xref: /openbmc/linux/arch/x86/kvm/mmu/mmu.c (revision 6cd70754)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This module enables machines with Intel VT-x extensions to run virtual
6  * machines without emulation or binary translation.
7  *
8  * MMU support
9  *
10  * Copyright (C) 2006 Qumranet, Inc.
11  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
12  *
13  * Authors:
14  *   Yaniv Kamay  <yaniv@qumranet.com>
15  *   Avi Kivity   <avi@qumranet.com>
16  */
17 
18 #include "irq.h"
19 #include "ioapic.h"
20 #include "mmu.h"
21 #include "mmu_internal.h"
22 #include "tdp_mmu.h"
23 #include "x86.h"
24 #include "kvm_cache_regs.h"
25 #include "kvm_emulate.h"
26 #include "cpuid.h"
27 #include "spte.h"
28 
29 #include <linux/kvm_host.h>
30 #include <linux/types.h>
31 #include <linux/string.h>
32 #include <linux/mm.h>
33 #include <linux/highmem.h>
34 #include <linux/moduleparam.h>
35 #include <linux/export.h>
36 #include <linux/swap.h>
37 #include <linux/hugetlb.h>
38 #include <linux/compiler.h>
39 #include <linux/srcu.h>
40 #include <linux/slab.h>
41 #include <linux/sched/signal.h>
42 #include <linux/uaccess.h>
43 #include <linux/hash.h>
44 #include <linux/kern_levels.h>
45 #include <linux/kthread.h>
46 
47 #include <asm/page.h>
48 #include <asm/memtype.h>
49 #include <asm/cmpxchg.h>
50 #include <asm/io.h>
51 #include <asm/vmx.h>
52 #include <asm/kvm_page_track.h>
53 #include "trace.h"
54 
55 extern bool itlb_multihit_kvm_mitigation;
56 
57 static int __read_mostly nx_huge_pages = -1;
58 #ifdef CONFIG_PREEMPT_RT
59 /* Recovery can cause latency spikes, disable it for PREEMPT_RT.  */
60 static uint __read_mostly nx_huge_pages_recovery_ratio = 0;
61 #else
62 static uint __read_mostly nx_huge_pages_recovery_ratio = 60;
63 #endif
64 
65 static int set_nx_huge_pages(const char *val, const struct kernel_param *kp);
66 static int set_nx_huge_pages_recovery_ratio(const char *val, const struct kernel_param *kp);
67 
68 static const struct kernel_param_ops nx_huge_pages_ops = {
69 	.set = set_nx_huge_pages,
70 	.get = param_get_bool,
71 };
72 
73 static const struct kernel_param_ops nx_huge_pages_recovery_ratio_ops = {
74 	.set = set_nx_huge_pages_recovery_ratio,
75 	.get = param_get_uint,
76 };
77 
78 module_param_cb(nx_huge_pages, &nx_huge_pages_ops, &nx_huge_pages, 0644);
79 __MODULE_PARM_TYPE(nx_huge_pages, "bool");
80 module_param_cb(nx_huge_pages_recovery_ratio, &nx_huge_pages_recovery_ratio_ops,
81 		&nx_huge_pages_recovery_ratio, 0644);
82 __MODULE_PARM_TYPE(nx_huge_pages_recovery_ratio, "uint");
83 
84 static bool __read_mostly force_flush_and_sync_on_reuse;
85 module_param_named(flush_on_reuse, force_flush_and_sync_on_reuse, bool, 0644);
86 
87 /*
88  * When setting this variable to true it enables Two-Dimensional-Paging
89  * where the hardware walks 2 page tables:
90  * 1. the guest-virtual to guest-physical
91  * 2. while doing 1. it walks guest-physical to host-physical
92  * If the hardware supports that we don't need to do shadow paging.
93  */
94 bool tdp_enabled = false;
95 
96 static int max_huge_page_level __read_mostly;
97 static int max_tdp_level __read_mostly;
98 
99 enum {
100 	AUDIT_PRE_PAGE_FAULT,
101 	AUDIT_POST_PAGE_FAULT,
102 	AUDIT_PRE_PTE_WRITE,
103 	AUDIT_POST_PTE_WRITE,
104 	AUDIT_PRE_SYNC,
105 	AUDIT_POST_SYNC
106 };
107 
108 #ifdef MMU_DEBUG
109 bool dbg = 0;
110 module_param(dbg, bool, 0644);
111 #endif
112 
113 #define PTE_PREFETCH_NUM		8
114 
115 #define PT32_LEVEL_BITS 10
116 
117 #define PT32_LEVEL_SHIFT(level) \
118 		(PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
119 
120 #define PT32_LVL_OFFSET_MASK(level) \
121 	(PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
122 						* PT32_LEVEL_BITS))) - 1))
123 
124 #define PT32_INDEX(address, level)\
125 	(((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
126 
127 
128 #define PT32_BASE_ADDR_MASK PAGE_MASK
129 #define PT32_DIR_BASE_ADDR_MASK \
130 	(PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
131 #define PT32_LVL_ADDR_MASK(level) \
132 	(PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
133 					    * PT32_LEVEL_BITS))) - 1))
134 
135 #include <trace/events/kvm.h>
136 
137 /* make pte_list_desc fit well in cache line */
138 #define PTE_LIST_EXT 3
139 
140 struct pte_list_desc {
141 	u64 *sptes[PTE_LIST_EXT];
142 	struct pte_list_desc *more;
143 };
144 
145 struct kvm_shadow_walk_iterator {
146 	u64 addr;
147 	hpa_t shadow_addr;
148 	u64 *sptep;
149 	int level;
150 	unsigned index;
151 };
152 
153 #define for_each_shadow_entry_using_root(_vcpu, _root, _addr, _walker)     \
154 	for (shadow_walk_init_using_root(&(_walker), (_vcpu),              \
155 					 (_root), (_addr));                \
156 	     shadow_walk_okay(&(_walker));			           \
157 	     shadow_walk_next(&(_walker)))
158 
159 #define for_each_shadow_entry(_vcpu, _addr, _walker)            \
160 	for (shadow_walk_init(&(_walker), _vcpu, _addr);	\
161 	     shadow_walk_okay(&(_walker));			\
162 	     shadow_walk_next(&(_walker)))
163 
164 #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte)	\
165 	for (shadow_walk_init(&(_walker), _vcpu, _addr);		\
166 	     shadow_walk_okay(&(_walker)) &&				\
167 		({ spte = mmu_spte_get_lockless(_walker.sptep); 1; });	\
168 	     __shadow_walk_next(&(_walker), spte))
169 
170 static struct kmem_cache *pte_list_desc_cache;
171 struct kmem_cache *mmu_page_header_cache;
172 static struct percpu_counter kvm_total_used_mmu_pages;
173 
174 static void mmu_spte_set(u64 *sptep, u64 spte);
175 static union kvm_mmu_page_role
176 kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu);
177 
178 #define CREATE_TRACE_POINTS
179 #include "mmutrace.h"
180 
181 
182 static inline bool kvm_available_flush_tlb_with_range(void)
183 {
184 	return kvm_x86_ops.tlb_remote_flush_with_range;
185 }
186 
187 static void kvm_flush_remote_tlbs_with_range(struct kvm *kvm,
188 		struct kvm_tlb_range *range)
189 {
190 	int ret = -ENOTSUPP;
191 
192 	if (range && kvm_x86_ops.tlb_remote_flush_with_range)
193 		ret = static_call(kvm_x86_tlb_remote_flush_with_range)(kvm, range);
194 
195 	if (ret)
196 		kvm_flush_remote_tlbs(kvm);
197 }
198 
199 void kvm_flush_remote_tlbs_with_address(struct kvm *kvm,
200 		u64 start_gfn, u64 pages)
201 {
202 	struct kvm_tlb_range range;
203 
204 	range.start_gfn = start_gfn;
205 	range.pages = pages;
206 
207 	kvm_flush_remote_tlbs_with_range(kvm, &range);
208 }
209 
210 bool is_nx_huge_page_enabled(void)
211 {
212 	return READ_ONCE(nx_huge_pages);
213 }
214 
215 static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn,
216 			   unsigned int access)
217 {
218 	u64 mask = make_mmio_spte(vcpu, gfn, access);
219 
220 	trace_mark_mmio_spte(sptep, gfn, mask);
221 	mmu_spte_set(sptep, mask);
222 }
223 
224 static gfn_t get_mmio_spte_gfn(u64 spte)
225 {
226 	u64 gpa = spte & shadow_nonpresent_or_rsvd_lower_gfn_mask;
227 
228 	gpa |= (spte >> SHADOW_NONPRESENT_OR_RSVD_MASK_LEN)
229 	       & shadow_nonpresent_or_rsvd_mask;
230 
231 	return gpa >> PAGE_SHIFT;
232 }
233 
234 static unsigned get_mmio_spte_access(u64 spte)
235 {
236 	return spte & shadow_mmio_access_mask;
237 }
238 
239 static bool set_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
240 			  kvm_pfn_t pfn, unsigned int access)
241 {
242 	if (unlikely(is_noslot_pfn(pfn))) {
243 		mark_mmio_spte(vcpu, sptep, gfn, access);
244 		return true;
245 	}
246 
247 	return false;
248 }
249 
250 static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte)
251 {
252 	u64 kvm_gen, spte_gen, gen;
253 
254 	gen = kvm_vcpu_memslots(vcpu)->generation;
255 	if (unlikely(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS))
256 		return false;
257 
258 	kvm_gen = gen & MMIO_SPTE_GEN_MASK;
259 	spte_gen = get_mmio_spte_generation(spte);
260 
261 	trace_check_mmio_spte(spte, kvm_gen, spte_gen);
262 	return likely(kvm_gen == spte_gen);
263 }
264 
265 static gpa_t translate_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
266                                   struct x86_exception *exception)
267 {
268 	/* Check if guest physical address doesn't exceed guest maximum */
269 	if (kvm_vcpu_is_illegal_gpa(vcpu, gpa)) {
270 		exception->error_code |= PFERR_RSVD_MASK;
271 		return UNMAPPED_GVA;
272 	}
273 
274         return gpa;
275 }
276 
277 static int is_cpuid_PSE36(void)
278 {
279 	return 1;
280 }
281 
282 static int is_nx(struct kvm_vcpu *vcpu)
283 {
284 	return vcpu->arch.efer & EFER_NX;
285 }
286 
287 static gfn_t pse36_gfn_delta(u32 gpte)
288 {
289 	int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
290 
291 	return (gpte & PT32_DIR_PSE36_MASK) << shift;
292 }
293 
294 #ifdef CONFIG_X86_64
295 static void __set_spte(u64 *sptep, u64 spte)
296 {
297 	WRITE_ONCE(*sptep, spte);
298 }
299 
300 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
301 {
302 	WRITE_ONCE(*sptep, spte);
303 }
304 
305 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
306 {
307 	return xchg(sptep, spte);
308 }
309 
310 static u64 __get_spte_lockless(u64 *sptep)
311 {
312 	return READ_ONCE(*sptep);
313 }
314 #else
315 union split_spte {
316 	struct {
317 		u32 spte_low;
318 		u32 spte_high;
319 	};
320 	u64 spte;
321 };
322 
323 static void count_spte_clear(u64 *sptep, u64 spte)
324 {
325 	struct kvm_mmu_page *sp =  sptep_to_sp(sptep);
326 
327 	if (is_shadow_present_pte(spte))
328 		return;
329 
330 	/* Ensure the spte is completely set before we increase the count */
331 	smp_wmb();
332 	sp->clear_spte_count++;
333 }
334 
335 static void __set_spte(u64 *sptep, u64 spte)
336 {
337 	union split_spte *ssptep, sspte;
338 
339 	ssptep = (union split_spte *)sptep;
340 	sspte = (union split_spte)spte;
341 
342 	ssptep->spte_high = sspte.spte_high;
343 
344 	/*
345 	 * If we map the spte from nonpresent to present, We should store
346 	 * the high bits firstly, then set present bit, so cpu can not
347 	 * fetch this spte while we are setting the spte.
348 	 */
349 	smp_wmb();
350 
351 	WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
352 }
353 
354 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
355 {
356 	union split_spte *ssptep, sspte;
357 
358 	ssptep = (union split_spte *)sptep;
359 	sspte = (union split_spte)spte;
360 
361 	WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
362 
363 	/*
364 	 * If we map the spte from present to nonpresent, we should clear
365 	 * present bit firstly to avoid vcpu fetch the old high bits.
366 	 */
367 	smp_wmb();
368 
369 	ssptep->spte_high = sspte.spte_high;
370 	count_spte_clear(sptep, spte);
371 }
372 
373 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
374 {
375 	union split_spte *ssptep, sspte, orig;
376 
377 	ssptep = (union split_spte *)sptep;
378 	sspte = (union split_spte)spte;
379 
380 	/* xchg acts as a barrier before the setting of the high bits */
381 	orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
382 	orig.spte_high = ssptep->spte_high;
383 	ssptep->spte_high = sspte.spte_high;
384 	count_spte_clear(sptep, spte);
385 
386 	return orig.spte;
387 }
388 
389 /*
390  * The idea using the light way get the spte on x86_32 guest is from
391  * gup_get_pte (mm/gup.c).
392  *
393  * An spte tlb flush may be pending, because kvm_set_pte_rmapp
394  * coalesces them and we are running out of the MMU lock.  Therefore
395  * we need to protect against in-progress updates of the spte.
396  *
397  * Reading the spte while an update is in progress may get the old value
398  * for the high part of the spte.  The race is fine for a present->non-present
399  * change (because the high part of the spte is ignored for non-present spte),
400  * but for a present->present change we must reread the spte.
401  *
402  * All such changes are done in two steps (present->non-present and
403  * non-present->present), hence it is enough to count the number of
404  * present->non-present updates: if it changed while reading the spte,
405  * we might have hit the race.  This is done using clear_spte_count.
406  */
407 static u64 __get_spte_lockless(u64 *sptep)
408 {
409 	struct kvm_mmu_page *sp =  sptep_to_sp(sptep);
410 	union split_spte spte, *orig = (union split_spte *)sptep;
411 	int count;
412 
413 retry:
414 	count = sp->clear_spte_count;
415 	smp_rmb();
416 
417 	spte.spte_low = orig->spte_low;
418 	smp_rmb();
419 
420 	spte.spte_high = orig->spte_high;
421 	smp_rmb();
422 
423 	if (unlikely(spte.spte_low != orig->spte_low ||
424 	      count != sp->clear_spte_count))
425 		goto retry;
426 
427 	return spte.spte;
428 }
429 #endif
430 
431 static bool spte_has_volatile_bits(u64 spte)
432 {
433 	if (!is_shadow_present_pte(spte))
434 		return false;
435 
436 	/*
437 	 * Always atomically update spte if it can be updated
438 	 * out of mmu-lock, it can ensure dirty bit is not lost,
439 	 * also, it can help us to get a stable is_writable_pte()
440 	 * to ensure tlb flush is not missed.
441 	 */
442 	if (spte_can_locklessly_be_made_writable(spte) ||
443 	    is_access_track_spte(spte))
444 		return true;
445 
446 	if (spte_ad_enabled(spte)) {
447 		if ((spte & shadow_accessed_mask) == 0 ||
448 	    	    (is_writable_pte(spte) && (spte & shadow_dirty_mask) == 0))
449 			return true;
450 	}
451 
452 	return false;
453 }
454 
455 /* Rules for using mmu_spte_set:
456  * Set the sptep from nonpresent to present.
457  * Note: the sptep being assigned *must* be either not present
458  * or in a state where the hardware will not attempt to update
459  * the spte.
460  */
461 static void mmu_spte_set(u64 *sptep, u64 new_spte)
462 {
463 	WARN_ON(is_shadow_present_pte(*sptep));
464 	__set_spte(sptep, new_spte);
465 }
466 
467 /*
468  * Update the SPTE (excluding the PFN), but do not track changes in its
469  * accessed/dirty status.
470  */
471 static u64 mmu_spte_update_no_track(u64 *sptep, u64 new_spte)
472 {
473 	u64 old_spte = *sptep;
474 
475 	WARN_ON(!is_shadow_present_pte(new_spte));
476 
477 	if (!is_shadow_present_pte(old_spte)) {
478 		mmu_spte_set(sptep, new_spte);
479 		return old_spte;
480 	}
481 
482 	if (!spte_has_volatile_bits(old_spte))
483 		__update_clear_spte_fast(sptep, new_spte);
484 	else
485 		old_spte = __update_clear_spte_slow(sptep, new_spte);
486 
487 	WARN_ON(spte_to_pfn(old_spte) != spte_to_pfn(new_spte));
488 
489 	return old_spte;
490 }
491 
492 /* Rules for using mmu_spte_update:
493  * Update the state bits, it means the mapped pfn is not changed.
494  *
495  * Whenever we overwrite a writable spte with a read-only one we
496  * should flush remote TLBs. Otherwise rmap_write_protect
497  * will find a read-only spte, even though the writable spte
498  * might be cached on a CPU's TLB, the return value indicates this
499  * case.
500  *
501  * Returns true if the TLB needs to be flushed
502  */
503 static bool mmu_spte_update(u64 *sptep, u64 new_spte)
504 {
505 	bool flush = false;
506 	u64 old_spte = mmu_spte_update_no_track(sptep, new_spte);
507 
508 	if (!is_shadow_present_pte(old_spte))
509 		return false;
510 
511 	/*
512 	 * For the spte updated out of mmu-lock is safe, since
513 	 * we always atomically update it, see the comments in
514 	 * spte_has_volatile_bits().
515 	 */
516 	if (spte_can_locklessly_be_made_writable(old_spte) &&
517 	      !is_writable_pte(new_spte))
518 		flush = true;
519 
520 	/*
521 	 * Flush TLB when accessed/dirty states are changed in the page tables,
522 	 * to guarantee consistency between TLB and page tables.
523 	 */
524 
525 	if (is_accessed_spte(old_spte) && !is_accessed_spte(new_spte)) {
526 		flush = true;
527 		kvm_set_pfn_accessed(spte_to_pfn(old_spte));
528 	}
529 
530 	if (is_dirty_spte(old_spte) && !is_dirty_spte(new_spte)) {
531 		flush = true;
532 		kvm_set_pfn_dirty(spte_to_pfn(old_spte));
533 	}
534 
535 	return flush;
536 }
537 
538 /*
539  * Rules for using mmu_spte_clear_track_bits:
540  * It sets the sptep from present to nonpresent, and track the
541  * state bits, it is used to clear the last level sptep.
542  * Returns non-zero if the PTE was previously valid.
543  */
544 static int mmu_spte_clear_track_bits(u64 *sptep)
545 {
546 	kvm_pfn_t pfn;
547 	u64 old_spte = *sptep;
548 
549 	if (!spte_has_volatile_bits(old_spte))
550 		__update_clear_spte_fast(sptep, 0ull);
551 	else
552 		old_spte = __update_clear_spte_slow(sptep, 0ull);
553 
554 	if (!is_shadow_present_pte(old_spte))
555 		return 0;
556 
557 	pfn = spte_to_pfn(old_spte);
558 
559 	/*
560 	 * KVM does not hold the refcount of the page used by
561 	 * kvm mmu, before reclaiming the page, we should
562 	 * unmap it from mmu first.
563 	 */
564 	WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn)));
565 
566 	if (is_accessed_spte(old_spte))
567 		kvm_set_pfn_accessed(pfn);
568 
569 	if (is_dirty_spte(old_spte))
570 		kvm_set_pfn_dirty(pfn);
571 
572 	return 1;
573 }
574 
575 /*
576  * Rules for using mmu_spte_clear_no_track:
577  * Directly clear spte without caring the state bits of sptep,
578  * it is used to set the upper level spte.
579  */
580 static void mmu_spte_clear_no_track(u64 *sptep)
581 {
582 	__update_clear_spte_fast(sptep, 0ull);
583 }
584 
585 static u64 mmu_spte_get_lockless(u64 *sptep)
586 {
587 	return __get_spte_lockless(sptep);
588 }
589 
590 /* Restore an acc-track PTE back to a regular PTE */
591 static u64 restore_acc_track_spte(u64 spte)
592 {
593 	u64 new_spte = spte;
594 	u64 saved_bits = (spte >> SHADOW_ACC_TRACK_SAVED_BITS_SHIFT)
595 			 & SHADOW_ACC_TRACK_SAVED_BITS_MASK;
596 
597 	WARN_ON_ONCE(spte_ad_enabled(spte));
598 	WARN_ON_ONCE(!is_access_track_spte(spte));
599 
600 	new_spte &= ~shadow_acc_track_mask;
601 	new_spte &= ~(SHADOW_ACC_TRACK_SAVED_BITS_MASK <<
602 		      SHADOW_ACC_TRACK_SAVED_BITS_SHIFT);
603 	new_spte |= saved_bits;
604 
605 	return new_spte;
606 }
607 
608 /* Returns the Accessed status of the PTE and resets it at the same time. */
609 static bool mmu_spte_age(u64 *sptep)
610 {
611 	u64 spte = mmu_spte_get_lockless(sptep);
612 
613 	if (!is_accessed_spte(spte))
614 		return false;
615 
616 	if (spte_ad_enabled(spte)) {
617 		clear_bit((ffs(shadow_accessed_mask) - 1),
618 			  (unsigned long *)sptep);
619 	} else {
620 		/*
621 		 * Capture the dirty status of the page, so that it doesn't get
622 		 * lost when the SPTE is marked for access tracking.
623 		 */
624 		if (is_writable_pte(spte))
625 			kvm_set_pfn_dirty(spte_to_pfn(spte));
626 
627 		spte = mark_spte_for_access_track(spte);
628 		mmu_spte_update_no_track(sptep, spte);
629 	}
630 
631 	return true;
632 }
633 
634 static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
635 {
636 	/*
637 	 * Prevent page table teardown by making any free-er wait during
638 	 * kvm_flush_remote_tlbs() IPI to all active vcpus.
639 	 */
640 	local_irq_disable();
641 
642 	/*
643 	 * Make sure a following spte read is not reordered ahead of the write
644 	 * to vcpu->mode.
645 	 */
646 	smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES);
647 }
648 
649 static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
650 {
651 	/*
652 	 * Make sure the write to vcpu->mode is not reordered in front of
653 	 * reads to sptes.  If it does, kvm_mmu_commit_zap_page() can see us
654 	 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
655 	 */
656 	smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE);
657 	local_irq_enable();
658 }
659 
660 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu, bool maybe_indirect)
661 {
662 	int r;
663 
664 	/* 1 rmap, 1 parent PTE per level, and the prefetched rmaps. */
665 	r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
666 				       1 + PT64_ROOT_MAX_LEVEL + PTE_PREFETCH_NUM);
667 	if (r)
668 		return r;
669 	r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_shadow_page_cache,
670 				       PT64_ROOT_MAX_LEVEL);
671 	if (r)
672 		return r;
673 	if (maybe_indirect) {
674 		r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_gfn_array_cache,
675 					       PT64_ROOT_MAX_LEVEL);
676 		if (r)
677 			return r;
678 	}
679 	return kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
680 					  PT64_ROOT_MAX_LEVEL);
681 }
682 
683 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
684 {
685 	kvm_mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache);
686 	kvm_mmu_free_memory_cache(&vcpu->arch.mmu_shadow_page_cache);
687 	kvm_mmu_free_memory_cache(&vcpu->arch.mmu_gfn_array_cache);
688 	kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache);
689 }
690 
691 static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
692 {
693 	return kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
694 }
695 
696 static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
697 {
698 	kmem_cache_free(pte_list_desc_cache, pte_list_desc);
699 }
700 
701 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
702 {
703 	if (!sp->role.direct)
704 		return sp->gfns[index];
705 
706 	return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
707 }
708 
709 static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
710 {
711 	if (!sp->role.direct) {
712 		sp->gfns[index] = gfn;
713 		return;
714 	}
715 
716 	if (WARN_ON(gfn != kvm_mmu_page_get_gfn(sp, index)))
717 		pr_err_ratelimited("gfn mismatch under direct page %llx "
718 				   "(expected %llx, got %llx)\n",
719 				   sp->gfn,
720 				   kvm_mmu_page_get_gfn(sp, index), gfn);
721 }
722 
723 /*
724  * Return the pointer to the large page information for a given gfn,
725  * handling slots that are not large page aligned.
726  */
727 static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
728 					      struct kvm_memory_slot *slot,
729 					      int level)
730 {
731 	unsigned long idx;
732 
733 	idx = gfn_to_index(gfn, slot->base_gfn, level);
734 	return &slot->arch.lpage_info[level - 2][idx];
735 }
736 
737 static void update_gfn_disallow_lpage_count(struct kvm_memory_slot *slot,
738 					    gfn_t gfn, int count)
739 {
740 	struct kvm_lpage_info *linfo;
741 	int i;
742 
743 	for (i = PG_LEVEL_2M; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) {
744 		linfo = lpage_info_slot(gfn, slot, i);
745 		linfo->disallow_lpage += count;
746 		WARN_ON(linfo->disallow_lpage < 0);
747 	}
748 }
749 
750 void kvm_mmu_gfn_disallow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
751 {
752 	update_gfn_disallow_lpage_count(slot, gfn, 1);
753 }
754 
755 void kvm_mmu_gfn_allow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
756 {
757 	update_gfn_disallow_lpage_count(slot, gfn, -1);
758 }
759 
760 static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
761 {
762 	struct kvm_memslots *slots;
763 	struct kvm_memory_slot *slot;
764 	gfn_t gfn;
765 
766 	kvm->arch.indirect_shadow_pages++;
767 	gfn = sp->gfn;
768 	slots = kvm_memslots_for_spte_role(kvm, sp->role);
769 	slot = __gfn_to_memslot(slots, gfn);
770 
771 	/* the non-leaf shadow pages are keeping readonly. */
772 	if (sp->role.level > PG_LEVEL_4K)
773 		return kvm_slot_page_track_add_page(kvm, slot, gfn,
774 						    KVM_PAGE_TRACK_WRITE);
775 
776 	kvm_mmu_gfn_disallow_lpage(slot, gfn);
777 }
778 
779 void account_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp)
780 {
781 	if (sp->lpage_disallowed)
782 		return;
783 
784 	++kvm->stat.nx_lpage_splits;
785 	list_add_tail(&sp->lpage_disallowed_link,
786 		      &kvm->arch.lpage_disallowed_mmu_pages);
787 	sp->lpage_disallowed = true;
788 }
789 
790 static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
791 {
792 	struct kvm_memslots *slots;
793 	struct kvm_memory_slot *slot;
794 	gfn_t gfn;
795 
796 	kvm->arch.indirect_shadow_pages--;
797 	gfn = sp->gfn;
798 	slots = kvm_memslots_for_spte_role(kvm, sp->role);
799 	slot = __gfn_to_memslot(slots, gfn);
800 	if (sp->role.level > PG_LEVEL_4K)
801 		return kvm_slot_page_track_remove_page(kvm, slot, gfn,
802 						       KVM_PAGE_TRACK_WRITE);
803 
804 	kvm_mmu_gfn_allow_lpage(slot, gfn);
805 }
806 
807 void unaccount_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp)
808 {
809 	--kvm->stat.nx_lpage_splits;
810 	sp->lpage_disallowed = false;
811 	list_del(&sp->lpage_disallowed_link);
812 }
813 
814 static struct kvm_memory_slot *
815 gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
816 			    bool no_dirty_log)
817 {
818 	struct kvm_memory_slot *slot;
819 
820 	slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
821 	if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
822 		return NULL;
823 	if (no_dirty_log && kvm_slot_dirty_track_enabled(slot))
824 		return NULL;
825 
826 	return slot;
827 }
828 
829 /*
830  * About rmap_head encoding:
831  *
832  * If the bit zero of rmap_head->val is clear, then it points to the only spte
833  * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct
834  * pte_list_desc containing more mappings.
