1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * This module enables machines with Intel VT-x extensions to run virtual 6 * machines without emulation or binary translation. 7 * 8 * MMU support 9 * 10 * Copyright (C) 2006 Qumranet, Inc. 11 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 12 * 13 * Authors: 14 * Yaniv Kamay <yaniv@qumranet.com> 15 * Avi Kivity <avi@qumranet.com> 16 */ 17 18 #include "irq.h" 19 #include "ioapic.h" 20 #include "mmu.h" 21 #include "mmu_internal.h" 22 #include "tdp_mmu.h" 23 #include "x86.h" 24 #include "kvm_cache_regs.h" 25 #include "kvm_emulate.h" 26 #include "cpuid.h" 27 #include "spte.h" 28 29 #include <linux/kvm_host.h> 30 #include <linux/types.h> 31 #include <linux/string.h> 32 #include <linux/mm.h> 33 #include <linux/highmem.h> 34 #include <linux/moduleparam.h> 35 #include <linux/export.h> 36 #include <linux/swap.h> 37 #include <linux/hugetlb.h> 38 #include <linux/compiler.h> 39 #include <linux/srcu.h> 40 #include <linux/slab.h> 41 #include <linux/sched/signal.h> 42 #include <linux/uaccess.h> 43 #include <linux/hash.h> 44 #include <linux/kern_levels.h> 45 #include <linux/kthread.h> 46 47 #include <asm/page.h> 48 #include <asm/memtype.h> 49 #include <asm/cmpxchg.h> 50 #include <asm/io.h> 51 #include <asm/vmx.h> 52 #include <asm/kvm_page_track.h> 53 #include "trace.h" 54 55 extern bool itlb_multihit_kvm_mitigation; 56 57 static int __read_mostly nx_huge_pages = -1; 58 #ifdef CONFIG_PREEMPT_RT 59 /* Recovery can cause latency spikes, disable it for PREEMPT_RT. */ 60 static uint __read_mostly nx_huge_pages_recovery_ratio = 0; 61 #else 62 static uint __read_mostly nx_huge_pages_recovery_ratio = 60; 63 #endif 64 65 static int set_nx_huge_pages(const char *val, const struct kernel_param *kp); 66 static int set_nx_huge_pages_recovery_ratio(const char *val, const struct kernel_param *kp); 67 68 static const struct kernel_param_ops nx_huge_pages_ops = { 69 .set = set_nx_huge_pages, 70 .get = param_get_bool, 71 }; 72 73 static const struct kernel_param_ops nx_huge_pages_recovery_ratio_ops = { 74 .set = set_nx_huge_pages_recovery_ratio, 75 .get = param_get_uint, 76 }; 77 78 module_param_cb(nx_huge_pages, &nx_huge_pages_ops, &nx_huge_pages, 0644); 79 __MODULE_PARM_TYPE(nx_huge_pages, "bool"); 80 module_param_cb(nx_huge_pages_recovery_ratio, &nx_huge_pages_recovery_ratio_ops, 81 &nx_huge_pages_recovery_ratio, 0644); 82 __MODULE_PARM_TYPE(nx_huge_pages_recovery_ratio, "uint"); 83 84 static bool __read_mostly force_flush_and_sync_on_reuse; 85 module_param_named(flush_on_reuse, force_flush_and_sync_on_reuse, bool, 0644); 86 87 /* 88 * When setting this variable to true it enables Two-Dimensional-Paging 89 * where the hardware walks 2 page tables: 90 * 1. the guest-virtual to guest-physical 91 * 2. while doing 1. it walks guest-physical to host-physical 92 * If the hardware supports that we don't need to do shadow paging. 93 */ 94 bool tdp_enabled = false; 95 96 static int max_huge_page_level __read_mostly; 97 static int max_tdp_level __read_mostly; 98 99 enum { 100 AUDIT_PRE_PAGE_FAULT, 101 AUDIT_POST_PAGE_FAULT, 102 AUDIT_PRE_PTE_WRITE, 103 AUDIT_POST_PTE_WRITE, 104 AUDIT_PRE_SYNC, 105 AUDIT_POST_SYNC 106 }; 107 108 #ifdef MMU_DEBUG 109 bool dbg = 0; 110 module_param(dbg, bool, 0644); 111 #endif 112 113 #define PTE_PREFETCH_NUM 8 114 115 #define PT32_LEVEL_BITS 10 116 117 #define PT32_LEVEL_SHIFT(level) \ 118 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS) 119 120 #define PT32_LVL_OFFSET_MASK(level) \ 121 (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \ 122 * PT32_LEVEL_BITS))) - 1)) 123 124 #define PT32_INDEX(address, level)\ 125 (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1)) 126 127 128 #define PT32_BASE_ADDR_MASK PAGE_MASK 129 #define PT32_DIR_BASE_ADDR_MASK \ 130 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1)) 131 #define PT32_LVL_ADDR_MASK(level) \ 132 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \ 133 * PT32_LEVEL_BITS))) - 1)) 134 135 #include <trace/events/kvm.h> 136 137 /* make pte_list_desc fit well in cache line */ 138 #define PTE_LIST_EXT 3 139 140 struct pte_list_desc { 141 u64 *sptes[PTE_LIST_EXT]; 142 struct pte_list_desc *more; 143 }; 144 145 struct kvm_shadow_walk_iterator { 146 u64 addr; 147 hpa_t shadow_addr; 148 u64 *sptep; 149 int level; 150 unsigned index; 151 }; 152 153 #define for_each_shadow_entry_using_root(_vcpu, _root, _addr, _walker) \ 154 for (shadow_walk_init_using_root(&(_walker), (_vcpu), \ 155 (_root), (_addr)); \ 156 shadow_walk_okay(&(_walker)); \ 157 shadow_walk_next(&(_walker))) 158 159 #define for_each_shadow_entry(_vcpu, _addr, _walker) \ 160 for (shadow_walk_init(&(_walker), _vcpu, _addr); \ 161 shadow_walk_okay(&(_walker)); \ 162 shadow_walk_next(&(_walker))) 163 164 #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte) \ 165 for (shadow_walk_init(&(_walker), _vcpu, _addr); \ 166 shadow_walk_okay(&(_walker)) && \ 167 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; }); \ 168 __shadow_walk_next(&(_walker), spte)) 169 170 static struct kmem_cache *pte_list_desc_cache; 171 struct kmem_cache *mmu_page_header_cache; 172 static struct percpu_counter kvm_total_used_mmu_pages; 173 174 static void mmu_spte_set(u64 *sptep, u64 spte); 175 static union kvm_mmu_page_role 176 kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu); 177 178 #define CREATE_TRACE_POINTS 179 #include "mmutrace.h" 180 181 182 static inline bool kvm_available_flush_tlb_with_range(void) 183 { 184 return kvm_x86_ops.tlb_remote_flush_with_range; 185 } 186 187 static void kvm_flush_remote_tlbs_with_range(struct kvm *kvm, 188 struct kvm_tlb_range *range) 189 { 190 int ret = -ENOTSUPP; 191 192 if (range && kvm_x86_ops.tlb_remote_flush_with_range) 193 ret = kvm_x86_ops.tlb_remote_flush_with_range(kvm, range); 194 195 if (ret) 196 kvm_flush_remote_tlbs(kvm); 197 } 198 199 void kvm_flush_remote_tlbs_with_address(struct kvm *kvm, 200 u64 start_gfn, u64 pages) 201 { 202 struct kvm_tlb_range range; 203 204 range.start_gfn = start_gfn; 205 range.pages = pages; 206 207 kvm_flush_remote_tlbs_with_range(kvm, &range); 208 } 209 210 bool is_nx_huge_page_enabled(void) 211 { 212 return READ_ONCE(nx_huge_pages); 213 } 214 215 static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn, 216 unsigned int access) 217 { 218 u64 mask = make_mmio_spte(vcpu, gfn, access); 219 220 trace_mark_mmio_spte(sptep, gfn, mask); 221 mmu_spte_set(sptep, mask); 222 } 223 224 static gfn_t get_mmio_spte_gfn(u64 spte) 225 { 226 u64 gpa = spte & shadow_nonpresent_or_rsvd_lower_gfn_mask; 227 228 gpa |= (spte >> shadow_nonpresent_or_rsvd_mask_len) 229 & shadow_nonpresent_or_rsvd_mask; 230 231 return gpa >> PAGE_SHIFT; 232 } 233 234 static unsigned get_mmio_spte_access(u64 spte) 235 { 236 return spte & shadow_mmio_access_mask; 237 } 238 239 static bool set_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn, 240 kvm_pfn_t pfn, unsigned int access) 241 { 242 if (unlikely(is_noslot_pfn(pfn))) { 243 mark_mmio_spte(vcpu, sptep, gfn, access); 244 return true; 245 } 246 247 return false; 248 } 249 250 static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte) 251 { 252 u64 kvm_gen, spte_gen, gen; 253 254 gen = kvm_vcpu_memslots(vcpu)->generation; 255 if (unlikely(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS)) 256 return false; 257 258 kvm_gen = gen & MMIO_SPTE_GEN_MASK; 259 spte_gen = get_mmio_spte_generation(spte); 260 261 trace_check_mmio_spte(spte, kvm_gen, spte_gen); 262 return likely(kvm_gen == spte_gen); 263 } 264 265 static gpa_t translate_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access, 266 struct x86_exception *exception) 267 { 268 /* Check if guest physical address doesn't exceed guest maximum */ 269 if (kvm_vcpu_is_illegal_gpa(vcpu, gpa)) { 270 exception->error_code |= PFERR_RSVD_MASK; 271 return UNMAPPED_GVA; 272 } 273 274 return gpa; 275 } 276 277 static int is_cpuid_PSE36(void) 278 { 279 return 1; 280 } 281 282 static int is_nx(struct kvm_vcpu *vcpu) 283 { 284 return vcpu->arch.efer & EFER_NX; 285 } 286 287 static gfn_t pse36_gfn_delta(u32 gpte) 288 { 289 int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT; 290 291 return (gpte & PT32_DIR_PSE36_MASK) << shift; 292 } 293 294 #ifdef CONFIG_X86_64 295 static void __set_spte(u64 *sptep, u64 spte) 296 { 297 WRITE_ONCE(*sptep, spte); 298 } 299 300 static void __update_clear_spte_fast(u64 *sptep, u64 spte) 301 { 302 WRITE_ONCE(*sptep, spte); 303 } 304 305 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte) 306 { 307 return xchg(sptep, spte); 308 } 309 310 static u64 __get_spte_lockless(u64 *sptep) 311 { 312 return READ_ONCE(*sptep); 313 } 314 #else 315 union split_spte { 316 struct { 317 u32 spte_low; 318 u32 spte_high; 319 }; 320 u64 spte; 321 }; 322 323 static void count_spte_clear(u64 *sptep, u64 spte) 324 { 325 struct kvm_mmu_page *sp = sptep_to_sp(sptep); 326 327 if (is_shadow_present_pte(spte)) 328 return; 329 330 /* Ensure the spte is completely set before we increase the count */ 331 smp_wmb(); 332 sp->clear_spte_count++; 333 } 334 335 static void __set_spte(u64 *sptep, u64 spte) 336 { 337 union split_spte *ssptep, sspte; 338 339 ssptep = (union split_spte *)sptep; 340 sspte = (union split_spte)spte; 341 342 ssptep->spte_high = sspte.spte_high; 343 344 /* 345 * If we map the spte from nonpresent to present, We should store 346 * the high bits firstly, then set present bit, so cpu can not 347 * fetch this spte while we are setting the spte. 348 */ 349 smp_wmb(); 350 351 WRITE_ONCE(ssptep->spte_low, sspte.spte_low); 352 } 353 354 static void __update_clear_spte_fast(u64 *sptep, u64 spte) 355 { 356 union split_spte *ssptep, sspte; 357 358 ssptep = (union split_spte *)sptep; 359 sspte = (union split_spte)spte; 360 361 WRITE_ONCE(ssptep->spte_low, sspte.spte_low); 362 363 /* 364 * If we map the spte from present to nonpresent, we should clear 365 * present bit firstly to avoid vcpu fetch the old high bits. 366 */ 367 smp_wmb(); 368 369 ssptep->spte_high = sspte.spte_high; 370 count_spte_clear(sptep, spte); 371 } 372 373 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte) 374 { 375 union split_spte *ssptep, sspte, orig; 376 377 ssptep = (union split_spte *)sptep; 378 sspte = (union split_spte)spte; 379 380 /* xchg acts as a barrier before the setting of the high bits */ 381 orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low); 382 orig.spte_high = ssptep->spte_high; 383 ssptep->spte_high = sspte.spte_high; 384 count_spte_clear(sptep, spte); 385 386 return orig.spte; 387 } 388 389 /* 390 * The idea using the light way get the spte on x86_32 guest is from 391 * gup_get_pte (mm/gup.c). 392 * 393 * An spte tlb flush may be pending, because kvm_set_pte_rmapp 394 * coalesces them and we are running out of the MMU lock. Therefore 395 * we need to protect against in-progress updates of the spte. 396 * 397 * Reading the spte while an update is in progress may get the old value 398 * for the high part of the spte. The race is fine for a present->non-present 399 * change (because the high part of the spte is ignored for non-present spte), 400 * but for a present->present change we must reread the spte. 401 * 402 * All such changes are done in two steps (present->non-present and 403 * non-present->present), hence it is enough to count the number of 404 * present->non-present updates: if it changed while reading the spte, 405 * we might have hit the race. This is done using clear_spte_count. 406 */ 407 static u64 __get_spte_lockless(u64 *sptep) 408 { 409 struct kvm_mmu_page *sp = sptep_to_sp(sptep); 410 union split_spte spte, *orig = (union split_spte *)sptep; 411 int count; 412 413 retry: 414 count = sp->clear_spte_count; 415 smp_rmb(); 416 417 spte.spte_low = orig->spte_low; 418 smp_rmb(); 419 420 spte.spte_high = orig->spte_high; 421 smp_rmb(); 422 423 if (unlikely(spte.spte_low != orig->spte_low || 424 count != sp->clear_spte_count)) 425 goto retry; 426 427 return spte.spte; 428 } 429 #endif 430 431 static bool spte_has_volatile_bits(u64 spte) 432 { 433 if (!is_shadow_present_pte(spte)) 434 return false; 435 436 /* 437 * Always atomically update spte if it can be updated 438 * out of mmu-lock, it can ensure dirty bit is not lost, 439 * also, it can help us to get a stable is_writable_pte() 440 * to ensure tlb flush is not missed. 441 */ 442 if (spte_can_locklessly_be_made_writable(spte) || 443 is_access_track_spte(spte)) 444 return true; 445 446 if (spte_ad_enabled(spte)) { 447 if ((spte & shadow_accessed_mask) == 0 || 448 (is_writable_pte(spte) && (spte & shadow_dirty_mask) == 0)) 449 return true; 450 } 451 452 return false; 453 } 454 455 /* Rules for using mmu_spte_set: 456 * Set the sptep from nonpresent to present. 457 * Note: the sptep being assigned *must* be either not present 458 * or in a state where the hardware will not attempt to update 459 * the spte. 460 */ 461 static void mmu_spte_set(u64 *sptep, u64 new_spte) 462 { 463 WARN_ON(is_shadow_present_pte(*sptep)); 464 __set_spte(sptep, new_spte); 465 } 466 467 /* 468 * Update the SPTE (excluding the PFN), but do not track changes in its 469 * accessed/dirty status. 470 */ 471 static u64 mmu_spte_update_no_track(u64 *sptep, u64 new_spte) 472 { 473 u64 old_spte = *sptep; 474 475 WARN_ON(!is_shadow_present_pte(new_spte)); 476 477 if (!is_shadow_present_pte(old_spte)) { 478 mmu_spte_set(sptep, new_spte); 479 return old_spte; 480 } 481 482 if (!spte_has_volatile_bits(old_spte)) 483 __update_clear_spte_fast(sptep, new_spte); 484 else 485 old_spte = __update_clear_spte_slow(sptep, new_spte); 486 487 WARN_ON(spte_to_pfn(old_spte) != spte_to_pfn(new_spte)); 488 489 return old_spte; 490 } 491 492 /* Rules for using mmu_spte_update: 493 * Update the state bits, it means the mapped pfn is not changed. 494 * 495 * Whenever we overwrite a writable spte with a read-only one we 496 * should flush remote TLBs. Otherwise rmap_write_protect 497 * will find a read-only spte, even though the writable spte 498 * might be cached on a CPU's TLB, the return value indicates this 499 * case. 500 * 501 * Returns true if the TLB needs to be flushed 502 */ 503 static bool mmu_spte_update(u64 *sptep, u64 new_spte) 504 { 505 bool flush = false; 506 u64 old_spte = mmu_spte_update_no_track(sptep, new_spte); 507 508 if (!is_shadow_present_pte(old_spte)) 509 return false; 510 511 /* 512 * For the spte updated out of mmu-lock is safe, since 513 * we always atomically update it, see the comments in 514 * spte_has_volatile_bits(). 515 */ 516 if (spte_can_locklessly_be_made_writable(old_spte) && 517 !is_writable_pte(new_spte)) 518 flush = true; 519 520 /* 521 * Flush TLB when accessed/dirty states are changed in the page tables, 522 * to guarantee consistency between TLB and page tables. 523 */ 524 525 if (is_accessed_spte(old_spte) && !is_accessed_spte(new_spte)) { 526 flush = true; 527 kvm_set_pfn_accessed(spte_to_pfn(old_spte)); 528 } 529 530 if (is_dirty_spte(old_spte) && !is_dirty_spte(new_spte)) { 531 flush = true; 532 kvm_set_pfn_dirty(spte_to_pfn(old_spte)); 533 } 534 535 return flush; 536 } 537 538 /* 539 * Rules for using mmu_spte_clear_track_bits: 540 * It sets the sptep from present to nonpresent, and track the 541 * state bits, it is used to clear the last level sptep. 542 * Returns non-zero if the PTE was previously valid. 543 */ 544 static int mmu_spte_clear_track_bits(u64 *sptep) 545 { 546 kvm_pfn_t pfn; 547 u64 old_spte = *sptep; 548 549 if (!spte_has_volatile_bits(old_spte)) 550 __update_clear_spte_fast(sptep, 0ull); 551 else 552 old_spte = __update_clear_spte_slow(sptep, 0ull); 553 554 if (!is_shadow_present_pte(old_spte)) 555 return 0; 556 557 pfn = spte_to_pfn(old_spte); 558 559 /* 560 * KVM does not hold the refcount of the page used by 561 * kvm mmu, before reclaiming the page, we should 562 * unmap it from mmu first. 563 */ 564 WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn))); 565 566 if (is_accessed_spte(old_spte)) 567 kvm_set_pfn_accessed(pfn); 568 569 if (is_dirty_spte(old_spte)) 570 kvm_set_pfn_dirty(pfn); 571 572 return 1; 573 } 574 575 /* 576 * Rules for using mmu_spte_clear_no_track: 577 * Directly clear spte without caring the state bits of sptep, 578 * it is used to set the upper level spte. 579 */ 580 static void mmu_spte_clear_no_track(u64 *sptep) 581 { 582 __update_clear_spte_fast(sptep, 0ull); 583 } 584 585 static u64 mmu_spte_get_lockless(u64 *sptep) 586 { 587 return __get_spte_lockless(sptep); 588 } 589 590 /* Restore an acc-track PTE back to a regular PTE */ 591 static u64 restore_acc_track_spte(u64 spte) 592 { 593 u64 new_spte = spte; 594 u64 saved_bits = (spte >> shadow_acc_track_saved_bits_shift) 595 & shadow_acc_track_saved_bits_mask; 596 597 WARN_ON_ONCE(spte_ad_enabled(spte)); 598 WARN_ON_ONCE(!is_access_track_spte(spte)); 599 600 new_spte &= ~shadow_acc_track_mask; 601 new_spte &= ~(shadow_acc_track_saved_bits_mask << 602 shadow_acc_track_saved_bits_shift); 603 new_spte |= saved_bits; 604 605 return new_spte; 606 } 607 608 /* Returns the Accessed status of the PTE and resets it at the same time. */ 609 static bool mmu_spte_age(u64 *sptep) 610 { 611 u64 spte = mmu_spte_get_lockless(sptep); 612 613 if (!is_accessed_spte(spte)) 614 return false; 615 616 if (spte_ad_enabled(spte)) { 617 clear_bit((ffs(shadow_accessed_mask) - 1), 618 (unsigned long *)sptep); 619 } else { 620 /* 621 * Capture the dirty status of the page, so that it doesn't get 622 * lost when the SPTE is marked for access tracking. 623 */ 624 if (is_writable_pte(spte)) 625 kvm_set_pfn_dirty(spte_to_pfn(spte)); 626 627 spte = mark_spte_for_access_track(spte); 628 mmu_spte_update_no_track(sptep, spte); 629 } 630 631 return true; 632 } 633 634 static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu) 635 { 636 /* 637 * Prevent page table teardown by making any free-er wait during 638 * kvm_flush_remote_tlbs() IPI to all active vcpus. 639 */ 640 local_irq_disable(); 641 642 /* 643 * Make sure a following spte read is not reordered ahead of the write 644 * to vcpu->mode. 645 */ 646 smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES); 647 } 648 649 static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu) 650 { 651 /* 652 * Make sure the write to vcpu->mode is not reordered in front of 653 * reads to sptes. If it does, kvm_mmu_commit_zap_page() can see us 654 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table. 655 */ 656 smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE); 657 local_irq_enable(); 658 } 659 660 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu, bool maybe_indirect) 661 { 662 int r; 663 664 /* 1 rmap, 1 parent PTE per level, and the prefetched rmaps. */ 665 r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache, 666 1 + PT64_ROOT_MAX_LEVEL + PTE_PREFETCH_NUM); 667 if (r) 668 return r; 669 r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_shadow_page_cache, 670 PT64_ROOT_MAX_LEVEL); 671 if (r) 672 return r; 673 if (maybe_indirect) { 674 r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_gfn_array_cache, 675 PT64_ROOT_MAX_LEVEL); 676 if (r) 677 return r; 678 } 679 return kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache, 680 PT64_ROOT_MAX_LEVEL); 681 } 682 683 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu) 684 { 685 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache); 686 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_shadow_page_cache); 687 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_gfn_array_cache); 688 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache); 689 } 690 691 static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu) 692 { 693 return kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache); 694 } 695 696 static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc) 697 { 698 kmem_cache_free(pte_list_desc_cache, pte_list_desc); 699 } 700 701 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index) 702 { 703 if (!sp->role.direct) 704 return sp->gfns[index]; 705 706 return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS)); 707 } 708 709 static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn) 710 { 711 if (!sp->role.direct) { 712 sp->gfns[index] = gfn; 713 return; 714 } 715 716 if (WARN_ON(gfn != kvm_mmu_page_get_gfn(sp, index))) 717 pr_err_ratelimited("gfn mismatch under direct page %llx " 718 "(expected %llx, got %llx)\n", 719 sp->gfn, 720 kvm_mmu_page_get_gfn(sp, index), gfn); 721 } 722 723 /* 724 * Return the pointer to the large page information for a given gfn, 725 * handling slots that are not large page aligned. 726 */ 727 static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn, 728 struct kvm_memory_slot *slot, 729 int level) 730 { 731 unsigned long idx; 732 733 idx = gfn_to_index(gfn, slot->base_gfn, level); 734 return &slot->arch.lpage_info[level - 2][idx]; 735 } 736 737 static void update_gfn_disallow_lpage_count(struct kvm_memory_slot *slot, 738 gfn_t gfn, int count) 739 { 740 struct kvm_lpage_info *linfo; 741 int i; 742 743 for (i = PG_LEVEL_2M; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) { 744 linfo = lpage_info_slot(gfn, slot, i); 745 linfo->disallow_lpage += count; 746 WARN_ON(linfo->disallow_lpage < 0); 747 } 748 } 749 750 void kvm_mmu_gfn_disallow_lpage(struct kvm_memory_slot *slot, gfn_t gfn) 751 { 752 update_gfn_disallow_lpage_count(slot, gfn, 1); 753 } 754 755 void kvm_mmu_gfn_allow_lpage(struct kvm_memory_slot *slot, gfn_t gfn) 756 { 757 update_gfn_disallow_lpage_count(slot, gfn, -1); 758 } 759 760 static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp) 761 { 762 struct kvm_memslots *slots; 763 struct kvm_memory_slot *slot; 764 gfn_t gfn; 765 766 kvm->arch.indirect_shadow_pages++; 767 gfn = sp->gfn; 768 slots = kvm_memslots_for_spte_role(kvm, sp->role); 769 slot = __gfn_to_memslot(slots, gfn); 770 771 /* the non-leaf shadow pages are keeping readonly. */ 772 if (sp->role.level > PG_LEVEL_4K) 773 return kvm_slot_page_track_add_page(kvm, slot, gfn, 774 KVM_PAGE_TRACK_WRITE); 775 776 kvm_mmu_gfn_disallow_lpage(slot, gfn); 777 } 778 779 void account_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp) 780 { 781 if (sp->lpage_disallowed) 782 return; 783 784 ++kvm->stat.nx_lpage_splits; 785 list_add_tail(&sp->lpage_disallowed_link, 786 &kvm->arch.lpage_disallowed_mmu_pages); 787 sp->lpage_disallowed = true; 788 } 789 790 static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp) 791 { 792 struct kvm_memslots *slots; 793 struct kvm_memory_slot *slot; 794 gfn_t gfn; 795 796 kvm->arch.indirect_shadow_pages--; 797 gfn = sp->gfn; 798 slots = kvm_memslots_for_spte_role(kvm, sp->role); 799 slot = __gfn_to_memslot(slots, gfn); 800 if (sp->role.level > PG_LEVEL_4K) 801 return kvm_slot_page_track_remove_page(kvm, slot, gfn, 802 KVM_PAGE_TRACK_WRITE); 803 804 kvm_mmu_gfn_allow_lpage(slot, gfn); 805 } 806 807 void unaccount_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp) 808 { 809 --kvm->stat.nx_lpage_splits; 810 sp->lpage_disallowed = false; 811 list_del(&sp->lpage_disallowed_link); 812 } 813 814 static struct kvm_memory_slot * 815 gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn, 816 bool no_dirty_log) 817 { 818 struct kvm_memory_slot *slot; 819 820 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 821 if (!slot || slot->flags & KVM_MEMSLOT_INVALID) 822 return NULL; 823 if (no_dirty_log && slot->dirty_bitmap) 824 return NULL; 825 826 return slot; 827 } 828 829 /* 830 * About rmap_head encoding: 831 * 832 * If the bit zero of rmap_head->val is clear, then it points to the only spte 833 * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct 834 * pte_list_desc containing more mappings. 