xref: /openbmc/linux/arch/x86/kvm/mmu/mmu.c (revision 7b73a9c8)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This module enables machines with Intel VT-x extensions to run virtual
6  * machines without emulation or binary translation.
7  *
8  * MMU support
9  *
10  * Copyright (C) 2006 Qumranet, Inc.
11  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
12  *
13  * Authors:
14  *   Yaniv Kamay  <yaniv@qumranet.com>
15  *   Avi Kivity   <avi@qumranet.com>
16  */
17 
18 #include "irq.h"
19 #include "mmu.h"
20 #include "x86.h"
21 #include "kvm_cache_regs.h"
22 #include "cpuid.h"
23 
24 #include <linux/kvm_host.h>
25 #include <linux/types.h>
26 #include <linux/string.h>
27 #include <linux/mm.h>
28 #include <linux/highmem.h>
29 #include <linux/moduleparam.h>
30 #include <linux/export.h>
31 #include <linux/swap.h>
32 #include <linux/hugetlb.h>
33 #include <linux/compiler.h>
34 #include <linux/srcu.h>
35 #include <linux/slab.h>
36 #include <linux/sched/signal.h>
37 #include <linux/uaccess.h>
38 #include <linux/hash.h>
39 #include <linux/kern_levels.h>
40 #include <linux/kthread.h>
41 
42 #include <asm/page.h>
43 #include <asm/pat.h>
44 #include <asm/cmpxchg.h>
45 #include <asm/e820/api.h>
46 #include <asm/io.h>
47 #include <asm/vmx.h>
48 #include <asm/kvm_page_track.h>
49 #include "trace.h"
50 
51 extern bool itlb_multihit_kvm_mitigation;
52 
53 static int __read_mostly nx_huge_pages = -1;
54 #ifdef CONFIG_PREEMPT_RT
55 /* Recovery can cause latency spikes, disable it for PREEMPT_RT.  */
56 static uint __read_mostly nx_huge_pages_recovery_ratio = 0;
57 #else
58 static uint __read_mostly nx_huge_pages_recovery_ratio = 60;
59 #endif
60 
61 static int set_nx_huge_pages(const char *val, const struct kernel_param *kp);
62 static int set_nx_huge_pages_recovery_ratio(const char *val, const struct kernel_param *kp);
63 
64 static struct kernel_param_ops nx_huge_pages_ops = {
65 	.set = set_nx_huge_pages,
66 	.get = param_get_bool,
67 };
68 
69 static struct kernel_param_ops nx_huge_pages_recovery_ratio_ops = {
70 	.set = set_nx_huge_pages_recovery_ratio,
71 	.get = param_get_uint,
72 };
73 
74 module_param_cb(nx_huge_pages, &nx_huge_pages_ops, &nx_huge_pages, 0644);
75 __MODULE_PARM_TYPE(nx_huge_pages, "bool");
76 module_param_cb(nx_huge_pages_recovery_ratio, &nx_huge_pages_recovery_ratio_ops,
77 		&nx_huge_pages_recovery_ratio, 0644);
78 __MODULE_PARM_TYPE(nx_huge_pages_recovery_ratio, "uint");
79 
80 /*
81  * When setting this variable to true it enables Two-Dimensional-Paging
82  * where the hardware walks 2 page tables:
83  * 1. the guest-virtual to guest-physical
84  * 2. while doing 1. it walks guest-physical to host-physical
85  * If the hardware supports that we don't need to do shadow paging.
86  */
87 bool tdp_enabled = false;
88 
89 enum {
90 	AUDIT_PRE_PAGE_FAULT,
91 	AUDIT_POST_PAGE_FAULT,
92 	AUDIT_PRE_PTE_WRITE,
93 	AUDIT_POST_PTE_WRITE,
94 	AUDIT_PRE_SYNC,
95 	AUDIT_POST_SYNC
96 };
97 
98 #undef MMU_DEBUG
99 
100 #ifdef MMU_DEBUG
101 static bool dbg = 0;
102 module_param(dbg, bool, 0644);
103 
104 #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
105 #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
106 #define MMU_WARN_ON(x) WARN_ON(x)
107 #else
108 #define pgprintk(x...) do { } while (0)
109 #define rmap_printk(x...) do { } while (0)
110 #define MMU_WARN_ON(x) do { } while (0)
111 #endif
112 
113 #define PTE_PREFETCH_NUM		8
114 
115 #define PT_FIRST_AVAIL_BITS_SHIFT 10
116 #define PT64_SECOND_AVAIL_BITS_SHIFT 54
117 
118 /*
119  * The mask used to denote special SPTEs, which can be either MMIO SPTEs or
120  * Access Tracking SPTEs.
121  */
122 #define SPTE_SPECIAL_MASK (3ULL << 52)
123 #define SPTE_AD_ENABLED_MASK (0ULL << 52)
124 #define SPTE_AD_DISABLED_MASK (1ULL << 52)
125 #define SPTE_AD_WRPROT_ONLY_MASK (2ULL << 52)
126 #define SPTE_MMIO_MASK (3ULL << 52)
127 
128 #define PT64_LEVEL_BITS 9
129 
130 #define PT64_LEVEL_SHIFT(level) \
131 		(PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
132 
133 #define PT64_INDEX(address, level)\
134 	(((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
135 
136 
137 #define PT32_LEVEL_BITS 10
138 
139 #define PT32_LEVEL_SHIFT(level) \
140 		(PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
141 
142 #define PT32_LVL_OFFSET_MASK(level) \
143 	(PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
144 						* PT32_LEVEL_BITS))) - 1))
145 
146 #define PT32_INDEX(address, level)\
147 	(((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
148 
149 
150 #ifdef CONFIG_DYNAMIC_PHYSICAL_MASK
151 #define PT64_BASE_ADDR_MASK (physical_mask & ~(u64)(PAGE_SIZE-1))
152 #else
153 #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
154 #endif
155 #define PT64_LVL_ADDR_MASK(level) \
156 	(PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
157 						* PT64_LEVEL_BITS))) - 1))
158 #define PT64_LVL_OFFSET_MASK(level) \
159 	(PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
160 						* PT64_LEVEL_BITS))) - 1))
161 
162 #define PT32_BASE_ADDR_MASK PAGE_MASK
163 #define PT32_DIR_BASE_ADDR_MASK \
164 	(PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
165 #define PT32_LVL_ADDR_MASK(level) \
166 	(PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
167 					    * PT32_LEVEL_BITS))) - 1))
168 
169 #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | shadow_user_mask \
170 			| shadow_x_mask | shadow_nx_mask | shadow_me_mask)
171 
172 #define ACC_EXEC_MASK    1
173 #define ACC_WRITE_MASK   PT_WRITABLE_MASK
174 #define ACC_USER_MASK    PT_USER_MASK
175 #define ACC_ALL          (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
176 
177 /* The mask for the R/X bits in EPT PTEs */
178 #define PT64_EPT_READABLE_MASK			0x1ull
179 #define PT64_EPT_EXECUTABLE_MASK		0x4ull
180 
181 #include <trace/events/kvm.h>
182 
183 #define SPTE_HOST_WRITEABLE	(1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
184 #define SPTE_MMU_WRITEABLE	(1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
185 
186 #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
187 
188 /* make pte_list_desc fit well in cache line */
189 #define PTE_LIST_EXT 3
190 
191 /*
192  * Return values of handle_mmio_page_fault and mmu.page_fault:
193  * RET_PF_RETRY: let CPU fault again on the address.
194  * RET_PF_EMULATE: mmio page fault, emulate the instruction directly.
195  *
196  * For handle_mmio_page_fault only:
197  * RET_PF_INVALID: the spte is invalid, let the real page fault path update it.
198  */
199 enum {
200 	RET_PF_RETRY = 0,
201 	RET_PF_EMULATE = 1,
202 	RET_PF_INVALID = 2,
203 };
204 
205 struct pte_list_desc {
206 	u64 *sptes[PTE_LIST_EXT];
207 	struct pte_list_desc *more;
208 };
209 
210 struct kvm_shadow_walk_iterator {
211 	u64 addr;
212 	hpa_t shadow_addr;
213 	u64 *sptep;
214 	int level;
215 	unsigned index;
216 };
217 
218 static const union kvm_mmu_page_role mmu_base_role_mask = {
219 	.cr0_wp = 1,
220 	.gpte_is_8_bytes = 1,
221 	.nxe = 1,
222 	.smep_andnot_wp = 1,
223 	.smap_andnot_wp = 1,
224 	.smm = 1,
225 	.guest_mode = 1,
226 	.ad_disabled = 1,
227 };
228 
229 #define for_each_shadow_entry_using_root(_vcpu, _root, _addr, _walker)     \
230 	for (shadow_walk_init_using_root(&(_walker), (_vcpu),              \
231 					 (_root), (_addr));                \
232 	     shadow_walk_okay(&(_walker));			           \
233 	     shadow_walk_next(&(_walker)))
234 
235 #define for_each_shadow_entry(_vcpu, _addr, _walker)            \
236 	for (shadow_walk_init(&(_walker), _vcpu, _addr);	\
237 	     shadow_walk_okay(&(_walker));			\
238 	     shadow_walk_next(&(_walker)))
239 
240 #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte)	\
241 	for (shadow_walk_init(&(_walker), _vcpu, _addr);		\
242 	     shadow_walk_okay(&(_walker)) &&				\
243 		({ spte = mmu_spte_get_lockless(_walker.sptep); 1; });	\
244 	     __shadow_walk_next(&(_walker), spte))
245 
246 static struct kmem_cache *pte_list_desc_cache;
247 static struct kmem_cache *mmu_page_header_cache;
248 static struct percpu_counter kvm_total_used_mmu_pages;
249 
250 static u64 __read_mostly shadow_nx_mask;
251 static u64 __read_mostly shadow_x_mask;	/* mutual exclusive with nx_mask */
252 static u64 __read_mostly shadow_user_mask;
253 static u64 __read_mostly shadow_accessed_mask;
254 static u64 __read_mostly shadow_dirty_mask;
255 static u64 __read_mostly shadow_mmio_mask;
256 static u64 __read_mostly shadow_mmio_value;
257 static u64 __read_mostly shadow_mmio_access_mask;
258 static u64 __read_mostly shadow_present_mask;
259 static u64 __read_mostly shadow_me_mask;
260 
261 /*
262  * SPTEs used by MMUs without A/D bits are marked with SPTE_AD_DISABLED_MASK;
263  * shadow_acc_track_mask is the set of bits to be cleared in non-accessed
264  * pages.
265  */
266 static u64 __read_mostly shadow_acc_track_mask;
267 
268 /*
269  * The mask/shift to use for saving the original R/X bits when marking the PTE
270  * as not-present for access tracking purposes. We do not save the W bit as the
271  * PTEs being access tracked also need to be dirty tracked, so the W bit will be
272  * restored only when a write is attempted to the page.
273  */
274 static const u64 shadow_acc_track_saved_bits_mask = PT64_EPT_READABLE_MASK |
275 						    PT64_EPT_EXECUTABLE_MASK;
276 static const u64 shadow_acc_track_saved_bits_shift = PT64_SECOND_AVAIL_BITS_SHIFT;
277 
278 /*
279  * This mask must be set on all non-zero Non-Present or Reserved SPTEs in order
280  * to guard against L1TF attacks.
281  */
282 static u64 __read_mostly shadow_nonpresent_or_rsvd_mask;
283 
284 /*
285  * The number of high-order 1 bits to use in the mask above.
286  */
287 static const u64 shadow_nonpresent_or_rsvd_mask_len = 5;
288 
289 /*
290  * In some cases, we need to preserve the GFN of a non-present or reserved
291  * SPTE when we usurp the upper five bits of the physical address space to
292  * defend against L1TF, e.g. for MMIO SPTEs.  To preserve the GFN, we'll
293  * shift bits of the GFN that overlap with shadow_nonpresent_or_rsvd_mask
294  * left into the reserved bits, i.e. the GFN in the SPTE will be split into
295  * high and low parts.  This mask covers the lower bits of the GFN.
296  */
297 static u64 __read_mostly shadow_nonpresent_or_rsvd_lower_gfn_mask;
298 
299 /*
300  * The number of non-reserved physical address bits irrespective of features
301  * that repurpose legal bits, e.g. MKTME.
302  */
303 static u8 __read_mostly shadow_phys_bits;
304 
305 static void mmu_spte_set(u64 *sptep, u64 spte);
306 static bool is_executable_pte(u64 spte);
307 static union kvm_mmu_page_role
308 kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu);
309 
310 #define CREATE_TRACE_POINTS
311 #include "mmutrace.h"
312 
313 
314 static inline bool kvm_available_flush_tlb_with_range(void)
315 {
316 	return kvm_x86_ops->tlb_remote_flush_with_range;
317 }
318 
319 static void kvm_flush_remote_tlbs_with_range(struct kvm *kvm,
320 		struct kvm_tlb_range *range)
321 {
322 	int ret = -ENOTSUPP;
323 
324 	if (range && kvm_x86_ops->tlb_remote_flush_with_range)
325 		ret = kvm_x86_ops->tlb_remote_flush_with_range(kvm, range);
326 
327 	if (ret)
328 		kvm_flush_remote_tlbs(kvm);
329 }
330 
331 static void kvm_flush_remote_tlbs_with_address(struct kvm *kvm,
332 		u64 start_gfn, u64 pages)
333 {
334 	struct kvm_tlb_range range;
335 
336 	range.start_gfn = start_gfn;
337 	range.pages = pages;
338 
339 	kvm_flush_remote_tlbs_with_range(kvm, &range);
340 }
341 
342 void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask, u64 mmio_value, u64 access_mask)
343 {
344 	BUG_ON((u64)(unsigned)access_mask != access_mask);
345 	BUG_ON((mmio_mask & mmio_value) != mmio_value);
346 	shadow_mmio_value = mmio_value | SPTE_MMIO_MASK;
347 	shadow_mmio_mask = mmio_mask | SPTE_SPECIAL_MASK;
348 	shadow_mmio_access_mask = access_mask;
349 }
350 EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
351 
352 static bool is_mmio_spte(u64 spte)
353 {
354 	return (spte & shadow_mmio_mask) == shadow_mmio_value;
355 }
356 
357 static inline bool sp_ad_disabled(struct kvm_mmu_page *sp)
358 {
359 	return sp->role.ad_disabled;
360 }
361 
362 static inline bool kvm_vcpu_ad_need_write_protect(struct kvm_vcpu *vcpu)
363 {
364 	/*
365 	 * When using the EPT page-modification log, the GPAs in the log
366 	 * would come from L2 rather than L1.  Therefore, we need to rely
367 	 * on write protection to record dirty pages.  This also bypasses
368 	 * PML, since writes now result in a vmexit.
369 	 */
370 	return vcpu->arch.mmu == &vcpu->arch.guest_mmu;
371 }
372 
373 static inline bool spte_ad_enabled(u64 spte)
374 {
375 	MMU_WARN_ON(is_mmio_spte(spte));
376 	return (spte & SPTE_SPECIAL_MASK) != SPTE_AD_DISABLED_MASK;
377 }
378 
379 static inline bool spte_ad_need_write_protect(u64 spte)
380 {
381 	MMU_WARN_ON(is_mmio_spte(spte));
382 	return (spte & SPTE_SPECIAL_MASK) != SPTE_AD_ENABLED_MASK;
383 }
384 
385 static bool is_nx_huge_page_enabled(void)
386 {
387 	return READ_ONCE(nx_huge_pages);
388 }
389 
390 static inline u64 spte_shadow_accessed_mask(u64 spte)
391 {
392 	MMU_WARN_ON(is_mmio_spte(spte));
393 	return spte_ad_enabled(spte) ? shadow_accessed_mask : 0;
394 }
395 
396 static inline u64 spte_shadow_dirty_mask(u64 spte)
397 {
398 	MMU_WARN_ON(is_mmio_spte(spte));
399 	return spte_ad_enabled(spte) ? shadow_dirty_mask : 0;
400 }
401 
402 static inline bool is_access_track_spte(u64 spte)
403 {
404 	return !spte_ad_enabled(spte) && (spte & shadow_acc_track_mask) == 0;
405 }
406 
407 /*
408  * Due to limited space in PTEs, the MMIO generation is a 19 bit subset of
409  * the memslots generation and is derived as follows:
410  *
411  * Bits 0-8 of the MMIO generation are propagated to spte bits 3-11
412  * Bits 9-18 of the MMIO generation are propagated to spte bits 52-61
413  *
414  * The KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS flag is intentionally not included in
415  * the MMIO generation number, as doing so would require stealing a bit from
416  * the "real" generation number and thus effectively halve the maximum number
417  * of MMIO generations that can be handled before encountering a wrap (which
418  * requires a full MMU zap).  The flag is instead explicitly queried when
419  * checking for MMIO spte cache hits.
420  */
421 #define MMIO_SPTE_GEN_MASK		GENMASK_ULL(18, 0)
422 
423 #define MMIO_SPTE_GEN_LOW_START		3
424 #define MMIO_SPTE_GEN_LOW_END		11
425 #define MMIO_SPTE_GEN_LOW_MASK		GENMASK_ULL(MMIO_SPTE_GEN_LOW_END, \
426 						    MMIO_SPTE_GEN_LOW_START)
427 
428 #define MMIO_SPTE_GEN_HIGH_START	52
429 #define MMIO_SPTE_GEN_HIGH_END		61
430 #define MMIO_SPTE_GEN_HIGH_MASK		GENMASK_ULL(MMIO_SPTE_GEN_HIGH_END, \
431 						    MMIO_SPTE_GEN_HIGH_START)
432 static u64 generation_mmio_spte_mask(u64 gen)
433 {
434 	u64 mask;
435 
436 	WARN_ON(gen & ~MMIO_SPTE_GEN_MASK);
437 
438 	mask = (gen << MMIO_SPTE_GEN_LOW_START) & MMIO_SPTE_GEN_LOW_MASK;
439 	mask |= (gen << MMIO_SPTE_GEN_HIGH_START) & MMIO_SPTE_GEN_HIGH_MASK;
440 	return mask;
441 }
442 
443 static u64 get_mmio_spte_generation(u64 spte)
444 {
445 	u64 gen;
446 
447 	spte &= ~shadow_mmio_mask;
448 
449 	gen = (spte & MMIO_SPTE_GEN_LOW_MASK) >> MMIO_SPTE_GEN_LOW_START;
450 	gen |= (spte & MMIO_SPTE_GEN_HIGH_MASK) >> MMIO_SPTE_GEN_HIGH_START;
451 	return gen;
452 }
453 
454 static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn,
455 			   unsigned access)
456 {
457 	u64 gen = kvm_vcpu_memslots(vcpu)->generation & MMIO_SPTE_GEN_MASK;
458 	u64 mask = generation_mmio_spte_mask(gen);
459 	u64 gpa = gfn << PAGE_SHIFT;
460 
461 	access &= shadow_mmio_access_mask;
462 	mask |= shadow_mmio_value | access;
463 	mask |= gpa | shadow_nonpresent_or_rsvd_mask;
464 	mask |= (gpa & shadow_nonpresent_or_rsvd_mask)
465 		<< shadow_nonpresent_or_rsvd_mask_len;
466 
467 	trace_mark_mmio_spte(sptep, gfn, access, gen);
468 	mmu_spte_set(sptep, mask);
469 }
470 
471 static gfn_t get_mmio_spte_gfn(u64 spte)
472 {
473 	u64 gpa = spte & shadow_nonpresent_or_rsvd_lower_gfn_mask;
474 
475 	gpa |= (spte >> shadow_nonpresent_or_rsvd_mask_len)
476 	       & shadow_nonpresent_or_rsvd_mask;
477 
478 	return gpa >> PAGE_SHIFT;
479 }
480 
481 static unsigned get_mmio_spte_access(u64 spte)
482 {
483 	return spte & shadow_mmio_access_mask;
484 }
485 
486 static bool set_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
487 			  kvm_pfn_t pfn, unsigned access)
488 {
489 	if (unlikely(is_noslot_pfn(pfn))) {
490 		mark_mmio_spte(vcpu, sptep, gfn, access);
491 		return true;
492 	}
493 
494 	return false;
495 }
496 
497 static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte)
498 {
499 	u64 kvm_gen, spte_gen, gen;
500 
501 	gen = kvm_vcpu_memslots(vcpu)->generation;
502 	if (unlikely(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS))
503 		return false;
504 
505 	kvm_gen = gen & MMIO_SPTE_GEN_MASK;
506 	spte_gen = get_mmio_spte_generation(spte);
507 
508 	trace_check_mmio_spte(spte, kvm_gen, spte_gen);
509 	return likely(kvm_gen == spte_gen);
510 }
511 
512 /*
513  * Sets the shadow PTE masks used by the MMU.
514  *
515  * Assumptions:
516  *  - Setting either @accessed_mask or @dirty_mask requires setting both
517  *  - At least one of @accessed_mask or @acc_track_mask must be set
518  */
519 void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
520 		u64 dirty_mask, u64 nx_mask, u64 x_mask, u64 p_mask,
521 		u64 acc_track_mask, u64 me_mask)
522 {
523 	BUG_ON(!dirty_mask != !accessed_mask);
524 	BUG_ON(!accessed_mask && !acc_track_mask);
525 	BUG_ON(acc_track_mask & SPTE_SPECIAL_MASK);
526 
527 	shadow_user_mask = user_mask;
528 	shadow_accessed_mask = accessed_mask;
529 	shadow_dirty_mask = dirty_mask;
530 	shadow_nx_mask = nx_mask;
531 	shadow_x_mask = x_mask;
532 	shadow_present_mask = p_mask;
533 	shadow_acc_track_mask = acc_track_mask;
534 	shadow_me_mask = me_mask;
535 }
536 EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
537 
538 static u8 kvm_get_shadow_phys_bits(void)
539 {
540 	/*
541 	 * boot_cpu_data.x86_phys_bits is reduced when MKTME is detected
542 	 * in CPU detection code, but MKTME treats those reduced bits as
543 	 * 'keyID' thus they are not reserved bits. Therefore for MKTME
544 	 * we should still return physical address bits reported by CPUID.
545 	 */
546 	if (!boot_cpu_has(X86_FEATURE_TME) ||
547 	    WARN_ON_ONCE(boot_cpu_data.extended_cpuid_level < 0x80000008))
548 		return boot_cpu_data.x86_phys_bits;
549 
550 	return cpuid_eax(0x80000008) & 0xff;
551 }
552 
553 static void kvm_mmu_reset_all_pte_masks(void)
554 {
555 	u8 low_phys_bits;
556 
557 	shadow_user_mask = 0;
558 	shadow_accessed_mask = 0;
559 	shadow_dirty_mask = 0;
560 	shadow_nx_mask = 0;
561 	shadow_x_mask = 0;
562 	shadow_mmio_mask = 0;
563 	shadow_present_mask = 0;
564 	shadow_acc_track_mask = 0;
565 
566 	shadow_phys_bits = kvm_get_shadow_phys_bits();
567 
568 	/*
569 	 * If the CPU has 46 or less physical address bits, then set an
570 	 * appropriate mask to guard against L1TF attacks. Otherwise, it is
571 	 * assumed that the CPU is not vulnerable to L1TF.
572 	 *
573 	 * Some Intel CPUs address the L1 cache using more PA bits than are
574 	 * reported by CPUID. Use the PA width of the L1 cache when possible
575 	 * to achieve more effective mitigation, e.g. if system RAM overlaps
576 	 * the most significant bits of legal physical address space.
577 	 */
578 	shadow_nonpresent_or_rsvd_mask = 0;
579 	low_phys_bits = boot_cpu_data.x86_cache_bits;
580 	if (boot_cpu_data.x86_cache_bits <
581 	    52 - shadow_nonpresent_or_rsvd_mask_len) {
582 		shadow_nonpresent_or_rsvd_mask =
583 			rsvd_bits(boot_cpu_data.x86_cache_bits -
584 				  shadow_nonpresent_or_rsvd_mask_len,
585 				  boot_cpu_data.x86_cache_bits - 1);
586 		low_phys_bits -= shadow_nonpresent_or_rsvd_mask_len;
587 	} else
588 		WARN_ON_ONCE(boot_cpu_has_bug(X86_BUG_L1TF));
589 
590 	shadow_nonpresent_or_rsvd_lower_gfn_mask =
591 		GENMASK_ULL(low_phys_bits - 1, PAGE_SHIFT);
592 }
593 
594 static int is_cpuid_PSE36(void)
595 {
596 	return 1;
597 }
598 
599 static int is_nx(struct kvm_vcpu *vcpu)
600 {
601 	return vcpu->arch.efer & EFER_NX;
602 }
603 
604 static int is_shadow_present_pte(u64 pte)
605 {
606 	return (pte != 0) && !is_mmio_spte(pte);
607 }
608 
609 static int is_large_pte(u64 pte)
610 {
611 	return pte & PT_PAGE_SIZE_MASK;
612 }
613 
614 static int is_last_spte(u64 pte, int level)
615 {
616 	if (level == PT_PAGE_TABLE_LEVEL)
617 		return 1;
618 	if (is_large_pte(pte))
619 		return 1;
620 	return 0;
621 }
622 
623 static bool is_executable_pte(u64 spte)
624 {
625 	return (spte & (shadow_x_mask | shadow_nx_mask)) == shadow_x_mask;
626 }
627 
628 static kvm_pfn_t spte_to_pfn(u64 pte)
629 {
630 	return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
631 }
632 
633 static gfn_t pse36_gfn_delta(u32 gpte)
634 {
635 	int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
636 
637 	return (gpte & PT32_DIR_PSE36_MASK) << shift;
638 }
639 
640 #ifdef CONFIG_X86_64
641 static void __set_spte(u64 *sptep, u64 spte)
642 {
643 	WRITE_ONCE(*sptep, spte);
644 }
645 
646 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
647 {
648 	WRITE_ONCE(*sptep, spte);
649 }
650 
651 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
652 {
653 	return xchg(sptep, spte);
654 }
655 
656 static u64 __get_spte_lockless(u64 *sptep)
657 {
658 	return READ_ONCE(*sptep);
659 }
660 #else
661 union split_spte {
662 	struct {
663 		u32 spte_low;
664 		u32 spte_high;
665 	};
666 	u64 spte;
667 };
668 
669 static void count_spte_clear(u64 *sptep, u64 spte)
670 {
671 	struct kvm_mmu_page *sp =  page_header(__pa(sptep));
672 
673 	if (is_shadow_present_pte(spte))
674 		return;
675 
676 	/* Ensure the spte is completely set before we increase the count */
677 	smp_wmb();
678 	sp->clear_spte_count++;
679 }
680 
681 static void __set_spte(u64 *sptep, u64 spte)
682 {
683 	union split_spte *ssptep, sspte;
684 
685 	ssptep = (union split_spte *)sptep;
686 	sspte = (union split_spte)spte;
687 
688 	ssptep->spte_high = sspte.spte_high;
689 
690 	/*
691 	 * If we map the spte from nonpresent to present, We should store
692 	 * the high bits firstly, then set present bit, so cpu can not
693 	 * fetch this spte while we are setting the spte.
694 	 */
695 	smp_wmb();
696 
697 	WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
698 }
699 
700 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
701 {
702 	union split_spte *ssptep, sspte;
703 
704 	ssptep = (union split_spte *)sptep;
705 	sspte = (union split_spte)spte;
706 
707 	WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
708 
709 	/*
710 	 * If we map the spte from present to nonpresent, we should clear
711 	 * present bit firstly to avoid vcpu fetch the old high bits.
712 	 */
713 	smp_wmb();
714 
715 	ssptep->spte_high = sspte.spte_high;
716 	count_spte_clear(sptep, spte);
717 }
718 
719 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
720 {
721 	union split_spte *ssptep, sspte, orig;
722 
723 	ssptep = (union split_spte *)sptep;
724 	sspte = (union split_spte)spte;
725 
726 	/* xchg acts as a barrier before the setting of the high bits */
727 	orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
728 	orig.spte_high = ssptep->spte_high;
729 	ssptep->spte_high = sspte.spte_high;
730 	count_spte_clear(sptep, spte);
731 
732 	return orig.spte;
733 }
734 
735 /*
736  * The idea using the light way get the spte on x86_32 guest is from
737  * gup_get_pte (mm/gup.c).
738  *
739  * An spte tlb flush may be pending, because kvm_set_pte_rmapp
740  * coalesces them and we are running out of the MMU lock.  Therefore
741  * we need to protect against in-progress updates of the spte.
742  *
743  * Reading the spte while an update is in progress may get the old value
744  * for the high part of the spte.  The race is fine for a present->non-present
745  * change (because the high part of the spte is ignored for non-present spte),
746  * but for a present->present change we must reread the spte.
747  *
748  * All such changes are done in two steps (present->non-present and
749  * non-present->present), hence it is enough to count the number of
750  * present->non-present updates: if it changed while reading the spte,
751  * we might have hit the race.  This is done using clear_spte_count.
752  */
753 static u64 __get_spte_lockless(u64 *sptep)
754 {
755 	struct kvm_mmu_page *sp =  page_header(__pa(sptep));
756 	union split_spte spte, *orig = (union split_spte *)sptep;
757 	int count;
758 
759 retry:
760 	count = sp->clear_spte_count;
761 	smp_rmb();
762 
763 	spte.spte_low = orig->spte_low;
764 	smp_rmb();
765 
766 	spte.spte_high = orig->spte_high;
767 	smp_rmb();
768 
769 	if (unlikely(spte.spte_low != orig->spte_low ||
770 	      count != sp->clear_spte_count))
771 		goto retry;
772 
773 	return spte.spte;
774 }
775 #endif
776 
777 static bool spte_can_locklessly_be_made_writable(u64 spte)
778 {
779 	return (spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE)) ==
780 		(SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE);
781 }
782 
783 static bool spte_has_volatile_bits(u64 spte)
784 {
785 	if (!is_shadow_present_pte(spte))
786 		return false;
787 
788 	/*
789 	 * Always atomically update spte if it can be updated
790 	 * out of mmu-lock, it can ensure dirty bit is not lost,
791 	 * also, it can help us to get a stable is_writable_pte()
792 	 * to ensure tlb flush is not missed.
