xref: /openbmc/linux/arch/x86/kvm/mmu/mmu.c (revision 710b797c)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This module enables machines with Intel VT-x extensions to run virtual
6  * machines without emulation or binary translation.
7  *
8  * MMU support
9  *
10  * Copyright (C) 2006 Qumranet, Inc.
11  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
12  *
13  * Authors:
14  *   Yaniv Kamay  <yaniv@qumranet.com>
15  *   Avi Kivity   <avi@qumranet.com>
16  */
17 
18 #include "irq.h"
19 #include "ioapic.h"
20 #include "mmu.h"
21 #include "mmu_internal.h"
22 #include "tdp_mmu.h"
23 #include "x86.h"
24 #include "kvm_cache_regs.h"
25 #include "kvm_emulate.h"
26 #include "cpuid.h"
27 #include "spte.h"
28 
29 #include <linux/kvm_host.h>
30 #include <linux/types.h>
31 #include <linux/string.h>
32 #include <linux/mm.h>
33 #include <linux/highmem.h>
34 #include <linux/moduleparam.h>
35 #include <linux/export.h>
36 #include <linux/swap.h>
37 #include <linux/hugetlb.h>
38 #include <linux/compiler.h>
39 #include <linux/srcu.h>
40 #include <linux/slab.h>
41 #include <linux/sched/signal.h>
42 #include <linux/uaccess.h>
43 #include <linux/hash.h>
44 #include <linux/kern_levels.h>
45 #include <linux/kthread.h>
46 
47 #include <asm/page.h>
48 #include <asm/memtype.h>
49 #include <asm/cmpxchg.h>
50 #include <asm/io.h>
51 #include <asm/set_memory.h>
52 #include <asm/vmx.h>
53 #include <asm/kvm_page_track.h>
54 #include "trace.h"
55 
56 extern bool itlb_multihit_kvm_mitigation;
57 
58 static int __read_mostly nx_huge_pages = -1;
59 #ifdef CONFIG_PREEMPT_RT
60 /* Recovery can cause latency spikes, disable it for PREEMPT_RT.  */
61 static uint __read_mostly nx_huge_pages_recovery_ratio = 0;
62 #else
63 static uint __read_mostly nx_huge_pages_recovery_ratio = 60;
64 #endif
65 
66 static int set_nx_huge_pages(const char *val, const struct kernel_param *kp);
67 static int set_nx_huge_pages_recovery_ratio(const char *val, const struct kernel_param *kp);
68 
69 static const struct kernel_param_ops nx_huge_pages_ops = {
70 	.set = set_nx_huge_pages,
71 	.get = param_get_bool,
72 };
73 
74 static const struct kernel_param_ops nx_huge_pages_recovery_ratio_ops = {
75 	.set = set_nx_huge_pages_recovery_ratio,
76 	.get = param_get_uint,
77 };
78 
79 module_param_cb(nx_huge_pages, &nx_huge_pages_ops, &nx_huge_pages, 0644);
80 __MODULE_PARM_TYPE(nx_huge_pages, "bool");
81 module_param_cb(nx_huge_pages_recovery_ratio, &nx_huge_pages_recovery_ratio_ops,
82 		&nx_huge_pages_recovery_ratio, 0644);
83 __MODULE_PARM_TYPE(nx_huge_pages_recovery_ratio, "uint");
84 
85 static bool __read_mostly force_flush_and_sync_on_reuse;
86 module_param_named(flush_on_reuse, force_flush_and_sync_on_reuse, bool, 0644);
87 
88 /*
89  * When setting this variable to true it enables Two-Dimensional-Paging
90  * where the hardware walks 2 page tables:
91  * 1. the guest-virtual to guest-physical
92  * 2. while doing 1. it walks guest-physical to host-physical
93  * If the hardware supports that we don't need to do shadow paging.
94  */
95 bool tdp_enabled = false;
96 
97 static int max_huge_page_level __read_mostly;
98 static int max_tdp_level __read_mostly;
99 
100 enum {
101 	AUDIT_PRE_PAGE_FAULT,
102 	AUDIT_POST_PAGE_FAULT,
103 	AUDIT_PRE_PTE_WRITE,
104 	AUDIT_POST_PTE_WRITE,
105 	AUDIT_PRE_SYNC,
106 	AUDIT_POST_SYNC
107 };
108 
109 #ifdef MMU_DEBUG
110 bool dbg = 0;
111 module_param(dbg, bool, 0644);
112 #endif
113 
114 #define PTE_PREFETCH_NUM		8
115 
116 #define PT32_LEVEL_BITS 10
117 
118 #define PT32_LEVEL_SHIFT(level) \
119 		(PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
120 
121 #define PT32_LVL_OFFSET_MASK(level) \
122 	(PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
123 						* PT32_LEVEL_BITS))) - 1))
124 
125 #define PT32_INDEX(address, level)\
126 	(((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
127 
128 
129 #define PT32_BASE_ADDR_MASK PAGE_MASK
130 #define PT32_DIR_BASE_ADDR_MASK \
131 	(PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
132 #define PT32_LVL_ADDR_MASK(level) \
133 	(PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
134 					    * PT32_LEVEL_BITS))) - 1))
135 
136 #include <trace/events/kvm.h>
137 
138 /* make pte_list_desc fit well in cache line */
139 #define PTE_LIST_EXT 3
140 
141 struct pte_list_desc {
142 	u64 *sptes[PTE_LIST_EXT];
143 	struct pte_list_desc *more;
144 };
145 
146 struct kvm_shadow_walk_iterator {
147 	u64 addr;
148 	hpa_t shadow_addr;
149 	u64 *sptep;
150 	int level;
151 	unsigned index;
152 };
153 
154 #define for_each_shadow_entry_using_root(_vcpu, _root, _addr, _walker)     \
155 	for (shadow_walk_init_using_root(&(_walker), (_vcpu),              \
156 					 (_root), (_addr));                \
157 	     shadow_walk_okay(&(_walker));			           \
158 	     shadow_walk_next(&(_walker)))
159 
160 #define for_each_shadow_entry(_vcpu, _addr, _walker)            \
161 	for (shadow_walk_init(&(_walker), _vcpu, _addr);	\
162 	     shadow_walk_okay(&(_walker));			\
163 	     shadow_walk_next(&(_walker)))
164 
165 #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte)	\
166 	for (shadow_walk_init(&(_walker), _vcpu, _addr);		\
167 	     shadow_walk_okay(&(_walker)) &&				\
168 		({ spte = mmu_spte_get_lockless(_walker.sptep); 1; });	\
169 	     __shadow_walk_next(&(_walker), spte))
170 
171 static struct kmem_cache *pte_list_desc_cache;
172 struct kmem_cache *mmu_page_header_cache;
173 static struct percpu_counter kvm_total_used_mmu_pages;
174 
175 static void mmu_spte_set(u64 *sptep, u64 spte);
176 static union kvm_mmu_page_role
177 kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu);
178 
179 #define CREATE_TRACE_POINTS
180 #include "mmutrace.h"
181 
182 
183 static inline bool kvm_available_flush_tlb_with_range(void)
184 {
185 	return kvm_x86_ops.tlb_remote_flush_with_range;
186 }
187 
188 static void kvm_flush_remote_tlbs_with_range(struct kvm *kvm,
189 		struct kvm_tlb_range *range)
190 {
191 	int ret = -ENOTSUPP;
192 
193 	if (range && kvm_x86_ops.tlb_remote_flush_with_range)
194 		ret = static_call(kvm_x86_tlb_remote_flush_with_range)(kvm, range);
195 
196 	if (ret)
197 		kvm_flush_remote_tlbs(kvm);
198 }
199 
200 void kvm_flush_remote_tlbs_with_address(struct kvm *kvm,
201 		u64 start_gfn, u64 pages)
202 {
203 	struct kvm_tlb_range range;
204 
205 	range.start_gfn = start_gfn;
206 	range.pages = pages;
207 
208 	kvm_flush_remote_tlbs_with_range(kvm, &range);
209 }
210 
211 bool is_nx_huge_page_enabled(void)
212 {
213 	return READ_ONCE(nx_huge_pages);
214 }
215 
216 static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn,
217 			   unsigned int access)
218 {
219 	u64 spte = make_mmio_spte(vcpu, gfn, access);
220 
221 	trace_mark_mmio_spte(sptep, gfn, spte);
222 	mmu_spte_set(sptep, spte);
223 }
224 
225 static gfn_t get_mmio_spte_gfn(u64 spte)
226 {
227 	u64 gpa = spte & shadow_nonpresent_or_rsvd_lower_gfn_mask;
228 
229 	gpa |= (spte >> SHADOW_NONPRESENT_OR_RSVD_MASK_LEN)
230 	       & shadow_nonpresent_or_rsvd_mask;
231 
232 	return gpa >> PAGE_SHIFT;
233 }
234 
235 static unsigned get_mmio_spte_access(u64 spte)
236 {
237 	return spte & shadow_mmio_access_mask;
238 }
239 
240 static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte)
241 {
242 	u64 kvm_gen, spte_gen, gen;
243 
244 	gen = kvm_vcpu_memslots(vcpu)->generation;
245 	if (unlikely(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS))
246 		return false;
247 
248 	kvm_gen = gen & MMIO_SPTE_GEN_MASK;
249 	spte_gen = get_mmio_spte_generation(spte);
250 
251 	trace_check_mmio_spte(spte, kvm_gen, spte_gen);
252 	return likely(kvm_gen == spte_gen);
253 }
254 
255 static gpa_t translate_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
256                                   struct x86_exception *exception)
257 {
258 	/* Check if guest physical address doesn't exceed guest maximum */
259 	if (kvm_vcpu_is_illegal_gpa(vcpu, gpa)) {
260 		exception->error_code |= PFERR_RSVD_MASK;
261 		return UNMAPPED_GVA;
262 	}
263 
264         return gpa;
265 }
266 
267 static int is_cpuid_PSE36(void)
268 {
269 	return 1;
270 }
271 
272 static int is_nx(struct kvm_vcpu *vcpu)
273 {
274 	return vcpu->arch.efer & EFER_NX;
275 }
276 
277 static gfn_t pse36_gfn_delta(u32 gpte)
278 {
279 	int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
280 
281 	return (gpte & PT32_DIR_PSE36_MASK) << shift;
282 }
283 
284 #ifdef CONFIG_X86_64
285 static void __set_spte(u64 *sptep, u64 spte)
286 {
287 	WRITE_ONCE(*sptep, spte);
288 }
289 
290 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
291 {
292 	WRITE_ONCE(*sptep, spte);
293 }
294 
295 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
296 {
297 	return xchg(sptep, spte);
298 }
299 
300 static u64 __get_spte_lockless(u64 *sptep)
301 {
302 	return READ_ONCE(*sptep);
303 }
304 #else
305 union split_spte {
306 	struct {
307 		u32 spte_low;
308 		u32 spte_high;
309 	};
310 	u64 spte;
311 };
312 
313 static void count_spte_clear(u64 *sptep, u64 spte)
314 {
315 	struct kvm_mmu_page *sp =  sptep_to_sp(sptep);
316 
317 	if (is_shadow_present_pte(spte))
318 		return;
319 
320 	/* Ensure the spte is completely set before we increase the count */
321 	smp_wmb();
322 	sp->clear_spte_count++;
323 }
324 
325 static void __set_spte(u64 *sptep, u64 spte)
326 {
327 	union split_spte *ssptep, sspte;
328 
329 	ssptep = (union split_spte *)sptep;
330 	sspte = (union split_spte)spte;
331 
332 	ssptep->spte_high = sspte.spte_high;
333 
334 	/*
335 	 * If we map the spte from nonpresent to present, We should store
336 	 * the high bits firstly, then set present bit, so cpu can not
337 	 * fetch this spte while we are setting the spte.
338 	 */
339 	smp_wmb();
340 
341 	WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
342 }
343 
344 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
345 {
346 	union split_spte *ssptep, sspte;
347 
348 	ssptep = (union split_spte *)sptep;
349 	sspte = (union split_spte)spte;
350 
351 	WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
352 
353 	/*
354 	 * If we map the spte from present to nonpresent, we should clear
355 	 * present bit firstly to avoid vcpu fetch the old high bits.
356 	 */
357 	smp_wmb();
358 
359 	ssptep->spte_high = sspte.spte_high;
360 	count_spte_clear(sptep, spte);
361 }
362 
363 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
364 {
365 	union split_spte *ssptep, sspte, orig;
366 
367 	ssptep = (union split_spte *)sptep;
368 	sspte = (union split_spte)spte;
369 
370 	/* xchg acts as a barrier before the setting of the high bits */
371 	orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
372 	orig.spte_high = ssptep->spte_high;
373 	ssptep->spte_high = sspte.spte_high;
374 	count_spte_clear(sptep, spte);
375 
376 	return orig.spte;
377 }
378 
379 /*
380  * The idea using the light way get the spte on x86_32 guest is from
381  * gup_get_pte (mm/gup.c).
382  *
383  * An spte tlb flush may be pending, because kvm_set_pte_rmapp
384  * coalesces them and we are running out of the MMU lock.  Therefore
385  * we need to protect against in-progress updates of the spte.
386  *
387  * Reading the spte while an update is in progress may get the old value
388  * for the high part of the spte.  The race is fine for a present->non-present
389  * change (because the high part of the spte is ignored for non-present spte),
390  * but for a present->present change we must reread the spte.
391  *
392  * All such changes are done in two steps (present->non-present and
393  * non-present->present), hence it is enough to count the number of
394  * present->non-present updates: if it changed while reading the spte,
395  * we might have hit the race.  This is done using clear_spte_count.
396  */
397 static u64 __get_spte_lockless(u64 *sptep)
398 {
399 	struct kvm_mmu_page *sp =  sptep_to_sp(sptep);
400 	union split_spte spte, *orig = (union split_spte *)sptep;
401 	int count;
402 
403 retry:
404 	count = sp->clear_spte_count;
405 	smp_rmb();
406 
407 	spte.spte_low = orig->spte_low;
408 	smp_rmb();
409 
410 	spte.spte_high = orig->spte_high;
411 	smp_rmb();
412 
413 	if (unlikely(spte.spte_low != orig->spte_low ||
414 	      count != sp->clear_spte_count))
415 		goto retry;
416 
417 	return spte.spte;
418 }
419 #endif
420 
421 static bool spte_has_volatile_bits(u64 spte)
422 {
423 	if (!is_shadow_present_pte(spte))
424 		return false;
425 
426 	/*
427 	 * Always atomically update spte if it can be updated
428 	 * out of mmu-lock, it can ensure dirty bit is not lost,
429 	 * also, it can help us to get a stable is_writable_pte()
430 	 * to ensure tlb flush is not missed.
431 	 */
432 	if (spte_can_locklessly_be_made_writable(spte) ||
433 	    is_access_track_spte(spte))
434 		return true;
435 
436 	if (spte_ad_enabled(spte)) {
437 		if ((spte & shadow_accessed_mask) == 0 ||
438 	    	    (is_writable_pte(spte) && (spte & shadow_dirty_mask) == 0))
439 			return true;
440 	}
441 
442 	return false;
443 }
444 
445 /* Rules for using mmu_spte_set:
446  * Set the sptep from nonpresent to present.
447  * Note: the sptep being assigned *must* be either not present
448  * or in a state where the hardware will not attempt to update
449  * the spte.
450  */
451 static void mmu_spte_set(u64 *sptep, u64 new_spte)
452 {
453 	WARN_ON(is_shadow_present_pte(*sptep));
454 	__set_spte(sptep, new_spte);
455 }
456 
457 /*
458  * Update the SPTE (excluding the PFN), but do not track changes in its
459  * accessed/dirty status.
460  */
461 static u64 mmu_spte_update_no_track(u64 *sptep, u64 new_spte)
462 {
463 	u64 old_spte = *sptep;
464 
465 	WARN_ON(!is_shadow_present_pte(new_spte));
466 
467 	if (!is_shadow_present_pte(old_spte)) {
468 		mmu_spte_set(sptep, new_spte);
469 		return old_spte;
470 	}
471 
472 	if (!spte_has_volatile_bits(old_spte))
473 		__update_clear_spte_fast(sptep, new_spte);
474 	else
475 		old_spte = __update_clear_spte_slow(sptep, new_spte);
476 
477 	WARN_ON(spte_to_pfn(old_spte) != spte_to_pfn(new_spte));
478 
479 	return old_spte;
480 }
481 
482 /* Rules for using mmu_spte_update:
483  * Update the state bits, it means the mapped pfn is not changed.
484  *
485  * Whenever we overwrite a writable spte with a read-only one we
486  * should flush remote TLBs. Otherwise rmap_write_protect
487  * will find a read-only spte, even though the writable spte
488  * might be cached on a CPU's TLB, the return value indicates this
489  * case.
490  *
491  * Returns true if the TLB needs to be flushed
492  */
493 static bool mmu_spte_update(u64 *sptep, u64 new_spte)
494 {
495 	bool flush = false;
496 	u64 old_spte = mmu_spte_update_no_track(sptep, new_spte);
497 
498 	if (!is_shadow_present_pte(old_spte))
499 		return false;
500 
501 	/*
502 	 * For the spte updated out of mmu-lock is safe, since
503 	 * we always atomically update it, see the comments in
504 	 * spte_has_volatile_bits().
505 	 */
506 	if (spte_can_locklessly_be_made_writable(old_spte) &&
507 	      !is_writable_pte(new_spte))
508 		flush = true;
509 
510 	/*
511 	 * Flush TLB when accessed/dirty states are changed in the page tables,
512 	 * to guarantee consistency between TLB and page tables.
513 	 */
514 
515 	if (is_accessed_spte(old_spte) && !is_accessed_spte(new_spte)) {
516 		flush = true;
517 		kvm_set_pfn_accessed(spte_to_pfn(old_spte));
518 	}
519 
520 	if (is_dirty_spte(old_spte) && !is_dirty_spte(new_spte)) {
521 		flush = true;
522 		kvm_set_pfn_dirty(spte_to_pfn(old_spte));
523 	}
524 
525 	return flush;
526 }
527 
528 /*
529  * Rules for using mmu_spte_clear_track_bits:
530  * It sets the sptep from present to nonpresent, and track the
531  * state bits, it is used to clear the last level sptep.
532  * Returns non-zero if the PTE was previously valid.
533  */
534 static int mmu_spte_clear_track_bits(u64 *sptep)
535 {
536 	kvm_pfn_t pfn;
537 	u64 old_spte = *sptep;
538 
539 	if (!spte_has_volatile_bits(old_spte))
540 		__update_clear_spte_fast(sptep, 0ull);
541 	else
542 		old_spte = __update_clear_spte_slow(sptep, 0ull);
543 
544 	if (!is_shadow_present_pte(old_spte))
545 		return 0;
546 
547 	pfn = spte_to_pfn(old_spte);
548 
549 	/*
550 	 * KVM does not hold the refcount of the page used by
551 	 * kvm mmu, before reclaiming the page, we should
552 	 * unmap it from mmu first.
553 	 */
554 	WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn)));
555 
556 	if (is_accessed_spte(old_spte))
557 		kvm_set_pfn_accessed(pfn);
558 
559 	if (is_dirty_spte(old_spte))
560 		kvm_set_pfn_dirty(pfn);
561 
562 	return 1;
563 }
564 
565 /*
566  * Rules for using mmu_spte_clear_no_track:
567  * Directly clear spte without caring the state bits of sptep,
568  * it is used to set the upper level spte.
569  */
570 static void mmu_spte_clear_no_track(u64 *sptep)
571 {
572 	__update_clear_spte_fast(sptep, 0ull);
573 }
574 
575 static u64 mmu_spte_get_lockless(u64 *sptep)
576 {
577 	return __get_spte_lockless(sptep);
578 }
579 
580 /* Restore an acc-track PTE back to a regular PTE */
581 static u64 restore_acc_track_spte(u64 spte)
582 {
583 	u64 new_spte = spte;
584 	u64 saved_bits = (spte >> SHADOW_ACC_TRACK_SAVED_BITS_SHIFT)
585 			 & SHADOW_ACC_TRACK_SAVED_BITS_MASK;
586 
587 	WARN_ON_ONCE(spte_ad_enabled(spte));
588 	WARN_ON_ONCE(!is_access_track_spte(spte));
589 
590 	new_spte &= ~shadow_acc_track_mask;
591 	new_spte &= ~(SHADOW_ACC_TRACK_SAVED_BITS_MASK <<
592 		      SHADOW_ACC_TRACK_SAVED_BITS_SHIFT);
593 	new_spte |= saved_bits;
594 
595 	return new_spte;
596 }
597 
598 /* Returns the Accessed status of the PTE and resets it at the same time. */
599 static bool mmu_spte_age(u64 *sptep)
600 {
601 	u64 spte = mmu_spte_get_lockless(sptep);
602 
603 	if (!is_accessed_spte(spte))
604 		return false;
605 
606 	if (spte_ad_enabled(spte)) {
607 		clear_bit((ffs(shadow_accessed_mask) - 1),
608 			  (unsigned long *)sptep);
609 	} else {
610 		/*
611 		 * Capture the dirty status of the page, so that it doesn't get
612 		 * lost when the SPTE is marked for access tracking.
613 		 */
614 		if (is_writable_pte(spte))
615 			kvm_set_pfn_dirty(spte_to_pfn(spte));
616 
617 		spte = mark_spte_for_access_track(spte);
618 		mmu_spte_update_no_track(sptep, spte);
619 	}
620 
621 	return true;
622 }
623 
624 static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
625 {
626 	/*
627 	 * Prevent page table teardown by making any free-er wait during
628 	 * kvm_flush_remote_tlbs() IPI to all active vcpus.
629 	 */
630 	local_irq_disable();
631 
632 	/*
633 	 * Make sure a following spte read is not reordered ahead of the write
634 	 * to vcpu->mode.
635 	 */
636 	smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES);
637 }
638 
639 static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
640 {
641 	/*
642 	 * Make sure the write to vcpu->mode is not reordered in front of
643 	 * reads to sptes.  If it does, kvm_mmu_commit_zap_page() can see us
644 	 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
645 	 */
646 	smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE);
647 	local_irq_enable();
648 }
649 
650 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu, bool maybe_indirect)
651 {
652 	int r;
653 
654 	/* 1 rmap, 1 parent PTE per level, and the prefetched rmaps. */
655 	r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
656 				       1 + PT64_ROOT_MAX_LEVEL + PTE_PREFETCH_NUM);
657 	if (r)
658 		return r;
659 	r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_shadow_page_cache,
660 				       PT64_ROOT_MAX_LEVEL);
661 	if (r)
662 		return r;
663 	if (maybe_indirect) {
664 		r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_gfn_array_cache,
665 					       PT64_ROOT_MAX_LEVEL);
666 		if (r)
667 			return r;
668 	}
669 	return kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
670 					  PT64_ROOT_MAX_LEVEL);
671 }
672 
673 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
674 {
675 	kvm_mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache);
676 	kvm_mmu_free_memory_cache(&vcpu->arch.mmu_shadow_page_cache);
677 	kvm_mmu_free_memory_cache(&vcpu->arch.mmu_gfn_array_cache);
678 	kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache);
679 }
680 
681 static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
682 {
683 	return kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
684 }
685 
686 static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
687 {
688 	kmem_cache_free(pte_list_desc_cache, pte_list_desc);
689 }
690 
691 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
692 {
693 	if (!sp->role.direct)
694 		return sp->gfns[index];
695 
696 	return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
697 }
698 
699 static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
700 {
701 	if (!sp->role.direct) {
702 		sp->gfns[index] = gfn;
703 		return;
704 	}
705 
706 	if (WARN_ON(gfn != kvm_mmu_page_get_gfn(sp, index)))
707 		pr_err_ratelimited("gfn mismatch under direct page %llx "
708 				   "(expected %llx, got %llx)\n",
709 				   sp->gfn,
710 				   kvm_mmu_page_get_gfn(sp, index), gfn);
711 }
712 
713 /*
714  * Return the pointer to the large page information for a given gfn,
715  * handling slots that are not large page aligned.
716  */
717 static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
718 		const struct kvm_memory_slot *slot, int level)
719 {
720 	unsigned long idx;
721 
722 	idx = gfn_to_index(gfn, slot->base_gfn, level);
723 	return &slot->arch.lpage_info[level - 2][idx];
724 }
725 
726 static void update_gfn_disallow_lpage_count(struct kvm_memory_slot *slot,
727 					    gfn_t gfn, int count)
728 {
729 	struct kvm_lpage_info *linfo;
730 	int i;
731 
732 	for (i = PG_LEVEL_2M; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) {
733 		linfo = lpage_info_slot(gfn, slot, i);
734 		linfo->disallow_lpage += count;
735 		WARN_ON(linfo->disallow_lpage < 0);
736 	}
737 }
738 
739 void kvm_mmu_gfn_disallow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
740 {
741 	update_gfn_disallow_lpage_count(slot, gfn, 1);
742 }
743 
744 void kvm_mmu_gfn_allow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
745 {
746 	update_gfn_disallow_lpage_count(slot, gfn, -1);
747 }
748 
749 static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
750 {
751 	struct kvm_memslots *slots;
752 	struct kvm_memory_slot *slot;
753 	gfn_t gfn;
754 
755 	kvm->arch.indirect_shadow_pages++;
756 	gfn = sp->gfn;
757 	slots = kvm_memslots_for_spte_role(kvm, sp->role);
758 	slot = __gfn_to_memslot(slots, gfn);
759 
760 	/* the non-leaf shadow pages are keeping readonly. */
761 	if (sp->role.level > PG_LEVEL_4K)
762 		return kvm_slot_page_track_add_page(kvm, slot, gfn,
763 						    KVM_PAGE_TRACK_WRITE);
764 
765 	kvm_mmu_gfn_disallow_lpage(slot, gfn);
766 }
767 
768 void account_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp)
769 {
770 	if (sp->lpage_disallowed)
771 		return;
772 
773 	++kvm->stat.nx_lpage_splits;
774 	list_add_tail(&sp->lpage_disallowed_link,
775 		      &kvm->arch.lpage_disallowed_mmu_pages);
776 	sp->lpage_disallowed = true;
777 }
778 
779 static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
780 {
781 	struct kvm_memslots *slots;
782 	struct kvm_memory_slot *slot;
783 	gfn_t gfn;
784 
785 	kvm->arch.indirect_shadow_pages--;
786 	gfn = sp->gfn;
787 	slots = kvm_memslots_for_spte_role(kvm, sp->role);
788 	slot = __gfn_to_memslot(slots, gfn);
789 	if (sp->role.level > PG_LEVEL_4K)
790 		return kvm_slot_page_track_remove_page(kvm, slot, gfn,
791 						       KVM_PAGE_TRACK_WRITE);
792 
793 	kvm_mmu_gfn_allow_lpage(slot, gfn);
794 }
795 
796 void unaccount_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp)
797 {
798 	--kvm->stat.nx_lpage_splits;
799 	sp->lpage_disallowed = false;
800 	list_del(&sp->lpage_disallowed_link);
801 }
802 
803 static struct kvm_memory_slot *
804 gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
805 			    bool no_dirty_log)
806 {
807 	struct kvm_memory_slot *slot;
808 
809 	slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
810 	if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
811 		return NULL;
812 	if (no_dirty_log && kvm_slot_dirty_track_enabled(slot))
813 		return NULL;
814 
815 	return slot;
816 }
817 
818 /*
819  * About rmap_head encoding:
820  *
821  * If the bit zero of rmap_head->val is clear, then it points to the only spte
822  * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct
823  * pte_list_desc containing more mappings.
824  */
825 
826 /*
827  * Returns the number of pointers in the rmap chain, not counting the new one.