835 */ 836 837 /* 838 * Returns the number of pointers in the rmap chain, not counting the new one. 839 */ 840 static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte, 841 struct kvm_rmap_head *rmap_head) 842 { 843 struct pte_list_desc *desc; 844 int i, count = 0; 845 846 if (!rmap_head->val) { 847 rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte); 848 rmap_head->val = (unsigned long)spte; 849 } else if (!(rmap_head->val & 1)) { 850 rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte); 851 desc = mmu_alloc_pte_list_desc(vcpu); 852 desc->sptes[0] = (u64 *)rmap_head->val; 853 desc->sptes[1] = spte; 854 rmap_head->val = (unsigned long)desc | 1; 855 ++count; 856 } else { 857 rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte); 858 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul); 859 while (desc->sptes[PTE_LIST_EXT-1] && desc->more) { 860 desc = desc->more; 861 count += PTE_LIST_EXT; 862 } 863 if (desc->sptes[PTE_LIST_EXT-1]) { 864 desc->more = mmu_alloc_pte_list_desc(vcpu); 865 desc = desc->more; 866 } 867 for (i = 0; desc->sptes[i]; ++i) 868 ++count; 869 desc->sptes[i] = spte; 870 } 871 return count; 872 } 873 874 static void 875 pte_list_desc_remove_entry(struct kvm_rmap_head *rmap_head, 876 struct pte_list_desc *desc, int i, 877 struct pte_list_desc *prev_desc) 878 { 879 int j; 880 881 for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j) 882 ; 883 desc->sptes[i] = desc->sptes[j]; 884 desc->sptes[j] = NULL; 885 if (j != 0) 886 return; 887 if (!prev_desc && !desc->more) 888 rmap_head->val = 0; 889 else 890 if (prev_desc) 891 prev_desc->more = desc->more; 892 else 893 rmap_head->val = (unsigned long)desc->more | 1; 894 mmu_free_pte_list_desc(desc); 895 } 896 897 static void __pte_list_remove(u64 *spte, struct kvm_rmap_head *rmap_head) 898 { 899 struct pte_list_desc *desc; 900 struct pte_list_desc *prev_desc; 901 int i; 902 903 if (!rmap_head->val) { 904 pr_err("%s: %p 0->BUG\n", __func__, spte); 905 BUG(); 906 } else if (!(rmap_head->val & 1)) { 907 rmap_printk("%s: %p 1->0\n", __func__, spte); 908 if ((u64 *)rmap_head->val != spte) { 909 pr_err("%s: %p 1->BUG\n", __func__, spte); 910 BUG(); 911 } 912 rmap_head->val = 0; 913 } else { 914 rmap_printk("%s: %p many->many\n", __func__, spte); 915 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul); 916 prev_desc = NULL; 917 while (desc) { 918 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i) { 919 if (desc->sptes[i] == spte) { 920 pte_list_desc_remove_entry(rmap_head, 921 desc, i, prev_desc); 922 return; 923 } 924 } 925 prev_desc = desc; 926 desc = desc->more; 927 } 928 pr_err("%s: %p many->many\n", __func__, spte); 929 BUG(); 930 } 931 } 932 933 static void pte_list_remove(struct kvm_rmap_head *rmap_head, u64 *sptep) 934 { 935 mmu_spte_clear_track_bits(sptep); 936 __pte_list_remove(sptep, rmap_head); 937 } 938 939 static struct kvm_rmap_head *__gfn_to_rmap(gfn_t gfn, int level, 940 struct kvm_memory_slot *slot) 941 { 942 unsigned long idx; 943 944 idx = gfn_to_index(gfn, slot->base_gfn, level); 945 return &slot->arch.rmap[level - PG_LEVEL_4K][idx]; 946 } 947 948 static struct kvm_rmap_head *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, 949 struct kvm_mmu_page *sp) 950 { 951 struct kvm_memslots *slots; 952 struct kvm_memory_slot *slot; 953 954 slots = kvm_memslots_for_spte_role(kvm, sp->role); 955 slot = __gfn_to_memslot(slots, gfn); 956 return __gfn_to_rmap(gfn, sp->role.level, slot); 957 } 958 959 static bool rmap_can_add(struct kvm_vcpu *vcpu) 960 { 961 struct kvm_mmu_memory_cache *mc; 962 963 mc = &vcpu->arch.mmu_pte_list_desc_cache; 964 return kvm_mmu_memory_cache_nr_free_objects(mc); 965 } 966 967 static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn) 968 { 969 struct kvm_mmu_page *sp; 970 struct kvm_rmap_head *rmap_head; 971 972 sp = sptep_to_sp(spte); 973 kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn); 974 rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp); 975 return pte_list_add(vcpu, spte, rmap_head); 976 } 977 978 static void rmap_remove(struct kvm *kvm, u64 *spte) 979 { 980 struct kvm_mmu_page *sp; 981 gfn_t gfn; 982 struct kvm_rmap_head *rmap_head; 983 984 sp = sptep_to_sp(spte); 985 gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt); 986 rmap_head = gfn_to_rmap(kvm, gfn, sp); 987 __pte_list_remove(spte, rmap_head); 988 } 989 990 /* 991 * Used by the following functions to iterate through the sptes linked by a 992 * rmap. All fields are private and not assumed to be used outside. 993 */ 994 struct rmap_iterator { 995 /* private fields */ 996 struct pte_list_desc *desc; /* holds the sptep if not NULL */ 997 int pos; /* index of the sptep */ 998 }; 999 1000 /* 1001 * Iteration must be started by this function. This should also be used after 1002 * removing/dropping sptes from the rmap link because in such cases the 1003 * information in the iterator may not be valid. 1004 * 1005 * Returns sptep if found, NULL otherwise. 1006 */ 1007 static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head, 1008 struct rmap_iterator *iter) 1009 { 1010 u64 *sptep; 1011 1012 if (!rmap_head->val) 1013 return NULL; 1014 1015 if (!(rmap_head->val & 1)) { 1016 iter->desc = NULL; 1017 sptep = (u64 *)rmap_head->val; 1018 goto out; 1019 } 1020 1021 iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul); 1022 iter->pos = 0; 1023 sptep = iter->desc->sptes[iter->pos]; 1024 out: 1025 BUG_ON(!is_shadow_present_pte(*sptep)); 1026 return sptep; 1027 } 1028 1029 /* 1030 * Must be used with a valid iterator: e.g. after rmap_get_first(). 1031 * 1032 * Returns sptep if found, NULL otherwise. 1033 */ 1034 static u64 *rmap_get_next(struct rmap_iterator *iter) 1035 { 1036 u64 *sptep; 1037 1038 if (iter->desc) { 1039 if (iter->pos < PTE_LIST_EXT - 1) { 1040 ++iter->pos; 1041 sptep = iter->desc->sptes[iter->pos]; 1042 if (sptep) 1043 goto out; 1044 } 1045 1046 iter->desc = iter->desc->more; 1047 1048 if (iter->desc) { 1049 iter->pos = 0; 1050 /* desc->sptes[0] cannot be NULL */ 1051 sptep = iter->desc->sptes[iter->pos]; 1052 goto out; 1053 } 1054 } 1055 1056 return NULL; 1057 out: 1058 BUG_ON(!is_shadow_present_pte(*sptep)); 1059 return sptep; 1060 } 1061 1062 #define for_each_rmap_spte(_rmap_head_, _iter_, _spte_) \ 1063 for (_spte_ = rmap_get_first(_rmap_head_, _iter_); \ 1064 _spte_; _spte_ = rmap_get_next(_iter_)) 1065 1066 static void drop_spte(struct kvm *kvm, u64 *sptep) 1067 { 1068 if (mmu_spte_clear_track_bits(sptep)) 1069 rmap_remove(kvm, sptep); 1070 } 1071 1072 1073 static bool __drop_large_spte(struct kvm *kvm, u64 *sptep) 1074 { 1075 if (is_large_pte(*sptep)) { 1076 WARN_ON(sptep_to_sp(sptep)->role.level == PG_LEVEL_4K); 1077 drop_spte(kvm, sptep); 1078 --kvm->stat.lpages; 1079 return true; 1080 } 1081 1082 return false; 1083 } 1084 1085 static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep) 1086 { 1087 if (__drop_large_spte(vcpu->kvm, sptep)) { 1088 struct kvm_mmu_page *sp = sptep_to_sp(sptep); 1089 1090 kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn, 1091 KVM_PAGES_PER_HPAGE(sp->role.level)); 1092 } 1093 } 1094 1095 /* 1096 * Write-protect on the specified @sptep, @pt_protect indicates whether 1097 * spte write-protection is caused by protecting shadow page table. 1098 * 1099 * Note: write protection is difference between dirty logging and spte 1100 * protection: 1101 * - for dirty logging, the spte can be set to writable at anytime if 1102 * its dirty bitmap is properly set. 1103 * - for spte protection, the spte can be writable only after unsync-ing 1104 * shadow page. 1105 * 1106 * Return true if tlb need be flushed. 1107 */ 1108 static bool spte_write_protect(u64 *sptep, bool pt_protect) 1109 { 1110 u64 spte = *sptep; 1111 1112 if (!is_writable_pte(spte) && 1113 !(pt_protect && spte_can_locklessly_be_made_writable(spte))) 1114 return false; 1115 1116 rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep); 1117 1118 if (pt_protect) 1119 spte &= ~SPTE_MMU_WRITEABLE; 1120 spte = spte & ~PT_WRITABLE_MASK; 1121 1122 return mmu_spte_update(sptep, spte); 1123 } 1124 1125 static bool __rmap_write_protect(struct kvm *kvm, 1126 struct kvm_rmap_head *rmap_head, 1127 bool pt_protect) 1128 { 1129 u64 *sptep; 1130 struct rmap_iterator iter; 1131 bool flush = false; 1132 1133 for_each_rmap_spte(rmap_head, &iter, sptep) 1134 flush |= spte_write_protect(sptep, pt_protect); 1135 1136 return flush; 1137 } 1138 1139 static bool spte_clear_dirty(u64 *sptep) 1140 { 1141 u64 spte = *sptep; 1142 1143 rmap_printk("rmap_clear_dirty: spte %p %llx\n", sptep, *sptep); 1144 1145 MMU_WARN_ON(!spte_ad_enabled(spte)); 1146 spte &= ~shadow_dirty_mask; 1147 return mmu_spte_update(sptep, spte); 1148 } 1149 1150 static bool spte_wrprot_for_clear_dirty(u64 *sptep) 1151 { 1152 bool was_writable = test_and_clear_bit(PT_WRITABLE_SHIFT, 1153 (unsigned long *)sptep); 1154 if (was_writable && !spte_ad_enabled(*sptep)) 1155 kvm_set_pfn_dirty(spte_to_pfn(*sptep)); 1156 1157 return was_writable; 1158 } 1159 1160 /* 1161 * Gets the GFN ready for another round of dirty logging by clearing the 1162 * - D bit on ad-enabled SPTEs, and 1163 * - W bit on ad-disabled SPTEs. 1164 * Returns true iff any D or W bits were cleared. 1165 */ 1166 static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head) 1167 { 1168 u64 *sptep; 1169 struct rmap_iterator iter; 1170 bool flush = false; 1171 1172 for_each_rmap_spte(rmap_head, &iter, sptep) 1173 if (spte_ad_need_write_protect(*sptep)) 1174 flush |= spte_wrprot_for_clear_dirty(sptep); 1175 else 1176 flush |= spte_clear_dirty(sptep); 1177 1178 return flush; 1179 } 1180 1181 static bool spte_set_dirty(u64 *sptep) 1182 { 1183 u64 spte = *sptep; 1184 1185 rmap_printk("rmap_set_dirty: spte %p %llx\n", sptep, *sptep); 1186 1187 /* 1188 * Similar to the !kvm_x86_ops.slot_disable_log_dirty case, 1189 * do not bother adding back write access to pages marked 1190 * SPTE_AD_WRPROT_ONLY_MASK. 1191 */ 1192 spte |= shadow_dirty_mask; 1193 1194 return mmu_spte_update(sptep, spte); 1195 } 1196 1197 static bool __rmap_set_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head) 1198 { 1199 u64 *sptep; 1200 struct rmap_iterator iter; 1201 bool flush = false; 1202 1203 for_each_rmap_spte(rmap_head, &iter, sptep) 1204 if (spte_ad_enabled(*sptep)) 1205 flush |= spte_set_dirty(sptep); 1206 1207 return flush; 1208 } 1209 1210 /** 1211 * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages 1212 * @kvm: kvm instance 1213 * @slot: slot to protect 1214 * @gfn_offset: start of the BITS_PER_LONG pages we care about 1215 * @mask: indicates which pages we should protect 1216 * 1217 * Used when we do not need to care about huge page mappings: e.g. during dirty 1218 * logging we do not have any such mappings. 1219 */ 1220 static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm, 1221 struct kvm_memory_slot *slot, 1222 gfn_t gfn_offset, unsigned long mask) 1223 { 1224 struct kvm_rmap_head *rmap_head; 1225 1226 if (kvm->arch.tdp_mmu_enabled) 1227 kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot, 1228 slot->base_gfn + gfn_offset, mask, true); 1229 while (mask) { 1230 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask), 1231 PG_LEVEL_4K, slot); 1232 __rmap_write_protect(kvm, rmap_head, false); 1233 1234 /* clear the first set bit */ 1235 mask &= mask - 1; 1236 } 1237 } 1238 1239 /** 1240 * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages, or write 1241 * protect the page if the D-bit isn't supported. 1242 * @kvm: kvm instance 1243 * @slot: slot to clear D-bit 1244 * @gfn_offset: start of the BITS_PER_LONG pages we care about 1245 * @mask: indicates which pages we should clear D-bit 1246 * 1247 * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap. 1248 */ 1249 void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm, 1250 struct kvm_memory_slot *slot, 1251 gfn_t gfn_offset, unsigned long mask) 1252 { 1253 struct kvm_rmap_head *rmap_head; 1254 1255 if (kvm->arch.tdp_mmu_enabled) 1256 kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot, 1257 slot->base_gfn + gfn_offset, mask, false); 1258 while (mask) { 1259 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask), 1260 PG_LEVEL_4K, slot); 1261 __rmap_clear_dirty(kvm, rmap_head); 1262 1263 /* clear the first set bit */ 1264 mask &= mask - 1; 1265 } 1266 } 1267 EXPORT_SYMBOL_GPL(kvm_mmu_clear_dirty_pt_masked); 1268 1269 /** 1270 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected 1271 * PT level pages. 1272 * 1273 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to 1274 * enable dirty logging for them. 1275 * 1276 * Used when we do not need to care about huge page mappings: e.g. during dirty 1277 * logging we do not have any such mappings. 1278 */ 1279 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm, 1280 struct kvm_memory_slot *slot, 1281 gfn_t gfn_offset, unsigned long mask) 1282 { 1283 if (kvm_x86_ops.enable_log_dirty_pt_masked) 1284 kvm_x86_ops.enable_log_dirty_pt_masked(kvm, slot, gfn_offset, 1285 mask); 1286 else 1287 kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask); 1288 } 1289 1290 bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm, 1291 struct kvm_memory_slot *slot, u64 gfn) 1292 { 1293 struct kvm_rmap_head *rmap_head; 1294 int i; 1295 bool write_protected = false; 1296 1297 for (i = PG_LEVEL_4K; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) { 1298 rmap_head = __gfn_to_rmap(gfn, i, slot); 1299 write_protected |= __rmap_write_protect(kvm, rmap_head, true); 1300 } 1301 1302 if (kvm->arch.tdp_mmu_enabled) 1303 write_protected |= 1304 kvm_tdp_mmu_write_protect_gfn(kvm, slot, gfn); 1305 1306 return write_protected; 1307 } 1308 1309 static bool rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn) 1310 { 1311 struct kvm_memory_slot *slot; 1312 1313 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 1314 return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn); 1315 } 1316 1317 static bool kvm_zap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head) 1318 { 1319 u64 *sptep; 1320 struct rmap_iterator iter; 1321 bool flush = false; 1322 1323 while ((sptep = rmap_get_first(rmap_head, &iter))) { 1324 rmap_printk("%s: spte %p %llx.\n", __func__, sptep, *sptep); 1325 1326 pte_list_remove(rmap_head, sptep); 1327 flush = true; 1328 } 1329 1330 return flush; 1331 } 1332 1333 static int kvm_unmap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head, 1334 struct kvm_memory_slot *slot, gfn_t gfn, int level, 1335 unsigned long data) 1336 { 1337 return kvm_zap_rmapp(kvm, rmap_head); 1338 } 1339 1340 static int kvm_set_pte_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head, 1341 struct kvm_memory_slot *slot, gfn_t gfn, int level, 1342 unsigned long data) 1343 { 1344 u64 *sptep; 1345 struct rmap_iterator iter; 1346 int need_flush = 0; 1347 u64 new_spte; 1348 pte_t *ptep = (pte_t *)data; 1349 kvm_pfn_t new_pfn; 1350 1351 WARN_ON(pte_huge(*ptep)); 1352 new_pfn = pte_pfn(*ptep); 1353 1354 restart: 1355 for_each_rmap_spte(rmap_head, &iter, sptep) { 1356 rmap_printk("kvm_set_pte_rmapp: spte %p %llx gfn %llx (%d)\n", 1357 sptep, *sptep, gfn, level); 1358 1359 need_flush = 1; 1360 1361 if (pte_write(*ptep)) { 1362 pte_list_remove(rmap_head, sptep); 1363 goto restart; 1364 } else { 1365 new_spte = kvm_mmu_changed_pte_notifier_make_spte( 1366 *sptep, new_pfn); 1367 1368 mmu_spte_clear_track_bits(sptep); 1369 mmu_spte_set(sptep, new_spte); 1370 } 1371 } 1372 1373 if (need_flush && kvm_available_flush_tlb_with_range()) { 1374 kvm_flush_remote_tlbs_with_address(kvm, gfn, 1); 1375 return 0; 1376 } 1377 1378 return need_flush; 1379 } 1380 1381 struct slot_rmap_walk_iterator { 1382 /* input fields. */ 1383 struct kvm_memory_slot *slot; 1384 gfn_t start_gfn; 1385 gfn_t end_gfn; 1386 int start_level; 1387 int end_level; 1388 1389 /* output fields. */ 1390 gfn_t gfn; 1391 struct kvm_rmap_head *rmap; 1392 int level; 1393 1394 /* private field. */ 1395 struct kvm_rmap_head *end_rmap; 1396 }; 1397 1398 static void 1399 rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level) 1400 { 1401 iterator->level = level; 1402 iterator->gfn = iterator->start_gfn; 1403 iterator->rmap = __gfn_to_rmap(iterator->gfn, level, iterator->slot); 1404 iterator->end_rmap = __gfn_to_rmap(iterator->end_gfn, level, 1405 iterator->slot); 1406 } 1407 1408 static void 1409 slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator, 1410 struct kvm_memory_slot *slot, int start_level, 1411 int end_level, gfn_t start_gfn, gfn_t end_gfn) 1412 { 1413 iterator->slot = slot; 1414 iterator->start_level = start_level; 1415 iterator->end_level = end_level; 1416 iterator->start_gfn = start_gfn; 1417 iterator->end_gfn = end_gfn; 1418 1419 rmap_walk_init_level(iterator, iterator->start_level); 1420 } 1421 1422 static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator) 1423 { 1424 return !!iterator->rmap; 1425 } 1426 1427 static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator) 1428 { 1429 if (++iterator->rmap <= iterator->end_rmap) { 1430 iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level)); 1431 return; 1432 } 1433 1434 if (++iterator->level > iterator->end_level) { 1435 iterator->rmap = NULL; 1436 return; 1437 } 1438 1439 rmap_walk_init_level(iterator, iterator->level); 1440 } 1441 1442 #define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_, \ 1443 _start_gfn, _end_gfn, _iter_) \ 1444 for (slot_rmap_walk_init(_iter_, _slot_, _start_level_, \ 1445 _end_level_, _start_gfn, _end_gfn); \ 1446 slot_rmap_walk_okay(_iter_); \ 1447 slot_rmap_walk_next(_iter_)) 1448 1449 static int kvm_handle_hva_range(struct kvm *kvm, 1450 unsigned long start, 1451 unsigned long end, 1452 unsigned long data, 1453 int (*handler)(struct kvm *kvm, 1454 struct kvm_rmap_head *rmap_head, 1455 struct kvm_memory_slot *slot, 1456 gfn_t gfn, 1457 int level, 1458 unsigned long data)) 1459 { 1460 struct kvm_memslots *slots; 1461 struct kvm_memory_slot *memslot; 1462 struct slot_rmap_walk_iterator iterator; 1463 int ret = 0; 1464 int i; 1465 1466 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { 1467 slots = __kvm_memslots(kvm, i); 1468 kvm_for_each_memslot(memslot, slots) { 1469 unsigned long hva_start, hva_end; 1470 gfn_t gfn_start, gfn_end; 1471 1472 hva_start = max(start, memslot->userspace_addr); 1473 hva_end = min(end, memslot->userspace_addr + 1474 (memslot->npages << PAGE_SHIFT)); 1475 if (hva_start >= hva_end) 1476 continue; 1477 /* 1478 * {gfn(page) | page intersects with [hva_start, hva_end)} = 1479 * {gfn_start, gfn_start+1, ..., gfn_end-1}. 1480 */ 1481 gfn_start = hva_to_gfn_memslot(hva_start, memslot); 1482 gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot); 1483 1484 for_each_slot_rmap_range(memslot, PG_LEVEL_4K, 1485 KVM_MAX_HUGEPAGE_LEVEL, 1486 gfn_start, gfn_end - 1, 1487 &iterator) 1488 ret |= handler(kvm, iterator.rmap, memslot, 1489 iterator.gfn, iterator.level, data); 1490 } 1491 } 1492 1493 return ret; 1494 } 1495 1496 static int kvm_handle_hva(struct kvm *kvm, unsigned long hva, 1497 unsigned long data, 1498 int (*handler)(struct kvm *kvm, 1499 struct kvm_rmap_head *rmap_head, 1500 struct kvm_memory_slot *slot, 1501 gfn_t gfn, int level, 1502 unsigned long data)) 1503 { 1504 return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler); 1505 } 1506 1507 int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end, 1508 unsigned flags) 1509 { 1510 int r; 1511 1512 r = kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp); 1513 1514 if (kvm->arch.tdp_mmu_enabled) 1515 r |= kvm_tdp_mmu_zap_hva_range(kvm, start, end); 1516 1517 return r; 1518 } 1519 1520 int kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte) 1521 { 1522 int r; 1523 1524 r = kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp); 1525 1526 if (kvm->arch.tdp_mmu_enabled) 1527 r |= kvm_tdp_mmu_set_spte_hva(kvm, hva, &pte); 1528 1529 return r; 1530 } 1531 1532 static int kvm_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head, 1533 struct kvm_memory_slot *slot, gfn_t gfn, int level, 1534 unsigned long data) 1535 { 1536 u64 *sptep; 1537 struct rmap_iterator iter; 1538 int young = 0; 1539 1540 for_each_rmap_spte(rmap_head, &iter, sptep) 1541 young |= mmu_spte_age(sptep); 1542 1543 trace_kvm_age_page(gfn, level, slot, young); 1544 return young; 1545 } 1546 1547 static int kvm_test_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head, 1548 struct kvm_memory_slot *slot, gfn_t gfn, 1549 int level, unsigned long data) 1550 { 1551 u64 *sptep; 1552 struct rmap_iterator iter; 1553 1554 for_each_rmap_spte(rmap_head, &iter, sptep) 1555 if (is_accessed_spte(*sptep)) 1556 return 1; 1557 return 0; 1558 } 1559 1560 #define RMAP_RECYCLE_THRESHOLD 1000 1561 1562 static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn) 1563 { 1564 struct kvm_rmap_head *rmap_head; 1565 struct kvm_mmu_page *sp; 1566 1567 sp = sptep_to_sp(spte); 1568 1569 rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp); 1570 1571 kvm_unmap_rmapp(vcpu->kvm, rmap_head, NULL, gfn, sp->role.level, 0); 1572 kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn, 1573 KVM_PAGES_PER_HPAGE(sp->role.level)); 1574 } 1575 1576 int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end) 1577 { 1578 int young = false; 1579 1580 young = kvm_handle_hva_range(kvm, start, end, 0, kvm_age_rmapp); 1581 if (kvm->arch.tdp_mmu_enabled) 1582 young |= kvm_tdp_mmu_age_hva_range(kvm, start, end); 1583 1584 return young; 1585 } 1586 1587 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva) 1588 { 1589 int young = false; 1590 1591 young = kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp); 1592 if (kvm->arch.tdp_mmu_enabled) 1593 young |= kvm_tdp_mmu_test_age_hva(kvm, hva); 1594 1595 return young; 1596 } 1597 1598 #ifdef MMU_DEBUG 1599 static int is_empty_shadow_page(u64 *spt) 1600 { 1601 u64 *pos; 1602 u64 *end; 1603 1604 for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++) 1605 if (is_shadow_present_pte(*pos)) { 1606 printk(KERN_ERR "%s: %p %llx\n", __func__, 1607 pos, *pos); 1608 return 0; 1609 } 1610 return 1; 1611 } 1612 #endif 1613 1614 /* 1615 * This value is the sum of all of the kvm instances's 1616 * kvm->arch.n_used_mmu_pages values. We need a global, 1617 * aggregate version in order to make the slab shrinker 1618 * faster 1619 */ 1620 static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, unsigned long nr) 1621 { 1622 kvm->arch.n_used_mmu_pages += nr; 1623 percpu_counter_add(&kvm_total_used_mmu_pages, nr); 1624 } 1625 1626 static void kvm_mmu_free_page(struct kvm_mmu_page *sp) 1627 { 1628 MMU_WARN_ON(!is_empty_shadow_page(sp->spt)); 1629 hlist_del(&sp->hash_link); 1630 list_del(&sp->link); 1631 free_page((unsigned long)sp->spt); 1632 if (!sp->role.direct) 1633 free_page((unsigned long)sp->gfns); 1634 kmem_cache_free(mmu_page_header_cache, sp); 1635 } 1636 1637 static unsigned kvm_page_table_hashfn(gfn_t gfn) 1638 { 1639 return hash_64(gfn, KVM_MMU_HASH_SHIFT); 1640 } 1641 1642 static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu, 1643 struct kvm_mmu_page *sp, u64 *parent_pte) 1644 { 1645 if (!parent_pte) 1646 return; 1647 1648 pte_list_add(vcpu, parent_pte, &sp->parent_ptes); 1649 } 1650 1651 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp, 1652 u64 *parent_pte) 1653 { 1654 __pte_list_remove(parent_pte, &sp->parent_ptes); 1655 } 1656 1657 static void drop_parent_pte(struct kvm_mmu_page *sp, 1658 u64 *parent_pte) 1659 { 1660 mmu_page_remove_parent_pte(sp, parent_pte); 1661 mmu_spte_clear_no_track(parent_pte); 1662 } 1663 1664 static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu, int direct) 1665 { 1666 struct kvm_mmu_page *sp; 1667 1668 sp = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache); 1669 sp->spt = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_shadow_page_cache); 1670 if (!direct) 1671 sp->gfns = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_gfn_array_cache); 1672 set_page_private(virt_to_page(sp->spt), (unsigned long)sp); 1673 1674 /* 1675 * active_mmu_pages must be a FIFO list, as kvm_zap_obsolete_pages() 1676 * depends on valid pages being added to the head of the list. See 1677 * comments in kvm_zap_obsolete_pages(). 