793 	 */
794 	if (spte_can_locklessly_be_made_writable(spte) ||
795 	    is_access_track_spte(spte))
796 		return true;
797 
798 	if (spte_ad_enabled(spte)) {
799 		if ((spte & shadow_accessed_mask) == 0 ||
800 	    	    (is_writable_pte(spte) && (spte & shadow_dirty_mask) == 0))
801 			return true;
802 	}
803 
804 	return false;
805 }
806 
807 static bool is_accessed_spte(u64 spte)
808 {
809 	u64 accessed_mask = spte_shadow_accessed_mask(spte);
810 
811 	return accessed_mask ? spte & accessed_mask
812 			     : !is_access_track_spte(spte);
813 }
814 
815 static bool is_dirty_spte(u64 spte)
816 {
817 	u64 dirty_mask = spte_shadow_dirty_mask(spte);
818 
819 	return dirty_mask ? spte & dirty_mask : spte & PT_WRITABLE_MASK;
820 }
821 
822 /* Rules for using mmu_spte_set:
823  * Set the sptep from nonpresent to present.
824  * Note: the sptep being assigned *must* be either not present
825  * or in a state where the hardware will not attempt to update
826  * the spte.
827  */
828 static void mmu_spte_set(u64 *sptep, u64 new_spte)
829 {
830 	WARN_ON(is_shadow_present_pte(*sptep));
831 	__set_spte(sptep, new_spte);
832 }
833 
834 /*
835  * Update the SPTE (excluding the PFN), but do not track changes in its
836  * accessed/dirty status.
837  */
838 static u64 mmu_spte_update_no_track(u64 *sptep, u64 new_spte)
839 {
840 	u64 old_spte = *sptep;
841 
842 	WARN_ON(!is_shadow_present_pte(new_spte));
843 
844 	if (!is_shadow_present_pte(old_spte)) {
845 		mmu_spte_set(sptep, new_spte);
846 		return old_spte;
847 	}
848 
849 	if (!spte_has_volatile_bits(old_spte))
850 		__update_clear_spte_fast(sptep, new_spte);
851 	else
852 		old_spte = __update_clear_spte_slow(sptep, new_spte);
853 
854 	WARN_ON(spte_to_pfn(old_spte) != spte_to_pfn(new_spte));
855 
856 	return old_spte;
857 }
858 
859 /* Rules for using mmu_spte_update:
860  * Update the state bits, it means the mapped pfn is not changed.
861  *
862  * Whenever we overwrite a writable spte with a read-only one we
863  * should flush remote TLBs. Otherwise rmap_write_protect
864  * will find a read-only spte, even though the writable spte
865  * might be cached on a CPU's TLB, the return value indicates this
866  * case.
867  *
868  * Returns true if the TLB needs to be flushed
869  */
870 static bool mmu_spte_update(u64 *sptep, u64 new_spte)
871 {
872 	bool flush = false;
873 	u64 old_spte = mmu_spte_update_no_track(sptep, new_spte);
874 
875 	if (!is_shadow_present_pte(old_spte))
876 		return false;
877 
878 	/*
879 	 * For the spte updated out of mmu-lock is safe, since
880 	 * we always atomically update it, see the comments in
881 	 * spte_has_volatile_bits().
882 	 */
883 	if (spte_can_locklessly_be_made_writable(old_spte) &&
884 	      !is_writable_pte(new_spte))
885 		flush = true;
886 
887 	/*
888 	 * Flush TLB when accessed/dirty states are changed in the page tables,
889 	 * to guarantee consistency between TLB and page tables.
890 	 */
891 
892 	if (is_accessed_spte(old_spte) && !is_accessed_spte(new_spte)) {
893 		flush = true;
894 		kvm_set_pfn_accessed(spte_to_pfn(old_spte));
895 	}
896 
897 	if (is_dirty_spte(old_spte) && !is_dirty_spte(new_spte)) {
898 		flush = true;
899 		kvm_set_pfn_dirty(spte_to_pfn(old_spte));
900 	}
901 
902 	return flush;
903 }
904 
905 /*
906  * Rules for using mmu_spte_clear_track_bits:
907  * It sets the sptep from present to nonpresent, and track the
908  * state bits, it is used to clear the last level sptep.
909  * Returns non-zero if the PTE was previously valid.
910  */
911 static int mmu_spte_clear_track_bits(u64 *sptep)
912 {
913 	kvm_pfn_t pfn;
914 	u64 old_spte = *sptep;
915 
916 	if (!spte_has_volatile_bits(old_spte))
917 		__update_clear_spte_fast(sptep, 0ull);
918 	else
919 		old_spte = __update_clear_spte_slow(sptep, 0ull);
920 
921 	if (!is_shadow_present_pte(old_spte))
922 		return 0;
923 
924 	pfn = spte_to_pfn(old_spte);
925 
926 	/*
927 	 * KVM does not hold the refcount of the page used by
928 	 * kvm mmu, before reclaiming the page, we should
929 	 * unmap it from mmu first.
930 	 */
931 	WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn)));
932 
933 	if (is_accessed_spte(old_spte))
934 		kvm_set_pfn_accessed(pfn);
935 
936 	if (is_dirty_spte(old_spte))
937 		kvm_set_pfn_dirty(pfn);
938 
939 	return 1;
940 }
941 
942 /*
943  * Rules for using mmu_spte_clear_no_track:
944  * Directly clear spte without caring the state bits of sptep,
945  * it is used to set the upper level spte.
946  */
947 static void mmu_spte_clear_no_track(u64 *sptep)
948 {
949 	__update_clear_spte_fast(sptep, 0ull);
950 }
951 
952 static u64 mmu_spte_get_lockless(u64 *sptep)
953 {
954 	return __get_spte_lockless(sptep);
955 }
956 
957 static u64 mark_spte_for_access_track(u64 spte)
958 {
959 	if (spte_ad_enabled(spte))
960 		return spte & ~shadow_accessed_mask;
961 
962 	if (is_access_track_spte(spte))
963 		return spte;
964 
965 	/*
966 	 * Making an Access Tracking PTE will result in removal of write access
967 	 * from the PTE. So, verify that we will be able to restore the write
968 	 * access in the fast page fault path later on.
969 	 */
970 	WARN_ONCE((spte & PT_WRITABLE_MASK) &&
971 		  !spte_can_locklessly_be_made_writable(spte),
972 		  "kvm: Writable SPTE is not locklessly dirty-trackable\n");
973 
974 	WARN_ONCE(spte & (shadow_acc_track_saved_bits_mask <<
975 			  shadow_acc_track_saved_bits_shift),
976 		  "kvm: Access Tracking saved bit locations are not zero\n");
977 
978 	spte |= (spte & shadow_acc_track_saved_bits_mask) <<
979 		shadow_acc_track_saved_bits_shift;
980 	spte &= ~shadow_acc_track_mask;
981 
982 	return spte;
983 }
984 
985 /* Restore an acc-track PTE back to a regular PTE */
986 static u64 restore_acc_track_spte(u64 spte)
987 {
988 	u64 new_spte = spte;
989 	u64 saved_bits = (spte >> shadow_acc_track_saved_bits_shift)
990 			 & shadow_acc_track_saved_bits_mask;
991 
992 	WARN_ON_ONCE(spte_ad_enabled(spte));
993 	WARN_ON_ONCE(!is_access_track_spte(spte));
994 
995 	new_spte &= ~shadow_acc_track_mask;
996 	new_spte &= ~(shadow_acc_track_saved_bits_mask <<
997 		      shadow_acc_track_saved_bits_shift);
998 	new_spte |= saved_bits;
999 
1000 	return new_spte;
1001 }
1002 
1003 /* Returns the Accessed status of the PTE and resets it at the same time. */
1004 static bool mmu_spte_age(u64 *sptep)
1005 {
1006 	u64 spte = mmu_spte_get_lockless(sptep);
1007 
1008 	if (!is_accessed_spte(spte))
1009 		return false;
1010 
1011 	if (spte_ad_enabled(spte)) {
1012 		clear_bit((ffs(shadow_accessed_mask) - 1),
1013 			  (unsigned long *)sptep);
1014 	} else {
1015 		/*
1016 		 * Capture the dirty status of the page, so that it doesn't get
1017 		 * lost when the SPTE is marked for access tracking.
1018 		 */
1019 		if (is_writable_pte(spte))
1020 			kvm_set_pfn_dirty(spte_to_pfn(spte));
1021 
1022 		spte = mark_spte_for_access_track(spte);
1023 		mmu_spte_update_no_track(sptep, spte);
1024 	}
1025 
1026 	return true;
1027 }
1028 
1029 static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
1030 {
1031 	/*
1032 	 * Prevent page table teardown by making any free-er wait during
1033 	 * kvm_flush_remote_tlbs() IPI to all active vcpus.
1034 	 */
1035 	local_irq_disable();
1036 
1037 	/*
1038 	 * Make sure a following spte read is not reordered ahead of the write
1039 	 * to vcpu->mode.
1040 	 */
1041 	smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES);
1042 }
1043 
1044 static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
1045 {
1046 	/*
1047 	 * Make sure the write to vcpu->mode is not reordered in front of
1048 	 * reads to sptes.  If it does, kvm_mmu_commit_zap_page() can see us
1049 	 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
1050 	 */
1051 	smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE);
1052 	local_irq_enable();
1053 }
1054 
1055 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
1056 				  struct kmem_cache *base_cache, int min)
1057 {
1058 	void *obj;
1059 
1060 	if (cache->nobjs >= min)
1061 		return 0;
1062 	while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
1063 		obj = kmem_cache_zalloc(base_cache, GFP_KERNEL_ACCOUNT);
1064 		if (!obj)
1065 			return cache->nobjs >= min ? 0 : -ENOMEM;
1066 		cache->objects[cache->nobjs++] = obj;
1067 	}
1068 	return 0;
1069 }
1070 
1071 static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
1072 {
1073 	return cache->nobjs;
1074 }
1075 
1076 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
1077 				  struct kmem_cache *cache)
1078 {
1079 	while (mc->nobjs)
1080 		kmem_cache_free(cache, mc->objects[--mc->nobjs]);
1081 }
1082 
1083 static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
1084 				       int min)
1085 {
1086 	void *page;
1087 
1088 	if (cache->nobjs >= min)
1089 		return 0;
1090 	while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
1091 		page = (void *)__get_free_page(GFP_KERNEL_ACCOUNT);
1092 		if (!page)
1093 			return cache->nobjs >= min ? 0 : -ENOMEM;
1094 		cache->objects[cache->nobjs++] = page;
1095 	}
1096 	return 0;
1097 }
1098 
1099 static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
1100 {
1101 	while (mc->nobjs)
1102 		free_page((unsigned long)mc->objects[--mc->nobjs]);
1103 }
1104 
1105 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
1106 {
1107 	int r;
1108 
1109 	r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
1110 				   pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
1111 	if (r)
1112 		goto out;
1113 	r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
1114 	if (r)
1115 		goto out;
1116 	r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
1117 				   mmu_page_header_cache, 4);
1118 out:
1119 	return r;
1120 }
1121 
1122 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
1123 {
1124 	mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
1125 				pte_list_desc_cache);
1126 	mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
1127 	mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
1128 				mmu_page_header_cache);
1129 }
1130 
1131 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
1132 {
1133 	void *p;
1134 
1135 	BUG_ON(!mc->nobjs);
1136 	p = mc->objects[--mc->nobjs];
1137 	return p;
1138 }
1139 
1140 static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
1141 {
1142 	return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
1143 }
1144 
1145 static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
1146 {
1147 	kmem_cache_free(pte_list_desc_cache, pte_list_desc);
1148 }
1149 
1150 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
1151 {
1152 	if (!sp->role.direct)
1153 		return sp->gfns[index];
1154 
1155 	return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
1156 }
1157 
1158 static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
1159 {
1160 	if (!sp->role.direct) {
1161 		sp->gfns[index] = gfn;
1162 		return;
1163 	}
1164 
1165 	if (WARN_ON(gfn != kvm_mmu_page_get_gfn(sp, index)))
1166 		pr_err_ratelimited("gfn mismatch under direct page %llx "
1167 				   "(expected %llx, got %llx)\n",
1168 				   sp->gfn,
1169 				   kvm_mmu_page_get_gfn(sp, index), gfn);
1170 }
1171 
1172 /*
1173  * Return the pointer to the large page information for a given gfn,
1174  * handling slots that are not large page aligned.
1175  */
1176 static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
1177 					      struct kvm_memory_slot *slot,
1178 					      int level)
1179 {
1180 	unsigned long idx;
1181 
1182 	idx = gfn_to_index(gfn, slot->base_gfn, level);
1183 	return &slot->arch.lpage_info[level - 2][idx];
1184 }
1185 
1186 static void update_gfn_disallow_lpage_count(struct kvm_memory_slot *slot,
1187 					    gfn_t gfn, int count)
1188 {
1189 	struct kvm_lpage_info *linfo;
1190 	int i;
1191 
1192 	for (i = PT_DIRECTORY_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
1193 		linfo = lpage_info_slot(gfn, slot, i);
1194 		linfo->disallow_lpage += count;
1195 		WARN_ON(linfo->disallow_lpage < 0);
1196 	}
1197 }
1198 
1199 void kvm_mmu_gfn_disallow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
1200 {
1201 	update_gfn_disallow_lpage_count(slot, gfn, 1);
1202 }
1203 
1204 void kvm_mmu_gfn_allow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
1205 {
1206 	update_gfn_disallow_lpage_count(slot, gfn, -1);
1207 }
1208 
1209 static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
1210 {
1211 	struct kvm_memslots *slots;
1212 	struct kvm_memory_slot *slot;
1213 	gfn_t gfn;
1214 
1215 	kvm->arch.indirect_shadow_pages++;
1216 	gfn = sp->gfn;
1217 	slots = kvm_memslots_for_spte_role(kvm, sp->role);
1218 	slot = __gfn_to_memslot(slots, gfn);
1219 
1220 	/* the non-leaf shadow pages are keeping readonly. */
1221 	if (sp->role.level > PT_PAGE_TABLE_LEVEL)
1222 		return kvm_slot_page_track_add_page(kvm, slot, gfn,
1223 						    KVM_PAGE_TRACK_WRITE);
1224 
1225 	kvm_mmu_gfn_disallow_lpage(slot, gfn);
1226 }
1227 
1228 static void account_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1229 {
1230 	if (sp->lpage_disallowed)
1231 		return;
1232 
1233 	++kvm->stat.nx_lpage_splits;
1234 	list_add_tail(&sp->lpage_disallowed_link,
1235 		      &kvm->arch.lpage_disallowed_mmu_pages);
1236 	sp->lpage_disallowed = true;
1237 }
1238 
1239 static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
1240 {
1241 	struct kvm_memslots *slots;
1242 	struct kvm_memory_slot *slot;
1243 	gfn_t gfn;
1244 
1245 	kvm->arch.indirect_shadow_pages--;
1246 	gfn = sp->gfn;
1247 	slots = kvm_memslots_for_spte_role(kvm, sp->role);
1248 	slot = __gfn_to_memslot(slots, gfn);
1249 	if (sp->role.level > PT_PAGE_TABLE_LEVEL)
1250 		return kvm_slot_page_track_remove_page(kvm, slot, gfn,
1251 						       KVM_PAGE_TRACK_WRITE);
1252 
1253 	kvm_mmu_gfn_allow_lpage(slot, gfn);
1254 }
1255 
1256 static void unaccount_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1257 {
1258 	--kvm->stat.nx_lpage_splits;
1259 	sp->lpage_disallowed = false;
1260 	list_del(&sp->lpage_disallowed_link);
1261 }
1262 
1263 static bool __mmu_gfn_lpage_is_disallowed(gfn_t gfn, int level,
1264 					  struct kvm_memory_slot *slot)
1265 {
1266 	struct kvm_lpage_info *linfo;
1267 
1268 	if (slot) {
1269 		linfo = lpage_info_slot(gfn, slot, level);
1270 		return !!linfo->disallow_lpage;
1271 	}
1272 
1273 	return true;
1274 }
1275 
1276 static bool mmu_gfn_lpage_is_disallowed(struct kvm_vcpu *vcpu, gfn_t gfn,
1277 					int level)
1278 {
1279 	struct kvm_memory_slot *slot;
1280 
1281 	slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1282 	return __mmu_gfn_lpage_is_disallowed(gfn, level, slot);
1283 }
1284 
1285 static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
1286 {
1287 	unsigned long page_size;
1288 	int i, ret = 0;
1289 
1290 	page_size = kvm_host_page_size(kvm, gfn);
1291 
1292 	for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
1293 		if (page_size >= KVM_HPAGE_SIZE(i))
1294 			ret = i;
1295 		else
1296 			break;
1297 	}
1298 
1299 	return ret;
1300 }
1301 
1302 static inline bool memslot_valid_for_gpte(struct kvm_memory_slot *slot,
1303 					  bool no_dirty_log)
1304 {
1305 	if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1306 		return false;
1307 	if (no_dirty_log && slot->dirty_bitmap)
1308 		return false;
1309 
1310 	return true;
1311 }
1312 
1313 static struct kvm_memory_slot *
1314 gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
1315 			    bool no_dirty_log)
1316 {
1317 	struct kvm_memory_slot *slot;
1318 
1319 	slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1320 	if (!memslot_valid_for_gpte(slot, no_dirty_log))
1321 		slot = NULL;
1322 
1323 	return slot;
1324 }
1325 
1326 static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn,
1327 			 bool *force_pt_level)
1328 {
1329 	int host_level, level, max_level;
1330 	struct kvm_memory_slot *slot;
1331 
1332 	if (unlikely(*force_pt_level))
1333 		return PT_PAGE_TABLE_LEVEL;
1334 
1335 	slot = kvm_vcpu_gfn_to_memslot(vcpu, large_gfn);
1336 	*force_pt_level = !memslot_valid_for_gpte(slot, true);
1337 	if (unlikely(*force_pt_level))
1338 		return PT_PAGE_TABLE_LEVEL;
1339 
1340 	host_level = host_mapping_level(vcpu->kvm, large_gfn);
1341 
1342 	if (host_level == PT_PAGE_TABLE_LEVEL)
1343 		return host_level;
1344 
1345 	max_level = min(kvm_x86_ops->get_lpage_level(), host_level);
1346 
1347 	for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
1348 		if (__mmu_gfn_lpage_is_disallowed(large_gfn, level, slot))
1349 			break;
1350 
1351 	return level - 1;
1352 }
1353 
1354 /*
1355  * About rmap_head encoding:
1356  *
1357  * If the bit zero of rmap_head->val is clear, then it points to the only spte
1358  * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct
1359  * pte_list_desc containing more mappings.
1360  */
1361 
1362 /*
1363  * Returns the number of pointers in the rmap chain, not counting the new one.
1364  */
1365 static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
1366 			struct kvm_rmap_head *rmap_head)
1367 {
1368 	struct pte_list_desc *desc;
1369 	int i, count = 0;
1370 
1371 	if (!rmap_head->val) {
1372 		rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
1373 		rmap_head->val = (unsigned long)spte;
1374 	} else if (!(rmap_head->val & 1)) {
1375 		rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
1376 		desc = mmu_alloc_pte_list_desc(vcpu);
1377 		desc->sptes[0] = (u64 *)rmap_head->val;
1378 		desc->sptes[1] = spte;
1379 		rmap_head->val = (unsigned long)desc | 1;
1380 		++count;
1381 	} else {
1382 		rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
1383 		desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1384 		while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
1385 			desc = desc->more;
1386 			count += PTE_LIST_EXT;
1387 		}
1388 		if (desc->sptes[PTE_LIST_EXT-1]) {
1389 			desc->more = mmu_alloc_pte_list_desc(vcpu);
1390 			desc = desc->more;
1391 		}
1392 		for (i = 0; desc->sptes[i]; ++i)
1393 			++count;
1394 		desc->sptes[i] = spte;
1395 	}
1396 	return count;
1397 }
1398 
1399 static void
1400 pte_list_desc_remove_entry(struct kvm_rmap_head *rmap_head,
1401 			   struct pte_list_desc *desc, int i,
1402 			   struct pte_list_desc *prev_desc)
1403 {
1404 	int j;
1405 
1406 	for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
1407 		;
1408 	desc->sptes[i] = desc->sptes[j];
1409 	desc->sptes[j] = NULL;
1410 	if (j != 0)
1411 		return;
1412 	if (!prev_desc && !desc->more)
1413 		rmap_head->val = (unsigned long)desc->sptes[0];
1414 	else
1415 		if (prev_desc)
1416 			prev_desc->more = desc->more;
1417 		else
1418 			rmap_head->val = (unsigned long)desc->more | 1;
1419 	mmu_free_pte_list_desc(desc);
1420 }
1421 
1422 static void __pte_list_remove(u64 *spte, struct kvm_rmap_head *rmap_head)
1423 {
1424 	struct pte_list_desc *desc;
1425 	struct pte_list_desc *prev_desc;
1426 	int i;
1427 
1428 	if (!rmap_head->val) {
1429 		pr_err("%s: %p 0->BUG\n", __func__, spte);
1430 		BUG();
1431 	} else if (!(rmap_head->val & 1)) {
1432 		rmap_printk("%s:  %p 1->0\n", __func__, spte);
1433 		if ((u64 *)rmap_head->val != spte) {
1434 			pr_err("%s:  %p 1->BUG\n", __func__, spte);
1435 			BUG();
1436 		}
1437 		rmap_head->val = 0;
1438 	} else {
1439 		rmap_printk("%s:  %p many->many\n", __func__, spte);
1440 		desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1441 		prev_desc = NULL;
1442 		while (desc) {
1443 			for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i) {
1444 				if (desc->sptes[i] == spte) {
1445 					pte_list_desc_remove_entry(rmap_head,
1446 							desc, i, prev_desc);
1447 					return;
1448 				}
1449 			}
1450 			prev_desc = desc;
1451 			desc = desc->more;
1452 		}
1453 		pr_err("%s: %p many->many\n", __func__, spte);
1454 		BUG();
1455 	}
1456 }
1457 
1458 static void pte_list_remove(struct kvm_rmap_head *rmap_head, u64 *sptep)
1459 {
1460 	mmu_spte_clear_track_bits(sptep);
1461 	__pte_list_remove(sptep, rmap_head);
1462 }
1463 
1464 static struct kvm_rmap_head *__gfn_to_rmap(gfn_t gfn, int level,
1465 					   struct kvm_memory_slot *slot)
1466 {
1467 	unsigned long idx;
1468 
1469 	idx = gfn_to_index(gfn, slot->base_gfn, level);
1470 	return &slot->arch.rmap[level - PT_PAGE_TABLE_LEVEL][idx];
1471 }
1472 
1473 static struct kvm_rmap_head *gfn_to_rmap(struct kvm *kvm, gfn_t gfn,
1474 					 struct kvm_mmu_page *sp)
1475 {
1476 	struct kvm_memslots *slots;
1477 	struct kvm_memory_slot *slot;
1478 
1479 	slots = kvm_memslots_for_spte_role(kvm, sp->role);
1480 	slot = __gfn_to_memslot(slots, gfn);
1481 	return __gfn_to_rmap(gfn, sp->role.level, slot);
1482 }
1483 
1484 static bool rmap_can_add(struct kvm_vcpu *vcpu)
1485 {
1486 	struct kvm_mmu_memory_cache *cache;
1487 
1488 	cache = &vcpu->arch.mmu_pte_list_desc_cache;
1489 	return mmu_memory_cache_free_objects(cache);
1490 }
1491 
1492 static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1493 {
1494 	struct kvm_mmu_page *sp;
1495 	struct kvm_rmap_head *rmap_head;
1496 
1497 	sp = page_header(__pa(spte));
1498 	kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
1499 	rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
1500 	return pte_list_add(vcpu, spte, rmap_head);
1501 }
1502 
1503 static void rmap_remove(struct kvm *kvm, u64 *spte)
1504 {
1505 	struct kvm_mmu_page *sp;
1506 	gfn_t gfn;
1507 	struct kvm_rmap_head *rmap_head;
1508 
1509 	sp = page_header(__pa(spte));
1510 	gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
1511 	rmap_head = gfn_to_rmap(kvm, gfn, sp);
1512 	__pte_list_remove(spte, rmap_head);
1513 }
1514 
1515 /*
1516  * Used by the following functions to iterate through the sptes linked by a
1517  * rmap.  All fields are private and not assumed to be used outside.
1518  */
1519 struct rmap_iterator {
1520 	/* private fields */
1521 	struct pte_list_desc *desc;	/* holds the sptep if not NULL */
1522 	int pos;			/* index of the sptep */
1523 };
1524 
1525 /*
1526  * Iteration must be started by this function.  This should also be used after
1527  * removing/dropping sptes from the rmap link because in such cases the
1528  * information in the itererator may not be valid.
1529  *
1530  * Returns sptep if found, NULL otherwise.
1531  */
1532 static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head,
1533 			   struct rmap_iterator *iter)
1534 {
1535 	u64 *sptep;
1536 
1537 	if (!rmap_head->val)
1538 		return NULL;
1539 
1540 	if (!(rmap_head->val & 1)) {
1541 		iter->desc = NULL;
1542 		sptep = (u64 *)rmap_head->val;
1543 		goto out;
1544 	}
1545 
1546 	iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1547 	iter->pos = 0;
1548 	sptep = iter->desc->sptes[iter->pos];
1549 out:
1550 	BUG_ON(!is_shadow_present_pte(*sptep));
1551 	return sptep;
1552 }
1553 
1554 /*
1555  * Must be used with a valid iterator: e.g. after rmap_get_first().
1556  *
1557  * Returns sptep if found, NULL otherwise.
1558  */
1559 static u64 *rmap_get_next(struct rmap_iterator *iter)
1560 {
1561 	u64 *sptep;
1562 
1563 	if (iter->desc) {
1564 		if (iter->pos < PTE_LIST_EXT - 1) {
1565 			++iter->pos;
1566 			sptep = iter->desc->sptes[iter->pos];
1567 			if (sptep)
1568 				goto out;
1569 		}
1570 
1571 		iter->desc = iter->desc->more;
1572 
1573 		if (iter->desc) {
1574 			iter->pos = 0;
1575 			/* desc->sptes[0] cannot be NULL */
1576 			sptep = iter->desc->sptes[iter->pos];
1577 			goto out;
1578 		}
1579 	}
1580 
1581 	return NULL;
1582 out:
1583 	BUG_ON(!is_shadow_present_pte(*sptep));
1584 	return sptep;
1585 }
1586 
1587 #define for_each_rmap_spte(_rmap_head_, _iter_, _spte_)			\
1588 	for (_spte_ = rmap_get_first(_rmap_head_, _iter_);		\
1589 	     _spte_; _spte_ = rmap_get_next(_iter_))
1590 
1591 static void drop_spte(struct kvm *kvm, u64 *sptep)
1592 {
1593 	if (mmu_spte_clear_track_bits(sptep))
1594 		rmap_remove(kvm, sptep);
1595 }
1596 
1597 
1598 static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
1599 {
1600 	if (is_large_pte(*sptep)) {
1601 		WARN_ON(page_header(__pa(sptep))->role.level ==
1602 			PT_PAGE_TABLE_LEVEL);
1603 		drop_spte(kvm, sptep);
1604 		--kvm->stat.lpages;
1605 		return true;
1606 	}
1607 
1608 	return false;
1609 }
1610 
1611 static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1612 {
1613 	if (__drop_large_spte(vcpu->kvm, sptep)) {
1614 		struct kvm_mmu_page *sp = page_header(__pa(sptep));
1615 
1616 		kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn,
1617 			KVM_PAGES_PER_HPAGE(sp->role.level));
1618 	}
1619 }
1620 
1621 /*
1622  * Write-protect on the specified @sptep, @pt_protect indicates whether
1623  * spte write-protection is caused by protecting shadow page table.
1624  *
1625  * Note: write protection is difference between dirty logging and spte
1626  * protection:
1627  * - for dirty logging, the spte can be set to writable at anytime if
1628  *   its dirty bitmap is properly set.
1629  * - for spte protection, the spte can be writable only after unsync-ing
1630  *   shadow page.
1631  *
1632  * Return true if tlb need be flushed.
1633  */
1634 static bool spte_write_protect(u64 *sptep, bool pt_protect)
1635 {
1636 	u64 spte = *sptep;
1637 
1638 	if (!is_writable_pte(spte) &&
1639 	      !(pt_protect && spte_can_locklessly_be_made_writable(spte)))
1640 		return false;
1641 
1642 	rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);
1643 
1644 	if (pt_protect)
1645 		spte &= ~SPTE_MMU_WRITEABLE;
1646 	spte = spte & ~PT_WRITABLE_MASK;
1647 
1648 	return mmu_spte_update(sptep, spte);
1649 }
1650 
1651 static bool __rmap_write_protect(struct kvm *kvm,
1652 				 struct kvm_rmap_head *rmap_head,
1653 				 bool pt_protect)
1654 {
1655 	u64 *sptep;
1656 	struct rmap_iterator iter;
1657 	bool flush = false;
1658 
1659 	for_each_rmap_spte(rmap_head, &iter, sptep)
1660 		flush |= spte_write_protect(sptep, pt_protect);
1661 
1662 	return flush;
1663 }
1664 
1665 static bool spte_clear_dirty(u64 *sptep)
1666 {
1667 	u64 spte = *sptep;
1668 
1669 	rmap_printk("rmap_clear_dirty: spte %p %llx\n", sptep, *sptep);
1670 
1671 	MMU_WARN_ON(!spte_ad_enabled(spte));
1672 	spte &= ~shadow_dirty_mask;
1673 	return mmu_spte_update(sptep, spte);
1674 }
1675 
1676 static bool spte_wrprot_for_clear_dirty(u64 *sptep)
1677 {
1678 	bool was_writable = test_and_clear_bit(PT_WRITABLE_SHIFT,
1679 					       (unsigned long *)sptep);
1680 	if (was_writable && !spte_ad_enabled(*sptep))
1681 		kvm_set_pfn_dirty(spte_to_pfn(*sptep));
1682 
1683 	return was_writable;
1684 }
1685 
1686 /*
1687  * Gets the GFN ready for another round of dirty logging by clearing the
1688  *	- D bit on ad-enabled SPTEs, and
1689  *	- W bit on ad-disabled SPTEs.
