write_protect(kvm, rmap_head, true);
1361 		}
1362 	}
1363 
1364 	if (is_tdp_mmu_enabled(kvm))
1365 		write_protected |=
1366 			kvm_tdp_mmu_write_protect_gfn(kvm, slot, gfn, min_level);
1367 
1368 	return write_protected;
1369 }
1370 
1371 static bool rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn)
1372 {
1373 	struct kvm_memory_slot *slot;
1374 
1375 	slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1376 	return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn, PG_LEVEL_4K);
1377 }
1378 
1379 static bool kvm_zap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1380 			  struct kvm_memory_slot *slot)
1381 {
1382 	u64 *sptep;
1383 	struct rmap_iterator iter;
1384 	bool flush = false;
1385 
1386 	while ((sptep = rmap_get_first(rmap_head, &iter))) {
1387 		rmap_printk("spte %p %llx.\n", sptep, *sptep);
1388 
1389 		pte_list_remove(rmap_head, sptep);
1390 		flush = true;
1391 	}
1392 
1393 	return flush;
1394 }
1395 
1396 static bool kvm_unmap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1397 			    struct kvm_memory_slot *slot, gfn_t gfn, int level,
1398 			    pte_t unused)
1399 {
1400 	return kvm_zap_rmapp(kvm, rmap_head, slot);
1401 }
1402 
1403 static bool kvm_set_pte_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1404 			      struct kvm_memory_slot *slot, gfn_t gfn, int level,
1405 			      pte_t pte)
1406 {
1407 	u64 *sptep;
1408 	struct rmap_iterator iter;
1409 	int need_flush = 0;
1410 	u64 new_spte;
1411 	kvm_pfn_t new_pfn;
1412 
1413 	WARN_ON(pte_huge(pte));
1414 	new_pfn = pte_pfn(pte);
1415 
1416 restart:
1417 	for_each_rmap_spte(rmap_head, &iter, sptep) {
1418 		rmap_printk("spte %p %llx gfn %llx (%d)\n",
1419 			    sptep, *sptep, gfn, level);
1420 
1421 		need_flush = 1;
1422 
1423 		if (pte_write(pte)) {
1424 			pte_list_remove(rmap_head, sptep);
1425 			goto restart;
1426 		} else {
1427 			new_spte = kvm_mmu_changed_pte_notifier_make_spte(
1428 					*sptep, new_pfn);
1429 
1430 			mmu_spte_clear_track_bits(sptep);
1431 			mmu_spte_set(sptep, new_spte);
1432 		}
1433 	}
1434 
1435 	if (need_flush && kvm_available_flush_tlb_with_range()) {
1436 		kvm_flush_remote_tlbs_with_address(kvm, gfn, 1);
1437 		return 0;
1438 	}
1439 
1440 	return need_flush;
1441 }
1442 
1443 struct slot_rmap_walk_iterator {
1444 	/* input fields. */
1445 	struct kvm_memory_slot *slot;
1446 	gfn_t start_gfn;
1447 	gfn_t end_gfn;
1448 	int start_level;
1449 	int end_level;
1450 
1451 	/* output fields. */
1452 	gfn_t gfn;
1453 	struct kvm_rmap_head *rmap;
1454 	int level;
1455 
1456 	/* private field. */
1457 	struct kvm_rmap_head *end_rmap;
1458 };
1459 
1460 static void
1461 rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level)
1462 {
1463 	iterator->level = level;
1464 	iterator->gfn = iterator->start_gfn;
1465 	iterator->rmap = __gfn_to_rmap(iterator->gfn, level, iterator->slot);
1466 	iterator->end_rmap = __gfn_to_rmap(iterator->end_gfn, level,
1467 					   iterator->slot);
1468 }
1469 
1470 static void
1471 slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator,
1472 		    struct kvm_memory_slot *slot, int start_level,
1473 		    int end_level, gfn_t start_gfn, gfn_t end_gfn)
1474 {
1475 	iterator->slot = slot;
1476 	iterator->start_level = start_level;
1477 	iterator->end_level = end_level;
1478 	iterator->start_gfn = start_gfn;
1479 	iterator->end_gfn = end_gfn;
1480 
1481 	rmap_walk_init_level(iterator, iterator->start_level);
1482 }
1483 
1484 static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator)
1485 {
1486 	return !!iterator->rmap;
1487 }
1488 
1489 static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
1490 {
1491 	if (++iterator->rmap <= iterator->end_rmap) {
1492 		iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level));
1493 		return;
1494 	}
1495 
1496 	if (++iterator->level > iterator->end_level) {
1497 		iterator->rmap = NULL;
1498 		return;
1499 	}
1500 
1501 	rmap_walk_init_level(iterator, iterator->level);
1502 }
1503 
1504 #define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_,	\
1505 	   _start_gfn, _end_gfn, _iter_)				\
1506 	for (slot_rmap_walk_init(_iter_, _slot_, _start_level_,		\
1507 				 _end_level_, _start_gfn, _end_gfn);	\
1508 	     slot_rmap_walk_okay(_iter_);				\
1509 	     slot_rmap_walk_next(_iter_))
1510 
1511 typedef bool (*rmap_handler_t)(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1512 			       struct kvm_memory_slot *slot, gfn_t gfn,
1513 			       int level, pte_t pte);
1514 
1515 static __always_inline bool kvm_handle_gfn_range(struct kvm *kvm,
1516 						 struct kvm_gfn_range *range,
1517 						 rmap_handler_t handler)
1518 {
1519 	struct slot_rmap_walk_iterator iterator;
1520 	bool ret = false;
1521 
1522 	for_each_slot_rmap_range(range->slot, PG_LEVEL_4K, KVM_MAX_HUGEPAGE_LEVEL,
1523 				 range->start, range->end - 1, &iterator)
1524 		ret |= handler(kvm, iterator.rmap, range->slot, iterator.gfn,
1525 			       iterator.level, range->pte);
1526 
1527 	return ret;
1528 }
1529 
1530 bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range)
1531 {
1532 	bool flush = false;
1533 
1534 	if (kvm_memslots_have_rmaps(kvm))
1535 		flush = kvm_handle_gfn_range(kvm, range, kvm_unmap_rmapp);
1536 
1537 	if (is_tdp_mmu_enabled(kvm))
1538 		flush |= kvm_tdp_mmu_unmap_gfn_range(kvm, range, flush);
1539 
1540 	return flush;
1541 }
1542 
1543 bool kvm_set_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
1544 {
1545 	bool flush = false;
1546 
1547 	if (kvm_memslots_have_rmaps(kvm))
1548 		flush = kvm_handle_gfn_range(kvm, range, kvm_set_pte_rmapp);
1549 
1550 	if (is_tdp_mmu_enabled(kvm))
1551 		flush |= kvm_tdp_mmu_set_spte_gfn(kvm, range);
1552 
1553 	return flush;
1554 }
1555 
1556 static bool kvm_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1557 			  struct kvm_memory_slot *slot, gfn_t gfn, int level,
1558 			  pte_t unused)
1559 {
1560 	u64 *sptep;
1561 	struct rmap_iterator iter;
1562 	int young = 0;
1563 
1564 	for_each_rmap_spte(rmap_head, &iter, sptep)
1565 		young |= mmu_spte_age(sptep);
1566 
1567 	return young;
1568 }
1569 
1570 static bool kvm_test_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1571 			       struct kvm_memory_slot *slot, gfn_t gfn,
1572 			       int level, pte_t unused)
1573 {
1574 	u64 *sptep;
1575 	struct rmap_iterator iter;
1576 
1577 	for_each_rmap_spte(rmap_head, &iter, sptep)
1578 		if (is_accessed_spte(*sptep))
1579 			return 1;
1580 	return 0;
1581 }
1582 
1583 #define RMAP_RECYCLE_THRESHOLD 1000
1584 
1585 static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1586 {
1587 	struct kvm_rmap_head *rmap_head;
1588 	struct kvm_mmu_page *sp;
1589 
1590 	sp = sptep_to_sp(spte);
1591 
1592 	rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
1593 
1594 	kvm_unmap_rmapp(vcpu->kvm, rmap_head, NULL, gfn, sp->role.level, __pte(0));
1595 	kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn,
1596 			KVM_PAGES_PER_HPAGE(sp->role.level));
1597 }
1598 
1599 bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
1600 {
1601 	bool young = false;
1602 
1603 	if (kvm_memslots_have_rmaps(kvm))
1604 		young = kvm_handle_gfn_range(kvm, range, kvm_age_rmapp);
1605 
1606 	if (is_tdp_mmu_enabled(kvm))
1607 		young |= kvm_tdp_mmu_age_gfn_range(kvm, range);
1608 
1609 	return young;
1610 }
1611 
1612 bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
1613 {
1614 	bool young = false;
1615 
1616 	if (kvm_memslots_have_rmaps(kvm))
1617 		young = kvm_handle_gfn_range(kvm, range, kvm_test_age_rmapp);
1618 
1619 	if (is_tdp_mmu_enabled(kvm))
1620 		young |= kvm_tdp_mmu_test_age_gfn(kvm, range);
1621 
1622 	return young;
1623 }
1624 
1625 #ifdef MMU_DEBUG
1626 static int is_empty_shadow_page(u64 *spt)
1627 {
1628 	u64 *pos;
1629 	u64 *end;
1630 
1631 	for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
1632 		if (is_shadow_present_pte(*pos)) {
1633 			printk(KERN_ERR "%s: %p %llx\n", __func__,
1634 			       pos, *pos);
1635 			return 0;
1636 		}
1637 	return 1;
1638 }
1639 #endif
1640 
1641 /*
1642  * This value is the sum of all of the kvm instances's
1643  * kvm->arch.n_used_mmu_pages values.  We need a global,
1644  * aggregate version in order to make the slab shrinker
1645  * faster
1646  */
1647 static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, unsigned long nr)
1648 {
1649 	kvm->arch.n_used_mmu_pages += nr;
1650 	percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1651 }
1652 
1653 static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
1654 {
1655 	MMU_WARN_ON(!is_empty_shadow_page(sp->spt));
1656 	hlist_del(&sp->hash_link);
1657 	list_del(&sp->link);
1658 	free_page((unsigned long)sp->spt);
1659 	if (!sp->role.direct)
1660 		free_page((unsigned long)sp->gfns);
1661 	kmem_cache_free(mmu_page_header_cache, sp);
1662 }
1663 
1664 static unsigned kvm_page_table_hashfn(gfn_t gfn)
1665 {
1666 	return hash_64(gfn, KVM_MMU_HASH_SHIFT);
1667 }
1668 
1669 static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
1670 				    struct kvm_mmu_page *sp, u64 *parent_pte)
1671 {
1672 	if (!parent_pte)
1673 		return;
1674 
1675 	pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
1676 }
1677 
1678 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
1679 				       u64 *parent_pte)
1680 {
1681 	__pte_list_remove(parent_pte, &sp->parent_ptes);
1682 }
1683 
1684 static void drop_parent_pte(struct kvm_mmu_page *sp,
1685 			    u64 *parent_pte)
1686 {
1687 	mmu_page_remove_parent_pte(sp, parent_pte);
1688 	mmu_spte_clear_no_track(parent_pte);
1689 }
1690 
1691 static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu, int direct)
1692 {
1693 	struct kvm_mmu_page *sp;
1694 
1695 	sp = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
1696 	sp->spt = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_shadow_page_cache);
1697 	if (!direct)
1698 		sp->gfns = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_gfn_array_cache);
1699 	set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
1700 
1701 	/*
1702 	 * active_mmu_pages must be a FIFO list, as kvm_zap_obsolete_pages()
1703 	 * depends on valid pages being added to the head of the list.  See
1704 	 * comments in kvm_zap_obsolete_pages().
1705 	 */
1706 	sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
1707 	list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
1708 	kvm_mod_used_mmu_pages(vcpu->kvm, +1);
1709 	return sp;
1710 }
1711 
1712 static void mark_unsync(u64 *spte);
1713 static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
1714 {
1715 	u64 *sptep;
1716 	struct rmap_iterator iter;
1717 
1718 	for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) {
1719 		mark_unsync(sptep);
1720 	}
1721 }
1722 
1723 static void mark_unsync(u64 *spte)
1724 {
1725 	struct kvm_mmu_page *sp;
1726 	unsigned int index;
1727 
1728 	sp = sptep_to_sp(spte);
1729 	index = spte - sp->spt;
1730 	if (__test_and_set_bit(index, sp->unsync_child_bitmap))
1731 		return;
1732 	if (sp->unsync_children++)
1733 		return;
1734 	kvm_mmu_mark_parents_unsync(sp);
1735 }
1736 
1737 static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
1738 			       struct kvm_mmu_page *sp)
1739 {
1740 	return 0;
1741 }
1742 
1743 #define KVM_PAGE_ARRAY_NR 16
1744 
1745 struct kvm_mmu_pages {
1746 	struct mmu_page_and_offset {
1747 		struct kvm_mmu_page *sp;
1748 		unsigned int idx;
1749 	} page[KVM_PAGE_ARRAY_NR];
1750 	unsigned int nr;
1751 };
1752 
1753 static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
1754 			 int idx)
1755 {
1756 	int i;
1757 
1758 	if (sp->unsync)
1759 		for (i=0; i < pvec->nr; i++)
1760 			if (pvec->page[i].sp == sp)
1761 				return 0;
1762 
1763 	pvec->page[pvec->nr].sp = sp;
1764 	pvec->page[pvec->nr].idx = idx;
1765 	pvec->nr++;
1766 	return (pvec->nr == KVM_PAGE_ARRAY_NR);
1767 }
1768 
1769 static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx)
1770 {
1771 	--sp->unsync_children;
1772 	WARN_ON((int)sp->unsync_children < 0);
1773 	__clear_bit(idx, sp->unsync_child_bitmap);
1774 }
1775 
1776 static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
1777 			   struct kvm_mmu_pages *pvec)
1778 {
1779 	int i, ret, nr_unsync_leaf = 0;
1780 
1781 	for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
1782 		struct kvm_mmu_page *child;
1783 		u64 ent = sp->spt[i];
1784 
1785 		if (!is_shadow_present_pte(ent) || is_large_pte(ent)) {
1786 			clear_unsync_child_bit(sp, i);
1787 			continue;
1788 		}
1789 
1790 		child = to_shadow_page(ent & PT64_BASE_ADDR_MASK);
1791 
1792 		if (child->unsync_children) {
1793 			if (mmu_pages_add(pvec, child, i))
1794 				return -ENOSPC;
1795 
1796 			ret = __mmu_unsync_walk(child, pvec);
1797 			if (!ret) {
1798 				clear_unsync_child_bit(sp, i);
1799 				continue;
1800 			} else if (ret > 0) {
1801 				nr_unsync_leaf += ret;
1802 			} else
1803 				return ret;
1804 		} else if (child->unsync) {
1805 			nr_unsync_leaf++;
1806 			if (mmu_pages_add(pvec, child, i))
1807 				return -ENOSPC;
1808 		} else
1809 			clear_unsync_child_bit(sp, i);
1810 	}
1811 
1812 	return nr_unsync_leaf;
1813 }
1814 
1815 #define INVALID_INDEX (-1)
1816 
1817 static int mmu_unsync_walk(struct kvm_mmu_page *sp,
1818 			   struct kvm_mmu_pages *pvec)
1819 {
1820 	pvec->nr = 0;
1821 	if (!sp->unsync_children)
1822 		return 0;
1823 
1824 	mmu_pages_add(pvec, sp, INVALID_INDEX);
1825 	return __mmu_unsync_walk(sp, pvec);
1826 }
1827 
1828 static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1829 {
1830 	WARN_ON(!sp->unsync);
1831 	trace_kvm_mmu_sync_page(sp);
1832 	sp->unsync = 0;
1833 	--kvm->stat.mmu_unsync;
1834 }
1835 
1836 static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1837 				     struct list_head *invalid_list);
1838 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1839 				    struct list_head *invalid_list);
1840 
1841 #define for_each_valid_sp(_kvm, _sp, _list)				\
1842 	hlist_for_each_entry(_sp, _list, hash_link)			\
1843 		if (is_obsolete_sp((_kvm), (_sp))) {			\
1844 		} else
1845 
1846 #define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn)			\
1847 	for_each_valid_sp(_kvm, _sp,					\
1848 	  &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)])	\
1849 		if ((_sp)->gfn != (_gfn) || (_sp)->role.direct) {} else
1850 
1851 static bool kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1852 			 struct list_head *invalid_list)
1853 {
1854 	if (vcpu->arch.mmu->sync_page(vcpu, sp) == 0) {
1855 		kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1856 		return false;
1857 	}
1858 
1859 	return true;
1860 }
1861 
1862 static bool kvm_mmu_remote_flush_or_zap(struct kvm *kvm,
1863 					struct list_head *invalid_list,
1864 					bool remote_flush)
1865 {
1866 	if (!remote_flush && list_empty(invalid_list))
1867 		return false;
1868 
1869 	if (!list_empty(invalid_list))
1870 		kvm_mmu_commit_zap_page(kvm, invalid_list);
1871 	else
1872 		kvm_flush_remote_tlbs(kvm);
1873 	return true;
1874 }
1875 
1876 static void kvm_mmu_flush_or_zap(struct kvm_vcpu *vcpu,
1877 				 struct list_head *invalid_list,
1878 				 bool remote_flush, bool local_flush)
1879 {
1880 	if (kvm_mmu_remote_flush_or_zap(vcpu->kvm, invalid_list, remote_flush))
1881 		return;
1882 
1883 	if (local_flush)
1884 		kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1885 }
1886 
1887 #ifdef CONFIG_KVM_MMU_AUDIT
1888 #include "mmu_audit.c"
1889 #else
1890 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
1891 static void mmu_audit_disable(void) { }
1892 #endif
1893 
1894 static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
1895 {
1896 	return sp->role.invalid ||
1897 	       unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
1898 }
1899 
1900 struct mmu_page_path {
1901 	struct kvm_mmu_page *parent[PT64_ROOT_MAX_LEVEL];
1902 	unsigned int idx[PT64_ROOT_MAX_LEVEL];
1903 };
1904 
1905 #define for_each_sp(pvec, sp, parents, i)			\
1906 		for (i = mmu_pages_first(&pvec, &parents);	\
1907 			i < pvec.nr && ({ sp = pvec.page[i].sp; 1;});	\
1908 			i = mmu_pages_next(&pvec, &parents, i))
1909 
1910 static int mmu_pages_next(struct kvm_mmu_pages *pvec,
1911 			  struct mmu_page_path *parents,
1912 			  int i)
1913 {
1914 	int n;
1915 
1916 	for (n = i+1; n < pvec->nr; n++) {
1917 		struct kvm_mmu_page *sp = pvec->page[n].sp;
1918 		unsigned idx = pvec->page[n].idx;
1919 		int level = sp->role.level;
1920 
1921 		parents->idx[level-1] = idx;
1922 		if (level == PG_LEVEL_4K)
1923 			break;
1924 
1925 		parents->parent[level-2] = sp;
1926 	}
1927 
1928 	return n;
1929 }
1930 
1931 static int mmu_pages_first(struct kvm_mmu_pages *pvec,
1932 			   struct mmu_page_path *parents)
1933 {
1934 	struct kvm_mmu_page *sp;
1935 	int level;
1936 
1937 	if (pvec->nr == 0)
1938 		return 0;
1939 
1940 	WARN_ON(pvec->page[0].idx != INVALID_INDEX);
1941 
1942 	sp = pvec->page[0].sp;
1943 	level = sp->role.level;
1944 	WARN_ON(level == PG_LEVEL_4K);
1945 
1946 	parents->parent[level-2] = sp;
1947 
1948 	/* Also set up a sentinel.  Further entries in pvec are all
1949 	 * children of sp, so this element is never overwritten.
1950 	 */
1951 	parents->parent[level-1] = NULL;
1952 	return mmu_pages_next(pvec, parents, 0);
1953 }
1954 
1955 static void mmu_pages_clear_parents(struct mmu_page_path *parents)
1956 {
1957 	struct kvm_mmu_page *sp;
1958 	unsigned int level = 0;
1959 
1960 	do {
1961 		unsigned int idx = parents->idx[level];
1962 		sp = parents->parent[level];
1963 		if (!sp)
1964 			return;
1965 
1966 		WARN_ON(idx == INVALID_INDEX);
1967 		clear_unsync_child_bit(sp, idx);
1968 		level++;
1969 	} while (!sp->unsync_children);
1970 }
1971 
1972 static void mmu_sync_children(struct kvm_vcpu *vcpu,
1973 			      struct kvm_mmu_page *parent)
1974 {
1975 	int i;
1976 	struct kvm_mmu_page *sp;
1977 	struct mmu_page_path parents;
1978 	struct kvm_mmu_pages pages;
1979 	LIST_HEAD(invalid_list);
1980 	bool flush = false;
1981 
1982 	while (mmu_unsync_walk(parent, &pages)) {
1983 		bool protected = false;
1984 
1985 		for_each_sp(pages, sp, parents, i)
1986 			protected |= rmap_write_protect(vcpu, sp->gfn);
1987 
1988 		if (protected) {
1989 			kvm_flush_remote_tlbs(vcpu->kvm);
1990 			flush = false;
1991 		}
1992 
1993 		for_each_sp(pages, sp, parents, i) {
1994 			kvm_unlink_unsync_page(vcpu->kvm, sp);
1995 			flush |= kvm_sync_page(vcpu, sp, &invalid_list);
1996 			mmu_pages_clear_parents(&parents);
1997 		}
1998 		if (need_resched() || rwlock_needbreak(&vcpu->kvm->mmu_lock)) {
1999 			kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2000 			cond_resched_rwlock_write(&vcpu->kvm->mmu_lock);
2001 			flush = false;
2002 		}
2003 	}
2004 
2005 	kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2006 }
2007 
2008 static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
2009 {
2010 	atomic_set(&sp->write_flooding_count,  0);
2011 }
2012 
2013 static void clear_sp_write_flooding_count(u64 *spte)
2014 {
2015 	__clear_sp_write_flooding_count(sptep_to_sp(spte));
2016 }
2017 
2018 static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
2019 					     gfn_t gfn,
2020 					     gva_t gaddr,
2021 					     unsigned level,
2022 					     int direct,
2023 					     unsigned int access)
2024 {
2025 	bool direct_mmu = vcpu->arch.mmu->direct_map;
2026 	union kvm_mmu_page_role role;
2027 	struct hlist_head *sp_list;
2028 	unsigned quadrant;
2029 	struct kvm_mmu_page *sp;
2030 	int collisions = 0;
2031 	LIST_HEAD(invalid_list);
2032 
2033 	role = vcpu->arch.mmu->mmu_role.base;
2034 	role.level = level;
2035 	role.direct = direct;
2036 	if (role.direct)
2037 		role.gpte_is_8_bytes = true;
2038 	role.access = access;
2039 	if (!direct_mmu && vcpu->arch.mmu->root_level <= PT32_ROOT_LEVEL) {
2040 		quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
2041 		quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
2042 		role.quadrant = quadrant;
2043 	}
2044 
2045 	sp_list = &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)];
2046 	for_each_valid_sp(vcpu->kvm, sp, sp_list) {
2047 		if (sp->gfn != gfn) {
2048 			collisions++;
2049 			continue;
2050 		}
2051 
2052 		if (sp->role.word != role.word) {
2053 			/*
2054 			 * If the guest is creating an upper-level page, zap
2055 			 * unsync pages for the same gfn.  While it's possible
2056 			 * the guest is using recursive page tables, in all
2057 			 * likelihood the guest has stopped using the unsync
2058 			 * page and is installing a completely unrelated page.