835  */
836 
837 /*
838  * Returns the number of pointers in the rmap chain, not counting the new one.
839  */
840 static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
841 			struct kvm_rmap_head *rmap_head)
842 {
843 	struct pte_list_desc *desc;
844 	int i, count = 0;
845 
846 	if (!rmap_head->val) {
847 		rmap_printk("%p %llx 0->1\n", spte, *spte);
848 		rmap_head->val = (unsigned long)spte;
849 	} else if (!(rmap_head->val & 1)) {
850 		rmap_printk("%p %llx 1->many\n", spte, *spte);
851 		desc = mmu_alloc_pte_list_desc(vcpu);
852 		desc->sptes[0] = (u64 *)rmap_head->val;
853 		desc->sptes[1] = spte;
854 		rmap_head->val = (unsigned long)desc | 1;
855 		++count;
856 	} else {
857 		rmap_printk("%p %llx many->many\n", spte, *spte);
858 		desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
859 		while (desc->sptes[PTE_LIST_EXT-1]) {
860 			count += PTE_LIST_EXT;
861 
862 			if (!desc->more) {
863 				desc->more = mmu_alloc_pte_list_desc(vcpu);
864 				desc = desc->more;
865 				break;
866 			}
867 			desc = desc->more;
868 		}
869 		for (i = 0; desc->sptes[i]; ++i)
870 			++count;
871 		desc->sptes[i] = spte;
872 	}
873 	return count;
874 }
875 
876 static void
877 pte_list_desc_remove_entry(struct kvm_rmap_head *rmap_head,
878 			   struct pte_list_desc *desc, int i,
879 			   struct pte_list_desc *prev_desc)
880 {
881 	int j;
882 
883 	for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
884 		;
885 	desc->sptes[i] = desc->sptes[j];
886 	desc->sptes[j] = NULL;
887 	if (j != 0)
888 		return;
889 	if (!prev_desc && !desc->more)
890 		rmap_head->val = 0;
891 	else
892 		if (prev_desc)
893 			prev_desc->more = desc->more;
894 		else
895 			rmap_head->val = (unsigned long)desc->more | 1;
896 	mmu_free_pte_list_desc(desc);
897 }
898 
899 static void __pte_list_remove(u64 *spte, struct kvm_rmap_head *rmap_head)
900 {
901 	struct pte_list_desc *desc;
902 	struct pte_list_desc *prev_desc;
903 	int i;
904 
905 	if (!rmap_head->val) {
906 		pr_err("%s: %p 0->BUG\n", __func__, spte);
907 		BUG();
908 	} else if (!(rmap_head->val & 1)) {
909 		rmap_printk("%p 1->0\n", spte);
910 		if ((u64 *)rmap_head->val != spte) {
911 			pr_err("%s:  %p 1->BUG\n", __func__, spte);
912 			BUG();
913 		}
914 		rmap_head->val = 0;
915 	} else {
916 		rmap_printk("%p many->many\n", spte);
917 		desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
918 		prev_desc = NULL;
919 		while (desc) {
920 			for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i) {
921 				if (desc->sptes[i] == spte) {
922 					pte_list_desc_remove_entry(rmap_head,
923 							desc, i, prev_desc);
924 					return;
925 				}
926 			}
927 			prev_desc = desc;
928 			desc = desc->more;
929 		}
930 		pr_err("%s: %p many->many\n", __func__, spte);
931 		BUG();
932 	}
933 }
934 
935 static void pte_list_remove(struct kvm_rmap_head *rmap_head, u64 *sptep)
936 {
937 	mmu_spte_clear_track_bits(sptep);
938 	__pte_list_remove(sptep, rmap_head);
939 }
940 
941 static struct kvm_rmap_head *__gfn_to_rmap(gfn_t gfn, int level,
942 					   struct kvm_memory_slot *slot)
943 {
944 	unsigned long idx;
945 
946 	idx = gfn_to_index(gfn, slot->base_gfn, level);
947 	return &slot->arch.rmap[level - PG_LEVEL_4K][idx];
948 }
949 
950 static struct kvm_rmap_head *gfn_to_rmap(struct kvm *kvm, gfn_t gfn,
951 					 struct kvm_mmu_page *sp)
952 {
953 	struct kvm_memslots *slots;
954 	struct kvm_memory_slot *slot;
955 
956 	slots = kvm_memslots_for_spte_role(kvm, sp->role);
957 	slot = __gfn_to_memslot(slots, gfn);
958 	return __gfn_to_rmap(gfn, sp->role.level, slot);
959 }
960 
961 static bool rmap_can_add(struct kvm_vcpu *vcpu)
962 {
963 	struct kvm_mmu_memory_cache *mc;
964 
965 	mc = &vcpu->arch.mmu_pte_list_desc_cache;
966 	return kvm_mmu_memory_cache_nr_free_objects(mc);
967 }
968 
969 static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
970 {
971 	struct kvm_mmu_page *sp;
972 	struct kvm_rmap_head *rmap_head;
973 
974 	sp = sptep_to_sp(spte);
975 	kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
976 	rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
977 	return pte_list_add(vcpu, spte, rmap_head);
978 }
979 
980 static void rmap_remove(struct kvm *kvm, u64 *spte)
981 {
982 	struct kvm_mmu_page *sp;
983 	gfn_t gfn;
984 	struct kvm_rmap_head *rmap_head;
985 
986 	sp = sptep_to_sp(spte);
987 	gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
988 	rmap_head = gfn_to_rmap(kvm, gfn, sp);
989 	__pte_list_remove(spte, rmap_head);
990 }
991 
992 /*
993  * Used by the following functions to iterate through the sptes linked by a
994  * rmap.  All fields are private and not assumed to be used outside.
995  */
996 struct rmap_iterator {
997 	/* private fields */
998 	struct pte_list_desc *desc;	/* holds the sptep if not NULL */
999 	int pos;			/* index of the sptep */
1000 };
1001 
1002 /*
1003  * Iteration must be started by this function.  This should also be used after
1004  * removing/dropping sptes from the rmap link because in such cases the
1005  * information in the iterator may not be valid.
1006  *
1007  * Returns sptep if found, NULL otherwise.
1008  */
1009 static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head,
1010 			   struct rmap_iterator *iter)
1011 {
1012 	u64 *sptep;
1013 
1014 	if (!rmap_head->val)
1015 		return NULL;
1016 
1017 	if (!(rmap_head->val & 1)) {
1018 		iter->desc = NULL;
1019 		sptep = (u64 *)rmap_head->val;
1020 		goto out;
1021 	}
1022 
1023 	iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1024 	iter->pos = 0;
1025 	sptep = iter->desc->sptes[iter->pos];
1026 out:
1027 	BUG_ON(!is_shadow_present_pte(*sptep));
1028 	return sptep;
1029 }
1030 
1031 /*
1032  * Must be used with a valid iterator: e.g. after rmap_get_first().
1033  *
1034  * Returns sptep if found, NULL otherwise.
1035  */
1036 static u64 *rmap_get_next(struct rmap_iterator *iter)
1037 {
1038 	u64 *sptep;
1039 
1040 	if (iter->desc) {
1041 		if (iter->pos < PTE_LIST_EXT - 1) {
1042 			++iter->pos;
1043 			sptep = iter->desc->sptes[iter->pos];
1044 			if (sptep)
1045 				goto out;
1046 		}
1047 
1048 		iter->desc = iter->desc->more;
1049 
1050 		if (iter->desc) {
1051 			iter->pos = 0;
1052 			/* desc->sptes[0] cannot be NULL */
1053 			sptep = iter->desc->sptes[iter->pos];
1054 			goto out;
1055 		}
1056 	}
1057 
1058 	return NULL;
1059 out:
1060 	BUG_ON(!is_shadow_present_pte(*sptep));
1061 	return sptep;
1062 }
1063 
1064 #define for_each_rmap_spte(_rmap_head_, _iter_, _spte_)			\
1065 	for (_spte_ = rmap_get_first(_rmap_head_, _iter_);		\
1066 	     _spte_; _spte_ = rmap_get_next(_iter_))
1067 
1068 static void drop_spte(struct kvm *kvm, u64 *sptep)
1069 {
1070 	if (mmu_spte_clear_track_bits(sptep))
1071 		rmap_remove(kvm, sptep);
1072 }
1073 
1074 
1075 static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
1076 {
1077 	if (is_large_pte(*sptep)) {
1078 		WARN_ON(sptep_to_sp(sptep)->role.level == PG_LEVEL_4K);
1079 		drop_spte(kvm, sptep);
1080 		--kvm->stat.lpages;
1081 		return true;
1082 	}
1083 
1084 	return false;
1085 }
1086 
1087 static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1088 {
1089 	if (__drop_large_spte(vcpu->kvm, sptep)) {
1090 		struct kvm_mmu_page *sp = sptep_to_sp(sptep);
1091 
1092 		kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn,
1093 			KVM_PAGES_PER_HPAGE(sp->role.level));
1094 	}
1095 }
1096 
1097 /*
1098  * Write-protect on the specified @sptep, @pt_protect indicates whether
1099  * spte write-protection is caused by protecting shadow page table.
1100  *
1101  * Note: write protection is difference between dirty logging and spte
1102  * protection:
1103  * - for dirty logging, the spte can be set to writable at anytime if
1104  *   its dirty bitmap is properly set.
1105  * - for spte protection, the spte can be writable only after unsync-ing
1106  *   shadow page.
1107  *
1108  * Return true if tlb need be flushed.
1109  */
1110 static bool spte_write_protect(u64 *sptep, bool pt_protect)
1111 {
1112 	u64 spte = *sptep;
1113 
1114 	if (!is_writable_pte(spte) &&
1115 	      !(pt_protect && spte_can_locklessly_be_made_writable(spte)))
1116 		return false;
1117 
1118 	rmap_printk("spte %p %llx\n", sptep, *sptep);
1119 
1120 	if (pt_protect)
1121 		spte &= ~SPTE_MMU_WRITEABLE;
1122 	spte = spte & ~PT_WRITABLE_MASK;
1123 
1124 	return mmu_spte_update(sptep, spte);
1125 }
1126 
1127 static bool __rmap_write_protect(struct kvm *kvm,
1128 				 struct kvm_rmap_head *rmap_head,
1129 				 bool pt_protect)
1130 {
1131 	u64 *sptep;
1132 	struct rmap_iterator iter;
1133 	bool flush = false;
1134 
1135 	for_each_rmap_spte(rmap_head, &iter, sptep)
1136 		flush |= spte_write_protect(sptep, pt_protect);
1137 
1138 	return flush;
1139 }
1140 
1141 static bool spte_clear_dirty(u64 *sptep)
1142 {
1143 	u64 spte = *sptep;
1144 
1145 	rmap_printk("spte %p %llx\n", sptep, *sptep);
1146 
1147 	MMU_WARN_ON(!spte_ad_enabled(spte));
1148 	spte &= ~shadow_dirty_mask;
1149 	return mmu_spte_update(sptep, spte);
1150 }
1151 
1152 static bool spte_wrprot_for_clear_dirty(u64 *sptep)
1153 {
1154 	bool was_writable = test_and_clear_bit(PT_WRITABLE_SHIFT,
1155 					       (unsigned long *)sptep);
1156 	if (was_writable && !spte_ad_enabled(*sptep))
1157 		kvm_set_pfn_dirty(spte_to_pfn(*sptep));
1158 
1159 	return was_writable;
1160 }
1161 
1162 /*
1163  * Gets the GFN ready for another round of dirty logging by clearing the
1164  *	- D bit on ad-enabled SPTEs, and
1165  *	- W bit on ad-disabled SPTEs.
1166  * Returns true iff any D or W bits were cleared.
1167  */
1168 static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1169 			       struct kvm_memory_slot *slot)
1170 {
1171 	u64 *sptep;
1172 	struct rmap_iterator iter;
1173 	bool flush = false;
1174 
1175 	for_each_rmap_spte(rmap_head, &iter, sptep)
1176 		if (spte_ad_need_write_protect(*sptep))
1177 			flush |= spte_wrprot_for_clear_dirty(sptep);
1178 		else
1179 			flush |= spte_clear_dirty(sptep);
1180 
1181 	return flush;
1182 }
1183 
1184 /**
1185  * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1186  * @kvm: kvm instance
1187  * @slot: slot to protect
1188  * @gfn_offset: start of the BITS_PER_LONG pages we care about
1189  * @mask: indicates which pages we should protect
1190  *
1191  * Used when we do not need to care about huge page mappings: e.g. during dirty
1192  * logging we do not have any such mappings.
1193  */
1194 static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1195 				     struct kvm_memory_slot *slot,
1196 				     gfn_t gfn_offset, unsigned long mask)
1197 {
1198 	struct kvm_rmap_head *rmap_head;
1199 
1200 	if (is_tdp_mmu_enabled(kvm))
1201 		kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot,
1202 				slot->base_gfn + gfn_offset, mask, true);
1203 	while (mask) {
1204 		rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1205 					  PG_LEVEL_4K, slot);
1206 		__rmap_write_protect(kvm, rmap_head, false);
1207 
1208 		/* clear the first set bit */
1209 		mask &= mask - 1;
1210 	}
1211 }
1212 
1213 /**
1214  * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages, or write
1215  * protect the page if the D-bit isn't supported.
1216  * @kvm: kvm instance
1217  * @slot: slot to clear D-bit
1218  * @gfn_offset: start of the BITS_PER_LONG pages we care about
1219  * @mask: indicates which pages we should clear D-bit
1220  *
1221  * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap.
1222  */
1223 static void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
1224 					 struct kvm_memory_slot *slot,
1225 					 gfn_t gfn_offset, unsigned long mask)
1226 {
1227 	struct kvm_rmap_head *rmap_head;
1228 
1229 	if (is_tdp_mmu_enabled(kvm))
1230 		kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot,
1231 				slot->base_gfn + gfn_offset, mask, false);
1232 	while (mask) {
1233 		rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1234 					  PG_LEVEL_4K, slot);
1235 		__rmap_clear_dirty(kvm, rmap_head, slot);
1236 
1237 		/* clear the first set bit */
1238 		mask &= mask - 1;
1239 	}
1240 }
1241 
1242 /**
1243  * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
1244  * PT level pages.
1245  *
1246  * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
1247  * enable dirty logging for them.
1248  *
1249  * Used when we do not need to care about huge page mappings: e.g. during dirty
1250  * logging we do not have any such mappings.
1251  */
1252 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1253 				struct kvm_memory_slot *slot,
1254 				gfn_t gfn_offset, unsigned long mask)
1255 {
1256 	if (kvm_x86_ops.cpu_dirty_log_size)
1257 		kvm_mmu_clear_dirty_pt_masked(kvm, slot, gfn_offset, mask);
1258 	else
1259 		kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
1260 }
1261 
1262 int kvm_cpu_dirty_log_size(void)
1263 {
1264 	return kvm_x86_ops.cpu_dirty_log_size;
1265 }
1266 
1267 bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
1268 				    struct kvm_memory_slot *slot, u64 gfn)
1269 {
1270 	struct kvm_rmap_head *rmap_head;
1271 	int i;
1272 	bool write_protected = false;
1273 
1274 	for (i = PG_LEVEL_4K; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) {
1275 		rmap_head = __gfn_to_rmap(gfn, i, slot);
1276 		write_protected |= __rmap_write_protect(kvm, rmap_head, true);
1277 	}
1278 
1279 	if (is_tdp_mmu_enabled(kvm))
1280 		write_protected |=
1281 			kvm_tdp_mmu_write_protect_gfn(kvm, slot, gfn);
1282 
1283 	return write_protected;
1284 }
1285 
1286 static bool rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn)
1287 {
1288 	struct kvm_memory_slot *slot;
1289 
1290 	slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1291 	return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn);
1292 }
1293 
1294 static bool kvm_zap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1295 			  struct kvm_memory_slot *slot)
1296 {
1297 	u64 *sptep;
1298 	struct rmap_iterator iter;
1299 	bool flush = false;
1300 
1301 	while ((sptep = rmap_get_first(rmap_head, &iter))) {
1302 		rmap_printk("spte %p %llx.\n", sptep, *sptep);
1303 
1304 		pte_list_remove(rmap_head, sptep);
1305 		flush = true;
1306 	}
1307 
1308 	return flush;
1309 }
1310 
1311 static int kvm_unmap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1312 			   struct kvm_memory_slot *slot, gfn_t gfn, int level,
1313 			   unsigned long data)
1314 {
1315 	return kvm_zap_rmapp(kvm, rmap_head, slot);
1316 }
1317 
1318 static int kvm_set_pte_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1319 			     struct kvm_memory_slot *slot, gfn_t gfn, int level,
1320 			     unsigned long data)
1321 {
1322 	u64 *sptep;
1323 	struct rmap_iterator iter;
1324 	int need_flush = 0;
1325 	u64 new_spte;
1326 	pte_t *ptep = (pte_t *)data;
1327 	kvm_pfn_t new_pfn;
1328 
1329 	WARN_ON(pte_huge(*ptep));
1330 	new_pfn = pte_pfn(*ptep);
1331 
1332 restart:
1333 	for_each_rmap_spte(rmap_head, &iter, sptep) {
1334 		rmap_printk("spte %p %llx gfn %llx (%d)\n",
1335 			    sptep, *sptep, gfn, level);
1336 
1337 		need_flush = 1;
1338 
1339 		if (pte_write(*ptep)) {
1340 			pte_list_remove(rmap_head, sptep);
1341 			goto restart;
1342 		} else {
1343 			new_spte = kvm_mmu_changed_pte_notifier_make_spte(
1344 					*sptep, new_pfn);
1345 
1346 			mmu_spte_clear_track_bits(sptep);
1347 			mmu_spte_set(sptep, new_spte);
1348 		}
1349 	}
1350 
1351 	if (need_flush && kvm_available_flush_tlb_with_range()) {
1352 		kvm_flush_remote_tlbs_with_address(kvm, gfn, 1);
1353 		return 0;
1354 	}
1355 
1356 	return need_flush;
1357 }
1358 
1359 struct slot_rmap_walk_iterator {
1360 	/* input fields. */
1361 	struct kvm_memory_slot *slot;
1362 	gfn_t start_gfn;
1363 	gfn_t end_gfn;
1364 	int start_level;
1365 	int end_level;
1366 
1367 	/* output fields. */
1368 	gfn_t gfn;
1369 	struct kvm_rmap_head *rmap;
1370 	int level;
1371 
1372 	/* private field. */
1373 	struct kvm_rmap_head *end_rmap;
1374 };
1375 
1376 static void
1377 rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level)
1378 {
1379 	iterator->level = level;
1380 	iterator->gfn = iterator->start_gfn;
1381 	iterator->rmap = __gfn_to_rmap(iterator->gfn, level, iterator->slot);
1382 	iterator->end_rmap = __gfn_to_rmap(iterator->end_gfn, level,
1383 					   iterator->slot);
1384 }
1385 
1386 static void
1387 slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator,
1388 		    struct kvm_memory_slot *slot, int start_level,
1389 		    int end_level, gfn_t start_gfn, gfn_t end_gfn)
1390 {
1391 	iterator->slot = slot;
1392 	iterator->start_level = start_level;
1393 	iterator->end_level = end_level;
1394 	iterator->start_gfn = start_gfn;
1395 	iterator->end_gfn = end_gfn;
1396 
1397 	rmap_walk_init_level(iterator, iterator->start_level);
1398 }
1399 
1400 static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator)
1401 {
1402 	return !!iterator->rmap;
1403 }
1404 
1405 static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
1406 {
1407 	if (++iterator->rmap <= iterator->end_rmap) {
1408 		iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level));
1409 		return;
1410 	}
1411 
1412 	if (++iterator->level > iterator->end_level) {
1413 		iterator->rmap = NULL;
1414 		return;
1415 	}
1416 
1417 	rmap_walk_init_level(iterator, iterator->level);
1418 }
1419 
1420 #define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_,	\
1421 	   _start_gfn, _end_gfn, _iter_)				\
1422 	for (slot_rmap_walk_init(_iter_, _slot_, _start_level_,		\
1423 				 _end_level_, _start_gfn, _end_gfn);	\
1424 	     slot_rmap_walk_okay(_iter_);				\
1425 	     slot_rmap_walk_next(_iter_))
1426 
1427 static __always_inline int
1428 kvm_handle_hva_range(struct kvm *kvm,
1429 		     unsigned long start,
1430 		     unsigned long end,
1431 		     unsigned long data,
1432 		     int (*handler)(struct kvm *kvm,
1433 				    struct kvm_rmap_head *rmap_head,
1434 				    struct kvm_memory_slot *slot,
1435 				    gfn_t gfn,
1436 				    int level,
1437 				    unsigned long data))
1438 {
1439 	struct kvm_memslots *slots;
1440 	struct kvm_memory_slot *memslot;
1441 	struct slot_rmap_walk_iterator iterator;
1442 	int ret = 0;
1443 	int i;
1444 
1445 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
1446 		slots = __kvm_memslots(kvm, i);
1447 		kvm_for_each_memslot(memslot, slots) {
1448 			unsigned long hva_start, hva_end;
1449 			gfn_t gfn_start, gfn_end;
1450 
1451 			hva_start = max(start, memslot->userspace_addr);
1452 			hva_end = min(end, memslot->userspace_addr +
1453 				      (memslot->npages << PAGE_SHIFT));
1454 			if (hva_start >= hva_end)
1455 				continue;
1456 			/*
1457 			 * {gfn(page) | page intersects with [hva_start, hva_end)} =
1458 			 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
1459 			 */
1460 			gfn_start = hva_to_gfn_memslot(hva_start, memslot);
1461 			gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
1462 
1463 			for_each_slot_rmap_range(memslot, PG_LEVEL_4K,
1464 						 KVM_MAX_HUGEPAGE_LEVEL,
1465 						 gfn_start, gfn_end - 1,
1466 						 &iterator)
1467 				ret |= handler(kvm, iterator.rmap, memslot,
1468 					       iterator.gfn, iterator.level, data);
1469 		}
1470 	}
1471 
1472 	return ret;
1473 }
1474 
1475 static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
1476 			  unsigned long data,
1477 			  int (*handler)(struct kvm *kvm,
1478 					 struct kvm_rmap_head *rmap_head,
1479 					 struct kvm_memory_slot *slot,
1480 					 gfn_t gfn, int level,
1481 					 unsigned long data))
1482 {
1483 	return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
1484 }
1485 
1486 int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end,
1487 			unsigned flags)
1488 {
1489 	int r;
1490 
1491 	r = kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
1492 
1493 	if (is_tdp_mmu_enabled(kvm))
1494 		r |= kvm_tdp_mmu_zap_hva_range(kvm, start, end);
1495 
1496 	return r;
1497 }
1498 
1499 int kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1500 {
1501 	int r;
1502 
1503 	r = kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
1504 
1505 	if (is_tdp_mmu_enabled(kvm))
1506 		r |= kvm_tdp_mmu_set_spte_hva(kvm, hva, &pte);
1507 
1508 	return r;
1509 }
1510 
1511 static int kvm_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1512 			 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1513 			 unsigned long data)
1514 {
1515 	u64 *sptep;
1516 	struct rmap_iterator iter;
1517 	int young = 0;
1518 
1519 	for_each_rmap_spte(rmap_head, &iter, sptep)
1520 		young |= mmu_spte_age(sptep);
1521 
1522 	trace_kvm_age_page(gfn, level, slot, young);
1523 	return young;
1524 }
1525 
1526 static int kvm_test_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1527 			      struct kvm_memory_slot *slot, gfn_t gfn,
1528 			      int level, unsigned long data)
1529 {
1530 	u64 *sptep;
1531 	struct rmap_iterator iter;
1532 
1533 	for_each_rmap_spte(rmap_head, &iter, sptep)
1534 		if (is_accessed_spte(*sptep))
1535 			return 1;
1536 	return 0;
1537 }
1538 
1539 #define RMAP_RECYCLE_THRESHOLD 1000
1540 
1541 static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1542 {
1543 	struct kvm_rmap_head *rmap_head;
1544 	struct kvm_mmu_page *sp;
1545 
1546 	sp = sptep_to_sp(spte);
1547 
1548 	rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
1549 
1550 	kvm_unmap_rmapp(vcpu->kvm, rmap_head, NULL, gfn, sp->role.level, 0);
1551 	kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn,
1552 			KVM_PAGES_PER_HPAGE(sp->role.level));
1553 }
1554 
1555 int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
1556 {
1557 	int young = false;
1558 
1559 	young = kvm_handle_hva_range(kvm, start, end, 0, kvm_age_rmapp);
1560 	if (is_tdp_mmu_enabled(kvm))
1561 		young |= kvm_tdp_mmu_age_hva_range(kvm, start, end);
1562 
1563 	return young;
1564 }
1565 
1566 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1567 {
1568 	int young = false;
1569 
1570 	young = kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
1571 	if (is_tdp_mmu_enabled(kvm))
1572 		young |= kvm_tdp_mmu_test_age_hva(kvm, hva);
1573 
1574 	return young;
1575 }
1576 
1577 #ifdef MMU_DEBUG
1578 static int is_empty_shadow_page(u64 *spt)
1579 {
1580 	u64 *pos;
1581 	u64 *end;
1582 
1583 	for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
1584 		if (is_shadow_present_pte(*pos)) {
1585 			printk(KERN_ERR "%s: %p %llx\n", __func__,
1586 			       pos, *pos);
1587 			return 0;
1588 		}
1589 	return 1;
1590 }
1591 #endif
1592 
1593 /*
1594  * This value is the sum of all of the kvm instances's
1595  * kvm->arch.n_used_mmu_pages values.  We need a global,
1596  * aggregate version in order to make the slab shrinker
1597  * faster
1598  */
1599 static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, unsigned long nr)
1600 {
1601 	kvm->arch.n_used_mmu_pages += nr;
1602 	percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1603 }
1604 
1605 static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
1606 {
1607 	MMU_WARN_ON(!is_empty_shadow_page(sp->spt));
1608 	hlist_del(&sp->hash_link);
1609 	list_del(&sp->link);
1610 	free_page((unsigned long)sp->spt);
1611 	if (!sp->role.direct)
1612 		free_page((unsigned long)sp->gfns);
1613 	kmem_cache_free(mmu_page_header_cache, sp);
1614 }
1615 
1616 static unsigned kvm_page_table_hashfn(gfn_t gfn)
1617 {
1618 	return hash_64(gfn, KVM_MMU_HASH_SHIFT);
1619 }
1620 
1621 static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
1622 				    struct kvm_mmu_page *sp, u64 *parent_pte)
1623 {
1624 	if (!parent_pte)
1625 		return;
1626 
1627 	pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
1628 }
1629 
1630 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
1631 				       u64 *parent_pte)
1632 {
1633 	__pte_list_remove(parent_pte, &sp->parent_ptes);
1634 }
1635 
1636 static void drop_parent_pte(struct kvm_mmu_page *sp,
1637 			    u64 *parent_pte)
1638 {
1639 	mmu_page_remove_parent_pte(sp, parent_pte);
1640 	mmu_spte_clear_no_track(parent_pte);
1641 }
1642 
1643 static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu, int direct)
1644 {
1645 	struct kvm_mmu_page *sp;
1646 
1647 	sp = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
1648 	sp->spt = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_shadow_page_cache);
1649 	if (!direct)
1650 		sp->gfns = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_gfn_array_cache);
1651 	set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
1652 
1653 	/*
1654 	 * active_mmu_pages must be a FIFO list, as kvm_zap_obsolete_pages()
1655 	 * depends on valid pages being added to the head of the list.  See
1656 	 * comments in kvm_zap_obsolete_pages().