1690  * Returns true iff any D or W bits were cleared.
1691  */
1692 static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1693 {
1694 	u64 *sptep;
1695 	struct rmap_iterator iter;
1696 	bool flush = false;
1697 
1698 	for_each_rmap_spte(rmap_head, &iter, sptep)
1699 		if (spte_ad_need_write_protect(*sptep))
1700 			flush |= spte_wrprot_for_clear_dirty(sptep);
1701 		else
1702 			flush |= spte_clear_dirty(sptep);
1703 
1704 	return flush;
1705 }
1706 
1707 static bool spte_set_dirty(u64 *sptep)
1708 {
1709 	u64 spte = *sptep;
1710 
1711 	rmap_printk("rmap_set_dirty: spte %p %llx\n", sptep, *sptep);
1712 
1713 	/*
1714 	 * Similar to the !kvm_x86_ops->slot_disable_log_dirty case,
1715 	 * do not bother adding back write access to pages marked
1716 	 * SPTE_AD_WRPROT_ONLY_MASK.
1717 	 */
1718 	spte |= shadow_dirty_mask;
1719 
1720 	return mmu_spte_update(sptep, spte);
1721 }
1722 
1723 static bool __rmap_set_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1724 {
1725 	u64 *sptep;
1726 	struct rmap_iterator iter;
1727 	bool flush = false;
1728 
1729 	for_each_rmap_spte(rmap_head, &iter, sptep)
1730 		if (spte_ad_enabled(*sptep))
1731 			flush |= spte_set_dirty(sptep);
1732 
1733 	return flush;
1734 }
1735 
1736 /**
1737  * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1738  * @kvm: kvm instance
1739  * @slot: slot to protect
1740  * @gfn_offset: start of the BITS_PER_LONG pages we care about
1741  * @mask: indicates which pages we should protect
1742  *
1743  * Used when we do not need to care about huge page mappings: e.g. during dirty
1744  * logging we do not have any such mappings.
1745  */
1746 static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1747 				     struct kvm_memory_slot *slot,
1748 				     gfn_t gfn_offset, unsigned long mask)
1749 {
1750 	struct kvm_rmap_head *rmap_head;
1751 
1752 	while (mask) {
1753 		rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1754 					  PT_PAGE_TABLE_LEVEL, slot);
1755 		__rmap_write_protect(kvm, rmap_head, false);
1756 
1757 		/* clear the first set bit */
1758 		mask &= mask - 1;
1759 	}
1760 }
1761 
1762 /**
1763  * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages, or write
1764  * protect the page if the D-bit isn't supported.
1765  * @kvm: kvm instance
1766  * @slot: slot to clear D-bit
1767  * @gfn_offset: start of the BITS_PER_LONG pages we care about
1768  * @mask: indicates which pages we should clear D-bit
1769  *
1770  * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap.
1771  */
1772 void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
1773 				     struct kvm_memory_slot *slot,
1774 				     gfn_t gfn_offset, unsigned long mask)
1775 {
1776 	struct kvm_rmap_head *rmap_head;
1777 
1778 	while (mask) {
1779 		rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1780 					  PT_PAGE_TABLE_LEVEL, slot);
1781 		__rmap_clear_dirty(kvm, rmap_head);
1782 
1783 		/* clear the first set bit */
1784 		mask &= mask - 1;
1785 	}
1786 }
1787 EXPORT_SYMBOL_GPL(kvm_mmu_clear_dirty_pt_masked);
1788 
1789 /**
1790  * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
1791  * PT level pages.
1792  *
1793  * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
1794  * enable dirty logging for them.
1795  *
1796  * Used when we do not need to care about huge page mappings: e.g. during dirty
1797  * logging we do not have any such mappings.
1798  */
1799 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1800 				struct kvm_memory_slot *slot,
1801 				gfn_t gfn_offset, unsigned long mask)
1802 {
1803 	if (kvm_x86_ops->enable_log_dirty_pt_masked)
1804 		kvm_x86_ops->enable_log_dirty_pt_masked(kvm, slot, gfn_offset,
1805 				mask);
1806 	else
1807 		kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
1808 }
1809 
1810 /**
1811  * kvm_arch_write_log_dirty - emulate dirty page logging
1812  * @vcpu: Guest mode vcpu
1813  *
1814  * Emulate arch specific page modification logging for the
1815  * nested hypervisor
1816  */
1817 int kvm_arch_write_log_dirty(struct kvm_vcpu *vcpu)
1818 {
1819 	if (kvm_x86_ops->write_log_dirty)
1820 		return kvm_x86_ops->write_log_dirty(vcpu);
1821 
1822 	return 0;
1823 }
1824 
1825 bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
1826 				    struct kvm_memory_slot *slot, u64 gfn)
1827 {
1828 	struct kvm_rmap_head *rmap_head;
1829 	int i;
1830 	bool write_protected = false;
1831 
1832 	for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
1833 		rmap_head = __gfn_to_rmap(gfn, i, slot);
1834 		write_protected |= __rmap_write_protect(kvm, rmap_head, true);
1835 	}
1836 
1837 	return write_protected;
1838 }
1839 
1840 static bool rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn)
1841 {
1842 	struct kvm_memory_slot *slot;
1843 
1844 	slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1845 	return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn);
1846 }
1847 
1848 static bool kvm_zap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1849 {
1850 	u64 *sptep;
1851 	struct rmap_iterator iter;
1852 	bool flush = false;
1853 
1854 	while ((sptep = rmap_get_first(rmap_head, &iter))) {
1855 		rmap_printk("%s: spte %p %llx.\n", __func__, sptep, *sptep);
1856 
1857 		pte_list_remove(rmap_head, sptep);
1858 		flush = true;
1859 	}
1860 
1861 	return flush;
1862 }
1863 
1864 static int kvm_unmap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1865 			   struct kvm_memory_slot *slot, gfn_t gfn, int level,
1866 			   unsigned long data)
1867 {
1868 	return kvm_zap_rmapp(kvm, rmap_head);
1869 }
1870 
1871 static int kvm_set_pte_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1872 			     struct kvm_memory_slot *slot, gfn_t gfn, int level,
1873 			     unsigned long data)
1874 {
1875 	u64 *sptep;
1876 	struct rmap_iterator iter;
1877 	int need_flush = 0;
1878 	u64 new_spte;
1879 	pte_t *ptep = (pte_t *)data;
1880 	kvm_pfn_t new_pfn;
1881 
1882 	WARN_ON(pte_huge(*ptep));
1883 	new_pfn = pte_pfn(*ptep);
1884 
1885 restart:
1886 	for_each_rmap_spte(rmap_head, &iter, sptep) {
1887 		rmap_printk("kvm_set_pte_rmapp: spte %p %llx gfn %llx (%d)\n",
1888 			    sptep, *sptep, gfn, level);
1889 
1890 		need_flush = 1;
1891 
1892 		if (pte_write(*ptep)) {
1893 			pte_list_remove(rmap_head, sptep);
1894 			goto restart;
1895 		} else {
1896 			new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
1897 			new_spte |= (u64)new_pfn << PAGE_SHIFT;
1898 
1899 			new_spte &= ~PT_WRITABLE_MASK;
1900 			new_spte &= ~SPTE_HOST_WRITEABLE;
1901 
1902 			new_spte = mark_spte_for_access_track(new_spte);
1903 
1904 			mmu_spte_clear_track_bits(sptep);
1905 			mmu_spte_set(sptep, new_spte);
1906 		}
1907 	}
1908 
1909 	if (need_flush && kvm_available_flush_tlb_with_range()) {
1910 		kvm_flush_remote_tlbs_with_address(kvm, gfn, 1);
1911 		return 0;
1912 	}
1913 
1914 	return need_flush;
1915 }
1916 
1917 struct slot_rmap_walk_iterator {
1918 	/* input fields. */
1919 	struct kvm_memory_slot *slot;
1920 	gfn_t start_gfn;
1921 	gfn_t end_gfn;
1922 	int start_level;
1923 	int end_level;
1924 
1925 	/* output fields. */
1926 	gfn_t gfn;
1927 	struct kvm_rmap_head *rmap;
1928 	int level;
1929 
1930 	/* private field. */
1931 	struct kvm_rmap_head *end_rmap;
1932 };
1933 
1934 static void
1935 rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level)
1936 {
1937 	iterator->level = level;
1938 	iterator->gfn = iterator->start_gfn;
1939 	iterator->rmap = __gfn_to_rmap(iterator->gfn, level, iterator->slot);
1940 	iterator->end_rmap = __gfn_to_rmap(iterator->end_gfn, level,
1941 					   iterator->slot);
1942 }
1943 
1944 static void
1945 slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator,
1946 		    struct kvm_memory_slot *slot, int start_level,
1947 		    int end_level, gfn_t start_gfn, gfn_t end_gfn)
1948 {
1949 	iterator->slot = slot;
1950 	iterator->start_level = start_level;
1951 	iterator->end_level = end_level;
1952 	iterator->start_gfn = start_gfn;
1953 	iterator->end_gfn = end_gfn;
1954 
1955 	rmap_walk_init_level(iterator, iterator->start_level);
1956 }
1957 
1958 static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator)
1959 {
1960 	return !!iterator->rmap;
1961 }
1962 
1963 static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
1964 {
1965 	if (++iterator->rmap <= iterator->end_rmap) {
1966 		iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level));
1967 		return;
1968 	}
1969 
1970 	if (++iterator->level > iterator->end_level) {
1971 		iterator->rmap = NULL;
1972 		return;
1973 	}
1974 
1975 	rmap_walk_init_level(iterator, iterator->level);
1976 }
1977 
1978 #define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_,	\
1979 	   _start_gfn, _end_gfn, _iter_)				\
1980 	for (slot_rmap_walk_init(_iter_, _slot_, _start_level_,		\
1981 				 _end_level_, _start_gfn, _end_gfn);	\
1982 	     slot_rmap_walk_okay(_iter_);				\
1983 	     slot_rmap_walk_next(_iter_))
1984 
1985 static int kvm_handle_hva_range(struct kvm *kvm,
1986 				unsigned long start,
1987 				unsigned long end,
1988 				unsigned long data,
1989 				int (*handler)(struct kvm *kvm,
1990 					       struct kvm_rmap_head *rmap_head,
1991 					       struct kvm_memory_slot *slot,
1992 					       gfn_t gfn,
1993 					       int level,
1994 					       unsigned long data))
1995 {
1996 	struct kvm_memslots *slots;
1997 	struct kvm_memory_slot *memslot;
1998 	struct slot_rmap_walk_iterator iterator;
1999 	int ret = 0;
2000 	int i;
2001 
2002 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
2003 		slots = __kvm_memslots(kvm, i);
2004 		kvm_for_each_memslot(memslot, slots) {
2005 			unsigned long hva_start, hva_end;
2006 			gfn_t gfn_start, gfn_end;
2007 
2008 			hva_start = max(start, memslot->userspace_addr);
2009 			hva_end = min(end, memslot->userspace_addr +
2010 				      (memslot->npages << PAGE_SHIFT));
2011 			if (hva_start >= hva_end)
2012 				continue;
2013 			/*
2014 			 * {gfn(page) | page intersects with [hva_start, hva_end)} =
2015 			 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
2016 			 */
2017 			gfn_start = hva_to_gfn_memslot(hva_start, memslot);
2018 			gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
2019 
2020 			for_each_slot_rmap_range(memslot, PT_PAGE_TABLE_LEVEL,
2021 						 PT_MAX_HUGEPAGE_LEVEL,
2022 						 gfn_start, gfn_end - 1,
2023 						 &iterator)
2024 				ret |= handler(kvm, iterator.rmap, memslot,
2025 					       iterator.gfn, iterator.level, data);
2026 		}
2027 	}
2028 
2029 	return ret;
2030 }
2031 
2032 static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
2033 			  unsigned long data,
2034 			  int (*handler)(struct kvm *kvm,
2035 					 struct kvm_rmap_head *rmap_head,
2036 					 struct kvm_memory_slot *slot,
2037 					 gfn_t gfn, int level,
2038 					 unsigned long data))
2039 {
2040 	return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
2041 }
2042 
2043 int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
2044 {
2045 	return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
2046 }
2047 
2048 int kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
2049 {
2050 	return kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
2051 }
2052 
2053 static int kvm_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
2054 			 struct kvm_memory_slot *slot, gfn_t gfn, int level,
2055 			 unsigned long data)
2056 {
2057 	u64 *sptep;
2058 	struct rmap_iterator uninitialized_var(iter);
2059 	int young = 0;
2060 
2061 	for_each_rmap_spte(rmap_head, &iter, sptep)
2062 		young |= mmu_spte_age(sptep);
2063 
2064 	trace_kvm_age_page(gfn, level, slot, young);
2065 	return young;
2066 }
2067 
2068 static int kvm_test_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
2069 			      struct kvm_memory_slot *slot, gfn_t gfn,
2070 			      int level, unsigned long data)
2071 {
2072 	u64 *sptep;
2073 	struct rmap_iterator iter;
2074 
2075 	for_each_rmap_spte(rmap_head, &iter, sptep)
2076 		if (is_accessed_spte(*sptep))
2077 			return 1;
2078 	return 0;
2079 }
2080 
2081 #define RMAP_RECYCLE_THRESHOLD 1000
2082 
2083 static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
2084 {
2085 	struct kvm_rmap_head *rmap_head;
2086 	struct kvm_mmu_page *sp;
2087 
2088 	sp = page_header(__pa(spte));
2089 
2090 	rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
2091 
2092 	kvm_unmap_rmapp(vcpu->kvm, rmap_head, NULL, gfn, sp->role.level, 0);
2093 	kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn,
2094 			KVM_PAGES_PER_HPAGE(sp->role.level));
2095 }
2096 
2097 int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
2098 {
2099 	return kvm_handle_hva_range(kvm, start, end, 0, kvm_age_rmapp);
2100 }
2101 
2102 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
2103 {
2104 	return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
2105 }
2106 
2107 #ifdef MMU_DEBUG
2108 static int is_empty_shadow_page(u64 *spt)
2109 {
2110 	u64 *pos;
2111 	u64 *end;
2112 
2113 	for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
2114 		if (is_shadow_present_pte(*pos)) {
2115 			printk(KERN_ERR "%s: %p %llx\n", __func__,
2116 			       pos, *pos);
2117 			return 0;
2118 		}
2119 	return 1;
2120 }
2121 #endif
2122 
2123 /*
2124  * This value is the sum of all of the kvm instances's
2125  * kvm->arch.n_used_mmu_pages values.  We need a global,
2126  * aggregate version in order to make the slab shrinker
2127  * faster
2128  */
2129 static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, unsigned long nr)
2130 {
2131 	kvm->arch.n_used_mmu_pages += nr;
2132 	percpu_counter_add(&kvm_total_used_mmu_pages, nr);
2133 }
2134 
2135 static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
2136 {
2137 	MMU_WARN_ON(!is_empty_shadow_page(sp->spt));
2138 	hlist_del(&sp->hash_link);
2139 	list_del(&sp->link);
2140 	free_page((unsigned long)sp->spt);
2141 	if (!sp->role.direct)
2142 		free_page((unsigned long)sp->gfns);
2143 	kmem_cache_free(mmu_page_header_cache, sp);
2144 }
2145 
2146 static unsigned kvm_page_table_hashfn(gfn_t gfn)
2147 {
2148 	return hash_64(gfn, KVM_MMU_HASH_SHIFT);
2149 }
2150 
2151 static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
2152 				    struct kvm_mmu_page *sp, u64 *parent_pte)
2153 {
2154 	if (!parent_pte)
2155 		return;
2156 
2157 	pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
2158 }
2159 
2160 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
2161 				       u64 *parent_pte)
2162 {
2163 	__pte_list_remove(parent_pte, &sp->parent_ptes);
2164 }
2165 
2166 static void drop_parent_pte(struct kvm_mmu_page *sp,
2167 			    u64 *parent_pte)
2168 {
2169 	mmu_page_remove_parent_pte(sp, parent_pte);
2170 	mmu_spte_clear_no_track(parent_pte);
2171 }
2172 
2173 static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu, int direct)
2174 {
2175 	struct kvm_mmu_page *sp;
2176 
2177 	sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
2178 	sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
2179 	if (!direct)
2180 		sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
2181 	set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
2182 
2183 	/*
2184 	 * active_mmu_pages must be a FIFO list, as kvm_zap_obsolete_pages()
2185 	 * depends on valid pages being added to the head of the list.  See
2186 	 * comments in kvm_zap_obsolete_pages().
2187 	 */
2188 	sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
2189 	list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
2190 	kvm_mod_used_mmu_pages(vcpu->kvm, +1);
2191 	return sp;
2192 }
2193 
2194 static void mark_unsync(u64 *spte);
2195 static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
2196 {
2197 	u64 *sptep;
2198 	struct rmap_iterator iter;
2199 
2200 	for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) {
2201 		mark_unsync(sptep);
2202 	}
2203 }
2204 
2205 static void mark_unsync(u64 *spte)
2206 {
2207 	struct kvm_mmu_page *sp;
2208 	unsigned int index;
2209 
2210 	sp = page_header(__pa(spte));
2211 	index = spte - sp->spt;
2212 	if (__test_and_set_bit(index, sp->unsync_child_bitmap))
2213 		return;
2214 	if (sp->unsync_children++)
2215 		return;
2216 	kvm_mmu_mark_parents_unsync(sp);
2217 }
2218 
2219 static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
2220 			       struct kvm_mmu_page *sp)
2221 {
2222 	return 0;
2223 }
2224 
2225 static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva, hpa_t root)
2226 {
2227 }
2228 
2229 static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
2230 				 struct kvm_mmu_page *sp, u64 *spte,
2231 				 const void *pte)
2232 {
2233 	WARN_ON(1);
2234 }
2235 
2236 #define KVM_PAGE_ARRAY_NR 16
2237 
2238 struct kvm_mmu_pages {
2239 	struct mmu_page_and_offset {
2240 		struct kvm_mmu_page *sp;
2241 		unsigned int idx;
2242 	} page[KVM_PAGE_ARRAY_NR];
2243 	unsigned int nr;
2244 };
2245 
2246 static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
2247 			 int idx)
2248 {
2249 	int i;
2250 
2251 	if (sp->unsync)
2252 		for (i=0; i < pvec->nr; i++)
2253 			if (pvec->page[i].sp == sp)
2254 				return 0;
2255 
2256 	pvec->page[pvec->nr].sp = sp;
2257 	pvec->page[pvec->nr].idx = idx;
2258 	pvec->nr++;
2259 	return (pvec->nr == KVM_PAGE_ARRAY_NR);
2260 }
2261 
2262 static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx)
2263 {
2264 	--sp->unsync_children;
2265 	WARN_ON((int)sp->unsync_children < 0);
2266 	__clear_bit(idx, sp->unsync_child_bitmap);
2267 }
2268 
2269 static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
2270 			   struct kvm_mmu_pages *pvec)
2271 {
2272 	int i, ret, nr_unsync_leaf = 0;
2273 
2274 	for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
2275 		struct kvm_mmu_page *child;
2276 		u64 ent = sp->spt[i];
2277 
2278 		if (!is_shadow_present_pte(ent) || is_large_pte(ent)) {
2279 			clear_unsync_child_bit(sp, i);
2280 			continue;
2281 		}
2282 
2283 		child = page_header(ent & PT64_BASE_ADDR_MASK);
2284 
2285 		if (child->unsync_children) {
2286 			if (mmu_pages_add(pvec, child, i))
2287 				return -ENOSPC;
2288 
2289 			ret = __mmu_unsync_walk(child, pvec);
2290 			if (!ret) {
2291 				clear_unsync_child_bit(sp, i);
2292 				continue;
2293 			} else if (ret > 0) {
2294 				nr_unsync_leaf += ret;
2295 			} else
2296 				return ret;
2297 		} else if (child->unsync) {
2298 			nr_unsync_leaf++;
2299 			if (mmu_pages_add(pvec, child, i))
2300 				return -ENOSPC;
2301 		} else
2302 			clear_unsync_child_bit(sp, i);
2303 	}
2304 
2305 	return nr_unsync_leaf;
2306 }
2307 
2308 #define INVALID_INDEX (-1)
2309 
2310 static int mmu_unsync_walk(struct kvm_mmu_page *sp,
2311 			   struct kvm_mmu_pages *pvec)
2312 {
2313 	pvec->nr = 0;
2314 	if (!sp->unsync_children)
2315 		return 0;
2316 
2317 	mmu_pages_add(pvec, sp, INVALID_INDEX);
2318 	return __mmu_unsync_walk(sp, pvec);
2319 }
2320 
2321 static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
2322 {
2323 	WARN_ON(!sp->unsync);
2324 	trace_kvm_mmu_sync_page(sp);
2325 	sp->unsync = 0;
2326 	--kvm->stat.mmu_unsync;
2327 }
2328 
2329 static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2330 				     struct list_head *invalid_list);
2331 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2332 				    struct list_head *invalid_list);
2333 
2334 
2335 #define for_each_valid_sp(_kvm, _sp, _gfn)				\
2336 	hlist_for_each_entry(_sp,					\
2337 	  &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)], hash_link) \
2338 		if (is_obsolete_sp((_kvm), (_sp))) {			\
2339 		} else
2340 
2341 #define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn)			\
2342 	for_each_valid_sp(_kvm, _sp, _gfn)				\
2343 		if ((_sp)->gfn != (_gfn) || (_sp)->role.direct) {} else
2344 
2345 static inline bool is_ept_sp(struct kvm_mmu_page *sp)
2346 {
2347 	return sp->role.cr0_wp && sp->role.smap_andnot_wp;
2348 }
2349 
2350 /* @sp->gfn should be write-protected at the call site */
2351 static bool __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
2352 			    struct list_head *invalid_list)
2353 {
2354 	if ((!is_ept_sp(sp) && sp->role.gpte_is_8_bytes != !!is_pae(vcpu)) ||
2355 	    vcpu->arch.mmu->sync_page(vcpu, sp) == 0) {
2356 		kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
2357 		return false;
2358 	}
2359 
2360 	return true;
2361 }
2362 
2363 static bool kvm_mmu_remote_flush_or_zap(struct kvm *kvm,
2364 					struct list_head *invalid_list,
2365 					bool remote_flush)
2366 {
2367 	if (!remote_flush && list_empty(invalid_list))
2368 		return false;
2369 
2370 	if (!list_empty(invalid_list))
2371 		kvm_mmu_commit_zap_page(kvm, invalid_list);
2372 	else
2373 		kvm_flush_remote_tlbs(kvm);
2374 	return true;
2375 }
2376 
2377 static void kvm_mmu_flush_or_zap(struct kvm_vcpu *vcpu,
2378 				 struct list_head *invalid_list,
2379 				 bool remote_flush, bool local_flush)
2380 {
2381 	if (kvm_mmu_remote_flush_or_zap(vcpu->kvm, invalid_list, remote_flush))
2382 		return;
2383 
2384 	if (local_flush)
2385 		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2386 }
2387 
2388 #ifdef CONFIG_KVM_MMU_AUDIT
2389 #include "mmu_audit.c"
2390 #else
2391 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
2392 static void mmu_audit_disable(void) { }
2393 #endif
2394 
2395 static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
2396 {
2397 	return sp->role.invalid ||
2398 	       unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
2399 }
2400 
2401 static bool kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
2402 			 struct list_head *invalid_list)
2403 {
2404 	kvm_unlink_unsync_page(vcpu->kvm, sp);
2405 	return __kvm_sync_page(vcpu, sp, invalid_list);
2406 }
2407 
2408 /* @gfn should be write-protected at the call site */
2409 static bool kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn,
2410 			   struct list_head *invalid_list)
2411 {
2412 	struct kvm_mmu_page *s;
2413 	bool ret = false;
2414 
2415 	for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
2416 		if (!s->unsync)
2417 			continue;
2418 
2419 		WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
2420 		ret |= kvm_sync_page(vcpu, s, invalid_list);
2421 	}
2422 
2423 	return ret;
2424 }
2425 
2426 struct mmu_page_path {
2427 	struct kvm_mmu_page *parent[PT64_ROOT_MAX_LEVEL];
2428 	unsigned int idx[PT64_ROOT_MAX_LEVEL];
2429 };
2430 
2431 #define for_each_sp(pvec, sp, parents, i)			\
2432 		for (i = mmu_pages_first(&pvec, &parents);	\
2433 			i < pvec.nr && ({ sp = pvec.page[i].sp; 1;});	\
2434 			i = mmu_pages_next(&pvec, &parents, i))
2435 
2436 static int mmu_pages_next(struct kvm_mmu_pages *pvec,
2437 			  struct mmu_page_path *parents,
2438 			  int i)
2439 {
2440 	int n;
2441 
2442 	for (n = i+1; n < pvec->nr; n++) {
2443 		struct kvm_mmu_page *sp = pvec->page[n].sp;
2444 		unsigned idx = pvec->page[n].idx;
2445 		int level = sp->role.level;
2446 
2447 		parents->idx[level-1] = idx;
2448 		if (level == PT_PAGE_TABLE_LEVEL)
2449 			break;
2450 
2451 		parents->parent[level-2] = sp;
2452 	}
2453 
2454 	return n;
2455 }
2456 
2457 static int mmu_pages_first(struct kvm_mmu_pages *pvec,
2458 			   struct mmu_page_path *parents)
2459 {
2460 	struct kvm_mmu_page *sp;
2461 	int level;
2462 
2463 	if (pvec->nr == 0)
2464 		return 0;
2465 
2466 	WARN_ON(pvec->page[0].idx != INVALID_INDEX);
2467 
2468 	sp = pvec->page[0].sp;
2469 	level = sp->role.level;
2470 	WARN_ON(level == PT_PAGE_TABLE_LEVEL);
2471 
2472 	parents->parent[level-2] = sp;
2473 
2474 	/* Also set up a sentinel.  Further entries in pvec are all
2475 	 * children of sp, so this element is never overwritten.
2476 	 */
2477 	parents->parent[level-1] = NULL;
2478 	return mmu_pages_next(pvec, parents, 0);
2479 }
2480 
2481 static void mmu_pages_clear_parents(struct mmu_page_path *parents)
2482 {
2483 	struct kvm_mmu_page *sp;
2484 	unsigned int level = 0;
2485 
2486 	do {
2487 		unsigned int idx = parents->idx[level];
2488 		sp = parents->parent[level];
2489 		if (!sp)
2490 			return;
2491 
2492 		WARN_ON(idx == INVALID_INDEX);
2493 		clear_unsync_child_bit(sp, idx);
2494 		level++;
2495 	} while (!sp->unsync_children);
2496 }
2497 
2498 static void mmu_sync_children(struct kvm_vcpu *vcpu,
2499 			      struct kvm_mmu_page *parent)
2500 {
2501 	int i;
2502 	struct kvm_mmu_page *sp;
2503 	struct mmu_page_path parents;
2504 	struct kvm_mmu_pages pages;
2505 	LIST_HEAD(invalid_list);
2506 	bool flush = false;
2507 
2508 	while (mmu_unsync_walk(parent, &pages)) {
2509 		bool protected = false;
2510 
2511 		for_each_sp(pages, sp, parents, i)
2512 			protected |= rmap_write_protect(vcpu, sp->gfn);
2513 
2514 		if (protected) {
2515 			kvm_flush_remote_tlbs(vcpu->kvm);
2516 			flush = false;
2517 		}
2518 
2519 		for_each_sp(pages, sp, parents, i) {
2520 			flush |= kvm_sync_page(vcpu, sp, &invalid_list);
2521 			mmu_pages_clear_parents(&parents);
2522 		}
2523 		if (need_resched() || spin_needbreak(&vcpu->kvm->mmu_lock)) {
2524 			kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2525 			cond_resched_lock(&vcpu->kvm->mmu_lock);
2526 			flush = false;
2527 		}
2528 	}
2529 
2530 	kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2531 }
2532 
2533 static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
2534 {
2535 	atomic_set(&sp->write_flooding_count,  0);
2536 }
2537 
2538 static void clear_sp_write_flooding_count(u64 *spte)
2539 {
2540 	struct kvm_mmu_page *sp =  page_header(__pa(spte));
2541 
2542 	__clear_sp_write_flooding_count(sp);
2543 }
2544 
2545 static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
2546 					     gfn_t gfn,
2547 					     gva_t gaddr,
2548 					     unsigned level,
2549 					     int direct,
2550 					     unsigned access)
2551 {
2552 	union kvm_mmu_page_role role;
2553 	unsigned quadrant;
2554 	struct kvm_mmu_page *sp;
2555 	bool need_sync = false;
2556 	bool flush = false;
2557 	int collisions = 0;
2558 	LIST_HEAD(invalid_list);
2559 
2560 	role = vcpu->arch.mmu->mmu_role.base;
2561 	role.level = level;
2562 	role.direct = direct;
2563 	if (role.direct)
2564 		role.gpte_is_8_bytes = true;
2565 	role.access = access;
2566 	if (!vcpu->arch.mmu->direct_map
2567 	    && vcpu->arch.mmu->root_level <= PT32_ROOT_LEVEL) {
2568 		quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
2569 		quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
2570 		role.quadrant = quadrant;
2571 	}
2572 	for_each_valid_sp(vcpu->kvm, sp, gfn) {
2573 		if (sp->gfn != gfn) {
2574 			collisions++;
2575 			continue;
2576 		}
2577 
2578 		if (!need_sync && sp->unsync)
2579 			need_sync = true;
2580 
2581 		if (sp->role.word != role.word)
2582 			continue;
2583 
2584 		if (sp->unsync) {
2585 			/* The page is good, but __kvm_sync_page might still end
2586 			 * up zapping it.  If so, break in order to rebuild it.
