1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * This module enables machines with Intel VT-x extensions to run virtual 6 * machines without emulation or binary translation. 7 * 8 * MMU support 9 * 10 * Copyright (C) 2006 Qumranet, Inc. 11 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 12 * 13 * Authors: 14 * Yaniv Kamay <yaniv@qumranet.com> 15 * Avi Kivity <avi@qumranet.com> 16 */ 17 18 #include "irq.h" 19 #include "mmu.h" 20 #include "x86.h" 21 #include "kvm_cache_regs.h" 22 #include "cpuid.h" 23 24 #include <linux/kvm_host.h> 25 #include <linux/types.h> 26 #include <linux/string.h> 27 #include <linux/mm.h> 28 #include <linux/highmem.h> 29 #include <linux/moduleparam.h> 30 #include <linux/export.h> 31 #include <linux/swap.h> 32 #include <linux/hugetlb.h> 33 #include <linux/compiler.h> 34 #include <linux/srcu.h> 35 #include <linux/slab.h> 36 #include <linux/sched/signal.h> 37 #include <linux/uaccess.h> 38 #include <linux/hash.h> 39 #include <linux/kern_levels.h> 40 #include <linux/kthread.h> 41 42 #include <asm/page.h> 43 #include <asm/memtype.h> 44 #include <asm/cmpxchg.h> 45 #include <asm/e820/api.h> 46 #include <asm/io.h> 47 #include <asm/vmx.h> 48 #include <asm/kvm_page_track.h> 49 #include "trace.h" 50 51 extern bool itlb_multihit_kvm_mitigation; 52 53 static int __read_mostly nx_huge_pages = -1; 54 #ifdef CONFIG_PREEMPT_RT 55 /* Recovery can cause latency spikes, disable it for PREEMPT_RT. */ 56 static uint __read_mostly nx_huge_pages_recovery_ratio = 0; 57 #else 58 static uint __read_mostly nx_huge_pages_recovery_ratio = 60; 59 #endif 60 61 static int set_nx_huge_pages(const char *val, const struct kernel_param *kp); 62 static int set_nx_huge_pages_recovery_ratio(const char *val, const struct kernel_param *kp); 63 64 static struct kernel_param_ops nx_huge_pages_ops = { 65 .set = set_nx_huge_pages, 66 .get = param_get_bool, 67 }; 68 69 static struct kernel_param_ops nx_huge_pages_recovery_ratio_ops = { 70 .set = set_nx_huge_pages_recovery_ratio, 71 .get = param_get_uint, 72 }; 73 74 module_param_cb(nx_huge_pages, &nx_huge_pages_ops, &nx_huge_pages, 0644); 75 __MODULE_PARM_TYPE(nx_huge_pages, "bool"); 76 module_param_cb(nx_huge_pages_recovery_ratio, &nx_huge_pages_recovery_ratio_ops, 77 &nx_huge_pages_recovery_ratio, 0644); 78 __MODULE_PARM_TYPE(nx_huge_pages_recovery_ratio, "uint"); 79 80 /* 81 * When setting this variable to true it enables Two-Dimensional-Paging 82 * where the hardware walks 2 page tables: 83 * 1. the guest-virtual to guest-physical 84 * 2. while doing 1. it walks guest-physical to host-physical 85 * If the hardware supports that we don't need to do shadow paging. 86 */ 87 bool tdp_enabled = false; 88 89 enum { 90 AUDIT_PRE_PAGE_FAULT, 91 AUDIT_POST_PAGE_FAULT, 92 AUDIT_PRE_PTE_WRITE, 93 AUDIT_POST_PTE_WRITE, 94 AUDIT_PRE_SYNC, 95 AUDIT_POST_SYNC 96 }; 97 98 #undef MMU_DEBUG 99 100 #ifdef MMU_DEBUG 101 static bool dbg = 0; 102 module_param(dbg, bool, 0644); 103 104 #define pgprintk(x...) do { if (dbg) printk(x); } while (0) 105 #define rmap_printk(x...) do { if (dbg) printk(x); } while (0) 106 #define MMU_WARN_ON(x) WARN_ON(x) 107 #else 108 #define pgprintk(x...) do { } while (0) 109 #define rmap_printk(x...) do { } while (0) 110 #define MMU_WARN_ON(x) do { } while (0) 111 #endif 112 113 #define PTE_PREFETCH_NUM 8 114 115 #define PT_FIRST_AVAIL_BITS_SHIFT 10 116 #define PT64_SECOND_AVAIL_BITS_SHIFT 54 117 118 /* 119 * The mask used to denote special SPTEs, which can be either MMIO SPTEs or 120 * Access Tracking SPTEs. 121 */ 122 #define SPTE_SPECIAL_MASK (3ULL << 52) 123 #define SPTE_AD_ENABLED_MASK (0ULL << 52) 124 #define SPTE_AD_DISABLED_MASK (1ULL << 52) 125 #define SPTE_AD_WRPROT_ONLY_MASK (2ULL << 52) 126 #define SPTE_MMIO_MASK (3ULL << 52) 127 128 #define PT64_LEVEL_BITS 9 129 130 #define PT64_LEVEL_SHIFT(level) \ 131 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS) 132 133 #define PT64_INDEX(address, level)\ 134 (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1)) 135 136 137 #define PT32_LEVEL_BITS 10 138 139 #define PT32_LEVEL_SHIFT(level) \ 140 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS) 141 142 #define PT32_LVL_OFFSET_MASK(level) \ 143 (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \ 144 * PT32_LEVEL_BITS))) - 1)) 145 146 #define PT32_INDEX(address, level)\ 147 (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1)) 148 149 150 #ifdef CONFIG_DYNAMIC_PHYSICAL_MASK 151 #define PT64_BASE_ADDR_MASK (physical_mask & ~(u64)(PAGE_SIZE-1)) 152 #else 153 #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1)) 154 #endif 155 #define PT64_LVL_ADDR_MASK(level) \ 156 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \ 157 * PT64_LEVEL_BITS))) - 1)) 158 #define PT64_LVL_OFFSET_MASK(level) \ 159 (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \ 160 * PT64_LEVEL_BITS))) - 1)) 161 162 #define PT32_BASE_ADDR_MASK PAGE_MASK 163 #define PT32_DIR_BASE_ADDR_MASK \ 164 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1)) 165 #define PT32_LVL_ADDR_MASK(level) \ 166 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \ 167 * PT32_LEVEL_BITS))) - 1)) 168 169 #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | shadow_user_mask \ 170 | shadow_x_mask | shadow_nx_mask | shadow_me_mask) 171 172 #define ACC_EXEC_MASK 1 173 #define ACC_WRITE_MASK PT_WRITABLE_MASK 174 #define ACC_USER_MASK PT_USER_MASK 175 #define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK) 176 177 /* The mask for the R/X bits in EPT PTEs */ 178 #define PT64_EPT_READABLE_MASK 0x1ull 179 #define PT64_EPT_EXECUTABLE_MASK 0x4ull 180 181 #include <trace/events/kvm.h> 182 183 #define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT) 184 #define SPTE_MMU_WRITEABLE (1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1)) 185 186 #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level) 187 188 /* make pte_list_desc fit well in cache line */ 189 #define PTE_LIST_EXT 3 190 191 /* 192 * Return values of handle_mmio_page_fault and mmu.page_fault: 193 * RET_PF_RETRY: let CPU fault again on the address. 194 * RET_PF_EMULATE: mmio page fault, emulate the instruction directly. 195 * 196 * For handle_mmio_page_fault only: 197 * RET_PF_INVALID: the spte is invalid, let the real page fault path update it. 198 */ 199 enum { 200 RET_PF_RETRY = 0, 201 RET_PF_EMULATE = 1, 202 RET_PF_INVALID = 2, 203 }; 204 205 struct pte_list_desc { 206 u64 *sptes[PTE_LIST_EXT]; 207 struct pte_list_desc *more; 208 }; 209 210 struct kvm_shadow_walk_iterator { 211 u64 addr; 212 hpa_t shadow_addr; 213 u64 *sptep; 214 int level; 215 unsigned index; 216 }; 217 218 static const union kvm_mmu_page_role mmu_base_role_mask = { 219 .cr0_wp = 1, 220 .gpte_is_8_bytes = 1, 221 .nxe = 1, 222 .smep_andnot_wp = 1, 223 .smap_andnot_wp = 1, 224 .smm = 1, 225 .guest_mode = 1, 226 .ad_disabled = 1, 227 }; 228 229 #define for_each_shadow_entry_using_root(_vcpu, _root, _addr, _walker) \ 230 for (shadow_walk_init_using_root(&(_walker), (_vcpu), \ 231 (_root), (_addr)); \ 232 shadow_walk_okay(&(_walker)); \ 233 shadow_walk_next(&(_walker))) 234 235 #define for_each_shadow_entry(_vcpu, _addr, _walker) \ 236 for (shadow_walk_init(&(_walker), _vcpu, _addr); \ 237 shadow_walk_okay(&(_walker)); \ 238 shadow_walk_next(&(_walker))) 239 240 #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte) \ 241 for (shadow_walk_init(&(_walker), _vcpu, _addr); \ 242 shadow_walk_okay(&(_walker)) && \ 243 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; }); \ 244 __shadow_walk_next(&(_walker), spte)) 245 246 static struct kmem_cache *pte_list_desc_cache; 247 static struct kmem_cache *mmu_page_header_cache; 248 static struct percpu_counter kvm_total_used_mmu_pages; 249 250 static u64 __read_mostly shadow_nx_mask; 251 static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */ 252 static u64 __read_mostly shadow_user_mask; 253 static u64 __read_mostly shadow_accessed_mask; 254 static u64 __read_mostly shadow_dirty_mask; 255 static u64 __read_mostly shadow_mmio_mask; 256 static u64 __read_mostly shadow_mmio_value; 257 static u64 __read_mostly shadow_mmio_access_mask; 258 static u64 __read_mostly shadow_present_mask; 259 static u64 __read_mostly shadow_me_mask; 260 261 /* 262 * SPTEs used by MMUs without A/D bits are marked with SPTE_AD_DISABLED_MASK; 263 * shadow_acc_track_mask is the set of bits to be cleared in non-accessed 264 * pages. 265 */ 266 static u64 __read_mostly shadow_acc_track_mask; 267 268 /* 269 * The mask/shift to use for saving the original R/X bits when marking the PTE 270 * as not-present for access tracking purposes. We do not save the W bit as the 271 * PTEs being access tracked also need to be dirty tracked, so the W bit will be 272 * restored only when a write is attempted to the page. 273 */ 274 static const u64 shadow_acc_track_saved_bits_mask = PT64_EPT_READABLE_MASK | 275 PT64_EPT_EXECUTABLE_MASK; 276 static const u64 shadow_acc_track_saved_bits_shift = PT64_SECOND_AVAIL_BITS_SHIFT; 277 278 /* 279 * This mask must be set on all non-zero Non-Present or Reserved SPTEs in order 280 * to guard against L1TF attacks. 281 */ 282 static u64 __read_mostly shadow_nonpresent_or_rsvd_mask; 283 284 /* 285 * The number of high-order 1 bits to use in the mask above. 286 */ 287 static const u64 shadow_nonpresent_or_rsvd_mask_len = 5; 288 289 /* 290 * In some cases, we need to preserve the GFN of a non-present or reserved 291 * SPTE when we usurp the upper five bits of the physical address space to 292 * defend against L1TF, e.g. for MMIO SPTEs. To preserve the GFN, we'll 293 * shift bits of the GFN that overlap with shadow_nonpresent_or_rsvd_mask 294 * left into the reserved bits, i.e. the GFN in the SPTE will be split into 295 * high and low parts. This mask covers the lower bits of the GFN. 296 */ 297 static u64 __read_mostly shadow_nonpresent_or_rsvd_lower_gfn_mask; 298 299 /* 300 * The number of non-reserved physical address bits irrespective of features 301 * that repurpose legal bits, e.g. MKTME. 302 */ 303 static u8 __read_mostly shadow_phys_bits; 304 305 static void mmu_spte_set(u64 *sptep, u64 spte); 306 static bool is_executable_pte(u64 spte); 307 static union kvm_mmu_page_role 308 kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu); 309 310 #define CREATE_TRACE_POINTS 311 #include "mmutrace.h" 312 313 314 static inline bool kvm_available_flush_tlb_with_range(void) 315 { 316 return kvm_x86_ops->tlb_remote_flush_with_range; 317 } 318 319 static void kvm_flush_remote_tlbs_with_range(struct kvm *kvm, 320 struct kvm_tlb_range *range) 321 { 322 int ret = -ENOTSUPP; 323 324 if (range && kvm_x86_ops->tlb_remote_flush_with_range) 325 ret = kvm_x86_ops->tlb_remote_flush_with_range(kvm, range); 326 327 if (ret) 328 kvm_flush_remote_tlbs(kvm); 329 } 330 331 static void kvm_flush_remote_tlbs_with_address(struct kvm *kvm, 332 u64 start_gfn, u64 pages) 333 { 334 struct kvm_tlb_range range; 335 336 range.start_gfn = start_gfn; 337 range.pages = pages; 338 339 kvm_flush_remote_tlbs_with_range(kvm, &range); 340 } 341 342 void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask, u64 mmio_value, u64 access_mask) 343 { 344 BUG_ON((u64)(unsigned)access_mask != access_mask); 345 BUG_ON((mmio_mask & mmio_value) != mmio_value); 346 shadow_mmio_value = mmio_value | SPTE_MMIO_MASK; 347 shadow_mmio_mask = mmio_mask | SPTE_SPECIAL_MASK; 348 shadow_mmio_access_mask = access_mask; 349 } 350 EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask); 351 352 static bool is_mmio_spte(u64 spte) 353 { 354 return (spte & shadow_mmio_mask) == shadow_mmio_value; 355 } 356 357 static inline bool sp_ad_disabled(struct kvm_mmu_page *sp) 358 { 359 return sp->role.ad_disabled; 360 } 361 362 static inline bool kvm_vcpu_ad_need_write_protect(struct kvm_vcpu *vcpu) 363 { 364 /* 365 * When using the EPT page-modification log, the GPAs in the log 366 * would come from L2 rather than L1. Therefore, we need to rely 367 * on write protection to record dirty pages. This also bypasses 368 * PML, since writes now result in a vmexit. 369 */ 370 return vcpu->arch.mmu == &vcpu->arch.guest_mmu; 371 } 372 373 static inline bool spte_ad_enabled(u64 spte) 374 { 375 MMU_WARN_ON(is_mmio_spte(spte)); 376 return (spte & SPTE_SPECIAL_MASK) != SPTE_AD_DISABLED_MASK; 377 } 378 379 static inline bool spte_ad_need_write_protect(u64 spte) 380 { 381 MMU_WARN_ON(is_mmio_spte(spte)); 382 return (spte & SPTE_SPECIAL_MASK) != SPTE_AD_ENABLED_MASK; 383 } 384 385 static bool is_nx_huge_page_enabled(void) 386 { 387 return READ_ONCE(nx_huge_pages); 388 } 389 390 static inline u64 spte_shadow_accessed_mask(u64 spte) 391 { 392 MMU_WARN_ON(is_mmio_spte(spte)); 393 return spte_ad_enabled(spte) ? shadow_accessed_mask : 0; 394 } 395 396 static inline u64 spte_shadow_dirty_mask(u64 spte) 397 { 398 MMU_WARN_ON(is_mmio_spte(spte)); 399 return spte_ad_enabled(spte) ? shadow_dirty_mask : 0; 400 } 401 402 static inline bool is_access_track_spte(u64 spte) 403 { 404 return !spte_ad_enabled(spte) && (spte & shadow_acc_track_mask) == 0; 405 } 406 407 /* 408 * Due to limited space in PTEs, the MMIO generation is a 19 bit subset of 409 * the memslots generation and is derived as follows: 410 * 411 * Bits 0-8 of the MMIO generation are propagated to spte bits 3-11 412 * Bits 9-18 of the MMIO generation are propagated to spte bits 52-61 413 * 414 * The KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS flag is intentionally not included in 415 * the MMIO generation number, as doing so would require stealing a bit from 416 * the "real" generation number and thus effectively halve the maximum number 417 * of MMIO generations that can be handled before encountering a wrap (which 418 * requires a full MMU zap). The flag is instead explicitly queried when 419 * checking for MMIO spte cache hits. 420 */ 421 #define MMIO_SPTE_GEN_MASK GENMASK_ULL(17, 0) 422 423 #define MMIO_SPTE_GEN_LOW_START 3 424 #define MMIO_SPTE_GEN_LOW_END 11 425 #define MMIO_SPTE_GEN_LOW_MASK GENMASK_ULL(MMIO_SPTE_GEN_LOW_END, \ 426 MMIO_SPTE_GEN_LOW_START) 427 428 #define MMIO_SPTE_GEN_HIGH_START PT64_SECOND_AVAIL_BITS_SHIFT 429 #define MMIO_SPTE_GEN_HIGH_END 62 430 #define MMIO_SPTE_GEN_HIGH_MASK GENMASK_ULL(MMIO_SPTE_GEN_HIGH_END, \ 431 MMIO_SPTE_GEN_HIGH_START) 432 433 static u64 generation_mmio_spte_mask(u64 gen) 434 { 435 u64 mask; 436 437 WARN_ON(gen & ~MMIO_SPTE_GEN_MASK); 438 BUILD_BUG_ON((MMIO_SPTE_GEN_HIGH_MASK | MMIO_SPTE_GEN_LOW_MASK) & SPTE_SPECIAL_MASK); 439 440 mask = (gen << MMIO_SPTE_GEN_LOW_START) & MMIO_SPTE_GEN_LOW_MASK; 441 mask |= (gen << MMIO_SPTE_GEN_HIGH_START) & MMIO_SPTE_GEN_HIGH_MASK; 442 return mask; 443 } 444 445 static u64 get_mmio_spte_generation(u64 spte) 446 { 447 u64 gen; 448 449 gen = (spte & MMIO_SPTE_GEN_LOW_MASK) >> MMIO_SPTE_GEN_LOW_START; 450 gen |= (spte & MMIO_SPTE_GEN_HIGH_MASK) >> MMIO_SPTE_GEN_HIGH_START; 451 return gen; 452 } 453 454 static u64 make_mmio_spte(struct kvm_vcpu *vcpu, u64 gfn, unsigned int access) 455 { 456 457 u64 gen = kvm_vcpu_memslots(vcpu)->generation & MMIO_SPTE_GEN_MASK; 458 u64 mask = generation_mmio_spte_mask(gen); 459 u64 gpa = gfn << PAGE_SHIFT; 460 461 access &= shadow_mmio_access_mask; 462 mask |= shadow_mmio_value | access; 463 mask |= gpa | shadow_nonpresent_or_rsvd_mask; 464 mask |= (gpa & shadow_nonpresent_or_rsvd_mask) 465 << shadow_nonpresent_or_rsvd_mask_len; 466 467 return mask; 468 } 469 470 static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn, 471 unsigned int access) 472 { 473 u64 mask = make_mmio_spte(vcpu, gfn, access); 474 unsigned int gen = get_mmio_spte_generation(mask); 475 476 access = mask & ACC_ALL; 477 478 trace_mark_mmio_spte(sptep, gfn, access, gen); 479 mmu_spte_set(sptep, mask); 480 } 481 482 static gfn_t get_mmio_spte_gfn(u64 spte) 483 { 484 u64 gpa = spte & shadow_nonpresent_or_rsvd_lower_gfn_mask; 485 486 gpa |= (spte >> shadow_nonpresent_or_rsvd_mask_len) 487 & shadow_nonpresent_or_rsvd_mask; 488 489 return gpa >> PAGE_SHIFT; 490 } 491 492 static unsigned get_mmio_spte_access(u64 spte) 493 { 494 return spte & shadow_mmio_access_mask; 495 } 496 497 static bool set_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn, 498 kvm_pfn_t pfn, unsigned int access) 499 { 500 if (unlikely(is_noslot_pfn(pfn))) { 501 mark_mmio_spte(vcpu, sptep, gfn, access); 502 return true; 503 } 504 505 return false; 506 } 507 508 static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte) 509 { 510 u64 kvm_gen, spte_gen, gen; 511 512 gen = kvm_vcpu_memslots(vcpu)->generation; 513 if (unlikely(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS)) 514 return false; 515 516 kvm_gen = gen & MMIO_SPTE_GEN_MASK; 517 spte_gen = get_mmio_spte_generation(spte); 518 519 trace_check_mmio_spte(spte, kvm_gen, spte_gen); 520 return likely(kvm_gen == spte_gen); 521 } 522 523 /* 524 * Sets the shadow PTE masks used by the MMU. 525 * 526 * Assumptions: 527 * - Setting either @accessed_mask or @dirty_mask requires setting both 528 * - At least one of @accessed_mask or @acc_track_mask must be set 529 */ 530 void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask, 531 u64 dirty_mask, u64 nx_mask, u64 x_mask, u64 p_mask, 532 u64 acc_track_mask, u64 me_mask) 533 { 534 BUG_ON(!dirty_mask != !accessed_mask); 535 BUG_ON(!accessed_mask && !acc_track_mask); 536 BUG_ON(acc_track_mask & SPTE_SPECIAL_MASK); 537 538 shadow_user_mask = user_mask; 539 shadow_accessed_mask = accessed_mask; 540 shadow_dirty_mask = dirty_mask; 541 shadow_nx_mask = nx_mask; 542 shadow_x_mask = x_mask; 543 shadow_present_mask = p_mask; 544 shadow_acc_track_mask = acc_track_mask; 545 shadow_me_mask = me_mask; 546 } 547 EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes); 548 549 static u8 kvm_get_shadow_phys_bits(void) 550 { 551 /* 552 * boot_cpu_data.x86_phys_bits is reduced when MKTME or SME are detected 553 * in CPU detection code, but the processor treats those reduced bits as 554 * 'keyID' thus they are not reserved bits. Therefore KVM needs to look at 555 * the physical address bits reported by CPUID. 556 */ 557 if (likely(boot_cpu_data.extended_cpuid_level >= 0x80000008)) 558 return cpuid_eax(0x80000008) & 0xff; 559 560 /* 561 * Quite weird to have VMX or SVM but not MAXPHYADDR; probably a VM with 562 * custom CPUID. Proceed with whatever the kernel found since these features 563 * aren't virtualizable (SME/SEV also require CPUIDs higher than 0x80000008). 564 */ 565 return boot_cpu_data.x86_phys_bits; 566 } 567 568 static void kvm_mmu_reset_all_pte_masks(void) 569 { 570 u8 low_phys_bits; 571 572 shadow_user_mask = 0; 573 shadow_accessed_mask = 0; 574 shadow_dirty_mask = 0; 575 shadow_nx_mask = 0; 576 shadow_x_mask = 0; 577 shadow_mmio_mask = 0; 578 shadow_present_mask = 0; 579 shadow_acc_track_mask = 0; 580 581 shadow_phys_bits = kvm_get_shadow_phys_bits(); 582 583 /* 584 * If the CPU has 46 or less physical address bits, then set an 585 * appropriate mask to guard against L1TF attacks. Otherwise, it is 586 * assumed that the CPU is not vulnerable to L1TF. 587 * 588 * Some Intel CPUs address the L1 cache using more PA bits than are 589 * reported by CPUID. Use the PA width of the L1 cache when possible 590 * to achieve more effective mitigation, e.g. if system RAM overlaps 591 * the most significant bits of legal physical address space. 592 */ 593 shadow_nonpresent_or_rsvd_mask = 0; 594 low_phys_bits = boot_cpu_data.x86_cache_bits; 595 if (boot_cpu_data.x86_cache_bits < 596 52 - shadow_nonpresent_or_rsvd_mask_len) { 597 shadow_nonpresent_or_rsvd_mask = 598 rsvd_bits(boot_cpu_data.x86_cache_bits - 599 shadow_nonpresent_or_rsvd_mask_len, 600 boot_cpu_data.x86_cache_bits - 1); 601 low_phys_bits -= shadow_nonpresent_or_rsvd_mask_len; 602 } else 603 WARN_ON_ONCE(boot_cpu_has_bug(X86_BUG_L1TF)); 604 605 shadow_nonpresent_or_rsvd_lower_gfn_mask = 606 GENMASK_ULL(low_phys_bits - 1, PAGE_SHIFT); 607 } 608 609 static int is_cpuid_PSE36(void) 610 { 611 return 1; 612 } 613 614 static int is_nx(struct kvm_vcpu *vcpu) 615 { 616 return vcpu->arch.efer & EFER_NX; 617 } 618 619 static int is_shadow_present_pte(u64 pte) 620 { 621 return (pte != 0) && !is_mmio_spte(pte); 622 } 623 624 static int is_large_pte(u64 pte) 625 { 626 return pte & PT_PAGE_SIZE_MASK; 627 } 628 629 static int is_last_spte(u64 pte, int level) 630 { 631 if (level == PT_PAGE_TABLE_LEVEL) 632 return 1; 633 if (is_large_pte(pte)) 634 return 1; 635 return 0; 636 } 637 638 static bool is_executable_pte(u64 spte) 639 { 640 return (spte & (shadow_x_mask | shadow_nx_mask)) == shadow_x_mask; 641 } 642 643 static kvm_pfn_t spte_to_pfn(u64 pte) 644 { 645 return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT; 646 } 647 648 static gfn_t pse36_gfn_delta(u32 gpte) 649 { 650 int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT; 651 652 return (gpte & PT32_DIR_PSE36_MASK) << shift; 653 } 654 655 #ifdef CONFIG_X86_64 656 static void __set_spte(u64 *sptep, u64 spte) 657 { 658 WRITE_ONCE(*sptep, spte); 659 } 660 661 static void __update_clear_spte_fast(u64 *sptep, u64 spte) 662 { 663 WRITE_ONCE(*sptep, spte); 664 } 665 666 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte) 667 { 668 return xchg(sptep, spte); 669 } 670 671 static u64 __get_spte_lockless(u64 *sptep) 672 { 673 return READ_ONCE(*sptep); 674 } 675 #else 676 union split_spte { 677 struct { 678 u32 spte_low; 679 u32 spte_high; 680 }; 681 u64 spte; 682 }; 683 684 static void count_spte_clear(u64 *sptep, u64 spte) 685 { 686 struct kvm_mmu_page *sp = page_header(__pa(sptep)); 687 688 if (is_shadow_present_pte(spte)) 689 return; 690 691 /* Ensure the spte is completely set before we increase the count */ 692 smp_wmb(); 693 sp->clear_spte_count++; 694 } 695 696 static void __set_spte(u64 *sptep, u64 spte) 697 { 698 union split_spte *ssptep, sspte; 699 700 ssptep = (union split_spte *)sptep; 701 sspte = (union split_spte)spte; 702 703 ssptep->spte_high = sspte.spte_high; 704 705 /* 706 * If we map the spte from nonpresent to present, We should store 707 * the high bits firstly, then set present bit, so cpu can not 708 * fetch this spte while we are setting the spte. 709 */ 710 smp_wmb(); 711 712 WRITE_ONCE(ssptep->spte_low, sspte.spte_low); 713 } 714 715 static void __update_clear_spte_fast(u64 *sptep, u64 spte) 716 { 717 union split_spte *ssptep, sspte; 718 719 ssptep = (union split_spte *)sptep; 720 sspte = (union split_spte)spte; 721 722 WRITE_ONCE(ssptep->spte_low, sspte.spte_low); 723 724 /* 725 * If we map the spte from present to nonpresent, we should clear 726 * present bit firstly to avoid vcpu fetch the old high bits. 727 */ 728 smp_wmb(); 729 730 ssptep->spte_high = sspte.spte_high; 731 count_spte_clear(sptep, spte); 732 } 733 734 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte) 735 { 736 union split_spte *ssptep, sspte, orig; 737 738 ssptep = (union split_spte *)sptep; 739 sspte = (union split_spte)spte; 740 741 /* xchg acts as a barrier before the setting of the high bits */ 742 orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low); 743 orig.spte_high = ssptep->spte_high; 744 ssptep->spte_high = sspte.spte_high; 745 count_spte_clear(sptep, spte); 746 747 return orig.spte; 748 } 749 750 /* 751 * The idea using the light way get the spte on x86_32 guest is from 752 * gup_get_pte (mm/gup.c). 753 * 754 * An spte tlb flush may be pending, because kvm_set_pte_rmapp 755 * coalesces them and we are running out of the MMU lock. Therefore 756 * we need to protect against in-progress updates of the spte. 757 * 758 * Reading the spte while an update is in progress may get the old value 759 * for the high part of the spte. The race is fine for a present->non-present 760 * change (because the high part of the spte is ignored for non-present spte), 761 * but for a present->present change we must reread the spte. 762 * 763 * All such changes are done in two steps (present->non-present and 764 * non-present->present), hence it is enough to count the number of 765 * present->non-present updates: if it changed while reading the spte, 766 * we might have hit the race. This is done using clear_spte_count. 