1678 */ 1679 sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen; 1680 list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages); 1681 kvm_mod_used_mmu_pages(vcpu->kvm, +1); 1682 return sp; 1683 } 1684 1685 static void mark_unsync(u64 *spte); 1686 static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp) 1687 { 1688 u64 *sptep; 1689 struct rmap_iterator iter; 1690 1691 for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) { 1692 mark_unsync(sptep); 1693 } 1694 } 1695 1696 static void mark_unsync(u64 *spte) 1697 { 1698 struct kvm_mmu_page *sp; 1699 unsigned int index; 1700 1701 sp = sptep_to_sp(spte); 1702 index = spte - sp->spt; 1703 if (__test_and_set_bit(index, sp->unsync_child_bitmap)) 1704 return; 1705 if (sp->unsync_children++) 1706 return; 1707 kvm_mmu_mark_parents_unsync(sp); 1708 } 1709 1710 static int nonpaging_sync_page(struct kvm_vcpu *vcpu, 1711 struct kvm_mmu_page *sp) 1712 { 1713 return 0; 1714 } 1715 1716 static void nonpaging_update_pte(struct kvm_vcpu *vcpu, 1717 struct kvm_mmu_page *sp, u64 *spte, 1718 const void *pte) 1719 { 1720 WARN_ON(1); 1721 } 1722 1723 #define KVM_PAGE_ARRAY_NR 16 1724 1725 struct kvm_mmu_pages { 1726 struct mmu_page_and_offset { 1727 struct kvm_mmu_page *sp; 1728 unsigned int idx; 1729 } page[KVM_PAGE_ARRAY_NR]; 1730 unsigned int nr; 1731 }; 1732 1733 static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp, 1734 int idx) 1735 { 1736 int i; 1737 1738 if (sp->unsync) 1739 for (i=0; i < pvec->nr; i++) 1740 if (pvec->page[i].sp == sp) 1741 return 0; 1742 1743 pvec->page[pvec->nr].sp = sp; 1744 pvec->page[pvec->nr].idx = idx; 1745 pvec->nr++; 1746 return (pvec->nr == KVM_PAGE_ARRAY_NR); 1747 } 1748 1749 static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx) 1750 { 1751 --sp->unsync_children; 1752 WARN_ON((int)sp->unsync_children < 0); 1753 __clear_bit(idx, sp->unsync_child_bitmap); 1754 } 1755 1756 static int __mmu_unsync_walk(struct kvm_mmu_page *sp, 1757 struct kvm_mmu_pages *pvec) 1758 { 1759 int i, ret, nr_unsync_leaf = 0; 1760 1761 for_each_set_bit(i, sp->unsync_child_bitmap, 512) { 1762 struct kvm_mmu_page *child; 1763 u64 ent = sp->spt[i]; 1764 1765 if (!is_shadow_present_pte(ent) || is_large_pte(ent)) { 1766 clear_unsync_child_bit(sp, i); 1767 continue; 1768 } 1769 1770 child = to_shadow_page(ent & PT64_BASE_ADDR_MASK); 1771 1772 if (child->unsync_children) { 1773 if (mmu_pages_add(pvec, child, i)) 1774 return -ENOSPC; 1775 1776 ret = __mmu_unsync_walk(child, pvec); 1777 if (!ret) { 1778 clear_unsync_child_bit(sp, i); 1779 continue; 1780 } else if (ret > 0) { 1781 nr_unsync_leaf += ret; 1782 } else 1783 return ret; 1784 } else if (child->unsync) { 1785 nr_unsync_leaf++; 1786 if (mmu_pages_add(pvec, child, i)) 1787 return -ENOSPC; 1788 } else 1789 clear_unsync_child_bit(sp, i); 1790 } 1791 1792 return nr_unsync_leaf; 1793 } 1794 1795 #define INVALID_INDEX (-1) 1796 1797 static int mmu_unsync_walk(struct kvm_mmu_page *sp, 1798 struct kvm_mmu_pages *pvec) 1799 { 1800 pvec->nr = 0; 1801 if (!sp->unsync_children) 1802 return 0; 1803 1804 mmu_pages_add(pvec, sp, INVALID_INDEX); 1805 return __mmu_unsync_walk(sp, pvec); 1806 } 1807 1808 static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp) 1809 { 1810 WARN_ON(!sp->unsync); 1811 trace_kvm_mmu_sync_page(sp); 1812 sp->unsync = 0; 1813 --kvm->stat.mmu_unsync; 1814 } 1815 1816 static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp, 1817 struct list_head *invalid_list); 1818 static void kvm_mmu_commit_zap_page(struct kvm *kvm, 1819 struct list_head *invalid_list); 1820 1821 #define for_each_valid_sp(_kvm, _sp, _list) \ 1822 hlist_for_each_entry(_sp, _list, hash_link) \ 1823 if (is_obsolete_sp((_kvm), (_sp))) { \ 1824 } else 1825 1826 #define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn) \ 1827 for_each_valid_sp(_kvm, _sp, \ 1828 &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)]) \ 1829 if ((_sp)->gfn != (_gfn) || (_sp)->role.direct) {} else 1830 1831 static inline bool is_ept_sp(struct kvm_mmu_page *sp) 1832 { 1833 return sp->role.cr0_wp && sp->role.smap_andnot_wp; 1834 } 1835 1836 /* @sp->gfn should be write-protected at the call site */ 1837 static bool __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp, 1838 struct list_head *invalid_list) 1839 { 1840 if ((!is_ept_sp(sp) && sp->role.gpte_is_8_bytes != !!is_pae(vcpu)) || 1841 vcpu->arch.mmu->sync_page(vcpu, sp) == 0) { 1842 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list); 1843 return false; 1844 } 1845 1846 return true; 1847 } 1848 1849 static bool kvm_mmu_remote_flush_or_zap(struct kvm *kvm, 1850 struct list_head *invalid_list, 1851 bool remote_flush) 1852 { 1853 if (!remote_flush && list_empty(invalid_list)) 1854 return false; 1855 1856 if (!list_empty(invalid_list)) 1857 kvm_mmu_commit_zap_page(kvm, invalid_list); 1858 else 1859 kvm_flush_remote_tlbs(kvm); 1860 return true; 1861 } 1862 1863 static void kvm_mmu_flush_or_zap(struct kvm_vcpu *vcpu, 1864 struct list_head *invalid_list, 1865 bool remote_flush, bool local_flush) 1866 { 1867 if (kvm_mmu_remote_flush_or_zap(vcpu->kvm, invalid_list, remote_flush)) 1868 return; 1869 1870 if (local_flush) 1871 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 1872 } 1873 1874 #ifdef CONFIG_KVM_MMU_AUDIT 1875 #include "mmu_audit.c" 1876 #else 1877 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { } 1878 static void mmu_audit_disable(void) { } 1879 #endif 1880 1881 static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp) 1882 { 1883 return sp->role.invalid || 1884 unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen); 1885 } 1886 1887 static bool kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp, 1888 struct list_head *invalid_list) 1889 { 1890 kvm_unlink_unsync_page(vcpu->kvm, sp); 1891 return __kvm_sync_page(vcpu, sp, invalid_list); 1892 } 1893 1894 /* @gfn should be write-protected at the call site */ 1895 static bool kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn, 1896 struct list_head *invalid_list) 1897 { 1898 struct kvm_mmu_page *s; 1899 bool ret = false; 1900 1901 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) { 1902 if (!s->unsync) 1903 continue; 1904 1905 WARN_ON(s->role.level != PG_LEVEL_4K); 1906 ret |= kvm_sync_page(vcpu, s, invalid_list); 1907 } 1908 1909 return ret; 1910 } 1911 1912 struct mmu_page_path { 1913 struct kvm_mmu_page *parent[PT64_ROOT_MAX_LEVEL]; 1914 unsigned int idx[PT64_ROOT_MAX_LEVEL]; 1915 }; 1916 1917 #define for_each_sp(pvec, sp, parents, i) \ 1918 for (i = mmu_pages_first(&pvec, &parents); \ 1919 i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \ 1920 i = mmu_pages_next(&pvec, &parents, i)) 1921 1922 static int mmu_pages_next(struct kvm_mmu_pages *pvec, 1923 struct mmu_page_path *parents, 1924 int i) 1925 { 1926 int n; 1927 1928 for (n = i+1; n < pvec->nr; n++) { 1929 struct kvm_mmu_page *sp = pvec->page[n].sp; 1930 unsigned idx = pvec->page[n].idx; 1931 int level = sp->role.level; 1932 1933 parents->idx[level-1] = idx; 1934 if (level == PG_LEVEL_4K) 1935 break; 1936 1937 parents->parent[level-2] = sp; 1938 } 1939 1940 return n; 1941 } 1942 1943 static int mmu_pages_first(struct kvm_mmu_pages *pvec, 1944 struct mmu_page_path *parents) 1945 { 1946 struct kvm_mmu_page *sp; 1947 int level; 1948 1949 if (pvec->nr == 0) 1950 return 0; 1951 1952 WARN_ON(pvec->page[0].idx != INVALID_INDEX); 1953 1954 sp = pvec->page[0].sp; 1955 level = sp->role.level; 1956 WARN_ON(level == PG_LEVEL_4K); 1957 1958 parents->parent[level-2] = sp; 1959 1960 /* Also set up a sentinel. Further entries in pvec are all 1961 * children of sp, so this element is never overwritten. 1962 */ 1963 parents->parent[level-1] = NULL; 1964 return mmu_pages_next(pvec, parents, 0); 1965 } 1966 1967 static void mmu_pages_clear_parents(struct mmu_page_path *parents) 1968 { 1969 struct kvm_mmu_page *sp; 1970 unsigned int level = 0; 1971 1972 do { 1973 unsigned int idx = parents->idx[level]; 1974 sp = parents->parent[level]; 1975 if (!sp) 1976 return; 1977 1978 WARN_ON(idx == INVALID_INDEX); 1979 clear_unsync_child_bit(sp, idx); 1980 level++; 1981 } while (!sp->unsync_children); 1982 } 1983 1984 static void mmu_sync_children(struct kvm_vcpu *vcpu, 1985 struct kvm_mmu_page *parent) 1986 { 1987 int i; 1988 struct kvm_mmu_page *sp; 1989 struct mmu_page_path parents; 1990 struct kvm_mmu_pages pages; 1991 LIST_HEAD(invalid_list); 1992 bool flush = false; 1993 1994 while (mmu_unsync_walk(parent, &pages)) { 1995 bool protected = false; 1996 1997 for_each_sp(pages, sp, parents, i) 1998 protected |= rmap_write_protect(vcpu, sp->gfn); 1999 2000 if (protected) { 2001 kvm_flush_remote_tlbs(vcpu->kvm); 2002 flush = false; 2003 } 2004 2005 for_each_sp(pages, sp, parents, i) { 2006 flush |= kvm_sync_page(vcpu, sp, &invalid_list); 2007 mmu_pages_clear_parents(&parents); 2008 } 2009 if (need_resched() || spin_needbreak(&vcpu->kvm->mmu_lock)) { 2010 kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush); 2011 cond_resched_lock(&vcpu->kvm->mmu_lock); 2012 flush = false; 2013 } 2014 } 2015 2016 kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush); 2017 } 2018 2019 static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp) 2020 { 2021 atomic_set(&sp->write_flooding_count, 0); 2022 } 2023 2024 static void clear_sp_write_flooding_count(u64 *spte) 2025 { 2026 __clear_sp_write_flooding_count(sptep_to_sp(spte)); 2027 } 2028 2029 static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu, 2030 gfn_t gfn, 2031 gva_t gaddr, 2032 unsigned level, 2033 int direct, 2034 unsigned int access) 2035 { 2036 bool direct_mmu = vcpu->arch.mmu->direct_map; 2037 union kvm_mmu_page_role role; 2038 struct hlist_head *sp_list; 2039 unsigned quadrant; 2040 struct kvm_mmu_page *sp; 2041 bool need_sync = false; 2042 bool flush = false; 2043 int collisions = 0; 2044 LIST_HEAD(invalid_list); 2045 2046 role = vcpu->arch.mmu->mmu_role.base; 2047 role.level = level; 2048 role.direct = direct; 2049 if (role.direct) 2050 role.gpte_is_8_bytes = true; 2051 role.access = access; 2052 if (!direct_mmu && vcpu->arch.mmu->root_level <= PT32_ROOT_LEVEL) { 2053 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level)); 2054 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1; 2055 role.quadrant = quadrant; 2056 } 2057 2058 sp_list = &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]; 2059 for_each_valid_sp(vcpu->kvm, sp, sp_list) { 2060 if (sp->gfn != gfn) { 2061 collisions++; 2062 continue; 2063 } 2064 2065 if (!need_sync && sp->unsync) 2066 need_sync = true; 2067 2068 if (sp->role.word != role.word) 2069 continue; 2070 2071 if (direct_mmu) 2072 goto trace_get_page; 2073 2074 if (sp->unsync) { 2075 /* The page is good, but __kvm_sync_page might still end 2076 * up zapping it. If so, break in order to rebuild it. 2077 */ 2078 if (!__kvm_sync_page(vcpu, sp, &invalid_list)) 2079 break; 2080 2081 WARN_ON(!list_empty(&invalid_list)); 2082 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 2083 } 2084 2085 if (sp->unsync_children) 2086 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu); 2087 2088 __clear_sp_write_flooding_count(sp); 2089 2090 trace_get_page: 2091 trace_kvm_mmu_get_page(sp, false); 2092 goto out; 2093 } 2094 2095 ++vcpu->kvm->stat.mmu_cache_miss; 2096 2097 sp = kvm_mmu_alloc_page(vcpu, direct); 2098 2099 sp->gfn = gfn; 2100 sp->role = role; 2101 hlist_add_head(&sp->hash_link, sp_list); 2102 if (!direct) { 2103 /* 2104 * we should do write protection before syncing pages 2105 * otherwise the content of the synced shadow page may 2106 * be inconsistent with guest page table. 2107 */ 2108 account_shadowed(vcpu->kvm, sp); 2109 if (level == PG_LEVEL_4K && rmap_write_protect(vcpu, gfn)) 2110 kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn, 1); 2111 2112 if (level > PG_LEVEL_4K && need_sync) 2113 flush |= kvm_sync_pages(vcpu, gfn, &invalid_list); 2114 } 2115 trace_kvm_mmu_get_page(sp, true); 2116 2117 kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush); 2118 out: 2119 if (collisions > vcpu->kvm->stat.max_mmu_page_hash_collisions) 2120 vcpu->kvm->stat.max_mmu_page_hash_collisions = collisions; 2121 return sp; 2122 } 2123 2124 static void shadow_walk_init_using_root(struct kvm_shadow_walk_iterator *iterator, 2125 struct kvm_vcpu *vcpu, hpa_t root, 2126 u64 addr) 2127 { 2128 iterator->addr = addr; 2129 iterator->shadow_addr = root; 2130 iterator->level = vcpu->arch.mmu->shadow_root_level; 2131 2132 if (iterator->level == PT64_ROOT_4LEVEL && 2133 vcpu->arch.mmu->root_level < PT64_ROOT_4LEVEL && 2134 !vcpu->arch.mmu->direct_map) 2135 --iterator->level; 2136 2137 if (iterator->level == PT32E_ROOT_LEVEL) { 2138 /* 2139 * prev_root is currently only used for 64-bit hosts. So only 2140 * the active root_hpa is valid here. 2141 */ 2142 BUG_ON(root != vcpu->arch.mmu->root_hpa); 2143 2144 iterator->shadow_addr 2145 = vcpu->arch.mmu->pae_root[(addr >> 30) & 3]; 2146 iterator->shadow_addr &= PT64_BASE_ADDR_MASK; 2147 --iterator->level; 2148 if (!iterator->shadow_addr) 2149 iterator->level = 0; 2150 } 2151 } 2152 2153 static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator, 2154 struct kvm_vcpu *vcpu, u64 addr) 2155 { 2156 shadow_walk_init_using_root(iterator, vcpu, vcpu->arch.mmu->root_hpa, 2157 addr); 2158 } 2159 2160 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator) 2161 { 2162 if (iterator->level < PG_LEVEL_4K) 2163 return false; 2164 2165 iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level); 2166 iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index; 2167 return true; 2168 } 2169 2170 static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator, 2171 u64 spte) 2172 { 2173 if (is_last_spte(spte, iterator->level)) { 2174 iterator->level = 0; 2175 return; 2176 } 2177 2178 iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK; 2179 --iterator->level; 2180 } 2181 2182 static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator) 2183 { 2184 __shadow_walk_next(iterator, *iterator->sptep); 2185 } 2186 2187 static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep, 2188 struct kvm_mmu_page *sp) 2189 { 2190 u64 spte; 2191 2192 BUILD_BUG_ON(VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK); 2193 2194 spte = make_nonleaf_spte(sp->spt, sp_ad_disabled(sp)); 2195 2196 mmu_spte_set(sptep, spte); 2197 2198 mmu_page_add_parent_pte(vcpu, sp, sptep); 2199 2200 if (sp->unsync_children || sp->unsync) 2201 mark_unsync(sptep); 2202 } 2203 2204 static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep, 2205 unsigned direct_access) 2206 { 2207 if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) { 2208 struct kvm_mmu_page *child; 2209 2210 /* 2211 * For the direct sp, if the guest pte's dirty bit 2212 * changed form clean to dirty, it will corrupt the 2213 * sp's access: allow writable in the read-only sp, 2214 * so we should update the spte at this point to get 2215 * a new sp with the correct access. 2216 */ 2217 child = to_shadow_page(*sptep & PT64_BASE_ADDR_MASK); 2218 if (child->role.access == direct_access) 2219 return; 2220 2221 drop_parent_pte(child, sptep); 2222 kvm_flush_remote_tlbs_with_address(vcpu->kvm, child->gfn, 1); 2223 } 2224 } 2225 2226 /* Returns the number of zapped non-leaf child shadow pages. */ 2227 static int mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp, 2228 u64 *spte, struct list_head *invalid_list) 2229 { 2230 u64 pte; 2231 struct kvm_mmu_page *child; 2232 2233 pte = *spte; 2234 if (is_shadow_present_pte(pte)) { 2235 if (is_last_spte(pte, sp->role.level)) { 2236 drop_spte(kvm, spte); 2237 if (is_large_pte(pte)) 2238 --kvm->stat.lpages; 2239 } else { 2240 child = to_shadow_page(pte & PT64_BASE_ADDR_MASK); 2241 drop_parent_pte(child, spte); 2242 2243 /* 2244 * Recursively zap nested TDP SPs, parentless SPs are 2245 * unlikely to be used again in the near future. This 2246 * avoids retaining a large number of stale nested SPs. 2247 */ 2248 if (tdp_enabled && invalid_list && 2249 child->role.guest_mode && !child->parent_ptes.val) 2250 return kvm_mmu_prepare_zap_page(kvm, child, 2251 invalid_list); 2252 } 2253 } else if (is_mmio_spte(pte)) { 2254 mmu_spte_clear_no_track(spte); 2255 } 2256 return 0; 2257 } 2258 2259 static int kvm_mmu_page_unlink_children(struct kvm *kvm, 2260 struct kvm_mmu_page *sp, 2261 struct list_head *invalid_list) 2262 { 2263 int zapped = 0; 2264 unsigned i; 2265 2266 for (i = 0; i < PT64_ENT_PER_PAGE; ++i) 2267 zapped += mmu_page_zap_pte(kvm, sp, sp->spt + i, invalid_list); 2268 2269 return zapped; 2270 } 2271 2272 static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp) 2273 { 2274 u64 *sptep; 2275 struct rmap_iterator iter; 2276 2277 while ((sptep = rmap_get_first(&sp->parent_ptes, &iter))) 2278 drop_parent_pte(sp, sptep); 2279 } 2280 2281 static int mmu_zap_unsync_children(struct kvm *kvm, 2282 struct kvm_mmu_page *parent, 2283 struct list_head *invalid_list) 2284 { 2285 int i, zapped = 0; 2286 struct mmu_page_path parents; 2287 struct kvm_mmu_pages pages; 2288 2289 if (parent->role.level == PG_LEVEL_4K) 2290 return 0; 2291 2292 while (mmu_unsync_walk(parent, &pages)) { 2293 struct kvm_mmu_page *sp; 2294 2295 for_each_sp(pages, sp, parents, i) { 2296 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list); 2297 mmu_pages_clear_parents(&parents); 2298 zapped++; 2299 } 2300 } 2301 2302 return zapped; 2303 } 2304 2305 static bool __kvm_mmu_prepare_zap_page(struct kvm *kvm, 2306 struct kvm_mmu_page *sp, 2307 struct list_head *invalid_list, 2308 int *nr_zapped) 2309 { 2310 bool list_unstable; 2311 2312 trace_kvm_mmu_prepare_zap_page(sp); 2313 ++kvm->stat.mmu_shadow_zapped; 2314 *nr_zapped = mmu_zap_unsync_children(kvm, sp, invalid_list); 2315 *nr_zapped += kvm_mmu_page_unlink_children(kvm, sp, invalid_list); 2316 kvm_mmu_unlink_parents(kvm, sp); 2317 2318 /* Zapping children means active_mmu_pages has become unstable. */ 2319 list_unstable = *nr_zapped; 2320 2321 if (!sp->role.invalid && !sp->role.direct) 2322 unaccount_shadowed(kvm, sp); 2323 2324 if (sp->unsync) 2325 kvm_unlink_unsync_page(kvm, sp); 2326 if (!sp->root_count) { 2327 /* Count self */ 2328 (*nr_zapped)++; 2329 2330 /* 2331 * Already invalid pages (previously active roots) are not on 2332 * the active page list. See list_del() in the "else" case of 2333 * !sp->root_count. 2334 */ 2335 if (sp->role.invalid) 2336 list_add(&sp->link, invalid_list); 2337 else 2338 list_move(&sp->link, invalid_list); 2339 kvm_mod_used_mmu_pages(kvm, -1); 2340 } else { 2341 /* 2342 * Remove the active root from the active page list, the root 2343 * will be explicitly freed when the root_count hits zero. 2344 */ 2345 list_del(&sp->link); 2346 2347 /* 2348 * Obsolete pages cannot be used on any vCPUs, see the comment 2349 * in kvm_mmu_zap_all_fast(). Note, is_obsolete_sp() also 2350 * treats invalid shadow pages as being obsolete. 2351 */ 2352 if (!is_obsolete_sp(kvm, sp)) 2353 kvm_reload_remote_mmus(kvm); 2354 } 2355 2356 if (sp->lpage_disallowed) 2357 unaccount_huge_nx_page(kvm, sp); 2358 2359 sp->role.invalid = 1; 2360 return list_unstable; 2361 } 2362 2363 static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp, 2364 struct list_head *invalid_list) 2365 { 2366 int nr_zapped; 2367 2368 __kvm_mmu_prepare_zap_page(kvm, sp, invalid_list, &nr_zapped); 2369 return nr_zapped; 2370 } 2371 2372 static void kvm_mmu_commit_zap_page(struct kvm *kvm, 2373 struct list_head *invalid_list) 2374 { 2375 struct kvm_mmu_page *sp, *nsp; 2376 2377 if (list_empty(invalid_list)) 2378 return; 2379 2380 /* 2381 * We need to make sure everyone sees our modifications to 2382 * the page tables and see changes to vcpu->mode here. The barrier 2383 * in the kvm_flush_remote_tlbs() achieves this. This pairs 2384 * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end. 2385 * 2386 * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit 2387 * guest mode and/or lockless shadow page table walks. 2388 */ 2389 kvm_flush_remote_tlbs(kvm); 2390 2391 list_for_each_entry_safe(sp, nsp, invalid_list, link) { 2392 WARN_ON(!sp->role.invalid || sp->root_count); 2393 kvm_mmu_free_page(sp); 2394 } 2395 } 2396 2397 static unsigned long kvm_mmu_zap_oldest_mmu_pages(struct kvm *kvm, 2398 unsigned long nr_to_zap) 2399 { 2400 unsigned long total_zapped = 0; 2401 struct kvm_mmu_page *sp, *tmp; 2402 LIST_HEAD(invalid_list); 2403 bool unstable; 2404 int nr_zapped; 2405 2406 if (list_empty(&kvm->arch.active_mmu_pages)) 2407 return 0; 2408 2409 restart: 2410 list_for_each_entry_safe(sp, tmp, &kvm->arch.active_mmu_pages, link) { 2411 /* 2412 * Don't zap active root pages, the page itself can't be freed 2413 * and zapping it will just force vCPUs to realloc and reload. 