xref: /openbmc/linux/arch/x86/kvm/mmu/mmu.c (revision 58919326)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This module enables machines with Intel VT-x extensions to run virtual
6  * machines without emulation or binary translation.
7  *
8  * MMU support
9  *
10  * Copyright (C) 2006 Qumranet, Inc.
11  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
12  *
13  * Authors:
14  *   Yaniv Kamay  <yaniv@qumranet.com>
15  *   Avi Kivity   <avi@qumranet.com>
16  */
17 
18 #include "irq.h"
19 #include "ioapic.h"
20 #include "mmu.h"
21 #include "mmu_internal.h"
22 #include "tdp_mmu.h"
23 #include "x86.h"
24 #include "kvm_cache_regs.h"
25 #include "kvm_emulate.h"
26 #include "cpuid.h"
27 #include "spte.h"
28 
29 #include <linux/kvm_host.h>
30 #include <linux/types.h>
31 #include <linux/string.h>
32 #include <linux/mm.h>
33 #include <linux/highmem.h>
34 #include <linux/moduleparam.h>
35 #include <linux/export.h>
36 #include <linux/swap.h>
37 #include <linux/hugetlb.h>
38 #include <linux/compiler.h>
39 #include <linux/srcu.h>
40 #include <linux/slab.h>
41 #include <linux/sched/signal.h>
42 #include <linux/uaccess.h>
43 #include <linux/hash.h>
44 #include <linux/kern_levels.h>
45 #include <linux/kthread.h>
46 
47 #include <asm/page.h>
48 #include <asm/memtype.h>
49 #include <asm/cmpxchg.h>
50 #include <asm/io.h>
51 #include <asm/set_memory.h>
52 #include <asm/vmx.h>
53 #include <asm/kvm_page_track.h>
54 #include "trace.h"
55 
56 #include "paging.h"
57 
58 extern bool itlb_multihit_kvm_mitigation;
59 
60 int __read_mostly nx_huge_pages = -1;
61 static uint __read_mostly nx_huge_pages_recovery_period_ms;
62 #ifdef CONFIG_PREEMPT_RT
63 /* Recovery can cause latency spikes, disable it for PREEMPT_RT.  */
64 static uint __read_mostly nx_huge_pages_recovery_ratio = 0;
65 #else
66 static uint __read_mostly nx_huge_pages_recovery_ratio = 60;
67 #endif
68 
69 static int set_nx_huge_pages(const char *val, const struct kernel_param *kp);
70 static int set_nx_huge_pages_recovery_param(const char *val, const struct kernel_param *kp);
71 
72 static const struct kernel_param_ops nx_huge_pages_ops = {
73 	.set = set_nx_huge_pages,
74 	.get = param_get_bool,
75 };
76 
77 static const struct kernel_param_ops nx_huge_pages_recovery_param_ops = {
78 	.set = set_nx_huge_pages_recovery_param,
79 	.get = param_get_uint,
80 };
81 
82 module_param_cb(nx_huge_pages, &nx_huge_pages_ops, &nx_huge_pages, 0644);
83 __MODULE_PARM_TYPE(nx_huge_pages, "bool");
84 module_param_cb(nx_huge_pages_recovery_ratio, &nx_huge_pages_recovery_param_ops,
85 		&nx_huge_pages_recovery_ratio, 0644);
86 __MODULE_PARM_TYPE(nx_huge_pages_recovery_ratio, "uint");
87 module_param_cb(nx_huge_pages_recovery_period_ms, &nx_huge_pages_recovery_param_ops,
88 		&nx_huge_pages_recovery_period_ms, 0644);
89 __MODULE_PARM_TYPE(nx_huge_pages_recovery_period_ms, "uint");
90 
91 static bool __read_mostly force_flush_and_sync_on_reuse;
92 module_param_named(flush_on_reuse, force_flush_and_sync_on_reuse, bool, 0644);
93 
94 /*
95  * When setting this variable to true it enables Two-Dimensional-Paging
96  * where the hardware walks 2 page tables:
97  * 1. the guest-virtual to guest-physical
98  * 2. while doing 1. it walks guest-physical to host-physical
99  * If the hardware supports that we don't need to do shadow paging.
100  */
101 bool tdp_enabled = false;
102 
103 static int max_huge_page_level __read_mostly;
104 static int tdp_root_level __read_mostly;
105 static int max_tdp_level __read_mostly;
106 
107 #ifdef MMU_DEBUG
108 bool dbg = 0;
109 module_param(dbg, bool, 0644);
110 #endif
111 
112 #define PTE_PREFETCH_NUM		8
113 
114 #define PT32_LEVEL_BITS 10
115 
116 #define PT32_LEVEL_SHIFT(level) \
117 		(PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
118 
119 #define PT32_LVL_OFFSET_MASK(level) \
120 	(PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
121 						* PT32_LEVEL_BITS))) - 1))
122 
123 #define PT32_INDEX(address, level)\
124 	(((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
125 
126 
127 #define PT32_BASE_ADDR_MASK PAGE_MASK
128 #define PT32_DIR_BASE_ADDR_MASK \
129 	(PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
130 #define PT32_LVL_ADDR_MASK(level) \
131 	(PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
132 					    * PT32_LEVEL_BITS))) - 1))
133 
134 #include <trace/events/kvm.h>
135 
136 /* make pte_list_desc fit well in cache lines */
137 #define PTE_LIST_EXT 14
138 
139 /*
140  * Slight optimization of cacheline layout, by putting `more' and `spte_count'
141  * at the start; then accessing it will only use one single cacheline for
142  * either full (entries==PTE_LIST_EXT) case or entries<=6.
143  */
144 struct pte_list_desc {
145 	struct pte_list_desc *more;
146 	/*
147 	 * Stores number of entries stored in the pte_list_desc.  No need to be
148 	 * u64 but just for easier alignment.  When PTE_LIST_EXT, means full.
149 	 */
150 	u64 spte_count;
151 	u64 *sptes[PTE_LIST_EXT];
152 };
153 
154 struct kvm_shadow_walk_iterator {
155 	u64 addr;
156 	hpa_t shadow_addr;
157 	u64 *sptep;
158 	int level;
159 	unsigned index;
160 };
161 
162 #define for_each_shadow_entry_using_root(_vcpu, _root, _addr, _walker)     \
163 	for (shadow_walk_init_using_root(&(_walker), (_vcpu),              \
164 					 (_root), (_addr));                \
165 	     shadow_walk_okay(&(_walker));			           \
166 	     shadow_walk_next(&(_walker)))
167 
168 #define for_each_shadow_entry(_vcpu, _addr, _walker)            \
169 	for (shadow_walk_init(&(_walker), _vcpu, _addr);	\
170 	     shadow_walk_okay(&(_walker));			\
171 	     shadow_walk_next(&(_walker)))
172 
173 #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte)	\
174 	for (shadow_walk_init(&(_walker), _vcpu, _addr);		\
175 	     shadow_walk_okay(&(_walker)) &&				\
176 		({ spte = mmu_spte_get_lockless(_walker.sptep); 1; });	\
177 	     __shadow_walk_next(&(_walker), spte))
178 
179 static struct kmem_cache *pte_list_desc_cache;
180 struct kmem_cache *mmu_page_header_cache;
181 static struct percpu_counter kvm_total_used_mmu_pages;
182 
183 static void mmu_spte_set(u64 *sptep, u64 spte);
184 
185 struct kvm_mmu_role_regs {
186 	const unsigned long cr0;
187 	const unsigned long cr4;
188 	const u64 efer;
189 };
190 
191 #define CREATE_TRACE_POINTS
192 #include "mmutrace.h"
193 
194 /*
195  * Yes, lot's of underscores.  They're a hint that you probably shouldn't be
196  * reading from the role_regs.  Once the mmu_role is constructed, it becomes
197  * the single source of truth for the MMU's state.
198  */
199 #define BUILD_MMU_ROLE_REGS_ACCESSOR(reg, name, flag)			\
200 static inline bool __maybe_unused ____is_##reg##_##name(struct kvm_mmu_role_regs *regs)\
201 {									\
202 	return !!(regs->reg & flag);					\
203 }
204 BUILD_MMU_ROLE_REGS_ACCESSOR(cr0, pg, X86_CR0_PG);
205 BUILD_MMU_ROLE_REGS_ACCESSOR(cr0, wp, X86_CR0_WP);
206 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pse, X86_CR4_PSE);
207 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pae, X86_CR4_PAE);
208 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, smep, X86_CR4_SMEP);
209 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, smap, X86_CR4_SMAP);
210 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pke, X86_CR4_PKE);
211 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, la57, X86_CR4_LA57);
212 BUILD_MMU_ROLE_REGS_ACCESSOR(efer, nx, EFER_NX);
213 BUILD_MMU_ROLE_REGS_ACCESSOR(efer, lma, EFER_LMA);
214 
215 /*
216  * The MMU itself (with a valid role) is the single source of truth for the
217  * MMU.  Do not use the regs used to build the MMU/role, nor the vCPU.  The
218  * regs don't account for dependencies, e.g. clearing CR4 bits if CR0.PG=1,
219  * and the vCPU may be incorrect/irrelevant.
220  */
221 #define BUILD_MMU_ROLE_ACCESSOR(base_or_ext, reg, name)		\
222 static inline bool __maybe_unused is_##reg##_##name(struct kvm_mmu *mmu)	\
223 {								\
224 	return !!(mmu->mmu_role. base_or_ext . reg##_##name);	\
225 }
226 BUILD_MMU_ROLE_ACCESSOR(ext,  cr0, pg);
227 BUILD_MMU_ROLE_ACCESSOR(base, cr0, wp);
228 BUILD_MMU_ROLE_ACCESSOR(ext,  cr4, pse);
229 BUILD_MMU_ROLE_ACCESSOR(ext,  cr4, pae);
230 BUILD_MMU_ROLE_ACCESSOR(ext,  cr4, smep);
231 BUILD_MMU_ROLE_ACCESSOR(ext,  cr4, smap);
232 BUILD_MMU_ROLE_ACCESSOR(ext,  cr4, pke);
233 BUILD_MMU_ROLE_ACCESSOR(ext,  cr4, la57);
234 BUILD_MMU_ROLE_ACCESSOR(base, efer, nx);
235 
236 static struct kvm_mmu_role_regs vcpu_to_role_regs(struct kvm_vcpu *vcpu)
237 {
238 	struct kvm_mmu_role_regs regs = {
239 		.cr0 = kvm_read_cr0_bits(vcpu, KVM_MMU_CR0_ROLE_BITS),
240 		.cr4 = kvm_read_cr4_bits(vcpu, KVM_MMU_CR4_ROLE_BITS),
241 		.efer = vcpu->arch.efer,
242 	};
243 
244 	return regs;
245 }
246 
247 static int role_regs_to_root_level(struct kvm_mmu_role_regs *regs)
248 {
249 	if (!____is_cr0_pg(regs))
250 		return 0;
251 	else if (____is_efer_lma(regs))
252 		return ____is_cr4_la57(regs) ? PT64_ROOT_5LEVEL :
253 					       PT64_ROOT_4LEVEL;
254 	else if (____is_cr4_pae(regs))
255 		return PT32E_ROOT_LEVEL;
256 	else
257 		return PT32_ROOT_LEVEL;
258 }
259 
260 static inline bool kvm_available_flush_tlb_with_range(void)
261 {
262 	return kvm_x86_ops.tlb_remote_flush_with_range;
263 }
264 
265 static void kvm_flush_remote_tlbs_with_range(struct kvm *kvm,
266 		struct kvm_tlb_range *range)
267 {
268 	int ret = -ENOTSUPP;
269 
270 	if (range && kvm_x86_ops.tlb_remote_flush_with_range)
271 		ret = static_call(kvm_x86_tlb_remote_flush_with_range)(kvm, range);
272 
273 	if (ret)
274 		kvm_flush_remote_tlbs(kvm);
275 }
276 
277 void kvm_flush_remote_tlbs_with_address(struct kvm *kvm,
278 		u64 start_gfn, u64 pages)
279 {
280 	struct kvm_tlb_range range;
281 
282 	range.start_gfn = start_gfn;
283 	range.pages = pages;
284 
285 	kvm_flush_remote_tlbs_with_range(kvm, &range);
286 }
287 
288 static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn,
289 			   unsigned int access)
290 {
291 	u64 spte = make_mmio_spte(vcpu, gfn, access);
292 
293 	trace_mark_mmio_spte(sptep, gfn, spte);
294 	mmu_spte_set(sptep, spte);
295 }
296 
297 static gfn_t get_mmio_spte_gfn(u64 spte)
298 {
299 	u64 gpa = spte & shadow_nonpresent_or_rsvd_lower_gfn_mask;
300 
301 	gpa |= (spte >> SHADOW_NONPRESENT_OR_RSVD_MASK_LEN)
302 	       & shadow_nonpresent_or_rsvd_mask;
303 
304 	return gpa >> PAGE_SHIFT;
305 }
306 
307 static unsigned get_mmio_spte_access(u64 spte)
308 {
309 	return spte & shadow_mmio_access_mask;
310 }
311 
312 static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte)
313 {
314 	u64 kvm_gen, spte_gen, gen;
315 
316 	gen = kvm_vcpu_memslots(vcpu)->generation;
317 	if (unlikely(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS))
318 		return false;
319 
320 	kvm_gen = gen & MMIO_SPTE_GEN_MASK;
321 	spte_gen = get_mmio_spte_generation(spte);
322 
323 	trace_check_mmio_spte(spte, kvm_gen, spte_gen);
324 	return likely(kvm_gen == spte_gen);
325 }
326 
327 static int is_cpuid_PSE36(void)
328 {
329 	return 1;
330 }
331 
332 static gfn_t pse36_gfn_delta(u32 gpte)
333 {
334 	int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
335 
336 	return (gpte & PT32_DIR_PSE36_MASK) << shift;
337 }
338 
339 #ifdef CONFIG_X86_64
340 static void __set_spte(u64 *sptep, u64 spte)
341 {
342 	WRITE_ONCE(*sptep, spte);
343 }
344 
345 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
346 {
347 	WRITE_ONCE(*sptep, spte);
348 }
349 
350 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
351 {
352 	return xchg(sptep, spte);
353 }
354 
355 static u64 __get_spte_lockless(u64 *sptep)
356 {
357 	return READ_ONCE(*sptep);
358 }
359 #else
360 union split_spte {
361 	struct {
362 		u32 spte_low;
363 		u32 spte_high;
364 	};
365 	u64 spte;
366 };
367 
368 static void count_spte_clear(u64 *sptep, u64 spte)
369 {
370 	struct kvm_mmu_page *sp =  sptep_to_sp(sptep);
371 
372 	if (is_shadow_present_pte(spte))
373 		return;
374 
375 	/* Ensure the spte is completely set before we increase the count */
376 	smp_wmb();
377 	sp->clear_spte_count++;
378 }
379 
380 static void __set_spte(u64 *sptep, u64 spte)
381 {
382 	union split_spte *ssptep, sspte;
383 
384 	ssptep = (union split_spte *)sptep;
385 	sspte = (union split_spte)spte;
386 
387 	ssptep->spte_high = sspte.spte_high;
388 
389 	/*
390 	 * If we map the spte from nonpresent to present, We should store
391 	 * the high bits firstly, then set present bit, so cpu can not
392 	 * fetch this spte while we are setting the spte.
393 	 */
394 	smp_wmb();
395 
396 	WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
397 }
398 
399 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
400 {
401 	union split_spte *ssptep, sspte;
402 
403 	ssptep = (union split_spte *)sptep;
404 	sspte = (union split_spte)spte;
405 
406 	WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
407 
408 	/*
409 	 * If we map the spte from present to nonpresent, we should clear
410 	 * present bit firstly to avoid vcpu fetch the old high bits.
411 	 */
412 	smp_wmb();
413 
414 	ssptep->spte_high = sspte.spte_high;
415 	count_spte_clear(sptep, spte);
416 }
417 
418 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
419 {
420 	union split_spte *ssptep, sspte, orig;
421 
422 	ssptep = (union split_spte *)sptep;
423 	sspte = (union split_spte)spte;
424 
425 	/* xchg acts as a barrier before the setting of the high bits */
426 	orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
427 	orig.spte_high = ssptep->spte_high;
428 	ssptep->spte_high = sspte.spte_high;
429 	count_spte_clear(sptep, spte);
430 
431 	return orig.spte;
432 }
433 
434 /*
435  * The idea using the light way get the spte on x86_32 guest is from
436  * gup_get_pte (mm/gup.c).
437  *
438  * An spte tlb flush may be pending, because kvm_set_pte_rmapp
439  * coalesces them and we are running out of the MMU lock.  Therefore
440  * we need to protect against in-progress updates of the spte.
441  *
442  * Reading the spte while an update is in progress may get the old value
443  * for the high part of the spte.  The race is fine for a present->non-present
444  * change (because the high part of the spte is ignored for non-present spte),
445  * but for a present->present change we must reread the spte.
446  *
447  * All such changes are done in two steps (present->non-present and
448  * non-present->present), hence it is enough to count the number of
449  * present->non-present updates: if it changed while reading the spte,
450  * we might have hit the race.  This is done using clear_spte_count.
451  */
452 static u64 __get_spte_lockless(u64 *sptep)
453 {
454 	struct kvm_mmu_page *sp =  sptep_to_sp(sptep);
455 	union split_spte spte, *orig = (union split_spte *)sptep;
456 	int count;
457 
458 retry:
459 	count = sp->clear_spte_count;
460 	smp_rmb();
461 
462 	spte.spte_low = orig->spte_low;
463 	smp_rmb();
464 
465 	spte.spte_high = orig->spte_high;
466 	smp_rmb();
467 
468 	if (unlikely(spte.spte_low != orig->spte_low ||
469 	      count != sp->clear_spte_count))
470 		goto retry;
471 
472 	return spte.spte;
473 }
474 #endif
475 
476 /* Rules for using mmu_spte_set:
477  * Set the sptep from nonpresent to present.
478  * Note: the sptep being assigned *must* be either not present
479  * or in a state where the hardware will not attempt to update
480  * the spte.
481  */
482 static void mmu_spte_set(u64 *sptep, u64 new_spte)
483 {
484 	WARN_ON(is_shadow_present_pte(*sptep));
485 	__set_spte(sptep, new_spte);
486 }
487 
488 /*
489  * Update the SPTE (excluding the PFN), but do not track changes in its
490  * accessed/dirty status.
491  */
492 static u64 mmu_spte_update_no_track(u64 *sptep, u64 new_spte)
493 {
494 	u64 old_spte = *sptep;
495 
496 	WARN_ON(!is_shadow_present_pte(new_spte));
497 	check_spte_writable_invariants(new_spte);
498 
499 	if (!is_shadow_present_pte(old_spte)) {
500 		mmu_spte_set(sptep, new_spte);
501 		return old_spte;
502 	}
503 
504 	if (!spte_has_volatile_bits(old_spte))
505 		__update_clear_spte_fast(sptep, new_spte);
506 	else
507 		old_spte = __update_clear_spte_slow(sptep, new_spte);
508 
509 	WARN_ON(spte_to_pfn(old_spte) != spte_to_pfn(new_spte));
510 
511 	return old_spte;
512 }
513 
514 /* Rules for using mmu_spte_update:
515  * Update the state bits, it means the mapped pfn is not changed.
516  *
517  * Whenever an MMU-writable SPTE is overwritten with a read-only SPTE, remote
518  * TLBs must be flushed. Otherwise rmap_write_protect will find a read-only
519  * spte, even though the writable spte might be cached on a CPU's TLB.
520  *
521  * Returns true if the TLB needs to be flushed
522  */
523 static bool mmu_spte_update(u64 *sptep, u64 new_spte)
524 {
525 	bool flush = false;
526 	u64 old_spte = mmu_spte_update_no_track(sptep, new_spte);
527 
528 	if (!is_shadow_present_pte(old_spte))
529 		return false;
530 
531 	/*
532 	 * For the spte updated out of mmu-lock is safe, since
533 	 * we always atomically update it, see the comments in
534 	 * spte_has_volatile_bits().
535 	 */
536 	if (is_mmu_writable_spte(old_spte) &&
537 	      !is_writable_pte(new_spte))
538 		flush = true;
539 
540 	/*
541 	 * Flush TLB when accessed/dirty states are changed in the page tables,
542 	 * to guarantee consistency between TLB and page tables.
543 	 */
544 
545 	if (is_accessed_spte(old_spte) && !is_accessed_spte(new_spte)) {
546 		flush = true;
547 		kvm_set_pfn_accessed(spte_to_pfn(old_spte));
548 	}
549 
550 	if (is_dirty_spte(old_spte) && !is_dirty_spte(new_spte)) {
551 		flush = true;
552 		kvm_set_pfn_dirty(spte_to_pfn(old_spte));
553 	}
554 
555 	return flush;
556 }
557 
558 /*
559  * Rules for using mmu_spte_clear_track_bits:
560  * It sets the sptep from present to nonpresent, and track the
561  * state bits, it is used to clear the last level sptep.
562  * Returns the old PTE.
563  */
564 static int mmu_spte_clear_track_bits(struct kvm *kvm, u64 *sptep)
565 {
566 	kvm_pfn_t pfn;
567 	u64 old_spte = *sptep;
568 	int level = sptep_to_sp(sptep)->role.level;
569 
570 	if (!is_shadow_present_pte(old_spte) ||
571 	    !spte_has_volatile_bits(old_spte))
572 		__update_clear_spte_fast(sptep, 0ull);
573 	else
574 		old_spte = __update_clear_spte_slow(sptep, 0ull);
575 
576 	if (!is_shadow_present_pte(old_spte))
577 		return old_spte;
578 
579 	kvm_update_page_stats(kvm, level, -1);
580 
581 	pfn = spte_to_pfn(old_spte);
582 
583 	/*
584 	 * KVM does not hold the refcount of the page used by
585 	 * kvm mmu, before reclaiming the page, we should
586 	 * unmap it from mmu first.
587 	 */
588 	WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn)));
589 
590 	if (is_accessed_spte(old_spte))
591 		kvm_set_pfn_accessed(pfn);
592 
593 	if (is_dirty_spte(old_spte))
594 		kvm_set_pfn_dirty(pfn);
595 
596 	return old_spte;
597 }
598 
599 /*
600  * Rules for using mmu_spte_clear_no_track:
601  * Directly clear spte without caring the state bits of sptep,
602  * it is used to set the upper level spte.
603  */
604 static void mmu_spte_clear_no_track(u64 *sptep)
605 {
606 	__update_clear_spte_fast(sptep, 0ull);
607 }
608 
609 static u64 mmu_spte_get_lockless(u64 *sptep)
610 {
611 	return __get_spte_lockless(sptep);
612 }
613 
614 /* Returns the Accessed status of the PTE and resets it at the same time. */
615 static bool mmu_spte_age(u64 *sptep)
616 {
617 	u64 spte = mmu_spte_get_lockless(sptep);
618 
619 	if (!is_accessed_spte(spte))
620 		return false;
621 
622 	if (spte_ad_enabled(spte)) {
623 		clear_bit((ffs(shadow_accessed_mask) - 1),
624 			  (unsigned long *)sptep);
625 	} else {
626 		/*
627 		 * Capture the dirty status of the page, so that it doesn't get
628 		 * lost when the SPTE is marked for access tracking.
629 		 */
630 		if (is_writable_pte(spte))
631 			kvm_set_pfn_dirty(spte_to_pfn(spte));
632 
633 		spte = mark_spte_for_access_track(spte);
634 		mmu_spte_update_no_track(sptep, spte);
635 	}
636 
637 	return true;
638 }
639 
640 static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
641 {
642 	if (is_tdp_mmu(vcpu->arch.mmu)) {
643 		kvm_tdp_mmu_walk_lockless_begin();
644 	} else {
645 		/*
646 		 * Prevent page table teardown by making any free-er wait during
647 		 * kvm_flush_remote_tlbs() IPI to all active vcpus.
648 		 */
649 		local_irq_disable();
650 
651 		/*
652 		 * Make sure a following spte read is not reordered ahead of the write
653 		 * to vcpu->mode.
654 		 */
655 		smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES);
656 	}
657 }
658 
659 static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
660 {
661 	if (is_tdp_mmu(vcpu->arch.mmu)) {
662 		kvm_tdp_mmu_walk_lockless_end();
663 	} else {
664 		/*
665 		 * Make sure the write to vcpu->mode is not reordered in front of
666 		 * reads to sptes.  If it does, kvm_mmu_commit_zap_page() can see us
667 		 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
668 		 */
669 		smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE);
670 		local_irq_enable();
671 	}
672 }
673 
674 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu, bool maybe_indirect)
675 {
676 	int r;
677 
678 	/* 1 rmap, 1 parent PTE per level, and the prefetched rmaps. */
679 	r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
680 				       1 + PT64_ROOT_MAX_LEVEL + PTE_PREFETCH_NUM);
681 	if (r)
682 		return r;
683 	r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_shadow_page_cache,
684 				       PT64_ROOT_MAX_LEVEL);
685 	if (r)
686 		return r;
687 	if (maybe_indirect) {
688 		r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_gfn_array_cache,
689 					       PT64_ROOT_MAX_LEVEL);
690 		if (r)
691 			return r;
692 	}
693 	return kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
694 					  PT64_ROOT_MAX_LEVEL);
695 }
696 
697 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
698 {
699 	kvm_mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache);
700 	kvm_mmu_free_memory_cache(&vcpu->arch.mmu_shadow_page_cache);
701 	kvm_mmu_free_memory_cache(&vcpu->arch.mmu_gfn_array_cache);
702 	kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache);
703 }
704 
705 static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
706 {
707 	return kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
708 }
709 
710 static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
711 {
712 	kmem_cache_free(pte_list_desc_cache, pte_list_desc);
713 }
714 
715 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
716 {
717 	if (!sp->role.direct)
718 		return sp->gfns[index];
719 
720 	return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
721 }
722 
723 static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
724 {
725 	if (!sp->role.direct) {
726 		sp->gfns[index] = gfn;
727 		return;
728 	}
729 
730 	if (WARN_ON(gfn != kvm_mmu_page_get_gfn(sp, index)))
731 		pr_err_ratelimited("gfn mismatch under direct page %llx "
732 				   "(expected %llx, got %llx)\n",
733 				   sp->gfn,
734 				   kvm_mmu_page_get_gfn(sp, index), gfn);
735 }
736 
737 /*
738  * Return the pointer to the large page information for a given gfn,
739  * handling slots that are not large page aligned.
740  */
741 static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
742 		const struct kvm_memory_slot *slot, int level)
743 {
744 	unsigned long idx;
745 
746 	idx = gfn_to_index(gfn, slot->base_gfn, level);
747 	return &slot->arch.lpage_info[level - 2][idx];
748 }
749 
750 static void update_gfn_disallow_lpage_count(const struct kvm_memory_slot *slot,
751 					    gfn_t gfn, int count)
752 {
753 	struct kvm_lpage_info *linfo;
754 	int i;
755 
756 	for (i = PG_LEVEL_2M; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) {
757 		linfo = lpage_info_slot(gfn, slot, i);
758 		linfo->disallow_lpage += count;
759 		WARN_ON(linfo->disallow_lpage < 0);
760 	}
761 }
762 
763 void kvm_mmu_gfn_disallow_lpage(const struct kvm_memory_slot *slot, gfn_t gfn)
764 {
765 	update_gfn_disallow_lpage_count(slot, gfn, 1);
766 }
767 
768 void kvm_mmu_gfn_allow_lpage(const struct kvm_memory_slot *slot, gfn_t gfn)
769 {
770 	update_gfn_disallow_lpage_count(slot, gfn, -1);
771 }
772 
773 static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
774 {
775 	struct kvm_memslots *slots;
776 	struct kvm_memory_slot *slot;
777 	gfn_t gfn;
778 
779 	kvm->arch.indirect_shadow_pages++;
780 	gfn = sp->gfn;
781 	slots = kvm_memslots_for_spte_role(kvm, sp->role);
782 	slot = __gfn_to_memslot(slots, gfn);
783 
784 	/* the non-leaf shadow pages are keeping readonly. */
785 	if (sp->role.level > PG_LEVEL_4K)
786 		return kvm_slot_page_track_add_page(kvm, slot, gfn,
787 						    KVM_PAGE_TRACK_WRITE);
788 
789 	kvm_mmu_gfn_disallow_lpage(slot, gfn);
790 }
791 
792 void account_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp)
793 {
794 	if (sp->lpage_disallowed)
795 		return;
796 
797 	++kvm->stat.nx_lpage_splits;
798 	list_add_tail(&sp->lpage_disallowed_link,
799 		      &kvm->arch.lpage_disallowed_mmu_pages);
800 	sp->lpage_disallowed = true;
801 }
802 
803 static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
804 {
805 	struct kvm_memslots *slots;
806 	struct kvm_memory_slot *slot;
807 	gfn_t gfn;
808 
809 	kvm->arch.indirect_shadow_pages--;
810 	gfn = sp->gfn;
811 	slots = kvm_memslots_for_spte_role(kvm, sp->role);
812 	slot = __gfn_to_memslot(slots, gfn);
813 	if (sp->role.level > PG_LEVEL_4K)
814 		return kvm_slot_page_track_remove_page(kvm, slot, gfn,
815 						       KVM_PAGE_TRACK_WRITE);
816 
817 	kvm_mmu_gfn_allow_lpage(slot, gfn);
818 }
819 
820 void unaccount_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp)
821 {
822 	--kvm->stat.nx_lpage_splits;
823 	sp->lpage_disallowed = false;
824 	list_del(&sp->lpage_disallowed_link);
825 }
826 
827 static struct kvm_memory_slot *
828 gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
829 			    bool no_dirty_log)
830 {
831 	struct kvm_memory_slot *slot;
832 
833 	slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
834 	if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
835 		return NULL;
836 	if (no_dirty_log && kvm_slot_dirty_track_enabled(slot))
837 		return NULL;
838 
839 	return slot;
840 }
841 
842 /*
843  * About rmap_head encoding:
844  *
845  * If the bit zero of rmap_head->val is clear, then it points to the only spte
846  * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct
847  * pte_list_desc containing more mappings.