767 */ 768 static u64 __get_spte_lockless(u64 *sptep) 769 { 770 struct kvm_mmu_page *sp = page_header(__pa(sptep)); 771 union split_spte spte, *orig = (union split_spte *)sptep; 772 int count; 773 774 retry: 775 count = sp->clear_spte_count; 776 smp_rmb(); 777 778 spte.spte_low = orig->spte_low; 779 smp_rmb(); 780 781 spte.spte_high = orig->spte_high; 782 smp_rmb(); 783 784 if (unlikely(spte.spte_low != orig->spte_low || 785 count != sp->clear_spte_count)) 786 goto retry; 787 788 return spte.spte; 789 } 790 #endif 791 792 static bool spte_can_locklessly_be_made_writable(u64 spte) 793 { 794 return (spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE)) == 795 (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE); 796 } 797 798 static bool spte_has_volatile_bits(u64 spte) 799 { 800 if (!is_shadow_present_pte(spte)) 801 return false; 802 803 /* 804 * Always atomically update spte if it can be updated 805 * out of mmu-lock, it can ensure dirty bit is not lost, 806 * also, it can help us to get a stable is_writable_pte() 807 * to ensure tlb flush is not missed. 808 */ 809 if (spte_can_locklessly_be_made_writable(spte) || 810 is_access_track_spte(spte)) 811 return true; 812 813 if (spte_ad_enabled(spte)) { 814 if ((spte & shadow_accessed_mask) == 0 || 815 (is_writable_pte(spte) && (spte & shadow_dirty_mask) == 0)) 816 return true; 817 } 818 819 return false; 820 } 821 822 static bool is_accessed_spte(u64 spte) 823 { 824 u64 accessed_mask = spte_shadow_accessed_mask(spte); 825 826 return accessed_mask ? spte & accessed_mask 827 : !is_access_track_spte(spte); 828 } 829 830 static bool is_dirty_spte(u64 spte) 831 { 832 u64 dirty_mask = spte_shadow_dirty_mask(spte); 833 834 return dirty_mask ? spte & dirty_mask : spte & PT_WRITABLE_MASK; 835 } 836 837 /* Rules for using mmu_spte_set: 838 * Set the sptep from nonpresent to present. 839 * Note: the sptep being assigned *must* be either not present 840 * or in a state where the hardware will not attempt to update 841 * the spte. 842 */ 843 static void mmu_spte_set(u64 *sptep, u64 new_spte) 844 { 845 WARN_ON(is_shadow_present_pte(*sptep)); 846 __set_spte(sptep, new_spte); 847 } 848 849 /* 850 * Update the SPTE (excluding the PFN), but do not track changes in its 851 * accessed/dirty status. 852 */ 853 static u64 mmu_spte_update_no_track(u64 *sptep, u64 new_spte) 854 { 855 u64 old_spte = *sptep; 856 857 WARN_ON(!is_shadow_present_pte(new_spte)); 858 859 if (!is_shadow_present_pte(old_spte)) { 860 mmu_spte_set(sptep, new_spte); 861 return old_spte; 862 } 863 864 if (!spte_has_volatile_bits(old_spte)) 865 __update_clear_spte_fast(sptep, new_spte); 866 else 867 old_spte = __update_clear_spte_slow(sptep, new_spte); 868 869 WARN_ON(spte_to_pfn(old_spte) != spte_to_pfn(new_spte)); 870 871 return old_spte; 872 } 873 874 /* Rules for using mmu_spte_update: 875 * Update the state bits, it means the mapped pfn is not changed. 876 * 877 * Whenever we overwrite a writable spte with a read-only one we 878 * should flush remote TLBs. Otherwise rmap_write_protect 879 * will find a read-only spte, even though the writable spte 880 * might be cached on a CPU's TLB, the return value indicates this 881 * case. 882 * 883 * Returns true if the TLB needs to be flushed 884 */ 885 static bool mmu_spte_update(u64 *sptep, u64 new_spte) 886 { 887 bool flush = false; 888 u64 old_spte = mmu_spte_update_no_track(sptep, new_spte); 889 890 if (!is_shadow_present_pte(old_spte)) 891 return false; 892 893 /* 894 * For the spte updated out of mmu-lock is safe, since 895 * we always atomically update it, see the comments in 896 * spte_has_volatile_bits(). 897 */ 898 if (spte_can_locklessly_be_made_writable(old_spte) && 899 !is_writable_pte(new_spte)) 900 flush = true; 901 902 /* 903 * Flush TLB when accessed/dirty states are changed in the page tables, 904 * to guarantee consistency between TLB and page tables. 905 */ 906 907 if (is_accessed_spte(old_spte) && !is_accessed_spte(new_spte)) { 908 flush = true; 909 kvm_set_pfn_accessed(spte_to_pfn(old_spte)); 910 } 911 912 if (is_dirty_spte(old_spte) && !is_dirty_spte(new_spte)) { 913 flush = true; 914 kvm_set_pfn_dirty(spte_to_pfn(old_spte)); 915 } 916 917 return flush; 918 } 919 920 /* 921 * Rules for using mmu_spte_clear_track_bits: 922 * It sets the sptep from present to nonpresent, and track the 923 * state bits, it is used to clear the last level sptep. 924 * Returns non-zero if the PTE was previously valid. 925 */ 926 static int mmu_spte_clear_track_bits(u64 *sptep) 927 { 928 kvm_pfn_t pfn; 929 u64 old_spte = *sptep; 930 931 if (!spte_has_volatile_bits(old_spte)) 932 __update_clear_spte_fast(sptep, 0ull); 933 else 934 old_spte = __update_clear_spte_slow(sptep, 0ull); 935 936 if (!is_shadow_present_pte(old_spte)) 937 return 0; 938 939 pfn = spte_to_pfn(old_spte); 940 941 /* 942 * KVM does not hold the refcount of the page used by 943 * kvm mmu, before reclaiming the page, we should 944 * unmap it from mmu first. 945 */ 946 WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn))); 947 948 if (is_accessed_spte(old_spte)) 949 kvm_set_pfn_accessed(pfn); 950 951 if (is_dirty_spte(old_spte)) 952 kvm_set_pfn_dirty(pfn); 953 954 return 1; 955 } 956 957 /* 958 * Rules for using mmu_spte_clear_no_track: 959 * Directly clear spte without caring the state bits of sptep, 960 * it is used to set the upper level spte. 961 */ 962 static void mmu_spte_clear_no_track(u64 *sptep) 963 { 964 __update_clear_spte_fast(sptep, 0ull); 965 } 966 967 static u64 mmu_spte_get_lockless(u64 *sptep) 968 { 969 return __get_spte_lockless(sptep); 970 } 971 972 static u64 mark_spte_for_access_track(u64 spte) 973 { 974 if (spte_ad_enabled(spte)) 975 return spte & ~shadow_accessed_mask; 976 977 if (is_access_track_spte(spte)) 978 return spte; 979 980 /* 981 * Making an Access Tracking PTE will result in removal of write access 982 * from the PTE. So, verify that we will be able to restore the write 983 * access in the fast page fault path later on. 984 */ 985 WARN_ONCE((spte & PT_WRITABLE_MASK) && 986 !spte_can_locklessly_be_made_writable(spte), 987 "kvm: Writable SPTE is not locklessly dirty-trackable\n"); 988 989 WARN_ONCE(spte & (shadow_acc_track_saved_bits_mask << 990 shadow_acc_track_saved_bits_shift), 991 "kvm: Access Tracking saved bit locations are not zero\n"); 992 993 spte |= (spte & shadow_acc_track_saved_bits_mask) << 994 shadow_acc_track_saved_bits_shift; 995 spte &= ~shadow_acc_track_mask; 996 997 return spte; 998 } 999 1000 /* Restore an acc-track PTE back to a regular PTE */ 1001 static u64 restore_acc_track_spte(u64 spte) 1002 { 1003 u64 new_spte = spte; 1004 u64 saved_bits = (spte >> shadow_acc_track_saved_bits_shift) 1005 & shadow_acc_track_saved_bits_mask; 1006 1007 WARN_ON_ONCE(spte_ad_enabled(spte)); 1008 WARN_ON_ONCE(!is_access_track_spte(spte)); 1009 1010 new_spte &= ~shadow_acc_track_mask; 1011 new_spte &= ~(shadow_acc_track_saved_bits_mask << 1012 shadow_acc_track_saved_bits_shift); 1013 new_spte |= saved_bits; 1014 1015 return new_spte; 1016 } 1017 1018 /* Returns the Accessed status of the PTE and resets it at the same time. */ 1019 static bool mmu_spte_age(u64 *sptep) 1020 { 1021 u64 spte = mmu_spte_get_lockless(sptep); 1022 1023 if (!is_accessed_spte(spte)) 1024 return false; 1025 1026 if (spte_ad_enabled(spte)) { 1027 clear_bit((ffs(shadow_accessed_mask) - 1), 1028 (unsigned long *)sptep); 1029 } else { 1030 /* 1031 * Capture the dirty status of the page, so that it doesn't get 1032 * lost when the SPTE is marked for access tracking. 1033 */ 1034 if (is_writable_pte(spte)) 1035 kvm_set_pfn_dirty(spte_to_pfn(spte)); 1036 1037 spte = mark_spte_for_access_track(spte); 1038 mmu_spte_update_no_track(sptep, spte); 1039 } 1040 1041 return true; 1042 } 1043 1044 static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu) 1045 { 1046 /* 1047 * Prevent page table teardown by making any free-er wait during 1048 * kvm_flush_remote_tlbs() IPI to all active vcpus. 1049 */ 1050 local_irq_disable(); 1051 1052 /* 1053 * Make sure a following spte read is not reordered ahead of the write 1054 * to vcpu->mode. 1055 */ 1056 smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES); 1057 } 1058 1059 static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu) 1060 { 1061 /* 1062 * Make sure the write to vcpu->mode is not reordered in front of 1063 * reads to sptes. If it does, kvm_mmu_commit_zap_page() can see us 1064 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table. 1065 */ 1066 smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE); 1067 local_irq_enable(); 1068 } 1069 1070 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache, 1071 struct kmem_cache *base_cache, int min) 1072 { 1073 void *obj; 1074 1075 if (cache->nobjs >= min) 1076 return 0; 1077 while (cache->nobjs < ARRAY_SIZE(cache->objects)) { 1078 obj = kmem_cache_zalloc(base_cache, GFP_KERNEL_ACCOUNT); 1079 if (!obj) 1080 return cache->nobjs >= min ? 0 : -ENOMEM; 1081 cache->objects[cache->nobjs++] = obj; 1082 } 1083 return 0; 1084 } 1085 1086 static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache) 1087 { 1088 return cache->nobjs; 1089 } 1090 1091 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc, 1092 struct kmem_cache *cache) 1093 { 1094 while (mc->nobjs) 1095 kmem_cache_free(cache, mc->objects[--mc->nobjs]); 1096 } 1097 1098 static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache, 1099 int min) 1100 { 1101 void *page; 1102 1103 if (cache->nobjs >= min) 1104 return 0; 1105 while (cache->nobjs < ARRAY_SIZE(cache->objects)) { 1106 page = (void *)__get_free_page(GFP_KERNEL_ACCOUNT); 1107 if (!page) 1108 return cache->nobjs >= min ? 0 : -ENOMEM; 1109 cache->objects[cache->nobjs++] = page; 1110 } 1111 return 0; 1112 } 1113 1114 static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc) 1115 { 1116 while (mc->nobjs) 1117 free_page((unsigned long)mc->objects[--mc->nobjs]); 1118 } 1119 1120 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu) 1121 { 1122 int r; 1123 1124 r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache, 1125 pte_list_desc_cache, 8 + PTE_PREFETCH_NUM); 1126 if (r) 1127 goto out; 1128 r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8); 1129 if (r) 1130 goto out; 1131 r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache, 1132 mmu_page_header_cache, 4); 1133 out: 1134 return r; 1135 } 1136 1137 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu) 1138 { 1139 mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache, 1140 pte_list_desc_cache); 1141 mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache); 1142 mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache, 1143 mmu_page_header_cache); 1144 } 1145 1146 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc) 1147 { 1148 void *p; 1149 1150 BUG_ON(!mc->nobjs); 1151 p = mc->objects[--mc->nobjs]; 1152 return p; 1153 } 1154 1155 static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu) 1156 { 1157 return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache); 1158 } 1159 1160 static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc) 1161 { 1162 kmem_cache_free(pte_list_desc_cache, pte_list_desc); 1163 } 1164 1165 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index) 1166 { 1167 if (!sp->role.direct) 1168 return sp->gfns[index]; 1169 1170 return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS)); 1171 } 1172 1173 static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn) 1174 { 1175 if (!sp->role.direct) { 1176 sp->gfns[index] = gfn; 1177 return; 1178 } 1179 1180 if (WARN_ON(gfn != kvm_mmu_page_get_gfn(sp, index))) 1181 pr_err_ratelimited("gfn mismatch under direct page %llx " 1182 "(expected %llx, got %llx)\n", 1183 sp->gfn, 1184 kvm_mmu_page_get_gfn(sp, index), gfn); 1185 } 1186 1187 /* 1188 * Return the pointer to the large page information for a given gfn, 1189 * handling slots that are not large page aligned. 1190 */ 1191 static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn, 1192 struct kvm_memory_slot *slot, 1193 int level) 1194 { 1195 unsigned long idx; 1196 1197 idx = gfn_to_index(gfn, slot->base_gfn, level); 1198 return &slot->arch.lpage_info[level - 2][idx]; 1199 } 1200 1201 static void update_gfn_disallow_lpage_count(struct kvm_memory_slot *slot, 1202 gfn_t gfn, int count) 1203 { 1204 struct kvm_lpage_info *linfo; 1205 int i; 1206 1207 for (i = PT_DIRECTORY_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) { 1208 linfo = lpage_info_slot(gfn, slot, i); 1209 linfo->disallow_lpage += count; 1210 WARN_ON(linfo->disallow_lpage < 0); 1211 } 1212 } 1213 1214 void kvm_mmu_gfn_disallow_lpage(struct kvm_memory_slot *slot, gfn_t gfn) 1215 { 1216 update_gfn_disallow_lpage_count(slot, gfn, 1); 1217 } 1218 1219 void kvm_mmu_gfn_allow_lpage(struct kvm_memory_slot *slot, gfn_t gfn) 1220 { 1221 update_gfn_disallow_lpage_count(slot, gfn, -1); 1222 } 1223 1224 static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp) 1225 { 1226 struct kvm_memslots *slots; 1227 struct kvm_memory_slot *slot; 1228 gfn_t gfn; 1229 1230 kvm->arch.indirect_shadow_pages++; 1231 gfn = sp->gfn; 1232 slots = kvm_memslots_for_spte_role(kvm, sp->role); 1233 slot = __gfn_to_memslot(slots, gfn); 1234 1235 /* the non-leaf shadow pages are keeping readonly. */ 1236 if (sp->role.level > PT_PAGE_TABLE_LEVEL) 1237 return kvm_slot_page_track_add_page(kvm, slot, gfn, 1238 KVM_PAGE_TRACK_WRITE); 1239 1240 kvm_mmu_gfn_disallow_lpage(slot, gfn); 1241 } 1242 1243 static void account_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp) 1244 { 1245 if (sp->lpage_disallowed) 1246 return; 1247 1248 ++kvm->stat.nx_lpage_splits; 1249 list_add_tail(&sp->lpage_disallowed_link, 1250 &kvm->arch.lpage_disallowed_mmu_pages); 1251 sp->lpage_disallowed = true; 1252 } 1253 1254 static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp) 1255 { 1256 struct kvm_memslots *slots; 1257 struct kvm_memory_slot *slot; 1258 gfn_t gfn; 1259 1260 kvm->arch.indirect_shadow_pages--; 1261 gfn = sp->gfn; 1262 slots = kvm_memslots_for_spte_role(kvm, sp->role); 1263 slot = __gfn_to_memslot(slots, gfn); 1264 if (sp->role.level > PT_PAGE_TABLE_LEVEL) 1265 return kvm_slot_page_track_remove_page(kvm, slot, gfn, 1266 KVM_PAGE_TRACK_WRITE); 1267 1268 kvm_mmu_gfn_allow_lpage(slot, gfn); 1269 } 1270 1271 static void unaccount_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp) 1272 { 1273 --kvm->stat.nx_lpage_splits; 1274 sp->lpage_disallowed = false; 1275 list_del(&sp->lpage_disallowed_link); 1276 } 1277 1278 static struct kvm_memory_slot * 1279 gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn, 1280 bool no_dirty_log) 1281 { 1282 struct kvm_memory_slot *slot; 1283 1284 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 1285 if (!slot || slot->flags & KVM_MEMSLOT_INVALID) 1286 return NULL; 1287 if (no_dirty_log && slot->dirty_bitmap) 1288 return NULL; 1289 1290 return slot; 1291 } 1292 1293 /* 1294 * About rmap_head encoding: 1295 * 1296 * If the bit zero of rmap_head->val is clear, then it points to the only spte 1297 * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct 1298 * pte_list_desc containing more mappings. 1299 */ 1300 1301 /* 1302 * Returns the number of pointers in the rmap chain, not counting the new one. 1303 */ 1304 static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte, 1305 struct kvm_rmap_head *rmap_head) 1306 { 1307 struct pte_list_desc *desc; 1308 int i, count = 0; 1309 1310 if (!rmap_head->val) { 1311 rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte); 1312 rmap_head->val = (unsigned long)spte; 1313 } else if (!(rmap_head->val & 1)) { 1314 rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte); 1315 desc = mmu_alloc_pte_list_desc(vcpu); 1316 desc->sptes[0] = (u64 *)rmap_head->val; 1317 desc->sptes[1] = spte; 1318 rmap_head->val = (unsigned long)desc | 1; 1319 ++count; 1320 } else { 1321 rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte); 1322 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul); 1323 while (desc->sptes[PTE_LIST_EXT-1] && desc->more) { 1324 desc = desc->more; 1325 count += PTE_LIST_EXT; 1326 } 1327 if (desc->sptes[PTE_LIST_EXT-1]) { 1328 desc->more = mmu_alloc_pte_list_desc(vcpu); 1329 desc = desc->more; 1330 } 1331 for (i = 0; desc->sptes[i]; ++i) 1332 ++count; 1333 desc->sptes[i] = spte; 1334 } 1335 return count; 1336 } 1337 1338 static void 1339 pte_list_desc_remove_entry(struct kvm_rmap_head *rmap_head, 1340 struct pte_list_desc *desc, int i, 1341 struct pte_list_desc *prev_desc) 1342 { 1343 int j; 1344 1345 for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j) 1346 ; 1347 desc->sptes[i] = desc->sptes[j]; 1348 desc->sptes[j] = NULL; 1349 if (j != 0) 1350 return; 1351 if (!prev_desc && !desc->more) 1352 rmap_head->val = 0; 1353 else 1354 if (prev_desc) 1355 prev_desc->more = desc->more; 1356 else 1357 rmap_head->val = (unsigned long)desc->more | 1; 1358 mmu_free_pte_list_desc(desc); 1359 } 1360 1361 static void __pte_list_remove(u64 *spte, struct kvm_rmap_head *rmap_head) 1362 { 1363 struct pte_list_desc *desc; 1364 struct pte_list_desc *prev_desc; 1365 int i; 1366 1367 if (!rmap_head->val) { 1368 pr_err("%s: %p 0->BUG\n", __func__, spte); 1369 BUG(); 1370 } else if (!(rmap_head->val & 1)) { 1371 rmap_printk("%s: %p 1->0\n", __func__, spte); 1372 if ((u64 *)rmap_head->val != spte) { 1373 pr_err("%s: %p 1->BUG\n", __func__, spte); 1374 BUG(); 1375 } 1376 rmap_head->val = 0; 1377 } else { 1378 rmap_printk("%s: %p many->many\n", __func__, spte); 1379 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul); 1380 prev_desc = NULL; 1381 while (desc) { 1382 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i) { 1383 if (desc->sptes[i] == spte) { 1384 pte_list_desc_remove_entry(rmap_head, 1385 desc, i, prev_desc); 1386 return; 1387 } 1388 } 1389 prev_desc = desc; 1390 desc = desc->more; 1391 } 1392 pr_err("%s: %p many->many\n", __func__, spte); 1393 BUG(); 1394 } 1395 } 1396 1397 static void pte_list_remove(struct kvm_rmap_head *rmap_head, u64 *sptep) 1398 { 1399 mmu_spte_clear_track_bits(sptep); 1400 __pte_list_remove(sptep, rmap_head); 1401 } 1402 1403 static struct kvm_rmap_head *__gfn_to_rmap(gfn_t gfn, int level, 1404 struct kvm_memory_slot *slot) 1405 { 1406 unsigned long idx; 1407 1408 idx = gfn_to_index(gfn, slot->base_gfn, level); 1409 return &slot->arch.rmap[level - PT_PAGE_TABLE_LEVEL][idx]; 1410 } 1411 1412 static struct kvm_rmap_head *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, 1413 struct kvm_mmu_page *sp) 1414 { 1415 struct kvm_memslots *slots; 1416 struct kvm_memory_slot *slot; 1417 1418 slots = kvm_memslots_for_spte_role(kvm, sp->role); 1419 slot = __gfn_to_memslot(slots, gfn); 1420 return __gfn_to_rmap(gfn, sp->role.level, slot); 1421 } 1422 1423 static bool rmap_can_add(struct kvm_vcpu *vcpu) 1424 { 1425 struct kvm_mmu_memory_cache *cache; 1426 1427 cache = &vcpu->arch.mmu_pte_list_desc_cache; 1428 return mmu_memory_cache_free_objects(cache); 1429 } 1430 1431 static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn) 1432 { 1433 struct kvm_mmu_page *sp; 1434 struct kvm_rmap_head *rmap_head; 1435 1436 sp = page_header(__pa(spte)); 1437 kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn); 1438 rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp); 1439 return pte_list_add(vcpu, spte, rmap_head); 1440 } 1441 1442 static void rmap_remove(struct kvm *kvm, u64 *spte) 1443 { 1444 struct kvm_mmu_page *sp; 1445 gfn_t gfn; 1446 struct kvm_rmap_head *rmap_head; 1447 1448 sp = page_header(__pa(spte)); 1449 gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt); 1450 rmap_head = gfn_to_rmap(kvm, gfn, sp); 1451 __pte_list_remove(spte, rmap_head); 1452 } 1453 1454 /* 1455 * Used by the following functions to iterate through the sptes linked by a 1456 * rmap. All fields are private and not assumed to be used outside. 1457 */ 1458 struct rmap_iterator { 1459 /* private fields */ 1460 struct pte_list_desc *desc; /* holds the sptep if not NULL */ 1461 int pos; /* index of the sptep */ 1462 }; 1463 1464 /* 1465 * Iteration must be started by this function. This should also be used after 1466 * removing/dropping sptes from the rmap link because in such cases the 1467 * information in the iterator may not be valid. 1468 * 1469 * Returns sptep if found, NULL otherwise. 1470 */ 1471 static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head, 1472 struct rmap_iterator *iter) 1473 { 1474 u64 *sptep; 1475 1476 if (!rmap_head->val) 1477 return NULL; 1478 1479 if (!(rmap_head->val & 1)) { 1480 iter->desc = NULL; 1481 sptep = (u64 *)rmap_head->val; 1482 goto out; 1483 } 1484 1485 iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul); 1486 iter->pos = 0; 1487 sptep = iter->desc->sptes[iter->pos]; 1488 out: 1489 BUG_ON(!is_shadow_present_pte(*sptep)); 1490 return sptep; 1491 } 1492 1493 /* 1494 * Must be used with a valid iterator: e.g. after rmap_get_first(). 1495 * 1496 * Returns sptep if found, NULL otherwise. 1497 */ 1498 static u64 *rmap_get_next(struct rmap_iterator *iter) 1499 { 1500 u64 *sptep; 1501 1502 if (iter->desc) { 1503 if (iter->pos < PTE_LIST_EXT - 1) { 1504 ++iter->pos; 1505 sptep = iter->desc->sptes[iter->pos]; 1506 if (sptep) 1507 goto out; 1508 } 1509 1510 iter->desc = iter->desc->more; 1511 1512 if (iter->desc) { 1513 iter->pos = 0; 1514 /* desc->sptes[0] cannot be NULL */ 1515 sptep = iter->desc->sptes[iter->pos]; 1516 goto out; 1517 } 1518 } 1519 1520 return NULL; 1521 out: 1522 BUG_ON(!is_shadow_present_pte(*sptep)); 1523 return sptep; 1524 } 1525 1526 #define for_each_rmap_spte(_rmap_head_, _iter_, _spte_) \ 1527 for (_spte_ = rmap_get_first(_rmap_head_, _iter_); \ 1528 _spte_; _spte_ = rmap_get_next(_iter_)) 1529 1530 static void drop_spte(struct kvm *kvm, u64 *sptep) 1531 { 1532 if (mmu_spte_clear_track_bits(sptep)) 1533 rmap_remove(kvm, sptep); 1534 } 1535 1536 1537 static bool __drop_large_spte(struct kvm *kvm, u64 *sptep) 1538 { 1539 if (is_large_pte(*sptep)) { 1540 WARN_ON(page_header(__pa(sptep))->role.level == 1541 PT_PAGE_TABLE_LEVEL); 1542 drop_spte(kvm, sptep); 1543 --kvm->stat.lpages; 1544 return true; 1545 } 1546 1547 return false; 1548 } 1549 1550 static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep) 1551 { 1552 if (__drop_large_spte(vcpu->kvm, sptep)) { 1553 struct kvm_mmu_page *sp = page_header(__pa(sptep)); 1554 1555 kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn, 1556 KVM_PAGES_PER_HPAGE(sp->role.level)); 1557 } 1558 } 1559 1560 /* 1561 * Write-protect on the specified @sptep, @pt_protect indicates whether 1562 * spte write-protection is caused by protecting shadow page table. 1563 * 1564 * Note: write protection is difference between dirty logging and spte 1565 * protection: 1566 * - for dirty logging, the spte can be set to writable at anytime if 1567 * its dirty bitmap is properly set. 1568 * - for spte protection, the spte can be writable only after unsync-ing 1569 * shadow page. 1570 * 1571 * Return true if tlb need be flushed. 1572 */ 1573 static bool spte_write_protect(u64 *sptep, bool pt_protect) 1574 { 1575 u64 spte = *sptep; 1576 1577 if (!is_writable_pte(spte) && 1578 !(pt_protect && spte_can_locklessly_be_made_writable(spte))) 1579 return false; 1580 1581 rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep); 1582 1583 if (pt_protect) 1584 spte &= ~SPTE_MMU_WRITEABLE; 1585 spte = spte & ~PT_WRITABLE_MASK; 1586 1587 return mmu_spte_update(sptep, spte); 1588 } 1589 1590 static bool __rmap_write_protect(struct kvm *kvm, 1591 struct kvm_rmap_head *rmap_head, 1592 bool pt_protect) 1593 { 1594 u64 *sptep; 1595 struct rmap_iterator iter; 1596 bool flush = false; 1597 1598 for_each_rmap_spte(rmap_head, &iter, sptep) 1599 flush |= spte_write_protect(sptep, pt_protect); 1600 1601 return flush; 1602 } 1603 1604 static bool spte_clear_dirty(u64 *sptep) 1605 { 1606 u64 spte = *sptep; 1607 1608 rmap_printk("rmap_clear_dirty: spte %p %llx\n", sptep, *sptep); 1609 1610 MMU_WARN_ON(!spte_ad_enabled(spte)); 1611 spte &= ~shadow_dirty_mask; 1612 return mmu_spte_update(sptep, spte); 1613 } 1614 1615 static bool spte_wrprot_for_clear_dirty(u64 *sptep) 1616 { 1617 bool was_writable = test_and_clear_bit(PT_WRITABLE_SHIFT, 1618 (unsigned long *)sptep); 1619 if (was_writable && !spte_ad_enabled(*sptep)) 1620 kvm_set_pfn_dirty(spte_to_pfn(*sptep)); 1621 1622 return was_writable; 1623 } 1624 1625 /* 1626 * Gets the GFN ready for another round of dirty logging by clearing the 1627 * - D bit on ad-enabled SPTEs, and 1628 * - W bit on ad-disabled SPTEs. 