828  */
829 static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
830 			struct kvm_rmap_head *rmap_head)
831 {
832 	struct pte_list_desc *desc;
833 	int i, count = 0;
834 
835 	if (!rmap_head->val) {
836 		rmap_printk("%p %llx 0->1\n", spte, *spte);
837 		rmap_head->val = (unsigned long)spte;
838 	} else if (!(rmap_head->val & 1)) {
839 		rmap_printk("%p %llx 1->many\n", spte, *spte);
840 		desc = mmu_alloc_pte_list_desc(vcpu);
841 		desc->sptes[0] = (u64 *)rmap_head->val;
842 		desc->sptes[1] = spte;
843 		rmap_head->val = (unsigned long)desc | 1;
844 		++count;
845 	} else {
846 		rmap_printk("%p %llx many->many\n", spte, *spte);
847 		desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
848 		while (desc->sptes[PTE_LIST_EXT-1]) {
849 			count += PTE_LIST_EXT;
850 
851 			if (!desc->more) {
852 				desc->more = mmu_alloc_pte_list_desc(vcpu);
853 				desc = desc->more;
854 				break;
855 			}
856 			desc = desc->more;
857 		}
858 		for (i = 0; desc->sptes[i]; ++i)
859 			++count;
860 		desc->sptes[i] = spte;
861 	}
862 	return count;
863 }
864 
865 static void
866 pte_list_desc_remove_entry(struct kvm_rmap_head *rmap_head,
867 			   struct pte_list_desc *desc, int i,
868 			   struct pte_list_desc *prev_desc)
869 {
870 	int j;
871 
872 	for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
873 		;
874 	desc->sptes[i] = desc->sptes[j];
875 	desc->sptes[j] = NULL;
876 	if (j != 0)
877 		return;
878 	if (!prev_desc && !desc->more)
879 		rmap_head->val = 0;
880 	else
881 		if (prev_desc)
882 			prev_desc->more = desc->more;
883 		else
884 			rmap_head->val = (unsigned long)desc->more | 1;
885 	mmu_free_pte_list_desc(desc);
886 }
887 
888 static void __pte_list_remove(u64 *spte, struct kvm_rmap_head *rmap_head)
889 {
890 	struct pte_list_desc *desc;
891 	struct pte_list_desc *prev_desc;
892 	int i;
893 
894 	if (!rmap_head->val) {
895 		pr_err("%s: %p 0->BUG\n", __func__, spte);
896 		BUG();
897 	} else if (!(rmap_head->val & 1)) {
898 		rmap_printk("%p 1->0\n", spte);
899 		if ((u64 *)rmap_head->val != spte) {
900 			pr_err("%s:  %p 1->BUG\n", __func__, spte);
901 			BUG();
902 		}
903 		rmap_head->val = 0;
904 	} else {
905 		rmap_printk("%p many->many\n", spte);
906 		desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
907 		prev_desc = NULL;
908 		while (desc) {
909 			for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i) {
910 				if (desc->sptes[i] == spte) {
911 					pte_list_desc_remove_entry(rmap_head,
912 							desc, i, prev_desc);
913 					return;
914 				}
915 			}
916 			prev_desc = desc;
917 			desc = desc->more;
918 		}
919 		pr_err("%s: %p many->many\n", __func__, spte);
920 		BUG();
921 	}
922 }
923 
924 static void pte_list_remove(struct kvm_rmap_head *rmap_head, u64 *sptep)
925 {
926 	mmu_spte_clear_track_bits(sptep);
927 	__pte_list_remove(sptep, rmap_head);
928 }
929 
930 static struct kvm_rmap_head *__gfn_to_rmap(gfn_t gfn, int level,
931 					   struct kvm_memory_slot *slot)
932 {
933 	unsigned long idx;
934 
935 	idx = gfn_to_index(gfn, slot->base_gfn, level);
936 	return &slot->arch.rmap[level - PG_LEVEL_4K][idx];
937 }
938 
939 static struct kvm_rmap_head *gfn_to_rmap(struct kvm *kvm, gfn_t gfn,
940 					 struct kvm_mmu_page *sp)
941 {
942 	struct kvm_memslots *slots;
943 	struct kvm_memory_slot *slot;
944 
945 	slots = kvm_memslots_for_spte_role(kvm, sp->role);
946 	slot = __gfn_to_memslot(slots, gfn);
947 	return __gfn_to_rmap(gfn, sp->role.level, slot);
948 }
949 
950 static bool rmap_can_add(struct kvm_vcpu *vcpu)
951 {
952 	struct kvm_mmu_memory_cache *mc;
953 
954 	mc = &vcpu->arch.mmu_pte_list_desc_cache;
955 	return kvm_mmu_memory_cache_nr_free_objects(mc);
956 }
957 
958 static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
959 {
960 	struct kvm_mmu_page *sp;
961 	struct kvm_rmap_head *rmap_head;
962 
963 	sp = sptep_to_sp(spte);
964 	kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
965 	rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
966 	return pte_list_add(vcpu, spte, rmap_head);
967 }
968 
969 static void rmap_remove(struct kvm *kvm, u64 *spte)
970 {
971 	struct kvm_mmu_page *sp;
972 	gfn_t gfn;
973 	struct kvm_rmap_head *rmap_head;
974 
975 	sp = sptep_to_sp(spte);
976 	gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
977 	rmap_head = gfn_to_rmap(kvm, gfn, sp);
978 	__pte_list_remove(spte, rmap_head);
979 }
980 
981 /*
982  * Used by the following functions to iterate through the sptes linked by a
983  * rmap.  All fields are private and not assumed to be used outside.
984  */
985 struct rmap_iterator {
986 	/* private fields */
987 	struct pte_list_desc *desc;	/* holds the sptep if not NULL */
988 	int pos;			/* index of the sptep */
989 };
990 
991 /*
992  * Iteration must be started by this function.  This should also be used after
993  * removing/dropping sptes from the rmap link because in such cases the
994  * information in the iterator may not be valid.
995  *
996  * Returns sptep if found, NULL otherwise.
997  */
998 static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head,
999 			   struct rmap_iterator *iter)
1000 {
1001 	u64 *sptep;
1002 
1003 	if (!rmap_head->val)
1004 		return NULL;
1005 
1006 	if (!(rmap_head->val & 1)) {
1007 		iter->desc = NULL;
1008 		sptep = (u64 *)rmap_head->val;
1009 		goto out;
1010 	}
1011 
1012 	iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1013 	iter->pos = 0;
1014 	sptep = iter->desc->sptes[iter->pos];
1015 out:
1016 	BUG_ON(!is_shadow_present_pte(*sptep));
1017 	return sptep;
1018 }
1019 
1020 /*
1021  * Must be used with a valid iterator: e.g. after rmap_get_first().
1022  *
1023  * Returns sptep if found, NULL otherwise.
1024  */
1025 static u64 *rmap_get_next(struct rmap_iterator *iter)
1026 {
1027 	u64 *sptep;
1028 
1029 	if (iter->desc) {
1030 		if (iter->pos < PTE_LIST_EXT - 1) {
1031 			++iter->pos;
1032 			sptep = iter->desc->sptes[iter->pos];
1033 			if (sptep)
1034 				goto out;
1035 		}
1036 
1037 		iter->desc = iter->desc->more;
1038 
1039 		if (iter->desc) {
1040 			iter->pos = 0;
1041 			/* desc->sptes[0] cannot be NULL */
1042 			sptep = iter->desc->sptes[iter->pos];
1043 			goto out;
1044 		}
1045 	}
1046 
1047 	return NULL;
1048 out:
1049 	BUG_ON(!is_shadow_present_pte(*sptep));
1050 	return sptep;
1051 }
1052 
1053 #define for_each_rmap_spte(_rmap_head_, _iter_, _spte_)			\
1054 	for (_spte_ = rmap_get_first(_rmap_head_, _iter_);		\
1055 	     _spte_; _spte_ = rmap_get_next(_iter_))
1056 
1057 static void drop_spte(struct kvm *kvm, u64 *sptep)
1058 {
1059 	if (mmu_spte_clear_track_bits(sptep))
1060 		rmap_remove(kvm, sptep);
1061 }
1062 
1063 
1064 static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
1065 {
1066 	if (is_large_pte(*sptep)) {
1067 		WARN_ON(sptep_to_sp(sptep)->role.level == PG_LEVEL_4K);
1068 		drop_spte(kvm, sptep);
1069 		--kvm->stat.lpages;
1070 		return true;
1071 	}
1072 
1073 	return false;
1074 }
1075 
1076 static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1077 {
1078 	if (__drop_large_spte(vcpu->kvm, sptep)) {
1079 		struct kvm_mmu_page *sp = sptep_to_sp(sptep);
1080 
1081 		kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn,
1082 			KVM_PAGES_PER_HPAGE(sp->role.level));
1083 	}
1084 }
1085 
1086 /*
1087  * Write-protect on the specified @sptep, @pt_protect indicates whether
1088  * spte write-protection is caused by protecting shadow page table.
1089  *
1090  * Note: write protection is difference between dirty logging and spte
1091  * protection:
1092  * - for dirty logging, the spte can be set to writable at anytime if
1093  *   its dirty bitmap is properly set.
1094  * - for spte protection, the spte can be writable only after unsync-ing
1095  *   shadow page.
1096  *
1097  * Return true if tlb need be flushed.
1098  */
1099 static bool spte_write_protect(u64 *sptep, bool pt_protect)
1100 {
1101 	u64 spte = *sptep;
1102 
1103 	if (!is_writable_pte(spte) &&
1104 	      !(pt_protect && spte_can_locklessly_be_made_writable(spte)))
1105 		return false;
1106 
1107 	rmap_printk("spte %p %llx\n", sptep, *sptep);
1108 
1109 	if (pt_protect)
1110 		spte &= ~shadow_mmu_writable_mask;
1111 	spte = spte & ~PT_WRITABLE_MASK;
1112 
1113 	return mmu_spte_update(sptep, spte);
1114 }
1115 
1116 static bool __rmap_write_protect(struct kvm *kvm,
1117 				 struct kvm_rmap_head *rmap_head,
1118 				 bool pt_protect)
1119 {
1120 	u64 *sptep;
1121 	struct rmap_iterator iter;
1122 	bool flush = false;
1123 
1124 	for_each_rmap_spte(rmap_head, &iter, sptep)
1125 		flush |= spte_write_protect(sptep, pt_protect);
1126 
1127 	return flush;
1128 }
1129 
1130 static bool spte_clear_dirty(u64 *sptep)
1131 {
1132 	u64 spte = *sptep;
1133 
1134 	rmap_printk("spte %p %llx\n", sptep, *sptep);
1135 
1136 	MMU_WARN_ON(!spte_ad_enabled(spte));
1137 	spte &= ~shadow_dirty_mask;
1138 	return mmu_spte_update(sptep, spte);
1139 }
1140 
1141 static bool spte_wrprot_for_clear_dirty(u64 *sptep)
1142 {
1143 	bool was_writable = test_and_clear_bit(PT_WRITABLE_SHIFT,
1144 					       (unsigned long *)sptep);
1145 	if (was_writable && !spte_ad_enabled(*sptep))
1146 		kvm_set_pfn_dirty(spte_to_pfn(*sptep));
1147 
1148 	return was_writable;
1149 }
1150 
1151 /*
1152  * Gets the GFN ready for another round of dirty logging by clearing the
1153  *	- D bit on ad-enabled SPTEs, and
1154  *	- W bit on ad-disabled SPTEs.
1155  * Returns true iff any D or W bits were cleared.
1156  */
1157 static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1158 			       struct kvm_memory_slot *slot)
1159 {
1160 	u64 *sptep;
1161 	struct rmap_iterator iter;
1162 	bool flush = false;
1163 
1164 	for_each_rmap_spte(rmap_head, &iter, sptep)
1165 		if (spte_ad_need_write_protect(*sptep))
1166 			flush |= spte_wrprot_for_clear_dirty(sptep);
1167 		else
1168 			flush |= spte_clear_dirty(sptep);
1169 
1170 	return flush;
1171 }
1172 
1173 /**
1174  * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1175  * @kvm: kvm instance
1176  * @slot: slot to protect
1177  * @gfn_offset: start of the BITS_PER_LONG pages we care about
1178  * @mask: indicates which pages we should protect
1179  *
1180  * Used when we do not need to care about huge page mappings: e.g. during dirty
1181  * logging we do not have any such mappings.
1182  */
1183 static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1184 				     struct kvm_memory_slot *slot,
1185 				     gfn_t gfn_offset, unsigned long mask)
1186 {
1187 	struct kvm_rmap_head *rmap_head;
1188 
1189 	if (is_tdp_mmu_enabled(kvm))
1190 		kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot,
1191 				slot->base_gfn + gfn_offset, mask, true);
1192 	while (mask) {
1193 		rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1194 					  PG_LEVEL_4K, slot);
1195 		__rmap_write_protect(kvm, rmap_head, false);
1196 
1197 		/* clear the first set bit */
1198 		mask &= mask - 1;
1199 	}
1200 }
1201 
1202 /**
1203  * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages, or write
1204  * protect the page if the D-bit isn't supported.
1205  * @kvm: kvm instance
1206  * @slot: slot to clear D-bit
1207  * @gfn_offset: start of the BITS_PER_LONG pages we care about
1208  * @mask: indicates which pages we should clear D-bit
1209  *
1210  * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap.
1211  */
1212 static void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
1213 					 struct kvm_memory_slot *slot,
1214 					 gfn_t gfn_offset, unsigned long mask)
1215 {
1216 	struct kvm_rmap_head *rmap_head;
1217 
1218 	if (is_tdp_mmu_enabled(kvm))
1219 		kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot,
1220 				slot->base_gfn + gfn_offset, mask, false);
1221 	while (mask) {
1222 		rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1223 					  PG_LEVEL_4K, slot);
1224 		__rmap_clear_dirty(kvm, rmap_head, slot);
1225 
1226 		/* clear the first set bit */
1227 		mask &= mask - 1;
1228 	}
1229 }
1230 
1231 /**
1232  * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
1233  * PT level pages.
1234  *
1235  * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
1236  * enable dirty logging for them.
1237  *
1238  * Used when we do not need to care about huge page mappings: e.g. during dirty
1239  * logging we do not have any such mappings.
1240  */
1241 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1242 				struct kvm_memory_slot *slot,
1243 				gfn_t gfn_offset, unsigned long mask)
1244 {
1245 	if (kvm_x86_ops.cpu_dirty_log_size)
1246 		kvm_mmu_clear_dirty_pt_masked(kvm, slot, gfn_offset, mask);
1247 	else
1248 		kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
1249 }
1250 
1251 int kvm_cpu_dirty_log_size(void)
1252 {
1253 	return kvm_x86_ops.cpu_dirty_log_size;
1254 }
1255 
1256 bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
1257 				    struct kvm_memory_slot *slot, u64 gfn)
1258 {
1259 	struct kvm_rmap_head *rmap_head;
1260 	int i;
1261 	bool write_protected = false;
1262 
1263 	for (i = PG_LEVEL_4K; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) {
1264 		rmap_head = __gfn_to_rmap(gfn, i, slot);
1265 		write_protected |= __rmap_write_protect(kvm, rmap_head, true);
1266 	}
1267 
1268 	if (is_tdp_mmu_enabled(kvm))
1269 		write_protected |=
1270 			kvm_tdp_mmu_write_protect_gfn(kvm, slot, gfn);
1271 
1272 	return write_protected;
1273 }
1274 
1275 static bool rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn)
1276 {
1277 	struct kvm_memory_slot *slot;
1278 
1279 	slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1280 	return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn);
1281 }
1282 
1283 static bool kvm_zap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1284 			  struct kvm_memory_slot *slot)
1285 {
1286 	u64 *sptep;
1287 	struct rmap_iterator iter;
1288 	bool flush = false;
1289 
1290 	while ((sptep = rmap_get_first(rmap_head, &iter))) {
1291 		rmap_printk("spte %p %llx.\n", sptep, *sptep);
1292 
1293 		pte_list_remove(rmap_head, sptep);
1294 		flush = true;
1295 	}
1296 
1297 	return flush;
1298 }
1299 
1300 static bool kvm_unmap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1301 			    struct kvm_memory_slot *slot, gfn_t gfn, int level,
1302 			    pte_t unused)
1303 {
1304 	return kvm_zap_rmapp(kvm, rmap_head, slot);
1305 }
1306 
1307 static bool kvm_set_pte_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1308 			      struct kvm_memory_slot *slot, gfn_t gfn, int level,
1309 			      pte_t pte)
1310 {
1311 	u64 *sptep;
1312 	struct rmap_iterator iter;
1313 	int need_flush = 0;
1314 	u64 new_spte;
1315 	kvm_pfn_t new_pfn;
1316 
1317 	WARN_ON(pte_huge(pte));
1318 	new_pfn = pte_pfn(pte);
1319 
1320 restart:
1321 	for_each_rmap_spte(rmap_head, &iter, sptep) {
1322 		rmap_printk("spte %p %llx gfn %llx (%d)\n",
1323 			    sptep, *sptep, gfn, level);
1324 
1325 		need_flush = 1;
1326 
1327 		if (pte_write(pte)) {
1328 			pte_list_remove(rmap_head, sptep);
1329 			goto restart;
1330 		} else {
1331 			new_spte = kvm_mmu_changed_pte_notifier_make_spte(
1332 					*sptep, new_pfn);
1333 
1334 			mmu_spte_clear_track_bits(sptep);
1335 			mmu_spte_set(sptep, new_spte);
1336 		}
1337 	}
1338 
1339 	if (need_flush && kvm_available_flush_tlb_with_range()) {
1340 		kvm_flush_remote_tlbs_with_address(kvm, gfn, 1);
1341 		return 0;
1342 	}
1343 
1344 	return need_flush;
1345 }
1346 
1347 struct slot_rmap_walk_iterator {
1348 	/* input fields. */
1349 	struct kvm_memory_slot *slot;
1350 	gfn_t start_gfn;
1351 	gfn_t end_gfn;
1352 	int start_level;
1353 	int end_level;
1354 
1355 	/* output fields. */
1356 	gfn_t gfn;
1357 	struct kvm_rmap_head *rmap;
1358 	int level;
1359 
1360 	/* private field. */
1361 	struct kvm_rmap_head *end_rmap;
1362 };
1363 
1364 static void
1365 rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level)
1366 {
1367 	iterator->level = level;
1368 	iterator->gfn = iterator->start_gfn;
1369 	iterator->rmap = __gfn_to_rmap(iterator->gfn, level, iterator->slot);
1370 	iterator->end_rmap = __gfn_to_rmap(iterator->end_gfn, level,
1371 					   iterator->slot);
1372 }
1373 
1374 static void
1375 slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator,
1376 		    struct kvm_memory_slot *slot, int start_level,
1377 		    int end_level, gfn_t start_gfn, gfn_t end_gfn)
1378 {
1379 	iterator->slot = slot;
1380 	iterator->start_level = start_level;
1381 	iterator->end_level = end_level;
1382 	iterator->start_gfn = start_gfn;
1383 	iterator->end_gfn = end_gfn;
1384 
1385 	rmap_walk_init_level(iterator, iterator->start_level);
1386 }
1387 
1388 static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator)
1389 {
1390 	return !!iterator->rmap;
1391 }
1392 
1393 static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
1394 {
1395 	if (++iterator->rmap <= iterator->end_rmap) {
1396 		iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level));
1397 		return;
1398 	}
1399 
1400 	if (++iterator->level > iterator->end_level) {
1401 		iterator->rmap = NULL;
1402 		return;
1403 	}
1404 
1405 	rmap_walk_init_level(iterator, iterator->level);
1406 }
1407 
1408 #define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_,	\
1409 	   _start_gfn, _end_gfn, _iter_)				\
1410 	for (slot_rmap_walk_init(_iter_, _slot_, _start_level_,		\
1411 				 _end_level_, _start_gfn, _end_gfn);	\
1412 	     slot_rmap_walk_okay(_iter_);				\
1413 	     slot_rmap_walk_next(_iter_))
1414 
1415 typedef bool (*rmap_handler_t)(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1416 			       struct kvm_memory_slot *slot, gfn_t gfn,
1417 			       int level, pte_t pte);
1418 
1419 static __always_inline bool kvm_handle_gfn_range(struct kvm *kvm,
1420 						 struct kvm_gfn_range *range,
1421 						 rmap_handler_t handler)
1422 {
1423 	struct slot_rmap_walk_iterator iterator;
1424 	bool ret = false;
1425 
1426 	for_each_slot_rmap_range(range->slot, PG_LEVEL_4K, KVM_MAX_HUGEPAGE_LEVEL,
1427 				 range->start, range->end - 1, &iterator)
1428 		ret |= handler(kvm, iterator.rmap, range->slot, iterator.gfn,
1429 			       iterator.level, range->pte);
1430 
1431 	return ret;
1432 }
1433 
1434 bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range)
1435 {
1436 	bool flush;
1437 
1438 	flush = kvm_handle_gfn_range(kvm, range, kvm_unmap_rmapp);
1439 
1440 	if (is_tdp_mmu_enabled(kvm))
1441 		flush |= kvm_tdp_mmu_unmap_gfn_range(kvm, range, flush);
1442 
1443 	return flush;
1444 }
1445 
1446 bool kvm_set_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
1447 {
1448 	bool flush;
1449 
1450 	flush = kvm_handle_gfn_range(kvm, range, kvm_set_pte_rmapp);
1451 
1452 	if (is_tdp_mmu_enabled(kvm))
1453 		flush |= kvm_tdp_mmu_set_spte_gfn(kvm, range);
1454 
1455 	return flush;
1456 }
1457 
1458 static bool kvm_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1459 			  struct kvm_memory_slot *slot, gfn_t gfn, int level,
1460 			  pte_t unused)
1461 {
1462 	u64 *sptep;
1463 	struct rmap_iterator iter;
1464 	int young = 0;
1465 
1466 	for_each_rmap_spte(rmap_head, &iter, sptep)
1467 		young |= mmu_spte_age(sptep);
1468 
1469 	return young;
1470 }
1471 
1472 static bool kvm_test_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1473 			       struct kvm_memory_slot *slot, gfn_t gfn,
1474 			       int level, pte_t unused)
1475 {
1476 	u64 *sptep;
1477 	struct rmap_iterator iter;
1478 
1479 	for_each_rmap_spte(rmap_head, &iter, sptep)
1480 		if (is_accessed_spte(*sptep))
1481 			return 1;
1482 	return 0;
1483 }
1484 
1485 #define RMAP_RECYCLE_THRESHOLD 1000
1486 
1487 static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1488 {
1489 	struct kvm_rmap_head *rmap_head;
1490 	struct kvm_mmu_page *sp;
1491 
1492 	sp = sptep_to_sp(spte);
1493 
1494 	rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
1495 
1496 	kvm_unmap_rmapp(vcpu->kvm, rmap_head, NULL, gfn, sp->role.level, __pte(0));
1497 	kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn,
1498 			KVM_PAGES_PER_HPAGE(sp->role.level));
1499 }
1500 
1501 bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
1502 {
1503 	bool young;
1504 
1505 	young = kvm_handle_gfn_range(kvm, range, kvm_age_rmapp);
1506 
1507 	if (is_tdp_mmu_enabled(kvm))
1508 		young |= kvm_tdp_mmu_age_gfn_range(kvm, range);
1509 
1510 	return young;
1511 }
1512 
1513 bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
1514 {
1515 	bool young;
1516 
1517 	young = kvm_handle_gfn_range(kvm, range, kvm_test_age_rmapp);
1518 
1519 	if (is_tdp_mmu_enabled(kvm))
1520 		young |= kvm_tdp_mmu_test_age_gfn(kvm, range);
1521 
1522 	return young;
1523 }
1524 
1525 #ifdef MMU_DEBUG
1526 static int is_empty_shadow_page(u64 *spt)
1527 {
1528 	u64 *pos;
1529 	u64 *end;
1530 
1531 	for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
1532 		if (is_shadow_present_pte(*pos)) {
1533 			printk(KERN_ERR "%s: %p %llx\n", __func__,
1534 			       pos, *pos);
1535 			return 0;
1536 		}
1537 	return 1;
1538 }
1539 #endif
1540 
1541 /*
1542  * This value is the sum of all of the kvm instances's
1543  * kvm->arch.n_used_mmu_pages values.  We need a global,
1544  * aggregate version in order to make the slab shrinker
1545  * faster
1546  */
1547 static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, unsigned long nr)
1548 {
1549 	kvm->arch.n_used_mmu_pages += nr;
1550 	percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1551 }
1552 
1553 static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
1554 {
1555 	MMU_WARN_ON(!is_empty_shadow_page(sp->spt));
1556 	hlist_del(&sp->hash_link);
1557 	list_del(&sp->link);
1558 	free_page((unsigned long)sp->spt);
1559 	if (!sp->role.direct)
1560 		free_page((unsigned long)sp->gfns);
1561 	kmem_cache_free(mmu_page_header_cache, sp);
1562 }
1563 
1564 static unsigned kvm_page_table_hashfn(gfn_t gfn)
1565 {
1566 	return hash_64(gfn, KVM_MMU_HASH_SHIFT);
1567 }
1568 
1569 static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
1570 				    struct kvm_mmu_page *sp, u64 *parent_pte)
1571 {
1572 	if (!parent_pte)
1573 		return;
1574 
1575 	pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
1576 }
1577 
1578 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
1579 				       u64 *parent_pte)
1580 {
1581 	__pte_list_remove(parent_pte, &sp->parent_ptes);
1582 }
1583 
1584 static void drop_parent_pte(struct kvm_mmu_page *sp,
1585 			    u64 *parent_pte)
1586 {
1587 	mmu_page_remove_parent_pte(sp, parent_pte);
1588 	mmu_spte_clear_no_track(parent_pte);
1589 }
1590 
1591 static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu, int direct)
1592 {
1593 	struct kvm_mmu_page *sp;
1594 
1595 	sp = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
1596 	sp->spt = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_shadow_page_cache);
1597 	if (!direct)
1598 		sp->gfns = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_gfn_array_cache);
1599 	set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
1600 
1601 	/*
1602 	 * active_mmu_pages must be a FIFO list, as kvm_zap_obsolete_pages()
1603 	 * depends on valid pages being added to the head of the list.  See
1604 	 * comments in kvm_zap_obsolete_pages().