2059 			 * Unsync pages must not be left as is, because the new
2060 			 * upper-level page will be write-protected.
2061 			 */
2062 			if (level > PG_LEVEL_4K && sp->unsync)
2063 				kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
2064 							 &invalid_list);
2065 			continue;
2066 		}
2067 
2068 		if (direct_mmu)
2069 			goto trace_get_page;
2070 
2071 		if (sp->unsync) {
2072 			/*
2073 			 * The page is good, but is stale.  kvm_sync_page does
2074 			 * get the latest guest state, but (unlike mmu_unsync_children)
2075 			 * it doesn't write-protect the page or mark it synchronized!
2076 			 * This way the validity of the mapping is ensured, but the
2077 			 * overhead of write protection is not incurred until the
2078 			 * guest invalidates the TLB mapping.  This allows multiple
2079 			 * SPs for a single gfn to be unsync.
2080 			 *
2081 			 * If the sync fails, the page is zapped.  If so, break
2082 			 * in order to rebuild it.
2083 			 */
2084 			if (!kvm_sync_page(vcpu, sp, &invalid_list))
2085 				break;
2086 
2087 			WARN_ON(!list_empty(&invalid_list));
2088 			kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
2089 		}
2090 
2091 		if (sp->unsync_children)
2092 			kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
2093 
2094 		__clear_sp_write_flooding_count(sp);
2095 
2096 trace_get_page:
2097 		trace_kvm_mmu_get_page(sp, false);
2098 		goto out;
2099 	}
2100 
2101 	++vcpu->kvm->stat.mmu_cache_miss;
2102 
2103 	sp = kvm_mmu_alloc_page(vcpu, direct);
2104 
2105 	sp->gfn = gfn;
2106 	sp->role = role;
2107 	hlist_add_head(&sp->hash_link, sp_list);
2108 	if (!direct) {
2109 		account_shadowed(vcpu->kvm, sp);
2110 		if (level == PG_LEVEL_4K && rmap_write_protect(vcpu, gfn))
2111 			kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn, 1);
2112 	}
2113 	trace_kvm_mmu_get_page(sp, true);
2114 out:
2115 	kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2116 
2117 	if (collisions > vcpu->kvm->stat.max_mmu_page_hash_collisions)
2118 		vcpu->kvm->stat.max_mmu_page_hash_collisions = collisions;
2119 	return sp;
2120 }
2121 
2122 static void shadow_walk_init_using_root(struct kvm_shadow_walk_iterator *iterator,
2123 					struct kvm_vcpu *vcpu, hpa_t root,
2124 					u64 addr)
2125 {
2126 	iterator->addr = addr;
2127 	iterator->shadow_addr = root;
2128 	iterator->level = vcpu->arch.mmu->shadow_root_level;
2129 
2130 	if (iterator->level == PT64_ROOT_4LEVEL &&
2131 	    vcpu->arch.mmu->root_level < PT64_ROOT_4LEVEL &&
2132 	    !vcpu->arch.mmu->direct_map)
2133 		--iterator->level;
2134 
2135 	if (iterator->level == PT32E_ROOT_LEVEL) {
2136 		/*
2137 		 * prev_root is currently only used for 64-bit hosts. So only
2138 		 * the active root_hpa is valid here.
2139 		 */
2140 		BUG_ON(root != vcpu->arch.mmu->root_hpa);
2141 
2142 		iterator->shadow_addr
2143 			= vcpu->arch.mmu->pae_root[(addr >> 30) & 3];
2144 		iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
2145 		--iterator->level;
2146 		if (!iterator->shadow_addr)
2147 			iterator->level = 0;
2148 	}
2149 }
2150 
2151 static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
2152 			     struct kvm_vcpu *vcpu, u64 addr)
2153 {
2154 	shadow_walk_init_using_root(iterator, vcpu, vcpu->arch.mmu->root_hpa,
2155 				    addr);
2156 }
2157 
2158 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
2159 {
2160 	if (iterator->level < PG_LEVEL_4K)
2161 		return false;
2162 
2163 	iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
2164 	iterator->sptep	= ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
2165 	return true;
2166 }
2167 
2168 static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
2169 			       u64 spte)
2170 {
2171 	if (is_last_spte(spte, iterator->level)) {
2172 		iterator->level = 0;
2173 		return;
2174 	}
2175 
2176 	iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2177 	--iterator->level;
2178 }
2179 
2180 static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
2181 {
2182 	__shadow_walk_next(iterator, *iterator->sptep);
2183 }
2184 
2185 static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep,
2186 			     struct kvm_mmu_page *sp)
2187 {
2188 	u64 spte;
2189 
2190 	BUILD_BUG_ON(VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);
2191 
2192 	spte = make_nonleaf_spte(sp->spt, sp_ad_disabled(sp));
2193 
2194 	mmu_spte_set(sptep, spte);
2195 
2196 	mmu_page_add_parent_pte(vcpu, sp, sptep);
2197 
2198 	if (sp->unsync_children || sp->unsync)
2199 		mark_unsync(sptep);
2200 }
2201 
2202 static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2203 				   unsigned direct_access)
2204 {
2205 	if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
2206 		struct kvm_mmu_page *child;
2207 
2208 		/*
2209 		 * For the direct sp, if the guest pte's dirty bit
2210 		 * changed form clean to dirty, it will corrupt the
2211 		 * sp's access: allow writable in the read-only sp,
2212 		 * so we should update the spte at this point to get
2213 		 * a new sp with the correct access.
2214 		 */
2215 		child = to_shadow_page(*sptep & PT64_BASE_ADDR_MASK);
2216 		if (child->role.access == direct_access)
2217 			return;
2218 
2219 		drop_parent_pte(child, sptep);
2220 		kvm_flush_remote_tlbs_with_address(vcpu->kvm, child->gfn, 1);
2221 	}
2222 }
2223 
2224 /* Returns the number of zapped non-leaf child shadow pages. */
2225 static int mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
2226 			    u64 *spte, struct list_head *invalid_list)
2227 {
2228 	u64 pte;
2229 	struct kvm_mmu_page *child;
2230 
2231 	pte = *spte;
2232 	if (is_shadow_present_pte(pte)) {
2233 		if (is_last_spte(pte, sp->role.level)) {
2234 			drop_spte(kvm, spte);
2235 			if (is_large_pte(pte))
2236 				--kvm->stat.lpages;
2237 		} else {
2238 			child = to_shadow_page(pte & PT64_BASE_ADDR_MASK);
2239 			drop_parent_pte(child, spte);
2240 
2241 			/*
2242 			 * Recursively zap nested TDP SPs, parentless SPs are
2243 			 * unlikely to be used again in the near future.  This
2244 			 * avoids retaining a large number of stale nested SPs.
2245 			 */
2246 			if (tdp_enabled && invalid_list &&
2247 			    child->role.guest_mode && !child->parent_ptes.val)
2248 				return kvm_mmu_prepare_zap_page(kvm, child,
2249 								invalid_list);
2250 		}
2251 	} else if (is_mmio_spte(pte)) {
2252 		mmu_spte_clear_no_track(spte);
2253 	}
2254 	return 0;
2255 }
2256 
2257 static int kvm_mmu_page_unlink_children(struct kvm *kvm,
2258 					struct kvm_mmu_page *sp,
2259 					struct list_head *invalid_list)
2260 {
2261 	int zapped = 0;
2262 	unsigned i;
2263 
2264 	for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2265 		zapped += mmu_page_zap_pte(kvm, sp, sp->spt + i, invalid_list);
2266 
2267 	return zapped;
2268 }
2269 
2270 static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
2271 {
2272 	u64 *sptep;
2273 	struct rmap_iterator iter;
2274 
2275 	while ((sptep = rmap_get_first(&sp->parent_ptes, &iter)))
2276 		drop_parent_pte(sp, sptep);
2277 }
2278 
2279 static int mmu_zap_unsync_children(struct kvm *kvm,
2280 				   struct kvm_mmu_page *parent,
2281 				   struct list_head *invalid_list)
2282 {
2283 	int i, zapped = 0;
2284 	struct mmu_page_path parents;
2285 	struct kvm_mmu_pages pages;
2286 
2287 	if (parent->role.level == PG_LEVEL_4K)
2288 		return 0;
2289 
2290 	while (mmu_unsync_walk(parent, &pages)) {
2291 		struct kvm_mmu_page *sp;
2292 
2293 		for_each_sp(pages, sp, parents, i) {
2294 			kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2295 			mmu_pages_clear_parents(&parents);
2296 			zapped++;
2297 		}
2298 	}
2299 
2300 	return zapped;
2301 }
2302 
2303 static bool __kvm_mmu_prepare_zap_page(struct kvm *kvm,
2304 				       struct kvm_mmu_page *sp,
2305 				       struct list_head *invalid_list,
2306 				       int *nr_zapped)
2307 {
2308 	bool list_unstable;
2309 
2310 	trace_kvm_mmu_prepare_zap_page(sp);
2311 	++kvm->stat.mmu_shadow_zapped;
2312 	*nr_zapped = mmu_zap_unsync_children(kvm, sp, invalid_list);
2313 	*nr_zapped += kvm_mmu_page_unlink_children(kvm, sp, invalid_list);
2314 	kvm_mmu_unlink_parents(kvm, sp);
2315 
2316 	/* Zapping children means active_mmu_pages has become unstable. */
2317 	list_unstable = *nr_zapped;
2318 
2319 	if (!sp->role.invalid && !sp->role.direct)
2320 		unaccount_shadowed(kvm, sp);
2321 
2322 	if (sp->unsync)
2323 		kvm_unlink_unsync_page(kvm, sp);
2324 	if (!sp->root_count) {
2325 		/* Count self */
2326 		(*nr_zapped)++;
2327 
2328 		/*
2329 		 * Already invalid pages (previously active roots) are not on
2330 		 * the active page list.  See list_del() in the "else" case of
2331 		 * !sp->root_count.
2332 		 */
2333 		if (sp->role.invalid)
2334 			list_add(&sp->link, invalid_list);
2335 		else
2336 			list_move(&sp->link, invalid_list);
2337 		kvm_mod_used_mmu_pages(kvm, -1);
2338 	} else {
2339 		/*
2340 		 * Remove the active root from the active page list, the root
2341 		 * will be explicitly freed when the root_count hits zero.
2342 		 */
2343 		list_del(&sp->link);
2344 
2345 		/*
2346 		 * Obsolete pages cannot be used on any vCPUs, see the comment
2347 		 * in kvm_mmu_zap_all_fast().  Note, is_obsolete_sp() also
2348 		 * treats invalid shadow pages as being obsolete.
2349 		 */
2350 		if (!is_obsolete_sp(kvm, sp))
2351 			kvm_reload_remote_mmus(kvm);
2352 	}
2353 
2354 	if (sp->lpage_disallowed)
2355 		unaccount_huge_nx_page(kvm, sp);
2356 
2357 	sp->role.invalid = 1;
2358 	return list_unstable;
2359 }
2360 
2361 static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2362 				     struct list_head *invalid_list)
2363 {
2364 	int nr_zapped;
2365 
2366 	__kvm_mmu_prepare_zap_page(kvm, sp, invalid_list, &nr_zapped);
2367 	return nr_zapped;
2368 }
2369 
2370 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2371 				    struct list_head *invalid_list)
2372 {
2373 	struct kvm_mmu_page *sp, *nsp;
2374 
2375 	if (list_empty(invalid_list))
2376 		return;
2377 
2378 	/*
2379 	 * We need to make sure everyone sees our modifications to
2380 	 * the page tables and see changes to vcpu->mode here. The barrier
2381 	 * in the kvm_flush_remote_tlbs() achieves this. This pairs
2382 	 * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end.
2383 	 *
2384 	 * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit
2385 	 * guest mode and/or lockless shadow page table walks.
2386 	 */
2387 	kvm_flush_remote_tlbs(kvm);
2388 
2389 	list_for_each_entry_safe(sp, nsp, invalid_list, link) {
2390 		WARN_ON(!sp->role.invalid || sp->root_count);
2391 		kvm_mmu_free_page(sp);
2392 	}
2393 }
2394 
2395 static unsigned long kvm_mmu_zap_oldest_mmu_pages(struct kvm *kvm,
2396 						  unsigned long nr_to_zap)
2397 {
2398 	unsigned long total_zapped = 0;
2399 	struct kvm_mmu_page *sp, *tmp;
2400 	LIST_HEAD(invalid_list);
2401 	bool unstable;
2402 	int nr_zapped;
2403 
2404 	if (list_empty(&kvm->arch.active_mmu_pages))
2405 		return 0;
2406 
2407 restart:
2408 	list_for_each_entry_safe_reverse(sp, tmp, &kvm->arch.active_mmu_pages, link) {
2409 		/*
2410 		 * Don't zap active root pages, the page itself can't be freed
2411 		 * and zapping it will just force vCPUs to realloc and reload.
2412 		 */
2413 		if (sp->root_count)
2414 			continue;
2415 
2416 		unstable = __kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list,
2417 						      &nr_zapped);
2418 		total_zapped += nr_zapped;
2419 		if (total_zapped >= nr_to_zap)
2420 			break;
2421 
2422 		if (unstable)
2423 			goto restart;
2424 	}
2425 
2426 	kvm_mmu_commit_zap_page(kvm, &invalid_list);
2427 
2428 	kvm->stat.mmu_recycled += total_zapped;
2429 	return total_zapped;
2430 }
2431 
2432 static inline unsigned long kvm_mmu_available_pages(struct kvm *kvm)
2433 {
2434 	if (kvm->arch.n_max_mmu_pages > kvm->arch.n_used_mmu_pages)
2435 		return kvm->arch.n_max_mmu_pages -
2436 			kvm->arch.n_used_mmu_pages;
2437 
2438 	return 0;
2439 }
2440 
2441 static int make_mmu_pages_available(struct kvm_vcpu *vcpu)
2442 {
2443 	unsigned long avail = kvm_mmu_available_pages(vcpu->kvm);
2444 
2445 	if (likely(avail >= KVM_MIN_FREE_MMU_PAGES))
2446 		return 0;
2447 
2448 	kvm_mmu_zap_oldest_mmu_pages(vcpu->kvm, KVM_REFILL_PAGES - avail);
2449 
2450 	/*
2451 	 * Note, this check is intentionally soft, it only guarantees that one
2452 	 * page is available, while the caller may end up allocating as many as
2453 	 * four pages, e.g. for PAE roots or for 5-level paging.  Temporarily
2454 	 * exceeding the (arbitrary by default) limit will not harm the host,
2455 	 * being too aggressive may unnecessarily kill the guest, and getting an
2456 	 * exact count is far more trouble than it's worth, especially in the
2457 	 * page fault paths.
2458 	 */
2459 	if (!kvm_mmu_available_pages(vcpu->kvm))
2460 		return -ENOSPC;
2461 	return 0;
2462 }
2463 
2464 /*
2465  * Changing the number of mmu pages allocated to the vm
2466  * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2467  */
2468 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long goal_nr_mmu_pages)
2469 {
2470 	write_lock(&kvm->mmu_lock);
2471 
2472 	if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2473 		kvm_mmu_zap_oldest_mmu_pages(kvm, kvm->arch.n_used_mmu_pages -
2474 						  goal_nr_mmu_pages);
2475 
2476 		goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2477 	}
2478 
2479 	kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2480 
2481 	write_unlock(&kvm->mmu_lock);
2482 }
2483 
2484 int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2485 {
2486 	struct kvm_mmu_page *sp;
2487 	LIST_HEAD(invalid_list);
2488 	int r;
2489 
2490 	pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
2491 	r = 0;
2492 	write_lock(&kvm->mmu_lock);
2493 	for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
2494 		pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
2495 			 sp->role.word);
2496 		r = 1;
2497 		kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2498 	}
2499 	kvm_mmu_commit_zap_page(kvm, &invalid_list);
2500 	write_unlock(&kvm->mmu_lock);
2501 
2502 	return r;
2503 }
2504 
2505 static int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
2506 {
2507 	gpa_t gpa;
2508 	int r;
2509 
2510 	if (vcpu->arch.mmu->direct_map)
2511 		return 0;
2512 
2513 	gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
2514 
2515 	r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
2516 
2517 	return r;
2518 }
2519 
2520 static void kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2521 {
2522 	trace_kvm_mmu_unsync_page(sp);
2523 	++vcpu->kvm->stat.mmu_unsync;
2524 	sp->unsync = 1;
2525 
2526 	kvm_mmu_mark_parents_unsync(sp);
2527 }
2528 
2529 /*
2530  * Attempt to unsync any shadow pages that can be reached by the specified gfn,
2531  * KVM is creating a writable mapping for said gfn.  Returns 0 if all pages
2532  * were marked unsync (or if there is no shadow page), -EPERM if the SPTE must
2533  * be write-protected.
2534  */
2535 int mmu_try_to_unsync_pages(struct kvm_vcpu *vcpu, gfn_t gfn, bool can_unsync)
2536 {
2537 	struct kvm_mmu_page *sp;
2538 
2539 	/*
2540 	 * Force write-protection if the page is being tracked.  Note, the page
2541 	 * track machinery is used to write-protect upper-level shadow pages,
2542 	 * i.e. this guards the role.level == 4K assertion below!
2543 	 */
2544 	if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
2545 		return -EPERM;
2546 
2547 	/*
2548 	 * The page is not write-tracked, mark existing shadow pages unsync
2549 	 * unless KVM is synchronizing an unsync SP (can_unsync = false).  In
2550 	 * that case, KVM must complete emulation of the guest TLB flush before
2551 	 * allowing shadow pages to become unsync (writable by the guest).
2552 	 */
2553 	for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
2554 		if (!can_unsync)
2555 			return -EPERM;
2556 
2557 		if (sp->unsync)
2558 			continue;
2559 
2560 		WARN_ON(sp->role.level != PG_LEVEL_4K);
2561 		kvm_unsync_page(vcpu, sp);
2562 	}
2563 
2564 	/*
2565 	 * We need to ensure that the marking of unsync pages is visible
2566 	 * before the SPTE is updated to allow writes because
2567 	 * kvm_mmu_sync_roots() checks the unsync flags without holding
2568 	 * the MMU lock and so can race with this. If the SPTE was updated
2569 	 * before the page had been marked as unsync-ed, something like the
2570 	 * following could happen:
2571 	 *
2572 	 * CPU 1                    CPU 2
2573 	 * ---------------------------------------------------------------------
2574 	 * 1.2 Host updates SPTE
2575 	 *     to be writable
2576 	 *                      2.1 Guest writes a GPTE for GVA X.
2577 	 *                          (GPTE being in the guest page table shadowed
2578 	 *                           by the SP from CPU 1.)
2579 	 *                          This reads SPTE during the page table walk.
2580 	 *                          Since SPTE.W is read as 1, there is no
2581 	 *                          fault.
2582 	 *
2583 	 *                      2.2 Guest issues TLB flush.
2584 	 *                          That causes a VM Exit.
2585 	 *
2586 	 *                      2.3 Walking of unsync pages sees sp->unsync is
2587 	 *                          false and skips the page.
2588 	 *
2589 	 *                      2.4 Guest accesses GVA X.
2590 	 *                          Since the mapping in the SP was not updated,
2591 	 *                          so the old mapping for GVA X incorrectly
2592 	 *                          gets used.
2593 	 * 1.1 Host marks SP
2594 	 *     as unsync
2595 	 *     (sp->unsync = true)
2596 	 *
2597 	 * The write barrier below ensures that 1.1 happens before 1.2 and thus
2598 	 * the situation in 2.4 does not arise. The implicit barrier in 2.2
2599 	 * pairs with this write barrier.
2600 	 */
2601 	smp_wmb();
2602 
2603 	return 0;
2604 }
2605 
2606 static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2607 		    unsigned int pte_access, int level,
2608 		    gfn_t gfn, kvm_pfn_t pfn, bool speculative,
2609 		    bool can_unsync, bool host_writable)
2610 {
2611 	u64 spte;
2612 	struct kvm_mmu_page *sp;
2613 	int ret;
2614 
2615 	sp = sptep_to_sp(sptep);
2616 
2617 	ret = make_spte(vcpu, pte_access, level, gfn, pfn, *sptep, speculative,
2618 			can_unsync, host_writable, sp_ad_disabled(sp), &spte);
2619 
2620 	if (spte & PT_WRITABLE_MASK)
2621 		kvm_vcpu_mark_page_dirty(vcpu, gfn);
2622 
2623 	if (*sptep == spte)
2624 		ret |= SET_SPTE_SPURIOUS;
2625 	else if (mmu_spte_update(sptep, spte))
2626 		ret |= SET_SPTE_NEED_REMOTE_TLB_FLUSH;
2627 	return ret;
2628 }
2629 
2630 static int mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2631 			unsigned int pte_access, bool write_fault, int level,
2632 			gfn_t gfn, kvm_pfn_t pfn, bool speculative,
2633 			bool host_writable)
2634 {
2635 	int was_rmapped = 0;
2636 	int rmap_count;
2637 	int set_spte_ret;
2638 	int ret = RET_PF_FIXED;
2639 	bool flush = false;
2640 
2641 	pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
2642 		 *sptep, write_fault, gfn);
2643 
2644 	if (unlikely(is_noslot_pfn(pfn))) {
2645 		mark_mmio_spte(vcpu, sptep, gfn, pte_access);
2646 		return RET_PF_EMULATE;
2647 	}
2648 
2649 	if (is_shadow_present_pte(*sptep)) {
2650 		/*
2651 		 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2652 		 * the parent of the now unreachable PTE.
2653 		 */
2654 		if (level > PG_LEVEL_4K && !is_large_pte(*sptep)) {
2655 			struct kvm_mmu_page *child;
2656 			u64 pte = *sptep;
2657 
2658 			child = to_shadow_page(pte & PT64_BASE_ADDR_MASK);
2659 			drop_parent_pte(child, sptep);
2660 			flush = true;
2661 		} else if (pfn != spte_to_pfn(*sptep)) {
2662 			pgprintk("hfn old %llx new %llx\n",
2663 				 spte_to_pfn(*sptep), pfn);
2664 			drop_spte(vcpu->kvm, sptep);
2665 			flush = true;
2666 		} else
2667 			was_rmapped = 1;
2668 	}
2669 
2670 	set_spte_ret = set_spte(vcpu, sptep, pte_access, level, gfn, pfn,
2671 				speculative, true, host_writable);
2672 	if (set_spte_ret & SET_SPTE_WRITE_PROTECTED_PT) {
2673 		if (write_fault)
2674 			ret = RET_PF_EMULATE;
2675 		kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
2676 	}
2677 
2678 	if (set_spte_ret & SET_SPTE_NEED_REMOTE_TLB_FLUSH || flush)
2679 		kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn,
2680 				KVM_PAGES_PER_HPAGE(level));
2681 
2682 	/*
2683 	 * The fault is fully spurious if and only if the new SPTE and old SPTE
2684 	 * are identical, and emulation is not required.