848  */
849 
850 /*
851  * Returns the number of pointers in the rmap chain, not counting the new one.
852  */
853 static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
854 			struct kvm_rmap_head *rmap_head)
855 {
856 	struct pte_list_desc *desc;
857 	int count = 0;
858 
859 	if (!rmap_head->val) {
860 		rmap_printk("%p %llx 0->1\n", spte, *spte);
861 		rmap_head->val = (unsigned long)spte;
862 	} else if (!(rmap_head->val & 1)) {
863 		rmap_printk("%p %llx 1->many\n", spte, *spte);
864 		desc = mmu_alloc_pte_list_desc(vcpu);
865 		desc->sptes[0] = (u64 *)rmap_head->val;
866 		desc->sptes[1] = spte;
867 		desc->spte_count = 2;
868 		rmap_head->val = (unsigned long)desc | 1;
869 		++count;
870 	} else {
871 		rmap_printk("%p %llx many->many\n", spte, *spte);
872 		desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
873 		while (desc->spte_count == PTE_LIST_EXT) {
874 			count += PTE_LIST_EXT;
875 			if (!desc->more) {
876 				desc->more = mmu_alloc_pte_list_desc(vcpu);
877 				desc = desc->more;
878 				desc->spte_count = 0;
879 				break;
880 			}
881 			desc = desc->more;
882 		}
883 		count += desc->spte_count;
884 		desc->sptes[desc->spte_count++] = spte;
885 	}
886 	return count;
887 }
888 
889 static void
890 pte_list_desc_remove_entry(struct kvm_rmap_head *rmap_head,
891 			   struct pte_list_desc *desc, int i,
892 			   struct pte_list_desc *prev_desc)
893 {
894 	int j = desc->spte_count - 1;
895 
896 	desc->sptes[i] = desc->sptes[j];
897 	desc->sptes[j] = NULL;
898 	desc->spte_count--;
899 	if (desc->spte_count)
900 		return;
901 	if (!prev_desc && !desc->more)
902 		rmap_head->val = 0;
903 	else
904 		if (prev_desc)
905 			prev_desc->more = desc->more;
906 		else
907 			rmap_head->val = (unsigned long)desc->more | 1;
908 	mmu_free_pte_list_desc(desc);
909 }
910 
911 static void __pte_list_remove(u64 *spte, struct kvm_rmap_head *rmap_head)
912 {
913 	struct pte_list_desc *desc;
914 	struct pte_list_desc *prev_desc;
915 	int i;
916 
917 	if (!rmap_head->val) {
918 		pr_err("%s: %p 0->BUG\n", __func__, spte);
919 		BUG();
920 	} else if (!(rmap_head->val & 1)) {
921 		rmap_printk("%p 1->0\n", spte);
922 		if ((u64 *)rmap_head->val != spte) {
923 			pr_err("%s:  %p 1->BUG\n", __func__, spte);
924 			BUG();
925 		}
926 		rmap_head->val = 0;
927 	} else {
928 		rmap_printk("%p many->many\n", spte);
929 		desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
930 		prev_desc = NULL;
931 		while (desc) {
932 			for (i = 0; i < desc->spte_count; ++i) {
933 				if (desc->sptes[i] == spte) {
934 					pte_list_desc_remove_entry(rmap_head,
935 							desc, i, prev_desc);
936 					return;
937 				}
938 			}
939 			prev_desc = desc;
940 			desc = desc->more;
941 		}
942 		pr_err("%s: %p many->many\n", __func__, spte);
943 		BUG();
944 	}
945 }
946 
947 static void pte_list_remove(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
948 			    u64 *sptep)
949 {
950 	mmu_spte_clear_track_bits(kvm, sptep);
951 	__pte_list_remove(sptep, rmap_head);
952 }
953 
954 /* Return true if rmap existed, false otherwise */
955 static bool pte_list_destroy(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
956 {
957 	struct pte_list_desc *desc, *next;
958 	int i;
959 
960 	if (!rmap_head->val)
961 		return false;
962 
963 	if (!(rmap_head->val & 1)) {
964 		mmu_spte_clear_track_bits(kvm, (u64 *)rmap_head->val);
965 		goto out;
966 	}
967 
968 	desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
969 
970 	for (; desc; desc = next) {
971 		for (i = 0; i < desc->spte_count; i++)
972 			mmu_spte_clear_track_bits(kvm, desc->sptes[i]);
973 		next = desc->more;
974 		mmu_free_pte_list_desc(desc);
975 	}
976 out:
977 	/* rmap_head is meaningless now, remember to reset it */
978 	rmap_head->val = 0;
979 	return true;
980 }
981 
982 unsigned int pte_list_count(struct kvm_rmap_head *rmap_head)
983 {
984 	struct pte_list_desc *desc;
985 	unsigned int count = 0;
986 
987 	if (!rmap_head->val)
988 		return 0;
989 	else if (!(rmap_head->val & 1))
990 		return 1;
991 
992 	desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
993 
994 	while (desc) {
995 		count += desc->spte_count;
996 		desc = desc->more;
997 	}
998 
999 	return count;
1000 }
1001 
1002 static struct kvm_rmap_head *gfn_to_rmap(gfn_t gfn, int level,
1003 					 const struct kvm_memory_slot *slot)
1004 {
1005 	unsigned long idx;
1006 
1007 	idx = gfn_to_index(gfn, slot->base_gfn, level);
1008 	return &slot->arch.rmap[level - PG_LEVEL_4K][idx];
1009 }
1010 
1011 static bool rmap_can_add(struct kvm_vcpu *vcpu)
1012 {
1013 	struct kvm_mmu_memory_cache *mc;
1014 
1015 	mc = &vcpu->arch.mmu_pte_list_desc_cache;
1016 	return kvm_mmu_memory_cache_nr_free_objects(mc);
1017 }
1018 
1019 static void rmap_remove(struct kvm *kvm, u64 *spte)
1020 {
1021 	struct kvm_memslots *slots;
1022 	struct kvm_memory_slot *slot;
1023 	struct kvm_mmu_page *sp;
1024 	gfn_t gfn;
1025 	struct kvm_rmap_head *rmap_head;
1026 
1027 	sp = sptep_to_sp(spte);
1028 	gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
1029 
1030 	/*
1031 	 * Unlike rmap_add, rmap_remove does not run in the context of a vCPU
1032 	 * so we have to determine which memslots to use based on context
1033 	 * information in sp->role.
1034 	 */
1035 	slots = kvm_memslots_for_spte_role(kvm, sp->role);
1036 
1037 	slot = __gfn_to_memslot(slots, gfn);
1038 	rmap_head = gfn_to_rmap(gfn, sp->role.level, slot);
1039 
1040 	__pte_list_remove(spte, rmap_head);
1041 }
1042 
1043 /*
1044  * Used by the following functions to iterate through the sptes linked by a
1045  * rmap.  All fields are private and not assumed to be used outside.
1046  */
1047 struct rmap_iterator {
1048 	/* private fields */
1049 	struct pte_list_desc *desc;	/* holds the sptep if not NULL */
1050 	int pos;			/* index of the sptep */
1051 };
1052 
1053 /*
1054  * Iteration must be started by this function.  This should also be used after
1055  * removing/dropping sptes from the rmap link because in such cases the
1056  * information in the iterator may not be valid.
1057  *
1058  * Returns sptep if found, NULL otherwise.
1059  */
1060 static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head,
1061 			   struct rmap_iterator *iter)
1062 {
1063 	u64 *sptep;
1064 
1065 	if (!rmap_head->val)
1066 		return NULL;
1067 
1068 	if (!(rmap_head->val & 1)) {
1069 		iter->desc = NULL;
1070 		sptep = (u64 *)rmap_head->val;
1071 		goto out;
1072 	}
1073 
1074 	iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1075 	iter->pos = 0;
1076 	sptep = iter->desc->sptes[iter->pos];
1077 out:
1078 	BUG_ON(!is_shadow_present_pte(*sptep));
1079 	return sptep;
1080 }
1081 
1082 /*
1083  * Must be used with a valid iterator: e.g. after rmap_get_first().
1084  *
1085  * Returns sptep if found, NULL otherwise.
1086  */
1087 static u64 *rmap_get_next(struct rmap_iterator *iter)
1088 {
1089 	u64 *sptep;
1090 
1091 	if (iter->desc) {
1092 		if (iter->pos < PTE_LIST_EXT - 1) {
1093 			++iter->pos;
1094 			sptep = iter->desc->sptes[iter->pos];
1095 			if (sptep)
1096 				goto out;
1097 		}
1098 
1099 		iter->desc = iter->desc->more;
1100 
1101 		if (iter->desc) {
1102 			iter->pos = 0;
1103 			/* desc->sptes[0] cannot be NULL */
1104 			sptep = iter->desc->sptes[iter->pos];
1105 			goto out;
1106 		}
1107 	}
1108 
1109 	return NULL;
1110 out:
1111 	BUG_ON(!is_shadow_present_pte(*sptep));
1112 	return sptep;
1113 }
1114 
1115 #define for_each_rmap_spte(_rmap_head_, _iter_, _spte_)			\
1116 	for (_spte_ = rmap_get_first(_rmap_head_, _iter_);		\
1117 	     _spte_; _spte_ = rmap_get_next(_iter_))
1118 
1119 static void drop_spte(struct kvm *kvm, u64 *sptep)
1120 {
1121 	u64 old_spte = mmu_spte_clear_track_bits(kvm, sptep);
1122 
1123 	if (is_shadow_present_pte(old_spte))
1124 		rmap_remove(kvm, sptep);
1125 }
1126 
1127 
1128 static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
1129 {
1130 	if (is_large_pte(*sptep)) {
1131 		WARN_ON(sptep_to_sp(sptep)->role.level == PG_LEVEL_4K);
1132 		drop_spte(kvm, sptep);
1133 		return true;
1134 	}
1135 
1136 	return false;
1137 }
1138 
1139 static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1140 {
1141 	if (__drop_large_spte(vcpu->kvm, sptep)) {
1142 		struct kvm_mmu_page *sp = sptep_to_sp(sptep);
1143 
1144 		kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn,
1145 			KVM_PAGES_PER_HPAGE(sp->role.level));
1146 	}
1147 }
1148 
1149 /*
1150  * Write-protect on the specified @sptep, @pt_protect indicates whether
1151  * spte write-protection is caused by protecting shadow page table.
1152  *
1153  * Note: write protection is difference between dirty logging and spte
1154  * protection:
1155  * - for dirty logging, the spte can be set to writable at anytime if
1156  *   its dirty bitmap is properly set.
1157  * - for spte protection, the spte can be writable only after unsync-ing
1158  *   shadow page.
1159  *
1160  * Return true if tlb need be flushed.
1161  */
1162 static bool spte_write_protect(u64 *sptep, bool pt_protect)
1163 {
1164 	u64 spte = *sptep;
1165 
1166 	if (!is_writable_pte(spte) &&
1167 	    !(pt_protect && is_mmu_writable_spte(spte)))
1168 		return false;
1169 
1170 	rmap_printk("spte %p %llx\n", sptep, *sptep);
1171 
1172 	if (pt_protect)
1173 		spte &= ~shadow_mmu_writable_mask;
1174 	spte = spte & ~PT_WRITABLE_MASK;
1175 
1176 	return mmu_spte_update(sptep, spte);
1177 }
1178 
1179 static bool rmap_write_protect(struct kvm_rmap_head *rmap_head,
1180 			       bool pt_protect)
1181 {
1182 	u64 *sptep;
1183 	struct rmap_iterator iter;
1184 	bool flush = false;
1185 
1186 	for_each_rmap_spte(rmap_head, &iter, sptep)
1187 		flush |= spte_write_protect(sptep, pt_protect);
1188 
1189 	return flush;
1190 }
1191 
1192 static bool spte_clear_dirty(u64 *sptep)
1193 {
1194 	u64 spte = *sptep;
1195 
1196 	rmap_printk("spte %p %llx\n", sptep, *sptep);
1197 
1198 	MMU_WARN_ON(!spte_ad_enabled(spte));
1199 	spte &= ~shadow_dirty_mask;
1200 	return mmu_spte_update(sptep, spte);
1201 }
1202 
1203 static bool spte_wrprot_for_clear_dirty(u64 *sptep)
1204 {
1205 	bool was_writable = test_and_clear_bit(PT_WRITABLE_SHIFT,
1206 					       (unsigned long *)sptep);
1207 	if (was_writable && !spte_ad_enabled(*sptep))
1208 		kvm_set_pfn_dirty(spte_to_pfn(*sptep));
1209 
1210 	return was_writable;
1211 }
1212 
1213 /*
1214  * Gets the GFN ready for another round of dirty logging by clearing the
1215  *	- D bit on ad-enabled SPTEs, and
1216  *	- W bit on ad-disabled SPTEs.
1217  * Returns true iff any D or W bits were cleared.
1218  */
1219 static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1220 			       const struct kvm_memory_slot *slot)
1221 {
1222 	u64 *sptep;
1223 	struct rmap_iterator iter;
1224 	bool flush = false;
1225 
1226 	for_each_rmap_spte(rmap_head, &iter, sptep)
1227 		if (spte_ad_need_write_protect(*sptep))
1228 			flush |= spte_wrprot_for_clear_dirty(sptep);
1229 		else
1230 			flush |= spte_clear_dirty(sptep);
1231 
1232 	return flush;
1233 }
1234 
1235 /**
1236  * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1237  * @kvm: kvm instance
1238  * @slot: slot to protect
1239  * @gfn_offset: start of the BITS_PER_LONG pages we care about
1240  * @mask: indicates which pages we should protect
1241  *
1242  * Used when we do not need to care about huge page mappings.
1243  */
1244 static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1245 				     struct kvm_memory_slot *slot,
1246 				     gfn_t gfn_offset, unsigned long mask)
1247 {
1248 	struct kvm_rmap_head *rmap_head;
1249 
1250 	if (is_tdp_mmu_enabled(kvm))
1251 		kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot,
1252 				slot->base_gfn + gfn_offset, mask, true);
1253 
1254 	if (!kvm_memslots_have_rmaps(kvm))
1255 		return;
1256 
1257 	while (mask) {
1258 		rmap_head = gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1259 					PG_LEVEL_4K, slot);
1260 		rmap_write_protect(rmap_head, false);
1261 
1262 		/* clear the first set bit */
1263 		mask &= mask - 1;
1264 	}
1265 }
1266 
1267 /**
1268  * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages, or write
1269  * protect the page if the D-bit isn't supported.
1270  * @kvm: kvm instance
1271  * @slot: slot to clear D-bit
1272  * @gfn_offset: start of the BITS_PER_LONG pages we care about
1273  * @mask: indicates which pages we should clear D-bit
1274  *
1275  * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap.
1276  */
1277 static void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
1278 					 struct kvm_memory_slot *slot,
1279 					 gfn_t gfn_offset, unsigned long mask)
1280 {
1281 	struct kvm_rmap_head *rmap_head;
1282 
1283 	if (is_tdp_mmu_enabled(kvm))
1284 		kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot,
1285 				slot->base_gfn + gfn_offset, mask, false);
1286 
1287 	if (!kvm_memslots_have_rmaps(kvm))
1288 		return;
1289 
1290 	while (mask) {
1291 		rmap_head = gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1292 					PG_LEVEL_4K, slot);
1293 		__rmap_clear_dirty(kvm, rmap_head, slot);
1294 
1295 		/* clear the first set bit */
1296 		mask &= mask - 1;
1297 	}
1298 }
1299 
1300 /**
1301  * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
1302  * PT level pages.
1303  *
1304  * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
1305  * enable dirty logging for them.
1306  *
1307  * We need to care about huge page mappings: e.g. during dirty logging we may
1308  * have such mappings.
1309  */
1310 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1311 				struct kvm_memory_slot *slot,
1312 				gfn_t gfn_offset, unsigned long mask)
1313 {
1314 	/*
1315 	 * Huge pages are NOT write protected when we start dirty logging in
1316 	 * initially-all-set mode; must write protect them here so that they
1317 	 * are split to 4K on the first write.
1318 	 *
1319 	 * The gfn_offset is guaranteed to be aligned to 64, but the base_gfn
1320 	 * of memslot has no such restriction, so the range can cross two large
1321 	 * pages.
1322 	 */
1323 	if (kvm_dirty_log_manual_protect_and_init_set(kvm)) {
1324 		gfn_t start = slot->base_gfn + gfn_offset + __ffs(mask);
1325 		gfn_t end = slot->base_gfn + gfn_offset + __fls(mask);
1326 
1327 		if (READ_ONCE(eager_page_split))
1328 			kvm_mmu_try_split_huge_pages(kvm, slot, start, end, PG_LEVEL_4K);
1329 
1330 		kvm_mmu_slot_gfn_write_protect(kvm, slot, start, PG_LEVEL_2M);
1331 
1332 		/* Cross two large pages? */
1333 		if (ALIGN(start << PAGE_SHIFT, PMD_SIZE) !=
1334 		    ALIGN(end << PAGE_SHIFT, PMD_SIZE))
1335 			kvm_mmu_slot_gfn_write_protect(kvm, slot, end,
1336 						       PG_LEVEL_2M);
1337 	}
1338 
1339 	/* Now handle 4K PTEs.  */
1340 	if (kvm_x86_ops.cpu_dirty_log_size)
1341 		kvm_mmu_clear_dirty_pt_masked(kvm, slot, gfn_offset, mask);
1342 	else
1343 		kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
1344 }
1345 
1346 int kvm_cpu_dirty_log_size(void)
1347 {
1348 	return kvm_x86_ops.cpu_dirty_log_size;
1349 }
1350 
1351 bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
1352 				    struct kvm_memory_slot *slot, u64 gfn,
1353 				    int min_level)
1354 {
1355 	struct kvm_rmap_head *rmap_head;
1356 	int i;
1357 	bool write_protected = false;
1358 
1359 	if (kvm_memslots_have_rmaps(kvm)) {
1360 		for (i = min_level; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) {
1361 			rmap_head = gfn_to_rmap(gfn, i, slot);
1362 			write_protected |= rmap_write_protect(rmap_head, true);
1363 		}
1364 	}
1365 
1366 	if (is_tdp_mmu_enabled(kvm))
1367 		write_protected |=
1368 			kvm_tdp_mmu_write_protect_gfn(kvm, slot, gfn, min_level);
1369 
1370 	return write_protected;
1371 }
1372 
1373 static bool kvm_vcpu_write_protect_gfn(struct kvm_vcpu *vcpu, u64 gfn)
1374 {
1375 	struct kvm_memory_slot *slot;
1376 
1377 	slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1378 	return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn, PG_LEVEL_4K);
1379 }
1380 
1381 static bool kvm_zap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1382 			  const struct kvm_memory_slot *slot)
1383 {
1384 	return pte_list_destroy(kvm, rmap_head);
1385 }
1386 
1387 static bool kvm_unmap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1388 			    struct kvm_memory_slot *slot, gfn_t gfn, int level,
1389 			    pte_t unused)
1390 {
1391 	return kvm_zap_rmapp(kvm, rmap_head, slot);
1392 }
1393 
1394 static bool kvm_set_pte_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1395 			      struct kvm_memory_slot *slot, gfn_t gfn, int level,
1396 			      pte_t pte)
1397 {
1398 	u64 *sptep;
1399 	struct rmap_iterator iter;
1400 	bool need_flush = false;
1401 	u64 new_spte;
1402 	kvm_pfn_t new_pfn;
1403 
1404 	WARN_ON(pte_huge(pte));
1405 	new_pfn = pte_pfn(pte);
1406 
1407 restart:
1408 	for_each_rmap_spte(rmap_head, &iter, sptep) {
1409 		rmap_printk("spte %p %llx gfn %llx (%d)\n",
1410 			    sptep, *sptep, gfn, level);
1411 
1412 		need_flush = true;
1413 
1414 		if (pte_write(pte)) {
1415 			pte_list_remove(kvm, rmap_head, sptep);
1416 			goto restart;
1417 		} else {
1418 			new_spte = kvm_mmu_changed_pte_notifier_make_spte(
1419 					*sptep, new_pfn);
1420 
1421 			mmu_spte_clear_track_bits(kvm, sptep);
1422 			mmu_spte_set(sptep, new_spte);
1423 		}
1424 	}
1425 
1426 	if (need_flush && kvm_available_flush_tlb_with_range()) {
1427 		kvm_flush_remote_tlbs_with_address(kvm, gfn, 1);
1428 		return false;
1429 	}
1430 
1431 	return need_flush;
1432 }
1433 
1434 struct slot_rmap_walk_iterator {
1435 	/* input fields. */
1436 	const struct kvm_memory_slot *slot;
1437 	gfn_t start_gfn;
1438 	gfn_t end_gfn;
1439 	int start_level;
1440 	int end_level;
1441 
1442 	/* output fields. */
1443 	gfn_t gfn;
1444 	struct kvm_rmap_head *rmap;
1445 	int level;
1446 
1447 	/* private field. */
1448 	struct kvm_rmap_head *end_rmap;
1449 };
1450 
1451 static void
1452 rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level)
1453 {
1454 	iterator->level = level;
1455 	iterator->gfn = iterator->start_gfn;
1456 	iterator->rmap = gfn_to_rmap(iterator->gfn, level, iterator->slot);
1457 	iterator->end_rmap = gfn_to_rmap(iterator->end_gfn, level, iterator->slot);
1458 }
1459 
1460 static void
1461 slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator,
1462 		    const struct kvm_memory_slot *slot, int start_level,
1463 		    int end_level, gfn_t start_gfn, gfn_t end_gfn)
1464 {
1465 	iterator->slot = slot;
1466 	iterator->start_level = start_level;
1467 	iterator->end_level = end_level;
1468 	iterator->start_gfn = start_gfn;
1469 	iterator->end_gfn = end_gfn;
1470 
1471 	rmap_walk_init_level(iterator, iterator->start_level);
1472 }
1473 
1474 static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator)
1475 {
1476 	return !!iterator->rmap;
1477 }
1478 
1479 static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
1480 {
1481 	if (++iterator->rmap <= iterator->end_rmap) {
1482 		iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level));
1483 		return;
1484 	}
1485 
1486 	if (++iterator->level > iterator->end_level) {
1487 		iterator->rmap = NULL;
1488 		return;
1489 	}
1490 
1491 	rmap_walk_init_level(iterator, iterator->level);
1492 }
1493 
1494 #define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_,	\
1495 	   _start_gfn, _end_gfn, _iter_)				\
1496 	for (slot_rmap_walk_init(_iter_, _slot_, _start_level_,		\
1497 				 _end_level_, _start_gfn, _end_gfn);	\
1498 	     slot_rmap_walk_okay(_iter_);				\
1499 	     slot_rmap_walk_next(_iter_))
1500 
1501 typedef bool (*rmap_handler_t)(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1502 			       struct kvm_memory_slot *slot, gfn_t gfn,
1503 			       int level, pte_t pte);
1504 
1505 static __always_inline bool kvm_handle_gfn_range(struct kvm *kvm,
1506 						 struct kvm_gfn_range *range,
1507 						 rmap_handler_t handler)
1508 {
1509 	struct slot_rmap_walk_iterator iterator;
1510 	bool ret = false;
1511 
1512 	for_each_slot_rmap_range(range->slot, PG_LEVEL_4K, KVM_MAX_HUGEPAGE_LEVEL,
1513 				 range->start, range->end - 1, &iterator)
1514 		ret |= handler(kvm, iterator.rmap, range->slot, iterator.gfn,
1515 			       iterator.level, range->pte);
1516 
1517 	return ret;
1518 }
1519 
1520 bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range)
1521 {
1522 	bool flush = false;
1523 
1524 	if (kvm_memslots_have_rmaps(kvm))
1525 		flush = kvm_handle_gfn_range(kvm, range, kvm_unmap_rmapp);
1526 
1527 	if (is_tdp_mmu_enabled(kvm))
1528 		flush = kvm_tdp_mmu_unmap_gfn_range(kvm, range, flush);
1529 
1530 	return flush;
1531 }
1532 
1533 bool kvm_set_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
1534 {
1535 	bool flush = false;
1536 
1537 	if (kvm_memslots_have_rmaps(kvm))
1538 		flush = kvm_handle_gfn_range(kvm, range, kvm_set_pte_rmapp);
1539 
1540 	if (is_tdp_mmu_enabled(kvm))
1541 		flush |= kvm_tdp_mmu_set_spte_gfn(kvm, range);
1542 
1543 	return flush;
1544 }
1545 
1546 static bool kvm_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1547 			  struct kvm_memory_slot *slot, gfn_t gfn, int level,
1548 			  pte_t unused)
1549 {
1550 	u64 *sptep;
1551 	struct rmap_iterator iter;
1552 	int young = 0;
1553 
1554 	for_each_rmap_spte(rmap_head, &iter, sptep)
1555 		young |= mmu_spte_age(sptep);
1556 
1557 	return young;
1558 }
1559 
1560 static bool kvm_test_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1561 			       struct kvm_memory_slot *slot, gfn_t gfn,
1562 			       int level, pte_t unused)
1563 {
1564 	u64 *sptep;
1565 	struct rmap_iterator iter;
1566 
1567 	for_each_rmap_spte(rmap_head, &iter, sptep)
1568 		if (is_accessed_spte(*sptep))
1569 			return true;
1570 	return false;
1571 }
1572 
1573 #define RMAP_RECYCLE_THRESHOLD 1000
1574 
1575 static void rmap_add(struct kvm_vcpu *vcpu, struct kvm_memory_slot *slot,
1576 		     u64 *spte, gfn_t gfn)
1577 {
1578 	struct kvm_mmu_page *sp;
1579 	struct kvm_rmap_head *rmap_head;
1580 	int rmap_count;
1581 
1582 	sp = sptep_to_sp(spte);
1583 	kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
1584 	rmap_head = gfn_to_rmap(gfn, sp->role.level, slot);
1585 	rmap_count = pte_list_add(vcpu, spte, rmap_head);
1586 
1587 	if (rmap_count > RMAP_RECYCLE_THRESHOLD) {
1588 		kvm_unmap_rmapp(vcpu->kvm, rmap_head, NULL, gfn, sp->role.level, __pte(0));
1589 		kvm_flush_remote_tlbs_with_address(
1590 				vcpu->kvm, sp->gfn, KVM_PAGES_PER_HPAGE(sp->role.level));
1591 	}
1592 }
1593 
1594 bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
1595 {
1596 	bool young = false;
1597 
1598 	if (kvm_memslots_have_rmaps(kvm))
1599 		young = kvm_handle_gfn_range(kvm, range, kvm_age_rmapp);
1600 
1601 	if (is_tdp_mmu_enabled(kvm))
1602 		young |= kvm_tdp_mmu_age_gfn_range(kvm, range);
1603 
1604 	return young;
1605 }
1606 
1607 bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
1608 {
1609 	bool young = false;
1610 
1611 	if (kvm_memslots_have_rmaps(kvm))
1612 		young = kvm_handle_gfn_range(kvm, range, kvm_test_age_rmapp);
1613 
1614 	if (is_tdp_mmu_enabled(kvm))
1615 		young |= kvm_tdp_mmu_test_age_gfn(kvm, range);
1616 
1617 	return young;
1618 }
1619 
1620 #ifdef MMU_DEBUG
1621 static int is_empty_shadow_page(u64 *spt)
1622 {
1623 	u64 *pos;
1624 	u64 *end;
1625 
1626 	for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
1627 		if (is_shadow_present_pte(*pos)) {
1628 			printk(KERN_ERR "%s: %p %llx\n", __func__,
1629 			       pos, *pos);
1630 			return 0;
1631 		}
1632 	return 1;
1633 }
1634 #endif
1635 
1636 /*
1637  * This value is the sum of all of the kvm instances's
1638  * kvm->arch.n_used_mmu_pages values.  We need a global,
1639  * aggregate version in order to make the slab shrinker
1640  * faster
1641  */
1642 static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, long nr)
1643 {
1644 	kvm->arch.n_used_mmu_pages += nr;
1645 	percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1646 }
1647 
1648 static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
1649 {
1650 	MMU_WARN_ON(!is_empty_shadow_page(sp->spt));
1651 	hlist_del(&sp->hash_link);
1652 	list_del(&sp->link);
1653 	free_page((unsigned long)sp->spt);
1654 	if (!sp->role.direct)
1655 		free_page((unsigned long)sp->gfns);
1656 	kmem_cache_free(mmu_page_header_cache, sp);
1657 }
1658 
1659 static unsigned kvm_page_table_hashfn(gfn_t gfn)
1660 {
1661 	return hash_64(gfn, KVM_MMU_HASH_SHIFT);
1662 }
1663 
1664 static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
1665 				    struct kvm_mmu_page *sp, u64 *parent_pte)
1666 {
1667 	if (!parent_pte)
1668 		return;
1669 
1670 	pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
1671 }
1672 
1673 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
1674 				       u64 *parent_pte)
1675 {
1676 	__pte_list_remove(parent_pte, &sp->parent_ptes);
1677 }
1678 
1679 static void drop_parent_pte(struct kvm_mmu_page *sp,
1680 			    u64 *parent_pte)
1681 {
1682 	mmu_page_remove_parent_pte(sp, parent_pte);
1683 	mmu_spte_clear_no_track(parent_pte);
1684 }
1685 
1686 static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu, int direct)
1687 {
1688 	struct kvm_mmu_page *sp;
1689 
1690 	sp = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
1691 	sp->spt = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_shadow_page_cache);
1692 	if (!direct)
1693 		sp->gfns = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_gfn_array_cache);
1694 	set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
1695 
1696 	/*
1697 	 * active_mmu_pages must be a FIFO list, as kvm_zap_obsolete_pages()
1698 	 * depends on valid pages being added to the head of the list.  See
1699 	 * comments in kvm_zap_obsolete_pages().