2414 */ 2415 if (sp->root_count) 2416 continue; 2417 2418 unstable = __kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list, 2419 &nr_zapped); 2420 total_zapped += nr_zapped; 2421 if (total_zapped >= nr_to_zap) 2422 break; 2423 2424 if (unstable) 2425 goto restart; 2426 } 2427 2428 kvm_mmu_commit_zap_page(kvm, &invalid_list); 2429 2430 kvm->stat.mmu_recycled += total_zapped; 2431 return total_zapped; 2432 } 2433 2434 static inline unsigned long kvm_mmu_available_pages(struct kvm *kvm) 2435 { 2436 if (kvm->arch.n_max_mmu_pages > kvm->arch.n_used_mmu_pages) 2437 return kvm->arch.n_max_mmu_pages - 2438 kvm->arch.n_used_mmu_pages; 2439 2440 return 0; 2441 } 2442 2443 static int make_mmu_pages_available(struct kvm_vcpu *vcpu) 2444 { 2445 unsigned long avail = kvm_mmu_available_pages(vcpu->kvm); 2446 2447 if (likely(avail >= KVM_MIN_FREE_MMU_PAGES)) 2448 return 0; 2449 2450 kvm_mmu_zap_oldest_mmu_pages(vcpu->kvm, KVM_REFILL_PAGES - avail); 2451 2452 if (!kvm_mmu_available_pages(vcpu->kvm)) 2453 return -ENOSPC; 2454 return 0; 2455 } 2456 2457 /* 2458 * Changing the number of mmu pages allocated to the vm 2459 * Note: if goal_nr_mmu_pages is too small, you will get dead lock 2460 */ 2461 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long goal_nr_mmu_pages) 2462 { 2463 spin_lock(&kvm->mmu_lock); 2464 2465 if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) { 2466 kvm_mmu_zap_oldest_mmu_pages(kvm, kvm->arch.n_used_mmu_pages - 2467 goal_nr_mmu_pages); 2468 2469 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages; 2470 } 2471 2472 kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages; 2473 2474 spin_unlock(&kvm->mmu_lock); 2475 } 2476 2477 int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn) 2478 { 2479 struct kvm_mmu_page *sp; 2480 LIST_HEAD(invalid_list); 2481 int r; 2482 2483 pgprintk("%s: looking for gfn %llx\n", __func__, gfn); 2484 r = 0; 2485 spin_lock(&kvm->mmu_lock); 2486 for_each_gfn_indirect_valid_sp(kvm, sp, gfn) { 2487 pgprintk("%s: gfn %llx role %x\n", __func__, gfn, 2488 sp->role.word); 2489 r = 1; 2490 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list); 2491 } 2492 kvm_mmu_commit_zap_page(kvm, &invalid_list); 2493 spin_unlock(&kvm->mmu_lock); 2494 2495 return r; 2496 } 2497 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page); 2498 2499 static void kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp) 2500 { 2501 trace_kvm_mmu_unsync_page(sp); 2502 ++vcpu->kvm->stat.mmu_unsync; 2503 sp->unsync = 1; 2504 2505 kvm_mmu_mark_parents_unsync(sp); 2506 } 2507 2508 bool mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn, 2509 bool can_unsync) 2510 { 2511 struct kvm_mmu_page *sp; 2512 2513 if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE)) 2514 return true; 2515 2516 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) { 2517 if (!can_unsync) 2518 return true; 2519 2520 if (sp->unsync) 2521 continue; 2522 2523 WARN_ON(sp->role.level != PG_LEVEL_4K); 2524 kvm_unsync_page(vcpu, sp); 2525 } 2526 2527 /* 2528 * We need to ensure that the marking of unsync pages is visible 2529 * before the SPTE is updated to allow writes because 2530 * kvm_mmu_sync_roots() checks the unsync flags without holding 2531 * the MMU lock and so can race with this. If the SPTE was updated 2532 * before the page had been marked as unsync-ed, something like the 2533 * following could happen: 2534 * 2535 * CPU 1 CPU 2 2536 * --------------------------------------------------------------------- 2537 * 1.2 Host updates SPTE 2538 * to be writable 2539 * 2.1 Guest writes a GPTE for GVA X. 2540 * (GPTE being in the guest page table shadowed 2541 * by the SP from CPU 1.) 2542 * This reads SPTE during the page table walk. 2543 * Since SPTE.W is read as 1, there is no 2544 * fault. 2545 * 2546 * 2.2 Guest issues TLB flush. 2547 * That causes a VM Exit. 2548 * 2549 * 2.3 kvm_mmu_sync_pages() reads sp->unsync. 2550 * Since it is false, so it just returns. 2551 * 2552 * 2.4 Guest accesses GVA X. 2553 * Since the mapping in the SP was not updated, 2554 * so the old mapping for GVA X incorrectly 2555 * gets used. 2556 * 1.1 Host marks SP 2557 * as unsync 2558 * (sp->unsync = true) 2559 * 2560 * The write barrier below ensures that 1.1 happens before 1.2 and thus 2561 * the situation in 2.4 does not arise. The implicit barrier in 2.2 2562 * pairs with this write barrier. 2563 */ 2564 smp_wmb(); 2565 2566 return false; 2567 } 2568 2569 static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep, 2570 unsigned int pte_access, int level, 2571 gfn_t gfn, kvm_pfn_t pfn, bool speculative, 2572 bool can_unsync, bool host_writable) 2573 { 2574 u64 spte; 2575 struct kvm_mmu_page *sp; 2576 int ret; 2577 2578 if (set_mmio_spte(vcpu, sptep, gfn, pfn, pte_access)) 2579 return 0; 2580 2581 sp = sptep_to_sp(sptep); 2582 2583 ret = make_spte(vcpu, pte_access, level, gfn, pfn, *sptep, speculative, 2584 can_unsync, host_writable, sp_ad_disabled(sp), &spte); 2585 2586 if (spte & PT_WRITABLE_MASK) 2587 kvm_vcpu_mark_page_dirty(vcpu, gfn); 2588 2589 if (*sptep == spte) 2590 ret |= SET_SPTE_SPURIOUS; 2591 else if (mmu_spte_update(sptep, spte)) 2592 ret |= SET_SPTE_NEED_REMOTE_TLB_FLUSH; 2593 return ret; 2594 } 2595 2596 static int mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep, 2597 unsigned int pte_access, bool write_fault, int level, 2598 gfn_t gfn, kvm_pfn_t pfn, bool speculative, 2599 bool host_writable) 2600 { 2601 int was_rmapped = 0; 2602 int rmap_count; 2603 int set_spte_ret; 2604 int ret = RET_PF_FIXED; 2605 bool flush = false; 2606 2607 pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__, 2608 *sptep, write_fault, gfn); 2609 2610 if (is_shadow_present_pte(*sptep)) { 2611 /* 2612 * If we overwrite a PTE page pointer with a 2MB PMD, unlink 2613 * the parent of the now unreachable PTE. 2614 */ 2615 if (level > PG_LEVEL_4K && !is_large_pte(*sptep)) { 2616 struct kvm_mmu_page *child; 2617 u64 pte = *sptep; 2618 2619 child = to_shadow_page(pte & PT64_BASE_ADDR_MASK); 2620 drop_parent_pte(child, sptep); 2621 flush = true; 2622 } else if (pfn != spte_to_pfn(*sptep)) { 2623 pgprintk("hfn old %llx new %llx\n", 2624 spte_to_pfn(*sptep), pfn); 2625 drop_spte(vcpu->kvm, sptep); 2626 flush = true; 2627 } else 2628 was_rmapped = 1; 2629 } 2630 2631 set_spte_ret = set_spte(vcpu, sptep, pte_access, level, gfn, pfn, 2632 speculative, true, host_writable); 2633 if (set_spte_ret & SET_SPTE_WRITE_PROTECTED_PT) { 2634 if (write_fault) 2635 ret = RET_PF_EMULATE; 2636 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 2637 } 2638 2639 if (set_spte_ret & SET_SPTE_NEED_REMOTE_TLB_FLUSH || flush) 2640 kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn, 2641 KVM_PAGES_PER_HPAGE(level)); 2642 2643 if (unlikely(is_mmio_spte(*sptep))) 2644 ret = RET_PF_EMULATE; 2645 2646 /* 2647 * The fault is fully spurious if and only if the new SPTE and old SPTE 2648 * are identical, and emulation is not required. 2649 */ 2650 if ((set_spte_ret & SET_SPTE_SPURIOUS) && ret == RET_PF_FIXED) { 2651 WARN_ON_ONCE(!was_rmapped); 2652 return RET_PF_SPURIOUS; 2653 } 2654 2655 pgprintk("%s: setting spte %llx\n", __func__, *sptep); 2656 trace_kvm_mmu_set_spte(level, gfn, sptep); 2657 if (!was_rmapped && is_large_pte(*sptep)) 2658 ++vcpu->kvm->stat.lpages; 2659 2660 if (is_shadow_present_pte(*sptep)) { 2661 if (!was_rmapped) { 2662 rmap_count = rmap_add(vcpu, sptep, gfn); 2663 if (rmap_count > RMAP_RECYCLE_THRESHOLD) 2664 rmap_recycle(vcpu, sptep, gfn); 2665 } 2666 } 2667 2668 return ret; 2669 } 2670 2671 static kvm_pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn, 2672 bool no_dirty_log) 2673 { 2674 struct kvm_memory_slot *slot; 2675 2676 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log); 2677 if (!slot) 2678 return KVM_PFN_ERR_FAULT; 2679 2680 return gfn_to_pfn_memslot_atomic(slot, gfn); 2681 } 2682 2683 static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu, 2684 struct kvm_mmu_page *sp, 2685 u64 *start, u64 *end) 2686 { 2687 struct page *pages[PTE_PREFETCH_NUM]; 2688 struct kvm_memory_slot *slot; 2689 unsigned int access = sp->role.access; 2690 int i, ret; 2691 gfn_t gfn; 2692 2693 gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt); 2694 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK); 2695 if (!slot) 2696 return -1; 2697 2698 ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start); 2699 if (ret <= 0) 2700 return -1; 2701 2702 for (i = 0; i < ret; i++, gfn++, start++) { 2703 mmu_set_spte(vcpu, start, access, false, sp->role.level, gfn, 2704 page_to_pfn(pages[i]), true, true); 2705 put_page(pages[i]); 2706 } 2707 2708 return 0; 2709 } 2710 2711 static void __direct_pte_prefetch(struct kvm_vcpu *vcpu, 2712 struct kvm_mmu_page *sp, u64 *sptep) 2713 { 2714 u64 *spte, *start = NULL; 2715 int i; 2716 2717 WARN_ON(!sp->role.direct); 2718 2719 i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1); 2720 spte = sp->spt + i; 2721 2722 for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) { 2723 if (is_shadow_present_pte(*spte) || spte == sptep) { 2724 if (!start) 2725 continue; 2726 if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0) 2727 break; 2728 start = NULL; 2729 } else if (!start) 2730 start = spte; 2731 } 2732 } 2733 2734 static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep) 2735 { 2736 struct kvm_mmu_page *sp; 2737 2738 sp = sptep_to_sp(sptep); 2739 2740 /* 2741 * Without accessed bits, there's no way to distinguish between 2742 * actually accessed translations and prefetched, so disable pte 2743 * prefetch if accessed bits aren't available. 2744 */ 2745 if (sp_ad_disabled(sp)) 2746 return; 2747 2748 if (sp->role.level > PG_LEVEL_4K) 2749 return; 2750 2751 __direct_pte_prefetch(vcpu, sp, sptep); 2752 } 2753 2754 static int host_pfn_mapping_level(struct kvm_vcpu *vcpu, gfn_t gfn, 2755 kvm_pfn_t pfn, struct kvm_memory_slot *slot) 2756 { 2757 unsigned long hva; 2758 pte_t *pte; 2759 int level; 2760 2761 if (!PageCompound(pfn_to_page(pfn)) && !kvm_is_zone_device_pfn(pfn)) 2762 return PG_LEVEL_4K; 2763 2764 /* 2765 * Note, using the already-retrieved memslot and __gfn_to_hva_memslot() 2766 * is not solely for performance, it's also necessary to avoid the 2767 * "writable" check in __gfn_to_hva_many(), which will always fail on 2768 * read-only memslots due to gfn_to_hva() assuming writes. Earlier 2769 * page fault steps have already verified the guest isn't writing a 2770 * read-only memslot. 2771 */ 2772 hva = __gfn_to_hva_memslot(slot, gfn); 2773 2774 pte = lookup_address_in_mm(vcpu->kvm->mm, hva, &level); 2775 if (unlikely(!pte)) 2776 return PG_LEVEL_4K; 2777 2778 return level; 2779 } 2780 2781 int kvm_mmu_hugepage_adjust(struct kvm_vcpu *vcpu, gfn_t gfn, 2782 int max_level, kvm_pfn_t *pfnp, 2783 bool huge_page_disallowed, int *req_level) 2784 { 2785 struct kvm_memory_slot *slot; 2786 struct kvm_lpage_info *linfo; 2787 kvm_pfn_t pfn = *pfnp; 2788 kvm_pfn_t mask; 2789 int level; 2790 2791 *req_level = PG_LEVEL_4K; 2792 2793 if (unlikely(max_level == PG_LEVEL_4K)) 2794 return PG_LEVEL_4K; 2795 2796 if (is_error_noslot_pfn(pfn) || kvm_is_reserved_pfn(pfn)) 2797 return PG_LEVEL_4K; 2798 2799 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, true); 2800 if (!slot) 2801 return PG_LEVEL_4K; 2802 2803 max_level = min(max_level, max_huge_page_level); 2804 for ( ; max_level > PG_LEVEL_4K; max_level--) { 2805 linfo = lpage_info_slot(gfn, slot, max_level); 2806 if (!linfo->disallow_lpage) 2807 break; 2808 } 2809 2810 if (max_level == PG_LEVEL_4K) 2811 return PG_LEVEL_4K; 2812 2813 level = host_pfn_mapping_level(vcpu, gfn, pfn, slot); 2814 if (level == PG_LEVEL_4K) 2815 return level; 2816 2817 *req_level = level = min(level, max_level); 2818 2819 /* 2820 * Enforce the iTLB multihit workaround after capturing the requested 2821 * level, which will be used to do precise, accurate accounting. 2822 */ 2823 if (huge_page_disallowed) 2824 return PG_LEVEL_4K; 2825 2826 /* 2827 * mmu_notifier_retry() was successful and mmu_lock is held, so 2828 * the pmd can't be split from under us. 2829 */ 2830 mask = KVM_PAGES_PER_HPAGE(level) - 1; 2831 VM_BUG_ON((gfn & mask) != (pfn & mask)); 2832 *pfnp = pfn & ~mask; 2833 2834 return level; 2835 } 2836 2837 void disallowed_hugepage_adjust(u64 spte, gfn_t gfn, int cur_level, 2838 kvm_pfn_t *pfnp, int *goal_levelp) 2839 { 2840 int level = *goal_levelp; 2841 2842 if (cur_level == level && level > PG_LEVEL_4K && 2843 is_shadow_present_pte(spte) && 2844 !is_large_pte(spte)) { 2845 /* 2846 * A small SPTE exists for this pfn, but FNAME(fetch) 2847 * and __direct_map would like to create a large PTE 2848 * instead: just force them to go down another level, 2849 * patching back for them into pfn the next 9 bits of 2850 * the address. 2851 */ 2852 u64 page_mask = KVM_PAGES_PER_HPAGE(level) - 2853 KVM_PAGES_PER_HPAGE(level - 1); 2854 *pfnp |= gfn & page_mask; 2855 (*goal_levelp)--; 2856 } 2857 } 2858 2859 static int __direct_map(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code, 2860 int map_writable, int max_level, kvm_pfn_t pfn, 2861 bool prefault, bool is_tdp) 2862 { 2863 bool nx_huge_page_workaround_enabled = is_nx_huge_page_enabled(); 2864 bool write = error_code & PFERR_WRITE_MASK; 2865 bool exec = error_code & PFERR_FETCH_MASK; 2866 bool huge_page_disallowed = exec && nx_huge_page_workaround_enabled; 2867 struct kvm_shadow_walk_iterator it; 2868 struct kvm_mmu_page *sp; 2869 int level, req_level, ret; 2870 gfn_t gfn = gpa >> PAGE_SHIFT; 2871 gfn_t base_gfn = gfn; 2872 2873 if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa))) 2874 return RET_PF_RETRY; 2875 2876 level = kvm_mmu_hugepage_adjust(vcpu, gfn, max_level, &pfn, 2877 huge_page_disallowed, &req_level); 2878 2879 trace_kvm_mmu_spte_requested(gpa, level, pfn); 2880 for_each_shadow_entry(vcpu, gpa, it) { 2881 /* 2882 * We cannot overwrite existing page tables with an NX 2883 * large page, as the leaf could be executable. 2884 */ 2885 if (nx_huge_page_workaround_enabled) 2886 disallowed_hugepage_adjust(*it.sptep, gfn, it.level, 2887 &pfn, &level); 2888 2889 base_gfn = gfn & ~(KVM_PAGES_PER_HPAGE(it.level) - 1); 2890 if (it.level == level) 2891 break; 2892 2893 drop_large_spte(vcpu, it.sptep); 2894 if (!is_shadow_present_pte(*it.sptep)) { 2895 sp = kvm_mmu_get_page(vcpu, base_gfn, it.addr, 2896 it.level - 1, true, ACC_ALL); 2897 2898 link_shadow_page(vcpu, it.sptep, sp); 2899 if (is_tdp && huge_page_disallowed && 2900 req_level >= it.level) 2901 account_huge_nx_page(vcpu->kvm, sp); 2902 } 2903 } 2904 2905 ret = mmu_set_spte(vcpu, it.sptep, ACC_ALL, 2906 write, level, base_gfn, pfn, prefault, 2907 map_writable); 2908 if (ret == RET_PF_SPURIOUS) 2909 return ret; 2910 2911 direct_pte_prefetch(vcpu, it.sptep); 2912 ++vcpu->stat.pf_fixed; 2913 return ret; 2914 } 2915 2916 static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk) 2917 { 2918 send_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, PAGE_SHIFT, tsk); 2919 } 2920 2921 static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, kvm_pfn_t pfn) 2922 { 2923 /* 2924 * Do not cache the mmio info caused by writing the readonly gfn 2925 * into the spte otherwise read access on readonly gfn also can 2926 * caused mmio page fault and treat it as mmio access. 2927 */ 2928 if (pfn == KVM_PFN_ERR_RO_FAULT) 2929 return RET_PF_EMULATE; 2930 2931 if (pfn == KVM_PFN_ERR_HWPOISON) { 2932 kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current); 2933 return RET_PF_RETRY; 2934 } 2935 2936 return -EFAULT; 2937 } 2938 2939 static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn, 2940 kvm_pfn_t pfn, unsigned int access, 2941 int *ret_val) 2942 { 2943 /* The pfn is invalid, report the error! */ 2944 if (unlikely(is_error_pfn(pfn))) { 2945 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn); 2946 return true; 2947 } 2948 2949 if (unlikely(is_noslot_pfn(pfn))) 2950 vcpu_cache_mmio_info(vcpu, gva, gfn, 2951 access & shadow_mmio_access_mask); 2952 2953 return false; 2954 } 2955 2956 static bool page_fault_can_be_fast(u32 error_code) 2957 { 2958 /* 2959 * Do not fix the mmio spte with invalid generation number which 2960 * need to be updated by slow page fault path. 2961 */ 2962 if (unlikely(error_code & PFERR_RSVD_MASK)) 2963 return false; 2964 2965 /* See if the page fault is due to an NX violation */ 2966 if (unlikely(((error_code & (PFERR_FETCH_MASK | PFERR_PRESENT_MASK)) 2967 == (PFERR_FETCH_MASK | PFERR_PRESENT_MASK)))) 2968 return false; 2969 2970 /* 2971 * #PF can be fast if: 2972 * 1. The shadow page table entry is not present, which could mean that 2973 * the fault is potentially caused by access tracking (if enabled). 2974 * 2. The shadow page table entry is present and the fault 2975 * is caused by write-protect, that means we just need change the W 2976 * bit of the spte which can be done out of mmu-lock. 2977 * 2978 * However, if access tracking is disabled we know that a non-present 2979 * page must be a genuine page fault where we have to create a new SPTE. 2980 * So, if access tracking is disabled, we return true only for write 2981 * accesses to a present page. 2982 */ 2983 2984 return shadow_acc_track_mask != 0 || 2985 ((error_code & (PFERR_WRITE_MASK | PFERR_PRESENT_MASK)) 2986 == (PFERR_WRITE_MASK | PFERR_PRESENT_MASK)); 2987 } 2988 2989 /* 2990 * Returns true if the SPTE was fixed successfully. Otherwise, 2991 * someone else modified the SPTE from its original value. 2992 */ 2993 static bool 2994 fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp, 2995 u64 *sptep, u64 old_spte, u64 new_spte) 2996 { 2997 gfn_t gfn; 2998 2999 WARN_ON(!sp->role.direct); 3000 3001 /* 3002 * Theoretically we could also set dirty bit (and flush TLB) here in 3003 * order to eliminate unnecessary PML logging. See comments in 3004 * set_spte. But fast_page_fault is very unlikely to happen with PML 3005 * enabled, so we do not do this. This might result in the same GPA 3006 * to be logged in PML buffer again when the write really happens, and 3007 * eventually to be called by mark_page_dirty twice. But it's also no 3008 * harm. This also avoids the TLB flush needed after setting dirty bit 3009 * so non-PML cases won't be impacted. 3010 * 3011 * Compare with set_spte where instead shadow_dirty_mask is set. 3012 */ 3013 if (cmpxchg64(sptep, old_spte, new_spte) != old_spte) 3014 return false; 3015 3016 if (is_writable_pte(new_spte) && !is_writable_pte(old_spte)) { 3017 /* 3018 * The gfn of direct spte is stable since it is 3019 * calculated by sp->gfn. 3020 */ 3021 gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt); 3022 kvm_vcpu_mark_page_dirty(vcpu, gfn); 3023 } 3024 3025 return true; 3026 } 3027 3028 static bool is_access_allowed(u32 fault_err_code, u64 spte) 3029 { 3030 if (fault_err_code & PFERR_FETCH_MASK) 3031 return is_executable_pte(spte); 3032 3033 if (fault_err_code & PFERR_WRITE_MASK) 3034 return is_writable_pte(spte); 3035 3036 /* Fault was on Read access */ 3037 return spte & PT_PRESENT_MASK; 3038 } 3039 3040 /* 3041 * Returns one of RET_PF_INVALID, RET_PF_FIXED or RET_PF_SPURIOUS. 3042 */ 3043 static int fast_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, 3044 u32 error_code) 3045 { 3046 struct kvm_shadow_walk_iterator iterator; 3047 struct kvm_mmu_page *sp; 3048 int ret = RET_PF_INVALID; 3049 u64 spte = 0ull; 3050 uint retry_count = 0; 3051 3052 if (!page_fault_can_be_fast(error_code)) 3053 return ret; 3054 3055 walk_shadow_page_lockless_begin(vcpu); 3056 3057 do { 3058 u64 new_spte; 3059 3060 for_each_shadow_entry_lockless(vcpu, cr2_or_gpa, iterator, spte) 3061 if (!is_shadow_present_pte(spte)) 3062 break; 3063 3064 sp = sptep_to_sp(iterator.sptep); 3065 if (!is_last_spte(spte, sp->role.level)) 3066 break; 3067 3068 /* 3069 * Check whether the memory access that caused the fault would 3070 * still cause it if it were to be performed right now. If not, 3071 * then this is a spurious fault caused by TLB lazily flushed, 3072 * or some other CPU has already fixed the PTE after the 3073 * current CPU took the fault. 3074 * 3075 * Need not check the access of upper level table entries since 3076 * they are always ACC_ALL. 3077 */ 3078 if (is_access_allowed(error_code, spte)) { 3079 ret = RET_PF_SPURIOUS; 3080 break; 3081 } 3082 3083 new_spte = spte; 3084 3085 if (is_access_track_spte(spte)) 3086 new_spte = restore_acc_track_spte(new_spte); 3087 3088 /* 3089 * Currently, to simplify the code, write-protection can 3090 * be removed in the fast path only if the SPTE was 3091 * write-protected for dirty-logging or access tracking. 3092 */ 3093 if ((error_code & PFERR_WRITE_MASK) && 3094 spte_can_locklessly_be_made_writable(spte)) { 3095 new_spte |= PT_WRITABLE_MASK; 3096 3097 /* 3098 * Do not fix write-permission on the large spte. Since 3099 * we only dirty the first page into the dirty-bitmap in 3100 * fast_pf_fix_direct_spte(), other pages are missed 3101 * if its slot has dirty logging enabled. 3102 * 3103 * Instead, we let the slow page fault path create a 3104 * normal spte to fix the access. 3105 * 3106 * See the comments in kvm_arch_commit_memory_region(). 3107 */ 3108 if (sp->role.level > PG_LEVEL_4K) 3109 break; 3110 } 3111 3112 /* Verify that the fault can be handled in the fast path */ 3113 if (new_spte == spte || 3114 !is_access_allowed(error_code, new_spte)) 3115 break; 3116 3117 /* 3118 * Currently, fast page fault only works for direct mapping 3119 * since the gfn is not stable for indirect shadow page. See 3120 * Documentation/virt/kvm/locking.rst to get more detail. 3121 */ 3122 if (fast_pf_fix_direct_spte(vcpu, sp, iterator.sptep, spte, 3123 new_spte)) { 3124 ret = RET_PF_FIXED; 3125 break; 3126 } 3127 3128 if (++retry_count > 4) { 3129 printk_once(KERN_WARNING 3130 "kvm: Fast #PF retrying more than 4 times.\n"); 3131 break; 3132 } 3133 3134 } while (true); 3135 3136 trace_fast_page_fault(vcpu, cr2_or_gpa, error_code, iterator.sptep, 3137 spte, ret); 3138 walk_shadow_page_lockless_end(vcpu); 3139 3140 return ret; 3141 } 3142 3143 static void mmu_free_root_page(struct kvm *kvm, hpa_t *root_hpa, 3144 struct list_head *invalid_list) 3145 { 3146 struct kvm_mmu_page *sp; 3147 3148 if (!VALID_PAGE(*root_hpa)) 3149 return; 3150 3151 sp = to_shadow_page(*root_hpa & PT64_BASE_ADDR_MASK); 3152 3153 if (kvm_mmu_put_root(kvm, sp)) { 3154 if (sp->tdp_mmu_page) 3155 kvm_tdp_mmu_free_root(kvm, sp); 3156 else if (sp->role.invalid) 3157 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list); 3158 } 3159 3160 *root_hpa = INVALID_PAGE; 3161 } 3162 3163 /* roots_to_free must be some combination of the KVM_MMU_ROOT_* flags */ 3164 void kvm_mmu_free_roots(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, 3165 ulong roots_to_free) 3166 { 3167 struct kvm *kvm = vcpu->kvm; 3168 int i; 3169 LIST_HEAD(invalid_list); 3170 bool free_active_root = roots_to_free & KVM_MMU_ROOT_CURRENT; 3171 3172 BUILD_BUG_ON(KVM_MMU_NUM_PREV_ROOTS >= BITS_PER_LONG); 3173 3174 /* Before acquiring the MMU lock, see if we need to do any real work. */ 3175 if (!