2685 	 */
2686 	if ((set_spte_ret & SET_SPTE_SPURIOUS) && ret == RET_PF_FIXED) {
2687 		WARN_ON_ONCE(!was_rmapped);
2688 		return RET_PF_SPURIOUS;
2689 	}
2690 
2691 	pgprintk("%s: setting spte %llx\n", __func__, *sptep);
2692 	trace_kvm_mmu_set_spte(level, gfn, sptep);
2693 	if (!was_rmapped && is_large_pte(*sptep))
2694 		++vcpu->kvm->stat.lpages;
2695 
2696 	if (is_shadow_present_pte(*sptep)) {
2697 		if (!was_rmapped) {
2698 			rmap_count = rmap_add(vcpu, sptep, gfn);
2699 			if (rmap_count > RMAP_RECYCLE_THRESHOLD)
2700 				rmap_recycle(vcpu, sptep, gfn);
2701 		}
2702 	}
2703 
2704 	return ret;
2705 }
2706 
2707 static kvm_pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
2708 				     bool no_dirty_log)
2709 {
2710 	struct kvm_memory_slot *slot;
2711 
2712 	slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
2713 	if (!slot)
2714 		return KVM_PFN_ERR_FAULT;
2715 
2716 	return gfn_to_pfn_memslot_atomic(slot, gfn);
2717 }
2718 
2719 static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2720 				    struct kvm_mmu_page *sp,
2721 				    u64 *start, u64 *end)
2722 {
2723 	struct page *pages[PTE_PREFETCH_NUM];
2724 	struct kvm_memory_slot *slot;
2725 	unsigned int access = sp->role.access;
2726 	int i, ret;
2727 	gfn_t gfn;
2728 
2729 	gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
2730 	slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK);
2731 	if (!slot)
2732 		return -1;
2733 
2734 	ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start);
2735 	if (ret <= 0)
2736 		return -1;
2737 
2738 	for (i = 0; i < ret; i++, gfn++, start++) {
2739 		mmu_set_spte(vcpu, start, access, false, sp->role.level, gfn,
2740 			     page_to_pfn(pages[i]), true, true);
2741 		put_page(pages[i]);
2742 	}
2743 
2744 	return 0;
2745 }
2746 
2747 static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
2748 				  struct kvm_mmu_page *sp, u64 *sptep)
2749 {
2750 	u64 *spte, *start = NULL;
2751 	int i;
2752 
2753 	WARN_ON(!sp->role.direct);
2754 
2755 	i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
2756 	spte = sp->spt + i;
2757 
2758 	for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
2759 		if (is_shadow_present_pte(*spte) || spte == sptep) {
2760 			if (!start)
2761 				continue;
2762 			if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2763 				break;
2764 			start = NULL;
2765 		} else if (!start)
2766 			start = spte;
2767 	}
2768 }
2769 
2770 static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
2771 {
2772 	struct kvm_mmu_page *sp;
2773 
2774 	sp = sptep_to_sp(sptep);
2775 
2776 	/*
2777 	 * Without accessed bits, there's no way to distinguish between
2778 	 * actually accessed translations and prefetched, so disable pte
2779 	 * prefetch if accessed bits aren't available.
2780 	 */
2781 	if (sp_ad_disabled(sp))
2782 		return;
2783 
2784 	if (sp->role.level > PG_LEVEL_4K)
2785 		return;
2786 
2787 	/*
2788 	 * If addresses are being invalidated, skip prefetching to avoid
2789 	 * accidentally prefetching those addresses.
2790 	 */
2791 	if (unlikely(vcpu->kvm->mmu_notifier_count))
2792 		return;
2793 
2794 	__direct_pte_prefetch(vcpu, sp, sptep);
2795 }
2796 
2797 static int host_pfn_mapping_level(struct kvm *kvm, gfn_t gfn, kvm_pfn_t pfn,
2798 				  const struct kvm_memory_slot *slot)
2799 {
2800 	unsigned long hva;
2801 	pte_t *pte;
2802 	int level;
2803 
2804 	if (!PageCompound(pfn_to_page(pfn)) && !kvm_is_zone_device_pfn(pfn))
2805 		return PG_LEVEL_4K;
2806 
2807 	/*
2808 	 * Note, using the already-retrieved memslot and __gfn_to_hva_memslot()
2809 	 * is not solely for performance, it's also necessary to avoid the
2810 	 * "writable" check in __gfn_to_hva_many(), which will always fail on
2811 	 * read-only memslots due to gfn_to_hva() assuming writes.  Earlier
2812 	 * page fault steps have already verified the guest isn't writing a
2813 	 * read-only memslot.
2814 	 */
2815 	hva = __gfn_to_hva_memslot(slot, gfn);
2816 
2817 	pte = lookup_address_in_mm(kvm->mm, hva, &level);
2818 	if (unlikely(!pte))
2819 		return PG_LEVEL_4K;
2820 
2821 	return level;
2822 }
2823 
2824 int kvm_mmu_max_mapping_level(struct kvm *kvm,
2825 			      const struct kvm_memory_slot *slot, gfn_t gfn,
2826 			      kvm_pfn_t pfn, int max_level)
2827 {
2828 	struct kvm_lpage_info *linfo;
2829 
2830 	max_level = min(max_level, max_huge_page_level);
2831 	for ( ; max_level > PG_LEVEL_4K; max_level--) {
2832 		linfo = lpage_info_slot(gfn, slot, max_level);
2833 		if (!linfo->disallow_lpage)
2834 			break;
2835 	}
2836 
2837 	if (max_level == PG_LEVEL_4K)
2838 		return PG_LEVEL_4K;
2839 
2840 	return host_pfn_mapping_level(kvm, gfn, pfn, slot);
2841 }
2842 
2843 int kvm_mmu_hugepage_adjust(struct kvm_vcpu *vcpu, gfn_t gfn,
2844 			    int max_level, kvm_pfn_t *pfnp,
2845 			    bool huge_page_disallowed, int *req_level)
2846 {
2847 	struct kvm_memory_slot *slot;
2848 	kvm_pfn_t pfn = *pfnp;
2849 	kvm_pfn_t mask;
2850 	int level;
2851 
2852 	*req_level = PG_LEVEL_4K;
2853 
2854 	if (unlikely(max_level == PG_LEVEL_4K))
2855 		return PG_LEVEL_4K;
2856 
2857 	if (is_error_noslot_pfn(pfn) || kvm_is_reserved_pfn(pfn))
2858 		return PG_LEVEL_4K;
2859 
2860 	slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, true);
2861 	if (!slot)
2862 		return PG_LEVEL_4K;
2863 
2864 	level = kvm_mmu_max_mapping_level(vcpu->kvm, slot, gfn, pfn, max_level);
2865 	if (level == PG_LEVEL_4K)
2866 		return level;
2867 
2868 	*req_level = level = min(level, max_level);
2869 
2870 	/*
2871 	 * Enforce the iTLB multihit workaround after capturing the requested
2872 	 * level, which will be used to do precise, accurate accounting.
2873 	 */
2874 	if (huge_page_disallowed)
2875 		return PG_LEVEL_4K;
2876 
2877 	/*
2878 	 * mmu_notifier_retry() was successful and mmu_lock is held, so
2879 	 * the pmd can't be split from under us.
2880 	 */
2881 	mask = KVM_PAGES_PER_HPAGE(level) - 1;
2882 	VM_BUG_ON((gfn & mask) != (pfn & mask));
2883 	*pfnp = pfn & ~mask;
2884 
2885 	return level;
2886 }
2887 
2888 void disallowed_hugepage_adjust(u64 spte, gfn_t gfn, int cur_level,
2889 				kvm_pfn_t *pfnp, int *goal_levelp)
2890 {
2891 	int level = *goal_levelp;
2892 
2893 	if (cur_level == level && level > PG_LEVEL_4K &&
2894 	    is_shadow_present_pte(spte) &&
2895 	    !is_large_pte(spte)) {
2896 		/*
2897 		 * A small SPTE exists for this pfn, but FNAME(fetch)
2898 		 * and __direct_map would like to create a large PTE
2899 		 * instead: just force them to go down another level,
2900 		 * patching back for them into pfn the next 9 bits of
2901 		 * the address.
2902 		 */
2903 		u64 page_mask = KVM_PAGES_PER_HPAGE(level) -
2904 				KVM_PAGES_PER_HPAGE(level - 1);
2905 		*pfnp |= gfn & page_mask;
2906 		(*goal_levelp)--;
2907 	}
2908 }
2909 
2910 static int __direct_map(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
2911 			int map_writable, int max_level, kvm_pfn_t pfn,
2912 			bool prefault, bool is_tdp)
2913 {
2914 	bool nx_huge_page_workaround_enabled = is_nx_huge_page_enabled();
2915 	bool write = error_code & PFERR_WRITE_MASK;
2916 	bool exec = error_code & PFERR_FETCH_MASK;
2917 	bool huge_page_disallowed = exec && nx_huge_page_workaround_enabled;
2918 	struct kvm_shadow_walk_iterator it;
2919 	struct kvm_mmu_page *sp;
2920 	int level, req_level, ret;
2921 	gfn_t gfn = gpa >> PAGE_SHIFT;
2922 	gfn_t base_gfn = gfn;
2923 
2924 	level = kvm_mmu_hugepage_adjust(vcpu, gfn, max_level, &pfn,
2925 					huge_page_disallowed, &req_level);
2926 
2927 	trace_kvm_mmu_spte_requested(gpa, level, pfn);
2928 	for_each_shadow_entry(vcpu, gpa, it) {
2929 		/*
2930 		 * We cannot overwrite existing page tables with an NX
2931 		 * large page, as the leaf could be executable.
2932 		 */
2933 		if (nx_huge_page_workaround_enabled)
2934 			disallowed_hugepage_adjust(*it.sptep, gfn, it.level,
2935 						   &pfn, &level);
2936 
2937 		base_gfn = gfn & ~(KVM_PAGES_PER_HPAGE(it.level) - 1);
2938 		if (it.level == level)
2939 			break;
2940 
2941 		drop_large_spte(vcpu, it.sptep);
2942 		if (!is_shadow_present_pte(*it.sptep)) {
2943 			sp = kvm_mmu_get_page(vcpu, base_gfn, it.addr,
2944 					      it.level - 1, true, ACC_ALL);
2945 
2946 			link_shadow_page(vcpu, it.sptep, sp);
2947 			if (is_tdp && huge_page_disallowed &&
2948 			    req_level >= it.level)
2949 				account_huge_nx_page(vcpu->kvm, sp);
2950 		}
2951 	}
2952 
2953 	ret = mmu_set_spte(vcpu, it.sptep, ACC_ALL,
2954 			   write, level, base_gfn, pfn, prefault,
2955 			   map_writable);
2956 	if (ret == RET_PF_SPURIOUS)
2957 		return ret;
2958 
2959 	direct_pte_prefetch(vcpu, it.sptep);
2960 	++vcpu->stat.pf_fixed;
2961 	return ret;
2962 }
2963 
2964 static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
2965 {
2966 	send_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, PAGE_SHIFT, tsk);
2967 }
2968 
2969 static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, kvm_pfn_t pfn)
2970 {
2971 	/*
2972 	 * Do not cache the mmio info caused by writing the readonly gfn
2973 	 * into the spte otherwise read access on readonly gfn also can
2974 	 * caused mmio page fault and treat it as mmio access.
2975 	 */
2976 	if (pfn == KVM_PFN_ERR_RO_FAULT)
2977 		return RET_PF_EMULATE;
2978 
2979 	if (pfn == KVM_PFN_ERR_HWPOISON) {
2980 		kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current);
2981 		return RET_PF_RETRY;
2982 	}
2983 
2984 	return -EFAULT;
2985 }
2986 
2987 static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
2988 				kvm_pfn_t pfn, unsigned int access,
2989 				int *ret_val)
2990 {
2991 	/* The pfn is invalid, report the error! */
2992 	if (unlikely(is_error_pfn(pfn))) {
2993 		*ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
2994 		return true;
2995 	}
2996 
2997 	if (unlikely(is_noslot_pfn(pfn))) {
2998 		vcpu_cache_mmio_info(vcpu, gva, gfn,
2999 				     access & shadow_mmio_access_mask);
3000 		/*
3001 		 * If MMIO caching is disabled, emulate immediately without
3002 		 * touching the shadow page tables as attempting to install an
3003 		 * MMIO SPTE will just be an expensive nop.
3004 		 */
3005 		if (unlikely(!shadow_mmio_value)) {
3006 			*ret_val = RET_PF_EMULATE;
3007 			return true;
3008 		}
3009 	}
3010 
3011 	return false;
3012 }
3013 
3014 static bool page_fault_can_be_fast(u32 error_code)
3015 {
3016 	/*
3017 	 * Do not fix the mmio spte with invalid generation number which
3018 	 * need to be updated by slow page fault path.
3019 	 */
3020 	if (unlikely(error_code & PFERR_RSVD_MASK))
3021 		return false;
3022 
3023 	/* See if the page fault is due to an NX violation */
3024 	if (unlikely(((error_code & (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))
3025 		      == (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))))
3026 		return false;
3027 
3028 	/*
3029 	 * #PF can be fast if:
3030 	 * 1. The shadow page table entry is not present, which could mean that
3031 	 *    the fault is potentially caused by access tracking (if enabled).
3032 	 * 2. The shadow page table entry is present and the fault
3033 	 *    is caused by write-protect, that means we just need change the W
3034 	 *    bit of the spte which can be done out of mmu-lock.
3035 	 *
3036 	 * However, if access tracking is disabled we know that a non-present
3037 	 * page must be a genuine page fault where we have to create a new SPTE.
3038 	 * So, if access tracking is disabled, we return true only for write
3039 	 * accesses to a present page.
3040 	 */
3041 
3042 	return shadow_acc_track_mask != 0 ||
3043 	       ((error_code & (PFERR_WRITE_MASK | PFERR_PRESENT_MASK))
3044 		== (PFERR_WRITE_MASK | PFERR_PRESENT_MASK));
3045 }
3046 
3047 /*
3048  * Returns true if the SPTE was fixed successfully. Otherwise,
3049  * someone else modified the SPTE from its original value.
3050  */
3051 static bool
3052 fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
3053 			u64 *sptep, u64 old_spte, u64 new_spte)
3054 {
3055 	gfn_t gfn;
3056 
3057 	WARN_ON(!sp->role.direct);
3058 
3059 	/*
3060 	 * Theoretically we could also set dirty bit (and flush TLB) here in
3061 	 * order to eliminate unnecessary PML logging. See comments in
3062 	 * set_spte. But fast_page_fault is very unlikely to happen with PML
3063 	 * enabled, so we do not do this. This might result in the same GPA
3064 	 * to be logged in PML buffer again when the write really happens, and
3065 	 * eventually to be called by mark_page_dirty twice. But it's also no
3066 	 * harm. This also avoids the TLB flush needed after setting dirty bit
3067 	 * so non-PML cases won't be impacted.
3068 	 *
3069 	 * Compare with set_spte where instead shadow_dirty_mask is set.
3070 	 */
3071 	if (cmpxchg64(sptep, old_spte, new_spte) != old_spte)
3072 		return false;
3073 
3074 	if (is_writable_pte(new_spte) && !is_writable_pte(old_spte)) {
3075 		/*
3076 		 * The gfn of direct spte is stable since it is
3077 		 * calculated by sp->gfn.
3078 		 */
3079 		gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
3080 		kvm_vcpu_mark_page_dirty(vcpu, gfn);
3081 	}
3082 
3083 	return true;
3084 }
3085 
3086 static bool is_access_allowed(u32 fault_err_code, u64 spte)
3087 {
3088 	if (fault_err_code & PFERR_FETCH_MASK)
3089 		return is_executable_pte(spte);
3090 
3091 	if (fault_err_code & PFERR_WRITE_MASK)
3092 		return is_writable_pte(spte);
3093 
3094 	/* Fault was on Read access */
3095 	return spte & PT_PRESENT_MASK;
3096 }
3097 
3098 /*
3099  * Returns one of RET_PF_INVALID, RET_PF_FIXED or RET_PF_SPURIOUS.
3100  */
3101 static int fast_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
3102 			   u32 error_code)
3103 {
3104 	struct kvm_shadow_walk_iterator iterator;
3105 	struct kvm_mmu_page *sp;
3106 	int ret = RET_PF_INVALID;
3107 	u64 spte = 0ull;
3108 	uint retry_count = 0;
3109 
3110 	if (!page_fault_can_be_fast(error_code))
3111 		return ret;
3112 
3113 	walk_shadow_page_lockless_begin(vcpu);
3114 
3115 	do {
3116 		u64 new_spte;
3117 
3118 		for_each_shadow_entry_lockless(vcpu, cr2_or_gpa, iterator, spte)
3119 			if (!is_shadow_present_pte(spte))
3120 				break;
3121 
3122 		if (!is_shadow_present_pte(spte))
3123 			break;
3124 
3125 		sp = sptep_to_sp(iterator.sptep);
3126 		if (!is_last_spte(spte, sp->role.level))
3127 			break;
3128 
3129 		/*
3130 		 * Check whether the memory access that caused the fault would
3131 		 * still cause it if it were to be performed right now. If not,
3132 		 * then this is a spurious fault caused by TLB lazily flushed,
3133 		 * or some other CPU has already fixed the PTE after the
3134 		 * current CPU took the fault.
3135 		 *
3136 		 * Need not check the access of upper level table entries since
3137 		 * they are always ACC_ALL.
3138 		 */
3139 		if (is_access_allowed(error_code, spte)) {
3140 			ret = RET_PF_SPURIOUS;
3141 			break;
3142 		}
3143 
3144 		new_spte = spte;
3145 
3146 		if (is_access_track_spte(spte))
3147 			new_spte = restore_acc_track_spte(new_spte);
3148 
3149 		/*
3150 		 * Currently, to simplify the code, write-protection can
3151 		 * be removed in the fast path only if the SPTE was
3152 		 * write-protected for dirty-logging or access tracking.
3153 		 */
3154 		if ((error_code & PFERR_WRITE_MASK) &&
3155 		    spte_can_locklessly_be_made_writable(spte)) {
3156 			new_spte |= PT_WRITABLE_MASK;
3157 
3158 			/*
3159 			 * Do not fix write-permission on the large spte.  Since
3160 			 * we only dirty the first page into the dirty-bitmap in
3161 			 * fast_pf_fix_direct_spte(), other pages are missed
3162 			 * if its slot has dirty logging enabled.
3163 			 *
3164 			 * Instead, we let the slow page fault path create a
3165 			 * normal spte to fix the access.
3166 			 *
3167 			 * See the comments in kvm_arch_commit_memory_region().
3168 			 */
3169 			if (sp->role.level > PG_LEVEL_4K)
3170 				break;
3171 		}
3172 
3173 		/* Verify that the fault can be handled in the fast path */
3174 		if (new_spte == spte ||
3175 		    !is_access_allowed(error_code, new_spte))
3176 			break;
3177 
3178 		/*
3179 		 * Currently, fast page fault only works for direct mapping
3180 		 * since the gfn is not stable for indirect shadow page. See
3181 		 * Documentation/virt/kvm/locking.rst to get more detail.
3182 		 */
3183 		if (fast_pf_fix_direct_spte(vcpu, sp, iterator.sptep, spte,
3184 					    new_spte)) {
3185 			ret = RET_PF_FIXED;
3186 			break;
3187 		}
3188 
3189 		if (++retry_count > 4) {
3190 			printk_once(KERN_WARNING
3191 				"kvm: Fast #PF retrying more than 4 times.\n");
3192 			break;
3193 		}
3194 
3195 	} while (true);
3196 
3197 	trace_fast_page_fault(vcpu, cr2_or_gpa, error_code, iterator.sptep,
3198 			      spte, ret);
3199 	walk_shadow_page_lockless_end(vcpu);
3200 
3201 	return ret;
3202 }
3203 
3204 static void mmu_free_root_page(struct kvm *kvm, hpa_t *root_hpa,
3205 			       struct list_head *invalid_list)
3206 {
3207 	struct kvm_mmu_page *sp;
3208 
3209 	if (!VALID_PAGE(*root_hpa))
3210 		return;
3211 
3212 	sp = to_shadow_page(*root_hpa & PT64_BASE_ADDR_MASK);
3213 
3214 	if (is_tdp_mmu_page(sp))
3215 		kvm_tdp_mmu_put_root(kvm, sp, false);
3216 	else if (!--sp->root_count && sp->role.invalid)
3217 		kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
3218 
3219 	*root_hpa = INVALID_PAGE;
3220 }
3221 
3222 /* roots_to_free must be some combination of the KVM_MMU_ROOT_* flags */
3223 void kvm_mmu_free_roots(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
3224 			ulong roots_to_free)
3225 {
3226 	struct kvm *kvm = vcpu->kvm;
3227 	int i;
3228 	LIST_HEAD(invalid_list);
3229 	bool free_active_root = roots_to_free & KVM_MMU_ROOT_CURRENT;
3230 
3231 	BUILD_BUG_ON(KVM_MMU_NUM_PREV_ROOTS >= BITS_PER_LONG);
3232 
3233 	/* Before acquiring the MMU lock, see if we need to do any real work. */
3234 	if (!(free_active_root && VALID_PAGE(mmu->root_hpa))) {
3235 		for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
3236 			if ((roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) &&
3237 			    VALID_PAGE(mmu->prev_roots[i].hpa))
3238 				break;
3239 
3240 		if (i == KVM_MMU_NUM_PREV_ROOTS)
3241 			return;
3242 	}
3243 
3244 	write_lock(&kvm->mmu_lock);
3245 
3246 	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
3247 		if (roots_to_free & KVM_MMU_ROOT_PREVIOUS(i))
3248 			mmu_free_root_page(kvm, &mmu->prev_roots[i].hpa,
3249 					   &invalid_list);
3250 
3251 	if (free_active_root) {
3252 		if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
3253 		    (mmu->root_level >= PT64_ROOT_4LEVEL || mmu->direct_map)) {
3254 			mmu_free_root_page(kvm, &mmu->root_hpa, &invalid_list);
3255 		} else if (mmu->pae_root) {
3256 			for (i = 0; i < 4; ++i) {
3257 				if (!IS_VALID_PAE_ROOT(mmu->pae_root[i]))
3258 					continue;
3259 
3260 				mmu_free_root_page(kvm, &mmu->pae_root[i],
3261 						   &invalid_list);
3262 				mmu->pae_root[i] = INVALID_PAE_ROOT;
3263 			}
3264 		}
3265 		mmu->root_hpa = INVALID_PAGE;
3266 		mmu->root_pgd = 0;
3267 	}
3268 
3269 	kvm_mmu_commit_zap_page(kvm, &invalid_list);
3270 	write_unlock(&kvm->mmu_lock);
3271 }
3272 EXPORT_SYMBOL_GPL(kvm_mmu_free_roots);
3273 
3274 void kvm_mmu_free_guest_mode_roots(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
3275 {
3276 	unsigned long roots_to_free = 0;
3277 	hpa_t root_hpa;
3278 	int i;
3279 
3280 	/*
3281 	 * This should not be called while L2 is active, L2 can't invalidate
3282 	 * _only_ its own roots, e.g. INVVPID unconditionally exits.