1700 	 */
1701 	sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
1702 	list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
1703 	kvm_mod_used_mmu_pages(vcpu->kvm, +1);
1704 	return sp;
1705 }
1706 
1707 static void mark_unsync(u64 *spte);
1708 static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
1709 {
1710 	u64 *sptep;
1711 	struct rmap_iterator iter;
1712 
1713 	for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) {
1714 		mark_unsync(sptep);
1715 	}
1716 }
1717 
1718 static void mark_unsync(u64 *spte)
1719 {
1720 	struct kvm_mmu_page *sp;
1721 	unsigned int index;
1722 
1723 	sp = sptep_to_sp(spte);
1724 	index = spte - sp->spt;
1725 	if (__test_and_set_bit(index, sp->unsync_child_bitmap))
1726 		return;
1727 	if (sp->unsync_children++)
1728 		return;
1729 	kvm_mmu_mark_parents_unsync(sp);
1730 }
1731 
1732 static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
1733 			       struct kvm_mmu_page *sp)
1734 {
1735 	return -1;
1736 }
1737 
1738 #define KVM_PAGE_ARRAY_NR 16
1739 
1740 struct kvm_mmu_pages {
1741 	struct mmu_page_and_offset {
1742 		struct kvm_mmu_page *sp;
1743 		unsigned int idx;
1744 	} page[KVM_PAGE_ARRAY_NR];
1745 	unsigned int nr;
1746 };
1747 
1748 static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
1749 			 int idx)
1750 {
1751 	int i;
1752 
1753 	if (sp->unsync)
1754 		for (i=0; i < pvec->nr; i++)
1755 			if (pvec->page[i].sp == sp)
1756 				return 0;
1757 
1758 	pvec->page[pvec->nr].sp = sp;
1759 	pvec->page[pvec->nr].idx = idx;
1760 	pvec->nr++;
1761 	return (pvec->nr == KVM_PAGE_ARRAY_NR);
1762 }
1763 
1764 static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx)
1765 {
1766 	--sp->unsync_children;
1767 	WARN_ON((int)sp->unsync_children < 0);
1768 	__clear_bit(idx, sp->unsync_child_bitmap);
1769 }
1770 
1771 static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
1772 			   struct kvm_mmu_pages *pvec)
1773 {
1774 	int i, ret, nr_unsync_leaf = 0;
1775 
1776 	for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
1777 		struct kvm_mmu_page *child;
1778 		u64 ent = sp->spt[i];
1779 
1780 		if (!is_shadow_present_pte(ent) || is_large_pte(ent)) {
1781 			clear_unsync_child_bit(sp, i);
1782 			continue;
1783 		}
1784 
1785 		child = to_shadow_page(ent & PT64_BASE_ADDR_MASK);
1786 
1787 		if (child->unsync_children) {
1788 			if (mmu_pages_add(pvec, child, i))
1789 				return -ENOSPC;
1790 
1791 			ret = __mmu_unsync_walk(child, pvec);
1792 			if (!ret) {
1793 				clear_unsync_child_bit(sp, i);
1794 				continue;
1795 			} else if (ret > 0) {
1796 				nr_unsync_leaf += ret;
1797 			} else
1798 				return ret;
1799 		} else if (child->unsync) {
1800 			nr_unsync_leaf++;
1801 			if (mmu_pages_add(pvec, child, i))
1802 				return -ENOSPC;
1803 		} else
1804 			clear_unsync_child_bit(sp, i);
1805 	}
1806 
1807 	return nr_unsync_leaf;
1808 }
1809 
1810 #define INVALID_INDEX (-1)
1811 
1812 static int mmu_unsync_walk(struct kvm_mmu_page *sp,
1813 			   struct kvm_mmu_pages *pvec)
1814 {
1815 	pvec->nr = 0;
1816 	if (!sp->unsync_children)
1817 		return 0;
1818 
1819 	mmu_pages_add(pvec, sp, INVALID_INDEX);
1820 	return __mmu_unsync_walk(sp, pvec);
1821 }
1822 
1823 static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1824 {
1825 	WARN_ON(!sp->unsync);
1826 	trace_kvm_mmu_sync_page(sp);
1827 	sp->unsync = 0;
1828 	--kvm->stat.mmu_unsync;
1829 }
1830 
1831 static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1832 				     struct list_head *invalid_list);
1833 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1834 				    struct list_head *invalid_list);
1835 
1836 #define for_each_valid_sp(_kvm, _sp, _list)				\
1837 	hlist_for_each_entry(_sp, _list, hash_link)			\
1838 		if (is_obsolete_sp((_kvm), (_sp))) {			\
1839 		} else
1840 
1841 #define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn)			\
1842 	for_each_valid_sp(_kvm, _sp,					\
1843 	  &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)])	\
1844 		if ((_sp)->gfn != (_gfn) || (_sp)->role.direct) {} else
1845 
1846 static bool kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1847 			 struct list_head *invalid_list)
1848 {
1849 	int ret = vcpu->arch.mmu->sync_page(vcpu, sp);
1850 
1851 	if (ret < 0) {
1852 		kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1853 		return false;
1854 	}
1855 
1856 	return !!ret;
1857 }
1858 
1859 static bool kvm_mmu_remote_flush_or_zap(struct kvm *kvm,
1860 					struct list_head *invalid_list,
1861 					bool remote_flush)
1862 {
1863 	if (!remote_flush && list_empty(invalid_list))
1864 		return false;
1865 
1866 	if (!list_empty(invalid_list))
1867 		kvm_mmu_commit_zap_page(kvm, invalid_list);
1868 	else
1869 		kvm_flush_remote_tlbs(kvm);
1870 	return true;
1871 }
1872 
1873 static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
1874 {
1875 	if (sp->role.invalid)
1876 		return true;
1877 
1878 	/* TDP MMU pages due not use the MMU generation. */
1879 	return !sp->tdp_mmu_page &&
1880 	       unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
1881 }
1882 
1883 struct mmu_page_path {
1884 	struct kvm_mmu_page *parent[PT64_ROOT_MAX_LEVEL];
1885 	unsigned int idx[PT64_ROOT_MAX_LEVEL];
1886 };
1887 
1888 #define for_each_sp(pvec, sp, parents, i)			\
1889 		for (i = mmu_pages_first(&pvec, &parents);	\
1890 			i < pvec.nr && ({ sp = pvec.page[i].sp; 1;});	\
1891 			i = mmu_pages_next(&pvec, &parents, i))
1892 
1893 static int mmu_pages_next(struct kvm_mmu_pages *pvec,
1894 			  struct mmu_page_path *parents,
1895 			  int i)
1896 {
1897 	int n;
1898 
1899 	for (n = i+1; n < pvec->nr; n++) {
1900 		struct kvm_mmu_page *sp = pvec->page[n].sp;
1901 		unsigned idx = pvec->page[n].idx;
1902 		int level = sp->role.level;
1903 
1904 		parents->idx[level-1] = idx;
1905 		if (level == PG_LEVEL_4K)
1906 			break;
1907 
1908 		parents->parent[level-2] = sp;
1909 	}
1910 
1911 	return n;
1912 }
1913 
1914 static int mmu_pages_first(struct kvm_mmu_pages *pvec,
1915 			   struct mmu_page_path *parents)
1916 {
1917 	struct kvm_mmu_page *sp;
1918 	int level;
1919 
1920 	if (pvec->nr == 0)
1921 		return 0;
1922 
1923 	WARN_ON(pvec->page[0].idx != INVALID_INDEX);
1924 
1925 	sp = pvec->page[0].sp;
1926 	level = sp->role.level;
1927 	WARN_ON(level == PG_LEVEL_4K);
1928 
1929 	parents->parent[level-2] = sp;
1930 
1931 	/* Also set up a sentinel.  Further entries in pvec are all
1932 	 * children of sp, so this element is never overwritten.
1933 	 */
1934 	parents->parent[level-1] = NULL;
1935 	return mmu_pages_next(pvec, parents, 0);
1936 }
1937 
1938 static void mmu_pages_clear_parents(struct mmu_page_path *parents)
1939 {
1940 	struct kvm_mmu_page *sp;
1941 	unsigned int level = 0;
1942 
1943 	do {
1944 		unsigned int idx = parents->idx[level];
1945 		sp = parents->parent[level];
1946 		if (!sp)
1947 			return;
1948 
1949 		WARN_ON(idx == INVALID_INDEX);
1950 		clear_unsync_child_bit(sp, idx);
1951 		level++;
1952 	} while (!sp->unsync_children);
1953 }
1954 
1955 static int mmu_sync_children(struct kvm_vcpu *vcpu,
1956 			     struct kvm_mmu_page *parent, bool can_yield)
1957 {
1958 	int i;
1959 	struct kvm_mmu_page *sp;
1960 	struct mmu_page_path parents;
1961 	struct kvm_mmu_pages pages;
1962 	LIST_HEAD(invalid_list);
1963 	bool flush = false;
1964 
1965 	while (mmu_unsync_walk(parent, &pages)) {
1966 		bool protected = false;
1967 
1968 		for_each_sp(pages, sp, parents, i)
1969 			protected |= kvm_vcpu_write_protect_gfn(vcpu, sp->gfn);
1970 
1971 		if (protected) {
1972 			kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, true);
1973 			flush = false;
1974 		}
1975 
1976 		for_each_sp(pages, sp, parents, i) {
1977 			kvm_unlink_unsync_page(vcpu->kvm, sp);
1978 			flush |= kvm_sync_page(vcpu, sp, &invalid_list);
1979 			mmu_pages_clear_parents(&parents);
1980 		}
1981 		if (need_resched() || rwlock_needbreak(&vcpu->kvm->mmu_lock)) {
1982 			kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, flush);
1983 			if (!can_yield) {
1984 				kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
1985 				return -EINTR;
1986 			}
1987 
1988 			cond_resched_rwlock_write(&vcpu->kvm->mmu_lock);
1989 			flush = false;
1990 		}
1991 	}
1992 
1993 	kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, flush);
1994 	return 0;
1995 }
1996 
1997 static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
1998 {
1999 	atomic_set(&sp->write_flooding_count,  0);
2000 }
2001 
2002 static void clear_sp_write_flooding_count(u64 *spte)
2003 {
2004 	__clear_sp_write_flooding_count(sptep_to_sp(spte));
2005 }
2006 
2007 static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
2008 					     gfn_t gfn,
2009 					     gva_t gaddr,
2010 					     unsigned level,
2011 					     int direct,
2012 					     unsigned int access)
2013 {
2014 	bool direct_mmu = vcpu->arch.mmu->direct_map;
2015 	union kvm_mmu_page_role role;
2016 	struct hlist_head *sp_list;
2017 	unsigned quadrant;
2018 	struct kvm_mmu_page *sp;
2019 	int collisions = 0;
2020 	LIST_HEAD(invalid_list);
2021 
2022 	role = vcpu->arch.mmu->mmu_role.base;
2023 	role.level = level;
2024 	role.direct = direct;
2025 	role.access = access;
2026 	if (role.has_4_byte_gpte) {
2027 		quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
2028 		quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
2029 		role.quadrant = quadrant;
2030 	}
2031 
2032 	sp_list = &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)];
2033 	for_each_valid_sp(vcpu->kvm, sp, sp_list) {
2034 		if (sp->gfn != gfn) {
2035 			collisions++;
2036 			continue;
2037 		}
2038 
2039 		if (sp->role.word != role.word) {
2040 			/*
2041 			 * If the guest is creating an upper-level page, zap
2042 			 * unsync pages for the same gfn.  While it's possible
2043 			 * the guest is using recursive page tables, in all
2044 			 * likelihood the guest has stopped using the unsync
2045 			 * page and is installing a completely unrelated page.
2046 			 * Unsync pages must not be left as is, because the new
2047 			 * upper-level page will be write-protected.
2048 			 */
2049 			if (level > PG_LEVEL_4K && sp->unsync)
2050 				kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
2051 							 &invalid_list);
2052 			continue;
2053 		}
2054 
2055 		if (direct_mmu)
2056 			goto trace_get_page;
2057 
2058 		if (sp->unsync) {
2059 			/*
2060 			 * The page is good, but is stale.  kvm_sync_page does
2061 			 * get the latest guest state, but (unlike mmu_unsync_children)
2062 			 * it doesn't write-protect the page or mark it synchronized!
2063 			 * This way the validity of the mapping is ensured, but the
2064 			 * overhead of write protection is not incurred until the
2065 			 * guest invalidates the TLB mapping.  This allows multiple
2066 			 * SPs for a single gfn to be unsync.
2067 			 *
2068 			 * If the sync fails, the page is zapped.  If so, break
2069 			 * in order to rebuild it.
2070 			 */
2071 			if (!kvm_sync_page(vcpu, sp, &invalid_list))
2072 				break;
2073 
2074 			WARN_ON(!list_empty(&invalid_list));
2075 			kvm_flush_remote_tlbs(vcpu->kvm);
2076 		}
2077 
2078 		__clear_sp_write_flooding_count(sp);
2079 
2080 trace_get_page:
2081 		trace_kvm_mmu_get_page(sp, false);
2082 		goto out;
2083 	}
2084 
2085 	++vcpu->kvm->stat.mmu_cache_miss;
2086 
2087 	sp = kvm_mmu_alloc_page(vcpu, direct);
2088 
2089 	sp->gfn = gfn;
2090 	sp->role = role;
2091 	hlist_add_head(&sp->hash_link, sp_list);
2092 	if (!direct) {
2093 		account_shadowed(vcpu->kvm, sp);
2094 		if (level == PG_LEVEL_4K && kvm_vcpu_write_protect_gfn(vcpu, gfn))
2095 			kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn, 1);
2096 	}
2097 	trace_kvm_mmu_get_page(sp, true);
2098 out:
2099 	kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2100 
2101 	if (collisions > vcpu->kvm->stat.max_mmu_page_hash_collisions)
2102 		vcpu->kvm->stat.max_mmu_page_hash_collisions = collisions;
2103 	return sp;
2104 }
2105 
2106 static void shadow_walk_init_using_root(struct kvm_shadow_walk_iterator *iterator,
2107 					struct kvm_vcpu *vcpu, hpa_t root,
2108 					u64 addr)
2109 {
2110 	iterator->addr = addr;
2111 	iterator->shadow_addr = root;
2112 	iterator->level = vcpu->arch.mmu->shadow_root_level;
2113 
2114 	if (iterator->level >= PT64_ROOT_4LEVEL &&
2115 	    vcpu->arch.mmu->root_level < PT64_ROOT_4LEVEL &&
2116 	    !vcpu->arch.mmu->direct_map)
2117 		iterator->level = PT32E_ROOT_LEVEL;
2118 
2119 	if (iterator->level == PT32E_ROOT_LEVEL) {
2120 		/*
2121 		 * prev_root is currently only used for 64-bit hosts. So only
2122 		 * the active root_hpa is valid here.
2123 		 */
2124 		BUG_ON(root != vcpu->arch.mmu->root.hpa);
2125 
2126 		iterator->shadow_addr
2127 			= vcpu->arch.mmu->pae_root[(addr >> 30) & 3];
2128 		iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
2129 		--iterator->level;
2130 		if (!iterator->shadow_addr)
2131 			iterator->level = 0;
2132 	}
2133 }
2134 
2135 static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
2136 			     struct kvm_vcpu *vcpu, u64 addr)
2137 {
2138 	shadow_walk_init_using_root(iterator, vcpu, vcpu->arch.mmu->root.hpa,
2139 				    addr);
2140 }
2141 
2142 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
2143 {
2144 	if (iterator->level < PG_LEVEL_4K)
2145 		return false;
2146 
2147 	iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
2148 	iterator->sptep	= ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
2149 	return true;
2150 }
2151 
2152 static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
2153 			       u64 spte)
2154 {
2155 	if (!is_shadow_present_pte(spte) || is_last_spte(spte, iterator->level)) {
2156 		iterator->level = 0;
2157 		return;
2158 	}
2159 
2160 	iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2161 	--iterator->level;
2162 }
2163 
2164 static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
2165 {
2166 	__shadow_walk_next(iterator, *iterator->sptep);
2167 }
2168 
2169 static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep,
2170 			     struct kvm_mmu_page *sp)
2171 {
2172 	u64 spte;
2173 
2174 	BUILD_BUG_ON(VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);
2175 
2176 	spte = make_nonleaf_spte(sp->spt, sp_ad_disabled(sp));
2177 
2178 	mmu_spte_set(sptep, spte);
2179 
2180 	mmu_page_add_parent_pte(vcpu, sp, sptep);
2181 
2182 	if (sp->unsync_children || sp->unsync)
2183 		mark_unsync(sptep);
2184 }
2185 
2186 static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2187 				   unsigned direct_access)
2188 {
2189 	if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
2190 		struct kvm_mmu_page *child;
2191 
2192 		/*
2193 		 * For the direct sp, if the guest pte's dirty bit
2194 		 * changed form clean to dirty, it will corrupt the
2195 		 * sp's access: allow writable in the read-only sp,
2196 		 * so we should update the spte at this point to get
2197 		 * a new sp with the correct access.
2198 		 */
2199 		child = to_shadow_page(*sptep & PT64_BASE_ADDR_MASK);
2200 		if (child->role.access == direct_access)
2201 			return;
2202 
2203 		drop_parent_pte(child, sptep);
2204 		kvm_flush_remote_tlbs_with_address(vcpu->kvm, child->gfn, 1);
2205 	}
2206 }
2207 
2208 /* Returns the number of zapped non-leaf child shadow pages. */
2209 static int mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
2210 			    u64 *spte, struct list_head *invalid_list)
2211 {
2212 	u64 pte;
2213 	struct kvm_mmu_page *child;
2214 
2215 	pte = *spte;
2216 	if (is_shadow_present_pte(pte)) {
2217 		if (is_last_spte(pte, sp->role.level)) {
2218 			drop_spte(kvm, spte);
2219 		} else {
2220 			child = to_shadow_page(pte & PT64_BASE_ADDR_MASK);
2221 			drop_parent_pte(child, spte);
2222 
2223 			/*
2224 			 * Recursively zap nested TDP SPs, parentless SPs are
2225 			 * unlikely to be used again in the near future.  This
2226 			 * avoids retaining a large number of stale nested SPs.
2227 			 */
2228 			if (tdp_enabled && invalid_list &&
2229 			    child->role.guest_mode && !child->parent_ptes.val)
2230 				return kvm_mmu_prepare_zap_page(kvm, child,
2231 								invalid_list);
2232 		}
2233 	} else if (is_mmio_spte(pte)) {
2234 		mmu_spte_clear_no_track(spte);
2235 	}
2236 	return 0;
2237 }
2238 
2239 static int kvm_mmu_page_unlink_children(struct kvm *kvm,
2240 					struct kvm_mmu_page *sp,
2241 					struct list_head *invalid_list)
2242 {
2243 	int zapped = 0;
2244 	unsigned i;
2245 
2246 	for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2247 		zapped += mmu_page_zap_pte(kvm, sp, sp->spt + i, invalid_list);
2248 
2249 	return zapped;
2250 }
2251 
2252 static void kvm_mmu_unlink_parents(struct kvm_mmu_page *sp)
2253 {
2254 	u64 *sptep;
2255 	struct rmap_iterator iter;
2256 
2257 	while ((sptep = rmap_get_first(&sp->parent_ptes, &iter)))
2258 		drop_parent_pte(sp, sptep);
2259 }
2260 
2261 static int mmu_zap_unsync_children(struct kvm *kvm,
2262 				   struct kvm_mmu_page *parent,
2263 				   struct list_head *invalid_list)
2264 {
2265 	int i, zapped = 0;
2266 	struct mmu_page_path parents;
2267 	struct kvm_mmu_pages pages;
2268 
2269 	if (parent->role.level == PG_LEVEL_4K)
2270 		return 0;
2271 
2272 	while (mmu_unsync_walk(parent, &pages)) {
2273 		struct kvm_mmu_page *sp;
2274 
2275 		for_each_sp(pages, sp, parents, i) {
2276 			kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2277 			mmu_pages_clear_parents(&parents);
2278 			zapped++;
2279 		}
2280 	}
2281 
2282 	return zapped;
2283 }
2284 
2285 static bool __kvm_mmu_prepare_zap_page(struct kvm *kvm,
2286 				       struct kvm_mmu_page *sp,
2287 				       struct list_head *invalid_list,
2288 				       int *nr_zapped)
2289 {
2290 	bool list_unstable, zapped_root = false;
2291 
2292 	trace_kvm_mmu_prepare_zap_page(sp);
2293 	++kvm->stat.mmu_shadow_zapped;
2294 	*nr_zapped = mmu_zap_unsync_children(kvm, sp, invalid_list);
2295 	*nr_zapped += kvm_mmu_page_unlink_children(kvm, sp, invalid_list);
2296 	kvm_mmu_unlink_parents(sp);
2297 
2298 	/* Zapping children means active_mmu_pages has become unstable. */
2299 	list_unstable = *nr_zapped;
2300 
2301 	if (!sp->role.invalid && !sp->role.direct)
2302 		unaccount_shadowed(kvm, sp);
2303 
2304 	if (sp->unsync)
2305 		kvm_unlink_unsync_page(kvm, sp);
2306 	if (!sp->root_count) {
2307 		/* Count self */
2308 		(*nr_zapped)++;
2309 
2310 		/*
2311 		 * Already invalid pages (previously active roots) are not on
2312 		 * the active page list.  See list_del() in the "else" case of
2313 		 * !sp->root_count.
2314 		 */
2315 		if (sp->role.invalid)
2316 			list_add(&sp->link, invalid_list);
2317 		else
2318 			list_move(&sp->link, invalid_list);
2319 		kvm_mod_used_mmu_pages(kvm, -1);
2320 	} else {
2321 		/*
2322 		 * Remove the active root from the active page list, the root
2323 		 * will be explicitly freed when the root_count hits zero.
2324 		 */
2325 		list_del(&sp->link);
2326 
2327 		/*
2328 		 * Obsolete pages cannot be used on any vCPUs, see the comment
2329 		 * in kvm_mmu_zap_all_fast().  Note, is_obsolete_sp() also
2330 		 * treats invalid shadow pages as being obsolete.
2331 		 */
2332 		zapped_root = !is_obsolete_sp(kvm, sp);
2333 	}
2334 
2335 	if (sp->lpage_disallowed)
2336 		unaccount_huge_nx_page(kvm, sp);
2337 
2338 	sp->role.invalid = 1;
2339 
2340 	/*
2341 	 * Make the request to free obsolete roots after marking the root
2342 	 * invalid, otherwise other vCPUs may not see it as invalid.
2343 	 */
2344 	if (zapped_root)
2345 		kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_FREE_OBSOLETE_ROOTS);
2346 	return list_unstable;
2347 }
2348 
2349 static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2350 				     struct list_head *invalid_list)
2351 {
2352 	int nr_zapped;
2353 
2354 	__kvm_mmu_prepare_zap_page(kvm, sp, invalid_list, &nr_zapped);
2355 	return nr_zapped;
2356 }
2357 
2358 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2359 				    struct list_head *invalid_list)
2360 {
2361 	struct kvm_mmu_page *sp, *nsp;
2362 
2363 	if (list_empty(invalid_list))
2364 		return;
2365 
2366 	/*
2367 	 * We need to make sure everyone sees our modifications to
2368 	 * the page tables and see changes to vcpu->mode here. The barrier
2369 	 * in the kvm_flush_remote_tlbs() achieves this. This pairs
2370 	 * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end.
2371 	 *
2372 	 * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit
2373 	 * guest mode and/or lockless shadow page table walks.
2374 	 */
2375 	kvm_flush_remote_tlbs(kvm);
2376 
2377 	list_for_each_entry_safe(sp, nsp, invalid_list, link) {
2378 		WARN_ON(!sp->role.invalid || sp->root_count);
2379 		kvm_mmu_free_page(sp);
2380 	}
2381 }
2382 
2383 static unsigned long kvm_mmu_zap_oldest_mmu_pages(struct kvm *kvm,
2384 						  unsigned long nr_to_zap)
2385 {
2386 	unsigned long total_zapped = 0;
2387 	struct kvm_mmu_page *sp, *tmp;
2388 	LIST_HEAD(invalid_list);
2389 	bool unstable;
2390 	int nr_zapped;
2391 
2392 	if (list_empty(&kvm->arch.active_mmu_pages))
2393 		return 0;
2394 
2395 restart:
2396 	list_for_each_entry_safe_reverse(sp, tmp, &kvm->arch.active_mmu_pages, link) {
2397 		/*
2398 		 * Don't zap active root pages, the page itself can't be freed
2399 		 * and zapping it will just force vCPUs to realloc and reload.
2400 		 */
2401 		if (sp->root_count)
2402 			continue;
2403 
2404 		unstable = __kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list,
2405 						      &nr_zapped);
2406 		total_zapped += nr_zapped;
2407 		if (total_zapped >= nr_to_zap)
2408 			break;
2409 
2410 		if (unstable)
2411 			goto restart;
2412 	}
2413 
2414 	kvm_mmu_commit_zap_page(kvm, &invalid_list);
2415 
2416 	kvm->stat.mmu_recycled += total_zapped;
2417 	return total_zapped;
2418 }
2419 
2420 static inline unsigned long kvm_mmu_available_pages(struct kvm *kvm)
2421 {
2422 	if (kvm->arch.n_max_mmu_pages > kvm->arch.n_used_mmu_pages)
2423 		return kvm->arch.n_max_mmu_pages -
2424 			kvm->arch.n_used_mmu_pages;
2425 
2426 	return 0;
2427 }
2428 
2429 static int make_mmu_pages_available(struct kvm_vcpu *vcpu)
2430 {
2431 	unsigned long avail = kvm_mmu_available_pages(vcpu->kvm);
2432 
2433 	if (likely(avail >= KVM_MIN_FREE_MMU_PAGES))
2434 		return 0;
2435 
2436 	kvm_mmu_zap_oldest_mmu_pages(vcpu->kvm, KVM_REFILL_PAGES - avail);
2437 
2438 	/*
2439 	 * Note, this check is intentionally soft, it only guarantees that one
2440 	 * page is available, while the caller may end up allocating as many as
2441 	 * four pages, e.g. for PAE roots or for 5-level paging.  Temporarily
2442 	 * exceeding the (arbitrary by default) limit will not harm the host,
2443 	 * being too aggressive may unnecessarily kill the guest, and getting an
2444 	 * exact count is far more trouble than it's worth, especially in the
2445 	 * page fault paths.