2587 			 */
2588 			if (!__kvm_sync_page(vcpu, sp, &invalid_list))
2589 				break;
2590 
2591 			WARN_ON(!list_empty(&invalid_list));
2592 			kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2593 		}
2594 
2595 		if (sp->unsync_children)
2596 			kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
2597 
2598 		__clear_sp_write_flooding_count(sp);
2599 		trace_kvm_mmu_get_page(sp, false);
2600 		goto out;
2601 	}
2602 
2603 	++vcpu->kvm->stat.mmu_cache_miss;
2604 
2605 	sp = kvm_mmu_alloc_page(vcpu, direct);
2606 
2607 	sp->gfn = gfn;
2608 	sp->role = role;
2609 	hlist_add_head(&sp->hash_link,
2610 		&vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
2611 	if (!direct) {
2612 		/*
2613 		 * we should do write protection before syncing pages
2614 		 * otherwise the content of the synced shadow page may
2615 		 * be inconsistent with guest page table.
2616 		 */
2617 		account_shadowed(vcpu->kvm, sp);
2618 		if (level == PT_PAGE_TABLE_LEVEL &&
2619 		      rmap_write_protect(vcpu, gfn))
2620 			kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn, 1);
2621 
2622 		if (level > PT_PAGE_TABLE_LEVEL && need_sync)
2623 			flush |= kvm_sync_pages(vcpu, gfn, &invalid_list);
2624 	}
2625 	clear_page(sp->spt);
2626 	trace_kvm_mmu_get_page(sp, true);
2627 
2628 	kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2629 out:
2630 	if (collisions > vcpu->kvm->stat.max_mmu_page_hash_collisions)
2631 		vcpu->kvm->stat.max_mmu_page_hash_collisions = collisions;
2632 	return sp;
2633 }
2634 
2635 static void shadow_walk_init_using_root(struct kvm_shadow_walk_iterator *iterator,
2636 					struct kvm_vcpu *vcpu, hpa_t root,
2637 					u64 addr)
2638 {
2639 	iterator->addr = addr;
2640 	iterator->shadow_addr = root;
2641 	iterator->level = vcpu->arch.mmu->shadow_root_level;
2642 
2643 	if (iterator->level == PT64_ROOT_4LEVEL &&
2644 	    vcpu->arch.mmu->root_level < PT64_ROOT_4LEVEL &&
2645 	    !vcpu->arch.mmu->direct_map)
2646 		--iterator->level;
2647 
2648 	if (iterator->level == PT32E_ROOT_LEVEL) {
2649 		/*
2650 		 * prev_root is currently only used for 64-bit hosts. So only
2651 		 * the active root_hpa is valid here.
2652 		 */
2653 		BUG_ON(root != vcpu->arch.mmu->root_hpa);
2654 
2655 		iterator->shadow_addr
2656 			= vcpu->arch.mmu->pae_root[(addr >> 30) & 3];
2657 		iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
2658 		--iterator->level;
2659 		if (!iterator->shadow_addr)
2660 			iterator->level = 0;
2661 	}
2662 }
2663 
2664 static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
2665 			     struct kvm_vcpu *vcpu, u64 addr)
2666 {
2667 	shadow_walk_init_using_root(iterator, vcpu, vcpu->arch.mmu->root_hpa,
2668 				    addr);
2669 }
2670 
2671 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
2672 {
2673 	if (iterator->level < PT_PAGE_TABLE_LEVEL)
2674 		return false;
2675 
2676 	iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
2677 	iterator->sptep	= ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
2678 	return true;
2679 }
2680 
2681 static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
2682 			       u64 spte)
2683 {
2684 	if (is_last_spte(spte, iterator->level)) {
2685 		iterator->level = 0;
2686 		return;
2687 	}
2688 
2689 	iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2690 	--iterator->level;
2691 }
2692 
2693 static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
2694 {
2695 	__shadow_walk_next(iterator, *iterator->sptep);
2696 }
2697 
2698 static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep,
2699 			     struct kvm_mmu_page *sp)
2700 {
2701 	u64 spte;
2702 
2703 	BUILD_BUG_ON(VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);
2704 
2705 	spte = __pa(sp->spt) | shadow_present_mask | PT_WRITABLE_MASK |
2706 	       shadow_user_mask | shadow_x_mask | shadow_me_mask;
2707 
2708 	if (sp_ad_disabled(sp))
2709 		spte |= SPTE_AD_DISABLED_MASK;
2710 	else
2711 		spte |= shadow_accessed_mask;
2712 
2713 	mmu_spte_set(sptep, spte);
2714 
2715 	mmu_page_add_parent_pte(vcpu, sp, sptep);
2716 
2717 	if (sp->unsync_children || sp->unsync)
2718 		mark_unsync(sptep);
2719 }
2720 
2721 static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2722 				   unsigned direct_access)
2723 {
2724 	if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
2725 		struct kvm_mmu_page *child;
2726 
2727 		/*
2728 		 * For the direct sp, if the guest pte's dirty bit
2729 		 * changed form clean to dirty, it will corrupt the
2730 		 * sp's access: allow writable in the read-only sp,
2731 		 * so we should update the spte at this point to get
2732 		 * a new sp with the correct access.
2733 		 */
2734 		child = page_header(*sptep & PT64_BASE_ADDR_MASK);
2735 		if (child->role.access == direct_access)
2736 			return;
2737 
2738 		drop_parent_pte(child, sptep);
2739 		kvm_flush_remote_tlbs_with_address(vcpu->kvm, child->gfn, 1);
2740 	}
2741 }
2742 
2743 static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
2744 			     u64 *spte)
2745 {
2746 	u64 pte;
2747 	struct kvm_mmu_page *child;
2748 
2749 	pte = *spte;
2750 	if (is_shadow_present_pte(pte)) {
2751 		if (is_last_spte(pte, sp->role.level)) {
2752 			drop_spte(kvm, spte);
2753 			if (is_large_pte(pte))
2754 				--kvm->stat.lpages;
2755 		} else {
2756 			child = page_header(pte & PT64_BASE_ADDR_MASK);
2757 			drop_parent_pte(child, spte);
2758 		}
2759 		return true;
2760 	}
2761 
2762 	if (is_mmio_spte(pte))
2763 		mmu_spte_clear_no_track(spte);
2764 
2765 	return false;
2766 }
2767 
2768 static void kvm_mmu_page_unlink_children(struct kvm *kvm,
2769 					 struct kvm_mmu_page *sp)
2770 {
2771 	unsigned i;
2772 
2773 	for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2774 		mmu_page_zap_pte(kvm, sp, sp->spt + i);
2775 }
2776 
2777 static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
2778 {
2779 	u64 *sptep;
2780 	struct rmap_iterator iter;
2781 
2782 	while ((sptep = rmap_get_first(&sp->parent_ptes, &iter)))
2783 		drop_parent_pte(sp, sptep);
2784 }
2785 
2786 static int mmu_zap_unsync_children(struct kvm *kvm,
2787 				   struct kvm_mmu_page *parent,
2788 				   struct list_head *invalid_list)
2789 {
2790 	int i, zapped = 0;
2791 	struct mmu_page_path parents;
2792 	struct kvm_mmu_pages pages;
2793 
2794 	if (parent->role.level == PT_PAGE_TABLE_LEVEL)
2795 		return 0;
2796 
2797 	while (mmu_unsync_walk(parent, &pages)) {
2798 		struct kvm_mmu_page *sp;
2799 
2800 		for_each_sp(pages, sp, parents, i) {
2801 			kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2802 			mmu_pages_clear_parents(&parents);
2803 			zapped++;
2804 		}
2805 	}
2806 
2807 	return zapped;
2808 }
2809 
2810 static bool __kvm_mmu_prepare_zap_page(struct kvm *kvm,
2811 				       struct kvm_mmu_page *sp,
2812 				       struct list_head *invalid_list,
2813 				       int *nr_zapped)
2814 {
2815 	bool list_unstable;
2816 
2817 	trace_kvm_mmu_prepare_zap_page(sp);
2818 	++kvm->stat.mmu_shadow_zapped;
2819 	*nr_zapped = mmu_zap_unsync_children(kvm, sp, invalid_list);
2820 	kvm_mmu_page_unlink_children(kvm, sp);
2821 	kvm_mmu_unlink_parents(kvm, sp);
2822 
2823 	/* Zapping children means active_mmu_pages has become unstable. */
2824 	list_unstable = *nr_zapped;
2825 
2826 	if (!sp->role.invalid && !sp->role.direct)
2827 		unaccount_shadowed(kvm, sp);
2828 
2829 	if (sp->unsync)
2830 		kvm_unlink_unsync_page(kvm, sp);
2831 	if (!sp->root_count) {
2832 		/* Count self */
2833 		(*nr_zapped)++;
2834 		list_move(&sp->link, invalid_list);
2835 		kvm_mod_used_mmu_pages(kvm, -1);
2836 	} else {
2837 		list_move(&sp->link, &kvm->arch.active_mmu_pages);
2838 
2839 		/*
2840 		 * Obsolete pages cannot be used on any vCPUs, see the comment
2841 		 * in kvm_mmu_zap_all_fast().  Note, is_obsolete_sp() also
2842 		 * treats invalid shadow pages as being obsolete.
2843 		 */
2844 		if (!is_obsolete_sp(kvm, sp))
2845 			kvm_reload_remote_mmus(kvm);
2846 	}
2847 
2848 	if (sp->lpage_disallowed)
2849 		unaccount_huge_nx_page(kvm, sp);
2850 
2851 	sp->role.invalid = 1;
2852 	return list_unstable;
2853 }
2854 
2855 static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2856 				     struct list_head *invalid_list)
2857 {
2858 	int nr_zapped;
2859 
2860 	__kvm_mmu_prepare_zap_page(kvm, sp, invalid_list, &nr_zapped);
2861 	return nr_zapped;
2862 }
2863 
2864 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2865 				    struct list_head *invalid_list)
2866 {
2867 	struct kvm_mmu_page *sp, *nsp;
2868 
2869 	if (list_empty(invalid_list))
2870 		return;
2871 
2872 	/*
2873 	 * We need to make sure everyone sees our modifications to
2874 	 * the page tables and see changes to vcpu->mode here. The barrier
2875 	 * in the kvm_flush_remote_tlbs() achieves this. This pairs
2876 	 * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end.
2877 	 *
2878 	 * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit
2879 	 * guest mode and/or lockless shadow page table walks.
2880 	 */
2881 	kvm_flush_remote_tlbs(kvm);
2882 
2883 	list_for_each_entry_safe(sp, nsp, invalid_list, link) {
2884 		WARN_ON(!sp->role.invalid || sp->root_count);
2885 		kvm_mmu_free_page(sp);
2886 	}
2887 }
2888 
2889 static bool prepare_zap_oldest_mmu_page(struct kvm *kvm,
2890 					struct list_head *invalid_list)
2891 {
2892 	struct kvm_mmu_page *sp;
2893 
2894 	if (list_empty(&kvm->arch.active_mmu_pages))
2895 		return false;
2896 
2897 	sp = list_last_entry(&kvm->arch.active_mmu_pages,
2898 			     struct kvm_mmu_page, link);
2899 	return kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2900 }
2901 
2902 /*
2903  * Changing the number of mmu pages allocated to the vm
2904  * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2905  */
2906 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long goal_nr_mmu_pages)
2907 {
2908 	LIST_HEAD(invalid_list);
2909 
2910 	spin_lock(&kvm->mmu_lock);
2911 
2912 	if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2913 		/* Need to free some mmu pages to achieve the goal. */
2914 		while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages)
2915 			if (!prepare_zap_oldest_mmu_page(kvm, &invalid_list))
2916 				break;
2917 
2918 		kvm_mmu_commit_zap_page(kvm, &invalid_list);
2919 		goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2920 	}
2921 
2922 	kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2923 
2924 	spin_unlock(&kvm->mmu_lock);
2925 }
2926 
2927 int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2928 {
2929 	struct kvm_mmu_page *sp;
2930 	LIST_HEAD(invalid_list);
2931 	int r;
2932 
2933 	pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
2934 	r = 0;
2935 	spin_lock(&kvm->mmu_lock);
2936 	for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
2937 		pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
2938 			 sp->role.word);
2939 		r = 1;
2940 		kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2941 	}
2942 	kvm_mmu_commit_zap_page(kvm, &invalid_list);
2943 	spin_unlock(&kvm->mmu_lock);
2944 
2945 	return r;
2946 }
2947 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
2948 
2949 static void kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2950 {
2951 	trace_kvm_mmu_unsync_page(sp);
2952 	++vcpu->kvm->stat.mmu_unsync;
2953 	sp->unsync = 1;
2954 
2955 	kvm_mmu_mark_parents_unsync(sp);
2956 }
2957 
2958 static bool mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
2959 				   bool can_unsync)
2960 {
2961 	struct kvm_mmu_page *sp;
2962 
2963 	if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
2964 		return true;
2965 
2966 	for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
2967 		if (!can_unsync)
2968 			return true;
2969 
2970 		if (sp->unsync)
2971 			continue;
2972 
2973 		WARN_ON(sp->role.level != PT_PAGE_TABLE_LEVEL);
2974 		kvm_unsync_page(vcpu, sp);
2975 	}
2976 
2977 	/*
2978 	 * We need to ensure that the marking of unsync pages is visible
2979 	 * before the SPTE is updated to allow writes because
2980 	 * kvm_mmu_sync_roots() checks the unsync flags without holding
2981 	 * the MMU lock and so can race with this. If the SPTE was updated
2982 	 * before the page had been marked as unsync-ed, something like the
2983 	 * following could happen:
2984 	 *
2985 	 * CPU 1                    CPU 2
2986 	 * ---------------------------------------------------------------------
2987 	 * 1.2 Host updates SPTE
2988 	 *     to be writable
2989 	 *                      2.1 Guest writes a GPTE for GVA X.
2990 	 *                          (GPTE being in the guest page table shadowed
2991 	 *                           by the SP from CPU 1.)
2992 	 *                          This reads SPTE during the page table walk.
2993 	 *                          Since SPTE.W is read as 1, there is no
2994 	 *                          fault.
2995 	 *
2996 	 *                      2.2 Guest issues TLB flush.
2997 	 *                          That causes a VM Exit.
2998 	 *
2999 	 *                      2.3 kvm_mmu_sync_pages() reads sp->unsync.
3000 	 *                          Since it is false, so it just returns.
3001 	 *
3002 	 *                      2.4 Guest accesses GVA X.
3003 	 *                          Since the mapping in the SP was not updated,
3004 	 *                          so the old mapping for GVA X incorrectly
3005 	 *                          gets used.
3006 	 * 1.1 Host marks SP
3007 	 *     as unsync
3008 	 *     (sp->unsync = true)
3009 	 *
3010 	 * The write barrier below ensures that 1.1 happens before 1.2 and thus
3011 	 * the situation in 2.4 does not arise. The implicit barrier in 2.2
3012 	 * pairs with this write barrier.
3013 	 */
3014 	smp_wmb();
3015 
3016 	return false;
3017 }
3018 
3019 static bool kvm_is_mmio_pfn(kvm_pfn_t pfn)
3020 {
3021 	if (pfn_valid(pfn))
3022 		return !is_zero_pfn(pfn) && PageReserved(pfn_to_page(pfn)) &&
3023 			/*
3024 			 * Some reserved pages, such as those from NVDIMM
3025 			 * DAX devices, are not for MMIO, and can be mapped
3026 			 * with cached memory type for better performance.
3027 			 * However, the above check misconceives those pages
3028 			 * as MMIO, and results in KVM mapping them with UC
3029 			 * memory type, which would hurt the performance.
3030 			 * Therefore, we check the host memory type in addition
3031 			 * and only treat UC/UC-/WC pages as MMIO.
3032 			 */
3033 			(!pat_enabled() || pat_pfn_immune_to_uc_mtrr(pfn));
3034 
3035 	return !e820__mapped_raw_any(pfn_to_hpa(pfn),
3036 				     pfn_to_hpa(pfn + 1) - 1,
3037 				     E820_TYPE_RAM);
3038 }
3039 
3040 /* Bits which may be returned by set_spte() */
3041 #define SET_SPTE_WRITE_PROTECTED_PT	BIT(0)
3042 #define SET_SPTE_NEED_REMOTE_TLB_FLUSH	BIT(1)
3043 
3044 static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
3045 		    unsigned pte_access, int level,
3046 		    gfn_t gfn, kvm_pfn_t pfn, bool speculative,
3047 		    bool can_unsync, bool host_writable)
3048 {
3049 	u64 spte = 0;
3050 	int ret = 0;
3051 	struct kvm_mmu_page *sp;
3052 
3053 	if (set_mmio_spte(vcpu, sptep, gfn, pfn, pte_access))
3054 		return 0;
3055 
3056 	sp = page_header(__pa(sptep));
3057 	if (sp_ad_disabled(sp))
3058 		spte |= SPTE_AD_DISABLED_MASK;
3059 	else if (kvm_vcpu_ad_need_write_protect(vcpu))
3060 		spte |= SPTE_AD_WRPROT_ONLY_MASK;
3061 
3062 	/*
3063 	 * For the EPT case, shadow_present_mask is 0 if hardware
3064 	 * supports exec-only page table entries.  In that case,
3065 	 * ACC_USER_MASK and shadow_user_mask are used to represent
3066 	 * read access.  See FNAME(gpte_access) in paging_tmpl.h.
3067 	 */
3068 	spte |= shadow_present_mask;
3069 	if (!speculative)
3070 		spte |= spte_shadow_accessed_mask(spte);
3071 
3072 	if (level > PT_PAGE_TABLE_LEVEL && (pte_access & ACC_EXEC_MASK) &&
3073 	    is_nx_huge_page_enabled()) {
3074 		pte_access &= ~ACC_EXEC_MASK;
3075 	}
3076 
3077 	if (pte_access & ACC_EXEC_MASK)
3078 		spte |= shadow_x_mask;
3079 	else
3080 		spte |= shadow_nx_mask;
3081 
3082 	if (pte_access & ACC_USER_MASK)
3083 		spte |= shadow_user_mask;
3084 
3085 	if (level > PT_PAGE_TABLE_LEVEL)
3086 		spte |= PT_PAGE_SIZE_MASK;
3087 	if (tdp_enabled)
3088 		spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
3089 			kvm_is_mmio_pfn(pfn));
3090 
3091 	if (host_writable)
3092 		spte |= SPTE_HOST_WRITEABLE;
3093 	else
3094 		pte_access &= ~ACC_WRITE_MASK;
3095 
3096 	if (!kvm_is_mmio_pfn(pfn))
3097 		spte |= shadow_me_mask;
3098 
3099 	spte |= (u64)pfn << PAGE_SHIFT;
3100 
3101 	if (pte_access & ACC_WRITE_MASK) {
3102 
3103 		/*
3104 		 * Other vcpu creates new sp in the window between
3105 		 * mapping_level() and acquiring mmu-lock. We can
3106 		 * allow guest to retry the access, the mapping can
3107 		 * be fixed if guest refault.
3108 		 */
3109 		if (level > PT_PAGE_TABLE_LEVEL &&
3110 		    mmu_gfn_lpage_is_disallowed(vcpu, gfn, level))
3111 			goto done;
3112 
3113 		spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
3114 
3115 		/*
3116 		 * Optimization: for pte sync, if spte was writable the hash
3117 		 * lookup is unnecessary (and expensive). Write protection
3118 		 * is responsibility of mmu_get_page / kvm_sync_page.
3119 		 * Same reasoning can be applied to dirty page accounting.
3120 		 */
3121 		if (!can_unsync && is_writable_pte(*sptep))
3122 			goto set_pte;
3123 
3124 		if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
3125 			pgprintk("%s: found shadow page for %llx, marking ro\n",
3126 				 __func__, gfn);
3127 			ret |= SET_SPTE_WRITE_PROTECTED_PT;
3128 			pte_access &= ~ACC_WRITE_MASK;
3129 			spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
3130 		}
3131 	}
3132 
3133 	if (pte_access & ACC_WRITE_MASK) {
3134 		kvm_vcpu_mark_page_dirty(vcpu, gfn);
3135 		spte |= spte_shadow_dirty_mask(spte);
3136 	}
3137 
3138 	if (speculative)
3139 		spte = mark_spte_for_access_track(spte);
3140 
3141 set_pte:
3142 	if (mmu_spte_update(sptep, spte))
3143 		ret |= SET_SPTE_NEED_REMOTE_TLB_FLUSH;
3144 done:
3145 	return ret;
3146 }
3147 
3148 static int mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep, unsigned pte_access,
3149 			int write_fault, int level, gfn_t gfn, kvm_pfn_t pfn,
3150 		       	bool speculative, bool host_writable)
3151 {
3152 	int was_rmapped = 0;
3153 	int rmap_count;
3154 	int set_spte_ret;
3155 	int ret = RET_PF_RETRY;
3156 	bool flush = false;
3157 
3158 	pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
3159 		 *sptep, write_fault, gfn);
3160 
3161 	if (is_shadow_present_pte(*sptep)) {
3162 		/*
3163 		 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
3164 		 * the parent of the now unreachable PTE.
3165 		 */
3166 		if (level > PT_PAGE_TABLE_LEVEL &&
3167 		    !is_large_pte(*sptep)) {
3168 			struct kvm_mmu_page *child;
3169 			u64 pte = *sptep;
3170 
3171 			child = page_header(pte & PT64_BASE_ADDR_MASK);
3172 			drop_parent_pte(child, sptep);
3173 			flush = true;
3174 		} else if (pfn != spte_to_pfn(*sptep)) {
3175 			pgprintk("hfn old %llx new %llx\n",
3176 				 spte_to_pfn(*sptep), pfn);
3177 			drop_spte(vcpu->kvm, sptep);
3178 			flush = true;
3179 		} else
3180 			was_rmapped = 1;
3181 	}
3182 
3183 	set_spte_ret = set_spte(vcpu, sptep, pte_access, level, gfn, pfn,
3184 				speculative, true, host_writable);
3185 	if (set_spte_ret & SET_SPTE_WRITE_PROTECTED_PT) {
3186 		if (write_fault)
3187 			ret = RET_PF_EMULATE;
3188 		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
3189 	}
3190 
3191 	if (set_spte_ret & SET_SPTE_NEED_REMOTE_TLB_FLUSH || flush)
3192 		kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn,
3193 				KVM_PAGES_PER_HPAGE(level));
3194 
3195 	if (unlikely(is_mmio_spte(*sptep)))
3196 		ret = RET_PF_EMULATE;
3197 
3198 	pgprintk("%s: setting spte %llx\n", __func__, *sptep);
3199 	trace_kvm_mmu_set_spte(level, gfn, sptep);
3200 	if (!was_rmapped && is_large_pte(*sptep))
3201 		++vcpu->kvm->stat.lpages;
3202 
3203 	if (is_shadow_present_pte(*sptep)) {
3204 		if (!was_rmapped) {
3205 			rmap_count = rmap_add(vcpu, sptep, gfn);
3206 			if (rmap_count > RMAP_RECYCLE_THRESHOLD)
3207 				rmap_recycle(vcpu, sptep, gfn);
3208 		}
3209 	}
3210 
3211 	return ret;
3212 }
3213 
3214 static kvm_pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
3215 				     bool no_dirty_log)
3216 {
3217 	struct kvm_memory_slot *slot;
3218 
3219 	slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
3220 	if (!slot)
3221 		return KVM_PFN_ERR_FAULT;
3222 
3223 	return gfn_to_pfn_memslot_atomic(slot, gfn);
3224 }
3225 
3226 static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
3227 				    struct kvm_mmu_page *sp,
3228 				    u64 *start, u64 *end)
3229 {
3230 	struct page *pages[PTE_PREFETCH_NUM];
3231 	struct kvm_memory_slot *slot;
3232 	unsigned access = sp->role.access;
3233 	int i, ret;
3234 	gfn_t gfn;
3235 
3236 	gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
3237 	slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK);
3238 	if (!slot)
3239 		return -1;
3240 
3241 	ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start);
3242 	if (ret <= 0)
3243 		return -1;
3244 
3245 	for (i = 0; i < ret; i++, gfn++, start++) {
3246 		mmu_set_spte(vcpu, start, access, 0, sp->role.level, gfn,
3247 			     page_to_pfn(pages[i]), true, true);
3248 		put_page(pages[i]);
3249 	}
3250 
3251 	return 0;
3252 }
3253 
3254 static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
3255 				  struct kvm_mmu_page *sp, u64 *sptep)
3256 {
3257 	u64 *spte, *start = NULL;
3258 	int i;
3259 
3260 	WARN_ON(!sp->role.direct);
3261 
3262 	i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
3263 	spte = sp->spt + i;
3264 
3265 	for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
3266 		if (is_shadow_present_pte(*spte) || spte == sptep) {
3267 			if (!start)
3268 				continue;
3269 			if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
3270 				break;
3271 			start = NULL;
3272 		} else if (!start)
3273 			start = spte;
3274 	}
3275 }
3276 
3277 static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
3278 {
3279 	struct kvm_mmu_page *sp;
3280 
3281 	sp = page_header(__pa(sptep));
3282 
3283 	/*
3284 	 * Without accessed bits, there's no way to distinguish between
3285 	 * actually accessed translations and prefetched, so disable pte
3286 	 * prefetch if accessed bits aren't available.
3287 	 */
3288 	if (sp_ad_disabled(sp))
3289 		return;
3290 
3291 	if (sp->role.level > PT_PAGE_TABLE_LEVEL)
3292 		return;
3293 
3294 	__direct_pte_prefetch(vcpu, sp, sptep);
3295 }
3296 
3297 static void disallowed_hugepage_adjust(struct kvm_shadow_walk_iterator it,
3298 				       gfn_t gfn, kvm_pfn_t *pfnp, int *levelp)
3299 {
3300 	int level = *levelp;
3301 	u64 spte = *it.sptep;
3302 
3303 	if (it.level == level && level > PT_PAGE_TABLE_LEVEL &&
3304 	    is_nx_huge_page_enabled() &&
3305 	    is_shadow_present_pte(spte) &&
3306 	    !is_large_pte(spte)) {
3307 		/*
3308 		 * A small SPTE exists for this pfn, but FNAME(fetch)
3309 		 * and __direct_map would like to create a large PTE
3310 		 * instead: just force them to go down another level,
3311 		 * patching back for them into pfn the next 9 bits of
3312 		 * the address.
3313 		 */
3314 		u64 page_mask = KVM_PAGES_PER_HPAGE(level) - KVM_PAGES_PER_HPAGE(level - 1);
3315 		*pfnp |= gfn & page_mask;
3316 		(*levelp)--;
3317 	}
3318 }
3319 
3320 static int __direct_map(struct kvm_vcpu *vcpu, gpa_t gpa, int write,
3321 			int map_writable, int level, kvm_pfn_t pfn,
3322 			bool prefault, bool lpage_disallowed)
3323 {
3324 	struct kvm_shadow_walk_iterator it;
3325 	struct kvm_mmu_page *sp;
3326 	int ret;
3327 	gfn_t gfn = gpa >> PAGE_SHIFT;
3328 	gfn_t base_gfn = gfn;
3329 
3330 	if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
3331 		return RET_PF_RETRY;
3332 
3333 	trace_kvm_mmu_spte_requested(gpa, level, pfn);
3334 	for_each_shadow_entry(vcpu, gpa, it) {
3335 		/*
3336 		 * We cannot overwrite existing page tables with an NX
3337 		 * large page, as the leaf could be executable.
3338 		 */
3339 		disallowed_hugepage_adjust(it, gfn, &pfn, &level);
3340 
3341 		base_gfn = gfn & ~(KVM_PAGES_PER_HPAGE(it.level) - 1);
3342 		if (it.level == level)
3343 			break;
3344 
3345 		drop_large_spte(vcpu, it.sptep);
3346 		if (!is_shadow_present_pte(*it.sptep)) {
3347 			sp = kvm_mmu_get_page(vcpu, base_gfn, it.addr,
3348 					      it.level - 1, true, ACC_ALL);
3349 
3350 			link_shadow_page(vcpu, it.sptep, sp);
3351 			if (lpage_disallowed)
3352 				account_huge_nx_page(vcpu->kvm, sp);
3353 		}
3354 	}
3355 
3356 	ret = mmu_set_spte(vcpu, it.sptep, ACC_ALL,
3357 			   write, level, base_gfn, pfn, prefault,
3358 			   map_writable);
3359 	direct_pte_prefetch(vcpu, it.sptep);
3360 	++vcpu->stat.pf_fixed;
3361 	return ret;
3362 }
3363 
3364 static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
3365 {
3366 	send_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, PAGE_SHIFT, tsk);
3367 }
3368 
3369 static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, kvm_pfn_t pfn)
3370 {
3371 	/*
3372 	 * Do not cache the mmio info caused by writing the readonly gfn
3373 	 * into the spte otherwise read access on readonly gfn also can
3374 	 * caused mmio page fault and treat it as mmio access.
3375 	 */
3376 	if (pfn == KVM_PFN_ERR_RO_FAULT)
3377 		return RET_PF_EMULATE;
3378 
3379 	if (pfn == KVM_PFN_ERR_HWPOISON) {
3380 		kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current);
3381 		return RET_PF_RETRY;
3382 	}
3383 
3384 	return -EFAULT;
3385 }
3386 
3387 static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
3388 					gfn_t gfn, kvm_pfn_t *pfnp,
3389 					int *levelp)
3390 {
3391 	kvm_pfn_t pfn = *pfnp;
3392 	int level = *levelp;
3393 
3394 	/*
3395 	 * Check if it's a transparent hugepage. If this would be an
3396 	 * hugetlbfs page, level wouldn't be set to
3397 	 * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
3398 	 * here.
3399 	 */
3400 	if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn) &&
3401 	    !kvm_is_zone_device_pfn(pfn) && level == PT_PAGE_TABLE_LEVEL &&
3402 	    PageTransCompoundMap(pfn_to_page(pfn)) &&
3403 	    !mmu_gfn_lpage_is_disallowed(vcpu, gfn, PT_DIRECTORY_LEVEL)) {
3404 		unsigned long mask;
3405 		/*
3406 		 * mmu_notifier_retry was successful and we hold the
3407 		 * mmu_lock here, so the pmd can't become splitting
3408 		 * from under us, and in turn
3409 		 * __split_huge_page_refcount() can't run from under
3410 		 * us and we can safely transfer the refcount from
3411 		 * PG_tail to PG_head as we switch the pfn to tail to
3412 		 * head.