1657 	 */
1658 	sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
1659 	list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
1660 	kvm_mod_used_mmu_pages(vcpu->kvm, +1);
1661 	return sp;
1662 }
1663 
1664 static void mark_unsync(u64 *spte);
1665 static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
1666 {
1667 	u64 *sptep;
1668 	struct rmap_iterator iter;
1669 
1670 	for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) {
1671 		mark_unsync(sptep);
1672 	}
1673 }
1674 
1675 static void mark_unsync(u64 *spte)
1676 {
1677 	struct kvm_mmu_page *sp;
1678 	unsigned int index;
1679 
1680 	sp = sptep_to_sp(spte);
1681 	index = spte - sp->spt;
1682 	if (__test_and_set_bit(index, sp->unsync_child_bitmap))
1683 		return;
1684 	if (sp->unsync_children++)
1685 		return;
1686 	kvm_mmu_mark_parents_unsync(sp);
1687 }
1688 
1689 static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
1690 			       struct kvm_mmu_page *sp)
1691 {
1692 	return 0;
1693 }
1694 
1695 #define KVM_PAGE_ARRAY_NR 16
1696 
1697 struct kvm_mmu_pages {
1698 	struct mmu_page_and_offset {
1699 		struct kvm_mmu_page *sp;
1700 		unsigned int idx;
1701 	} page[KVM_PAGE_ARRAY_NR];
1702 	unsigned int nr;
1703 };
1704 
1705 static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
1706 			 int idx)
1707 {
1708 	int i;
1709 
1710 	if (sp->unsync)
1711 		for (i=0; i < pvec->nr; i++)
1712 			if (pvec->page[i].sp == sp)
1713 				return 0;
1714 
1715 	pvec->page[pvec->nr].sp = sp;
1716 	pvec->page[pvec->nr].idx = idx;
1717 	pvec->nr++;
1718 	return (pvec->nr == KVM_PAGE_ARRAY_NR);
1719 }
1720 
1721 static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx)
1722 {
1723 	--sp->unsync_children;
1724 	WARN_ON((int)sp->unsync_children < 0);
1725 	__clear_bit(idx, sp->unsync_child_bitmap);
1726 }
1727 
1728 static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
1729 			   struct kvm_mmu_pages *pvec)
1730 {
1731 	int i, ret, nr_unsync_leaf = 0;
1732 
1733 	for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
1734 		struct kvm_mmu_page *child;
1735 		u64 ent = sp->spt[i];
1736 
1737 		if (!is_shadow_present_pte(ent) || is_large_pte(ent)) {
1738 			clear_unsync_child_bit(sp, i);
1739 			continue;
1740 		}
1741 
1742 		child = to_shadow_page(ent & PT64_BASE_ADDR_MASK);
1743 
1744 		if (child->unsync_children) {
1745 			if (mmu_pages_add(pvec, child, i))
1746 				return -ENOSPC;
1747 
1748 			ret = __mmu_unsync_walk(child, pvec);
1749 			if (!ret) {
1750 				clear_unsync_child_bit(sp, i);
1751 				continue;
1752 			} else if (ret > 0) {
1753 				nr_unsync_leaf += ret;
1754 			} else
1755 				return ret;
1756 		} else if (child->unsync) {
1757 			nr_unsync_leaf++;
1758 			if (mmu_pages_add(pvec, child, i))
1759 				return -ENOSPC;
1760 		} else
1761 			clear_unsync_child_bit(sp, i);
1762 	}
1763 
1764 	return nr_unsync_leaf;
1765 }
1766 
1767 #define INVALID_INDEX (-1)
1768 
1769 static int mmu_unsync_walk(struct kvm_mmu_page *sp,
1770 			   struct kvm_mmu_pages *pvec)
1771 {
1772 	pvec->nr = 0;
1773 	if (!sp->unsync_children)
1774 		return 0;
1775 
1776 	mmu_pages_add(pvec, sp, INVALID_INDEX);
1777 	return __mmu_unsync_walk(sp, pvec);
1778 }
1779 
1780 static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1781 {
1782 	WARN_ON(!sp->unsync);
1783 	trace_kvm_mmu_sync_page(sp);
1784 	sp->unsync = 0;
1785 	--kvm->stat.mmu_unsync;
1786 }
1787 
1788 static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1789 				     struct list_head *invalid_list);
1790 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1791 				    struct list_head *invalid_list);
1792 
1793 #define for_each_valid_sp(_kvm, _sp, _list)				\
1794 	hlist_for_each_entry(_sp, _list, hash_link)			\
1795 		if (is_obsolete_sp((_kvm), (_sp))) {			\
1796 		} else
1797 
1798 #define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn)			\
1799 	for_each_valid_sp(_kvm, _sp,					\
1800 	  &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)])	\
1801 		if ((_sp)->gfn != (_gfn) || (_sp)->role.direct) {} else
1802 
1803 static inline bool is_ept_sp(struct kvm_mmu_page *sp)
1804 {
1805 	return sp->role.cr0_wp && sp->role.smap_andnot_wp;
1806 }
1807 
1808 /* @sp->gfn should be write-protected at the call site */
1809 static bool __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1810 			    struct list_head *invalid_list)
1811 {
1812 	if ((!is_ept_sp(sp) && sp->role.gpte_is_8_bytes != !!is_pae(vcpu)) ||
1813 	    vcpu->arch.mmu->sync_page(vcpu, sp) == 0) {
1814 		kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1815 		return false;
1816 	}
1817 
1818 	return true;
1819 }
1820 
1821 static bool kvm_mmu_remote_flush_or_zap(struct kvm *kvm,
1822 					struct list_head *invalid_list,
1823 					bool remote_flush)
1824 {
1825 	if (!remote_flush && list_empty(invalid_list))
1826 		return false;
1827 
1828 	if (!list_empty(invalid_list))
1829 		kvm_mmu_commit_zap_page(kvm, invalid_list);
1830 	else
1831 		kvm_flush_remote_tlbs(kvm);
1832 	return true;
1833 }
1834 
1835 static void kvm_mmu_flush_or_zap(struct kvm_vcpu *vcpu,
1836 				 struct list_head *invalid_list,
1837 				 bool remote_flush, bool local_flush)
1838 {
1839 	if (kvm_mmu_remote_flush_or_zap(vcpu->kvm, invalid_list, remote_flush))
1840 		return;
1841 
1842 	if (local_flush)
1843 		kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1844 }
1845 
1846 #ifdef CONFIG_KVM_MMU_AUDIT
1847 #include "mmu_audit.c"
1848 #else
1849 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
1850 static void mmu_audit_disable(void) { }
1851 #endif
1852 
1853 static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
1854 {
1855 	return sp->role.invalid ||
1856 	       unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
1857 }
1858 
1859 static bool kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1860 			 struct list_head *invalid_list)
1861 {
1862 	kvm_unlink_unsync_page(vcpu->kvm, sp);
1863 	return __kvm_sync_page(vcpu, sp, invalid_list);
1864 }
1865 
1866 /* @gfn should be write-protected at the call site */
1867 static bool kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn,
1868 			   struct list_head *invalid_list)
1869 {
1870 	struct kvm_mmu_page *s;
1871 	bool ret = false;
1872 
1873 	for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
1874 		if (!s->unsync)
1875 			continue;
1876 
1877 		WARN_ON(s->role.level != PG_LEVEL_4K);
1878 		ret |= kvm_sync_page(vcpu, s, invalid_list);
1879 	}
1880 
1881 	return ret;
1882 }
1883 
1884 struct mmu_page_path {
1885 	struct kvm_mmu_page *parent[PT64_ROOT_MAX_LEVEL];
1886 	unsigned int idx[PT64_ROOT_MAX_LEVEL];
1887 };
1888 
1889 #define for_each_sp(pvec, sp, parents, i)			\
1890 		for (i = mmu_pages_first(&pvec, &parents);	\
1891 			i < pvec.nr && ({ sp = pvec.page[i].sp; 1;});	\
1892 			i = mmu_pages_next(&pvec, &parents, i))
1893 
1894 static int mmu_pages_next(struct kvm_mmu_pages *pvec,
1895 			  struct mmu_page_path *parents,
1896 			  int i)
1897 {
1898 	int n;
1899 
1900 	for (n = i+1; n < pvec->nr; n++) {
1901 		struct kvm_mmu_page *sp = pvec->page[n].sp;
1902 		unsigned idx = pvec->page[n].idx;
1903 		int level = sp->role.level;
1904 
1905 		parents->idx[level-1] = idx;
1906 		if (level == PG_LEVEL_4K)
1907 			break;
1908 
1909 		parents->parent[level-2] = sp;
1910 	}
1911 
1912 	return n;
1913 }
1914 
1915 static int mmu_pages_first(struct kvm_mmu_pages *pvec,
1916 			   struct mmu_page_path *parents)
1917 {
1918 	struct kvm_mmu_page *sp;
1919 	int level;
1920 
1921 	if (pvec->nr == 0)
1922 		return 0;
1923 
1924 	WARN_ON(pvec->page[0].idx != INVALID_INDEX);
1925 
1926 	sp = pvec->page[0].sp;
1927 	level = sp->role.level;
1928 	WARN_ON(level == PG_LEVEL_4K);
1929 
1930 	parents->parent[level-2] = sp;
1931 
1932 	/* Also set up a sentinel.  Further entries in pvec are all
1933 	 * children of sp, so this element is never overwritten.
1934 	 */
1935 	parents->parent[level-1] = NULL;
1936 	return mmu_pages_next(pvec, parents, 0);
1937 }
1938 
1939 static void mmu_pages_clear_parents(struct mmu_page_path *parents)
1940 {
1941 	struct kvm_mmu_page *sp;
1942 	unsigned int level = 0;
1943 
1944 	do {
1945 		unsigned int idx = parents->idx[level];
1946 		sp = parents->parent[level];
1947 		if (!sp)
1948 			return;
1949 
1950 		WARN_ON(idx == INVALID_INDEX);
1951 		clear_unsync_child_bit(sp, idx);
1952 		level++;
1953 	} while (!sp->unsync_children);
1954 }
1955 
1956 static void mmu_sync_children(struct kvm_vcpu *vcpu,
1957 			      struct kvm_mmu_page *parent)
1958 {
1959 	int i;
1960 	struct kvm_mmu_page *sp;
1961 	struct mmu_page_path parents;
1962 	struct kvm_mmu_pages pages;
1963 	LIST_HEAD(invalid_list);
1964 	bool flush = false;
1965 
1966 	while (mmu_unsync_walk(parent, &pages)) {
1967 		bool protected = false;
1968 
1969 		for_each_sp(pages, sp, parents, i)
1970 			protected |= rmap_write_protect(vcpu, sp->gfn);
1971 
1972 		if (protected) {
1973 			kvm_flush_remote_tlbs(vcpu->kvm);
1974 			flush = false;
1975 		}
1976 
1977 		for_each_sp(pages, sp, parents, i) {
1978 			flush |= kvm_sync_page(vcpu, sp, &invalid_list);
1979 			mmu_pages_clear_parents(&parents);
1980 		}
1981 		if (need_resched() || rwlock_needbreak(&vcpu->kvm->mmu_lock)) {
1982 			kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
1983 			cond_resched_rwlock_write(&vcpu->kvm->mmu_lock);
1984 			flush = false;
1985 		}
1986 	}
1987 
1988 	kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
1989 }
1990 
1991 static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
1992 {
1993 	atomic_set(&sp->write_flooding_count,  0);
1994 }
1995 
1996 static void clear_sp_write_flooding_count(u64 *spte)
1997 {
1998 	__clear_sp_write_flooding_count(sptep_to_sp(spte));
1999 }
2000 
2001 static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
2002 					     gfn_t gfn,
2003 					     gva_t gaddr,
2004 					     unsigned level,
2005 					     int direct,
2006 					     unsigned int access)
2007 {
2008 	bool direct_mmu = vcpu->arch.mmu->direct_map;
2009 	union kvm_mmu_page_role role;
2010 	struct hlist_head *sp_list;
2011 	unsigned quadrant;
2012 	struct kvm_mmu_page *sp;
2013 	bool need_sync = false;
2014 	bool flush = false;
2015 	int collisions = 0;
2016 	LIST_HEAD(invalid_list);
2017 
2018 	role = vcpu->arch.mmu->mmu_role.base;
2019 	role.level = level;
2020 	role.direct = direct;
2021 	if (role.direct)
2022 		role.gpte_is_8_bytes = true;
2023 	role.access = access;
2024 	if (!direct_mmu && vcpu->arch.mmu->root_level <= PT32_ROOT_LEVEL) {
2025 		quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
2026 		quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
2027 		role.quadrant = quadrant;
2028 	}
2029 
2030 	sp_list = &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)];
2031 	for_each_valid_sp(vcpu->kvm, sp, sp_list) {
2032 		if (sp->gfn != gfn) {
2033 			collisions++;
2034 			continue;
2035 		}
2036 
2037 		if (!need_sync && sp->unsync)
2038 			need_sync = true;
2039 
2040 		if (sp->role.word != role.word)
2041 			continue;
2042 
2043 		if (direct_mmu)
2044 			goto trace_get_page;
2045 
2046 		if (sp->unsync) {
2047 			/* The page is good, but __kvm_sync_page might still end
2048 			 * up zapping it.  If so, break in order to rebuild it.
2049 			 */
2050 			if (!__kvm_sync_page(vcpu, sp, &invalid_list))
2051 				break;
2052 
2053 			WARN_ON(!list_empty(&invalid_list));
2054 			kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
2055 		}
2056 
2057 		if (sp->unsync_children)
2058 			kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
2059 
2060 		__clear_sp_write_flooding_count(sp);
2061 
2062 trace_get_page:
2063 		trace_kvm_mmu_get_page(sp, false);
2064 		goto out;
2065 	}
2066 
2067 	++vcpu->kvm->stat.mmu_cache_miss;
2068 
2069 	sp = kvm_mmu_alloc_page(vcpu, direct);
2070 
2071 	sp->gfn = gfn;
2072 	sp->role = role;
2073 	hlist_add_head(&sp->hash_link, sp_list);
2074 	if (!direct) {
2075 		/*
2076 		 * we should do write protection before syncing pages
2077 		 * otherwise the content of the synced shadow page may
2078 		 * be inconsistent with guest page table.
2079 		 */
2080 		account_shadowed(vcpu->kvm, sp);
2081 		if (level == PG_LEVEL_4K && rmap_write_protect(vcpu, gfn))
2082 			kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn, 1);
2083 
2084 		if (level > PG_LEVEL_4K && need_sync)
2085 			flush |= kvm_sync_pages(vcpu, gfn, &invalid_list);
2086 	}
2087 	trace_kvm_mmu_get_page(sp, true);
2088 
2089 	kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2090 out:
2091 	if (collisions > vcpu->kvm->stat.max_mmu_page_hash_collisions)
2092 		vcpu->kvm->stat.max_mmu_page_hash_collisions = collisions;
2093 	return sp;
2094 }
2095 
2096 static void shadow_walk_init_using_root(struct kvm_shadow_walk_iterator *iterator,
2097 					struct kvm_vcpu *vcpu, hpa_t root,
2098 					u64 addr)
2099 {
2100 	iterator->addr = addr;
2101 	iterator->shadow_addr = root;
2102 	iterator->level = vcpu->arch.mmu->shadow_root_level;
2103 
2104 	if (iterator->level == PT64_ROOT_4LEVEL &&
2105 	    vcpu->arch.mmu->root_level < PT64_ROOT_4LEVEL &&
2106 	    !vcpu->arch.mmu->direct_map)
2107 		--iterator->level;
2108 
2109 	if (iterator->level == PT32E_ROOT_LEVEL) {
2110 		/*
2111 		 * prev_root is currently only used for 64-bit hosts. So only
2112 		 * the active root_hpa is valid here.
2113 		 */
2114 		BUG_ON(root != vcpu->arch.mmu->root_hpa);
2115 
2116 		iterator->shadow_addr
2117 			= vcpu->arch.mmu->pae_root[(addr >> 30) & 3];
2118 		iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
2119 		--iterator->level;
2120 		if (!iterator->shadow_addr)
2121 			iterator->level = 0;
2122 	}
2123 }
2124 
2125 static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
2126 			     struct kvm_vcpu *vcpu, u64 addr)
2127 {
2128 	shadow_walk_init_using_root(iterator, vcpu, vcpu->arch.mmu->root_hpa,
2129 				    addr);
2130 }
2131 
2132 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
2133 {
2134 	if (iterator->level < PG_LEVEL_4K)
2135 		return false;
2136 
2137 	iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
2138 	iterator->sptep	= ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
2139 	return true;
2140 }
2141 
2142 static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
2143 			       u64 spte)
2144 {
2145 	if (is_last_spte(spte, iterator->level)) {
2146 		iterator->level = 0;
2147 		return;
2148 	}
2149 
2150 	iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2151 	--iterator->level;
2152 }
2153 
2154 static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
2155 {
2156 	__shadow_walk_next(iterator, *iterator->sptep);
2157 }
2158 
2159 static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep,
2160 			     struct kvm_mmu_page *sp)
2161 {
2162 	u64 spte;
2163 
2164 	BUILD_BUG_ON(VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);
2165 
2166 	spte = make_nonleaf_spte(sp->spt, sp_ad_disabled(sp));
2167 
2168 	mmu_spte_set(sptep, spte);
2169 
2170 	mmu_page_add_parent_pte(vcpu, sp, sptep);
2171 
2172 	if (sp->unsync_children || sp->unsync)
2173 		mark_unsync(sptep);
2174 }
2175 
2176 static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2177 				   unsigned direct_access)
2178 {
2179 	if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
2180 		struct kvm_mmu_page *child;
2181 
2182 		/*
2183 		 * For the direct sp, if the guest pte's dirty bit
2184 		 * changed form clean to dirty, it will corrupt the
2185 		 * sp's access: allow writable in the read-only sp,
2186 		 * so we should update the spte at this point to get
2187 		 * a new sp with the correct access.
2188 		 */
2189 		child = to_shadow_page(*sptep & PT64_BASE_ADDR_MASK);
2190 		if (child->role.access == direct_access)
2191 			return;
2192 
2193 		drop_parent_pte(child, sptep);
2194 		kvm_flush_remote_tlbs_with_address(vcpu->kvm, child->gfn, 1);
2195 	}
2196 }
2197 
2198 /* Returns the number of zapped non-leaf child shadow pages. */
2199 static int mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
2200 			    u64 *spte, struct list_head *invalid_list)
2201 {
2202 	u64 pte;
2203 	struct kvm_mmu_page *child;
2204 
2205 	pte = *spte;
2206 	if (is_shadow_present_pte(pte)) {
2207 		if (is_last_spte(pte, sp->role.level)) {
2208 			drop_spte(kvm, spte);
2209 			if (is_large_pte(pte))
2210 				--kvm->stat.lpages;
2211 		} else {
2212 			child = to_shadow_page(pte & PT64_BASE_ADDR_MASK);
2213 			drop_parent_pte(child, spte);
2214 
2215 			/*
2216 			 * Recursively zap nested TDP SPs, parentless SPs are
2217 			 * unlikely to be used again in the near future.  This
2218 			 * avoids retaining a large number of stale nested SPs.
2219 			 */
2220 			if (tdp_enabled && invalid_list &&
2221 			    child->role.guest_mode && !child->parent_ptes.val)
2222 				return kvm_mmu_prepare_zap_page(kvm, child,
2223 								invalid_list);
2224 		}
2225 	} else if (is_mmio_spte(pte)) {
2226 		mmu_spte_clear_no_track(spte);
2227 	}
2228 	return 0;
2229 }
2230 
2231 static int kvm_mmu_page_unlink_children(struct kvm *kvm,
2232 					struct kvm_mmu_page *sp,
2233 					struct list_head *invalid_list)
2234 {
2235 	int zapped = 0;
2236 	unsigned i;
2237 
2238 	for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2239 		zapped += mmu_page_zap_pte(kvm, sp, sp->spt + i, invalid_list);
2240 
2241 	return zapped;
2242 }
2243 
2244 static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
2245 {
2246 	u64 *sptep;
2247 	struct rmap_iterator iter;
2248 
2249 	while ((sptep = rmap_get_first(&sp->parent_ptes, &iter)))
2250 		drop_parent_pte(sp, sptep);
2251 }
2252 
2253 static int mmu_zap_unsync_children(struct kvm *kvm,
2254 				   struct kvm_mmu_page *parent,
2255 				   struct list_head *invalid_list)
2256 {
2257 	int i, zapped = 0;
2258 	struct mmu_page_path parents;
2259 	struct kvm_mmu_pages pages;
2260 
2261 	if (parent->role.level == PG_LEVEL_4K)
2262 		return 0;
2263 
2264 	while (mmu_unsync_walk(parent, &pages)) {
2265 		struct kvm_mmu_page *sp;
2266 
2267 		for_each_sp(pages, sp, parents, i) {
2268 			kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2269 			mmu_pages_clear_parents(&parents);
2270 			zapped++;
2271 		}
2272 	}
2273 
2274 	return zapped;
2275 }
2276 
2277 static bool __kvm_mmu_prepare_zap_page(struct kvm *kvm,
2278 				       struct kvm_mmu_page *sp,
2279 				       struct list_head *invalid_list,
2280 				       int *nr_zapped)
2281 {
2282 	bool list_unstable;
2283 
2284 	trace_kvm_mmu_prepare_zap_page(sp);
2285 	++kvm->stat.mmu_shadow_zapped;
2286 	*nr_zapped = mmu_zap_unsync_children(kvm, sp, invalid_list);
2287 	*nr_zapped += kvm_mmu_page_unlink_children(kvm, sp, invalid_list);
2288 	kvm_mmu_unlink_parents(kvm, sp);
2289 
2290 	/* Zapping children means active_mmu_pages has become unstable. */
2291 	list_unstable = *nr_zapped;
2292 
2293 	if (!sp->role.invalid && !sp->role.direct)
2294 		unaccount_shadowed(kvm, sp);
2295 
2296 	if (sp->unsync)
2297 		kvm_unlink_unsync_page(kvm, sp);
2298 	if (!sp->root_count) {
2299 		/* Count self */
2300 		(*nr_zapped)++;
2301 
2302 		/*
2303 		 * Already invalid pages (previously active roots) are not on
2304 		 * the active page list.  See list_del() in the "else" case of
2305 		 * !sp->root_count.
2306 		 */
2307 		if (sp->role.invalid)
2308 			list_add(&sp->link, invalid_list);
2309 		else
2310 			list_move(&sp->link, invalid_list);
2311 		kvm_mod_used_mmu_pages(kvm, -1);
2312 	} else {
2313 		/*
2314 		 * Remove the active root from the active page list, the root
2315 		 * will be explicitly freed when the root_count hits zero.
2316 		 */
2317 		list_del(&sp->link);
2318 
2319 		/*
2320 		 * Obsolete pages cannot be used on any vCPUs, see the comment
2321 		 * in kvm_mmu_zap_all_fast().  Note, is_obsolete_sp() also
2322 		 * treats invalid shadow pages as being obsolete.
2323 		 */
2324 		if (!is_obsolete_sp(kvm, sp))
2325 			kvm_reload_remote_mmus(kvm);
2326 	}
2327 
2328 	if (sp->lpage_disallowed)
2329 		unaccount_huge_nx_page(kvm, sp);
2330 
2331 	sp->role.invalid = 1;
2332 	return list_unstable;
2333 }
2334 
2335 static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2336 				     struct list_head *invalid_list)
2337 {
2338 	int nr_zapped;
2339 
2340 	__kvm_mmu_prepare_zap_page(kvm, sp, invalid_list, &nr_zapped);
2341 	return nr_zapped;
2342 }
2343 
2344 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2345 				    struct list_head *invalid_list)
2346 {
2347 	struct kvm_mmu_page *sp, *nsp;
2348 
2349 	if (list_empty(invalid_list))
2350 		return;
2351 
2352 	/*
2353 	 * We need to make sure everyone sees our modifications to
2354 	 * the page tables and see changes to vcpu->mode here. The barrier
2355 	 * in the kvm_flush_remote_tlbs() achieves this. This pairs
2356 	 * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end.
2357 	 *
2358 	 * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit
2359 	 * guest mode and/or lockless shadow page table walks.
2360 	 */
2361 	kvm_flush_remote_tlbs(kvm);
2362 
2363 	list_for_each_entry_safe(sp, nsp, invalid_list, link) {
2364 		WARN_ON(!sp->role.invalid || sp->root_count);
2365 		kvm_mmu_free_page(sp);
2366 	}
2367 }
2368 
2369 static unsigned long kvm_mmu_zap_oldest_mmu_pages(struct kvm *kvm,
2370 						  unsigned long nr_to_zap)
2371 {
2372 	unsigned long total_zapped = 0;
2373 	struct kvm_mmu_page *sp, *tmp;
2374 	LIST_HEAD(invalid_list);
2375 	bool unstable;
2376 	int nr_zapped;
2377 
2378 	if (list_empty(&kvm->arch.active_mmu_pages))
2379 		return 0;
2380 
2381 restart:
2382 	list_for_each_entry_safe_reverse(sp, tmp, &kvm->arch.active_mmu_pages, link) {
2383 		/*
2384 		 * Don't zap active root pages, the page itself can't be freed
2385 		 * and zapping it will just force vCPUs to realloc and reload.
2386 		 */
2387 		if (sp->root_count)
2388 			continue;
2389 
2390 		unstable = __kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list,
2391 						      &nr_zapped);
2392 		total_zapped += nr_zapped;
2393 		if (total_zapped >= nr_to_zap)
2394 			break;
2395 
2396 		if (unstable)
2397 			goto restart;
2398 	}
2399 
2400 	kvm_mmu_commit_zap_page(kvm, &invalid_list);
2401 
2402 	kvm->stat.mmu_recycled += total_zapped;
2403 	return total_zapped;
2404 }
2405 
2406 static inline unsigned long kvm_mmu_available_pages(struct kvm *kvm)
2407 {
2408 	if (kvm->arch.n_max_mmu_pages > kvm->arch.n_used_mmu_pages)
2409 		return kvm->arch.n_max_mmu_pages -
2410 			kvm->arch.n_used_mmu_pages;
2411 
2412 	return 0;
2413 }
2414 
2415 static int make_mmu_pages_available(struct kvm_vcpu *vcpu)
2416 {
2417 	unsigned long avail = kvm_mmu_available_pages(vcpu->kvm);
2418 
2419 	if (likely(avail >= KVM_MIN_FREE_MMU_PAGES))
2420 		return 0;
2421 
2422 	kvm_mmu_zap_oldest_mmu_pages(vcpu->kvm, KVM_REFILL_PAGES - avail);
2423 
2424 	if (!kvm_mmu_available_pages(vcpu->kvm))
2425 		return -ENOSPC;
2426 	return 0;
2427 }
2428 
2429 /*
2430  * Changing the number of mmu pages allocated to the vm
2431  * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2432  */
2433 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long goal_nr_mmu_pages)
2434 {
2435 	write_lock(&kvm->mmu_lock);
2436 
2437 	if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2438 		kvm_mmu_zap_oldest_mmu_pages(kvm, kvm->arch.n_used_mmu_pages -
2439 						  goal_nr_mmu_pages);
2440 
2441 		goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2442 	}
2443 
2444 	kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2445 
2446 	write_unlock(&kvm->mmu_lock);
2447 }
2448 
2449 int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2450 {
2451 	struct kvm_mmu_page *sp;
2452 	LIST_HEAD(invalid_list);
2453 	int r;
2454 
2455 	pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
2456 	r = 0;
2457 	write_lock(&kvm->mmu_lock);
2458 	for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
2459 		pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
2460 			 sp->role.word);
2461 		r = 1;
2462 		kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2463 	}
2464 	kvm_mmu_commit_zap_page(kvm, &invalid_list);
2465 	write_unlock(&kvm->mmu_lock);
2466 
2467 	return r;
2468 }
2469 
2470 static int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
2471 {
2472 	gpa_t gpa;
2473 	int r;
2474 
2475 	if (vcpu->arch.mmu->direct_map)
2476 		return 0;
2477 
2478 	gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
2479 
2480 	r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
2481 
2482 	return r;
2483 }
2484 
2485 static void kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2486 {
2487 	trace_kvm_mmu_unsync_page(sp);
2488 	++vcpu->kvm->stat.mmu_unsync;
2489 	sp->unsync = 1;
2490 
2491 	kvm_mmu_mark_parents_unsync(sp);
2492 }
2493 
2494 bool mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
2495 			    bool can_unsync)
2496 {
2497 	struct kvm_mmu_page *sp;
2498 
2499 	if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
2500 		return true;
2501 
2502 	for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
2503 		if (!can_unsync)
2504 			return true;
2505 
2506 		if (sp->unsync)
2507 			continue;
2508 
2509 		WARN_ON(sp->role.level != PG_LEVEL_4K);
2510 		kvm_unsync_page(vcpu, sp);
2511 	}
2512 
2513 	/*
2514 	 * We need to ensure that the marking of unsync pages is visible
2515 	 * before the SPTE is updated to allow writes because
2516 	 * kvm_mmu_sync_roots() checks the unsync flags without holding
2517 	 * the MMU lock and so can race with this. If the SPTE was updated
2518 	 * before the page had been marked as unsync-ed, something like the
2519 	 * following could happen:
2520 	 *
2521 	 * CPU 1                    CPU 2
2522 	 * ---------------------------------------------------------------------
2523 	 * 1.2 Host updates SPTE
2524 	 *     to be writable
2525 	 *                      2.1 Guest writes a GPTE for GVA X.