1629 * Returns true iff any D or W bits were cleared. 1630 */ 1631 static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head) 1632 { 1633 u64 *sptep; 1634 struct rmap_iterator iter; 1635 bool flush = false; 1636 1637 for_each_rmap_spte(rmap_head, &iter, sptep) 1638 if (spte_ad_need_write_protect(*sptep)) 1639 flush |= spte_wrprot_for_clear_dirty(sptep); 1640 else 1641 flush |= spte_clear_dirty(sptep); 1642 1643 return flush; 1644 } 1645 1646 static bool spte_set_dirty(u64 *sptep) 1647 { 1648 u64 spte = *sptep; 1649 1650 rmap_printk("rmap_set_dirty: spte %p %llx\n", sptep, *sptep); 1651 1652 /* 1653 * Similar to the !kvm_x86_ops->slot_disable_log_dirty case, 1654 * do not bother adding back write access to pages marked 1655 * SPTE_AD_WRPROT_ONLY_MASK. 1656 */ 1657 spte |= shadow_dirty_mask; 1658 1659 return mmu_spte_update(sptep, spte); 1660 } 1661 1662 static bool __rmap_set_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head) 1663 { 1664 u64 *sptep; 1665 struct rmap_iterator iter; 1666 bool flush = false; 1667 1668 for_each_rmap_spte(rmap_head, &iter, sptep) 1669 if (spte_ad_enabled(*sptep)) 1670 flush |= spte_set_dirty(sptep); 1671 1672 return flush; 1673 } 1674 1675 /** 1676 * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages 1677 * @kvm: kvm instance 1678 * @slot: slot to protect 1679 * @gfn_offset: start of the BITS_PER_LONG pages we care about 1680 * @mask: indicates which pages we should protect 1681 * 1682 * Used when we do not need to care about huge page mappings: e.g. during dirty 1683 * logging we do not have any such mappings. 1684 */ 1685 static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm, 1686 struct kvm_memory_slot *slot, 1687 gfn_t gfn_offset, unsigned long mask) 1688 { 1689 struct kvm_rmap_head *rmap_head; 1690 1691 while (mask) { 1692 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask), 1693 PT_PAGE_TABLE_LEVEL, slot); 1694 __rmap_write_protect(kvm, rmap_head, false); 1695 1696 /* clear the first set bit */ 1697 mask &= mask - 1; 1698 } 1699 } 1700 1701 /** 1702 * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages, or write 1703 * protect the page if the D-bit isn't supported. 1704 * @kvm: kvm instance 1705 * @slot: slot to clear D-bit 1706 * @gfn_offset: start of the BITS_PER_LONG pages we care about 1707 * @mask: indicates which pages we should clear D-bit 1708 * 1709 * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap. 1710 */ 1711 void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm, 1712 struct kvm_memory_slot *slot, 1713 gfn_t gfn_offset, unsigned long mask) 1714 { 1715 struct kvm_rmap_head *rmap_head; 1716 1717 while (mask) { 1718 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask), 1719 PT_PAGE_TABLE_LEVEL, slot); 1720 __rmap_clear_dirty(kvm, rmap_head); 1721 1722 /* clear the first set bit */ 1723 mask &= mask - 1; 1724 } 1725 } 1726 EXPORT_SYMBOL_GPL(kvm_mmu_clear_dirty_pt_masked); 1727 1728 /** 1729 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected 1730 * PT level pages. 1731 * 1732 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to 1733 * enable dirty logging for them. 1734 * 1735 * Used when we do not need to care about huge page mappings: e.g. during dirty 1736 * logging we do not have any such mappings. 1737 */ 1738 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm, 1739 struct kvm_memory_slot *slot, 1740 gfn_t gfn_offset, unsigned long mask) 1741 { 1742 if (kvm_x86_ops->enable_log_dirty_pt_masked) 1743 kvm_x86_ops->enable_log_dirty_pt_masked(kvm, slot, gfn_offset, 1744 mask); 1745 else 1746 kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask); 1747 } 1748 1749 /** 1750 * kvm_arch_write_log_dirty - emulate dirty page logging 1751 * @vcpu: Guest mode vcpu 1752 * 1753 * Emulate arch specific page modification logging for the 1754 * nested hypervisor 1755 */ 1756 int kvm_arch_write_log_dirty(struct kvm_vcpu *vcpu) 1757 { 1758 if (kvm_x86_ops->write_log_dirty) 1759 return kvm_x86_ops->write_log_dirty(vcpu); 1760 1761 return 0; 1762 } 1763 1764 bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm, 1765 struct kvm_memory_slot *slot, u64 gfn) 1766 { 1767 struct kvm_rmap_head *rmap_head; 1768 int i; 1769 bool write_protected = false; 1770 1771 for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) { 1772 rmap_head = __gfn_to_rmap(gfn, i, slot); 1773 write_protected |= __rmap_write_protect(kvm, rmap_head, true); 1774 } 1775 1776 return write_protected; 1777 } 1778 1779 static bool rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn) 1780 { 1781 struct kvm_memory_slot *slot; 1782 1783 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 1784 return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn); 1785 } 1786 1787 static bool kvm_zap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head) 1788 { 1789 u64 *sptep; 1790 struct rmap_iterator iter; 1791 bool flush = false; 1792 1793 while ((sptep = rmap_get_first(rmap_head, &iter))) { 1794 rmap_printk("%s: spte %p %llx.\n", __func__, sptep, *sptep); 1795 1796 pte_list_remove(rmap_head, sptep); 1797 flush = true; 1798 } 1799 1800 return flush; 1801 } 1802 1803 static int kvm_unmap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head, 1804 struct kvm_memory_slot *slot, gfn_t gfn, int level, 1805 unsigned long data) 1806 { 1807 return kvm_zap_rmapp(kvm, rmap_head); 1808 } 1809 1810 static int kvm_set_pte_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head, 1811 struct kvm_memory_slot *slot, gfn_t gfn, int level, 1812 unsigned long data) 1813 { 1814 u64 *sptep; 1815 struct rmap_iterator iter; 1816 int need_flush = 0; 1817 u64 new_spte; 1818 pte_t *ptep = (pte_t *)data; 1819 kvm_pfn_t new_pfn; 1820 1821 WARN_ON(pte_huge(*ptep)); 1822 new_pfn = pte_pfn(*ptep); 1823 1824 restart: 1825 for_each_rmap_spte(rmap_head, &iter, sptep) { 1826 rmap_printk("kvm_set_pte_rmapp: spte %p %llx gfn %llx (%d)\n", 1827 sptep, *sptep, gfn, level); 1828 1829 need_flush = 1; 1830 1831 if (pte_write(*ptep)) { 1832 pte_list_remove(rmap_head, sptep); 1833 goto restart; 1834 } else { 1835 new_spte = *sptep & ~PT64_BASE_ADDR_MASK; 1836 new_spte |= (u64)new_pfn << PAGE_SHIFT; 1837 1838 new_spte &= ~PT_WRITABLE_MASK; 1839 new_spte &= ~SPTE_HOST_WRITEABLE; 1840 1841 new_spte = mark_spte_for_access_track(new_spte); 1842 1843 mmu_spte_clear_track_bits(sptep); 1844 mmu_spte_set(sptep, new_spte); 1845 } 1846 } 1847 1848 if (need_flush && kvm_available_flush_tlb_with_range()) { 1849 kvm_flush_remote_tlbs_with_address(kvm, gfn, 1); 1850 return 0; 1851 } 1852 1853 return need_flush; 1854 } 1855 1856 struct slot_rmap_walk_iterator { 1857 /* input fields. */ 1858 struct kvm_memory_slot *slot; 1859 gfn_t start_gfn; 1860 gfn_t end_gfn; 1861 int start_level; 1862 int end_level; 1863 1864 /* output fields. */ 1865 gfn_t gfn; 1866 struct kvm_rmap_head *rmap; 1867 int level; 1868 1869 /* private field. */ 1870 struct kvm_rmap_head *end_rmap; 1871 }; 1872 1873 static void 1874 rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level) 1875 { 1876 iterator->level = level; 1877 iterator->gfn = iterator->start_gfn; 1878 iterator->rmap = __gfn_to_rmap(iterator->gfn, level, iterator->slot); 1879 iterator->end_rmap = __gfn_to_rmap(iterator->end_gfn, level, 1880 iterator->slot); 1881 } 1882 1883 static void 1884 slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator, 1885 struct kvm_memory_slot *slot, int start_level, 1886 int end_level, gfn_t start_gfn, gfn_t end_gfn) 1887 { 1888 iterator->slot = slot; 1889 iterator->start_level = start_level; 1890 iterator->end_level = end_level; 1891 iterator->start_gfn = start_gfn; 1892 iterator->end_gfn = end_gfn; 1893 1894 rmap_walk_init_level(iterator, iterator->start_level); 1895 } 1896 1897 static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator) 1898 { 1899 return !!iterator->rmap; 1900 } 1901 1902 static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator) 1903 { 1904 if (++iterator->rmap <= iterator->end_rmap) { 1905 iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level)); 1906 return; 1907 } 1908 1909 if (++iterator->level > iterator->end_level) { 1910 iterator->rmap = NULL; 1911 return; 1912 } 1913 1914 rmap_walk_init_level(iterator, iterator->level); 1915 } 1916 1917 #define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_, \ 1918 _start_gfn, _end_gfn, _iter_) \ 1919 for (slot_rmap_walk_init(_iter_, _slot_, _start_level_, \ 1920 _end_level_, _start_gfn, _end_gfn); \ 1921 slot_rmap_walk_okay(_iter_); \ 1922 slot_rmap_walk_next(_iter_)) 1923 1924 static int kvm_handle_hva_range(struct kvm *kvm, 1925 unsigned long start, 1926 unsigned long end, 1927 unsigned long data, 1928 int (*handler)(struct kvm *kvm, 1929 struct kvm_rmap_head *rmap_head, 1930 struct kvm_memory_slot *slot, 1931 gfn_t gfn, 1932 int level, 1933 unsigned long data)) 1934 { 1935 struct kvm_memslots *slots; 1936 struct kvm_memory_slot *memslot; 1937 struct slot_rmap_walk_iterator iterator; 1938 int ret = 0; 1939 int i; 1940 1941 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { 1942 slots = __kvm_memslots(kvm, i); 1943 kvm_for_each_memslot(memslot, slots) { 1944 unsigned long hva_start, hva_end; 1945 gfn_t gfn_start, gfn_end; 1946 1947 hva_start = max(start, memslot->userspace_addr); 1948 hva_end = min(end, memslot->userspace_addr + 1949 (memslot->npages << PAGE_SHIFT)); 1950 if (hva_start >= hva_end) 1951 continue; 1952 /* 1953 * {gfn(page) | page intersects with [hva_start, hva_end)} = 1954 * {gfn_start, gfn_start+1, ..., gfn_end-1}. 1955 */ 1956 gfn_start = hva_to_gfn_memslot(hva_start, memslot); 1957 gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot); 1958 1959 for_each_slot_rmap_range(memslot, PT_PAGE_TABLE_LEVEL, 1960 PT_MAX_HUGEPAGE_LEVEL, 1961 gfn_start, gfn_end - 1, 1962 &iterator) 1963 ret |= handler(kvm, iterator.rmap, memslot, 1964 iterator.gfn, iterator.level, data); 1965 } 1966 } 1967 1968 return ret; 1969 } 1970 1971 static int kvm_handle_hva(struct kvm *kvm, unsigned long hva, 1972 unsigned long data, 1973 int (*handler)(struct kvm *kvm, 1974 struct kvm_rmap_head *rmap_head, 1975 struct kvm_memory_slot *slot, 1976 gfn_t gfn, int level, 1977 unsigned long data)) 1978 { 1979 return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler); 1980 } 1981 1982 int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end) 1983 { 1984 return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp); 1985 } 1986 1987 int kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte) 1988 { 1989 return kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp); 1990 } 1991 1992 static int kvm_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head, 1993 struct kvm_memory_slot *slot, gfn_t gfn, int level, 1994 unsigned long data) 1995 { 1996 u64 *sptep; 1997 struct rmap_iterator uninitialized_var(iter); 1998 int young = 0; 1999 2000 for_each_rmap_spte(rmap_head, &iter, sptep) 2001 young |= mmu_spte_age(sptep); 2002 2003 trace_kvm_age_page(gfn, level, slot, young); 2004 return young; 2005 } 2006 2007 static int kvm_test_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head, 2008 struct kvm_memory_slot *slot, gfn_t gfn, 2009 int level, unsigned long data) 2010 { 2011 u64 *sptep; 2012 struct rmap_iterator iter; 2013 2014 for_each_rmap_spte(rmap_head, &iter, sptep) 2015 if (is_accessed_spte(*sptep)) 2016 return 1; 2017 return 0; 2018 } 2019 2020 #define RMAP_RECYCLE_THRESHOLD 1000 2021 2022 static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn) 2023 { 2024 struct kvm_rmap_head *rmap_head; 2025 struct kvm_mmu_page *sp; 2026 2027 sp = page_header(__pa(spte)); 2028 2029 rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp); 2030 2031 kvm_unmap_rmapp(vcpu->kvm, rmap_head, NULL, gfn, sp->role.level, 0); 2032 kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn, 2033 KVM_PAGES_PER_HPAGE(sp->role.level)); 2034 } 2035 2036 int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end) 2037 { 2038 return kvm_handle_hva_range(kvm, start, end, 0, kvm_age_rmapp); 2039 } 2040 2041 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva) 2042 { 2043 return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp); 2044 } 2045 2046 #ifdef MMU_DEBUG 2047 static int is_empty_shadow_page(u64 *spt) 2048 { 2049 u64 *pos; 2050 u64 *end; 2051 2052 for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++) 2053 if (is_shadow_present_pte(*pos)) { 2054 printk(KERN_ERR "%s: %p %llx\n", __func__, 2055 pos, *pos); 2056 return 0; 2057 } 2058 return 1; 2059 } 2060 #endif 2061 2062 /* 2063 * This value is the sum of all of the kvm instances's 2064 * kvm->arch.n_used_mmu_pages values. We need a global, 2065 * aggregate version in order to make the slab shrinker 2066 * faster 2067 */ 2068 static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, unsigned long nr) 2069 { 2070 kvm->arch.n_used_mmu_pages += nr; 2071 percpu_counter_add(&kvm_total_used_mmu_pages, nr); 2072 } 2073 2074 static void kvm_mmu_free_page(struct kvm_mmu_page *sp) 2075 { 2076 MMU_WARN_ON(!is_empty_shadow_page(sp->spt)); 2077 hlist_del(&sp->hash_link); 2078 list_del(&sp->link); 2079 free_page((unsigned long)sp->spt); 2080 if (!sp->role.direct) 2081 free_page((unsigned long)sp->gfns); 2082 kmem_cache_free(mmu_page_header_cache, sp); 2083 } 2084 2085 static unsigned kvm_page_table_hashfn(gfn_t gfn) 2086 { 2087 return hash_64(gfn, KVM_MMU_HASH_SHIFT); 2088 } 2089 2090 static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu, 2091 struct kvm_mmu_page *sp, u64 *parent_pte) 2092 { 2093 if (!parent_pte) 2094 return; 2095 2096 pte_list_add(vcpu, parent_pte, &sp->parent_ptes); 2097 } 2098 2099 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp, 2100 u64 *parent_pte) 2101 { 2102 __pte_list_remove(parent_pte, &sp->parent_ptes); 2103 } 2104 2105 static void drop_parent_pte(struct kvm_mmu_page *sp, 2106 u64 *parent_pte) 2107 { 2108 mmu_page_remove_parent_pte(sp, parent_pte); 2109 mmu_spte_clear_no_track(parent_pte); 2110 } 2111 2112 static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu, int direct) 2113 { 2114 struct kvm_mmu_page *sp; 2115 2116 sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache); 2117 sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache); 2118 if (!direct) 2119 sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache); 2120 set_page_private(virt_to_page(sp->spt), (unsigned long)sp); 2121 2122 /* 2123 * active_mmu_pages must be a FIFO list, as kvm_zap_obsolete_pages() 2124 * depends on valid pages being added to the head of the list. See 2125 * comments in kvm_zap_obsolete_pages(). 2126 */ 2127 sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen; 2128 list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages); 2129 kvm_mod_used_mmu_pages(vcpu->kvm, +1); 2130 return sp; 2131 } 2132 2133 static void mark_unsync(u64 *spte); 2134 static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp) 2135 { 2136 u64 *sptep; 2137 struct rmap_iterator iter; 2138 2139 for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) { 2140 mark_unsync(sptep); 2141 } 2142 } 2143 2144 static void mark_unsync(u64 *spte) 2145 { 2146 struct kvm_mmu_page *sp; 2147 unsigned int index; 2148 2149 sp = page_header(__pa(spte)); 2150 index = spte - sp->spt; 2151 if (__test_and_set_bit(index, sp->unsync_child_bitmap)) 2152 return; 2153 if (sp->unsync_children++) 2154 return; 2155 kvm_mmu_mark_parents_unsync(sp); 2156 } 2157 2158 static int nonpaging_sync_page(struct kvm_vcpu *vcpu, 2159 struct kvm_mmu_page *sp) 2160 { 2161 return 0; 2162 } 2163 2164 static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva, hpa_t root) 2165 { 2166 } 2167 2168 static void nonpaging_update_pte(struct kvm_vcpu *vcpu, 2169 struct kvm_mmu_page *sp, u64 *spte, 2170 const void *pte) 2171 { 2172 WARN_ON(1); 2173 } 2174 2175 #define KVM_PAGE_ARRAY_NR 16 2176 2177 struct kvm_mmu_pages { 2178 struct mmu_page_and_offset { 2179 struct kvm_mmu_page *sp; 2180 unsigned int idx; 2181 } page[KVM_PAGE_ARRAY_NR]; 2182 unsigned int nr; 2183 }; 2184 2185 static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp, 2186 int idx) 2187 { 2188 int i; 2189 2190 if (sp->unsync) 2191 for (i=0; i < pvec->nr; i++) 2192 if (pvec->page[i].sp == sp) 2193 return 0; 2194 2195 pvec->page[pvec->nr].sp = sp; 2196 pvec->page[pvec->nr].idx = idx; 2197 pvec->nr++; 2198 return (pvec->nr == KVM_PAGE_ARRAY_NR); 2199 } 2200 2201 static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx) 2202 { 2203 --sp->unsync_children; 2204 WARN_ON((int)sp->unsync_children < 0); 2205 __clear_bit(idx, sp->unsync_child_bitmap); 2206 } 2207 2208 static int __mmu_unsync_walk(struct kvm_mmu_page *sp, 2209 struct kvm_mmu_pages *pvec) 2210 { 2211 int i, ret, nr_unsync_leaf = 0; 2212 2213 for_each_set_bit(i, sp->unsync_child_bitmap, 512) { 2214 struct kvm_mmu_page *child; 2215 u64 ent = sp->spt[i]; 2216 2217 if (!is_shadow_present_pte(ent) || is_large_pte(ent)) { 2218 clear_unsync_child_bit(sp, i); 2219 continue; 2220 } 2221 2222 child = page_header(ent & PT64_BASE_ADDR_MASK); 2223 2224 if (child->unsync_children) { 2225 if (mmu_pages_add(pvec, child, i)) 2226 return -ENOSPC; 2227 2228 ret = __mmu_unsync_walk(child, pvec); 2229 if (!ret) { 2230 clear_unsync_child_bit(sp, i); 2231 continue; 2232 } else if (ret > 0) { 2233 nr_unsync_leaf += ret; 2234 } else 2235 return ret; 2236 } else if (child->unsync) { 2237 nr_unsync_leaf++; 2238 if (mmu_pages_add(pvec, child, i)) 2239 return -ENOSPC; 2240 } else 2241 clear_unsync_child_bit(sp, i); 2242 } 2243 2244 return nr_unsync_leaf; 2245 } 2246 2247 #define INVALID_INDEX (-1) 2248 2249 static int mmu_unsync_walk(struct kvm_mmu_page *sp, 2250 struct kvm_mmu_pages *pvec) 2251 { 2252 pvec->nr = 0; 2253 if (!sp->unsync_children) 2254 return 0; 2255 2256 mmu_pages_add(pvec, sp, INVALID_INDEX); 2257 return __mmu_unsync_walk(sp, pvec); 2258 } 2259 2260 static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp) 2261 { 2262 WARN_ON(!sp->unsync); 2263 trace_kvm_mmu_sync_page(sp); 2264 sp->unsync = 0; 2265 --kvm->stat.mmu_unsync; 2266 } 2267 2268 static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp, 2269 struct list_head *invalid_list); 2270 static void kvm_mmu_commit_zap_page(struct kvm *kvm, 2271 struct list_head *invalid_list); 2272 2273 2274 #define for_each_valid_sp(_kvm, _sp, _gfn) \ 2275 hlist_for_each_entry(_sp, \ 2276 &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)], hash_link) \ 2277 if (is_obsolete_sp((_kvm), (_sp))) { \ 2278 } else 2279 2280 #define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn) \ 2281 for_each_valid_sp(_kvm, _sp, _gfn) \ 2282 if ((_sp)->gfn != (_gfn) || (_sp)->role.direct) {} else 2283 2284 static inline bool is_ept_sp(struct kvm_mmu_page *sp) 2285 { 2286 return sp->role.cr0_wp && sp->role.smap_andnot_wp; 2287 } 2288 2289 /* @sp->gfn should be write-protected at the call site */ 2290 static bool __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp, 2291 struct list_head *invalid_list) 2292 { 2293 if ((!is_ept_sp(sp) && sp->role.gpte_is_8_bytes != !!is_pae(vcpu)) || 2294 vcpu->arch.mmu->sync_page(vcpu, sp) == 0) { 2295 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list); 2296 return false; 2297 } 2298 2299 return true; 2300 } 2301 2302 static bool kvm_mmu_remote_flush_or_zap(struct kvm *kvm, 2303 struct list_head *invalid_list, 2304 bool remote_flush) 2305 { 2306 if (!remote_flush && list_empty(invalid_list)) 2307 return false; 2308 2309 if (!list_empty(invalid_list)) 2310 kvm_mmu_commit_zap_page(kvm, invalid_list); 2311 else 2312 kvm_flush_remote_tlbs(kvm); 2313 return true; 2314 } 2315 2316 static void kvm_mmu_flush_or_zap(struct kvm_vcpu *vcpu, 2317 struct list_head *invalid_list, 2318 bool remote_flush, bool local_flush) 2319 { 2320 if (kvm_mmu_remote_flush_or_zap(vcpu->kvm, invalid_list, remote_flush)) 2321 return; 2322 2323 if (local_flush) 2324 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu); 2325 } 2326 2327 #ifdef CONFIG_KVM_MMU_AUDIT 2328 #include "mmu_audit.c" 2329 #else 2330 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { } 2331 static void mmu_audit_disable(void) { } 2332 #endif 2333 2334 static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp) 2335 { 2336 return sp->role.invalid || 2337 unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen); 2338 } 2339 2340 static bool kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp, 2341 struct list_head *invalid_list) 2342 { 2343 kvm_unlink_unsync_page(vcpu->kvm, sp); 2344 return __kvm_sync_page(vcpu, sp, invalid_list); 2345 } 2346 2347 /* @gfn should be write-protected at the call site */ 2348 static bool kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn, 2349 struct list_head *invalid_list) 2350 { 2351 struct kvm_mmu_page *s; 2352 bool ret = false; 2353 2354 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) { 2355 if (!s->unsync) 2356 continue; 2357 2358 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL); 2359 ret |= kvm_sync_page(vcpu, s, invalid_list); 2360 } 2361 2362 return ret; 2363 } 2364 2365 struct mmu_page_path { 2366 struct kvm_mmu_page *parent[PT64_ROOT_MAX_LEVEL]; 2367 unsigned int idx[PT64_ROOT_MAX_LEVEL]; 2368 }; 2369 2370 #define for_each_sp(pvec, sp, parents, i) \ 2371 for (i = mmu_pages_first(&pvec, &parents); \ 2372 i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \ 2373 i = mmu_pages_next(&pvec, &parents, i)) 2374 2375 static int mmu_pages_next(struct kvm_mmu_pages *pvec, 2376 struct mmu_page_path *parents, 2377 int i) 2378 { 2379 int n; 2380 2381 for (n = i+1; n < pvec->nr; n++) { 2382 struct kvm_mmu_page *sp = pvec->page[n].sp; 2383 unsigned idx = pvec->page[n].idx; 2384 int level = sp->role.level; 2385 2386 parents->idx[level-1] = idx; 2387 if (level == PT_PAGE_TABLE_LEVEL) 2388 break; 2389 2390 parents->parent[level-2] = sp; 2391 } 2392 2393 return n; 2394 } 2395 2396 static int mmu_pages_first(struct kvm_mmu_pages *pvec, 2397 struct mmu_page_path *parents) 2398 { 2399 struct kvm_mmu_page *sp; 2400 int level; 2401 2402 if (pvec->nr == 0) 2403 return 0; 2404 2405 WARN_ON(pvec->page[0].idx != INVALID_INDEX); 2406 2407 sp = pvec->page[0].sp; 2408 level = sp->role.level; 2409 WARN_ON(level == PT_PAGE_TABLE_LEVEL); 2410 2411 parents->parent[level-2] = sp; 2412 2413 /* Also set up a sentinel. Further entries in pvec are all 2414 * children of sp, so this element is never overwritten. 2415 */ 2416 parents->parent[level-1] = NULL; 2417 return mmu_pages_next(pvec, parents, 0); 2418 } 2419 2420 static void mmu_pages_clear_parents(struct mmu_page_path *parents) 2421 { 2422 struct kvm_mmu_page *sp; 2423 unsigned int level = 0; 2424 2425 do { 2426 unsigned int idx = parents->idx[level]; 2427 sp = parents->parent[level]; 2428 if (!sp) 2429 return; 2430 2431 WARN_ON(idx == INVALID_INDEX); 2432 clear_unsync_child_bit(sp, idx); 2433 level++; 2434 } while (!sp->unsync_children); 2435 } 2436 2437 static void mmu_sync_children(struct kvm_vcpu *vcpu, 2438 struct kvm_mmu_page *parent) 2439 { 2440 int i; 2441 struct kvm_mmu_page *sp; 2442 struct mmu_page_path parents; 2443 struct kvm_mmu_pages pages; 2444 LIST_HEAD(invalid_list); 2445 bool flush = false; 2446 2447 while (mmu_unsync_walk(parent, &pages)) { 2448 bool protected = false; 2449 2450 for_each_sp(pages, sp, parents, i) 2451 protected |= rmap_write_protect(vcpu, sp->gfn); 2452 2453 if (protected) { 2454 kvm_flush_remote_tlbs(vcpu->kvm); 2455 flush = false; 2456 } 2457 2458 for_each_sp(pages, sp, parents, i) { 2459 flush |= kvm_sync_page(vcpu, sp, &invalid_list); 2460 mmu_pages_clear_parents(&parents); 2461 } 2462 if (need_resched() || spin_needbreak(&vcpu->kvm->mmu_lock)) { 2463 kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush); 2464 cond_resched_lock(&vcpu->kvm->mmu_lock); 2465 flush = false; 2466 } 2467 } 2468 2469 kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush); 2470 } 2471 2472 static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp) 2473 { 2474 atomic_set(&sp->write_flooding_count, 0); 2475 } 2476 2477 static void clear_sp_write_flooding_count(u64 *spte) 2478 { 2479 struct kvm_mmu_page *sp = page_header(__pa(spte)); 2480 2481 __clear_sp_write_flooding_count(sp); 2482 } 2483 2484 static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu, 2485 gfn_t gfn, 2486 gva_t gaddr, 2487 unsigned level, 2488 int direct, 2489 unsigned int access) 2490 { 2491 union kvm_mmu_page_role role; 2492 unsigned quadrant; 2493 struct kvm_mmu_page *sp; 2494 bool need_sync = false; 2495 bool flush = false; 2496 int collisions = 0; 2497 LIST_HEAD(invalid_list); 2498 2499 role = vcpu->arch.mmu->mmu_role.base; 2500 role.level = level; 2501 role.direct = direct; 2502 if (role.direct) 2503 role.gpte_is_8_bytes = true; 2504 role.access = access; 2505 if (!vcpu->arch.mmu->direct_map 2506 && vcpu->arch.mmu->root_level <= PT32_ROOT_LEVEL) { 2507 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level)); 2508 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1; 2509 role.quadrant = quadrant; 2510 } 2511 for_each_valid_sp(vcpu->kvm, sp, gfn) { 2512 if (sp->gfn != gfn) { 2513 collisions++; 2514 continue; 2515 } 2516 2517 if (!need_sync && sp->unsync) 2518 need_sync = true; 2519 2520 if (sp->role.word != role.word) 2521 continue; 2522 2523 if (sp->unsync) { 2524 /* The page is good, but __kvm_sync_page might still end 2525 * up zapping it. If so, break in order to rebuild it. 2526 */ 2527 if (!