3413 		 */
3414 		*levelp = level = PT_DIRECTORY_LEVEL;
3415 		mask = KVM_PAGES_PER_HPAGE(level) - 1;
3416 		VM_BUG_ON((gfn & mask) != (pfn & mask));
3417 		if (pfn & mask) {
3418 			kvm_release_pfn_clean(pfn);
3419 			pfn &= ~mask;
3420 			kvm_get_pfn(pfn);
3421 			*pfnp = pfn;
3422 		}
3423 	}
3424 }
3425 
3426 static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
3427 				kvm_pfn_t pfn, unsigned access, int *ret_val)
3428 {
3429 	/* The pfn is invalid, report the error! */
3430 	if (unlikely(is_error_pfn(pfn))) {
3431 		*ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
3432 		return true;
3433 	}
3434 
3435 	if (unlikely(is_noslot_pfn(pfn)))
3436 		vcpu_cache_mmio_info(vcpu, gva, gfn,
3437 				     access & shadow_mmio_access_mask);
3438 
3439 	return false;
3440 }
3441 
3442 static bool page_fault_can_be_fast(u32 error_code)
3443 {
3444 	/*
3445 	 * Do not fix the mmio spte with invalid generation number which
3446 	 * need to be updated by slow page fault path.
3447 	 */
3448 	if (unlikely(error_code & PFERR_RSVD_MASK))
3449 		return false;
3450 
3451 	/* See if the page fault is due to an NX violation */
3452 	if (unlikely(((error_code & (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))
3453 		      == (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))))
3454 		return false;
3455 
3456 	/*
3457 	 * #PF can be fast if:
3458 	 * 1. The shadow page table entry is not present, which could mean that
3459 	 *    the fault is potentially caused by access tracking (if enabled).
3460 	 * 2. The shadow page table entry is present and the fault
3461 	 *    is caused by write-protect, that means we just need change the W
3462 	 *    bit of the spte which can be done out of mmu-lock.
3463 	 *
3464 	 * However, if access tracking is disabled we know that a non-present
3465 	 * page must be a genuine page fault where we have to create a new SPTE.
3466 	 * So, if access tracking is disabled, we return true only for write
3467 	 * accesses to a present page.
3468 	 */
3469 
3470 	return shadow_acc_track_mask != 0 ||
3471 	       ((error_code & (PFERR_WRITE_MASK | PFERR_PRESENT_MASK))
3472 		== (PFERR_WRITE_MASK | PFERR_PRESENT_MASK));
3473 }
3474 
3475 /*
3476  * Returns true if the SPTE was fixed successfully. Otherwise,
3477  * someone else modified the SPTE from its original value.
3478  */
3479 static bool
3480 fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
3481 			u64 *sptep, u64 old_spte, u64 new_spte)
3482 {
3483 	gfn_t gfn;
3484 
3485 	WARN_ON(!sp->role.direct);
3486 
3487 	/*
3488 	 * Theoretically we could also set dirty bit (and flush TLB) here in
3489 	 * order to eliminate unnecessary PML logging. See comments in
3490 	 * set_spte. But fast_page_fault is very unlikely to happen with PML
3491 	 * enabled, so we do not do this. This might result in the same GPA
3492 	 * to be logged in PML buffer again when the write really happens, and
3493 	 * eventually to be called by mark_page_dirty twice. But it's also no
3494 	 * harm. This also avoids the TLB flush needed after setting dirty bit
3495 	 * so non-PML cases won't be impacted.
3496 	 *
3497 	 * Compare with set_spte where instead shadow_dirty_mask is set.
3498 	 */
3499 	if (cmpxchg64(sptep, old_spte, new_spte) != old_spte)
3500 		return false;
3501 
3502 	if (is_writable_pte(new_spte) && !is_writable_pte(old_spte)) {
3503 		/*
3504 		 * The gfn of direct spte is stable since it is
3505 		 * calculated by sp->gfn.
3506 		 */
3507 		gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
3508 		kvm_vcpu_mark_page_dirty(vcpu, gfn);
3509 	}
3510 
3511 	return true;
3512 }
3513 
3514 static bool is_access_allowed(u32 fault_err_code, u64 spte)
3515 {
3516 	if (fault_err_code & PFERR_FETCH_MASK)
3517 		return is_executable_pte(spte);
3518 
3519 	if (fault_err_code & PFERR_WRITE_MASK)
3520 		return is_writable_pte(spte);
3521 
3522 	/* Fault was on Read access */
3523 	return spte & PT_PRESENT_MASK;
3524 }
3525 
3526 /*
3527  * Return value:
3528  * - true: let the vcpu to access on the same address again.
3529  * - false: let the real page fault path to fix it.
3530  */
3531 static bool fast_page_fault(struct kvm_vcpu *vcpu, gva_t gva, int level,
3532 			    u32 error_code)
3533 {
3534 	struct kvm_shadow_walk_iterator iterator;
3535 	struct kvm_mmu_page *sp;
3536 	bool fault_handled = false;
3537 	u64 spte = 0ull;
3538 	uint retry_count = 0;
3539 
3540 	if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
3541 		return false;
3542 
3543 	if (!page_fault_can_be_fast(error_code))
3544 		return false;
3545 
3546 	walk_shadow_page_lockless_begin(vcpu);
3547 
3548 	do {
3549 		u64 new_spte;
3550 
3551 		for_each_shadow_entry_lockless(vcpu, gva, iterator, spte)
3552 			if (!is_shadow_present_pte(spte) ||
3553 			    iterator.level < level)
3554 				break;
3555 
3556 		sp = page_header(__pa(iterator.sptep));
3557 		if (!is_last_spte(spte, sp->role.level))
3558 			break;
3559 
3560 		/*
3561 		 * Check whether the memory access that caused the fault would
3562 		 * still cause it if it were to be performed right now. If not,
3563 		 * then this is a spurious fault caused by TLB lazily flushed,
3564 		 * or some other CPU has already fixed the PTE after the
3565 		 * current CPU took the fault.
3566 		 *
3567 		 * Need not check the access of upper level table entries since
3568 		 * they are always ACC_ALL.
3569 		 */
3570 		if (is_access_allowed(error_code, spte)) {
3571 			fault_handled = true;
3572 			break;
3573 		}
3574 
3575 		new_spte = spte;
3576 
3577 		if (is_access_track_spte(spte))
3578 			new_spte = restore_acc_track_spte(new_spte);
3579 
3580 		/*
3581 		 * Currently, to simplify the code, write-protection can
3582 		 * be removed in the fast path only if the SPTE was
3583 		 * write-protected for dirty-logging or access tracking.
3584 		 */
3585 		if ((error_code & PFERR_WRITE_MASK) &&
3586 		    spte_can_locklessly_be_made_writable(spte))
3587 		{
3588 			new_spte |= PT_WRITABLE_MASK;
3589 
3590 			/*
3591 			 * Do not fix write-permission on the large spte.  Since
3592 			 * we only dirty the first page into the dirty-bitmap in
3593 			 * fast_pf_fix_direct_spte(), other pages are missed
3594 			 * if its slot has dirty logging enabled.
3595 			 *
3596 			 * Instead, we let the slow page fault path create a
3597 			 * normal spte to fix the access.
3598 			 *
3599 			 * See the comments in kvm_arch_commit_memory_region().
3600 			 */
3601 			if (sp->role.level > PT_PAGE_TABLE_LEVEL)
3602 				break;
3603 		}
3604 
3605 		/* Verify that the fault can be handled in the fast path */
3606 		if (new_spte == spte ||
3607 		    !is_access_allowed(error_code, new_spte))
3608 			break;
3609 
3610 		/*
3611 		 * Currently, fast page fault only works for direct mapping
3612 		 * since the gfn is not stable for indirect shadow page. See
3613 		 * Documentation/virt/kvm/locking.txt to get more detail.
3614 		 */
3615 		fault_handled = fast_pf_fix_direct_spte(vcpu, sp,
3616 							iterator.sptep, spte,
3617 							new_spte);
3618 		if (fault_handled)
3619 			break;
3620 
3621 		if (++retry_count > 4) {
3622 			printk_once(KERN_WARNING
3623 				"kvm: Fast #PF retrying more than 4 times.\n");
3624 			break;
3625 		}
3626 
3627 	} while (true);
3628 
3629 	trace_fast_page_fault(vcpu, gva, error_code, iterator.sptep,
3630 			      spte, fault_handled);
3631 	walk_shadow_page_lockless_end(vcpu);
3632 
3633 	return fault_handled;
3634 }
3635 
3636 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
3637 			 gva_t gva, kvm_pfn_t *pfn, bool write, bool *writable);
3638 static int make_mmu_pages_available(struct kvm_vcpu *vcpu);
3639 
3640 static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, u32 error_code,
3641 			 gfn_t gfn, bool prefault)
3642 {
3643 	int r;
3644 	int level;
3645 	bool force_pt_level;
3646 	kvm_pfn_t pfn;
3647 	unsigned long mmu_seq;
3648 	bool map_writable, write = error_code & PFERR_WRITE_MASK;
3649 	bool lpage_disallowed = (error_code & PFERR_FETCH_MASK) &&
3650 				is_nx_huge_page_enabled();
3651 
3652 	force_pt_level = lpage_disallowed;
3653 	level = mapping_level(vcpu, gfn, &force_pt_level);
3654 	if (likely(!force_pt_level)) {
3655 		/*
3656 		 * This path builds a PAE pagetable - so we can map
3657 		 * 2mb pages at maximum. Therefore check if the level
3658 		 * is larger than that.
3659 		 */
3660 		if (level > PT_DIRECTORY_LEVEL)
3661 			level = PT_DIRECTORY_LEVEL;
3662 
3663 		gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
3664 	}
3665 
3666 	if (fast_page_fault(vcpu, v, level, error_code))
3667 		return RET_PF_RETRY;
3668 
3669 	mmu_seq = vcpu->kvm->mmu_notifier_seq;
3670 	smp_rmb();
3671 
3672 	if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
3673 		return RET_PF_RETRY;
3674 
3675 	if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
3676 		return r;
3677 
3678 	r = RET_PF_RETRY;
3679 	spin_lock(&vcpu->kvm->mmu_lock);
3680 	if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
3681 		goto out_unlock;
3682 	if (make_mmu_pages_available(vcpu) < 0)
3683 		goto out_unlock;
3684 	if (likely(!force_pt_level))
3685 		transparent_hugepage_adjust(vcpu, gfn, &pfn, &level);
3686 	r = __direct_map(vcpu, v, write, map_writable, level, pfn,
3687 			 prefault, false);
3688 out_unlock:
3689 	spin_unlock(&vcpu->kvm->mmu_lock);
3690 	kvm_release_pfn_clean(pfn);
3691 	return r;
3692 }
3693 
3694 static void mmu_free_root_page(struct kvm *kvm, hpa_t *root_hpa,
3695 			       struct list_head *invalid_list)
3696 {
3697 	struct kvm_mmu_page *sp;
3698 
3699 	if (!VALID_PAGE(*root_hpa))
3700 		return;
3701 
3702 	sp = page_header(*root_hpa & PT64_BASE_ADDR_MASK);
3703 	--sp->root_count;
3704 	if (!sp->root_count && sp->role.invalid)
3705 		kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
3706 
3707 	*root_hpa = INVALID_PAGE;
3708 }
3709 
3710 /* roots_to_free must be some combination of the KVM_MMU_ROOT_* flags */
3711 void kvm_mmu_free_roots(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
3712 			ulong roots_to_free)
3713 {
3714 	int i;
3715 	LIST_HEAD(invalid_list);
3716 	bool free_active_root = roots_to_free & KVM_MMU_ROOT_CURRENT;
3717 
3718 	BUILD_BUG_ON(KVM_MMU_NUM_PREV_ROOTS >= BITS_PER_LONG);
3719 
3720 	/* Before acquiring the MMU lock, see if we need to do any real work. */
3721 	if (!(free_active_root && VALID_PAGE(mmu->root_hpa))) {
3722 		for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
3723 			if ((roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) &&
3724 			    VALID_PAGE(mmu->prev_roots[i].hpa))
3725 				break;
3726 
3727 		if (i == KVM_MMU_NUM_PREV_ROOTS)
3728 			return;
3729 	}
3730 
3731 	spin_lock(&vcpu->kvm->mmu_lock);
3732 
3733 	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
3734 		if (roots_to_free & KVM_MMU_ROOT_PREVIOUS(i))
3735 			mmu_free_root_page(vcpu->kvm, &mmu->prev_roots[i].hpa,
3736 					   &invalid_list);
3737 
3738 	if (free_active_root) {
3739 		if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
3740 		    (mmu->root_level >= PT64_ROOT_4LEVEL || mmu->direct_map)) {
3741 			mmu_free_root_page(vcpu->kvm, &mmu->root_hpa,
3742 					   &invalid_list);
3743 		} else {
3744 			for (i = 0; i < 4; ++i)
3745 				if (mmu->pae_root[i] != 0)
3746 					mmu_free_root_page(vcpu->kvm,
3747 							   &mmu->pae_root[i],
3748 							   &invalid_list);
3749 			mmu->root_hpa = INVALID_PAGE;
3750 		}
3751 		mmu->root_cr3 = 0;
3752 	}
3753 
3754 	kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3755 	spin_unlock(&vcpu->kvm->mmu_lock);
3756 }
3757 EXPORT_SYMBOL_GPL(kvm_mmu_free_roots);
3758 
3759 static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
3760 {
3761 	int ret = 0;
3762 
3763 	if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
3764 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3765 		ret = 1;
3766 	}
3767 
3768 	return ret;
3769 }
3770 
3771 static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
3772 {
3773 	struct kvm_mmu_page *sp;
3774 	unsigned i;
3775 
3776 	if (vcpu->arch.mmu->shadow_root_level >= PT64_ROOT_4LEVEL) {
3777 		spin_lock(&vcpu->kvm->mmu_lock);
3778 		if(make_mmu_pages_available(vcpu) < 0) {
3779 			spin_unlock(&vcpu->kvm->mmu_lock);
3780 			return -ENOSPC;
3781 		}
3782 		sp = kvm_mmu_get_page(vcpu, 0, 0,
3783 				vcpu->arch.mmu->shadow_root_level, 1, ACC_ALL);
3784 		++sp->root_count;
3785 		spin_unlock(&vcpu->kvm->mmu_lock);
3786 		vcpu->arch.mmu->root_hpa = __pa(sp->spt);
3787 	} else if (vcpu->arch.mmu->shadow_root_level == PT32E_ROOT_LEVEL) {
3788 		for (i = 0; i < 4; ++i) {
3789 			hpa_t root = vcpu->arch.mmu->pae_root[i];
3790 
3791 			MMU_WARN_ON(VALID_PAGE(root));
3792 			spin_lock(&vcpu->kvm->mmu_lock);
3793 			if (make_mmu_pages_available(vcpu) < 0) {
3794 				spin_unlock(&vcpu->kvm->mmu_lock);
3795 				return -ENOSPC;
3796 			}
3797 			sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
3798 					i << 30, PT32_ROOT_LEVEL, 1, ACC_ALL);
3799 			root = __pa(sp->spt);
3800 			++sp->root_count;
3801 			spin_unlock(&vcpu->kvm->mmu_lock);
3802 			vcpu->arch.mmu->pae_root[i] = root | PT_PRESENT_MASK;
3803 		}
3804 		vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->pae_root);
3805 	} else
3806 		BUG();
3807 	vcpu->arch.mmu->root_cr3 = vcpu->arch.mmu->get_cr3(vcpu);
3808 
3809 	return 0;
3810 }
3811 
3812 static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
3813 {
3814 	struct kvm_mmu_page *sp;
3815 	u64 pdptr, pm_mask;
3816 	gfn_t root_gfn, root_cr3;
3817 	int i;
3818 
3819 	root_cr3 = vcpu->arch.mmu->get_cr3(vcpu);
3820 	root_gfn = root_cr3 >> PAGE_SHIFT;
3821 
3822 	if (mmu_check_root(vcpu, root_gfn))
3823 		return 1;
3824 
3825 	/*
3826 	 * Do we shadow a long mode page table? If so we need to
3827 	 * write-protect the guests page table root.
3828 	 */
3829 	if (vcpu->arch.mmu->root_level >= PT64_ROOT_4LEVEL) {
3830 		hpa_t root = vcpu->arch.mmu->root_hpa;
3831 
3832 		MMU_WARN_ON(VALID_PAGE(root));
3833 
3834 		spin_lock(&vcpu->kvm->mmu_lock);
3835 		if (make_mmu_pages_available(vcpu) < 0) {
3836 			spin_unlock(&vcpu->kvm->mmu_lock);
3837 			return -ENOSPC;
3838 		}
3839 		sp = kvm_mmu_get_page(vcpu, root_gfn, 0,
3840 				vcpu->arch.mmu->shadow_root_level, 0, ACC_ALL);
3841 		root = __pa(sp->spt);
3842 		++sp->root_count;
3843 		spin_unlock(&vcpu->kvm->mmu_lock);
3844 		vcpu->arch.mmu->root_hpa = root;
3845 		goto set_root_cr3;
3846 	}
3847 
3848 	/*
3849 	 * We shadow a 32 bit page table. This may be a legacy 2-level
3850 	 * or a PAE 3-level page table. In either case we need to be aware that
3851 	 * the shadow page table may be a PAE or a long mode page table.
3852 	 */
3853 	pm_mask = PT_PRESENT_MASK;
3854 	if (vcpu->arch.mmu->shadow_root_level == PT64_ROOT_4LEVEL)
3855 		pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
3856 
3857 	for (i = 0; i < 4; ++i) {
3858 		hpa_t root = vcpu->arch.mmu->pae_root[i];
3859 
3860 		MMU_WARN_ON(VALID_PAGE(root));
3861 		if (vcpu->arch.mmu->root_level == PT32E_ROOT_LEVEL) {
3862 			pdptr = vcpu->arch.mmu->get_pdptr(vcpu, i);
3863 			if (!(pdptr & PT_PRESENT_MASK)) {
3864 				vcpu->arch.mmu->pae_root[i] = 0;
3865 				continue;
3866 			}
3867 			root_gfn = pdptr >> PAGE_SHIFT;
3868 			if (mmu_check_root(vcpu, root_gfn))
3869 				return 1;
3870 		}
3871 		spin_lock(&vcpu->kvm->mmu_lock);
3872 		if (make_mmu_pages_available(vcpu) < 0) {
3873 			spin_unlock(&vcpu->kvm->mmu_lock);
3874 			return -ENOSPC;
3875 		}
3876 		sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30, PT32_ROOT_LEVEL,
3877 				      0, ACC_ALL);
3878 		root = __pa(sp->spt);
3879 		++sp->root_count;
3880 		spin_unlock(&vcpu->kvm->mmu_lock);
3881 
3882 		vcpu->arch.mmu->pae_root[i] = root | pm_mask;
3883 	}
3884 	vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->pae_root);
3885 
3886 	/*
3887 	 * If we shadow a 32 bit page table with a long mode page
3888 	 * table we enter this path.
3889 	 */
3890 	if (vcpu->arch.mmu->shadow_root_level == PT64_ROOT_4LEVEL) {
3891 		if (vcpu->arch.mmu->lm_root == NULL) {
3892 			/*
3893 			 * The additional page necessary for this is only
3894 			 * allocated on demand.
3895 			 */
3896 
3897 			u64 *lm_root;
3898 
3899 			lm_root = (void*)get_zeroed_page(GFP_KERNEL_ACCOUNT);
3900 			if (lm_root == NULL)
3901 				return 1;
3902 
3903 			lm_root[0] = __pa(vcpu->arch.mmu->pae_root) | pm_mask;
3904 
3905 			vcpu->arch.mmu->lm_root = lm_root;
3906 		}
3907 
3908 		vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->lm_root);
3909 	}
3910 
3911 set_root_cr3:
3912 	vcpu->arch.mmu->root_cr3 = root_cr3;
3913 
3914 	return 0;
3915 }
3916 
3917 static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
3918 {
3919 	if (vcpu->arch.mmu->direct_map)
3920 		return mmu_alloc_direct_roots(vcpu);
3921 	else
3922 		return mmu_alloc_shadow_roots(vcpu);
3923 }
3924 
3925 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3926 {
3927 	int i;
3928 	struct kvm_mmu_page *sp;
3929 
3930 	if (vcpu->arch.mmu->direct_map)
3931 		return;
3932 
3933 	if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
3934 		return;
3935 
3936 	vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
3937 
3938 	if (vcpu->arch.mmu->root_level >= PT64_ROOT_4LEVEL) {
3939 		hpa_t root = vcpu->arch.mmu->root_hpa;
3940 		sp = page_header(root);
3941 
3942 		/*
3943 		 * Even if another CPU was marking the SP as unsync-ed
3944 		 * simultaneously, any guest page table changes are not
3945 		 * guaranteed to be visible anyway until this VCPU issues a TLB
3946 		 * flush strictly after those changes are made. We only need to
3947 		 * ensure that the other CPU sets these flags before any actual
3948 		 * changes to the page tables are made. The comments in
3949 		 * mmu_need_write_protect() describe what could go wrong if this
3950 		 * requirement isn't satisfied.
3951 		 */
3952 		if (!smp_load_acquire(&sp->unsync) &&
3953 		    !smp_load_acquire(&sp->unsync_children))
3954 			return;
3955 
3956 		spin_lock(&vcpu->kvm->mmu_lock);
3957 		kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3958 
3959 		mmu_sync_children(vcpu, sp);
3960 
3961 		kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3962 		spin_unlock(&vcpu->kvm->mmu_lock);
3963 		return;
3964 	}
3965 
3966 	spin_lock(&vcpu->kvm->mmu_lock);
3967 	kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3968 
3969 	for (i = 0; i < 4; ++i) {
3970 		hpa_t root = vcpu->arch.mmu->pae_root[i];
3971 
3972 		if (root && VALID_PAGE(root)) {
3973 			root &= PT64_BASE_ADDR_MASK;
3974 			sp = page_header(root);
3975 			mmu_sync_children(vcpu, sp);
3976 		}
3977 	}
3978 
3979 	kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3980 	spin_unlock(&vcpu->kvm->mmu_lock);
3981 }
3982 EXPORT_SYMBOL_GPL(kvm_mmu_sync_roots);
3983 
3984 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
3985 				  u32 access, struct x86_exception *exception)
3986 {
3987 	if (exception)
3988 		exception->error_code = 0;
3989 	return vaddr;
3990 }
3991 
3992 static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
3993 					 u32 access,
3994 					 struct x86_exception *exception)
3995 {
3996 	if (exception)
3997 		exception->error_code = 0;
3998 	return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception);
3999 }
4000 
4001 static bool
4002 __is_rsvd_bits_set(struct rsvd_bits_validate *rsvd_check, u64 pte, int level)
4003 {
4004 	int bit7 = (pte >> 7) & 1, low6 = pte & 0x3f;
4005 
4006 	return (pte & rsvd_check->rsvd_bits_mask[bit7][level-1]) |
4007 		((rsvd_check->bad_mt_xwr & (1ull << low6)) != 0);
4008 }
4009 
4010 static bool is_rsvd_bits_set(struct kvm_mmu *mmu, u64 gpte, int level)
4011 {
4012 	return __is_rsvd_bits_set(&mmu->guest_rsvd_check, gpte, level);
4013 }
4014 
4015 static bool is_shadow_zero_bits_set(struct kvm_mmu *mmu, u64 spte, int level)
4016 {
4017 	return __is_rsvd_bits_set(&mmu->shadow_zero_check, spte, level);
4018 }
4019 
4020 static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct)
4021 {
4022 	/*
4023 	 * A nested guest cannot use the MMIO cache if it is using nested
4024 	 * page tables, because cr2 is a nGPA while the cache stores GPAs.
4025 	 */
4026 	if (mmu_is_nested(vcpu))
4027 		return false;
4028 
4029 	if (direct)
4030 		return vcpu_match_mmio_gpa(vcpu, addr);
4031 
4032 	return vcpu_match_mmio_gva(vcpu, addr);
4033 }
4034 
4035 /* return true if reserved bit is detected on spte. */
4036 static bool
4037 walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep)
4038 {
4039 	struct kvm_shadow_walk_iterator iterator;
4040 	u64 sptes[PT64_ROOT_MAX_LEVEL], spte = 0ull;
4041 	int root, leaf;
4042 	bool reserved = false;
4043 
4044 	if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
4045 		goto exit;
4046 
4047 	walk_shadow_page_lockless_begin(vcpu);
4048 
4049 	for (shadow_walk_init(&iterator, vcpu, addr),
4050 		 leaf = root = iterator.level;
4051 	     shadow_walk_okay(&iterator);
4052 	     __shadow_walk_next(&iterator, spte)) {
4053 		spte = mmu_spte_get_lockless(iterator.sptep);
4054 
4055 		sptes[leaf - 1] = spte;
4056 		leaf--;
4057 
4058 		if (!is_shadow_present_pte(spte))
4059 			break;
4060 
4061 		reserved |= is_shadow_zero_bits_set(vcpu->arch.mmu, spte,
4062 						    iterator.level);
4063 	}
4064 
4065 	walk_shadow_page_lockless_end(vcpu);
4066 
4067 	if (reserved) {
4068 		pr_err("%s: detect reserved bits on spte, addr 0x%llx, dump hierarchy:\n",
4069 		       __func__, addr);
4070 		while (root > leaf) {
4071 			pr_err("------ spte 0x%llx level %d.\n",
4072 			       sptes[root - 1], root);
4073 			root--;
4074 		}
4075 	}
4076 exit:
4077 	*sptep = spte;
4078 	return reserved;
4079 }
4080 
4081 static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct)
4082 {
4083 	u64 spte;
4084 	bool reserved;
4085 
4086 	if (mmio_info_in_cache(vcpu, addr, direct))
4087 		return RET_PF_EMULATE;
4088 
4089 	reserved = walk_shadow_page_get_mmio_spte(vcpu, addr, &spte);
4090 	if (WARN_ON(reserved))
4091 		return -EINVAL;
4092 
4093 	if (is_mmio_spte(spte)) {
4094 		gfn_t gfn = get_mmio_spte_gfn(spte);
4095 		unsigned access = get_mmio_spte_access(spte);
4096 
4097 		if (!check_mmio_spte(vcpu, spte))
4098 			return RET_PF_INVALID;
4099 
4100 		if (direct)
4101 			addr = 0;
4102 
4103 		trace_handle_mmio_page_fault(addr, gfn, access);
4104 		vcpu_cache_mmio_info(vcpu, addr, gfn, access);
4105 		return RET_PF_EMULATE;
4106 	}
4107 
4108 	/*
4109 	 * If the page table is zapped by other cpus, let CPU fault again on
4110 	 * the address.
4111 	 */
4112 	return RET_PF_RETRY;
4113 }
4114 
4115 static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu,
4116 					 u32 error_code, gfn_t gfn)
4117 {
4118 	if (unlikely(error_code & PFERR_RSVD_MASK))
4119 		return false;
4120 
4121 	if (!(error_code & PFERR_PRESENT_MASK) ||
4122 	      !(error_code & PFERR_WRITE_MASK))
4123 		return false;
4124 
4125 	/*
4126 	 * guest is writing the page which is write tracked which can
4127 	 * not be fixed by page fault handler.
4128 	 */
4129 	if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
4130 		return true;
4131 
4132 	return false;
4133 }
4134 
4135 static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr)
4136 {
4137 	struct kvm_shadow_walk_iterator iterator;
4138 	u64 spte;
4139 
4140 	if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
4141 		return;
4142 
4143 	walk_shadow_page_lockless_begin(vcpu);
4144 	for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
4145 		clear_sp_write_flooding_count(iterator.sptep);
4146 		if (!is_shadow_present_pte(spte))
4147 			break;
4148 	}
4149 	walk_shadow_page_lockless_end(vcpu);
4150 }
4151 
4152 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
4153 				u32 error_code, bool prefault)
4154 {
4155 	gfn_t gfn = gva >> PAGE_SHIFT;
4156 	int r;
4157 
4158 	pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
4159 
4160 	if (page_fault_handle_page_track(vcpu, error_code, gfn))
4161 		return RET_PF_EMULATE;
4162 
4163 	r = mmu_topup_memory_caches(vcpu);
4164 	if (r)
4165 		return r;
4166 
4167 	MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa));
4168 
4169 
4170 	return nonpaging_map(vcpu, gva & PAGE_MASK,
4171 			     error_code, gfn, prefault);
4172 }
4173 
4174 static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
4175 {
4176 	struct kvm_arch_async_pf arch;
4177 
4178 	arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
4179 	arch.gfn = gfn;
4180 	arch.direct_map = vcpu->arch.mmu->direct_map;
4181 	arch.cr3 = vcpu->arch.mmu->get_cr3(vcpu);
4182 
4183 	return kvm_setup_async_pf(vcpu, gva, kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch);
4184 }
4185 
4186 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
4187 			 gva_t gva, kvm_pfn_t *pfn, bool write, bool *writable)
4188 {
4189 	struct kvm_memory_slot *slot;
4190 	bool async;
4191 
4192 	/*
4193 	 * Don't expose private memslots to L2.