2526 	 *                          (GPTE being in the guest page table shadowed
2527 	 *                           by the SP from CPU 1.)
2528 	 *                          This reads SPTE during the page table walk.
2529 	 *                          Since SPTE.W is read as 1, there is no
2530 	 *                          fault.
2531 	 *
2532 	 *                      2.2 Guest issues TLB flush.
2533 	 *                          That causes a VM Exit.
2534 	 *
2535 	 *                      2.3 kvm_mmu_sync_pages() reads sp->unsync.
2536 	 *                          Since it is false, so it just returns.
2537 	 *
2538 	 *                      2.4 Guest accesses GVA X.
2539 	 *                          Since the mapping in the SP was not updated,
2540 	 *                          so the old mapping for GVA X incorrectly
2541 	 *                          gets used.
2542 	 * 1.1 Host marks SP
2543 	 *     as unsync
2544 	 *     (sp->unsync = true)
2545 	 *
2546 	 * The write barrier below ensures that 1.1 happens before 1.2 and thus
2547 	 * the situation in 2.4 does not arise. The implicit barrier in 2.2
2548 	 * pairs with this write barrier.
2549 	 */
2550 	smp_wmb();
2551 
2552 	return false;
2553 }
2554 
2555 static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2556 		    unsigned int pte_access, int level,
2557 		    gfn_t gfn, kvm_pfn_t pfn, bool speculative,
2558 		    bool can_unsync, bool host_writable)
2559 {
2560 	u64 spte;
2561 	struct kvm_mmu_page *sp;
2562 	int ret;
2563 
2564 	if (set_mmio_spte(vcpu, sptep, gfn, pfn, pte_access))
2565 		return 0;
2566 
2567 	sp = sptep_to_sp(sptep);
2568 
2569 	ret = make_spte(vcpu, pte_access, level, gfn, pfn, *sptep, speculative,
2570 			can_unsync, host_writable, sp_ad_disabled(sp), &spte);
2571 
2572 	if (spte & PT_WRITABLE_MASK)
2573 		kvm_vcpu_mark_page_dirty(vcpu, gfn);
2574 
2575 	if (*sptep == spte)
2576 		ret |= SET_SPTE_SPURIOUS;
2577 	else if (mmu_spte_update(sptep, spte))
2578 		ret |= SET_SPTE_NEED_REMOTE_TLB_FLUSH;
2579 	return ret;
2580 }
2581 
2582 static int mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2583 			unsigned int pte_access, bool write_fault, int level,
2584 			gfn_t gfn, kvm_pfn_t pfn, bool speculative,
2585 			bool host_writable)
2586 {
2587 	int was_rmapped = 0;
2588 	int rmap_count;
2589 	int set_spte_ret;
2590 	int ret = RET_PF_FIXED;
2591 	bool flush = false;
2592 
2593 	pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
2594 		 *sptep, write_fault, gfn);
2595 
2596 	if (is_shadow_present_pte(*sptep)) {
2597 		/*
2598 		 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2599 		 * the parent of the now unreachable PTE.
2600 		 */
2601 		if (level > PG_LEVEL_4K && !is_large_pte(*sptep)) {
2602 			struct kvm_mmu_page *child;
2603 			u64 pte = *sptep;
2604 
2605 			child = to_shadow_page(pte & PT64_BASE_ADDR_MASK);
2606 			drop_parent_pte(child, sptep);
2607 			flush = true;
2608 		} else if (pfn != spte_to_pfn(*sptep)) {
2609 			pgprintk("hfn old %llx new %llx\n",
2610 				 spte_to_pfn(*sptep), pfn);
2611 			drop_spte(vcpu->kvm, sptep);
2612 			flush = true;
2613 		} else
2614 			was_rmapped = 1;
2615 	}
2616 
2617 	set_spte_ret = set_spte(vcpu, sptep, pte_access, level, gfn, pfn,
2618 				speculative, true, host_writable);
2619 	if (set_spte_ret & SET_SPTE_WRITE_PROTECTED_PT) {
2620 		if (write_fault)
2621 			ret = RET_PF_EMULATE;
2622 		kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
2623 	}
2624 
2625 	if (set_spte_ret & SET_SPTE_NEED_REMOTE_TLB_FLUSH || flush)
2626 		kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn,
2627 				KVM_PAGES_PER_HPAGE(level));
2628 
2629 	if (unlikely(is_mmio_spte(*sptep)))
2630 		ret = RET_PF_EMULATE;
2631 
2632 	/*
2633 	 * The fault is fully spurious if and only if the new SPTE and old SPTE
2634 	 * are identical, and emulation is not required.
2635 	 */
2636 	if ((set_spte_ret & SET_SPTE_SPURIOUS) && ret == RET_PF_FIXED) {
2637 		WARN_ON_ONCE(!was_rmapped);
2638 		return RET_PF_SPURIOUS;
2639 	}
2640 
2641 	pgprintk("%s: setting spte %llx\n", __func__, *sptep);
2642 	trace_kvm_mmu_set_spte(level, gfn, sptep);
2643 	if (!was_rmapped && is_large_pte(*sptep))
2644 		++vcpu->kvm->stat.lpages;
2645 
2646 	if (is_shadow_present_pte(*sptep)) {
2647 		if (!was_rmapped) {
2648 			rmap_count = rmap_add(vcpu, sptep, gfn);
2649 			if (rmap_count > RMAP_RECYCLE_THRESHOLD)
2650 				rmap_recycle(vcpu, sptep, gfn);
2651 		}
2652 	}
2653 
2654 	return ret;
2655 }
2656 
2657 static kvm_pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
2658 				     bool no_dirty_log)
2659 {
2660 	struct kvm_memory_slot *slot;
2661 
2662 	slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
2663 	if (!slot)
2664 		return KVM_PFN_ERR_FAULT;
2665 
2666 	return gfn_to_pfn_memslot_atomic(slot, gfn);
2667 }
2668 
2669 static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2670 				    struct kvm_mmu_page *sp,
2671 				    u64 *start, u64 *end)
2672 {
2673 	struct page *pages[PTE_PREFETCH_NUM];
2674 	struct kvm_memory_slot *slot;
2675 	unsigned int access = sp->role.access;
2676 	int i, ret;
2677 	gfn_t gfn;
2678 
2679 	gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
2680 	slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK);
2681 	if (!slot)
2682 		return -1;
2683 
2684 	ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start);
2685 	if (ret <= 0)
2686 		return -1;
2687 
2688 	for (i = 0; i < ret; i++, gfn++, start++) {
2689 		mmu_set_spte(vcpu, start, access, false, sp->role.level, gfn,
2690 			     page_to_pfn(pages[i]), true, true);
2691 		put_page(pages[i]);
2692 	}
2693 
2694 	return 0;
2695 }
2696 
2697 static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
2698 				  struct kvm_mmu_page *sp, u64 *sptep)
2699 {
2700 	u64 *spte, *start = NULL;
2701 	int i;
2702 
2703 	WARN_ON(!sp->role.direct);
2704 
2705 	i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
2706 	spte = sp->spt + i;
2707 
2708 	for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
2709 		if (is_shadow_present_pte(*spte) || spte == sptep) {
2710 			if (!start)
2711 				continue;
2712 			if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2713 				break;
2714 			start = NULL;
2715 		} else if (!start)
2716 			start = spte;
2717 	}
2718 }
2719 
2720 static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
2721 {
2722 	struct kvm_mmu_page *sp;
2723 
2724 	sp = sptep_to_sp(sptep);
2725 
2726 	/*
2727 	 * Without accessed bits, there's no way to distinguish between
2728 	 * actually accessed translations and prefetched, so disable pte
2729 	 * prefetch if accessed bits aren't available.
2730 	 */
2731 	if (sp_ad_disabled(sp))
2732 		return;
2733 
2734 	if (sp->role.level > PG_LEVEL_4K)
2735 		return;
2736 
2737 	/*
2738 	 * If addresses are being invalidated, skip prefetching to avoid
2739 	 * accidentally prefetching those addresses.
2740 	 */
2741 	if (unlikely(vcpu->kvm->mmu_notifier_count))
2742 		return;
2743 
2744 	__direct_pte_prefetch(vcpu, sp, sptep);
2745 }
2746 
2747 static int host_pfn_mapping_level(struct kvm *kvm, gfn_t gfn, kvm_pfn_t pfn,
2748 				  struct kvm_memory_slot *slot)
2749 {
2750 	unsigned long hva;
2751 	pte_t *pte;
2752 	int level;
2753 
2754 	if (!PageCompound(pfn_to_page(pfn)) && !kvm_is_zone_device_pfn(pfn))
2755 		return PG_LEVEL_4K;
2756 
2757 	/*
2758 	 * Note, using the already-retrieved memslot and __gfn_to_hva_memslot()
2759 	 * is not solely for performance, it's also necessary to avoid the
2760 	 * "writable" check in __gfn_to_hva_many(), which will always fail on
2761 	 * read-only memslots due to gfn_to_hva() assuming writes.  Earlier
2762 	 * page fault steps have already verified the guest isn't writing a
2763 	 * read-only memslot.
2764 	 */
2765 	hva = __gfn_to_hva_memslot(slot, gfn);
2766 
2767 	pte = lookup_address_in_mm(kvm->mm, hva, &level);
2768 	if (unlikely(!pte))
2769 		return PG_LEVEL_4K;
2770 
2771 	return level;
2772 }
2773 
2774 int kvm_mmu_max_mapping_level(struct kvm *kvm, struct kvm_memory_slot *slot,
2775 			      gfn_t gfn, kvm_pfn_t pfn, int max_level)
2776 {
2777 	struct kvm_lpage_info *linfo;
2778 
2779 	max_level = min(max_level, max_huge_page_level);
2780 	for ( ; max_level > PG_LEVEL_4K; max_level--) {
2781 		linfo = lpage_info_slot(gfn, slot, max_level);
2782 		if (!linfo->disallow_lpage)
2783 			break;
2784 	}
2785 
2786 	if (max_level == PG_LEVEL_4K)
2787 		return PG_LEVEL_4K;
2788 
2789 	return host_pfn_mapping_level(kvm, gfn, pfn, slot);
2790 }
2791 
2792 int kvm_mmu_hugepage_adjust(struct kvm_vcpu *vcpu, gfn_t gfn,
2793 			    int max_level, kvm_pfn_t *pfnp,
2794 			    bool huge_page_disallowed, int *req_level)
2795 {
2796 	struct kvm_memory_slot *slot;
2797 	kvm_pfn_t pfn = *pfnp;
2798 	kvm_pfn_t mask;
2799 	int level;
2800 
2801 	*req_level = PG_LEVEL_4K;
2802 
2803 	if (unlikely(max_level == PG_LEVEL_4K))
2804 		return PG_LEVEL_4K;
2805 
2806 	if (is_error_noslot_pfn(pfn) || kvm_is_reserved_pfn(pfn))
2807 		return PG_LEVEL_4K;
2808 
2809 	slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, true);
2810 	if (!slot)
2811 		return PG_LEVEL_4K;
2812 
2813 	level = kvm_mmu_max_mapping_level(vcpu->kvm, slot, gfn, pfn, max_level);
2814 	if (level == PG_LEVEL_4K)
2815 		return level;
2816 
2817 	*req_level = level = min(level, max_level);
2818 
2819 	/*
2820 	 * Enforce the iTLB multihit workaround after capturing the requested
2821 	 * level, which will be used to do precise, accurate accounting.
2822 	 */
2823 	if (huge_page_disallowed)
2824 		return PG_LEVEL_4K;
2825 
2826 	/*
2827 	 * mmu_notifier_retry() was successful and mmu_lock is held, so
2828 	 * the pmd can't be split from under us.
2829 	 */
2830 	mask = KVM_PAGES_PER_HPAGE(level) - 1;
2831 	VM_BUG_ON((gfn & mask) != (pfn & mask));
2832 	*pfnp = pfn & ~mask;
2833 
2834 	return level;
2835 }
2836 
2837 void disallowed_hugepage_adjust(u64 spte, gfn_t gfn, int cur_level,
2838 				kvm_pfn_t *pfnp, int *goal_levelp)
2839 {
2840 	int level = *goal_levelp;
2841 
2842 	if (cur_level == level && level > PG_LEVEL_4K &&
2843 	    is_shadow_present_pte(spte) &&
2844 	    !is_large_pte(spte)) {
2845 		/*
2846 		 * A small SPTE exists for this pfn, but FNAME(fetch)
2847 		 * and __direct_map would like to create a large PTE
2848 		 * instead: just force them to go down another level,
2849 		 * patching back for them into pfn the next 9 bits of
2850 		 * the address.
2851 		 */
2852 		u64 page_mask = KVM_PAGES_PER_HPAGE(level) -
2853 				KVM_PAGES_PER_HPAGE(level - 1);
2854 		*pfnp |= gfn & page_mask;
2855 		(*goal_levelp)--;
2856 	}
2857 }
2858 
2859 static int __direct_map(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
2860 			int map_writable, int max_level, kvm_pfn_t pfn,
2861 			bool prefault, bool is_tdp)
2862 {
2863 	bool nx_huge_page_workaround_enabled = is_nx_huge_page_enabled();
2864 	bool write = error_code & PFERR_WRITE_MASK;
2865 	bool exec = error_code & PFERR_FETCH_MASK;
2866 	bool huge_page_disallowed = exec && nx_huge_page_workaround_enabled;
2867 	struct kvm_shadow_walk_iterator it;
2868 	struct kvm_mmu_page *sp;
2869 	int level, req_level, ret;
2870 	gfn_t gfn = gpa >> PAGE_SHIFT;
2871 	gfn_t base_gfn = gfn;
2872 
2873 	if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa)))
2874 		return RET_PF_RETRY;
2875 
2876 	level = kvm_mmu_hugepage_adjust(vcpu, gfn, max_level, &pfn,
2877 					huge_page_disallowed, &req_level);
2878 
2879 	trace_kvm_mmu_spte_requested(gpa, level, pfn);
2880 	for_each_shadow_entry(vcpu, gpa, it) {
2881 		/*
2882 		 * We cannot overwrite existing page tables with an NX
2883 		 * large page, as the leaf could be executable.
2884 		 */
2885 		if (nx_huge_page_workaround_enabled)
2886 			disallowed_hugepage_adjust(*it.sptep, gfn, it.level,
2887 						   &pfn, &level);
2888 
2889 		base_gfn = gfn & ~(KVM_PAGES_PER_HPAGE(it.level) - 1);
2890 		if (it.level == level)
2891 			break;
2892 
2893 		drop_large_spte(vcpu, it.sptep);
2894 		if (!is_shadow_present_pte(*it.sptep)) {
2895 			sp = kvm_mmu_get_page(vcpu, base_gfn, it.addr,
2896 					      it.level - 1, true, ACC_ALL);
2897 
2898 			link_shadow_page(vcpu, it.sptep, sp);
2899 			if (is_tdp && huge_page_disallowed &&
2900 			    req_level >= it.level)
2901 				account_huge_nx_page(vcpu->kvm, sp);
2902 		}
2903 	}
2904 
2905 	ret = mmu_set_spte(vcpu, it.sptep, ACC_ALL,
2906 			   write, level, base_gfn, pfn, prefault,
2907 			   map_writable);
2908 	if (ret == RET_PF_SPURIOUS)
2909 		return ret;
2910 
2911 	direct_pte_prefetch(vcpu, it.sptep);
2912 	++vcpu->stat.pf_fixed;
2913 	return ret;
2914 }
2915 
2916 static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
2917 {
2918 	send_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, PAGE_SHIFT, tsk);
2919 }
2920 
2921 static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, kvm_pfn_t pfn)
2922 {
2923 	/*
2924 	 * Do not cache the mmio info caused by writing the readonly gfn
2925 	 * into the spte otherwise read access on readonly gfn also can
2926 	 * caused mmio page fault and treat it as mmio access.
2927 	 */
2928 	if (pfn == KVM_PFN_ERR_RO_FAULT)
2929 		return RET_PF_EMULATE;
2930 
2931 	if (pfn == KVM_PFN_ERR_HWPOISON) {
2932 		kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current);
2933 		return RET_PF_RETRY;
2934 	}
2935 
2936 	return -EFAULT;
2937 }
2938 
2939 static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
2940 				kvm_pfn_t pfn, unsigned int access,
2941 				int *ret_val)
2942 {
2943 	/* The pfn is invalid, report the error! */
2944 	if (unlikely(is_error_pfn(pfn))) {
2945 		*ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
2946 		return true;
2947 	}
2948 
2949 	if (unlikely(is_noslot_pfn(pfn)))
2950 		vcpu_cache_mmio_info(vcpu, gva, gfn,
2951 				     access & shadow_mmio_access_mask);
2952 
2953 	return false;
2954 }
2955 
2956 static bool page_fault_can_be_fast(u32 error_code)
2957 {
2958 	/*
2959 	 * Do not fix the mmio spte with invalid generation number which
2960 	 * need to be updated by slow page fault path.
2961 	 */
2962 	if (unlikely(error_code & PFERR_RSVD_MASK))
2963 		return false;
2964 
2965 	/* See if the page fault is due to an NX violation */
2966 	if (unlikely(((error_code & (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))
2967 		      == (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))))
2968 		return false;
2969 
2970 	/*
2971 	 * #PF can be fast if:
2972 	 * 1. The shadow page table entry is not present, which could mean that
2973 	 *    the fault is potentially caused by access tracking (if enabled).
2974 	 * 2. The shadow page table entry is present and the fault
2975 	 *    is caused by write-protect, that means we just need change the W
2976 	 *    bit of the spte which can be done out of mmu-lock.
2977 	 *
2978 	 * However, if access tracking is disabled we know that a non-present
2979 	 * page must be a genuine page fault where we have to create a new SPTE.
2980 	 * So, if access tracking is disabled, we return true only for write
2981 	 * accesses to a present page.
2982 	 */
2983 
2984 	return shadow_acc_track_mask != 0 ||
2985 	       ((error_code & (PFERR_WRITE_MASK | PFERR_PRESENT_MASK))
2986 		== (PFERR_WRITE_MASK | PFERR_PRESENT_MASK));
2987 }
2988 
2989 /*
2990  * Returns true if the SPTE was fixed successfully. Otherwise,
2991  * someone else modified the SPTE from its original value.
2992  */
2993 static bool
2994 fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
2995 			u64 *sptep, u64 old_spte, u64 new_spte)
2996 {
2997 	gfn_t gfn;
2998 
2999 	WARN_ON(!sp->role.direct);
3000 
3001 	/*
3002 	 * Theoretically we could also set dirty bit (and flush TLB) here in
3003 	 * order to eliminate unnecessary PML logging. See comments in
3004 	 * set_spte. But fast_page_fault is very unlikely to happen with PML
3005 	 * enabled, so we do not do this. This might result in the same GPA
3006 	 * to be logged in PML buffer again when the write really happens, and
3007 	 * eventually to be called by mark_page_dirty twice. But it's also no
3008 	 * harm. This also avoids the TLB flush needed after setting dirty bit
3009 	 * so non-PML cases won't be impacted.
3010 	 *
3011 	 * Compare with set_spte where instead shadow_dirty_mask is set.
3012 	 */
3013 	if (cmpxchg64(sptep, old_spte, new_spte) != old_spte)
3014 		return false;
3015 
3016 	if (is_writable_pte(new_spte) && !is_writable_pte(old_spte)) {
3017 		/*
3018 		 * The gfn of direct spte is stable since it is
3019 		 * calculated by sp->gfn.
3020 		 */
3021 		gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
3022 		kvm_vcpu_mark_page_dirty(vcpu, gfn);
3023 	}
3024 
3025 	return true;
3026 }
3027 
3028 static bool is_access_allowed(u32 fault_err_code, u64 spte)
3029 {
3030 	if (fault_err_code & PFERR_FETCH_MASK)
3031 		return is_executable_pte(spte);
3032 
3033 	if (fault_err_code & PFERR_WRITE_MASK)
3034 		return is_writable_pte(spte);
3035 
3036 	/* Fault was on Read access */
3037 	return spte & PT_PRESENT_MASK;
3038 }
3039 
3040 /*
3041  * Returns one of RET_PF_INVALID, RET_PF_FIXED or RET_PF_SPURIOUS.
3042  */
3043 static int fast_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
3044 			   u32 error_code)
3045 {
3046 	struct kvm_shadow_walk_iterator iterator;
3047 	struct kvm_mmu_page *sp;
3048 	int ret = RET_PF_INVALID;
3049 	u64 spte = 0ull;
3050 	uint retry_count = 0;
3051 
3052 	if (!page_fault_can_be_fast(error_code))
3053 		return ret;
3054 
3055 	walk_shadow_page_lockless_begin(vcpu);
3056 
3057 	do {
3058 		u64 new_spte;
3059 
3060 		for_each_shadow_entry_lockless(vcpu, cr2_or_gpa, iterator, spte)
3061 			if (!is_shadow_present_pte(spte))
3062 				break;
3063 
3064 		sp = sptep_to_sp(iterator.sptep);
3065 		if (!is_last_spte(spte, sp->role.level))
3066 			break;
3067 
3068 		/*
3069 		 * Check whether the memory access that caused the fault would
3070 		 * still cause it if it were to be performed right now. If not,
3071 		 * then this is a spurious fault caused by TLB lazily flushed,
3072 		 * or some other CPU has already fixed the PTE after the
3073 		 * current CPU took the fault.
3074 		 *
3075 		 * Need not check the access of upper level table entries since
3076 		 * they are always ACC_ALL.
3077 		 */
3078 		if (is_access_allowed(error_code, spte)) {
3079 			ret = RET_PF_SPURIOUS;
3080 			break;
3081 		}
3082 
3083 		new_spte = spte;
3084 
3085 		if (is_access_track_spte(spte))
3086 			new_spte = restore_acc_track_spte(new_spte);
3087 
3088 		/*
3089 		 * Currently, to simplify the code, write-protection can
3090 		 * be removed in the fast path only if the SPTE was
3091 		 * write-protected for dirty-logging or access tracking.
3092 		 */
3093 		if ((error_code & PFERR_WRITE_MASK) &&
3094 		    spte_can_locklessly_be_made_writable(spte)) {
3095 			new_spte |= PT_WRITABLE_MASK;
3096 
3097 			/*
3098 			 * Do not fix write-permission on the large spte.  Since
3099 			 * we only dirty the first page into the dirty-bitmap in
3100 			 * fast_pf_fix_direct_spte(), other pages are missed
3101 			 * if its slot has dirty logging enabled.
3102 			 *
3103 			 * Instead, we let the slow page fault path create a
3104 			 * normal spte to fix the access.
3105 			 *
3106 			 * See the comments in kvm_arch_commit_memory_region().
3107 			 */
3108 			if (sp->role.level > PG_LEVEL_4K)
3109 				break;
3110 		}
3111 
3112 		/* Verify that the fault can be handled in the fast path */
3113 		if (new_spte == spte ||
3114 		    !is_access_allowed(error_code, new_spte))
3115 			break;
3116 
3117 		/*
3118 		 * Currently, fast page fault only works for direct mapping
3119 		 * since the gfn is not stable for indirect shadow page. See
3120 		 * Documentation/virt/kvm/locking.rst to get more detail.