3283 	 */
3284 	WARN_ON_ONCE(mmu->mmu_role.base.guest_mode);
3285 
3286 	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
3287 		root_hpa = mmu->prev_roots[i].hpa;
3288 		if (!VALID_PAGE(root_hpa))
3289 			continue;
3290 
3291 		if (!to_shadow_page(root_hpa) ||
3292 			to_shadow_page(root_hpa)->role.guest_mode)
3293 			roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
3294 	}
3295 
3296 	kvm_mmu_free_roots(vcpu, mmu, roots_to_free);
3297 }
3298 EXPORT_SYMBOL_GPL(kvm_mmu_free_guest_mode_roots);
3299 
3300 
3301 static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
3302 {
3303 	int ret = 0;
3304 
3305 	if (!kvm_vcpu_is_visible_gfn(vcpu, root_gfn)) {
3306 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3307 		ret = 1;
3308 	}
3309 
3310 	return ret;
3311 }
3312 
3313 static hpa_t mmu_alloc_root(struct kvm_vcpu *vcpu, gfn_t gfn, gva_t gva,
3314 			    u8 level, bool direct)
3315 {
3316 	struct kvm_mmu_page *sp;
3317 
3318 	sp = kvm_mmu_get_page(vcpu, gfn, gva, level, direct, ACC_ALL);
3319 	++sp->root_count;
3320 
3321 	return __pa(sp->spt);
3322 }
3323 
3324 static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
3325 {
3326 	struct kvm_mmu *mmu = vcpu->arch.mmu;
3327 	u8 shadow_root_level = mmu->shadow_root_level;
3328 	hpa_t root;
3329 	unsigned i;
3330 	int r;
3331 
3332 	write_lock(&vcpu->kvm->mmu_lock);
3333 	r = make_mmu_pages_available(vcpu);
3334 	if (r < 0)
3335 		goto out_unlock;
3336 
3337 	if (is_tdp_mmu_enabled(vcpu->kvm)) {
3338 		root = kvm_tdp_mmu_get_vcpu_root_hpa(vcpu);
3339 		mmu->root_hpa = root;
3340 	} else if (shadow_root_level >= PT64_ROOT_4LEVEL) {
3341 		root = mmu_alloc_root(vcpu, 0, 0, shadow_root_level, true);
3342 		mmu->root_hpa = root;
3343 	} else if (shadow_root_level == PT32E_ROOT_LEVEL) {
3344 		if (WARN_ON_ONCE(!mmu->pae_root)) {
3345 			r = -EIO;
3346 			goto out_unlock;
3347 		}
3348 
3349 		for (i = 0; i < 4; ++i) {
3350 			WARN_ON_ONCE(IS_VALID_PAE_ROOT(mmu->pae_root[i]));
3351 
3352 			root = mmu_alloc_root(vcpu, i << (30 - PAGE_SHIFT),
3353 					      i << 30, PT32_ROOT_LEVEL, true);
3354 			mmu->pae_root[i] = root | PT_PRESENT_MASK |
3355 					   shadow_me_mask;
3356 		}
3357 		mmu->root_hpa = __pa(mmu->pae_root);
3358 	} else {
3359 		WARN_ONCE(1, "Bad TDP root level = %d\n", shadow_root_level);
3360 		r = -EIO;
3361 		goto out_unlock;
3362 	}
3363 
3364 	/* root_pgd is ignored for direct MMUs. */
3365 	mmu->root_pgd = 0;
3366 out_unlock:
3367 	write_unlock(&vcpu->kvm->mmu_lock);
3368 	return r;
3369 }
3370 
3371 static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
3372 {
3373 	struct kvm_mmu *mmu = vcpu->arch.mmu;
3374 	u64 pdptrs[4], pm_mask;
3375 	gfn_t root_gfn, root_pgd;
3376 	hpa_t root;
3377 	unsigned i;
3378 	int r;
3379 
3380 	root_pgd = mmu->get_guest_pgd(vcpu);
3381 	root_gfn = root_pgd >> PAGE_SHIFT;
3382 
3383 	if (mmu_check_root(vcpu, root_gfn))
3384 		return 1;
3385 
3386 	/*
3387 	 * On SVM, reading PDPTRs might access guest memory, which might fault
3388 	 * and thus might sleep.  Grab the PDPTRs before acquiring mmu_lock.
3389 	 */
3390 	if (mmu->root_level == PT32E_ROOT_LEVEL) {
3391 		for (i = 0; i < 4; ++i) {
3392 			pdptrs[i] = mmu->get_pdptr(vcpu, i);
3393 			if (!(pdptrs[i] & PT_PRESENT_MASK))
3394 				continue;
3395 
3396 			if (mmu_check_root(vcpu, pdptrs[i] >> PAGE_SHIFT))
3397 				return 1;
3398 		}
3399 	}
3400 
3401 	r = alloc_all_memslots_rmaps(vcpu->kvm);
3402 	if (r)
3403 		return r;
3404 
3405 	write_lock(&vcpu->kvm->mmu_lock);
3406 	r = make_mmu_pages_available(vcpu);
3407 	if (r < 0)
3408 		goto out_unlock;
3409 
3410 	/*
3411 	 * Do we shadow a long mode page table? If so we need to
3412 	 * write-protect the guests page table root.
3413 	 */
3414 	if (mmu->root_level >= PT64_ROOT_4LEVEL) {
3415 		root = mmu_alloc_root(vcpu, root_gfn, 0,
3416 				      mmu->shadow_root_level, false);
3417 		mmu->root_hpa = root;
3418 		goto set_root_pgd;
3419 	}
3420 
3421 	if (WARN_ON_ONCE(!mmu->pae_root)) {
3422 		r = -EIO;
3423 		goto out_unlock;
3424 	}
3425 
3426 	/*
3427 	 * We shadow a 32 bit page table. This may be a legacy 2-level
3428 	 * or a PAE 3-level page table. In either case we need to be aware that
3429 	 * the shadow page table may be a PAE or a long mode page table.
3430 	 */
3431 	pm_mask = PT_PRESENT_MASK | shadow_me_mask;
3432 	if (mmu->shadow_root_level == PT64_ROOT_4LEVEL) {
3433 		pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
3434 
3435 		if (WARN_ON_ONCE(!mmu->pml4_root)) {
3436 			r = -EIO;
3437 			goto out_unlock;
3438 		}
3439 
3440 		mmu->pml4_root[0] = __pa(mmu->pae_root) | pm_mask;
3441 	}
3442 
3443 	for (i = 0; i < 4; ++i) {
3444 		WARN_ON_ONCE(IS_VALID_PAE_ROOT(mmu->pae_root[i]));
3445 
3446 		if (mmu->root_level == PT32E_ROOT_LEVEL) {
3447 			if (!(pdptrs[i] & PT_PRESENT_MASK)) {
3448 				mmu->pae_root[i] = INVALID_PAE_ROOT;
3449 				continue;
3450 			}
3451 			root_gfn = pdptrs[i] >> PAGE_SHIFT;
3452 		}
3453 
3454 		root = mmu_alloc_root(vcpu, root_gfn, i << 30,
3455 				      PT32_ROOT_LEVEL, false);
3456 		mmu->pae_root[i] = root | pm_mask;
3457 	}
3458 
3459 	if (mmu->shadow_root_level == PT64_ROOT_4LEVEL)
3460 		mmu->root_hpa = __pa(mmu->pml4_root);
3461 	else
3462 		mmu->root_hpa = __pa(mmu->pae_root);
3463 
3464 set_root_pgd:
3465 	mmu->root_pgd = root_pgd;
3466 out_unlock:
3467 	write_unlock(&vcpu->kvm->mmu_lock);
3468 
3469 	return 0;
3470 }
3471 
3472 static int mmu_alloc_special_roots(struct kvm_vcpu *vcpu)
3473 {
3474 	struct kvm_mmu *mmu = vcpu->arch.mmu;
3475 	u64 *pml4_root, *pae_root;
3476 
3477 	/*
3478 	 * When shadowing 32-bit or PAE NPT with 64-bit NPT, the PML4 and PDP
3479 	 * tables are allocated and initialized at root creation as there is no
3480 	 * equivalent level in the guest's NPT to shadow.  Allocate the tables
3481 	 * on demand, as running a 32-bit L1 VMM on 64-bit KVM is very rare.
3482 	 */
3483 	if (mmu->direct_map || mmu->root_level >= PT64_ROOT_4LEVEL ||
3484 	    mmu->shadow_root_level < PT64_ROOT_4LEVEL)
3485 		return 0;
3486 
3487 	/*
3488 	 * This mess only works with 4-level paging and needs to be updated to
3489 	 * work with 5-level paging.
3490 	 */
3491 	if (WARN_ON_ONCE(mmu->shadow_root_level != PT64_ROOT_4LEVEL))
3492 		return -EIO;
3493 
3494 	if (mmu->pae_root && mmu->pml4_root)
3495 		return 0;
3496 
3497 	/*
3498 	 * The special roots should always be allocated in concert.  Yell and
3499 	 * bail if KVM ends up in a state where only one of the roots is valid.
3500 	 */
3501 	if (WARN_ON_ONCE(!tdp_enabled || mmu->pae_root || mmu->pml4_root))
3502 		return -EIO;
3503 
3504 	/*
3505 	 * Unlike 32-bit NPT, the PDP table doesn't need to be in low mem, and
3506 	 * doesn't need to be decrypted.
3507 	 */
3508 	pae_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT);
3509 	if (!pae_root)
3510 		return -ENOMEM;
3511 
3512 	pml4_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT);
3513 	if (!pml4_root) {
3514 		free_page((unsigned long)pae_root);
3515 		return -ENOMEM;
3516 	}
3517 
3518 	mmu->pae_root = pae_root;
3519 	mmu->pml4_root = pml4_root;
3520 
3521 	return 0;
3522 }
3523 
3524 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3525 {
3526 	int i;
3527 	struct kvm_mmu_page *sp;
3528 
3529 	if (vcpu->arch.mmu->direct_map)
3530 		return;
3531 
3532 	if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
3533 		return;
3534 
3535 	vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
3536 
3537 	if (vcpu->arch.mmu->root_level >= PT64_ROOT_4LEVEL) {
3538 		hpa_t root = vcpu->arch.mmu->root_hpa;
3539 		sp = to_shadow_page(root);
3540 
3541 		/*
3542 		 * Even if another CPU was marking the SP as unsync-ed
3543 		 * simultaneously, any guest page table changes are not
3544 		 * guaranteed to be visible anyway until this VCPU issues a TLB
3545 		 * flush strictly after those changes are made. We only need to
3546 		 * ensure that the other CPU sets these flags before any actual
3547 		 * changes to the page tables are made. The comments in
3548 		 * mmu_try_to_unsync_pages() describe what could go wrong if
3549 		 * this requirement isn't satisfied.
3550 		 */
3551 		if (!smp_load_acquire(&sp->unsync) &&
3552 		    !smp_load_acquire(&sp->unsync_children))
3553 			return;
3554 
3555 		write_lock(&vcpu->kvm->mmu_lock);
3556 		kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3557 
3558 		mmu_sync_children(vcpu, sp);
3559 
3560 		kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3561 		write_unlock(&vcpu->kvm->mmu_lock);
3562 		return;
3563 	}
3564 
3565 	write_lock(&vcpu->kvm->mmu_lock);
3566 	kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3567 
3568 	for (i = 0; i < 4; ++i) {
3569 		hpa_t root = vcpu->arch.mmu->pae_root[i];
3570 
3571 		if (IS_VALID_PAE_ROOT(root)) {
3572 			root &= PT64_BASE_ADDR_MASK;
3573 			sp = to_shadow_page(root);
3574 			mmu_sync_children(vcpu, sp);
3575 		}
3576 	}
3577 
3578 	kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3579 	write_unlock(&vcpu->kvm->mmu_lock);
3580 }
3581 
3582 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gpa_t vaddr,
3583 				  u32 access, struct x86_exception *exception)
3584 {
3585 	if (exception)
3586 		exception->error_code = 0;
3587 	return vaddr;
3588 }
3589 
3590 static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gpa_t vaddr,
3591 					 u32 access,
3592 					 struct x86_exception *exception)
3593 {
3594 	if (exception)
3595 		exception->error_code = 0;
3596 	return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception);
3597 }
3598 
3599 static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3600 {
3601 	/*
3602 	 * A nested guest cannot use the MMIO cache if it is using nested
3603 	 * page tables, because cr2 is a nGPA while the cache stores GPAs.
3604 	 */
3605 	if (mmu_is_nested(vcpu))
3606 		return false;
3607 
3608 	if (direct)
3609 		return vcpu_match_mmio_gpa(vcpu, addr);
3610 
3611 	return vcpu_match_mmio_gva(vcpu, addr);
3612 }
3613 
3614 /*
3615  * Return the level of the lowest level SPTE added to sptes.
3616  * That SPTE may be non-present.
3617  */
3618 static int get_walk(struct kvm_vcpu *vcpu, u64 addr, u64 *sptes, int *root_level)
3619 {
3620 	struct kvm_shadow_walk_iterator iterator;
3621 	int leaf = -1;
3622 	u64 spte;
3623 
3624 	walk_shadow_page_lockless_begin(vcpu);
3625 
3626 	for (shadow_walk_init(&iterator, vcpu, addr),
3627 	     *root_level = iterator.level;
3628 	     shadow_walk_okay(&iterator);
3629 	     __shadow_walk_next(&iterator, spte)) {
3630 		leaf = iterator.level;
3631 		spte = mmu_spte_get_lockless(iterator.sptep);
3632 
3633 		sptes[leaf] = spte;
3634 
3635 		if (!is_shadow_present_pte(spte))
3636 			break;
3637 	}
3638 
3639 	walk_shadow_page_lockless_end(vcpu);
3640 
3641 	return leaf;
3642 }
3643 
3644 /* return true if reserved bit(s) are detected on a valid, non-MMIO SPTE. */
3645 static bool get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep)
3646 {
3647 	u64 sptes[PT64_ROOT_MAX_LEVEL + 1];
3648 	struct rsvd_bits_validate *rsvd_check;
3649 	int root, leaf, level;
3650 	bool reserved = false;
3651 
3652 	if (is_tdp_mmu(vcpu->arch.mmu))
3653 		leaf = kvm_tdp_mmu_get_walk(vcpu, addr, sptes, &root);
3654 	else
3655 		leaf = get_walk(vcpu, addr, sptes, &root);
3656 
3657 	if (unlikely(leaf < 0)) {
3658 		*sptep = 0ull;
3659 		return reserved;
3660 	}
3661 
3662 	*sptep = sptes[leaf];
3663 
3664 	/*
3665 	 * Skip reserved bits checks on the terminal leaf if it's not a valid
3666 	 * SPTE.  Note, this also (intentionally) skips MMIO SPTEs, which, by
3667 	 * design, always have reserved bits set.  The purpose of the checks is
3668 	 * to detect reserved bits on non-MMIO SPTEs. i.e. buggy SPTEs.
3669 	 */
3670 	if (!is_shadow_present_pte(sptes[leaf]))
3671 		leaf++;
3672 
3673 	rsvd_check = &vcpu->arch.mmu->shadow_zero_check;
3674 
3675 	for (level = root; level >= leaf; level--)
3676 		reserved |= is_rsvd_spte(rsvd_check, sptes[level], level);
3677 
3678 	if (reserved) {
3679 		pr_err("%s: reserved bits set on MMU-present spte, addr 0x%llx, hierarchy:\n",
3680 		       __func__, addr);
3681 		for (level = root; level >= leaf; level--)
3682 			pr_err("------ spte = 0x%llx level = %d, rsvd bits = 0x%llx",
3683 			       sptes[level], level,
3684 			       get_rsvd_bits(rsvd_check, sptes[level], level));
3685 	}
3686 
3687 	return reserved;
3688 }
3689 
3690 static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3691 {
3692 	u64 spte;
3693 	bool reserved;
3694 
3695 	if (mmio_info_in_cache(vcpu, addr, direct))
3696 		return RET_PF_EMULATE;
3697 
3698 	reserved = get_mmio_spte(vcpu, addr, &spte);
3699 	if (WARN_ON(reserved))
3700 		return -EINVAL;
3701 
3702 	if (is_mmio_spte(spte)) {
3703 		gfn_t gfn = get_mmio_spte_gfn(spte);
3704 		unsigned int access = get_mmio_spte_access(spte);
3705 
3706 		if (!check_mmio_spte(vcpu, spte))
3707 			return RET_PF_INVALID;
3708 
3709 		if (direct)
3710 			addr = 0;
3711 
3712 		trace_handle_mmio_page_fault(addr, gfn, access);
3713 		vcpu_cache_mmio_info(vcpu, addr, gfn, access);
3714 		return RET_PF_EMULATE;
3715 	}
3716 
3717 	/*
3718 	 * If the page table is zapped by other cpus, let CPU fault again on
3719 	 * the address.
3720 	 */
3721 	return RET_PF_RETRY;
3722 }
3723 
3724 static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu,
3725 					 u32 error_code, gfn_t gfn)
3726 {
3727 	if (unlikely(error_code & PFERR_RSVD_MASK))
3728 		return false;
3729 
3730 	if (!(error_code & PFERR_PRESENT_MASK) ||
3731 	      !(error_code & PFERR_WRITE_MASK))
3732 		return false;
3733 
3734 	/*
3735 	 * guest is writing the page which is write tracked which can
3736 	 * not be fixed by page fault handler.
3737 	 */
3738 	if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
3739 		return true;
3740 
3741 	return false;
3742 }
3743 
3744 static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr)
3745 {
3746 	struct kvm_shadow_walk_iterator iterator;
3747 	u64 spte;
3748 
3749 	walk_shadow_page_lockless_begin(vcpu);
3750 	for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
3751 		clear_sp_write_flooding_count(iterator.sptep);
3752 		if (!is_shadow_present_pte(spte))
3753 			break;
3754 	}
3755 	walk_shadow_page_lockless_end(vcpu);
3756 }
3757 
3758 static bool kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
3759 				    gfn_t gfn)
3760 {
3761 	struct kvm_arch_async_pf arch;
3762 
3763 	arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
3764 	arch.gfn = gfn;
3765 	arch.direct_map = vcpu->arch.mmu->direct_map;
3766 	arch.cr3 = vcpu->arch.mmu->get_guest_pgd(vcpu);
3767 
3768 	return kvm_setup_async_pf(vcpu, cr2_or_gpa,
3769 				  kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch);
3770 }
3771 
3772 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
3773 			 gpa_t cr2_or_gpa, kvm_pfn_t *pfn, hva_t *hva,
3774 			 bool write, bool *writable)
3775 {
3776 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3777 	bool async;
3778 
3779 	/*
3780 	 * Retry the page fault if the gfn hit a memslot that is being deleted
3781 	 * or moved.  This ensures any existing SPTEs for the old memslot will
3782 	 * be zapped before KVM inserts a new MMIO SPTE for the gfn.
3783 	 */
3784 	if (slot && (slot->flags & KVM_MEMSLOT_INVALID))
3785 		return true;
3786 
3787 	/* Don't expose private memslots to L2. */
3788 	if (is_guest_mode(vcpu) && !kvm_is_visible_memslot(slot)) {
3789 		*pfn = KVM_PFN_NOSLOT;
3790 		*writable = false;
3791 		return false;
3792 	}
3793 
3794 	async = false;
3795 	*pfn = __gfn_to_pfn_memslot(slot, gfn, false, &async,
3796 				    write, writable, hva);
3797 	if (!async)
3798 		return false; /* *pfn has correct page already */
3799 
3800 	if (!prefault && kvm_can_do_async_pf(vcpu)) {
3801 		trace_kvm_try_async_get_page(cr2_or_gpa, gfn);
3802 		if (kvm_find_async_pf_gfn(vcpu, gfn)) {
3803 			trace_kvm_async_pf_doublefault(cr2_or_gpa, gfn);
3804 			kvm_make_request(KVM_REQ_APF_HALT, vcpu);
3805 			return true;
3806 		} else if (kvm_arch_setup_async_pf(vcpu, cr2_or_gpa, gfn))
3807 			return true;
3808 	}
3809 
3810 	*pfn = __gfn_to_pfn_memslot(slot, gfn, false, NULL,
3811 				    write, writable, hva);
3812 	return false;
3813 }
3814 
3815 static int direct_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
3816 			     bool prefault, int max_level, bool is_tdp)
3817 {
3818 	bool is_tdp_mmu_fault = is_tdp_mmu(vcpu->arch.mmu);
3819 	bool write = error_code & PFERR_WRITE_MASK;
3820 	bool map_writable;
3821 
3822 	gfn_t gfn = gpa >> PAGE_SHIFT;
3823 	unsigned long mmu_seq;
3824 	kvm_pfn_t pfn;
3825 	hva_t hva;
3826 	int r;
3827 
3828 	if (page_fault_handle_page_track(vcpu, error_code, gfn))
3829 		return RET_PF_EMULATE;
3830 
3831 	if (!is_tdp_mmu_fault) {
3832 		r = fast_page_fault(vcpu, gpa, error_code);
3833 		if (r != RET_PF_INVALID)
3834 			return r;
3835 	}
3836 
3837 	r = mmu_topup_memory_caches(vcpu, false);
3838 	if (r)
3839 		return r;
3840 
3841 	mmu_seq = vcpu->kvm->mmu_notifier_seq;
3842 	smp_rmb();
3843 
3844 	if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, &hva,
3845 			 write, &map_writable))
3846 		return RET_PF_RETRY;
3847 
3848 	if (handle_abnormal_pfn(vcpu, is_tdp ? 0 : gpa, gfn, pfn, ACC_ALL, &r))
3849 		return r;
3850 
3851 	r = RET_PF_RETRY;
3852 
3853 	if (is_tdp_mmu_fault)
3854 		read_lock(&vcpu->kvm->mmu_lock);
3855 	else
3856 		write_lock(&vcpu->kvm->mmu_lock);
3857 
3858 	if (!is_noslot_pfn(pfn) && mmu_notifier_retry_hva(vcpu->kvm, mmu_seq, hva))
3859 		goto out_unlock;
3860 	r = make_mmu_pages_available(vcpu);
3861 	if (r)
3862 		goto out_unlock;
3863 
3864 	if (is_tdp_mmu_fault)
3865 		r = kvm_tdp_mmu_map(vcpu, gpa, error_code, map_writable, max_level,
3866 				    pfn, prefault);
3867 	else
3868 		r = __direct_map(vcpu, gpa, error_code, map_writable, max_level, pfn,
3869 				 prefault, is_tdp);
3870 
3871 out_unlock:
3872 	if (is_tdp_mmu_fault)
3873 		read_unlock(&vcpu->kvm->mmu_lock);
3874 	else
3875 		write_unlock(&vcpu->kvm->mmu_lock);
3876 	kvm_release_pfn_clean(pfn);
3877 	return r;
3878 }
3879 
3880 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa,
3881 				u32 error_code, bool prefault)
3882 {
3883 	pgprintk("%s: gva %lx error %x\n", __func__, gpa, error_code);
3884 
3885 	/* This path builds a PAE pagetable, we can map 2mb pages at maximum. */
3886 	return direct_page_fault(vcpu, gpa & PAGE_MASK, error_code, prefault,
3887 				 PG_LEVEL_2M, false);
3888 }
3889 
3890 int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code,
3891 				u64 fault_address, char *insn, int insn_len)
3892 {
3893 	int r = 1;
3894 	u32 flags = vcpu->arch.apf.host_apf_flags;
3895 
3896 #ifndef CONFIG_X86_64
3897 	/* A 64-bit CR2 should be impossible on 32-bit KVM. */
3898 	if (WARN_ON_ONCE(fault_address >> 32))
3899 		return -EFAULT;
3900 #endif
3901 
3902 	vcpu->arch.l1tf_flush_l1d = true;
3903 	if (!flags) {
3904 		trace_kvm_page_fault(fault_address, error_code);
3905 
3906 		if (kvm_event_needs_reinjection(vcpu))
3907 			kvm_mmu_unprotect_page_virt(vcpu, fault_address);
3908 		r = kvm_mmu_page_fault(vcpu, fault_address, error_code, insn,
3909 				insn_len);
3910 	} else if (flags & KVM_PV_REASON_PAGE_NOT_PRESENT) {
3911 		vcpu->arch.apf.host_apf_flags = 0;
3912 		local_irq_disable();
3913 		kvm_async_pf_task_wait_schedule(fault_address);
3914 		local_irq_enable();
3915 	} else {
3916 		WARN_ONCE(1, "Unexpected host async PF flags: %x\n", flags);
3917 	}
3918 
3919 	return r;
3920 }
3921 EXPORT_SYMBOL_GPL(kvm_handle_page_fault);
3922 
3923 int kvm_tdp_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
3924 		       bool prefault)
3925 {
3926 	int max_level;
3927 
3928 	for (max_level = KVM_MAX_HUGEPAGE_LEVEL;
3929 	     max_level > PG_LEVEL_4K;
3930 	     max_level--) {
3931 		int page_num = KVM_PAGES_PER_HPAGE(max_level);
3932 		gfn_t base = (gpa >> PAGE_SHIFT) & ~(page_num - 1);
3933 
3934 		if (kvm_mtrr_check_gfn_range_consistency(vcpu, base, page_num))
3935 			break;
3936 	}
3937 
3938 	return direct_page_fault(vcpu, gpa, error_code, prefault,
3939 				 max_level, true);
3940 }
3941 
3942 static void nonpaging_init_context(struct kvm_mmu *context)
3943 {
3944 	context->page_fault = nonpaging_page_fault;
3945 	context->gva_to_gpa = nonpaging_gva_to_gpa;
3946 	context->sync_page = nonpaging_sync_page;
3947 	context->invlpg = NULL;
3948 	context->direct_map = true;
3949 }
3950 
3951 static inline bool is_root_usable(struct kvm_mmu_root_info *root, gpa_t pgd,
3952 				  union kvm_mmu_page_role role)
3953 {
3954 	return (role.direct || pgd == root->pgd) &&
3955 	       VALID_PAGE(root->hpa) && to_shadow_page(root->hpa) &&
3956 	       role.word == to_shadow_page(root->hpa)->role.word;
3957 }
3958 
3959 /*
3960  * Find out if a previously cached root matching the new pgd/role is available.