1605 	 */
1606 	sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
1607 	list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
1608 	kvm_mod_used_mmu_pages(vcpu->kvm, +1);
1609 	return sp;
1610 }
1611 
1612 static void mark_unsync(u64 *spte);
1613 static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
1614 {
1615 	u64 *sptep;
1616 	struct rmap_iterator iter;
1617 
1618 	for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) {
1619 		mark_unsync(sptep);
1620 	}
1621 }
1622 
1623 static void mark_unsync(u64 *spte)
1624 {
1625 	struct kvm_mmu_page *sp;
1626 	unsigned int index;
1627 
1628 	sp = sptep_to_sp(spte);
1629 	index = spte - sp->spt;
1630 	if (__test_and_set_bit(index, sp->unsync_child_bitmap))
1631 		return;
1632 	if (sp->unsync_children++)
1633 		return;
1634 	kvm_mmu_mark_parents_unsync(sp);
1635 }
1636 
1637 static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
1638 			       struct kvm_mmu_page *sp)
1639 {
1640 	return 0;
1641 }
1642 
1643 #define KVM_PAGE_ARRAY_NR 16
1644 
1645 struct kvm_mmu_pages {
1646 	struct mmu_page_and_offset {
1647 		struct kvm_mmu_page *sp;
1648 		unsigned int idx;
1649 	} page[KVM_PAGE_ARRAY_NR];
1650 	unsigned int nr;
1651 };
1652 
1653 static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
1654 			 int idx)
1655 {
1656 	int i;
1657 
1658 	if (sp->unsync)
1659 		for (i=0; i < pvec->nr; i++)
1660 			if (pvec->page[i].sp == sp)
1661 				return 0;
1662 
1663 	pvec->page[pvec->nr].sp = sp;
1664 	pvec->page[pvec->nr].idx = idx;
1665 	pvec->nr++;
1666 	return (pvec->nr == KVM_PAGE_ARRAY_NR);
1667 }
1668 
1669 static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx)
1670 {
1671 	--sp->unsync_children;
1672 	WARN_ON((int)sp->unsync_children < 0);
1673 	__clear_bit(idx, sp->unsync_child_bitmap);
1674 }
1675 
1676 static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
1677 			   struct kvm_mmu_pages *pvec)
1678 {
1679 	int i, ret, nr_unsync_leaf = 0;
1680 
1681 	for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
1682 		struct kvm_mmu_page *child;
1683 		u64 ent = sp->spt[i];
1684 
1685 		if (!is_shadow_present_pte(ent) || is_large_pte(ent)) {
1686 			clear_unsync_child_bit(sp, i);
1687 			continue;
1688 		}
1689 
1690 		child = to_shadow_page(ent & PT64_BASE_ADDR_MASK);
1691 
1692 		if (child->unsync_children) {
1693 			if (mmu_pages_add(pvec, child, i))
1694 				return -ENOSPC;
1695 
1696 			ret = __mmu_unsync_walk(child, pvec);
1697 			if (!ret) {
1698 				clear_unsync_child_bit(sp, i);
1699 				continue;
1700 			} else if (ret > 0) {
1701 				nr_unsync_leaf += ret;
1702 			} else
1703 				return ret;
1704 		} else if (child->unsync) {
1705 			nr_unsync_leaf++;
1706 			if (mmu_pages_add(pvec, child, i))
1707 				return -ENOSPC;
1708 		} else
1709 			clear_unsync_child_bit(sp, i);
1710 	}
1711 
1712 	return nr_unsync_leaf;
1713 }
1714 
1715 #define INVALID_INDEX (-1)
1716 
1717 static int mmu_unsync_walk(struct kvm_mmu_page *sp,
1718 			   struct kvm_mmu_pages *pvec)
1719 {
1720 	pvec->nr = 0;
1721 	if (!sp->unsync_children)
1722 		return 0;
1723 
1724 	mmu_pages_add(pvec, sp, INVALID_INDEX);
1725 	return __mmu_unsync_walk(sp, pvec);
1726 }
1727 
1728 static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1729 {
1730 	WARN_ON(!sp->unsync);
1731 	trace_kvm_mmu_sync_page(sp);
1732 	sp->unsync = 0;
1733 	--kvm->stat.mmu_unsync;
1734 }
1735 
1736 static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1737 				     struct list_head *invalid_list);
1738 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1739 				    struct list_head *invalid_list);
1740 
1741 #define for_each_valid_sp(_kvm, _sp, _list)				\
1742 	hlist_for_each_entry(_sp, _list, hash_link)			\
1743 		if (is_obsolete_sp((_kvm), (_sp))) {			\
1744 		} else
1745 
1746 #define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn)			\
1747 	for_each_valid_sp(_kvm, _sp,					\
1748 	  &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)])	\
1749 		if ((_sp)->gfn != (_gfn) || (_sp)->role.direct) {} else
1750 
1751 static inline bool is_ept_sp(struct kvm_mmu_page *sp)
1752 {
1753 	return sp->role.cr0_wp && sp->role.smap_andnot_wp;
1754 }
1755 
1756 /* @sp->gfn should be write-protected at the call site */
1757 static bool __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1758 			    struct list_head *invalid_list)
1759 {
1760 	if ((!is_ept_sp(sp) && sp->role.gpte_is_8_bytes != !!is_pae(vcpu)) ||
1761 	    vcpu->arch.mmu->sync_page(vcpu, sp) == 0) {
1762 		kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1763 		return false;
1764 	}
1765 
1766 	return true;
1767 }
1768 
1769 static bool kvm_mmu_remote_flush_or_zap(struct kvm *kvm,
1770 					struct list_head *invalid_list,
1771 					bool remote_flush)
1772 {
1773 	if (!remote_flush && list_empty(invalid_list))
1774 		return false;
1775 
1776 	if (!list_empty(invalid_list))
1777 		kvm_mmu_commit_zap_page(kvm, invalid_list);
1778 	else
1779 		kvm_flush_remote_tlbs(kvm);
1780 	return true;
1781 }
1782 
1783 static void kvm_mmu_flush_or_zap(struct kvm_vcpu *vcpu,
1784 				 struct list_head *invalid_list,
1785 				 bool remote_flush, bool local_flush)
1786 {
1787 	if (kvm_mmu_remote_flush_or_zap(vcpu->kvm, invalid_list, remote_flush))
1788 		return;
1789 
1790 	if (local_flush)
1791 		kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1792 }
1793 
1794 #ifdef CONFIG_KVM_MMU_AUDIT
1795 #include "mmu_audit.c"
1796 #else
1797 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
1798 static void mmu_audit_disable(void) { }
1799 #endif
1800 
1801 static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
1802 {
1803 	return sp->role.invalid ||
1804 	       unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
1805 }
1806 
1807 static bool kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1808 			 struct list_head *invalid_list)
1809 {
1810 	kvm_unlink_unsync_page(vcpu->kvm, sp);
1811 	return __kvm_sync_page(vcpu, sp, invalid_list);
1812 }
1813 
1814 /* @gfn should be write-protected at the call site */
1815 static bool kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn,
1816 			   struct list_head *invalid_list)
1817 {
1818 	struct kvm_mmu_page *s;
1819 	bool ret = false;
1820 
1821 	for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
1822 		if (!s->unsync)
1823 			continue;
1824 
1825 		WARN_ON(s->role.level != PG_LEVEL_4K);
1826 		ret |= kvm_sync_page(vcpu, s, invalid_list);
1827 	}
1828 
1829 	return ret;
1830 }
1831 
1832 struct mmu_page_path {
1833 	struct kvm_mmu_page *parent[PT64_ROOT_MAX_LEVEL];
1834 	unsigned int idx[PT64_ROOT_MAX_LEVEL];
1835 };
1836 
1837 #define for_each_sp(pvec, sp, parents, i)			\
1838 		for (i = mmu_pages_first(&pvec, &parents);	\
1839 			i < pvec.nr && ({ sp = pvec.page[i].sp; 1;});	\
1840 			i = mmu_pages_next(&pvec, &parents, i))
1841 
1842 static int mmu_pages_next(struct kvm_mmu_pages *pvec,
1843 			  struct mmu_page_path *parents,
1844 			  int i)
1845 {
1846 	int n;
1847 
1848 	for (n = i+1; n < pvec->nr; n++) {
1849 		struct kvm_mmu_page *sp = pvec->page[n].sp;
1850 		unsigned idx = pvec->page[n].idx;
1851 		int level = sp->role.level;
1852 
1853 		parents->idx[level-1] = idx;
1854 		if (level == PG_LEVEL_4K)
1855 			break;
1856 
1857 		parents->parent[level-2] = sp;
1858 	}
1859 
1860 	return n;
1861 }
1862 
1863 static int mmu_pages_first(struct kvm_mmu_pages *pvec,
1864 			   struct mmu_page_path *parents)
1865 {
1866 	struct kvm_mmu_page *sp;
1867 	int level;
1868 
1869 	if (pvec->nr == 0)
1870 		return 0;
1871 
1872 	WARN_ON(pvec->page[0].idx != INVALID_INDEX);
1873 
1874 	sp = pvec->page[0].sp;
1875 	level = sp->role.level;
1876 	WARN_ON(level == PG_LEVEL_4K);
1877 
1878 	parents->parent[level-2] = sp;
1879 
1880 	/* Also set up a sentinel.  Further entries in pvec are all
1881 	 * children of sp, so this element is never overwritten.
1882 	 */
1883 	parents->parent[level-1] = NULL;
1884 	return mmu_pages_next(pvec, parents, 0);
1885 }
1886 
1887 static void mmu_pages_clear_parents(struct mmu_page_path *parents)
1888 {
1889 	struct kvm_mmu_page *sp;
1890 	unsigned int level = 0;
1891 
1892 	do {
1893 		unsigned int idx = parents->idx[level];
1894 		sp = parents->parent[level];
1895 		if (!sp)
1896 			return;
1897 
1898 		WARN_ON(idx == INVALID_INDEX);
1899 		clear_unsync_child_bit(sp, idx);
1900 		level++;
1901 	} while (!sp->unsync_children);
1902 }
1903 
1904 static void mmu_sync_children(struct kvm_vcpu *vcpu,
1905 			      struct kvm_mmu_page *parent)
1906 {
1907 	int i;
1908 	struct kvm_mmu_page *sp;
1909 	struct mmu_page_path parents;
1910 	struct kvm_mmu_pages pages;
1911 	LIST_HEAD(invalid_list);
1912 	bool flush = false;
1913 
1914 	while (mmu_unsync_walk(parent, &pages)) {
1915 		bool protected = false;
1916 
1917 		for_each_sp(pages, sp, parents, i)
1918 			protected |= rmap_write_protect(vcpu, sp->gfn);
1919 
1920 		if (protected) {
1921 			kvm_flush_remote_tlbs(vcpu->kvm);
1922 			flush = false;
1923 		}
1924 
1925 		for_each_sp(pages, sp, parents, i) {
1926 			flush |= kvm_sync_page(vcpu, sp, &invalid_list);
1927 			mmu_pages_clear_parents(&parents);
1928 		}
1929 		if (need_resched() || rwlock_needbreak(&vcpu->kvm->mmu_lock)) {
1930 			kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
1931 			cond_resched_rwlock_write(&vcpu->kvm->mmu_lock);
1932 			flush = false;
1933 		}
1934 	}
1935 
1936 	kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
1937 }
1938 
1939 static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
1940 {
1941 	atomic_set(&sp->write_flooding_count,  0);
1942 }
1943 
1944 static void clear_sp_write_flooding_count(u64 *spte)
1945 {
1946 	__clear_sp_write_flooding_count(sptep_to_sp(spte));
1947 }
1948 
1949 static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
1950 					     gfn_t gfn,
1951 					     gva_t gaddr,
1952 					     unsigned level,
1953 					     int direct,
1954 					     unsigned int access)
1955 {
1956 	bool direct_mmu = vcpu->arch.mmu->direct_map;
1957 	union kvm_mmu_page_role role;
1958 	struct hlist_head *sp_list;
1959 	unsigned quadrant;
1960 	struct kvm_mmu_page *sp;
1961 	bool need_sync = false;
1962 	bool flush = false;
1963 	int collisions = 0;
1964 	LIST_HEAD(invalid_list);
1965 
1966 	role = vcpu->arch.mmu->mmu_role.base;
1967 	role.level = level;
1968 	role.direct = direct;
1969 	if (role.direct)
1970 		role.gpte_is_8_bytes = true;
1971 	role.access = access;
1972 	if (!direct_mmu && vcpu->arch.mmu->root_level <= PT32_ROOT_LEVEL) {
1973 		quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
1974 		quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
1975 		role.quadrant = quadrant;
1976 	}
1977 
1978 	sp_list = &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)];
1979 	for_each_valid_sp(vcpu->kvm, sp, sp_list) {
1980 		if (sp->gfn != gfn) {
1981 			collisions++;
1982 			continue;
1983 		}
1984 
1985 		if (!need_sync && sp->unsync)
1986 			need_sync = true;
1987 
1988 		if (sp->role.word != role.word)
1989 			continue;
1990 
1991 		if (direct_mmu)
1992 			goto trace_get_page;
1993 
1994 		if (sp->unsync) {
1995 			/* The page is good, but __kvm_sync_page might still end
1996 			 * up zapping it.  If so, break in order to rebuild it.
1997 			 */
1998 			if (!__kvm_sync_page(vcpu, sp, &invalid_list))
1999 				break;
2000 
2001 			WARN_ON(!list_empty(&invalid_list));
2002 			kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
2003 		}
2004 
2005 		if (sp->unsync_children)
2006 			kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
2007 
2008 		__clear_sp_write_flooding_count(sp);
2009 
2010 trace_get_page:
2011 		trace_kvm_mmu_get_page(sp, false);
2012 		goto out;
2013 	}
2014 
2015 	++vcpu->kvm->stat.mmu_cache_miss;
2016 
2017 	sp = kvm_mmu_alloc_page(vcpu, direct);
2018 
2019 	sp->gfn = gfn;
2020 	sp->role = role;
2021 	hlist_add_head(&sp->hash_link, sp_list);
2022 	if (!direct) {
2023 		/*
2024 		 * we should do write protection before syncing pages
2025 		 * otherwise the content of the synced shadow page may
2026 		 * be inconsistent with guest page table.
2027 		 */
2028 		account_shadowed(vcpu->kvm, sp);
2029 		if (level == PG_LEVEL_4K && rmap_write_protect(vcpu, gfn))
2030 			kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn, 1);
2031 
2032 		if (level > PG_LEVEL_4K && need_sync)
2033 			flush |= kvm_sync_pages(vcpu, gfn, &invalid_list);
2034 	}
2035 	trace_kvm_mmu_get_page(sp, true);
2036 
2037 	kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2038 out:
2039 	if (collisions > vcpu->kvm->stat.max_mmu_page_hash_collisions)
2040 		vcpu->kvm->stat.max_mmu_page_hash_collisions = collisions;
2041 	return sp;
2042 }
2043 
2044 static void shadow_walk_init_using_root(struct kvm_shadow_walk_iterator *iterator,
2045 					struct kvm_vcpu *vcpu, hpa_t root,
2046 					u64 addr)
2047 {
2048 	iterator->addr = addr;
2049 	iterator->shadow_addr = root;
2050 	iterator->level = vcpu->arch.mmu->shadow_root_level;
2051 
2052 	if (iterator->level == PT64_ROOT_4LEVEL &&
2053 	    vcpu->arch.mmu->root_level < PT64_ROOT_4LEVEL &&
2054 	    !vcpu->arch.mmu->direct_map)
2055 		--iterator->level;
2056 
2057 	if (iterator->level == PT32E_ROOT_LEVEL) {
2058 		/*
2059 		 * prev_root is currently only used for 64-bit hosts. So only
2060 		 * the active root_hpa is valid here.
2061 		 */
2062 		BUG_ON(root != vcpu->arch.mmu->root_hpa);
2063 
2064 		iterator->shadow_addr
2065 			= vcpu->arch.mmu->pae_root[(addr >> 30) & 3];
2066 		iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
2067 		--iterator->level;
2068 		if (!iterator->shadow_addr)
2069 			iterator->level = 0;
2070 	}
2071 }
2072 
2073 static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
2074 			     struct kvm_vcpu *vcpu, u64 addr)
2075 {
2076 	shadow_walk_init_using_root(iterator, vcpu, vcpu->arch.mmu->root_hpa,
2077 				    addr);
2078 }
2079 
2080 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
2081 {
2082 	if (iterator->level < PG_LEVEL_4K)
2083 		return false;
2084 
2085 	iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
2086 	iterator->sptep	= ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
2087 	return true;
2088 }
2089 
2090 static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
2091 			       u64 spte)
2092 {
2093 	if (is_last_spte(spte, iterator->level)) {
2094 		iterator->level = 0;
2095 		return;
2096 	}
2097 
2098 	iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2099 	--iterator->level;
2100 }
2101 
2102 static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
2103 {
2104 	__shadow_walk_next(iterator, *iterator->sptep);
2105 }
2106 
2107 static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep,
2108 			     struct kvm_mmu_page *sp)
2109 {
2110 	u64 spte;
2111 
2112 	BUILD_BUG_ON(VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);
2113 
2114 	spte = make_nonleaf_spte(sp->spt, sp_ad_disabled(sp));
2115 
2116 	mmu_spte_set(sptep, spte);
2117 
2118 	mmu_page_add_parent_pte(vcpu, sp, sptep);
2119 
2120 	if (sp->unsync_children || sp->unsync)
2121 		mark_unsync(sptep);
2122 }
2123 
2124 static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2125 				   unsigned direct_access)
2126 {
2127 	if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
2128 		struct kvm_mmu_page *child;
2129 
2130 		/*
2131 		 * For the direct sp, if the guest pte's dirty bit
2132 		 * changed form clean to dirty, it will corrupt the
2133 		 * sp's access: allow writable in the read-only sp,
2134 		 * so we should update the spte at this point to get
2135 		 * a new sp with the correct access.
2136 		 */
2137 		child = to_shadow_page(*sptep & PT64_BASE_ADDR_MASK);
2138 		if (child->role.access == direct_access)
2139 			return;
2140 
2141 		drop_parent_pte(child, sptep);
2142 		kvm_flush_remote_tlbs_with_address(vcpu->kvm, child->gfn, 1);
2143 	}
2144 }
2145 
2146 /* Returns the number of zapped non-leaf child shadow pages. */
2147 static int mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
2148 			    u64 *spte, struct list_head *invalid_list)
2149 {
2150 	u64 pte;
2151 	struct kvm_mmu_page *child;
2152 
2153 	pte = *spte;
2154 	if (is_shadow_present_pte(pte)) {
2155 		if (is_last_spte(pte, sp->role.level)) {
2156 			drop_spte(kvm, spte);
2157 			if (is_large_pte(pte))
2158 				--kvm->stat.lpages;
2159 		} else {
2160 			child = to_shadow_page(pte & PT64_BASE_ADDR_MASK);
2161 			drop_parent_pte(child, spte);
2162 
2163 			/*
2164 			 * Recursively zap nested TDP SPs, parentless SPs are
2165 			 * unlikely to be used again in the near future.  This
2166 			 * avoids retaining a large number of stale nested SPs.
2167 			 */
2168 			if (tdp_enabled && invalid_list &&
2169 			    child->role.guest_mode && !child->parent_ptes.val)
2170 				return kvm_mmu_prepare_zap_page(kvm, child,
2171 								invalid_list);
2172 		}
2173 	} else if (is_mmio_spte(pte)) {
2174 		mmu_spte_clear_no_track(spte);
2175 	}
2176 	return 0;
2177 }
2178 
2179 static int kvm_mmu_page_unlink_children(struct kvm *kvm,
2180 					struct kvm_mmu_page *sp,
2181 					struct list_head *invalid_list)
2182 {
2183 	int zapped = 0;
2184 	unsigned i;
2185 
2186 	for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2187 		zapped += mmu_page_zap_pte(kvm, sp, sp->spt + i, invalid_list);
2188 
2189 	return zapped;
2190 }
2191 
2192 static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
2193 {
2194 	u64 *sptep;
2195 	struct rmap_iterator iter;
2196 
2197 	while ((sptep = rmap_get_first(&sp->parent_ptes, &iter)))
2198 		drop_parent_pte(sp, sptep);
2199 }
2200 
2201 static int mmu_zap_unsync_children(struct kvm *kvm,
2202 				   struct kvm_mmu_page *parent,
2203 				   struct list_head *invalid_list)
2204 {
2205 	int i, zapped = 0;
2206 	struct mmu_page_path parents;
2207 	struct kvm_mmu_pages pages;
2208 
2209 	if (parent->role.level == PG_LEVEL_4K)
2210 		return 0;
2211 
2212 	while (mmu_unsync_walk(parent, &pages)) {
2213 		struct kvm_mmu_page *sp;
2214 
2215 		for_each_sp(pages, sp, parents, i) {
2216 			kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2217 			mmu_pages_clear_parents(&parents);
2218 			zapped++;
2219 		}
2220 	}
2221 
2222 	return zapped;
2223 }
2224 
2225 static bool __kvm_mmu_prepare_zap_page(struct kvm *kvm,
2226 				       struct kvm_mmu_page *sp,
2227 				       struct list_head *invalid_list,
2228 				       int *nr_zapped)
2229 {
2230 	bool list_unstable;
2231 
2232 	trace_kvm_mmu_prepare_zap_page(sp);
2233 	++kvm->stat.mmu_shadow_zapped;
2234 	*nr_zapped = mmu_zap_unsync_children(kvm, sp, invalid_list);
2235 	*nr_zapped += kvm_mmu_page_unlink_children(kvm, sp, invalid_list);
2236 	kvm_mmu_unlink_parents(kvm, sp);
2237 
2238 	/* Zapping children means active_mmu_pages has become unstable. */
2239 	list_unstable = *nr_zapped;
2240 
2241 	if (!sp->role.invalid && !sp->role.direct)
2242 		unaccount_shadowed(kvm, sp);
2243 
2244 	if (sp->unsync)
2245 		kvm_unlink_unsync_page(kvm, sp);
2246 	if (!sp->root_count) {
2247 		/* Count self */
2248 		(*nr_zapped)++;
2249 
2250 		/*
2251 		 * Already invalid pages (previously active roots) are not on
2252 		 * the active page list.  See list_del() in the "else" case of
2253 		 * !sp->root_count.
2254 		 */
2255 		if (sp->role.invalid)
2256 			list_add(&sp->link, invalid_list);
2257 		else
2258 			list_move(&sp->link, invalid_list);
2259 		kvm_mod_used_mmu_pages(kvm, -1);
2260 	} else {
2261 		/*
2262 		 * Remove the active root from the active page list, the root
2263 		 * will be explicitly freed when the root_count hits zero.
2264 		 */
2265 		list_del(&sp->link);
2266 
2267 		/*
2268 		 * Obsolete pages cannot be used on any vCPUs, see the comment
2269 		 * in kvm_mmu_zap_all_fast().  Note, is_obsolete_sp() also
2270 		 * treats invalid shadow pages as being obsolete.
2271 		 */
2272 		if (!is_obsolete_sp(kvm, sp))
2273 			kvm_reload_remote_mmus(kvm);
2274 	}
2275 
2276 	if (sp->lpage_disallowed)
2277 		unaccount_huge_nx_page(kvm, sp);
2278 
2279 	sp->role.invalid = 1;
2280 	return list_unstable;
2281 }
2282 
2283 static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2284 				     struct list_head *invalid_list)
2285 {
2286 	int nr_zapped;
2287 
2288 	__kvm_mmu_prepare_zap_page(kvm, sp, invalid_list, &nr_zapped);
2289 	return nr_zapped;
2290 }
2291 
2292 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2293 				    struct list_head *invalid_list)
2294 {
2295 	struct kvm_mmu_page *sp, *nsp;
2296 
2297 	if (list_empty(invalid_list))
2298 		return;
2299 
2300 	/*
2301 	 * We need to make sure everyone sees our modifications to
2302 	 * the page tables and see changes to vcpu->mode here. The barrier
2303 	 * in the kvm_flush_remote_tlbs() achieves this. This pairs
2304 	 * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end.
2305 	 *
2306 	 * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit
2307 	 * guest mode and/or lockless shadow page table walks.
2308 	 */
2309 	kvm_flush_remote_tlbs(kvm);
2310 
2311 	list_for_each_entry_safe(sp, nsp, invalid_list, link) {
2312 		WARN_ON(!sp->role.invalid || sp->root_count);
2313 		kvm_mmu_free_page(sp);
2314 	}
2315 }
2316 
2317 static unsigned long kvm_mmu_zap_oldest_mmu_pages(struct kvm *kvm,
2318 						  unsigned long nr_to_zap)
2319 {
2320 	unsigned long total_zapped = 0;
2321 	struct kvm_mmu_page *sp, *tmp;
2322 	LIST_HEAD(invalid_list);
2323 	bool unstable;
2324 	int nr_zapped;
2325 
2326 	if (list_empty(&kvm->arch.active_mmu_pages))
2327 		return 0;
2328 
2329 restart:
2330 	list_for_each_entry_safe_reverse(sp, tmp, &kvm->arch.active_mmu_pages, link) {
2331 		/*
2332 		 * Don't zap active root pages, the page itself can't be freed
2333 		 * and zapping it will just force vCPUs to realloc and reload.
2334 		 */
2335 		if (sp->root_count)
2336 			continue;
2337 
2338 		unstable = __kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list,
2339 						      &nr_zapped);
2340 		total_zapped += nr_zapped;
2341 		if (total_zapped >= nr_to_zap)
2342 			break;
2343 
2344 		if (unstable)
2345 			goto restart;
2346 	}
2347 
2348 	kvm_mmu_commit_zap_page(kvm, &invalid_list);
2349 
2350 	kvm->stat.mmu_recycled += total_zapped;
2351 	return total_zapped;
2352 }
2353 
2354 static inline unsigned long kvm_mmu_available_pages(struct kvm *kvm)
2355 {
2356 	if (kvm->arch.n_max_mmu_pages > kvm->arch.n_used_mmu_pages)
2357 		return kvm->arch.n_max_mmu_pages -
2358 			kvm->arch.n_used_mmu_pages;
2359 
2360 	return 0;
2361 }
2362 
2363 static int make_mmu_pages_available(struct kvm_vcpu *vcpu)
2364 {
2365 	unsigned long avail = kvm_mmu_available_pages(vcpu->kvm);
2366 
2367 	if (likely(avail >= KVM_MIN_FREE_MMU_PAGES))
2368 		return 0;
2369 
2370 	kvm_mmu_zap_oldest_mmu_pages(vcpu->kvm, KVM_REFILL_PAGES - avail);
2371 
2372 	/*
2373 	 * Note, this check is intentionally soft, it only guarantees that one
2374 	 * page is available, while the caller may end up allocating as many as
2375 	 * four pages, e.g. for PAE roots or for 5-level paging.  Temporarily
2376 	 * exceeding the (arbitrary by default) limit will not harm the host,
2377 	 * being too agressive may unnecessarily kill the guest, and getting an
2378 	 * exact count is far more trouble than it's worth, especially in the
2379 	 * page fault paths.
2380 	 */
2381 	if (!kvm_mmu_available_pages(vcpu->kvm))
2382 		return -ENOSPC;
2383 	return 0;
2384 }
2385 
2386 /*
2387  * Changing the number of mmu pages allocated to the vm
2388  * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2389  */
2390 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long goal_nr_mmu_pages)
2391 {
2392 	write_lock(&kvm->mmu_lock);
2393 
2394 	if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2395 		kvm_mmu_zap_oldest_mmu_pages(kvm, kvm->arch.n_used_mmu_pages -
2396 						  goal_nr_mmu_pages);
2397 
2398 		goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2399 	}
2400 
2401 	kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2402 
2403 	write_unlock(&kvm->mmu_lock);
2404 }
2405 
2406 int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2407 {
2408 	struct kvm_mmu_page *sp;
2409 	LIST_HEAD(invalid_list);
2410 	int r;
2411 
2412 	pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
2413 	r = 0;
2414 	write_lock(&kvm->mmu_lock);
2415 	for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
2416 		pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
2417 			 sp->role.word);
2418 		r = 1;
2419 		kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2420 	}
2421 	kvm_mmu_commit_zap_page(kvm, &invalid_list);
2422 	write_unlock(&kvm->mmu_lock);
2423 
2424 	return r;
2425 }
2426 
2427 static int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
2428 {
2429 	gpa_t gpa;
2430 	int r;
2431 
2432 	if (vcpu->arch.mmu->direct_map)
2433 		return 0;
2434 
2435 	gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
2436 
2437 	r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
2438 
2439 	return r;
2440 }
2441 
2442 static void kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2443 {
2444 	trace_kvm_mmu_unsync_page(sp);
2445 	++vcpu->kvm->stat.mmu_unsync;
2446 	sp->unsync = 1;
2447 
2448 	kvm_mmu_mark_parents_unsync(sp);
2449 }
2450 
2451 bool mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
2452 			    bool can_unsync)
2453 {
2454 	struct kvm_mmu_page *sp;
2455 
2456 	if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
2457 		return true;
2458 
2459 	for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
2460 		if (!can_unsync)
2461 			return true;
2462 
2463 		if (sp->unsync)
2464 			continue;
2465 
2466 		WARN_ON(sp->role.level != PG_LEVEL_4K);
2467 		kvm_unsync_page(vcpu, sp);
2468 	}
2469 
2470 	/*
2471 	 * We need to ensure that the marking of unsync pages is visible
2472 	 * before the SPTE is updated to allow writes because
2473 	 * kvm_mmu_sync_roots() checks the unsync flags without holding
2474 	 * the MMU lock and so can race with this. If the SPTE was updated
2475 	 * before the page had been marked as unsync-ed, something like the
2476 	 * following could happen:
2477 	 *
2478 	 * CPU 1                    CPU 2
2479 	 * ---------------------------------------------------------------------
2480 	 * 1.2 Host updates SPTE
2481 	 *     to be writable
2482 	 *                      2.1 Guest writes a GPTE for GVA X.
2483 	 *                          (GPTE being in the guest page table shadowed
2484 	 *                           by the SP from CPU 1.)
2485 	 *                          This reads SPTE during the page table walk.
2486 	 *                          Since SPTE.W is read as 1, there is no
2487 	 *                          fault.
2488 	 *
2489 	 *                      2.2 Guest issues TLB flush.
2490 	 *                          That causes a VM Exit.
2491 	 *
2492 	 *                      2.3 kvm_mmu_sync_pages() reads sp->unsync.
2493 	 *                          Since it is false, so it just returns.
2494 	 *
2495 	 *                      2.4 Guest accesses GVA X.
2496 	 *                          Since the mapping in the SP was not updated,
2497 	 *                          so the old mapping for GVA X incorrectly
2498 	 *                          gets used.