3121 		 */
3122 		if (fast_pf_fix_direct_spte(vcpu, sp, iterator.sptep, spte,
3123 					    new_spte)) {
3124 			ret = RET_PF_FIXED;
3125 			break;
3126 		}
3127 
3128 		if (++retry_count > 4) {
3129 			printk_once(KERN_WARNING
3130 				"kvm: Fast #PF retrying more than 4 times.\n");
3131 			break;
3132 		}
3133 
3134 	} while (true);
3135 
3136 	trace_fast_page_fault(vcpu, cr2_or_gpa, error_code, iterator.sptep,
3137 			      spte, ret);
3138 	walk_shadow_page_lockless_end(vcpu);
3139 
3140 	return ret;
3141 }
3142 
3143 static void mmu_free_root_page(struct kvm *kvm, hpa_t *root_hpa,
3144 			       struct list_head *invalid_list)
3145 {
3146 	struct kvm_mmu_page *sp;
3147 
3148 	if (!VALID_PAGE(*root_hpa))
3149 		return;
3150 
3151 	sp = to_shadow_page(*root_hpa & PT64_BASE_ADDR_MASK);
3152 
3153 	if (kvm_mmu_put_root(kvm, sp)) {
3154 		if (is_tdp_mmu_page(sp))
3155 			kvm_tdp_mmu_free_root(kvm, sp);
3156 		else if (sp->role.invalid)
3157 			kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
3158 	}
3159 
3160 	*root_hpa = INVALID_PAGE;
3161 }
3162 
3163 /* roots_to_free must be some combination of the KVM_MMU_ROOT_* flags */
3164 void kvm_mmu_free_roots(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
3165 			ulong roots_to_free)
3166 {
3167 	struct kvm *kvm = vcpu->kvm;
3168 	int i;
3169 	LIST_HEAD(invalid_list);
3170 	bool free_active_root = roots_to_free & KVM_MMU_ROOT_CURRENT;
3171 
3172 	BUILD_BUG_ON(KVM_MMU_NUM_PREV_ROOTS >= BITS_PER_LONG);
3173 
3174 	/* Before acquiring the MMU lock, see if we need to do any real work. */
3175 	if (!(free_active_root && VALID_PAGE(mmu->root_hpa))) {
3176 		for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
3177 			if ((roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) &&
3178 			    VALID_PAGE(mmu->prev_roots[i].hpa))
3179 				break;
3180 
3181 		if (i == KVM_MMU_NUM_PREV_ROOTS)
3182 			return;
3183 	}
3184 
3185 	write_lock(&kvm->mmu_lock);
3186 
3187 	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
3188 		if (roots_to_free & KVM_MMU_ROOT_PREVIOUS(i))
3189 			mmu_free_root_page(kvm, &mmu->prev_roots[i].hpa,
3190 					   &invalid_list);
3191 
3192 	if (free_active_root) {
3193 		if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
3194 		    (mmu->root_level >= PT64_ROOT_4LEVEL || mmu->direct_map)) {
3195 			mmu_free_root_page(kvm, &mmu->root_hpa, &invalid_list);
3196 		} else {
3197 			for (i = 0; i < 4; ++i)
3198 				if (mmu->pae_root[i] != 0)
3199 					mmu_free_root_page(kvm,
3200 							   &mmu->pae_root[i],
3201 							   &invalid_list);
3202 			mmu->root_hpa = INVALID_PAGE;
3203 		}
3204 		mmu->root_pgd = 0;
3205 	}
3206 
3207 	kvm_mmu_commit_zap_page(kvm, &invalid_list);
3208 	write_unlock(&kvm->mmu_lock);
3209 }
3210 EXPORT_SYMBOL_GPL(kvm_mmu_free_roots);
3211 
3212 static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
3213 {
3214 	int ret = 0;
3215 
3216 	if (!kvm_vcpu_is_visible_gfn(vcpu, root_gfn)) {
3217 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3218 		ret = 1;
3219 	}
3220 
3221 	return ret;
3222 }
3223 
3224 static hpa_t mmu_alloc_root(struct kvm_vcpu *vcpu, gfn_t gfn, gva_t gva,
3225 			    u8 level, bool direct)
3226 {
3227 	struct kvm_mmu_page *sp;
3228 
3229 	write_lock(&vcpu->kvm->mmu_lock);
3230 
3231 	if (make_mmu_pages_available(vcpu)) {
3232 		write_unlock(&vcpu->kvm->mmu_lock);
3233 		return INVALID_PAGE;
3234 	}
3235 	sp = kvm_mmu_get_page(vcpu, gfn, gva, level, direct, ACC_ALL);
3236 	++sp->root_count;
3237 
3238 	write_unlock(&vcpu->kvm->mmu_lock);
3239 	return __pa(sp->spt);
3240 }
3241 
3242 static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
3243 {
3244 	u8 shadow_root_level = vcpu->arch.mmu->shadow_root_level;
3245 	hpa_t root;
3246 	unsigned i;
3247 
3248 	if (is_tdp_mmu_enabled(vcpu->kvm)) {
3249 		root = kvm_tdp_mmu_get_vcpu_root_hpa(vcpu);
3250 
3251 		if (!VALID_PAGE(root))
3252 			return -ENOSPC;
3253 		vcpu->arch.mmu->root_hpa = root;
3254 	} else if (shadow_root_level >= PT64_ROOT_4LEVEL) {
3255 		root = mmu_alloc_root(vcpu, 0, 0, shadow_root_level,
3256 				      true);
3257 
3258 		if (!VALID_PAGE(root))
3259 			return -ENOSPC;
3260 		vcpu->arch.mmu->root_hpa = root;
3261 	} else if (shadow_root_level == PT32E_ROOT_LEVEL) {
3262 		for (i = 0; i < 4; ++i) {
3263 			MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu->pae_root[i]));
3264 
3265 			root = mmu_alloc_root(vcpu, i << (30 - PAGE_SHIFT),
3266 					      i << 30, PT32_ROOT_LEVEL, true);
3267 			if (!VALID_PAGE(root))
3268 				return -ENOSPC;
3269 			vcpu->arch.mmu->pae_root[i] = root | PT_PRESENT_MASK;
3270 		}
3271 		vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->pae_root);
3272 	} else
3273 		BUG();
3274 
3275 	/* root_pgd is ignored for direct MMUs. */
3276 	vcpu->arch.mmu->root_pgd = 0;
3277 
3278 	return 0;
3279 }
3280 
3281 static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
3282 {
3283 	u64 pdptr, pm_mask;
3284 	gfn_t root_gfn, root_pgd;
3285 	hpa_t root;
3286 	int i;
3287 
3288 	root_pgd = vcpu->arch.mmu->get_guest_pgd(vcpu);
3289 	root_gfn = root_pgd >> PAGE_SHIFT;
3290 
3291 	if (mmu_check_root(vcpu, root_gfn))
3292 		return 1;
3293 
3294 	/*
3295 	 * Do we shadow a long mode page table? If so we need to
3296 	 * write-protect the guests page table root.
3297 	 */
3298 	if (vcpu->arch.mmu->root_level >= PT64_ROOT_4LEVEL) {
3299 		MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu->root_hpa));
3300 
3301 		root = mmu_alloc_root(vcpu, root_gfn, 0,
3302 				      vcpu->arch.mmu->shadow_root_level, false);
3303 		if (!VALID_PAGE(root))
3304 			return -ENOSPC;
3305 		vcpu->arch.mmu->root_hpa = root;
3306 		goto set_root_pgd;
3307 	}
3308 
3309 	/*
3310 	 * We shadow a 32 bit page table. This may be a legacy 2-level
3311 	 * or a PAE 3-level page table. In either case we need to be aware that
3312 	 * the shadow page table may be a PAE or a long mode page table.
3313 	 */
3314 	pm_mask = PT_PRESENT_MASK;
3315 	if (vcpu->arch.mmu->shadow_root_level == PT64_ROOT_4LEVEL)
3316 		pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
3317 
3318 	for (i = 0; i < 4; ++i) {
3319 		MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu->pae_root[i]));
3320 		if (vcpu->arch.mmu->root_level == PT32E_ROOT_LEVEL) {
3321 			pdptr = vcpu->arch.mmu->get_pdptr(vcpu, i);
3322 			if (!(pdptr & PT_PRESENT_MASK)) {
3323 				vcpu->arch.mmu->pae_root[i] = 0;
3324 				continue;
3325 			}
3326 			root_gfn = pdptr >> PAGE_SHIFT;
3327 			if (mmu_check_root(vcpu, root_gfn))
3328 				return 1;
3329 		}
3330 
3331 		root = mmu_alloc_root(vcpu, root_gfn, i << 30,
3332 				      PT32_ROOT_LEVEL, false);
3333 		if (!VALID_PAGE(root))
3334 			return -ENOSPC;
3335 		vcpu->arch.mmu->pae_root[i] = root | pm_mask;
3336 	}
3337 	vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->pae_root);
3338 
3339 	/*
3340 	 * If we shadow a 32 bit page table with a long mode page
3341 	 * table we enter this path.
3342 	 */
3343 	if (vcpu->arch.mmu->shadow_root_level == PT64_ROOT_4LEVEL) {
3344 		if (vcpu->arch.mmu->lm_root == NULL) {
3345 			/*
3346 			 * The additional page necessary for this is only
3347 			 * allocated on demand.
3348 			 */
3349 
3350 			u64 *lm_root;
3351 
3352 			lm_root = (void*)get_zeroed_page(GFP_KERNEL_ACCOUNT);
3353 			if (lm_root == NULL)
3354 				return 1;
3355 
3356 			lm_root[0] = __pa(vcpu->arch.mmu->pae_root) | pm_mask;
3357 
3358 			vcpu->arch.mmu->lm_root = lm_root;
3359 		}
3360 
3361 		vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->lm_root);
3362 	}
3363 
3364 set_root_pgd:
3365 	vcpu->arch.mmu->root_pgd = root_pgd;
3366 
3367 	return 0;
3368 }
3369 
3370 static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
3371 {
3372 	if (vcpu->arch.mmu->direct_map)
3373 		return mmu_alloc_direct_roots(vcpu);
3374 	else
3375 		return mmu_alloc_shadow_roots(vcpu);
3376 }
3377 
3378 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3379 {
3380 	int i;
3381 	struct kvm_mmu_page *sp;
3382 
3383 	if (vcpu->arch.mmu->direct_map)
3384 		return;
3385 
3386 	if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
3387 		return;
3388 
3389 	vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
3390 
3391 	if (vcpu->arch.mmu->root_level >= PT64_ROOT_4LEVEL) {
3392 		hpa_t root = vcpu->arch.mmu->root_hpa;
3393 		sp = to_shadow_page(root);
3394 
3395 		/*
3396 		 * Even if another CPU was marking the SP as unsync-ed
3397 		 * simultaneously, any guest page table changes are not
3398 		 * guaranteed to be visible anyway until this VCPU issues a TLB
3399 		 * flush strictly after those changes are made. We only need to
3400 		 * ensure that the other CPU sets these flags before any actual
3401 		 * changes to the page tables are made. The comments in
3402 		 * mmu_need_write_protect() describe what could go wrong if this
3403 		 * requirement isn't satisfied.
3404 		 */
3405 		if (!smp_load_acquire(&sp->unsync) &&
3406 		    !smp_load_acquire(&sp->unsync_children))
3407 			return;
3408 
3409 		write_lock(&vcpu->kvm->mmu_lock);
3410 		kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3411 
3412 		mmu_sync_children(vcpu, sp);
3413 
3414 		kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3415 		write_unlock(&vcpu->kvm->mmu_lock);
3416 		return;
3417 	}
3418 
3419 	write_lock(&vcpu->kvm->mmu_lock);
3420 	kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3421 
3422 	for (i = 0; i < 4; ++i) {
3423 		hpa_t root = vcpu->arch.mmu->pae_root[i];
3424 
3425 		if (root && VALID_PAGE(root)) {
3426 			root &= PT64_BASE_ADDR_MASK;
3427 			sp = to_shadow_page(root);
3428 			mmu_sync_children(vcpu, sp);
3429 		}
3430 	}
3431 
3432 	kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3433 	write_unlock(&vcpu->kvm->mmu_lock);
3434 }
3435 
3436 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gpa_t vaddr,
3437 				  u32 access, struct x86_exception *exception)
3438 {
3439 	if (exception)
3440 		exception->error_code = 0;
3441 	return vaddr;
3442 }
3443 
3444 static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gpa_t vaddr,
3445 					 u32 access,
3446 					 struct x86_exception *exception)
3447 {
3448 	if (exception)
3449 		exception->error_code = 0;
3450 	return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception);
3451 }
3452 
3453 static bool
3454 __is_rsvd_bits_set(struct rsvd_bits_validate *rsvd_check, u64 pte, int level)
3455 {
3456 	int bit7 = (pte >> 7) & 1;
3457 
3458 	return pte & rsvd_check->rsvd_bits_mask[bit7][level-1];
3459 }
3460 
3461 static bool __is_bad_mt_xwr(struct rsvd_bits_validate *rsvd_check, u64 pte)
3462 {
3463 	return rsvd_check->bad_mt_xwr & BIT_ULL(pte & 0x3f);
3464 }
3465 
3466 static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3467 {
3468 	/*
3469 	 * A nested guest cannot use the MMIO cache if it is using nested
3470 	 * page tables, because cr2 is a nGPA while the cache stores GPAs.
3471 	 */
3472 	if (mmu_is_nested(vcpu))
3473 		return false;
3474 
3475 	if (direct)
3476 		return vcpu_match_mmio_gpa(vcpu, addr);
3477 
3478 	return vcpu_match_mmio_gva(vcpu, addr);
3479 }
3480 
3481 /*
3482  * Return the level of the lowest level SPTE added to sptes.
3483  * That SPTE may be non-present.
3484  */
3485 static int get_walk(struct kvm_vcpu *vcpu, u64 addr, u64 *sptes, int *root_level)
3486 {
3487 	struct kvm_shadow_walk_iterator iterator;
3488 	int leaf = -1;
3489 	u64 spte;
3490 
3491 	walk_shadow_page_lockless_begin(vcpu);
3492 
3493 	for (shadow_walk_init(&iterator, vcpu, addr),
3494 	     *root_level = iterator.level;
3495 	     shadow_walk_okay(&iterator);
3496 	     __shadow_walk_next(&iterator, spte)) {
3497 		leaf = iterator.level;
3498 		spte = mmu_spte_get_lockless(iterator.sptep);
3499 
3500 		sptes[leaf] = spte;
3501 
3502 		if (!is_shadow_present_pte(spte))
3503 			break;
3504 	}
3505 
3506 	walk_shadow_page_lockless_end(vcpu);
3507 
3508 	return leaf;
3509 }
3510 
3511 /* return true if reserved bit(s) are detected on a valid, non-MMIO SPTE. */
3512 static bool get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep)
3513 {
3514 	u64 sptes[PT64_ROOT_MAX_LEVEL + 1];
3515 	struct rsvd_bits_validate *rsvd_check;
3516 	int root, leaf, level;
3517 	bool reserved = false;
3518 
3519 	if (!VALID_PAGE(vcpu->arch.mmu->root_hpa)) {
3520 		*sptep = 0ull;
3521 		return reserved;
3522 	}
3523 
3524 	if (is_tdp_mmu_root(vcpu->kvm, vcpu->arch.mmu->root_hpa))
3525 		leaf = kvm_tdp_mmu_get_walk(vcpu, addr, sptes, &root);
3526 	else
3527 		leaf = get_walk(vcpu, addr, sptes, &root);
3528 
3529 	if (unlikely(leaf < 0)) {
3530 		*sptep = 0ull;
3531 		return reserved;
3532 	}
3533 
3534 	*sptep = sptes[leaf];
3535 
3536 	/*
3537 	 * Skip reserved bits checks on the terminal leaf if it's not a valid
3538 	 * SPTE.  Note, this also (intentionally) skips MMIO SPTEs, which, by
3539 	 * design, always have reserved bits set.  The purpose of the checks is
3540 	 * to detect reserved bits on non-MMIO SPTEs. i.e. buggy SPTEs.
3541 	 */
3542 	if (!is_shadow_present_pte(sptes[leaf]))
3543 		leaf++;
3544 
3545 	rsvd_check = &vcpu->arch.mmu->shadow_zero_check;
3546 
3547 	for (level = root; level >= leaf; level--)
3548 		/*
3549 		 * Use a bitwise-OR instead of a logical-OR to aggregate the
3550 		 * reserved bit and EPT's invalid memtype/XWR checks to avoid
3551 		 * adding a Jcc in the loop.
3552 		 */
3553 		reserved |= __is_bad_mt_xwr(rsvd_check, sptes[level]) |
3554 			    __is_rsvd_bits_set(rsvd_check, sptes[level], level);
3555 
3556 	if (reserved) {
3557 		pr_err("%s: detect reserved bits on spte, addr 0x%llx, dump hierarchy:\n",
3558 		       __func__, addr);
3559 		for (level = root; level >= leaf; level--)
3560 			pr_err("------ spte 0x%llx level %d.\n",
3561 			       sptes[level], level);
3562 	}
3563 
3564 	return reserved;
3565 }
3566 
3567 static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3568 {
3569 	u64 spte;
3570 	bool reserved;
3571 
3572 	if (mmio_info_in_cache(vcpu, addr, direct))
3573 		return RET_PF_EMULATE;
3574 
3575 	reserved = get_mmio_spte(vcpu, addr, &spte);
3576 	if (WARN_ON(reserved))
3577 		return -EINVAL;
3578 
3579 	if (is_mmio_spte(spte)) {
3580 		gfn_t gfn = get_mmio_spte_gfn(spte);
3581 		unsigned int access = get_mmio_spte_access(spte);
3582 
3583 		if (!check_mmio_spte(vcpu, spte))
3584 			return RET_PF_INVALID;
3585 
3586 		if (direct)
3587 			addr = 0;
3588 
3589 		trace_handle_mmio_page_fault(addr, gfn, access);
3590 		vcpu_cache_mmio_info(vcpu, addr, gfn, access);
3591 		return RET_PF_EMULATE;
3592 	}
3593 
3594 	/*
3595 	 * If the page table is zapped by other cpus, let CPU fault again on
3596 	 * the address.
3597 	 */
3598 	return RET_PF_RETRY;
3599 }
3600 
3601 static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu,
3602 					 u32 error_code, gfn_t gfn)
3603 {
3604 	if (unlikely(error_code & PFERR_RSVD_MASK))
3605 		return false;
3606 
3607 	if (!(error_code & PFERR_PRESENT_MASK) ||
3608 	      !(error_code & PFERR_WRITE_MASK))
3609 		return false;
3610 
3611 	/*
3612 	 * guest is writing the page which is write tracked which can
3613 	 * not be fixed by page fault handler.
3614 	 */
3615 	if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
3616 		return true;
3617 
3618 	return false;
3619 }
3620 
3621 static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr)
3622 {
3623 	struct kvm_shadow_walk_iterator iterator;
3624 	u64 spte;
3625 
3626 	walk_shadow_page_lockless_begin(vcpu);
3627 	for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
3628 		clear_sp_write_flooding_count(iterator.sptep);
3629 		if (!is_shadow_present_pte(spte))
3630 			break;
3631 	}
3632 	walk_shadow_page_lockless_end(vcpu);
3633 }
3634 
3635 static bool kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
3636 				    gfn_t gfn)
3637 {
3638 	struct kvm_arch_async_pf arch;
3639 
3640 	arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
3641 	arch.gfn = gfn;
3642 	arch.direct_map = vcpu->arch.mmu->direct_map;
3643 	arch.cr3 = vcpu->arch.mmu->get_guest_pgd(vcpu);
3644 
3645 	return kvm_setup_async_pf(vcpu, cr2_or_gpa,
3646 				  kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch);
3647 }
3648 
3649 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
3650 			 gpa_t cr2_or_gpa, kvm_pfn_t *pfn, hva_t *hva,
3651 			 bool write, bool *writable)
3652 {
3653 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3654 	bool async;
3655 
3656 	/* Don't expose private memslots to L2. */
3657 	if (is_guest_mode(vcpu) && !kvm_is_visible_memslot(slot)) {
3658 		*pfn = KVM_PFN_NOSLOT;
3659 		*writable = false;
3660 		return false;
3661 	}
3662 
3663 	async = false;
3664 	*pfn = __gfn_to_pfn_memslot(slot, gfn, false, &async,
3665 				    write, writable, hva);
3666 	if (!async)
3667 		return false; /* *pfn has correct page already */
3668 
3669 	if (!prefault && kvm_can_do_async_pf(vcpu)) {
3670 		trace_kvm_try_async_get_page(cr2_or_gpa, gfn);
3671 		if (kvm_find_async_pf_gfn(vcpu, gfn)) {
3672 			trace_kvm_async_pf_doublefault(cr2_or_gpa, gfn);
3673 			kvm_make_request(KVM_REQ_APF_HALT, vcpu);
3674 			return true;
3675 		} else if (kvm_arch_setup_async_pf(vcpu, cr2_or_gpa, gfn))
3676 			return true;
3677 	}
3678 
3679 	*pfn = __gfn_to_pfn_memslot(slot, gfn, false, NULL,
3680 				    write, writable, hva);
3681 	return false;
3682 }
3683 
3684 static int direct_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
3685 			     bool prefault, int max_level, bool is_tdp)
3686 {
3687 	bool write = error_code & PFERR_WRITE_MASK;
3688 	bool map_writable;
3689 
3690 	gfn_t gfn = gpa >> PAGE_SHIFT;
3691 	unsigned long mmu_seq;
3692 	kvm_pfn_t pfn;
3693 	hva_t hva;
3694 	int r;
3695 
3696 	if (page_fault_handle_page_track(vcpu, error_code, gfn))
3697 		return RET_PF_EMULATE;
3698 
3699 	if (!is_tdp_mmu_root(vcpu->kvm, vcpu->arch.mmu->root_hpa)) {
3700 		r = fast_page_fault(vcpu, gpa, error_code);
3701 		if (r != RET_PF_INVALID)
3702 			return r;
3703 	}
3704 
3705 	r = mmu_topup_memory_caches(vcpu, false);
3706 	if (r)
3707 		return r;
3708 
3709 	mmu_seq = vcpu->kvm->mmu_notifier_seq;
3710 	smp_rmb();
3711 
3712 	if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, &hva,
3713 			 write, &map_writable))
3714 		return RET_PF_RETRY;
3715 
3716 	if (handle_abnormal_pfn(vcpu, is_tdp ? 0 : gpa, gfn, pfn, ACC_ALL, &r))
3717 		return r;
3718 
3719 	r = RET_PF_RETRY;
3720 
3721 	if (is_tdp_mmu_root(vcpu->kvm, vcpu->arch.mmu->root_hpa))
3722 		read_lock(&vcpu->kvm->mmu_lock);
3723 	else
3724 		write_lock(&vcpu->kvm->mmu_lock);
3725 
3726 	if (!is_noslot_pfn(pfn) && mmu_notifier_retry_hva(vcpu->kvm, mmu_seq, hva))
3727 		goto out_unlock;
3728 	r = make_mmu_pages_available(vcpu);
3729 	if (r)
3730 		goto out_unlock;
3731 
3732 	if (is_tdp_mmu_root(vcpu->kvm, vcpu->arch.mmu->root_hpa))
3733 		r = kvm_tdp_mmu_map(vcpu, gpa, error_code, map_writable, max_level,
3734 				    pfn, prefault);
3735 	else
3736 		r = __direct_map(vcpu, gpa, error_code, map_writable, max_level, pfn,
3737 				 prefault, is_tdp);
3738 
3739 out_unlock:
3740 	if (is_tdp_mmu_root(vcpu->kvm, vcpu->arch.mmu->root_hpa))
3741 		read_unlock(&vcpu->kvm->mmu_lock);
3742 	else
3743 		write_unlock(&vcpu->kvm->mmu_lock);
3744 	kvm_release_pfn_clean(pfn);
3745 	return r;
3746 }
3747 
3748 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa,
3749 				u32 error_code, bool prefault)
3750 {
3751 	pgprintk("%s: gva %lx error %x\n", __func__, gpa, error_code);
3752 
3753 	/* This path builds a PAE pagetable, we can map 2mb pages at maximum. */
3754 	return direct_page_fault(vcpu, gpa & PAGE_MASK, error_code, prefault,
3755 				 PG_LEVEL_2M, false);
3756 }
3757 
3758 int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code,
3759 				u64 fault_address, char *insn, int insn_len)
3760 {
3761 	int r = 1;
3762 	u32 flags = vcpu->arch.apf.host_apf_flags;
3763 
3764 #ifndef CONFIG_X86_64
3765 	/* A 64-bit CR2 should be impossible on 32-bit KVM. */
3766 	if (WARN_ON_ONCE(fault_address >> 32))
3767 		return -EFAULT;
3768 #endif
3769 
3770 	vcpu->arch.l1tf_flush_l1d = true;
3771 	if (!flags) {
3772 		trace_kvm_page_fault(fault_address, error_code);
3773 
3774 		if (kvm_event_needs_reinjection(vcpu))
3775 			kvm_mmu_unprotect_page_virt(vcpu, fault_address);
3776 		r = kvm_mmu_page_fault(vcpu, fault_address, error_code, insn,
3777 				insn_len);
3778 	} else if (flags & KVM_PV_REASON_PAGE_NOT_PRESENT) {
3779 		vcpu->arch.apf.host_apf_flags = 0;
3780 		local_irq_disable();
3781 		kvm_async_pf_task_wait_schedule(fault_address);
3782 		local_irq_enable();
3783 	} else {
3784 		WARN_ONCE(1, "Unexpected host async PF flags: %x\n", flags);
3785 	}
3786 
3787 	return r;
3788 }
3789 EXPORT_SYMBOL_GPL(kvm_handle_page_fault);
3790 
3791 int kvm_tdp_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
3792 		       bool prefault)
3793 {
3794 	int max_level;
3795 
3796 	for (max_level = KVM_MAX_HUGEPAGE_LEVEL;
3797 	     max_level > PG_LEVEL_4K;
3798 	     max_level--) {
3799 		int page_num = KVM_PAGES_PER_HPAGE(max_level);
3800 		gfn_t base = (gpa >> PAGE_SHIFT) & ~(page_num - 1);
3801 
3802 		if (kvm_mtrr_check_gfn_range_consistency(vcpu, base, page_num))
3803 			break;
3804 	}
3805 
3806 	return direct_page_fault(vcpu, gpa, error_code, prefault,
3807 				 max_level, true);
3808 }
3809 
3810 static void nonpaging_init_context(struct kvm_vcpu *vcpu,
3811 				   struct kvm_mmu *context)
3812 {
3813 	context->page_fault = nonpaging_page_fault;
3814 	context->gva_to_gpa = nonpaging_gva_to_gpa;
3815 	context->sync_page = nonpaging_sync_page;
3816 	context->invlpg = NULL;
3817 	context->root_level = 0;
3818 	context->shadow_root_level = PT32E_ROOT_LEVEL;
3819 	context->direct_map = true;
3820 	context->nx = false;
3821 }
3822 
3823 static inline bool is_root_usable(struct kvm_mmu_root_info *root, gpa_t pgd,
3824 				  union kvm_mmu_page_role role)
3825 {
3826 	return (role.direct || pgd == root->pgd) &&
3827 	       VALID_PAGE(root->hpa) && to_shadow_page(root->hpa) &&
3828 	       role.word == to_shadow_page(root->hpa)->role.word;
3829 }
3830 
3831 /*
3832  * Find out if a previously cached root matching the new pgd/role is available.
3833  * The current root is also inserted into the cache.
3834  * If a matching root was found, it is assigned to kvm_mmu->root_hpa and true is
3835  * returned.
3836  * Otherwise, the LRU root from the cache is assigned to kvm_mmu->root_hpa and
3837  * false is returned. This root should now be freed by the caller.
3838  */
3839 static bool cached_root_available(struct kvm_vcpu *vcpu, gpa_t new_pgd,
3840 				  union kvm_mmu_page_role new_role)
3841 {
3842 	uint i;
3843 	struct kvm_mmu_root_info root;
3844 	struct kvm_mmu *mmu = vcpu->arch.mmu;
3845 
3846 	root.pgd = mmu->root_pgd;
3847 	root.hpa = mmu->root_hpa;
3848 
3849 	if (is_root_usable(&root, new_pgd, new_role))
3850 		return true;
3851 
3852 	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
3853 		swap(root, mmu->prev_roots[i]);
3854 
3855 		if (is_root_usable(&root, new_pgd, new_role))
3856 			break;
3857 	}
3858 
3859 	mmu->root_hpa = root.hpa;
3860 	mmu->root_pgd = root.pgd;
3861 
3862 	return i < KVM_MMU_NUM_PREV_ROOTS;
3863 }
3864 
3865 static bool fast_pgd_switch(struct kvm_vcpu *vcpu, gpa_t new_pgd,
3866 			    union kvm_mmu_page_role new_role)
3867 {
3868 	struct kvm_mmu *mmu = vcpu->arch.mmu;
3869 
3870 	/*
3871 	 * For now, limit the fast switch to 64-bit hosts+VMs in order to avoid
3872 	 * having to deal with PDPTEs. We may add support for 32-bit hosts/VMs
3873 	 * later if necessary.
3874 	 */
3875 	if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
3876 	    mmu->root_level >= PT64_ROOT_4LEVEL)
3877 		return cached_root_available(vcpu, new_pgd, new_role);
3878 
3879 	return false;
3880 }
3881 
3882 static void __kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd,
3883 			      union kvm_mmu_page_role new_role,
3884 			      bool skip_tlb_flush, bool skip_mmu_sync)
3885 {
3886 	if (!fast_pgd_switch(vcpu, new_pgd, new_role)) {
3887 		kvm_mmu_free_roots(vcpu, vcpu->arch.mmu, KVM_MMU_ROOT_CURRENT);
3888 		return;
3889 	}
3890 
3891 	/*
3892 	 * It's possible that the cached previous root page is obsolete because
3893 	 * of a change in the MMU generation number. However, changing the
3894 	 * generation number is accompanied by KVM_REQ_MMU_RELOAD, which will
3895 	 * free the root set here and allocate a new one.