4194 	 */
4195 	if (is_guest_mode(vcpu) && !kvm_is_visible_gfn(vcpu->kvm, gfn)) {
4196 		*pfn = KVM_PFN_NOSLOT;
4197 		return false;
4198 	}
4199 
4200 	slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
4201 	async = false;
4202 	*pfn = __gfn_to_pfn_memslot(slot, gfn, false, &async, write, writable);
4203 	if (!async)
4204 		return false; /* *pfn has correct page already */
4205 
4206 	if (!prefault && kvm_can_do_async_pf(vcpu)) {
4207 		trace_kvm_try_async_get_page(gva, gfn);
4208 		if (kvm_find_async_pf_gfn(vcpu, gfn)) {
4209 			trace_kvm_async_pf_doublefault(gva, gfn);
4210 			kvm_make_request(KVM_REQ_APF_HALT, vcpu);
4211 			return true;
4212 		} else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
4213 			return true;
4214 	}
4215 
4216 	*pfn = __gfn_to_pfn_memslot(slot, gfn, false, NULL, write, writable);
4217 	return false;
4218 }
4219 
4220 int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code,
4221 				u64 fault_address, char *insn, int insn_len)
4222 {
4223 	int r = 1;
4224 
4225 	vcpu->arch.l1tf_flush_l1d = true;
4226 	switch (vcpu->arch.apf.host_apf_reason) {
4227 	default:
4228 		trace_kvm_page_fault(fault_address, error_code);
4229 
4230 		if (kvm_event_needs_reinjection(vcpu))
4231 			kvm_mmu_unprotect_page_virt(vcpu, fault_address);
4232 		r = kvm_mmu_page_fault(vcpu, fault_address, error_code, insn,
4233 				insn_len);
4234 		break;
4235 	case KVM_PV_REASON_PAGE_NOT_PRESENT:
4236 		vcpu->arch.apf.host_apf_reason = 0;
4237 		local_irq_disable();
4238 		kvm_async_pf_task_wait(fault_address, 0);
4239 		local_irq_enable();
4240 		break;
4241 	case KVM_PV_REASON_PAGE_READY:
4242 		vcpu->arch.apf.host_apf_reason = 0;
4243 		local_irq_disable();
4244 		kvm_async_pf_task_wake(fault_address);
4245 		local_irq_enable();
4246 		break;
4247 	}
4248 	return r;
4249 }
4250 EXPORT_SYMBOL_GPL(kvm_handle_page_fault);
4251 
4252 static bool
4253 check_hugepage_cache_consistency(struct kvm_vcpu *vcpu, gfn_t gfn, int level)
4254 {
4255 	int page_num = KVM_PAGES_PER_HPAGE(level);
4256 
4257 	gfn &= ~(page_num - 1);
4258 
4259 	return kvm_mtrr_check_gfn_range_consistency(vcpu, gfn, page_num);
4260 }
4261 
4262 static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
4263 			  bool prefault)
4264 {
4265 	kvm_pfn_t pfn;
4266 	int r;
4267 	int level;
4268 	bool force_pt_level;
4269 	gfn_t gfn = gpa >> PAGE_SHIFT;
4270 	unsigned long mmu_seq;
4271 	int write = error_code & PFERR_WRITE_MASK;
4272 	bool map_writable;
4273 	bool lpage_disallowed = (error_code & PFERR_FETCH_MASK) &&
4274 				is_nx_huge_page_enabled();
4275 
4276 	MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa));
4277 
4278 	if (page_fault_handle_page_track(vcpu, error_code, gfn))
4279 		return RET_PF_EMULATE;
4280 
4281 	r = mmu_topup_memory_caches(vcpu);
4282 	if (r)
4283 		return r;
4284 
4285 	force_pt_level =
4286 		lpage_disallowed ||
4287 		!check_hugepage_cache_consistency(vcpu, gfn, PT_DIRECTORY_LEVEL);
4288 	level = mapping_level(vcpu, gfn, &force_pt_level);
4289 	if (likely(!force_pt_level)) {
4290 		if (level > PT_DIRECTORY_LEVEL &&
4291 		    !check_hugepage_cache_consistency(vcpu, gfn, level))
4292 			level = PT_DIRECTORY_LEVEL;
4293 		gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
4294 	}
4295 
4296 	if (fast_page_fault(vcpu, gpa, level, error_code))
4297 		return RET_PF_RETRY;
4298 
4299 	mmu_seq = vcpu->kvm->mmu_notifier_seq;
4300 	smp_rmb();
4301 
4302 	if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
4303 		return RET_PF_RETRY;
4304 
4305 	if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
4306 		return r;
4307 
4308 	r = RET_PF_RETRY;
4309 	spin_lock(&vcpu->kvm->mmu_lock);
4310 	if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
4311 		goto out_unlock;
4312 	if (make_mmu_pages_available(vcpu) < 0)
4313 		goto out_unlock;
4314 	if (likely(!force_pt_level))
4315 		transparent_hugepage_adjust(vcpu, gfn, &pfn, &level);
4316 	r = __direct_map(vcpu, gpa, write, map_writable, level, pfn,
4317 			 prefault, lpage_disallowed);
4318 out_unlock:
4319 	spin_unlock(&vcpu->kvm->mmu_lock);
4320 	kvm_release_pfn_clean(pfn);
4321 	return r;
4322 }
4323 
4324 static void nonpaging_init_context(struct kvm_vcpu *vcpu,
4325 				   struct kvm_mmu *context)
4326 {
4327 	context->page_fault = nonpaging_page_fault;
4328 	context->gva_to_gpa = nonpaging_gva_to_gpa;
4329 	context->sync_page = nonpaging_sync_page;
4330 	context->invlpg = nonpaging_invlpg;
4331 	context->update_pte = nonpaging_update_pte;
4332 	context->root_level = 0;
4333 	context->shadow_root_level = PT32E_ROOT_LEVEL;
4334 	context->direct_map = true;
4335 	context->nx = false;
4336 }
4337 
4338 /*
4339  * Find out if a previously cached root matching the new CR3/role is available.
4340  * The current root is also inserted into the cache.
4341  * If a matching root was found, it is assigned to kvm_mmu->root_hpa and true is
4342  * returned.
4343  * Otherwise, the LRU root from the cache is assigned to kvm_mmu->root_hpa and
4344  * false is returned. This root should now be freed by the caller.
4345  */
4346 static bool cached_root_available(struct kvm_vcpu *vcpu, gpa_t new_cr3,
4347 				  union kvm_mmu_page_role new_role)
4348 {
4349 	uint i;
4350 	struct kvm_mmu_root_info root;
4351 	struct kvm_mmu *mmu = vcpu->arch.mmu;
4352 
4353 	root.cr3 = mmu->root_cr3;
4354 	root.hpa = mmu->root_hpa;
4355 
4356 	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
4357 		swap(root, mmu->prev_roots[i]);
4358 
4359 		if (new_cr3 == root.cr3 && VALID_PAGE(root.hpa) &&
4360 		    page_header(root.hpa) != NULL &&
4361 		    new_role.word == page_header(root.hpa)->role.word)
4362 			break;
4363 	}
4364 
4365 	mmu->root_hpa = root.hpa;
4366 	mmu->root_cr3 = root.cr3;
4367 
4368 	return i < KVM_MMU_NUM_PREV_ROOTS;
4369 }
4370 
4371 static bool fast_cr3_switch(struct kvm_vcpu *vcpu, gpa_t new_cr3,
4372 			    union kvm_mmu_page_role new_role,
4373 			    bool skip_tlb_flush)
4374 {
4375 	struct kvm_mmu *mmu = vcpu->arch.mmu;
4376 
4377 	/*
4378 	 * For now, limit the fast switch to 64-bit hosts+VMs in order to avoid
4379 	 * having to deal with PDPTEs. We may add support for 32-bit hosts/VMs
4380 	 * later if necessary.
4381 	 */
4382 	if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
4383 	    mmu->root_level >= PT64_ROOT_4LEVEL) {
4384 		if (mmu_check_root(vcpu, new_cr3 >> PAGE_SHIFT))
4385 			return false;
4386 
4387 		if (cached_root_available(vcpu, new_cr3, new_role)) {
4388 			/*
4389 			 * It is possible that the cached previous root page is
4390 			 * obsolete because of a change in the MMU generation
4391 			 * number. However, changing the generation number is
4392 			 * accompanied by KVM_REQ_MMU_RELOAD, which will free
4393 			 * the root set here and allocate a new one.
4394 			 */
4395 			kvm_make_request(KVM_REQ_LOAD_CR3, vcpu);
4396 			if (!skip_tlb_flush) {
4397 				kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
4398 				kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
4399 			}
4400 
4401 			/*
4402 			 * The last MMIO access's GVA and GPA are cached in the
4403 			 * VCPU. When switching to a new CR3, that GVA->GPA
4404 			 * mapping may no longer be valid. So clear any cached
4405 			 * MMIO info even when we don't need to sync the shadow
4406 			 * page tables.
4407 			 */
4408 			vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
4409 
4410 			__clear_sp_write_flooding_count(
4411 				page_header(mmu->root_hpa));
4412 
4413 			return true;
4414 		}
4415 	}
4416 
4417 	return false;
4418 }
4419 
4420 static void __kvm_mmu_new_cr3(struct kvm_vcpu *vcpu, gpa_t new_cr3,
4421 			      union kvm_mmu_page_role new_role,
4422 			      bool skip_tlb_flush)
4423 {
4424 	if (!fast_cr3_switch(vcpu, new_cr3, new_role, skip_tlb_flush))
4425 		kvm_mmu_free_roots(vcpu, vcpu->arch.mmu,
4426 				   KVM_MMU_ROOT_CURRENT);
4427 }
4428 
4429 void kvm_mmu_new_cr3(struct kvm_vcpu *vcpu, gpa_t new_cr3, bool skip_tlb_flush)
4430 {
4431 	__kvm_mmu_new_cr3(vcpu, new_cr3, kvm_mmu_calc_root_page_role(vcpu),
4432 			  skip_tlb_flush);
4433 }
4434 EXPORT_SYMBOL_GPL(kvm_mmu_new_cr3);
4435 
4436 static unsigned long get_cr3(struct kvm_vcpu *vcpu)
4437 {
4438 	return kvm_read_cr3(vcpu);
4439 }
4440 
4441 static void inject_page_fault(struct kvm_vcpu *vcpu,
4442 			      struct x86_exception *fault)
4443 {
4444 	vcpu->arch.mmu->inject_page_fault(vcpu, fault);
4445 }
4446 
4447 static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
4448 			   unsigned access, int *nr_present)
4449 {
4450 	if (unlikely(is_mmio_spte(*sptep))) {
4451 		if (gfn != get_mmio_spte_gfn(*sptep)) {
4452 			mmu_spte_clear_no_track(sptep);
4453 			return true;
4454 		}
4455 
4456 		(*nr_present)++;
4457 		mark_mmio_spte(vcpu, sptep, gfn, access);
4458 		return true;
4459 	}
4460 
4461 	return false;
4462 }
4463 
4464 static inline bool is_last_gpte(struct kvm_mmu *mmu,
4465 				unsigned level, unsigned gpte)
4466 {
4467 	/*
4468 	 * The RHS has bit 7 set iff level < mmu->last_nonleaf_level.
4469 	 * If it is clear, there are no large pages at this level, so clear
4470 	 * PT_PAGE_SIZE_MASK in gpte if that is the case.
4471 	 */
4472 	gpte &= level - mmu->last_nonleaf_level;
4473 
4474 	/*
4475 	 * PT_PAGE_TABLE_LEVEL always terminates.  The RHS has bit 7 set
4476 	 * iff level <= PT_PAGE_TABLE_LEVEL, which for our purpose means
4477 	 * level == PT_PAGE_TABLE_LEVEL; set PT_PAGE_SIZE_MASK in gpte then.
4478 	 */
4479 	gpte |= level - PT_PAGE_TABLE_LEVEL - 1;
4480 
4481 	return gpte & PT_PAGE_SIZE_MASK;
4482 }
4483 
4484 #define PTTYPE_EPT 18 /* arbitrary */
4485 #define PTTYPE PTTYPE_EPT
4486 #include "paging_tmpl.h"
4487 #undef PTTYPE
4488 
4489 #define PTTYPE 64
4490 #include "paging_tmpl.h"
4491 #undef PTTYPE
4492 
4493 #define PTTYPE 32
4494 #include "paging_tmpl.h"
4495 #undef PTTYPE
4496 
4497 static void
4498 __reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
4499 			struct rsvd_bits_validate *rsvd_check,
4500 			int maxphyaddr, int level, bool nx, bool gbpages,
4501 			bool pse, bool amd)
4502 {
4503 	u64 exb_bit_rsvd = 0;
4504 	u64 gbpages_bit_rsvd = 0;
4505 	u64 nonleaf_bit8_rsvd = 0;
4506 
4507 	rsvd_check->bad_mt_xwr = 0;
4508 
4509 	if (!nx)
4510 		exb_bit_rsvd = rsvd_bits(63, 63);
4511 	if (!gbpages)
4512 		gbpages_bit_rsvd = rsvd_bits(7, 7);
4513 
4514 	/*
4515 	 * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
4516 	 * leaf entries) on AMD CPUs only.
4517 	 */
4518 	if (amd)
4519 		nonleaf_bit8_rsvd = rsvd_bits(8, 8);
4520 
4521 	switch (level) {
4522 	case PT32_ROOT_LEVEL:
4523 		/* no rsvd bits for 2 level 4K page table entries */
4524 		rsvd_check->rsvd_bits_mask[0][1] = 0;
4525 		rsvd_check->rsvd_bits_mask[0][0] = 0;
4526 		rsvd_check->rsvd_bits_mask[1][0] =
4527 			rsvd_check->rsvd_bits_mask[0][0];
4528 
4529 		if (!pse) {
4530 			rsvd_check->rsvd_bits_mask[1][1] = 0;
4531 			break;
4532 		}
4533 
4534 		if (is_cpuid_PSE36())
4535 			/* 36bits PSE 4MB page */
4536 			rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
4537 		else
4538 			/* 32 bits PSE 4MB page */
4539 			rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
4540 		break;
4541 	case PT32E_ROOT_LEVEL:
4542 		rsvd_check->rsvd_bits_mask[0][2] =
4543 			rsvd_bits(maxphyaddr, 63) |
4544 			rsvd_bits(5, 8) | rsvd_bits(1, 2);	/* PDPTE */
4545 		rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4546 			rsvd_bits(maxphyaddr, 62);	/* PDE */
4547 		rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
4548 			rsvd_bits(maxphyaddr, 62); 	/* PTE */
4549 		rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
4550 			rsvd_bits(maxphyaddr, 62) |
4551 			rsvd_bits(13, 20);		/* large page */
4552 		rsvd_check->rsvd_bits_mask[1][0] =
4553 			rsvd_check->rsvd_bits_mask[0][0];
4554 		break;
4555 	case PT64_ROOT_5LEVEL:
4556 		rsvd_check->rsvd_bits_mask[0][4] = exb_bit_rsvd |
4557 			nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
4558 			rsvd_bits(maxphyaddr, 51);
4559 		rsvd_check->rsvd_bits_mask[1][4] =
4560 			rsvd_check->rsvd_bits_mask[0][4];
4561 		/* fall through */
4562 	case PT64_ROOT_4LEVEL:
4563 		rsvd_check->rsvd_bits_mask[0][3] = exb_bit_rsvd |
4564 			nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
4565 			rsvd_bits(maxphyaddr, 51);
4566 		rsvd_check->rsvd_bits_mask[0][2] = exb_bit_rsvd |
4567 			nonleaf_bit8_rsvd | gbpages_bit_rsvd |
4568 			rsvd_bits(maxphyaddr, 51);
4569 		rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4570 			rsvd_bits(maxphyaddr, 51);
4571 		rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
4572 			rsvd_bits(maxphyaddr, 51);
4573 		rsvd_check->rsvd_bits_mask[1][3] =
4574 			rsvd_check->rsvd_bits_mask[0][3];
4575 		rsvd_check->rsvd_bits_mask[1][2] = exb_bit_rsvd |
4576 			gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51) |
4577 			rsvd_bits(13, 29);
4578 		rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
4579 			rsvd_bits(maxphyaddr, 51) |
4580 			rsvd_bits(13, 20);		/* large page */
4581 		rsvd_check->rsvd_bits_mask[1][0] =
4582 			rsvd_check->rsvd_bits_mask[0][0];
4583 		break;
4584 	}
4585 }
4586 
4587 static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
4588 				  struct kvm_mmu *context)
4589 {
4590 	__reset_rsvds_bits_mask(vcpu, &context->guest_rsvd_check,
4591 				cpuid_maxphyaddr(vcpu), context->root_level,
4592 				context->nx,
4593 				guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
4594 				is_pse(vcpu), guest_cpuid_is_amd(vcpu));
4595 }
4596 
4597 static void
4598 __reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check,
4599 			    int maxphyaddr, bool execonly)
4600 {
4601 	u64 bad_mt_xwr;
4602 
4603 	rsvd_check->rsvd_bits_mask[0][4] =
4604 		rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
4605 	rsvd_check->rsvd_bits_mask[0][3] =
4606 		rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
4607 	rsvd_check->rsvd_bits_mask[0][2] =
4608 		rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
4609 	rsvd_check->rsvd_bits_mask[0][1] =
4610 		rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
4611 	rsvd_check->rsvd_bits_mask[0][0] = rsvd_bits(maxphyaddr, 51);
4612 
4613 	/* large page */
4614 	rsvd_check->rsvd_bits_mask[1][4] = rsvd_check->rsvd_bits_mask[0][4];
4615 	rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3];
4616 	rsvd_check->rsvd_bits_mask[1][2] =
4617 		rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 29);
4618 	rsvd_check->rsvd_bits_mask[1][1] =
4619 		rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 20);
4620 	rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0];
4621 
4622 	bad_mt_xwr = 0xFFull << (2 * 8);	/* bits 3..5 must not be 2 */
4623 	bad_mt_xwr |= 0xFFull << (3 * 8);	/* bits 3..5 must not be 3 */
4624 	bad_mt_xwr |= 0xFFull << (7 * 8);	/* bits 3..5 must not be 7 */
4625 	bad_mt_xwr |= REPEAT_BYTE(1ull << 2);	/* bits 0..2 must not be 010 */
4626 	bad_mt_xwr |= REPEAT_BYTE(1ull << 6);	/* bits 0..2 must not be 110 */
4627 	if (!execonly) {
4628 		/* bits 0..2 must not be 100 unless VMX capabilities allow it */
4629 		bad_mt_xwr |= REPEAT_BYTE(1ull << 4);
4630 	}
4631 	rsvd_check->bad_mt_xwr = bad_mt_xwr;
4632 }
4633 
4634 static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
4635 		struct kvm_mmu *context, bool execonly)
4636 {
4637 	__reset_rsvds_bits_mask_ept(&context->guest_rsvd_check,
4638 				    cpuid_maxphyaddr(vcpu), execonly);
4639 }
4640 
4641 /*
4642  * the page table on host is the shadow page table for the page
4643  * table in guest or amd nested guest, its mmu features completely
4644  * follow the features in guest.
4645  */
4646 void
4647 reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
4648 {
4649 	bool uses_nx = context->nx ||
4650 		context->mmu_role.base.smep_andnot_wp;
4651 	struct rsvd_bits_validate *shadow_zero_check;
4652 	int i;
4653 
4654 	/*
4655 	 * Passing "true" to the last argument is okay; it adds a check
4656 	 * on bit 8 of the SPTEs which KVM doesn't use anyway.
4657 	 */
4658 	shadow_zero_check = &context->shadow_zero_check;
4659 	__reset_rsvds_bits_mask(vcpu, shadow_zero_check,
4660 				shadow_phys_bits,
4661 				context->shadow_root_level, uses_nx,
4662 				guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
4663 				is_pse(vcpu), true);
4664 
4665 	if (!shadow_me_mask)
4666 		return;
4667 
4668 	for (i = context->shadow_root_level; --i >= 0;) {
4669 		shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
4670 		shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
4671 	}
4672 
4673 }
4674 EXPORT_SYMBOL_GPL(reset_shadow_zero_bits_mask);
4675 
4676 static inline bool boot_cpu_is_amd(void)
4677 {
4678 	WARN_ON_ONCE(!tdp_enabled);
4679 	return shadow_x_mask == 0;
4680 }
4681 
4682 /*
4683  * the direct page table on host, use as much mmu features as
4684  * possible, however, kvm currently does not do execution-protection.
4685  */
4686 static void
4687 reset_tdp_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4688 				struct kvm_mmu *context)
4689 {
4690 	struct rsvd_bits_validate *shadow_zero_check;
4691 	int i;
4692 
4693 	shadow_zero_check = &context->shadow_zero_check;
4694 
4695 	if (boot_cpu_is_amd())
4696 		__reset_rsvds_bits_mask(vcpu, shadow_zero_check,
4697 					shadow_phys_bits,
4698 					context->shadow_root_level, false,
4699 					boot_cpu_has(X86_FEATURE_GBPAGES),
4700 					true, true);
4701 	else
4702 		__reset_rsvds_bits_mask_ept(shadow_zero_check,
4703 					    shadow_phys_bits,
4704 					    false);
4705 
4706 	if (!shadow_me_mask)
4707 		return;
4708 
4709 	for (i = context->shadow_root_level; --i >= 0;) {
4710 		shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
4711 		shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
4712 	}
4713 }
4714 
4715 /*
4716  * as the comments in reset_shadow_zero_bits_mask() except it
4717  * is the shadow page table for intel nested guest.
4718  */
4719 static void
4720 reset_ept_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4721 				struct kvm_mmu *context, bool execonly)
4722 {
4723 	__reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
4724 				    shadow_phys_bits, execonly);
4725 }
4726 
4727 #define BYTE_MASK(access) \
4728 	((1 & (access) ? 2 : 0) | \
4729 	 (2 & (access) ? 4 : 0) | \
4730 	 (3 & (access) ? 8 : 0) | \
4731 	 (4 & (access) ? 16 : 0) | \
4732 	 (5 & (access) ? 32 : 0) | \
4733 	 (6 & (access) ? 64 : 0) | \
4734 	 (7 & (access) ? 128 : 0))
4735 
4736 
4737 static void update_permission_bitmask(struct kvm_vcpu *vcpu,
4738 				      struct kvm_mmu *mmu, bool ept)
4739 {
4740 	unsigned byte;
4741 
4742 	const u8 x = BYTE_MASK(ACC_EXEC_MASK);
4743 	const u8 w = BYTE_MASK(ACC_WRITE_MASK);
4744 	const u8 u = BYTE_MASK(ACC_USER_MASK);
4745 
4746 	bool cr4_smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP) != 0;
4747 	bool cr4_smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP) != 0;
4748 	bool cr0_wp = is_write_protection(vcpu);
4749 
4750 	for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
4751 		unsigned pfec = byte << 1;
4752 
4753 		/*
4754 		 * Each "*f" variable has a 1 bit for each UWX value
4755 		 * that causes a fault with the given PFEC.
4756 		 */
4757 
4758 		/* Faults from writes to non-writable pages */
4759 		u8 wf = (pfec & PFERR_WRITE_MASK) ? (u8)~w : 0;
4760 		/* Faults from user mode accesses to supervisor pages */
4761 		u8 uf = (pfec & PFERR_USER_MASK) ? (u8)~u : 0;
4762 		/* Faults from fetches of non-executable pages*/
4763 		u8 ff = (pfec & PFERR_FETCH_MASK) ? (u8)~x : 0;
4764 		/* Faults from kernel mode fetches of user pages */
4765 		u8 smepf = 0;
4766 		/* Faults from kernel mode accesses of user pages */
4767 		u8 smapf = 0;
4768 
4769 		if (!ept) {
4770 			/* Faults from kernel mode accesses to user pages */
4771 			u8 kf = (pfec & PFERR_USER_MASK) ? 0 : u;
4772 
4773 			/* Not really needed: !nx will cause pte.nx to fault */
4774 			if (!mmu->nx)
4775 				ff = 0;
4776 
4777 			/* Allow supervisor writes if !cr0.wp */
4778 			if (!cr0_wp)
4779 				wf = (pfec & PFERR_USER_MASK) ? wf : 0;
4780 
4781 			/* Disallow supervisor fetches of user code if cr4.smep */
4782 			if (cr4_smep)
4783 				smepf = (pfec & PFERR_FETCH_MASK) ? kf : 0;
4784 
4785 			/*
4786 			 * SMAP:kernel-mode data accesses from user-mode
4787 			 * mappings should fault. A fault is considered
4788 			 * as a SMAP violation if all of the following
4789 			 * conditions are true:
4790 			 *   - X86_CR4_SMAP is set in CR4
4791 			 *   - A user page is accessed
4792 			 *   - The access is not a fetch
4793 			 *   - Page fault in kernel mode
4794 			 *   - if CPL = 3 or X86_EFLAGS_AC is clear
4795 			 *
4796 			 * Here, we cover the first three conditions.
4797 			 * The fourth is computed dynamically in permission_fault();
4798 			 * PFERR_RSVD_MASK bit will be set in PFEC if the access is
4799 			 * *not* subject to SMAP restrictions.
4800 			 */
4801 			if (cr4_smap)
4802 				smapf = (pfec & (PFERR_RSVD_MASK|PFERR_FETCH_MASK)) ? 0 : kf;
4803 		}
4804 
4805 		mmu->permissions[byte] = ff | uf | wf | smepf | smapf;
4806 	}
4807 }
4808 
4809 /*
4810 * PKU is an additional mechanism by which the paging controls access to
4811 * user-mode addresses based on the value in the PKRU register.  Protection
4812 * key violations are reported through a bit in the page fault error code.
4813 * Unlike other bits of the error code, the PK bit is not known at the
4814 * call site of e.g. gva_to_gpa; it must be computed directly in
4815 * permission_fault based on two bits of PKRU, on some machine state (CR4,
4816 * CR0, EFER, CPL), and on other bits of the error code and the page tables.
4817 *
4818 * In particular the following conditions come from the error code, the
4819 * page tables and the machine state:
4820 * - PK is always zero unless CR4.PKE=1 and EFER.LMA=1
4821 * - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch)
4822 * - PK is always zero if U=0 in the page tables
4823 * - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access.
4824 *
4825 * The PKRU bitmask caches the result of these four conditions.  The error
4826 * code (minus the P bit) and the page table's U bit form an index into the
4827 * PKRU bitmask.  Two bits of the PKRU bitmask are then extracted and ANDed
4828 * with the two bits of the PKRU register corresponding to the protection key.
4829 * For the first three conditions above the bits will be 00, thus masking
4830 * away both AD and WD.  For all reads or if the last condition holds, WD
4831 * only will be masked away.
4832 */
4833 static void update_pkru_bitmask(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
4834 				bool ept)
4835 {
4836 	unsigned bit;
4837 	bool wp;
4838 
4839 	if (ept) {
4840 		mmu->pkru_mask = 0;
4841 		return;
4842 	}
4843 
4844 	/* PKEY is enabled only if CR4.PKE and EFER.LMA are both set. */
4845 	if (!kvm_read_cr4_bits(vcpu, X86_CR4_PKE) || !is_long_mode(vcpu)) {
4846 		mmu->pkru_mask = 0;
4847 		return;
4848 	}
4849 
4850 	wp = is_write_protection(vcpu);
4851 
4852 	for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) {
4853 		unsigned pfec, pkey_bits;
4854 		bool check_pkey, check_write, ff, uf, wf, pte_user;
4855 
4856 		pfec = bit << 1;
4857 		ff = pfec & PFERR_FETCH_MASK;
4858 		uf = pfec & PFERR_USER_MASK;
4859 		wf = pfec & PFERR_WRITE_MASK;
4860 
4861 		/* PFEC.RSVD is replaced by ACC_USER_MASK. */
4862 		pte_user = pfec & PFERR_RSVD_MASK;
4863 
4864 		/*
4865 		 * Only need to check the access which is not an
4866 		 * instruction fetch and is to a user page.
4867 		 */
4868 		check_pkey = (!ff && pte_user);
4869 		/*
4870 		 * write access is controlled by PKRU if it is a
4871 		 * user access or CR0.WP = 1.
4872 		 */
4873 		check_write = check_pkey && wf && (uf || wp);
4874 
4875 		/* PKRU.AD stops both read and write access. */
4876 		pkey_bits = !!check_pkey;
4877 		/* PKRU.WD stops write access. */
4878 		pkey_bits |= (!!check_write) << 1;
4879 
4880 		mmu->pkru_mask |= (pkey_bits & 3) << pfec;
4881 	}
4882 }
4883 
4884 static void update_last_nonleaf_level(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
4885 {
4886 	unsigned root_level = mmu->root_level;
4887 
4888 	mmu->last_nonleaf_level = root_level;
4889 	if (root_level == PT32_ROOT_LEVEL && is_pse(vcpu))
4890 		mmu->last_nonleaf_level++;
4891 }
4892 
4893 static void paging64_init_context_common(struct kvm_vcpu *vcpu,
4894 					 struct kvm_mmu *context,
4895 					 int level)
4896 {
4897 	context->nx = is_nx(vcpu);
4898 	context->root_level = level;
4899 
4900 	reset_rsvds_bits_mask(vcpu, context);
4901 	update_permission_bitmask(vcpu, context, false);
4902 	update_pkru_bitmask(vcpu, context, false);
4903 	update_last_nonleaf_level(vcpu, context);
4904 
4905 	MMU_WARN_ON(!is_pae(vcpu));
4906 	context->page_fault = paging64_page_fault;
4907 	context->gva_to_gpa = paging64_gva_to_gpa;
4908 	context->sync_page = paging64_sync_page;
4909 	context->invlpg = paging64_invlpg;
4910 	context->update_pte = paging64_update_pte;
4911 	context->shadow_root_level = level;
4912 	context->direct_map = false;
4913 }
4914 
4915 static void paging64_init_context(struct kvm_vcpu *vcpu,
4916 				  struct kvm_mmu *context)
4917 {
4918 	int root_level = is_la57_mode(vcpu) ?