__kvm_sync_page(vcpu, sp, &invalid_list)) 2528 break; 2529 2530 WARN_ON(!list_empty(&invalid_list)); 2531 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu); 2532 } 2533 2534 if (sp->unsync_children) 2535 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu); 2536 2537 __clear_sp_write_flooding_count(sp); 2538 trace_kvm_mmu_get_page(sp, false); 2539 goto out; 2540 } 2541 2542 ++vcpu->kvm->stat.mmu_cache_miss; 2543 2544 sp = kvm_mmu_alloc_page(vcpu, direct); 2545 2546 sp->gfn = gfn; 2547 sp->role = role; 2548 hlist_add_head(&sp->hash_link, 2549 &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]); 2550 if (!direct) { 2551 /* 2552 * we should do write protection before syncing pages 2553 * otherwise the content of the synced shadow page may 2554 * be inconsistent with guest page table. 2555 */ 2556 account_shadowed(vcpu->kvm, sp); 2557 if (level == PT_PAGE_TABLE_LEVEL && 2558 rmap_write_protect(vcpu, gfn)) 2559 kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn, 1); 2560 2561 if (level > PT_PAGE_TABLE_LEVEL && need_sync) 2562 flush |= kvm_sync_pages(vcpu, gfn, &invalid_list); 2563 } 2564 clear_page(sp->spt); 2565 trace_kvm_mmu_get_page(sp, true); 2566 2567 kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush); 2568 out: 2569 if (collisions > vcpu->kvm->stat.max_mmu_page_hash_collisions) 2570 vcpu->kvm->stat.max_mmu_page_hash_collisions = collisions; 2571 return sp; 2572 } 2573 2574 static void shadow_walk_init_using_root(struct kvm_shadow_walk_iterator *iterator, 2575 struct kvm_vcpu *vcpu, hpa_t root, 2576 u64 addr) 2577 { 2578 iterator->addr = addr; 2579 iterator->shadow_addr = root; 2580 iterator->level = vcpu->arch.mmu->shadow_root_level; 2581 2582 if (iterator->level == PT64_ROOT_4LEVEL && 2583 vcpu->arch.mmu->root_level < PT64_ROOT_4LEVEL && 2584 !vcpu->arch.mmu->direct_map) 2585 --iterator->level; 2586 2587 if (iterator->level == PT32E_ROOT_LEVEL) { 2588 /* 2589 * prev_root is currently only used for 64-bit hosts. So only 2590 * the active root_hpa is valid here. 2591 */ 2592 BUG_ON(root != vcpu->arch.mmu->root_hpa); 2593 2594 iterator->shadow_addr 2595 = vcpu->arch.mmu->pae_root[(addr >> 30) & 3]; 2596 iterator->shadow_addr &= PT64_BASE_ADDR_MASK; 2597 --iterator->level; 2598 if (!iterator->shadow_addr) 2599 iterator->level = 0; 2600 } 2601 } 2602 2603 static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator, 2604 struct kvm_vcpu *vcpu, u64 addr) 2605 { 2606 shadow_walk_init_using_root(iterator, vcpu, vcpu->arch.mmu->root_hpa, 2607 addr); 2608 } 2609 2610 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator) 2611 { 2612 if (iterator->level < PT_PAGE_TABLE_LEVEL) 2613 return false; 2614 2615 iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level); 2616 iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index; 2617 return true; 2618 } 2619 2620 static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator, 2621 u64 spte) 2622 { 2623 if (is_last_spte(spte, iterator->level)) { 2624 iterator->level = 0; 2625 return; 2626 } 2627 2628 iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK; 2629 --iterator->level; 2630 } 2631 2632 static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator) 2633 { 2634 __shadow_walk_next(iterator, *iterator->sptep); 2635 } 2636 2637 static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep, 2638 struct kvm_mmu_page *sp) 2639 { 2640 u64 spte; 2641 2642 BUILD_BUG_ON(VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK); 2643 2644 spte = __pa(sp->spt) | shadow_present_mask | PT_WRITABLE_MASK | 2645 shadow_user_mask | shadow_x_mask | shadow_me_mask; 2646 2647 if (sp_ad_disabled(sp)) 2648 spte |= SPTE_AD_DISABLED_MASK; 2649 else 2650 spte |= shadow_accessed_mask; 2651 2652 mmu_spte_set(sptep, spte); 2653 2654 mmu_page_add_parent_pte(vcpu, sp, sptep); 2655 2656 if (sp->unsync_children || sp->unsync) 2657 mark_unsync(sptep); 2658 } 2659 2660 static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep, 2661 unsigned direct_access) 2662 { 2663 if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) { 2664 struct kvm_mmu_page *child; 2665 2666 /* 2667 * For the direct sp, if the guest pte's dirty bit 2668 * changed form clean to dirty, it will corrupt the 2669 * sp's access: allow writable in the read-only sp, 2670 * so we should update the spte at this point to get 2671 * a new sp with the correct access. 2672 */ 2673 child = page_header(*sptep & PT64_BASE_ADDR_MASK); 2674 if (child->role.access == direct_access) 2675 return; 2676 2677 drop_parent_pte(child, sptep); 2678 kvm_flush_remote_tlbs_with_address(vcpu->kvm, child->gfn, 1); 2679 } 2680 } 2681 2682 static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp, 2683 u64 *spte) 2684 { 2685 u64 pte; 2686 struct kvm_mmu_page *child; 2687 2688 pte = *spte; 2689 if (is_shadow_present_pte(pte)) { 2690 if (is_last_spte(pte, sp->role.level)) { 2691 drop_spte(kvm, spte); 2692 if (is_large_pte(pte)) 2693 --kvm->stat.lpages; 2694 } else { 2695 child = page_header(pte & PT64_BASE_ADDR_MASK); 2696 drop_parent_pte(child, spte); 2697 } 2698 return true; 2699 } 2700 2701 if (is_mmio_spte(pte)) 2702 mmu_spte_clear_no_track(spte); 2703 2704 return false; 2705 } 2706 2707 static void kvm_mmu_page_unlink_children(struct kvm *kvm, 2708 struct kvm_mmu_page *sp) 2709 { 2710 unsigned i; 2711 2712 for (i = 0; i < PT64_ENT_PER_PAGE; ++i) 2713 mmu_page_zap_pte(kvm, sp, sp->spt + i); 2714 } 2715 2716 static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp) 2717 { 2718 u64 *sptep; 2719 struct rmap_iterator iter; 2720 2721 while ((sptep = rmap_get_first(&sp->parent_ptes, &iter))) 2722 drop_parent_pte(sp, sptep); 2723 } 2724 2725 static int mmu_zap_unsync_children(struct kvm *kvm, 2726 struct kvm_mmu_page *parent, 2727 struct list_head *invalid_list) 2728 { 2729 int i, zapped = 0; 2730 struct mmu_page_path parents; 2731 struct kvm_mmu_pages pages; 2732 2733 if (parent->role.level == PT_PAGE_TABLE_LEVEL) 2734 return 0; 2735 2736 while (mmu_unsync_walk(parent, &pages)) { 2737 struct kvm_mmu_page *sp; 2738 2739 for_each_sp(pages, sp, parents, i) { 2740 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list); 2741 mmu_pages_clear_parents(&parents); 2742 zapped++; 2743 } 2744 } 2745 2746 return zapped; 2747 } 2748 2749 static bool __kvm_mmu_prepare_zap_page(struct kvm *kvm, 2750 struct kvm_mmu_page *sp, 2751 struct list_head *invalid_list, 2752 int *nr_zapped) 2753 { 2754 bool list_unstable; 2755 2756 trace_kvm_mmu_prepare_zap_page(sp); 2757 ++kvm->stat.mmu_shadow_zapped; 2758 *nr_zapped = mmu_zap_unsync_children(kvm, sp, invalid_list); 2759 kvm_mmu_page_unlink_children(kvm, sp); 2760 kvm_mmu_unlink_parents(kvm, sp); 2761 2762 /* Zapping children means active_mmu_pages has become unstable. */ 2763 list_unstable = *nr_zapped; 2764 2765 if (!sp->role.invalid && !sp->role.direct) 2766 unaccount_shadowed(kvm, sp); 2767 2768 if (sp->unsync) 2769 kvm_unlink_unsync_page(kvm, sp); 2770 if (!sp->root_count) { 2771 /* Count self */ 2772 (*nr_zapped)++; 2773 list_move(&sp->link, invalid_list); 2774 kvm_mod_used_mmu_pages(kvm, -1); 2775 } else { 2776 list_move(&sp->link, &kvm->arch.active_mmu_pages); 2777 2778 /* 2779 * Obsolete pages cannot be used on any vCPUs, see the comment 2780 * in kvm_mmu_zap_all_fast(). Note, is_obsolete_sp() also 2781 * treats invalid shadow pages as being obsolete. 2782 */ 2783 if (!is_obsolete_sp(kvm, sp)) 2784 kvm_reload_remote_mmus(kvm); 2785 } 2786 2787 if (sp->lpage_disallowed) 2788 unaccount_huge_nx_page(kvm, sp); 2789 2790 sp->role.invalid = 1; 2791 return list_unstable; 2792 } 2793 2794 static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp, 2795 struct list_head *invalid_list) 2796 { 2797 int nr_zapped; 2798 2799 __kvm_mmu_prepare_zap_page(kvm, sp, invalid_list, &nr_zapped); 2800 return nr_zapped; 2801 } 2802 2803 static void kvm_mmu_commit_zap_page(struct kvm *kvm, 2804 struct list_head *invalid_list) 2805 { 2806 struct kvm_mmu_page *sp, *nsp; 2807 2808 if (list_empty(invalid_list)) 2809 return; 2810 2811 /* 2812 * We need to make sure everyone sees our modifications to 2813 * the page tables and see changes to vcpu->mode here. The barrier 2814 * in the kvm_flush_remote_tlbs() achieves this. This pairs 2815 * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end. 2816 * 2817 * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit 2818 * guest mode and/or lockless shadow page table walks. 2819 */ 2820 kvm_flush_remote_tlbs(kvm); 2821 2822 list_for_each_entry_safe(sp, nsp, invalid_list, link) { 2823 WARN_ON(!sp->role.invalid || sp->root_count); 2824 kvm_mmu_free_page(sp); 2825 } 2826 } 2827 2828 static bool prepare_zap_oldest_mmu_page(struct kvm *kvm, 2829 struct list_head *invalid_list) 2830 { 2831 struct kvm_mmu_page *sp; 2832 2833 if (list_empty(&kvm->arch.active_mmu_pages)) 2834 return false; 2835 2836 sp = list_last_entry(&kvm->arch.active_mmu_pages, 2837 struct kvm_mmu_page, link); 2838 return kvm_mmu_prepare_zap_page(kvm, sp, invalid_list); 2839 } 2840 2841 static int make_mmu_pages_available(struct kvm_vcpu *vcpu) 2842 { 2843 LIST_HEAD(invalid_list); 2844 2845 if (likely(kvm_mmu_available_pages(vcpu->kvm) >= KVM_MIN_FREE_MMU_PAGES)) 2846 return 0; 2847 2848 while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES) { 2849 if (!prepare_zap_oldest_mmu_page(vcpu->kvm, &invalid_list)) 2850 break; 2851 2852 ++vcpu->kvm->stat.mmu_recycled; 2853 } 2854 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list); 2855 2856 if (!kvm_mmu_available_pages(vcpu->kvm)) 2857 return -ENOSPC; 2858 return 0; 2859 } 2860 2861 /* 2862 * Changing the number of mmu pages allocated to the vm 2863 * Note: if goal_nr_mmu_pages is too small, you will get dead lock 2864 */ 2865 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long goal_nr_mmu_pages) 2866 { 2867 LIST_HEAD(invalid_list); 2868 2869 spin_lock(&kvm->mmu_lock); 2870 2871 if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) { 2872 /* Need to free some mmu pages to achieve the goal. */ 2873 while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) 2874 if (!prepare_zap_oldest_mmu_page(kvm, &invalid_list)) 2875 break; 2876 2877 kvm_mmu_commit_zap_page(kvm, &invalid_list); 2878 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages; 2879 } 2880 2881 kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages; 2882 2883 spin_unlock(&kvm->mmu_lock); 2884 } 2885 2886 int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn) 2887 { 2888 struct kvm_mmu_page *sp; 2889 LIST_HEAD(invalid_list); 2890 int r; 2891 2892 pgprintk("%s: looking for gfn %llx\n", __func__, gfn); 2893 r = 0; 2894 spin_lock(&kvm->mmu_lock); 2895 for_each_gfn_indirect_valid_sp(kvm, sp, gfn) { 2896 pgprintk("%s: gfn %llx role %x\n", __func__, gfn, 2897 sp->role.word); 2898 r = 1; 2899 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list); 2900 } 2901 kvm_mmu_commit_zap_page(kvm, &invalid_list); 2902 spin_unlock(&kvm->mmu_lock); 2903 2904 return r; 2905 } 2906 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page); 2907 2908 static void kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp) 2909 { 2910 trace_kvm_mmu_unsync_page(sp); 2911 ++vcpu->kvm->stat.mmu_unsync; 2912 sp->unsync = 1; 2913 2914 kvm_mmu_mark_parents_unsync(sp); 2915 } 2916 2917 static bool mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn, 2918 bool can_unsync) 2919 { 2920 struct kvm_mmu_page *sp; 2921 2922 if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE)) 2923 return true; 2924 2925 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) { 2926 if (!can_unsync) 2927 return true; 2928 2929 if (sp->unsync) 2930 continue; 2931 2932 WARN_ON(sp->role.level != PT_PAGE_TABLE_LEVEL); 2933 kvm_unsync_page(vcpu, sp); 2934 } 2935 2936 /* 2937 * We need to ensure that the marking of unsync pages is visible 2938 * before the SPTE is updated to allow writes because 2939 * kvm_mmu_sync_roots() checks the unsync flags without holding 2940 * the MMU lock and so can race with this. If the SPTE was updated 2941 * before the page had been marked as unsync-ed, something like the 2942 * following could happen: 2943 * 2944 * CPU 1 CPU 2 2945 * --------------------------------------------------------------------- 2946 * 1.2 Host updates SPTE 2947 * to be writable 2948 * 2.1 Guest writes a GPTE for GVA X. 2949 * (GPTE being in the guest page table shadowed 2950 * by the SP from CPU 1.) 2951 * This reads SPTE during the page table walk. 2952 * Since SPTE.W is read as 1, there is no 2953 * fault. 2954 * 2955 * 2.2 Guest issues TLB flush. 2956 * That causes a VM Exit. 2957 * 2958 * 2.3 kvm_mmu_sync_pages() reads sp->unsync. 2959 * Since it is false, so it just returns. 2960 * 2961 * 2.4 Guest accesses GVA X. 2962 * Since the mapping in the SP was not updated, 2963 * so the old mapping for GVA X incorrectly 2964 * gets used. 2965 * 1.1 Host marks SP 2966 * as unsync 2967 * (sp->unsync = true) 2968 * 2969 * The write barrier below ensures that 1.1 happens before 1.2 and thus 2970 * the situation in 2.4 does not arise. The implicit barrier in 2.2 2971 * pairs with this write barrier. 2972 */ 2973 smp_wmb(); 2974 2975 return false; 2976 } 2977 2978 static bool kvm_is_mmio_pfn(kvm_pfn_t pfn) 2979 { 2980 if (pfn_valid(pfn)) 2981 return !is_zero_pfn(pfn) && PageReserved(pfn_to_page(pfn)) && 2982 /* 2983 * Some reserved pages, such as those from NVDIMM 2984 * DAX devices, are not for MMIO, and can be mapped 2985 * with cached memory type for better performance. 2986 * However, the above check misconceives those pages 2987 * as MMIO, and results in KVM mapping them with UC 2988 * memory type, which would hurt the performance. 2989 * Therefore, we check the host memory type in addition 2990 * and only treat UC/UC-/WC pages as MMIO. 2991 */ 2992 (!pat_enabled() || pat_pfn_immune_to_uc_mtrr(pfn)); 2993 2994 return !e820__mapped_raw_any(pfn_to_hpa(pfn), 2995 pfn_to_hpa(pfn + 1) - 1, 2996 E820_TYPE_RAM); 2997 } 2998 2999 /* Bits which may be returned by set_spte() */ 3000 #define SET_SPTE_WRITE_PROTECTED_PT BIT(0) 3001 #define SET_SPTE_NEED_REMOTE_TLB_FLUSH BIT(1) 3002 3003 static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep, 3004 unsigned int pte_access, int level, 3005 gfn_t gfn, kvm_pfn_t pfn, bool speculative, 3006 bool can_unsync, bool host_writable) 3007 { 3008 u64 spte = 0; 3009 int ret = 0; 3010 struct kvm_mmu_page *sp; 3011 3012 if (set_mmio_spte(vcpu, sptep, gfn, pfn, pte_access)) 3013 return 0; 3014 3015 sp = page_header(__pa(sptep)); 3016 if (sp_ad_disabled(sp)) 3017 spte |= SPTE_AD_DISABLED_MASK; 3018 else if (kvm_vcpu_ad_need_write_protect(vcpu)) 3019 spte |= SPTE_AD_WRPROT_ONLY_MASK; 3020 3021 /* 3022 * For the EPT case, shadow_present_mask is 0 if hardware 3023 * supports exec-only page table entries. In that case, 3024 * ACC_USER_MASK and shadow_user_mask are used to represent 3025 * read access. See FNAME(gpte_access) in paging_tmpl.h. 3026 */ 3027 spte |= shadow_present_mask; 3028 if (!speculative) 3029 spte |= spte_shadow_accessed_mask(spte); 3030 3031 if (level > PT_PAGE_TABLE_LEVEL && (pte_access & ACC_EXEC_MASK) && 3032 is_nx_huge_page_enabled()) { 3033 pte_access &= ~ACC_EXEC_MASK; 3034 } 3035 3036 if (pte_access & ACC_EXEC_MASK) 3037 spte |= shadow_x_mask; 3038 else 3039 spte |= shadow_nx_mask; 3040 3041 if (pte_access & ACC_USER_MASK) 3042 spte |= shadow_user_mask; 3043 3044 if (level > PT_PAGE_TABLE_LEVEL) 3045 spte |= PT_PAGE_SIZE_MASK; 3046 if (tdp_enabled) 3047 spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn, 3048 kvm_is_mmio_pfn(pfn)); 3049 3050 if (host_writable) 3051 spte |= SPTE_HOST_WRITEABLE; 3052 else 3053 pte_access &= ~ACC_WRITE_MASK; 3054 3055 if (!kvm_is_mmio_pfn(pfn)) 3056 spte |= shadow_me_mask; 3057 3058 spte |= (u64)pfn << PAGE_SHIFT; 3059 3060 if (pte_access & ACC_WRITE_MASK) { 3061 spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE; 3062 3063 /* 3064 * Optimization: for pte sync, if spte was writable the hash 3065 * lookup is unnecessary (and expensive). Write protection 3066 * is responsibility of mmu_get_page / kvm_sync_page. 3067 * Same reasoning can be applied to dirty page accounting. 3068 */ 3069 if (!can_unsync && is_writable_pte(*sptep)) 3070 goto set_pte; 3071 3072 if (mmu_need_write_protect(vcpu, gfn, can_unsync)) { 3073 pgprintk("%s: found shadow page for %llx, marking ro\n", 3074 __func__, gfn); 3075 ret |= SET_SPTE_WRITE_PROTECTED_PT; 3076 pte_access &= ~ACC_WRITE_MASK; 3077 spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE); 3078 } 3079 } 3080 3081 if (pte_access & ACC_WRITE_MASK) { 3082 kvm_vcpu_mark_page_dirty(vcpu, gfn); 3083 spte |= spte_shadow_dirty_mask(spte); 3084 } 3085 3086 if (speculative) 3087 spte = mark_spte_for_access_track(spte); 3088 3089 set_pte: 3090 if (mmu_spte_update(sptep, spte)) 3091 ret |= SET_SPTE_NEED_REMOTE_TLB_FLUSH; 3092 return ret; 3093 } 3094 3095 static int mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep, 3096 unsigned int pte_access, int write_fault, int level, 3097 gfn_t gfn, kvm_pfn_t pfn, bool speculative, 3098 bool host_writable) 3099 { 3100 int was_rmapped = 0; 3101 int rmap_count; 3102 int set_spte_ret; 3103 int ret = RET_PF_RETRY; 3104 bool flush = false; 3105 3106 pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__, 3107 *sptep, write_fault, gfn); 3108 3109 if (is_shadow_present_pte(*sptep)) { 3110 /* 3111 * If we overwrite a PTE page pointer with a 2MB PMD, unlink 3112 * the parent of the now unreachable PTE. 3113 */ 3114 if (level > PT_PAGE_TABLE_LEVEL && 3115 !is_large_pte(*sptep)) { 3116 struct kvm_mmu_page *child; 3117 u64 pte = *sptep; 3118 3119 child = page_header(pte & PT64_BASE_ADDR_MASK); 3120 drop_parent_pte(child, sptep); 3121 flush = true; 3122 } else if (pfn != spte_to_pfn(*sptep)) { 3123 pgprintk("hfn old %llx new %llx\n", 3124 spte_to_pfn(*sptep), pfn); 3125 drop_spte(vcpu->kvm, sptep); 3126 flush = true; 3127 } else 3128 was_rmapped = 1; 3129 } 3130 3131 set_spte_ret = set_spte(vcpu, sptep, pte_access, level, gfn, pfn, 3132 speculative, true, host_writable); 3133 if (set_spte_ret & SET_SPTE_WRITE_PROTECTED_PT) { 3134 if (write_fault) 3135 ret = RET_PF_EMULATE; 3136 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu); 3137 } 3138 3139 if (set_spte_ret & SET_SPTE_NEED_REMOTE_TLB_FLUSH || flush) 3140 kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn, 3141 KVM_PAGES_PER_HPAGE(level)); 3142 3143 if (unlikely(is_mmio_spte(*sptep))) 3144 ret = RET_PF_EMULATE; 3145 3146 pgprintk("%s: setting spte %llx\n", __func__, *sptep); 3147 trace_kvm_mmu_set_spte(level, gfn, sptep); 3148 if (!was_rmapped && is_large_pte(*sptep)) 3149 ++vcpu->kvm->stat.lpages; 3150 3151 if (is_shadow_present_pte(*sptep)) { 3152 if (!was_rmapped) { 3153 rmap_count = rmap_add(vcpu, sptep, gfn); 3154 if (rmap_count > RMAP_RECYCLE_THRESHOLD) 3155 rmap_recycle(vcpu, sptep, gfn); 3156 } 3157 } 3158 3159 return ret; 3160 } 3161 3162 static kvm_pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn, 3163 bool no_dirty_log) 3164 { 3165 struct kvm_memory_slot *slot; 3166 3167 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log); 3168 if (!slot) 3169 return KVM_PFN_ERR_FAULT; 3170 3171 return gfn_to_pfn_memslot_atomic(slot, gfn); 3172 } 3173 3174 static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu, 3175 struct kvm_mmu_page *sp, 3176 u64 *start, u64 *end) 3177 { 3178 struct page *pages[PTE_PREFETCH_NUM]; 3179 struct kvm_memory_slot *slot; 3180 unsigned int access = sp->role.access; 3181 int i, ret; 3182 gfn_t gfn; 3183 3184 gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt); 3185 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK); 3186 if (!slot) 3187 return -1; 3188 3189 ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start); 3190 if (ret <= 0) 3191 return -1; 3192 3193 for (i = 0; i < ret; i++, gfn++, start++) { 3194 mmu_set_spte(vcpu, start, access, 0, sp->role.level, gfn, 3195 page_to_pfn(pages[i]), true, true); 3196 put_page(pages[i]); 3197 } 3198 3199 return 0; 3200 } 3201 3202 static void __direct_pte_prefetch(struct kvm_vcpu *vcpu, 3203 struct kvm_mmu_page *sp, u64 *sptep) 3204 { 3205 u64 *spte, *start = NULL; 3206 int i; 3207 3208 WARN_ON(!sp->role.direct); 3209 3210 i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1); 3211 spte = sp->spt + i; 3212 3213 for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) { 3214 if (is_shadow_present_pte(*spte) || spte == sptep) { 3215 if (!start) 3216 continue; 3217 if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0) 3218 break; 3219 start = NULL; 3220 } else if (!start) 3221 start = spte; 3222 } 3223 } 3224 3225 static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep) 3226 { 3227 struct kvm_mmu_page *sp; 3228 3229 sp = page_header(__pa(sptep)); 3230 3231 /* 3232 * Without accessed bits, there's no way to distinguish between 3233 * actually accessed translations and prefetched, so disable pte 3234 * prefetch if accessed bits aren't available. 3235 */ 3236 if (sp_ad_disabled(sp)) 3237 return; 3238 3239 if (sp->role.level > PT_PAGE_TABLE_LEVEL) 3240 return; 3241 3242 __direct_pte_prefetch(vcpu, sp, sptep); 3243 } 3244 3245 static int host_pfn_mapping_level(struct kvm_vcpu *vcpu, gfn_t gfn, 3246 kvm_pfn_t pfn, struct kvm_memory_slot *slot) 3247 { 3248 unsigned long hva; 3249 pte_t *pte; 3250 int level; 3251 3252 BUILD_BUG_ON(PT_PAGE_TABLE_LEVEL != (int)PG_LEVEL_4K || 3253 PT_DIRECTORY_LEVEL != (int)PG_LEVEL_2M || 3254 PT_PDPE_LEVEL != (int)PG_LEVEL_1G); 3255 3256 if (!PageCompound(pfn_to_page(pfn)) && !kvm_is_zone_device_pfn(pfn)) 3257 return PT_PAGE_TABLE_LEVEL; 3258 3259 /* 3260 * Note, using the already-retrieved memslot and __gfn_to_hva_memslot() 3261 * is not solely for performance, it's also necessary to avoid the 3262 * "writable" check in __gfn_to_hva_many(), which will always fail on 3263 * read-only memslots due to gfn_to_hva() assuming writes. Earlier 3264 * page fault steps have already verified the guest isn't writing a 3265 * read-only memslot. 3266 */ 3267 hva = __gfn_to_hva_memslot(slot, gfn); 3268 3269 pte = lookup_address_in_mm(vcpu->kvm->mm, hva, &level); 3270 if (unlikely(!pte)) 3271 return PT_PAGE_TABLE_LEVEL; 3272 3273 return level; 3274 } 3275 3276 static int kvm_mmu_hugepage_adjust(struct kvm_vcpu *vcpu, gfn_t gfn, 3277 int max_level, kvm_pfn_t *pfnp) 3278 { 3279 struct kvm_memory_slot *slot; 3280 struct kvm_lpage_info *linfo; 3281 kvm_pfn_t pfn = *pfnp; 3282 kvm_pfn_t mask; 3283 int level; 3284 3285 if (unlikely(max_level == PT_PAGE_TABLE_LEVEL)) 3286 return PT_PAGE_TABLE_LEVEL; 3287 3288 if (is_error_noslot_pfn(pfn) || kvm_is_reserved_pfn(pfn)) 3289 return PT_PAGE_TABLE_LEVEL; 3290 3291 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, true); 3292 if (!slot) 3293 return PT_PAGE_TABLE_LEVEL; 3294 3295 max_level = min(max_level, kvm_x86_ops->get_lpage_level()); 3296 for ( ; max_level > PT_PAGE_TABLE_LEVEL; max_level--) { 3297 linfo = lpage_info_slot(gfn, slot, max_level); 3298 if (!linfo->disallow_lpage) 3299 break; 3300 } 3301 3302 if (max_level == PT_PAGE_TABLE_LEVEL) 3303 return PT_PAGE_TABLE_LEVEL; 3304 3305 level = host_pfn_mapping_level(vcpu, gfn, pfn, slot); 3306 if (level == PT_PAGE_TABLE_LEVEL) 3307 return level; 3308 3309 level = min(level, max_level); 3310 3311 /* 3312 * mmu_notifier_retry() was successful and mmu_lock is held, so 3313 * the pmd can't be split from under us. 3314 */ 3315 mask = KVM_PAGES_PER_HPAGE(level) - 1; 3316 VM_BUG_ON((gfn & mask) != (pfn & mask)); 3317 *pfnp = pfn & ~mask; 3318 3319 return level; 3320 } 3321 3322 static void disallowed_hugepage_adjust(struct kvm_shadow_walk_iterator it, 3323 gfn_t gfn, kvm_pfn_t *pfnp, int *levelp) 3324 { 3325 int level = *levelp; 3326 u64 spte = *it.sptep; 3327 3328 if (it.level == level && level > PT_PAGE_TABLE_LEVEL && 3329 is_nx_huge_page_enabled() && 3330 is_shadow_present_pte(spte) && 3331 !is_large_pte(spte)) { 3332 /* 3333 * A small SPTE exists for this pfn, but FNAME(fetch) 3334 * and __direct_map would like to create a large PTE 3335 * instead: just force them to go down another level, 3336 * patching back for them into pfn the next 9 bits of 3337 * the address. 