2446 	 */
2447 	if (!kvm_mmu_available_pages(vcpu->kvm))
2448 		return -ENOSPC;
2449 	return 0;
2450 }
2451 
2452 /*
2453  * Changing the number of mmu pages allocated to the vm
2454  * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2455  */
2456 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long goal_nr_mmu_pages)
2457 {
2458 	write_lock(&kvm->mmu_lock);
2459 
2460 	if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2461 		kvm_mmu_zap_oldest_mmu_pages(kvm, kvm->arch.n_used_mmu_pages -
2462 						  goal_nr_mmu_pages);
2463 
2464 		goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2465 	}
2466 
2467 	kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2468 
2469 	write_unlock(&kvm->mmu_lock);
2470 }
2471 
2472 int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2473 {
2474 	struct kvm_mmu_page *sp;
2475 	LIST_HEAD(invalid_list);
2476 	int r;
2477 
2478 	pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
2479 	r = 0;
2480 	write_lock(&kvm->mmu_lock);
2481 	for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
2482 		pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
2483 			 sp->role.word);
2484 		r = 1;
2485 		kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2486 	}
2487 	kvm_mmu_commit_zap_page(kvm, &invalid_list);
2488 	write_unlock(&kvm->mmu_lock);
2489 
2490 	return r;
2491 }
2492 
2493 static int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
2494 {
2495 	gpa_t gpa;
2496 	int r;
2497 
2498 	if (vcpu->arch.mmu->direct_map)
2499 		return 0;
2500 
2501 	gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
2502 
2503 	r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
2504 
2505 	return r;
2506 }
2507 
2508 static void kvm_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
2509 {
2510 	trace_kvm_mmu_unsync_page(sp);
2511 	++kvm->stat.mmu_unsync;
2512 	sp->unsync = 1;
2513 
2514 	kvm_mmu_mark_parents_unsync(sp);
2515 }
2516 
2517 /*
2518  * Attempt to unsync any shadow pages that can be reached by the specified gfn,
2519  * KVM is creating a writable mapping for said gfn.  Returns 0 if all pages
2520  * were marked unsync (or if there is no shadow page), -EPERM if the SPTE must
2521  * be write-protected.
2522  */
2523 int mmu_try_to_unsync_pages(struct kvm *kvm, const struct kvm_memory_slot *slot,
2524 			    gfn_t gfn, bool can_unsync, bool prefetch)
2525 {
2526 	struct kvm_mmu_page *sp;
2527 	bool locked = false;
2528 
2529 	/*
2530 	 * Force write-protection if the page is being tracked.  Note, the page
2531 	 * track machinery is used to write-protect upper-level shadow pages,
2532 	 * i.e. this guards the role.level == 4K assertion below!
2533 	 */
2534 	if (kvm_slot_page_track_is_active(kvm, slot, gfn, KVM_PAGE_TRACK_WRITE))
2535 		return -EPERM;
2536 
2537 	/*
2538 	 * The page is not write-tracked, mark existing shadow pages unsync
2539 	 * unless KVM is synchronizing an unsync SP (can_unsync = false).  In
2540 	 * that case, KVM must complete emulation of the guest TLB flush before
2541 	 * allowing shadow pages to become unsync (writable by the guest).
2542 	 */
2543 	for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
2544 		if (!can_unsync)
2545 			return -EPERM;
2546 
2547 		if (sp->unsync)
2548 			continue;
2549 
2550 		if (prefetch)
2551 			return -EEXIST;
2552 
2553 		/*
2554 		 * TDP MMU page faults require an additional spinlock as they
2555 		 * run with mmu_lock held for read, not write, and the unsync
2556 		 * logic is not thread safe.  Take the spinklock regardless of
2557 		 * the MMU type to avoid extra conditionals/parameters, there's
2558 		 * no meaningful penalty if mmu_lock is held for write.
2559 		 */
2560 		if (!locked) {
2561 			locked = true;
2562 			spin_lock(&kvm->arch.mmu_unsync_pages_lock);
2563 
2564 			/*
2565 			 * Recheck after taking the spinlock, a different vCPU
2566 			 * may have since marked the page unsync.  A false
2567 			 * positive on the unprotected check above is not
2568 			 * possible as clearing sp->unsync _must_ hold mmu_lock
2569 			 * for write, i.e. unsync cannot transition from 0->1
2570 			 * while this CPU holds mmu_lock for read (or write).
2571 			 */
2572 			if (READ_ONCE(sp->unsync))
2573 				continue;
2574 		}
2575 
2576 		WARN_ON(sp->role.level != PG_LEVEL_4K);
2577 		kvm_unsync_page(kvm, sp);
2578 	}
2579 	if (locked)
2580 		spin_unlock(&kvm->arch.mmu_unsync_pages_lock);
2581 
2582 	/*
2583 	 * We need to ensure that the marking of unsync pages is visible
2584 	 * before the SPTE is updated to allow writes because
2585 	 * kvm_mmu_sync_roots() checks the unsync flags without holding
2586 	 * the MMU lock and so can race with this. If the SPTE was updated
2587 	 * before the page had been marked as unsync-ed, something like the
2588 	 * following could happen:
2589 	 *
2590 	 * CPU 1                    CPU 2
2591 	 * ---------------------------------------------------------------------
2592 	 * 1.2 Host updates SPTE
2593 	 *     to be writable
2594 	 *                      2.1 Guest writes a GPTE for GVA X.
2595 	 *                          (GPTE being in the guest page table shadowed
2596 	 *                           by the SP from CPU 1.)
2597 	 *                          This reads SPTE during the page table walk.
2598 	 *                          Since SPTE.W is read as 1, there is no
2599 	 *                          fault.
2600 	 *
2601 	 *                      2.2 Guest issues TLB flush.
2602 	 *                          That causes a VM Exit.
2603 	 *
2604 	 *                      2.3 Walking of unsync pages sees sp->unsync is
2605 	 *                          false and skips the page.
2606 	 *
2607 	 *                      2.4 Guest accesses GVA X.
2608 	 *                          Since the mapping in the SP was not updated,
2609 	 *                          so the old mapping for GVA X incorrectly
2610 	 *                          gets used.
2611 	 * 1.1 Host marks SP
2612 	 *     as unsync
2613 	 *     (sp->unsync = true)
2614 	 *
2615 	 * The write barrier below ensures that 1.1 happens before 1.2 and thus
2616 	 * the situation in 2.4 does not arise.  It pairs with the read barrier
2617 	 * in is_unsync_root(), placed between 2.1's load of SPTE.W and 2.3.
2618 	 */
2619 	smp_wmb();
2620 
2621 	return 0;
2622 }
2623 
2624 static int mmu_set_spte(struct kvm_vcpu *vcpu, struct kvm_memory_slot *slot,
2625 			u64 *sptep, unsigned int pte_access, gfn_t gfn,
2626 			kvm_pfn_t pfn, struct kvm_page_fault *fault)
2627 {
2628 	struct kvm_mmu_page *sp = sptep_to_sp(sptep);
2629 	int level = sp->role.level;
2630 	int was_rmapped = 0;
2631 	int ret = RET_PF_FIXED;
2632 	bool flush = false;
2633 	bool wrprot;
2634 	u64 spte;
2635 
2636 	/* Prefetching always gets a writable pfn.  */
2637 	bool host_writable = !fault || fault->map_writable;
2638 	bool prefetch = !fault || fault->prefetch;
2639 	bool write_fault = fault && fault->write;
2640 
2641 	pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
2642 		 *sptep, write_fault, gfn);
2643 
2644 	if (unlikely(is_noslot_pfn(pfn))) {
2645 		mark_mmio_spte(vcpu, sptep, gfn, pte_access);
2646 		return RET_PF_EMULATE;
2647 	}
2648 
2649 	if (is_shadow_present_pte(*sptep)) {
2650 		/*
2651 		 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2652 		 * the parent of the now unreachable PTE.
2653 		 */
2654 		if (level > PG_LEVEL_4K && !is_large_pte(*sptep)) {
2655 			struct kvm_mmu_page *child;
2656 			u64 pte = *sptep;
2657 
2658 			child = to_shadow_page(pte & PT64_BASE_ADDR_MASK);
2659 			drop_parent_pte(child, sptep);
2660 			flush = true;
2661 		} else if (pfn != spte_to_pfn(*sptep)) {
2662 			pgprintk("hfn old %llx new %llx\n",
2663 				 spte_to_pfn(*sptep), pfn);
2664 			drop_spte(vcpu->kvm, sptep);
2665 			flush = true;
2666 		} else
2667 			was_rmapped = 1;
2668 	}
2669 
2670 	wrprot = make_spte(vcpu, sp, slot, pte_access, gfn, pfn, *sptep, prefetch,
2671 			   true, host_writable, &spte);
2672 
2673 	if (*sptep == spte) {
2674 		ret = RET_PF_SPURIOUS;
2675 	} else {
2676 		flush |= mmu_spte_update(sptep, spte);
2677 		trace_kvm_mmu_set_spte(level, gfn, sptep);
2678 	}
2679 
2680 	if (wrprot) {
2681 		if (write_fault)
2682 			ret = RET_PF_EMULATE;
2683 	}
2684 
2685 	if (flush)
2686 		kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn,
2687 				KVM_PAGES_PER_HPAGE(level));
2688 
2689 	pgprintk("%s: setting spte %llx\n", __func__, *sptep);
2690 
2691 	if (!was_rmapped) {
2692 		WARN_ON_ONCE(ret == RET_PF_SPURIOUS);
2693 		kvm_update_page_stats(vcpu->kvm, level, 1);
2694 		rmap_add(vcpu, slot, sptep, gfn);
2695 	}
2696 
2697 	return ret;
2698 }
2699 
2700 static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2701 				    struct kvm_mmu_page *sp,
2702 				    u64 *start, u64 *end)
2703 {
2704 	struct page *pages[PTE_PREFETCH_NUM];
2705 	struct kvm_memory_slot *slot;
2706 	unsigned int access = sp->role.access;
2707 	int i, ret;
2708 	gfn_t gfn;
2709 
2710 	gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
2711 	slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK);
2712 	if (!slot)
2713 		return -1;
2714 
2715 	ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start);
2716 	if (ret <= 0)
2717 		return -1;
2718 
2719 	for (i = 0; i < ret; i++, gfn++, start++) {
2720 		mmu_set_spte(vcpu, slot, start, access, gfn,
2721 			     page_to_pfn(pages[i]), NULL);
2722 		put_page(pages[i]);
2723 	}
2724 
2725 	return 0;
2726 }
2727 
2728 static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
2729 				  struct kvm_mmu_page *sp, u64 *sptep)
2730 {
2731 	u64 *spte, *start = NULL;
2732 	int i;
2733 
2734 	WARN_ON(!sp->role.direct);
2735 
2736 	i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
2737 	spte = sp->spt + i;
2738 
2739 	for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
2740 		if (is_shadow_present_pte(*spte) || spte == sptep) {
2741 			if (!start)
2742 				continue;
2743 			if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2744 				return;
2745 			start = NULL;
2746 		} else if (!start)
2747 			start = spte;
2748 	}
2749 	if (start)
2750 		direct_pte_prefetch_many(vcpu, sp, start, spte);
2751 }
2752 
2753 static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
2754 {
2755 	struct kvm_mmu_page *sp;
2756 
2757 	sp = sptep_to_sp(sptep);
2758 
2759 	/*
2760 	 * Without accessed bits, there's no way to distinguish between
2761 	 * actually accessed translations and prefetched, so disable pte
2762 	 * prefetch if accessed bits aren't available.
2763 	 */
2764 	if (sp_ad_disabled(sp))
2765 		return;
2766 
2767 	if (sp->role.level > PG_LEVEL_4K)
2768 		return;
2769 
2770 	/*
2771 	 * If addresses are being invalidated, skip prefetching to avoid
2772 	 * accidentally prefetching those addresses.
2773 	 */
2774 	if (unlikely(vcpu->kvm->mmu_notifier_count))
2775 		return;
2776 
2777 	__direct_pte_prefetch(vcpu, sp, sptep);
2778 }
2779 
2780 static int host_pfn_mapping_level(struct kvm *kvm, gfn_t gfn, kvm_pfn_t pfn,
2781 				  const struct kvm_memory_slot *slot)
2782 {
2783 	unsigned long hva;
2784 	unsigned long flags;
2785 	int level = PG_LEVEL_4K;
2786 	pgd_t pgd;
2787 	p4d_t p4d;
2788 	pud_t pud;
2789 	pmd_t pmd;
2790 
2791 	if (!PageCompound(pfn_to_page(pfn)) && !kvm_is_zone_device_pfn(pfn))
2792 		return PG_LEVEL_4K;
2793 
2794 	/*
2795 	 * Note, using the already-retrieved memslot and __gfn_to_hva_memslot()
2796 	 * is not solely for performance, it's also necessary to avoid the
2797 	 * "writable" check in __gfn_to_hva_many(), which will always fail on
2798 	 * read-only memslots due to gfn_to_hva() assuming writes.  Earlier
2799 	 * page fault steps have already verified the guest isn't writing a
2800 	 * read-only memslot.
2801 	 */
2802 	hva = __gfn_to_hva_memslot(slot, gfn);
2803 
2804 	/*
2805 	 * Lookup the mapping level in the current mm.  The information
2806 	 * may become stale soon, but it is safe to use as long as
2807 	 * 1) mmu_notifier_retry was checked after taking mmu_lock, and
2808 	 * 2) mmu_lock is taken now.
2809 	 *
2810 	 * We still need to disable IRQs to prevent concurrent tear down
2811 	 * of page tables.
2812 	 */
2813 	local_irq_save(flags);
2814 
2815 	pgd = READ_ONCE(*pgd_offset(kvm->mm, hva));
2816 	if (pgd_none(pgd))
2817 		goto out;
2818 
2819 	p4d = READ_ONCE(*p4d_offset(&pgd, hva));
2820 	if (p4d_none(p4d) || !p4d_present(p4d))
2821 		goto out;
2822 
2823 	pud = READ_ONCE(*pud_offset(&p4d, hva));
2824 	if (pud_none(pud) || !pud_present(pud))
2825 		goto out;
2826 
2827 	if (pud_large(pud)) {
2828 		level = PG_LEVEL_1G;
2829 		goto out;
2830 	}
2831 
2832 	pmd = READ_ONCE(*pmd_offset(&pud, hva));
2833 	if (pmd_none(pmd) || !pmd_present(pmd))
2834 		goto out;
2835 
2836 	if (pmd_large(pmd))
2837 		level = PG_LEVEL_2M;
2838 
2839 out:
2840 	local_irq_restore(flags);
2841 	return level;
2842 }
2843 
2844 int kvm_mmu_max_mapping_level(struct kvm *kvm,
2845 			      const struct kvm_memory_slot *slot, gfn_t gfn,
2846 			      kvm_pfn_t pfn, int max_level)
2847 {
2848 	struct kvm_lpage_info *linfo;
2849 	int host_level;
2850 
2851 	max_level = min(max_level, max_huge_page_level);
2852 	for ( ; max_level > PG_LEVEL_4K; max_level--) {
2853 		linfo = lpage_info_slot(gfn, slot, max_level);
2854 		if (!linfo->disallow_lpage)
2855 			break;
2856 	}
2857 
2858 	if (max_level == PG_LEVEL_4K)
2859 		return PG_LEVEL_4K;
2860 
2861 	host_level = host_pfn_mapping_level(kvm, gfn, pfn, slot);
2862 	return min(host_level, max_level);
2863 }
2864 
2865 void kvm_mmu_hugepage_adjust(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault)
2866 {
2867 	struct kvm_memory_slot *slot = fault->slot;
2868 	kvm_pfn_t mask;
2869 
2870 	fault->huge_page_disallowed = fault->exec && fault->nx_huge_page_workaround_enabled;
2871 
2872 	if (unlikely(fault->max_level == PG_LEVEL_4K))
2873 		return;
2874 
2875 	if (is_error_noslot_pfn(fault->pfn) || kvm_is_reserved_pfn(fault->pfn))
2876 		return;
2877 
2878 	if (kvm_slot_dirty_track_enabled(slot))
2879 		return;
2880 
2881 	/*
2882 	 * Enforce the iTLB multihit workaround after capturing the requested
2883 	 * level, which will be used to do precise, accurate accounting.
2884 	 */
2885 	fault->req_level = kvm_mmu_max_mapping_level(vcpu->kvm, slot,
2886 						     fault->gfn, fault->pfn,
2887 						     fault->max_level);
2888 	if (fault->req_level == PG_LEVEL_4K || fault->huge_page_disallowed)
2889 		return;
2890 
2891 	/*
2892 	 * mmu_notifier_retry() was successful and mmu_lock is held, so
2893 	 * the pmd can't be split from under us.
2894 	 */
2895 	fault->goal_level = fault->req_level;
2896 	mask = KVM_PAGES_PER_HPAGE(fault->goal_level) - 1;
2897 	VM_BUG_ON((fault->gfn & mask) != (fault->pfn & mask));
2898 	fault->pfn &= ~mask;
2899 }
2900 
2901 void disallowed_hugepage_adjust(struct kvm_page_fault *fault, u64 spte, int cur_level)
2902 {
2903 	if (cur_level > PG_LEVEL_4K &&
2904 	    cur_level == fault->goal_level &&
2905 	    is_shadow_present_pte(spte) &&
2906 	    !is_large_pte(spte)) {
2907 		/*
2908 		 * A small SPTE exists for this pfn, but FNAME(fetch)
2909 		 * and __direct_map would like to create a large PTE
2910 		 * instead: just force them to go down another level,
2911 		 * patching back for them into pfn the next 9 bits of
2912 		 * the address.
2913 		 */
2914 		u64 page_mask = KVM_PAGES_PER_HPAGE(cur_level) -
2915 				KVM_PAGES_PER_HPAGE(cur_level - 1);
2916 		fault->pfn |= fault->gfn & page_mask;
2917 		fault->goal_level--;
2918 	}
2919 }
2920 
2921 static int __direct_map(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault)
2922 {
2923 	struct kvm_shadow_walk_iterator it;
2924 	struct kvm_mmu_page *sp;
2925 	int ret;
2926 	gfn_t base_gfn = fault->gfn;
2927 
2928 	kvm_mmu_hugepage_adjust(vcpu, fault);
2929 
2930 	trace_kvm_mmu_spte_requested(fault);
2931 	for_each_shadow_entry(vcpu, fault->addr, it) {
2932 		/*
2933 		 * We cannot overwrite existing page tables with an NX
2934 		 * large page, as the leaf could be executable.
2935 		 */
2936 		if (fault->nx_huge_page_workaround_enabled)
2937 			disallowed_hugepage_adjust(fault, *it.sptep, it.level);
2938 
2939 		base_gfn = fault->gfn & ~(KVM_PAGES_PER_HPAGE(it.level) - 1);
2940 		if (it.level == fault->goal_level)
2941 			break;
2942 
2943 		drop_large_spte(vcpu, it.sptep);
2944 		if (is_shadow_present_pte(*it.sptep))
2945 			continue;
2946 
2947 		sp = kvm_mmu_get_page(vcpu, base_gfn, it.addr,
2948 				      it.level - 1, true, ACC_ALL);
2949 
2950 		link_shadow_page(vcpu, it.sptep, sp);
2951 		if (fault->is_tdp && fault->huge_page_disallowed &&
2952 		    fault->req_level >= it.level)
2953 			account_huge_nx_page(vcpu->kvm, sp);
2954 	}
2955 
2956 	if (WARN_ON_ONCE(it.level != fault->goal_level))
2957 		return -EFAULT;
2958 
2959 	ret = mmu_set_spte(vcpu, fault->slot, it.sptep, ACC_ALL,
2960 			   base_gfn, fault->pfn, fault);
2961 	if (ret == RET_PF_SPURIOUS)
2962 		return ret;
2963 
2964 	direct_pte_prefetch(vcpu, it.sptep);
2965 	++vcpu->stat.pf_fixed;
2966 	return ret;
2967 }
2968 
2969 static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
2970 {
2971 	send_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, PAGE_SHIFT, tsk);
2972 }
2973 
2974 static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, kvm_pfn_t pfn)
2975 {
2976 	/*
2977 	 * Do not cache the mmio info caused by writing the readonly gfn
2978 	 * into the spte otherwise read access on readonly gfn also can
2979 	 * caused mmio page fault and treat it as mmio access.
2980 	 */
2981 	if (pfn == KVM_PFN_ERR_RO_FAULT)
2982 		return RET_PF_EMULATE;
2983 
2984 	if (pfn == KVM_PFN_ERR_HWPOISON) {
2985 		kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current);
2986 		return RET_PF_RETRY;
2987 	}
2988 
2989 	return -EFAULT;
2990 }
2991 
2992 static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault,
2993 				unsigned int access, int *ret_val)
2994 {
2995 	/* The pfn is invalid, report the error! */
2996 	if (unlikely(is_error_pfn(fault->pfn))) {
2997 		*ret_val = kvm_handle_bad_page(vcpu, fault->gfn, fault->pfn);
2998 		return true;
2999 	}
3000 
3001 	if (unlikely(!fault->slot)) {
3002 		gva_t gva = fault->is_tdp ? 0 : fault->addr;
3003 
3004 		vcpu_cache_mmio_info(vcpu, gva, fault->gfn,
3005 				     access & shadow_mmio_access_mask);
3006 		/*
3007 		 * If MMIO caching is disabled, emulate immediately without
3008 		 * touching the shadow page tables as attempting to install an
3009 		 * MMIO SPTE will just be an expensive nop.  Do not cache MMIO
3010 		 * whose gfn is greater than host.MAXPHYADDR, any guest that
3011 		 * generates such gfns is running nested and is being tricked
3012 		 * by L0 userspace (you can observe gfn > L1.MAXPHYADDR if
3013 		 * and only if L1's MAXPHYADDR is inaccurate with respect to
3014 		 * the hardware's).
3015 		 */
3016 		if (unlikely(!shadow_mmio_value) ||
3017 		    unlikely(fault->gfn > kvm_mmu_max_gfn())) {
3018 			*ret_val = RET_PF_EMULATE;
3019 			return true;
3020 		}
3021 	}
3022 
3023 	return false;
3024 }
3025 
3026 static bool page_fault_can_be_fast(struct kvm_page_fault *fault)
3027 {
3028 	/*
3029 	 * Do not fix the mmio spte with invalid generation number which
3030 	 * need to be updated by slow page fault path.
3031 	 */
3032 	if (fault->rsvd)
3033 		return false;
3034 
3035 	/* See if the page fault is due to an NX violation */
3036 	if (unlikely(fault->exec && fault->present))
3037 		return false;
3038 
3039 	/*
3040 	 * #PF can be fast if:
3041 	 * 1. The shadow page table entry is not present, which could mean that
3042 	 *    the fault is potentially caused by access tracking (if enabled).
3043 	 * 2. The shadow page table entry is present and the fault
3044 	 *    is caused by write-protect, that means we just need change the W
3045 	 *    bit of the spte which can be done out of mmu-lock.
3046 	 *
3047 	 * However, if access tracking is disabled we know that a non-present
3048 	 * page must be a genuine page fault where we have to create a new SPTE.
3049 	 * So, if access tracking is disabled, we return true only for write
3050 	 * accesses to a present page.
3051 	 */
3052 
3053 	return shadow_acc_track_mask != 0 || (fault->write && fault->present);
3054 }
3055 
3056 /*
3057  * Returns true if the SPTE was fixed successfully. Otherwise,
3058  * someone else modified the SPTE from its original value.
3059  */
3060 static bool
3061 fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault,
3062 			u64 *sptep, u64 old_spte, u64 new_spte)
3063 {
3064 	/*
3065 	 * Theoretically we could also set dirty bit (and flush TLB) here in
3066 	 * order to eliminate unnecessary PML logging. See comments in
3067 	 * set_spte. But fast_page_fault is very unlikely to happen with PML
3068 	 * enabled, so we do not do this. This might result in the same GPA
3069 	 * to be logged in PML buffer again when the write really happens, and
3070 	 * eventually to be called by mark_page_dirty twice. But it's also no
3071 	 * harm. This also avoids the TLB flush needed after setting dirty bit
3072 	 * so non-PML cases won't be impacted.
3073 	 *
3074 	 * Compare with set_spte where instead shadow_dirty_mask is set.
3075 	 */
3076 	if (cmpxchg64(sptep, old_spte, new_spte) != old_spte)
3077 		return false;
3078 
3079 	if (is_writable_pte(new_spte) && !is_writable_pte(old_spte))
3080 		mark_page_dirty_in_slot(vcpu->kvm, fault->slot, fault->gfn);
3081 
3082 	return true;
3083 }
3084 
3085 static bool is_access_allowed(struct kvm_page_fault *fault, u64 spte)
3086 {
3087 	if (fault->exec)
3088 		return is_executable_pte(spte);
3089 
3090 	if (fault->write)
3091 		return is_writable_pte(spte);
3092 
3093 	/* Fault was on Read access */
3094 	return spte & PT_PRESENT_MASK;
3095 }
3096 
3097 /*
3098  * Returns the last level spte pointer of the shadow page walk for the given
3099  * gpa, and sets *spte to the spte value. This spte may be non-preset. If no
3100  * walk could be performed, returns NULL and *spte does not contain valid data.
3101  *
3102  * Contract:
3103  *  - Must be called between walk_shadow_page_lockless_{begin,end}.
3104  *  - The returned sptep must not be used after walk_shadow_page_lockless_end.
3105  */
3106 static u64 *fast_pf_get_last_sptep(struct kvm_vcpu *vcpu, gpa_t gpa, u64 *spte)
3107 {
3108 	struct kvm_shadow_walk_iterator iterator;
3109 	u64 old_spte;
3110 	u64 *sptep = NULL;
3111 
3112 	for_each_shadow_entry_lockless(vcpu, gpa, iterator, old_spte) {
3113 		sptep = iterator.sptep;
3114 		*spte = old_spte;
3115 	}
3116 
3117 	return sptep;
3118 }
3119 
3120 /*
3121  * Returns one of RET_PF_INVALID, RET_PF_FIXED or RET_PF_SPURIOUS.
3122  */
3123 static int fast_page_fault(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault)
3124 {
3125 	struct kvm_mmu_page *sp;
3126 	int ret = RET_PF_INVALID;
3127 	u64 spte = 0ull;
3128 	u64 *sptep = NULL;
3129 	uint retry_count = 0;
3130 
3131 	if (!page_fault_can_be_fast(fault))
3132 		return ret;
3133 
3134 	walk_shadow_page_lockless_begin(vcpu);
3135 
3136 	do {
3137 		u64 new_spte;
3138 
3139 		if (is_tdp_mmu(vcpu->arch.mmu))
3140 			sptep = kvm_tdp_mmu_fast_pf_get_last_sptep(vcpu, fault->addr, &spte);
3141 		else
3142 			sptep = fast_pf_get_last_sptep(vcpu, fault->addr, &spte);
3143 
3144 		if (!is_shadow_present_pte(spte))
3145 			break;
3146 
3147 		sp = sptep_to_sp(sptep);
3148 		if (!is_last_spte(spte, sp->role.level))
3149 			break;
3150 
3151 		/*
3152 		 * Check whether the memory access that caused the fault would
3153 		 * still cause it if it were to be performed right now. If not,
3154 		 * then this is a spurious fault caused by TLB lazily flushed,
3155 		 * or some other CPU has already fixed the PTE after the
3156 		 * current CPU took the fault.
3157 		 *
3158 		 * Need not check the access of upper level table entries since
3159 		 * they are always ACC_ALL.
3160 		 */
3161 		if (is_access_allowed(fault, spte)) {
3162 			ret = RET_PF_SPURIOUS;
3163 			break;
3164 		}
3165 
3166 		new_spte = spte;
3167 
3168 		if (is_access_track_spte(spte))
3169 			new_spte = restore_acc_track_spte(new_spte);
3170 
3171 		/*
3172 		 * Currently, to simplify the code, write-protection can
3173 		 * be removed in the fast path only if the SPTE was
3174 		 * write-protected for dirty-logging or access tracking.
3175 		 */
3176 		if (fault->write && is_mmu_writable_spte(spte)) {
3177 			new_spte |= PT_WRITABLE_MASK;
3178 
3179 			/*
3180 			 * Do not fix write-permission on the large spte when
3181 			 * dirty logging is enabled. Since we only dirty the
3182 			 * first page into the dirty-bitmap in
3183 			 * fast_pf_fix_direct_spte(), other pages are missed
3184 			 * if its slot has dirty logging enabled.