(free_active_root && VALID_PAGE(mmu->root_hpa))) { 3176 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 3177 if ((roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) && 3178 VALID_PAGE(mmu->prev_roots[i].hpa)) 3179 break; 3180 3181 if (i == KVM_MMU_NUM_PREV_ROOTS) 3182 return; 3183 } 3184 3185 spin_lock(&kvm->mmu_lock); 3186 3187 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 3188 if (roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) 3189 mmu_free_root_page(kvm, &mmu->prev_roots[i].hpa, 3190 &invalid_list); 3191 3192 if (free_active_root) { 3193 if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL && 3194 (mmu->root_level >= PT64_ROOT_4LEVEL || mmu->direct_map)) { 3195 mmu_free_root_page(kvm, &mmu->root_hpa, &invalid_list); 3196 } else { 3197 for (i = 0; i < 4; ++i) 3198 if (mmu->pae_root[i] != 0) 3199 mmu_free_root_page(kvm, 3200 &mmu->pae_root[i], 3201 &invalid_list); 3202 mmu->root_hpa = INVALID_PAGE; 3203 } 3204 mmu->root_pgd = 0; 3205 } 3206 3207 kvm_mmu_commit_zap_page(kvm, &invalid_list); 3208 spin_unlock(&kvm->mmu_lock); 3209 } 3210 EXPORT_SYMBOL_GPL(kvm_mmu_free_roots); 3211 3212 static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn) 3213 { 3214 int ret = 0; 3215 3216 if (!kvm_vcpu_is_visible_gfn(vcpu, root_gfn)) { 3217 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 3218 ret = 1; 3219 } 3220 3221 return ret; 3222 } 3223 3224 static hpa_t mmu_alloc_root(struct kvm_vcpu *vcpu, gfn_t gfn, gva_t gva, 3225 u8 level, bool direct) 3226 { 3227 struct kvm_mmu_page *sp; 3228 3229 spin_lock(&vcpu->kvm->mmu_lock); 3230 3231 if (make_mmu_pages_available(vcpu)) { 3232 spin_unlock(&vcpu->kvm->mmu_lock); 3233 return INVALID_PAGE; 3234 } 3235 sp = kvm_mmu_get_page(vcpu, gfn, gva, level, direct, ACC_ALL); 3236 ++sp->root_count; 3237 3238 spin_unlock(&vcpu->kvm->mmu_lock); 3239 return __pa(sp->spt); 3240 } 3241 3242 static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu) 3243 { 3244 u8 shadow_root_level = vcpu->arch.mmu->shadow_root_level; 3245 hpa_t root; 3246 unsigned i; 3247 3248 if (vcpu->kvm->arch.tdp_mmu_enabled) { 3249 root = kvm_tdp_mmu_get_vcpu_root_hpa(vcpu); 3250 3251 if (!VALID_PAGE(root)) 3252 return -ENOSPC; 3253 vcpu->arch.mmu->root_hpa = root; 3254 } else if (shadow_root_level >= PT64_ROOT_4LEVEL) { 3255 root = mmu_alloc_root(vcpu, 0, 0, shadow_root_level, 3256 true); 3257 3258 if (!VALID_PAGE(root)) 3259 return -ENOSPC; 3260 vcpu->arch.mmu->root_hpa = root; 3261 } else if (shadow_root_level == PT32E_ROOT_LEVEL) { 3262 for (i = 0; i < 4; ++i) { 3263 MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu->pae_root[i])); 3264 3265 root = mmu_alloc_root(vcpu, i << (30 - PAGE_SHIFT), 3266 i << 30, PT32_ROOT_LEVEL, true); 3267 if (!VALID_PAGE(root)) 3268 return -ENOSPC; 3269 vcpu->arch.mmu->pae_root[i] = root | PT_PRESENT_MASK; 3270 } 3271 vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->pae_root); 3272 } else 3273 BUG(); 3274 3275 /* root_pgd is ignored for direct MMUs. */ 3276 vcpu->arch.mmu->root_pgd = 0; 3277 3278 return 0; 3279 } 3280 3281 static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu) 3282 { 3283 u64 pdptr, pm_mask; 3284 gfn_t root_gfn, root_pgd; 3285 hpa_t root; 3286 int i; 3287 3288 root_pgd = vcpu->arch.mmu->get_guest_pgd(vcpu); 3289 root_gfn = root_pgd >> PAGE_SHIFT; 3290 3291 if (mmu_check_root(vcpu, root_gfn)) 3292 return 1; 3293 3294 /* 3295 * Do we shadow a long mode page table? If so we need to 3296 * write-protect the guests page table root. 3297 */ 3298 if (vcpu->arch.mmu->root_level >= PT64_ROOT_4LEVEL) { 3299 MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu->root_hpa)); 3300 3301 root = mmu_alloc_root(vcpu, root_gfn, 0, 3302 vcpu->arch.mmu->shadow_root_level, false); 3303 if (!VALID_PAGE(root)) 3304 return -ENOSPC; 3305 vcpu->arch.mmu->root_hpa = root; 3306 goto set_root_pgd; 3307 } 3308 3309 /* 3310 * We shadow a 32 bit page table. This may be a legacy 2-level 3311 * or a PAE 3-level page table. In either case we need to be aware that 3312 * the shadow page table may be a PAE or a long mode page table. 3313 */ 3314 pm_mask = PT_PRESENT_MASK; 3315 if (vcpu->arch.mmu->shadow_root_level == PT64_ROOT_4LEVEL) 3316 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK; 3317 3318 for (i = 0; i < 4; ++i) { 3319 MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu->pae_root[i])); 3320 if (vcpu->arch.mmu->root_level == PT32E_ROOT_LEVEL) { 3321 pdptr = vcpu->arch.mmu->get_pdptr(vcpu, i); 3322 if (!(pdptr & PT_PRESENT_MASK)) { 3323 vcpu->arch.mmu->pae_root[i] = 0; 3324 continue; 3325 } 3326 root_gfn = pdptr >> PAGE_SHIFT; 3327 if (mmu_check_root(vcpu, root_gfn)) 3328 return 1; 3329 } 3330 3331 root = mmu_alloc_root(vcpu, root_gfn, i << 30, 3332 PT32_ROOT_LEVEL, false); 3333 if (!VALID_PAGE(root)) 3334 return -ENOSPC; 3335 vcpu->arch.mmu->pae_root[i] = root | pm_mask; 3336 } 3337 vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->pae_root); 3338 3339 /* 3340 * If we shadow a 32 bit page table with a long mode page 3341 * table we enter this path. 3342 */ 3343 if (vcpu->arch.mmu->shadow_root_level == PT64_ROOT_4LEVEL) { 3344 if (vcpu->arch.mmu->lm_root == NULL) { 3345 /* 3346 * The additional page necessary for this is only 3347 * allocated on demand. 3348 */ 3349 3350 u64 *lm_root; 3351 3352 lm_root = (void*)get_zeroed_page(GFP_KERNEL_ACCOUNT); 3353 if (lm_root == NULL) 3354 return 1; 3355 3356 lm_root[0] = __pa(vcpu->arch.mmu->pae_root) | pm_mask; 3357 3358 vcpu->arch.mmu->lm_root = lm_root; 3359 } 3360 3361 vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->lm_root); 3362 } 3363 3364 set_root_pgd: 3365 vcpu->arch.mmu->root_pgd = root_pgd; 3366 3367 return 0; 3368 } 3369 3370 static int mmu_alloc_roots(struct kvm_vcpu *vcpu) 3371 { 3372 if (vcpu->arch.mmu->direct_map) 3373 return mmu_alloc_direct_roots(vcpu); 3374 else 3375 return mmu_alloc_shadow_roots(vcpu); 3376 } 3377 3378 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu) 3379 { 3380 int i; 3381 struct kvm_mmu_page *sp; 3382 3383 if (vcpu->arch.mmu->direct_map) 3384 return; 3385 3386 if (!VALID_PAGE(vcpu->arch.mmu->root_hpa)) 3387 return; 3388 3389 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY); 3390 3391 if (vcpu->arch.mmu->root_level >= PT64_ROOT_4LEVEL) { 3392 hpa_t root = vcpu->arch.mmu->root_hpa; 3393 sp = to_shadow_page(root); 3394 3395 /* 3396 * Even if another CPU was marking the SP as unsync-ed 3397 * simultaneously, any guest page table changes are not 3398 * guaranteed to be visible anyway until this VCPU issues a TLB 3399 * flush strictly after those changes are made. We only need to 3400 * ensure that the other CPU sets these flags before any actual 3401 * changes to the page tables are made. The comments in 3402 * mmu_need_write_protect() describe what could go wrong if this 3403 * requirement isn't satisfied. 3404 */ 3405 if (!smp_load_acquire(&sp->unsync) && 3406 !smp_load_acquire(&sp->unsync_children)) 3407 return; 3408 3409 spin_lock(&vcpu->kvm->mmu_lock); 3410 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC); 3411 3412 mmu_sync_children(vcpu, sp); 3413 3414 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC); 3415 spin_unlock(&vcpu->kvm->mmu_lock); 3416 return; 3417 } 3418 3419 spin_lock(&vcpu->kvm->mmu_lock); 3420 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC); 3421 3422 for (i = 0; i < 4; ++i) { 3423 hpa_t root = vcpu->arch.mmu->pae_root[i]; 3424 3425 if (root && VALID_PAGE(root)) { 3426 root &= PT64_BASE_ADDR_MASK; 3427 sp = to_shadow_page(root); 3428 mmu_sync_children(vcpu, sp); 3429 } 3430 } 3431 3432 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC); 3433 spin_unlock(&vcpu->kvm->mmu_lock); 3434 } 3435 EXPORT_SYMBOL_GPL(kvm_mmu_sync_roots); 3436 3437 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gpa_t vaddr, 3438 u32 access, struct x86_exception *exception) 3439 { 3440 if (exception) 3441 exception->error_code = 0; 3442 return vaddr; 3443 } 3444 3445 static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gpa_t vaddr, 3446 u32 access, 3447 struct x86_exception *exception) 3448 { 3449 if (exception) 3450 exception->error_code = 0; 3451 return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception); 3452 } 3453 3454 static bool 3455 __is_rsvd_bits_set(struct rsvd_bits_validate *rsvd_check, u64 pte, int level) 3456 { 3457 int bit7 = (pte >> 7) & 1; 3458 3459 return pte & rsvd_check->rsvd_bits_mask[bit7][level-1]; 3460 } 3461 3462 static bool __is_bad_mt_xwr(struct rsvd_bits_validate *rsvd_check, u64 pte) 3463 { 3464 return rsvd_check->bad_mt_xwr & BIT_ULL(pte & 0x3f); 3465 } 3466 3467 static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct) 3468 { 3469 /* 3470 * A nested guest cannot use the MMIO cache if it is using nested 3471 * page tables, because cr2 is a nGPA while the cache stores GPAs. 3472 */ 3473 if (mmu_is_nested(vcpu)) 3474 return false; 3475 3476 if (direct) 3477 return vcpu_match_mmio_gpa(vcpu, addr); 3478 3479 return vcpu_match_mmio_gva(vcpu, addr); 3480 } 3481 3482 /* 3483 * Return the level of the lowest level SPTE added to sptes. 3484 * That SPTE may be non-present. 3485 */ 3486 static int get_walk(struct kvm_vcpu *vcpu, u64 addr, u64 *sptes) 3487 { 3488 struct kvm_shadow_walk_iterator iterator; 3489 int leaf = vcpu->arch.mmu->root_level; 3490 u64 spte; 3491 3492 3493 walk_shadow_page_lockless_begin(vcpu); 3494 3495 for (shadow_walk_init(&iterator, vcpu, addr); 3496 shadow_walk_okay(&iterator); 3497 __shadow_walk_next(&iterator, spte)) { 3498 leaf = iterator.level; 3499 spte = mmu_spte_get_lockless(iterator.sptep); 3500 3501 sptes[leaf - 1] = spte; 3502 3503 if (!is_shadow_present_pte(spte)) 3504 break; 3505 3506 } 3507 3508 walk_shadow_page_lockless_end(vcpu); 3509 3510 return leaf; 3511 } 3512 3513 /* return true if reserved bit is detected on spte. */ 3514 static bool get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep) 3515 { 3516 u64 sptes[PT64_ROOT_MAX_LEVEL]; 3517 struct rsvd_bits_validate *rsvd_check; 3518 int root = vcpu->arch.mmu->root_level; 3519 int leaf; 3520 int level; 3521 bool reserved = false; 3522 3523 if (!VALID_PAGE(vcpu->arch.mmu->root_hpa)) { 3524 *sptep = 0ull; 3525 return reserved; 3526 } 3527 3528 if (is_tdp_mmu_root(vcpu->kvm, vcpu->arch.mmu->root_hpa)) 3529 leaf = kvm_tdp_mmu_get_walk(vcpu, addr, sptes); 3530 else 3531 leaf = get_walk(vcpu, addr, sptes); 3532 3533 rsvd_check = &vcpu->arch.mmu->shadow_zero_check; 3534 3535 for (level = root; level >= leaf; level--) { 3536 if (!is_shadow_present_pte(sptes[level - 1])) 3537 break; 3538 /* 3539 * Use a bitwise-OR instead of a logical-OR to aggregate the 3540 * reserved bit and EPT's invalid memtype/XWR checks to avoid 3541 * adding a Jcc in the loop. 3542 */ 3543 reserved |= __is_bad_mt_xwr(rsvd_check, sptes[level - 1]) | 3544 __is_rsvd_bits_set(rsvd_check, sptes[level - 1], 3545 level); 3546 } 3547 3548 if (reserved) { 3549 pr_err("%s: detect reserved bits on spte, addr 0x%llx, dump hierarchy:\n", 3550 __func__, addr); 3551 for (level = root; level >= leaf; level--) 3552 pr_err("------ spte 0x%llx level %d.\n", 3553 sptes[level - 1], level); 3554 } 3555 3556 *sptep = sptes[leaf - 1]; 3557 3558 return reserved; 3559 } 3560 3561 static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct) 3562 { 3563 u64 spte; 3564 bool reserved; 3565 3566 if (mmio_info_in_cache(vcpu, addr, direct)) 3567 return RET_PF_EMULATE; 3568 3569 reserved = get_mmio_spte(vcpu, addr, &spte); 3570 if (WARN_ON(reserved)) 3571 return -EINVAL; 3572 3573 if (is_mmio_spte(spte)) { 3574 gfn_t gfn = get_mmio_spte_gfn(spte); 3575 unsigned int access = get_mmio_spte_access(spte); 3576 3577 if (!check_mmio_spte(vcpu, spte)) 3578 return RET_PF_INVALID; 3579 3580 if (direct) 3581 addr = 0; 3582 3583 trace_handle_mmio_page_fault(addr, gfn, access); 3584 vcpu_cache_mmio_info(vcpu, addr, gfn, access); 3585 return RET_PF_EMULATE; 3586 } 3587 3588 /* 3589 * If the page table is zapped by other cpus, let CPU fault again on 3590 * the address. 3591 */ 3592 return RET_PF_RETRY; 3593 } 3594 3595 static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu, 3596 u32 error_code, gfn_t gfn) 3597 { 3598 if (unlikely(error_code & PFERR_RSVD_MASK)) 3599 return false; 3600 3601 if (!(error_code & PFERR_PRESENT_MASK) || 3602 !(error_code & PFERR_WRITE_MASK)) 3603 return false; 3604 3605 /* 3606 * guest is writing the page which is write tracked which can 3607 * not be fixed by page fault handler. 3608 */ 3609 if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE)) 3610 return true; 3611 3612 return false; 3613 } 3614 3615 static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr) 3616 { 3617 struct kvm_shadow_walk_iterator iterator; 3618 u64 spte; 3619 3620 walk_shadow_page_lockless_begin(vcpu); 3621 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) { 3622 clear_sp_write_flooding_count(iterator.sptep); 3623 if (!is_shadow_present_pte(spte)) 3624 break; 3625 } 3626 walk_shadow_page_lockless_end(vcpu); 3627 } 3628 3629 static bool kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, 3630 gfn_t gfn) 3631 { 3632 struct kvm_arch_async_pf arch; 3633 3634 arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id; 3635 arch.gfn = gfn; 3636 arch.direct_map = vcpu->arch.mmu->direct_map; 3637 arch.cr3 = vcpu->arch.mmu->get_guest_pgd(vcpu); 3638 3639 return kvm_setup_async_pf(vcpu, cr2_or_gpa, 3640 kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch); 3641 } 3642 3643 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn, 3644 gpa_t cr2_or_gpa, kvm_pfn_t *pfn, bool write, 3645 bool *writable) 3646 { 3647 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 3648 bool async; 3649 3650 /* Don't expose private memslots to L2. */ 3651 if (is_guest_mode(vcpu) && !kvm_is_visible_memslot(slot)) { 3652 *pfn = KVM_PFN_NOSLOT; 3653 *writable = false; 3654 return false; 3655 } 3656 3657 async = false; 3658 *pfn = __gfn_to_pfn_memslot(slot, gfn, false, &async, write, writable); 3659 if (!async) 3660 return false; /* *pfn has correct page already */ 3661 3662 if (!prefault && kvm_can_do_async_pf(vcpu)) { 3663 trace_kvm_try_async_get_page(cr2_or_gpa, gfn); 3664 if (kvm_find_async_pf_gfn(vcpu, gfn)) { 3665 trace_kvm_async_pf_doublefault(cr2_or_gpa, gfn); 3666 kvm_make_request(KVM_REQ_APF_HALT, vcpu); 3667 return true; 3668 } else if (kvm_arch_setup_async_pf(vcpu, cr2_or_gpa, gfn)) 3669 return true; 3670 } 3671 3672 *pfn = __gfn_to_pfn_memslot(slot, gfn, false, NULL, write, writable); 3673 return false; 3674 } 3675 3676 static int direct_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code, 3677 bool prefault, int max_level, bool is_tdp) 3678 { 3679 bool write = error_code & PFERR_WRITE_MASK; 3680 bool map_writable; 3681 3682 gfn_t gfn = gpa >> PAGE_SHIFT; 3683 unsigned long mmu_seq; 3684 kvm_pfn_t pfn; 3685 int r; 3686 3687 if (page_fault_handle_page_track(vcpu, error_code, gfn)) 3688 return RET_PF_EMULATE; 3689 3690 if (!is_tdp_mmu_root(vcpu->kvm, vcpu->arch.mmu->root_hpa)) { 3691 r = fast_page_fault(vcpu, gpa, error_code); 3692 if (r != RET_PF_INVALID) 3693 return r; 3694 } 3695 3696 r = mmu_topup_memory_caches(vcpu, false); 3697 if (r) 3698 return r; 3699 3700 mmu_seq = vcpu->kvm->mmu_notifier_seq; 3701 smp_rmb(); 3702 3703 if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable)) 3704 return RET_PF_RETRY; 3705 3706 if (handle_abnormal_pfn(vcpu, is_tdp ? 0 : gpa, gfn, pfn, ACC_ALL, &r)) 3707 return r; 3708 3709 r = RET_PF_RETRY; 3710 spin_lock(&vcpu->kvm->mmu_lock); 3711 if (mmu_notifier_retry(vcpu->kvm, mmu_seq)) 3712 goto out_unlock; 3713 r = make_mmu_pages_available(vcpu); 3714 if (r) 3715 goto out_unlock; 3716 3717 if (is_tdp_mmu_root(vcpu->kvm, vcpu->arch.mmu->root_hpa)) 3718 r = kvm_tdp_mmu_map(vcpu, gpa, error_code, map_writable, max_level, 3719 pfn, prefault); 3720 else 3721 r = __direct_map(vcpu, gpa, error_code, map_writable, max_level, pfn, 3722 prefault, is_tdp); 3723 3724 out_unlock: 3725 spin_unlock(&vcpu->kvm->mmu_lock); 3726 kvm_release_pfn_clean(pfn); 3727 return r; 3728 } 3729 3730 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa, 3731 u32 error_code, bool prefault) 3732 { 3733 pgprintk("%s: gva %lx error %x\n", __func__, gpa, error_code); 3734 3735 /* This path builds a PAE pagetable, we can map 2mb pages at maximum. */ 3736 return direct_page_fault(vcpu, gpa & PAGE_MASK, error_code, prefault, 3737 PG_LEVEL_2M, false); 3738 } 3739 3740 int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code, 3741 u64 fault_address, char *insn, int insn_len) 3742 { 3743 int r = 1; 3744 u32 flags = vcpu->arch.apf.host_apf_flags; 3745 3746 #ifndef CONFIG_X86_64 3747 /* A 64-bit CR2 should be impossible on 32-bit KVM. */ 3748 if (WARN_ON_ONCE(fault_address >> 32)) 3749 return -EFAULT; 3750 #endif 3751 3752 vcpu->arch.l1tf_flush_l1d = true; 3753 if (!flags) { 3754 trace_kvm_page_fault(fault_address, error_code); 3755 3756 if (kvm_event_needs_reinjection(vcpu)) 3757 kvm_mmu_unprotect_page_virt(vcpu, fault_address); 3758 r = kvm_mmu_page_fault(vcpu, fault_address, error_code, insn, 3759 insn_len); 3760 } else if (flags & KVM_PV_REASON_PAGE_NOT_PRESENT) { 3761 vcpu->arch.apf.host_apf_flags = 0; 3762 local_irq_disable(); 3763 kvm_async_pf_task_wait_schedule(fault_address); 3764 local_irq_enable(); 3765 } else { 3766 WARN_ONCE(1, "Unexpected host async PF flags: %x\n", flags); 3767 } 3768 3769 return r; 3770 } 3771 EXPORT_SYMBOL_GPL(kvm_handle_page_fault); 3772 3773 int kvm_tdp_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code, 3774 bool prefault) 3775 { 3776 int max_level; 3777 3778 for (max_level = KVM_MAX_HUGEPAGE_LEVEL; 3779 max_level > PG_LEVEL_4K; 3780 max_level--) { 3781 int page_num = KVM_PAGES_PER_HPAGE(max_level); 3782 gfn_t base = (gpa >> PAGE_SHIFT) & ~(page_num - 1); 3783 3784 if (kvm_mtrr_check_gfn_range_consistency(vcpu, base, page_num)) 3785 break; 3786 } 3787 3788 return direct_page_fault(vcpu, gpa, error_code, prefault, 3789 max_level, true); 3790 } 3791 3792 static void nonpaging_init_context(struct kvm_vcpu *vcpu, 3793 struct kvm_mmu *context) 3794 { 3795 context->page_fault = nonpaging_page_fault; 3796 context->gva_to_gpa = nonpaging_gva_to_gpa; 3797 context->sync_page = nonpaging_sync_page; 3798 context->invlpg = NULL; 3799 context->update_pte = nonpaging_update_pte; 3800 context->root_level = 0; 3801 context->shadow_root_level = PT32E_ROOT_LEVEL; 3802 context->direct_map = true; 3803 context->nx = false; 3804 } 3805 3806 static inline bool is_root_usable(struct kvm_mmu_root_info *root, gpa_t pgd, 3807 union kvm_mmu_page_role role) 3808 { 3809 return (role.direct || pgd == root->pgd) && 3810 VALID_PAGE(root->hpa) && to_shadow_page(root->hpa) && 3811 role.word == to_shadow_page(root->hpa)->role.word; 3812 } 3813 3814 /* 3815 * Find out if a previously cached root matching the new pgd/role is available. 3816 * The current root is also inserted into the cache. 3817 * If a matching root was found, it is assigned to kvm_mmu->root_hpa and true is 3818 * returned. 3819 * Otherwise, the LRU root from the cache is assigned to kvm_mmu->root_hpa and 3820 * false is returned. This root should now be freed by the caller. 3821 */ 3822 static bool cached_root_available(struct kvm_vcpu *vcpu, gpa_t new_pgd, 3823 union kvm_mmu_page_role new_role) 3824 { 3825 uint i; 3826 struct kvm_mmu_root_info root; 3827 struct kvm_mmu *mmu = vcpu->arch.mmu; 3828 3829 root.pgd = mmu->root_pgd; 3830 root.hpa = mmu->root_hpa; 3831 3832 if (is_root_usable(&root, new_pgd, new_role)) 3833 return true; 3834 3835 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) { 3836 swap(root, mmu->prev_roots[i]); 3837 3838 if (is_root_usable(&root, new_pgd, new_role)) 3839 break; 3840 } 3841 3842 mmu->root_hpa = root.hpa; 3843 mmu->root_pgd = root.pgd; 3844 3845 return i < KVM_MMU_NUM_PREV_ROOTS; 3846 } 3847 3848 static bool fast_pgd_switch(struct kvm_vcpu *vcpu, gpa_t new_pgd, 3849 union kvm_mmu_page_role new_role) 3850 { 3851 struct kvm_mmu *mmu = vcpu->arch.mmu; 3852 3853 /* 3854 * For now, limit the fast switch to 64-bit hosts+VMs in order to avoid 3855 * having to deal with PDPTEs. We may add support for 32-bit hosts/VMs 3856 * later if necessary. 3857 */ 3858 if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL && 3859 mmu->root_level >= PT64_ROOT_4LEVEL) 3860 return cached_root_available(vcpu, new_pgd, new_role); 3861 3862 return false; 3863 } 3864 3865 static void __kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd, 3866 union kvm_mmu_page_role new_role, 3867 bool skip_tlb_flush, bool skip_mmu_sync) 3868 { 3869 if (!fast_pgd_switch(vcpu, new_pgd, new_role)) { 3870 kvm_mmu_free_roots(vcpu, vcpu->arch.mmu, KVM_MMU_ROOT_CURRENT); 3871 return; 3872 } 3873 3874 /* 3875 * It's possible that the cached previous root page is obsolete because 3876 * of a change in the MMU generation number. However, changing the 3877 * generation number is accompanied by KVM_REQ_MMU_RELOAD, which will 3878 * free the root set here and allocate a new one. 3879 */ 3880 kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu); 3881 3882 if (!skip_mmu_sync || force_flush_and_sync_on_reuse) 3883 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu); 3884 if (!skip_tlb_flush || force_flush_and_sync_on_reuse) 3885 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 3886 3887 /* 3888 * The last MMIO access's GVA and GPA are cached in the VCPU. When 3889 * switching to a new CR3, that GVA->GPA mapping may no longer be 3890 * valid. So clear any cached MMIO info even when we don't need to sync 3891 * the shadow page tables. 3892 */ 3893 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY); 3894 3895 /* 3896 * If this is a direct root page, it doesn't have a write flooding 3897 * count. Otherwise, clear the write flooding count. 