3338 */ 3339 u64 page_mask = KVM_PAGES_PER_HPAGE(level) - KVM_PAGES_PER_HPAGE(level - 1); 3340 *pfnp |= gfn & page_mask; 3341 (*levelp)--; 3342 } 3343 } 3344 3345 static int __direct_map(struct kvm_vcpu *vcpu, gpa_t gpa, int write, 3346 int map_writable, int max_level, kvm_pfn_t pfn, 3347 bool prefault, bool account_disallowed_nx_lpage) 3348 { 3349 struct kvm_shadow_walk_iterator it; 3350 struct kvm_mmu_page *sp; 3351 int level, ret; 3352 gfn_t gfn = gpa >> PAGE_SHIFT; 3353 gfn_t base_gfn = gfn; 3354 3355 if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa))) 3356 return RET_PF_RETRY; 3357 3358 level = kvm_mmu_hugepage_adjust(vcpu, gfn, max_level, &pfn); 3359 3360 trace_kvm_mmu_spte_requested(gpa, level, pfn); 3361 for_each_shadow_entry(vcpu, gpa, it) { 3362 /* 3363 * We cannot overwrite existing page tables with an NX 3364 * large page, as the leaf could be executable. 3365 */ 3366 disallowed_hugepage_adjust(it, gfn, &pfn, &level); 3367 3368 base_gfn = gfn & ~(KVM_PAGES_PER_HPAGE(it.level) - 1); 3369 if (it.level == level) 3370 break; 3371 3372 drop_large_spte(vcpu, it.sptep); 3373 if (!is_shadow_present_pte(*it.sptep)) { 3374 sp = kvm_mmu_get_page(vcpu, base_gfn, it.addr, 3375 it.level - 1, true, ACC_ALL); 3376 3377 link_shadow_page(vcpu, it.sptep, sp); 3378 if (account_disallowed_nx_lpage) 3379 account_huge_nx_page(vcpu->kvm, sp); 3380 } 3381 } 3382 3383 ret = mmu_set_spte(vcpu, it.sptep, ACC_ALL, 3384 write, level, base_gfn, pfn, prefault, 3385 map_writable); 3386 direct_pte_prefetch(vcpu, it.sptep); 3387 ++vcpu->stat.pf_fixed; 3388 return ret; 3389 } 3390 3391 static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk) 3392 { 3393 send_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, PAGE_SHIFT, tsk); 3394 } 3395 3396 static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, kvm_pfn_t pfn) 3397 { 3398 /* 3399 * Do not cache the mmio info caused by writing the readonly gfn 3400 * into the spte otherwise read access on readonly gfn also can 3401 * caused mmio page fault and treat it as mmio access. 3402 */ 3403 if (pfn == KVM_PFN_ERR_RO_FAULT) 3404 return RET_PF_EMULATE; 3405 3406 if (pfn == KVM_PFN_ERR_HWPOISON) { 3407 kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current); 3408 return RET_PF_RETRY; 3409 } 3410 3411 return -EFAULT; 3412 } 3413 3414 static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn, 3415 kvm_pfn_t pfn, unsigned int access, 3416 int *ret_val) 3417 { 3418 /* The pfn is invalid, report the error! */ 3419 if (unlikely(is_error_pfn(pfn))) { 3420 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn); 3421 return true; 3422 } 3423 3424 if (unlikely(is_noslot_pfn(pfn))) 3425 vcpu_cache_mmio_info(vcpu, gva, gfn, 3426 access & shadow_mmio_access_mask); 3427 3428 return false; 3429 } 3430 3431 static bool page_fault_can_be_fast(u32 error_code) 3432 { 3433 /* 3434 * Do not fix the mmio spte with invalid generation number which 3435 * need to be updated by slow page fault path. 3436 */ 3437 if (unlikely(error_code & PFERR_RSVD_MASK)) 3438 return false; 3439 3440 /* See if the page fault is due to an NX violation */ 3441 if (unlikely(((error_code & (PFERR_FETCH_MASK | PFERR_PRESENT_MASK)) 3442 == (PFERR_FETCH_MASK | PFERR_PRESENT_MASK)))) 3443 return false; 3444 3445 /* 3446 * #PF can be fast if: 3447 * 1. The shadow page table entry is not present, which could mean that 3448 * the fault is potentially caused by access tracking (if enabled). 3449 * 2. The shadow page table entry is present and the fault 3450 * is caused by write-protect, that means we just need change the W 3451 * bit of the spte which can be done out of mmu-lock. 3452 * 3453 * However, if access tracking is disabled we know that a non-present 3454 * page must be a genuine page fault where we have to create a new SPTE. 3455 * So, if access tracking is disabled, we return true only for write 3456 * accesses to a present page. 3457 */ 3458 3459 return shadow_acc_track_mask != 0 || 3460 ((error_code & (PFERR_WRITE_MASK | PFERR_PRESENT_MASK)) 3461 == (PFERR_WRITE_MASK | PFERR_PRESENT_MASK)); 3462 } 3463 3464 /* 3465 * Returns true if the SPTE was fixed successfully. Otherwise, 3466 * someone else modified the SPTE from its original value. 3467 */ 3468 static bool 3469 fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp, 3470 u64 *sptep, u64 old_spte, u64 new_spte) 3471 { 3472 gfn_t gfn; 3473 3474 WARN_ON(!sp->role.direct); 3475 3476 /* 3477 * Theoretically we could also set dirty bit (and flush TLB) here in 3478 * order to eliminate unnecessary PML logging. See comments in 3479 * set_spte. But fast_page_fault is very unlikely to happen with PML 3480 * enabled, so we do not do this. This might result in the same GPA 3481 * to be logged in PML buffer again when the write really happens, and 3482 * eventually to be called by mark_page_dirty twice. But it's also no 3483 * harm. This also avoids the TLB flush needed after setting dirty bit 3484 * so non-PML cases won't be impacted. 3485 * 3486 * Compare with set_spte where instead shadow_dirty_mask is set. 3487 */ 3488 if (cmpxchg64(sptep, old_spte, new_spte) != old_spte) 3489 return false; 3490 3491 if (is_writable_pte(new_spte) && !is_writable_pte(old_spte)) { 3492 /* 3493 * The gfn of direct spte is stable since it is 3494 * calculated by sp->gfn. 3495 */ 3496 gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt); 3497 kvm_vcpu_mark_page_dirty(vcpu, gfn); 3498 } 3499 3500 return true; 3501 } 3502 3503 static bool is_access_allowed(u32 fault_err_code, u64 spte) 3504 { 3505 if (fault_err_code & PFERR_FETCH_MASK) 3506 return is_executable_pte(spte); 3507 3508 if (fault_err_code & PFERR_WRITE_MASK) 3509 return is_writable_pte(spte); 3510 3511 /* Fault was on Read access */ 3512 return spte & PT_PRESENT_MASK; 3513 } 3514 3515 /* 3516 * Return value: 3517 * - true: let the vcpu to access on the same address again. 3518 * - false: let the real page fault path to fix it. 3519 */ 3520 static bool fast_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, 3521 u32 error_code) 3522 { 3523 struct kvm_shadow_walk_iterator iterator; 3524 struct kvm_mmu_page *sp; 3525 bool fault_handled = false; 3526 u64 spte = 0ull; 3527 uint retry_count = 0; 3528 3529 if (!page_fault_can_be_fast(error_code)) 3530 return false; 3531 3532 walk_shadow_page_lockless_begin(vcpu); 3533 3534 do { 3535 u64 new_spte; 3536 3537 for_each_shadow_entry_lockless(vcpu, cr2_or_gpa, iterator, spte) 3538 if (!is_shadow_present_pte(spte)) 3539 break; 3540 3541 sp = page_header(__pa(iterator.sptep)); 3542 if (!is_last_spte(spte, sp->role.level)) 3543 break; 3544 3545 /* 3546 * Check whether the memory access that caused the fault would 3547 * still cause it if it were to be performed right now. If not, 3548 * then this is a spurious fault caused by TLB lazily flushed, 3549 * or some other CPU has already fixed the PTE after the 3550 * current CPU took the fault. 3551 * 3552 * Need not check the access of upper level table entries since 3553 * they are always ACC_ALL. 3554 */ 3555 if (is_access_allowed(error_code, spte)) { 3556 fault_handled = true; 3557 break; 3558 } 3559 3560 new_spte = spte; 3561 3562 if (is_access_track_spte(spte)) 3563 new_spte = restore_acc_track_spte(new_spte); 3564 3565 /* 3566 * Currently, to simplify the code, write-protection can 3567 * be removed in the fast path only if the SPTE was 3568 * write-protected for dirty-logging or access tracking. 3569 */ 3570 if ((error_code & PFERR_WRITE_MASK) && 3571 spte_can_locklessly_be_made_writable(spte)) 3572 { 3573 new_spte |= PT_WRITABLE_MASK; 3574 3575 /* 3576 * Do not fix write-permission on the large spte. Since 3577 * we only dirty the first page into the dirty-bitmap in 3578 * fast_pf_fix_direct_spte(), other pages are missed 3579 * if its slot has dirty logging enabled. 3580 * 3581 * Instead, we let the slow page fault path create a 3582 * normal spte to fix the access. 3583 * 3584 * See the comments in kvm_arch_commit_memory_region(). 3585 */ 3586 if (sp->role.level > PT_PAGE_TABLE_LEVEL) 3587 break; 3588 } 3589 3590 /* Verify that the fault can be handled in the fast path */ 3591 if (new_spte == spte || 3592 !is_access_allowed(error_code, new_spte)) 3593 break; 3594 3595 /* 3596 * Currently, fast page fault only works for direct mapping 3597 * since the gfn is not stable for indirect shadow page. See 3598 * Documentation/virt/kvm/locking.txt to get more detail. 3599 */ 3600 fault_handled = fast_pf_fix_direct_spte(vcpu, sp, 3601 iterator.sptep, spte, 3602 new_spte); 3603 if (fault_handled) 3604 break; 3605 3606 if (++retry_count > 4) { 3607 printk_once(KERN_WARNING 3608 "kvm: Fast #PF retrying more than 4 times.\n"); 3609 break; 3610 } 3611 3612 } while (true); 3613 3614 trace_fast_page_fault(vcpu, cr2_or_gpa, error_code, iterator.sptep, 3615 spte, fault_handled); 3616 walk_shadow_page_lockless_end(vcpu); 3617 3618 return fault_handled; 3619 } 3620 3621 static void mmu_free_root_page(struct kvm *kvm, hpa_t *root_hpa, 3622 struct list_head *invalid_list) 3623 { 3624 struct kvm_mmu_page *sp; 3625 3626 if (!VALID_PAGE(*root_hpa)) 3627 return; 3628 3629 sp = page_header(*root_hpa & PT64_BASE_ADDR_MASK); 3630 --sp->root_count; 3631 if (!sp->root_count && sp->role.invalid) 3632 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list); 3633 3634 *root_hpa = INVALID_PAGE; 3635 } 3636 3637 /* roots_to_free must be some combination of the KVM_MMU_ROOT_* flags */ 3638 void kvm_mmu_free_roots(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, 3639 ulong roots_to_free) 3640 { 3641 int i; 3642 LIST_HEAD(invalid_list); 3643 bool free_active_root = roots_to_free & KVM_MMU_ROOT_CURRENT; 3644 3645 BUILD_BUG_ON(KVM_MMU_NUM_PREV_ROOTS >= BITS_PER_LONG); 3646 3647 /* Before acquiring the MMU lock, see if we need to do any real work. */ 3648 if (!(free_active_root && VALID_PAGE(mmu->root_hpa))) { 3649 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 3650 if ((roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) && 3651 VALID_PAGE(mmu->prev_roots[i].hpa)) 3652 break; 3653 3654 if (i == KVM_MMU_NUM_PREV_ROOTS) 3655 return; 3656 } 3657 3658 spin_lock(&vcpu->kvm->mmu_lock); 3659 3660 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 3661 if (roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) 3662 mmu_free_root_page(vcpu->kvm, &mmu->prev_roots[i].hpa, 3663 &invalid_list); 3664 3665 if (free_active_root) { 3666 if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL && 3667 (mmu->root_level >= PT64_ROOT_4LEVEL || mmu->direct_map)) { 3668 mmu_free_root_page(vcpu->kvm, &mmu->root_hpa, 3669 &invalid_list); 3670 } else { 3671 for (i = 0; i < 4; ++i) 3672 if (mmu->pae_root[i] != 0) 3673 mmu_free_root_page(vcpu->kvm, 3674 &mmu->pae_root[i], 3675 &invalid_list); 3676 mmu->root_hpa = INVALID_PAGE; 3677 } 3678 mmu->root_cr3 = 0; 3679 } 3680 3681 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list); 3682 spin_unlock(&vcpu->kvm->mmu_lock); 3683 } 3684 EXPORT_SYMBOL_GPL(kvm_mmu_free_roots); 3685 3686 static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn) 3687 { 3688 int ret = 0; 3689 3690 if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) { 3691 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 3692 ret = 1; 3693 } 3694 3695 return ret; 3696 } 3697 3698 static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu) 3699 { 3700 struct kvm_mmu_page *sp; 3701 unsigned i; 3702 3703 if (vcpu->arch.mmu->shadow_root_level >= PT64_ROOT_4LEVEL) { 3704 spin_lock(&vcpu->kvm->mmu_lock); 3705 if(make_mmu_pages_available(vcpu) < 0) { 3706 spin_unlock(&vcpu->kvm->mmu_lock); 3707 return -ENOSPC; 3708 } 3709 sp = kvm_mmu_get_page(vcpu, 0, 0, 3710 vcpu->arch.mmu->shadow_root_level, 1, ACC_ALL); 3711 ++sp->root_count; 3712 spin_unlock(&vcpu->kvm->mmu_lock); 3713 vcpu->arch.mmu->root_hpa = __pa(sp->spt); 3714 } else if (vcpu->arch.mmu->shadow_root_level == PT32E_ROOT_LEVEL) { 3715 for (i = 0; i < 4; ++i) { 3716 hpa_t root = vcpu->arch.mmu->pae_root[i]; 3717 3718 MMU_WARN_ON(VALID_PAGE(root)); 3719 spin_lock(&vcpu->kvm->mmu_lock); 3720 if (make_mmu_pages_available(vcpu) < 0) { 3721 spin_unlock(&vcpu->kvm->mmu_lock); 3722 return -ENOSPC; 3723 } 3724 sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT), 3725 i << 30, PT32_ROOT_LEVEL, 1, ACC_ALL); 3726 root = __pa(sp->spt); 3727 ++sp->root_count; 3728 spin_unlock(&vcpu->kvm->mmu_lock); 3729 vcpu->arch.mmu->pae_root[i] = root | PT_PRESENT_MASK; 3730 } 3731 vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->pae_root); 3732 } else 3733 BUG(); 3734 vcpu->arch.mmu->root_cr3 = vcpu->arch.mmu->get_cr3(vcpu); 3735 3736 return 0; 3737 } 3738 3739 static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu) 3740 { 3741 struct kvm_mmu_page *sp; 3742 u64 pdptr, pm_mask; 3743 gfn_t root_gfn, root_cr3; 3744 int i; 3745 3746 root_cr3 = vcpu->arch.mmu->get_cr3(vcpu); 3747 root_gfn = root_cr3 >> PAGE_SHIFT; 3748 3749 if (mmu_check_root(vcpu, root_gfn)) 3750 return 1; 3751 3752 /* 3753 * Do we shadow a long mode page table? If so we need to 3754 * write-protect the guests page table root. 3755 */ 3756 if (vcpu->arch.mmu->root_level >= PT64_ROOT_4LEVEL) { 3757 hpa_t root = vcpu->arch.mmu->root_hpa; 3758 3759 MMU_WARN_ON(VALID_PAGE(root)); 3760 3761 spin_lock(&vcpu->kvm->mmu_lock); 3762 if (make_mmu_pages_available(vcpu) < 0) { 3763 spin_unlock(&vcpu->kvm->mmu_lock); 3764 return -ENOSPC; 3765 } 3766 sp = kvm_mmu_get_page(vcpu, root_gfn, 0, 3767 vcpu->arch.mmu->shadow_root_level, 0, ACC_ALL); 3768 root = __pa(sp->spt); 3769 ++sp->root_count; 3770 spin_unlock(&vcpu->kvm->mmu_lock); 3771 vcpu->arch.mmu->root_hpa = root; 3772 goto set_root_cr3; 3773 } 3774 3775 /* 3776 * We shadow a 32 bit page table. This may be a legacy 2-level 3777 * or a PAE 3-level page table. In either case we need to be aware that 3778 * the shadow page table may be a PAE or a long mode page table. 3779 */ 3780 pm_mask = PT_PRESENT_MASK; 3781 if (vcpu->arch.mmu->shadow_root_level == PT64_ROOT_4LEVEL) 3782 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK; 3783 3784 for (i = 0; i < 4; ++i) { 3785 hpa_t root = vcpu->arch.mmu->pae_root[i]; 3786 3787 MMU_WARN_ON(VALID_PAGE(root)); 3788 if (vcpu->arch.mmu->root_level == PT32E_ROOT_LEVEL) { 3789 pdptr = vcpu->arch.mmu->get_pdptr(vcpu, i); 3790 if (!(pdptr & PT_PRESENT_MASK)) { 3791 vcpu->arch.mmu->pae_root[i] = 0; 3792 continue; 3793 } 3794 root_gfn = pdptr >> PAGE_SHIFT; 3795 if (mmu_check_root(vcpu, root_gfn)) 3796 return 1; 3797 } 3798 spin_lock(&vcpu->kvm->mmu_lock); 3799 if (make_mmu_pages_available(vcpu) < 0) { 3800 spin_unlock(&vcpu->kvm->mmu_lock); 3801 return -ENOSPC; 3802 } 3803 sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30, PT32_ROOT_LEVEL, 3804 0, ACC_ALL); 3805 root = __pa(sp->spt); 3806 ++sp->root_count; 3807 spin_unlock(&vcpu->kvm->mmu_lock); 3808 3809 vcpu->arch.mmu->pae_root[i] = root | pm_mask; 3810 } 3811 vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->pae_root); 3812 3813 /* 3814 * If we shadow a 32 bit page table with a long mode page 3815 * table we enter this path. 3816 */ 3817 if (vcpu->arch.mmu->shadow_root_level == PT64_ROOT_4LEVEL) { 3818 if (vcpu->arch.mmu->lm_root == NULL) { 3819 /* 3820 * The additional page necessary for this is only 3821 * allocated on demand. 3822 */ 3823 3824 u64 *lm_root; 3825 3826 lm_root = (void*)get_zeroed_page(GFP_KERNEL_ACCOUNT); 3827 if (lm_root == NULL) 3828 return 1; 3829 3830 lm_root[0] = __pa(vcpu->arch.mmu->pae_root) | pm_mask; 3831 3832 vcpu->arch.mmu->lm_root = lm_root; 3833 } 3834 3835 vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->lm_root); 3836 } 3837 3838 set_root_cr3: 3839 vcpu->arch.mmu->root_cr3 = root_cr3; 3840 3841 return 0; 3842 } 3843 3844 static int mmu_alloc_roots(struct kvm_vcpu *vcpu) 3845 { 3846 if (vcpu->arch.mmu->direct_map) 3847 return mmu_alloc_direct_roots(vcpu); 3848 else 3849 return mmu_alloc_shadow_roots(vcpu); 3850 } 3851 3852 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu) 3853 { 3854 int i; 3855 struct kvm_mmu_page *sp; 3856 3857 if (vcpu->arch.mmu->direct_map) 3858 return; 3859 3860 if (!VALID_PAGE(vcpu->arch.mmu->root_hpa)) 3861 return; 3862 3863 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY); 3864 3865 if (vcpu->arch.mmu->root_level >= PT64_ROOT_4LEVEL) { 3866 hpa_t root = vcpu->arch.mmu->root_hpa; 3867 sp = page_header(root); 3868 3869 /* 3870 * Even if another CPU was marking the SP as unsync-ed 3871 * simultaneously, any guest page table changes are not 3872 * guaranteed to be visible anyway until this VCPU issues a TLB 3873 * flush strictly after those changes are made. We only need to 3874 * ensure that the other CPU sets these flags before any actual 3875 * changes to the page tables are made. The comments in 3876 * mmu_need_write_protect() describe what could go wrong if this 3877 * requirement isn't satisfied. 3878 */ 3879 if (!smp_load_acquire(&sp->unsync) && 3880 !smp_load_acquire(&sp->unsync_children)) 3881 return; 3882 3883 spin_lock(&vcpu->kvm->mmu_lock); 3884 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC); 3885 3886 mmu_sync_children(vcpu, sp); 3887 3888 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC); 3889 spin_unlock(&vcpu->kvm->mmu_lock); 3890 return; 3891 } 3892 3893 spin_lock(&vcpu->kvm->mmu_lock); 3894 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC); 3895 3896 for (i = 0; i < 4; ++i) { 3897 hpa_t root = vcpu->arch.mmu->pae_root[i]; 3898 3899 if (root && VALID_PAGE(root)) { 3900 root &= PT64_BASE_ADDR_MASK; 3901 sp = page_header(root); 3902 mmu_sync_children(vcpu, sp); 3903 } 3904 } 3905 3906 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC); 3907 spin_unlock(&vcpu->kvm->mmu_lock); 3908 } 3909 EXPORT_SYMBOL_GPL(kvm_mmu_sync_roots); 3910 3911 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gpa_t vaddr, 3912 u32 access, struct x86_exception *exception) 3913 { 3914 if (exception) 3915 exception->error_code = 0; 3916 return vaddr; 3917 } 3918 3919 static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gpa_t vaddr, 3920 u32 access, 3921 struct x86_exception *exception) 3922 { 3923 if (exception) 3924 exception->error_code = 0; 3925 return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception); 3926 } 3927 3928 static bool 3929 __is_rsvd_bits_set(struct rsvd_bits_validate *rsvd_check, u64 pte, int level) 3930 { 3931 int bit7 = (pte >> 7) & 1; 3932 3933 return pte & rsvd_check->rsvd_bits_mask[bit7][level-1]; 3934 } 3935 3936 static bool __is_bad_mt_xwr(struct rsvd_bits_validate *rsvd_check, u64 pte) 3937 { 3938 return rsvd_check->bad_mt_xwr & BIT_ULL(pte & 0x3f); 3939 } 3940 3941 static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct) 3942 { 3943 /* 3944 * A nested guest cannot use the MMIO cache if it is using nested 3945 * page tables, because cr2 is a nGPA while the cache stores GPAs. 3946 */ 3947 if (mmu_is_nested(vcpu)) 3948 return false; 3949 3950 if (direct) 3951 return vcpu_match_mmio_gpa(vcpu, addr); 3952 3953 return vcpu_match_mmio_gva(vcpu, addr); 3954 } 3955 3956 /* return true if reserved bit is detected on spte. */ 3957 static bool 3958 walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep) 3959 { 3960 struct kvm_shadow_walk_iterator iterator; 3961 u64 sptes[PT64_ROOT_MAX_LEVEL], spte = 0ull; 3962 struct rsvd_bits_validate *rsvd_check; 3963 int root, leaf; 3964 bool reserved = false; 3965 3966 rsvd_check = &vcpu->arch.mmu->shadow_zero_check; 3967 3968 walk_shadow_page_lockless_begin(vcpu); 3969 3970 for (shadow_walk_init(&iterator, vcpu, addr), 3971 leaf = root = iterator.level; 3972 shadow_walk_okay(&iterator); 3973 __shadow_walk_next(&iterator, spte)) { 3974 spte = mmu_spte_get_lockless(iterator.sptep); 3975 3976 sptes[leaf - 1] = spte; 3977 leaf--; 3978 3979 if (!is_shadow_present_pte(spte)) 3980 break; 3981 3982 /* 3983 * Use a bitwise-OR instead of a logical-OR to aggregate the 3984 * reserved bit and EPT's invalid memtype/XWR checks to avoid 3985 * adding a Jcc in the loop. 3986 */ 3987 reserved |= __is_bad_mt_xwr(rsvd_check, spte) | 3988 __is_rsvd_bits_set(rsvd_check, spte, iterator.level); 3989 } 3990 3991 walk_shadow_page_lockless_end(vcpu); 3992 3993 if (reserved) { 3994 pr_err("%s: detect reserved bits on spte, addr 0x%llx, dump hierarchy:\n", 3995 __func__, addr); 3996 while (root > leaf) { 3997 pr_err("------ spte 0x%llx level %d.\n", 3998 sptes[root - 1], root); 3999 root--; 4000 } 4001 } 4002 4003 *sptep = spte; 4004 return reserved; 4005 } 4006 4007 static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct) 4008 { 4009 u64 spte; 4010 bool reserved; 4011 4012 if (mmio_info_in_cache(vcpu, addr, direct)) 4013 return RET_PF_EMULATE; 4014 4015 reserved = walk_shadow_page_get_mmio_spte(vcpu, addr, &spte); 4016 if (WARN_ON(reserved)) 4017 return -EINVAL; 4018 4019 if (is_mmio_spte(spte)) { 4020 gfn_t gfn = get_mmio_spte_gfn(spte); 4021 unsigned int access = get_mmio_spte_access(spte); 4022 4023 if (!check_mmio_spte(vcpu, spte)) 4024 return RET_PF_INVALID; 4025 4026 if (direct) 4027 addr = 0; 4028 4029 trace_handle_mmio_page_fault(addr, gfn, access); 4030 vcpu_cache_mmio_info(vcpu, addr, gfn, access); 4031 return RET_PF_EMULATE; 4032 } 4033 4034 /* 4035 * If the page table is zapped by other cpus, let CPU fault again on 4036 * the address. 4037 */ 4038 return RET_PF_RETRY; 4039 } 4040 4041 static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu, 4042 u32 error_code, gfn_t gfn) 4043 { 4044 if (unlikely(error_code & PFERR_RSVD_MASK)) 4045 return false; 4046 4047 if (!(error_code & PFERR_PRESENT_MASK) || 4048 !(error_code & PFERR_WRITE_MASK)) 4049 return false; 4050 4051 /* 4052 * guest is writing the page which is write tracked which can 4053 * not be fixed by page fault handler. 4054 */ 4055 if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE)) 4056 return true; 4057 4058 return false; 4059 } 4060 4061 static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr) 4062 { 4063 struct kvm_shadow_walk_iterator iterator; 4064 u64 spte; 4065 4066 walk_shadow_page_lockless_begin(vcpu); 4067 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) { 4068 clear_sp_write_flooding_count(iterator.sptep); 4069 if (!is_shadow_present_pte(spte)) 4070 break; 4071 } 4072 walk_shadow_page_lockless_end(vcpu); 4073 } 4074 4075 static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, 4076 gfn_t gfn) 4077 { 4078 struct kvm_arch_async_pf arch; 4079 4080 arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id; 4081 arch.gfn = gfn; 4082 arch.direct_map = vcpu->arch.mmu->direct_map; 4083 arch.cr3 = vcpu->arch.mmu->get_cr3(vcpu); 4084 4085 return kvm_setup_async_pf(vcpu, cr2_or_gpa, 4086 kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch); 4087 } 4088 4089 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn, 4090 gpa_t cr2_or_gpa, kvm_pfn_t *pfn, bool write, 4091 bool *writable) 4092 { 4093 struct kvm_memory_slot *slot; 4094 bool async; 4095 4096 /* 4097 * Don't expose private memslots to L2. 