3185 			 *
3186 			 * Instead, we let the slow page fault path create a
3187 			 * normal spte to fix the access.
3188 			 */
3189 			if (sp->role.level > PG_LEVEL_4K &&
3190 			    kvm_slot_dirty_track_enabled(fault->slot))
3191 				break;
3192 		}
3193 
3194 		/* Verify that the fault can be handled in the fast path */
3195 		if (new_spte == spte ||
3196 		    !is_access_allowed(fault, new_spte))
3197 			break;
3198 
3199 		/*
3200 		 * Currently, fast page fault only works for direct mapping
3201 		 * since the gfn is not stable for indirect shadow page. See
3202 		 * Documentation/virt/kvm/locking.rst to get more detail.
3203 		 */
3204 		if (fast_pf_fix_direct_spte(vcpu, fault, sptep, spte, new_spte)) {
3205 			ret = RET_PF_FIXED;
3206 			break;
3207 		}
3208 
3209 		if (++retry_count > 4) {
3210 			printk_once(KERN_WARNING
3211 				"kvm: Fast #PF retrying more than 4 times.\n");
3212 			break;
3213 		}
3214 
3215 	} while (true);
3216 
3217 	trace_fast_page_fault(vcpu, fault, sptep, spte, ret);
3218 	walk_shadow_page_lockless_end(vcpu);
3219 
3220 	return ret;
3221 }
3222 
3223 static void mmu_free_root_page(struct kvm *kvm, hpa_t *root_hpa,
3224 			       struct list_head *invalid_list)
3225 {
3226 	struct kvm_mmu_page *sp;
3227 
3228 	if (!VALID_PAGE(*root_hpa))
3229 		return;
3230 
3231 	sp = to_shadow_page(*root_hpa & PT64_BASE_ADDR_MASK);
3232 	if (WARN_ON(!sp))
3233 		return;
3234 
3235 	if (is_tdp_mmu_page(sp))
3236 		kvm_tdp_mmu_put_root(kvm, sp, false);
3237 	else if (!--sp->root_count && sp->role.invalid)
3238 		kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
3239 
3240 	*root_hpa = INVALID_PAGE;
3241 }
3242 
3243 /* roots_to_free must be some combination of the KVM_MMU_ROOT_* flags */
3244 void kvm_mmu_free_roots(struct kvm *kvm, struct kvm_mmu *mmu,
3245 			ulong roots_to_free)
3246 {
3247 	int i;
3248 	LIST_HEAD(invalid_list);
3249 	bool free_active_root;
3250 
3251 	BUILD_BUG_ON(KVM_MMU_NUM_PREV_ROOTS >= BITS_PER_LONG);
3252 
3253 	/* Before acquiring the MMU lock, see if we need to do any real work. */
3254 	free_active_root = (roots_to_free & KVM_MMU_ROOT_CURRENT)
3255 		&& VALID_PAGE(mmu->root.hpa);
3256 
3257 	if (!free_active_root) {
3258 		for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
3259 			if ((roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) &&
3260 			    VALID_PAGE(mmu->prev_roots[i].hpa))
3261 				break;
3262 
3263 		if (i == KVM_MMU_NUM_PREV_ROOTS)
3264 			return;
3265 	}
3266 
3267 	write_lock(&kvm->mmu_lock);
3268 
3269 	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
3270 		if (roots_to_free & KVM_MMU_ROOT_PREVIOUS(i))
3271 			mmu_free_root_page(kvm, &mmu->prev_roots[i].hpa,
3272 					   &invalid_list);
3273 
3274 	if (free_active_root) {
3275 		if (to_shadow_page(mmu->root.hpa)) {
3276 			mmu_free_root_page(kvm, &mmu->root.hpa, &invalid_list);
3277 		} else if (mmu->pae_root) {
3278 			for (i = 0; i < 4; ++i) {
3279 				if (!IS_VALID_PAE_ROOT(mmu->pae_root[i]))
3280 					continue;
3281 
3282 				mmu_free_root_page(kvm, &mmu->pae_root[i],
3283 						   &invalid_list);
3284 				mmu->pae_root[i] = INVALID_PAE_ROOT;
3285 			}
3286 		}
3287 		mmu->root.hpa = INVALID_PAGE;
3288 		mmu->root.pgd = 0;
3289 	}
3290 
3291 	kvm_mmu_commit_zap_page(kvm, &invalid_list);
3292 	write_unlock(&kvm->mmu_lock);
3293 }
3294 EXPORT_SYMBOL_GPL(kvm_mmu_free_roots);
3295 
3296 void kvm_mmu_free_guest_mode_roots(struct kvm *kvm, struct kvm_mmu *mmu)
3297 {
3298 	unsigned long roots_to_free = 0;
3299 	hpa_t root_hpa;
3300 	int i;
3301 
3302 	/*
3303 	 * This should not be called while L2 is active, L2 can't invalidate
3304 	 * _only_ its own roots, e.g. INVVPID unconditionally exits.
3305 	 */
3306 	WARN_ON_ONCE(mmu->mmu_role.base.guest_mode);
3307 
3308 	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
3309 		root_hpa = mmu->prev_roots[i].hpa;
3310 		if (!VALID_PAGE(root_hpa))
3311 			continue;
3312 
3313 		if (!to_shadow_page(root_hpa) ||
3314 			to_shadow_page(root_hpa)->role.guest_mode)
3315 			roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
3316 	}
3317 
3318 	kvm_mmu_free_roots(kvm, mmu, roots_to_free);
3319 }
3320 EXPORT_SYMBOL_GPL(kvm_mmu_free_guest_mode_roots);
3321 
3322 
3323 static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
3324 {
3325 	int ret = 0;
3326 
3327 	if (!kvm_vcpu_is_visible_gfn(vcpu, root_gfn)) {
3328 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3329 		ret = 1;
3330 	}
3331 
3332 	return ret;
3333 }
3334 
3335 static hpa_t mmu_alloc_root(struct kvm_vcpu *vcpu, gfn_t gfn, gva_t gva,
3336 			    u8 level, bool direct)
3337 {
3338 	struct kvm_mmu_page *sp;
3339 
3340 	sp = kvm_mmu_get_page(vcpu, gfn, gva, level, direct, ACC_ALL);
3341 	++sp->root_count;
3342 
3343 	return __pa(sp->spt);
3344 }
3345 
3346 static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
3347 {
3348 	struct kvm_mmu *mmu = vcpu->arch.mmu;
3349 	u8 shadow_root_level = mmu->shadow_root_level;
3350 	hpa_t root;
3351 	unsigned i;
3352 	int r;
3353 
3354 	write_lock(&vcpu->kvm->mmu_lock);
3355 	r = make_mmu_pages_available(vcpu);
3356 	if (r < 0)
3357 		goto out_unlock;
3358 
3359 	if (is_tdp_mmu_enabled(vcpu->kvm)) {
3360 		root = kvm_tdp_mmu_get_vcpu_root_hpa(vcpu);
3361 		mmu->root.hpa = root;
3362 	} else if (shadow_root_level >= PT64_ROOT_4LEVEL) {
3363 		root = mmu_alloc_root(vcpu, 0, 0, shadow_root_level, true);
3364 		mmu->root.hpa = root;
3365 	} else if (shadow_root_level == PT32E_ROOT_LEVEL) {
3366 		if (WARN_ON_ONCE(!mmu->pae_root)) {
3367 			r = -EIO;
3368 			goto out_unlock;
3369 		}
3370 
3371 		for (i = 0; i < 4; ++i) {
3372 			WARN_ON_ONCE(IS_VALID_PAE_ROOT(mmu->pae_root[i]));
3373 
3374 			root = mmu_alloc_root(vcpu, i << (30 - PAGE_SHIFT),
3375 					      i << 30, PT32_ROOT_LEVEL, true);
3376 			mmu->pae_root[i] = root | PT_PRESENT_MASK |
3377 					   shadow_me_mask;
3378 		}
3379 		mmu->root.hpa = __pa(mmu->pae_root);
3380 	} else {
3381 		WARN_ONCE(1, "Bad TDP root level = %d\n", shadow_root_level);
3382 		r = -EIO;
3383 		goto out_unlock;
3384 	}
3385 
3386 	/* root.pgd is ignored for direct MMUs. */
3387 	mmu->root.pgd = 0;
3388 out_unlock:
3389 	write_unlock(&vcpu->kvm->mmu_lock);
3390 	return r;
3391 }
3392 
3393 static int mmu_first_shadow_root_alloc(struct kvm *kvm)
3394 {
3395 	struct kvm_memslots *slots;
3396 	struct kvm_memory_slot *slot;
3397 	int r = 0, i, bkt;
3398 
3399 	/*
3400 	 * Check if this is the first shadow root being allocated before
3401 	 * taking the lock.
3402 	 */
3403 	if (kvm_shadow_root_allocated(kvm))
3404 		return 0;
3405 
3406 	mutex_lock(&kvm->slots_arch_lock);
3407 
3408 	/* Recheck, under the lock, whether this is the first shadow root. */
3409 	if (kvm_shadow_root_allocated(kvm))
3410 		goto out_unlock;
3411 
3412 	/*
3413 	 * Check if anything actually needs to be allocated, e.g. all metadata
3414 	 * will be allocated upfront if TDP is disabled.
3415 	 */
3416 	if (kvm_memslots_have_rmaps(kvm) &&
3417 	    kvm_page_track_write_tracking_enabled(kvm))
3418 		goto out_success;
3419 
3420 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
3421 		slots = __kvm_memslots(kvm, i);
3422 		kvm_for_each_memslot(slot, bkt, slots) {
3423 			/*
3424 			 * Both of these functions are no-ops if the target is
3425 			 * already allocated, so unconditionally calling both
3426 			 * is safe.  Intentionally do NOT free allocations on
3427 			 * failure to avoid having to track which allocations
3428 			 * were made now versus when the memslot was created.
3429 			 * The metadata is guaranteed to be freed when the slot
3430 			 * is freed, and will be kept/used if userspace retries
3431 			 * KVM_RUN instead of killing the VM.
3432 			 */
3433 			r = memslot_rmap_alloc(slot, slot->npages);
3434 			if (r)
3435 				goto out_unlock;
3436 			r = kvm_page_track_write_tracking_alloc(slot);
3437 			if (r)
3438 				goto out_unlock;
3439 		}
3440 	}
3441 
3442 	/*
3443 	 * Ensure that shadow_root_allocated becomes true strictly after
3444 	 * all the related pointers are set.
3445 	 */
3446 out_success:
3447 	smp_store_release(&kvm->arch.shadow_root_allocated, true);
3448 
3449 out_unlock:
3450 	mutex_unlock(&kvm->slots_arch_lock);
3451 	return r;
3452 }
3453 
3454 static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
3455 {
3456 	struct kvm_mmu *mmu = vcpu->arch.mmu;
3457 	u64 pdptrs[4], pm_mask;
3458 	gfn_t root_gfn, root_pgd;
3459 	hpa_t root;
3460 	unsigned i;
3461 	int r;
3462 
3463 	root_pgd = mmu->get_guest_pgd(vcpu);
3464 	root_gfn = root_pgd >> PAGE_SHIFT;
3465 
3466 	if (mmu_check_root(vcpu, root_gfn))
3467 		return 1;
3468 
3469 	/*
3470 	 * On SVM, reading PDPTRs might access guest memory, which might fault
3471 	 * and thus might sleep.  Grab the PDPTRs before acquiring mmu_lock.
3472 	 */
3473 	if (mmu->root_level == PT32E_ROOT_LEVEL) {
3474 		for (i = 0; i < 4; ++i) {
3475 			pdptrs[i] = mmu->get_pdptr(vcpu, i);
3476 			if (!(pdptrs[i] & PT_PRESENT_MASK))
3477 				continue;
3478 
3479 			if (mmu_check_root(vcpu, pdptrs[i] >> PAGE_SHIFT))
3480 				return 1;
3481 		}
3482 	}
3483 
3484 	r = mmu_first_shadow_root_alloc(vcpu->kvm);
3485 	if (r)
3486 		return r;
3487 
3488 	write_lock(&vcpu->kvm->mmu_lock);
3489 	r = make_mmu_pages_available(vcpu);
3490 	if (r < 0)
3491 		goto out_unlock;
3492 
3493 	/*
3494 	 * Do we shadow a long mode page table? If so we need to
3495 	 * write-protect the guests page table root.
3496 	 */
3497 	if (mmu->root_level >= PT64_ROOT_4LEVEL) {
3498 		root = mmu_alloc_root(vcpu, root_gfn, 0,
3499 				      mmu->shadow_root_level, false);
3500 		mmu->root.hpa = root;
3501 		goto set_root_pgd;
3502 	}
3503 
3504 	if (WARN_ON_ONCE(!mmu->pae_root)) {
3505 		r = -EIO;
3506 		goto out_unlock;
3507 	}
3508 
3509 	/*
3510 	 * We shadow a 32 bit page table. This may be a legacy 2-level
3511 	 * or a PAE 3-level page table. In either case we need to be aware that
3512 	 * the shadow page table may be a PAE or a long mode page table.
3513 	 */
3514 	pm_mask = PT_PRESENT_MASK | shadow_me_mask;
3515 	if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL) {
3516 		pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
3517 
3518 		if (WARN_ON_ONCE(!mmu->pml4_root)) {
3519 			r = -EIO;
3520 			goto out_unlock;
3521 		}
3522 		mmu->pml4_root[0] = __pa(mmu->pae_root) | pm_mask;
3523 
3524 		if (mmu->shadow_root_level == PT64_ROOT_5LEVEL) {
3525 			if (WARN_ON_ONCE(!mmu->pml5_root)) {
3526 				r = -EIO;
3527 				goto out_unlock;
3528 			}
3529 			mmu->pml5_root[0] = __pa(mmu->pml4_root) | pm_mask;
3530 		}
3531 	}
3532 
3533 	for (i = 0; i < 4; ++i) {
3534 		WARN_ON_ONCE(IS_VALID_PAE_ROOT(mmu->pae_root[i]));
3535 
3536 		if (mmu->root_level == PT32E_ROOT_LEVEL) {
3537 			if (!(pdptrs[i] & PT_PRESENT_MASK)) {
3538 				mmu->pae_root[i] = INVALID_PAE_ROOT;
3539 				continue;
3540 			}
3541 			root_gfn = pdptrs[i] >> PAGE_SHIFT;
3542 		}
3543 
3544 		root = mmu_alloc_root(vcpu, root_gfn, i << 30,
3545 				      PT32_ROOT_LEVEL, false);
3546 		mmu->pae_root[i] = root | pm_mask;
3547 	}
3548 
3549 	if (mmu->shadow_root_level == PT64_ROOT_5LEVEL)
3550 		mmu->root.hpa = __pa(mmu->pml5_root);
3551 	else if (mmu->shadow_root_level == PT64_ROOT_4LEVEL)
3552 		mmu->root.hpa = __pa(mmu->pml4_root);
3553 	else
3554 		mmu->root.hpa = __pa(mmu->pae_root);
3555 
3556 set_root_pgd:
3557 	mmu->root.pgd = root_pgd;
3558 out_unlock:
3559 	write_unlock(&vcpu->kvm->mmu_lock);
3560 
3561 	return r;
3562 }
3563 
3564 static int mmu_alloc_special_roots(struct kvm_vcpu *vcpu)
3565 {
3566 	struct kvm_mmu *mmu = vcpu->arch.mmu;
3567 	bool need_pml5 = mmu->shadow_root_level > PT64_ROOT_4LEVEL;
3568 	u64 *pml5_root = NULL;
3569 	u64 *pml4_root = NULL;
3570 	u64 *pae_root;
3571 
3572 	/*
3573 	 * When shadowing 32-bit or PAE NPT with 64-bit NPT, the PML4 and PDP
3574 	 * tables are allocated and initialized at root creation as there is no
3575 	 * equivalent level in the guest's NPT to shadow.  Allocate the tables
3576 	 * on demand, as running a 32-bit L1 VMM on 64-bit KVM is very rare.
3577 	 */
3578 	if (mmu->direct_map || mmu->root_level >= PT64_ROOT_4LEVEL ||
3579 	    mmu->shadow_root_level < PT64_ROOT_4LEVEL)
3580 		return 0;
3581 
3582 	/*
3583 	 * NPT, the only paging mode that uses this horror, uses a fixed number
3584 	 * of levels for the shadow page tables, e.g. all MMUs are 4-level or
3585 	 * all MMus are 5-level.  Thus, this can safely require that pml5_root
3586 	 * is allocated if the other roots are valid and pml5 is needed, as any
3587 	 * prior MMU would also have required pml5.
3588 	 */
3589 	if (mmu->pae_root && mmu->pml4_root && (!need_pml5 || mmu->pml5_root))
3590 		return 0;
3591 
3592 	/*
3593 	 * The special roots should always be allocated in concert.  Yell and
3594 	 * bail if KVM ends up in a state where only one of the roots is valid.
3595 	 */
3596 	if (WARN_ON_ONCE(!tdp_enabled || mmu->pae_root || mmu->pml4_root ||
3597 			 (need_pml5 && mmu->pml5_root)))
3598 		return -EIO;
3599 
3600 	/*
3601 	 * Unlike 32-bit NPT, the PDP table doesn't need to be in low mem, and
3602 	 * doesn't need to be decrypted.
3603 	 */
3604 	pae_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT);
3605 	if (!pae_root)
3606 		return -ENOMEM;
3607 
3608 #ifdef CONFIG_X86_64
3609 	pml4_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT);
3610 	if (!pml4_root)
3611 		goto err_pml4;
3612 
3613 	if (need_pml5) {
3614 		pml5_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT);
3615 		if (!pml5_root)
3616 			goto err_pml5;
3617 	}
3618 #endif
3619 
3620 	mmu->pae_root = pae_root;
3621 	mmu->pml4_root = pml4_root;
3622 	mmu->pml5_root = pml5_root;
3623 
3624 	return 0;
3625 
3626 #ifdef CONFIG_X86_64
3627 err_pml5:
3628 	free_page((unsigned long)pml4_root);
3629 err_pml4:
3630 	free_page((unsigned long)pae_root);
3631 	return -ENOMEM;
3632 #endif
3633 }
3634 
3635 static bool is_unsync_root(hpa_t root)
3636 {
3637 	struct kvm_mmu_page *sp;
3638 
3639 	if (!VALID_PAGE(root))
3640 		return false;
3641 
3642 	/*
3643 	 * The read barrier orders the CPU's read of SPTE.W during the page table
3644 	 * walk before the reads of sp->unsync/sp->unsync_children here.
3645 	 *
3646 	 * Even if another CPU was marking the SP as unsync-ed simultaneously,
3647 	 * any guest page table changes are not guaranteed to be visible anyway
3648 	 * until this VCPU issues a TLB flush strictly after those changes are
3649 	 * made.  We only need to ensure that the other CPU sets these flags
3650 	 * before any actual changes to the page tables are made.  The comments
3651 	 * in mmu_try_to_unsync_pages() describe what could go wrong if this
3652 	 * requirement isn't satisfied.
3653 	 */
3654 	smp_rmb();
3655 	sp = to_shadow_page(root);
3656 
3657 	/*
3658 	 * PAE roots (somewhat arbitrarily) aren't backed by shadow pages, the
3659 	 * PDPTEs for a given PAE root need to be synchronized individually.
3660 	 */
3661 	if (WARN_ON_ONCE(!sp))
3662 		return false;
3663 
3664 	if (sp->unsync || sp->unsync_children)
3665 		return true;
3666 
3667 	return false;
3668 }
3669 
3670 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3671 {
3672 	int i;
3673 	struct kvm_mmu_page *sp;
3674 
3675 	if (vcpu->arch.mmu->direct_map)
3676 		return;
3677 
3678 	if (!VALID_PAGE(vcpu->arch.mmu->root.hpa))
3679 		return;
3680 
3681 	vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
3682 
3683 	if (vcpu->arch.mmu->root_level >= PT64_ROOT_4LEVEL) {
3684 		hpa_t root = vcpu->arch.mmu->root.hpa;
3685 		sp = to_shadow_page(root);
3686 
3687 		if (!is_unsync_root(root))
3688 			return;
3689 
3690 		write_lock(&vcpu->kvm->mmu_lock);
3691 		mmu_sync_children(vcpu, sp, true);
3692 		write_unlock(&vcpu->kvm->mmu_lock);
3693 		return;
3694 	}
3695 
3696 	write_lock(&vcpu->kvm->mmu_lock);
3697 
3698 	for (i = 0; i < 4; ++i) {
3699 		hpa_t root = vcpu->arch.mmu->pae_root[i];
3700 
3701 		if (IS_VALID_PAE_ROOT(root)) {
3702 			root &= PT64_BASE_ADDR_MASK;
3703 			sp = to_shadow_page(root);
3704 			mmu_sync_children(vcpu, sp, true);
3705 		}
3706 	}
3707 
3708 	write_unlock(&vcpu->kvm->mmu_lock);
3709 }
3710 
3711 void kvm_mmu_sync_prev_roots(struct kvm_vcpu *vcpu)
3712 {
3713 	unsigned long roots_to_free = 0;
3714 	int i;
3715 
3716 	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
3717 		if (is_unsync_root(vcpu->arch.mmu->prev_roots[i].hpa))
3718 			roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
3719 
3720 	/* sync prev_roots by simply freeing them */
3721 	kvm_mmu_free_roots(vcpu->kvm, vcpu->arch.mmu, roots_to_free);
3722 }
3723 
3724 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
3725 				  gpa_t vaddr, u64 access,
3726 				  struct x86_exception *exception)
3727 {
3728 	if (exception)
3729 		exception->error_code = 0;
3730 	return kvm_translate_gpa(vcpu, mmu, vaddr, access, exception);
3731 }
3732 
3733 static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3734 {
3735 	/*
3736 	 * A nested guest cannot use the MMIO cache if it is using nested
3737 	 * page tables, because cr2 is a nGPA while the cache stores GPAs.
3738 	 */
3739 	if (mmu_is_nested(vcpu))
3740 		return false;
3741 
3742 	if (direct)
3743 		return vcpu_match_mmio_gpa(vcpu, addr);
3744 
3745 	return vcpu_match_mmio_gva(vcpu, addr);
3746 }
3747 
3748 /*
3749  * Return the level of the lowest level SPTE added to sptes.
3750  * That SPTE may be non-present.
3751  *
3752  * Must be called between walk_shadow_page_lockless_{begin,end}.
3753  */
3754 static int get_walk(struct kvm_vcpu *vcpu, u64 addr, u64 *sptes, int *root_level)
3755 {
3756 	struct kvm_shadow_walk_iterator iterator;
3757 	int leaf = -1;
3758 	u64 spte;
3759 
3760 	for (shadow_walk_init(&iterator, vcpu, addr),
3761 	     *root_level = iterator.level;
3762 	     shadow_walk_okay(&iterator);
3763 	     __shadow_walk_next(&iterator, spte)) {
3764 		leaf = iterator.level;
3765 		spte = mmu_spte_get_lockless(iterator.sptep);
3766 
3767 		sptes[leaf] = spte;
3768 	}
3769 
3770 	return leaf;
3771 }
3772 
3773 /* return true if reserved bit(s) are detected on a valid, non-MMIO SPTE. */
3774 static bool get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep)
3775 {
3776 	u64 sptes[PT64_ROOT_MAX_LEVEL + 1];
3777 	struct rsvd_bits_validate *rsvd_check;
3778 	int root, leaf, level;
3779 	bool reserved = false;
3780 
3781 	walk_shadow_page_lockless_begin(vcpu);
3782 
3783 	if (is_tdp_mmu(vcpu->arch.mmu))
3784 		leaf = kvm_tdp_mmu_get_walk(vcpu, addr, sptes, &root);
3785 	else
3786 		leaf = get_walk(vcpu, addr, sptes, &root);
3787 
3788 	walk_shadow_page_lockless_end(vcpu);
3789 
3790 	if (unlikely(leaf < 0)) {
3791 		*sptep = 0ull;
3792 		return reserved;
3793 	}
3794 
3795 	*sptep = sptes[leaf];
3796 
3797 	/*
3798 	 * Skip reserved bits checks on the terminal leaf if it's not a valid
3799 	 * SPTE.  Note, this also (intentionally) skips MMIO SPTEs, which, by
3800 	 * design, always have reserved bits set.  The purpose of the checks is
3801 	 * to detect reserved bits on non-MMIO SPTEs. i.e. buggy SPTEs.
3802 	 */
3803 	if (!is_shadow_present_pte(sptes[leaf]))
3804 		leaf++;
3805 
3806 	rsvd_check = &vcpu->arch.mmu->shadow_zero_check;
3807 
3808 	for (level = root; level >= leaf; level--)
3809 		reserved |= is_rsvd_spte(rsvd_check, sptes[level], level);
3810 
3811 	if (reserved) {
3812 		pr_err("%s: reserved bits set on MMU-present spte, addr 0x%llx, hierarchy:\n",
3813 		       __func__, addr);
3814 		for (level = root; level >= leaf; level--)
3815 			pr_err("------ spte = 0x%llx level = %d, rsvd bits = 0x%llx",
3816 			       sptes[level], level,
3817 			       get_rsvd_bits(rsvd_check, sptes[level], level));
3818 	}
3819 
3820 	return reserved;
3821 }
3822 
3823 static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3824 {
3825 	u64 spte;
3826 	bool reserved;
3827 
3828 	if (mmio_info_in_cache(vcpu, addr, direct))
3829 		return RET_PF_EMULATE;
3830 
3831 	reserved = get_mmio_spte(vcpu, addr, &spte);
3832 	if (WARN_ON(reserved))
3833 		return -EINVAL;
3834 
3835 	if (is_mmio_spte(spte)) {
3836 		gfn_t gfn = get_mmio_spte_gfn(spte);
3837 		unsigned int access = get_mmio_spte_access(spte);
3838 
3839 		if (!check_mmio_spte(vcpu, spte))
3840 			return RET_PF_INVALID;
3841 
3842 		if (direct)
3843 			addr = 0;
3844 
3845 		trace_handle_mmio_page_fault(addr, gfn, access);
3846 		vcpu_cache_mmio_info(vcpu, addr, gfn, access);
3847 		return RET_PF_EMULATE;
3848 	}
3849 
3850 	/*
3851 	 * If the page table is zapped by other cpus, let CPU fault again on
3852 	 * the address.
3853 	 */
3854 	return RET_PF_RETRY;
3855 }
3856 
3857 static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu,
3858 					 struct kvm_page_fault *fault)
3859 {
3860 	if (unlikely(fault->rsvd))
3861 		return false;
3862 
3863 	if (!fault->present || !fault->write)
3864 		return false;
3865 
3866 	/*
3867 	 * guest is writing the page which is write tracked which can
3868 	 * not be fixed by page fault handler.
3869 	 */
3870 	if (kvm_slot_page_track_is_active(vcpu->kvm, fault->slot, fault->gfn, KVM_PAGE_TRACK_WRITE))
3871 		return true;
3872 
3873 	return false;
3874 }
3875 
3876 static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr)
3877 {
3878 	struct kvm_shadow_walk_iterator iterator;
3879 	u64 spte;
3880 
3881 	walk_shadow_page_lockless_begin(vcpu);
3882 	for_each_shadow_entry_lockless(vcpu, addr, iterator, spte)
3883 		clear_sp_write_flooding_count(iterator.sptep);
3884 	walk_shadow_page_lockless_end(vcpu);
3885 }
3886 
3887 static u32 alloc_apf_token(struct kvm_vcpu *vcpu)
3888 {
3889 	/* make sure the token value is not 0 */
3890 	u32 id = vcpu->arch.apf.id;
3891 
3892 	if (id << 12 == 0)
3893 		vcpu->arch.apf.id = 1;
3894 
3895 	return (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
3896 }
3897 
3898 static bool kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
3899 				    gfn_t gfn)
3900 {
3901 	struct kvm_arch_async_pf arch;
3902 
3903 	arch.token = alloc_apf_token(vcpu);
3904 	arch.gfn = gfn;
3905 	arch.direct_map = vcpu->arch.mmu->direct_map;
3906 	arch.cr3 = vcpu->arch.mmu->get_guest_pgd(vcpu);
3907 
3908 	return kvm_setup_async_pf(vcpu, cr2_or_gpa,
3909 				  kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch);
3910 }
3911 
3912 static bool kvm_faultin_pfn(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault, int *r)
3913 {
3914 	struct kvm_memory_slot *slot = fault->slot;
3915 	bool async;
3916 
3917 	/*
3918 	 * Retry the page fault if the gfn hit a memslot that is being deleted
3919 	 * or moved.  This ensures any existing SPTEs for the old memslot will
3920 	 * be zapped before KVM inserts a new MMIO SPTE for the gfn.