2499 	 * 1.1 Host marks SP
2500 	 *     as unsync
2501 	 *     (sp->unsync = true)
2502 	 *
2503 	 * The write barrier below ensures that 1.1 happens before 1.2 and thus
2504 	 * the situation in 2.4 does not arise. The implicit barrier in 2.2
2505 	 * pairs with this write barrier.
2506 	 */
2507 	smp_wmb();
2508 
2509 	return false;
2510 }
2511 
2512 static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2513 		    unsigned int pte_access, int level,
2514 		    gfn_t gfn, kvm_pfn_t pfn, bool speculative,
2515 		    bool can_unsync, bool host_writable)
2516 {
2517 	u64 spte;
2518 	struct kvm_mmu_page *sp;
2519 	int ret;
2520 
2521 	sp = sptep_to_sp(sptep);
2522 
2523 	ret = make_spte(vcpu, pte_access, level, gfn, pfn, *sptep, speculative,
2524 			can_unsync, host_writable, sp_ad_disabled(sp), &spte);
2525 
2526 	if (spte & PT_WRITABLE_MASK)
2527 		kvm_vcpu_mark_page_dirty(vcpu, gfn);
2528 
2529 	if (*sptep == spte)
2530 		ret |= SET_SPTE_SPURIOUS;
2531 	else if (mmu_spte_update(sptep, spte))
2532 		ret |= SET_SPTE_NEED_REMOTE_TLB_FLUSH;
2533 	return ret;
2534 }
2535 
2536 static int mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2537 			unsigned int pte_access, bool write_fault, int level,
2538 			gfn_t gfn, kvm_pfn_t pfn, bool speculative,
2539 			bool host_writable)
2540 {
2541 	int was_rmapped = 0;
2542 	int rmap_count;
2543 	int set_spte_ret;
2544 	int ret = RET_PF_FIXED;
2545 	bool flush = false;
2546 
2547 	pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
2548 		 *sptep, write_fault, gfn);
2549 
2550 	if (unlikely(is_noslot_pfn(pfn))) {
2551 		mark_mmio_spte(vcpu, sptep, gfn, pte_access);
2552 		return RET_PF_EMULATE;
2553 	}
2554 
2555 	if (is_shadow_present_pte(*sptep)) {
2556 		/*
2557 		 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2558 		 * the parent of the now unreachable PTE.
2559 		 */
2560 		if (level > PG_LEVEL_4K && !is_large_pte(*sptep)) {
2561 			struct kvm_mmu_page *child;
2562 			u64 pte = *sptep;
2563 
2564 			child = to_shadow_page(pte & PT64_BASE_ADDR_MASK);
2565 			drop_parent_pte(child, sptep);
2566 			flush = true;
2567 		} else if (pfn != spte_to_pfn(*sptep)) {
2568 			pgprintk("hfn old %llx new %llx\n",
2569 				 spte_to_pfn(*sptep), pfn);
2570 			drop_spte(vcpu->kvm, sptep);
2571 			flush = true;
2572 		} else
2573 			was_rmapped = 1;
2574 	}
2575 
2576 	set_spte_ret = set_spte(vcpu, sptep, pte_access, level, gfn, pfn,
2577 				speculative, true, host_writable);
2578 	if (set_spte_ret & SET_SPTE_WRITE_PROTECTED_PT) {
2579 		if (write_fault)
2580 			ret = RET_PF_EMULATE;
2581 		kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
2582 	}
2583 
2584 	if (set_spte_ret & SET_SPTE_NEED_REMOTE_TLB_FLUSH || flush)
2585 		kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn,
2586 				KVM_PAGES_PER_HPAGE(level));
2587 
2588 	/*
2589 	 * The fault is fully spurious if and only if the new SPTE and old SPTE
2590 	 * are identical, and emulation is not required.
2591 	 */
2592 	if ((set_spte_ret & SET_SPTE_SPURIOUS) && ret == RET_PF_FIXED) {
2593 		WARN_ON_ONCE(!was_rmapped);
2594 		return RET_PF_SPURIOUS;
2595 	}
2596 
2597 	pgprintk("%s: setting spte %llx\n", __func__, *sptep);
2598 	trace_kvm_mmu_set_spte(level, gfn, sptep);
2599 	if (!was_rmapped && is_large_pte(*sptep))
2600 		++vcpu->kvm->stat.lpages;
2601 
2602 	if (is_shadow_present_pte(*sptep)) {
2603 		if (!was_rmapped) {
2604 			rmap_count = rmap_add(vcpu, sptep, gfn);
2605 			if (rmap_count > RMAP_RECYCLE_THRESHOLD)
2606 				rmap_recycle(vcpu, sptep, gfn);
2607 		}
2608 	}
2609 
2610 	return ret;
2611 }
2612 
2613 static kvm_pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
2614 				     bool no_dirty_log)
2615 {
2616 	struct kvm_memory_slot *slot;
2617 
2618 	slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
2619 	if (!slot)
2620 		return KVM_PFN_ERR_FAULT;
2621 
2622 	return gfn_to_pfn_memslot_atomic(slot, gfn);
2623 }
2624 
2625 static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2626 				    struct kvm_mmu_page *sp,
2627 				    u64 *start, u64 *end)
2628 {
2629 	struct page *pages[PTE_PREFETCH_NUM];
2630 	struct kvm_memory_slot *slot;
2631 	unsigned int access = sp->role.access;
2632 	int i, ret;
2633 	gfn_t gfn;
2634 
2635 	gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
2636 	slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK);
2637 	if (!slot)
2638 		return -1;
2639 
2640 	ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start);
2641 	if (ret <= 0)
2642 		return -1;
2643 
2644 	for (i = 0; i < ret; i++, gfn++, start++) {
2645 		mmu_set_spte(vcpu, start, access, false, sp->role.level, gfn,
2646 			     page_to_pfn(pages[i]), true, true);
2647 		put_page(pages[i]);
2648 	}
2649 
2650 	return 0;
2651 }
2652 
2653 static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
2654 				  struct kvm_mmu_page *sp, u64 *sptep)
2655 {
2656 	u64 *spte, *start = NULL;
2657 	int i;
2658 
2659 	WARN_ON(!sp->role.direct);
2660 
2661 	i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
2662 	spte = sp->spt + i;
2663 
2664 	for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
2665 		if (is_shadow_present_pte(*spte) || spte == sptep) {
2666 			if (!start)
2667 				continue;
2668 			if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2669 				break;
2670 			start = NULL;
2671 		} else if (!start)
2672 			start = spte;
2673 	}
2674 }
2675 
2676 static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
2677 {
2678 	struct kvm_mmu_page *sp;
2679 
2680 	sp = sptep_to_sp(sptep);
2681 
2682 	/*
2683 	 * Without accessed bits, there's no way to distinguish between
2684 	 * actually accessed translations and prefetched, so disable pte
2685 	 * prefetch if accessed bits aren't available.
2686 	 */
2687 	if (sp_ad_disabled(sp))
2688 		return;
2689 
2690 	if (sp->role.level > PG_LEVEL_4K)
2691 		return;
2692 
2693 	/*
2694 	 * If addresses are being invalidated, skip prefetching to avoid
2695 	 * accidentally prefetching those addresses.
2696 	 */
2697 	if (unlikely(vcpu->kvm->mmu_notifier_count))
2698 		return;
2699 
2700 	__direct_pte_prefetch(vcpu, sp, sptep);
2701 }
2702 
2703 static int host_pfn_mapping_level(struct kvm *kvm, gfn_t gfn, kvm_pfn_t pfn,
2704 				  const struct kvm_memory_slot *slot)
2705 {
2706 	unsigned long hva;
2707 	pte_t *pte;
2708 	int level;
2709 
2710 	if (!PageCompound(pfn_to_page(pfn)) && !kvm_is_zone_device_pfn(pfn))
2711 		return PG_LEVEL_4K;
2712 
2713 	/*
2714 	 * Note, using the already-retrieved memslot and __gfn_to_hva_memslot()
2715 	 * is not solely for performance, it's also necessary to avoid the
2716 	 * "writable" check in __gfn_to_hva_many(), which will always fail on
2717 	 * read-only memslots due to gfn_to_hva() assuming writes.  Earlier
2718 	 * page fault steps have already verified the guest isn't writing a
2719 	 * read-only memslot.
2720 	 */
2721 	hva = __gfn_to_hva_memslot(slot, gfn);
2722 
2723 	pte = lookup_address_in_mm(kvm->mm, hva, &level);
2724 	if (unlikely(!pte))
2725 		return PG_LEVEL_4K;
2726 
2727 	return level;
2728 }
2729 
2730 int kvm_mmu_max_mapping_level(struct kvm *kvm,
2731 			      const struct kvm_memory_slot *slot, gfn_t gfn,
2732 			      kvm_pfn_t pfn, int max_level)
2733 {
2734 	struct kvm_lpage_info *linfo;
2735 
2736 	max_level = min(max_level, max_huge_page_level);
2737 	for ( ; max_level > PG_LEVEL_4K; max_level--) {
2738 		linfo = lpage_info_slot(gfn, slot, max_level);
2739 		if (!linfo->disallow_lpage)
2740 			break;
2741 	}
2742 
2743 	if (max_level == PG_LEVEL_4K)
2744 		return PG_LEVEL_4K;
2745 
2746 	return host_pfn_mapping_level(kvm, gfn, pfn, slot);
2747 }
2748 
2749 int kvm_mmu_hugepage_adjust(struct kvm_vcpu *vcpu, gfn_t gfn,
2750 			    int max_level, kvm_pfn_t *pfnp,
2751 			    bool huge_page_disallowed, int *req_level)
2752 {
2753 	struct kvm_memory_slot *slot;
2754 	kvm_pfn_t pfn = *pfnp;
2755 	kvm_pfn_t mask;
2756 	int level;
2757 
2758 	*req_level = PG_LEVEL_4K;
2759 
2760 	if (unlikely(max_level == PG_LEVEL_4K))
2761 		return PG_LEVEL_4K;
2762 
2763 	if (is_error_noslot_pfn(pfn) || kvm_is_reserved_pfn(pfn))
2764 		return PG_LEVEL_4K;
2765 
2766 	slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, true);
2767 	if (!slot)
2768 		return PG_LEVEL_4K;
2769 
2770 	level = kvm_mmu_max_mapping_level(vcpu->kvm, slot, gfn, pfn, max_level);
2771 	if (level == PG_LEVEL_4K)
2772 		return level;
2773 
2774 	*req_level = level = min(level, max_level);
2775 
2776 	/*
2777 	 * Enforce the iTLB multihit workaround after capturing the requested
2778 	 * level, which will be used to do precise, accurate accounting.
2779 	 */
2780 	if (huge_page_disallowed)
2781 		return PG_LEVEL_4K;
2782 
2783 	/*
2784 	 * mmu_notifier_retry() was successful and mmu_lock is held, so
2785 	 * the pmd can't be split from under us.
2786 	 */
2787 	mask = KVM_PAGES_PER_HPAGE(level) - 1;
2788 	VM_BUG_ON((gfn & mask) != (pfn & mask));
2789 	*pfnp = pfn & ~mask;
2790 
2791 	return level;
2792 }
2793 
2794 void disallowed_hugepage_adjust(u64 spte, gfn_t gfn, int cur_level,
2795 				kvm_pfn_t *pfnp, int *goal_levelp)
2796 {
2797 	int level = *goal_levelp;
2798 
2799 	if (cur_level == level && level > PG_LEVEL_4K &&
2800 	    is_shadow_present_pte(spte) &&
2801 	    !is_large_pte(spte)) {
2802 		/*
2803 		 * A small SPTE exists for this pfn, but FNAME(fetch)
2804 		 * and __direct_map would like to create a large PTE
2805 		 * instead: just force them to go down another level,
2806 		 * patching back for them into pfn the next 9 bits of
2807 		 * the address.
2808 		 */
2809 		u64 page_mask = KVM_PAGES_PER_HPAGE(level) -
2810 				KVM_PAGES_PER_HPAGE(level - 1);
2811 		*pfnp |= gfn & page_mask;
2812 		(*goal_levelp)--;
2813 	}
2814 }
2815 
2816 static int __direct_map(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
2817 			int map_writable, int max_level, kvm_pfn_t pfn,
2818 			bool prefault, bool is_tdp)
2819 {
2820 	bool nx_huge_page_workaround_enabled = is_nx_huge_page_enabled();
2821 	bool write = error_code & PFERR_WRITE_MASK;
2822 	bool exec = error_code & PFERR_FETCH_MASK;
2823 	bool huge_page_disallowed = exec && nx_huge_page_workaround_enabled;
2824 	struct kvm_shadow_walk_iterator it;
2825 	struct kvm_mmu_page *sp;
2826 	int level, req_level, ret;
2827 	gfn_t gfn = gpa >> PAGE_SHIFT;
2828 	gfn_t base_gfn = gfn;
2829 
2830 	if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa)))
2831 		return RET_PF_RETRY;
2832 
2833 	level = kvm_mmu_hugepage_adjust(vcpu, gfn, max_level, &pfn,
2834 					huge_page_disallowed, &req_level);
2835 
2836 	trace_kvm_mmu_spte_requested(gpa, level, pfn);
2837 	for_each_shadow_entry(vcpu, gpa, it) {
2838 		/*
2839 		 * We cannot overwrite existing page tables with an NX
2840 		 * large page, as the leaf could be executable.
2841 		 */
2842 		if (nx_huge_page_workaround_enabled)
2843 			disallowed_hugepage_adjust(*it.sptep, gfn, it.level,
2844 						   &pfn, &level);
2845 
2846 		base_gfn = gfn & ~(KVM_PAGES_PER_HPAGE(it.level) - 1);
2847 		if (it.level == level)
2848 			break;
2849 
2850 		drop_large_spte(vcpu, it.sptep);
2851 		if (!is_shadow_present_pte(*it.sptep)) {
2852 			sp = kvm_mmu_get_page(vcpu, base_gfn, it.addr,
2853 					      it.level - 1, true, ACC_ALL);
2854 
2855 			link_shadow_page(vcpu, it.sptep, sp);
2856 			if (is_tdp && huge_page_disallowed &&
2857 			    req_level >= it.level)
2858 				account_huge_nx_page(vcpu->kvm, sp);
2859 		}
2860 	}
2861 
2862 	ret = mmu_set_spte(vcpu, it.sptep, ACC_ALL,
2863 			   write, level, base_gfn, pfn, prefault,
2864 			   map_writable);
2865 	if (ret == RET_PF_SPURIOUS)
2866 		return ret;
2867 
2868 	direct_pte_prefetch(vcpu, it.sptep);
2869 	++vcpu->stat.pf_fixed;
2870 	return ret;
2871 }
2872 
2873 static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
2874 {
2875 	send_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, PAGE_SHIFT, tsk);
2876 }
2877 
2878 static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, kvm_pfn_t pfn)
2879 {
2880 	/*
2881 	 * Do not cache the mmio info caused by writing the readonly gfn
2882 	 * into the spte otherwise read access on readonly gfn also can
2883 	 * caused mmio page fault and treat it as mmio access.
2884 	 */
2885 	if (pfn == KVM_PFN_ERR_RO_FAULT)
2886 		return RET_PF_EMULATE;
2887 
2888 	if (pfn == KVM_PFN_ERR_HWPOISON) {
2889 		kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current);
2890 		return RET_PF_RETRY;
2891 	}
2892 
2893 	return -EFAULT;
2894 }
2895 
2896 static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
2897 				kvm_pfn_t pfn, unsigned int access,
2898 				int *ret_val)
2899 {
2900 	/* The pfn is invalid, report the error! */
2901 	if (unlikely(is_error_pfn(pfn))) {
2902 		*ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
2903 		return true;
2904 	}
2905 
2906 	if (unlikely(is_noslot_pfn(pfn))) {
2907 		vcpu_cache_mmio_info(vcpu, gva, gfn,
2908 				     access & shadow_mmio_access_mask);
2909 		/*
2910 		 * If MMIO caching is disabled, emulate immediately without
2911 		 * touching the shadow page tables as attempting to install an
2912 		 * MMIO SPTE will just be an expensive nop.
2913 		 */
2914 		if (unlikely(!shadow_mmio_value)) {
2915 			*ret_val = RET_PF_EMULATE;
2916 			return true;
2917 		}
2918 	}
2919 
2920 	return false;
2921 }
2922 
2923 static bool page_fault_can_be_fast(u32 error_code)
2924 {
2925 	/*
2926 	 * Do not fix the mmio spte with invalid generation number which
2927 	 * need to be updated by slow page fault path.
2928 	 */
2929 	if (unlikely(error_code & PFERR_RSVD_MASK))
2930 		return false;
2931 
2932 	/* See if the page fault is due to an NX violation */
2933 	if (unlikely(((error_code & (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))
2934 		      == (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))))
2935 		return false;
2936 
2937 	/*
2938 	 * #PF can be fast if:
2939 	 * 1. The shadow page table entry is not present, which could mean that
2940 	 *    the fault is potentially caused by access tracking (if enabled).
2941 	 * 2. The shadow page table entry is present and the fault
2942 	 *    is caused by write-protect, that means we just need change the W
2943 	 *    bit of the spte which can be done out of mmu-lock.
2944 	 *
2945 	 * However, if access tracking is disabled we know that a non-present
2946 	 * page must be a genuine page fault where we have to create a new SPTE.
2947 	 * So, if access tracking is disabled, we return true only for write
2948 	 * accesses to a present page.
2949 	 */
2950 
2951 	return shadow_acc_track_mask != 0 ||
2952 	       ((error_code & (PFERR_WRITE_MASK | PFERR_PRESENT_MASK))
2953 		== (PFERR_WRITE_MASK | PFERR_PRESENT_MASK));
2954 }
2955 
2956 /*
2957  * Returns true if the SPTE was fixed successfully. Otherwise,
2958  * someone else modified the SPTE from its original value.
2959  */
2960 static bool
2961 fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
2962 			u64 *sptep, u64 old_spte, u64 new_spte)
2963 {
2964 	gfn_t gfn;
2965 
2966 	WARN_ON(!sp->role.direct);
2967 
2968 	/*
2969 	 * Theoretically we could also set dirty bit (and flush TLB) here in
2970 	 * order to eliminate unnecessary PML logging. See comments in
2971 	 * set_spte. But fast_page_fault is very unlikely to happen with PML
2972 	 * enabled, so we do not do this. This might result in the same GPA
2973 	 * to be logged in PML buffer again when the write really happens, and
2974 	 * eventually to be called by mark_page_dirty twice. But it's also no
2975 	 * harm. This also avoids the TLB flush needed after setting dirty bit
2976 	 * so non-PML cases won't be impacted.
2977 	 *
2978 	 * Compare with set_spte where instead shadow_dirty_mask is set.
2979 	 */
2980 	if (cmpxchg64(sptep, old_spte, new_spte) != old_spte)
2981 		return false;
2982 
2983 	if (is_writable_pte(new_spte) && !is_writable_pte(old_spte)) {
2984 		/*
2985 		 * The gfn of direct spte is stable since it is
2986 		 * calculated by sp->gfn.
2987 		 */
2988 		gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
2989 		kvm_vcpu_mark_page_dirty(vcpu, gfn);
2990 	}
2991 
2992 	return true;
2993 }
2994 
2995 static bool is_access_allowed(u32 fault_err_code, u64 spte)
2996 {
2997 	if (fault_err_code & PFERR_FETCH_MASK)
2998 		return is_executable_pte(spte);
2999 
3000 	if (fault_err_code & PFERR_WRITE_MASK)
3001 		return is_writable_pte(spte);
3002 
3003 	/* Fault was on Read access */
3004 	return spte & PT_PRESENT_MASK;
3005 }
3006 
3007 /*
3008  * Returns one of RET_PF_INVALID, RET_PF_FIXED or RET_PF_SPURIOUS.
3009  */
3010 static int fast_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
3011 			   u32 error_code)
3012 {
3013 	struct kvm_shadow_walk_iterator iterator;
3014 	struct kvm_mmu_page *sp;
3015 	int ret = RET_PF_INVALID;
3016 	u64 spte = 0ull;
3017 	uint retry_count = 0;
3018 
3019 	if (!page_fault_can_be_fast(error_code))
3020 		return ret;
3021 
3022 	walk_shadow_page_lockless_begin(vcpu);
3023 
3024 	do {
3025 		u64 new_spte;
3026 
3027 		for_each_shadow_entry_lockless(vcpu, cr2_or_gpa, iterator, spte)
3028 			if (!is_shadow_present_pte(spte))
3029 				break;
3030 
3031 		if (!is_shadow_present_pte(spte))
3032 			break;
3033 
3034 		sp = sptep_to_sp(iterator.sptep);
3035 		if (!is_last_spte(spte, sp->role.level))
3036 			break;
3037 
3038 		/*
3039 		 * Check whether the memory access that caused the fault would
3040 		 * still cause it if it were to be performed right now. If not,
3041 		 * then this is a spurious fault caused by TLB lazily flushed,
3042 		 * or some other CPU has already fixed the PTE after the
3043 		 * current CPU took the fault.
3044 		 *
3045 		 * Need not check the access of upper level table entries since
3046 		 * they are always ACC_ALL.
3047 		 */
3048 		if (is_access_allowed(error_code, spte)) {
3049 			ret = RET_PF_SPURIOUS;
3050 			break;
3051 		}
3052 
3053 		new_spte = spte;
3054 
3055 		if (is_access_track_spte(spte))
3056 			new_spte = restore_acc_track_spte(new_spte);
3057 
3058 		/*
3059 		 * Currently, to simplify the code, write-protection can
3060 		 * be removed in the fast path only if the SPTE was
3061 		 * write-protected for dirty-logging or access tracking.
3062 		 */
3063 		if ((error_code & PFERR_WRITE_MASK) &&
3064 		    spte_can_locklessly_be_made_writable(spte)) {
3065 			new_spte |= PT_WRITABLE_MASK;
3066 
3067 			/*
3068 			 * Do not fix write-permission on the large spte.  Since
3069 			 * we only dirty the first page into the dirty-bitmap in
3070 			 * fast_pf_fix_direct_spte(), other pages are missed
3071 			 * if its slot has dirty logging enabled.
3072 			 *
3073 			 * Instead, we let the slow page fault path create a
3074 			 * normal spte to fix the access.
3075 			 *
3076 			 * See the comments in kvm_arch_commit_memory_region().
3077 			 */
3078 			if (sp->role.level > PG_LEVEL_4K)
3079 				break;
3080 		}
3081 
3082 		/* Verify that the fault can be handled in the fast path */
3083 		if (new_spte == spte ||
3084 		    !is_access_allowed(error_code, new_spte))
3085 			break;
3086 
3087 		/*
3088 		 * Currently, fast page fault only works for direct mapping
3089 		 * since the gfn is not stable for indirect shadow page. See
3090 		 * Documentation/virt/kvm/locking.rst to get more detail.
3091 		 */
3092 		if (fast_pf_fix_direct_spte(vcpu, sp, iterator.sptep, spte,
3093 					    new_spte)) {
3094 			ret = RET_PF_FIXED;
3095 			break;
3096 		}
3097 
3098 		if (++retry_count > 4) {
3099 			printk_once(KERN_WARNING
3100 				"kvm: Fast #PF retrying more than 4 times.\n");
3101 			break;
3102 		}
3103 
3104 	} while (true);
3105 
3106 	trace_fast_page_fault(vcpu, cr2_or_gpa, error_code, iterator.sptep,
3107 			      spte, ret);
3108 	walk_shadow_page_lockless_end(vcpu);
3109 
3110 	return ret;
3111 }
3112 
3113 static void mmu_free_root_page(struct kvm *kvm, hpa_t *root_hpa,
3114 			       struct list_head *invalid_list)
3115 {
3116 	struct kvm_mmu_page *sp;
3117 
3118 	if (!VALID_PAGE(*root_hpa))
3119 		return;
3120 
3121 	sp = to_shadow_page(*root_hpa & PT64_BASE_ADDR_MASK);
3122 
3123 	if (is_tdp_mmu_page(sp))
3124 		kvm_tdp_mmu_put_root(kvm, sp, false);
3125 	else if (!--sp->root_count && sp->role.invalid)
3126 		kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
3127 
3128 	*root_hpa = INVALID_PAGE;
3129 }
3130 
3131 /* roots_to_free must be some combination of the KVM_MMU_ROOT_* flags */
3132 void kvm_mmu_free_roots(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
3133 			ulong roots_to_free)
3134 {
3135 	struct kvm *kvm = vcpu->kvm;
3136 	int i;
3137 	LIST_HEAD(invalid_list);
3138 	bool free_active_root = roots_to_free & KVM_MMU_ROOT_CURRENT;
3139 
3140 	BUILD_BUG_ON(KVM_MMU_NUM_PREV_ROOTS >= BITS_PER_LONG);
3141 
3142 	/* Before acquiring the MMU lock, see if we need to do any real work. */
3143 	if (!(free_active_root && VALID_PAGE(mmu->root_hpa))) {
3144 		for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
3145 			if ((roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) &&
3146 			    VALID_PAGE(mmu->prev_roots[i].hpa))
3147 				break;
3148 
3149 		if (i == KVM_MMU_NUM_PREV_ROOTS)
3150 			return;
3151 	}
3152 
3153 	write_lock(&kvm->mmu_lock);
3154 
3155 	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
3156 		if (roots_to_free & KVM_MMU_ROOT_PREVIOUS(i))
3157 			mmu_free_root_page(kvm, &mmu->prev_roots[i].hpa,
3158 					   &invalid_list);
3159 
3160 	if (free_active_root) {
3161 		if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
3162 		    (mmu->root_level >= PT64_ROOT_4LEVEL || mmu->direct_map)) {
3163 			mmu_free_root_page(kvm, &mmu->root_hpa, &invalid_list);
3164 		} else if (mmu->pae_root) {
3165 			for (i = 0; i < 4; ++i) {
3166 				if (!IS_VALID_PAE_ROOT(mmu->pae_root[i]))
3167 					continue;
3168 
3169 				mmu_free_root_page(kvm, &mmu->pae_root[i],
3170 						   &invalid_list);
3171 				mmu->pae_root[i] = INVALID_PAE_ROOT;
3172 			}
3173 		}
3174 		mmu->root_hpa = INVALID_PAGE;
3175 		mmu->root_pgd = 0;
3176 	}
3177 
3178 	kvm_mmu_commit_zap_page(kvm, &invalid_list);
3179 	write_unlock(&kvm->mmu_lock);
3180 }
3181 EXPORT_SYMBOL_GPL(kvm_mmu_free_roots);
3182 
3183 static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
3184 {
3185 	int ret = 0;
3186 
3187 	if (!kvm_vcpu_is_visible_gfn(vcpu, root_gfn)) {
3188 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3189 		ret = 1;
3190 	}
3191 
3192 	return ret;
3193 }
3194 
3195 static hpa_t mmu_alloc_root(struct kvm_vcpu *vcpu, gfn_t gfn, gva_t gva,
3196 			    u8 level, bool direct)
3197 {
3198 	struct kvm_mmu_page *sp;
3199 
3200 	sp = kvm_mmu_get_page(vcpu, gfn, gva, level, direct, ACC_ALL);
3201 	++sp->root_count;
3202 
3203 	return __pa(sp->spt);
3204 }
3205 
3206 static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
3207 {
3208 	struct kvm_mmu *mmu = vcpu->arch.mmu;
3209 	u8 shadow_root_level = mmu->shadow_root_level;
3210 	hpa_t root;
3211 	unsigned i;
3212 	int r;
3213 
3214 	write_lock(&vcpu->kvm->mmu_lock);
3215 	r = make_mmu_pages_available(vcpu);
3216 	if (r < 0)
3217 		goto out_unlock;
3218 
3219 	if (is_tdp_mmu_enabled(vcpu->kvm)) {
3220 		root = kvm_tdp_mmu_get_vcpu_root_hpa(vcpu);
3221 		mmu->root_hpa = root;
3222 	} else if (shadow_root_level >= PT64_ROOT_4LEVEL) {
3223 		root = mmu_alloc_root(vcpu, 0, 0, shadow_root_level, true);
3224 		mmu->root_hpa = root;
3225 	} else if (shadow_root_level == PT32E_ROOT_LEVEL) {
3226 		if (WARN_ON_ONCE(!mmu->pae_root)) {
3227 			r = -EIO;
3228 			goto out_unlock;
3229 		}
3230 
3231 		for (i = 0; i < 4; ++i) {
3232 			WARN_ON_ONCE(IS_VALID_PAE_ROOT(mmu->pae_root[i]));
3233 
3234 			root = mmu_alloc_root(vcpu, i << (30 - PAGE_SHIFT),
3235 					      i << 30, PT32_ROOT_LEVEL, true);
3236 			mmu->pae_root[i] = root | PT_PRESENT_MASK |
3237 					   shadow_me_mask;
3238 		}
3239 		mmu->root_hpa = __pa(mmu->pae_root);
3240 	} else {
3241 		WARN_ONCE(1, "Bad TDP root level = %d\n", shadow_root_level);
3242 		r = -EIO;
3243 		goto out_unlock;
3244 	}
3245 
3246 	/* root_pgd is ignored for direct MMUs. */
3247 	mmu->root_pgd = 0;
3248 out_unlock:
3249 	write_unlock(&vcpu->kvm->mmu_lock);
3250 	return r;
3251 }
3252 
3253 static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
3254 {
3255 	struct kvm_mmu *mmu = vcpu->arch.mmu;
3256 	u64 pdptrs[4], pm_mask;
3257 	gfn_t root_gfn, root_pgd;
3258 	hpa_t root;
3259 	unsigned i;
3260 	int r;
3261 
3262 	root_pgd = mmu->get_guest_pgd(vcpu);
3263 	root_gfn = root_pgd >> PAGE_SHIFT;
3264 
3265 	if (mmu_check_root(vcpu, root_gfn))
3266 		return 1;
3267 
3268 	/*
3269 	 * On SVM, reading PDPTRs might access guest memory, which might fault
3270 	 * and thus might sleep.  Grab the PDPTRs before acquiring mmu_lock.