3961  * The current root is also inserted into the cache.
3962  * If a matching root was found, it is assigned to kvm_mmu->root_hpa and true is
3963  * returned.
3964  * Otherwise, the LRU root from the cache is assigned to kvm_mmu->root_hpa and
3965  * false is returned. This root should now be freed by the caller.
3966  */
3967 static bool cached_root_available(struct kvm_vcpu *vcpu, gpa_t new_pgd,
3968 				  union kvm_mmu_page_role new_role)
3969 {
3970 	uint i;
3971 	struct kvm_mmu_root_info root;
3972 	struct kvm_mmu *mmu = vcpu->arch.mmu;
3973 
3974 	root.pgd = mmu->root_pgd;
3975 	root.hpa = mmu->root_hpa;
3976 
3977 	if (is_root_usable(&root, new_pgd, new_role))
3978 		return true;
3979 
3980 	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
3981 		swap(root, mmu->prev_roots[i]);
3982 
3983 		if (is_root_usable(&root, new_pgd, new_role))
3984 			break;
3985 	}
3986 
3987 	mmu->root_hpa = root.hpa;
3988 	mmu->root_pgd = root.pgd;
3989 
3990 	return i < KVM_MMU_NUM_PREV_ROOTS;
3991 }
3992 
3993 static bool fast_pgd_switch(struct kvm_vcpu *vcpu, gpa_t new_pgd,
3994 			    union kvm_mmu_page_role new_role)
3995 {
3996 	struct kvm_mmu *mmu = vcpu->arch.mmu;
3997 
3998 	/*
3999 	 * For now, limit the fast switch to 64-bit hosts+VMs in order to avoid
4000 	 * having to deal with PDPTEs. We may add support for 32-bit hosts/VMs
4001 	 * later if necessary.
4002 	 */
4003 	if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
4004 	    mmu->root_level >= PT64_ROOT_4LEVEL)
4005 		return cached_root_available(vcpu, new_pgd, new_role);
4006 
4007 	return false;
4008 }
4009 
4010 static void __kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd,
4011 			      union kvm_mmu_page_role new_role)
4012 {
4013 	if (!fast_pgd_switch(vcpu, new_pgd, new_role)) {
4014 		kvm_mmu_free_roots(vcpu, vcpu->arch.mmu, KVM_MMU_ROOT_CURRENT);
4015 		return;
4016 	}
4017 
4018 	/*
4019 	 * It's possible that the cached previous root page is obsolete because
4020 	 * of a change in the MMU generation number. However, changing the
4021 	 * generation number is accompanied by KVM_REQ_MMU_RELOAD, which will
4022 	 * free the root set here and allocate a new one.
4023 	 */
4024 	kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu);
4025 
4026 	if (force_flush_and_sync_on_reuse) {
4027 		kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
4028 		kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
4029 	}
4030 
4031 	/*
4032 	 * The last MMIO access's GVA and GPA are cached in the VCPU. When
4033 	 * switching to a new CR3, that GVA->GPA mapping may no longer be
4034 	 * valid. So clear any cached MMIO info even when we don't need to sync
4035 	 * the shadow page tables.
4036 	 */
4037 	vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
4038 
4039 	/*
4040 	 * If this is a direct root page, it doesn't have a write flooding
4041 	 * count. Otherwise, clear the write flooding count.
4042 	 */
4043 	if (!new_role.direct)
4044 		__clear_sp_write_flooding_count(
4045 				to_shadow_page(vcpu->arch.mmu->root_hpa));
4046 }
4047 
4048 void kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd)
4049 {
4050 	__kvm_mmu_new_pgd(vcpu, new_pgd, kvm_mmu_calc_root_page_role(vcpu));
4051 }
4052 EXPORT_SYMBOL_GPL(kvm_mmu_new_pgd);
4053 
4054 static unsigned long get_cr3(struct kvm_vcpu *vcpu)
4055 {
4056 	return kvm_read_cr3(vcpu);
4057 }
4058 
4059 static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
4060 			   unsigned int access, int *nr_present)
4061 {
4062 	if (unlikely(is_mmio_spte(*sptep))) {
4063 		if (gfn != get_mmio_spte_gfn(*sptep)) {
4064 			mmu_spte_clear_no_track(sptep);
4065 			return true;
4066 		}
4067 
4068 		(*nr_present)++;
4069 		mark_mmio_spte(vcpu, sptep, gfn, access);
4070 		return true;
4071 	}
4072 
4073 	return false;
4074 }
4075 
4076 #define PTTYPE_EPT 18 /* arbitrary */
4077 #define PTTYPE PTTYPE_EPT
4078 #include "paging_tmpl.h"
4079 #undef PTTYPE
4080 
4081 #define PTTYPE 64
4082 #include "paging_tmpl.h"
4083 #undef PTTYPE
4084 
4085 #define PTTYPE 32
4086 #include "paging_tmpl.h"
4087 #undef PTTYPE
4088 
4089 static void
4090 __reset_rsvds_bits_mask(struct rsvd_bits_validate *rsvd_check,
4091 			u64 pa_bits_rsvd, int level, bool nx, bool gbpages,
4092 			bool pse, bool amd)
4093 {
4094 	u64 gbpages_bit_rsvd = 0;
4095 	u64 nonleaf_bit8_rsvd = 0;
4096 	u64 high_bits_rsvd;
4097 
4098 	rsvd_check->bad_mt_xwr = 0;
4099 
4100 	if (!gbpages)
4101 		gbpages_bit_rsvd = rsvd_bits(7, 7);
4102 
4103 	if (level == PT32E_ROOT_LEVEL)
4104 		high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 62);
4105 	else
4106 		high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 51);
4107 
4108 	/* Note, NX doesn't exist in PDPTEs, this is handled below. */
4109 	if (!nx)
4110 		high_bits_rsvd |= rsvd_bits(63, 63);
4111 
4112 	/*
4113 	 * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
4114 	 * leaf entries) on AMD CPUs only.
4115 	 */
4116 	if (amd)
4117 		nonleaf_bit8_rsvd = rsvd_bits(8, 8);
4118 
4119 	switch (level) {
4120 	case PT32_ROOT_LEVEL:
4121 		/* no rsvd bits for 2 level 4K page table entries */
4122 		rsvd_check->rsvd_bits_mask[0][1] = 0;
4123 		rsvd_check->rsvd_bits_mask[0][0] = 0;
4124 		rsvd_check->rsvd_bits_mask[1][0] =
4125 			rsvd_check->rsvd_bits_mask[0][0];
4126 
4127 		if (!pse) {
4128 			rsvd_check->rsvd_bits_mask[1][1] = 0;
4129 			break;
4130 		}
4131 
4132 		if (is_cpuid_PSE36())
4133 			/* 36bits PSE 4MB page */
4134 			rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
4135 		else
4136 			/* 32 bits PSE 4MB page */
4137 			rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
4138 		break;
4139 	case PT32E_ROOT_LEVEL:
4140 		rsvd_check->rsvd_bits_mask[0][2] = rsvd_bits(63, 63) |
4141 						   high_bits_rsvd |
4142 						   rsvd_bits(5, 8) |
4143 						   rsvd_bits(1, 2);	/* PDPTE */
4144 		rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd;	/* PDE */
4145 		rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd;	/* PTE */
4146 		rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd |
4147 						   rsvd_bits(13, 20);	/* large page */
4148 		rsvd_check->rsvd_bits_mask[1][0] =
4149 			rsvd_check->rsvd_bits_mask[0][0];
4150 		break;
4151 	case PT64_ROOT_5LEVEL:
4152 		rsvd_check->rsvd_bits_mask[0][4] = high_bits_rsvd |
4153 						   nonleaf_bit8_rsvd |
4154 						   rsvd_bits(7, 7);
4155 		rsvd_check->rsvd_bits_mask[1][4] =
4156 			rsvd_check->rsvd_bits_mask[0][4];
4157 		fallthrough;
4158 	case PT64_ROOT_4LEVEL:
4159 		rsvd_check->rsvd_bits_mask[0][3] = high_bits_rsvd |
4160 						   nonleaf_bit8_rsvd |
4161 						   rsvd_bits(7, 7);
4162 		rsvd_check->rsvd_bits_mask[0][2] = high_bits_rsvd |
4163 						   gbpages_bit_rsvd;
4164 		rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd;
4165 		rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd;
4166 		rsvd_check->rsvd_bits_mask[1][3] =
4167 			rsvd_check->rsvd_bits_mask[0][3];
4168 		rsvd_check->rsvd_bits_mask[1][2] = high_bits_rsvd |
4169 						   gbpages_bit_rsvd |
4170 						   rsvd_bits(13, 29);
4171 		rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd |
4172 						   rsvd_bits(13, 20); /* large page */
4173 		rsvd_check->rsvd_bits_mask[1][0] =
4174 			rsvd_check->rsvd_bits_mask[0][0];
4175 		break;
4176 	}
4177 }
4178 
4179 static bool guest_can_use_gbpages(struct kvm_vcpu *vcpu)
4180 {
4181 	/*
4182 	 * If TDP is enabled, let the guest use GBPAGES if they're supported in
4183 	 * hardware.  The hardware page walker doesn't let KVM disable GBPAGES,
4184 	 * i.e. won't treat them as reserved, and KVM doesn't redo the GVA->GPA
4185 	 * walk for performance and complexity reasons.  Not to mention KVM
4186 	 * _can't_ solve the problem because GVA->GPA walks aren't visible to
4187 	 * KVM once a TDP translation is installed.  Mimic hardware behavior so
4188 	 * that KVM's is at least consistent, i.e. doesn't randomly inject #PF.
4189 	 */
4190 	return tdp_enabled ? boot_cpu_has(X86_FEATURE_GBPAGES) :
4191 			     guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES);
4192 }
4193 
4194 static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
4195 				  struct kvm_mmu *context)
4196 {
4197 	__reset_rsvds_bits_mask(&context->guest_rsvd_check,
4198 				vcpu->arch.reserved_gpa_bits,
4199 				context->root_level, is_efer_nx(context),
4200 				guest_can_use_gbpages(vcpu),
4201 				is_cr4_pse(context),
4202 				guest_cpuid_is_amd_or_hygon(vcpu));
4203 }
4204 
4205 static void
4206 __reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check,
4207 			    u64 pa_bits_rsvd, bool execonly)
4208 {
4209 	u64 high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 51);
4210 	u64 bad_mt_xwr;
4211 
4212 	rsvd_check->rsvd_bits_mask[0][4] = high_bits_rsvd | rsvd_bits(3, 7);
4213 	rsvd_check->rsvd_bits_mask[0][3] = high_bits_rsvd | rsvd_bits(3, 7);
4214 	rsvd_check->rsvd_bits_mask[0][2] = high_bits_rsvd | rsvd_bits(3, 6);
4215 	rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd | rsvd_bits(3, 6);
4216 	rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd;
4217 
4218 	/* large page */
4219 	rsvd_check->rsvd_bits_mask[1][4] = rsvd_check->rsvd_bits_mask[0][4];
4220 	rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3];
4221 	rsvd_check->rsvd_bits_mask[1][2] = high_bits_rsvd | rsvd_bits(12, 29);
4222 	rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd | rsvd_bits(12, 20);
4223 	rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0];
4224 
4225 	bad_mt_xwr = 0xFFull << (2 * 8);	/* bits 3..5 must not be 2 */
4226 	bad_mt_xwr |= 0xFFull << (3 * 8);	/* bits 3..5 must not be 3 */
4227 	bad_mt_xwr |= 0xFFull << (7 * 8);	/* bits 3..5 must not be 7 */
4228 	bad_mt_xwr |= REPEAT_BYTE(1ull << 2);	/* bits 0..2 must not be 010 */
4229 	bad_mt_xwr |= REPEAT_BYTE(1ull << 6);	/* bits 0..2 must not be 110 */
4230 	if (!execonly) {
4231 		/* bits 0..2 must not be 100 unless VMX capabilities allow it */
4232 		bad_mt_xwr |= REPEAT_BYTE(1ull << 4);
4233 	}
4234 	rsvd_check->bad_mt_xwr = bad_mt_xwr;
4235 }
4236 
4237 static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
4238 		struct kvm_mmu *context, bool execonly)
4239 {
4240 	__reset_rsvds_bits_mask_ept(&context->guest_rsvd_check,
4241 				    vcpu->arch.reserved_gpa_bits, execonly);
4242 }
4243 
4244 static inline u64 reserved_hpa_bits(void)
4245 {
4246 	return rsvd_bits(shadow_phys_bits, 63);
4247 }
4248 
4249 /*
4250  * the page table on host is the shadow page table for the page
4251  * table in guest or amd nested guest, its mmu features completely
4252  * follow the features in guest.
4253  */
4254 static void reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4255 					struct kvm_mmu *context)
4256 {
4257 	/*
4258 	 * KVM uses NX when TDP is disabled to handle a variety of scenarios,
4259 	 * notably for huge SPTEs if iTLB multi-hit mitigation is enabled and
4260 	 * to generate correct permissions for CR0.WP=0/CR4.SMEP=1/EFER.NX=0.
4261 	 * The iTLB multi-hit workaround can be toggled at any time, so assume
4262 	 * NX can be used by any non-nested shadow MMU to avoid having to reset
4263 	 * MMU contexts.  Note, KVM forces EFER.NX=1 when TDP is disabled.
4264 	 */
4265 	bool uses_nx = is_efer_nx(context) || !tdp_enabled;
4266 
4267 	/* @amd adds a check on bit of SPTEs, which KVM shouldn't use anyways. */
4268 	bool is_amd = true;
4269 	/* KVM doesn't use 2-level page tables for the shadow MMU. */
4270 	bool is_pse = false;
4271 	struct rsvd_bits_validate *shadow_zero_check;
4272 	int i;
4273 
4274 	WARN_ON_ONCE(context->shadow_root_level < PT32E_ROOT_LEVEL);
4275 
4276 	shadow_zero_check = &context->shadow_zero_check;
4277 	__reset_rsvds_bits_mask(shadow_zero_check, reserved_hpa_bits(),
4278 				context->shadow_root_level, uses_nx,
4279 				guest_can_use_gbpages(vcpu), is_pse, is_amd);
4280 
4281 	if (!shadow_me_mask)
4282 		return;
4283 
4284 	for (i = context->shadow_root_level; --i >= 0;) {
4285 		shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
4286 		shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
4287 	}
4288 
4289 }
4290 
4291 static inline bool boot_cpu_is_amd(void)
4292 {
4293 	WARN_ON_ONCE(!tdp_enabled);
4294 	return shadow_x_mask == 0;
4295 }
4296 
4297 /*
4298  * the direct page table on host, use as much mmu features as
4299  * possible, however, kvm currently does not do execution-protection.
4300  */
4301 static void
4302 reset_tdp_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4303 				struct kvm_mmu *context)
4304 {
4305 	struct rsvd_bits_validate *shadow_zero_check;
4306 	int i;
4307 
4308 	shadow_zero_check = &context->shadow_zero_check;
4309 
4310 	if (boot_cpu_is_amd())
4311 		__reset_rsvds_bits_mask(shadow_zero_check, reserved_hpa_bits(),
4312 					context->shadow_root_level, false,
4313 					boot_cpu_has(X86_FEATURE_GBPAGES),
4314 					false, true);
4315 	else
4316 		__reset_rsvds_bits_mask_ept(shadow_zero_check,
4317 					    reserved_hpa_bits(), false);
4318 
4319 	if (!shadow_me_mask)
4320 		return;
4321 
4322 	for (i = context->shadow_root_level; --i >= 0;) {
4323 		shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
4324 		shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
4325 	}
4326 }
4327 
4328 /*
4329  * as the comments in reset_shadow_zero_bits_mask() except it
4330  * is the shadow page table for intel nested guest.
4331  */
4332 static void
4333 reset_ept_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4334 				struct kvm_mmu *context, bool execonly)
4335 {
4336 	__reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
4337 				    reserved_hpa_bits(), execonly);
4338 }
4339 
4340 #define BYTE_MASK(access) \
4341 	((1 & (access) ? 2 : 0) | \
4342 	 (2 & (access) ? 4 : 0) | \
4343 	 (3 & (access) ? 8 : 0) | \
4344 	 (4 & (access) ? 16 : 0) | \
4345 	 (5 & (access) ? 32 : 0) | \
4346 	 (6 & (access) ? 64 : 0) | \
4347 	 (7 & (access) ? 128 : 0))
4348 
4349 
4350 static void update_permission_bitmask(struct kvm_mmu *mmu, bool ept)
4351 {
4352 	unsigned byte;
4353 
4354 	const u8 x = BYTE_MASK(ACC_EXEC_MASK);
4355 	const u8 w = BYTE_MASK(ACC_WRITE_MASK);
4356 	const u8 u = BYTE_MASK(ACC_USER_MASK);
4357 
4358 	bool cr4_smep = is_cr4_smep(mmu);
4359 	bool cr4_smap = is_cr4_smap(mmu);
4360 	bool cr0_wp = is_cr0_wp(mmu);
4361 	bool efer_nx = is_efer_nx(mmu);
4362 
4363 	for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
4364 		unsigned pfec = byte << 1;
4365 
4366 		/*
4367 		 * Each "*f" variable has a 1 bit for each UWX value
4368 		 * that causes a fault with the given PFEC.
4369 		 */
4370 
4371 		/* Faults from writes to non-writable pages */
4372 		u8 wf = (pfec & PFERR_WRITE_MASK) ? (u8)~w : 0;
4373 		/* Faults from user mode accesses to supervisor pages */
4374 		u8 uf = (pfec & PFERR_USER_MASK) ? (u8)~u : 0;
4375 		/* Faults from fetches of non-executable pages*/
4376 		u8 ff = (pfec & PFERR_FETCH_MASK) ? (u8)~x : 0;
4377 		/* Faults from kernel mode fetches of user pages */
4378 		u8 smepf = 0;
4379 		/* Faults from kernel mode accesses of user pages */
4380 		u8 smapf = 0;
4381 
4382 		if (!ept) {
4383 			/* Faults from kernel mode accesses to user pages */
4384 			u8 kf = (pfec & PFERR_USER_MASK) ? 0 : u;
4385 
4386 			/* Not really needed: !nx will cause pte.nx to fault */
4387 			if (!efer_nx)
4388 				ff = 0;
4389 
4390 			/* Allow supervisor writes if !cr0.wp */
4391 			if (!cr0_wp)
4392 				wf = (pfec & PFERR_USER_MASK) ? wf : 0;
4393 
4394 			/* Disallow supervisor fetches of user code if cr4.smep */
4395 			if (cr4_smep)
4396 				smepf = (pfec & PFERR_FETCH_MASK) ? kf : 0;
4397 
4398 			/*
4399 			 * SMAP:kernel-mode data accesses from user-mode
4400 			 * mappings should fault. A fault is considered
4401 			 * as a SMAP violation if all of the following
4402 			 * conditions are true:
4403 			 *   - X86_CR4_SMAP is set in CR4
4404 			 *   - A user page is accessed
4405 			 *   - The access is not a fetch
4406 			 *   - Page fault in kernel mode
4407 			 *   - if CPL = 3 or X86_EFLAGS_AC is clear
4408 			 *
4409 			 * Here, we cover the first three conditions.
4410 			 * The fourth is computed dynamically in permission_fault();
4411 			 * PFERR_RSVD_MASK bit will be set in PFEC if the access is
4412 			 * *not* subject to SMAP restrictions.