4098 */ 4099 if (is_guest_mode(vcpu) && !kvm_is_visible_gfn(vcpu->kvm, gfn)) { 4100 *pfn = KVM_PFN_NOSLOT; 4101 return false; 4102 } 4103 4104 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 4105 async = false; 4106 *pfn = __gfn_to_pfn_memslot(slot, gfn, false, &async, write, writable); 4107 if (!async) 4108 return false; /* *pfn has correct page already */ 4109 4110 if (!prefault && kvm_can_do_async_pf(vcpu)) { 4111 trace_kvm_try_async_get_page(cr2_or_gpa, gfn); 4112 if (kvm_find_async_pf_gfn(vcpu, gfn)) { 4113 trace_kvm_async_pf_doublefault(cr2_or_gpa, gfn); 4114 kvm_make_request(KVM_REQ_APF_HALT, vcpu); 4115 return true; 4116 } else if (kvm_arch_setup_async_pf(vcpu, cr2_or_gpa, gfn)) 4117 return true; 4118 } 4119 4120 *pfn = __gfn_to_pfn_memslot(slot, gfn, false, NULL, write, writable); 4121 return false; 4122 } 4123 4124 static int direct_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code, 4125 bool prefault, int max_level, bool is_tdp) 4126 { 4127 bool write = error_code & PFERR_WRITE_MASK; 4128 bool exec = error_code & PFERR_FETCH_MASK; 4129 bool lpage_disallowed = exec && is_nx_huge_page_enabled(); 4130 bool map_writable; 4131 4132 gfn_t gfn = gpa >> PAGE_SHIFT; 4133 unsigned long mmu_seq; 4134 kvm_pfn_t pfn; 4135 int r; 4136 4137 if (page_fault_handle_page_track(vcpu, error_code, gfn)) 4138 return RET_PF_EMULATE; 4139 4140 r = mmu_topup_memory_caches(vcpu); 4141 if (r) 4142 return r; 4143 4144 if (lpage_disallowed) 4145 max_level = PT_PAGE_TABLE_LEVEL; 4146 4147 if (fast_page_fault(vcpu, gpa, error_code)) 4148 return RET_PF_RETRY; 4149 4150 mmu_seq = vcpu->kvm->mmu_notifier_seq; 4151 smp_rmb(); 4152 4153 if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable)) 4154 return RET_PF_RETRY; 4155 4156 if (handle_abnormal_pfn(vcpu, is_tdp ? 0 : gpa, gfn, pfn, ACC_ALL, &r)) 4157 return r; 4158 4159 r = RET_PF_RETRY; 4160 spin_lock(&vcpu->kvm->mmu_lock); 4161 if (mmu_notifier_retry(vcpu->kvm, mmu_seq)) 4162 goto out_unlock; 4163 if (make_mmu_pages_available(vcpu) < 0) 4164 goto out_unlock; 4165 r = __direct_map(vcpu, gpa, write, map_writable, max_level, pfn, 4166 prefault, is_tdp && lpage_disallowed); 4167 4168 out_unlock: 4169 spin_unlock(&vcpu->kvm->mmu_lock); 4170 kvm_release_pfn_clean(pfn); 4171 return r; 4172 } 4173 4174 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa, 4175 u32 error_code, bool prefault) 4176 { 4177 pgprintk("%s: gva %lx error %x\n", __func__, gpa, error_code); 4178 4179 /* This path builds a PAE pagetable, we can map 2mb pages at maximum. */ 4180 return direct_page_fault(vcpu, gpa & PAGE_MASK, error_code, prefault, 4181 PT_DIRECTORY_LEVEL, false); 4182 } 4183 4184 int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code, 4185 u64 fault_address, char *insn, int insn_len) 4186 { 4187 int r = 1; 4188 4189 #ifndef CONFIG_X86_64 4190 /* A 64-bit CR2 should be impossible on 32-bit KVM. */ 4191 if (WARN_ON_ONCE(fault_address >> 32)) 4192 return -EFAULT; 4193 #endif 4194 4195 vcpu->arch.l1tf_flush_l1d = true; 4196 switch (vcpu->arch.apf.host_apf_reason) { 4197 default: 4198 trace_kvm_page_fault(fault_address, error_code); 4199 4200 if (kvm_event_needs_reinjection(vcpu)) 4201 kvm_mmu_unprotect_page_virt(vcpu, fault_address); 4202 r = kvm_mmu_page_fault(vcpu, fault_address, error_code, insn, 4203 insn_len); 4204 break; 4205 case KVM_PV_REASON_PAGE_NOT_PRESENT: 4206 vcpu->arch.apf.host_apf_reason = 0; 4207 local_irq_disable(); 4208 kvm_async_pf_task_wait(fault_address, 0); 4209 local_irq_enable(); 4210 break; 4211 case KVM_PV_REASON_PAGE_READY: 4212 vcpu->arch.apf.host_apf_reason = 0; 4213 local_irq_disable(); 4214 kvm_async_pf_task_wake(fault_address); 4215 local_irq_enable(); 4216 break; 4217 } 4218 return r; 4219 } 4220 EXPORT_SYMBOL_GPL(kvm_handle_page_fault); 4221 4222 int kvm_tdp_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code, 4223 bool prefault) 4224 { 4225 int max_level; 4226 4227 for (max_level = PT_MAX_HUGEPAGE_LEVEL; 4228 max_level > PT_PAGE_TABLE_LEVEL; 4229 max_level--) { 4230 int page_num = KVM_PAGES_PER_HPAGE(max_level); 4231 gfn_t base = (gpa >> PAGE_SHIFT) & ~(page_num - 1); 4232 4233 if (kvm_mtrr_check_gfn_range_consistency(vcpu, base, page_num)) 4234 break; 4235 } 4236 4237 return direct_page_fault(vcpu, gpa, error_code, prefault, 4238 max_level, true); 4239 } 4240 4241 static void nonpaging_init_context(struct kvm_vcpu *vcpu, 4242 struct kvm_mmu *context) 4243 { 4244 context->page_fault = nonpaging_page_fault; 4245 context->gva_to_gpa = nonpaging_gva_to_gpa; 4246 context->sync_page = nonpaging_sync_page; 4247 context->invlpg = nonpaging_invlpg; 4248 context->update_pte = nonpaging_update_pte; 4249 context->root_level = 0; 4250 context->shadow_root_level = PT32E_ROOT_LEVEL; 4251 context->direct_map = true; 4252 context->nx = false; 4253 } 4254 4255 /* 4256 * Find out if a previously cached root matching the new CR3/role is available. 4257 * The current root is also inserted into the cache. 4258 * If a matching root was found, it is assigned to kvm_mmu->root_hpa and true is 4259 * returned. 4260 * Otherwise, the LRU root from the cache is assigned to kvm_mmu->root_hpa and 4261 * false is returned. This root should now be freed by the caller. 4262 */ 4263 static bool cached_root_available(struct kvm_vcpu *vcpu, gpa_t new_cr3, 4264 union kvm_mmu_page_role new_role) 4265 { 4266 uint i; 4267 struct kvm_mmu_root_info root; 4268 struct kvm_mmu *mmu = vcpu->arch.mmu; 4269 4270 root.cr3 = mmu->root_cr3; 4271 root.hpa = mmu->root_hpa; 4272 4273 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) { 4274 swap(root, mmu->prev_roots[i]); 4275 4276 if (new_cr3 == root.cr3 && VALID_PAGE(root.hpa) && 4277 page_header(root.hpa) != NULL && 4278 new_role.word == page_header(root.hpa)->role.word) 4279 break; 4280 } 4281 4282 mmu->root_hpa = root.hpa; 4283 mmu->root_cr3 = root.cr3; 4284 4285 return i < KVM_MMU_NUM_PREV_ROOTS; 4286 } 4287 4288 static bool fast_cr3_switch(struct kvm_vcpu *vcpu, gpa_t new_cr3, 4289 union kvm_mmu_page_role new_role, 4290 bool skip_tlb_flush) 4291 { 4292 struct kvm_mmu *mmu = vcpu->arch.mmu; 4293 4294 /* 4295 * For now, limit the fast switch to 64-bit hosts+VMs in order to avoid 4296 * having to deal with PDPTEs. We may add support for 32-bit hosts/VMs 4297 * later if necessary. 4298 */ 4299 if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL && 4300 mmu->root_level >= PT64_ROOT_4LEVEL) { 4301 if (mmu_check_root(vcpu, new_cr3 >> PAGE_SHIFT)) 4302 return false; 4303 4304 if (cached_root_available(vcpu, new_cr3, new_role)) { 4305 /* 4306 * It is possible that the cached previous root page is 4307 * obsolete because of a change in the MMU generation 4308 * number. However, changing the generation number is 4309 * accompanied by KVM_REQ_MMU_RELOAD, which will free 4310 * the root set here and allocate a new one. 4311 */ 4312 kvm_make_request(KVM_REQ_LOAD_CR3, vcpu); 4313 if (!skip_tlb_flush) { 4314 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu); 4315 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu); 4316 } 4317 4318 /* 4319 * The last MMIO access's GVA and GPA are cached in the 4320 * VCPU. When switching to a new CR3, that GVA->GPA 4321 * mapping may no longer be valid. So clear any cached 4322 * MMIO info even when we don't need to sync the shadow 4323 * page tables. 4324 */ 4325 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY); 4326 4327 __clear_sp_write_flooding_count( 4328 page_header(mmu->root_hpa)); 4329 4330 return true; 4331 } 4332 } 4333 4334 return false; 4335 } 4336 4337 static void __kvm_mmu_new_cr3(struct kvm_vcpu *vcpu, gpa_t new_cr3, 4338 union kvm_mmu_page_role new_role, 4339 bool skip_tlb_flush) 4340 { 4341 if (!fast_cr3_switch(vcpu, new_cr3, new_role, skip_tlb_flush)) 4342 kvm_mmu_free_roots(vcpu, vcpu->arch.mmu, 4343 KVM_MMU_ROOT_CURRENT); 4344 } 4345 4346 void kvm_mmu_new_cr3(struct kvm_vcpu *vcpu, gpa_t new_cr3, bool skip_tlb_flush) 4347 { 4348 __kvm_mmu_new_cr3(vcpu, new_cr3, kvm_mmu_calc_root_page_role(vcpu), 4349 skip_tlb_flush); 4350 } 4351 EXPORT_SYMBOL_GPL(kvm_mmu_new_cr3); 4352 4353 static unsigned long get_cr3(struct kvm_vcpu *vcpu) 4354 { 4355 return kvm_read_cr3(vcpu); 4356 } 4357 4358 static void inject_page_fault(struct kvm_vcpu *vcpu, 4359 struct x86_exception *fault) 4360 { 4361 vcpu->arch.mmu->inject_page_fault(vcpu, fault); 4362 } 4363 4364 static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn, 4365 unsigned int access, int *nr_present) 4366 { 4367 if (unlikely(is_mmio_spte(*sptep))) { 4368 if (gfn != get_mmio_spte_gfn(*sptep)) { 4369 mmu_spte_clear_no_track(sptep); 4370 return true; 4371 } 4372 4373 (*nr_present)++; 4374 mark_mmio_spte(vcpu, sptep, gfn, access); 4375 return true; 4376 } 4377 4378 return false; 4379 } 4380 4381 static inline bool is_last_gpte(struct kvm_mmu *mmu, 4382 unsigned level, unsigned gpte) 4383 { 4384 /* 4385 * The RHS has bit 7 set iff level < mmu->last_nonleaf_level. 4386 * If it is clear, there are no large pages at this level, so clear 4387 * PT_PAGE_SIZE_MASK in gpte if that is the case. 4388 */ 4389 gpte &= level - mmu->last_nonleaf_level; 4390 4391 /* 4392 * PT_PAGE_TABLE_LEVEL always terminates. The RHS has bit 7 set 4393 * iff level <= PT_PAGE_TABLE_LEVEL, which for our purpose means 4394 * level == PT_PAGE_TABLE_LEVEL; set PT_PAGE_SIZE_MASK in gpte then. 4395 */ 4396 gpte |= level - PT_PAGE_TABLE_LEVEL - 1; 4397 4398 return gpte & PT_PAGE_SIZE_MASK; 4399 } 4400 4401 #define PTTYPE_EPT 18 /* arbitrary */ 4402 #define PTTYPE PTTYPE_EPT 4403 #include "paging_tmpl.h" 4404 #undef PTTYPE 4405 4406 #define PTTYPE 64 4407 #include "paging_tmpl.h" 4408 #undef PTTYPE 4409 4410 #define PTTYPE 32 4411 #include "paging_tmpl.h" 4412 #undef PTTYPE 4413 4414 static void 4415 __reset_rsvds_bits_mask(struct kvm_vcpu *vcpu, 4416 struct rsvd_bits_validate *rsvd_check, 4417 int maxphyaddr, int level, bool nx, bool gbpages, 4418 bool pse, bool amd) 4419 { 4420 u64 exb_bit_rsvd = 0; 4421 u64 gbpages_bit_rsvd = 0; 4422 u64 nonleaf_bit8_rsvd = 0; 4423 4424 rsvd_check->bad_mt_xwr = 0; 4425 4426 if (!nx) 4427 exb_bit_rsvd = rsvd_bits(63, 63); 4428 if (!gbpages) 4429 gbpages_bit_rsvd = rsvd_bits(7, 7); 4430 4431 /* 4432 * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for 4433 * leaf entries) on AMD CPUs only. 4434 */ 4435 if (amd) 4436 nonleaf_bit8_rsvd = rsvd_bits(8, 8); 4437 4438 switch (level) { 4439 case PT32_ROOT_LEVEL: 4440 /* no rsvd bits for 2 level 4K page table entries */ 4441 rsvd_check->rsvd_bits_mask[0][1] = 0; 4442 rsvd_check->rsvd_bits_mask[0][0] = 0; 4443 rsvd_check->rsvd_bits_mask[1][0] = 4444 rsvd_check->rsvd_bits_mask[0][0]; 4445 4446 if (!pse) { 4447 rsvd_check->rsvd_bits_mask[1][1] = 0; 4448 break; 4449 } 4450 4451 if (is_cpuid_PSE36()) 4452 /* 36bits PSE 4MB page */ 4453 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21); 4454 else 4455 /* 32 bits PSE 4MB page */ 4456 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21); 4457 break; 4458 case PT32E_ROOT_LEVEL: 4459 rsvd_check->rsvd_bits_mask[0][2] = 4460 rsvd_bits(maxphyaddr, 63) | 4461 rsvd_bits(5, 8) | rsvd_bits(1, 2); /* PDPTE */ 4462 rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd | 4463 rsvd_bits(maxphyaddr, 62); /* PDE */ 4464 rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd | 4465 rsvd_bits(maxphyaddr, 62); /* PTE */ 4466 rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd | 4467 rsvd_bits(maxphyaddr, 62) | 4468 rsvd_bits(13, 20); /* large page */ 4469 rsvd_check->rsvd_bits_mask[1][0] = 4470 rsvd_check->rsvd_bits_mask[0][0]; 4471 break; 4472 case PT64_ROOT_5LEVEL: 4473 rsvd_check->rsvd_bits_mask[0][4] = exb_bit_rsvd | 4474 nonleaf_bit8_rsvd | rsvd_bits(7, 7) | 4475 rsvd_bits(maxphyaddr, 51); 4476 rsvd_check->rsvd_bits_mask[1][4] = 4477 rsvd_check->rsvd_bits_mask[0][4]; 4478 /* fall through */ 4479 case PT64_ROOT_4LEVEL: 4480 rsvd_check->rsvd_bits_mask[0][3] = exb_bit_rsvd | 4481 nonleaf_bit8_rsvd | rsvd_bits(7, 7) | 4482 rsvd_bits(maxphyaddr, 51); 4483 rsvd_check->rsvd_bits_mask[0][2] = exb_bit_rsvd | 4484 nonleaf_bit8_rsvd | gbpages_bit_rsvd | 4485 rsvd_bits(maxphyaddr, 51); 4486 rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd | 4487 rsvd_bits(maxphyaddr, 51); 4488 rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd | 4489 rsvd_bits(maxphyaddr, 51); 4490 rsvd_check->rsvd_bits_mask[1][3] = 4491 rsvd_check->rsvd_bits_mask[0][3]; 4492 rsvd_check->rsvd_bits_mask[1][2] = exb_bit_rsvd | 4493 gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51) | 4494 rsvd_bits(13, 29); 4495 rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd | 4496 rsvd_bits(maxphyaddr, 51) | 4497 rsvd_bits(13, 20); /* large page */ 4498 rsvd_check->rsvd_bits_mask[1][0] = 4499 rsvd_check->rsvd_bits_mask[0][0]; 4500 break; 4501 } 4502 } 4503 4504 static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu, 4505 struct kvm_mmu *context) 4506 { 4507 __reset_rsvds_bits_mask(vcpu, &context->guest_rsvd_check, 4508 cpuid_maxphyaddr(vcpu), context->root_level, 4509 context->nx, 4510 guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES), 4511 is_pse(vcpu), guest_cpuid_is_amd(vcpu)); 4512 } 4513 4514 static void 4515 __reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check, 4516 int maxphyaddr, bool execonly) 4517 { 4518 u64 bad_mt_xwr; 4519 4520 rsvd_check->rsvd_bits_mask[0][4] = 4521 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7); 4522 rsvd_check->rsvd_bits_mask[0][3] = 4523 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7); 4524 rsvd_check->rsvd_bits_mask[0][2] = 4525 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6); 4526 rsvd_check->rsvd_bits_mask[0][1] = 4527 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6); 4528 rsvd_check->rsvd_bits_mask[0][0] = rsvd_bits(maxphyaddr, 51); 4529 4530 /* large page */ 4531 rsvd_check->rsvd_bits_mask[1][4] = rsvd_check->rsvd_bits_mask[0][4]; 4532 rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3]; 4533 rsvd_check->rsvd_bits_mask[1][2] = 4534 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 29); 4535 rsvd_check->rsvd_bits_mask[1][1] = 4536 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 20); 4537 rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0]; 4538 4539 bad_mt_xwr = 0xFFull << (2 * 8); /* bits 3..5 must not be 2 */ 4540 bad_mt_xwr |= 0xFFull << (3 * 8); /* bits 3..5 must not be 3 */ 4541 bad_mt_xwr |= 0xFFull << (7 * 8); /* bits 3..5 must not be 7 */ 4542 bad_mt_xwr |= REPEAT_BYTE(1ull << 2); /* bits 0..2 must not be 010 */ 4543 bad_mt_xwr |= REPEAT_BYTE(1ull << 6); /* bits 0..2 must not be 110 */ 4544 if (!execonly) { 4545 /* bits 0..2 must not be 100 unless VMX capabilities allow it */ 4546 bad_mt_xwr |= REPEAT_BYTE(1ull << 4); 4547 } 4548 rsvd_check->bad_mt_xwr = bad_mt_xwr; 4549 } 4550 4551 static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu, 4552 struct kvm_mmu *context, bool execonly) 4553 { 4554 __reset_rsvds_bits_mask_ept(&context->guest_rsvd_check, 4555 cpuid_maxphyaddr(vcpu), execonly); 4556 } 4557 4558 /* 4559 * the page table on host is the shadow page table for the page 4560 * table in guest or amd nested guest, its mmu features completely 4561 * follow the features in guest. 4562 */ 4563 void 4564 reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, struct kvm_mmu *context) 4565 { 4566 bool uses_nx = context->nx || 4567 context->mmu_role.base.smep_andnot_wp; 4568 struct rsvd_bits_validate *shadow_zero_check; 4569 int i; 4570 4571 /* 4572 * Passing "true" to the last argument is okay; it adds a check 4573 * on bit 8 of the SPTEs which KVM doesn't use anyway. 4574 */ 4575 shadow_zero_check = &context->shadow_zero_check; 4576 __reset_rsvds_bits_mask(vcpu, shadow_zero_check, 4577 shadow_phys_bits, 4578 context->shadow_root_level, uses_nx, 4579 guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES), 4580 is_pse(vcpu), true); 4581 4582 if (!shadow_me_mask) 4583 return; 4584 4585 for (i = context->shadow_root_level; --i >= 0;) { 4586 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask; 4587 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask; 4588 } 4589 4590 } 4591 EXPORT_SYMBOL_GPL(reset_shadow_zero_bits_mask); 4592 4593 static inline bool boot_cpu_is_amd(void) 4594 { 4595 WARN_ON_ONCE(!tdp_enabled); 4596 return shadow_x_mask == 0; 4597 } 4598 4599 /* 4600 * the direct page table on host, use as much mmu features as 4601 * possible, however, kvm currently does not do execution-protection. 4602 */ 4603 static void 4604 reset_tdp_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, 4605 struct kvm_mmu *context) 4606 { 4607 struct rsvd_bits_validate *shadow_zero_check; 4608 int i; 4609 4610 shadow_zero_check = &context->shadow_zero_check; 4611 4612 if (boot_cpu_is_amd()) 4613 __reset_rsvds_bits_mask(vcpu, shadow_zero_check, 4614 shadow_phys_bits, 4615 context->shadow_root_level, false, 4616 boot_cpu_has(X86_FEATURE_GBPAGES), 4617 true, true); 4618 else 4619 __reset_rsvds_bits_mask_ept(shadow_zero_check, 4620 shadow_phys_bits, 4621 false); 4622 4623 if (!shadow_me_mask) 4624 return; 4625 4626 for (i = context->shadow_root_level; --i >= 0;) { 4627 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask; 4628 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask; 4629 } 4630 } 4631 4632 /* 4633 * as the comments in reset_shadow_zero_bits_mask() except it 4634 * is the shadow page table for intel nested guest. 4635 */ 4636 static void 4637 reset_ept_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, 4638 struct kvm_mmu *context, bool execonly) 4639 { 4640 __reset_rsvds_bits_mask_ept(&context->shadow_zero_check, 4641 shadow_phys_bits, execonly); 4642 } 4643 4644 #define BYTE_MASK(access) \ 4645 ((1 & (access) ? 2 : 0) | \ 4646 (2 & (access) ? 4 : 0) | \ 4647 (3 & (access) ? 8 : 0) | \ 4648 (4 & (access) ? 16 : 0) | \ 4649 (5 & (access) ? 32 : 0) | \ 4650 (6 & (access) ? 64 : 0) | \ 4651 (7 & (access) ? 128 : 0)) 4652 4653 4654 static void update_permission_bitmask(struct kvm_vcpu *vcpu, 4655 struct kvm_mmu *mmu, bool ept) 4656 { 4657 unsigned byte; 4658 4659 const u8 x = BYTE_MASK(ACC_EXEC_MASK); 4660 const u8 w = BYTE_MASK(ACC_WRITE_MASK); 4661 const u8 u = BYTE_MASK(ACC_USER_MASK); 4662 4663 bool cr4_smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP) != 0; 4664 bool cr4_smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP) != 0; 4665 bool cr0_wp = is_write_protection(vcpu); 4666 4667 for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) { 4668 unsigned pfec = byte << 1; 4669 4670 /* 4671 * Each "*f" variable has a 1 bit for each UWX value 4672 * that causes a fault with the given PFEC. 4673 */ 4674 4675 /* Faults from writes to non-writable pages */ 4676 u8 wf = (pfec & PFERR_WRITE_MASK) ? (u8)~w : 0; 4677 /* Faults from user mode accesses to supervisor pages */ 4678 u8 uf = (pfec & PFERR_USER_MASK) ? (u8)~u : 0; 4679 /* Faults from fetches of non-executable pages*/ 4680 u8 ff = (pfec & PFERR_FETCH_MASK) ? (u8)~x : 0; 4681 /* Faults from kernel mode fetches of user pages */ 4682 u8 smepf = 0; 4683 /* Faults from kernel mode accesses of user pages */ 4684 u8 smapf = 0; 4685 4686 if (!ept) { 4687 /* Faults from kernel mode accesses to user pages */ 4688 u8 kf = (pfec & PFERR_USER_MASK) ? 0 : u; 4689 4690 /* Not really needed: !nx will cause pte.nx to fault */ 4691 if (!mmu->nx) 4692 ff = 0; 4693 4694 /* Allow supervisor writes if !cr0.wp */ 4695 if (!cr0_wp) 4696 wf = (pfec & PFERR_USER_MASK) ? wf : 0; 4697 4698 /* Disallow supervisor fetches of user code if cr4.smep */ 4699 if (cr4_smep) 4700 smepf = (pfec & PFERR_FETCH_MASK) ? kf : 0; 4701 4702 /* 4703 * SMAP:kernel-mode data accesses from user-mode 4704 * mappings should fault. A fault is considered 4705 * as a SMAP violation if all of the following 4706 * conditions are true: 4707 * - X86_CR4_SMAP is set in CR4 4708 * - A user page is accessed 4709 * - The access is not a fetch 4710 * - Page fault in kernel mode 4711 * - if CPL = 3 or X86_EFLAGS_AC is clear 4712 * 4713 * Here, we cover the first three conditions. 4714 * The fourth is computed dynamically in permission_fault(); 4715 * PFERR_RSVD_MASK bit will be set in PFEC if the access is 4716 * *not* subject to SMAP restrictions. 4717 */ 4718 if (cr4_smap) 4719 smapf = (pfec & (PFERR_RSVD_MASK|PFERR_FETCH_MASK)) ? 0 : kf; 4720 } 4721 4722 mmu->permissions[byte] = ff | uf | wf | smepf | smapf; 4723 } 4724 } 4725 4726 /* 4727 * PKU is an additional mechanism by which the paging controls access to 4728 * user-mode addresses based on the value in the PKRU register. Protection 4729 * key violations are reported through a bit in the page fault error code. 4730 * Unlike other bits of the error code, the PK bit is not known at the 4731 * call site of e.g. gva_to_gpa; it must be computed directly in 4732 * permission_fault based on two bits of PKRU, on some machine state (CR4, 4733 * CR0, EFER, CPL), and on other bits of the error code and the page tables. 4734 * 4735 * In particular the following conditions come from the error code, the 4736 * page tables and the machine state: 4737 * - PK is always zero unless CR4.PKE=1 and EFER.LMA=1 4738 * - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch) 4739 * - PK is always zero if U=0 in the page tables 4740 * - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access. 4741 * 4742 * The PKRU bitmask caches the result of these four conditions. The error 4743 * code (minus the P bit) and the page table's U bit form an index into the 4744 * PKRU bitmask. Two bits of the PKRU bitmask are then extracted and ANDed 4745 * with the two bits of the PKRU register corresponding to the protection key. 4746 * For the first three conditions above the bits will be 00, thus masking 4747 * away both AD and WD. For all reads or if the last condition holds, WD 4748 * only will be masked away. 4749 */ 4750 static void update_pkru_bitmask(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, 4751 bool ept) 4752 { 4753 unsigned bit; 4754 bool wp; 4755 4756 if (ept) { 4757 mmu->pkru_mask = 0; 4758 return; 4759 } 4760 4761 /* PKEY is enabled only if CR4.PKE and EFER.LMA are both set. */ 4762 if (!kvm_read_cr4_bits(vcpu, X86_CR4_PKE) || !is_long_mode(vcpu)) { 4763 mmu->pkru_mask = 0; 4764 return; 4765 } 4766 4767 wp = is_write_protection(vcpu); 4768 4769 for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) { 4770 unsigned pfec, pkey_bits; 4771 bool check_pkey, check_write, ff, uf, wf, pte_user; 4772 4773 pfec = bit << 1; 4774 ff = pfec & PFERR_FETCH_MASK; 4775 uf = pfec & PFERR_USER_MASK; 4776 wf = pfec & PFERR_WRITE_MASK; 4777 4778 /* PFEC.RSVD is replaced by ACC_USER_MASK. */ 4779 pte_user = pfec & PFERR_RSVD_MASK; 4780 4781 /* 4782 * Only need to check the access which is not an 4783 * instruction fetch and is to a user page. 4784 */ 4785 check_pkey = (!ff && pte_user); 4786 /* 4787 * write access is controlled by PKRU if it is a 4788 * user access or CR0.WP = 1. 4789 */ 4790 check_write = check_pkey && wf && (uf || wp); 4791 4792 /* PKRU.AD stops both read and write access. */ 4793 pkey_bits = !!check_pkey; 4794 /* PKRU.WD stops write access. */ 4795 pkey_bits |= (!!check_write) << 1; 4796 4797 mmu->pkru_mask |= (pkey_bits & 3) << pfec; 4798 } 4799 } 4800 4801 static void update_last_nonleaf_level(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu) 4802 { 4803 unsigned root_level = mmu->root_level; 4804 4805 mmu->last_nonleaf_level = root_level; 4806 if (root_level == PT32_ROOT_LEVEL && is_pse(vcpu)) 4807 mmu->last_nonleaf_level++; 4808 } 4809 4810 static void paging64_init_context_common(struct kvm_vcpu *vcpu, 4811 struct kvm_mmu *context, 4812 int level) 4813 { 4814 context->nx = is_nx(vcpu); 4815 context->root_level = level; 4816 4817 reset_rsvds_bits_mask(vcpu, context); 4818 update_permission_bitmask(vcpu, context, false); 4819 update_pkru_bitmask(vcpu, context, false); 4820 update_last_nonleaf_level(vcpu, context); 4821 4822 MMU_WARN_ON(!is_pae(vcpu)); 4823 context->page_fault = paging64_page_fault; 4824 context->gva_to_gpa = paging64_gva_to_gpa; 4825 context->sync_page = paging64_sync_page; 4826 context->invlpg = paging64_invlpg; 4827 context->update_pte = paging64_update_pte; 4828 context->shadow_root_level = level; 4829 context->direct_map = false; 4830 } 4831 4832 static void paging64_init_context(struct kvm_vcpu *vcpu, 4833 struct kvm_mmu *context) 4834 { 4835 int root_level = is_la57_mode(vcpu) ? 