3896 	 */
3897 	kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu);
3898 
3899 	if (!skip_mmu_sync || force_flush_and_sync_on_reuse)
3900 		kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
3901 	if (!skip_tlb_flush || force_flush_and_sync_on_reuse)
3902 		kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
3903 
3904 	/*
3905 	 * The last MMIO access's GVA and GPA are cached in the VCPU. When
3906 	 * switching to a new CR3, that GVA->GPA mapping may no longer be
3907 	 * valid. So clear any cached MMIO info even when we don't need to sync
3908 	 * the shadow page tables.
3909 	 */
3910 	vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
3911 
3912 	/*
3913 	 * If this is a direct root page, it doesn't have a write flooding
3914 	 * count. Otherwise, clear the write flooding count.
3915 	 */
3916 	if (!new_role.direct)
3917 		__clear_sp_write_flooding_count(
3918 				to_shadow_page(vcpu->arch.mmu->root_hpa));
3919 }
3920 
3921 void kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd, bool skip_tlb_flush,
3922 		     bool skip_mmu_sync)
3923 {
3924 	__kvm_mmu_new_pgd(vcpu, new_pgd, kvm_mmu_calc_root_page_role(vcpu),
3925 			  skip_tlb_flush, skip_mmu_sync);
3926 }
3927 EXPORT_SYMBOL_GPL(kvm_mmu_new_pgd);
3928 
3929 static unsigned long get_cr3(struct kvm_vcpu *vcpu)
3930 {
3931 	return kvm_read_cr3(vcpu);
3932 }
3933 
3934 static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
3935 			   unsigned int access, int *nr_present)
3936 {
3937 	if (unlikely(is_mmio_spte(*sptep))) {
3938 		if (gfn != get_mmio_spte_gfn(*sptep)) {
3939 			mmu_spte_clear_no_track(sptep);
3940 			return true;
3941 		}
3942 
3943 		(*nr_present)++;
3944 		mark_mmio_spte(vcpu, sptep, gfn, access);
3945 		return true;
3946 	}
3947 
3948 	return false;
3949 }
3950 
3951 static inline bool is_last_gpte(struct kvm_mmu *mmu,
3952 				unsigned level, unsigned gpte)
3953 {
3954 	/*
3955 	 * The RHS has bit 7 set iff level < mmu->last_nonleaf_level.
3956 	 * If it is clear, there are no large pages at this level, so clear
3957 	 * PT_PAGE_SIZE_MASK in gpte if that is the case.
3958 	 */
3959 	gpte &= level - mmu->last_nonleaf_level;
3960 
3961 	/*
3962 	 * PG_LEVEL_4K always terminates.  The RHS has bit 7 set
3963 	 * iff level <= PG_LEVEL_4K, which for our purpose means
3964 	 * level == PG_LEVEL_4K; set PT_PAGE_SIZE_MASK in gpte then.
3965 	 */
3966 	gpte |= level - PG_LEVEL_4K - 1;
3967 
3968 	return gpte & PT_PAGE_SIZE_MASK;
3969 }
3970 
3971 #define PTTYPE_EPT 18 /* arbitrary */
3972 #define PTTYPE PTTYPE_EPT
3973 #include "paging_tmpl.h"
3974 #undef PTTYPE
3975 
3976 #define PTTYPE 64
3977 #include "paging_tmpl.h"
3978 #undef PTTYPE
3979 
3980 #define PTTYPE 32
3981 #include "paging_tmpl.h"
3982 #undef PTTYPE
3983 
3984 static void
3985 __reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
3986 			struct rsvd_bits_validate *rsvd_check,
3987 			u64 pa_bits_rsvd, int level, bool nx, bool gbpages,
3988 			bool pse, bool amd)
3989 {
3990 	u64 gbpages_bit_rsvd = 0;
3991 	u64 nonleaf_bit8_rsvd = 0;
3992 	u64 high_bits_rsvd;
3993 
3994 	rsvd_check->bad_mt_xwr = 0;
3995 
3996 	if (!gbpages)
3997 		gbpages_bit_rsvd = rsvd_bits(7, 7);
3998 
3999 	if (level == PT32E_ROOT_LEVEL)
4000 		high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 62);
4001 	else
4002 		high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 51);
4003 
4004 	/* Note, NX doesn't exist in PDPTEs, this is handled below. */
4005 	if (!nx)
4006 		high_bits_rsvd |= rsvd_bits(63, 63);
4007 
4008 	/*
4009 	 * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
4010 	 * leaf entries) on AMD CPUs only.
4011 	 */
4012 	if (amd)
4013 		nonleaf_bit8_rsvd = rsvd_bits(8, 8);
4014 
4015 	switch (level) {
4016 	case PT32_ROOT_LEVEL:
4017 		/* no rsvd bits for 2 level 4K page table entries */
4018 		rsvd_check->rsvd_bits_mask[0][1] = 0;
4019 		rsvd_check->rsvd_bits_mask[0][0] = 0;
4020 		rsvd_check->rsvd_bits_mask[1][0] =
4021 			rsvd_check->rsvd_bits_mask[0][0];
4022 
4023 		if (!pse) {
4024 			rsvd_check->rsvd_bits_mask[1][1] = 0;
4025 			break;
4026 		}
4027 
4028 		if (is_cpuid_PSE36())
4029 			/* 36bits PSE 4MB page */
4030 			rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
4031 		else
4032 			/* 32 bits PSE 4MB page */
4033 			rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
4034 		break;
4035 	case PT32E_ROOT_LEVEL:
4036 		rsvd_check->rsvd_bits_mask[0][2] = rsvd_bits(63, 63) |
4037 						   high_bits_rsvd |
4038 						   rsvd_bits(5, 8) |
4039 						   rsvd_bits(1, 2);	/* PDPTE */
4040 		rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd;	/* PDE */
4041 		rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd;	/* PTE */
4042 		rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd |
4043 						   rsvd_bits(13, 20);	/* large page */
4044 		rsvd_check->rsvd_bits_mask[1][0] =
4045 			rsvd_check->rsvd_bits_mask[0][0];
4046 		break;
4047 	case PT64_ROOT_5LEVEL:
4048 		rsvd_check->rsvd_bits_mask[0][4] = high_bits_rsvd |
4049 						   nonleaf_bit8_rsvd |
4050 						   rsvd_bits(7, 7);
4051 		rsvd_check->rsvd_bits_mask[1][4] =
4052 			rsvd_check->rsvd_bits_mask[0][4];
4053 		fallthrough;
4054 	case PT64_ROOT_4LEVEL:
4055 		rsvd_check->rsvd_bits_mask[0][3] = high_bits_rsvd |
4056 						   nonleaf_bit8_rsvd |
4057 						   rsvd_bits(7, 7);
4058 		rsvd_check->rsvd_bits_mask[0][2] = high_bits_rsvd |
4059 						   gbpages_bit_rsvd;
4060 		rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd;
4061 		rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd;
4062 		rsvd_check->rsvd_bits_mask[1][3] =
4063 			rsvd_check->rsvd_bits_mask[0][3];
4064 		rsvd_check->rsvd_bits_mask[1][2] = high_bits_rsvd |
4065 						   gbpages_bit_rsvd |
4066 						   rsvd_bits(13, 29);
4067 		rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd |
4068 						   rsvd_bits(13, 20); /* large page */
4069 		rsvd_check->rsvd_bits_mask[1][0] =
4070 			rsvd_check->rsvd_bits_mask[0][0];
4071 		break;
4072 	}
4073 }
4074 
4075 static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
4076 				  struct kvm_mmu *context)
4077 {
4078 	__reset_rsvds_bits_mask(vcpu, &context->guest_rsvd_check,
4079 				vcpu->arch.reserved_gpa_bits,
4080 				context->root_level, context->nx,
4081 				guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
4082 				is_pse(vcpu),
4083 				guest_cpuid_is_amd_or_hygon(vcpu));
4084 }
4085 
4086 static void
4087 __reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check,
4088 			    u64 pa_bits_rsvd, bool execonly)
4089 {
4090 	u64 high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 51);
4091 	u64 bad_mt_xwr;
4092 
4093 	rsvd_check->rsvd_bits_mask[0][4] = high_bits_rsvd | rsvd_bits(3, 7);
4094 	rsvd_check->rsvd_bits_mask[0][3] = high_bits_rsvd | rsvd_bits(3, 7);
4095 	rsvd_check->rsvd_bits_mask[0][2] = high_bits_rsvd | rsvd_bits(3, 6);
4096 	rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd | rsvd_bits(3, 6);
4097 	rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd;
4098 
4099 	/* large page */
4100 	rsvd_check->rsvd_bits_mask[1][4] = rsvd_check->rsvd_bits_mask[0][4];
4101 	rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3];
4102 	rsvd_check->rsvd_bits_mask[1][2] = high_bits_rsvd | rsvd_bits(12, 29);
4103 	rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd | rsvd_bits(12, 20);
4104 	rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0];
4105 
4106 	bad_mt_xwr = 0xFFull << (2 * 8);	/* bits 3..5 must not be 2 */
4107 	bad_mt_xwr |= 0xFFull << (3 * 8);	/* bits 3..5 must not be 3 */
4108 	bad_mt_xwr |= 0xFFull << (7 * 8);	/* bits 3..5 must not be 7 */
4109 	bad_mt_xwr |= REPEAT_BYTE(1ull << 2);	/* bits 0..2 must not be 010 */
4110 	bad_mt_xwr |= REPEAT_BYTE(1ull << 6);	/* bits 0..2 must not be 110 */
4111 	if (!execonly) {
4112 		/* bits 0..2 must not be 100 unless VMX capabilities allow it */
4113 		bad_mt_xwr |= REPEAT_BYTE(1ull << 4);
4114 	}
4115 	rsvd_check->bad_mt_xwr = bad_mt_xwr;
4116 }
4117 
4118 static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
4119 		struct kvm_mmu *context, bool execonly)
4120 {
4121 	__reset_rsvds_bits_mask_ept(&context->guest_rsvd_check,
4122 				    vcpu->arch.reserved_gpa_bits, execonly);
4123 }
4124 
4125 static inline u64 reserved_hpa_bits(void)
4126 {
4127 	return rsvd_bits(shadow_phys_bits, 63);
4128 }
4129 
4130 /*
4131  * the page table on host is the shadow page table for the page
4132  * table in guest or amd nested guest, its mmu features completely
4133  * follow the features in guest.
4134  */
4135 void
4136 reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
4137 {
4138 	bool uses_nx = context->nx ||
4139 		context->mmu_role.base.smep_andnot_wp;
4140 	struct rsvd_bits_validate *shadow_zero_check;
4141 	int i;
4142 
4143 	/*
4144 	 * Passing "true" to the last argument is okay; it adds a check
4145 	 * on bit 8 of the SPTEs which KVM doesn't use anyway.
4146 	 */
4147 	shadow_zero_check = &context->shadow_zero_check;
4148 	__reset_rsvds_bits_mask(vcpu, shadow_zero_check,
4149 				reserved_hpa_bits(),
4150 				context->shadow_root_level, uses_nx,
4151 				guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
4152 				is_pse(vcpu), true);
4153 
4154 	if (!shadow_me_mask)
4155 		return;
4156 
4157 	for (i = context->shadow_root_level; --i >= 0;) {
4158 		shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
4159 		shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
4160 	}
4161 
4162 }
4163 EXPORT_SYMBOL_GPL(reset_shadow_zero_bits_mask);
4164 
4165 static inline bool boot_cpu_is_amd(void)
4166 {
4167 	WARN_ON_ONCE(!tdp_enabled);
4168 	return shadow_x_mask == 0;
4169 }
4170 
4171 /*
4172  * the direct page table on host, use as much mmu features as
4173  * possible, however, kvm currently does not do execution-protection.
4174  */
4175 static void
4176 reset_tdp_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4177 				struct kvm_mmu *context)
4178 {
4179 	struct rsvd_bits_validate *shadow_zero_check;
4180 	int i;
4181 
4182 	shadow_zero_check = &context->shadow_zero_check;
4183 
4184 	if (boot_cpu_is_amd())
4185 		__reset_rsvds_bits_mask(vcpu, shadow_zero_check,
4186 					reserved_hpa_bits(),
4187 					context->shadow_root_level, false,
4188 					boot_cpu_has(X86_FEATURE_GBPAGES),
4189 					true, true);
4190 	else
4191 		__reset_rsvds_bits_mask_ept(shadow_zero_check,
4192 					    reserved_hpa_bits(), false);
4193 
4194 	if (!shadow_me_mask)
4195 		return;
4196 
4197 	for (i = context->shadow_root_level; --i >= 0;) {
4198 		shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
4199 		shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
4200 	}
4201 }
4202 
4203 /*
4204  * as the comments in reset_shadow_zero_bits_mask() except it
4205  * is the shadow page table for intel nested guest.
4206  */
4207 static void
4208 reset_ept_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4209 				struct kvm_mmu *context, bool execonly)
4210 {
4211 	__reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
4212 				    reserved_hpa_bits(), execonly);
4213 }
4214 
4215 #define BYTE_MASK(access) \
4216 	((1 & (access) ? 2 : 0) | \
4217 	 (2 & (access) ? 4 : 0) | \
4218 	 (3 & (access) ? 8 : 0) | \
4219 	 (4 & (access) ? 16 : 0) | \
4220 	 (5 & (access) ? 32 : 0) | \
4221 	 (6 & (access) ? 64 : 0) | \
4222 	 (7 & (access) ? 128 : 0))
4223 
4224 
4225 static void update_permission_bitmask(struct kvm_vcpu *vcpu,
4226 				      struct kvm_mmu *mmu, bool ept)
4227 {
4228 	unsigned byte;
4229 
4230 	const u8 x = BYTE_MASK(ACC_EXEC_MASK);
4231 	const u8 w = BYTE_MASK(ACC_WRITE_MASK);
4232 	const u8 u = BYTE_MASK(ACC_USER_MASK);
4233 
4234 	bool cr4_smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP) != 0;
4235 	bool cr4_smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP) != 0;
4236 	bool cr0_wp = is_write_protection(vcpu);
4237 
4238 	for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
4239 		unsigned pfec = byte << 1;
4240 
4241 		/*
4242 		 * Each "*f" variable has a 1 bit for each UWX value
4243 		 * that causes a fault with the given PFEC.
4244 		 */
4245 
4246 		/* Faults from writes to non-writable pages */
4247 		u8 wf = (pfec & PFERR_WRITE_MASK) ? (u8)~w : 0;
4248 		/* Faults from user mode accesses to supervisor pages */
4249 		u8 uf = (pfec & PFERR_USER_MASK) ? (u8)~u : 0;
4250 		/* Faults from fetches of non-executable pages*/
4251 		u8 ff = (pfec & PFERR_FETCH_MASK) ? (u8)~x : 0;
4252 		/* Faults from kernel mode fetches of user pages */
4253 		u8 smepf = 0;
4254 		/* Faults from kernel mode accesses of user pages */
4255 		u8 smapf = 0;
4256 
4257 		if (!ept) {
4258 			/* Faults from kernel mode accesses to user pages */
4259 			u8 kf = (pfec & PFERR_USER_MASK) ? 0 : u;
4260 
4261 			/* Not really needed: !nx will cause pte.nx to fault */
4262 			if (!mmu->nx)
4263 				ff = 0;
4264 
4265 			/* Allow supervisor writes if !cr0.wp */
4266 			if (!cr0_wp)
4267 				wf = (pfec & PFERR_USER_MASK) ? wf : 0;
4268 
4269 			/* Disallow supervisor fetches of user code if cr4.smep */
4270 			if (cr4_smep)
4271 				smepf = (pfec & PFERR_FETCH_MASK) ? kf : 0;
4272 
4273 			/*
4274 			 * SMAP:kernel-mode data accesses from user-mode
4275 			 * mappings should fault. A fault is considered
4276 			 * as a SMAP violation if all of the following
4277 			 * conditions are true:
4278 			 *   - X86_CR4_SMAP is set in CR4
4279 			 *   - A user page is accessed
4280 			 *   - The access is not a fetch
4281 			 *   - Page fault in kernel mode
4282 			 *   - if CPL = 3 or X86_EFLAGS_AC is clear
4283 			 *
4284 			 * Here, we cover the first three conditions.
4285 			 * The fourth is computed dynamically in permission_fault();
4286 			 * PFERR_RSVD_MASK bit will be set in PFEC if the access is
4287 			 * *not* subject to SMAP restrictions.
4288 			 */
4289 			if (cr4_smap)
4290 				smapf = (pfec & (PFERR_RSVD_MASK|PFERR_FETCH_MASK)) ? 0 : kf;
4291 		}
4292 
4293 		mmu->permissions[byte] = ff | uf | wf | smepf | smapf;
4294 	}
4295 }
4296 
4297 /*
4298 * PKU is an additional mechanism by which the paging controls access to
4299 * user-mode addresses based on the value in the PKRU register.  Protection
4300 * key violations are reported through a bit in the page fault error code.
4301 * Unlike other bits of the error code, the PK bit is not known at the
4302 * call site of e.g. gva_to_gpa; it must be computed directly in
4303 * permission_fault based on two bits of PKRU, on some machine state (CR4,
4304 * CR0, EFER, CPL), and on other bits of the error code and the page tables.
4305 *
4306 * In particular the following conditions come from the error code, the
4307 * page tables and the machine state:
4308 * - PK is always zero unless CR4.PKE=1 and EFER.LMA=1
4309 * - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch)
4310 * - PK is always zero if U=0 in the page tables
4311 * - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access.
4312 *
4313 * The PKRU bitmask caches the result of these four conditions.  The error
4314 * code (minus the P bit) and the page table's U bit form an index into the
4315 * PKRU bitmask.  Two bits of the PKRU bitmask are then extracted and ANDed
4316 * with the two bits of the PKRU register corresponding to the protection key.
4317 * For the first three conditions above the bits will be 00, thus masking
4318 * away both AD and WD.  For all reads or if the last condition holds, WD
4319 * only will be masked away.
4320 */
4321 static void update_pkru_bitmask(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
4322 				bool ept)
4323 {
4324 	unsigned bit;
4325 	bool wp;
4326 
4327 	if (ept) {
4328 		mmu->pkru_mask = 0;
4329 		return;
4330 	}
4331 
4332 	/* PKEY is enabled only if CR4.PKE and EFER.LMA are both set. */
4333 	if (!kvm_read_cr4_bits(vcpu, X86_CR4_PKE) || !is_long_mode(vcpu)) {
4334 		mmu->pkru_mask = 0;
4335 		return;
4336 	}
4337 
4338 	wp = is_write_protection(vcpu);
4339 
4340 	for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) {
4341 		unsigned pfec, pkey_bits;
4342 		bool check_pkey, check_write, ff, uf, wf, pte_user;
4343 
4344 		pfec = bit << 1;
4345 		ff = pfec & PFERR_FETCH_MASK;
4346 		uf = pfec & PFERR_USER_MASK;
4347 		wf = pfec & PFERR_WRITE_MASK;
4348 
4349 		/* PFEC.RSVD is replaced by ACC_USER_MASK. */
4350 		pte_user = pfec & PFERR_RSVD_MASK;
4351 
4352 		/*
4353 		 * Only need to check the access which is not an
4354 		 * instruction fetch and is to a user page.
4355 		 */
4356 		check_pkey = (!ff && pte_user);
4357 		/*
4358 		 * write access is controlled by PKRU if it is a
4359 		 * user access or CR0.WP = 1.
4360 		 */
4361 		check_write = check_pkey && wf && (uf || wp);
4362 
4363 		/* PKRU.AD stops both read and write access. */
4364 		pkey_bits = !!check_pkey;
4365 		/* PKRU.WD stops write access. */
4366 		pkey_bits |= (!!check_write) << 1;
4367 
4368 		mmu->pkru_mask |= (pkey_bits & 3) << pfec;
4369 	}
4370 }
4371 
4372 static void update_last_nonleaf_level(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
4373 {
4374 	unsigned root_level = mmu->root_level;
4375 
4376 	mmu->last_nonleaf_level = root_level;
4377 	if (root_level == PT32_ROOT_LEVEL && is_pse(vcpu))
4378 		mmu->last_nonleaf_level++;
4379 }
4380 
4381 static void paging64_init_context_common(struct kvm_vcpu *vcpu,
4382 					 struct kvm_mmu *context,
4383 					 int level)
4384 {
4385 	context->nx = is_nx(vcpu);
4386 	context->root_level = level;
4387 
4388 	reset_rsvds_bits_mask(vcpu, context);
4389 	update_permission_bitmask(vcpu, context, false);
4390 	update_pkru_bitmask(vcpu, context, false);
4391 	update_last_nonleaf_level(vcpu, context);
4392 
4393 	MMU_WARN_ON(!is_pae(vcpu));
4394 	context->page_fault = paging64_page_fault;
4395 	context->gva_to_gpa = paging64_gva_to_gpa;
4396 	context->sync_page = paging64_sync_page;
4397 	context->invlpg = paging64_invlpg;
4398 	context->shadow_root_level = level;
4399 	context->direct_map = false;
4400 }
4401 
4402 static void paging64_init_context(struct kvm_vcpu *vcpu,
4403 				  struct kvm_mmu *context)
4404 {
4405 	int root_level = is_la57_mode(vcpu) ?
4406 			 PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4407 
4408 	paging64_init_context_common(vcpu, context, root_level);
4409 }
4410 
4411 static void paging32_init_context(struct kvm_vcpu *vcpu,
4412 				  struct kvm_mmu *context)
4413 {
4414 	context->nx = false;
4415 	context->root_level = PT32_ROOT_LEVEL;
4416 
4417 	reset_rsvds_bits_mask(vcpu, context);
4418 	update_permission_bitmask(vcpu, context, false);
4419 	update_pkru_bitmask(vcpu, context, false);
4420 	update_last_nonleaf_level(vcpu, context);
4421 
4422 	context->page_fault = paging32_page_fault;
4423 	context->gva_to_gpa = paging32_gva_to_gpa;
4424 	context->sync_page = paging32_sync_page;
4425 	context->invlpg = paging32_invlpg;
4426 	context->shadow_root_level = PT32E_ROOT_LEVEL;
4427 	context->direct_map = false;
4428 }
4429 
4430 static void paging32E_init_context(struct kvm_vcpu *vcpu,
4431 				   struct kvm_mmu *context)
4432 {
4433 	paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
4434 }
4435 
4436 static union kvm_mmu_extended_role kvm_calc_mmu_role_ext(struct kvm_vcpu *vcpu)
4437 {
4438 	union kvm_mmu_extended_role ext = {0};
4439 
4440 	ext.cr0_pg = !!is_paging(vcpu);
4441 	ext.cr4_pae = !!is_pae(vcpu);
4442 	ext.cr4_smep = !!kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
4443 	ext.cr4_smap = !!kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
4444 	ext.cr4_pse = !!is_pse(vcpu);
4445 	ext.cr4_pke = !!kvm_read_cr4_bits(vcpu, X86_CR4_PKE);
4446 	ext.maxphyaddr = cpuid_maxphyaddr(vcpu);
4447 
4448 	ext.valid = 1;
4449 
4450 	return ext;
4451 }
4452 
4453 static union kvm_mmu_role kvm_calc_mmu_role_common(struct kvm_vcpu *vcpu,
4454 						   bool base_only)
4455 {
4456 	union kvm_mmu_role role = {0};
4457 
4458 	role.base.access = ACC_ALL;
4459 	role.base.nxe = !!is_nx(vcpu);
4460 	role.base.cr0_wp = is_write_protection(vcpu);
4461 	role.base.smm = is_smm(vcpu);
4462 	role.base.guest_mode = is_guest_mode(vcpu);
4463 
4464 	if (base_only)
4465 		return role;
4466 
4467 	role.ext = kvm_calc_mmu_role_ext(vcpu);
4468 
4469 	return role;
4470 }
4471 
4472 static inline int kvm_mmu_get_tdp_level(struct kvm_vcpu *vcpu)
4473 {
4474 	/* Use 5-level TDP if and only if it's useful/necessary. */
4475 	if (max_tdp_level == 5 && cpuid_maxphyaddr(vcpu) <= 48)
4476 		return 4;
4477 
4478 	return max_tdp_level;
4479 }
4480 
4481 static union kvm_mmu_role
4482 kvm_calc_tdp_mmu_root_page_role(struct kvm_vcpu *vcpu, bool base_only)
4483 {
4484 	union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, base_only);
4485 
4486 	role.base.ad_disabled = (shadow_accessed_mask == 0);
4487 	role.base.level = kvm_mmu_get_tdp_level(vcpu);
4488 	role.base.direct = true;
4489 	role.base.gpte_is_8_bytes = true;
4490 
4491 	return role;
4492 }
4493 
4494 static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
4495 {
4496 	struct kvm_mmu *context = &vcpu->arch.root_mmu;
4497 	union kvm_mmu_role new_role =
4498 		kvm_calc_tdp_mmu_root_page_role(vcpu, false);
4499 
4500 	if (new_role.as_u64 == context->mmu_role.as_u64)
4501 		return;
4502 
4503 	context->mmu_role.as_u64 = new_role.as_u64;
4504 	context->page_fault = kvm_tdp_page_fault;
4505 	context->sync_page = nonpaging_sync_page;
4506 	context->invlpg = NULL;
4507 	context->shadow_root_level = kvm_mmu_get_tdp_level(vcpu);
4508 	context->direct_map = true;
4509 	context->get_guest_pgd = get_cr3;
4510 	context->get_pdptr = kvm_pdptr_read;
4511 	context->inject_page_fault = kvm_inject_page_fault;
4512 
4513 	if (!is_paging(vcpu)) {
4514 		context->nx = false;
4515 		context->gva_to_gpa = nonpaging_gva_to_gpa;
4516 		context->root_level = 0;
4517 	} else if (is_long_mode(vcpu)) {
4518 		context->nx = is_nx(vcpu);
4519 		context->root_level = is_la57_mode(vcpu) ?