4413 			 */
4414 			if (cr4_smap)
4415 				smapf = (pfec & (PFERR_RSVD_MASK|PFERR_FETCH_MASK)) ? 0 : kf;
4416 		}
4417 
4418 		mmu->permissions[byte] = ff | uf | wf | smepf | smapf;
4419 	}
4420 }
4421 
4422 /*
4423 * PKU is an additional mechanism by which the paging controls access to
4424 * user-mode addresses based on the value in the PKRU register.  Protection
4425 * key violations are reported through a bit in the page fault error code.
4426 * Unlike other bits of the error code, the PK bit is not known at the
4427 * call site of e.g. gva_to_gpa; it must be computed directly in
4428 * permission_fault based on two bits of PKRU, on some machine state (CR4,
4429 * CR0, EFER, CPL), and on other bits of the error code and the page tables.
4430 *
4431 * In particular the following conditions come from the error code, the
4432 * page tables and the machine state:
4433 * - PK is always zero unless CR4.PKE=1 and EFER.LMA=1
4434 * - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch)
4435 * - PK is always zero if U=0 in the page tables
4436 * - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access.
4437 *
4438 * The PKRU bitmask caches the result of these four conditions.  The error
4439 * code (minus the P bit) and the page table's U bit form an index into the
4440 * PKRU bitmask.  Two bits of the PKRU bitmask are then extracted and ANDed
4441 * with the two bits of the PKRU register corresponding to the protection key.
4442 * For the first three conditions above the bits will be 00, thus masking
4443 * away both AD and WD.  For all reads or if the last condition holds, WD
4444 * only will be masked away.
4445 */
4446 static void update_pkru_bitmask(struct kvm_mmu *mmu)
4447 {
4448 	unsigned bit;
4449 	bool wp;
4450 
4451 	if (!is_cr4_pke(mmu)) {
4452 		mmu->pkru_mask = 0;
4453 		return;
4454 	}
4455 
4456 	wp = is_cr0_wp(mmu);
4457 
4458 	for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) {
4459 		unsigned pfec, pkey_bits;
4460 		bool check_pkey, check_write, ff, uf, wf, pte_user;
4461 
4462 		pfec = bit << 1;
4463 		ff = pfec & PFERR_FETCH_MASK;
4464 		uf = pfec & PFERR_USER_MASK;
4465 		wf = pfec & PFERR_WRITE_MASK;
4466 
4467 		/* PFEC.RSVD is replaced by ACC_USER_MASK. */
4468 		pte_user = pfec & PFERR_RSVD_MASK;
4469 
4470 		/*
4471 		 * Only need to check the access which is not an
4472 		 * instruction fetch and is to a user page.
4473 		 */
4474 		check_pkey = (!ff && pte_user);
4475 		/*
4476 		 * write access is controlled by PKRU if it is a
4477 		 * user access or CR0.WP = 1.
4478 		 */
4479 		check_write = check_pkey && wf && (uf || wp);
4480 
4481 		/* PKRU.AD stops both read and write access. */
4482 		pkey_bits = !!check_pkey;
4483 		/* PKRU.WD stops write access. */
4484 		pkey_bits |= (!!check_write) << 1;
4485 
4486 		mmu->pkru_mask |= (pkey_bits & 3) << pfec;
4487 	}
4488 }
4489 
4490 static void reset_guest_paging_metadata(struct kvm_vcpu *vcpu,
4491 					struct kvm_mmu *mmu)
4492 {
4493 	if (!is_cr0_pg(mmu))
4494 		return;
4495 
4496 	reset_rsvds_bits_mask(vcpu, mmu);
4497 	update_permission_bitmask(mmu, false);
4498 	update_pkru_bitmask(mmu);
4499 }
4500 
4501 static void paging64_init_context(struct kvm_mmu *context)
4502 {
4503 	context->page_fault = paging64_page_fault;
4504 	context->gva_to_gpa = paging64_gva_to_gpa;
4505 	context->sync_page = paging64_sync_page;
4506 	context->invlpg = paging64_invlpg;
4507 	context->direct_map = false;
4508 }
4509 
4510 static void paging32_init_context(struct kvm_mmu *context)
4511 {
4512 	context->page_fault = paging32_page_fault;
4513 	context->gva_to_gpa = paging32_gva_to_gpa;
4514 	context->sync_page = paging32_sync_page;
4515 	context->invlpg = paging32_invlpg;
4516 	context->direct_map = false;
4517 }
4518 
4519 static union kvm_mmu_extended_role kvm_calc_mmu_role_ext(struct kvm_vcpu *vcpu,
4520 							 struct kvm_mmu_role_regs *regs)
4521 {
4522 	union kvm_mmu_extended_role ext = {0};
4523 
4524 	if (____is_cr0_pg(regs)) {
4525 		ext.cr0_pg = 1;
4526 		ext.cr4_pae = ____is_cr4_pae(regs);
4527 		ext.cr4_smep = ____is_cr4_smep(regs);
4528 		ext.cr4_smap = ____is_cr4_smap(regs);
4529 		ext.cr4_pse = ____is_cr4_pse(regs);
4530 
4531 		/* PKEY and LA57 are active iff long mode is active. */
4532 		ext.cr4_pke = ____is_efer_lma(regs) && ____is_cr4_pke(regs);
4533 		ext.cr4_la57 = ____is_efer_lma(regs) && ____is_cr4_la57(regs);
4534 	}
4535 
4536 	ext.valid = 1;
4537 
4538 	return ext;
4539 }
4540 
4541 static union kvm_mmu_role kvm_calc_mmu_role_common(struct kvm_vcpu *vcpu,
4542 						   struct kvm_mmu_role_regs *regs,
4543 						   bool base_only)
4544 {
4545 	union kvm_mmu_role role = {0};
4546 
4547 	role.base.access = ACC_ALL;
4548 	if (____is_cr0_pg(regs)) {
4549 		role.base.efer_nx = ____is_efer_nx(regs);
4550 		role.base.cr0_wp = ____is_cr0_wp(regs);
4551 	}
4552 	role.base.smm = is_smm(vcpu);
4553 	role.base.guest_mode = is_guest_mode(vcpu);
4554 
4555 	if (base_only)
4556 		return role;
4557 
4558 	role.ext = kvm_calc_mmu_role_ext(vcpu, regs);
4559 
4560 	return role;
4561 }
4562 
4563 static inline int kvm_mmu_get_tdp_level(struct kvm_vcpu *vcpu)
4564 {
4565 	/* Use 5-level TDP if and only if it's useful/necessary. */
4566 	if (max_tdp_level == 5 && cpuid_maxphyaddr(vcpu) <= 48)
4567 		return 4;
4568 
4569 	return max_tdp_level;
4570 }
4571 
4572 static union kvm_mmu_role
4573 kvm_calc_tdp_mmu_root_page_role(struct kvm_vcpu *vcpu,
4574 				struct kvm_mmu_role_regs *regs, bool base_only)
4575 {
4576 	union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, regs, base_only);
4577 
4578 	role.base.ad_disabled = (shadow_accessed_mask == 0);
4579 	role.base.level = kvm_mmu_get_tdp_level(vcpu);
4580 	role.base.direct = true;
4581 	role.base.gpte_is_8_bytes = true;
4582 
4583 	return role;
4584 }
4585 
4586 static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
4587 {
4588 	struct kvm_mmu *context = &vcpu->arch.root_mmu;
4589 	struct kvm_mmu_role_regs regs = vcpu_to_role_regs(vcpu);
4590 	union kvm_mmu_role new_role =
4591 		kvm_calc_tdp_mmu_root_page_role(vcpu, &regs, false);
4592 
4593 	if (new_role.as_u64 == context->mmu_role.as_u64)
4594 		return;
4595 
4596 	context->mmu_role.as_u64 = new_role.as_u64;
4597 	context->page_fault = kvm_tdp_page_fault;
4598 	context->sync_page = nonpaging_sync_page;
4599 	context->invlpg = NULL;
4600 	context->shadow_root_level = kvm_mmu_get_tdp_level(vcpu);
4601 	context->direct_map = true;
4602 	context->get_guest_pgd = get_cr3;
4603 	context->get_pdptr = kvm_pdptr_read;
4604 	context->inject_page_fault = kvm_inject_page_fault;
4605 	context->root_level = role_regs_to_root_level(&regs);
4606 
4607 	if (!is_cr0_pg(context))
4608 		context->gva_to_gpa = nonpaging_gva_to_gpa;
4609 	else if (is_cr4_pae(context))
4610 		context->gva_to_gpa = paging64_gva_to_gpa;
4611 	else
4612 		context->gva_to_gpa = paging32_gva_to_gpa;
4613 
4614 	reset_guest_paging_metadata(vcpu, context);
4615 	reset_tdp_shadow_zero_bits_mask(vcpu, context);
4616 }
4617 
4618 static union kvm_mmu_role
4619 kvm_calc_shadow_root_page_role_common(struct kvm_vcpu *vcpu,
4620 				      struct kvm_mmu_role_regs *regs, bool base_only)
4621 {
4622 	union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, regs, base_only);
4623 
4624 	role.base.smep_andnot_wp = role.ext.cr4_smep && !____is_cr0_wp(regs);
4625 	role.base.smap_andnot_wp = role.ext.cr4_smap && !____is_cr0_wp(regs);
4626 	role.base.gpte_is_8_bytes = ____is_cr0_pg(regs) && ____is_cr4_pae(regs);
4627 
4628 	return role;
4629 }
4630 
4631 static union kvm_mmu_role
4632 kvm_calc_shadow_mmu_root_page_role(struct kvm_vcpu *vcpu,
4633 				   struct kvm_mmu_role_regs *regs, bool base_only)
4634 {
4635 	union kvm_mmu_role role =
4636 		kvm_calc_shadow_root_page_role_common(vcpu, regs, base_only);
4637 
4638 	role.base.direct = !____is_cr0_pg(regs);
4639 
4640 	if (!____is_efer_lma(regs))
4641 		role.base.level = PT32E_ROOT_LEVEL;
4642 	else if (____is_cr4_la57(regs))
4643 		role.base.level = PT64_ROOT_5LEVEL;
4644 	else
4645 		role.base.level = PT64_ROOT_4LEVEL;
4646 
4647 	return role;
4648 }
4649 
4650 static void shadow_mmu_init_context(struct kvm_vcpu *vcpu, struct kvm_mmu *context,
4651 				    struct kvm_mmu_role_regs *regs,
4652 				    union kvm_mmu_role new_role)
4653 {
4654 	if (new_role.as_u64 == context->mmu_role.as_u64)
4655 		return;
4656 
4657 	context->mmu_role.as_u64 = new_role.as_u64;
4658 
4659 	if (!is_cr0_pg(context))
4660 		nonpaging_init_context(context);
4661 	else if (is_cr4_pae(context))
4662 		paging64_init_context(context);
4663 	else
4664 		paging32_init_context(context);
4665 	context->root_level = role_regs_to_root_level(regs);
4666 
4667 	reset_guest_paging_metadata(vcpu, context);
4668 	context->shadow_root_level = new_role.base.level;
4669 
4670 	reset_shadow_zero_bits_mask(vcpu, context);
4671 }
4672 
4673 static void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu,
4674 				struct kvm_mmu_role_regs *regs)
4675 {
4676 	struct kvm_mmu *context = &vcpu->arch.root_mmu;
4677 	union kvm_mmu_role new_role =
4678 		kvm_calc_shadow_mmu_root_page_role(vcpu, regs, false);
4679 
4680 	shadow_mmu_init_context(vcpu, context, regs, new_role);
4681 }
4682 
4683 static union kvm_mmu_role
4684 kvm_calc_shadow_npt_root_page_role(struct kvm_vcpu *vcpu,
4685 				   struct kvm_mmu_role_regs *regs)
4686 {
4687 	union kvm_mmu_role role =
4688 		kvm_calc_shadow_root_page_role_common(vcpu, regs, false);
4689 
4690 	role.base.direct = false;
4691 	role.base.level = kvm_mmu_get_tdp_level(vcpu);
4692 
4693 	return role;
4694 }
4695 
4696 void kvm_init_shadow_npt_mmu(struct kvm_vcpu *vcpu, unsigned long cr0,
4697 			     unsigned long cr4, u64 efer, gpa_t nested_cr3)
4698 {
4699 	struct kvm_mmu *context = &vcpu->arch.guest_mmu;
4700 	struct kvm_mmu_role_regs regs = {
4701 		.cr0 = cr0,
4702 		.cr4 = cr4,
4703 		.efer = efer,
4704 	};
4705 	union kvm_mmu_role new_role;
4706 
4707 	new_role = kvm_calc_shadow_npt_root_page_role(vcpu, &regs);
4708 
4709 	__kvm_mmu_new_pgd(vcpu, nested_cr3, new_role.base);
4710 
4711 	shadow_mmu_init_context(vcpu, context, &regs, new_role);
4712 }
4713 EXPORT_SYMBOL_GPL(kvm_init_shadow_npt_mmu);
4714 
4715 static union kvm_mmu_role
4716 kvm_calc_shadow_ept_root_page_role(struct kvm_vcpu *vcpu, bool accessed_dirty,
4717 				   bool execonly, u8 level)
4718 {
4719 	union kvm_mmu_role role = {0};
4720 
4721 	/* SMM flag is inherited from root_mmu */
4722 	role.base.smm = vcpu->arch.root_mmu.mmu_role.base.smm;
4723 
4724 	role.base.level = level;
4725 	role.base.gpte_is_8_bytes = true;
4726 	role.base.direct = false;
4727 	role.base.ad_disabled = !accessed_dirty;
4728 	role.base.guest_mode = true;
4729 	role.base.access = ACC_ALL;
4730 
4731 	/* EPT, and thus nested EPT, does not consume CR0, CR4, nor EFER. */
4732 	role.ext.word = 0;
4733 	role.ext.execonly = execonly;
4734 	role.ext.valid = 1;
4735 
4736 	return role;
4737 }
4738 
4739 void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly,
4740 			     bool accessed_dirty, gpa_t new_eptp)
4741 {
4742 	struct kvm_mmu *context = &vcpu->arch.guest_mmu;
4743 	u8 level = vmx_eptp_page_walk_level(new_eptp);
4744 	union kvm_mmu_role new_role =
4745 		kvm_calc_shadow_ept_root_page_role(vcpu, accessed_dirty,
4746 						   execonly, level);
4747 
4748 	__kvm_mmu_new_pgd(vcpu, new_eptp, new_role.base);
4749 
4750 	if (new_role.as_u64 == context->mmu_role.as_u64)
4751 		return;
4752 
4753 	context->mmu_role.as_u64 = new_role.as_u64;
4754 
4755 	context->shadow_root_level = level;
4756 
4757 	context->ept_ad = accessed_dirty;
4758 	context->page_fault = ept_page_fault;
4759 	context->gva_to_gpa = ept_gva_to_gpa;
4760 	context->sync_page = ept_sync_page;
4761 	context->invlpg = ept_invlpg;
4762 	context->root_level = level;
4763 	context->direct_map = false;
4764 
4765 	update_permission_bitmask(context, true);
4766 	update_pkru_bitmask(context);
4767 	reset_rsvds_bits_mask_ept(vcpu, context, execonly);
4768 	reset_ept_shadow_zero_bits_mask(vcpu, context, execonly);
4769 }
4770 EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);
4771 
4772 static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
4773 {
4774 	struct kvm_mmu *context = &vcpu->arch.root_mmu;
4775 	struct kvm_mmu_role_regs regs = vcpu_to_role_regs(vcpu);
4776 
4777 	kvm_init_shadow_mmu(vcpu, &regs);
4778 
4779 	context->get_guest_pgd     = get_cr3;
4780 	context->get_pdptr         = kvm_pdptr_read;
4781 	context->inject_page_fault = kvm_inject_page_fault;
4782 }
4783 
4784 static union kvm_mmu_role
4785 kvm_calc_nested_mmu_role(struct kvm_vcpu *vcpu, struct kvm_mmu_role_regs *regs)
4786 {
4787 	union kvm_mmu_role role;
4788 
4789 	role = kvm_calc_shadow_root_page_role_common(vcpu, regs, false);
4790 
4791 	/*
4792 	 * Nested MMUs are used only for walking L2's gva->gpa, they never have
4793 	 * shadow pages of their own and so "direct" has no meaning.   Set it
4794 	 * to "true" to try to detect bogus usage of the nested MMU.
4795 	 */
4796 	role.base.direct = true;
4797 	role.base.level = role_regs_to_root_level(regs);
4798 	return role;
4799 }
4800 
4801 static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
4802 {
4803 	struct kvm_mmu_role_regs regs = vcpu_to_role_regs(vcpu);
4804 	union kvm_mmu_role new_role = kvm_calc_nested_mmu_role(vcpu, &regs);
4805 	struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
4806 
4807 	if (new_role.as_u64 == g_context->mmu_role.as_u64)
4808 		return;
4809 
4810 	g_context->mmu_role.as_u64 = new_role.as_u64;
4811 	g_context->get_guest_pgd     = get_cr3;
4812 	g_context->get_pdptr         = kvm_pdptr_read;
4813 	g_context->inject_page_fault = kvm_inject_page_fault;
4814 	g_context->root_level        = new_role.base.level;
4815 
4816 	/*
4817 	 * L2 page tables are never shadowed, so there is no need to sync
4818 	 * SPTEs.
4819 	 */
4820 	g_context->invlpg            = NULL;
4821 
4822 	/*
4823 	 * Note that arch.mmu->gva_to_gpa translates l2_gpa to l1_gpa using
4824 	 * L1's nested page tables (e.g. EPT12). The nested translation
4825 	 * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using
4826 	 * L2's page tables as the first level of translation and L1's
4827 	 * nested page tables as the second level of translation. Basically
4828 	 * the gva_to_gpa functions between mmu and nested_mmu are swapped.
4829 	 */
4830 	if (!is_paging(vcpu))
4831 		g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
4832 	else if (is_long_mode(vcpu))
4833 		g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4834 	else if (is_pae(vcpu))
4835 		g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4836 	else
4837 		g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
4838 
4839 	reset_guest_paging_metadata(vcpu, g_context);
4840 }
4841 
4842 void kvm_init_mmu(struct kvm_vcpu *vcpu)
4843 {
4844 	if (mmu_is_nested(vcpu))
4845 		init_kvm_nested_mmu(vcpu);
4846 	else if (tdp_enabled)
4847 		init_kvm_tdp_mmu(vcpu);
4848 	else
4849 		init_kvm_softmmu(vcpu);
4850 }
4851 EXPORT_SYMBOL_GPL(kvm_init_mmu);
4852 
4853 static union kvm_mmu_page_role
4854 kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu)
4855 {
4856 	struct kvm_mmu_role_regs regs = vcpu_to_role_regs(vcpu);
4857 	union kvm_mmu_role role;
4858 
4859 	if (tdp_enabled)
4860 		role = kvm_calc_tdp_mmu_root_page_role(vcpu, &regs, true);
4861 	else
4862 		role = kvm_calc_shadow_mmu_root_page_role(vcpu, &regs, true);
4863 
4864 	return role.base;
4865 }
4866 
4867 void kvm_mmu_after_set_cpuid(struct kvm_vcpu *vcpu)
4868 {
4869 	/*
4870 	 * Invalidate all MMU roles to force them to reinitialize as CPUID
4871 	 * information is factored into reserved bit calculations.
4872 	 */
4873 	vcpu->arch.root_mmu.mmu_role.ext.valid = 0;
4874 	vcpu->arch.guest_mmu.mmu_role.ext.valid = 0;
4875 	vcpu->arch.nested_mmu.mmu_role.ext.valid = 0;
4876 	kvm_mmu_reset_context(vcpu);
4877 
4878 	/*
4879 	 * KVM does not correctly handle changing guest CPUID after KVM_RUN, as
4880 	 * MAXPHYADDR, GBPAGES support, AMD reserved bit behavior, etc.. aren't
4881 	 * tracked in kvm_mmu_page_role.  As a result, KVM may miss guest page
4882 	 * faults due to reusing SPs/SPTEs.  Alert userspace, but otherwise
4883 	 * sweep the problem under the rug.
4884 	 *
4885 	 * KVM's horrific CPUID ABI makes the problem all but impossible to
4886 	 * solve, as correctly handling multiple vCPU models (with respect to
4887 	 * paging and physical address properties) in a single VM would require
4888 	 * tracking all relevant CPUID information in kvm_mmu_page_role.  That
4889 	 * is very undesirable as it would double the memory requirements for
4890 	 * gfn_track (see struct kvm_mmu_page_role comments), and in practice
4891 	 * no sane VMM mucks with the core vCPU model on the fly.
4892 	 */
4893 	if (vcpu->arch.last_vmentry_cpu != -1) {
4894 		pr_warn_ratelimited("KVM: KVM_SET_CPUID{,2} after KVM_RUN may cause guest instability\n");
4895 		pr_warn_ratelimited("KVM: KVM_SET_CPUID{,2} will fail after KVM_RUN starting with Linux 5.16\n");
4896 	}
4897 }
4898 
4899 void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
4900 {
4901 	kvm_mmu_unload(vcpu);
4902 	kvm_init_mmu(vcpu);
4903 }
4904 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
4905 
4906 int kvm_mmu_load(struct kvm_vcpu *vcpu)
4907 {
4908 	int r;
4909 
4910 	r = mmu_topup_memory_caches(vcpu, !vcpu->arch.mmu->direct_map);
4911 	if (r)
4912 		goto out;
4913 	r = mmu_alloc_special_roots(vcpu);
4914 	if (r)
4915 		goto out;
4916 	if (vcpu->arch.mmu->direct_map)
4917 		r = mmu_alloc_direct_roots(vcpu);
4918 	else
4919 		r = mmu_alloc_shadow_roots(vcpu);
4920 	if (r)
4921 		goto out;
4922 
4923 	kvm_mmu_sync_roots(vcpu);
4924 
4925 	kvm_mmu_load_pgd(vcpu);
4926 	static_call(kvm_x86_tlb_flush_current)(vcpu);
4927 out:
4928 	return r;
4929 }
4930 
4931 void kvm_mmu_unload(struct kvm_vcpu *vcpu)
4932 {
4933 	kvm_mmu_free_roots(vcpu, &vcpu->arch.root_mmu, KVM_MMU_ROOTS_ALL);
4934 	WARN_ON(VALID_PAGE(vcpu->arch.root_mmu.root_hpa));
4935 	kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
4936 	WARN_ON(VALID_PAGE(vcpu->arch.guest_mmu.root_hpa));
4937 }
4938 
4939 static bool need_remote_flush(u64 old, u64 new)
4940 {
4941 	if (!is_shadow_present_pte(old))
4942 		return false;
4943 	if (!is_shadow_present_pte(new))
4944 		return true;
4945 	if ((old ^ new) & PT64_BASE_ADDR_MASK)
4946 		return true;
4947 	old ^= shadow_nx_mask;
4948 	new ^= shadow_nx_mask;
4949 	return (old & ~new & PT64_PERM_MASK) != 0;
4950 }
4951 
4952 static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
4953 				    int *bytes)
4954 {
4955 	u64 gentry = 0;
4956 	int r;
4957 
4958 	/*
4959 	 * Assume that the pte write on a page table of the same type
4960 	 * as the current vcpu paging mode since we update the sptes only
4961 	 * when they have the same mode.