4836 PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL; 4837 4838 paging64_init_context_common(vcpu, context, root_level); 4839 } 4840 4841 static void paging32_init_context(struct kvm_vcpu *vcpu, 4842 struct kvm_mmu *context) 4843 { 4844 context->nx = false; 4845 context->root_level = PT32_ROOT_LEVEL; 4846 4847 reset_rsvds_bits_mask(vcpu, context); 4848 update_permission_bitmask(vcpu, context, false); 4849 update_pkru_bitmask(vcpu, context, false); 4850 update_last_nonleaf_level(vcpu, context); 4851 4852 context->page_fault = paging32_page_fault; 4853 context->gva_to_gpa = paging32_gva_to_gpa; 4854 context->sync_page = paging32_sync_page; 4855 context->invlpg = paging32_invlpg; 4856 context->update_pte = paging32_update_pte; 4857 context->shadow_root_level = PT32E_ROOT_LEVEL; 4858 context->direct_map = false; 4859 } 4860 4861 static void paging32E_init_context(struct kvm_vcpu *vcpu, 4862 struct kvm_mmu *context) 4863 { 4864 paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL); 4865 } 4866 4867 static union kvm_mmu_extended_role kvm_calc_mmu_role_ext(struct kvm_vcpu *vcpu) 4868 { 4869 union kvm_mmu_extended_role ext = {0}; 4870 4871 ext.cr0_pg = !!is_paging(vcpu); 4872 ext.cr4_pae = !!is_pae(vcpu); 4873 ext.cr4_smep = !!kvm_read_cr4_bits(vcpu, X86_CR4_SMEP); 4874 ext.cr4_smap = !!kvm_read_cr4_bits(vcpu, X86_CR4_SMAP); 4875 ext.cr4_pse = !!is_pse(vcpu); 4876 ext.cr4_pke = !!kvm_read_cr4_bits(vcpu, X86_CR4_PKE); 4877 ext.cr4_la57 = !!kvm_read_cr4_bits(vcpu, X86_CR4_LA57); 4878 ext.maxphyaddr = cpuid_maxphyaddr(vcpu); 4879 4880 ext.valid = 1; 4881 4882 return ext; 4883 } 4884 4885 static union kvm_mmu_role kvm_calc_mmu_role_common(struct kvm_vcpu *vcpu, 4886 bool base_only) 4887 { 4888 union kvm_mmu_role role = {0}; 4889 4890 role.base.access = ACC_ALL; 4891 role.base.nxe = !!is_nx(vcpu); 4892 role.base.cr0_wp = is_write_protection(vcpu); 4893 role.base.smm = is_smm(vcpu); 4894 role.base.guest_mode = is_guest_mode(vcpu); 4895 4896 if (base_only) 4897 return role; 4898 4899 role.ext = kvm_calc_mmu_role_ext(vcpu); 4900 4901 return role; 4902 } 4903 4904 static union kvm_mmu_role 4905 kvm_calc_tdp_mmu_root_page_role(struct kvm_vcpu *vcpu, bool base_only) 4906 { 4907 union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, base_only); 4908 4909 role.base.ad_disabled = (shadow_accessed_mask == 0); 4910 role.base.level = kvm_x86_ops->get_tdp_level(vcpu); 4911 role.base.direct = true; 4912 role.base.gpte_is_8_bytes = true; 4913 4914 return role; 4915 } 4916 4917 static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu) 4918 { 4919 struct kvm_mmu *context = vcpu->arch.mmu; 4920 union kvm_mmu_role new_role = 4921 kvm_calc_tdp_mmu_root_page_role(vcpu, false); 4922 4923 new_role.base.word &= mmu_base_role_mask.word; 4924 if (new_role.as_u64 == context->mmu_role.as_u64) 4925 return; 4926 4927 context->mmu_role.as_u64 = new_role.as_u64; 4928 context->page_fault = kvm_tdp_page_fault; 4929 context->sync_page = nonpaging_sync_page; 4930 context->invlpg = nonpaging_invlpg; 4931 context->update_pte = nonpaging_update_pte; 4932 context->shadow_root_level = kvm_x86_ops->get_tdp_level(vcpu); 4933 context->direct_map = true; 4934 context->set_cr3 = kvm_x86_ops->set_tdp_cr3; 4935 context->get_cr3 = get_cr3; 4936 context->get_pdptr = kvm_pdptr_read; 4937 context->inject_page_fault = kvm_inject_page_fault; 4938 4939 if (!is_paging(vcpu)) { 4940 context->nx = false; 4941 context->gva_to_gpa = nonpaging_gva_to_gpa; 4942 context->root_level = 0; 4943 } else if (is_long_mode(vcpu)) { 4944 context->nx = is_nx(vcpu); 4945 context->root_level = is_la57_mode(vcpu) ? 4946 PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL; 4947 reset_rsvds_bits_mask(vcpu, context); 4948 context->gva_to_gpa = paging64_gva_to_gpa; 4949 } else if (is_pae(vcpu)) { 4950 context->nx = is_nx(vcpu); 4951 context->root_level = PT32E_ROOT_LEVEL; 4952 reset_rsvds_bits_mask(vcpu, context); 4953 context->gva_to_gpa = paging64_gva_to_gpa; 4954 } else { 4955 context->nx = false; 4956 context->root_level = PT32_ROOT_LEVEL; 4957 reset_rsvds_bits_mask(vcpu, context); 4958 context->gva_to_gpa = paging32_gva_to_gpa; 4959 } 4960 4961 update_permission_bitmask(vcpu, context, false); 4962 update_pkru_bitmask(vcpu, context, false); 4963 update_last_nonleaf_level(vcpu, context); 4964 reset_tdp_shadow_zero_bits_mask(vcpu, context); 4965 } 4966 4967 static union kvm_mmu_role 4968 kvm_calc_shadow_mmu_root_page_role(struct kvm_vcpu *vcpu, bool base_only) 4969 { 4970 union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, base_only); 4971 4972 role.base.smep_andnot_wp = role.ext.cr4_smep && 4973 !is_write_protection(vcpu); 4974 role.base.smap_andnot_wp = role.ext.cr4_smap && 4975 !is_write_protection(vcpu); 4976 role.base.direct = !is_paging(vcpu); 4977 role.base.gpte_is_8_bytes = !!is_pae(vcpu); 4978 4979 if (!is_long_mode(vcpu)) 4980 role.base.level = PT32E_ROOT_LEVEL; 4981 else if (is_la57_mode(vcpu)) 4982 role.base.level = PT64_ROOT_5LEVEL; 4983 else 4984 role.base.level = PT64_ROOT_4LEVEL; 4985 4986 return role; 4987 } 4988 4989 void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu) 4990 { 4991 struct kvm_mmu *context = vcpu->arch.mmu; 4992 union kvm_mmu_role new_role = 4993 kvm_calc_shadow_mmu_root_page_role(vcpu, false); 4994 4995 new_role.base.word &= mmu_base_role_mask.word; 4996 if (new_role.as_u64 == context->mmu_role.as_u64) 4997 return; 4998 4999 if (!is_paging(vcpu)) 5000 nonpaging_init_context(vcpu, context); 5001 else if (is_long_mode(vcpu)) 5002 paging64_init_context(vcpu, context); 5003 else if (is_pae(vcpu)) 5004 paging32E_init_context(vcpu, context); 5005 else 5006 paging32_init_context(vcpu, context); 5007 5008 context->mmu_role.as_u64 = new_role.as_u64; 5009 reset_shadow_zero_bits_mask(vcpu, context); 5010 } 5011 EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu); 5012 5013 static union kvm_mmu_role 5014 kvm_calc_shadow_ept_root_page_role(struct kvm_vcpu *vcpu, bool accessed_dirty, 5015 bool execonly) 5016 { 5017 union kvm_mmu_role role = {0}; 5018 5019 /* SMM flag is inherited from root_mmu */ 5020 role.base.smm = vcpu->arch.root_mmu.mmu_role.base.smm; 5021 5022 role.base.level = PT64_ROOT_4LEVEL; 5023 role.base.gpte_is_8_bytes = true; 5024 role.base.direct = false; 5025 role.base.ad_disabled = !accessed_dirty; 5026 role.base.guest_mode = true; 5027 role.base.access = ACC_ALL; 5028 5029 /* 5030 * WP=1 and NOT_WP=1 is an impossible combination, use WP and the 5031 * SMAP variation to denote shadow EPT entries. 5032 */ 5033 role.base.cr0_wp = true; 5034 role.base.smap_andnot_wp = true; 5035 5036 role.ext = kvm_calc_mmu_role_ext(vcpu); 5037 role.ext.execonly = execonly; 5038 5039 return role; 5040 } 5041 5042 void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly, 5043 bool accessed_dirty, gpa_t new_eptp) 5044 { 5045 struct kvm_mmu *context = vcpu->arch.mmu; 5046 union kvm_mmu_role new_role = 5047 kvm_calc_shadow_ept_root_page_role(vcpu, accessed_dirty, 5048 execonly); 5049 5050 __kvm_mmu_new_cr3(vcpu, new_eptp, new_role.base, false); 5051 5052 new_role.base.word &= mmu_base_role_mask.word; 5053 if (new_role.as_u64 == context->mmu_role.as_u64) 5054 return; 5055 5056 context->shadow_root_level = PT64_ROOT_4LEVEL; 5057 5058 context->nx = true; 5059 context->ept_ad = accessed_dirty; 5060 context->page_fault = ept_page_fault; 5061 context->gva_to_gpa = ept_gva_to_gpa; 5062 context->sync_page = ept_sync_page; 5063 context->invlpg = ept_invlpg; 5064 context->update_pte = ept_update_pte; 5065 context->root_level = PT64_ROOT_4LEVEL; 5066 context->direct_map = false; 5067 context->mmu_role.as_u64 = new_role.as_u64; 5068 5069 update_permission_bitmask(vcpu, context, true); 5070 update_pkru_bitmask(vcpu, context, true); 5071 update_last_nonleaf_level(vcpu, context); 5072 reset_rsvds_bits_mask_ept(vcpu, context, execonly); 5073 reset_ept_shadow_zero_bits_mask(vcpu, context, execonly); 5074 } 5075 EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu); 5076 5077 static void init_kvm_softmmu(struct kvm_vcpu *vcpu) 5078 { 5079 struct kvm_mmu *context = vcpu->arch.mmu; 5080 5081 kvm_init_shadow_mmu(vcpu); 5082 context->set_cr3 = kvm_x86_ops->set_cr3; 5083 context->get_cr3 = get_cr3; 5084 context->get_pdptr = kvm_pdptr_read; 5085 context->inject_page_fault = kvm_inject_page_fault; 5086 } 5087 5088 static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu) 5089 { 5090 union kvm_mmu_role new_role = kvm_calc_mmu_role_common(vcpu, false); 5091 struct kvm_mmu *g_context = &vcpu->arch.nested_mmu; 5092 5093 new_role.base.word &= mmu_base_role_mask.word; 5094 if (new_role.as_u64 == g_context->mmu_role.as_u64) 5095 return; 5096 5097 g_context->mmu_role.as_u64 = new_role.as_u64; 5098 g_context->get_cr3 = get_cr3; 5099 g_context->get_pdptr = kvm_pdptr_read; 5100 g_context->inject_page_fault = kvm_inject_page_fault; 5101 5102 /* 5103 * Note that arch.mmu->gva_to_gpa translates l2_gpa to l1_gpa using 5104 * L1's nested page tables (e.g. EPT12). The nested translation 5105 * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using 5106 * L2's page tables as the first level of translation and L1's 5107 * nested page tables as the second level of translation. Basically 5108 * the gva_to_gpa functions between mmu and nested_mmu are swapped. 5109 */ 5110 if (!is_paging(vcpu)) { 5111 g_context->nx = false; 5112 g_context->root_level = 0; 5113 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested; 5114 } else if (is_long_mode(vcpu)) { 5115 g_context->nx = is_nx(vcpu); 5116 g_context->root_level = is_la57_mode(vcpu) ? 5117 PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL; 5118 reset_rsvds_bits_mask(vcpu, g_context); 5119 g_context->gva_to_gpa = paging64_gva_to_gpa_nested; 5120 } else if (is_pae(vcpu)) { 5121 g_context->nx = is_nx(vcpu); 5122 g_context->root_level = PT32E_ROOT_LEVEL; 5123 reset_rsvds_bits_mask(vcpu, g_context); 5124 g_context->gva_to_gpa = paging64_gva_to_gpa_nested; 5125 } else { 5126 g_context->nx = false; 5127 g_context->root_level = PT32_ROOT_LEVEL; 5128 reset_rsvds_bits_mask(vcpu, g_context); 5129 g_context->gva_to_gpa = paging32_gva_to_gpa_nested; 5130 } 5131 5132 update_permission_bitmask(vcpu, g_context, false); 5133 update_pkru_bitmask(vcpu, g_context, false); 5134 update_last_nonleaf_level(vcpu, g_context); 5135 } 5136 5137 void kvm_init_mmu(struct kvm_vcpu *vcpu, bool reset_roots) 5138 { 5139 if (reset_roots) { 5140 uint i; 5141 5142 vcpu->arch.mmu->root_hpa = INVALID_PAGE; 5143 5144 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 5145 vcpu->arch.mmu->prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID; 5146 } 5147 5148 if (mmu_is_nested(vcpu)) 5149 init_kvm_nested_mmu(vcpu); 5150 else if (tdp_enabled) 5151 init_kvm_tdp_mmu(vcpu); 5152 else 5153 init_kvm_softmmu(vcpu); 5154 } 5155 EXPORT_SYMBOL_GPL(kvm_init_mmu); 5156 5157 static union kvm_mmu_page_role 5158 kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu) 5159 { 5160 union kvm_mmu_role role; 5161 5162 if (tdp_enabled) 5163 role = kvm_calc_tdp_mmu_root_page_role(vcpu, true); 5164 else 5165 role = kvm_calc_shadow_mmu_root_page_role(vcpu, true); 5166 5167 return role.base; 5168 } 5169 5170 void kvm_mmu_reset_context(struct kvm_vcpu *vcpu) 5171 { 5172 kvm_mmu_unload(vcpu); 5173 kvm_init_mmu(vcpu, true); 5174 } 5175 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context); 5176 5177 int kvm_mmu_load(struct kvm_vcpu *vcpu) 5178 { 5179 int r; 5180 5181 r = mmu_topup_memory_caches(vcpu); 5182 if (r) 5183 goto out; 5184 r = mmu_alloc_roots(vcpu); 5185 kvm_mmu_sync_roots(vcpu); 5186 if (r) 5187 goto out; 5188 kvm_mmu_load_cr3(vcpu); 5189 kvm_x86_ops->tlb_flush(vcpu, true); 5190 out: 5191 return r; 5192 } 5193 EXPORT_SYMBOL_GPL(kvm_mmu_load); 5194 5195 void kvm_mmu_unload(struct kvm_vcpu *vcpu) 5196 { 5197 kvm_mmu_free_roots(vcpu, &vcpu->arch.root_mmu, KVM_MMU_ROOTS_ALL); 5198 WARN_ON(VALID_PAGE(vcpu->arch.root_mmu.root_hpa)); 5199 kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL); 5200 WARN_ON(VALID_PAGE(vcpu->arch.guest_mmu.root_hpa)); 5201 } 5202 EXPORT_SYMBOL_GPL(kvm_mmu_unload); 5203 5204 static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu, 5205 struct kvm_mmu_page *sp, u64 *spte, 5206 const void *new) 5207 { 5208 if (sp->role.level != PT_PAGE_TABLE_LEVEL) { 5209 ++vcpu->kvm->stat.mmu_pde_zapped; 5210 return; 5211 } 5212 5213 ++vcpu->kvm->stat.mmu_pte_updated; 5214 vcpu->arch.mmu->update_pte(vcpu, sp, spte, new); 5215 } 5216 5217 static bool need_remote_flush(u64 old, u64 new) 5218 { 5219 if (!is_shadow_present_pte(old)) 5220 return false; 5221 if (!is_shadow_present_pte(new)) 5222 return true; 5223 if ((old ^ new) & PT64_BASE_ADDR_MASK) 5224 return true; 5225 old ^= shadow_nx_mask; 5226 new ^= shadow_nx_mask; 5227 return (old & ~new & PT64_PERM_MASK) != 0; 5228 } 5229 5230 static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa, 5231 int *bytes) 5232 { 5233 u64 gentry = 0; 5234 int r; 5235 5236 /* 5237 * Assume that the pte write on a page table of the same type 5238 * as the current vcpu paging mode since we update the sptes only 5239 * when they have the same mode. 5240 */ 5241 if (is_pae(vcpu) && *bytes == 4) { 5242 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */ 5243 *gpa &= ~(gpa_t)7; 5244 *bytes = 8; 5245 } 5246 5247 if (*bytes == 4 || *bytes == 8) { 5248 r = kvm_vcpu_read_guest_atomic(vcpu, *gpa, &gentry, *bytes); 5249 if (r) 5250 gentry = 0; 5251 } 5252 5253 return gentry; 5254 } 5255 5256 /* 5257 * If we're seeing too many writes to a page, it may no longer be a page table, 5258 * or we may be forking, in which case it is better to unmap the page. 5259 */ 5260 static bool detect_write_flooding(struct kvm_mmu_page *sp) 5261 { 5262 /* 5263 * Skip write-flooding detected for the sp whose level is 1, because 5264 * it can become unsync, then the guest page is not write-protected. 5265 */ 5266 if (sp->role.level == PT_PAGE_TABLE_LEVEL) 5267 return false; 5268 5269 atomic_inc(&sp->write_flooding_count); 5270 return atomic_read(&sp->write_flooding_count) >= 3; 5271 } 5272 5273 /* 5274 * Misaligned accesses are too much trouble to fix up; also, they usually 5275 * indicate a page is not used as a page table. 5276 */ 5277 static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa, 5278 int bytes) 5279 { 5280 unsigned offset, pte_size, misaligned; 5281 5282 pgprintk("misaligned: gpa %llx bytes %d role %x\n", 5283 gpa, bytes, sp->role.word); 5284 5285 offset = offset_in_page(gpa); 5286 pte_size = sp->role.gpte_is_8_bytes ? 8 : 4; 5287 5288 /* 5289 * Sometimes, the OS only writes the last one bytes to update status 5290 * bits, for example, in linux, andb instruction is used in clear_bit(). 5291 */ 5292 if (!(offset & (pte_size - 1)) && bytes == 1) 5293 return false; 5294 5295 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1); 5296 misaligned |= bytes < 4; 5297 5298 return misaligned; 5299 } 5300 5301 static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte) 5302 { 5303 unsigned page_offset, quadrant; 5304 u64 *spte; 5305 int level; 5306 5307 page_offset = offset_in_page(gpa); 5308 level = sp->role.level; 5309 *nspte = 1; 5310 if (!sp->role.gpte_is_8_bytes) { 5311 page_offset <<= 1; /* 32->64 */ 5312 /* 5313 * A 32-bit pde maps 4MB while the shadow pdes map 5314 * only 2MB. So we need to double the offset again 5315 * and zap two pdes instead of one. 5316 */ 5317 if (level == PT32_ROOT_LEVEL) { 5318 page_offset &= ~7; /* kill rounding error */ 5319 page_offset <<= 1; 5320 *nspte = 2; 5321 } 5322 quadrant = page_offset >> PAGE_SHIFT; 5323 page_offset &= ~PAGE_MASK; 5324 if (quadrant != sp->role.quadrant) 5325 return NULL; 5326 } 5327 5328 spte = &sp->spt[page_offset / sizeof(*spte)]; 5329 return spte; 5330 } 5331 5332 static void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa, 5333 const u8 *new, int bytes, 5334 struct kvm_page_track_notifier_node *node) 5335 { 5336 gfn_t gfn = gpa >> PAGE_SHIFT; 5337 struct kvm_mmu_page *sp; 5338 LIST_HEAD(invalid_list); 5339 u64 entry, gentry, *spte; 5340 int npte; 5341 bool remote_flush, local_flush; 5342 5343 /* 5344 * If we don't have indirect shadow pages, it means no page is 5345 * write-protected, so we can exit simply. 5346 */ 5347 if (!READ_ONCE(vcpu->kvm->arch.indirect_shadow_pages)) 5348 return; 5349 5350 remote_flush = local_flush = false; 5351 5352 pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes); 5353 5354 /* 5355 * No need to care whether allocation memory is successful 5356 * or not since pte prefetch is skiped if it does not have 5357 * enough objects in the cache. 5358 */ 5359 mmu_topup_memory_caches(vcpu); 5360 5361 spin_lock(&vcpu->kvm->mmu_lock); 5362 5363 gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, &bytes); 5364 5365 ++vcpu->kvm->stat.mmu_pte_write; 5366 kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE); 5367 5368 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) { 5369 if (detect_write_misaligned(sp, gpa, bytes) || 5370 detect_write_flooding(sp)) { 5371 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list); 5372 ++vcpu->kvm->stat.mmu_flooded; 5373 continue; 5374 } 5375 5376 spte = get_written_sptes(sp, gpa, &npte); 5377 if (!spte) 5378 continue; 5379 5380 local_flush = true; 5381 while (npte--) { 5382 u32 base_role = vcpu->arch.mmu->mmu_role.base.word; 5383 5384 entry = *spte; 5385 mmu_page_zap_pte(vcpu->kvm, sp, spte); 5386 if (gentry && 5387 !((sp->role.word ^ base_role) 5388 & mmu_base_role_mask.word) && rmap_can_add(vcpu)) 5389 mmu_pte_write_new_pte(vcpu, sp, spte, &gentry); 5390 if (need_remote_flush(entry, *spte)) 5391 remote_flush = true; 5392 ++spte; 5393 } 5394 } 5395 kvm_mmu_flush_or_zap(vcpu, &invalid_list, remote_flush, local_flush); 5396 kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE); 5397 spin_unlock(&vcpu->kvm->mmu_lock); 5398 } 5399 5400 int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva) 5401 { 5402 gpa_t gpa; 5403 int r; 5404 5405 if (vcpu->arch.mmu->direct_map) 5406 return 0; 5407 5408 gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL); 5409 5410 r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT); 5411 5412 return r; 5413 } 5414 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt); 5415 5416 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 error_code, 5417 void *insn, int insn_len) 5418 { 5419 int r, emulation_type = 0; 5420 bool direct = vcpu->arch.mmu->direct_map; 5421 5422 if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa))) 5423 return RET_PF_RETRY; 5424 5425 /* With shadow page tables, fault_address contains a GVA or nGPA. */ 5426 if (vcpu->arch.mmu->direct_map) { 5427 vcpu->arch.gpa_available = true; 5428 vcpu->arch.gpa_val = cr2_or_gpa; 5429 } 5430 5431 r = RET_PF_INVALID; 5432 if (unlikely(error_code & PFERR_RSVD_MASK)) { 5433 r = handle_mmio_page_fault(vcpu, cr2_or_gpa, direct); 5434 if (r == RET_PF_EMULATE) 5435 goto emulate; 5436 } 5437 5438 if (r == RET_PF_INVALID) { 5439 r = kvm_mmu_do_page_fault(vcpu, cr2_or_gpa, 5440 lower_32_bits(error_code), false); 5441 WARN_ON(r == RET_PF_INVALID); 5442 } 5443 5444 if (r == RET_PF_RETRY) 5445 return 1; 5446 if (r < 0) 5447 return r; 5448 5449 /* 5450 * Before emulating the instruction, check if the error code 5451 * was due to a RO violation while translating the guest page. 5452 * This can occur when using nested virtualization with nested 5453 * paging in both guests. If true, we simply unprotect the page 5454 * and resume the guest. 5455 */ 5456 if (vcpu->arch.mmu->direct_map && 5457 (error_code & PFERR_NESTED_GUEST_PAGE) == PFERR_NESTED_GUEST_PAGE) { 5458 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(cr2_or_gpa)); 5459 return 1; 5460 } 5461 5462 /* 5463 * vcpu->arch.mmu.page_fault returned RET_PF_EMULATE, but we can still 5464 * optimistically try to just unprotect the page and let the processor 5465 * re-execute the instruction that caused the page fault. Do not allow 5466 * retrying MMIO emulation, as it's not only pointless but could also 5467 * cause us to enter an infinite loop because the processor will keep 5468 * faulting on the non-existent MMIO address. Retrying an instruction 5469 * from a nested guest is also pointless and dangerous as we are only 5470 * explicitly shadowing L1's page tables, i.e. unprotecting something 5471 * for L1 isn't going to magically fix whatever issue cause L2 to fail. 5472 */ 5473 if (!mmio_info_in_cache(vcpu, cr2_or_gpa, direct) && !is_guest_mode(vcpu)) 5474 emulation_type = EMULTYPE_ALLOW_RETRY; 5475 emulate: 5476 /* 5477 * On AMD platforms, under certain conditions insn_len may be zero on #NPF. 5478 * This can happen if a guest gets a page-fault on data access but the HW 5479 * table walker is not able to read the instruction page (e.g instruction 5480 * page is not present in memory). In those cases we simply restart the 5481 * guest, with the exception of AMD Erratum 1096 which is unrecoverable. 5482 */ 5483 if (unlikely(insn && !insn_len)) { 5484 if (!kvm_x86_ops->need_emulation_on_page_fault(vcpu)) 5485 return 1; 5486 } 5487 5488 return x86_emulate_instruction(vcpu, cr2_or_gpa, emulation_type, insn, 5489 insn_len); 5490 } 5491 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault); 5492 5493 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva) 5494 { 5495 struct kvm_mmu *mmu = vcpu->arch.mmu; 5496 int i; 5497 5498 /* INVLPG on a * non-canonical address is a NOP according to the SDM. */ 5499 if (is_noncanonical_address(gva, vcpu)) 5500 return; 5501 5502 mmu->invlpg(vcpu, gva, mmu->root_hpa); 5503 5504 /* 5505 * INVLPG is required to invalidate any global mappings for the VA, 5506 * irrespective of PCID. Since it would take us roughly similar amount 5507 * of work to determine whether any of the prev_root mappings of the VA 5508 * is marked global, or to just sync it blindly, so we might as well 5509 * just always sync it. 5510 * 5511 * Mappings not reachable via the current cr3 or the prev_roots will be 5512 * synced when switching to that cr3, so nothing needs to be done here 5513 * for them. 5514 */ 5515 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 5516 if (VALID_PAGE(mmu->prev_roots[i].hpa)) 5517 mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa); 5518 5519 kvm_x86_ops->tlb_flush_gva(vcpu, gva); 5520 ++vcpu->stat.invlpg; 5521 } 5522 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg); 5523 5524 void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid) 5525 { 5526 struct kvm_mmu *mmu = vcpu->arch.mmu; 5527 bool tlb_flush = false; 5528 uint i; 5529 5530 if (pcid == kvm_get_active_pcid(vcpu)) { 5531 mmu->invlpg(vcpu, gva, mmu->root_hpa); 5532 tlb_flush = true; 5533 } 5534 5535 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) { 5536 if (VALID_PAGE(mmu->prev_roots[i].hpa) && 5537 pcid == kvm_get_pcid(vcpu, mmu->prev_roots[i].cr3)) { 5538 mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa); 5539 tlb_flush = true; 5540 } 5541 } 5542 5543 if (tlb_flush) 5544 kvm_x86_ops->tlb_flush_gva(vcpu, gva); 5545 5546 ++vcpu->stat.invlpg; 5547 5548 /* 5549 * Mappings not reachable via the current cr3 or the prev_roots will be 5550 * synced when switching to that cr3, so nothing needs to be done here 5551 * for them. 5552 */ 5553 } 5554 EXPORT_SYMBOL_GPL(kvm_mmu_invpcid_gva); 5555 5556 void kvm_enable_tdp(void) 5557 { 5558 tdp_enabled = true; 5559 } 5560 EXPORT_SYMBOL_GPL(kvm_enable_tdp); 5561 5562 void kvm_disable_tdp(void) 5563 { 5564 tdp_enabled = false; 5565 } 5566 EXPORT_SYMBOL_GPL(kvm_disable_tdp); 5567 5568 5569 /* The return value indicates if tlb flush on all vcpus is needed. */ 5570 typedef bool (*slot_level_handler) (struct kvm *kvm, struct kvm_rmap_head *rmap_head); 5571 5572 /* The caller should hold mmu-lock before calling this function. */ 5573 static __always_inline bool 5574 slot_handle_level_range(struct kvm *kvm, struct kvm_memory_slot *memslot, 5575 slot_level_handler fn, int start_level, int end_level, 5576 gfn_t start_gfn, gfn_t end_gfn, bool lock_flush_tlb) 5577 { 5578 struct slot_rmap_walk_iterator iterator; 5579 bool flush = false; 5580 5581 for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn, 5582 end_gfn, &iterator) { 5583 if (iterator.rmap) 5584 flush |= fn(kvm, iterator.rmap); 5585 5586 if (need_resched() || spin_needbreak(&kvm->mmu_lock)) { 5587 if (flush && lock_flush_tlb) { 5588 kvm_flush_remote_tlbs_with_address(kvm, 5589 start_gfn, 5590 iterator.gfn - start_gfn + 1); 5591 flush = false; 5592 } 5593 cond_resched_lock(&kvm->mmu_lock); 5594 } 5595 } 5596 5597 if (flush && lock_flush_tlb) { 5598 kvm_flush_remote_tlbs_with_address(kvm, start_gfn, 5599 end_gfn - start_gfn + 1); 5600 flush = false; 5601 } 5602 5603 return flush; 5604 } 5605 5606 static __always_inline bool 5607 slot_handle_level(struct kvm *kvm, struct kvm_memory_slot *memslot, 5608 slot_level_handler fn, int start_level, int end_level, 5609 bool lock_flush_tlb) 5610 { 5611 return slot_handle_level_range(kvm, memslot, fn, start_level, 5612 end_level, memslot->base_gfn, 5613 memslot->base_gfn + memslot->npages - 1, 5614 lock_flush_tlb); 5615 } 5616 5617 static __always_inline bool 5618 slot_handle_all_level(struct kvm *kvm, struct kvm_memory_slot *memslot, 5619 slot_level_handler fn, bool lock_flush_tlb) 5620 { 5621 return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL, 5622 PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb); 5623 } 5624 5625 static __always_inline bool 5626 slot_handle_large_level(struct kvm *kvm, struct kvm_memory_slot *memslot, 5627 slot_level_handler fn, bool lock_flush_tlb) 5628 { 5629 return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL + 1, 5630 PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb); 5631 } 5632 5633 static __always_inline bool 5634 slot_handle_leaf(struct kvm *kvm, struct kvm_memory_slot *memslot, 5635 slot_level_handler fn, bool lock_flush_tlb) 5636 { 5637 return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL, 5638 PT_PAGE_TABLE_LEVEL, lock_flush_tlb); 5639 } 5640 5641 static void free_mmu_pages(struct kvm_mmu *mmu) 5642 { 5643 free_page((unsigned long)mmu->pae_root); 5644 free_page((unsigned long)mmu->lm_root); 5645 } 5646 5647 static int alloc_mmu_pages(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu) 5648 { 5649 struct page *page; 5650 int i; 5651 5652 /* 5653 * When using PAE paging, the four PDPTEs are treated as 'root' pages, 5654 * while the PDP table is a per-vCPU construct that's allocated at MMU 5655 * creation. When emulating 32-bit mode, cr3 is only 32 bits even on 5656 * x86_64. Therefore we need to allocate the PDP table in the first 5657 * 4GB of memory, which happens to fit the DMA32 zone. Except for 5658 * SVM's 32-bit NPT support, TDP paging doesn't use PAE paging and can 5659 * skip allocating the PDP table. 