4919 			 PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4920 
4921 	paging64_init_context_common(vcpu, context, root_level);
4922 }
4923 
4924 static void paging32_init_context(struct kvm_vcpu *vcpu,
4925 				  struct kvm_mmu *context)
4926 {
4927 	context->nx = false;
4928 	context->root_level = PT32_ROOT_LEVEL;
4929 
4930 	reset_rsvds_bits_mask(vcpu, context);
4931 	update_permission_bitmask(vcpu, context, false);
4932 	update_pkru_bitmask(vcpu, context, false);
4933 	update_last_nonleaf_level(vcpu, context);
4934 
4935 	context->page_fault = paging32_page_fault;
4936 	context->gva_to_gpa = paging32_gva_to_gpa;
4937 	context->sync_page = paging32_sync_page;
4938 	context->invlpg = paging32_invlpg;
4939 	context->update_pte = paging32_update_pte;
4940 	context->shadow_root_level = PT32E_ROOT_LEVEL;
4941 	context->direct_map = false;
4942 }
4943 
4944 static void paging32E_init_context(struct kvm_vcpu *vcpu,
4945 				   struct kvm_mmu *context)
4946 {
4947 	paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
4948 }
4949 
4950 static union kvm_mmu_extended_role kvm_calc_mmu_role_ext(struct kvm_vcpu *vcpu)
4951 {
4952 	union kvm_mmu_extended_role ext = {0};
4953 
4954 	ext.cr0_pg = !!is_paging(vcpu);
4955 	ext.cr4_pae = !!is_pae(vcpu);
4956 	ext.cr4_smep = !!kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
4957 	ext.cr4_smap = !!kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
4958 	ext.cr4_pse = !!is_pse(vcpu);
4959 	ext.cr4_pke = !!kvm_read_cr4_bits(vcpu, X86_CR4_PKE);
4960 	ext.cr4_la57 = !!kvm_read_cr4_bits(vcpu, X86_CR4_LA57);
4961 	ext.maxphyaddr = cpuid_maxphyaddr(vcpu);
4962 
4963 	ext.valid = 1;
4964 
4965 	return ext;
4966 }
4967 
4968 static union kvm_mmu_role kvm_calc_mmu_role_common(struct kvm_vcpu *vcpu,
4969 						   bool base_only)
4970 {
4971 	union kvm_mmu_role role = {0};
4972 
4973 	role.base.access = ACC_ALL;
4974 	role.base.nxe = !!is_nx(vcpu);
4975 	role.base.cr0_wp = is_write_protection(vcpu);
4976 	role.base.smm = is_smm(vcpu);
4977 	role.base.guest_mode = is_guest_mode(vcpu);
4978 
4979 	if (base_only)
4980 		return role;
4981 
4982 	role.ext = kvm_calc_mmu_role_ext(vcpu);
4983 
4984 	return role;
4985 }
4986 
4987 static union kvm_mmu_role
4988 kvm_calc_tdp_mmu_root_page_role(struct kvm_vcpu *vcpu, bool base_only)
4989 {
4990 	union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, base_only);
4991 
4992 	role.base.ad_disabled = (shadow_accessed_mask == 0);
4993 	role.base.level = kvm_x86_ops->get_tdp_level(vcpu);
4994 	role.base.direct = true;
4995 	role.base.gpte_is_8_bytes = true;
4996 
4997 	return role;
4998 }
4999 
5000 static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
5001 {
5002 	struct kvm_mmu *context = vcpu->arch.mmu;
5003 	union kvm_mmu_role new_role =
5004 		kvm_calc_tdp_mmu_root_page_role(vcpu, false);
5005 
5006 	new_role.base.word &= mmu_base_role_mask.word;
5007 	if (new_role.as_u64 == context->mmu_role.as_u64)
5008 		return;
5009 
5010 	context->mmu_role.as_u64 = new_role.as_u64;
5011 	context->page_fault = tdp_page_fault;
5012 	context->sync_page = nonpaging_sync_page;
5013 	context->invlpg = nonpaging_invlpg;
5014 	context->update_pte = nonpaging_update_pte;
5015 	context->shadow_root_level = kvm_x86_ops->get_tdp_level(vcpu);
5016 	context->direct_map = true;
5017 	context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
5018 	context->get_cr3 = get_cr3;
5019 	context->get_pdptr = kvm_pdptr_read;
5020 	context->inject_page_fault = kvm_inject_page_fault;
5021 
5022 	if (!is_paging(vcpu)) {
5023 		context->nx = false;
5024 		context->gva_to_gpa = nonpaging_gva_to_gpa;
5025 		context->root_level = 0;
5026 	} else if (is_long_mode(vcpu)) {
5027 		context->nx = is_nx(vcpu);
5028 		context->root_level = is_la57_mode(vcpu) ?
5029 				PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
5030 		reset_rsvds_bits_mask(vcpu, context);
5031 		context->gva_to_gpa = paging64_gva_to_gpa;
5032 	} else if (is_pae(vcpu)) {
5033 		context->nx = is_nx(vcpu);
5034 		context->root_level = PT32E_ROOT_LEVEL;
5035 		reset_rsvds_bits_mask(vcpu, context);
5036 		context->gva_to_gpa = paging64_gva_to_gpa;
5037 	} else {
5038 		context->nx = false;
5039 		context->root_level = PT32_ROOT_LEVEL;
5040 		reset_rsvds_bits_mask(vcpu, context);
5041 		context->gva_to_gpa = paging32_gva_to_gpa;
5042 	}
5043 
5044 	update_permission_bitmask(vcpu, context, false);
5045 	update_pkru_bitmask(vcpu, context, false);
5046 	update_last_nonleaf_level(vcpu, context);
5047 	reset_tdp_shadow_zero_bits_mask(vcpu, context);
5048 }
5049 
5050 static union kvm_mmu_role
5051 kvm_calc_shadow_mmu_root_page_role(struct kvm_vcpu *vcpu, bool base_only)
5052 {
5053 	union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, base_only);
5054 
5055 	role.base.smep_andnot_wp = role.ext.cr4_smep &&
5056 		!is_write_protection(vcpu);
5057 	role.base.smap_andnot_wp = role.ext.cr4_smap &&
5058 		!is_write_protection(vcpu);
5059 	role.base.direct = !is_paging(vcpu);
5060 	role.base.gpte_is_8_bytes = !!is_pae(vcpu);
5061 
5062 	if (!is_long_mode(vcpu))
5063 		role.base.level = PT32E_ROOT_LEVEL;
5064 	else if (is_la57_mode(vcpu))
5065 		role.base.level = PT64_ROOT_5LEVEL;
5066 	else
5067 		role.base.level = PT64_ROOT_4LEVEL;
5068 
5069 	return role;
5070 }
5071 
5072 void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu)
5073 {
5074 	struct kvm_mmu *context = vcpu->arch.mmu;
5075 	union kvm_mmu_role new_role =
5076 		kvm_calc_shadow_mmu_root_page_role(vcpu, false);
5077 
5078 	new_role.base.word &= mmu_base_role_mask.word;
5079 	if (new_role.as_u64 == context->mmu_role.as_u64)
5080 		return;
5081 
5082 	if (!is_paging(vcpu))
5083 		nonpaging_init_context(vcpu, context);
5084 	else if (is_long_mode(vcpu))
5085 		paging64_init_context(vcpu, context);
5086 	else if (is_pae(vcpu))
5087 		paging32E_init_context(vcpu, context);
5088 	else
5089 		paging32_init_context(vcpu, context);
5090 
5091 	context->mmu_role.as_u64 = new_role.as_u64;
5092 	reset_shadow_zero_bits_mask(vcpu, context);
5093 }
5094 EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
5095 
5096 static union kvm_mmu_role
5097 kvm_calc_shadow_ept_root_page_role(struct kvm_vcpu *vcpu, bool accessed_dirty,
5098 				   bool execonly)
5099 {
5100 	union kvm_mmu_role role = {0};
5101 
5102 	/* SMM flag is inherited from root_mmu */
5103 	role.base.smm = vcpu->arch.root_mmu.mmu_role.base.smm;
5104 
5105 	role.base.level = PT64_ROOT_4LEVEL;
5106 	role.base.gpte_is_8_bytes = true;
5107 	role.base.direct = false;
5108 	role.base.ad_disabled = !accessed_dirty;
5109 	role.base.guest_mode = true;
5110 	role.base.access = ACC_ALL;
5111 
5112 	/*
5113 	 * WP=1 and NOT_WP=1 is an impossible combination, use WP and the
5114 	 * SMAP variation to denote shadow EPT entries.
5115 	 */
5116 	role.base.cr0_wp = true;
5117 	role.base.smap_andnot_wp = true;
5118 
5119 	role.ext = kvm_calc_mmu_role_ext(vcpu);
5120 	role.ext.execonly = execonly;
5121 
5122 	return role;
5123 }
5124 
5125 void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly,
5126 			     bool accessed_dirty, gpa_t new_eptp)
5127 {
5128 	struct kvm_mmu *context = vcpu->arch.mmu;
5129 	union kvm_mmu_role new_role =
5130 		kvm_calc_shadow_ept_root_page_role(vcpu, accessed_dirty,
5131 						   execonly);
5132 
5133 	__kvm_mmu_new_cr3(vcpu, new_eptp, new_role.base, false);
5134 
5135 	new_role.base.word &= mmu_base_role_mask.word;
5136 	if (new_role.as_u64 == context->mmu_role.as_u64)
5137 		return;
5138 
5139 	context->shadow_root_level = PT64_ROOT_4LEVEL;
5140 
5141 	context->nx = true;
5142 	context->ept_ad = accessed_dirty;
5143 	context->page_fault = ept_page_fault;
5144 	context->gva_to_gpa = ept_gva_to_gpa;
5145 	context->sync_page = ept_sync_page;
5146 	context->invlpg = ept_invlpg;
5147 	context->update_pte = ept_update_pte;
5148 	context->root_level = PT64_ROOT_4LEVEL;
5149 	context->direct_map = false;
5150 	context->mmu_role.as_u64 = new_role.as_u64;
5151 
5152 	update_permission_bitmask(vcpu, context, true);
5153 	update_pkru_bitmask(vcpu, context, true);
5154 	update_last_nonleaf_level(vcpu, context);
5155 	reset_rsvds_bits_mask_ept(vcpu, context, execonly);
5156 	reset_ept_shadow_zero_bits_mask(vcpu, context, execonly);
5157 }
5158 EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);
5159 
5160 static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
5161 {
5162 	struct kvm_mmu *context = vcpu->arch.mmu;
5163 
5164 	kvm_init_shadow_mmu(vcpu);
5165 	context->set_cr3           = kvm_x86_ops->set_cr3;
5166 	context->get_cr3           = get_cr3;
5167 	context->get_pdptr         = kvm_pdptr_read;
5168 	context->inject_page_fault = kvm_inject_page_fault;
5169 }
5170 
5171 static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
5172 {
5173 	union kvm_mmu_role new_role = kvm_calc_mmu_role_common(vcpu, false);
5174 	struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
5175 
5176 	new_role.base.word &= mmu_base_role_mask.word;
5177 	if (new_role.as_u64 == g_context->mmu_role.as_u64)
5178 		return;
5179 
5180 	g_context->mmu_role.as_u64 = new_role.as_u64;
5181 	g_context->get_cr3           = get_cr3;
5182 	g_context->get_pdptr         = kvm_pdptr_read;
5183 	g_context->inject_page_fault = kvm_inject_page_fault;
5184 
5185 	/*
5186 	 * Note that arch.mmu->gva_to_gpa translates l2_gpa to l1_gpa using
5187 	 * L1's nested page tables (e.g. EPT12). The nested translation
5188 	 * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using
5189 	 * L2's page tables as the first level of translation and L1's
5190 	 * nested page tables as the second level of translation. Basically
5191 	 * the gva_to_gpa functions between mmu and nested_mmu are swapped.
5192 	 */
5193 	if (!is_paging(vcpu)) {
5194 		g_context->nx = false;
5195 		g_context->root_level = 0;
5196 		g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
5197 	} else if (is_long_mode(vcpu)) {
5198 		g_context->nx = is_nx(vcpu);
5199 		g_context->root_level = is_la57_mode(vcpu) ?
5200 					PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
5201 		reset_rsvds_bits_mask(vcpu, g_context);
5202 		g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
5203 	} else if (is_pae(vcpu)) {
5204 		g_context->nx = is_nx(vcpu);
5205 		g_context->root_level = PT32E_ROOT_LEVEL;
5206 		reset_rsvds_bits_mask(vcpu, g_context);
5207 		g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
5208 	} else {
5209 		g_context->nx = false;
5210 		g_context->root_level = PT32_ROOT_LEVEL;
5211 		reset_rsvds_bits_mask(vcpu, g_context);
5212 		g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
5213 	}
5214 
5215 	update_permission_bitmask(vcpu, g_context, false);
5216 	update_pkru_bitmask(vcpu, g_context, false);
5217 	update_last_nonleaf_level(vcpu, g_context);
5218 }
5219 
5220 void kvm_init_mmu(struct kvm_vcpu *vcpu, bool reset_roots)
5221 {
5222 	if (reset_roots) {
5223 		uint i;
5224 
5225 		vcpu->arch.mmu->root_hpa = INVALID_PAGE;
5226 
5227 		for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5228 			vcpu->arch.mmu->prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
5229 	}
5230 
5231 	if (mmu_is_nested(vcpu))
5232 		init_kvm_nested_mmu(vcpu);
5233 	else if (tdp_enabled)
5234 		init_kvm_tdp_mmu(vcpu);
5235 	else
5236 		init_kvm_softmmu(vcpu);
5237 }
5238 EXPORT_SYMBOL_GPL(kvm_init_mmu);
5239 
5240 static union kvm_mmu_page_role
5241 kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu)
5242 {
5243 	union kvm_mmu_role role;
5244 
5245 	if (tdp_enabled)
5246 		role = kvm_calc_tdp_mmu_root_page_role(vcpu, true);
5247 	else
5248 		role = kvm_calc_shadow_mmu_root_page_role(vcpu, true);
5249 
5250 	return role.base;
5251 }
5252 
5253 void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
5254 {
5255 	kvm_mmu_unload(vcpu);
5256 	kvm_init_mmu(vcpu, true);
5257 }
5258 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
5259 
5260 int kvm_mmu_load(struct kvm_vcpu *vcpu)
5261 {
5262 	int r;
5263 
5264 	r = mmu_topup_memory_caches(vcpu);
5265 	if (r)
5266 		goto out;
5267 	r = mmu_alloc_roots(vcpu);
5268 	kvm_mmu_sync_roots(vcpu);
5269 	if (r)
5270 		goto out;
5271 	kvm_mmu_load_cr3(vcpu);
5272 	kvm_x86_ops->tlb_flush(vcpu, true);
5273 out:
5274 	return r;
5275 }
5276 EXPORT_SYMBOL_GPL(kvm_mmu_load);
5277 
5278 void kvm_mmu_unload(struct kvm_vcpu *vcpu)
5279 {
5280 	kvm_mmu_free_roots(vcpu, &vcpu->arch.root_mmu, KVM_MMU_ROOTS_ALL);
5281 	WARN_ON(VALID_PAGE(vcpu->arch.root_mmu.root_hpa));
5282 	kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
5283 	WARN_ON(VALID_PAGE(vcpu->arch.guest_mmu.root_hpa));
5284 }
5285 EXPORT_SYMBOL_GPL(kvm_mmu_unload);
5286 
5287 static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
5288 				  struct kvm_mmu_page *sp, u64 *spte,
5289 				  const void *new)
5290 {
5291 	if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
5292 		++vcpu->kvm->stat.mmu_pde_zapped;
5293 		return;
5294         }
5295 
5296 	++vcpu->kvm->stat.mmu_pte_updated;
5297 	vcpu->arch.mmu->update_pte(vcpu, sp, spte, new);
5298 }
5299 
5300 static bool need_remote_flush(u64 old, u64 new)
5301 {
5302 	if (!is_shadow_present_pte(old))
5303 		return false;
5304 	if (!is_shadow_present_pte(new))
5305 		return true;
5306 	if ((old ^ new) & PT64_BASE_ADDR_MASK)
5307 		return true;
5308 	old ^= shadow_nx_mask;
5309 	new ^= shadow_nx_mask;
5310 	return (old & ~new & PT64_PERM_MASK) != 0;
5311 }
5312 
5313 static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
5314 				    int *bytes)
5315 {
5316 	u64 gentry = 0;
5317 	int r;
5318 
5319 	/*
5320 	 * Assume that the pte write on a page table of the same type
5321 	 * as the current vcpu paging mode since we update the sptes only
5322 	 * when they have the same mode.
5323 	 */
5324 	if (is_pae(vcpu) && *bytes == 4) {
5325 		/* Handle a 32-bit guest writing two halves of a 64-bit gpte */
5326 		*gpa &= ~(gpa_t)7;
5327 		*bytes = 8;
5328 	}
5329 
5330 	if (*bytes == 4 || *bytes == 8) {
5331 		r = kvm_vcpu_read_guest_atomic(vcpu, *gpa, &gentry, *bytes);
5332 		if (r)
5333 			gentry = 0;
5334 	}
5335 
5336 	return gentry;
5337 }
5338 
5339 /*
5340  * If we're seeing too many writes to a page, it may no longer be a page table,
5341  * or we may be forking, in which case it is better to unmap the page.
5342  */
5343 static bool detect_write_flooding(struct kvm_mmu_page *sp)
5344 {
5345 	/*
5346 	 * Skip write-flooding detected for the sp whose level is 1, because
5347 	 * it can become unsync, then the guest page is not write-protected.
5348 	 */
5349 	if (sp->role.level == PT_PAGE_TABLE_LEVEL)
5350 		return false;
5351 
5352 	atomic_inc(&sp->write_flooding_count);
5353 	return atomic_read(&sp->write_flooding_count) >= 3;
5354 }
5355 
5356 /*
5357  * Misaligned accesses are too much trouble to fix up; also, they usually
5358  * indicate a page is not used as a page table.
5359  */
5360 static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
5361 				    int bytes)
5362 {
5363 	unsigned offset, pte_size, misaligned;
5364 
5365 	pgprintk("misaligned: gpa %llx bytes %d role %x\n",
5366 		 gpa, bytes, sp->role.word);
5367 
5368 	offset = offset_in_page(gpa);
5369 	pte_size = sp->role.gpte_is_8_bytes ? 8 : 4;
5370 
5371 	/*
5372 	 * Sometimes, the OS only writes the last one bytes to update status
5373 	 * bits, for example, in linux, andb instruction is used in clear_bit().
5374 	 */
5375 	if (!(offset & (pte_size - 1)) && bytes == 1)
5376 		return false;
5377 
5378 	misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
5379 	misaligned |= bytes < 4;
5380 
5381 	return misaligned;
5382 }
5383 
5384 static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
5385 {
5386 	unsigned page_offset, quadrant;
5387 	u64 *spte;
5388 	int level;
5389 
5390 	page_offset = offset_in_page(gpa);
5391 	level = sp->role.level;
5392 	*nspte = 1;
5393 	if (!sp->role.gpte_is_8_bytes) {
5394 		page_offset <<= 1;	/* 32->64 */
5395 		/*
5396 		 * A 32-bit pde maps 4MB while the shadow pdes map
5397 		 * only 2MB.  So we need to double the offset again
5398 		 * and zap two pdes instead of one.
5399 		 */
5400 		if (level == PT32_ROOT_LEVEL) {
5401 			page_offset &= ~7; /* kill rounding error */
5402 			page_offset <<= 1;
5403 			*nspte = 2;
5404 		}
5405 		quadrant = page_offset >> PAGE_SHIFT;
5406 		page_offset &= ~PAGE_MASK;
5407 		if (quadrant != sp->role.quadrant)
5408 			return NULL;
5409 	}
5410 
5411 	spte = &sp->spt[page_offset / sizeof(*spte)];
5412 	return spte;
5413 }
5414 
5415 static void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
5416 			      const u8 *new, int bytes,
5417 			      struct kvm_page_track_notifier_node *node)
5418 {
5419 	gfn_t gfn = gpa >> PAGE_SHIFT;
5420 	struct kvm_mmu_page *sp;
5421 	LIST_HEAD(invalid_list);
5422 	u64 entry, gentry, *spte;
5423 	int npte;
5424 	bool remote_flush, local_flush;
5425 
5426 	/*
5427 	 * If we don't have indirect shadow pages, it means no page is
5428 	 * write-protected, so we can exit simply.
5429 	 */
5430 	if (!READ_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
5431 		return;
5432 
5433 	remote_flush = local_flush = false;
5434 
5435 	pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
5436 
5437 	/*
5438 	 * No need to care whether allocation memory is successful
5439 	 * or not since pte prefetch is skiped if it does not have
5440 	 * enough objects in the cache.
5441 	 */
5442 	mmu_topup_memory_caches(vcpu);
5443 
5444 	spin_lock(&vcpu->kvm->mmu_lock);
5445 
5446 	gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, &bytes);
5447 
5448 	++vcpu->kvm->stat.mmu_pte_write;
5449 	kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
5450 
5451 	for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
5452 		if (detect_write_misaligned(sp, gpa, bytes) ||
5453 		      detect_write_flooding(sp)) {
5454 			kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
5455 			++vcpu->kvm->stat.mmu_flooded;
5456 			continue;
5457 		}
5458 
5459 		spte = get_written_sptes(sp, gpa, &npte);
5460 		if (!spte)
5461 			continue;
5462 
5463 		local_flush = true;
5464 		while (npte--) {
5465 			u32 base_role = vcpu->arch.mmu->mmu_role.base.word;
5466 
5467 			entry = *spte;
5468 			mmu_page_zap_pte(vcpu->kvm, sp, spte);
5469 			if (gentry &&
5470 			      !((sp->role.word ^ base_role)
5471 			      & mmu_base_role_mask.word) && rmap_can_add(vcpu))
5472 				mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
5473 			if (need_remote_flush(entry, *spte))
5474 				remote_flush = true;
5475 			++spte;
5476 		}
5477 	}
5478 	kvm_mmu_flush_or_zap(vcpu, &invalid_list, remote_flush, local_flush);
5479 	kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
5480 	spin_unlock(&vcpu->kvm->mmu_lock);
5481 }
5482 
5483 int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
5484 {
5485 	gpa_t gpa;
5486 	int r;
5487 
5488 	if (vcpu->arch.mmu->direct_map)
5489 		return 0;
5490 
5491 	gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
5492 
5493 	r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
5494 
5495 	return r;
5496 }
5497 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
5498 
5499 static int make_mmu_pages_available(struct kvm_vcpu *vcpu)
5500 {
5501 	LIST_HEAD(invalid_list);
5502 
5503 	if (likely(kvm_mmu_available_pages(vcpu->kvm) >= KVM_MIN_FREE_MMU_PAGES))
5504 		return 0;
5505 
5506 	while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES) {
5507 		if (!prepare_zap_oldest_mmu_page(vcpu->kvm, &invalid_list))
5508 			break;
5509 
5510 		++vcpu->kvm->stat.mmu_recycled;
5511 	}
5512 	kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
5513 
5514 	if (!kvm_mmu_available_pages(vcpu->kvm))
5515 		return -ENOSPC;
5516 	return 0;
5517 }
5518 
5519 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u64 error_code,
5520 		       void *insn, int insn_len)
5521 {
5522 	int r, emulation_type = 0;
5523 	bool direct = vcpu->arch.mmu->direct_map;
5524 
5525 	/* With shadow page tables, fault_address contains a GVA or nGPA.  */
5526 	if (vcpu->arch.mmu->direct_map) {
5527 		vcpu->arch.gpa_available = true;
5528 		vcpu->arch.gpa_val = cr2;
5529 	}
5530 
5531 	r = RET_PF_INVALID;
5532 	if (unlikely(error_code & PFERR_RSVD_MASK)) {
5533 		r = handle_mmio_page_fault(vcpu, cr2, direct);
5534 		if (r == RET_PF_EMULATE)
5535 			goto emulate;
5536 	}
5537 
5538 	if (r == RET_PF_INVALID) {
5539 		r = vcpu->arch.mmu->page_fault(vcpu, cr2,
5540 					       lower_32_bits(error_code),
5541 					       false);
5542 		WARN_ON(r == RET_PF_INVALID);
5543 	}
5544 
5545 	if (r == RET_PF_RETRY)
5546 		return 1;
5547 	if (r < 0)
5548 		return r;
5549 
5550 	/*
5551 	 * Before emulating the instruction, check if the error code
5552 	 * was due to a RO violation while translating the guest page.
5553 	 * This can occur when using nested virtualization with nested
5554 	 * paging in both guests. If true, we simply unprotect the page
5555 	 * and resume the guest.
5556 	 */
5557 	if (vcpu->arch.mmu->direct_map &&
5558 	    (error_code & PFERR_NESTED_GUEST_PAGE) == PFERR_NESTED_GUEST_PAGE) {
5559 		kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(cr2));
5560 		return 1;
5561 	}
5562 
5563 	/*
5564 	 * vcpu->arch.mmu.page_fault returned RET_PF_EMULATE, but we can still
5565 	 * optimistically try to just unprotect the page and let the processor
5566 	 * re-execute the instruction that caused the page fault.  Do not allow
5567 	 * retrying MMIO emulation, as it's not only pointless but could also
5568 	 * cause us to enter an infinite loop because the processor will keep
5569 	 * faulting on the non-existent MMIO address.  Retrying an instruction
5570 	 * from a nested guest is also pointless and dangerous as we are only
5571 	 * explicitly shadowing L1's page tables, i.e. unprotecting something
5572 	 * for L1 isn't going to magically fix whatever issue cause L2 to fail.
5573 	 */
5574 	if (!mmio_info_in_cache(vcpu, cr2, direct) && !is_guest_mode(vcpu))
5575 		emulation_type = EMULTYPE_ALLOW_RETRY;
5576 emulate:
5577 	/*
5578 	 * On AMD platforms, under certain conditions insn_len may be zero on #NPF.
5579 	 * This can happen if a guest gets a page-fault on data access but the HW
5580 	 * table walker is not able to read the instruction page (e.g instruction
5581 	 * page is not present in memory). In those cases we simply restart the
5582 	 * guest, with the exception of AMD Erratum 1096 which is unrecoverable.
5583 	 */
5584 	if (unlikely(insn && !insn_len)) {
5585 		if (!kvm_x86_ops->need_emulation_on_page_fault(vcpu))
5586 			return 1;
5587 	}
5588 
5589 	return x86_emulate_instruction(vcpu, cr2, emulation_type, insn,
5590 				       insn_len);
5591 }
5592 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
5593 
5594 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
5595 {
5596 	struct kvm_mmu *mmu = vcpu->arch.mmu;
5597 	int i;
5598 
5599 	/* INVLPG on a * non-canonical address is a NOP according to the SDM.  */
5600 	if (is_noncanonical_address(gva, vcpu))
5601 		return;
5602 
5603 	mmu->invlpg(vcpu, gva, mmu->root_hpa);
5604 
5605 	/*
5606 	 * INVLPG is required to invalidate any global mappings for the VA,
5607 	 * irrespective of PCID. Since it would take us roughly similar amount
5608 	 * of work to determine whether any of the prev_root mappings of the VA
5609 	 * is marked global, or to just sync it blindly, so we might as well
5610 	 * just always sync it.
5611 	 *
5612 	 * Mappings not reachable via the current cr3 or the prev_roots will be
5613 	 * synced when switching to that cr3, so nothing needs to be done here
5614 	 * for them.
5615 	 */
5616 	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5617 		if (VALID_PAGE(mmu->prev_roots[i].hpa))
5618 			mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
5619 
5620 	kvm_x86_ops->tlb_flush_gva(vcpu, gva);
5621 	++vcpu->stat.invlpg;
5622 }
5623 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
5624 
5625 void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid)
5626 {
5627 	struct kvm_mmu *mmu = vcpu->arch.mmu;
5628 	bool tlb_flush = false;
5629 	uint i;
5630 
5631 	if (pcid == kvm_get_active_pcid(vcpu)) {
5632 		mmu->invlpg(vcpu, gva, mmu->root_hpa);
5633 		tlb_flush = true;
5634 	}
5635 
5636 	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
5637 		if (VALID_PAGE(mmu->prev_roots[i].hpa) &&
5638 		    pcid == kvm_get_pcid(vcpu, mmu->prev_roots[i].cr3)) {
5639 			mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
5640 			tlb_flush = true;
5641 		}
5642 	}
5643 
5644 	if (tlb_flush)
5645 		kvm_x86_ops->tlb_flush_gva(vcpu, gva);
5646 
5647 	++vcpu->stat.invlpg;
5648 
5649 	/*
5650 	 * Mappings not reachable via the current cr3 or the prev_roots will be
5651 	 * synced when switching to that cr3, so nothing needs to be done here
5652 	 * for them.
5653 	 */
5654 }
5655 EXPORT_SYMBOL_GPL(kvm_mmu_invpcid_gva);
5656 
5657 void kvm_enable_tdp(void)
5658 {
5659 	tdp_enabled = true;
5660 }
5661 EXPORT_SYMBOL_GPL(kvm_enable_tdp);
5662 
5663 void kvm_disable_tdp(void)
5664 {
5665 	tdp_enabled = false;
5666 }
5667 EXPORT_SYMBOL_GPL(kvm_disable_tdp);
5668 
5669 
5670 /* The return value indicates if tlb flush on all vcpus is needed. */
5671 typedef bool (*slot_level_handler) (struct kvm *kvm, struct kvm_rmap_head *rmap_head);
5672 
5673 /* The caller should hold mmu-lock before calling this function. */
5674 static __always_inline bool
5675 slot_handle_level_range(struct kvm *kvm, struct kvm_memory_slot *memslot,
5676 			slot_level_handler fn, int start_level, int end_level,
5677 			gfn_t start_gfn, gfn_t end_gfn, bool lock_flush_tlb)
5678 {
5679 	struct slot_rmap_walk_iterator iterator;
5680 	bool flush = false;
5681 
5682 	for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn,
5683 			end_gfn, &iterator) {
5684 		if (iterator.rmap)
5685 			flush |= fn(kvm, iterator.rmap);
5686 
5687 		if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
5688 			if (flush && lock_flush_tlb) {
5689 				kvm_flush_remote_tlbs_with_address(kvm,
5690 						start_gfn,
5691 						iterator.gfn - start_gfn + 1);
5692 				flush = false;
5693 			}
5694 			cond_resched_lock(&kvm->mmu_lock);
5695 		}
5696 	}
5697 
5698 	if (flush && lock_flush_tlb) {
5699 		kvm_flush_remote_tlbs_with_address(kvm, start_gfn,
5700 						   end_gfn - start_gfn + 1);
5701 		flush = false;
5702 	}
5703 
5704 	return flush;
5705 }
5706 
5707 static __always_inline bool
5708 slot_handle_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5709 		  slot_level_handler fn, int start_level, int end_level,
5710 		  bool lock_flush_tlb)
5711 {
5712 	return slot_handle_level_range(kvm, memslot, fn, start_level,
5713 			end_level, memslot->base_gfn,
5714 			memslot->base_gfn + memslot->npages - 1,
5715 			lock_flush_tlb);
5716 }
5717 
5718 static __always_inline bool
5719 slot_handle_all_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5720 		      slot_level_handler fn, bool lock_flush_tlb)
5721 {
5722 	return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
5723 				 PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
5724 }
5725 
5726 static __always_inline bool
5727 slot_handle_large_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5728 			slot_level_handler fn, bool lock_flush_tlb)
5729 {
5730 	return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL + 1,
5731 				 PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
5732 }
5733 
5734 static __always_inline bool
5735 slot_handle_leaf(struct kvm *kvm, struct kvm_memory_slot *memslot,
5736 		 slot_level_handler fn, bool lock_flush_tlb)
5737 {
5738 	return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
5739 				 PT_PAGE_TABLE_LEVEL, lock_flush_tlb);
5740 }
5741 
5742 static void free_mmu_pages(struct kvm_mmu *mmu)
5743 {
5744 	free_page((unsigned long)mmu->pae_root);
5745 	free_page((unsigned long)mmu->lm_root);
5746 }
5747 
5748 static int alloc_mmu_pages(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
5749 {
5750 	struct page *page;
5751 	int i;
5752 
5753 	/*
5754 	 * When using PAE paging, the four PDPTEs are treated as 'root' pages,
5755 	 * while the PDP table is a per-vCPU construct that's allocated at MMU
5756 	 * creation.  When emulating 32-bit mode, cr3 is only 32 bits even on
5757 	 * x86_64.  Therefore we need to allocate the PDP table in the first
5758 	 * 4GB of memory, which happens to fit the DMA32 zone.  Except for
5759 	 * SVM's 32-bit NPT support, TDP paging doesn't use PAE paging and can
5760 	 * skip allocating the PDP table.