3271 	 */
3272 	if (mmu->root_level == PT32E_ROOT_LEVEL) {
3273 		for (i = 0; i < 4; ++i) {
3274 			pdptrs[i] = mmu->get_pdptr(vcpu, i);
3275 			if (!(pdptrs[i] & PT_PRESENT_MASK))
3276 				continue;
3277 
3278 			if (mmu_check_root(vcpu, pdptrs[i] >> PAGE_SHIFT))
3279 				return 1;
3280 		}
3281 	}
3282 
3283 	write_lock(&vcpu->kvm->mmu_lock);
3284 	r = make_mmu_pages_available(vcpu);
3285 	if (r < 0)
3286 		goto out_unlock;
3287 
3288 	/*
3289 	 * Do we shadow a long mode page table? If so we need to
3290 	 * write-protect the guests page table root.
3291 	 */
3292 	if (mmu->root_level >= PT64_ROOT_4LEVEL) {
3293 		root = mmu_alloc_root(vcpu, root_gfn, 0,
3294 				      mmu->shadow_root_level, false);
3295 		mmu->root_hpa = root;
3296 		goto set_root_pgd;
3297 	}
3298 
3299 	if (WARN_ON_ONCE(!mmu->pae_root)) {
3300 		r = -EIO;
3301 		goto out_unlock;
3302 	}
3303 
3304 	/*
3305 	 * We shadow a 32 bit page table. This may be a legacy 2-level
3306 	 * or a PAE 3-level page table. In either case we need to be aware that
3307 	 * the shadow page table may be a PAE or a long mode page table.
3308 	 */
3309 	pm_mask = PT_PRESENT_MASK | shadow_me_mask;
3310 	if (mmu->shadow_root_level == PT64_ROOT_4LEVEL) {
3311 		pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
3312 
3313 		if (WARN_ON_ONCE(!mmu->pml4_root)) {
3314 			r = -EIO;
3315 			goto out_unlock;
3316 		}
3317 
3318 		mmu->pml4_root[0] = __pa(mmu->pae_root) | pm_mask;
3319 	}
3320 
3321 	for (i = 0; i < 4; ++i) {
3322 		WARN_ON_ONCE(IS_VALID_PAE_ROOT(mmu->pae_root[i]));
3323 
3324 		if (mmu->root_level == PT32E_ROOT_LEVEL) {
3325 			if (!(pdptrs[i] & PT_PRESENT_MASK)) {
3326 				mmu->pae_root[i] = INVALID_PAE_ROOT;
3327 				continue;
3328 			}
3329 			root_gfn = pdptrs[i] >> PAGE_SHIFT;
3330 		}
3331 
3332 		root = mmu_alloc_root(vcpu, root_gfn, i << 30,
3333 				      PT32_ROOT_LEVEL, false);
3334 		mmu->pae_root[i] = root | pm_mask;
3335 	}
3336 
3337 	if (mmu->shadow_root_level == PT64_ROOT_4LEVEL)
3338 		mmu->root_hpa = __pa(mmu->pml4_root);
3339 	else
3340 		mmu->root_hpa = __pa(mmu->pae_root);
3341 
3342 set_root_pgd:
3343 	mmu->root_pgd = root_pgd;
3344 out_unlock:
3345 	write_unlock(&vcpu->kvm->mmu_lock);
3346 
3347 	return 0;
3348 }
3349 
3350 static int mmu_alloc_special_roots(struct kvm_vcpu *vcpu)
3351 {
3352 	struct kvm_mmu *mmu = vcpu->arch.mmu;
3353 	u64 *pml4_root, *pae_root;
3354 
3355 	/*
3356 	 * When shadowing 32-bit or PAE NPT with 64-bit NPT, the PML4 and PDP
3357 	 * tables are allocated and initialized at root creation as there is no
3358 	 * equivalent level in the guest's NPT to shadow.  Allocate the tables
3359 	 * on demand, as running a 32-bit L1 VMM on 64-bit KVM is very rare.
3360 	 */
3361 	if (mmu->direct_map || mmu->root_level >= PT64_ROOT_4LEVEL ||
3362 	    mmu->shadow_root_level < PT64_ROOT_4LEVEL)
3363 		return 0;
3364 
3365 	/*
3366 	 * This mess only works with 4-level paging and needs to be updated to
3367 	 * work with 5-level paging.
3368 	 */
3369 	if (WARN_ON_ONCE(mmu->shadow_root_level != PT64_ROOT_4LEVEL))
3370 		return -EIO;
3371 
3372 	if (mmu->pae_root && mmu->pml4_root)
3373 		return 0;
3374 
3375 	/*
3376 	 * The special roots should always be allocated in concert.  Yell and
3377 	 * bail if KVM ends up in a state where only one of the roots is valid.
3378 	 */
3379 	if (WARN_ON_ONCE(!tdp_enabled || mmu->pae_root || mmu->pml4_root))
3380 		return -EIO;
3381 
3382 	/*
3383 	 * Unlike 32-bit NPT, the PDP table doesn't need to be in low mem, and
3384 	 * doesn't need to be decrypted.
3385 	 */
3386 	pae_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT);
3387 	if (!pae_root)
3388 		return -ENOMEM;
3389 
3390 	pml4_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT);
3391 	if (!pml4_root) {
3392 		free_page((unsigned long)pae_root);
3393 		return -ENOMEM;
3394 	}
3395 
3396 	mmu->pae_root = pae_root;
3397 	mmu->pml4_root = pml4_root;
3398 
3399 	return 0;
3400 }
3401 
3402 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3403 {
3404 	int i;
3405 	struct kvm_mmu_page *sp;
3406 
3407 	if (vcpu->arch.mmu->direct_map)
3408 		return;
3409 
3410 	if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
3411 		return;
3412 
3413 	vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
3414 
3415 	if (vcpu->arch.mmu->root_level >= PT64_ROOT_4LEVEL) {
3416 		hpa_t root = vcpu->arch.mmu->root_hpa;
3417 		sp = to_shadow_page(root);
3418 
3419 		/*
3420 		 * Even if another CPU was marking the SP as unsync-ed
3421 		 * simultaneously, any guest page table changes are not
3422 		 * guaranteed to be visible anyway until this VCPU issues a TLB
3423 		 * flush strictly after those changes are made. We only need to
3424 		 * ensure that the other CPU sets these flags before any actual
3425 		 * changes to the page tables are made. The comments in
3426 		 * mmu_need_write_protect() describe what could go wrong if this
3427 		 * requirement isn't satisfied.
3428 		 */
3429 		if (!smp_load_acquire(&sp->unsync) &&
3430 		    !smp_load_acquire(&sp->unsync_children))
3431 			return;
3432 
3433 		write_lock(&vcpu->kvm->mmu_lock);
3434 		kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3435 
3436 		mmu_sync_children(vcpu, sp);
3437 
3438 		kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3439 		write_unlock(&vcpu->kvm->mmu_lock);
3440 		return;
3441 	}
3442 
3443 	write_lock(&vcpu->kvm->mmu_lock);
3444 	kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3445 
3446 	for (i = 0; i < 4; ++i) {
3447 		hpa_t root = vcpu->arch.mmu->pae_root[i];
3448 
3449 		if (IS_VALID_PAE_ROOT(root)) {
3450 			root &= PT64_BASE_ADDR_MASK;
3451 			sp = to_shadow_page(root);
3452 			mmu_sync_children(vcpu, sp);
3453 		}
3454 	}
3455 
3456 	kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3457 	write_unlock(&vcpu->kvm->mmu_lock);
3458 }
3459 
3460 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gpa_t vaddr,
3461 				  u32 access, struct x86_exception *exception)
3462 {
3463 	if (exception)
3464 		exception->error_code = 0;
3465 	return vaddr;
3466 }
3467 
3468 static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gpa_t vaddr,
3469 					 u32 access,
3470 					 struct x86_exception *exception)
3471 {
3472 	if (exception)
3473 		exception->error_code = 0;
3474 	return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception);
3475 }
3476 
3477 static bool
3478 __is_rsvd_bits_set(struct rsvd_bits_validate *rsvd_check, u64 pte, int level)
3479 {
3480 	int bit7 = (pte >> 7) & 1;
3481 
3482 	return pte & rsvd_check->rsvd_bits_mask[bit7][level-1];
3483 }
3484 
3485 static bool __is_bad_mt_xwr(struct rsvd_bits_validate *rsvd_check, u64 pte)
3486 {
3487 	return rsvd_check->bad_mt_xwr & BIT_ULL(pte & 0x3f);
3488 }
3489 
3490 static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3491 {
3492 	/*
3493 	 * A nested guest cannot use the MMIO cache if it is using nested
3494 	 * page tables, because cr2 is a nGPA while the cache stores GPAs.
3495 	 */
3496 	if (mmu_is_nested(vcpu))
3497 		return false;
3498 
3499 	if (direct)
3500 		return vcpu_match_mmio_gpa(vcpu, addr);
3501 
3502 	return vcpu_match_mmio_gva(vcpu, addr);
3503 }
3504 
3505 /*
3506  * Return the level of the lowest level SPTE added to sptes.
3507  * That SPTE may be non-present.
3508  */
3509 static int get_walk(struct kvm_vcpu *vcpu, u64 addr, u64 *sptes, int *root_level)
3510 {
3511 	struct kvm_shadow_walk_iterator iterator;
3512 	int leaf = -1;
3513 	u64 spte;
3514 
3515 	walk_shadow_page_lockless_begin(vcpu);
3516 
3517 	for (shadow_walk_init(&iterator, vcpu, addr),
3518 	     *root_level = iterator.level;
3519 	     shadow_walk_okay(&iterator);
3520 	     __shadow_walk_next(&iterator, spte)) {
3521 		leaf = iterator.level;
3522 		spte = mmu_spte_get_lockless(iterator.sptep);
3523 
3524 		sptes[leaf] = spte;
3525 
3526 		if (!is_shadow_present_pte(spte))
3527 			break;
3528 	}
3529 
3530 	walk_shadow_page_lockless_end(vcpu);
3531 
3532 	return leaf;
3533 }
3534 
3535 /* return true if reserved bit(s) are detected on a valid, non-MMIO SPTE. */
3536 static bool get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep)
3537 {
3538 	u64 sptes[PT64_ROOT_MAX_LEVEL + 1];
3539 	struct rsvd_bits_validate *rsvd_check;
3540 	int root, leaf, level;
3541 	bool reserved = false;
3542 
3543 	if (!VALID_PAGE(vcpu->arch.mmu->root_hpa)) {
3544 		*sptep = 0ull;
3545 		return reserved;
3546 	}
3547 
3548 	if (is_tdp_mmu_root(vcpu->kvm, vcpu->arch.mmu->root_hpa))
3549 		leaf = kvm_tdp_mmu_get_walk(vcpu, addr, sptes, &root);
3550 	else
3551 		leaf = get_walk(vcpu, addr, sptes, &root);
3552 
3553 	if (unlikely(leaf < 0)) {
3554 		*sptep = 0ull;
3555 		return reserved;
3556 	}
3557 
3558 	*sptep = sptes[leaf];
3559 
3560 	/*
3561 	 * Skip reserved bits checks on the terminal leaf if it's not a valid
3562 	 * SPTE.  Note, this also (intentionally) skips MMIO SPTEs, which, by
3563 	 * design, always have reserved bits set.  The purpose of the checks is
3564 	 * to detect reserved bits on non-MMIO SPTEs. i.e. buggy SPTEs.
3565 	 */
3566 	if (!is_shadow_present_pte(sptes[leaf]))
3567 		leaf++;
3568 
3569 	rsvd_check = &vcpu->arch.mmu->shadow_zero_check;
3570 
3571 	for (level = root; level >= leaf; level--)
3572 		/*
3573 		 * Use a bitwise-OR instead of a logical-OR to aggregate the
3574 		 * reserved bit and EPT's invalid memtype/XWR checks to avoid
3575 		 * adding a Jcc in the loop.
3576 		 */
3577 		reserved |= __is_bad_mt_xwr(rsvd_check, sptes[level]) |
3578 			    __is_rsvd_bits_set(rsvd_check, sptes[level], level);
3579 
3580 	if (reserved) {
3581 		pr_err("%s: reserved bits set on MMU-present spte, addr 0x%llx, hierarchy:\n",
3582 		       __func__, addr);
3583 		for (level = root; level >= leaf; level--)
3584 			pr_err("------ spte = 0x%llx level = %d, rsvd bits = 0x%llx",
3585 			       sptes[level], level,
3586 			       rsvd_check->rsvd_bits_mask[(sptes[level] >> 7) & 1][level-1]);
3587 	}
3588 
3589 	return reserved;
3590 }
3591 
3592 static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3593 {
3594 	u64 spte;
3595 	bool reserved;
3596 
3597 	if (mmio_info_in_cache(vcpu, addr, direct))
3598 		return RET_PF_EMULATE;
3599 
3600 	reserved = get_mmio_spte(vcpu, addr, &spte);
3601 	if (WARN_ON(reserved))
3602 		return -EINVAL;
3603 
3604 	if (is_mmio_spte(spte)) {
3605 		gfn_t gfn = get_mmio_spte_gfn(spte);
3606 		unsigned int access = get_mmio_spte_access(spte);
3607 
3608 		if (!check_mmio_spte(vcpu, spte))
3609 			return RET_PF_INVALID;
3610 
3611 		if (direct)
3612 			addr = 0;
3613 
3614 		trace_handle_mmio_page_fault(addr, gfn, access);
3615 		vcpu_cache_mmio_info(vcpu, addr, gfn, access);
3616 		return RET_PF_EMULATE;
3617 	}
3618 
3619 	/*
3620 	 * If the page table is zapped by other cpus, let CPU fault again on
3621 	 * the address.
3622 	 */
3623 	return RET_PF_RETRY;
3624 }
3625 
3626 static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu,
3627 					 u32 error_code, gfn_t gfn)
3628 {
3629 	if (unlikely(error_code & PFERR_RSVD_MASK))
3630 		return false;
3631 
3632 	if (!(error_code & PFERR_PRESENT_MASK) ||
3633 	      !(error_code & PFERR_WRITE_MASK))
3634 		return false;
3635 
3636 	/*
3637 	 * guest is writing the page which is write tracked which can
3638 	 * not be fixed by page fault handler.
3639 	 */
3640 	if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
3641 		return true;
3642 
3643 	return false;
3644 }
3645 
3646 static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr)
3647 {
3648 	struct kvm_shadow_walk_iterator iterator;
3649 	u64 spte;
3650 
3651 	walk_shadow_page_lockless_begin(vcpu);
3652 	for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
3653 		clear_sp_write_flooding_count(iterator.sptep);
3654 		if (!is_shadow_present_pte(spte))
3655 			break;
3656 	}
3657 	walk_shadow_page_lockless_end(vcpu);
3658 }
3659 
3660 static bool kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
3661 				    gfn_t gfn)
3662 {
3663 	struct kvm_arch_async_pf arch;
3664 
3665 	arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
3666 	arch.gfn = gfn;
3667 	arch.direct_map = vcpu->arch.mmu->direct_map;
3668 	arch.cr3 = vcpu->arch.mmu->get_guest_pgd(vcpu);
3669 
3670 	return kvm_setup_async_pf(vcpu, cr2_or_gpa,
3671 				  kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch);
3672 }
3673 
3674 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
3675 			 gpa_t cr2_or_gpa, kvm_pfn_t *pfn, hva_t *hva,
3676 			 bool write, bool *writable)
3677 {
3678 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3679 	bool async;
3680 
3681 	/*
3682 	 * Retry the page fault if the gfn hit a memslot that is being deleted
3683 	 * or moved.  This ensures any existing SPTEs for the old memslot will
3684 	 * be zapped before KVM inserts a new MMIO SPTE for the gfn.
3685 	 */
3686 	if (slot && (slot->flags & KVM_MEMSLOT_INVALID))
3687 		return true;
3688 
3689 	/* Don't expose private memslots to L2. */
3690 	if (is_guest_mode(vcpu) && !kvm_is_visible_memslot(slot)) {
3691 		*pfn = KVM_PFN_NOSLOT;
3692 		*writable = false;
3693 		return false;
3694 	}
3695 
3696 	async = false;
3697 	*pfn = __gfn_to_pfn_memslot(slot, gfn, false, &async,
3698 				    write, writable, hva);
3699 	if (!async)
3700 		return false; /* *pfn has correct page already */
3701 
3702 	if (!prefault && kvm_can_do_async_pf(vcpu)) {
3703 		trace_kvm_try_async_get_page(cr2_or_gpa, gfn);
3704 		if (kvm_find_async_pf_gfn(vcpu, gfn)) {
3705 			trace_kvm_async_pf_doublefault(cr2_or_gpa, gfn);
3706 			kvm_make_request(KVM_REQ_APF_HALT, vcpu);
3707 			return true;
3708 		} else if (kvm_arch_setup_async_pf(vcpu, cr2_or_gpa, gfn))
3709 			return true;
3710 	}
3711 
3712 	*pfn = __gfn_to_pfn_memslot(slot, gfn, false, NULL,
3713 				    write, writable, hva);
3714 	return false;
3715 }
3716 
3717 static int direct_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
3718 			     bool prefault, int max_level, bool is_tdp)
3719 {
3720 	bool write = error_code & PFERR_WRITE_MASK;
3721 	bool map_writable;
3722 
3723 	gfn_t gfn = gpa >> PAGE_SHIFT;
3724 	unsigned long mmu_seq;
3725 	kvm_pfn_t pfn;
3726 	hva_t hva;
3727 	int r;
3728 
3729 	if (page_fault_handle_page_track(vcpu, error_code, gfn))
3730 		return RET_PF_EMULATE;
3731 
3732 	if (!is_tdp_mmu_root(vcpu->kvm, vcpu->arch.mmu->root_hpa)) {
3733 		r = fast_page_fault(vcpu, gpa, error_code);
3734 		if (r != RET_PF_INVALID)
3735 			return r;
3736 	}
3737 
3738 	r = mmu_topup_memory_caches(vcpu, false);
3739 	if (r)
3740 		return r;
3741 
3742 	mmu_seq = vcpu->kvm->mmu_notifier_seq;
3743 	smp_rmb();
3744 
3745 	if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, &hva,
3746 			 write, &map_writable))
3747 		return RET_PF_RETRY;
3748 
3749 	if (handle_abnormal_pfn(vcpu, is_tdp ? 0 : gpa, gfn, pfn, ACC_ALL, &r))
3750 		return r;
3751 
3752 	r = RET_PF_RETRY;
3753 
3754 	if (is_tdp_mmu_root(vcpu->kvm, vcpu->arch.mmu->root_hpa))
3755 		read_lock(&vcpu->kvm->mmu_lock);
3756 	else
3757 		write_lock(&vcpu->kvm->mmu_lock);
3758 
3759 	if (!is_noslot_pfn(pfn) && mmu_notifier_retry_hva(vcpu->kvm, mmu_seq, hva))
3760 		goto out_unlock;
3761 	r = make_mmu_pages_available(vcpu);
3762 	if (r)
3763 		goto out_unlock;
3764 
3765 	if (is_tdp_mmu_root(vcpu->kvm, vcpu->arch.mmu->root_hpa))
3766 		r = kvm_tdp_mmu_map(vcpu, gpa, error_code, map_writable, max_level,
3767 				    pfn, prefault);
3768 	else
3769 		r = __direct_map(vcpu, gpa, error_code, map_writable, max_level, pfn,
3770 				 prefault, is_tdp);
3771 
3772 out_unlock:
3773 	if (is_tdp_mmu_root(vcpu->kvm, vcpu->arch.mmu->root_hpa))
3774 		read_unlock(&vcpu->kvm->mmu_lock);
3775 	else
3776 		write_unlock(&vcpu->kvm->mmu_lock);
3777 	kvm_release_pfn_clean(pfn);
3778 	return r;
3779 }
3780 
3781 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa,
3782 				u32 error_code, bool prefault)
3783 {
3784 	pgprintk("%s: gva %lx error %x\n", __func__, gpa, error_code);
3785 
3786 	/* This path builds a PAE pagetable, we can map 2mb pages at maximum. */
3787 	return direct_page_fault(vcpu, gpa & PAGE_MASK, error_code, prefault,
3788 				 PG_LEVEL_2M, false);
3789 }
3790 
3791 int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code,
3792 				u64 fault_address, char *insn, int insn_len)
3793 {
3794 	int r = 1;
3795 	u32 flags = vcpu->arch.apf.host_apf_flags;
3796 
3797 #ifndef CONFIG_X86_64
3798 	/* A 64-bit CR2 should be impossible on 32-bit KVM. */
3799 	if (WARN_ON_ONCE(fault_address >> 32))
3800 		return -EFAULT;
3801 #endif
3802 
3803 	vcpu->arch.l1tf_flush_l1d = true;
3804 	if (!flags) {
3805 		trace_kvm_page_fault(fault_address, error_code);
3806 
3807 		if (kvm_event_needs_reinjection(vcpu))
3808 			kvm_mmu_unprotect_page_virt(vcpu, fault_address);
3809 		r = kvm_mmu_page_fault(vcpu, fault_address, error_code, insn,
3810 				insn_len);
3811 	} else if (flags & KVM_PV_REASON_PAGE_NOT_PRESENT) {
3812 		vcpu->arch.apf.host_apf_flags = 0;
3813 		local_irq_disable();
3814 		kvm_async_pf_task_wait_schedule(fault_address);
3815 		local_irq_enable();
3816 	} else {
3817 		WARN_ONCE(1, "Unexpected host async PF flags: %x\n", flags);
3818 	}
3819 
3820 	return r;
3821 }
3822 EXPORT_SYMBOL_GPL(kvm_handle_page_fault);
3823 
3824 int kvm_tdp_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
3825 		       bool prefault)
3826 {
3827 	int max_level;
3828 
3829 	for (max_level = KVM_MAX_HUGEPAGE_LEVEL;
3830 	     max_level > PG_LEVEL_4K;
3831 	     max_level--) {
3832 		int page_num = KVM_PAGES_PER_HPAGE(max_level);
3833 		gfn_t base = (gpa >> PAGE_SHIFT) & ~(page_num - 1);
3834 
3835 		if (kvm_mtrr_check_gfn_range_consistency(vcpu, base, page_num))
3836 			break;
3837 	}
3838 
3839 	return direct_page_fault(vcpu, gpa, error_code, prefault,
3840 				 max_level, true);
3841 }
3842 
3843 static void nonpaging_init_context(struct kvm_vcpu *vcpu,
3844 				   struct kvm_mmu *context)
3845 {
3846 	context->page_fault = nonpaging_page_fault;
3847 	context->gva_to_gpa = nonpaging_gva_to_gpa;
3848 	context->sync_page = nonpaging_sync_page;
3849 	context->invlpg = NULL;
3850 	context->root_level = 0;
3851 	context->shadow_root_level = PT32E_ROOT_LEVEL;
3852 	context->direct_map = true;
3853 	context->nx = false;
3854 }
3855 
3856 static inline bool is_root_usable(struct kvm_mmu_root_info *root, gpa_t pgd,
3857 				  union kvm_mmu_page_role role)
3858 {
3859 	return (role.direct || pgd == root->pgd) &&
3860 	       VALID_PAGE(root->hpa) && to_shadow_page(root->hpa) &&
3861 	       role.word == to_shadow_page(root->hpa)->role.word;
3862 }
3863 
3864 /*
3865  * Find out if a previously cached root matching the new pgd/role is available.
3866  * The current root is also inserted into the cache.
3867  * If a matching root was found, it is assigned to kvm_mmu->root_hpa and true is
3868  * returned.
3869  * Otherwise, the LRU root from the cache is assigned to kvm_mmu->root_hpa and
3870  * false is returned. This root should now be freed by the caller.
3871  */
3872 static bool cached_root_available(struct kvm_vcpu *vcpu, gpa_t new_pgd,
3873 				  union kvm_mmu_page_role new_role)
3874 {
3875 	uint i;
3876 	struct kvm_mmu_root_info root;
3877 	struct kvm_mmu *mmu = vcpu->arch.mmu;
3878 
3879 	root.pgd = mmu->root_pgd;
3880 	root.hpa = mmu->root_hpa;
3881 
3882 	if (is_root_usable(&root, new_pgd, new_role))
3883 		return true;
3884 
3885 	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
3886 		swap(root, mmu->prev_roots[i]);
3887 
3888 		if (is_root_usable(&root, new_pgd, new_role))
3889 			break;
3890 	}
3891 
3892 	mmu->root_hpa = root.hpa;
3893 	mmu->root_pgd = root.pgd;
3894 
3895 	return i < KVM_MMU_NUM_PREV_ROOTS;
3896 }
3897 
3898 static bool fast_pgd_switch(struct kvm_vcpu *vcpu, gpa_t new_pgd,
3899 			    union kvm_mmu_page_role new_role)
3900 {
3901 	struct kvm_mmu *mmu = vcpu->arch.mmu;
3902 
3903 	/*
3904 	 * For now, limit the fast switch to 64-bit hosts+VMs in order to avoid
3905 	 * having to deal with PDPTEs. We may add support for 32-bit hosts/VMs
3906 	 * later if necessary.
3907 	 */
3908 	if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
3909 	    mmu->root_level >= PT64_ROOT_4LEVEL)
3910 		return cached_root_available(vcpu, new_pgd, new_role);
3911 
3912 	return false;
3913 }
3914 
3915 static void __kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd,
3916 			      union kvm_mmu_page_role new_role,
3917 			      bool skip_tlb_flush, bool skip_mmu_sync)
3918 {
3919 	if (!fast_pgd_switch(vcpu, new_pgd, new_role)) {
3920 		kvm_mmu_free_roots(vcpu, vcpu->arch.mmu, KVM_MMU_ROOT_CURRENT);
3921 		return;
3922 	}
3923 
3924 	/*
3925 	 * It's possible that the cached previous root page is obsolete because
3926 	 * of a change in the MMU generation number. However, changing the
3927 	 * generation number is accompanied by KVM_REQ_MMU_RELOAD, which will
3928 	 * free the root set here and allocate a new one.
3929 	 */
3930 	kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu);
3931 
3932 	if (!skip_mmu_sync || force_flush_and_sync_on_reuse)
3933 		kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
3934 	if (!skip_tlb_flush || force_flush_and_sync_on_reuse)
3935 		kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
3936 
3937 	/*
3938 	 * The last MMIO access's GVA and GPA are cached in the VCPU. When
3939 	 * switching to a new CR3, that GVA->GPA mapping may no longer be
3940 	 * valid. So clear any cached MMIO info even when we don't need to sync
3941 	 * the shadow page tables.