4520 				PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4521 		reset_rsvds_bits_mask(vcpu, context);
4522 		context->gva_to_gpa = paging64_gva_to_gpa;
4523 	} else if (is_pae(vcpu)) {
4524 		context->nx = is_nx(vcpu);
4525 		context->root_level = PT32E_ROOT_LEVEL;
4526 		reset_rsvds_bits_mask(vcpu, context);
4527 		context->gva_to_gpa = paging64_gva_to_gpa;
4528 	} else {
4529 		context->nx = false;
4530 		context->root_level = PT32_ROOT_LEVEL;
4531 		reset_rsvds_bits_mask(vcpu, context);
4532 		context->gva_to_gpa = paging32_gva_to_gpa;
4533 	}
4534 
4535 	update_permission_bitmask(vcpu, context, false);
4536 	update_pkru_bitmask(vcpu, context, false);
4537 	update_last_nonleaf_level(vcpu, context);
4538 	reset_tdp_shadow_zero_bits_mask(vcpu, context);
4539 }
4540 
4541 static union kvm_mmu_role
4542 kvm_calc_shadow_root_page_role_common(struct kvm_vcpu *vcpu, bool base_only)
4543 {
4544 	union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, base_only);
4545 
4546 	role.base.smep_andnot_wp = role.ext.cr4_smep &&
4547 		!is_write_protection(vcpu);
4548 	role.base.smap_andnot_wp = role.ext.cr4_smap &&
4549 		!is_write_protection(vcpu);
4550 	role.base.gpte_is_8_bytes = !!is_pae(vcpu);
4551 
4552 	return role;
4553 }
4554 
4555 static union kvm_mmu_role
4556 kvm_calc_shadow_mmu_root_page_role(struct kvm_vcpu *vcpu, bool base_only)
4557 {
4558 	union kvm_mmu_role role =
4559 		kvm_calc_shadow_root_page_role_common(vcpu, base_only);
4560 
4561 	role.base.direct = !is_paging(vcpu);
4562 
4563 	if (!is_long_mode(vcpu))
4564 		role.base.level = PT32E_ROOT_LEVEL;
4565 	else if (is_la57_mode(vcpu))
4566 		role.base.level = PT64_ROOT_5LEVEL;
4567 	else
4568 		role.base.level = PT64_ROOT_4LEVEL;
4569 
4570 	return role;
4571 }
4572 
4573 static void shadow_mmu_init_context(struct kvm_vcpu *vcpu, struct kvm_mmu *context,
4574 				    u32 cr0, u32 cr4, u32 efer,
4575 				    union kvm_mmu_role new_role)
4576 {
4577 	if (!(cr0 & X86_CR0_PG))
4578 		nonpaging_init_context(vcpu, context);
4579 	else if (efer & EFER_LMA)
4580 		paging64_init_context(vcpu, context);
4581 	else if (cr4 & X86_CR4_PAE)
4582 		paging32E_init_context(vcpu, context);
4583 	else
4584 		paging32_init_context(vcpu, context);
4585 
4586 	context->mmu_role.as_u64 = new_role.as_u64;
4587 	reset_shadow_zero_bits_mask(vcpu, context);
4588 }
4589 
4590 static void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, u32 cr0, u32 cr4, u32 efer)
4591 {
4592 	struct kvm_mmu *context = &vcpu->arch.root_mmu;
4593 	union kvm_mmu_role new_role =
4594 		kvm_calc_shadow_mmu_root_page_role(vcpu, false);
4595 
4596 	if (new_role.as_u64 != context->mmu_role.as_u64)
4597 		shadow_mmu_init_context(vcpu, context, cr0, cr4, efer, new_role);
4598 }
4599 
4600 static union kvm_mmu_role
4601 kvm_calc_shadow_npt_root_page_role(struct kvm_vcpu *vcpu)
4602 {
4603 	union kvm_mmu_role role =
4604 		kvm_calc_shadow_root_page_role_common(vcpu, false);
4605 
4606 	role.base.direct = false;
4607 	role.base.level = kvm_mmu_get_tdp_level(vcpu);
4608 
4609 	return role;
4610 }
4611 
4612 void kvm_init_shadow_npt_mmu(struct kvm_vcpu *vcpu, u32 cr0, u32 cr4, u32 efer,
4613 			     gpa_t nested_cr3)
4614 {
4615 	struct kvm_mmu *context = &vcpu->arch.guest_mmu;
4616 	union kvm_mmu_role new_role = kvm_calc_shadow_npt_root_page_role(vcpu);
4617 
4618 	context->shadow_root_level = new_role.base.level;
4619 
4620 	__kvm_mmu_new_pgd(vcpu, nested_cr3, new_role.base, false, false);
4621 
4622 	if (new_role.as_u64 != context->mmu_role.as_u64)
4623 		shadow_mmu_init_context(vcpu, context, cr0, cr4, efer, new_role);
4624 }
4625 EXPORT_SYMBOL_GPL(kvm_init_shadow_npt_mmu);
4626 
4627 static union kvm_mmu_role
4628 kvm_calc_shadow_ept_root_page_role(struct kvm_vcpu *vcpu, bool accessed_dirty,
4629 				   bool execonly, u8 level)
4630 {
4631 	union kvm_mmu_role role = {0};
4632 
4633 	/* SMM flag is inherited from root_mmu */
4634 	role.base.smm = vcpu->arch.root_mmu.mmu_role.base.smm;
4635 
4636 	role.base.level = level;
4637 	role.base.gpte_is_8_bytes = true;
4638 	role.base.direct = false;
4639 	role.base.ad_disabled = !accessed_dirty;
4640 	role.base.guest_mode = true;
4641 	role.base.access = ACC_ALL;
4642 
4643 	/*
4644 	 * WP=1 and NOT_WP=1 is an impossible combination, use WP and the
4645 	 * SMAP variation to denote shadow EPT entries.
4646 	 */
4647 	role.base.cr0_wp = true;
4648 	role.base.smap_andnot_wp = true;
4649 
4650 	role.ext = kvm_calc_mmu_role_ext(vcpu);
4651 	role.ext.execonly = execonly;
4652 
4653 	return role;
4654 }
4655 
4656 void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly,
4657 			     bool accessed_dirty, gpa_t new_eptp)
4658 {
4659 	struct kvm_mmu *context = &vcpu->arch.guest_mmu;
4660 	u8 level = vmx_eptp_page_walk_level(new_eptp);
4661 	union kvm_mmu_role new_role =
4662 		kvm_calc_shadow_ept_root_page_role(vcpu, accessed_dirty,
4663 						   execonly, level);
4664 
4665 	__kvm_mmu_new_pgd(vcpu, new_eptp, new_role.base, true, true);
4666 
4667 	if (new_role.as_u64 == context->mmu_role.as_u64)
4668 		return;
4669 
4670 	context->shadow_root_level = level;
4671 
4672 	context->nx = true;
4673 	context->ept_ad = accessed_dirty;
4674 	context->page_fault = ept_page_fault;
4675 	context->gva_to_gpa = ept_gva_to_gpa;
4676 	context->sync_page = ept_sync_page;
4677 	context->invlpg = ept_invlpg;
4678 	context->root_level = level;
4679 	context->direct_map = false;
4680 	context->mmu_role.as_u64 = new_role.as_u64;
4681 
4682 	update_permission_bitmask(vcpu, context, true);
4683 	update_pkru_bitmask(vcpu, context, true);
4684 	update_last_nonleaf_level(vcpu, context);
4685 	reset_rsvds_bits_mask_ept(vcpu, context, execonly);
4686 	reset_ept_shadow_zero_bits_mask(vcpu, context, execonly);
4687 }
4688 EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);
4689 
4690 static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
4691 {
4692 	struct kvm_mmu *context = &vcpu->arch.root_mmu;
4693 
4694 	kvm_init_shadow_mmu(vcpu,
4695 			    kvm_read_cr0_bits(vcpu, X86_CR0_PG),
4696 			    kvm_read_cr4_bits(vcpu, X86_CR4_PAE),
4697 			    vcpu->arch.efer);
4698 
4699 	context->get_guest_pgd     = get_cr3;
4700 	context->get_pdptr         = kvm_pdptr_read;
4701 	context->inject_page_fault = kvm_inject_page_fault;
4702 }
4703 
4704 static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
4705 {
4706 	union kvm_mmu_role new_role = kvm_calc_mmu_role_common(vcpu, false);
4707 	struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
4708 
4709 	if (new_role.as_u64 == g_context->mmu_role.as_u64)
4710 		return;
4711 
4712 	g_context->mmu_role.as_u64 = new_role.as_u64;
4713 	g_context->get_guest_pgd     = get_cr3;
4714 	g_context->get_pdptr         = kvm_pdptr_read;
4715 	g_context->inject_page_fault = kvm_inject_page_fault;
4716 
4717 	/*
4718 	 * L2 page tables are never shadowed, so there is no need to sync
4719 	 * SPTEs.
4720 	 */
4721 	g_context->invlpg            = NULL;
4722 
4723 	/*
4724 	 * Note that arch.mmu->gva_to_gpa translates l2_gpa to l1_gpa using
4725 	 * L1's nested page tables (e.g. EPT12). The nested translation
4726 	 * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using
4727 	 * L2's page tables as the first level of translation and L1's
4728 	 * nested page tables as the second level of translation. Basically
4729 	 * the gva_to_gpa functions between mmu and nested_mmu are swapped.
4730 	 */
4731 	if (!is_paging(vcpu)) {
4732 		g_context->nx = false;
4733 		g_context->root_level = 0;
4734 		g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
4735 	} else if (is_long_mode(vcpu)) {
4736 		g_context->nx = is_nx(vcpu);
4737 		g_context->root_level = is_la57_mode(vcpu) ?
4738 					PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4739 		reset_rsvds_bits_mask(vcpu, g_context);
4740 		g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4741 	} else if (is_pae(vcpu)) {
4742 		g_context->nx = is_nx(vcpu);
4743 		g_context->root_level = PT32E_ROOT_LEVEL;
4744 		reset_rsvds_bits_mask(vcpu, g_context);
4745 		g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4746 	} else {
4747 		g_context->nx = false;
4748 		g_context->root_level = PT32_ROOT_LEVEL;
4749 		reset_rsvds_bits_mask(vcpu, g_context);
4750 		g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
4751 	}
4752 
4753 	update_permission_bitmask(vcpu, g_context, false);
4754 	update_pkru_bitmask(vcpu, g_context, false);
4755 	update_last_nonleaf_level(vcpu, g_context);
4756 }
4757 
4758 void kvm_init_mmu(struct kvm_vcpu *vcpu, bool reset_roots)
4759 {
4760 	if (reset_roots) {
4761 		uint i;
4762 
4763 		vcpu->arch.mmu->root_hpa = INVALID_PAGE;
4764 
4765 		for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
4766 			vcpu->arch.mmu->prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
4767 	}
4768 
4769 	if (mmu_is_nested(vcpu))
4770 		init_kvm_nested_mmu(vcpu);
4771 	else if (tdp_enabled)
4772 		init_kvm_tdp_mmu(vcpu);
4773 	else
4774 		init_kvm_softmmu(vcpu);
4775 }
4776 EXPORT_SYMBOL_GPL(kvm_init_mmu);
4777 
4778 static union kvm_mmu_page_role
4779 kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu)
4780 {
4781 	union kvm_mmu_role role;
4782 
4783 	if (tdp_enabled)
4784 		role = kvm_calc_tdp_mmu_root_page_role(vcpu, true);
4785 	else
4786 		role = kvm_calc_shadow_mmu_root_page_role(vcpu, true);
4787 
4788 	return role.base;
4789 }
4790 
4791 void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
4792 {
4793 	kvm_mmu_unload(vcpu);
4794 	kvm_init_mmu(vcpu, true);
4795 }
4796 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
4797 
4798 int kvm_mmu_load(struct kvm_vcpu *vcpu)
4799 {
4800 	int r;
4801 
4802 	r = mmu_topup_memory_caches(vcpu, !vcpu->arch.mmu->direct_map);
4803 	if (r)
4804 		goto out;
4805 	r = mmu_alloc_roots(vcpu);
4806 	kvm_mmu_sync_roots(vcpu);
4807 	if (r)
4808 		goto out;
4809 	kvm_mmu_load_pgd(vcpu);
4810 	static_call(kvm_x86_tlb_flush_current)(vcpu);
4811 out:
4812 	return r;
4813 }
4814 EXPORT_SYMBOL_GPL(kvm_mmu_load);
4815 
4816 void kvm_mmu_unload(struct kvm_vcpu *vcpu)
4817 {
4818 	kvm_mmu_free_roots(vcpu, &vcpu->arch.root_mmu, KVM_MMU_ROOTS_ALL);
4819 	WARN_ON(VALID_PAGE(vcpu->arch.root_mmu.root_hpa));
4820 	kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
4821 	WARN_ON(VALID_PAGE(vcpu->arch.guest_mmu.root_hpa));
4822 }
4823 EXPORT_SYMBOL_GPL(kvm_mmu_unload);
4824 
4825 static bool need_remote_flush(u64 old, u64 new)
4826 {
4827 	if (!is_shadow_present_pte(old))
4828 		return false;
4829 	if (!is_shadow_present_pte(new))
4830 		return true;
4831 	if ((old ^ new) & PT64_BASE_ADDR_MASK)
4832 		return true;
4833 	old ^= shadow_nx_mask;
4834 	new ^= shadow_nx_mask;
4835 	return (old & ~new & PT64_PERM_MASK) != 0;
4836 }
4837 
4838 static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
4839 				    int *bytes)
4840 {
4841 	u64 gentry = 0;
4842 	int r;
4843 
4844 	/*
4845 	 * Assume that the pte write on a page table of the same type
4846 	 * as the current vcpu paging mode since we update the sptes only
4847 	 * when they have the same mode.
4848 	 */
4849 	if (is_pae(vcpu) && *bytes == 4) {
4850 		/* Handle a 32-bit guest writing two halves of a 64-bit gpte */
4851 		*gpa &= ~(gpa_t)7;
4852 		*bytes = 8;
4853 	}
4854 
4855 	if (*bytes == 4 || *bytes == 8) {
4856 		r = kvm_vcpu_read_guest_atomic(vcpu, *gpa, &gentry, *bytes);
4857 		if (r)
4858 			gentry = 0;
4859 	}
4860 
4861 	return gentry;
4862 }
4863 
4864 /*
4865  * If we're seeing too many writes to a page, it may no longer be a page table,
4866  * or we may be forking, in which case it is better to unmap the page.
4867  */
4868 static bool detect_write_flooding(struct kvm_mmu_page *sp)
4869 {
4870 	/*
4871 	 * Skip write-flooding detected for the sp whose level is 1, because
4872 	 * it can become unsync, then the guest page is not write-protected.
4873 	 */
4874 	if (sp->role.level == PG_LEVEL_4K)
4875 		return false;
4876 
4877 	atomic_inc(&sp->write_flooding_count);
4878 	return atomic_read(&sp->write_flooding_count) >= 3;
4879 }
4880 
4881 /*
4882  * Misaligned accesses are too much trouble to fix up; also, they usually
4883  * indicate a page is not used as a page table.
4884  */
4885 static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
4886 				    int bytes)
4887 {
4888 	unsigned offset, pte_size, misaligned;
4889 
4890 	pgprintk("misaligned: gpa %llx bytes %d role %x\n",
4891 		 gpa, bytes, sp->role.word);
4892 
4893 	offset = offset_in_page(gpa);
4894 	pte_size = sp->role.gpte_is_8_bytes ? 8 : 4;
4895 
4896 	/*
4897 	 * Sometimes, the OS only writes the last one bytes to update status
4898 	 * bits, for example, in linux, andb instruction is used in clear_bit().
4899 	 */
4900 	if (!(offset & (pte_size - 1)) && bytes == 1)
4901 		return false;
4902 
4903 	misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
4904 	misaligned |= bytes < 4;
4905 
4906 	return misaligned;
4907 }
4908 
4909 static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
4910 {
4911 	unsigned page_offset, quadrant;
4912 	u64 *spte;
4913 	int level;
4914 
4915 	page_offset = offset_in_page(gpa);
4916 	level = sp->role.level;
4917 	*nspte = 1;
4918 	if (!sp->role.gpte_is_8_bytes) {
4919 		page_offset <<= 1;	/* 32->64 */
4920 		/*
4921 		 * A 32-bit pde maps 4MB while the shadow pdes map
4922 		 * only 2MB.  So we need to double the offset again
4923 		 * and zap two pdes instead of one.
4924 		 */
4925 		if (level == PT32_ROOT_LEVEL) {
4926 			page_offset &= ~7; /* kill rounding error */
4927 			page_offset <<= 1;
4928 			*nspte = 2;
4929 		}
4930 		quadrant = page_offset >> PAGE_SHIFT;
4931 		page_offset &= ~PAGE_MASK;
4932 		if (quadrant != sp->role.quadrant)
4933 			return NULL;
4934 	}
4935 
4936 	spte = &sp->spt[page_offset / sizeof(*spte)];
4937 	return spte;
4938 }
4939 
4940 static void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
4941 			      const u8 *new, int bytes,
4942 			      struct kvm_page_track_notifier_node *node)
4943 {
4944 	gfn_t gfn = gpa >> PAGE_SHIFT;
4945 	struct kvm_mmu_page *sp;
4946 	LIST_HEAD(invalid_list);
4947 	u64 entry, gentry, *spte;
4948 	int npte;
4949 	bool remote_flush, local_flush;
4950 
4951 	/*
4952 	 * If we don't have indirect shadow pages, it means no page is
4953 	 * write-protected, so we can exit simply.
4954 	 */
4955 	if (!READ_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
4956 		return;
4957 
4958 	remote_flush = local_flush = false;
4959 
4960 	pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
4961 
4962 	/*
4963 	 * No need to care whether allocation memory is successful
4964 	 * or not since pte prefetch is skiped if it does not have
4965 	 * enough objects in the cache.
4966 	 */
4967 	mmu_topup_memory_caches(vcpu, true);
4968 
4969 	write_lock(&vcpu->kvm->mmu_lock);
4970 
4971 	gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, &bytes);
4972 
4973 	++vcpu->kvm->stat.mmu_pte_write;
4974 	kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
4975 
4976 	for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
4977 		if (detect_write_misaligned(sp, gpa, bytes) ||
4978 		      detect_write_flooding(sp)) {
4979 			kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
4980 			++vcpu->kvm->stat.mmu_flooded;
4981 			continue;
4982 		}
4983 
4984 		spte = get_written_sptes(sp, gpa, &npte);
4985 		if (!spte)
4986 			continue;
4987 
4988 		local_flush = true;
4989 		while (npte--) {
4990 			entry = *spte;
4991 			mmu_page_zap_pte(vcpu->kvm, sp, spte, NULL);
4992 			if (gentry && sp->role.level != PG_LEVEL_4K)
4993 				++vcpu->kvm->stat.mmu_pde_zapped;
4994 			if (need_remote_flush(entry, *spte))
4995 				remote_flush = true;
4996 			++spte;
4997 		}
4998 	}
4999 	kvm_mmu_flush_or_zap(vcpu, &invalid_list, remote_flush, local_flush);
5000 	kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
5001 	write_unlock(&vcpu->kvm->mmu_lock);
5002 }
5003 
5004 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 error_code,
5005 		       void *insn, int insn_len)
5006 {
5007 	int r, emulation_type = EMULTYPE_PF;
5008 	bool direct = vcpu->arch.mmu->direct_map;
5009 
5010 	if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa)))
5011 		return RET_PF_RETRY;
5012 
5013 	r = RET_PF_INVALID;
5014 	if (unlikely(error_code & PFERR_RSVD_MASK)) {
5015 		r = handle_mmio_page_fault(vcpu, cr2_or_gpa, direct);
5016 		if (r == RET_PF_EMULATE)
5017 			goto emulate;
5018 	}
5019 
5020 	if (r == RET_PF_INVALID) {
5021 		r = kvm_mmu_do_page_fault(vcpu, cr2_or_gpa,
5022 					  lower_32_bits(error_code), false);
5023 		if (WARN_ON_ONCE(r == RET_PF_INVALID))
5024 			return -EIO;
5025 	}
5026 
5027 	if (r < 0)
5028 		return r;
5029 	if (r != RET_PF_EMULATE)
5030 		return 1;
5031 
5032 	/*
5033 	 * Before emulating the instruction, check if the error code
5034 	 * was due to a RO violation while translating the guest page.
5035 	 * This can occur when using nested virtualization with nested
5036 	 * paging in both guests. If true, we simply unprotect the page
5037 	 * and resume the guest.
5038 	 */
5039 	if (vcpu->arch.mmu->direct_map &&
5040 	    (error_code & PFERR_NESTED_GUEST_PAGE) == PFERR_NESTED_GUEST_PAGE) {
5041 		kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(cr2_or_gpa));
5042 		return 1;
5043 	}
5044 
5045 	/*
5046 	 * vcpu->arch.mmu.page_fault returned RET_PF_EMULATE, but we can still
5047 	 * optimistically try to just unprotect the page and let the processor
5048 	 * re-execute the instruction that caused the page fault.  Do not allow
5049 	 * retrying MMIO emulation, as it's not only pointless but could also
5050 	 * cause us to enter an infinite loop because the processor will keep
5051 	 * faulting on the non-existent MMIO address.  Retrying an instruction
5052 	 * from a nested guest is also pointless and dangerous as we are only
5053 	 * explicitly shadowing L1's page tables, i.e. unprotecting something
5054 	 * for L1 isn't going to magically fix whatever issue cause L2 to fail.
5055 	 */
5056 	if (!mmio_info_in_cache(vcpu, cr2_or_gpa, direct) && !is_guest_mode(vcpu))
5057 		emulation_type |= EMULTYPE_ALLOW_RETRY_PF;
5058 emulate:
5059 	return x86_emulate_instruction(vcpu, cr2_or_gpa, emulation_type, insn,
5060 				       insn_len);
5061 }
5062 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
5063 
5064 void kvm_mmu_invalidate_gva(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
5065 			    gva_t gva, hpa_t root_hpa)
5066 {
5067 	int i;
5068 
5069 	/* It's actually a GPA for vcpu->arch.guest_mmu.  */
5070 	if (mmu != &vcpu->arch.guest_mmu) {
5071 		/* INVLPG on a non-canonical address is a NOP according to the SDM.  */
5072 		if (is_noncanonical_address(gva, vcpu))
5073 			return;
5074 
5075 		static_call(kvm_x86_tlb_flush_gva)(vcpu, gva);
5076 	}
5077 
5078 	if (!mmu->invlpg)
5079 		return;
5080 
5081 	if (root_hpa == INVALID_PAGE) {
5082 		mmu->invlpg(vcpu, gva, mmu->root_hpa);
5083 
5084 		/*
5085 		 * INVLPG is required to invalidate any global mappings for the VA,
5086 		 * irrespective of PCID. Since it would take us roughly similar amount
5087 		 * of work to determine whether any of the prev_root mappings of the VA
5088 		 * is marked global, or to just sync it blindly, so we might as well
5089 		 * just always sync it.
5090 		 *
5091 		 * Mappings not reachable via the current cr3 or the prev_roots will be
5092 		 * synced when switching to that cr3, so nothing needs to be done here
5093 		 * for them.
5094 		 */
5095 		for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5096 			if (VALID_PAGE(mmu->prev_roots[i].hpa))
5097 				mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
5098 	} else {
5099 		mmu->invlpg(vcpu, gva, root_hpa);
5100 	}
5101 }
5102 
5103 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
5104 {
5105 	kvm_mmu_invalidate_gva(vcpu, vcpu->arch.mmu, gva, INVALID_PAGE);
5106 	++vcpu->stat.invlpg;
5107 }
5108 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
5109 
5110 
5111 void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid)
5112 {
5113 	struct kvm_mmu *mmu = vcpu->arch.mmu;
5114 	bool tlb_flush = false;
5115 	uint i;
5116 
5117 	if (pcid == kvm_get_active_pcid(vcpu)) {
5118 		mmu->invlpg(vcpu, gva, mmu->root_hpa);
5119 		tlb_flush = true;
5120 	}
5121 
5122 	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
5123 		if (VALID_PAGE(mmu->prev_roots[i].hpa) &&
5124 		    pcid == kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd)) {
5125 			mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
5126 			tlb_flush = true;
5127 		}
5128 	}
5129 
5130 	if (tlb_flush)
5131 		static_call(kvm_x86_tlb_flush_gva)(vcpu, gva);
5132 
5133 	++vcpu->stat.invlpg;
5134 
5135 	/*
5136 	 * Mappings not reachable via the current cr3 or the prev_roots will be
5137 	 * synced when switching to that cr3, so nothing needs to be done here
5138 	 * for them.
5139 	 */
5140 }
5141 
5142 void kvm_configure_mmu(bool enable_tdp, int tdp_max_root_level,
5143 		       int tdp_huge_page_level)
5144 {
5145 	tdp_enabled = enable_tdp;
5146 	max_tdp_level = tdp_max_root_level;
5147 
5148 	/*
5149 	 * max_huge_page_level reflects KVM's MMU capabilities irrespective
5150 	 * of kernel support, e.g. KVM may be capable of using 1GB pages when
5151 	 * the kernel is not.  But, KVM never creates a page size greater than
5152 	 * what is used by the kernel for any given HVA, i.e. the kernel's
5153 	 * capabilities are ultimately consulted by kvm_mmu_hugepage_adjust().
5154 	 */
5155 	if (tdp_enabled)
5156 		max_huge_page_level = tdp_huge_page_level;
5157 	else if (boot_cpu_has(X86_FEATURE_GBPAGES))
5158 		max_huge_page_level = PG_LEVEL_1G;
5159 	else
5160 		max_huge_page_level = PG_LEVEL_2M;
5161 }
5162 EXPORT_SYMBOL_GPL(kvm_configure_mmu);
5163 
5164 /* The return value indicates if tlb flush on all vcpus is needed. */
5165 typedef bool (*slot_level_handler) (struct kvm *kvm, struct kvm_rmap_head *rmap_head,
5166 				    struct kvm_memory_slot *slot);
5167 
5168 /* The caller should hold mmu-lock before calling this function. */
5169 static __always_inline bool
5170 slot_handle_level_range(struct kvm *kvm, struct kvm_memory_slot *memslot,
5171 			slot_level_handler fn, int start_level, int end_level,
5172 			gfn_t start_gfn, gfn_t end_gfn, bool lock_flush_tlb)
5173 {
5174 	struct slot_rmap_walk_iterator iterator;
5175 	bool flush = false;
5176 
5177 	for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn,
5178 			end_gfn, &iterator) {
5179 		if (iterator.rmap)
5180 			flush |= fn(kvm, iterator.rmap, memslot);
5181 
5182 		if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) {
5183 			if (flush && lock_flush_tlb) {
5184 				kvm_flush_remote_tlbs_with_address(kvm,
5185 						start_gfn,
5186 						iterator.gfn - start_gfn + 1);
5187 				flush = false;
5188 			}
5189 			cond_resched_rwlock_write(&kvm->mmu_lock);
5190 		}
5191 	}
5192 
5193 	if (flush && lock_flush_tlb) {
5194 		kvm_flush_remote_tlbs_with_address(kvm, start_gfn,
5195 						   end_gfn - start_gfn + 1);
5196 		flush = false;
5197 	}
5198 
5199 	return flush;
5200 }
5201 
5202 static __always_inline bool
5203 slot_handle_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5204 		  slot_level_handler fn, int start_level, int end_level,
5205 		  bool lock_flush_tlb)
5206 {
5207 	return slot_handle_level_range(kvm, memslot, fn, start_level,
5208 			end_level, memslot->base_gfn,
5209 			memslot->base_gfn + memslot->npages - 1,
5210 			lock_flush_tlb);
5211 }
5212 
5213 static __always_inline bool
5214 slot_handle_leaf(struct kvm *kvm, struct kvm_memory_slot *memslot,
5215 		 slot_level_handler fn, bool lock_flush_tlb)
5216 {
5217 	return slot_handle_level(kvm, memslot, fn, PG_LEVEL_4K,
5218 				 PG_LEVEL_4K, lock_flush_tlb);
5219 }
5220 
5221 static void free_mmu_pages(struct kvm_mmu *mmu)
5222 {
5223 	free_page((unsigned long)mmu->pae_root);
5224 	free_page((unsigned long)mmu->lm_root);
5225 }
5226 
5227 static int __kvm_mmu_create(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
5228 {
5229 	struct page *page;
5230 	int i;
5231 
5232 	mmu->root_hpa = INVALID_PAGE;
5233 	mmu->root_pgd = 0;
5234 	mmu->translate_gpa = translate_gpa;
5235 	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5236 		mmu->prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
5237 
5238 	/*
5239 	 * When using PAE paging, the four PDPTEs are treated as 'root' pages,
5240 	 * while the PDP table is a per-vCPU construct that's allocated at MMU
5241 	 * creation.  When emulating 32-bit mode, cr3 is only 32 bits even on
5242 	 * x86_64.  Therefore we need to allocate the PDP table in the first
5243 	 * 4GB of memory, which happens to fit the DMA32 zone.  Except for
5244 	 * SVM's 32-bit NPT support, TDP paging doesn't use PAE paging and can
5245 	 * skip allocating the PDP table.