3921 	 */
3922 	if (slot && (slot->flags & KVM_MEMSLOT_INVALID))
3923 		goto out_retry;
3924 
3925 	if (!kvm_is_visible_memslot(slot)) {
3926 		/* Don't expose private memslots to L2. */
3927 		if (is_guest_mode(vcpu)) {
3928 			fault->slot = NULL;
3929 			fault->pfn = KVM_PFN_NOSLOT;
3930 			fault->map_writable = false;
3931 			return false;
3932 		}
3933 		/*
3934 		 * If the APIC access page exists but is disabled, go directly
3935 		 * to emulation without caching the MMIO access or creating a
3936 		 * MMIO SPTE.  That way the cache doesn't need to be purged
3937 		 * when the AVIC is re-enabled.
3938 		 */
3939 		if (slot && slot->id == APIC_ACCESS_PAGE_PRIVATE_MEMSLOT &&
3940 		    !kvm_apicv_activated(vcpu->kvm)) {
3941 			*r = RET_PF_EMULATE;
3942 			return true;
3943 		}
3944 	}
3945 
3946 	async = false;
3947 	fault->pfn = __gfn_to_pfn_memslot(slot, fault->gfn, false, &async,
3948 					  fault->write, &fault->map_writable,
3949 					  &fault->hva);
3950 	if (!async)
3951 		return false; /* *pfn has correct page already */
3952 
3953 	if (!fault->prefetch && kvm_can_do_async_pf(vcpu)) {
3954 		trace_kvm_try_async_get_page(fault->addr, fault->gfn);
3955 		if (kvm_find_async_pf_gfn(vcpu, fault->gfn)) {
3956 			trace_kvm_async_pf_doublefault(fault->addr, fault->gfn);
3957 			kvm_make_request(KVM_REQ_APF_HALT, vcpu);
3958 			goto out_retry;
3959 		} else if (kvm_arch_setup_async_pf(vcpu, fault->addr, fault->gfn))
3960 			goto out_retry;
3961 	}
3962 
3963 	fault->pfn = __gfn_to_pfn_memslot(slot, fault->gfn, false, NULL,
3964 					  fault->write, &fault->map_writable,
3965 					  &fault->hva);
3966 	return false;
3967 
3968 out_retry:
3969 	*r = RET_PF_RETRY;
3970 	return true;
3971 }
3972 
3973 /*
3974  * Returns true if the page fault is stale and needs to be retried, i.e. if the
3975  * root was invalidated by a memslot update or a relevant mmu_notifier fired.
3976  */
3977 static bool is_page_fault_stale(struct kvm_vcpu *vcpu,
3978 				struct kvm_page_fault *fault, int mmu_seq)
3979 {
3980 	struct kvm_mmu_page *sp = to_shadow_page(vcpu->arch.mmu->root.hpa);
3981 
3982 	/* Special roots, e.g. pae_root, are not backed by shadow pages. */
3983 	if (sp && is_obsolete_sp(vcpu->kvm, sp))
3984 		return true;
3985 
3986 	/*
3987 	 * Roots without an associated shadow page are considered invalid if
3988 	 * there is a pending request to free obsolete roots.  The request is
3989 	 * only a hint that the current root _may_ be obsolete and needs to be
3990 	 * reloaded, e.g. if the guest frees a PGD that KVM is tracking as a
3991 	 * previous root, then __kvm_mmu_prepare_zap_page() signals all vCPUs
3992 	 * to reload even if no vCPU is actively using the root.
3993 	 */
3994 	if (!sp && kvm_test_request(KVM_REQ_MMU_FREE_OBSOLETE_ROOTS, vcpu))
3995 		return true;
3996 
3997 	return fault->slot &&
3998 	       mmu_notifier_retry_hva(vcpu->kvm, mmu_seq, fault->hva);
3999 }
4000 
4001 static int direct_page_fault(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault)
4002 {
4003 	bool is_tdp_mmu_fault = is_tdp_mmu(vcpu->arch.mmu);
4004 
4005 	unsigned long mmu_seq;
4006 	int r;
4007 
4008 	fault->gfn = fault->addr >> PAGE_SHIFT;
4009 	fault->slot = kvm_vcpu_gfn_to_memslot(vcpu, fault->gfn);
4010 
4011 	if (page_fault_handle_page_track(vcpu, fault))
4012 		return RET_PF_EMULATE;
4013 
4014 	r = fast_page_fault(vcpu, fault);
4015 	if (r != RET_PF_INVALID)
4016 		return r;
4017 
4018 	r = mmu_topup_memory_caches(vcpu, false);
4019 	if (r)
4020 		return r;
4021 
4022 	mmu_seq = vcpu->kvm->mmu_notifier_seq;
4023 	smp_rmb();
4024 
4025 	if (kvm_faultin_pfn(vcpu, fault, &r))
4026 		return r;
4027 
4028 	if (handle_abnormal_pfn(vcpu, fault, ACC_ALL, &r))
4029 		return r;
4030 
4031 	r = RET_PF_RETRY;
4032 
4033 	if (is_tdp_mmu_fault)
4034 		read_lock(&vcpu->kvm->mmu_lock);
4035 	else
4036 		write_lock(&vcpu->kvm->mmu_lock);
4037 
4038 	if (is_page_fault_stale(vcpu, fault, mmu_seq))
4039 		goto out_unlock;
4040 
4041 	r = make_mmu_pages_available(vcpu);
4042 	if (r)
4043 		goto out_unlock;
4044 
4045 	if (is_tdp_mmu_fault)
4046 		r = kvm_tdp_mmu_map(vcpu, fault);
4047 	else
4048 		r = __direct_map(vcpu, fault);
4049 
4050 out_unlock:
4051 	if (is_tdp_mmu_fault)
4052 		read_unlock(&vcpu->kvm->mmu_lock);
4053 	else
4054 		write_unlock(&vcpu->kvm->mmu_lock);
4055 	kvm_release_pfn_clean(fault->pfn);
4056 	return r;
4057 }
4058 
4059 static int nonpaging_page_fault(struct kvm_vcpu *vcpu,
4060 				struct kvm_page_fault *fault)
4061 {
4062 	pgprintk("%s: gva %lx error %x\n", __func__, fault->addr, fault->error_code);
4063 
4064 	/* This path builds a PAE pagetable, we can map 2mb pages at maximum. */
4065 	fault->max_level = PG_LEVEL_2M;
4066 	return direct_page_fault(vcpu, fault);
4067 }
4068 
4069 int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code,
4070 				u64 fault_address, char *insn, int insn_len)
4071 {
4072 	int r = 1;
4073 	u32 flags = vcpu->arch.apf.host_apf_flags;
4074 
4075 #ifndef CONFIG_X86_64
4076 	/* A 64-bit CR2 should be impossible on 32-bit KVM. */
4077 	if (WARN_ON_ONCE(fault_address >> 32))
4078 		return -EFAULT;
4079 #endif
4080 
4081 	vcpu->arch.l1tf_flush_l1d = true;
4082 	if (!flags) {
4083 		trace_kvm_page_fault(fault_address, error_code);
4084 
4085 		if (kvm_event_needs_reinjection(vcpu))
4086 			kvm_mmu_unprotect_page_virt(vcpu, fault_address);
4087 		r = kvm_mmu_page_fault(vcpu, fault_address, error_code, insn,
4088 				insn_len);
4089 	} else if (flags & KVM_PV_REASON_PAGE_NOT_PRESENT) {
4090 		vcpu->arch.apf.host_apf_flags = 0;
4091 		local_irq_disable();
4092 		kvm_async_pf_task_wait_schedule(fault_address);
4093 		local_irq_enable();
4094 	} else {
4095 		WARN_ONCE(1, "Unexpected host async PF flags: %x\n", flags);
4096 	}
4097 
4098 	return r;
4099 }
4100 EXPORT_SYMBOL_GPL(kvm_handle_page_fault);
4101 
4102 int kvm_tdp_page_fault(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault)
4103 {
4104 	while (fault->max_level > PG_LEVEL_4K) {
4105 		int page_num = KVM_PAGES_PER_HPAGE(fault->max_level);
4106 		gfn_t base = (fault->addr >> PAGE_SHIFT) & ~(page_num - 1);
4107 
4108 		if (kvm_mtrr_check_gfn_range_consistency(vcpu, base, page_num))
4109 			break;
4110 
4111 		--fault->max_level;
4112 	}
4113 
4114 	return direct_page_fault(vcpu, fault);
4115 }
4116 
4117 static void nonpaging_init_context(struct kvm_mmu *context)
4118 {
4119 	context->page_fault = nonpaging_page_fault;
4120 	context->gva_to_gpa = nonpaging_gva_to_gpa;
4121 	context->sync_page = nonpaging_sync_page;
4122 	context->invlpg = NULL;
4123 	context->direct_map = true;
4124 }
4125 
4126 static inline bool is_root_usable(struct kvm_mmu_root_info *root, gpa_t pgd,
4127 				  union kvm_mmu_page_role role)
4128 {
4129 	return (role.direct || pgd == root->pgd) &&
4130 	       VALID_PAGE(root->hpa) &&
4131 	       role.word == to_shadow_page(root->hpa)->role.word;
4132 }
4133 
4134 /*
4135  * Find out if a previously cached root matching the new pgd/role is available,
4136  * and insert the current root as the MRU in the cache.
4137  * If a matching root is found, it is assigned to kvm_mmu->root and
4138  * true is returned.
4139  * If no match is found, kvm_mmu->root is left invalid, the LRU root is
4140  * evicted to make room for the current root, and false is returned.
4141  */
4142 static bool cached_root_find_and_keep_current(struct kvm *kvm, struct kvm_mmu *mmu,
4143 					      gpa_t new_pgd,
4144 					      union kvm_mmu_page_role new_role)
4145 {
4146 	uint i;
4147 
4148 	if (is_root_usable(&mmu->root, new_pgd, new_role))
4149 		return true;
4150 
4151 	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
4152 		/*
4153 		 * The swaps end up rotating the cache like this:
4154 		 *   C   0 1 2 3   (on entry to the function)
4155 		 *   0   C 1 2 3
4156 		 *   1   C 0 2 3
4157 		 *   2   C 0 1 3
4158 		 *   3   C 0 1 2   (on exit from the loop)
4159 		 */
4160 		swap(mmu->root, mmu->prev_roots[i]);
4161 		if (is_root_usable(&mmu->root, new_pgd, new_role))
4162 			return true;
4163 	}
4164 
4165 	kvm_mmu_free_roots(kvm, mmu, KVM_MMU_ROOT_CURRENT);
4166 	return false;
4167 }
4168 
4169 /*
4170  * Find out if a previously cached root matching the new pgd/role is available.
4171  * On entry, mmu->root is invalid.
4172  * If a matching root is found, it is assigned to kvm_mmu->root, the LRU entry
4173  * of the cache becomes invalid, and true is returned.
4174  * If no match is found, kvm_mmu->root is left invalid and false is returned.
4175  */
4176 static bool cached_root_find_without_current(struct kvm *kvm, struct kvm_mmu *mmu,
4177 					     gpa_t new_pgd,
4178 					     union kvm_mmu_page_role new_role)
4179 {
4180 	uint i;
4181 
4182 	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
4183 		if (is_root_usable(&mmu->prev_roots[i], new_pgd, new_role))
4184 			goto hit;
4185 
4186 	return false;
4187 
4188 hit:
4189 	swap(mmu->root, mmu->prev_roots[i]);
4190 	/* Bubble up the remaining roots.  */
4191 	for (; i < KVM_MMU_NUM_PREV_ROOTS - 1; i++)
4192 		mmu->prev_roots[i] = mmu->prev_roots[i + 1];
4193 	mmu->prev_roots[i].hpa = INVALID_PAGE;
4194 	return true;
4195 }
4196 
4197 static bool fast_pgd_switch(struct kvm *kvm, struct kvm_mmu *mmu,
4198 			    gpa_t new_pgd, union kvm_mmu_page_role new_role)
4199 {
4200 	/*
4201 	 * For now, limit the caching to 64-bit hosts+VMs in order to avoid
4202 	 * having to deal with PDPTEs. We may add support for 32-bit hosts/VMs
4203 	 * later if necessary.
4204 	 */
4205 	if (VALID_PAGE(mmu->root.hpa) && !to_shadow_page(mmu->root.hpa))
4206 		kvm_mmu_free_roots(kvm, mmu, KVM_MMU_ROOT_CURRENT);
4207 
4208 	if (VALID_PAGE(mmu->root.hpa))
4209 		return cached_root_find_and_keep_current(kvm, mmu, new_pgd, new_role);
4210 	else
4211 		return cached_root_find_without_current(kvm, mmu, new_pgd, new_role);
4212 }
4213 
4214 void kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd)
4215 {
4216 	struct kvm_mmu *mmu = vcpu->arch.mmu;
4217 	union kvm_mmu_page_role new_role = mmu->mmu_role.base;
4218 
4219 	if (!fast_pgd_switch(vcpu->kvm, mmu, new_pgd, new_role)) {
4220 		/* kvm_mmu_ensure_valid_pgd will set up a new root.  */
4221 		return;
4222 	}
4223 
4224 	/*
4225 	 * It's possible that the cached previous root page is obsolete because
4226 	 * of a change in the MMU generation number. However, changing the
4227 	 * generation number is accompanied by KVM_REQ_MMU_FREE_OBSOLETE_ROOTS,
4228 	 * which will free the root set here and allocate a new one.
4229 	 */
4230 	kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu);
4231 
4232 	if (force_flush_and_sync_on_reuse) {
4233 		kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
4234 		kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
4235 	}
4236 
4237 	/*
4238 	 * The last MMIO access's GVA and GPA are cached in the VCPU. When
4239 	 * switching to a new CR3, that GVA->GPA mapping may no longer be
4240 	 * valid. So clear any cached MMIO info even when we don't need to sync
4241 	 * the shadow page tables.
4242 	 */
4243 	vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
4244 
4245 	/*
4246 	 * If this is a direct root page, it doesn't have a write flooding
4247 	 * count. Otherwise, clear the write flooding count.
4248 	 */
4249 	if (!new_role.direct)
4250 		__clear_sp_write_flooding_count(
4251 				to_shadow_page(vcpu->arch.mmu->root.hpa));
4252 }
4253 EXPORT_SYMBOL_GPL(kvm_mmu_new_pgd);
4254 
4255 static unsigned long get_cr3(struct kvm_vcpu *vcpu)
4256 {
4257 	return kvm_read_cr3(vcpu);
4258 }
4259 
4260 static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
4261 			   unsigned int access)
4262 {
4263 	if (unlikely(is_mmio_spte(*sptep))) {
4264 		if (gfn != get_mmio_spte_gfn(*sptep)) {
4265 			mmu_spte_clear_no_track(sptep);
4266 			return true;
4267 		}
4268 
4269 		mark_mmio_spte(vcpu, sptep, gfn, access);
4270 		return true;
4271 	}
4272 
4273 	return false;
4274 }
4275 
4276 #define PTTYPE_EPT 18 /* arbitrary */
4277 #define PTTYPE PTTYPE_EPT
4278 #include "paging_tmpl.h"
4279 #undef PTTYPE
4280 
4281 #define PTTYPE 64
4282 #include "paging_tmpl.h"
4283 #undef PTTYPE
4284 
4285 #define PTTYPE 32
4286 #include "paging_tmpl.h"
4287 #undef PTTYPE
4288 
4289 static void
4290 __reset_rsvds_bits_mask(struct rsvd_bits_validate *rsvd_check,
4291 			u64 pa_bits_rsvd, int level, bool nx, bool gbpages,
4292 			bool pse, bool amd)
4293 {
4294 	u64 gbpages_bit_rsvd = 0;
4295 	u64 nonleaf_bit8_rsvd = 0;
4296 	u64 high_bits_rsvd;
4297 
4298 	rsvd_check->bad_mt_xwr = 0;
4299 
4300 	if (!gbpages)
4301 		gbpages_bit_rsvd = rsvd_bits(7, 7);
4302 
4303 	if (level == PT32E_ROOT_LEVEL)
4304 		high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 62);
4305 	else
4306 		high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 51);
4307 
4308 	/* Note, NX doesn't exist in PDPTEs, this is handled below. */
4309 	if (!nx)
4310 		high_bits_rsvd |= rsvd_bits(63, 63);
4311 
4312 	/*
4313 	 * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
4314 	 * leaf entries) on AMD CPUs only.
4315 	 */
4316 	if (amd)
4317 		nonleaf_bit8_rsvd = rsvd_bits(8, 8);
4318 
4319 	switch (level) {
4320 	case PT32_ROOT_LEVEL:
4321 		/* no rsvd bits for 2 level 4K page table entries */
4322 		rsvd_check->rsvd_bits_mask[0][1] = 0;
4323 		rsvd_check->rsvd_bits_mask[0][0] = 0;
4324 		rsvd_check->rsvd_bits_mask[1][0] =
4325 			rsvd_check->rsvd_bits_mask[0][0];
4326 
4327 		if (!pse) {
4328 			rsvd_check->rsvd_bits_mask[1][1] = 0;
4329 			break;
4330 		}
4331 
4332 		if (is_cpuid_PSE36())
4333 			/* 36bits PSE 4MB page */
4334 			rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
4335 		else
4336 			/* 32 bits PSE 4MB page */
4337 			rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
4338 		break;
4339 	case PT32E_ROOT_LEVEL:
4340 		rsvd_check->rsvd_bits_mask[0][2] = rsvd_bits(63, 63) |
4341 						   high_bits_rsvd |
4342 						   rsvd_bits(5, 8) |
4343 						   rsvd_bits(1, 2);	/* PDPTE */
4344 		rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd;	/* PDE */
4345 		rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd;	/* PTE */
4346 		rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd |
4347 						   rsvd_bits(13, 20);	/* large page */
4348 		rsvd_check->rsvd_bits_mask[1][0] =
4349 			rsvd_check->rsvd_bits_mask[0][0];
4350 		break;
4351 	case PT64_ROOT_5LEVEL:
4352 		rsvd_check->rsvd_bits_mask[0][4] = high_bits_rsvd |
4353 						   nonleaf_bit8_rsvd |
4354 						   rsvd_bits(7, 7);
4355 		rsvd_check->rsvd_bits_mask[1][4] =
4356 			rsvd_check->rsvd_bits_mask[0][4];
4357 		fallthrough;
4358 	case PT64_ROOT_4LEVEL:
4359 		rsvd_check->rsvd_bits_mask[0][3] = high_bits_rsvd |
4360 						   nonleaf_bit8_rsvd |
4361 						   rsvd_bits(7, 7);
4362 		rsvd_check->rsvd_bits_mask[0][2] = high_bits_rsvd |
4363 						   gbpages_bit_rsvd;
4364 		rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd;
4365 		rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd;
4366 		rsvd_check->rsvd_bits_mask[1][3] =
4367 			rsvd_check->rsvd_bits_mask[0][3];
4368 		rsvd_check->rsvd_bits_mask[1][2] = high_bits_rsvd |
4369 						   gbpages_bit_rsvd |
4370 						   rsvd_bits(13, 29);
4371 		rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd |
4372 						   rsvd_bits(13, 20); /* large page */
4373 		rsvd_check->rsvd_bits_mask[1][0] =
4374 			rsvd_check->rsvd_bits_mask[0][0];
4375 		break;
4376 	}
4377 }
4378 
4379 static bool guest_can_use_gbpages(struct kvm_vcpu *vcpu)
4380 {
4381 	/*
4382 	 * If TDP is enabled, let the guest use GBPAGES if they're supported in
4383 	 * hardware.  The hardware page walker doesn't let KVM disable GBPAGES,
4384 	 * i.e. won't treat them as reserved, and KVM doesn't redo the GVA->GPA
4385 	 * walk for performance and complexity reasons.  Not to mention KVM
4386 	 * _can't_ solve the problem because GVA->GPA walks aren't visible to
4387 	 * KVM once a TDP translation is installed.  Mimic hardware behavior so
4388 	 * that KVM's is at least consistent, i.e. doesn't randomly inject #PF.
4389 	 */
4390 	return tdp_enabled ? boot_cpu_has(X86_FEATURE_GBPAGES) :
4391 			     guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES);
4392 }
4393 
4394 static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
4395 				  struct kvm_mmu *context)
4396 {
4397 	__reset_rsvds_bits_mask(&context->guest_rsvd_check,
4398 				vcpu->arch.reserved_gpa_bits,
4399 				context->root_level, is_efer_nx(context),
4400 				guest_can_use_gbpages(vcpu),
4401 				is_cr4_pse(context),
4402 				guest_cpuid_is_amd_or_hygon(vcpu));
4403 }
4404 
4405 static void
4406 __reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check,
4407 			    u64 pa_bits_rsvd, bool execonly, int huge_page_level)
4408 {
4409 	u64 high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 51);
4410 	u64 large_1g_rsvd = 0, large_2m_rsvd = 0;
4411 	u64 bad_mt_xwr;
4412 
4413 	if (huge_page_level < PG_LEVEL_1G)
4414 		large_1g_rsvd = rsvd_bits(7, 7);
4415 	if (huge_page_level < PG_LEVEL_2M)
4416 		large_2m_rsvd = rsvd_bits(7, 7);
4417 
4418 	rsvd_check->rsvd_bits_mask[0][4] = high_bits_rsvd | rsvd_bits(3, 7);
4419 	rsvd_check->rsvd_bits_mask[0][3] = high_bits_rsvd | rsvd_bits(3, 7);
4420 	rsvd_check->rsvd_bits_mask[0][2] = high_bits_rsvd | rsvd_bits(3, 6) | large_1g_rsvd;
4421 	rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd | rsvd_bits(3, 6) | large_2m_rsvd;
4422 	rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd;
4423 
4424 	/* large page */
4425 	rsvd_check->rsvd_bits_mask[1][4] = rsvd_check->rsvd_bits_mask[0][4];
4426 	rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3];
4427 	rsvd_check->rsvd_bits_mask[1][2] = high_bits_rsvd | rsvd_bits(12, 29) | large_1g_rsvd;
4428 	rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd | rsvd_bits(12, 20) | large_2m_rsvd;
4429 	rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0];
4430 
4431 	bad_mt_xwr = 0xFFull << (2 * 8);	/* bits 3..5 must not be 2 */
4432 	bad_mt_xwr |= 0xFFull << (3 * 8);	/* bits 3..5 must not be 3 */
4433 	bad_mt_xwr |= 0xFFull << (7 * 8);	/* bits 3..5 must not be 7 */
4434 	bad_mt_xwr |= REPEAT_BYTE(1ull << 2);	/* bits 0..2 must not be 010 */
4435 	bad_mt_xwr |= REPEAT_BYTE(1ull << 6);	/* bits 0..2 must not be 110 */
4436 	if (!execonly) {
4437 		/* bits 0..2 must not be 100 unless VMX capabilities allow it */
4438 		bad_mt_xwr |= REPEAT_BYTE(1ull << 4);
4439 	}
4440 	rsvd_check->bad_mt_xwr = bad_mt_xwr;
4441 }
4442 
4443 static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
4444 		struct kvm_mmu *context, bool execonly, int huge_page_level)
4445 {
4446 	__reset_rsvds_bits_mask_ept(&context->guest_rsvd_check,
4447 				    vcpu->arch.reserved_gpa_bits, execonly,
4448 				    huge_page_level);
4449 }
4450 
4451 static inline u64 reserved_hpa_bits(void)
4452 {
4453 	return rsvd_bits(shadow_phys_bits, 63);
4454 }
4455 
4456 /*
4457  * the page table on host is the shadow page table for the page
4458  * table in guest or amd nested guest, its mmu features completely
4459  * follow the features in guest.
4460  */
4461 static void reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4462 					struct kvm_mmu *context)
4463 {
4464 	/*
4465 	 * KVM uses NX when TDP is disabled to handle a variety of scenarios,
4466 	 * notably for huge SPTEs if iTLB multi-hit mitigation is enabled and
4467 	 * to generate correct permissions for CR0.WP=0/CR4.SMEP=1/EFER.NX=0.
4468 	 * The iTLB multi-hit workaround can be toggled at any time, so assume
4469 	 * NX can be used by any non-nested shadow MMU to avoid having to reset
4470 	 * MMU contexts.  Note, KVM forces EFER.NX=1 when TDP is disabled.
4471 	 */
4472 	bool uses_nx = is_efer_nx(context) || !tdp_enabled;
4473 
4474 	/* @amd adds a check on bit of SPTEs, which KVM shouldn't use anyways. */
4475 	bool is_amd = true;
4476 	/* KVM doesn't use 2-level page tables for the shadow MMU. */
4477 	bool is_pse = false;
4478 	struct rsvd_bits_validate *shadow_zero_check;
4479 	int i;
4480 
4481 	WARN_ON_ONCE(context->shadow_root_level < PT32E_ROOT_LEVEL);
4482 
4483 	shadow_zero_check = &context->shadow_zero_check;
4484 	__reset_rsvds_bits_mask(shadow_zero_check, reserved_hpa_bits(),
4485 				context->shadow_root_level, uses_nx,
4486 				guest_can_use_gbpages(vcpu), is_pse, is_amd);
4487 
4488 	if (!shadow_me_mask)
4489 		return;
4490 
4491 	for (i = context->shadow_root_level; --i >= 0;) {
4492 		shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
4493 		shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
4494 	}
4495 
4496 }
4497 
4498 static inline bool boot_cpu_is_amd(void)
4499 {
4500 	WARN_ON_ONCE(!tdp_enabled);
4501 	return shadow_x_mask == 0;
4502 }
4503 
4504 /*
4505  * the direct page table on host, use as much mmu features as
4506  * possible, however, kvm currently does not do execution-protection.
4507  */
4508 static void
4509 reset_tdp_shadow_zero_bits_mask(struct kvm_mmu *context)
4510 {
4511 	struct rsvd_bits_validate *shadow_zero_check;
4512 	int i;
4513 
4514 	shadow_zero_check = &context->shadow_zero_check;
4515 
4516 	if (boot_cpu_is_amd())
4517 		__reset_rsvds_bits_mask(shadow_zero_check, reserved_hpa_bits(),
4518 					context->shadow_root_level, false,
4519 					boot_cpu_has(X86_FEATURE_GBPAGES),
4520 					false, true);
4521 	else
4522 		__reset_rsvds_bits_mask_ept(shadow_zero_check,
4523 					    reserved_hpa_bits(), false,
4524 					    max_huge_page_level);
4525 
4526 	if (!shadow_me_mask)
4527 		return;
4528 
4529 	for (i = context->shadow_root_level; --i >= 0;) {
4530 		shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
4531 		shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
4532 	}
4533 }
4534 
4535 /*
4536  * as the comments in reset_shadow_zero_bits_mask() except it
4537  * is the shadow page table for intel nested guest.
4538  */
4539 static void
4540 reset_ept_shadow_zero_bits_mask(struct kvm_mmu *context, bool execonly)
4541 {
4542 	__reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
4543 				    reserved_hpa_bits(), execonly,
4544 				    max_huge_page_level);
4545 }
4546 
4547 #define BYTE_MASK(access) \
4548 	((1 & (access) ? 2 : 0) | \
4549 	 (2 & (access) ? 4 : 0) | \
4550 	 (3 & (access) ? 8 : 0) | \
4551 	 (4 & (access) ? 16 : 0) | \
4552 	 (5 & (access) ? 32 : 0) | \
4553 	 (6 & (access) ? 64 : 0) | \
4554 	 (7 & (access) ? 128 : 0))
4555 
4556 
4557 static void update_permission_bitmask(struct kvm_mmu *mmu, bool ept)
4558 {
4559 	unsigned byte;
4560 
4561 	const u8 x = BYTE_MASK(ACC_EXEC_MASK);
4562 	const u8 w = BYTE_MASK(ACC_WRITE_MASK);
4563 	const u8 u = BYTE_MASK(ACC_USER_MASK);
4564 
4565 	bool cr4_smep = is_cr4_smep(mmu);
4566 	bool cr4_smap = is_cr4_smap(mmu);
4567 	bool cr0_wp = is_cr0_wp(mmu);
4568 	bool efer_nx = is_efer_nx(mmu);
4569 
4570 	for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
4571 		unsigned pfec = byte << 1;
4572 
4573 		/*
4574 		 * Each "*f" variable has a 1 bit for each UWX value
4575 		 * that causes a fault with the given PFEC.