3898 */ 3899 if (!new_role.direct) 3900 __clear_sp_write_flooding_count( 3901 to_shadow_page(vcpu->arch.mmu->root_hpa)); 3902 } 3903 3904 void kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd, bool skip_tlb_flush, 3905 bool skip_mmu_sync) 3906 { 3907 __kvm_mmu_new_pgd(vcpu, new_pgd, kvm_mmu_calc_root_page_role(vcpu), 3908 skip_tlb_flush, skip_mmu_sync); 3909 } 3910 EXPORT_SYMBOL_GPL(kvm_mmu_new_pgd); 3911 3912 static unsigned long get_cr3(struct kvm_vcpu *vcpu) 3913 { 3914 return kvm_read_cr3(vcpu); 3915 } 3916 3917 static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn, 3918 unsigned int access, int *nr_present) 3919 { 3920 if (unlikely(is_mmio_spte(*sptep))) { 3921 if (gfn != get_mmio_spte_gfn(*sptep)) { 3922 mmu_spte_clear_no_track(sptep); 3923 return true; 3924 } 3925 3926 (*nr_present)++; 3927 mark_mmio_spte(vcpu, sptep, gfn, access); 3928 return true; 3929 } 3930 3931 return false; 3932 } 3933 3934 static inline bool is_last_gpte(struct kvm_mmu *mmu, 3935 unsigned level, unsigned gpte) 3936 { 3937 /* 3938 * The RHS has bit 7 set iff level < mmu->last_nonleaf_level. 3939 * If it is clear, there are no large pages at this level, so clear 3940 * PT_PAGE_SIZE_MASK in gpte if that is the case. 3941 */ 3942 gpte &= level - mmu->last_nonleaf_level; 3943 3944 /* 3945 * PG_LEVEL_4K always terminates. The RHS has bit 7 set 3946 * iff level <= PG_LEVEL_4K, which for our purpose means 3947 * level == PG_LEVEL_4K; set PT_PAGE_SIZE_MASK in gpte then. 3948 */ 3949 gpte |= level - PG_LEVEL_4K - 1; 3950 3951 return gpte & PT_PAGE_SIZE_MASK; 3952 } 3953 3954 #define PTTYPE_EPT 18 /* arbitrary */ 3955 #define PTTYPE PTTYPE_EPT 3956 #include "paging_tmpl.h" 3957 #undef PTTYPE 3958 3959 #define PTTYPE 64 3960 #include "paging_tmpl.h" 3961 #undef PTTYPE 3962 3963 #define PTTYPE 32 3964 #include "paging_tmpl.h" 3965 #undef PTTYPE 3966 3967 static void 3968 __reset_rsvds_bits_mask(struct kvm_vcpu *vcpu, 3969 struct rsvd_bits_validate *rsvd_check, 3970 int maxphyaddr, int level, bool nx, bool gbpages, 3971 bool pse, bool amd) 3972 { 3973 u64 exb_bit_rsvd = 0; 3974 u64 gbpages_bit_rsvd = 0; 3975 u64 nonleaf_bit8_rsvd = 0; 3976 3977 rsvd_check->bad_mt_xwr = 0; 3978 3979 if (!nx) 3980 exb_bit_rsvd = rsvd_bits(63, 63); 3981 if (!gbpages) 3982 gbpages_bit_rsvd = rsvd_bits(7, 7); 3983 3984 /* 3985 * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for 3986 * leaf entries) on AMD CPUs only. 3987 */ 3988 if (amd) 3989 nonleaf_bit8_rsvd = rsvd_bits(8, 8); 3990 3991 switch (level) { 3992 case PT32_ROOT_LEVEL: 3993 /* no rsvd bits for 2 level 4K page table entries */ 3994 rsvd_check->rsvd_bits_mask[0][1] = 0; 3995 rsvd_check->rsvd_bits_mask[0][0] = 0; 3996 rsvd_check->rsvd_bits_mask[1][0] = 3997 rsvd_check->rsvd_bits_mask[0][0]; 3998 3999 if (!pse) { 4000 rsvd_check->rsvd_bits_mask[1][1] = 0; 4001 break; 4002 } 4003 4004 if (is_cpuid_PSE36()) 4005 /* 36bits PSE 4MB page */ 4006 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21); 4007 else 4008 /* 32 bits PSE 4MB page */ 4009 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21); 4010 break; 4011 case PT32E_ROOT_LEVEL: 4012 rsvd_check->rsvd_bits_mask[0][2] = 4013 rsvd_bits(maxphyaddr, 63) | 4014 rsvd_bits(5, 8) | rsvd_bits(1, 2); /* PDPTE */ 4015 rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd | 4016 rsvd_bits(maxphyaddr, 62); /* PDE */ 4017 rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd | 4018 rsvd_bits(maxphyaddr, 62); /* PTE */ 4019 rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd | 4020 rsvd_bits(maxphyaddr, 62) | 4021 rsvd_bits(13, 20); /* large page */ 4022 rsvd_check->rsvd_bits_mask[1][0] = 4023 rsvd_check->rsvd_bits_mask[0][0]; 4024 break; 4025 case PT64_ROOT_5LEVEL: 4026 rsvd_check->rsvd_bits_mask[0][4] = exb_bit_rsvd | 4027 nonleaf_bit8_rsvd | rsvd_bits(7, 7) | 4028 rsvd_bits(maxphyaddr, 51); 4029 rsvd_check->rsvd_bits_mask[1][4] = 4030 rsvd_check->rsvd_bits_mask[0][4]; 4031 fallthrough; 4032 case PT64_ROOT_4LEVEL: 4033 rsvd_check->rsvd_bits_mask[0][3] = exb_bit_rsvd | 4034 nonleaf_bit8_rsvd | rsvd_bits(7, 7) | 4035 rsvd_bits(maxphyaddr, 51); 4036 rsvd_check->rsvd_bits_mask[0][2] = exb_bit_rsvd | 4037 gbpages_bit_rsvd | 4038 rsvd_bits(maxphyaddr, 51); 4039 rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd | 4040 rsvd_bits(maxphyaddr, 51); 4041 rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd | 4042 rsvd_bits(maxphyaddr, 51); 4043 rsvd_check->rsvd_bits_mask[1][3] = 4044 rsvd_check->rsvd_bits_mask[0][3]; 4045 rsvd_check->rsvd_bits_mask[1][2] = exb_bit_rsvd | 4046 gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51) | 4047 rsvd_bits(13, 29); 4048 rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd | 4049 rsvd_bits(maxphyaddr, 51) | 4050 rsvd_bits(13, 20); /* large page */ 4051 rsvd_check->rsvd_bits_mask[1][0] = 4052 rsvd_check->rsvd_bits_mask[0][0]; 4053 break; 4054 } 4055 } 4056 4057 static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu, 4058 struct kvm_mmu *context) 4059 { 4060 __reset_rsvds_bits_mask(vcpu, &context->guest_rsvd_check, 4061 cpuid_maxphyaddr(vcpu), context->root_level, 4062 context->nx, 4063 guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES), 4064 is_pse(vcpu), 4065 guest_cpuid_is_amd_or_hygon(vcpu)); 4066 } 4067 4068 static void 4069 __reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check, 4070 int maxphyaddr, bool execonly) 4071 { 4072 u64 bad_mt_xwr; 4073 4074 rsvd_check->rsvd_bits_mask[0][4] = 4075 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7); 4076 rsvd_check->rsvd_bits_mask[0][3] = 4077 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7); 4078 rsvd_check->rsvd_bits_mask[0][2] = 4079 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6); 4080 rsvd_check->rsvd_bits_mask[0][1] = 4081 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6); 4082 rsvd_check->rsvd_bits_mask[0][0] = rsvd_bits(maxphyaddr, 51); 4083 4084 /* large page */ 4085 rsvd_check->rsvd_bits_mask[1][4] = rsvd_check->rsvd_bits_mask[0][4]; 4086 rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3]; 4087 rsvd_check->rsvd_bits_mask[1][2] = 4088 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 29); 4089 rsvd_check->rsvd_bits_mask[1][1] = 4090 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 20); 4091 rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0]; 4092 4093 bad_mt_xwr = 0xFFull << (2 * 8); /* bits 3..5 must not be 2 */ 4094 bad_mt_xwr |= 0xFFull << (3 * 8); /* bits 3..5 must not be 3 */ 4095 bad_mt_xwr |= 0xFFull << (7 * 8); /* bits 3..5 must not be 7 */ 4096 bad_mt_xwr |= REPEAT_BYTE(1ull << 2); /* bits 0..2 must not be 010 */ 4097 bad_mt_xwr |= REPEAT_BYTE(1ull << 6); /* bits 0..2 must not be 110 */ 4098 if (!execonly) { 4099 /* bits 0..2 must not be 100 unless VMX capabilities allow it */ 4100 bad_mt_xwr |= REPEAT_BYTE(1ull << 4); 4101 } 4102 rsvd_check->bad_mt_xwr = bad_mt_xwr; 4103 } 4104 4105 static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu, 4106 struct kvm_mmu *context, bool execonly) 4107 { 4108 __reset_rsvds_bits_mask_ept(&context->guest_rsvd_check, 4109 cpuid_maxphyaddr(vcpu), execonly); 4110 } 4111 4112 /* 4113 * the page table on host is the shadow page table for the page 4114 * table in guest or amd nested guest, its mmu features completely 4115 * follow the features in guest. 4116 */ 4117 void 4118 reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, struct kvm_mmu *context) 4119 { 4120 bool uses_nx = context->nx || 4121 context->mmu_role.base.smep_andnot_wp; 4122 struct rsvd_bits_validate *shadow_zero_check; 4123 int i; 4124 4125 /* 4126 * Passing "true" to the last argument is okay; it adds a check 4127 * on bit 8 of the SPTEs which KVM doesn't use anyway. 4128 */ 4129 shadow_zero_check = &context->shadow_zero_check; 4130 __reset_rsvds_bits_mask(vcpu, shadow_zero_check, 4131 shadow_phys_bits, 4132 context->shadow_root_level, uses_nx, 4133 guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES), 4134 is_pse(vcpu), true); 4135 4136 if (!shadow_me_mask) 4137 return; 4138 4139 for (i = context->shadow_root_level; --i >= 0;) { 4140 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask; 4141 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask; 4142 } 4143 4144 } 4145 EXPORT_SYMBOL_GPL(reset_shadow_zero_bits_mask); 4146 4147 static inline bool boot_cpu_is_amd(void) 4148 { 4149 WARN_ON_ONCE(!tdp_enabled); 4150 return shadow_x_mask == 0; 4151 } 4152 4153 /* 4154 * the direct page table on host, use as much mmu features as 4155 * possible, however, kvm currently does not do execution-protection. 4156 */ 4157 static void 4158 reset_tdp_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, 4159 struct kvm_mmu *context) 4160 { 4161 struct rsvd_bits_validate *shadow_zero_check; 4162 int i; 4163 4164 shadow_zero_check = &context->shadow_zero_check; 4165 4166 if (boot_cpu_is_amd()) 4167 __reset_rsvds_bits_mask(vcpu, shadow_zero_check, 4168 shadow_phys_bits, 4169 context->shadow_root_level, false, 4170 boot_cpu_has(X86_FEATURE_GBPAGES), 4171 true, true); 4172 else 4173 __reset_rsvds_bits_mask_ept(shadow_zero_check, 4174 shadow_phys_bits, 4175 false); 4176 4177 if (!shadow_me_mask) 4178 return; 4179 4180 for (i = context->shadow_root_level; --i >= 0;) { 4181 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask; 4182 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask; 4183 } 4184 } 4185 4186 /* 4187 * as the comments in reset_shadow_zero_bits_mask() except it 4188 * is the shadow page table for intel nested guest. 4189 */ 4190 static void 4191 reset_ept_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, 4192 struct kvm_mmu *context, bool execonly) 4193 { 4194 __reset_rsvds_bits_mask_ept(&context->shadow_zero_check, 4195 shadow_phys_bits, execonly); 4196 } 4197 4198 #define BYTE_MASK(access) \ 4199 ((1 & (access) ? 2 : 0) | \ 4200 (2 & (access) ? 4 : 0) | \ 4201 (3 & (access) ? 8 : 0) | \ 4202 (4 & (access) ? 16 : 0) | \ 4203 (5 & (access) ? 32 : 0) | \ 4204 (6 & (access) ? 64 : 0) | \ 4205 (7 & (access) ? 128 : 0)) 4206 4207 4208 static void update_permission_bitmask(struct kvm_vcpu *vcpu, 4209 struct kvm_mmu *mmu, bool ept) 4210 { 4211 unsigned byte; 4212 4213 const u8 x = BYTE_MASK(ACC_EXEC_MASK); 4214 const u8 w = BYTE_MASK(ACC_WRITE_MASK); 4215 const u8 u = BYTE_MASK(ACC_USER_MASK); 4216 4217 bool cr4_smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP) != 0; 4218 bool cr4_smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP) != 0; 4219 bool cr0_wp = is_write_protection(vcpu); 4220 4221 for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) { 4222 unsigned pfec = byte << 1; 4223 4224 /* 4225 * Each "*f" variable has a 1 bit for each UWX value 4226 * that causes a fault with the given PFEC. 4227 */ 4228 4229 /* Faults from writes to non-writable pages */ 4230 u8 wf = (pfec & PFERR_WRITE_MASK) ? (u8)~w : 0; 4231 /* Faults from user mode accesses to supervisor pages */ 4232 u8 uf = (pfec & PFERR_USER_MASK) ? (u8)~u : 0; 4233 /* Faults from fetches of non-executable pages*/ 4234 u8 ff = (pfec & PFERR_FETCH_MASK) ? (u8)~x : 0; 4235 /* Faults from kernel mode fetches of user pages */ 4236 u8 smepf = 0; 4237 /* Faults from kernel mode accesses of user pages */ 4238 u8 smapf = 0; 4239 4240 if (!ept) { 4241 /* Faults from kernel mode accesses to user pages */ 4242 u8 kf = (pfec & PFERR_USER_MASK) ? 0 : u; 4243 4244 /* Not really needed: !nx will cause pte.nx to fault */ 4245 if (!mmu->nx) 4246 ff = 0; 4247 4248 /* Allow supervisor writes if !cr0.wp */ 4249 if (!cr0_wp) 4250 wf = (pfec & PFERR_USER_MASK) ? wf : 0; 4251 4252 /* Disallow supervisor fetches of user code if cr4.smep */ 4253 if (cr4_smep) 4254 smepf = (pfec & PFERR_FETCH_MASK) ? kf : 0; 4255 4256 /* 4257 * SMAP:kernel-mode data accesses from user-mode 4258 * mappings should fault. A fault is considered 4259 * as a SMAP violation if all of the following 4260 * conditions are true: 4261 * - X86_CR4_SMAP is set in CR4 4262 * - A user page is accessed 4263 * - The access is not a fetch 4264 * - Page fault in kernel mode 4265 * - if CPL = 3 or X86_EFLAGS_AC is clear 4266 * 4267 * Here, we cover the first three conditions. 4268 * The fourth is computed dynamically in permission_fault(); 4269 * PFERR_RSVD_MASK bit will be set in PFEC if the access is 4270 * *not* subject to SMAP restrictions. 4271 */ 4272 if (cr4_smap) 4273 smapf = (pfec & (PFERR_RSVD_MASK|PFERR_FETCH_MASK)) ? 0 : kf; 4274 } 4275 4276 mmu->permissions[byte] = ff | uf | wf | smepf | smapf; 4277 } 4278 } 4279 4280 /* 4281 * PKU is an additional mechanism by which the paging controls access to 4282 * user-mode addresses based on the value in the PKRU register. Protection 4283 * key violations are reported through a bit in the page fault error code. 4284 * Unlike other bits of the error code, the PK bit is not known at the 4285 * call site of e.g. gva_to_gpa; it must be computed directly in 4286 * permission_fault based on two bits of PKRU, on some machine state (CR4, 4287 * CR0, EFER, CPL), and on other bits of the error code and the page tables. 4288 * 4289 * In particular the following conditions come from the error code, the 4290 * page tables and the machine state: 4291 * - PK is always zero unless CR4.PKE=1 and EFER.LMA=1 4292 * - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch) 4293 * - PK is always zero if U=0 in the page tables 4294 * - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access. 4295 * 4296 * The PKRU bitmask caches the result of these four conditions. The error 4297 * code (minus the P bit) and the page table's U bit form an index into the 4298 * PKRU bitmask. Two bits of the PKRU bitmask are then extracted and ANDed 4299 * with the two bits of the PKRU register corresponding to the protection key. 4300 * For the first three conditions above the bits will be 00, thus masking 4301 * away both AD and WD. For all reads or if the last condition holds, WD 4302 * only will be masked away. 4303 */ 4304 static void update_pkru_bitmask(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, 4305 bool ept) 4306 { 4307 unsigned bit; 4308 bool wp; 4309 4310 if (ept) { 4311 mmu->pkru_mask = 0; 4312 return; 4313 } 4314 4315 /* PKEY is enabled only if CR4.PKE and EFER.LMA are both set. */ 4316 if (!kvm_read_cr4_bits(vcpu, X86_CR4_PKE) || !is_long_mode(vcpu)) { 4317 mmu->pkru_mask = 0; 4318 return; 4319 } 4320 4321 wp = is_write_protection(vcpu); 4322 4323 for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) { 4324 unsigned pfec, pkey_bits; 4325 bool check_pkey, check_write, ff, uf, wf, pte_user; 4326 4327 pfec = bit << 1; 4328 ff = pfec & PFERR_FETCH_MASK; 4329 uf = pfec & PFERR_USER_MASK; 4330 wf = pfec & PFERR_WRITE_MASK; 4331 4332 /* PFEC.RSVD is replaced by ACC_USER_MASK. */ 4333 pte_user = pfec & PFERR_RSVD_MASK; 4334 4335 /* 4336 * Only need to check the access which is not an 4337 * instruction fetch and is to a user page. 4338 */ 4339 check_pkey = (!ff && pte_user); 4340 /* 4341 * write access is controlled by PKRU if it is a 4342 * user access or CR0.WP = 1. 4343 */ 4344 check_write = check_pkey && wf && (uf || wp); 4345 4346 /* PKRU.AD stops both read and write access. */ 4347 pkey_bits = !!check_pkey; 4348 /* PKRU.WD stops write access. */ 4349 pkey_bits |= (!!check_write) << 1; 4350 4351 mmu->pkru_mask |= (pkey_bits & 3) << pfec; 4352 } 4353 } 4354 4355 static void update_last_nonleaf_level(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu) 4356 { 4357 unsigned root_level = mmu->root_level; 4358 4359 mmu->last_nonleaf_level = root_level; 4360 if (root_level == PT32_ROOT_LEVEL && is_pse(vcpu)) 4361 mmu->last_nonleaf_level++; 4362 } 4363 4364 static void paging64_init_context_common(struct kvm_vcpu *vcpu, 4365 struct kvm_mmu *context, 4366 int level) 4367 { 4368 context->nx = is_nx(vcpu); 4369 context->root_level = level; 4370 4371 reset_rsvds_bits_mask(vcpu, context); 4372 update_permission_bitmask(vcpu, context, false); 4373 update_pkru_bitmask(vcpu, context, false); 4374 update_last_nonleaf_level(vcpu, context); 4375 4376 MMU_WARN_ON(!is_pae(vcpu)); 4377 context->page_fault = paging64_page_fault; 4378 context->gva_to_gpa = paging64_gva_to_gpa; 4379 context->sync_page = paging64_sync_page; 4380 context->invlpg = paging64_invlpg; 4381 context->update_pte = paging64_update_pte; 4382 context->shadow_root_level = level; 4383 context->direct_map = false; 4384 } 4385 4386 static void paging64_init_context(struct kvm_vcpu *vcpu, 4387 struct kvm_mmu *context) 4388 { 4389 int root_level = is_la57_mode(vcpu) ? 4390 PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL; 4391 4392 paging64_init_context_common(vcpu, context, root_level); 4393 } 4394 4395 static void paging32_init_context(struct kvm_vcpu *vcpu, 4396 struct kvm_mmu *context) 4397 { 4398 context->nx = false; 4399 context->root_level = PT32_ROOT_LEVEL; 4400 4401 reset_rsvds_bits_mask(vcpu, context); 4402 update_permission_bitmask(vcpu, context, false); 4403 update_pkru_bitmask(vcpu, context, false); 4404 update_last_nonleaf_level(vcpu, context); 4405 4406 context->page_fault = paging32_page_fault; 4407 context->gva_to_gpa = paging32_gva_to_gpa; 4408 context->sync_page = paging32_sync_page; 4409 context->invlpg = paging32_invlpg; 4410 context->update_pte = paging32_update_pte; 4411 context->shadow_root_level = PT32E_ROOT_LEVEL; 4412 context->direct_map = false; 4413 } 4414 4415 static void paging32E_init_context(struct kvm_vcpu *vcpu, 4416 struct kvm_mmu *context) 4417 { 4418 paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL); 4419 } 4420 4421 static union kvm_mmu_extended_role kvm_calc_mmu_role_ext(struct kvm_vcpu *vcpu) 4422 { 4423 union kvm_mmu_extended_role ext = {0}; 4424 4425 ext.cr0_pg = !!is_paging(vcpu); 4426 ext.cr4_pae = !!is_pae(vcpu); 4427 ext.cr4_smep = !!kvm_read_cr4_bits(vcpu, X86_CR4_SMEP); 4428 ext.cr4_smap = !!kvm_read_cr4_bits(vcpu, X86_CR4_SMAP); 4429 ext.cr4_pse = !!is_pse(vcpu); 4430 ext.cr4_pke = !!kvm_read_cr4_bits(vcpu, X86_CR4_PKE); 4431 ext.maxphyaddr = cpuid_maxphyaddr(vcpu); 4432 4433 ext.valid = 1; 4434 4435 return ext; 4436 } 4437 4438 static union kvm_mmu_role kvm_calc_mmu_role_common(struct kvm_vcpu *vcpu, 4439 bool base_only) 4440 { 4441 union kvm_mmu_role role = {0}; 4442 4443 role.base.access = ACC_ALL; 4444 role.base.nxe = !!is_nx(vcpu); 4445 role.base.cr0_wp = is_write_protection(vcpu); 4446 role.base.smm = is_smm(vcpu); 4447 role.base.guest_mode = is_guest_mode(vcpu); 4448 4449 if (base_only) 4450 return role; 4451 4452 role.ext = kvm_calc_mmu_role_ext(vcpu); 4453 4454 return role; 4455 } 4456 4457 static inline int kvm_mmu_get_tdp_level(struct kvm_vcpu *vcpu) 4458 { 4459 /* Use 5-level TDP if and only if it's useful/necessary. */ 4460 if (max_tdp_level == 5 && cpuid_maxphyaddr(vcpu) <= 48) 4461 return 4; 4462 4463 return max_tdp_level; 4464 } 4465 4466 static union kvm_mmu_role 4467 kvm_calc_tdp_mmu_root_page_role(struct kvm_vcpu *vcpu, bool base_only) 4468 { 4469 union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, base_only); 4470 4471 role.base.ad_disabled = (shadow_accessed_mask == 0); 4472 role.base.level = kvm_mmu_get_tdp_level(vcpu); 4473 role.base.direct = true; 4474 role.base.gpte_is_8_bytes = true; 4475 4476 return role; 4477 } 4478 4479 static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu) 4480 { 4481 struct kvm_mmu *context = &vcpu->arch.root_mmu; 4482 union kvm_mmu_role new_role = 4483 kvm_calc_tdp_mmu_root_page_role(vcpu, false); 4484 4485 if (new_role.as_u64 == context->mmu_role.as_u64) 4486 return; 4487 4488 context->mmu_role.as_u64 = new_role.as_u64; 4489 context->page_fault = kvm_tdp_page_fault; 4490 context->sync_page = nonpaging_sync_page; 4491 context->invlpg = NULL; 4492 context->update_pte = nonpaging_update_pte; 4493 context->shadow_root_level = kvm_mmu_get_tdp_level(vcpu); 4494 context->direct_map = true; 4495 context->get_guest_pgd = get_cr3; 4496 context->get_pdptr = kvm_pdptr_read; 4497 context->inject_page_fault = kvm_inject_page_fault; 4498 4499 if (!is_paging(vcpu)) { 4500 context->nx = false; 4501 context->gva_to_gpa = nonpaging_gva_to_gpa; 4502 context->root_level = 0; 4503 } else if (is_long_mode(vcpu)) { 4504 context->nx = is_nx(vcpu); 4505 context->root_level = is_la57_mode(vcpu) ? 4506 PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL; 4507 reset_rsvds_bits_mask(vcpu, context); 4508 context->gva_to_gpa = paging64_gva_to_gpa; 4509 } else if (is_pae(vcpu)) { 4510 context->nx = is_nx(vcpu); 4511 context->root_level = PT32E_ROOT_LEVEL; 4512 reset_rsvds_bits_mask(vcpu, context); 4513 context->gva_to_gpa = paging64_gva_to_gpa; 4514 } else { 4515 context->nx = false; 4516 context->root_level = PT32_ROOT_LEVEL; 4517 reset_rsvds_bits_mask(vcpu, context); 4518 context->gva_to_gpa = paging32_gva_to_gpa; 4519 } 4520 4521 update_permission_bitmask(vcpu, context, false); 4522 update_pkru_bitmask(vcpu, context, false); 4523 update_last_nonleaf_level(vcpu, context); 4524 reset_tdp_shadow_zero_bits_mask(vcpu, context); 4525 } 4526 4527 static union kvm_mmu_role 4528 kvm_calc_shadow_root_page_role_common(struct kvm_vcpu *vcpu, bool base_only) 4529 { 4530 union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, base_only); 4531 4532 role.base.smep_andnot_wp = role.ext.cr4_smep && 4533 !is_write_protection(vcpu); 4534 role.base.smap_andnot_wp = role.ext.cr4_smap && 4535 !is_write_protection(vcpu); 4536 role.base.gpte_is_8_bytes = !!is_pae(vcpu); 4537 4538 return role; 4539 } 4540 4541 static union kvm_mmu_role 4542 kvm_calc_shadow_mmu_root_page_role(struct kvm_vcpu *vcpu, bool base_only) 4543 { 4544 union kvm_mmu_role role = 4545 kvm_calc_shadow_root_page_role_common(vcpu, base_only); 4546 4547 role.base.direct = !is_paging(vcpu); 4548 4549 if (!is_long_mode(vcpu)) 4550 role.base.level = PT32E_ROOT_LEVEL; 4551 else if (is_la57_mode(vcpu)) 4552 role.base.level = PT64_ROOT_5LEVEL; 4553 else 4554 role.base.level = PT64_ROOT_4LEVEL; 4555 4556 return role; 4557 } 4558 4559 static void shadow_mmu_init_context(struct kvm_vcpu *vcpu, struct kvm_mmu *context, 4560 u32 cr0, u32 cr4, u32 efer, 4561 union kvm_mmu_role new_role) 4562 { 4563 if (!(cr0 & X86_CR0_PG)) 4564 nonpaging_init_context(vcpu, context); 4565 else if (efer & EFER_LMA) 4566 paging64_init_context(vcpu, context); 4567 else if (cr4 & X86_CR4_PAE) 4568 paging32E_init_context(vcpu, context); 4569 else 4570 paging32_init_context(vcpu, context); 4571 4572 context->mmu_role.as_u64 = new_role.as_u64; 4573 reset_shadow_zero_bits_mask(vcpu, context); 4574 } 4575 4576 static void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, u32 cr0, u32 cr4, u32 efer) 4577 { 4578 struct kvm_mmu *context = &vcpu->arch.root_mmu; 4579 union kvm_mmu_role new_role = 4580 kvm_calc_shadow_mmu_root_page_role(vcpu, false); 4581 4582 if (new_role.as_u64 != context->mmu_role.as_u64) 4583 shadow_mmu_init_context(vcpu, context, cr0, cr4, efer, new_role); 4584 } 4585 4586 static union kvm_mmu_role 4587 kvm_calc_shadow_npt_root_page_role(struct kvm_vcpu *vcpu) 4588 { 4589 union kvm_mmu_role role = 4590 kvm_calc_shadow_root_page_role_common(vcpu, false); 4591 4592 role.base.direct = false; 4593 role.base.level = kvm_mmu_get_tdp_level(vcpu); 4594 4595 return role; 4596 } 4597 4598 void kvm_init_shadow_npt_mmu(struct kvm_vcpu *vcpu, u32 cr0, u32 cr4, u32 efer, 4599 gpa_t nested_cr3) 4600 { 4601 struct kvm_mmu *context = &vcpu->arch.guest_mmu; 4602 union kvm_mmu_role new_role = kvm_calc_shadow_npt_root_page_role(vcpu); 4603 4604 context->shadow_root_level = new_role.base.level; 4605 4606 __kvm_mmu_new_pgd(vcpu, nested_cr3, new_role.base, false, false); 4607 4608 if (new_role.as_u64 != context->mmu_role.as_u64) 4609 shadow_mmu_init_context(vcpu, context, cr0, cr4, efer, new_role); 4610 } 4611 EXPORT_SYMBOL_GPL(kvm_init_shadow_npt_mmu); 4612 4613 static union kvm_mmu_role 4614 kvm_calc_shadow_ept_root_page_role(struct kvm_vcpu *vcpu, bool accessed_dirty, 4615 bool execonly, u8 level) 4616 { 4617 union kvm_mmu_role role = {0}; 4618 4619 /* SMM flag is inherited from root_mmu */ 4620 role.base.smm = vcpu->arch.root_mmu.mmu_role.base.smm; 4621 4622 role.base.level = level; 4623 role.base.gpte_is_8_bytes = true; 4624 role.base.direct = false; 4625 role.base.ad_disabled = !accessed_dirty; 4626 role.base.guest_mode = true; 4627 role.base.access = ACC_ALL; 4628 4629 /* 4630 * WP=1 and NOT_WP=1 is an impossible combination, use WP and the 4631 * SMAP variation to denote shadow EPT entries. 