5660 */ 5661 if (tdp_enabled && kvm_x86_ops->get_tdp_level(vcpu) > PT32E_ROOT_LEVEL) 5662 return 0; 5663 5664 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_DMA32); 5665 if (!page) 5666 return -ENOMEM; 5667 5668 mmu->pae_root = page_address(page); 5669 for (i = 0; i < 4; ++i) 5670 mmu->pae_root[i] = INVALID_PAGE; 5671 5672 return 0; 5673 } 5674 5675 int kvm_mmu_create(struct kvm_vcpu *vcpu) 5676 { 5677 uint i; 5678 int ret; 5679 5680 vcpu->arch.mmu = &vcpu->arch.root_mmu; 5681 vcpu->arch.walk_mmu = &vcpu->arch.root_mmu; 5682 5683 vcpu->arch.root_mmu.root_hpa = INVALID_PAGE; 5684 vcpu->arch.root_mmu.root_cr3 = 0; 5685 vcpu->arch.root_mmu.translate_gpa = translate_gpa; 5686 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 5687 vcpu->arch.root_mmu.prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID; 5688 5689 vcpu->arch.guest_mmu.root_hpa = INVALID_PAGE; 5690 vcpu->arch.guest_mmu.root_cr3 = 0; 5691 vcpu->arch.guest_mmu.translate_gpa = translate_gpa; 5692 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 5693 vcpu->arch.guest_mmu.prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID; 5694 5695 vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa; 5696 5697 ret = alloc_mmu_pages(vcpu, &vcpu->arch.guest_mmu); 5698 if (ret) 5699 return ret; 5700 5701 ret = alloc_mmu_pages(vcpu, &vcpu->arch.root_mmu); 5702 if (ret) 5703 goto fail_allocate_root; 5704 5705 return ret; 5706 fail_allocate_root: 5707 free_mmu_pages(&vcpu->arch.guest_mmu); 5708 return ret; 5709 } 5710 5711 #define BATCH_ZAP_PAGES 10 5712 static void kvm_zap_obsolete_pages(struct kvm *kvm) 5713 { 5714 struct kvm_mmu_page *sp, *node; 5715 int nr_zapped, batch = 0; 5716 5717 restart: 5718 list_for_each_entry_safe_reverse(sp, node, 5719 &kvm->arch.active_mmu_pages, link) { 5720 /* 5721 * No obsolete valid page exists before a newly created page 5722 * since active_mmu_pages is a FIFO list. 5723 */ 5724 if (!is_obsolete_sp(kvm, sp)) 5725 break; 5726 5727 /* 5728 * Skip invalid pages with a non-zero root count, zapping pages 5729 * with a non-zero root count will never succeed, i.e. the page 5730 * will get thrown back on active_mmu_pages and we'll get stuck 5731 * in an infinite loop. 5732 */ 5733 if (sp->role.invalid && sp->root_count) 5734 continue; 5735 5736 /* 5737 * No need to flush the TLB since we're only zapping shadow 5738 * pages with an obsolete generation number and all vCPUS have 5739 * loaded a new root, i.e. the shadow pages being zapped cannot 5740 * be in active use by the guest. 5741 */ 5742 if (batch >= BATCH_ZAP_PAGES && 5743 cond_resched_lock(&kvm->mmu_lock)) { 5744 batch = 0; 5745 goto restart; 5746 } 5747 5748 if (__kvm_mmu_prepare_zap_page(kvm, sp, 5749 &kvm->arch.zapped_obsolete_pages, &nr_zapped)) { 5750 batch += nr_zapped; 5751 goto restart; 5752 } 5753 } 5754 5755 /* 5756 * Trigger a remote TLB flush before freeing the page tables to ensure 5757 * KVM is not in the middle of a lockless shadow page table walk, which 5758 * may reference the pages. 5759 */ 5760 kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages); 5761 } 5762 5763 /* 5764 * Fast invalidate all shadow pages and use lock-break technique 5765 * to zap obsolete pages. 5766 * 5767 * It's required when memslot is being deleted or VM is being 5768 * destroyed, in these cases, we should ensure that KVM MMU does 5769 * not use any resource of the being-deleted slot or all slots 5770 * after calling the function. 5771 */ 5772 static void kvm_mmu_zap_all_fast(struct kvm *kvm) 5773 { 5774 lockdep_assert_held(&kvm->slots_lock); 5775 5776 spin_lock(&kvm->mmu_lock); 5777 trace_kvm_mmu_zap_all_fast(kvm); 5778 5779 /* 5780 * Toggle mmu_valid_gen between '0' and '1'. Because slots_lock is 5781 * held for the entire duration of zapping obsolete pages, it's 5782 * impossible for there to be multiple invalid generations associated 5783 * with *valid* shadow pages at any given time, i.e. there is exactly 5784 * one valid generation and (at most) one invalid generation. 5785 */ 5786 kvm->arch.mmu_valid_gen = kvm->arch.mmu_valid_gen ? 0 : 1; 5787 5788 /* 5789 * Notify all vcpus to reload its shadow page table and flush TLB. 5790 * Then all vcpus will switch to new shadow page table with the new 5791 * mmu_valid_gen. 5792 * 5793 * Note: we need to do this under the protection of mmu_lock, 5794 * otherwise, vcpu would purge shadow page but miss tlb flush. 5795 */ 5796 kvm_reload_remote_mmus(kvm); 5797 5798 kvm_zap_obsolete_pages(kvm); 5799 spin_unlock(&kvm->mmu_lock); 5800 } 5801 5802 static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm) 5803 { 5804 return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages)); 5805 } 5806 5807 static void kvm_mmu_invalidate_zap_pages_in_memslot(struct kvm *kvm, 5808 struct kvm_memory_slot *slot, 5809 struct kvm_page_track_notifier_node *node) 5810 { 5811 kvm_mmu_zap_all_fast(kvm); 5812 } 5813 5814 void kvm_mmu_init_vm(struct kvm *kvm) 5815 { 5816 struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker; 5817 5818 node->track_write = kvm_mmu_pte_write; 5819 node->track_flush_slot = kvm_mmu_invalidate_zap_pages_in_memslot; 5820 kvm_page_track_register_notifier(kvm, node); 5821 } 5822 5823 void kvm_mmu_uninit_vm(struct kvm *kvm) 5824 { 5825 struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker; 5826 5827 kvm_page_track_unregister_notifier(kvm, node); 5828 } 5829 5830 void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end) 5831 { 5832 struct kvm_memslots *slots; 5833 struct kvm_memory_slot *memslot; 5834 int i; 5835 5836 spin_lock(&kvm->mmu_lock); 5837 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { 5838 slots = __kvm_memslots(kvm, i); 5839 kvm_for_each_memslot(memslot, slots) { 5840 gfn_t start, end; 5841 5842 start = max(gfn_start, memslot->base_gfn); 5843 end = min(gfn_end, memslot->base_gfn + memslot->npages); 5844 if (start >= end) 5845 continue; 5846 5847 slot_handle_level_range(kvm, memslot, kvm_zap_rmapp, 5848 PT_PAGE_TABLE_LEVEL, PT_MAX_HUGEPAGE_LEVEL, 5849 start, end - 1, true); 5850 } 5851 } 5852 5853 spin_unlock(&kvm->mmu_lock); 5854 } 5855 5856 static bool slot_rmap_write_protect(struct kvm *kvm, 5857 struct kvm_rmap_head *rmap_head) 5858 { 5859 return __rmap_write_protect(kvm, rmap_head, false); 5860 } 5861 5862 void kvm_mmu_slot_remove_write_access(struct kvm *kvm, 5863 struct kvm_memory_slot *memslot) 5864 { 5865 bool flush; 5866 5867 spin_lock(&kvm->mmu_lock); 5868 flush = slot_handle_all_level(kvm, memslot, slot_rmap_write_protect, 5869 false); 5870 spin_unlock(&kvm->mmu_lock); 5871 5872 /* 5873 * kvm_mmu_slot_remove_write_access() and kvm_vm_ioctl_get_dirty_log() 5874 * which do tlb flush out of mmu-lock should be serialized by 5875 * kvm->slots_lock otherwise tlb flush would be missed. 5876 */ 5877 lockdep_assert_held(&kvm->slots_lock); 5878 5879 /* 5880 * We can flush all the TLBs out of the mmu lock without TLB 5881 * corruption since we just change the spte from writable to 5882 * readonly so that we only need to care the case of changing 5883 * spte from present to present (changing the spte from present 5884 * to nonpresent will flush all the TLBs immediately), in other 5885 * words, the only case we care is mmu_spte_update() where we 5886 * have checked SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE 5887 * instead of PT_WRITABLE_MASK, that means it does not depend 5888 * on PT_WRITABLE_MASK anymore. 5889 */ 5890 if (flush) 5891 kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn, 5892 memslot->npages); 5893 } 5894 5895 static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm, 5896 struct kvm_rmap_head *rmap_head) 5897 { 5898 u64 *sptep; 5899 struct rmap_iterator iter; 5900 int need_tlb_flush = 0; 5901 kvm_pfn_t pfn; 5902 struct kvm_mmu_page *sp; 5903 5904 restart: 5905 for_each_rmap_spte(rmap_head, &iter, sptep) { 5906 sp = page_header(__pa(sptep)); 5907 pfn = spte_to_pfn(*sptep); 5908 5909 /* 5910 * We cannot do huge page mapping for indirect shadow pages, 5911 * which are found on the last rmap (level = 1) when not using 5912 * tdp; such shadow pages are synced with the page table in 5913 * the guest, and the guest page table is using 4K page size 5914 * mapping if the indirect sp has level = 1. 5915 */ 5916 if (sp->role.direct && !kvm_is_reserved_pfn(pfn) && 5917 (kvm_is_zone_device_pfn(pfn) || 5918 PageCompound(pfn_to_page(pfn)))) { 5919 pte_list_remove(rmap_head, sptep); 5920 5921 if (kvm_available_flush_tlb_with_range()) 5922 kvm_flush_remote_tlbs_with_address(kvm, sp->gfn, 5923 KVM_PAGES_PER_HPAGE(sp->role.level)); 5924 else 5925 need_tlb_flush = 1; 5926 5927 goto restart; 5928 } 5929 } 5930 5931 return need_tlb_flush; 5932 } 5933 5934 void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm, 5935 const struct kvm_memory_slot *memslot) 5936 { 5937 /* FIXME: const-ify all uses of struct kvm_memory_slot. */ 5938 spin_lock(&kvm->mmu_lock); 5939 slot_handle_leaf(kvm, (struct kvm_memory_slot *)memslot, 5940 kvm_mmu_zap_collapsible_spte, true); 5941 spin_unlock(&kvm->mmu_lock); 5942 } 5943 5944 void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm, 5945 struct kvm_memory_slot *memslot) 5946 { 5947 bool flush; 5948 5949 spin_lock(&kvm->mmu_lock); 5950 flush = slot_handle_leaf(kvm, memslot, __rmap_clear_dirty, false); 5951 spin_unlock(&kvm->mmu_lock); 5952 5953 lockdep_assert_held(&kvm->slots_lock); 5954 5955 /* 5956 * It's also safe to flush TLBs out of mmu lock here as currently this 5957 * function is only used for dirty logging, in which case flushing TLB 5958 * out of mmu lock also guarantees no dirty pages will be lost in 5959 * dirty_bitmap. 5960 */ 5961 if (flush) 5962 kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn, 5963 memslot->npages); 5964 } 5965 EXPORT_SYMBOL_GPL(kvm_mmu_slot_leaf_clear_dirty); 5966 5967 void kvm_mmu_slot_largepage_remove_write_access(struct kvm *kvm, 5968 struct kvm_memory_slot *memslot) 5969 { 5970 bool flush; 5971 5972 spin_lock(&kvm->mmu_lock); 5973 flush = slot_handle_large_level(kvm, memslot, slot_rmap_write_protect, 5974 false); 5975 spin_unlock(&kvm->mmu_lock); 5976 5977 /* see kvm_mmu_slot_remove_write_access */ 5978 lockdep_assert_held(&kvm->slots_lock); 5979 5980 if (flush) 5981 kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn, 5982 memslot->npages); 5983 } 5984 EXPORT_SYMBOL_GPL(kvm_mmu_slot_largepage_remove_write_access); 5985 5986 void kvm_mmu_slot_set_dirty(struct kvm *kvm, 5987 struct kvm_memory_slot *memslot) 5988 { 5989 bool flush; 5990 5991 spin_lock(&kvm->mmu_lock); 5992 flush = slot_handle_all_level(kvm, memslot, __rmap_set_dirty, false); 5993 spin_unlock(&kvm->mmu_lock); 5994 5995 lockdep_assert_held(&kvm->slots_lock); 5996 5997 /* see kvm_mmu_slot_leaf_clear_dirty */ 5998 if (flush) 5999 kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn, 6000 memslot->npages); 6001 } 6002 EXPORT_SYMBOL_GPL(kvm_mmu_slot_set_dirty); 6003 6004 void kvm_mmu_zap_all(struct kvm *kvm) 6005 { 6006 struct kvm_mmu_page *sp, *node; 6007 LIST_HEAD(invalid_list); 6008 int ign; 6009 6010 spin_lock(&kvm->mmu_lock); 6011 restart: 6012 list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link) { 6013 if (sp->role.invalid && sp->root_count) 6014 continue; 6015 if (__kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list, &ign)) 6016 goto restart; 6017 if (cond_resched_lock(&kvm->mmu_lock)) 6018 goto restart; 6019 } 6020 6021 kvm_mmu_commit_zap_page(kvm, &invalid_list); 6022 spin_unlock(&kvm->mmu_lock); 6023 } 6024 6025 void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen) 6026 { 6027 WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS); 6028 6029 gen &= MMIO_SPTE_GEN_MASK; 6030 6031 /* 6032 * Generation numbers are incremented in multiples of the number of 6033 * address spaces in order to provide unique generations across all 6034 * address spaces. Strip what is effectively the address space 6035 * modifier prior to checking for a wrap of the MMIO generation so 6036 * that a wrap in any address space is detected. 6037 */ 6038 gen &= ~((u64)KVM_ADDRESS_SPACE_NUM - 1); 6039 6040 /* 6041 * The very rare case: if the MMIO generation number has wrapped, 6042 * zap all shadow pages. 6043 */ 6044 if (unlikely(gen == 0)) { 6045 kvm_debug_ratelimited("kvm: zapping shadow pages for mmio generation wraparound\n"); 6046 kvm_mmu_zap_all_fast(kvm); 6047 } 6048 } 6049 6050 static unsigned long 6051 mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc) 6052 { 6053 struct kvm *kvm; 6054 int nr_to_scan = sc->nr_to_scan; 6055 unsigned long freed = 0; 6056 6057 mutex_lock(&kvm_lock); 6058 6059 list_for_each_entry(kvm, &vm_list, vm_list) { 6060 int idx; 6061 LIST_HEAD(invalid_list); 6062 6063 /* 6064 * Never scan more than sc->nr_to_scan VM instances. 6065 * Will not hit this condition practically since we do not try 6066 * to shrink more than one VM and it is very unlikely to see 6067 * !n_used_mmu_pages so many times. 6068 */ 6069 if (!nr_to_scan--) 6070 break; 6071 /* 6072 * n_used_mmu_pages is accessed without holding kvm->mmu_lock 6073 * here. We may skip a VM instance errorneosly, but we do not 6074 * want to shrink a VM that only started to populate its MMU 6075 * anyway. 6076 */ 6077 if (!kvm->arch.n_used_mmu_pages && 6078 !kvm_has_zapped_obsolete_pages(kvm)) 6079 continue; 6080 6081 idx = srcu_read_lock(&kvm->srcu); 6082 spin_lock(&kvm->mmu_lock); 6083 6084 if (kvm_has_zapped_obsolete_pages(kvm)) { 6085 kvm_mmu_commit_zap_page(kvm, 6086 &kvm->arch.zapped_obsolete_pages); 6087 goto unlock; 6088 } 6089 6090 if (prepare_zap_oldest_mmu_page(kvm, &invalid_list)) 6091 freed++; 6092 kvm_mmu_commit_zap_page(kvm, &invalid_list); 6093 6094 unlock: 6095 spin_unlock(&kvm->mmu_lock); 6096 srcu_read_unlock(&kvm->srcu, idx); 6097 6098 /* 6099 * unfair on small ones 6100 * per-vm shrinkers cry out 6101 * sadness comes quickly 6102 */ 6103 list_move_tail(&kvm->vm_list, &vm_list); 6104 break; 6105 } 6106 6107 mutex_unlock(&kvm_lock); 6108 return freed; 6109 } 6110 6111 static unsigned long 6112 mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc) 6113 { 6114 return percpu_counter_read_positive(&kvm_total_used_mmu_pages); 6115 } 6116 6117 static struct shrinker mmu_shrinker = { 6118 .count_objects = mmu_shrink_count, 6119 .scan_objects = mmu_shrink_scan, 6120 .seeks = DEFAULT_SEEKS * 10, 6121 }; 6122 6123 static void mmu_destroy_caches(void) 6124 { 6125 kmem_cache_destroy(pte_list_desc_cache); 6126 kmem_cache_destroy(mmu_page_header_cache); 6127 } 6128 6129 static void kvm_set_mmio_spte_mask(void) 6130 { 6131 u64 mask; 6132 6133 /* 6134 * Set the reserved bits and the present bit of an paging-structure 6135 * entry to generate page fault with PFER.RSV = 1. 6136 */ 6137 6138 /* 6139 * Mask the uppermost physical address bit, which would be reserved as 6140 * long as the supported physical address width is less than 52. 6141 */ 6142 mask = 1ull << 51; 6143 6144 /* Set the present bit. */ 6145 mask |= 1ull; 6146 6147 /* 6148 * If reserved bit is not supported, clear the present bit to disable 6149 * mmio page fault. 6150 */ 6151 if (shadow_phys_bits == 52) 6152 mask &= ~1ull; 6153 6154 kvm_mmu_set_mmio_spte_mask(mask, mask, ACC_WRITE_MASK | ACC_USER_MASK); 6155 } 6156 6157 static bool get_nx_auto_mode(void) 6158 { 6159 /* Return true when CPU has the bug, and mitigations are ON */ 6160 return boot_cpu_has_bug(X86_BUG_ITLB_MULTIHIT) && !cpu_mitigations_off(); 6161 } 6162 6163 static void __set_nx_huge_pages(bool val) 6164 { 6165 nx_huge_pages = itlb_multihit_kvm_mitigation = val; 6166 } 6167 6168 static int set_nx_huge_pages(const char *val, const struct kernel_param *kp) 6169 { 6170 bool old_val = nx_huge_pages; 6171 bool new_val; 6172 6173 /* In "auto" mode deploy workaround only if CPU has the bug. */ 6174 if (sysfs_streq(val, "off")) 6175 new_val = 0; 6176 else if (sysfs_streq(val, "force")) 6177 new_val = 1; 6178 else if (sysfs_streq(val, "auto")) 6179 new_val = get_nx_auto_mode(); 6180 else if (strtobool(val, &new_val) < 0) 6181 return -EINVAL; 6182 6183 __set_nx_huge_pages(new_val); 6184 6185 if (new_val != old_val) { 6186 struct kvm *kvm; 6187 6188 mutex_lock(&kvm_lock); 6189 6190 list_for_each_entry(kvm, &vm_list, vm_list) { 6191 mutex_lock(&kvm->slots_lock); 6192 kvm_mmu_zap_all_fast(kvm); 6193 mutex_unlock(&kvm->slots_lock); 6194 6195 wake_up_process(kvm->arch.nx_lpage_recovery_thread); 6196 } 6197 mutex_unlock(&kvm_lock); 6198 } 6199 6200 return 0; 6201 } 6202 6203 int kvm_mmu_module_init(void) 6204 { 6205 int ret = -ENOMEM; 6206 6207 if (nx_huge_pages == -1) 6208 __set_nx_huge_pages(get_nx_auto_mode()); 6209 6210 /* 6211 * MMU roles use union aliasing which is, generally speaking, an 6212 * undefined behavior. However, we supposedly know how compilers behave 6213 * and the current status quo is unlikely to change. Guardians below are 6214 * supposed to let us know if the assumption becomes false. 6215 */ 6216 BUILD_BUG_ON(sizeof(union kvm_mmu_page_role) != sizeof(u32)); 6217 BUILD_BUG_ON(sizeof(union kvm_mmu_extended_role) != sizeof(u32)); 6218 BUILD_BUG_ON(sizeof(union kvm_mmu_role) != sizeof(u64)); 6219 6220 kvm_mmu_reset_all_pte_masks(); 6221 6222 kvm_set_mmio_spte_mask(); 6223 6224 pte_list_desc_cache = kmem_cache_create("pte_list_desc", 6225 sizeof(struct pte_list_desc), 6226 0, SLAB_ACCOUNT, NULL); 6227 if (!pte_list_desc_cache) 6228 goto out; 6229 6230 mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header", 6231 sizeof(struct kvm_mmu_page), 6232 0, SLAB_ACCOUNT, NULL); 6233 if (!mmu_page_header_cache) 6234 goto out; 6235 6236 if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL)) 6237 goto out; 6238 6239 ret = register_shrinker(&mmu_shrinker); 6240 if (ret) 6241 goto out; 6242 6243 return 0; 6244 6245 out: 6246 mmu_destroy_caches(); 6247 return ret; 6248 } 6249 6250 /* 6251 * Calculate mmu pages needed for kvm. 6252 */ 6253 unsigned long kvm_mmu_calculate_default_mmu_pages(struct kvm *kvm) 6254 { 6255 unsigned long nr_mmu_pages; 6256 unsigned long nr_pages = 0; 6257 struct kvm_memslots *slots; 6258 struct kvm_memory_slot *memslot; 6259 int i; 6260 6261 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { 6262 slots = __kvm_memslots(kvm, i); 6263 6264 kvm_for_each_memslot(memslot, slots) 6265 nr_pages += memslot->npages; 6266 } 6267 6268 nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000; 6269 nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES); 6270 6271 return nr_mmu_pages; 6272 } 6273 6274 void kvm_mmu_destroy(struct kvm_vcpu *vcpu) 6275 { 6276 kvm_mmu_unload(vcpu); 6277 free_mmu_pages(&vcpu->arch.root_mmu); 6278 free_mmu_pages(&vcpu->arch.guest_mmu); 6279 mmu_free_memory_caches(vcpu); 6280 } 6281 6282 void kvm_mmu_module_exit(void) 6283 { 6284 mmu_destroy_caches(); 6285 percpu_counter_destroy(&kvm_total_used_mmu_pages); 6286 unregister_shrinker(&mmu_shrinker); 6287 mmu_audit_disable(); 6288 } 6289 6290 static int set_nx_huge_pages_recovery_ratio(const char *val, const struct kernel_param *kp) 6291 { 6292 unsigned int old_val; 6293 int err; 6294 6295 old_val = nx_huge_pages_recovery_ratio; 6296 err = param_set_uint(val, kp); 6297 if (err) 6298 return err; 6299 6300 if (READ_ONCE(nx_huge_pages) && 6301 !old_val && nx_huge_pages_recovery_ratio) { 6302 struct kvm *kvm; 6303 6304 mutex_lock(&kvm_lock); 6305 6306 list_for_each_entry(kvm, &vm_list, vm_list) 6307 wake_up_process(kvm->arch.nx_lpage_recovery_thread); 6308 6309 mutex_unlock(&kvm_lock); 6310 } 6311 6312 return err; 6313 } 6314 6315 static void kvm_recover_nx_lpages(struct kvm *kvm) 6316 { 6317 int rcu_idx; 6318 struct kvm_mmu_page *sp; 6319 unsigned int ratio; 6320 LIST_HEAD(invalid_list); 6321 ulong to_zap; 6322 6323 rcu_idx = srcu_read_lock(&kvm->srcu); 6324 spin_lock(&kvm->mmu_lock); 6325 6326 ratio = READ_ONCE(nx_huge_pages_recovery_ratio); 6327 to_zap = ratio ? DIV_ROUND_UP(kvm->stat.nx_lpage_splits, ratio) : 0; 6328 while (to_zap && !list_empty(&kvm->arch.lpage_disallowed_mmu_pages)) { 6329 /* 6330 * We use a separate list instead of just using active_mmu_pages 6331 * because the number of lpage_disallowed pages is expected to 6332 * be relatively small compared to the total. 6333 */ 6334 sp = list_first_entry(&kvm->arch.lpage_disallowed_mmu_pages, 6335 struct kvm_mmu_page, 6336 lpage_disallowed_link); 6337 WARN_ON_ONCE(!sp->lpage_disallowed); 6338 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list); 6339 WARN_ON_ONCE(sp->lpage_disallowed); 6340 6341 if (!--to_zap || need_resched() || spin_needbreak(&kvm->mmu_lock)) { 6342 kvm_mmu_commit_zap_page(kvm, &invalid_list); 6343 if (to_zap) 6344 cond_resched_lock(&kvm->mmu_lock); 6345 } 6346 } 6347 6348 spin_unlock(&kvm->mmu_lock); 6349 srcu_read_unlock(&kvm->srcu, rcu_idx); 6350 } 6351 6352 static long get_nx_lpage_recovery_timeout(u64 start_time) 6353 { 6354 return READ_ONCE(nx_huge_pages) && READ_ONCE(nx_huge_pages_recovery_ratio) 6355 ? start_time + 60 * HZ - get_jiffies_64() 6356 : MAX_SCHEDULE_TIMEOUT; 6357 } 6358 6359 static int kvm_nx_lpage_recovery_worker(struct kvm *kvm, uintptr_t data) 6360 { 6361 u64 start_time; 6362 long remaining_time; 6363 6364 while (true) { 6365 start_time = get_jiffies_64(); 6366 remaining_time = get_nx_lpage_recovery_timeout(start_time); 6367 6368 set_current_state(TASK_INTERRUPTIBLE); 6369 while (!kthread_should_stop() && remaining_time > 0) { 6370 schedule_timeout(remaining_time); 6371 remaining_time = get_nx_lpage_recovery_timeout(start_time); 6372 set_current_state(TASK_INTERRUPTIBLE); 6373 } 6374 6375 set_current_state(TASK_RUNNING); 6376 6377 if (kthread_should_stop()) 6378 return 0; 6379 6380 kvm_recover_nx_lpages(kvm); 6381 } 6382 } 6383 6384 int kvm_mmu_post_init_vm(struct kvm *kvm) 6385 { 6386 int err; 6387 6388 err = kvm_vm_create_worker_thread(kvm, kvm_nx_lpage_recovery_worker, 0, 6389 "kvm-nx-lpage-recovery", 6390 &kvm->arch.nx_lpage_recovery_thread); 6391 if (!err) 6392 kthread_unpark(kvm->arch.nx_lpage_recovery_thread); 6393 6394 return err; 6395 } 6396 6397 void kvm_mmu_pre_destroy_vm(struct kvm *kvm) 6398 { 6399 if (kvm->arch.nx_lpage_recovery_thread) 6400 kthread_stop(kvm->arch.nx_lpage_recovery_thread); 6401 } 6402