5761 	 */
5762 	if (tdp_enabled && kvm_x86_ops->get_tdp_level(vcpu) > PT32E_ROOT_LEVEL)
5763 		return 0;
5764 
5765 	page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_DMA32);
5766 	if (!page)
5767 		return -ENOMEM;
5768 
5769 	mmu->pae_root = page_address(page);
5770 	for (i = 0; i < 4; ++i)
5771 		mmu->pae_root[i] = INVALID_PAGE;
5772 
5773 	return 0;
5774 }
5775 
5776 int kvm_mmu_create(struct kvm_vcpu *vcpu)
5777 {
5778 	uint i;
5779 	int ret;
5780 
5781 	vcpu->arch.mmu = &vcpu->arch.root_mmu;
5782 	vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
5783 
5784 	vcpu->arch.root_mmu.root_hpa = INVALID_PAGE;
5785 	vcpu->arch.root_mmu.root_cr3 = 0;
5786 	vcpu->arch.root_mmu.translate_gpa = translate_gpa;
5787 	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5788 		vcpu->arch.root_mmu.prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
5789 
5790 	vcpu->arch.guest_mmu.root_hpa = INVALID_PAGE;
5791 	vcpu->arch.guest_mmu.root_cr3 = 0;
5792 	vcpu->arch.guest_mmu.translate_gpa = translate_gpa;
5793 	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5794 		vcpu->arch.guest_mmu.prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
5795 
5796 	vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
5797 
5798 	ret = alloc_mmu_pages(vcpu, &vcpu->arch.guest_mmu);
5799 	if (ret)
5800 		return ret;
5801 
5802 	ret = alloc_mmu_pages(vcpu, &vcpu->arch.root_mmu);
5803 	if (ret)
5804 		goto fail_allocate_root;
5805 
5806 	return ret;
5807  fail_allocate_root:
5808 	free_mmu_pages(&vcpu->arch.guest_mmu);
5809 	return ret;
5810 }
5811 
5812 #define BATCH_ZAP_PAGES	10
5813 static void kvm_zap_obsolete_pages(struct kvm *kvm)
5814 {
5815 	struct kvm_mmu_page *sp, *node;
5816 	int nr_zapped, batch = 0;
5817 
5818 restart:
5819 	list_for_each_entry_safe_reverse(sp, node,
5820 	      &kvm->arch.active_mmu_pages, link) {
5821 		/*
5822 		 * No obsolete valid page exists before a newly created page
5823 		 * since active_mmu_pages is a FIFO list.
5824 		 */
5825 		if (!is_obsolete_sp(kvm, sp))
5826 			break;
5827 
5828 		/*
5829 		 * Skip invalid pages with a non-zero root count, zapping pages
5830 		 * with a non-zero root count will never succeed, i.e. the page
5831 		 * will get thrown back on active_mmu_pages and we'll get stuck
5832 		 * in an infinite loop.
5833 		 */
5834 		if (sp->role.invalid && sp->root_count)
5835 			continue;
5836 
5837 		/*
5838 		 * No need to flush the TLB since we're only zapping shadow
5839 		 * pages with an obsolete generation number and all vCPUS have
5840 		 * loaded a new root, i.e. the shadow pages being zapped cannot
5841 		 * be in active use by the guest.
5842 		 */
5843 		if (batch >= BATCH_ZAP_PAGES &&
5844 		    cond_resched_lock(&kvm->mmu_lock)) {
5845 			batch = 0;
5846 			goto restart;
5847 		}
5848 
5849 		if (__kvm_mmu_prepare_zap_page(kvm, sp,
5850 				&kvm->arch.zapped_obsolete_pages, &nr_zapped)) {
5851 			batch += nr_zapped;
5852 			goto restart;
5853 		}
5854 	}
5855 
5856 	/*
5857 	 * Trigger a remote TLB flush before freeing the page tables to ensure
5858 	 * KVM is not in the middle of a lockless shadow page table walk, which
5859 	 * may reference the pages.
5860 	 */
5861 	kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
5862 }
5863 
5864 /*
5865  * Fast invalidate all shadow pages and use lock-break technique
5866  * to zap obsolete pages.
5867  *
5868  * It's required when memslot is being deleted or VM is being
5869  * destroyed, in these cases, we should ensure that KVM MMU does
5870  * not use any resource of the being-deleted slot or all slots
5871  * after calling the function.
5872  */
5873 static void kvm_mmu_zap_all_fast(struct kvm *kvm)
5874 {
5875 	lockdep_assert_held(&kvm->slots_lock);
5876 
5877 	spin_lock(&kvm->mmu_lock);
5878 	trace_kvm_mmu_zap_all_fast(kvm);
5879 
5880 	/*
5881 	 * Toggle mmu_valid_gen between '0' and '1'.  Because slots_lock is
5882 	 * held for the entire duration of zapping obsolete pages, it's
5883 	 * impossible for there to be multiple invalid generations associated
5884 	 * with *valid* shadow pages at any given time, i.e. there is exactly
5885 	 * one valid generation and (at most) one invalid generation.
5886 	 */
5887 	kvm->arch.mmu_valid_gen = kvm->arch.mmu_valid_gen ? 0 : 1;
5888 
5889 	/*
5890 	 * Notify all vcpus to reload its shadow page table and flush TLB.
5891 	 * Then all vcpus will switch to new shadow page table with the new
5892 	 * mmu_valid_gen.
5893 	 *
5894 	 * Note: we need to do this under the protection of mmu_lock,
5895 	 * otherwise, vcpu would purge shadow page but miss tlb flush.
5896 	 */
5897 	kvm_reload_remote_mmus(kvm);
5898 
5899 	kvm_zap_obsolete_pages(kvm);
5900 	spin_unlock(&kvm->mmu_lock);
5901 }
5902 
5903 static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
5904 {
5905 	return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
5906 }
5907 
5908 static void kvm_mmu_invalidate_zap_pages_in_memslot(struct kvm *kvm,
5909 			struct kvm_memory_slot *slot,
5910 			struct kvm_page_track_notifier_node *node)
5911 {
5912 	kvm_mmu_zap_all_fast(kvm);
5913 }
5914 
5915 void kvm_mmu_init_vm(struct kvm *kvm)
5916 {
5917 	struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5918 
5919 	node->track_write = kvm_mmu_pte_write;
5920 	node->track_flush_slot = kvm_mmu_invalidate_zap_pages_in_memslot;
5921 	kvm_page_track_register_notifier(kvm, node);
5922 }
5923 
5924 void kvm_mmu_uninit_vm(struct kvm *kvm)
5925 {
5926 	struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5927 
5928 	kvm_page_track_unregister_notifier(kvm, node);
5929 }
5930 
5931 void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
5932 {
5933 	struct kvm_memslots *slots;
5934 	struct kvm_memory_slot *memslot;
5935 	int i;
5936 
5937 	spin_lock(&kvm->mmu_lock);
5938 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
5939 		slots = __kvm_memslots(kvm, i);
5940 		kvm_for_each_memslot(memslot, slots) {
5941 			gfn_t start, end;
5942 
5943 			start = max(gfn_start, memslot->base_gfn);
5944 			end = min(gfn_end, memslot->base_gfn + memslot->npages);
5945 			if (start >= end)
5946 				continue;
5947 
5948 			slot_handle_level_range(kvm, memslot, kvm_zap_rmapp,
5949 						PT_PAGE_TABLE_LEVEL, PT_MAX_HUGEPAGE_LEVEL,
5950 						start, end - 1, true);
5951 		}
5952 	}
5953 
5954 	spin_unlock(&kvm->mmu_lock);
5955 }
5956 
5957 static bool slot_rmap_write_protect(struct kvm *kvm,
5958 				    struct kvm_rmap_head *rmap_head)
5959 {
5960 	return __rmap_write_protect(kvm, rmap_head, false);
5961 }
5962 
5963 void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
5964 				      struct kvm_memory_slot *memslot)
5965 {
5966 	bool flush;
5967 
5968 	spin_lock(&kvm->mmu_lock);
5969 	flush = slot_handle_all_level(kvm, memslot, slot_rmap_write_protect,
5970 				      false);
5971 	spin_unlock(&kvm->mmu_lock);
5972 
5973 	/*
5974 	 * kvm_mmu_slot_remove_write_access() and kvm_vm_ioctl_get_dirty_log()
5975 	 * which do tlb flush out of mmu-lock should be serialized by
5976 	 * kvm->slots_lock otherwise tlb flush would be missed.
5977 	 */
5978 	lockdep_assert_held(&kvm->slots_lock);
5979 
5980 	/*
5981 	 * We can flush all the TLBs out of the mmu lock without TLB
5982 	 * corruption since we just change the spte from writable to
5983 	 * readonly so that we only need to care the case of changing
5984 	 * spte from present to present (changing the spte from present
5985 	 * to nonpresent will flush all the TLBs immediately), in other
5986 	 * words, the only case we care is mmu_spte_update() where we
5987 	 * have checked SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE
5988 	 * instead of PT_WRITABLE_MASK, that means it does not depend
5989 	 * on PT_WRITABLE_MASK anymore.
5990 	 */
5991 	if (flush)
5992 		kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn,
5993 			memslot->npages);
5994 }
5995 
5996 static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
5997 					 struct kvm_rmap_head *rmap_head)
5998 {
5999 	u64 *sptep;
6000 	struct rmap_iterator iter;
6001 	int need_tlb_flush = 0;
6002 	kvm_pfn_t pfn;
6003 	struct kvm_mmu_page *sp;
6004 
6005 restart:
6006 	for_each_rmap_spte(rmap_head, &iter, sptep) {
6007 		sp = page_header(__pa(sptep));
6008 		pfn = spte_to_pfn(*sptep);
6009 
6010 		/*
6011 		 * We cannot do huge page mapping for indirect shadow pages,
6012 		 * which are found on the last rmap (level = 1) when not using
6013 		 * tdp; such shadow pages are synced with the page table in
6014 		 * the guest, and the guest page table is using 4K page size
6015 		 * mapping if the indirect sp has level = 1.
6016 		 */
6017 		if (sp->role.direct && !kvm_is_reserved_pfn(pfn) &&
6018 		    !kvm_is_zone_device_pfn(pfn) &&
6019 		    PageTransCompoundMap(pfn_to_page(pfn))) {
6020 			pte_list_remove(rmap_head, sptep);
6021 
6022 			if (kvm_available_flush_tlb_with_range())
6023 				kvm_flush_remote_tlbs_with_address(kvm, sp->gfn,
6024 					KVM_PAGES_PER_HPAGE(sp->role.level));
6025 			else
6026 				need_tlb_flush = 1;
6027 
6028 			goto restart;
6029 		}
6030 	}
6031 
6032 	return need_tlb_flush;
6033 }
6034 
6035 void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
6036 				   const struct kvm_memory_slot *memslot)
6037 {
6038 	/* FIXME: const-ify all uses of struct kvm_memory_slot.  */
6039 	spin_lock(&kvm->mmu_lock);
6040 	slot_handle_leaf(kvm, (struct kvm_memory_slot *)memslot,
6041 			 kvm_mmu_zap_collapsible_spte, true);
6042 	spin_unlock(&kvm->mmu_lock);
6043 }
6044 
6045 void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
6046 				   struct kvm_memory_slot *memslot)
6047 {
6048 	bool flush;
6049 
6050 	spin_lock(&kvm->mmu_lock);
6051 	flush = slot_handle_leaf(kvm, memslot, __rmap_clear_dirty, false);
6052 	spin_unlock(&kvm->mmu_lock);
6053 
6054 	lockdep_assert_held(&kvm->slots_lock);
6055 
6056 	/*
6057 	 * It's also safe to flush TLBs out of mmu lock here as currently this
6058 	 * function is only used for dirty logging, in which case flushing TLB
6059 	 * out of mmu lock also guarantees no dirty pages will be lost in
6060 	 * dirty_bitmap.
6061 	 */
6062 	if (flush)
6063 		kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn,
6064 				memslot->npages);
6065 }
6066 EXPORT_SYMBOL_GPL(kvm_mmu_slot_leaf_clear_dirty);
6067 
6068 void kvm_mmu_slot_largepage_remove_write_access(struct kvm *kvm,
6069 					struct kvm_memory_slot *memslot)
6070 {
6071 	bool flush;
6072 
6073 	spin_lock(&kvm->mmu_lock);
6074 	flush = slot_handle_large_level(kvm, memslot, slot_rmap_write_protect,
6075 					false);
6076 	spin_unlock(&kvm->mmu_lock);
6077 
6078 	/* see kvm_mmu_slot_remove_write_access */
6079 	lockdep_assert_held(&kvm->slots_lock);
6080 
6081 	if (flush)
6082 		kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn,
6083 				memslot->npages);
6084 }
6085 EXPORT_SYMBOL_GPL(kvm_mmu_slot_largepage_remove_write_access);
6086 
6087 void kvm_mmu_slot_set_dirty(struct kvm *kvm,
6088 			    struct kvm_memory_slot *memslot)
6089 {
6090 	bool flush;
6091 
6092 	spin_lock(&kvm->mmu_lock);
6093 	flush = slot_handle_all_level(kvm, memslot, __rmap_set_dirty, false);
6094 	spin_unlock(&kvm->mmu_lock);
6095 
6096 	lockdep_assert_held(&kvm->slots_lock);
6097 
6098 	/* see kvm_mmu_slot_leaf_clear_dirty */
6099 	if (flush)
6100 		kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn,
6101 				memslot->npages);
6102 }
6103 EXPORT_SYMBOL_GPL(kvm_mmu_slot_set_dirty);
6104 
6105 void kvm_mmu_zap_all(struct kvm *kvm)
6106 {
6107 	struct kvm_mmu_page *sp, *node;
6108 	LIST_HEAD(invalid_list);
6109 	int ign;
6110 
6111 	spin_lock(&kvm->mmu_lock);
6112 restart:
6113 	list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link) {
6114 		if (sp->role.invalid && sp->root_count)
6115 			continue;
6116 		if (__kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list, &ign))
6117 			goto restart;
6118 		if (cond_resched_lock(&kvm->mmu_lock))
6119 			goto restart;
6120 	}
6121 
6122 	kvm_mmu_commit_zap_page(kvm, &invalid_list);
6123 	spin_unlock(&kvm->mmu_lock);
6124 }
6125 
6126 void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen)
6127 {
6128 	WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
6129 
6130 	gen &= MMIO_SPTE_GEN_MASK;
6131 
6132 	/*
6133 	 * Generation numbers are incremented in multiples of the number of
6134 	 * address spaces in order to provide unique generations across all
6135 	 * address spaces.  Strip what is effectively the address space
6136 	 * modifier prior to checking for a wrap of the MMIO generation so
6137 	 * that a wrap in any address space is detected.
6138 	 */
6139 	gen &= ~((u64)KVM_ADDRESS_SPACE_NUM - 1);
6140 
6141 	/*
6142 	 * The very rare case: if the MMIO generation number has wrapped,
6143 	 * zap all shadow pages.
6144 	 */
6145 	if (unlikely(gen == 0)) {
6146 		kvm_debug_ratelimited("kvm: zapping shadow pages for mmio generation wraparound\n");
6147 		kvm_mmu_zap_all_fast(kvm);
6148 	}
6149 }
6150 
6151 static unsigned long
6152 mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
6153 {
6154 	struct kvm *kvm;
6155 	int nr_to_scan = sc->nr_to_scan;
6156 	unsigned long freed = 0;
6157 
6158 	mutex_lock(&kvm_lock);
6159 
6160 	list_for_each_entry(kvm, &vm_list, vm_list) {
6161 		int idx;
6162 		LIST_HEAD(invalid_list);
6163 
6164 		/*
6165 		 * Never scan more than sc->nr_to_scan VM instances.
6166 		 * Will not hit this condition practically since we do not try
6167 		 * to shrink more than one VM and it is very unlikely to see
6168 		 * !n_used_mmu_pages so many times.
6169 		 */
6170 		if (!nr_to_scan--)
6171 			break;
6172 		/*
6173 		 * n_used_mmu_pages is accessed without holding kvm->mmu_lock
6174 		 * here. We may skip a VM instance errorneosly, but we do not
6175 		 * want to shrink a VM that only started to populate its MMU
6176 		 * anyway.
6177 		 */
6178 		if (!kvm->arch.n_used_mmu_pages &&
6179 		    !kvm_has_zapped_obsolete_pages(kvm))
6180 			continue;
6181 
6182 		idx = srcu_read_lock(&kvm->srcu);
6183 		spin_lock(&kvm->mmu_lock);
6184 
6185 		if (kvm_has_zapped_obsolete_pages(kvm)) {
6186 			kvm_mmu_commit_zap_page(kvm,
6187 			      &kvm->arch.zapped_obsolete_pages);
6188 			goto unlock;
6189 		}
6190 
6191 		if (prepare_zap_oldest_mmu_page(kvm, &invalid_list))
6192 			freed++;
6193 		kvm_mmu_commit_zap_page(kvm, &invalid_list);
6194 
6195 unlock:
6196 		spin_unlock(&kvm->mmu_lock);
6197 		srcu_read_unlock(&kvm->srcu, idx);
6198 
6199 		/*
6200 		 * unfair on small ones
6201 		 * per-vm shrinkers cry out
6202 		 * sadness comes quickly
6203 		 */
6204 		list_move_tail(&kvm->vm_list, &vm_list);
6205 		break;
6206 	}
6207 
6208 	mutex_unlock(&kvm_lock);
6209 	return freed;
6210 }
6211 
6212 static unsigned long
6213 mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
6214 {
6215 	return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
6216 }
6217 
6218 static struct shrinker mmu_shrinker = {
6219 	.count_objects = mmu_shrink_count,
6220 	.scan_objects = mmu_shrink_scan,
6221 	.seeks = DEFAULT_SEEKS * 10,
6222 };
6223 
6224 static void mmu_destroy_caches(void)
6225 {
6226 	kmem_cache_destroy(pte_list_desc_cache);
6227 	kmem_cache_destroy(mmu_page_header_cache);
6228 }
6229 
6230 static void kvm_set_mmio_spte_mask(void)
6231 {
6232 	u64 mask;
6233 
6234 	/*
6235 	 * Set the reserved bits and the present bit of an paging-structure
6236 	 * entry to generate page fault with PFER.RSV = 1.
6237 	 */
6238 
6239 	/*
6240 	 * Mask the uppermost physical address bit, which would be reserved as
6241 	 * long as the supported physical address width is less than 52.
6242 	 */
6243 	mask = 1ull << 51;
6244 
6245 	/* Set the present bit. */
6246 	mask |= 1ull;
6247 
6248 	/*
6249 	 * If reserved bit is not supported, clear the present bit to disable
6250 	 * mmio page fault.
6251 	 */
6252 	if (IS_ENABLED(CONFIG_X86_64) && shadow_phys_bits == 52)
6253 		mask &= ~1ull;
6254 
6255 	kvm_mmu_set_mmio_spte_mask(mask, mask, ACC_WRITE_MASK | ACC_USER_MASK);
6256 }
6257 
6258 static bool get_nx_auto_mode(void)
6259 {
6260 	/* Return true when CPU has the bug, and mitigations are ON */
6261 	return boot_cpu_has_bug(X86_BUG_ITLB_MULTIHIT) && !cpu_mitigations_off();
6262 }
6263 
6264 static void __set_nx_huge_pages(bool val)
6265 {
6266 	nx_huge_pages = itlb_multihit_kvm_mitigation = val;
6267 }
6268 
6269 static int set_nx_huge_pages(const char *val, const struct kernel_param *kp)
6270 {
6271 	bool old_val = nx_huge_pages;
6272 	bool new_val;
6273 
6274 	/* In "auto" mode deploy workaround only if CPU has the bug. */
6275 	if (sysfs_streq(val, "off"))
6276 		new_val = 0;
6277 	else if (sysfs_streq(val, "force"))
6278 		new_val = 1;
6279 	else if (sysfs_streq(val, "auto"))
6280 		new_val = get_nx_auto_mode();
6281 	else if (strtobool(val, &new_val) < 0)
6282 		return -EINVAL;
6283 
6284 	__set_nx_huge_pages(new_val);
6285 
6286 	if (new_val != old_val) {
6287 		struct kvm *kvm;
6288 
6289 		mutex_lock(&kvm_lock);
6290 
6291 		list_for_each_entry(kvm, &vm_list, vm_list) {
6292 			mutex_lock(&kvm->slots_lock);
6293 			kvm_mmu_zap_all_fast(kvm);
6294 			mutex_unlock(&kvm->slots_lock);
6295 
6296 			wake_up_process(kvm->arch.nx_lpage_recovery_thread);
6297 		}
6298 		mutex_unlock(&kvm_lock);
6299 	}
6300 
6301 	return 0;
6302 }
6303 
6304 int kvm_mmu_module_init(void)
6305 {
6306 	int ret = -ENOMEM;
6307 
6308 	if (nx_huge_pages == -1)
6309 		__set_nx_huge_pages(get_nx_auto_mode());
6310 
6311 	/*
6312 	 * MMU roles use union aliasing which is, generally speaking, an
6313 	 * undefined behavior. However, we supposedly know how compilers behave
6314 	 * and the current status quo is unlikely to change. Guardians below are
6315 	 * supposed to let us know if the assumption becomes false.
6316 	 */
6317 	BUILD_BUG_ON(sizeof(union kvm_mmu_page_role) != sizeof(u32));
6318 	BUILD_BUG_ON(sizeof(union kvm_mmu_extended_role) != sizeof(u32));
6319 	BUILD_BUG_ON(sizeof(union kvm_mmu_role) != sizeof(u64));
6320 
6321 	kvm_mmu_reset_all_pte_masks();
6322 
6323 	kvm_set_mmio_spte_mask();
6324 
6325 	pte_list_desc_cache = kmem_cache_create("pte_list_desc",
6326 					    sizeof(struct pte_list_desc),
6327 					    0, SLAB_ACCOUNT, NULL);
6328 	if (!pte_list_desc_cache)
6329 		goto out;
6330 
6331 	mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
6332 						  sizeof(struct kvm_mmu_page),
6333 						  0, SLAB_ACCOUNT, NULL);
6334 	if (!mmu_page_header_cache)
6335 		goto out;
6336 
6337 	if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
6338 		goto out;
6339 
6340 	ret = register_shrinker(&mmu_shrinker);
6341 	if (ret)
6342 		goto out;
6343 
6344 	return 0;
6345 
6346 out:
6347 	mmu_destroy_caches();
6348 	return ret;
6349 }
6350 
6351 /*
6352  * Calculate mmu pages needed for kvm.
6353  */
6354 unsigned long kvm_mmu_calculate_default_mmu_pages(struct kvm *kvm)
6355 {
6356 	unsigned long nr_mmu_pages;
6357 	unsigned long nr_pages = 0;
6358 	struct kvm_memslots *slots;
6359 	struct kvm_memory_slot *memslot;
6360 	int i;
6361 
6362 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
6363 		slots = __kvm_memslots(kvm, i);
6364 
6365 		kvm_for_each_memslot(memslot, slots)
6366 			nr_pages += memslot->npages;
6367 	}
6368 
6369 	nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
6370 	nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES);
6371 
6372 	return nr_mmu_pages;
6373 }
6374 
6375 void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
6376 {
6377 	kvm_mmu_unload(vcpu);
6378 	free_mmu_pages(&vcpu->arch.root_mmu);
6379 	free_mmu_pages(&vcpu->arch.guest_mmu);
6380 	mmu_free_memory_caches(vcpu);
6381 }
6382 
6383 void kvm_mmu_module_exit(void)
6384 {
6385 	mmu_destroy_caches();
6386 	percpu_counter_destroy(&kvm_total_used_mmu_pages);
6387 	unregister_shrinker(&mmu_shrinker);
6388 	mmu_audit_disable();
6389 }
6390 
6391 static int set_nx_huge_pages_recovery_ratio(const char *val, const struct kernel_param *kp)
6392 {
6393 	unsigned int old_val;
6394 	int err;
6395 
6396 	old_val = nx_huge_pages_recovery_ratio;
6397 	err = param_set_uint(val, kp);
6398 	if (err)
6399 		return err;
6400 
6401 	if (READ_ONCE(nx_huge_pages) &&
6402 	    !old_val && nx_huge_pages_recovery_ratio) {
6403 		struct kvm *kvm;
6404 
6405 		mutex_lock(&kvm_lock);
6406 
6407 		list_for_each_entry(kvm, &vm_list, vm_list)
6408 			wake_up_process(kvm->arch.nx_lpage_recovery_thread);
6409 
6410 		mutex_unlock(&kvm_lock);
6411 	}
6412 
6413 	return err;
6414 }
6415 
6416 static void kvm_recover_nx_lpages(struct kvm *kvm)
6417 {
6418 	int rcu_idx;
6419 	struct kvm_mmu_page *sp;
6420 	unsigned int ratio;
6421 	LIST_HEAD(invalid_list);
6422 	ulong to_zap;
6423 
6424 	rcu_idx = srcu_read_lock(&kvm->srcu);
6425 	spin_lock(&kvm->mmu_lock);
6426 
6427 	ratio = READ_ONCE(nx_huge_pages_recovery_ratio);
6428 	to_zap = ratio ? DIV_ROUND_UP(kvm->stat.nx_lpage_splits, ratio) : 0;
6429 	while (to_zap && !list_empty(&kvm->arch.lpage_disallowed_mmu_pages)) {
6430 		/*
6431 		 * We use a separate list instead of just using active_mmu_pages
6432 		 * because the number of lpage_disallowed pages is expected to
6433 		 * be relatively small compared to the total.
6434 		 */
6435 		sp = list_first_entry(&kvm->arch.lpage_disallowed_mmu_pages,
6436 				      struct kvm_mmu_page,
6437 				      lpage_disallowed_link);
6438 		WARN_ON_ONCE(!sp->lpage_disallowed);
6439 		kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
6440 		WARN_ON_ONCE(sp->lpage_disallowed);
6441 
6442 		if (!--to_zap || need_resched() || spin_needbreak(&kvm->mmu_lock)) {
6443 			kvm_mmu_commit_zap_page(kvm, &invalid_list);
6444 			if (to_zap)
6445 				cond_resched_lock(&kvm->mmu_lock);
6446 		}
6447 	}
6448 
6449 	spin_unlock(&kvm->mmu_lock);
6450 	srcu_read_unlock(&kvm->srcu, rcu_idx);
6451 }
6452 
6453 static long get_nx_lpage_recovery_timeout(u64 start_time)
6454 {
6455 	return READ_ONCE(nx_huge_pages) && READ_ONCE(nx_huge_pages_recovery_ratio)
6456 		? start_time + 60 * HZ - get_jiffies_64()
6457 		: MAX_SCHEDULE_TIMEOUT;
6458 }
6459 
6460 static int kvm_nx_lpage_recovery_worker(struct kvm *kvm, uintptr_t data)
6461 {
6462 	u64 start_time;
6463 	long remaining_time;
6464 
6465 	while (true) {
6466 		start_time = get_jiffies_64();
6467 		remaining_time = get_nx_lpage_recovery_timeout(start_time);
6468 
6469 		set_current_state(TASK_INTERRUPTIBLE);
6470 		while (!kthread_should_stop() && remaining_time > 0) {
6471 			schedule_timeout(remaining_time);
6472 			remaining_time = get_nx_lpage_recovery_timeout(start_time);
6473 			set_current_state(TASK_INTERRUPTIBLE);
6474 		}
6475 
6476 		set_current_state(TASK_RUNNING);
6477 
6478 		if (kthread_should_stop())
6479 			return 0;
6480 
6481 		kvm_recover_nx_lpages(kvm);
6482 	}
6483 }
6484 
6485 int kvm_mmu_post_init_vm(struct kvm *kvm)
6486 {
6487 	int err;
6488 
6489 	err = kvm_vm_create_worker_thread(kvm, kvm_nx_lpage_recovery_worker, 0,
6490 					  "kvm-nx-lpage-recovery",
6491 					  &kvm->arch.nx_lpage_recovery_thread);
6492 	if (!err)
6493 		kthread_unpark(kvm->arch.nx_lpage_recovery_thread);
6494 
6495 	return err;
6496 }
6497 
6498 void kvm_mmu_pre_destroy_vm(struct kvm *kvm)
6499 {
6500 	if (kvm->arch.nx_lpage_recovery_thread)
6501 		kthread_stop(kvm->arch.nx_lpage_recovery_thread);
6502 }
6503