4576 		 */
4577 
4578 		/* Faults from writes to non-writable pages */
4579 		u8 wf = (pfec & PFERR_WRITE_MASK) ? (u8)~w : 0;
4580 		/* Faults from user mode accesses to supervisor pages */
4581 		u8 uf = (pfec & PFERR_USER_MASK) ? (u8)~u : 0;
4582 		/* Faults from fetches of non-executable pages*/
4583 		u8 ff = (pfec & PFERR_FETCH_MASK) ? (u8)~x : 0;
4584 		/* Faults from kernel mode fetches of user pages */
4585 		u8 smepf = 0;
4586 		/* Faults from kernel mode accesses of user pages */
4587 		u8 smapf = 0;
4588 
4589 		if (!ept) {
4590 			/* Faults from kernel mode accesses to user pages */
4591 			u8 kf = (pfec & PFERR_USER_MASK) ? 0 : u;
4592 
4593 			/* Not really needed: !nx will cause pte.nx to fault */
4594 			if (!efer_nx)
4595 				ff = 0;
4596 
4597 			/* Allow supervisor writes if !cr0.wp */
4598 			if (!cr0_wp)
4599 				wf = (pfec & PFERR_USER_MASK) ? wf : 0;
4600 
4601 			/* Disallow supervisor fetches of user code if cr4.smep */
4602 			if (cr4_smep)
4603 				smepf = (pfec & PFERR_FETCH_MASK) ? kf : 0;
4604 
4605 			/*
4606 			 * SMAP:kernel-mode data accesses from user-mode
4607 			 * mappings should fault. A fault is considered
4608 			 * as a SMAP violation if all of the following
4609 			 * conditions are true:
4610 			 *   - X86_CR4_SMAP is set in CR4
4611 			 *   - A user page is accessed
4612 			 *   - The access is not a fetch
4613 			 *   - The access is supervisor mode
4614 			 *   - If implicit supervisor access or X86_EFLAGS_AC is clear
4615 			 *
4616 			 * Here, we cover the first four conditions.
4617 			 * The fifth is computed dynamically in permission_fault();
4618 			 * PFERR_RSVD_MASK bit will be set in PFEC if the access is
4619 			 * *not* subject to SMAP restrictions.
4620 			 */
4621 			if (cr4_smap)
4622 				smapf = (pfec & (PFERR_RSVD_MASK|PFERR_FETCH_MASK)) ? 0 : kf;
4623 		}
4624 
4625 		mmu->permissions[byte] = ff | uf | wf | smepf | smapf;
4626 	}
4627 }
4628 
4629 /*
4630 * PKU is an additional mechanism by which the paging controls access to
4631 * user-mode addresses based on the value in the PKRU register.  Protection
4632 * key violations are reported through a bit in the page fault error code.
4633 * Unlike other bits of the error code, the PK bit is not known at the
4634 * call site of e.g. gva_to_gpa; it must be computed directly in
4635 * permission_fault based on two bits of PKRU, on some machine state (CR4,
4636 * CR0, EFER, CPL), and on other bits of the error code and the page tables.
4637 *
4638 * In particular the following conditions come from the error code, the
4639 * page tables and the machine state:
4640 * - PK is always zero unless CR4.PKE=1 and EFER.LMA=1
4641 * - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch)
4642 * - PK is always zero if U=0 in the page tables
4643 * - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access.
4644 *
4645 * The PKRU bitmask caches the result of these four conditions.  The error
4646 * code (minus the P bit) and the page table's U bit form an index into the
4647 * PKRU bitmask.  Two bits of the PKRU bitmask are then extracted and ANDed
4648 * with the two bits of the PKRU register corresponding to the protection key.
4649 * For the first three conditions above the bits will be 00, thus masking
4650 * away both AD and WD.  For all reads or if the last condition holds, WD
4651 * only will be masked away.
4652 */
4653 static void update_pkru_bitmask(struct kvm_mmu *mmu)
4654 {
4655 	unsigned bit;
4656 	bool wp;
4657 
4658 	mmu->pkru_mask = 0;
4659 
4660 	if (!is_cr4_pke(mmu))
4661 		return;
4662 
4663 	wp = is_cr0_wp(mmu);
4664 
4665 	for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) {
4666 		unsigned pfec, pkey_bits;
4667 		bool check_pkey, check_write, ff, uf, wf, pte_user;
4668 
4669 		pfec = bit << 1;
4670 		ff = pfec & PFERR_FETCH_MASK;
4671 		uf = pfec & PFERR_USER_MASK;
4672 		wf = pfec & PFERR_WRITE_MASK;
4673 
4674 		/* PFEC.RSVD is replaced by ACC_USER_MASK. */
4675 		pte_user = pfec & PFERR_RSVD_MASK;
4676 
4677 		/*
4678 		 * Only need to check the access which is not an
4679 		 * instruction fetch and is to a user page.
4680 		 */
4681 		check_pkey = (!ff && pte_user);
4682 		/*
4683 		 * write access is controlled by PKRU if it is a
4684 		 * user access or CR0.WP = 1.
4685 		 */
4686 		check_write = check_pkey && wf && (uf || wp);
4687 
4688 		/* PKRU.AD stops both read and write access. */
4689 		pkey_bits = !!check_pkey;
4690 		/* PKRU.WD stops write access. */
4691 		pkey_bits |= (!!check_write) << 1;
4692 
4693 		mmu->pkru_mask |= (pkey_bits & 3) << pfec;
4694 	}
4695 }
4696 
4697 static void reset_guest_paging_metadata(struct kvm_vcpu *vcpu,
4698 					struct kvm_mmu *mmu)
4699 {
4700 	if (!is_cr0_pg(mmu))
4701 		return;
4702 
4703 	reset_rsvds_bits_mask(vcpu, mmu);
4704 	update_permission_bitmask(mmu, false);
4705 	update_pkru_bitmask(mmu);
4706 }
4707 
4708 static void paging64_init_context(struct kvm_mmu *context)
4709 {
4710 	context->page_fault = paging64_page_fault;
4711 	context->gva_to_gpa = paging64_gva_to_gpa;
4712 	context->sync_page = paging64_sync_page;
4713 	context->invlpg = paging64_invlpg;
4714 	context->direct_map = false;
4715 }
4716 
4717 static void paging32_init_context(struct kvm_mmu *context)
4718 {
4719 	context->page_fault = paging32_page_fault;
4720 	context->gva_to_gpa = paging32_gva_to_gpa;
4721 	context->sync_page = paging32_sync_page;
4722 	context->invlpg = paging32_invlpg;
4723 	context->direct_map = false;
4724 }
4725 
4726 static union kvm_mmu_extended_role kvm_calc_mmu_role_ext(struct kvm_vcpu *vcpu,
4727 							 struct kvm_mmu_role_regs *regs)
4728 {
4729 	union kvm_mmu_extended_role ext = {0};
4730 
4731 	if (____is_cr0_pg(regs)) {
4732 		ext.cr0_pg = 1;
4733 		ext.cr4_pae = ____is_cr4_pae(regs);
4734 		ext.cr4_smep = ____is_cr4_smep(regs);
4735 		ext.cr4_smap = ____is_cr4_smap(regs);
4736 		ext.cr4_pse = ____is_cr4_pse(regs);
4737 
4738 		/* PKEY and LA57 are active iff long mode is active. */
4739 		ext.cr4_pke = ____is_efer_lma(regs) && ____is_cr4_pke(regs);
4740 		ext.cr4_la57 = ____is_efer_lma(regs) && ____is_cr4_la57(regs);
4741 		ext.efer_lma = ____is_efer_lma(regs);
4742 	}
4743 
4744 	ext.valid = 1;
4745 
4746 	return ext;
4747 }
4748 
4749 static union kvm_mmu_role kvm_calc_mmu_role_common(struct kvm_vcpu *vcpu,
4750 						   struct kvm_mmu_role_regs *regs,
4751 						   bool base_only)
4752 {
4753 	union kvm_mmu_role role = {0};
4754 
4755 	role.base.access = ACC_ALL;
4756 	if (____is_cr0_pg(regs)) {
4757 		role.base.efer_nx = ____is_efer_nx(regs);
4758 		role.base.cr0_wp = ____is_cr0_wp(regs);
4759 	}
4760 	role.base.smm = is_smm(vcpu);
4761 	role.base.guest_mode = is_guest_mode(vcpu);
4762 
4763 	if (base_only)
4764 		return role;
4765 
4766 	role.ext = kvm_calc_mmu_role_ext(vcpu, regs);
4767 
4768 	return role;
4769 }
4770 
4771 static inline int kvm_mmu_get_tdp_level(struct kvm_vcpu *vcpu)
4772 {
4773 	/* tdp_root_level is architecture forced level, use it if nonzero */
4774 	if (tdp_root_level)
4775 		return tdp_root_level;
4776 
4777 	/* Use 5-level TDP if and only if it's useful/necessary. */
4778 	if (max_tdp_level == 5 && cpuid_maxphyaddr(vcpu) <= 48)
4779 		return 4;
4780 
4781 	return max_tdp_level;
4782 }
4783 
4784 static union kvm_mmu_role
4785 kvm_calc_tdp_mmu_root_page_role(struct kvm_vcpu *vcpu,
4786 				struct kvm_mmu_role_regs *regs, bool base_only)
4787 {
4788 	union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, regs, base_only);
4789 
4790 	role.base.ad_disabled = (shadow_accessed_mask == 0);
4791 	role.base.level = kvm_mmu_get_tdp_level(vcpu);
4792 	role.base.direct = true;
4793 	role.base.has_4_byte_gpte = false;
4794 
4795 	return role;
4796 }
4797 
4798 static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
4799 {
4800 	struct kvm_mmu *context = &vcpu->arch.root_mmu;
4801 	struct kvm_mmu_role_regs regs = vcpu_to_role_regs(vcpu);
4802 	union kvm_mmu_role new_role =
4803 		kvm_calc_tdp_mmu_root_page_role(vcpu, &regs, false);
4804 
4805 	if (new_role.as_u64 == context->mmu_role.as_u64)
4806 		return;
4807 
4808 	context->mmu_role.as_u64 = new_role.as_u64;
4809 	context->page_fault = kvm_tdp_page_fault;
4810 	context->sync_page = nonpaging_sync_page;
4811 	context->invlpg = NULL;
4812 	context->shadow_root_level = kvm_mmu_get_tdp_level(vcpu);
4813 	context->direct_map = true;
4814 	context->get_guest_pgd = get_cr3;
4815 	context->get_pdptr = kvm_pdptr_read;
4816 	context->inject_page_fault = kvm_inject_page_fault;
4817 	context->root_level = role_regs_to_root_level(&regs);
4818 
4819 	if (!is_cr0_pg(context))
4820 		context->gva_to_gpa = nonpaging_gva_to_gpa;
4821 	else if (is_cr4_pae(context))
4822 		context->gva_to_gpa = paging64_gva_to_gpa;
4823 	else
4824 		context->gva_to_gpa = paging32_gva_to_gpa;
4825 
4826 	reset_guest_paging_metadata(vcpu, context);
4827 	reset_tdp_shadow_zero_bits_mask(context);
4828 }
4829 
4830 static union kvm_mmu_role
4831 kvm_calc_shadow_root_page_role_common(struct kvm_vcpu *vcpu,
4832 				      struct kvm_mmu_role_regs *regs, bool base_only)
4833 {
4834 	union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, regs, base_only);
4835 
4836 	role.base.smep_andnot_wp = role.ext.cr4_smep && !____is_cr0_wp(regs);
4837 	role.base.smap_andnot_wp = role.ext.cr4_smap && !____is_cr0_wp(regs);
4838 	role.base.has_4_byte_gpte = ____is_cr0_pg(regs) && !____is_cr4_pae(regs);
4839 
4840 	return role;
4841 }
4842 
4843 static union kvm_mmu_role
4844 kvm_calc_shadow_mmu_root_page_role(struct kvm_vcpu *vcpu,
4845 				   struct kvm_mmu_role_regs *regs, bool base_only)
4846 {
4847 	union kvm_mmu_role role =
4848 		kvm_calc_shadow_root_page_role_common(vcpu, regs, base_only);
4849 
4850 	role.base.direct = !____is_cr0_pg(regs);
4851 
4852 	if (!____is_efer_lma(regs))
4853 		role.base.level = PT32E_ROOT_LEVEL;
4854 	else if (____is_cr4_la57(regs))
4855 		role.base.level = PT64_ROOT_5LEVEL;
4856 	else
4857 		role.base.level = PT64_ROOT_4LEVEL;
4858 
4859 	return role;
4860 }
4861 
4862 static void shadow_mmu_init_context(struct kvm_vcpu *vcpu, struct kvm_mmu *context,
4863 				    struct kvm_mmu_role_regs *regs,
4864 				    union kvm_mmu_role new_role)
4865 {
4866 	if (new_role.as_u64 == context->mmu_role.as_u64)
4867 		return;
4868 
4869 	context->mmu_role.as_u64 = new_role.as_u64;
4870 
4871 	if (!is_cr0_pg(context))
4872 		nonpaging_init_context(context);
4873 	else if (is_cr4_pae(context))
4874 		paging64_init_context(context);
4875 	else
4876 		paging32_init_context(context);
4877 	context->root_level = role_regs_to_root_level(regs);
4878 
4879 	reset_guest_paging_metadata(vcpu, context);
4880 	context->shadow_root_level = new_role.base.level;
4881 
4882 	reset_shadow_zero_bits_mask(vcpu, context);
4883 }
4884 
4885 static void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu,
4886 				struct kvm_mmu_role_regs *regs)
4887 {
4888 	struct kvm_mmu *context = &vcpu->arch.root_mmu;
4889 	union kvm_mmu_role new_role =
4890 		kvm_calc_shadow_mmu_root_page_role(vcpu, regs, false);
4891 
4892 	shadow_mmu_init_context(vcpu, context, regs, new_role);
4893 }
4894 
4895 static union kvm_mmu_role
4896 kvm_calc_shadow_npt_root_page_role(struct kvm_vcpu *vcpu,
4897 				   struct kvm_mmu_role_regs *regs)
4898 {
4899 	union kvm_mmu_role role =
4900 		kvm_calc_shadow_root_page_role_common(vcpu, regs, false);
4901 
4902 	role.base.direct = false;
4903 	role.base.level = kvm_mmu_get_tdp_level(vcpu);
4904 
4905 	return role;
4906 }
4907 
4908 void kvm_init_shadow_npt_mmu(struct kvm_vcpu *vcpu, unsigned long cr0,
4909 			     unsigned long cr4, u64 efer, gpa_t nested_cr3)
4910 {
4911 	struct kvm_mmu *context = &vcpu->arch.guest_mmu;
4912 	struct kvm_mmu_role_regs regs = {
4913 		.cr0 = cr0,
4914 		.cr4 = cr4 & ~X86_CR4_PKE,
4915 		.efer = efer,
4916 	};
4917 	union kvm_mmu_role new_role;
4918 
4919 	new_role = kvm_calc_shadow_npt_root_page_role(vcpu, &regs);
4920 
4921 	shadow_mmu_init_context(vcpu, context, &regs, new_role);
4922 	kvm_mmu_new_pgd(vcpu, nested_cr3);
4923 }
4924 EXPORT_SYMBOL_GPL(kvm_init_shadow_npt_mmu);
4925 
4926 static union kvm_mmu_role
4927 kvm_calc_shadow_ept_root_page_role(struct kvm_vcpu *vcpu, bool accessed_dirty,
4928 				   bool execonly, u8 level)
4929 {
4930 	union kvm_mmu_role role = {0};
4931 
4932 	/* SMM flag is inherited from root_mmu */
4933 	role.base.smm = vcpu->arch.root_mmu.mmu_role.base.smm;
4934 
4935 	role.base.level = level;
4936 	role.base.has_4_byte_gpte = false;
4937 	role.base.direct = false;
4938 	role.base.ad_disabled = !accessed_dirty;
4939 	role.base.guest_mode = true;
4940 	role.base.access = ACC_ALL;
4941 
4942 	/* EPT, and thus nested EPT, does not consume CR0, CR4, nor EFER. */
4943 	role.ext.word = 0;
4944 	role.ext.execonly = execonly;
4945 	role.ext.valid = 1;
4946 
4947 	return role;
4948 }
4949 
4950 void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly,
4951 			     int huge_page_level, bool accessed_dirty,
4952 			     gpa_t new_eptp)
4953 {
4954 	struct kvm_mmu *context = &vcpu->arch.guest_mmu;
4955 	u8 level = vmx_eptp_page_walk_level(new_eptp);
4956 	union kvm_mmu_role new_role =
4957 		kvm_calc_shadow_ept_root_page_role(vcpu, accessed_dirty,
4958 						   execonly, level);
4959 
4960 	if (new_role.as_u64 != context->mmu_role.as_u64) {
4961 		context->mmu_role.as_u64 = new_role.as_u64;
4962 
4963 		context->shadow_root_level = level;
4964 
4965 		context->ept_ad = accessed_dirty;
4966 		context->page_fault = ept_page_fault;
4967 		context->gva_to_gpa = ept_gva_to_gpa;
4968 		context->sync_page = ept_sync_page;
4969 		context->invlpg = ept_invlpg;
4970 		context->root_level = level;
4971 		context->direct_map = false;
4972 		update_permission_bitmask(context, true);
4973 		context->pkru_mask = 0;
4974 		reset_rsvds_bits_mask_ept(vcpu, context, execonly, huge_page_level);
4975 		reset_ept_shadow_zero_bits_mask(context, execonly);
4976 	}
4977 
4978 	kvm_mmu_new_pgd(vcpu, new_eptp);
4979 }
4980 EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);
4981 
4982 static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
4983 {
4984 	struct kvm_mmu *context = &vcpu->arch.root_mmu;
4985 	struct kvm_mmu_role_regs regs = vcpu_to_role_regs(vcpu);
4986 
4987 	kvm_init_shadow_mmu(vcpu, &regs);
4988 
4989 	context->get_guest_pgd     = get_cr3;
4990 	context->get_pdptr         = kvm_pdptr_read;
4991 	context->inject_page_fault = kvm_inject_page_fault;
4992 }
4993 
4994 static union kvm_mmu_role
4995 kvm_calc_nested_mmu_role(struct kvm_vcpu *vcpu, struct kvm_mmu_role_regs *regs)
4996 {
4997 	union kvm_mmu_role role;
4998 
4999 	role = kvm_calc_shadow_root_page_role_common(vcpu, regs, false);
5000 
5001 	/*
5002 	 * Nested MMUs are used only for walking L2's gva->gpa, they never have
5003 	 * shadow pages of their own and so "direct" has no meaning.   Set it
5004 	 * to "true" to try to detect bogus usage of the nested MMU.
5005 	 */
5006 	role.base.direct = true;
5007 	role.base.level = role_regs_to_root_level(regs);
5008 	return role;
5009 }
5010 
5011 static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
5012 {
5013 	struct kvm_mmu_role_regs regs = vcpu_to_role_regs(vcpu);
5014 	union kvm_mmu_role new_role = kvm_calc_nested_mmu_role(vcpu, &regs);
5015 	struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
5016 
5017 	if (new_role.as_u64 == g_context->mmu_role.as_u64)
5018 		return;
5019 
5020 	g_context->mmu_role.as_u64 = new_role.as_u64;
5021 	g_context->get_guest_pgd     = get_cr3;
5022 	g_context->get_pdptr         = kvm_pdptr_read;
5023 	g_context->inject_page_fault = kvm_inject_page_fault;
5024 	g_context->root_level        = new_role.base.level;
5025 
5026 	/*
5027 	 * L2 page tables are never shadowed, so there is no need to sync
5028 	 * SPTEs.
5029 	 */
5030 	g_context->invlpg            = NULL;
5031 
5032 	/*
5033 	 * Note that arch.mmu->gva_to_gpa translates l2_gpa to l1_gpa using
5034 	 * L1's nested page tables (e.g. EPT12). The nested translation
5035 	 * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using
5036 	 * L2's page tables as the first level of translation and L1's
5037 	 * nested page tables as the second level of translation. Basically
5038 	 * the gva_to_gpa functions between mmu and nested_mmu are swapped.
5039 	 */
5040 	if (!is_paging(vcpu))
5041 		g_context->gva_to_gpa = nonpaging_gva_to_gpa;
5042 	else if (is_long_mode(vcpu))
5043 		g_context->gva_to_gpa = paging64_gva_to_gpa;
5044 	else if (is_pae(vcpu))
5045 		g_context->gva_to_gpa = paging64_gva_to_gpa;
5046 	else
5047 		g_context->gva_to_gpa = paging32_gva_to_gpa;
5048 
5049 	reset_guest_paging_metadata(vcpu, g_context);
5050 }
5051 
5052 void kvm_init_mmu(struct kvm_vcpu *vcpu)
5053 {
5054 	if (mmu_is_nested(vcpu))
5055 		init_kvm_nested_mmu(vcpu);
5056 	else if (tdp_enabled)
5057 		init_kvm_tdp_mmu(vcpu);
5058 	else
5059 		init_kvm_softmmu(vcpu);
5060 }
5061 EXPORT_SYMBOL_GPL(kvm_init_mmu);
5062 
5063 void kvm_mmu_after_set_cpuid(struct kvm_vcpu *vcpu)
5064 {
5065 	/*
5066 	 * Invalidate all MMU roles to force them to reinitialize as CPUID
5067 	 * information is factored into reserved bit calculations.
5068 	 *
5069 	 * Correctly handling multiple vCPU models with respect to paging and
5070 	 * physical address properties) in a single VM would require tracking
5071 	 * all relevant CPUID information in kvm_mmu_page_role. That is very
5072 	 * undesirable as it would increase the memory requirements for
5073 	 * gfn_track (see struct kvm_mmu_page_role comments).  For now that
5074 	 * problem is swept under the rug; KVM's CPUID API is horrific and
5075 	 * it's all but impossible to solve it without introducing a new API.
5076 	 */
5077 	vcpu->arch.root_mmu.mmu_role.ext.valid = 0;
5078 	vcpu->arch.guest_mmu.mmu_role.ext.valid = 0;
5079 	vcpu->arch.nested_mmu.mmu_role.ext.valid = 0;
5080 	kvm_mmu_reset_context(vcpu);
5081 
5082 	/*
5083 	 * Changing guest CPUID after KVM_RUN is forbidden, see the comment in
5084 	 * kvm_arch_vcpu_ioctl().
5085 	 */
5086 	KVM_BUG_ON(vcpu->arch.last_vmentry_cpu != -1, vcpu->kvm);
5087 }
5088 
5089 void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
5090 {
5091 	kvm_mmu_unload(vcpu);
5092 	kvm_init_mmu(vcpu);
5093 }
5094 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
5095 
5096 int kvm_mmu_load(struct kvm_vcpu *vcpu)
5097 {
5098 	int r;
5099 
5100 	r = mmu_topup_memory_caches(vcpu, !vcpu->arch.mmu->direct_map);
5101 	if (r)
5102 		goto out;
5103 	r = mmu_alloc_special_roots(vcpu);
5104 	if (r)
5105 		goto out;
5106 	if (vcpu->arch.mmu->direct_map)
5107 		r = mmu_alloc_direct_roots(vcpu);
5108 	else
5109 		r = mmu_alloc_shadow_roots(vcpu);
5110 	if (r)
5111 		goto out;
5112 
5113 	kvm_mmu_sync_roots(vcpu);
5114 
5115 	kvm_mmu_load_pgd(vcpu);
5116 
5117 	/*
5118 	 * Flush any TLB entries for the new root, the provenance of the root
5119 	 * is unknown.  Even if KVM ensures there are no stale TLB entries
5120 	 * for a freed root, in theory another hypervisor could have left
5121 	 * stale entries.  Flushing on alloc also allows KVM to skip the TLB
5122 	 * flush when freeing a root (see kvm_tdp_mmu_put_root()).
5123 	 */
5124 	static_call(kvm_x86_flush_tlb_current)(vcpu);
5125 out:
5126 	return r;
5127 }
5128 
5129 void kvm_mmu_unload(struct kvm_vcpu *vcpu)
5130 {
5131 	struct kvm *kvm = vcpu->kvm;
5132 
5133 	kvm_mmu_free_roots(kvm, &vcpu->arch.root_mmu, KVM_MMU_ROOTS_ALL);
5134 	WARN_ON(VALID_PAGE(vcpu->arch.root_mmu.root.hpa));
5135 	kvm_mmu_free_roots(kvm, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
5136 	WARN_ON(VALID_PAGE(vcpu->arch.guest_mmu.root.hpa));
5137 	vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
5138 }
5139 
5140 static bool is_obsolete_root(struct kvm *kvm, hpa_t root_hpa)
5141 {
5142 	struct kvm_mmu_page *sp;
5143 
5144 	if (!VALID_PAGE(root_hpa))
5145 		return false;
5146 
5147 	/*
5148 	 * When freeing obsolete roots, treat roots as obsolete if they don't
5149 	 * have an associated shadow page.  This does mean KVM will get false
5150 	 * positives and free roots that don't strictly need to be freed, but
5151 	 * such false positives are relatively rare:
5152 	 *
5153 	 *  (a) only PAE paging and nested NPT has roots without shadow pages
5154 	 *  (b) remote reloads due to a memslot update obsoletes _all_ roots
5155 	 *  (c) KVM doesn't track previous roots for PAE paging, and the guest
5156 	 *      is unlikely to zap an in-use PGD.
5157 	 */
5158 	sp = to_shadow_page(root_hpa);
5159 	return !sp || is_obsolete_sp(kvm, sp);
5160 }
5161 
5162 static void __kvm_mmu_free_obsolete_roots(struct kvm *kvm, struct kvm_mmu *mmu)
5163 {
5164 	unsigned long roots_to_free = 0;
5165 	int i;
5166 
5167 	if (is_obsolete_root(kvm, mmu->root.hpa))
5168 		roots_to_free |= KVM_MMU_ROOT_CURRENT;
5169 
5170 	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
5171 		if (is_obsolete_root(kvm, mmu->root.hpa))
5172 			roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
5173 	}
5174 
5175 	if (roots_to_free)
5176 		kvm_mmu_free_roots(kvm, mmu, roots_to_free);
5177 }
5178 
5179 void kvm_mmu_free_obsolete_roots(struct kvm_vcpu *vcpu)
5180 {
5181 	__kvm_mmu_free_obsolete_roots(vcpu->kvm, &vcpu->arch.root_mmu);
5182 	__kvm_mmu_free_obsolete_roots(vcpu->kvm, &vcpu->arch.guest_mmu);
5183 }
5184 
5185 static bool need_remote_flush(u64 old, u64 new)
5186 {
5187 	if (!is_shadow_present_pte(old))
5188 		return false;
5189 	if (!is_shadow_present_pte(new))
5190 		return true;
5191 	if ((old ^ new) & PT64_BASE_ADDR_MASK)
5192 		return true;
5193 	old ^= shadow_nx_mask;
5194 	new ^= shadow_nx_mask;
5195 	return (old & ~new & PT64_PERM_MASK) != 0;
5196 }
5197 
5198 static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
5199 				    int *bytes)
5200 {
5201 	u64 gentry = 0;
5202 	int r;
5203 
5204 	/*
5205 	 * Assume that the pte write on a page table of the same type
5206 	 * as the current vcpu paging mode since we update the sptes only
5207 	 * when they have the same mode.
5208 	 */
5209 	if (is_pae(vcpu) && *bytes == 4) {
5210 		/* Handle a 32-bit guest writing two halves of a 64-bit gpte */
5211 		*gpa &= ~(gpa_t)7;
5212 		*bytes = 8;
5213 	}
5214 
5215 	if (*bytes == 4 || *bytes == 8) {
5216 		r = kvm_vcpu_read_guest_atomic(vcpu, *gpa, &gentry, *bytes);
5217 		if (r)
5218 			gentry = 0;
5219 	}
5220 
5221 	return gentry;
5222 }
5223 
5224 /*
5225  * If we're seeing too many writes to a page, it may no longer be a page table,
5226  * or we may be forking, in which case it is better to unmap the page.
5227  */
5228 static bool detect_write_flooding(struct kvm_mmu_page *sp)
5229 {
5230 	/*
5231 	 * Skip write-flooding detected for the sp whose level is 1, because
5232 	 * it can become unsync, then the guest page is not write-protected.
5233 	 */
5234 	if (sp->role.level == PG_LEVEL_4K)
5235 		return false;
5236 
5237 	atomic_inc(&sp->write_flooding_count);
5238 	return atomic_read(&sp->write_flooding_count) >= 3;
5239 }
5240 
5241 /*
5242  * Misaligned accesses are too much trouble to fix up; also, they usually
5243  * indicate a page is not used as a page table.
5244  */
5245 static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
5246 				    int bytes)
5247 {
5248 	unsigned offset, pte_size, misaligned;
5249 
5250 	pgprintk("misaligned: gpa %llx bytes %d role %x\n",
5251 		 gpa, bytes, sp->role.word);
5252 
5253 	offset = offset_in_page(gpa);
5254 	pte_size = sp->role.has_4_byte_gpte ? 4 : 8;
5255 
5256 	/*
5257 	 * Sometimes, the OS only writes the last one bytes to update status
5258 	 * bits, for example, in linux, andb instruction is used in clear_bit().