4632 */ 4633 role.base.cr0_wp = true; 4634 role.base.smap_andnot_wp = true; 4635 4636 role.ext = kvm_calc_mmu_role_ext(vcpu); 4637 role.ext.execonly = execonly; 4638 4639 return role; 4640 } 4641 4642 void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly, 4643 bool accessed_dirty, gpa_t new_eptp) 4644 { 4645 struct kvm_mmu *context = &vcpu->arch.guest_mmu; 4646 u8 level = vmx_eptp_page_walk_level(new_eptp); 4647 union kvm_mmu_role new_role = 4648 kvm_calc_shadow_ept_root_page_role(vcpu, accessed_dirty, 4649 execonly, level); 4650 4651 __kvm_mmu_new_pgd(vcpu, new_eptp, new_role.base, true, true); 4652 4653 if (new_role.as_u64 == context->mmu_role.as_u64) 4654 return; 4655 4656 context->shadow_root_level = level; 4657 4658 context->nx = true; 4659 context->ept_ad = accessed_dirty; 4660 context->page_fault = ept_page_fault; 4661 context->gva_to_gpa = ept_gva_to_gpa; 4662 context->sync_page = ept_sync_page; 4663 context->invlpg = ept_invlpg; 4664 context->update_pte = ept_update_pte; 4665 context->root_level = level; 4666 context->direct_map = false; 4667 context->mmu_role.as_u64 = new_role.as_u64; 4668 4669 update_permission_bitmask(vcpu, context, true); 4670 update_pkru_bitmask(vcpu, context, true); 4671 update_last_nonleaf_level(vcpu, context); 4672 reset_rsvds_bits_mask_ept(vcpu, context, execonly); 4673 reset_ept_shadow_zero_bits_mask(vcpu, context, execonly); 4674 } 4675 EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu); 4676 4677 static void init_kvm_softmmu(struct kvm_vcpu *vcpu) 4678 { 4679 struct kvm_mmu *context = &vcpu->arch.root_mmu; 4680 4681 kvm_init_shadow_mmu(vcpu, 4682 kvm_read_cr0_bits(vcpu, X86_CR0_PG), 4683 kvm_read_cr4_bits(vcpu, X86_CR4_PAE), 4684 vcpu->arch.efer); 4685 4686 context->get_guest_pgd = get_cr3; 4687 context->get_pdptr = kvm_pdptr_read; 4688 context->inject_page_fault = kvm_inject_page_fault; 4689 } 4690 4691 static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu) 4692 { 4693 union kvm_mmu_role new_role = kvm_calc_mmu_role_common(vcpu, false); 4694 struct kvm_mmu *g_context = &vcpu->arch.nested_mmu; 4695 4696 if (new_role.as_u64 == g_context->mmu_role.as_u64) 4697 return; 4698 4699 g_context->mmu_role.as_u64 = new_role.as_u64; 4700 g_context->get_guest_pgd = get_cr3; 4701 g_context->get_pdptr = kvm_pdptr_read; 4702 g_context->inject_page_fault = kvm_inject_page_fault; 4703 4704 /* 4705 * L2 page tables are never shadowed, so there is no need to sync 4706 * SPTEs. 4707 */ 4708 g_context->invlpg = NULL; 4709 4710 /* 4711 * Note that arch.mmu->gva_to_gpa translates l2_gpa to l1_gpa using 4712 * L1's nested page tables (e.g. EPT12). The nested translation 4713 * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using 4714 * L2's page tables as the first level of translation and L1's 4715 * nested page tables as the second level of translation. Basically 4716 * the gva_to_gpa functions between mmu and nested_mmu are swapped. 4717 */ 4718 if (!is_paging(vcpu)) { 4719 g_context->nx = false; 4720 g_context->root_level = 0; 4721 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested; 4722 } else if (is_long_mode(vcpu)) { 4723 g_context->nx = is_nx(vcpu); 4724 g_context->root_level = is_la57_mode(vcpu) ? 4725 PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL; 4726 reset_rsvds_bits_mask(vcpu, g_context); 4727 g_context->gva_to_gpa = paging64_gva_to_gpa_nested; 4728 } else if (is_pae(vcpu)) { 4729 g_context->nx = is_nx(vcpu); 4730 g_context->root_level = PT32E_ROOT_LEVEL; 4731 reset_rsvds_bits_mask(vcpu, g_context); 4732 g_context->gva_to_gpa = paging64_gva_to_gpa_nested; 4733 } else { 4734 g_context->nx = false; 4735 g_context->root_level = PT32_ROOT_LEVEL; 4736 reset_rsvds_bits_mask(vcpu, g_context); 4737 g_context->gva_to_gpa = paging32_gva_to_gpa_nested; 4738 } 4739 4740 update_permission_bitmask(vcpu, g_context, false); 4741 update_pkru_bitmask(vcpu, g_context, false); 4742 update_last_nonleaf_level(vcpu, g_context); 4743 } 4744 4745 void kvm_init_mmu(struct kvm_vcpu *vcpu, bool reset_roots) 4746 { 4747 if (reset_roots) { 4748 uint i; 4749 4750 vcpu->arch.mmu->root_hpa = INVALID_PAGE; 4751 4752 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 4753 vcpu->arch.mmu->prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID; 4754 } 4755 4756 if (mmu_is_nested(vcpu)) 4757 init_kvm_nested_mmu(vcpu); 4758 else if (tdp_enabled) 4759 init_kvm_tdp_mmu(vcpu); 4760 else 4761 init_kvm_softmmu(vcpu); 4762 } 4763 EXPORT_SYMBOL_GPL(kvm_init_mmu); 4764 4765 static union kvm_mmu_page_role 4766 kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu) 4767 { 4768 union kvm_mmu_role role; 4769 4770 if (tdp_enabled) 4771 role = kvm_calc_tdp_mmu_root_page_role(vcpu, true); 4772 else 4773 role = kvm_calc_shadow_mmu_root_page_role(vcpu, true); 4774 4775 return role.base; 4776 } 4777 4778 void kvm_mmu_reset_context(struct kvm_vcpu *vcpu) 4779 { 4780 kvm_mmu_unload(vcpu); 4781 kvm_init_mmu(vcpu, true); 4782 } 4783 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context); 4784 4785 int kvm_mmu_load(struct kvm_vcpu *vcpu) 4786 { 4787 int r; 4788 4789 r = mmu_topup_memory_caches(vcpu, !vcpu->arch.mmu->direct_map); 4790 if (r) 4791 goto out; 4792 r = mmu_alloc_roots(vcpu); 4793 kvm_mmu_sync_roots(vcpu); 4794 if (r) 4795 goto out; 4796 kvm_mmu_load_pgd(vcpu); 4797 kvm_x86_ops.tlb_flush_current(vcpu); 4798 out: 4799 return r; 4800 } 4801 EXPORT_SYMBOL_GPL(kvm_mmu_load); 4802 4803 void kvm_mmu_unload(struct kvm_vcpu *vcpu) 4804 { 4805 kvm_mmu_free_roots(vcpu, &vcpu->arch.root_mmu, KVM_MMU_ROOTS_ALL); 4806 WARN_ON(VALID_PAGE(vcpu->arch.root_mmu.root_hpa)); 4807 kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL); 4808 WARN_ON(VALID_PAGE(vcpu->arch.guest_mmu.root_hpa)); 4809 } 4810 EXPORT_SYMBOL_GPL(kvm_mmu_unload); 4811 4812 static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu, 4813 struct kvm_mmu_page *sp, u64 *spte, 4814 const void *new) 4815 { 4816 if (sp->role.level != PG_LEVEL_4K) { 4817 ++vcpu->kvm->stat.mmu_pde_zapped; 4818 return; 4819 } 4820 4821 ++vcpu->kvm->stat.mmu_pte_updated; 4822 vcpu->arch.mmu->update_pte(vcpu, sp, spte, new); 4823 } 4824 4825 static bool need_remote_flush(u64 old, u64 new) 4826 { 4827 if (!is_shadow_present_pte(old)) 4828 return false; 4829 if (!is_shadow_present_pte(new)) 4830 return true; 4831 if ((old ^ new) & PT64_BASE_ADDR_MASK) 4832 return true; 4833 old ^= shadow_nx_mask; 4834 new ^= shadow_nx_mask; 4835 return (old & ~new & PT64_PERM_MASK) != 0; 4836 } 4837 4838 static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa, 4839 int *bytes) 4840 { 4841 u64 gentry = 0; 4842 int r; 4843 4844 /* 4845 * Assume that the pte write on a page table of the same type 4846 * as the current vcpu paging mode since we update the sptes only 4847 * when they have the same mode. 4848 */ 4849 if (is_pae(vcpu) && *bytes == 4) { 4850 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */ 4851 *gpa &= ~(gpa_t)7; 4852 *bytes = 8; 4853 } 4854 4855 if (*bytes == 4 || *bytes == 8) { 4856 r = kvm_vcpu_read_guest_atomic(vcpu, *gpa, &gentry, *bytes); 4857 if (r) 4858 gentry = 0; 4859 } 4860 4861 return gentry; 4862 } 4863 4864 /* 4865 * If we're seeing too many writes to a page, it may no longer be a page table, 4866 * or we may be forking, in which case it is better to unmap the page. 4867 */ 4868 static bool detect_write_flooding(struct kvm_mmu_page *sp) 4869 { 4870 /* 4871 * Skip write-flooding detected for the sp whose level is 1, because 4872 * it can become unsync, then the guest page is not write-protected. 4873 */ 4874 if (sp->role.level == PG_LEVEL_4K) 4875 return false; 4876 4877 atomic_inc(&sp->write_flooding_count); 4878 return atomic_read(&sp->write_flooding_count) >= 3; 4879 } 4880 4881 /* 4882 * Misaligned accesses are too much trouble to fix up; also, they usually 4883 * indicate a page is not used as a page table. 4884 */ 4885 static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa, 4886 int bytes) 4887 { 4888 unsigned offset, pte_size, misaligned; 4889 4890 pgprintk("misaligned: gpa %llx bytes %d role %x\n", 4891 gpa, bytes, sp->role.word); 4892 4893 offset = offset_in_page(gpa); 4894 pte_size = sp->role.gpte_is_8_bytes ? 8 : 4; 4895 4896 /* 4897 * Sometimes, the OS only writes the last one bytes to update status 4898 * bits, for example, in linux, andb instruction is used in clear_bit(). 4899 */ 4900 if (!(offset & (pte_size - 1)) && bytes == 1) 4901 return false; 4902 4903 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1); 4904 misaligned |= bytes < 4; 4905 4906 return misaligned; 4907 } 4908 4909 static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte) 4910 { 4911 unsigned page_offset, quadrant; 4912 u64 *spte; 4913 int level; 4914 4915 page_offset = offset_in_page(gpa); 4916 level = sp->role.level; 4917 *nspte = 1; 4918 if (!sp->role.gpte_is_8_bytes) { 4919 page_offset <<= 1; /* 32->64 */ 4920 /* 4921 * A 32-bit pde maps 4MB while the shadow pdes map 4922 * only 2MB. So we need to double the offset again 4923 * and zap two pdes instead of one. 4924 */ 4925 if (level == PT32_ROOT_LEVEL) { 4926 page_offset &= ~7; /* kill rounding error */ 4927 page_offset <<= 1; 4928 *nspte = 2; 4929 } 4930 quadrant = page_offset >> PAGE_SHIFT; 4931 page_offset &= ~PAGE_MASK; 4932 if (quadrant != sp->role.quadrant) 4933 return NULL; 4934 } 4935 4936 spte = &sp->spt[page_offset / sizeof(*spte)]; 4937 return spte; 4938 } 4939 4940 /* 4941 * Ignore various flags when determining if a SPTE can be immediately 4942 * overwritten for the current MMU. 4943 * - level: explicitly checked in mmu_pte_write_new_pte(), and will never 4944 * match the current MMU role, as MMU's level tracks the root level. 4945 * - access: updated based on the new guest PTE 4946 * - quadrant: handled by get_written_sptes() 4947 * - invalid: always false (loop only walks valid shadow pages) 4948 */ 4949 static const union kvm_mmu_page_role role_ign = { 4950 .level = 0xf, 4951 .access = 0x7, 4952 .quadrant = 0x3, 4953 .invalid = 0x1, 4954 }; 4955 4956 static void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa, 4957 const u8 *new, int bytes, 4958 struct kvm_page_track_notifier_node *node) 4959 { 4960 gfn_t gfn = gpa >> PAGE_SHIFT; 4961 struct kvm_mmu_page *sp; 4962 LIST_HEAD(invalid_list); 4963 u64 entry, gentry, *spte; 4964 int npte; 4965 bool remote_flush, local_flush; 4966 4967 /* 4968 * If we don't have indirect shadow pages, it means no page is 4969 * write-protected, so we can exit simply. 4970 */ 4971 if (!READ_ONCE(vcpu->kvm->arch.indirect_shadow_pages)) 4972 return; 4973 4974 remote_flush = local_flush = false; 4975 4976 pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes); 4977 4978 /* 4979 * No need to care whether allocation memory is successful 4980 * or not since pte prefetch is skiped if it does not have 4981 * enough objects in the cache. 4982 */ 4983 mmu_topup_memory_caches(vcpu, true); 4984 4985 spin_lock(&vcpu->kvm->mmu_lock); 4986 4987 gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, &bytes); 4988 4989 ++vcpu->kvm->stat.mmu_pte_write; 4990 kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE); 4991 4992 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) { 4993 if (detect_write_misaligned(sp, gpa, bytes) || 4994 detect_write_flooding(sp)) { 4995 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list); 4996 ++vcpu->kvm->stat.mmu_flooded; 4997 continue; 4998 } 4999 5000 spte = get_written_sptes(sp, gpa, &npte); 5001 if (!spte) 5002 continue; 5003 5004 local_flush = true; 5005 while (npte--) { 5006 u32 base_role = vcpu->arch.mmu->mmu_role.base.word; 5007 5008 entry = *spte; 5009 mmu_page_zap_pte(vcpu->kvm, sp, spte, NULL); 5010 if (gentry && 5011 !((sp->role.word ^ base_role) & ~role_ign.word) && 5012 rmap_can_add(vcpu)) 5013 mmu_pte_write_new_pte(vcpu, sp, spte, &gentry); 5014 if (need_remote_flush(entry, *spte)) 5015 remote_flush = true; 5016 ++spte; 5017 } 5018 } 5019 kvm_mmu_flush_or_zap(vcpu, &invalid_list, remote_flush, local_flush); 5020 kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE); 5021 spin_unlock(&vcpu->kvm->mmu_lock); 5022 } 5023 5024 int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva) 5025 { 5026 gpa_t gpa; 5027 int r; 5028 5029 if (vcpu->arch.mmu->direct_map) 5030 return 0; 5031 5032 gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL); 5033 5034 r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT); 5035 5036 return r; 5037 } 5038 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt); 5039 5040 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 error_code, 5041 void *insn, int insn_len) 5042 { 5043 int r, emulation_type = EMULTYPE_PF; 5044 bool direct = vcpu->arch.mmu->direct_map; 5045 5046 if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa))) 5047 return RET_PF_RETRY; 5048 5049 r = RET_PF_INVALID; 5050 if (unlikely(error_code & PFERR_RSVD_MASK)) { 5051 r = handle_mmio_page_fault(vcpu, cr2_or_gpa, direct); 5052 if (r == RET_PF_EMULATE) 5053 goto emulate; 5054 } 5055 5056 if (r == RET_PF_INVALID) { 5057 r = kvm_mmu_do_page_fault(vcpu, cr2_or_gpa, 5058 lower_32_bits(error_code), false); 5059 if (WARN_ON_ONCE(r == RET_PF_INVALID)) 5060 return -EIO; 5061 } 5062 5063 if (r < 0) 5064 return r; 5065 if (r != RET_PF_EMULATE) 5066 return 1; 5067 5068 /* 5069 * Before emulating the instruction, check if the error code 5070 * was due to a RO violation while translating the guest page. 5071 * This can occur when using nested virtualization with nested 5072 * paging in both guests. If true, we simply unprotect the page 5073 * and resume the guest. 5074 */ 5075 if (vcpu->arch.mmu->direct_map && 5076 (error_code & PFERR_NESTED_GUEST_PAGE) == PFERR_NESTED_GUEST_PAGE) { 5077 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(cr2_or_gpa)); 5078 return 1; 5079 } 5080 5081 /* 5082 * vcpu->arch.mmu.page_fault returned RET_PF_EMULATE, but we can still 5083 * optimistically try to just unprotect the page and let the processor 5084 * re-execute the instruction that caused the page fault. Do not allow 5085 * retrying MMIO emulation, as it's not only pointless but could also 5086 * cause us to enter an infinite loop because the processor will keep 5087 * faulting on the non-existent MMIO address. Retrying an instruction 5088 * from a nested guest is also pointless and dangerous as we are only 5089 * explicitly shadowing L1's page tables, i.e. unprotecting something 5090 * for L1 isn't going to magically fix whatever issue cause L2 to fail. 5091 */ 5092 if (!mmio_info_in_cache(vcpu, cr2_or_gpa, direct) && !is_guest_mode(vcpu)) 5093 emulation_type |= EMULTYPE_ALLOW_RETRY_PF; 5094 emulate: 5095 return x86_emulate_instruction(vcpu, cr2_or_gpa, emulation_type, insn, 5096 insn_len); 5097 } 5098 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault); 5099 5100 void kvm_mmu_invalidate_gva(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, 5101 gva_t gva, hpa_t root_hpa) 5102 { 5103 int i; 5104 5105 /* It's actually a GPA for vcpu->arch.guest_mmu. */ 5106 if (mmu != &vcpu->arch.guest_mmu) { 5107 /* INVLPG on a non-canonical address is a NOP according to the SDM. */ 5108 if (is_noncanonical_address(gva, vcpu)) 5109 return; 5110 5111 kvm_x86_ops.tlb_flush_gva(vcpu, gva); 5112 } 5113 5114 if (!mmu->invlpg) 5115 return; 5116 5117 if (root_hpa == INVALID_PAGE) { 5118 mmu->invlpg(vcpu, gva, mmu->root_hpa); 5119 5120 /* 5121 * INVLPG is required to invalidate any global mappings for the VA, 5122 * irrespective of PCID. Since it would take us roughly similar amount 5123 * of work to determine whether any of the prev_root mappings of the VA 5124 * is marked global, or to just sync it blindly, so we might as well 5125 * just always sync it. 5126 * 5127 * Mappings not reachable via the current cr3 or the prev_roots will be 5128 * synced when switching to that cr3, so nothing needs to be done here 5129 * for them. 5130 */ 5131 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 5132 if (VALID_PAGE(mmu->prev_roots[i].hpa)) 5133 mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa); 5134 } else { 5135 mmu->invlpg(vcpu, gva, root_hpa); 5136 } 5137 } 5138 EXPORT_SYMBOL_GPL(kvm_mmu_invalidate_gva); 5139 5140 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva) 5141 { 5142 kvm_mmu_invalidate_gva(vcpu, vcpu->arch.mmu, gva, INVALID_PAGE); 5143 ++vcpu->stat.invlpg; 5144 } 5145 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg); 5146 5147 5148 void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid) 5149 { 5150 struct kvm_mmu *mmu = vcpu->arch.mmu; 5151 bool tlb_flush = false; 5152 uint i; 5153 5154 if (pcid == kvm_get_active_pcid(vcpu)) { 5155 mmu->invlpg(vcpu, gva, mmu->root_hpa); 5156 tlb_flush = true; 5157 } 5158 5159 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) { 5160 if (VALID_PAGE(mmu->prev_roots[i].hpa) && 5161 pcid == kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd)) { 5162 mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa); 5163 tlb_flush = true; 5164 } 5165 } 5166 5167 if (tlb_flush) 5168 kvm_x86_ops.tlb_flush_gva(vcpu, gva); 5169 5170 ++vcpu->stat.invlpg; 5171 5172 /* 5173 * Mappings not reachable via the current cr3 or the prev_roots will be 5174 * synced when switching to that cr3, so nothing needs to be done here 5175 * for them. 5176 */ 5177 } 5178 EXPORT_SYMBOL_GPL(kvm_mmu_invpcid_gva); 5179 5180 void kvm_configure_mmu(bool enable_tdp, int tdp_max_root_level, 5181 int tdp_huge_page_level) 5182 { 5183 tdp_enabled = enable_tdp; 5184 max_tdp_level = tdp_max_root_level; 5185 5186 /* 5187 * max_huge_page_level reflects KVM's MMU capabilities irrespective 5188 * of kernel support, e.g. KVM may be capable of using 1GB pages when 5189 * the kernel is not. But, KVM never creates a page size greater than 5190 * what is used by the kernel for any given HVA, i.e. the kernel's 5191 * capabilities are ultimately consulted by kvm_mmu_hugepage_adjust(). 5192 */ 5193 if (tdp_enabled) 5194 max_huge_page_level = tdp_huge_page_level; 5195 else if (boot_cpu_has(X86_FEATURE_GBPAGES)) 5196 max_huge_page_level = PG_LEVEL_1G; 5197 else 5198 max_huge_page_level = PG_LEVEL_2M; 5199 } 5200 EXPORT_SYMBOL_GPL(kvm_configure_mmu); 5201 5202 /* The return value indicates if tlb flush on all vcpus is needed. */ 5203 typedef bool (*slot_level_handler) (struct kvm *kvm, struct kvm_rmap_head *rmap_head); 5204 5205 /* The caller should hold mmu-lock before calling this function. */ 5206 static __always_inline bool 5207 slot_handle_level_range(struct kvm *kvm, struct kvm_memory_slot *memslot, 5208 slot_level_handler fn, int start_level, int end_level, 5209 gfn_t start_gfn, gfn_t end_gfn, bool lock_flush_tlb) 5210 { 5211 struct slot_rmap_walk_iterator iterator; 5212 bool flush = false; 5213 5214 for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn, 5215 end_gfn, &iterator) { 5216 if (iterator.rmap) 5217 flush |= fn(kvm, iterator.rmap); 5218 5219 if (need_resched() || spin_needbreak(&kvm->mmu_lock)) { 5220 if (flush && lock_flush_tlb) { 5221 kvm_flush_remote_tlbs_with_address(kvm, 5222 start_gfn, 5223 iterator.gfn - start_gfn + 1); 5224 flush = false; 5225 } 5226 cond_resched_lock(&kvm->mmu_lock); 5227 } 5228 } 5229 5230 if (flush && lock_flush_tlb) { 5231 kvm_flush_remote_tlbs_with_address(kvm, start_gfn, 5232 end_gfn - start_gfn + 1); 5233 flush = false; 5234 } 5235 5236 return flush; 5237 } 5238 5239 static __always_inline bool 5240 slot_handle_level(struct kvm *kvm, struct kvm_memory_slot *memslot, 5241 slot_level_handler fn, int start_level, int end_level, 5242 bool lock_flush_tlb) 5243 { 5244 return slot_handle_level_range(kvm, memslot, fn, start_level, 5245 end_level, memslot->base_gfn, 5246 memslot->base_gfn + memslot->npages - 1, 5247 lock_flush_tlb); 5248 } 5249 5250 static __always_inline bool 5251 slot_handle_all_level(struct kvm *kvm, struct kvm_memory_slot *memslot, 5252 slot_level_handler fn, bool lock_flush_tlb) 5253 { 5254 return slot_handle_level(kvm, memslot, fn, PG_LEVEL_4K, 5255 KVM_MAX_HUGEPAGE_LEVEL, lock_flush_tlb); 5256 } 5257 5258 static __always_inline bool 5259 slot_handle_large_level(struct kvm *kvm, struct kvm_memory_slot *memslot, 5260 slot_level_handler fn, bool lock_flush_tlb) 5261 { 5262 return slot_handle_level(kvm, memslot, fn, PG_LEVEL_4K + 1, 5263 KVM_MAX_HUGEPAGE_LEVEL, lock_flush_tlb); 5264 } 5265 5266 static __always_inline bool 5267 slot_handle_leaf(struct kvm *kvm, struct kvm_memory_slot *memslot, 5268 slot_level_handler fn, bool lock_flush_tlb) 5269 { 5270 return slot_handle_level(kvm, memslot, fn, PG_LEVEL_4K, 5271 PG_LEVEL_4K, lock_flush_tlb); 5272 } 5273 5274 static void free_mmu_pages(struct kvm_mmu *mmu) 5275 { 5276 free_page((unsigned long)mmu->pae_root); 5277 free_page((unsigned long)mmu->lm_root); 5278 } 5279 5280 static int __kvm_mmu_create(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu) 5281 { 5282 struct page *page; 5283 int i; 5284 5285 mmu->root_hpa = INVALID_PAGE; 5286 mmu->root_pgd = 0; 5287 mmu->translate_gpa = translate_gpa; 5288 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 5289 mmu->prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID; 5290 5291 /* 5292 * When using PAE paging, the four PDPTEs are treated as 'root' pages, 5293 * while the PDP table is a per-vCPU construct that's allocated at MMU 5294 * creation. When emulating 32-bit mode, cr3 is only 32 bits even on 5295 * x86_64. Therefore we need to allocate the PDP table in the first 5296 * 4GB of memory, which happens to fit the DMA32 zone. Except for 5297 * SVM's 32-bit NPT support, TDP paging doesn't use PAE paging and can 5298 * skip allocating the PDP table. 