4962 	 */
4963 	if (is_pae(vcpu) && *bytes == 4) {
4964 		/* Handle a 32-bit guest writing two halves of a 64-bit gpte */
4965 		*gpa &= ~(gpa_t)7;
4966 		*bytes = 8;
4967 	}
4968 
4969 	if (*bytes == 4 || *bytes == 8) {
4970 		r = kvm_vcpu_read_guest_atomic(vcpu, *gpa, &gentry, *bytes);
4971 		if (r)
4972 			gentry = 0;
4973 	}
4974 
4975 	return gentry;
4976 }
4977 
4978 /*
4979  * If we're seeing too many writes to a page, it may no longer be a page table,
4980  * or we may be forking, in which case it is better to unmap the page.
4981  */
4982 static bool detect_write_flooding(struct kvm_mmu_page *sp)
4983 {
4984 	/*
4985 	 * Skip write-flooding detected for the sp whose level is 1, because
4986 	 * it can become unsync, then the guest page is not write-protected.
4987 	 */
4988 	if (sp->role.level == PG_LEVEL_4K)
4989 		return false;
4990 
4991 	atomic_inc(&sp->write_flooding_count);
4992 	return atomic_read(&sp->write_flooding_count) >= 3;
4993 }
4994 
4995 /*
4996  * Misaligned accesses are too much trouble to fix up; also, they usually
4997  * indicate a page is not used as a page table.
4998  */
4999 static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
5000 				    int bytes)
5001 {
5002 	unsigned offset, pte_size, misaligned;
5003 
5004 	pgprintk("misaligned: gpa %llx bytes %d role %x\n",
5005 		 gpa, bytes, sp->role.word);
5006 
5007 	offset = offset_in_page(gpa);
5008 	pte_size = sp->role.gpte_is_8_bytes ? 8 : 4;
5009 
5010 	/*
5011 	 * Sometimes, the OS only writes the last one bytes to update status
5012 	 * bits, for example, in linux, andb instruction is used in clear_bit().
5013 	 */
5014 	if (!(offset & (pte_size - 1)) && bytes == 1)
5015 		return false;
5016 
5017 	misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
5018 	misaligned |= bytes < 4;
5019 
5020 	return misaligned;
5021 }
5022 
5023 static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
5024 {
5025 	unsigned page_offset, quadrant;
5026 	u64 *spte;
5027 	int level;
5028 
5029 	page_offset = offset_in_page(gpa);
5030 	level = sp->role.level;
5031 	*nspte = 1;
5032 	if (!sp->role.gpte_is_8_bytes) {
5033 		page_offset <<= 1;	/* 32->64 */
5034 		/*
5035 		 * A 32-bit pde maps 4MB while the shadow pdes map
5036 		 * only 2MB.  So we need to double the offset again
5037 		 * and zap two pdes instead of one.
5038 		 */
5039 		if (level == PT32_ROOT_LEVEL) {
5040 			page_offset &= ~7; /* kill rounding error */
5041 			page_offset <<= 1;
5042 			*nspte = 2;
5043 		}
5044 		quadrant = page_offset >> PAGE_SHIFT;
5045 		page_offset &= ~PAGE_MASK;
5046 		if (quadrant != sp->role.quadrant)
5047 			return NULL;
5048 	}
5049 
5050 	spte = &sp->spt[page_offset / sizeof(*spte)];
5051 	return spte;
5052 }
5053 
5054 static void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
5055 			      const u8 *new, int bytes,
5056 			      struct kvm_page_track_notifier_node *node)
5057 {
5058 	gfn_t gfn = gpa >> PAGE_SHIFT;
5059 	struct kvm_mmu_page *sp;
5060 	LIST_HEAD(invalid_list);
5061 	u64 entry, gentry, *spte;
5062 	int npte;
5063 	bool remote_flush, local_flush;
5064 
5065 	/*
5066 	 * If we don't have indirect shadow pages, it means no page is
5067 	 * write-protected, so we can exit simply.
5068 	 */
5069 	if (!READ_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
5070 		return;
5071 
5072 	remote_flush = local_flush = false;
5073 
5074 	pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
5075 
5076 	/*
5077 	 * No need to care whether allocation memory is successful
5078 	 * or not since pte prefetch is skipped if it does not have
5079 	 * enough objects in the cache.
5080 	 */
5081 	mmu_topup_memory_caches(vcpu, true);
5082 
5083 	write_lock(&vcpu->kvm->mmu_lock);
5084 
5085 	gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, &bytes);
5086 
5087 	++vcpu->kvm->stat.mmu_pte_write;
5088 	kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
5089 
5090 	for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
5091 		if (detect_write_misaligned(sp, gpa, bytes) ||
5092 		      detect_write_flooding(sp)) {
5093 			kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
5094 			++vcpu->kvm->stat.mmu_flooded;
5095 			continue;
5096 		}
5097 
5098 		spte = get_written_sptes(sp, gpa, &npte);
5099 		if (!spte)
5100 			continue;
5101 
5102 		local_flush = true;
5103 		while (npte--) {
5104 			entry = *spte;
5105 			mmu_page_zap_pte(vcpu->kvm, sp, spte, NULL);
5106 			if (gentry && sp->role.level != PG_LEVEL_4K)
5107 				++vcpu->kvm->stat.mmu_pde_zapped;
5108 			if (need_remote_flush(entry, *spte))
5109 				remote_flush = true;
5110 			++spte;
5111 		}
5112 	}
5113 	kvm_mmu_flush_or_zap(vcpu, &invalid_list, remote_flush, local_flush);
5114 	kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
5115 	write_unlock(&vcpu->kvm->mmu_lock);
5116 }
5117 
5118 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 error_code,
5119 		       void *insn, int insn_len)
5120 {
5121 	int r, emulation_type = EMULTYPE_PF;
5122 	bool direct = vcpu->arch.mmu->direct_map;
5123 
5124 	if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa)))
5125 		return RET_PF_RETRY;
5126 
5127 	r = RET_PF_INVALID;
5128 	if (unlikely(error_code & PFERR_RSVD_MASK)) {
5129 		r = handle_mmio_page_fault(vcpu, cr2_or_gpa, direct);
5130 		if (r == RET_PF_EMULATE)
5131 			goto emulate;
5132 	}
5133 
5134 	if (r == RET_PF_INVALID) {
5135 		r = kvm_mmu_do_page_fault(vcpu, cr2_or_gpa,
5136 					  lower_32_bits(error_code), false);
5137 		if (WARN_ON_ONCE(r == RET_PF_INVALID))
5138 			return -EIO;
5139 	}
5140 
5141 	if (r < 0)
5142 		return r;
5143 	if (r != RET_PF_EMULATE)
5144 		return 1;
5145 
5146 	/*
5147 	 * Before emulating the instruction, check if the error code
5148 	 * was due to a RO violation while translating the guest page.
5149 	 * This can occur when using nested virtualization with nested
5150 	 * paging in both guests. If true, we simply unprotect the page
5151 	 * and resume the guest.
5152 	 */
5153 	if (vcpu->arch.mmu->direct_map &&
5154 	    (error_code & PFERR_NESTED_GUEST_PAGE) == PFERR_NESTED_GUEST_PAGE) {
5155 		kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(cr2_or_gpa));
5156 		return 1;
5157 	}
5158 
5159 	/*
5160 	 * vcpu->arch.mmu.page_fault returned RET_PF_EMULATE, but we can still
5161 	 * optimistically try to just unprotect the page and let the processor
5162 	 * re-execute the instruction that caused the page fault.  Do not allow
5163 	 * retrying MMIO emulation, as it's not only pointless but could also
5164 	 * cause us to enter an infinite loop because the processor will keep
5165 	 * faulting on the non-existent MMIO address.  Retrying an instruction
5166 	 * from a nested guest is also pointless and dangerous as we are only
5167 	 * explicitly shadowing L1's page tables, i.e. unprotecting something
5168 	 * for L1 isn't going to magically fix whatever issue cause L2 to fail.
5169 	 */
5170 	if (!mmio_info_in_cache(vcpu, cr2_or_gpa, direct) && !is_guest_mode(vcpu))
5171 		emulation_type |= EMULTYPE_ALLOW_RETRY_PF;
5172 emulate:
5173 	return x86_emulate_instruction(vcpu, cr2_or_gpa, emulation_type, insn,
5174 				       insn_len);
5175 }
5176 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
5177 
5178 void kvm_mmu_invalidate_gva(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
5179 			    gva_t gva, hpa_t root_hpa)
5180 {
5181 	int i;
5182 
5183 	/* It's actually a GPA for vcpu->arch.guest_mmu.  */
5184 	if (mmu != &vcpu->arch.guest_mmu) {
5185 		/* INVLPG on a non-canonical address is a NOP according to the SDM.  */
5186 		if (is_noncanonical_address(gva, vcpu))
5187 			return;
5188 
5189 		static_call(kvm_x86_tlb_flush_gva)(vcpu, gva);
5190 	}
5191 
5192 	if (!mmu->invlpg)
5193 		return;
5194 
5195 	if (root_hpa == INVALID_PAGE) {
5196 		mmu->invlpg(vcpu, gva, mmu->root_hpa);
5197 
5198 		/*
5199 		 * INVLPG is required to invalidate any global mappings for the VA,
5200 		 * irrespective of PCID. Since it would take us roughly similar amount
5201 		 * of work to determine whether any of the prev_root mappings of the VA
5202 		 * is marked global, or to just sync it blindly, so we might as well
5203 		 * just always sync it.
5204 		 *
5205 		 * Mappings not reachable via the current cr3 or the prev_roots will be
5206 		 * synced when switching to that cr3, so nothing needs to be done here
5207 		 * for them.
5208 		 */
5209 		for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5210 			if (VALID_PAGE(mmu->prev_roots[i].hpa))
5211 				mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
5212 	} else {
5213 		mmu->invlpg(vcpu, gva, root_hpa);
5214 	}
5215 }
5216 
5217 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
5218 {
5219 	kvm_mmu_invalidate_gva(vcpu, vcpu->arch.mmu, gva, INVALID_PAGE);
5220 	++vcpu->stat.invlpg;
5221 }
5222 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
5223 
5224 
5225 void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid)
5226 {
5227 	struct kvm_mmu *mmu = vcpu->arch.mmu;
5228 	bool tlb_flush = false;
5229 	uint i;
5230 
5231 	if (pcid == kvm_get_active_pcid(vcpu)) {
5232 		mmu->invlpg(vcpu, gva, mmu->root_hpa);
5233 		tlb_flush = true;
5234 	}
5235 
5236 	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
5237 		if (VALID_PAGE(mmu->prev_roots[i].hpa) &&
5238 		    pcid == kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd)) {
5239 			mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
5240 			tlb_flush = true;
5241 		}
5242 	}
5243 
5244 	if (tlb_flush)
5245 		static_call(kvm_x86_tlb_flush_gva)(vcpu, gva);
5246 
5247 	++vcpu->stat.invlpg;
5248 
5249 	/*
5250 	 * Mappings not reachable via the current cr3 or the prev_roots will be
5251 	 * synced when switching to that cr3, so nothing needs to be done here
5252 	 * for them.
5253 	 */
5254 }
5255 
5256 void kvm_configure_mmu(bool enable_tdp, int tdp_max_root_level,
5257 		       int tdp_huge_page_level)
5258 {
5259 	tdp_enabled = enable_tdp;
5260 	max_tdp_level = tdp_max_root_level;
5261 
5262 	/*
5263 	 * max_huge_page_level reflects KVM's MMU capabilities irrespective
5264 	 * of kernel support, e.g. KVM may be capable of using 1GB pages when
5265 	 * the kernel is not.  But, KVM never creates a page size greater than
5266 	 * what is used by the kernel for any given HVA, i.e. the kernel's
5267 	 * capabilities are ultimately consulted by kvm_mmu_hugepage_adjust().
5268 	 */
5269 	if (tdp_enabled)
5270 		max_huge_page_level = tdp_huge_page_level;
5271 	else if (boot_cpu_has(X86_FEATURE_GBPAGES))
5272 		max_huge_page_level = PG_LEVEL_1G;
5273 	else
5274 		max_huge_page_level = PG_LEVEL_2M;
5275 }
5276 EXPORT_SYMBOL_GPL(kvm_configure_mmu);
5277 
5278 /* The return value indicates if tlb flush on all vcpus is needed. */
5279 typedef bool (*slot_level_handler) (struct kvm *kvm, struct kvm_rmap_head *rmap_head,
5280 				    struct kvm_memory_slot *slot);
5281 
5282 /* The caller should hold mmu-lock before calling this function. */
5283 static __always_inline bool
5284 slot_handle_level_range(struct kvm *kvm, struct kvm_memory_slot *memslot,
5285 			slot_level_handler fn, int start_level, int end_level,
5286 			gfn_t start_gfn, gfn_t end_gfn, bool flush_on_yield,
5287 			bool flush)
5288 {
5289 	struct slot_rmap_walk_iterator iterator;
5290 
5291 	for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn,
5292 			end_gfn, &iterator) {
5293 		if (iterator.rmap)
5294 			flush |= fn(kvm, iterator.rmap, memslot);
5295 
5296 		if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) {
5297 			if (flush && flush_on_yield) {
5298 				kvm_flush_remote_tlbs_with_address(kvm,
5299 						start_gfn,
5300 						iterator.gfn - start_gfn + 1);
5301 				flush = false;
5302 			}
5303 			cond_resched_rwlock_write(&kvm->mmu_lock);
5304 		}
5305 	}
5306 
5307 	return flush;
5308 }
5309 
5310 static __always_inline bool
5311 slot_handle_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5312 		  slot_level_handler fn, int start_level, int end_level,
5313 		  bool flush_on_yield)
5314 {
5315 	return slot_handle_level_range(kvm, memslot, fn, start_level,
5316 			end_level, memslot->base_gfn,
5317 			memslot->base_gfn + memslot->npages - 1,
5318 			flush_on_yield, false);
5319 }
5320 
5321 static __always_inline bool
5322 slot_handle_leaf(struct kvm *kvm, struct kvm_memory_slot *memslot,
5323 		 slot_level_handler fn, bool flush_on_yield)
5324 {
5325 	return slot_handle_level(kvm, memslot, fn, PG_LEVEL_4K,
5326 				 PG_LEVEL_4K, flush_on_yield);
5327 }
5328 
5329 static void free_mmu_pages(struct kvm_mmu *mmu)
5330 {
5331 	if (!tdp_enabled && mmu->pae_root)
5332 		set_memory_encrypted((unsigned long)mmu->pae_root, 1);
5333 	free_page((unsigned long)mmu->pae_root);
5334 	free_page((unsigned long)mmu->pml4_root);
5335 }
5336 
5337 static int __kvm_mmu_create(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
5338 {
5339 	struct page *page;
5340 	int i;
5341 
5342 	mmu->root_hpa = INVALID_PAGE;
5343 	mmu->root_pgd = 0;
5344 	mmu->translate_gpa = translate_gpa;
5345 	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5346 		mmu->prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
5347 
5348 	/*
5349 	 * When using PAE paging, the four PDPTEs are treated as 'root' pages,
5350 	 * while the PDP table is a per-vCPU construct that's allocated at MMU
5351 	 * creation.  When emulating 32-bit mode, cr3 is only 32 bits even on
5352 	 * x86_64.  Therefore we need to allocate the PDP table in the first
5353 	 * 4GB of memory, which happens to fit the DMA32 zone.  TDP paging
5354 	 * generally doesn't use PAE paging and can skip allocating the PDP
5355 	 * table.  The main exception, handled here, is SVM's 32-bit NPT.  The
5356 	 * other exception is for shadowing L1's 32-bit or PAE NPT on 64-bit
5357 	 * KVM; that horror is handled on-demand by mmu_alloc_shadow_roots().
5358 	 */
5359 	if (tdp_enabled && kvm_mmu_get_tdp_level(vcpu) > PT32E_ROOT_LEVEL)
5360 		return 0;
5361 
5362 	page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_DMA32);
5363 	if (!page)
5364 		return -ENOMEM;
5365 
5366 	mmu->pae_root = page_address(page);
5367 
5368 	/*
5369 	 * CR3 is only 32 bits when PAE paging is used, thus it's impossible to
5370 	 * get the CPU to treat the PDPTEs as encrypted.  Decrypt the page so
5371 	 * that KVM's writes and the CPU's reads get along.  Note, this is
5372 	 * only necessary when using shadow paging, as 64-bit NPT can get at
5373 	 * the C-bit even when shadowing 32-bit NPT, and SME isn't supported
5374 	 * by 32-bit kernels (when KVM itself uses 32-bit NPT).
5375 	 */
5376 	if (!tdp_enabled)
5377 		set_memory_decrypted((unsigned long)mmu->pae_root, 1);
5378 	else
5379 		WARN_ON_ONCE(shadow_me_mask);
5380 
5381 	for (i = 0; i < 4; ++i)
5382 		mmu->pae_root[i] = INVALID_PAE_ROOT;
5383 
5384 	return 0;
5385 }
5386 
5387 int kvm_mmu_create(struct kvm_vcpu *vcpu)
5388 {
5389 	int ret;
5390 
5391 	vcpu->arch.mmu_pte_list_desc_cache.kmem_cache = pte_list_desc_cache;
5392 	vcpu->arch.mmu_pte_list_desc_cache.gfp_zero = __GFP_ZERO;
5393 
5394 	vcpu->arch.mmu_page_header_cache.kmem_cache = mmu_page_header_cache;
5395 	vcpu->arch.mmu_page_header_cache.gfp_zero = __GFP_ZERO;
5396 
5397 	vcpu->arch.mmu_shadow_page_cache.gfp_zero = __GFP_ZERO;
5398 
5399 	vcpu->arch.mmu = &vcpu->arch.root_mmu;
5400 	vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
5401 
5402 	vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
5403 
5404 	ret = __kvm_mmu_create(vcpu, &vcpu->arch.guest_mmu);
5405 	if (ret)
5406 		return ret;
5407 
5408 	ret = __kvm_mmu_create(vcpu, &vcpu->arch.root_mmu);
5409 	if (ret)
5410 		goto fail_allocate_root;
5411 
5412 	return ret;
5413  fail_allocate_root:
5414 	free_mmu_pages(&vcpu->arch.guest_mmu);
5415 	return ret;
5416 }
5417 
5418 #define BATCH_ZAP_PAGES	10
5419 static void kvm_zap_obsolete_pages(struct kvm *kvm)
5420 {
5421 	struct kvm_mmu_page *sp, *node;
5422 	int nr_zapped, batch = 0;
5423 
5424 restart:
5425 	list_for_each_entry_safe_reverse(sp, node,
5426 	      &kvm->arch.active_mmu_pages, link) {
5427 		/*
5428 		 * No obsolete valid page exists before a newly created page
5429 		 * since active_mmu_pages is a FIFO list.
5430 		 */
5431 		if (!is_obsolete_sp(kvm, sp))
5432 			break;
5433 
5434 		/*
5435 		 * Invalid pages should never land back on the list of active
5436 		 * pages.  Skip the bogus page, otherwise we'll get stuck in an
5437 		 * infinite loop if the page gets put back on the list (again).
5438 		 */
5439 		if (WARN_ON(sp->role.invalid))
5440 			continue;
5441 
5442 		/*
5443 		 * No need to flush the TLB since we're only zapping shadow
5444 		 * pages with an obsolete generation number and all vCPUS have
5445 		 * loaded a new root, i.e. the shadow pages being zapped cannot
5446 		 * be in active use by the guest.
5447 		 */
5448 		if (batch >= BATCH_ZAP_PAGES &&
5449 		    cond_resched_rwlock_write(&kvm->mmu_lock)) {
5450 			batch = 0;
5451 			goto restart;
5452 		}
5453 
5454 		if (__kvm_mmu_prepare_zap_page(kvm, sp,
5455 				&kvm->arch.zapped_obsolete_pages, &nr_zapped)) {
5456 			batch += nr_zapped;
5457 			goto restart;
5458 		}
5459 	}
5460 
5461 	/*
5462 	 * Trigger a remote TLB flush before freeing the page tables to ensure
5463 	 * KVM is not in the middle of a lockless shadow page table walk, which
5464 	 * may reference the pages.
5465 	 */
5466 	kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
5467 }
5468 
5469 /*
5470  * Fast invalidate all shadow pages and use lock-break technique
5471  * to zap obsolete pages.
5472  *
5473  * It's required when memslot is being deleted or VM is being
5474  * destroyed, in these cases, we should ensure that KVM MMU does
5475  * not use any resource of the being-deleted slot or all slots
5476  * after calling the function.
5477  */
5478 static void kvm_mmu_zap_all_fast(struct kvm *kvm)
5479 {
5480 	lockdep_assert_held(&kvm->slots_lock);
5481 
5482 	write_lock(&kvm->mmu_lock);
5483 	trace_kvm_mmu_zap_all_fast(kvm);
5484 
5485 	/*
5486 	 * Toggle mmu_valid_gen between '0' and '1'.  Because slots_lock is
5487 	 * held for the entire duration of zapping obsolete pages, it's
5488 	 * impossible for there to be multiple invalid generations associated
5489 	 * with *valid* shadow pages at any given time, i.e. there is exactly
5490 	 * one valid generation and (at most) one invalid generation.
5491 	 */
5492 	kvm->arch.mmu_valid_gen = kvm->arch.mmu_valid_gen ? 0 : 1;
5493 
5494 	/* In order to ensure all threads see this change when
5495 	 * handling the MMU reload signal, this must happen in the
5496 	 * same critical section as kvm_reload_remote_mmus, and
5497 	 * before kvm_zap_obsolete_pages as kvm_zap_obsolete_pages
5498 	 * could drop the MMU lock and yield.
5499 	 */
5500 	if (is_tdp_mmu_enabled(kvm))
5501 		kvm_tdp_mmu_invalidate_all_roots(kvm);
5502 
5503 	/*
5504 	 * Notify all vcpus to reload its shadow page table and flush TLB.
5505 	 * Then all vcpus will switch to new shadow page table with the new
5506 	 * mmu_valid_gen.
5507 	 *
5508 	 * Note: we need to do this under the protection of mmu_lock,
5509 	 * otherwise, vcpu would purge shadow page but miss tlb flush.
5510 	 */
5511 	kvm_reload_remote_mmus(kvm);
5512 
5513 	kvm_zap_obsolete_pages(kvm);
5514 
5515 	write_unlock(&kvm->mmu_lock);
5516 
5517 	if (is_tdp_mmu_enabled(kvm)) {
5518 		read_lock(&kvm->mmu_lock);
5519 		kvm_tdp_mmu_zap_invalidated_roots(kvm);
5520 		read_unlock(&kvm->mmu_lock);
5521 	}
5522 }
5523 
5524 static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
5525 {
5526 	return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
5527 }
5528 
5529 static void kvm_mmu_invalidate_zap_pages_in_memslot(struct kvm *kvm,
5530 			struct kvm_memory_slot *slot,
5531 			struct kvm_page_track_notifier_node *node)
5532 {
5533 	kvm_mmu_zap_all_fast(kvm);
5534 }
5535 
5536 void kvm_mmu_init_vm(struct kvm *kvm)
5537 {
5538 	struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5539 
5540 	if (!kvm_mmu_init_tdp_mmu(kvm))
5541 		/*
5542 		 * No smp_load/store wrappers needed here as we are in
5543 		 * VM init and there cannot be any memslots / other threads
5544 		 * accessing this struct kvm yet.