3942 	 */
3943 	vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
3944 
3945 	/*
3946 	 * If this is a direct root page, it doesn't have a write flooding
3947 	 * count. Otherwise, clear the write flooding count.
3948 	 */
3949 	if (!new_role.direct)
3950 		__clear_sp_write_flooding_count(
3951 				to_shadow_page(vcpu->arch.mmu->root_hpa));
3952 }
3953 
3954 void kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd, bool skip_tlb_flush,
3955 		     bool skip_mmu_sync)
3956 {
3957 	__kvm_mmu_new_pgd(vcpu, new_pgd, kvm_mmu_calc_root_page_role(vcpu),
3958 			  skip_tlb_flush, skip_mmu_sync);
3959 }
3960 EXPORT_SYMBOL_GPL(kvm_mmu_new_pgd);
3961 
3962 static unsigned long get_cr3(struct kvm_vcpu *vcpu)
3963 {
3964 	return kvm_read_cr3(vcpu);
3965 }
3966 
3967 static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
3968 			   unsigned int access, int *nr_present)
3969 {
3970 	if (unlikely(is_mmio_spte(*sptep))) {
3971 		if (gfn != get_mmio_spte_gfn(*sptep)) {
3972 			mmu_spte_clear_no_track(sptep);
3973 			return true;
3974 		}
3975 
3976 		(*nr_present)++;
3977 		mark_mmio_spte(vcpu, sptep, gfn, access);
3978 		return true;
3979 	}
3980 
3981 	return false;
3982 }
3983 
3984 static inline bool is_last_gpte(struct kvm_mmu *mmu,
3985 				unsigned level, unsigned gpte)
3986 {
3987 	/*
3988 	 * The RHS has bit 7 set iff level < mmu->last_nonleaf_level.
3989 	 * If it is clear, there are no large pages at this level, so clear
3990 	 * PT_PAGE_SIZE_MASK in gpte if that is the case.
3991 	 */
3992 	gpte &= level - mmu->last_nonleaf_level;
3993 
3994 	/*
3995 	 * PG_LEVEL_4K always terminates.  The RHS has bit 7 set
3996 	 * iff level <= PG_LEVEL_4K, which for our purpose means
3997 	 * level == PG_LEVEL_4K; set PT_PAGE_SIZE_MASK in gpte then.
3998 	 */
3999 	gpte |= level - PG_LEVEL_4K - 1;
4000 
4001 	return gpte & PT_PAGE_SIZE_MASK;
4002 }
4003 
4004 #define PTTYPE_EPT 18 /* arbitrary */
4005 #define PTTYPE PTTYPE_EPT
4006 #include "paging_tmpl.h"
4007 #undef PTTYPE
4008 
4009 #define PTTYPE 64
4010 #include "paging_tmpl.h"
4011 #undef PTTYPE
4012 
4013 #define PTTYPE 32
4014 #include "paging_tmpl.h"
4015 #undef PTTYPE
4016 
4017 static void
4018 __reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
4019 			struct rsvd_bits_validate *rsvd_check,
4020 			u64 pa_bits_rsvd, int level, bool nx, bool gbpages,
4021 			bool pse, bool amd)
4022 {
4023 	u64 gbpages_bit_rsvd = 0;
4024 	u64 nonleaf_bit8_rsvd = 0;
4025 	u64 high_bits_rsvd;
4026 
4027 	rsvd_check->bad_mt_xwr = 0;
4028 
4029 	if (!gbpages)
4030 		gbpages_bit_rsvd = rsvd_bits(7, 7);
4031 
4032 	if (level == PT32E_ROOT_LEVEL)
4033 		high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 62);
4034 	else
4035 		high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 51);
4036 
4037 	/* Note, NX doesn't exist in PDPTEs, this is handled below. */
4038 	if (!nx)
4039 		high_bits_rsvd |= rsvd_bits(63, 63);
4040 
4041 	/*
4042 	 * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
4043 	 * leaf entries) on AMD CPUs only.
4044 	 */
4045 	if (amd)
4046 		nonleaf_bit8_rsvd = rsvd_bits(8, 8);
4047 
4048 	switch (level) {
4049 	case PT32_ROOT_LEVEL:
4050 		/* no rsvd bits for 2 level 4K page table entries */
4051 		rsvd_check->rsvd_bits_mask[0][1] = 0;
4052 		rsvd_check->rsvd_bits_mask[0][0] = 0;
4053 		rsvd_check->rsvd_bits_mask[1][0] =
4054 			rsvd_check->rsvd_bits_mask[0][0];
4055 
4056 		if (!pse) {
4057 			rsvd_check->rsvd_bits_mask[1][1] = 0;
4058 			break;
4059 		}
4060 
4061 		if (is_cpuid_PSE36())
4062 			/* 36bits PSE 4MB page */
4063 			rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
4064 		else
4065 			/* 32 bits PSE 4MB page */
4066 			rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
4067 		break;
4068 	case PT32E_ROOT_LEVEL:
4069 		rsvd_check->rsvd_bits_mask[0][2] = rsvd_bits(63, 63) |
4070 						   high_bits_rsvd |
4071 						   rsvd_bits(5, 8) |
4072 						   rsvd_bits(1, 2);	/* PDPTE */
4073 		rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd;	/* PDE */
4074 		rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd;	/* PTE */
4075 		rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd |
4076 						   rsvd_bits(13, 20);	/* large page */
4077 		rsvd_check->rsvd_bits_mask[1][0] =
4078 			rsvd_check->rsvd_bits_mask[0][0];
4079 		break;
4080 	case PT64_ROOT_5LEVEL:
4081 		rsvd_check->rsvd_bits_mask[0][4] = high_bits_rsvd |
4082 						   nonleaf_bit8_rsvd |
4083 						   rsvd_bits(7, 7);
4084 		rsvd_check->rsvd_bits_mask[1][4] =
4085 			rsvd_check->rsvd_bits_mask[0][4];
4086 		fallthrough;
4087 	case PT64_ROOT_4LEVEL:
4088 		rsvd_check->rsvd_bits_mask[0][3] = high_bits_rsvd |
4089 						   nonleaf_bit8_rsvd |
4090 						   rsvd_bits(7, 7);
4091 		rsvd_check->rsvd_bits_mask[0][2] = high_bits_rsvd |
4092 						   gbpages_bit_rsvd;
4093 		rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd;
4094 		rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd;
4095 		rsvd_check->rsvd_bits_mask[1][3] =
4096 			rsvd_check->rsvd_bits_mask[0][3];
4097 		rsvd_check->rsvd_bits_mask[1][2] = high_bits_rsvd |
4098 						   gbpages_bit_rsvd |
4099 						   rsvd_bits(13, 29);
4100 		rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd |
4101 						   rsvd_bits(13, 20); /* large page */
4102 		rsvd_check->rsvd_bits_mask[1][0] =
4103 			rsvd_check->rsvd_bits_mask[0][0];
4104 		break;
4105 	}
4106 }
4107 
4108 static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
4109 				  struct kvm_mmu *context)
4110 {
4111 	__reset_rsvds_bits_mask(vcpu, &context->guest_rsvd_check,
4112 				vcpu->arch.reserved_gpa_bits,
4113 				context->root_level, context->nx,
4114 				guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
4115 				is_pse(vcpu),
4116 				guest_cpuid_is_amd_or_hygon(vcpu));
4117 }
4118 
4119 static void
4120 __reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check,
4121 			    u64 pa_bits_rsvd, bool execonly)
4122 {
4123 	u64 high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 51);
4124 	u64 bad_mt_xwr;
4125 
4126 	rsvd_check->rsvd_bits_mask[0][4] = high_bits_rsvd | rsvd_bits(3, 7);
4127 	rsvd_check->rsvd_bits_mask[0][3] = high_bits_rsvd | rsvd_bits(3, 7);
4128 	rsvd_check->rsvd_bits_mask[0][2] = high_bits_rsvd | rsvd_bits(3, 6);
4129 	rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd | rsvd_bits(3, 6);
4130 	rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd;
4131 
4132 	/* large page */
4133 	rsvd_check->rsvd_bits_mask[1][4] = rsvd_check->rsvd_bits_mask[0][4];
4134 	rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3];
4135 	rsvd_check->rsvd_bits_mask[1][2] = high_bits_rsvd | rsvd_bits(12, 29);
4136 	rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd | rsvd_bits(12, 20);
4137 	rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0];
4138 
4139 	bad_mt_xwr = 0xFFull << (2 * 8);	/* bits 3..5 must not be 2 */
4140 	bad_mt_xwr |= 0xFFull << (3 * 8);	/* bits 3..5 must not be 3 */
4141 	bad_mt_xwr |= 0xFFull << (7 * 8);	/* bits 3..5 must not be 7 */
4142 	bad_mt_xwr |= REPEAT_BYTE(1ull << 2);	/* bits 0..2 must not be 010 */
4143 	bad_mt_xwr |= REPEAT_BYTE(1ull << 6);	/* bits 0..2 must not be 110 */
4144 	if (!execonly) {
4145 		/* bits 0..2 must not be 100 unless VMX capabilities allow it */
4146 		bad_mt_xwr |= REPEAT_BYTE(1ull << 4);
4147 	}
4148 	rsvd_check->bad_mt_xwr = bad_mt_xwr;
4149 }
4150 
4151 static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
4152 		struct kvm_mmu *context, bool execonly)
4153 {
4154 	__reset_rsvds_bits_mask_ept(&context->guest_rsvd_check,
4155 				    vcpu->arch.reserved_gpa_bits, execonly);
4156 }
4157 
4158 static inline u64 reserved_hpa_bits(void)
4159 {
4160 	return rsvd_bits(shadow_phys_bits, 63);
4161 }
4162 
4163 /*
4164  * the page table on host is the shadow page table for the page
4165  * table in guest or amd nested guest, its mmu features completely
4166  * follow the features in guest.
4167  */
4168 void
4169 reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
4170 {
4171 	bool uses_nx = context->nx ||
4172 		context->mmu_role.base.smep_andnot_wp;
4173 	struct rsvd_bits_validate *shadow_zero_check;
4174 	int i;
4175 
4176 	/*
4177 	 * Passing "true" to the last argument is okay; it adds a check
4178 	 * on bit 8 of the SPTEs which KVM doesn't use anyway.
4179 	 */
4180 	shadow_zero_check = &context->shadow_zero_check;
4181 	__reset_rsvds_bits_mask(vcpu, shadow_zero_check,
4182 				reserved_hpa_bits(),
4183 				context->shadow_root_level, uses_nx,
4184 				guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
4185 				is_pse(vcpu), true);
4186 
4187 	if (!shadow_me_mask)
4188 		return;
4189 
4190 	for (i = context->shadow_root_level; --i >= 0;) {
4191 		shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
4192 		shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
4193 	}
4194 
4195 }
4196 EXPORT_SYMBOL_GPL(reset_shadow_zero_bits_mask);
4197 
4198 static inline bool boot_cpu_is_amd(void)
4199 {
4200 	WARN_ON_ONCE(!tdp_enabled);
4201 	return shadow_x_mask == 0;
4202 }
4203 
4204 /*
4205  * the direct page table on host, use as much mmu features as
4206  * possible, however, kvm currently does not do execution-protection.
4207  */
4208 static void
4209 reset_tdp_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4210 				struct kvm_mmu *context)
4211 {
4212 	struct rsvd_bits_validate *shadow_zero_check;
4213 	int i;
4214 
4215 	shadow_zero_check = &context->shadow_zero_check;
4216 
4217 	if (boot_cpu_is_amd())
4218 		__reset_rsvds_bits_mask(vcpu, shadow_zero_check,
4219 					reserved_hpa_bits(),
4220 					context->shadow_root_level, false,
4221 					boot_cpu_has(X86_FEATURE_GBPAGES),
4222 					true, true);
4223 	else
4224 		__reset_rsvds_bits_mask_ept(shadow_zero_check,
4225 					    reserved_hpa_bits(), false);
4226 
4227 	if (!shadow_me_mask)
4228 		return;
4229 
4230 	for (i = context->shadow_root_level; --i >= 0;) {
4231 		shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
4232 		shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
4233 	}
4234 }
4235 
4236 /*
4237  * as the comments in reset_shadow_zero_bits_mask() except it
4238  * is the shadow page table for intel nested guest.
4239  */
4240 static void
4241 reset_ept_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4242 				struct kvm_mmu *context, bool execonly)
4243 {
4244 	__reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
4245 				    reserved_hpa_bits(), execonly);
4246 }
4247 
4248 #define BYTE_MASK(access) \
4249 	((1 & (access) ? 2 : 0) | \
4250 	 (2 & (access) ? 4 : 0) | \
4251 	 (3 & (access) ? 8 : 0) | \
4252 	 (4 & (access) ? 16 : 0) | \
4253 	 (5 & (access) ? 32 : 0) | \
4254 	 (6 & (access) ? 64 : 0) | \
4255 	 (7 & (access) ? 128 : 0))
4256 
4257 
4258 static void update_permission_bitmask(struct kvm_vcpu *vcpu,
4259 				      struct kvm_mmu *mmu, bool ept)
4260 {
4261 	unsigned byte;
4262 
4263 	const u8 x = BYTE_MASK(ACC_EXEC_MASK);
4264 	const u8 w = BYTE_MASK(ACC_WRITE_MASK);
4265 	const u8 u = BYTE_MASK(ACC_USER_MASK);
4266 
4267 	bool cr4_smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP) != 0;
4268 	bool cr4_smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP) != 0;
4269 	bool cr0_wp = is_write_protection(vcpu);
4270 
4271 	for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
4272 		unsigned pfec = byte << 1;
4273 
4274 		/*
4275 		 * Each "*f" variable has a 1 bit for each UWX value
4276 		 * that causes a fault with the given PFEC.
4277 		 */
4278 
4279 		/* Faults from writes to non-writable pages */
4280 		u8 wf = (pfec & PFERR_WRITE_MASK) ? (u8)~w : 0;
4281 		/* Faults from user mode accesses to supervisor pages */
4282 		u8 uf = (pfec & PFERR_USER_MASK) ? (u8)~u : 0;
4283 		/* Faults from fetches of non-executable pages*/
4284 		u8 ff = (pfec & PFERR_FETCH_MASK) ? (u8)~x : 0;
4285 		/* Faults from kernel mode fetches of user pages */
4286 		u8 smepf = 0;
4287 		/* Faults from kernel mode accesses of user pages */
4288 		u8 smapf = 0;
4289 
4290 		if (!ept) {
4291 			/* Faults from kernel mode accesses to user pages */
4292 			u8 kf = (pfec & PFERR_USER_MASK) ? 0 : u;
4293 
4294 			/* Not really needed: !nx will cause pte.nx to fault */
4295 			if (!mmu->nx)
4296 				ff = 0;
4297 
4298 			/* Allow supervisor writes if !cr0.wp */
4299 			if (!cr0_wp)
4300 				wf = (pfec & PFERR_USER_MASK) ? wf : 0;
4301 
4302 			/* Disallow supervisor fetches of user code if cr4.smep */
4303 			if (cr4_smep)
4304 				smepf = (pfec & PFERR_FETCH_MASK) ? kf : 0;
4305 
4306 			/*
4307 			 * SMAP:kernel-mode data accesses from user-mode
4308 			 * mappings should fault. A fault is considered
4309 			 * as a SMAP violation if all of the following
4310 			 * conditions are true:
4311 			 *   - X86_CR4_SMAP is set in CR4
4312 			 *   - A user page is accessed
4313 			 *   - The access is not a fetch
4314 			 *   - Page fault in kernel mode
4315 			 *   - if CPL = 3 or X86_EFLAGS_AC is clear
4316 			 *
4317 			 * Here, we cover the first three conditions.
4318 			 * The fourth is computed dynamically in permission_fault();
4319 			 * PFERR_RSVD_MASK bit will be set in PFEC if the access is
4320 			 * *not* subject to SMAP restrictions.
4321 			 */
4322 			if (cr4_smap)
4323 				smapf = (pfec & (PFERR_RSVD_MASK|PFERR_FETCH_MASK)) ? 0 : kf;
4324 		}
4325 
4326 		mmu->permissions[byte] = ff | uf | wf | smepf | smapf;
4327 	}
4328 }
4329 
4330 /*
4331 * PKU is an additional mechanism by which the paging controls access to
4332 * user-mode addresses based on the value in the PKRU register.  Protection
4333 * key violations are reported through a bit in the page fault error code.
4334 * Unlike other bits of the error code, the PK bit is not known at the
4335 * call site of e.g. gva_to_gpa; it must be computed directly in
4336 * permission_fault based on two bits of PKRU, on some machine state (CR4,
4337 * CR0, EFER, CPL), and on other bits of the error code and the page tables.
4338 *
4339 * In particular the following conditions come from the error code, the
4340 * page tables and the machine state:
4341 * - PK is always zero unless CR4.PKE=1 and EFER.LMA=1
4342 * - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch)
4343 * - PK is always zero if U=0 in the page tables
4344 * - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access.
4345 *
4346 * The PKRU bitmask caches the result of these four conditions.  The error
4347 * code (minus the P bit) and the page table's U bit form an index into the
4348 * PKRU bitmask.  Two bits of the PKRU bitmask are then extracted and ANDed
4349 * with the two bits of the PKRU register corresponding to the protection key.
4350 * For the first three conditions above the bits will be 00, thus masking
4351 * away both AD and WD.  For all reads or if the last condition holds, WD
4352 * only will be masked away.
4353 */
4354 static void update_pkru_bitmask(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
4355 				bool ept)
4356 {
4357 	unsigned bit;
4358 	bool wp;
4359 
4360 	if (ept) {
4361 		mmu->pkru_mask = 0;
4362 		return;
4363 	}
4364 
4365 	/* PKEY is enabled only if CR4.PKE and EFER.LMA are both set. */
4366 	if (!kvm_read_cr4_bits(vcpu, X86_CR4_PKE) || !is_long_mode(vcpu)) {
4367 		mmu->pkru_mask = 0;
4368 		return;
4369 	}
4370 
4371 	wp = is_write_protection(vcpu);
4372 
4373 	for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) {
4374 		unsigned pfec, pkey_bits;
4375 		bool check_pkey, check_write, ff, uf, wf, pte_user;
4376 
4377 		pfec = bit << 1;
4378 		ff = pfec & PFERR_FETCH_MASK;
4379 		uf = pfec & PFERR_USER_MASK;
4380 		wf = pfec & PFERR_WRITE_MASK;
4381 
4382 		/* PFEC.RSVD is replaced by ACC_USER_MASK. */
4383 		pte_user = pfec & PFERR_RSVD_MASK;
4384 
4385 		/*
4386 		 * Only need to check the access which is not an
4387 		 * instruction fetch and is to a user page.
4388 		 */
4389 		check_pkey = (!ff && pte_user);
4390 		/*
4391 		 * write access is controlled by PKRU if it is a
4392 		 * user access or CR0.WP = 1.
4393 		 */
4394 		check_write = check_pkey && wf && (uf || wp);
4395 
4396 		/* PKRU.AD stops both read and write access. */
4397 		pkey_bits = !!check_pkey;
4398 		/* PKRU.WD stops write access. */
4399 		pkey_bits |= (!!check_write) << 1;
4400 
4401 		mmu->pkru_mask |= (pkey_bits & 3) << pfec;
4402 	}
4403 }
4404 
4405 static void update_last_nonleaf_level(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
4406 {
4407 	unsigned root_level = mmu->root_level;
4408 
4409 	mmu->last_nonleaf_level = root_level;
4410 	if (root_level == PT32_ROOT_LEVEL && is_pse(vcpu))
4411 		mmu->last_nonleaf_level++;
4412 }
4413 
4414 static void paging64_init_context_common(struct kvm_vcpu *vcpu,
4415 					 struct kvm_mmu *context,
4416 					 int level)
4417 {
4418 	context->nx = is_nx(vcpu);
4419 	context->root_level = level;
4420 
4421 	reset_rsvds_bits_mask(vcpu, context);
4422 	update_permission_bitmask(vcpu, context, false);
4423 	update_pkru_bitmask(vcpu, context, false);
4424 	update_last_nonleaf_level(vcpu, context);
4425 
4426 	MMU_WARN_ON(!is_pae(vcpu));
4427 	context->page_fault = paging64_page_fault;
4428 	context->gva_to_gpa = paging64_gva_to_gpa;
4429 	context->sync_page = paging64_sync_page;
4430 	context->invlpg = paging64_invlpg;
4431 	context->shadow_root_level = level;
4432 	context->direct_map = false;
4433 }
4434 
4435 static void paging64_init_context(struct kvm_vcpu *vcpu,
4436 				  struct kvm_mmu *context)
4437 {
4438 	int root_level = is_la57_mode(vcpu) ?
4439 			 PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4440 
4441 	paging64_init_context_common(vcpu, context, root_level);
4442 }
4443 
4444 static void paging32_init_context(struct kvm_vcpu *vcpu,
4445 				  struct kvm_mmu *context)
4446 {
4447 	context->nx = false;
4448 	context->root_level = PT32_ROOT_LEVEL;
4449 
4450 	reset_rsvds_bits_mask(vcpu, context);
4451 	update_permission_bitmask(vcpu, context, false);
4452 	update_pkru_bitmask(vcpu, context, false);
4453 	update_last_nonleaf_level(vcpu, context);
4454 
4455 	context->page_fault = paging32_page_fault;
4456 	context->gva_to_gpa = paging32_gva_to_gpa;
4457 	context->sync_page = paging32_sync_page;
4458 	context->invlpg = paging32_invlpg;
4459 	context->shadow_root_level = PT32E_ROOT_LEVEL;
4460 	context->direct_map = false;
4461 }
4462 
4463 static void paging32E_init_context(struct kvm_vcpu *vcpu,
4464 				   struct kvm_mmu *context)
4465 {
4466 	paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
4467 }
4468 
4469 static union kvm_mmu_extended_role kvm_calc_mmu_role_ext(struct kvm_vcpu *vcpu)
4470 {
4471 	union kvm_mmu_extended_role ext = {0};
4472 
4473 	ext.cr0_pg = !!is_paging(vcpu);
4474 	ext.cr4_pae = !!is_pae(vcpu);
4475 	ext.cr4_smep = !!kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
4476 	ext.cr4_smap = !!kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
4477 	ext.cr4_pse = !!is_pse(vcpu);
4478 	ext.cr4_pke = !!kvm_read_cr4_bits(vcpu, X86_CR4_PKE);
4479 	ext.maxphyaddr = cpuid_maxphyaddr(vcpu);
4480 
4481 	ext.valid = 1;
4482 
4483 	return ext;
4484 }
4485 
4486 static union kvm_mmu_role kvm_calc_mmu_role_common(struct kvm_vcpu *vcpu,
4487 						   bool base_only)
4488 {
4489 	union kvm_mmu_role role = {0};
4490 
4491 	role.base.access = ACC_ALL;
4492 	role.base.nxe = !!is_nx(vcpu);
4493 	role.base.cr0_wp = is_write_protection(vcpu);
4494 	role.base.smm = is_smm(vcpu);
4495 	role.base.guest_mode = is_guest_mode(vcpu);
4496 
4497 	if (base_only)
4498 		return role;
4499 
4500 	role.ext = kvm_calc_mmu_role_ext(vcpu);
4501 
4502 	return role;
4503 }
4504 
4505 static inline int kvm_mmu_get_tdp_level(struct kvm_vcpu *vcpu)
4506 {
4507 	/* Use 5-level TDP if and only if it's useful/necessary. */
4508 	if (max_tdp_level == 5 && cpuid_maxphyaddr(vcpu) <= 48)
4509 		return 4;
4510 
4511 	return max_tdp_level;
4512 }
4513 
4514 static union kvm_mmu_role
4515 kvm_calc_tdp_mmu_root_page_role(struct kvm_vcpu *vcpu, bool base_only)
4516 {
4517 	union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, base_only);
4518 
4519 	role.base.ad_disabled = (shadow_accessed_mask == 0);
4520 	role.base.level = kvm_mmu_get_tdp_level(vcpu);
4521 	role.base.direct = true;
4522 	role.base.gpte_is_8_bytes = true;
4523 
4524 	return role;
4525 }
4526 
4527 static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
4528 {
4529 	struct kvm_mmu *context = &vcpu->arch.root_mmu;
4530 	union kvm_mmu_role new_role =
4531 		kvm_calc_tdp_mmu_root_page_role(vcpu, false);
4532 
4533 	if (new_role.as_u64 == context->mmu_role.as_u64)
4534 		return;
4535 
4536 	context->mmu_role.as_u64 = new_role.as_u64;
4537 	context->page_fault = kvm_tdp_page_fault;
4538 	context->sync_page = nonpaging_sync_page;
4539 	context->invlpg = NULL;
4540 	context->shadow_root_level = kvm_mmu_get_tdp_level(vcpu);
4541 	context->direct_map = true;
4542 	context->get_guest_pgd = get_cr3;
4543 	context->get_pdptr = kvm_pdptr_read;
4544 	context->inject_page_fault = kvm_inject_page_fault;
4545 
4546 	if (!is_paging(vcpu)) {
4547 		context->nx = false;
4548 		context->gva_to_gpa = nonpaging_gva_to_gpa;
4549 		context->root_level = 0;
4550 	} else if (is_long_mode(vcpu)) {
4551 		context->nx = is_nx(vcpu);
4552 		context->root_level = is_la57_mode(vcpu) ?
4553 				PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4554 		reset_rsvds_bits_mask(vcpu, context);
4555 		context->gva_to_gpa = paging64_gva_to_gpa;
4556 	} else if (is_pae(vcpu)) {
4557 		context->nx = is_nx(vcpu);
4558 		context->root_level = PT32E_ROOT_LEVEL;
4559 		reset_rsvds_bits_mask(vcpu, context);
4560 		context->gva_to_gpa = paging64_gva_to_gpa;
4561 	} else {
4562 		context->nx = false;
4563 		context->root_level = PT32_ROOT_LEVEL;
4564 		reset_rsvds_bits_mask(vcpu, context);
4565 		context->gva_to_gpa = paging32_gva_to_gpa;
4566 	}
4567 
4568 	update_permission_bitmask(vcpu, context, false);
4569 	update_pkru_bitmask(vcpu, context, false);
4570 	update_last_nonleaf_level(vcpu, context);
4571 	reset_tdp_shadow_zero_bits_mask(vcpu, context);
4572 }
4573 
4574 static union kvm_mmu_role
4575 kvm_calc_shadow_root_page_role_common(struct kvm_vcpu *vcpu, bool base_only)
4576 {
4577 	union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, base_only);
4578 
4579 	role.base.smep_andnot_wp = role.ext.cr4_smep &&
4580 		!is_write_protection(vcpu);
4581 	role.base.smap_andnot_wp = role.ext.cr4_smap &&
4582 		!is_write_protection(vcpu);
4583 	role.base.gpte_is_8_bytes = !!is_pae(vcpu);
4584 
4585 	return role;
4586 }
4587 
4588 static union kvm_mmu_role
4589 kvm_calc_shadow_mmu_root_page_role(struct kvm_vcpu *vcpu, bool base_only)
4590 {
4591 	union kvm_mmu_role role =
4592 		kvm_calc_shadow_root_page_role_common(vcpu, base_only);
4593 
4594 	role.base.direct = !is_paging(vcpu);
4595 
4596 	if (!is_long_mode(vcpu))
4597 		role.base.level = PT32E_ROOT_LEVEL;
4598 	else if (is_la57_mode(vcpu))
4599 		role.base.level = PT64_ROOT_5LEVEL;
4600 	else
4601 		role.base.level = PT64_ROOT_4LEVEL;
4602 
4603 	return role;
4604 }
4605 
4606 static void shadow_mmu_init_context(struct kvm_vcpu *vcpu, struct kvm_mmu *context,
4607 				    u32 cr0, u32 cr4, u32 efer,
4608 				    union kvm_mmu_role new_role)
4609 {
4610 	if (!(cr0 & X86_CR0_PG))
4611 		nonpaging_init_context(vcpu, context);
4612 	else if (efer & EFER_LMA)
4613 		paging64_init_context(vcpu, context);
4614 	else if (cr4 & X86_CR4_PAE)
4615 		paging32E_init_context(vcpu, context);
4616 	else
4617 		paging32_init_context(vcpu, context);
4618 
4619 	context->mmu_role.as_u64 = new_role.as_u64;
4620 	reset_shadow_zero_bits_mask(vcpu, context);
4621 }
4622 
4623 static void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, u32 cr0, u32 cr4, u32 efer)
4624 {
4625 	struct kvm_mmu *context = &vcpu->arch.root_mmu;
4626 	union kvm_mmu_role new_role =
4627 		kvm_calc_shadow_mmu_root_page_role(vcpu, false);
4628 
4629 	if (new_role.as_u64 != context->mmu_role.as_u64)
4630 		shadow_mmu_init_context(vcpu, context, cr0, cr4, efer, new_role);
4631 }
4632 
4633 static union kvm_mmu_role
4634 kvm_calc_shadow_npt_root_page_role(struct kvm_vcpu *vcpu)
4635 {
4636 	union kvm_mmu_role role =
4637 		kvm_calc_shadow_root_page_role_common(vcpu, false);
4638 
4639 	role.base.direct = false;
4640 	role.base.level = kvm_mmu_get_tdp_level(vcpu);
4641 
4642 	return role;
4643 }
4644 
4645 void kvm_init_shadow_npt_mmu(struct kvm_vcpu *vcpu, u32 cr0, u32 cr4, u32 efer,
4646 			     gpa_t nested_cr3)
4647 {
4648 	struct kvm_mmu *context = &vcpu->arch.guest_mmu;
4649 	union kvm_mmu_role new_role = kvm_calc_shadow_npt_root_page_role(vcpu);
4650 
4651 	__kvm_mmu_new_pgd(vcpu, nested_cr3, new_role.base, false, false);
4652 
4653 	if (new_role.as_u64 != context->mmu_role.as_u64) {
4654 		shadow_mmu_init_context(vcpu, context, cr0, cr4, efer, new_role);
4655 
4656 		/*
4657 		 * Override the level set by the common init helper, nested TDP
4658 		 * always uses the host's TDP configuration.