5246 	 */
5247 	if (tdp_enabled && kvm_mmu_get_tdp_level(vcpu) > PT32E_ROOT_LEVEL)
5248 		return 0;
5249 
5250 	page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_DMA32);
5251 	if (!page)
5252 		return -ENOMEM;
5253 
5254 	mmu->pae_root = page_address(page);
5255 	for (i = 0; i < 4; ++i)
5256 		mmu->pae_root[i] = INVALID_PAGE;
5257 
5258 	return 0;
5259 }
5260 
5261 int kvm_mmu_create(struct kvm_vcpu *vcpu)
5262 {
5263 	int ret;
5264 
5265 	vcpu->arch.mmu_pte_list_desc_cache.kmem_cache = pte_list_desc_cache;
5266 	vcpu->arch.mmu_pte_list_desc_cache.gfp_zero = __GFP_ZERO;
5267 
5268 	vcpu->arch.mmu_page_header_cache.kmem_cache = mmu_page_header_cache;
5269 	vcpu->arch.mmu_page_header_cache.gfp_zero = __GFP_ZERO;
5270 
5271 	vcpu->arch.mmu_shadow_page_cache.gfp_zero = __GFP_ZERO;
5272 
5273 	vcpu->arch.mmu = &vcpu->arch.root_mmu;
5274 	vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
5275 
5276 	vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
5277 
5278 	ret = __kvm_mmu_create(vcpu, &vcpu->arch.guest_mmu);
5279 	if (ret)
5280 		return ret;
5281 
5282 	ret = __kvm_mmu_create(vcpu, &vcpu->arch.root_mmu);
5283 	if (ret)
5284 		goto fail_allocate_root;
5285 
5286 	return ret;
5287  fail_allocate_root:
5288 	free_mmu_pages(&vcpu->arch.guest_mmu);
5289 	return ret;
5290 }
5291 
5292 #define BATCH_ZAP_PAGES	10
5293 static void kvm_zap_obsolete_pages(struct kvm *kvm)
5294 {
5295 	struct kvm_mmu_page *sp, *node;
5296 	int nr_zapped, batch = 0;
5297 
5298 restart:
5299 	list_for_each_entry_safe_reverse(sp, node,
5300 	      &kvm->arch.active_mmu_pages, link) {
5301 		/*
5302 		 * No obsolete valid page exists before a newly created page
5303 		 * since active_mmu_pages is a FIFO list.
5304 		 */
5305 		if (!is_obsolete_sp(kvm, sp))
5306 			break;
5307 
5308 		/*
5309 		 * Invalid pages should never land back on the list of active
5310 		 * pages.  Skip the bogus page, otherwise we'll get stuck in an
5311 		 * infinite loop if the page gets put back on the list (again).
5312 		 */
5313 		if (WARN_ON(sp->role.invalid))
5314 			continue;
5315 
5316 		/*
5317 		 * No need to flush the TLB since we're only zapping shadow
5318 		 * pages with an obsolete generation number and all vCPUS have
5319 		 * loaded a new root, i.e. the shadow pages being zapped cannot
5320 		 * be in active use by the guest.
5321 		 */
5322 		if (batch >= BATCH_ZAP_PAGES &&
5323 		    cond_resched_rwlock_write(&kvm->mmu_lock)) {
5324 			batch = 0;
5325 			goto restart;
5326 		}
5327 
5328 		if (__kvm_mmu_prepare_zap_page(kvm, sp,
5329 				&kvm->arch.zapped_obsolete_pages, &nr_zapped)) {
5330 			batch += nr_zapped;
5331 			goto restart;
5332 		}
5333 	}
5334 
5335 	/*
5336 	 * Trigger a remote TLB flush before freeing the page tables to ensure
5337 	 * KVM is not in the middle of a lockless shadow page table walk, which
5338 	 * may reference the pages.
5339 	 */
5340 	kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
5341 }
5342 
5343 /*
5344  * Fast invalidate all shadow pages and use lock-break technique
5345  * to zap obsolete pages.
5346  *
5347  * It's required when memslot is being deleted or VM is being
5348  * destroyed, in these cases, we should ensure that KVM MMU does
5349  * not use any resource of the being-deleted slot or all slots
5350  * after calling the function.
5351  */
5352 static void kvm_mmu_zap_all_fast(struct kvm *kvm)
5353 {
5354 	lockdep_assert_held(&kvm->slots_lock);
5355 
5356 	write_lock(&kvm->mmu_lock);
5357 	trace_kvm_mmu_zap_all_fast(kvm);
5358 
5359 	/*
5360 	 * Toggle mmu_valid_gen between '0' and '1'.  Because slots_lock is
5361 	 * held for the entire duration of zapping obsolete pages, it's
5362 	 * impossible for there to be multiple invalid generations associated
5363 	 * with *valid* shadow pages at any given time, i.e. there is exactly
5364 	 * one valid generation and (at most) one invalid generation.
5365 	 */
5366 	kvm->arch.mmu_valid_gen = kvm->arch.mmu_valid_gen ? 0 : 1;
5367 
5368 	/*
5369 	 * Notify all vcpus to reload its shadow page table and flush TLB.
5370 	 * Then all vcpus will switch to new shadow page table with the new
5371 	 * mmu_valid_gen.
5372 	 *
5373 	 * Note: we need to do this under the protection of mmu_lock,
5374 	 * otherwise, vcpu would purge shadow page but miss tlb flush.
5375 	 */
5376 	kvm_reload_remote_mmus(kvm);
5377 
5378 	kvm_zap_obsolete_pages(kvm);
5379 
5380 	if (is_tdp_mmu_enabled(kvm))
5381 		kvm_tdp_mmu_zap_all(kvm);
5382 
5383 	write_unlock(&kvm->mmu_lock);
5384 }
5385 
5386 static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
5387 {
5388 	return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
5389 }
5390 
5391 static void kvm_mmu_invalidate_zap_pages_in_memslot(struct kvm *kvm,
5392 			struct kvm_memory_slot *slot,
5393 			struct kvm_page_track_notifier_node *node)
5394 {
5395 	kvm_mmu_zap_all_fast(kvm);
5396 }
5397 
5398 void kvm_mmu_init_vm(struct kvm *kvm)
5399 {
5400 	struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5401 
5402 	kvm_mmu_init_tdp_mmu(kvm);
5403 
5404 	node->track_write = kvm_mmu_pte_write;
5405 	node->track_flush_slot = kvm_mmu_invalidate_zap_pages_in_memslot;
5406 	kvm_page_track_register_notifier(kvm, node);
5407 }
5408 
5409 void kvm_mmu_uninit_vm(struct kvm *kvm)
5410 {
5411 	struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5412 
5413 	kvm_page_track_unregister_notifier(kvm, node);
5414 
5415 	kvm_mmu_uninit_tdp_mmu(kvm);
5416 }
5417 
5418 void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
5419 {
5420 	struct kvm_memslots *slots;
5421 	struct kvm_memory_slot *memslot;
5422 	int i;
5423 	bool flush;
5424 
5425 	write_lock(&kvm->mmu_lock);
5426 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
5427 		slots = __kvm_memslots(kvm, i);
5428 		kvm_for_each_memslot(memslot, slots) {
5429 			gfn_t start, end;
5430 
5431 			start = max(gfn_start, memslot->base_gfn);
5432 			end = min(gfn_end, memslot->base_gfn + memslot->npages);
5433 			if (start >= end)
5434 				continue;
5435 
5436 			slot_handle_level_range(kvm, memslot, kvm_zap_rmapp,
5437 						PG_LEVEL_4K,
5438 						KVM_MAX_HUGEPAGE_LEVEL,
5439 						start, end - 1, true);
5440 		}
5441 	}
5442 
5443 	if (is_tdp_mmu_enabled(kvm)) {
5444 		flush = kvm_tdp_mmu_zap_gfn_range(kvm, gfn_start, gfn_end);
5445 		if (flush)
5446 			kvm_flush_remote_tlbs(kvm);
5447 	}
5448 
5449 	write_unlock(&kvm->mmu_lock);
5450 }
5451 
5452 static bool slot_rmap_write_protect(struct kvm *kvm,
5453 				    struct kvm_rmap_head *rmap_head,
5454 				    struct kvm_memory_slot *slot)
5455 {
5456 	return __rmap_write_protect(kvm, rmap_head, false);
5457 }
5458 
5459 void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
5460 				      struct kvm_memory_slot *memslot,
5461 				      int start_level)
5462 {
5463 	bool flush;
5464 
5465 	write_lock(&kvm->mmu_lock);
5466 	flush = slot_handle_level(kvm, memslot, slot_rmap_write_protect,
5467 				start_level, KVM_MAX_HUGEPAGE_LEVEL, false);
5468 	if (is_tdp_mmu_enabled(kvm))
5469 		flush |= kvm_tdp_mmu_wrprot_slot(kvm, memslot, PG_LEVEL_4K);
5470 	write_unlock(&kvm->mmu_lock);
5471 
5472 	/*
5473 	 * We can flush all the TLBs out of the mmu lock without TLB
5474 	 * corruption since we just change the spte from writable to
5475 	 * readonly so that we only need to care the case of changing
5476 	 * spte from present to present (changing the spte from present
5477 	 * to nonpresent will flush all the TLBs immediately), in other
5478 	 * words, the only case we care is mmu_spte_update() where we
5479 	 * have checked SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE
5480 	 * instead of PT_WRITABLE_MASK, that means it does not depend
5481 	 * on PT_WRITABLE_MASK anymore.
5482 	 */
5483 	if (flush)
5484 		kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
5485 }
5486 
5487 static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
5488 					 struct kvm_rmap_head *rmap_head,
5489 					 struct kvm_memory_slot *slot)
5490 {
5491 	u64 *sptep;
5492 	struct rmap_iterator iter;
5493 	int need_tlb_flush = 0;
5494 	kvm_pfn_t pfn;
5495 	struct kvm_mmu_page *sp;
5496 
5497 restart:
5498 	for_each_rmap_spte(rmap_head, &iter, sptep) {
5499 		sp = sptep_to_sp(sptep);
5500 		pfn = spte_to_pfn(*sptep);
5501 
5502 		/*
5503 		 * We cannot do huge page mapping for indirect shadow pages,
5504 		 * which are found on the last rmap (level = 1) when not using
5505 		 * tdp; such shadow pages are synced with the page table in
5506 		 * the guest, and the guest page table is using 4K page size
5507 		 * mapping if the indirect sp has level = 1.
5508 		 */
5509 		if (sp->role.direct && !kvm_is_reserved_pfn(pfn) &&
5510 		    sp->role.level < kvm_mmu_max_mapping_level(kvm, slot, sp->gfn,
5511 							       pfn, PG_LEVEL_NUM)) {
5512 			pte_list_remove(rmap_head, sptep);
5513 
5514 			if (kvm_available_flush_tlb_with_range())
5515 				kvm_flush_remote_tlbs_with_address(kvm, sp->gfn,
5516 					KVM_PAGES_PER_HPAGE(sp->role.level));
5517 			else
5518 				need_tlb_flush = 1;
5519 
5520 			goto restart;
5521 		}
5522 	}
5523 
5524 	return need_tlb_flush;
5525 }
5526 
5527 void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
5528 				   const struct kvm_memory_slot *memslot)
5529 {
5530 	/* FIXME: const-ify all uses of struct kvm_memory_slot.  */
5531 	struct kvm_memory_slot *slot = (struct kvm_memory_slot *)memslot;
5532 
5533 	write_lock(&kvm->mmu_lock);
5534 	slot_handle_leaf(kvm, slot, kvm_mmu_zap_collapsible_spte, true);
5535 
5536 	if (is_tdp_mmu_enabled(kvm))
5537 		kvm_tdp_mmu_zap_collapsible_sptes(kvm, slot);
5538 	write_unlock(&kvm->mmu_lock);
5539 }
5540 
5541 void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
5542 					struct kvm_memory_slot *memslot)
5543 {
5544 	/*
5545 	 * All current use cases for flushing the TLBs for a specific memslot
5546 	 * are related to dirty logging, and do the TLB flush out of mmu_lock.
5547 	 * The interaction between the various operations on memslot must be
5548 	 * serialized by slots_locks to ensure the TLB flush from one operation
5549 	 * is observed by any other operation on the same memslot.
5550 	 */
5551 	lockdep_assert_held(&kvm->slots_lock);
5552 	kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn,
5553 					   memslot->npages);
5554 }
5555 
5556 void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
5557 				   struct kvm_memory_slot *memslot)
5558 {
5559 	bool flush;
5560 
5561 	write_lock(&kvm->mmu_lock);
5562 	flush = slot_handle_leaf(kvm, memslot, __rmap_clear_dirty, false);
5563 	if (is_tdp_mmu_enabled(kvm))
5564 		flush |= kvm_tdp_mmu_clear_dirty_slot(kvm, memslot);
5565 	write_unlock(&kvm->mmu_lock);
5566 
5567 	/*
5568 	 * It's also safe to flush TLBs out of mmu lock here as currently this
5569 	 * function is only used for dirty logging, in which case flushing TLB
5570 	 * out of mmu lock also guarantees no dirty pages will be lost in
5571 	 * dirty_bitmap.
5572 	 */
5573 	if (flush)
5574 		kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
5575 }
5576 
5577 void kvm_mmu_zap_all(struct kvm *kvm)
5578 {
5579 	struct kvm_mmu_page *sp, *node;
5580 	LIST_HEAD(invalid_list);
5581 	int ign;
5582 
5583 	write_lock(&kvm->mmu_lock);
5584 restart:
5585 	list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link) {
5586 		if (WARN_ON(sp->role.invalid))
5587 			continue;
5588 		if (__kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list, &ign))
5589 			goto restart;
5590 		if (cond_resched_rwlock_write(&kvm->mmu_lock))
5591 			goto restart;
5592 	}
5593 
5594 	kvm_mmu_commit_zap_page(kvm, &invalid_list);
5595 
5596 	if (is_tdp_mmu_enabled(kvm))
5597 		kvm_tdp_mmu_zap_all(kvm);
5598 
5599 	write_unlock(&kvm->mmu_lock);
5600 }
5601 
5602 void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen)
5603 {
5604 	WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
5605 
5606 	gen &= MMIO_SPTE_GEN_MASK;
5607 
5608 	/*
5609 	 * Generation numbers are incremented in multiples of the number of
5610 	 * address spaces in order to provide unique generations across all
5611 	 * address spaces.  Strip what is effectively the address space
5612 	 * modifier prior to checking for a wrap of the MMIO generation so
5613 	 * that a wrap in any address space is detected.
5614 	 */
5615 	gen &= ~((u64)KVM_ADDRESS_SPACE_NUM - 1);
5616 
5617 	/*
5618 	 * The very rare case: if the MMIO generation number has wrapped,
5619 	 * zap all shadow pages.
5620 	 */
5621 	if (unlikely(gen == 0)) {
5622 		kvm_debug_ratelimited("kvm: zapping shadow pages for mmio generation wraparound\n");
5623 		kvm_mmu_zap_all_fast(kvm);
5624 	}
5625 }
5626 
5627 static unsigned long
5628 mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
5629 {
5630 	struct kvm *kvm;
5631 	int nr_to_scan = sc->nr_to_scan;
5632 	unsigned long freed = 0;
5633 
5634 	mutex_lock(&kvm_lock);
5635 
5636 	list_for_each_entry(kvm, &vm_list, vm_list) {
5637 		int idx;
5638 		LIST_HEAD(invalid_list);
5639 
5640 		/*
5641 		 * Never scan more than sc->nr_to_scan VM instances.
5642 		 * Will not hit this condition practically since we do not try
5643 		 * to shrink more than one VM and it is very unlikely to see
5644 		 * !n_used_mmu_pages so many times.
5645 		 */
5646 		if (!nr_to_scan--)
5647 			break;
5648 		/*
5649 		 * n_used_mmu_pages is accessed without holding kvm->mmu_lock
5650 		 * here. We may skip a VM instance errorneosly, but we do not
5651 		 * want to shrink a VM that only started to populate its MMU
5652 		 * anyway.
5653 		 */
5654 		if (!kvm->arch.n_used_mmu_pages &&
5655 		    !kvm_has_zapped_obsolete_pages(kvm))
5656 			continue;
5657 
5658 		idx = srcu_read_lock(&kvm->srcu);
5659 		write_lock(&kvm->mmu_lock);
5660 
5661 		if (kvm_has_zapped_obsolete_pages(kvm)) {
5662 			kvm_mmu_commit_zap_page(kvm,
5663 			      &kvm->arch.zapped_obsolete_pages);
5664 			goto unlock;
5665 		}
5666 
5667 		freed = kvm_mmu_zap_oldest_mmu_pages(kvm, sc->nr_to_scan);
5668 
5669 unlock:
5670 		write_unlock(&kvm->mmu_lock);
5671 		srcu_read_unlock(&kvm->srcu, idx);
5672 
5673 		/*
5674 		 * unfair on small ones
5675 		 * per-vm shrinkers cry out
5676 		 * sadness comes quickly
5677 		 */
5678 		list_move_tail(&kvm->vm_list, &vm_list);
5679 		break;
5680 	}
5681 
5682 	mutex_unlock(&kvm_lock);
5683 	return freed;
5684 }
5685 
5686 static unsigned long
5687 mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
5688 {
5689 	return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
5690 }
5691 
5692 static struct shrinker mmu_shrinker = {
5693 	.count_objects = mmu_shrink_count,
5694 	.scan_objects = mmu_shrink_scan,
5695 	.seeks = DEFAULT_SEEKS * 10,
5696 };
5697 
5698 static void mmu_destroy_caches(void)
5699 {
5700 	kmem_cache_destroy(pte_list_desc_cache);
5701 	kmem_cache_destroy(mmu_page_header_cache);
5702 }
5703 
5704 static void kvm_set_mmio_spte_mask(void)
5705 {
5706 	u64 mask;
5707 
5708 	/*
5709 	 * Set a reserved PA bit in MMIO SPTEs to generate page faults with
5710 	 * PFEC.RSVD=1 on MMIO accesses.  64-bit PTEs (PAE, x86-64, and EPT
5711 	 * paging) support a maximum of 52 bits of PA, i.e. if the CPU supports
5712 	 * 52-bit physical addresses then there are no reserved PA bits in the
5713 	 * PTEs and so the reserved PA approach must be disabled.
5714 	 */
5715 	if (shadow_phys_bits < 52)
5716 		mask = BIT_ULL(51) | PT_PRESENT_MASK;
5717 	else
5718 		mask = 0;
5719 
5720 	kvm_mmu_set_mmio_spte_mask(mask, ACC_WRITE_MASK | ACC_USER_MASK);
5721 }
5722 
5723 static bool get_nx_auto_mode(void)
5724 {
5725 	/* Return true when CPU has the bug, and mitigations are ON */
5726 	return boot_cpu_has_bug(X86_BUG_ITLB_MULTIHIT) && !cpu_mitigations_off();
5727 }
5728 
5729 static void __set_nx_huge_pages(bool val)
5730 {
5731 	nx_huge_pages = itlb_multihit_kvm_mitigation = val;
5732 }
5733 
5734 static int set_nx_huge_pages(const char *val, const struct kernel_param *kp)
5735 {
5736 	bool old_val = nx_huge_pages;
5737 	bool new_val;
5738 
5739 	/* In "auto" mode deploy workaround only if CPU has the bug. */
5740 	if (sysfs_streq(val, "off"))
5741 		new_val = 0;
5742 	else if (sysfs_streq(val, "force"))
5743 		new_val = 1;
5744 	else if (sysfs_streq(val, "auto"))
5745 		new_val = get_nx_auto_mode();
5746 	else if (strtobool(val, &new_val) < 0)
5747 		return -EINVAL;
5748 
5749 	__set_nx_huge_pages(new_val);
5750 
5751 	if (new_val != old_val) {
5752 		struct kvm *kvm;
5753 
5754 		mutex_lock(&kvm_lock);
5755 
5756 		list_for_each_entry(kvm, &vm_list, vm_list) {
5757 			mutex_lock(&kvm->slots_lock);
5758 			kvm_mmu_zap_all_fast(kvm);
5759 			mutex_unlock(&kvm->slots_lock);
5760 
5761 			wake_up_process(kvm->arch.nx_lpage_recovery_thread);
5762 		}
5763 		mutex_unlock(&kvm_lock);
5764 	}
5765 
5766 	return 0;
5767 }
5768 
5769 int kvm_mmu_module_init(void)
5770 {
5771 	int ret = -ENOMEM;
5772 
5773 	if (nx_huge_pages == -1)
5774 		__set_nx_huge_pages(get_nx_auto_mode());
5775 
5776 	/*
5777 	 * MMU roles use union aliasing which is, generally speaking, an
5778 	 * undefined behavior. However, we supposedly know how compilers behave
5779 	 * and the current status quo is unlikely to change. Guardians below are
5780 	 * supposed to let us know if the assumption becomes false.
5781 	 */
5782 	BUILD_BUG_ON(sizeof(union kvm_mmu_page_role) != sizeof(u32));
5783 	BUILD_BUG_ON(sizeof(union kvm_mmu_extended_role) != sizeof(u32));
5784 	BUILD_BUG_ON(sizeof(union kvm_mmu_role) != sizeof(u64));
5785 
5786 	kvm_mmu_reset_all_pte_masks();
5787 
5788 	kvm_set_mmio_spte_mask();
5789 
5790 	pte_list_desc_cache = kmem_cache_create("pte_list_desc",
5791 					    sizeof(struct pte_list_desc),
5792 					    0, SLAB_ACCOUNT, NULL);
5793 	if (!pte_list_desc_cache)
5794 		goto out;
5795 
5796 	mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
5797 						  sizeof(struct kvm_mmu_page),
5798 						  0, SLAB_ACCOUNT, NULL);
5799 	if (!mmu_page_header_cache)
5800 		goto out;
5801 
5802 	if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
5803 		goto out;
5804 
5805 	ret = register_shrinker(&mmu_shrinker);
5806 	if (ret)
5807 		goto out;
5808 
5809 	return 0;
5810 
5811 out:
5812 	mmu_destroy_caches();
5813 	return ret;
5814 }
5815 
5816 /*
5817  * Calculate mmu pages needed for kvm.
5818  */
5819 unsigned long kvm_mmu_calculate_default_mmu_pages(struct kvm *kvm)
5820 {
5821 	unsigned long nr_mmu_pages;
5822 	unsigned long nr_pages = 0;
5823 	struct kvm_memslots *slots;
5824 	struct kvm_memory_slot *memslot;
5825 	int i;
5826 
5827 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
5828 		slots = __kvm_memslots(kvm, i);
5829 
5830 		kvm_for_each_memslot(memslot, slots)
5831 			nr_pages += memslot->npages;
5832 	}
5833 
5834 	nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
5835 	nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES);
5836 
5837 	return nr_mmu_pages;
5838 }
5839 
5840 void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
5841 {
5842 	kvm_mmu_unload(vcpu);
5843 	free_mmu_pages(&vcpu->arch.root_mmu);
5844 	free_mmu_pages(&vcpu->arch.guest_mmu);
5845 	mmu_free_memory_caches(vcpu);
5846 }
5847 
5848 void kvm_mmu_module_exit(void)
5849 {
5850 	mmu_destroy_caches();
5851 	percpu_counter_destroy(&kvm_total_used_mmu_pages);
5852 	unregister_shrinker(&mmu_shrinker);
5853 	mmu_audit_disable();
5854 }
5855 
5856 static int set_nx_huge_pages_recovery_ratio(const char *val, const struct kernel_param *kp)
5857 {
5858 	unsigned int old_val;
5859 	int err;
5860 
5861 	old_val = nx_huge_pages_recovery_ratio;
5862 	err = param_set_uint(val, kp);
5863 	if (err)
5864 		return err;
5865 
5866 	if (READ_ONCE(nx_huge_pages) &&
5867 	    !old_val && nx_huge_pages_recovery_ratio) {
5868 		struct kvm *kvm;
5869 
5870 		mutex_lock(&kvm_lock);
5871 
5872 		list_for_each_entry(kvm, &vm_list, vm_list)
5873 			wake_up_process(kvm->arch.nx_lpage_recovery_thread);
5874 
5875 		mutex_unlock(&kvm_lock);
5876 	}
5877 
5878 	return err;
5879 }
5880 
5881 static void kvm_recover_nx_lpages(struct kvm *kvm)
5882 {
5883 	int rcu_idx;
5884 	struct kvm_mmu_page *sp;
5885 	unsigned int ratio;
5886 	LIST_HEAD(invalid_list);
5887 	bool flush = false;
5888 	ulong to_zap;
5889 
5890 	rcu_idx = srcu_read_lock(&kvm->srcu);
5891 	write_lock(&kvm->mmu_lock);
5892 
5893 	ratio = READ_ONCE(nx_huge_pages_recovery_ratio);
5894 	to_zap = ratio ? DIV_ROUND_UP(kvm->stat.nx_lpage_splits, ratio) : 0;
5895 	for ( ; to_zap; --to_zap) {
5896 		if (list_empty(&kvm->arch.lpage_disallowed_mmu_pages))
5897 			break;
5898 
5899 		/*
5900 		 * We use a separate list instead of just using active_mmu_pages
5901 		 * because the number of lpage_disallowed pages is expected to
5902 		 * be relatively small compared to the total.
5903 		 */
5904 		sp = list_first_entry(&kvm->arch.lpage_disallowed_mmu_pages,
5905 				      struct kvm_mmu_page,
5906 				      lpage_disallowed_link);
5907 		WARN_ON_ONCE(!sp->lpage_disallowed);
5908 		if (is_tdp_mmu_page(sp)) {
5909 			flush |= kvm_tdp_mmu_zap_sp(kvm, sp);
5910 		} else {
5911 			kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
5912 			WARN_ON_ONCE(sp->lpage_disallowed);
5913 		}
5914 
5915 		if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) {
5916 			kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush);
5917 			cond_resched_rwlock_write(&kvm->mmu_lock);
5918 			flush = false;
5919 		}
5920 	}
5921 	kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush);
5922 
5923 	write_unlock(&kvm->mmu_lock);
5924 	srcu_read_unlock(&kvm->srcu, rcu_idx);
5925 }
5926 
5927 static long get_nx_lpage_recovery_timeout(u64 start_time)
5928 {
5929 	return READ_ONCE(nx_huge_pages) && READ_ONCE(nx_huge_pages_recovery_ratio)
5930 		? start_time + 60 * HZ - get_jiffies_64()
5931 		: MAX_SCHEDULE_TIMEOUT;
5932 }
5933 
5934 static int kvm_nx_lpage_recovery_worker(struct kvm *kvm, uintptr_t data)
5935 {
5936 	u64 start_time;
5937 	long remaining_time;
5938 
5939 	while (true) {
5940 		start_time = get_jiffies_64();
5941 		remaining_time = get_nx_lpage_recovery_timeout(start_time);
5942 
5943 		set_current_state(TASK_INTERRUPTIBLE);
5944 		while (!kthread_should_stop() && remaining_time > 0) {
5945 			schedule_timeout(remaining_time);
5946 			remaining_time = get_nx_lpage_recovery_timeout(start_time);
5947 			set_current_state(TASK_INTERRUPTIBLE);
5948 		}
5949 
5950 		set_current_state(TASK_RUNNING);
5951 
5952 		if (kthread_should_stop())
5953 			return 0;
5954 
5955 		kvm_recover_nx_lpages(kvm);
5956 	}
5957 }
5958 
5959 int kvm_mmu_post_init_vm(struct kvm *kvm)
5960 {
5961 	int err;
5962 
5963 	err = kvm_vm_create_worker_thread(kvm, kvm_nx_lpage_recovery_worker, 0,
5964 					  "kvm-nx-lpage-recovery",
5965 					  &kvm->arch.nx_lpage_recovery_thread);
5966 	if (!err)
5967 		kthread_unpark(kvm->arch.nx_lpage_recovery_thread);
5968 
5969 	return err;
5970 }
5971 
5972 void kvm_mmu_pre_destroy_vm(struct kvm *kvm)
5973 {
5974 	if (kvm->arch.nx_lpage_recovery_thread)
5975 		kthread_stop(kvm->arch.nx_lpage_recovery_thread);
5976 }
5977