5545 		 */
5546 		kvm->arch.memslots_have_rmaps = true;
5547 
5548 	node->track_write = kvm_mmu_pte_write;
5549 	node->track_flush_slot = kvm_mmu_invalidate_zap_pages_in_memslot;
5550 	kvm_page_track_register_notifier(kvm, node);
5551 }
5552 
5553 void kvm_mmu_uninit_vm(struct kvm *kvm)
5554 {
5555 	struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5556 
5557 	kvm_page_track_unregister_notifier(kvm, node);
5558 
5559 	kvm_mmu_uninit_tdp_mmu(kvm);
5560 }
5561 
5562 void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
5563 {
5564 	struct kvm_memslots *slots;
5565 	struct kvm_memory_slot *memslot;
5566 	int i;
5567 	bool flush = false;
5568 
5569 	if (kvm_memslots_have_rmaps(kvm)) {
5570 		write_lock(&kvm->mmu_lock);
5571 		for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
5572 			slots = __kvm_memslots(kvm, i);
5573 			kvm_for_each_memslot(memslot, slots) {
5574 				gfn_t start, end;
5575 
5576 				start = max(gfn_start, memslot->base_gfn);
5577 				end = min(gfn_end, memslot->base_gfn + memslot->npages);
5578 				if (start >= end)
5579 					continue;
5580 
5581 				flush = slot_handle_level_range(kvm, memslot,
5582 						kvm_zap_rmapp, PG_LEVEL_4K,
5583 						KVM_MAX_HUGEPAGE_LEVEL, start,
5584 						end - 1, true, flush);
5585 			}
5586 		}
5587 		if (flush)
5588 			kvm_flush_remote_tlbs_with_address(kvm, gfn_start, gfn_end);
5589 		write_unlock(&kvm->mmu_lock);
5590 	}
5591 
5592 	if (is_tdp_mmu_enabled(kvm)) {
5593 		flush = false;
5594 
5595 		read_lock(&kvm->mmu_lock);
5596 		for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
5597 			flush = kvm_tdp_mmu_zap_gfn_range(kvm, i, gfn_start,
5598 							  gfn_end, flush, true);
5599 		if (flush)
5600 			kvm_flush_remote_tlbs_with_address(kvm, gfn_start,
5601 							   gfn_end);
5602 
5603 		read_unlock(&kvm->mmu_lock);
5604 	}
5605 }
5606 
5607 static bool slot_rmap_write_protect(struct kvm *kvm,
5608 				    struct kvm_rmap_head *rmap_head,
5609 				    struct kvm_memory_slot *slot)
5610 {
5611 	return __rmap_write_protect(kvm, rmap_head, false);
5612 }
5613 
5614 void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
5615 				      struct kvm_memory_slot *memslot,
5616 				      int start_level)
5617 {
5618 	bool flush = false;
5619 
5620 	if (kvm_memslots_have_rmaps(kvm)) {
5621 		write_lock(&kvm->mmu_lock);
5622 		flush = slot_handle_level(kvm, memslot, slot_rmap_write_protect,
5623 					  start_level, KVM_MAX_HUGEPAGE_LEVEL,
5624 					  false);
5625 		write_unlock(&kvm->mmu_lock);
5626 	}
5627 
5628 	if (is_tdp_mmu_enabled(kvm)) {
5629 		read_lock(&kvm->mmu_lock);
5630 		flush |= kvm_tdp_mmu_wrprot_slot(kvm, memslot, start_level);
5631 		read_unlock(&kvm->mmu_lock);
5632 	}
5633 
5634 	/*
5635 	 * We can flush all the TLBs out of the mmu lock without TLB
5636 	 * corruption since we just change the spte from writable to
5637 	 * readonly so that we only need to care the case of changing
5638 	 * spte from present to present (changing the spte from present
5639 	 * to nonpresent will flush all the TLBs immediately), in other
5640 	 * words, the only case we care is mmu_spte_update() where we
5641 	 * have checked Host-writable | MMU-writable instead of
5642 	 * PT_WRITABLE_MASK, that means it does not depend on PT_WRITABLE_MASK
5643 	 * anymore.
5644 	 */
5645 	if (flush)
5646 		kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
5647 }
5648 
5649 static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
5650 					 struct kvm_rmap_head *rmap_head,
5651 					 struct kvm_memory_slot *slot)
5652 {
5653 	u64 *sptep;
5654 	struct rmap_iterator iter;
5655 	int need_tlb_flush = 0;
5656 	kvm_pfn_t pfn;
5657 	struct kvm_mmu_page *sp;
5658 
5659 restart:
5660 	for_each_rmap_spte(rmap_head, &iter, sptep) {
5661 		sp = sptep_to_sp(sptep);
5662 		pfn = spte_to_pfn(*sptep);
5663 
5664 		/*
5665 		 * We cannot do huge page mapping for indirect shadow pages,
5666 		 * which are found on the last rmap (level = 1) when not using
5667 		 * tdp; such shadow pages are synced with the page table in
5668 		 * the guest, and the guest page table is using 4K page size
5669 		 * mapping if the indirect sp has level = 1.
5670 		 */
5671 		if (sp->role.direct && !kvm_is_reserved_pfn(pfn) &&
5672 		    sp->role.level < kvm_mmu_max_mapping_level(kvm, slot, sp->gfn,
5673 							       pfn, PG_LEVEL_NUM)) {
5674 			pte_list_remove(rmap_head, sptep);
5675 
5676 			if (kvm_available_flush_tlb_with_range())
5677 				kvm_flush_remote_tlbs_with_address(kvm, sp->gfn,
5678 					KVM_PAGES_PER_HPAGE(sp->role.level));
5679 			else
5680 				need_tlb_flush = 1;
5681 
5682 			goto restart;
5683 		}
5684 	}
5685 
5686 	return need_tlb_flush;
5687 }
5688 
5689 void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
5690 				   const struct kvm_memory_slot *memslot)
5691 {
5692 	/* FIXME: const-ify all uses of struct kvm_memory_slot.  */
5693 	struct kvm_memory_slot *slot = (struct kvm_memory_slot *)memslot;
5694 	bool flush = false;
5695 
5696 	if (kvm_memslots_have_rmaps(kvm)) {
5697 		write_lock(&kvm->mmu_lock);
5698 		flush = slot_handle_leaf(kvm, slot, kvm_mmu_zap_collapsible_spte, true);
5699 		if (flush)
5700 			kvm_arch_flush_remote_tlbs_memslot(kvm, slot);
5701 		write_unlock(&kvm->mmu_lock);
5702 	}
5703 
5704 	if (is_tdp_mmu_enabled(kvm)) {
5705 		read_lock(&kvm->mmu_lock);
5706 		flush = kvm_tdp_mmu_zap_collapsible_sptes(kvm, slot, flush);
5707 		if (flush)
5708 			kvm_arch_flush_remote_tlbs_memslot(kvm, slot);
5709 		read_unlock(&kvm->mmu_lock);
5710 	}
5711 }
5712 
5713 void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
5714 					const struct kvm_memory_slot *memslot)
5715 {
5716 	/*
5717 	 * All current use cases for flushing the TLBs for a specific memslot
5718 	 * related to dirty logging, and many do the TLB flush out of mmu_lock.
5719 	 * The interaction between the various operations on memslot must be
5720 	 * serialized by slots_locks to ensure the TLB flush from one operation
5721 	 * is observed by any other operation on the same memslot.
5722 	 */
5723 	lockdep_assert_held(&kvm->slots_lock);
5724 	kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn,
5725 					   memslot->npages);
5726 }
5727 
5728 void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
5729 				   struct kvm_memory_slot *memslot)
5730 {
5731 	bool flush = false;
5732 
5733 	if (kvm_memslots_have_rmaps(kvm)) {
5734 		write_lock(&kvm->mmu_lock);
5735 		flush = slot_handle_leaf(kvm, memslot, __rmap_clear_dirty,
5736 					 false);
5737 		write_unlock(&kvm->mmu_lock);
5738 	}
5739 
5740 	if (is_tdp_mmu_enabled(kvm)) {
5741 		read_lock(&kvm->mmu_lock);
5742 		flush |= kvm_tdp_mmu_clear_dirty_slot(kvm, memslot);
5743 		read_unlock(&kvm->mmu_lock);
5744 	}
5745 
5746 	/*
5747 	 * It's also safe to flush TLBs out of mmu lock here as currently this
5748 	 * function is only used for dirty logging, in which case flushing TLB
5749 	 * out of mmu lock also guarantees no dirty pages will be lost in
5750 	 * dirty_bitmap.
5751 	 */
5752 	if (flush)
5753 		kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
5754 }
5755 
5756 void kvm_mmu_zap_all(struct kvm *kvm)
5757 {
5758 	struct kvm_mmu_page *sp, *node;
5759 	LIST_HEAD(invalid_list);
5760 	int ign;
5761 
5762 	write_lock(&kvm->mmu_lock);
5763 restart:
5764 	list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link) {
5765 		if (WARN_ON(sp->role.invalid))
5766 			continue;
5767 		if (__kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list, &ign))
5768 			goto restart;
5769 		if (cond_resched_rwlock_write(&kvm->mmu_lock))
5770 			goto restart;
5771 	}
5772 
5773 	kvm_mmu_commit_zap_page(kvm, &invalid_list);
5774 
5775 	if (is_tdp_mmu_enabled(kvm))
5776 		kvm_tdp_mmu_zap_all(kvm);
5777 
5778 	write_unlock(&kvm->mmu_lock);
5779 }
5780 
5781 void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen)
5782 {
5783 	WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
5784 
5785 	gen &= MMIO_SPTE_GEN_MASK;
5786 
5787 	/*
5788 	 * Generation numbers are incremented in multiples of the number of
5789 	 * address spaces in order to provide unique generations across all
5790 	 * address spaces.  Strip what is effectively the address space
5791 	 * modifier prior to checking for a wrap of the MMIO generation so
5792 	 * that a wrap in any address space is detected.
5793 	 */
5794 	gen &= ~((u64)KVM_ADDRESS_SPACE_NUM - 1);
5795 
5796 	/*
5797 	 * The very rare case: if the MMIO generation number has wrapped,
5798 	 * zap all shadow pages.
5799 	 */
5800 	if (unlikely(gen == 0)) {
5801 		kvm_debug_ratelimited("kvm: zapping shadow pages for mmio generation wraparound\n");
5802 		kvm_mmu_zap_all_fast(kvm);
5803 	}
5804 }
5805 
5806 static unsigned long
5807 mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
5808 {
5809 	struct kvm *kvm;
5810 	int nr_to_scan = sc->nr_to_scan;
5811 	unsigned long freed = 0;
5812 
5813 	mutex_lock(&kvm_lock);
5814 
5815 	list_for_each_entry(kvm, &vm_list, vm_list) {
5816 		int idx;
5817 		LIST_HEAD(invalid_list);
5818 
5819 		/*
5820 		 * Never scan more than sc->nr_to_scan VM instances.
5821 		 * Will not hit this condition practically since we do not try
5822 		 * to shrink more than one VM and it is very unlikely to see
5823 		 * !n_used_mmu_pages so many times.
5824 		 */
5825 		if (!nr_to_scan--)
5826 			break;
5827 		/*
5828 		 * n_used_mmu_pages is accessed without holding kvm->mmu_lock
5829 		 * here. We may skip a VM instance errorneosly, but we do not
5830 		 * want to shrink a VM that only started to populate its MMU
5831 		 * anyway.
5832 		 */
5833 		if (!kvm->arch.n_used_mmu_pages &&
5834 		    !kvm_has_zapped_obsolete_pages(kvm))
5835 			continue;
5836 
5837 		idx = srcu_read_lock(&kvm->srcu);
5838 		write_lock(&kvm->mmu_lock);
5839 
5840 		if (kvm_has_zapped_obsolete_pages(kvm)) {
5841 			kvm_mmu_commit_zap_page(kvm,
5842 			      &kvm->arch.zapped_obsolete_pages);
5843 			goto unlock;
5844 		}
5845 
5846 		freed = kvm_mmu_zap_oldest_mmu_pages(kvm, sc->nr_to_scan);
5847 
5848 unlock:
5849 		write_unlock(&kvm->mmu_lock);
5850 		srcu_read_unlock(&kvm->srcu, idx);
5851 
5852 		/*
5853 		 * unfair on small ones
5854 		 * per-vm shrinkers cry out
5855 		 * sadness comes quickly
5856 		 */
5857 		list_move_tail(&kvm->vm_list, &vm_list);
5858 		break;
5859 	}
5860 
5861 	mutex_unlock(&kvm_lock);
5862 	return freed;
5863 }
5864 
5865 static unsigned long
5866 mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
5867 {
5868 	return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
5869 }
5870 
5871 static struct shrinker mmu_shrinker = {
5872 	.count_objects = mmu_shrink_count,
5873 	.scan_objects = mmu_shrink_scan,
5874 	.seeks = DEFAULT_SEEKS * 10,
5875 };
5876 
5877 static void mmu_destroy_caches(void)
5878 {
5879 	kmem_cache_destroy(pte_list_desc_cache);
5880 	kmem_cache_destroy(mmu_page_header_cache);
5881 }
5882 
5883 static bool get_nx_auto_mode(void)
5884 {
5885 	/* Return true when CPU has the bug, and mitigations are ON */
5886 	return boot_cpu_has_bug(X86_BUG_ITLB_MULTIHIT) && !cpu_mitigations_off();
5887 }
5888 
5889 static void __set_nx_huge_pages(bool val)
5890 {
5891 	nx_huge_pages = itlb_multihit_kvm_mitigation = val;
5892 }
5893 
5894 static int set_nx_huge_pages(const char *val, const struct kernel_param *kp)
5895 {
5896 	bool old_val = nx_huge_pages;
5897 	bool new_val;
5898 
5899 	/* In "auto" mode deploy workaround only if CPU has the bug. */
5900 	if (sysfs_streq(val, "off"))
5901 		new_val = 0;
5902 	else if (sysfs_streq(val, "force"))
5903 		new_val = 1;
5904 	else if (sysfs_streq(val, "auto"))
5905 		new_val = get_nx_auto_mode();
5906 	else if (strtobool(val, &new_val) < 0)
5907 		return -EINVAL;
5908 
5909 	__set_nx_huge_pages(new_val);
5910 
5911 	if (new_val != old_val) {
5912 		struct kvm *kvm;
5913 
5914 		mutex_lock(&kvm_lock);
5915 
5916 		list_for_each_entry(kvm, &vm_list, vm_list) {
5917 			mutex_lock(&kvm->slots_lock);
5918 			kvm_mmu_zap_all_fast(kvm);
5919 			mutex_unlock(&kvm->slots_lock);
5920 
5921 			wake_up_process(kvm->arch.nx_lpage_recovery_thread);
5922 		}
5923 		mutex_unlock(&kvm_lock);
5924 	}
5925 
5926 	return 0;
5927 }
5928 
5929 int kvm_mmu_module_init(void)
5930 {
5931 	int ret = -ENOMEM;
5932 
5933 	if (nx_huge_pages == -1)
5934 		__set_nx_huge_pages(get_nx_auto_mode());
5935 
5936 	/*
5937 	 * MMU roles use union aliasing which is, generally speaking, an
5938 	 * undefined behavior. However, we supposedly know how compilers behave
5939 	 * and the current status quo is unlikely to change. Guardians below are
5940 	 * supposed to let us know if the assumption becomes false.
5941 	 */
5942 	BUILD_BUG_ON(sizeof(union kvm_mmu_page_role) != sizeof(u32));
5943 	BUILD_BUG_ON(sizeof(union kvm_mmu_extended_role) != sizeof(u32));
5944 	BUILD_BUG_ON(sizeof(union kvm_mmu_role) != sizeof(u64));
5945 
5946 	kvm_mmu_reset_all_pte_masks();
5947 
5948 	pte_list_desc_cache = kmem_cache_create("pte_list_desc",
5949 					    sizeof(struct pte_list_desc),
5950 					    0, SLAB_ACCOUNT, NULL);
5951 	if (!pte_list_desc_cache)
5952 		goto out;
5953 
5954 	mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
5955 						  sizeof(struct kvm_mmu_page),
5956 						  0, SLAB_ACCOUNT, NULL);
5957 	if (!mmu_page_header_cache)
5958 		goto out;
5959 
5960 	if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
5961 		goto out;
5962 
5963 	ret = register_shrinker(&mmu_shrinker);
5964 	if (ret)
5965 		goto out;
5966 
5967 	return 0;
5968 
5969 out:
5970 	mmu_destroy_caches();
5971 	return ret;
5972 }
5973 
5974 /*
5975  * Calculate mmu pages needed for kvm.
5976  */
5977 unsigned long kvm_mmu_calculate_default_mmu_pages(struct kvm *kvm)
5978 {
5979 	unsigned long nr_mmu_pages;
5980 	unsigned long nr_pages = 0;
5981 	struct kvm_memslots *slots;
5982 	struct kvm_memory_slot *memslot;
5983 	int i;
5984 
5985 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
5986 		slots = __kvm_memslots(kvm, i);
5987 
5988 		kvm_for_each_memslot(memslot, slots)
5989 			nr_pages += memslot->npages;
5990 	}
5991 
5992 	nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
5993 	nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES);
5994 
5995 	return nr_mmu_pages;
5996 }
5997 
5998 void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
5999 {
6000 	kvm_mmu_unload(vcpu);
6001 	free_mmu_pages(&vcpu->arch.root_mmu);
6002 	free_mmu_pages(&vcpu->arch.guest_mmu);
6003 	mmu_free_memory_caches(vcpu);
6004 }
6005 
6006 void kvm_mmu_module_exit(void)
6007 {
6008 	mmu_destroy_caches();
6009 	percpu_counter_destroy(&kvm_total_used_mmu_pages);
6010 	unregister_shrinker(&mmu_shrinker);
6011 	mmu_audit_disable();
6012 }
6013 
6014 static int set_nx_huge_pages_recovery_ratio(const char *val, const struct kernel_param *kp)
6015 {
6016 	unsigned int old_val;
6017 	int err;
6018 
6019 	old_val = nx_huge_pages_recovery_ratio;
6020 	err = param_set_uint(val, kp);
6021 	if (err)
6022 		return err;
6023 
6024 	if (READ_ONCE(nx_huge_pages) &&
6025 	    !old_val && nx_huge_pages_recovery_ratio) {
6026 		struct kvm *kvm;
6027 
6028 		mutex_lock(&kvm_lock);
6029 
6030 		list_for_each_entry(kvm, &vm_list, vm_list)
6031 			wake_up_process(kvm->arch.nx_lpage_recovery_thread);
6032 
6033 		mutex_unlock(&kvm_lock);
6034 	}
6035 
6036 	return err;
6037 }
6038 
6039 static void kvm_recover_nx_lpages(struct kvm *kvm)
6040 {
6041 	unsigned long nx_lpage_splits = kvm->stat.nx_lpage_splits;
6042 	int rcu_idx;
6043 	struct kvm_mmu_page *sp;
6044 	unsigned int ratio;
6045 	LIST_HEAD(invalid_list);
6046 	bool flush = false;
6047 	ulong to_zap;
6048 
6049 	rcu_idx = srcu_read_lock(&kvm->srcu);
6050 	write_lock(&kvm->mmu_lock);
6051 
6052 	ratio = READ_ONCE(nx_huge_pages_recovery_ratio);
6053 	to_zap = ratio ? DIV_ROUND_UP(nx_lpage_splits, ratio) : 0;
6054 	for ( ; to_zap; --to_zap) {
6055 		if (list_empty(&kvm->arch.lpage_disallowed_mmu_pages))
6056 			break;
6057 
6058 		/*
6059 		 * We use a separate list instead of just using active_mmu_pages
6060 		 * because the number of lpage_disallowed pages is expected to
6061 		 * be relatively small compared to the total.
6062 		 */
6063 		sp = list_first_entry(&kvm->arch.lpage_disallowed_mmu_pages,
6064 				      struct kvm_mmu_page,
6065 				      lpage_disallowed_link);
6066 		WARN_ON_ONCE(!sp->lpage_disallowed);
6067 		if (is_tdp_mmu_page(sp)) {
6068 			flush |= kvm_tdp_mmu_zap_sp(kvm, sp);
6069 		} else {
6070 			kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
6071 			WARN_ON_ONCE(sp->lpage_disallowed);
6072 		}
6073 
6074 		if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) {
6075 			kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush);
6076 			cond_resched_rwlock_write(&kvm->mmu_lock);
6077 			flush = false;
6078 		}
6079 	}
6080 	kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush);
6081 
6082 	write_unlock(&kvm->mmu_lock);
6083 	srcu_read_unlock(&kvm->srcu, rcu_idx);
6084 }
6085 
6086 static long get_nx_lpage_recovery_timeout(u64 start_time)
6087 {
6088 	return READ_ONCE(nx_huge_pages) && READ_ONCE(nx_huge_pages_recovery_ratio)
6089 		? start_time + 60 * HZ - get_jiffies_64()
6090 		: MAX_SCHEDULE_TIMEOUT;
6091 }
6092 
6093 static int kvm_nx_lpage_recovery_worker(struct kvm *kvm, uintptr_t data)
6094 {
6095 	u64 start_time;
6096 	long remaining_time;
6097 
6098 	while (true) {
6099 		start_time = get_jiffies_64();
6100 		remaining_time = get_nx_lpage_recovery_timeout(start_time);
6101 
6102 		set_current_state(TASK_INTERRUPTIBLE);
6103 		while (!kthread_should_stop() && remaining_time > 0) {
6104 			schedule_timeout(remaining_time);
6105 			remaining_time = get_nx_lpage_recovery_timeout(start_time);
6106 			set_current_state(TASK_INTERRUPTIBLE);
6107 		}
6108 
6109 		set_current_state(TASK_RUNNING);
6110 
6111 		if (kthread_should_stop())
6112 			return 0;
6113 
6114 		kvm_recover_nx_lpages(kvm);
6115 	}
6116 }
6117 
6118 int kvm_mmu_post_init_vm(struct kvm *kvm)
6119 {
6120 	int err;
6121 
6122 	err = kvm_vm_create_worker_thread(kvm, kvm_nx_lpage_recovery_worker, 0,
6123 					  "kvm-nx-lpage-recovery",
6124 					  &kvm->arch.nx_lpage_recovery_thread);
6125 	if (!err)
6126 		kthread_unpark(kvm->arch.nx_lpage_recovery_thread);
6127 
6128 	return err;
6129 }
6130 
6131 void kvm_mmu_pre_destroy_vm(struct kvm *kvm)
6132 {
6133 	if (kvm->arch.nx_lpage_recovery_thread)
6134 		kthread_stop(kvm->arch.nx_lpage_recovery_thread);
6135 }
6136