4659 		 */
4660 		context->shadow_root_level = new_role.base.level;
4661 	}
4662 }
4663 EXPORT_SYMBOL_GPL(kvm_init_shadow_npt_mmu);
4664 
4665 static union kvm_mmu_role
4666 kvm_calc_shadow_ept_root_page_role(struct kvm_vcpu *vcpu, bool accessed_dirty,
4667 				   bool execonly, u8 level)
4668 {
4669 	union kvm_mmu_role role = {0};
4670 
4671 	/* SMM flag is inherited from root_mmu */
4672 	role.base.smm = vcpu->arch.root_mmu.mmu_role.base.smm;
4673 
4674 	role.base.level = level;
4675 	role.base.gpte_is_8_bytes = true;
4676 	role.base.direct = false;
4677 	role.base.ad_disabled = !accessed_dirty;
4678 	role.base.guest_mode = true;
4679 	role.base.access = ACC_ALL;
4680 
4681 	/*
4682 	 * WP=1 and NOT_WP=1 is an impossible combination, use WP and the
4683 	 * SMAP variation to denote shadow EPT entries.
4684 	 */
4685 	role.base.cr0_wp = true;
4686 	role.base.smap_andnot_wp = true;
4687 
4688 	role.ext = kvm_calc_mmu_role_ext(vcpu);
4689 	role.ext.execonly = execonly;
4690 
4691 	return role;
4692 }
4693 
4694 void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly,
4695 			     bool accessed_dirty, gpa_t new_eptp)
4696 {
4697 	struct kvm_mmu *context = &vcpu->arch.guest_mmu;
4698 	u8 level = vmx_eptp_page_walk_level(new_eptp);
4699 	union kvm_mmu_role new_role =
4700 		kvm_calc_shadow_ept_root_page_role(vcpu, accessed_dirty,
4701 						   execonly, level);
4702 
4703 	__kvm_mmu_new_pgd(vcpu, new_eptp, new_role.base, true, true);
4704 
4705 	if (new_role.as_u64 == context->mmu_role.as_u64)
4706 		return;
4707 
4708 	context->shadow_root_level = level;
4709 
4710 	context->nx = true;
4711 	context->ept_ad = accessed_dirty;
4712 	context->page_fault = ept_page_fault;
4713 	context->gva_to_gpa = ept_gva_to_gpa;
4714 	context->sync_page = ept_sync_page;
4715 	context->invlpg = ept_invlpg;
4716 	context->root_level = level;
4717 	context->direct_map = false;
4718 	context->mmu_role.as_u64 = new_role.as_u64;
4719 
4720 	update_permission_bitmask(vcpu, context, true);
4721 	update_pkru_bitmask(vcpu, context, true);
4722 	update_last_nonleaf_level(vcpu, context);
4723 	reset_rsvds_bits_mask_ept(vcpu, context, execonly);
4724 	reset_ept_shadow_zero_bits_mask(vcpu, context, execonly);
4725 }
4726 EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);
4727 
4728 static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
4729 {
4730 	struct kvm_mmu *context = &vcpu->arch.root_mmu;
4731 
4732 	kvm_init_shadow_mmu(vcpu,
4733 			    kvm_read_cr0_bits(vcpu, X86_CR0_PG),
4734 			    kvm_read_cr4_bits(vcpu, X86_CR4_PAE),
4735 			    vcpu->arch.efer);
4736 
4737 	context->get_guest_pgd     = get_cr3;
4738 	context->get_pdptr         = kvm_pdptr_read;
4739 	context->inject_page_fault = kvm_inject_page_fault;
4740 }
4741 
4742 static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
4743 {
4744 	union kvm_mmu_role new_role = kvm_calc_mmu_role_common(vcpu, false);
4745 	struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
4746 
4747 	if (new_role.as_u64 == g_context->mmu_role.as_u64)
4748 		return;
4749 
4750 	g_context->mmu_role.as_u64 = new_role.as_u64;
4751 	g_context->get_guest_pgd     = get_cr3;
4752 	g_context->get_pdptr         = kvm_pdptr_read;
4753 	g_context->inject_page_fault = kvm_inject_page_fault;
4754 
4755 	/*
4756 	 * L2 page tables are never shadowed, so there is no need to sync
4757 	 * SPTEs.
4758 	 */
4759 	g_context->invlpg            = NULL;
4760 
4761 	/*
4762 	 * Note that arch.mmu->gva_to_gpa translates l2_gpa to l1_gpa using
4763 	 * L1's nested page tables (e.g. EPT12). The nested translation
4764 	 * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using
4765 	 * L2's page tables as the first level of translation and L1's
4766 	 * nested page tables as the second level of translation. Basically
4767 	 * the gva_to_gpa functions between mmu and nested_mmu are swapped.
4768 	 */
4769 	if (!is_paging(vcpu)) {
4770 		g_context->nx = false;
4771 		g_context->root_level = 0;
4772 		g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
4773 	} else if (is_long_mode(vcpu)) {
4774 		g_context->nx = is_nx(vcpu);
4775 		g_context->root_level = is_la57_mode(vcpu) ?
4776 					PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4777 		reset_rsvds_bits_mask(vcpu, g_context);
4778 		g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4779 	} else if (is_pae(vcpu)) {
4780 		g_context->nx = is_nx(vcpu);
4781 		g_context->root_level = PT32E_ROOT_LEVEL;
4782 		reset_rsvds_bits_mask(vcpu, g_context);
4783 		g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4784 	} else {
4785 		g_context->nx = false;
4786 		g_context->root_level = PT32_ROOT_LEVEL;
4787 		reset_rsvds_bits_mask(vcpu, g_context);
4788 		g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
4789 	}
4790 
4791 	update_permission_bitmask(vcpu, g_context, false);
4792 	update_pkru_bitmask(vcpu, g_context, false);
4793 	update_last_nonleaf_level(vcpu, g_context);
4794 }
4795 
4796 void kvm_init_mmu(struct kvm_vcpu *vcpu, bool reset_roots)
4797 {
4798 	if (reset_roots) {
4799 		uint i;
4800 
4801 		vcpu->arch.mmu->root_hpa = INVALID_PAGE;
4802 
4803 		for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
4804 			vcpu->arch.mmu->prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
4805 	}
4806 
4807 	if (mmu_is_nested(vcpu))
4808 		init_kvm_nested_mmu(vcpu);
4809 	else if (tdp_enabled)
4810 		init_kvm_tdp_mmu(vcpu);
4811 	else
4812 		init_kvm_softmmu(vcpu);
4813 }
4814 EXPORT_SYMBOL_GPL(kvm_init_mmu);
4815 
4816 static union kvm_mmu_page_role
4817 kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu)
4818 {
4819 	union kvm_mmu_role role;
4820 
4821 	if (tdp_enabled)
4822 		role = kvm_calc_tdp_mmu_root_page_role(vcpu, true);
4823 	else
4824 		role = kvm_calc_shadow_mmu_root_page_role(vcpu, true);
4825 
4826 	return role.base;
4827 }
4828 
4829 void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
4830 {
4831 	kvm_mmu_unload(vcpu);
4832 	kvm_init_mmu(vcpu, true);
4833 }
4834 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
4835 
4836 int kvm_mmu_load(struct kvm_vcpu *vcpu)
4837 {
4838 	int r;
4839 
4840 	r = mmu_topup_memory_caches(vcpu, !vcpu->arch.mmu->direct_map);
4841 	if (r)
4842 		goto out;
4843 	r = mmu_alloc_special_roots(vcpu);
4844 	if (r)
4845 		goto out;
4846 	if (vcpu->arch.mmu->direct_map)
4847 		r = mmu_alloc_direct_roots(vcpu);
4848 	else
4849 		r = mmu_alloc_shadow_roots(vcpu);
4850 	if (r)
4851 		goto out;
4852 
4853 	kvm_mmu_sync_roots(vcpu);
4854 
4855 	kvm_mmu_load_pgd(vcpu);
4856 	static_call(kvm_x86_tlb_flush_current)(vcpu);
4857 out:
4858 	return r;
4859 }
4860 
4861 void kvm_mmu_unload(struct kvm_vcpu *vcpu)
4862 {
4863 	kvm_mmu_free_roots(vcpu, &vcpu->arch.root_mmu, KVM_MMU_ROOTS_ALL);
4864 	WARN_ON(VALID_PAGE(vcpu->arch.root_mmu.root_hpa));
4865 	kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
4866 	WARN_ON(VALID_PAGE(vcpu->arch.guest_mmu.root_hpa));
4867 }
4868 
4869 static bool need_remote_flush(u64 old, u64 new)
4870 {
4871 	if (!is_shadow_present_pte(old))
4872 		return false;
4873 	if (!is_shadow_present_pte(new))
4874 		return true;
4875 	if ((old ^ new) & PT64_BASE_ADDR_MASK)
4876 		return true;
4877 	old ^= shadow_nx_mask;
4878 	new ^= shadow_nx_mask;
4879 	return (old & ~new & PT64_PERM_MASK) != 0;
4880 }
4881 
4882 static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
4883 				    int *bytes)
4884 {
4885 	u64 gentry = 0;
4886 	int r;
4887 
4888 	/*
4889 	 * Assume that the pte write on a page table of the same type
4890 	 * as the current vcpu paging mode since we update the sptes only
4891 	 * when they have the same mode.
4892 	 */
4893 	if (is_pae(vcpu) && *bytes == 4) {
4894 		/* Handle a 32-bit guest writing two halves of a 64-bit gpte */
4895 		*gpa &= ~(gpa_t)7;
4896 		*bytes = 8;
4897 	}
4898 
4899 	if (*bytes == 4 || *bytes == 8) {
4900 		r = kvm_vcpu_read_guest_atomic(vcpu, *gpa, &gentry, *bytes);
4901 		if (r)
4902 			gentry = 0;
4903 	}
4904 
4905 	return gentry;
4906 }
4907 
4908 /*
4909  * If we're seeing too many writes to a page, it may no longer be a page table,
4910  * or we may be forking, in which case it is better to unmap the page.
4911  */
4912 static bool detect_write_flooding(struct kvm_mmu_page *sp)
4913 {
4914 	/*
4915 	 * Skip write-flooding detected for the sp whose level is 1, because
4916 	 * it can become unsync, then the guest page is not write-protected.
4917 	 */
4918 	if (sp->role.level == PG_LEVEL_4K)
4919 		return false;
4920 
4921 	atomic_inc(&sp->write_flooding_count);
4922 	return atomic_read(&sp->write_flooding_count) >= 3;
4923 }
4924 
4925 /*
4926  * Misaligned accesses are too much trouble to fix up; also, they usually
4927  * indicate a page is not used as a page table.
4928  */
4929 static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
4930 				    int bytes)
4931 {
4932 	unsigned offset, pte_size, misaligned;
4933 
4934 	pgprintk("misaligned: gpa %llx bytes %d role %x\n",
4935 		 gpa, bytes, sp->role.word);
4936 
4937 	offset = offset_in_page(gpa);
4938 	pte_size = sp->role.gpte_is_8_bytes ? 8 : 4;
4939 
4940 	/*
4941 	 * Sometimes, the OS only writes the last one bytes to update status
4942 	 * bits, for example, in linux, andb instruction is used in clear_bit().
4943 	 */
4944 	if (!(offset & (pte_size - 1)) && bytes == 1)
4945 		return false;
4946 
4947 	misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
4948 	misaligned |= bytes < 4;
4949 
4950 	return misaligned;
4951 }
4952 
4953 static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
4954 {
4955 	unsigned page_offset, quadrant;
4956 	u64 *spte;
4957 	int level;
4958 
4959 	page_offset = offset_in_page(gpa);
4960 	level = sp->role.level;
4961 	*nspte = 1;
4962 	if (!sp->role.gpte_is_8_bytes) {
4963 		page_offset <<= 1;	/* 32->64 */
4964 		/*
4965 		 * A 32-bit pde maps 4MB while the shadow pdes map
4966 		 * only 2MB.  So we need to double the offset again
4967 		 * and zap two pdes instead of one.
4968 		 */
4969 		if (level == PT32_ROOT_LEVEL) {
4970 			page_offset &= ~7; /* kill rounding error */
4971 			page_offset <<= 1;
4972 			*nspte = 2;
4973 		}
4974 		quadrant = page_offset >> PAGE_SHIFT;
4975 		page_offset &= ~PAGE_MASK;
4976 		if (quadrant != sp->role.quadrant)
4977 			return NULL;
4978 	}
4979 
4980 	spte = &sp->spt[page_offset / sizeof(*spte)];
4981 	return spte;
4982 }
4983 
4984 static void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
4985 			      const u8 *new, int bytes,
4986 			      struct kvm_page_track_notifier_node *node)
4987 {
4988 	gfn_t gfn = gpa >> PAGE_SHIFT;
4989 	struct kvm_mmu_page *sp;
4990 	LIST_HEAD(invalid_list);
4991 	u64 entry, gentry, *spte;
4992 	int npte;
4993 	bool remote_flush, local_flush;
4994 
4995 	/*
4996 	 * If we don't have indirect shadow pages, it means no page is
4997 	 * write-protected, so we can exit simply.
4998 	 */
4999 	if (!READ_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
5000 		return;
5001 
5002 	remote_flush = local_flush = false;
5003 
5004 	pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
5005 
5006 	/*
5007 	 * No need to care whether allocation memory is successful
5008 	 * or not since pte prefetch is skipped if it does not have
5009 	 * enough objects in the cache.
5010 	 */
5011 	mmu_topup_memory_caches(vcpu, true);
5012 
5013 	write_lock(&vcpu->kvm->mmu_lock);
5014 
5015 	gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, &bytes);
5016 
5017 	++vcpu->kvm->stat.mmu_pte_write;
5018 	kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
5019 
5020 	for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
5021 		if (detect_write_misaligned(sp, gpa, bytes) ||
5022 		      detect_write_flooding(sp)) {
5023 			kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
5024 			++vcpu->kvm->stat.mmu_flooded;
5025 			continue;
5026 		}
5027 
5028 		spte = get_written_sptes(sp, gpa, &npte);
5029 		if (!spte)
5030 			continue;
5031 
5032 		local_flush = true;
5033 		while (npte--) {
5034 			entry = *spte;
5035 			mmu_page_zap_pte(vcpu->kvm, sp, spte, NULL);
5036 			if (gentry && sp->role.level != PG_LEVEL_4K)
5037 				++vcpu->kvm->stat.mmu_pde_zapped;
5038 			if (need_remote_flush(entry, *spte))
5039 				remote_flush = true;
5040 			++spte;
5041 		}
5042 	}
5043 	kvm_mmu_flush_or_zap(vcpu, &invalid_list, remote_flush, local_flush);
5044 	kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
5045 	write_unlock(&vcpu->kvm->mmu_lock);
5046 }
5047 
5048 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 error_code,
5049 		       void *insn, int insn_len)
5050 {
5051 	int r, emulation_type = EMULTYPE_PF;
5052 	bool direct = vcpu->arch.mmu->direct_map;
5053 
5054 	if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa)))
5055 		return RET_PF_RETRY;
5056 
5057 	r = RET_PF_INVALID;
5058 	if (unlikely(error_code & PFERR_RSVD_MASK)) {
5059 		r = handle_mmio_page_fault(vcpu, cr2_or_gpa, direct);
5060 		if (r == RET_PF_EMULATE)
5061 			goto emulate;
5062 	}
5063 
5064 	if (r == RET_PF_INVALID) {
5065 		r = kvm_mmu_do_page_fault(vcpu, cr2_or_gpa,
5066 					  lower_32_bits(error_code), false);
5067 		if (WARN_ON_ONCE(r == RET_PF_INVALID))
5068 			return -EIO;
5069 	}
5070 
5071 	if (r < 0)
5072 		return r;
5073 	if (r != RET_PF_EMULATE)
5074 		return 1;
5075 
5076 	/*
5077 	 * Before emulating the instruction, check if the error code
5078 	 * was due to a RO violation while translating the guest page.
5079 	 * This can occur when using nested virtualization with nested
5080 	 * paging in both guests. If true, we simply unprotect the page
5081 	 * and resume the guest.
5082 	 */
5083 	if (vcpu->arch.mmu->direct_map &&
5084 	    (error_code & PFERR_NESTED_GUEST_PAGE) == PFERR_NESTED_GUEST_PAGE) {
5085 		kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(cr2_or_gpa));
5086 		return 1;
5087 	}
5088 
5089 	/*
5090 	 * vcpu->arch.mmu.page_fault returned RET_PF_EMULATE, but we can still
5091 	 * optimistically try to just unprotect the page and let the processor
5092 	 * re-execute the instruction that caused the page fault.  Do not allow
5093 	 * retrying MMIO emulation, as it's not only pointless but could also
5094 	 * cause us to enter an infinite loop because the processor will keep
5095 	 * faulting on the non-existent MMIO address.  Retrying an instruction
5096 	 * from a nested guest is also pointless and dangerous as we are only
5097 	 * explicitly shadowing L1's page tables, i.e. unprotecting something
5098 	 * for L1 isn't going to magically fix whatever issue cause L2 to fail.
5099 	 */
5100 	if (!mmio_info_in_cache(vcpu, cr2_or_gpa, direct) && !is_guest_mode(vcpu))
5101 		emulation_type |= EMULTYPE_ALLOW_RETRY_PF;
5102 emulate:
5103 	return x86_emulate_instruction(vcpu, cr2_or_gpa, emulation_type, insn,
5104 				       insn_len);
5105 }
5106 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
5107 
5108 void kvm_mmu_invalidate_gva(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
5109 			    gva_t gva, hpa_t root_hpa)
5110 {
5111 	int i;
5112 
5113 	/* It's actually a GPA for vcpu->arch.guest_mmu.  */
5114 	if (mmu != &vcpu->arch.guest_mmu) {
5115 		/* INVLPG on a non-canonical address is a NOP according to the SDM.  */
5116 		if (is_noncanonical_address(gva, vcpu))
5117 			return;
5118 
5119 		static_call(kvm_x86_tlb_flush_gva)(vcpu, gva);
5120 	}
5121 
5122 	if (!mmu->invlpg)
5123 		return;
5124 
5125 	if (root_hpa == INVALID_PAGE) {
5126 		mmu->invlpg(vcpu, gva, mmu->root_hpa);
5127 
5128 		/*
5129 		 * INVLPG is required to invalidate any global mappings for the VA,
5130 		 * irrespective of PCID. Since it would take us roughly similar amount
5131 		 * of work to determine whether any of the prev_root mappings of the VA
5132 		 * is marked global, or to just sync it blindly, so we might as well
5133 		 * just always sync it.
5134 		 *
5135 		 * Mappings not reachable via the current cr3 or the prev_roots will be
5136 		 * synced when switching to that cr3, so nothing needs to be done here
5137 		 * for them.
5138 		 */
5139 		for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5140 			if (VALID_PAGE(mmu->prev_roots[i].hpa))
5141 				mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
5142 	} else {
5143 		mmu->invlpg(vcpu, gva, root_hpa);
5144 	}
5145 }
5146 
5147 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
5148 {
5149 	kvm_mmu_invalidate_gva(vcpu, vcpu->arch.mmu, gva, INVALID_PAGE);
5150 	++vcpu->stat.invlpg;
5151 }
5152 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
5153 
5154 
5155 void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid)
5156 {
5157 	struct kvm_mmu *mmu = vcpu->arch.mmu;
5158 	bool tlb_flush = false;
5159 	uint i;
5160 
5161 	if (pcid == kvm_get_active_pcid(vcpu)) {
5162 		mmu->invlpg(vcpu, gva, mmu->root_hpa);
5163 		tlb_flush = true;
5164 	}
5165 
5166 	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
5167 		if (VALID_PAGE(mmu->prev_roots[i].hpa) &&
5168 		    pcid == kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd)) {
5169 			mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
5170 			tlb_flush = true;
5171 		}
5172 	}
5173 
5174 	if (tlb_flush)
5175 		static_call(kvm_x86_tlb_flush_gva)(vcpu, gva);
5176 
5177 	++vcpu->stat.invlpg;
5178 
5179 	/*
5180 	 * Mappings not reachable via the current cr3 or the prev_roots will be
5181 	 * synced when switching to that cr3, so nothing needs to be done here
5182 	 * for them.
5183 	 */
5184 }
5185 
5186 void kvm_configure_mmu(bool enable_tdp, int tdp_max_root_level,
5187 		       int tdp_huge_page_level)
5188 {
5189 	tdp_enabled = enable_tdp;
5190 	max_tdp_level = tdp_max_root_level;
5191 
5192 	/*
5193 	 * max_huge_page_level reflects KVM's MMU capabilities irrespective
5194 	 * of kernel support, e.g. KVM may be capable of using 1GB pages when
5195 	 * the kernel is not.  But, KVM never creates a page size greater than
5196 	 * what is used by the kernel for any given HVA, i.e. the kernel's
5197 	 * capabilities are ultimately consulted by kvm_mmu_hugepage_adjust().
5198 	 */
5199 	if (tdp_enabled)
5200 		max_huge_page_level = tdp_huge_page_level;
5201 	else if (boot_cpu_has(X86_FEATURE_GBPAGES))
5202 		max_huge_page_level = PG_LEVEL_1G;
5203 	else
5204 		max_huge_page_level = PG_LEVEL_2M;
5205 }
5206 EXPORT_SYMBOL_GPL(kvm_configure_mmu);
5207 
5208 /* The return value indicates if tlb flush on all vcpus is needed. */
5209 typedef bool (*slot_level_handler) (struct kvm *kvm, struct kvm_rmap_head *rmap_head,
5210 				    struct kvm_memory_slot *slot);
5211 
5212 /* The caller should hold mmu-lock before calling this function. */
5213 static __always_inline bool
5214 slot_handle_level_range(struct kvm *kvm, struct kvm_memory_slot *memslot,
5215 			slot_level_handler fn, int start_level, int end_level,
5216 			gfn_t start_gfn, gfn_t end_gfn, bool flush_on_yield,
5217 			bool flush)
5218 {
5219 	struct slot_rmap_walk_iterator iterator;
5220 
5221 	for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn,
5222 			end_gfn, &iterator) {
5223 		if (iterator.rmap)
5224 			flush |= fn(kvm, iterator.rmap, memslot);
5225 
5226 		if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) {
5227 			if (flush && flush_on_yield) {
5228 				kvm_flush_remote_tlbs_with_address(kvm,
5229 						start_gfn,
5230 						iterator.gfn - start_gfn + 1);
5231 				flush = false;
5232 			}
5233 			cond_resched_rwlock_write(&kvm->mmu_lock);
5234 		}
5235 	}
5236 
5237 	return flush;
5238 }
5239 
5240 static __always_inline bool
5241 slot_handle_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5242 		  slot_level_handler fn, int start_level, int end_level,
5243 		  bool flush_on_yield)
5244 {
5245 	return slot_handle_level_range(kvm, memslot, fn, start_level,
5246 			end_level, memslot->base_gfn,
5247 			memslot->base_gfn + memslot->npages - 1,
5248 			flush_on_yield, false);
5249 }
5250 
5251 static __always_inline bool
5252 slot_handle_leaf(struct kvm *kvm, struct kvm_memory_slot *memslot,
5253 		 slot_level_handler fn, bool flush_on_yield)
5254 {
5255 	return slot_handle_level(kvm, memslot, fn, PG_LEVEL_4K,
5256 				 PG_LEVEL_4K, flush_on_yield);
5257 }
5258 
5259 static void free_mmu_pages(struct kvm_mmu *mmu)
5260 {
5261 	if (!tdp_enabled && mmu->pae_root)
5262 		set_memory_encrypted((unsigned long)mmu->pae_root, 1);
5263 	free_page((unsigned long)mmu->pae_root);
5264 	free_page((unsigned long)mmu->pml4_root);
5265 }
5266 
5267 static int __kvm_mmu_create(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
5268 {
5269 	struct page *page;
5270 	int i;
5271 
5272 	mmu->root_hpa = INVALID_PAGE;
5273 	mmu->root_pgd = 0;
5274 	mmu->translate_gpa = translate_gpa;
5275 	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5276 		mmu->prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
5277 
5278 	/*
5279 	 * When using PAE paging, the four PDPTEs are treated as 'root' pages,
5280 	 * while the PDP table is a per-vCPU construct that's allocated at MMU
5281 	 * creation.  When emulating 32-bit mode, cr3 is only 32 bits even on
5282 	 * x86_64.  Therefore we need to allocate the PDP table in the first
5283 	 * 4GB of memory, which happens to fit the DMA32 zone.  TDP paging
5284 	 * generally doesn't use PAE paging and can skip allocating the PDP
5285 	 * table.  The main exception, handled here, is SVM's 32-bit NPT.  The
5286 	 * other exception is for shadowing L1's 32-bit or PAE NPT on 64-bit
5287 	 * KVM; that horror is handled on-demand by mmu_alloc_shadow_roots().
5288 	 */
5289 	if (tdp_enabled && kvm_mmu_get_tdp_level(vcpu) > PT32E_ROOT_LEVEL)
5290 		return 0;
5291 
5292 	page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_DMA32);
5293 	if (!page)
5294 		return -ENOMEM;
5295 
5296 	mmu->pae_root = page_address(page);
5297 
5298 	/*
5299 	 * CR3 is only 32 bits when PAE paging is used, thus it's impossible to
5300 	 * get the CPU to treat the PDPTEs as encrypted.  Decrypt the page so
5301 	 * that KVM's writes and the CPU's reads get along.  Note, this is
5302 	 * only necessary when using shadow paging, as 64-bit NPT can get at
5303 	 * the C-bit even when shadowing 32-bit NPT, and SME isn't supported
5304 	 * by 32-bit kernels (when KVM itself uses 32-bit NPT).