5299 */ 5300 if (tdp_enabled && kvm_mmu_get_tdp_level(vcpu) > PT32E_ROOT_LEVEL) 5301 return 0; 5302 5303 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_DMA32); 5304 if (!page) 5305 return -ENOMEM; 5306 5307 mmu->pae_root = page_address(page); 5308 for (i = 0; i < 4; ++i) 5309 mmu->pae_root[i] = INVALID_PAGE; 5310 5311 return 0; 5312 } 5313 5314 int kvm_mmu_create(struct kvm_vcpu *vcpu) 5315 { 5316 int ret; 5317 5318 vcpu->arch.mmu_pte_list_desc_cache.kmem_cache = pte_list_desc_cache; 5319 vcpu->arch.mmu_pte_list_desc_cache.gfp_zero = __GFP_ZERO; 5320 5321 vcpu->arch.mmu_page_header_cache.kmem_cache = mmu_page_header_cache; 5322 vcpu->arch.mmu_page_header_cache.gfp_zero = __GFP_ZERO; 5323 5324 vcpu->arch.mmu_shadow_page_cache.gfp_zero = __GFP_ZERO; 5325 5326 vcpu->arch.mmu = &vcpu->arch.root_mmu; 5327 vcpu->arch.walk_mmu = &vcpu->arch.root_mmu; 5328 5329 vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa; 5330 5331 ret = __kvm_mmu_create(vcpu, &vcpu->arch.guest_mmu); 5332 if (ret) 5333 return ret; 5334 5335 ret = __kvm_mmu_create(vcpu, &vcpu->arch.root_mmu); 5336 if (ret) 5337 goto fail_allocate_root; 5338 5339 return ret; 5340 fail_allocate_root: 5341 free_mmu_pages(&vcpu->arch.guest_mmu); 5342 return ret; 5343 } 5344 5345 #define BATCH_ZAP_PAGES 10 5346 static void kvm_zap_obsolete_pages(struct kvm *kvm) 5347 { 5348 struct kvm_mmu_page *sp, *node; 5349 int nr_zapped, batch = 0; 5350 5351 restart: 5352 list_for_each_entry_safe_reverse(sp, node, 5353 &kvm->arch.active_mmu_pages, link) { 5354 /* 5355 * No obsolete valid page exists before a newly created page 5356 * since active_mmu_pages is a FIFO list. 5357 */ 5358 if (!is_obsolete_sp(kvm, sp)) 5359 break; 5360 5361 /* 5362 * Invalid pages should never land back on the list of active 5363 * pages. Skip the bogus page, otherwise we'll get stuck in an 5364 * infinite loop if the page gets put back on the list (again). 5365 */ 5366 if (WARN_ON(sp->role.invalid)) 5367 continue; 5368 5369 /* 5370 * No need to flush the TLB since we're only zapping shadow 5371 * pages with an obsolete generation number and all vCPUS have 5372 * loaded a new root, i.e. the shadow pages being zapped cannot 5373 * be in active use by the guest. 5374 */ 5375 if (batch >= BATCH_ZAP_PAGES && 5376 cond_resched_lock(&kvm->mmu_lock)) { 5377 batch = 0; 5378 goto restart; 5379 } 5380 5381 if (__kvm_mmu_prepare_zap_page(kvm, sp, 5382 &kvm->arch.zapped_obsolete_pages, &nr_zapped)) { 5383 batch += nr_zapped; 5384 goto restart; 5385 } 5386 } 5387 5388 /* 5389 * Trigger a remote TLB flush before freeing the page tables to ensure 5390 * KVM is not in the middle of a lockless shadow page table walk, which 5391 * may reference the pages. 5392 */ 5393 kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages); 5394 } 5395 5396 /* 5397 * Fast invalidate all shadow pages and use lock-break technique 5398 * to zap obsolete pages. 5399 * 5400 * It's required when memslot is being deleted or VM is being 5401 * destroyed, in these cases, we should ensure that KVM MMU does 5402 * not use any resource of the being-deleted slot or all slots 5403 * after calling the function. 5404 */ 5405 static void kvm_mmu_zap_all_fast(struct kvm *kvm) 5406 { 5407 lockdep_assert_held(&kvm->slots_lock); 5408 5409 spin_lock(&kvm->mmu_lock); 5410 trace_kvm_mmu_zap_all_fast(kvm); 5411 5412 /* 5413 * Toggle mmu_valid_gen between '0' and '1'. Because slots_lock is 5414 * held for the entire duration of zapping obsolete pages, it's 5415 * impossible for there to be multiple invalid generations associated 5416 * with *valid* shadow pages at any given time, i.e. there is exactly 5417 * one valid generation and (at most) one invalid generation. 5418 */ 5419 kvm->arch.mmu_valid_gen = kvm->arch.mmu_valid_gen ? 0 : 1; 5420 5421 /* 5422 * Notify all vcpus to reload its shadow page table and flush TLB. 5423 * Then all vcpus will switch to new shadow page table with the new 5424 * mmu_valid_gen. 5425 * 5426 * Note: we need to do this under the protection of mmu_lock, 5427 * otherwise, vcpu would purge shadow page but miss tlb flush. 5428 */ 5429 kvm_reload_remote_mmus(kvm); 5430 5431 kvm_zap_obsolete_pages(kvm); 5432 5433 if (kvm->arch.tdp_mmu_enabled) 5434 kvm_tdp_mmu_zap_all(kvm); 5435 5436 spin_unlock(&kvm->mmu_lock); 5437 } 5438 5439 static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm) 5440 { 5441 return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages)); 5442 } 5443 5444 static void kvm_mmu_invalidate_zap_pages_in_memslot(struct kvm *kvm, 5445 struct kvm_memory_slot *slot, 5446 struct kvm_page_track_notifier_node *node) 5447 { 5448 kvm_mmu_zap_all_fast(kvm); 5449 } 5450 5451 void kvm_mmu_init_vm(struct kvm *kvm) 5452 { 5453 struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker; 5454 5455 kvm_mmu_init_tdp_mmu(kvm); 5456 5457 node->track_write = kvm_mmu_pte_write; 5458 node->track_flush_slot = kvm_mmu_invalidate_zap_pages_in_memslot; 5459 kvm_page_track_register_notifier(kvm, node); 5460 } 5461 5462 void kvm_mmu_uninit_vm(struct kvm *kvm) 5463 { 5464 struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker; 5465 5466 kvm_page_track_unregister_notifier(kvm, node); 5467 5468 kvm_mmu_uninit_tdp_mmu(kvm); 5469 } 5470 5471 void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end) 5472 { 5473 struct kvm_memslots *slots; 5474 struct kvm_memory_slot *memslot; 5475 int i; 5476 bool flush; 5477 5478 spin_lock(&kvm->mmu_lock); 5479 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { 5480 slots = __kvm_memslots(kvm, i); 5481 kvm_for_each_memslot(memslot, slots) { 5482 gfn_t start, end; 5483 5484 start = max(gfn_start, memslot->base_gfn); 5485 end = min(gfn_end, memslot->base_gfn + memslot->npages); 5486 if (start >= end) 5487 continue; 5488 5489 slot_handle_level_range(kvm, memslot, kvm_zap_rmapp, 5490 PG_LEVEL_4K, 5491 KVM_MAX_HUGEPAGE_LEVEL, 5492 start, end - 1, true); 5493 } 5494 } 5495 5496 if (kvm->arch.tdp_mmu_enabled) { 5497 flush = kvm_tdp_mmu_zap_gfn_range(kvm, gfn_start, gfn_end); 5498 if (flush) 5499 kvm_flush_remote_tlbs(kvm); 5500 } 5501 5502 spin_unlock(&kvm->mmu_lock); 5503 } 5504 5505 static bool slot_rmap_write_protect(struct kvm *kvm, 5506 struct kvm_rmap_head *rmap_head) 5507 { 5508 return __rmap_write_protect(kvm, rmap_head, false); 5509 } 5510 5511 void kvm_mmu_slot_remove_write_access(struct kvm *kvm, 5512 struct kvm_memory_slot *memslot, 5513 int start_level) 5514 { 5515 bool flush; 5516 5517 spin_lock(&kvm->mmu_lock); 5518 flush = slot_handle_level(kvm, memslot, slot_rmap_write_protect, 5519 start_level, KVM_MAX_HUGEPAGE_LEVEL, false); 5520 if (kvm->arch.tdp_mmu_enabled) 5521 flush |= kvm_tdp_mmu_wrprot_slot(kvm, memslot, PG_LEVEL_4K); 5522 spin_unlock(&kvm->mmu_lock); 5523 5524 /* 5525 * We can flush all the TLBs out of the mmu lock without TLB 5526 * corruption since we just change the spte from writable to 5527 * readonly so that we only need to care the case of changing 5528 * spte from present to present (changing the spte from present 5529 * to nonpresent will flush all the TLBs immediately), in other 5530 * words, the only case we care is mmu_spte_update() where we 5531 * have checked SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE 5532 * instead of PT_WRITABLE_MASK, that means it does not depend 5533 * on PT_WRITABLE_MASK anymore. 5534 */ 5535 if (flush) 5536 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot); 5537 } 5538 5539 static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm, 5540 struct kvm_rmap_head *rmap_head) 5541 { 5542 u64 *sptep; 5543 struct rmap_iterator iter; 5544 int need_tlb_flush = 0; 5545 kvm_pfn_t pfn; 5546 struct kvm_mmu_page *sp; 5547 5548 restart: 5549 for_each_rmap_spte(rmap_head, &iter, sptep) { 5550 sp = sptep_to_sp(sptep); 5551 pfn = spte_to_pfn(*sptep); 5552 5553 /* 5554 * We cannot do huge page mapping for indirect shadow pages, 5555 * which are found on the last rmap (level = 1) when not using 5556 * tdp; such shadow pages are synced with the page table in 5557 * the guest, and the guest page table is using 4K page size 5558 * mapping if the indirect sp has level = 1. 5559 */ 5560 if (sp->role.direct && !kvm_is_reserved_pfn(pfn) && 5561 (kvm_is_zone_device_pfn(pfn) || 5562 PageCompound(pfn_to_page(pfn)))) { 5563 pte_list_remove(rmap_head, sptep); 5564 5565 if (kvm_available_flush_tlb_with_range()) 5566 kvm_flush_remote_tlbs_with_address(kvm, sp->gfn, 5567 KVM_PAGES_PER_HPAGE(sp->role.level)); 5568 else 5569 need_tlb_flush = 1; 5570 5571 goto restart; 5572 } 5573 } 5574 5575 return need_tlb_flush; 5576 } 5577 5578 void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm, 5579 const struct kvm_memory_slot *memslot) 5580 { 5581 /* FIXME: const-ify all uses of struct kvm_memory_slot. */ 5582 spin_lock(&kvm->mmu_lock); 5583 slot_handle_leaf(kvm, (struct kvm_memory_slot *)memslot, 5584 kvm_mmu_zap_collapsible_spte, true); 5585 5586 if (kvm->arch.tdp_mmu_enabled) 5587 kvm_tdp_mmu_zap_collapsible_sptes(kvm, memslot); 5588 spin_unlock(&kvm->mmu_lock); 5589 } 5590 5591 void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm, 5592 struct kvm_memory_slot *memslot) 5593 { 5594 /* 5595 * All current use cases for flushing the TLBs for a specific memslot 5596 * are related to dirty logging, and do the TLB flush out of mmu_lock. 5597 * The interaction between the various operations on memslot must be 5598 * serialized by slots_locks to ensure the TLB flush from one operation 5599 * is observed by any other operation on the same memslot. 5600 */ 5601 lockdep_assert_held(&kvm->slots_lock); 5602 kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn, 5603 memslot->npages); 5604 } 5605 5606 void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm, 5607 struct kvm_memory_slot *memslot) 5608 { 5609 bool flush; 5610 5611 spin_lock(&kvm->mmu_lock); 5612 flush = slot_handle_leaf(kvm, memslot, __rmap_clear_dirty, false); 5613 if (kvm->arch.tdp_mmu_enabled) 5614 flush |= kvm_tdp_mmu_clear_dirty_slot(kvm, memslot); 5615 spin_unlock(&kvm->mmu_lock); 5616 5617 /* 5618 * It's also safe to flush TLBs out of mmu lock here as currently this 5619 * function is only used for dirty logging, in which case flushing TLB 5620 * out of mmu lock also guarantees no dirty pages will be lost in 5621 * dirty_bitmap. 5622 */ 5623 if (flush) 5624 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot); 5625 } 5626 EXPORT_SYMBOL_GPL(kvm_mmu_slot_leaf_clear_dirty); 5627 5628 void kvm_mmu_slot_largepage_remove_write_access(struct kvm *kvm, 5629 struct kvm_memory_slot *memslot) 5630 { 5631 bool flush; 5632 5633 spin_lock(&kvm->mmu_lock); 5634 flush = slot_handle_large_level(kvm, memslot, slot_rmap_write_protect, 5635 false); 5636 if (kvm->arch.tdp_mmu_enabled) 5637 flush |= kvm_tdp_mmu_wrprot_slot(kvm, memslot, PG_LEVEL_2M); 5638 spin_unlock(&kvm->mmu_lock); 5639 5640 if (flush) 5641 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot); 5642 } 5643 EXPORT_SYMBOL_GPL(kvm_mmu_slot_largepage_remove_write_access); 5644 5645 void kvm_mmu_slot_set_dirty(struct kvm *kvm, 5646 struct kvm_memory_slot *memslot) 5647 { 5648 bool flush; 5649 5650 spin_lock(&kvm->mmu_lock); 5651 flush = slot_handle_all_level(kvm, memslot, __rmap_set_dirty, false); 5652 if (kvm->arch.tdp_mmu_enabled) 5653 flush |= kvm_tdp_mmu_slot_set_dirty(kvm, memslot); 5654 spin_unlock(&kvm->mmu_lock); 5655 5656 if (flush) 5657 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot); 5658 } 5659 EXPORT_SYMBOL_GPL(kvm_mmu_slot_set_dirty); 5660 5661 void kvm_mmu_zap_all(struct kvm *kvm) 5662 { 5663 struct kvm_mmu_page *sp, *node; 5664 LIST_HEAD(invalid_list); 5665 int ign; 5666 5667 spin_lock(&kvm->mmu_lock); 5668 restart: 5669 list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link) { 5670 if (WARN_ON(sp->role.invalid)) 5671 continue; 5672 if (__kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list, &ign)) 5673 goto restart; 5674 if (cond_resched_lock(&kvm->mmu_lock)) 5675 goto restart; 5676 } 5677 5678 kvm_mmu_commit_zap_page(kvm, &invalid_list); 5679 5680 if (kvm->arch.tdp_mmu_enabled) 5681 kvm_tdp_mmu_zap_all(kvm); 5682 5683 spin_unlock(&kvm->mmu_lock); 5684 } 5685 5686 void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen) 5687 { 5688 WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS); 5689 5690 gen &= MMIO_SPTE_GEN_MASK; 5691 5692 /* 5693 * Generation numbers are incremented in multiples of the number of 5694 * address spaces in order to provide unique generations across all 5695 * address spaces. Strip what is effectively the address space 5696 * modifier prior to checking for a wrap of the MMIO generation so 5697 * that a wrap in any address space is detected. 5698 */ 5699 gen &= ~((u64)KVM_ADDRESS_SPACE_NUM - 1); 5700 5701 /* 5702 * The very rare case: if the MMIO generation number has wrapped, 5703 * zap all shadow pages. 5704 */ 5705 if (unlikely(gen == 0)) { 5706 kvm_debug_ratelimited("kvm: zapping shadow pages for mmio generation wraparound\n"); 5707 kvm_mmu_zap_all_fast(kvm); 5708 } 5709 } 5710 5711 static unsigned long 5712 mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc) 5713 { 5714 struct kvm *kvm; 5715 int nr_to_scan = sc->nr_to_scan; 5716 unsigned long freed = 0; 5717 5718 mutex_lock(&kvm_lock); 5719 5720 list_for_each_entry(kvm, &vm_list, vm_list) { 5721 int idx; 5722 LIST_HEAD(invalid_list); 5723 5724 /* 5725 * Never scan more than sc->nr_to_scan VM instances. 5726 * Will not hit this condition practically since we do not try 5727 * to shrink more than one VM and it is very unlikely to see 5728 * !n_used_mmu_pages so many times. 5729 */ 5730 if (!nr_to_scan--) 5731 break; 5732 /* 5733 * n_used_mmu_pages is accessed without holding kvm->mmu_lock 5734 * here. We may skip a VM instance errorneosly, but we do not 5735 * want to shrink a VM that only started to populate its MMU 5736 * anyway. 5737 */ 5738 if (!kvm->arch.n_used_mmu_pages && 5739 !kvm_has_zapped_obsolete_pages(kvm)) 5740 continue; 5741 5742 idx = srcu_read_lock(&kvm->srcu); 5743 spin_lock(&kvm->mmu_lock); 5744 5745 if (kvm_has_zapped_obsolete_pages(kvm)) { 5746 kvm_mmu_commit_zap_page(kvm, 5747 &kvm->arch.zapped_obsolete_pages); 5748 goto unlock; 5749 } 5750 5751 freed = kvm_mmu_zap_oldest_mmu_pages(kvm, sc->nr_to_scan); 5752 5753 unlock: 5754 spin_unlock(&kvm->mmu_lock); 5755 srcu_read_unlock(&kvm->srcu, idx); 5756 5757 /* 5758 * unfair on small ones 5759 * per-vm shrinkers cry out 5760 * sadness comes quickly 5761 */ 5762 list_move_tail(&kvm->vm_list, &vm_list); 5763 break; 5764 } 5765 5766 mutex_unlock(&kvm_lock); 5767 return freed; 5768 } 5769 5770 static unsigned long 5771 mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc) 5772 { 5773 return percpu_counter_read_positive(&kvm_total_used_mmu_pages); 5774 } 5775 5776 static struct shrinker mmu_shrinker = { 5777 .count_objects = mmu_shrink_count, 5778 .scan_objects = mmu_shrink_scan, 5779 .seeks = DEFAULT_SEEKS * 10, 5780 }; 5781 5782 static void mmu_destroy_caches(void) 5783 { 5784 kmem_cache_destroy(pte_list_desc_cache); 5785 kmem_cache_destroy(mmu_page_header_cache); 5786 } 5787 5788 static void kvm_set_mmio_spte_mask(void) 5789 { 5790 u64 mask; 5791 5792 /* 5793 * Set a reserved PA bit in MMIO SPTEs to generate page faults with 5794 * PFEC.RSVD=1 on MMIO accesses. 64-bit PTEs (PAE, x86-64, and EPT 5795 * paging) support a maximum of 52 bits of PA, i.e. if the CPU supports 5796 * 52-bit physical addresses then there are no reserved PA bits in the 5797 * PTEs and so the reserved PA approach must be disabled. 5798 */ 5799 if (shadow_phys_bits < 52) 5800 mask = BIT_ULL(51) | PT_PRESENT_MASK; 5801 else 5802 mask = 0; 5803 5804 kvm_mmu_set_mmio_spte_mask(mask, ACC_WRITE_MASK | ACC_USER_MASK); 5805 } 5806 5807 static bool get_nx_auto_mode(void) 5808 { 5809 /* Return true when CPU has the bug, and mitigations are ON */ 5810 return boot_cpu_has_bug(X86_BUG_ITLB_MULTIHIT) && !cpu_mitigations_off(); 5811 } 5812 5813 static void __set_nx_huge_pages(bool val) 5814 { 5815 nx_huge_pages = itlb_multihit_kvm_mitigation = val; 5816 } 5817 5818 static int set_nx_huge_pages(const char *val, const struct kernel_param *kp) 5819 { 5820 bool old_val = nx_huge_pages; 5821 bool new_val; 5822 5823 /* In "auto" mode deploy workaround only if CPU has the bug. */ 5824 if (sysfs_streq(val, "off")) 5825 new_val = 0; 5826 else if (sysfs_streq(val, "force")) 5827 new_val = 1; 5828 else if (sysfs_streq(val, "auto")) 5829 new_val = get_nx_auto_mode(); 5830 else if (strtobool(val, &new_val) < 0) 5831 return -EINVAL; 5832 5833 __set_nx_huge_pages(new_val); 5834 5835 if (new_val != old_val) { 5836 struct kvm *kvm; 5837 5838 mutex_lock(&kvm_lock); 5839 5840 list_for_each_entry(kvm, &vm_list, vm_list) { 5841 mutex_lock(&kvm->slots_lock); 5842 kvm_mmu_zap_all_fast(kvm); 5843 mutex_unlock(&kvm->slots_lock); 5844 5845 wake_up_process(kvm->arch.nx_lpage_recovery_thread); 5846 } 5847 mutex_unlock(&kvm_lock); 5848 } 5849 5850 return 0; 5851 } 5852 5853 int kvm_mmu_module_init(void) 5854 { 5855 int ret = -ENOMEM; 5856 5857 if (nx_huge_pages == -1) 5858 __set_nx_huge_pages(get_nx_auto_mode()); 5859 5860 /* 5861 * MMU roles use union aliasing which is, generally speaking, an 5862 * undefined behavior. However, we supposedly know how compilers behave 5863 * and the current status quo is unlikely to change. Guardians below are 5864 * supposed to let us know if the assumption becomes false. 5865 */ 5866 BUILD_BUG_ON(sizeof(union kvm_mmu_page_role) != sizeof(u32)); 5867 BUILD_BUG_ON(sizeof(union kvm_mmu_extended_role) != sizeof(u32)); 5868 BUILD_BUG_ON(sizeof(union kvm_mmu_role) != sizeof(u64)); 5869 5870 kvm_mmu_reset_all_pte_masks(); 5871 5872 kvm_set_mmio_spte_mask(); 5873 5874 pte_list_desc_cache = kmem_cache_create("pte_list_desc", 5875 sizeof(struct pte_list_desc), 5876 0, SLAB_ACCOUNT, NULL); 5877 if (!pte_list_desc_cache) 5878 goto out; 5879 5880 mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header", 5881 sizeof(struct kvm_mmu_page), 5882 0, SLAB_ACCOUNT, NULL); 5883 if (!mmu_page_header_cache) 5884 goto out; 5885 5886 if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL)) 5887 goto out; 5888 5889 ret = register_shrinker(&mmu_shrinker); 5890 if (ret) 5891 goto out; 5892 5893 return 0; 5894 5895 out: 5896 mmu_destroy_caches(); 5897 return ret; 5898 } 5899 5900 /* 5901 * Calculate mmu pages needed for kvm. 5902 */ 5903 unsigned long kvm_mmu_calculate_default_mmu_pages(struct kvm *kvm) 5904 { 5905 unsigned long nr_mmu_pages; 5906 unsigned long nr_pages = 0; 5907 struct kvm_memslots *slots; 5908 struct kvm_memory_slot *memslot; 5909 int i; 5910 5911 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { 5912 slots = __kvm_memslots(kvm, i); 5913 5914 kvm_for_each_memslot(memslot, slots) 5915 nr_pages += memslot->npages; 5916 } 5917 5918 nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000; 5919 nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES); 5920 5921 return nr_mmu_pages; 5922 } 5923 5924 void kvm_mmu_destroy(struct kvm_vcpu *vcpu) 5925 { 5926 kvm_mmu_unload(vcpu); 5927 free_mmu_pages(&vcpu->arch.root_mmu); 5928 free_mmu_pages(&vcpu->arch.guest_mmu); 5929 mmu_free_memory_caches(vcpu); 5930 } 5931 5932 void kvm_mmu_module_exit(void) 5933 { 5934 mmu_destroy_caches(); 5935 percpu_counter_destroy(&kvm_total_used_mmu_pages); 5936 unregister_shrinker(&mmu_shrinker); 5937 mmu_audit_disable(); 5938 } 5939 5940 static int set_nx_huge_pages_recovery_ratio(const char *val, const struct kernel_param *kp) 5941 { 5942 unsigned int old_val; 5943 int err; 5944 5945 old_val = nx_huge_pages_recovery_ratio; 5946 err = param_set_uint(val, kp); 5947 if (err) 5948 return err; 5949 5950 if (READ_ONCE(nx_huge_pages) && 5951 !old_val && nx_huge_pages_recovery_ratio) { 5952 struct kvm *kvm; 5953 5954 mutex_lock(&kvm_lock); 5955 5956 list_for_each_entry(kvm, &vm_list, vm_list) 5957 wake_up_process(kvm->arch.nx_lpage_recovery_thread); 5958 5959 mutex_unlock(&kvm_lock); 5960 } 5961 5962 return err; 5963 } 5964 5965 static void kvm_recover_nx_lpages(struct kvm *kvm) 5966 { 5967 int rcu_idx; 5968 struct kvm_mmu_page *sp; 5969 unsigned int ratio; 5970 LIST_HEAD(invalid_list); 5971 ulong to_zap; 5972 5973 rcu_idx = srcu_read_lock(&kvm->srcu); 5974 spin_lock(&kvm->mmu_lock); 5975 5976 ratio = READ_ONCE(nx_huge_pages_recovery_ratio); 5977 to_zap = ratio ? DIV_ROUND_UP(kvm->stat.nx_lpage_splits, ratio) : 0; 5978 for ( ; to_zap; --to_zap) { 5979 if (list_empty(&kvm->arch.lpage_disallowed_mmu_pages)) 5980 break; 5981 5982 /* 5983 * We use a separate list instead of just using active_mmu_pages 5984 * because the number of lpage_disallowed pages is expected to 5985 * be relatively small compared to the total. 5986 */ 5987 sp = list_first_entry(&kvm->arch.lpage_disallowed_mmu_pages, 5988 struct kvm_mmu_page, 5989 lpage_disallowed_link); 5990 WARN_ON_ONCE(!sp->lpage_disallowed); 5991 if (sp->tdp_mmu_page) 5992 kvm_tdp_mmu_zap_gfn_range(kvm, sp->gfn, 5993 sp->gfn + KVM_PAGES_PER_HPAGE(sp->role.level)); 5994 else { 5995 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list); 5996 WARN_ON_ONCE(sp->lpage_disallowed); 5997 } 5998 5999 if (need_resched() || spin_needbreak(&kvm->mmu_lock)) { 6000 kvm_mmu_commit_zap_page(kvm, &invalid_list); 6001 cond_resched_lock(&kvm->mmu_lock); 6002 } 6003 } 6004 kvm_mmu_commit_zap_page(kvm, &invalid_list); 6005 6006 spin_unlock(&kvm->mmu_lock); 6007 srcu_read_unlock(&kvm->srcu, rcu_idx); 6008 } 6009 6010 static long get_nx_lpage_recovery_timeout(u64 start_time) 6011 { 6012 return READ_ONCE(nx_huge_pages) && READ_ONCE(nx_huge_pages_recovery_ratio) 6013 ? start_time + 60 * HZ - get_jiffies_64() 6014 : MAX_SCHEDULE_TIMEOUT; 6015 } 6016 6017 static int kvm_nx_lpage_recovery_worker(struct kvm *kvm, uintptr_t data) 6018 { 6019 u64 start_time; 6020 long remaining_time; 6021 6022 while (true) { 6023 start_time = get_jiffies_64(); 6024 remaining_time = get_nx_lpage_recovery_timeout(start_time); 6025 6026 set_current_state(TASK_INTERRUPTIBLE); 6027 while (!kthread_should_stop() && remaining_time > 0) { 6028 schedule_timeout(remaining_time); 6029 remaining_time = get_nx_lpage_recovery_timeout(start_time); 6030 set_current_state(TASK_INTERRUPTIBLE); 6031 } 6032 6033 set_current_state(TASK_RUNNING); 6034 6035 if (kthread_should_stop()) 6036 return 0; 6037 6038 kvm_recover_nx_lpages(kvm); 6039 } 6040 } 6041 6042 int kvm_mmu_post_init_vm(struct kvm *kvm) 6043 { 6044 int err; 6045 6046 err = kvm_vm_create_worker_thread(kvm, kvm_nx_lpage_recovery_worker, 0, 6047 "kvm-nx-lpage-recovery", 6048 &kvm->arch.nx_lpage_recovery_thread); 6049 if (!err) 6050 kthread_unpark(kvm->arch.nx_lpage_recovery_thread); 6051 6052 return err; 6053 } 6054 6055 void kvm_mmu_pre_destroy_vm(struct kvm *kvm) 6056 { 6057 if (kvm->arch.nx_lpage_recovery_thread) 6058 kthread_stop(kvm->arch.nx_lpage_recovery_thread); 6059 } 6060