5305 	 */
5306 	if (!tdp_enabled)
5307 		set_memory_decrypted((unsigned long)mmu->pae_root, 1);
5308 	else
5309 		WARN_ON_ONCE(shadow_me_mask);
5310 
5311 	for (i = 0; i < 4; ++i)
5312 		mmu->pae_root[i] = INVALID_PAE_ROOT;
5313 
5314 	return 0;
5315 }
5316 
5317 int kvm_mmu_create(struct kvm_vcpu *vcpu)
5318 {
5319 	int ret;
5320 
5321 	vcpu->arch.mmu_pte_list_desc_cache.kmem_cache = pte_list_desc_cache;
5322 	vcpu->arch.mmu_pte_list_desc_cache.gfp_zero = __GFP_ZERO;
5323 
5324 	vcpu->arch.mmu_page_header_cache.kmem_cache = mmu_page_header_cache;
5325 	vcpu->arch.mmu_page_header_cache.gfp_zero = __GFP_ZERO;
5326 
5327 	vcpu->arch.mmu_shadow_page_cache.gfp_zero = __GFP_ZERO;
5328 
5329 	vcpu->arch.mmu = &vcpu->arch.root_mmu;
5330 	vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
5331 
5332 	vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
5333 
5334 	ret = __kvm_mmu_create(vcpu, &vcpu->arch.guest_mmu);
5335 	if (ret)
5336 		return ret;
5337 
5338 	ret = __kvm_mmu_create(vcpu, &vcpu->arch.root_mmu);
5339 	if (ret)
5340 		goto fail_allocate_root;
5341 
5342 	return ret;
5343  fail_allocate_root:
5344 	free_mmu_pages(&vcpu->arch.guest_mmu);
5345 	return ret;
5346 }
5347 
5348 #define BATCH_ZAP_PAGES	10
5349 static void kvm_zap_obsolete_pages(struct kvm *kvm)
5350 {
5351 	struct kvm_mmu_page *sp, *node;
5352 	int nr_zapped, batch = 0;
5353 
5354 restart:
5355 	list_for_each_entry_safe_reverse(sp, node,
5356 	      &kvm->arch.active_mmu_pages, link) {
5357 		/*
5358 		 * No obsolete valid page exists before a newly created page
5359 		 * since active_mmu_pages is a FIFO list.
5360 		 */
5361 		if (!is_obsolete_sp(kvm, sp))
5362 			break;
5363 
5364 		/*
5365 		 * Invalid pages should never land back on the list of active
5366 		 * pages.  Skip the bogus page, otherwise we'll get stuck in an
5367 		 * infinite loop if the page gets put back on the list (again).
5368 		 */
5369 		if (WARN_ON(sp->role.invalid))
5370 			continue;
5371 
5372 		/*
5373 		 * No need to flush the TLB since we're only zapping shadow
5374 		 * pages with an obsolete generation number and all vCPUS have
5375 		 * loaded a new root, i.e. the shadow pages being zapped cannot
5376 		 * be in active use by the guest.
5377 		 */
5378 		if (batch >= BATCH_ZAP_PAGES &&
5379 		    cond_resched_rwlock_write(&kvm->mmu_lock)) {
5380 			batch = 0;
5381 			goto restart;
5382 		}
5383 
5384 		if (__kvm_mmu_prepare_zap_page(kvm, sp,
5385 				&kvm->arch.zapped_obsolete_pages, &nr_zapped)) {
5386 			batch += nr_zapped;
5387 			goto restart;
5388 		}
5389 	}
5390 
5391 	/*
5392 	 * Trigger a remote TLB flush before freeing the page tables to ensure
5393 	 * KVM is not in the middle of a lockless shadow page table walk, which
5394 	 * may reference the pages.
5395 	 */
5396 	kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
5397 }
5398 
5399 /*
5400  * Fast invalidate all shadow pages and use lock-break technique
5401  * to zap obsolete pages.
5402  *
5403  * It's required when memslot is being deleted or VM is being
5404  * destroyed, in these cases, we should ensure that KVM MMU does
5405  * not use any resource of the being-deleted slot or all slots
5406  * after calling the function.
5407  */
5408 static void kvm_mmu_zap_all_fast(struct kvm *kvm)
5409 {
5410 	lockdep_assert_held(&kvm->slots_lock);
5411 
5412 	write_lock(&kvm->mmu_lock);
5413 	trace_kvm_mmu_zap_all_fast(kvm);
5414 
5415 	/*
5416 	 * Toggle mmu_valid_gen between '0' and '1'.  Because slots_lock is
5417 	 * held for the entire duration of zapping obsolete pages, it's
5418 	 * impossible for there to be multiple invalid generations associated
5419 	 * with *valid* shadow pages at any given time, i.e. there is exactly
5420 	 * one valid generation and (at most) one invalid generation.
5421 	 */
5422 	kvm->arch.mmu_valid_gen = kvm->arch.mmu_valid_gen ? 0 : 1;
5423 
5424 	/* In order to ensure all threads see this change when
5425 	 * handling the MMU reload signal, this must happen in the
5426 	 * same critical section as kvm_reload_remote_mmus, and
5427 	 * before kvm_zap_obsolete_pages as kvm_zap_obsolete_pages
5428 	 * could drop the MMU lock and yield.
5429 	 */
5430 	if (is_tdp_mmu_enabled(kvm))
5431 		kvm_tdp_mmu_invalidate_all_roots(kvm);
5432 
5433 	/*
5434 	 * Notify all vcpus to reload its shadow page table and flush TLB.
5435 	 * Then all vcpus will switch to new shadow page table with the new
5436 	 * mmu_valid_gen.
5437 	 *
5438 	 * Note: we need to do this under the protection of mmu_lock,
5439 	 * otherwise, vcpu would purge shadow page but miss tlb flush.
5440 	 */
5441 	kvm_reload_remote_mmus(kvm);
5442 
5443 	kvm_zap_obsolete_pages(kvm);
5444 
5445 	write_unlock(&kvm->mmu_lock);
5446 
5447 	if (is_tdp_mmu_enabled(kvm)) {
5448 		read_lock(&kvm->mmu_lock);
5449 		kvm_tdp_mmu_zap_invalidated_roots(kvm);
5450 		read_unlock(&kvm->mmu_lock);
5451 	}
5452 }
5453 
5454 static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
5455 {
5456 	return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
5457 }
5458 
5459 static void kvm_mmu_invalidate_zap_pages_in_memslot(struct kvm *kvm,
5460 			struct kvm_memory_slot *slot,
5461 			struct kvm_page_track_notifier_node *node)
5462 {
5463 	kvm_mmu_zap_all_fast(kvm);
5464 }
5465 
5466 void kvm_mmu_init_vm(struct kvm *kvm)
5467 {
5468 	struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5469 
5470 	kvm_mmu_init_tdp_mmu(kvm);
5471 
5472 	node->track_write = kvm_mmu_pte_write;
5473 	node->track_flush_slot = kvm_mmu_invalidate_zap_pages_in_memslot;
5474 	kvm_page_track_register_notifier(kvm, node);
5475 }
5476 
5477 void kvm_mmu_uninit_vm(struct kvm *kvm)
5478 {
5479 	struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5480 
5481 	kvm_page_track_unregister_notifier(kvm, node);
5482 
5483 	kvm_mmu_uninit_tdp_mmu(kvm);
5484 }
5485 
5486 void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
5487 {
5488 	struct kvm_memslots *slots;
5489 	struct kvm_memory_slot *memslot;
5490 	int i;
5491 	bool flush = false;
5492 
5493 	write_lock(&kvm->mmu_lock);
5494 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
5495 		slots = __kvm_memslots(kvm, i);
5496 		kvm_for_each_memslot(memslot, slots) {
5497 			gfn_t start, end;
5498 
5499 			start = max(gfn_start, memslot->base_gfn);
5500 			end = min(gfn_end, memslot->base_gfn + memslot->npages);
5501 			if (start >= end)
5502 				continue;
5503 
5504 			flush = slot_handle_level_range(kvm, memslot, kvm_zap_rmapp,
5505 							PG_LEVEL_4K,
5506 							KVM_MAX_HUGEPAGE_LEVEL,
5507 							start, end - 1, true, flush);
5508 		}
5509 	}
5510 
5511 	if (flush)
5512 		kvm_flush_remote_tlbs_with_address(kvm, gfn_start, gfn_end);
5513 
5514 	write_unlock(&kvm->mmu_lock);
5515 
5516 	if (is_tdp_mmu_enabled(kvm)) {
5517 		flush = false;
5518 
5519 		read_lock(&kvm->mmu_lock);
5520 		for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
5521 			flush = kvm_tdp_mmu_zap_gfn_range(kvm, i, gfn_start,
5522 							  gfn_end, flush, true);
5523 		if (flush)
5524 			kvm_flush_remote_tlbs_with_address(kvm, gfn_start,
5525 							   gfn_end);
5526 
5527 		read_unlock(&kvm->mmu_lock);
5528 	}
5529 }
5530 
5531 static bool slot_rmap_write_protect(struct kvm *kvm,
5532 				    struct kvm_rmap_head *rmap_head,
5533 				    struct kvm_memory_slot *slot)
5534 {
5535 	return __rmap_write_protect(kvm, rmap_head, false);
5536 }
5537 
5538 void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
5539 				      struct kvm_memory_slot *memslot,
5540 				      int start_level)
5541 {
5542 	bool flush;
5543 
5544 	write_lock(&kvm->mmu_lock);
5545 	flush = slot_handle_level(kvm, memslot, slot_rmap_write_protect,
5546 				start_level, KVM_MAX_HUGEPAGE_LEVEL, false);
5547 	write_unlock(&kvm->mmu_lock);
5548 
5549 	if (is_tdp_mmu_enabled(kvm)) {
5550 		read_lock(&kvm->mmu_lock);
5551 		flush |= kvm_tdp_mmu_wrprot_slot(kvm, memslot, start_level);
5552 		read_unlock(&kvm->mmu_lock);
5553 	}
5554 
5555 	/*
5556 	 * We can flush all the TLBs out of the mmu lock without TLB
5557 	 * corruption since we just change the spte from writable to
5558 	 * readonly so that we only need to care the case of changing
5559 	 * spte from present to present (changing the spte from present
5560 	 * to nonpresent will flush all the TLBs immediately), in other
5561 	 * words, the only case we care is mmu_spte_update() where we
5562 	 * have checked Host-writable | MMU-writable instead of
5563 	 * PT_WRITABLE_MASK, that means it does not depend on PT_WRITABLE_MASK
5564 	 * anymore.
5565 	 */
5566 	if (flush)
5567 		kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
5568 }
5569 
5570 static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
5571 					 struct kvm_rmap_head *rmap_head,
5572 					 struct kvm_memory_slot *slot)
5573 {
5574 	u64 *sptep;
5575 	struct rmap_iterator iter;
5576 	int need_tlb_flush = 0;
5577 	kvm_pfn_t pfn;
5578 	struct kvm_mmu_page *sp;
5579 
5580 restart:
5581 	for_each_rmap_spte(rmap_head, &iter, sptep) {
5582 		sp = sptep_to_sp(sptep);
5583 		pfn = spte_to_pfn(*sptep);
5584 
5585 		/*
5586 		 * We cannot do huge page mapping for indirect shadow pages,
5587 		 * which are found on the last rmap (level = 1) when not using
5588 		 * tdp; such shadow pages are synced with the page table in
5589 		 * the guest, and the guest page table is using 4K page size
5590 		 * mapping if the indirect sp has level = 1.
5591 		 */
5592 		if (sp->role.direct && !kvm_is_reserved_pfn(pfn) &&
5593 		    sp->role.level < kvm_mmu_max_mapping_level(kvm, slot, sp->gfn,
5594 							       pfn, PG_LEVEL_NUM)) {
5595 			pte_list_remove(rmap_head, sptep);
5596 
5597 			if (kvm_available_flush_tlb_with_range())
5598 				kvm_flush_remote_tlbs_with_address(kvm, sp->gfn,
5599 					KVM_PAGES_PER_HPAGE(sp->role.level));
5600 			else
5601 				need_tlb_flush = 1;
5602 
5603 			goto restart;
5604 		}
5605 	}
5606 
5607 	return need_tlb_flush;
5608 }
5609 
5610 void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
5611 				   const struct kvm_memory_slot *memslot)
5612 {
5613 	/* FIXME: const-ify all uses of struct kvm_memory_slot.  */
5614 	struct kvm_memory_slot *slot = (struct kvm_memory_slot *)memslot;
5615 	bool flush;
5616 
5617 	write_lock(&kvm->mmu_lock);
5618 	flush = slot_handle_leaf(kvm, slot, kvm_mmu_zap_collapsible_spte, true);
5619 
5620 	if (flush)
5621 		kvm_arch_flush_remote_tlbs_memslot(kvm, slot);
5622 	write_unlock(&kvm->mmu_lock);
5623 
5624 	if (is_tdp_mmu_enabled(kvm)) {
5625 		flush = false;
5626 
5627 		read_lock(&kvm->mmu_lock);
5628 		flush = kvm_tdp_mmu_zap_collapsible_sptes(kvm, slot, flush);
5629 		if (flush)
5630 			kvm_arch_flush_remote_tlbs_memslot(kvm, slot);
5631 		read_unlock(&kvm->mmu_lock);
5632 	}
5633 }
5634 
5635 void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
5636 					const struct kvm_memory_slot *memslot)
5637 {
5638 	/*
5639 	 * All current use cases for flushing the TLBs for a specific memslot
5640 	 * related to dirty logging, and many do the TLB flush out of mmu_lock.
5641 	 * The interaction between the various operations on memslot must be
5642 	 * serialized by slots_locks to ensure the TLB flush from one operation
5643 	 * is observed by any other operation on the same memslot.
5644 	 */
5645 	lockdep_assert_held(&kvm->slots_lock);
5646 	kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn,
5647 					   memslot->npages);
5648 }
5649 
5650 void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
5651 				   struct kvm_memory_slot *memslot)
5652 {
5653 	bool flush;
5654 
5655 	write_lock(&kvm->mmu_lock);
5656 	flush = slot_handle_leaf(kvm, memslot, __rmap_clear_dirty, false);
5657 	write_unlock(&kvm->mmu_lock);
5658 
5659 	if (is_tdp_mmu_enabled(kvm)) {
5660 		read_lock(&kvm->mmu_lock);
5661 		flush |= kvm_tdp_mmu_clear_dirty_slot(kvm, memslot);
5662 		read_unlock(&kvm->mmu_lock);
5663 	}
5664 
5665 	/*
5666 	 * It's also safe to flush TLBs out of mmu lock here as currently this
5667 	 * function is only used for dirty logging, in which case flushing TLB
5668 	 * out of mmu lock also guarantees no dirty pages will be lost in
5669 	 * dirty_bitmap.
5670 	 */
5671 	if (flush)
5672 		kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
5673 }
5674 
5675 void kvm_mmu_zap_all(struct kvm *kvm)
5676 {
5677 	struct kvm_mmu_page *sp, *node;
5678 	LIST_HEAD(invalid_list);
5679 	int ign;
5680 
5681 	write_lock(&kvm->mmu_lock);
5682 restart:
5683 	list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link) {
5684 		if (WARN_ON(sp->role.invalid))
5685 			continue;
5686 		if (__kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list, &ign))
5687 			goto restart;
5688 		if (cond_resched_rwlock_write(&kvm->mmu_lock))
5689 			goto restart;
5690 	}
5691 
5692 	kvm_mmu_commit_zap_page(kvm, &invalid_list);
5693 
5694 	if (is_tdp_mmu_enabled(kvm))
5695 		kvm_tdp_mmu_zap_all(kvm);
5696 
5697 	write_unlock(&kvm->mmu_lock);
5698 }
5699 
5700 void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen)
5701 {
5702 	WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
5703 
5704 	gen &= MMIO_SPTE_GEN_MASK;
5705 
5706 	/*
5707 	 * Generation numbers are incremented in multiples of the number of
5708 	 * address spaces in order to provide unique generations across all
5709 	 * address spaces.  Strip what is effectively the address space
5710 	 * modifier prior to checking for a wrap of the MMIO generation so
5711 	 * that a wrap in any address space is detected.
5712 	 */
5713 	gen &= ~((u64)KVM_ADDRESS_SPACE_NUM - 1);
5714 
5715 	/*
5716 	 * The very rare case: if the MMIO generation number has wrapped,
5717 	 * zap all shadow pages.
5718 	 */
5719 	if (unlikely(gen == 0)) {
5720 		kvm_debug_ratelimited("kvm: zapping shadow pages for mmio generation wraparound\n");
5721 		kvm_mmu_zap_all_fast(kvm);
5722 	}
5723 }
5724 
5725 static unsigned long
5726 mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
5727 {
5728 	struct kvm *kvm;
5729 	int nr_to_scan = sc->nr_to_scan;
5730 	unsigned long freed = 0;
5731 
5732 	mutex_lock(&kvm_lock);
5733 
5734 	list_for_each_entry(kvm, &vm_list, vm_list) {
5735 		int idx;
5736 		LIST_HEAD(invalid_list);
5737 
5738 		/*
5739 		 * Never scan more than sc->nr_to_scan VM instances.
5740 		 * Will not hit this condition practically since we do not try
5741 		 * to shrink more than one VM and it is very unlikely to see
5742 		 * !n_used_mmu_pages so many times.
5743 		 */
5744 		if (!nr_to_scan--)
5745 			break;
5746 		/*
5747 		 * n_used_mmu_pages is accessed without holding kvm->mmu_lock
5748 		 * here. We may skip a VM instance errorneosly, but we do not
5749 		 * want to shrink a VM that only started to populate its MMU
5750 		 * anyway.
5751 		 */
5752 		if (!kvm->arch.n_used_mmu_pages &&
5753 		    !kvm_has_zapped_obsolete_pages(kvm))
5754 			continue;
5755 
5756 		idx = srcu_read_lock(&kvm->srcu);
5757 		write_lock(&kvm->mmu_lock);
5758 
5759 		if (kvm_has_zapped_obsolete_pages(kvm)) {
5760 			kvm_mmu_commit_zap_page(kvm,
5761 			      &kvm->arch.zapped_obsolete_pages);
5762 			goto unlock;
5763 		}
5764 
5765 		freed = kvm_mmu_zap_oldest_mmu_pages(kvm, sc->nr_to_scan);
5766 
5767 unlock:
5768 		write_unlock(&kvm->mmu_lock);
5769 		srcu_read_unlock(&kvm->srcu, idx);
5770 
5771 		/*
5772 		 * unfair on small ones
5773 		 * per-vm shrinkers cry out
5774 		 * sadness comes quickly
5775 		 */
5776 		list_move_tail(&kvm->vm_list, &vm_list);
5777 		break;
5778 	}
5779 
5780 	mutex_unlock(&kvm_lock);
5781 	return freed;
5782 }
5783 
5784 static unsigned long
5785 mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
5786 {
5787 	return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
5788 }
5789 
5790 static struct shrinker mmu_shrinker = {
5791 	.count_objects = mmu_shrink_count,
5792 	.scan_objects = mmu_shrink_scan,
5793 	.seeks = DEFAULT_SEEKS * 10,
5794 };
5795 
5796 static void mmu_destroy_caches(void)
5797 {
5798 	kmem_cache_destroy(pte_list_desc_cache);
5799 	kmem_cache_destroy(mmu_page_header_cache);
5800 }
5801 
5802 static bool get_nx_auto_mode(void)
5803 {
5804 	/* Return true when CPU has the bug, and mitigations are ON */
5805 	return boot_cpu_has_bug(X86_BUG_ITLB_MULTIHIT) && !cpu_mitigations_off();
5806 }
5807 
5808 static void __set_nx_huge_pages(bool val)
5809 {
5810 	nx_huge_pages = itlb_multihit_kvm_mitigation = val;
5811 }
5812 
5813 static int set_nx_huge_pages(const char *val, const struct kernel_param *kp)
5814 {
5815 	bool old_val = nx_huge_pages;
5816 	bool new_val;
5817 
5818 	/* In "auto" mode deploy workaround only if CPU has the bug. */
5819 	if (sysfs_streq(val, "off"))
5820 		new_val = 0;
5821 	else if (sysfs_streq(val, "force"))
5822 		new_val = 1;
5823 	else if (sysfs_streq(val, "auto"))
5824 		new_val = get_nx_auto_mode();
5825 	else if (strtobool(val, &new_val) < 0)
5826 		return -EINVAL;
5827 
5828 	__set_nx_huge_pages(new_val);
5829 
5830 	if (new_val != old_val) {
5831 		struct kvm *kvm;
5832 
5833 		mutex_lock(&kvm_lock);
5834 
5835 		list_for_each_entry(kvm, &vm_list, vm_list) {
5836 			mutex_lock(&kvm->slots_lock);
5837 			kvm_mmu_zap_all_fast(kvm);
5838 			mutex_unlock(&kvm->slots_lock);
5839 
5840 			wake_up_process(kvm->arch.nx_lpage_recovery_thread);
5841 		}
5842 		mutex_unlock(&kvm_lock);
5843 	}
5844 
5845 	return 0;
5846 }
5847 
5848 int kvm_mmu_module_init(void)
5849 {
5850 	int ret = -ENOMEM;
5851 
5852 	if (nx_huge_pages == -1)
5853 		__set_nx_huge_pages(get_nx_auto_mode());
5854 
5855 	/*
5856 	 * MMU roles use union aliasing which is, generally speaking, an
5857 	 * undefined behavior. However, we supposedly know how compilers behave
5858 	 * and the current status quo is unlikely to change. Guardians below are
5859 	 * supposed to let us know if the assumption becomes false.
5860 	 */
5861 	BUILD_BUG_ON(sizeof(union kvm_mmu_page_role) != sizeof(u32));
5862 	BUILD_BUG_ON(sizeof(union kvm_mmu_extended_role) != sizeof(u32));
5863 	BUILD_BUG_ON(sizeof(union kvm_mmu_role) != sizeof(u64));
5864 
5865 	kvm_mmu_reset_all_pte_masks();
5866 
5867 	pte_list_desc_cache = kmem_cache_create("pte_list_desc",
5868 					    sizeof(struct pte_list_desc),
5869 					    0, SLAB_ACCOUNT, NULL);
5870 	if (!pte_list_desc_cache)
5871 		goto out;
5872 
5873 	mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
5874 						  sizeof(struct kvm_mmu_page),
5875 						  0, SLAB_ACCOUNT, NULL);
5876 	if (!mmu_page_header_cache)
5877 		goto out;
5878 
5879 	if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
5880 		goto out;
5881 
5882 	ret = register_shrinker(&mmu_shrinker);
5883 	if (ret)
5884 		goto out;
5885 
5886 	return 0;
5887 
5888 out:
5889 	mmu_destroy_caches();
5890 	return ret;
5891 }
5892 
5893 /*
5894  * Calculate mmu pages needed for kvm.
5895  */
5896 unsigned long kvm_mmu_calculate_default_mmu_pages(struct kvm *kvm)
5897 {
5898 	unsigned long nr_mmu_pages;
5899 	unsigned long nr_pages = 0;
5900 	struct kvm_memslots *slots;
5901 	struct kvm_memory_slot *memslot;
5902 	int i;
5903 
5904 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
5905 		slots = __kvm_memslots(kvm, i);
5906 
5907 		kvm_for_each_memslot(memslot, slots)
5908 			nr_pages += memslot->npages;
5909 	}
5910 
5911 	nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
5912 	nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES);
5913 
5914 	return nr_mmu_pages;
5915 }
5916 
5917 void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
5918 {
5919 	kvm_mmu_unload(vcpu);
5920 	free_mmu_pages(&vcpu->arch.root_mmu);
5921 	free_mmu_pages(&vcpu->arch.guest_mmu);
5922 	mmu_free_memory_caches(vcpu);
5923 }
5924 
5925 void kvm_mmu_module_exit(void)
5926 {
5927 	mmu_destroy_caches();
5928 	percpu_counter_destroy(&kvm_total_used_mmu_pages);
5929 	unregister_shrinker(&mmu_shrinker);
5930 	mmu_audit_disable();
5931 }
5932 
5933 static int set_nx_huge_pages_recovery_ratio(const char *val, const struct kernel_param *kp)
5934 {
5935 	unsigned int old_val;
5936 	int err;
5937 
5938 	old_val = nx_huge_pages_recovery_ratio;
5939 	err = param_set_uint(val, kp);
5940 	if (err)
5941 		return err;
5942 
5943 	if (READ_ONCE(nx_huge_pages) &&
5944 	    !old_val && nx_huge_pages_recovery_ratio) {
5945 		struct kvm *kvm;
5946 
5947 		mutex_lock(&kvm_lock);
5948 
5949 		list_for_each_entry(kvm, &vm_list, vm_list)
5950 			wake_up_process(kvm->arch.nx_lpage_recovery_thread);
5951 
5952 		mutex_unlock(&kvm_lock);
5953 	}
5954 
5955 	return err;
5956 }
5957 
5958 static void kvm_recover_nx_lpages(struct kvm *kvm)
5959 {
5960 	int rcu_idx;
5961 	struct kvm_mmu_page *sp;
5962 	unsigned int ratio;
5963 	LIST_HEAD(invalid_list);
5964 	bool flush = false;
5965 	ulong to_zap;
5966 
5967 	rcu_idx = srcu_read_lock(&kvm->srcu);
5968 	write_lock(&kvm->mmu_lock);
5969 
5970 	ratio = READ_ONCE(nx_huge_pages_recovery_ratio);
5971 	to_zap = ratio ? DIV_ROUND_UP(kvm->stat.nx_lpage_splits, ratio) : 0;
5972 	for ( ; to_zap; --to_zap) {
5973 		if (list_empty(&kvm->arch.lpage_disallowed_mmu_pages))
5974 			break;
5975 
5976 		/*
5977 		 * We use a separate list instead of just using active_mmu_pages
5978 		 * because the number of lpage_disallowed pages is expected to
5979 		 * be relatively small compared to the total.
5980 		 */
5981 		sp = list_first_entry(&kvm->arch.lpage_disallowed_mmu_pages,
5982 				      struct kvm_mmu_page,
5983 				      lpage_disallowed_link);
5984 		WARN_ON_ONCE(!sp->lpage_disallowed);
5985 		if (is_tdp_mmu_page(sp)) {
5986 			flush |= kvm_tdp_mmu_zap_sp(kvm, sp);
5987 		} else {
5988 			kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
5989 			WARN_ON_ONCE(sp->lpage_disallowed);
5990 		}
5991 
5992 		if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) {
5993 			kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush);
5994 			cond_resched_rwlock_write(&kvm->mmu_lock);
5995 			flush = false;
5996 		}
5997 	}
5998 	kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush);
5999 
6000 	write_unlock(&kvm->mmu_lock);
6001 	srcu_read_unlock(&kvm->srcu, rcu_idx);
6002 }
6003 
6004 static long get_nx_lpage_recovery_timeout(u64 start_time)
6005 {
6006 	return READ_ONCE(nx_huge_pages) && READ_ONCE(nx_huge_pages_recovery_ratio)
6007 		? start_time + 60 * HZ - get_jiffies_64()
6008 		: MAX_SCHEDULE_TIMEOUT;
6009 }
6010 
6011 static int kvm_nx_lpage_recovery_worker(struct kvm *kvm, uintptr_t data)
6012 {
6013 	u64 start_time;
6014 	long remaining_time;
6015 
6016 	while (true) {
6017 		start_time = get_jiffies_64();
6018 		remaining_time = get_nx_lpage_recovery_timeout(start_time);
6019 
6020 		set_current_state(TASK_INTERRUPTIBLE);
6021 		while (!kthread_should_stop() && remaining_time > 0) {
6022 			schedule_timeout(remaining_time);
6023 			remaining_time = get_nx_lpage_recovery_timeout(start_time);
6024 			set_current_state(TASK_INTERRUPTIBLE);
6025 		}
6026 
6027 		set_current_state(TASK_RUNNING);
6028 
6029 		if (kthread_should_stop())
6030 			return 0;
6031 
6032 		kvm_recover_nx_lpages(kvm);
6033 	}
6034 }
6035 
6036 int kvm_mmu_post_init_vm(struct kvm *kvm)
6037 {
6038 	int err;
6039 
6040 	err = kvm_vm_create_worker_thread(kvm, kvm_nx_lpage_recovery_worker, 0,
6041 					  "kvm-nx-lpage-recovery",
6042 					  &kvm->arch.nx_lpage_recovery_thread);
6043 	if (!err)
6044 		kthread_unpark(kvm->arch.nx_lpage_recovery_thread);
6045 
6046 	return err;
6047 }
6048 
6049 void kvm_mmu_pre_destroy_vm(struct kvm *kvm)
6050 {
6051 	if (kvm->arch.nx_lpage_recovery_thread)
6052 		kthread_stop(kvm->arch.nx_lpage_recovery_thread);
6053 }
6054