5259 	 */
5260 	if (!(offset & (pte_size - 1)) && bytes == 1)
5261 		return false;
5262 
5263 	misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
5264 	misaligned |= bytes < 4;
5265 
5266 	return misaligned;
5267 }
5268 
5269 static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
5270 {
5271 	unsigned page_offset, quadrant;
5272 	u64 *spte;
5273 	int level;
5274 
5275 	page_offset = offset_in_page(gpa);
5276 	level = sp->role.level;
5277 	*nspte = 1;
5278 	if (sp->role.has_4_byte_gpte) {
5279 		page_offset <<= 1;	/* 32->64 */
5280 		/*
5281 		 * A 32-bit pde maps 4MB while the shadow pdes map
5282 		 * only 2MB.  So we need to double the offset again
5283 		 * and zap two pdes instead of one.
5284 		 */
5285 		if (level == PT32_ROOT_LEVEL) {
5286 			page_offset &= ~7; /* kill rounding error */
5287 			page_offset <<= 1;
5288 			*nspte = 2;
5289 		}
5290 		quadrant = page_offset >> PAGE_SHIFT;
5291 		page_offset &= ~PAGE_MASK;
5292 		if (quadrant != sp->role.quadrant)
5293 			return NULL;
5294 	}
5295 
5296 	spte = &sp->spt[page_offset / sizeof(*spte)];
5297 	return spte;
5298 }
5299 
5300 static void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
5301 			      const u8 *new, int bytes,
5302 			      struct kvm_page_track_notifier_node *node)
5303 {
5304 	gfn_t gfn = gpa >> PAGE_SHIFT;
5305 	struct kvm_mmu_page *sp;
5306 	LIST_HEAD(invalid_list);
5307 	u64 entry, gentry, *spte;
5308 	int npte;
5309 	bool flush = false;
5310 
5311 	/*
5312 	 * If we don't have indirect shadow pages, it means no page is
5313 	 * write-protected, so we can exit simply.
5314 	 */
5315 	if (!READ_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
5316 		return;
5317 
5318 	pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
5319 
5320 	/*
5321 	 * No need to care whether allocation memory is successful
5322 	 * or not since pte prefetch is skipped if it does not have
5323 	 * enough objects in the cache.
5324 	 */
5325 	mmu_topup_memory_caches(vcpu, true);
5326 
5327 	write_lock(&vcpu->kvm->mmu_lock);
5328 
5329 	gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, &bytes);
5330 
5331 	++vcpu->kvm->stat.mmu_pte_write;
5332 
5333 	for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
5334 		if (detect_write_misaligned(sp, gpa, bytes) ||
5335 		      detect_write_flooding(sp)) {
5336 			kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
5337 			++vcpu->kvm->stat.mmu_flooded;
5338 			continue;
5339 		}
5340 
5341 		spte = get_written_sptes(sp, gpa, &npte);
5342 		if (!spte)
5343 			continue;
5344 
5345 		while (npte--) {
5346 			entry = *spte;
5347 			mmu_page_zap_pte(vcpu->kvm, sp, spte, NULL);
5348 			if (gentry && sp->role.level != PG_LEVEL_4K)
5349 				++vcpu->kvm->stat.mmu_pde_zapped;
5350 			if (need_remote_flush(entry, *spte))
5351 				flush = true;
5352 			++spte;
5353 		}
5354 	}
5355 	kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, flush);
5356 	write_unlock(&vcpu->kvm->mmu_lock);
5357 }
5358 
5359 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 error_code,
5360 		       void *insn, int insn_len)
5361 {
5362 	int r, emulation_type = EMULTYPE_PF;
5363 	bool direct = vcpu->arch.mmu->direct_map;
5364 
5365 	if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root.hpa)))
5366 		return RET_PF_RETRY;
5367 
5368 	r = RET_PF_INVALID;
5369 	if (unlikely(error_code & PFERR_RSVD_MASK)) {
5370 		r = handle_mmio_page_fault(vcpu, cr2_or_gpa, direct);
5371 		if (r == RET_PF_EMULATE)
5372 			goto emulate;
5373 	}
5374 
5375 	if (r == RET_PF_INVALID) {
5376 		r = kvm_mmu_do_page_fault(vcpu, cr2_or_gpa,
5377 					  lower_32_bits(error_code), false);
5378 		if (KVM_BUG_ON(r == RET_PF_INVALID, vcpu->kvm))
5379 			return -EIO;
5380 	}
5381 
5382 	if (r < 0)
5383 		return r;
5384 	if (r != RET_PF_EMULATE)
5385 		return 1;
5386 
5387 	/*
5388 	 * Before emulating the instruction, check if the error code
5389 	 * was due to a RO violation while translating the guest page.
5390 	 * This can occur when using nested virtualization with nested
5391 	 * paging in both guests. If true, we simply unprotect the page
5392 	 * and resume the guest.
5393 	 */
5394 	if (vcpu->arch.mmu->direct_map &&
5395 	    (error_code & PFERR_NESTED_GUEST_PAGE) == PFERR_NESTED_GUEST_PAGE) {
5396 		kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(cr2_or_gpa));
5397 		return 1;
5398 	}
5399 
5400 	/*
5401 	 * vcpu->arch.mmu.page_fault returned RET_PF_EMULATE, but we can still
5402 	 * optimistically try to just unprotect the page and let the processor
5403 	 * re-execute the instruction that caused the page fault.  Do not allow
5404 	 * retrying MMIO emulation, as it's not only pointless but could also
5405 	 * cause us to enter an infinite loop because the processor will keep
5406 	 * faulting on the non-existent MMIO address.  Retrying an instruction
5407 	 * from a nested guest is also pointless and dangerous as we are only
5408 	 * explicitly shadowing L1's page tables, i.e. unprotecting something
5409 	 * for L1 isn't going to magically fix whatever issue cause L2 to fail.
5410 	 */
5411 	if (!mmio_info_in_cache(vcpu, cr2_or_gpa, direct) && !is_guest_mode(vcpu))
5412 		emulation_type |= EMULTYPE_ALLOW_RETRY_PF;
5413 emulate:
5414 	return x86_emulate_instruction(vcpu, cr2_or_gpa, emulation_type, insn,
5415 				       insn_len);
5416 }
5417 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
5418 
5419 void kvm_mmu_invalidate_gva(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
5420 			    gva_t gva, hpa_t root_hpa)
5421 {
5422 	int i;
5423 
5424 	/* It's actually a GPA for vcpu->arch.guest_mmu.  */
5425 	if (mmu != &vcpu->arch.guest_mmu) {
5426 		/* INVLPG on a non-canonical address is a NOP according to the SDM.  */
5427 		if (is_noncanonical_address(gva, vcpu))
5428 			return;
5429 
5430 		static_call(kvm_x86_flush_tlb_gva)(vcpu, gva);
5431 	}
5432 
5433 	if (!mmu->invlpg)
5434 		return;
5435 
5436 	if (root_hpa == INVALID_PAGE) {
5437 		mmu->invlpg(vcpu, gva, mmu->root.hpa);
5438 
5439 		/*
5440 		 * INVLPG is required to invalidate any global mappings for the VA,
5441 		 * irrespective of PCID. Since it would take us roughly similar amount
5442 		 * of work to determine whether any of the prev_root mappings of the VA
5443 		 * is marked global, or to just sync it blindly, so we might as well
5444 		 * just always sync it.
5445 		 *
5446 		 * Mappings not reachable via the current cr3 or the prev_roots will be
5447 		 * synced when switching to that cr3, so nothing needs to be done here
5448 		 * for them.
5449 		 */
5450 		for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5451 			if (VALID_PAGE(mmu->prev_roots[i].hpa))
5452 				mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
5453 	} else {
5454 		mmu->invlpg(vcpu, gva, root_hpa);
5455 	}
5456 }
5457 
5458 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
5459 {
5460 	kvm_mmu_invalidate_gva(vcpu, vcpu->arch.walk_mmu, gva, INVALID_PAGE);
5461 	++vcpu->stat.invlpg;
5462 }
5463 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
5464 
5465 
5466 void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid)
5467 {
5468 	struct kvm_mmu *mmu = vcpu->arch.mmu;
5469 	bool tlb_flush = false;
5470 	uint i;
5471 
5472 	if (pcid == kvm_get_active_pcid(vcpu)) {
5473 		mmu->invlpg(vcpu, gva, mmu->root.hpa);
5474 		tlb_flush = true;
5475 	}
5476 
5477 	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
5478 		if (VALID_PAGE(mmu->prev_roots[i].hpa) &&
5479 		    pcid == kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd)) {
5480 			mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
5481 			tlb_flush = true;
5482 		}
5483 	}
5484 
5485 	if (tlb_flush)
5486 		static_call(kvm_x86_flush_tlb_gva)(vcpu, gva);
5487 
5488 	++vcpu->stat.invlpg;
5489 
5490 	/*
5491 	 * Mappings not reachable via the current cr3 or the prev_roots will be
5492 	 * synced when switching to that cr3, so nothing needs to be done here
5493 	 * for them.
5494 	 */
5495 }
5496 
5497 void kvm_configure_mmu(bool enable_tdp, int tdp_forced_root_level,
5498 		       int tdp_max_root_level, int tdp_huge_page_level)
5499 {
5500 	tdp_enabled = enable_tdp;
5501 	tdp_root_level = tdp_forced_root_level;
5502 	max_tdp_level = tdp_max_root_level;
5503 
5504 	/*
5505 	 * max_huge_page_level reflects KVM's MMU capabilities irrespective
5506 	 * of kernel support, e.g. KVM may be capable of using 1GB pages when
5507 	 * the kernel is not.  But, KVM never creates a page size greater than
5508 	 * what is used by the kernel for any given HVA, i.e. the kernel's
5509 	 * capabilities are ultimately consulted by kvm_mmu_hugepage_adjust().
5510 	 */
5511 	if (tdp_enabled)
5512 		max_huge_page_level = tdp_huge_page_level;
5513 	else if (boot_cpu_has(X86_FEATURE_GBPAGES))
5514 		max_huge_page_level = PG_LEVEL_1G;
5515 	else
5516 		max_huge_page_level = PG_LEVEL_2M;
5517 }
5518 EXPORT_SYMBOL_GPL(kvm_configure_mmu);
5519 
5520 /* The return value indicates if tlb flush on all vcpus is needed. */
5521 typedef bool (*slot_level_handler) (struct kvm *kvm,
5522 				    struct kvm_rmap_head *rmap_head,
5523 				    const struct kvm_memory_slot *slot);
5524 
5525 /* The caller should hold mmu-lock before calling this function. */
5526 static __always_inline bool
5527 slot_handle_level_range(struct kvm *kvm, const struct kvm_memory_slot *memslot,
5528 			slot_level_handler fn, int start_level, int end_level,
5529 			gfn_t start_gfn, gfn_t end_gfn, bool flush_on_yield,
5530 			bool flush)
5531 {
5532 	struct slot_rmap_walk_iterator iterator;
5533 
5534 	for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn,
5535 			end_gfn, &iterator) {
5536 		if (iterator.rmap)
5537 			flush |= fn(kvm, iterator.rmap, memslot);
5538 
5539 		if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) {
5540 			if (flush && flush_on_yield) {
5541 				kvm_flush_remote_tlbs_with_address(kvm,
5542 						start_gfn,
5543 						iterator.gfn - start_gfn + 1);
5544 				flush = false;
5545 			}
5546 			cond_resched_rwlock_write(&kvm->mmu_lock);
5547 		}
5548 	}
5549 
5550 	return flush;
5551 }
5552 
5553 static __always_inline bool
5554 slot_handle_level(struct kvm *kvm, const struct kvm_memory_slot *memslot,
5555 		  slot_level_handler fn, int start_level, int end_level,
5556 		  bool flush_on_yield)
5557 {
5558 	return slot_handle_level_range(kvm, memslot, fn, start_level,
5559 			end_level, memslot->base_gfn,
5560 			memslot->base_gfn + memslot->npages - 1,
5561 			flush_on_yield, false);
5562 }
5563 
5564 static __always_inline bool
5565 slot_handle_level_4k(struct kvm *kvm, const struct kvm_memory_slot *memslot,
5566 		     slot_level_handler fn, bool flush_on_yield)
5567 {
5568 	return slot_handle_level(kvm, memslot, fn, PG_LEVEL_4K,
5569 				 PG_LEVEL_4K, flush_on_yield);
5570 }
5571 
5572 static void free_mmu_pages(struct kvm_mmu *mmu)
5573 {
5574 	if (!tdp_enabled && mmu->pae_root)
5575 		set_memory_encrypted((unsigned long)mmu->pae_root, 1);
5576 	free_page((unsigned long)mmu->pae_root);
5577 	free_page((unsigned long)mmu->pml4_root);
5578 	free_page((unsigned long)mmu->pml5_root);
5579 }
5580 
5581 static int __kvm_mmu_create(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
5582 {
5583 	struct page *page;
5584 	int i;
5585 
5586 	mmu->root.hpa = INVALID_PAGE;
5587 	mmu->root.pgd = 0;
5588 	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5589 		mmu->prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
5590 
5591 	/* vcpu->arch.guest_mmu isn't used when !tdp_enabled. */
5592 	if (!tdp_enabled && mmu == &vcpu->arch.guest_mmu)
5593 		return 0;
5594 
5595 	/*
5596 	 * When using PAE paging, the four PDPTEs are treated as 'root' pages,
5597 	 * while the PDP table is a per-vCPU construct that's allocated at MMU
5598 	 * creation.  When emulating 32-bit mode, cr3 is only 32 bits even on
5599 	 * x86_64.  Therefore we need to allocate the PDP table in the first
5600 	 * 4GB of memory, which happens to fit the DMA32 zone.  TDP paging
5601 	 * generally doesn't use PAE paging and can skip allocating the PDP
5602 	 * table.  The main exception, handled here, is SVM's 32-bit NPT.  The
5603 	 * other exception is for shadowing L1's 32-bit or PAE NPT on 64-bit
5604 	 * KVM; that horror is handled on-demand by mmu_alloc_special_roots().
5605 	 */
5606 	if (tdp_enabled && kvm_mmu_get_tdp_level(vcpu) > PT32E_ROOT_LEVEL)
5607 		return 0;
5608 
5609 	page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_DMA32);
5610 	if (!page)
5611 		return -ENOMEM;
5612 
5613 	mmu->pae_root = page_address(page);
5614 
5615 	/*
5616 	 * CR3 is only 32 bits when PAE paging is used, thus it's impossible to
5617 	 * get the CPU to treat the PDPTEs as encrypted.  Decrypt the page so
5618 	 * that KVM's writes and the CPU's reads get along.  Note, this is
5619 	 * only necessary when using shadow paging, as 64-bit NPT can get at
5620 	 * the C-bit even when shadowing 32-bit NPT, and SME isn't supported
5621 	 * by 32-bit kernels (when KVM itself uses 32-bit NPT).
5622 	 */
5623 	if (!tdp_enabled)
5624 		set_memory_decrypted((unsigned long)mmu->pae_root, 1);
5625 	else
5626 		WARN_ON_ONCE(shadow_me_mask);
5627 
5628 	for (i = 0; i < 4; ++i)
5629 		mmu->pae_root[i] = INVALID_PAE_ROOT;
5630 
5631 	return 0;
5632 }
5633 
5634 int kvm_mmu_create(struct kvm_vcpu *vcpu)
5635 {
5636 	int ret;
5637 
5638 	vcpu->arch.mmu_pte_list_desc_cache.kmem_cache = pte_list_desc_cache;
5639 	vcpu->arch.mmu_pte_list_desc_cache.gfp_zero = __GFP_ZERO;
5640 
5641 	vcpu->arch.mmu_page_header_cache.kmem_cache = mmu_page_header_cache;
5642 	vcpu->arch.mmu_page_header_cache.gfp_zero = __GFP_ZERO;
5643 
5644 	vcpu->arch.mmu_shadow_page_cache.gfp_zero = __GFP_ZERO;
5645 
5646 	vcpu->arch.mmu = &vcpu->arch.root_mmu;
5647 	vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
5648 
5649 	ret = __kvm_mmu_create(vcpu, &vcpu->arch.guest_mmu);
5650 	if (ret)
5651 		return ret;
5652 
5653 	ret = __kvm_mmu_create(vcpu, &vcpu->arch.root_mmu);
5654 	if (ret)
5655 		goto fail_allocate_root;
5656 
5657 	return ret;
5658  fail_allocate_root:
5659 	free_mmu_pages(&vcpu->arch.guest_mmu);
5660 	return ret;
5661 }
5662 
5663 #define BATCH_ZAP_PAGES	10
5664 static void kvm_zap_obsolete_pages(struct kvm *kvm)
5665 {
5666 	struct kvm_mmu_page *sp, *node;
5667 	int nr_zapped, batch = 0;
5668 
5669 restart:
5670 	list_for_each_entry_safe_reverse(sp, node,
5671 	      &kvm->arch.active_mmu_pages, link) {
5672 		/*
5673 		 * No obsolete valid page exists before a newly created page
5674 		 * since active_mmu_pages is a FIFO list.
5675 		 */
5676 		if (!is_obsolete_sp(kvm, sp))
5677 			break;
5678 
5679 		/*
5680 		 * Invalid pages should never land back on the list of active
5681 		 * pages.  Skip the bogus page, otherwise we'll get stuck in an
5682 		 * infinite loop if the page gets put back on the list (again).
5683 		 */
5684 		if (WARN_ON(sp->role.invalid))
5685 			continue;
5686 
5687 		/*
5688 		 * No need to flush the TLB since we're only zapping shadow
5689 		 * pages with an obsolete generation number and all vCPUS have
5690 		 * loaded a new root, i.e. the shadow pages being zapped cannot
5691 		 * be in active use by the guest.
5692 		 */
5693 		if (batch >= BATCH_ZAP_PAGES &&
5694 		    cond_resched_rwlock_write(&kvm->mmu_lock)) {
5695 			batch = 0;
5696 			goto restart;
5697 		}
5698 
5699 		if (__kvm_mmu_prepare_zap_page(kvm, sp,
5700 				&kvm->arch.zapped_obsolete_pages, &nr_zapped)) {
5701 			batch += nr_zapped;
5702 			goto restart;
5703 		}
5704 	}
5705 
5706 	/*
5707 	 * Kick all vCPUs (via remote TLB flush) before freeing the page tables
5708 	 * to ensure KVM is not in the middle of a lockless shadow page table
5709 	 * walk, which may reference the pages.  The remote TLB flush itself is
5710 	 * not required and is simply a convenient way to kick vCPUs as needed.
5711 	 * KVM performs a local TLB flush when allocating a new root (see
5712 	 * kvm_mmu_load()), and the reload in the caller ensure no vCPUs are
5713 	 * running with an obsolete MMU.
5714 	 */
5715 	kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
5716 }
5717 
5718 /*
5719  * Fast invalidate all shadow pages and use lock-break technique
5720  * to zap obsolete pages.
5721  *
5722  * It's required when memslot is being deleted or VM is being
5723  * destroyed, in these cases, we should ensure that KVM MMU does
5724  * not use any resource of the being-deleted slot or all slots
5725  * after calling the function.
5726  */
5727 static void kvm_mmu_zap_all_fast(struct kvm *kvm)
5728 {
5729 	lockdep_assert_held(&kvm->slots_lock);
5730 
5731 	write_lock(&kvm->mmu_lock);
5732 	trace_kvm_mmu_zap_all_fast(kvm);
5733 
5734 	/*
5735 	 * Toggle mmu_valid_gen between '0' and '1'.  Because slots_lock is
5736 	 * held for the entire duration of zapping obsolete pages, it's
5737 	 * impossible for there to be multiple invalid generations associated
5738 	 * with *valid* shadow pages at any given time, i.e. there is exactly
5739 	 * one valid generation and (at most) one invalid generation.
5740 	 */
5741 	kvm->arch.mmu_valid_gen = kvm->arch.mmu_valid_gen ? 0 : 1;
5742 
5743 	/*
5744 	 * In order to ensure all vCPUs drop their soon-to-be invalid roots,
5745 	 * invalidating TDP MMU roots must be done while holding mmu_lock for
5746 	 * write and in the same critical section as making the reload request,
5747 	 * e.g. before kvm_zap_obsolete_pages() could drop mmu_lock and yield.
5748 	 */
5749 	if (is_tdp_mmu_enabled(kvm))
5750 		kvm_tdp_mmu_invalidate_all_roots(kvm);
5751 
5752 	/*
5753 	 * Notify all vcpus to reload its shadow page table and flush TLB.
5754 	 * Then all vcpus will switch to new shadow page table with the new
5755 	 * mmu_valid_gen.
5756 	 *
5757 	 * Note: we need to do this under the protection of mmu_lock,
5758 	 * otherwise, vcpu would purge shadow page but miss tlb flush.
5759 	 */
5760 	kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_FREE_OBSOLETE_ROOTS);
5761 
5762 	kvm_zap_obsolete_pages(kvm);
5763 
5764 	write_unlock(&kvm->mmu_lock);
5765 
5766 	/*
5767 	 * Zap the invalidated TDP MMU roots, all SPTEs must be dropped before
5768 	 * returning to the caller, e.g. if the zap is in response to a memslot
5769 	 * deletion, mmu_notifier callbacks will be unable to reach the SPTEs
5770 	 * associated with the deleted memslot once the update completes, and
5771 	 * Deferring the zap until the final reference to the root is put would
5772 	 * lead to use-after-free.
5773 	 */
5774 	if (is_tdp_mmu_enabled(kvm))
5775 		kvm_tdp_mmu_zap_invalidated_roots(kvm);
5776 }
5777 
5778 static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
5779 {
5780 	return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
5781 }
5782 
5783 static void kvm_mmu_invalidate_zap_pages_in_memslot(struct kvm *kvm,
5784 			struct kvm_memory_slot *slot,
5785 			struct kvm_page_track_notifier_node *node)
5786 {
5787 	kvm_mmu_zap_all_fast(kvm);
5788 }
5789 
5790 int kvm_mmu_init_vm(struct kvm *kvm)
5791 {
5792 	struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5793 	int r;
5794 
5795 	INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
5796 	INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
5797 	INIT_LIST_HEAD(&kvm->arch.lpage_disallowed_mmu_pages);
5798 	spin_lock_init(&kvm->arch.mmu_unsync_pages_lock);
5799 
5800 	r = kvm_mmu_init_tdp_mmu(kvm);
5801 	if (r < 0)
5802 		return r;
5803 
5804 	node->track_write = kvm_mmu_pte_write;
5805 	node->track_flush_slot = kvm_mmu_invalidate_zap_pages_in_memslot;
5806 	kvm_page_track_register_notifier(kvm, node);
5807 	return 0;
5808 }
5809 
5810 void kvm_mmu_uninit_vm(struct kvm *kvm)
5811 {
5812 	struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5813 
5814 	kvm_page_track_unregister_notifier(kvm, node);
5815 
5816 	kvm_mmu_uninit_tdp_mmu(kvm);
5817 }
5818 
5819 static bool __kvm_zap_rmaps(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
5820 {
5821 	const struct kvm_memory_slot *memslot;
5822 	struct kvm_memslots *slots;
5823 	struct kvm_memslot_iter iter;
5824 	bool flush = false;
5825 	gfn_t start, end;
5826 	int i;
5827 
5828 	if (!kvm_memslots_have_rmaps(kvm))
5829 		return flush;
5830 
5831 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
5832 		slots = __kvm_memslots(kvm, i);
5833 
5834 		kvm_for_each_memslot_in_gfn_range(&iter, slots, gfn_start, gfn_end) {
5835 			memslot = iter.slot;
5836 			start = max(gfn_start, memslot->base_gfn);
5837 			end = min(gfn_end, memslot->base_gfn + memslot->npages);
5838 			if (WARN_ON_ONCE(start >= end))
5839 				continue;
5840 
5841 			flush = slot_handle_level_range(kvm, memslot, kvm_zap_rmapp,
5842 
5843 							PG_LEVEL_4K, KVM_MAX_HUGEPAGE_LEVEL,
5844 							start, end - 1, true, flush);
5845 		}
5846 	}
5847 
5848 	return flush;
5849 }
5850 
5851 /*
5852  * Invalidate (zap) SPTEs that cover GFNs from gfn_start and up to gfn_end
5853  * (not including it)
5854  */
5855 void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
5856 {
5857 	bool flush;
5858 	int i;
5859 
5860 	if (WARN_ON_ONCE(gfn_end <= gfn_start))
5861 		return;
5862 
5863 	write_lock(&kvm->mmu_lock);
5864 
5865 	kvm_inc_notifier_count(kvm, gfn_start, gfn_end);
5866 
5867 	flush = __kvm_zap_rmaps(kvm, gfn_start, gfn_end);
5868 
5869 	if (is_tdp_mmu_enabled(kvm)) {
5870 		for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
5871 			flush = kvm_tdp_mmu_zap_leafs(kvm, i, gfn_start,
5872 						      gfn_end, true, flush);
5873 	}
5874 
5875 	if (flush)
5876 		kvm_flush_remote_tlbs_with_address(kvm, gfn_start,
5877 						   gfn_end - gfn_start);
5878 
5879 	kvm_dec_notifier_count(kvm, gfn_start, gfn_end);
5880 
5881 	write_unlock(&kvm->mmu_lock);
5882 }
5883 
5884 static bool slot_rmap_write_protect(struct kvm *kvm,
5885 				    struct kvm_rmap_head *rmap_head,
5886 				    const struct kvm_memory_slot *slot)
5887 {
5888 	return rmap_write_protect(rmap_head, false);
5889 }
5890 
5891 void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
5892 				      const struct kvm_memory_slot *memslot,
5893 				      int start_level)
5894 {
5895 	bool flush = false;
5896 
5897 	if (kvm_memslots_have_rmaps(kvm)) {
5898 		write_lock(&kvm->mmu_lock);
5899 		flush = slot_handle_level(kvm, memslot, slot_rmap_write_protect,
5900 					  start_level, KVM_MAX_HUGEPAGE_LEVEL,
5901 					  false);
5902 		write_unlock(&kvm->mmu_lock);
5903 	}
5904 
5905 	if (is_tdp_mmu_enabled(kvm)) {
5906 		read_lock(&kvm->mmu_lock);
5907 		flush |= kvm_tdp_mmu_wrprot_slot(kvm, memslot, start_level);
5908 		read_unlock(&kvm->mmu_lock);
5909 	}
5910 
5911 	/*
5912 	 * Flush TLBs if any SPTEs had to be write-protected to ensure that
5913 	 * guest writes are reflected in the dirty bitmap before the memslot
5914 	 * update completes, i.e. before enabling dirty logging is visible to
5915 	 * userspace.
5916 	 *
5917 	 * Perform the TLB flush outside the mmu_lock to reduce the amount of
5918 	 * time the lock is held. However, this does mean that another CPU can
5919 	 * now grab mmu_lock and encounter a write-protected SPTE while CPUs
5920 	 * still have a writable mapping for the associated GFN in their TLB.
5921 	 *
5922 	 * This is safe but requires KVM to be careful when making decisions
5923 	 * based on the write-protection status of an SPTE. Specifically, KVM
5924 	 * also write-protects SPTEs to monitor changes to guest page tables
5925 	 * during shadow paging, and must guarantee no CPUs can write to those
5926 	 * page before the lock is dropped. As mentioned in the previous
5927 	 * paragraph, a write-protected SPTE is no guarantee that CPU cannot
5928 	 * perform writes. So to determine if a TLB flush is truly required, KVM
5929 	 * will clear a separate software-only bit (MMU-writable) and skip the
5930 	 * flush if-and-only-if this bit was already clear.
5931 	 *
5932 	 * See is_writable_pte() for more details.
5933 	 */
5934 	if (flush)
5935 		kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
5936 }
5937 
5938 /* Must be called with the mmu_lock held in write-mode. */
5939 void kvm_mmu_try_split_huge_pages(struct kvm *kvm,
5940 				   const struct kvm_memory_slot *memslot,
5941 				   u64 start, u64 end,
5942 				   int target_level)
5943 {
5944 	if (is_tdp_mmu_enabled(kvm))
5945 		kvm_tdp_mmu_try_split_huge_pages(kvm, memslot, start, end,
5946 						 target_level, false);
5947 
5948 	/*
5949 	 * A TLB flush is unnecessary at this point for the same resons as in
5950 	 * kvm_mmu_slot_try_split_huge_pages().
5951 	 */
5952 }
5953 
5954 void kvm_mmu_slot_try_split_huge_pages(struct kvm *kvm,
5955 					const struct kvm_memory_slot *memslot,
5956 					int target_level)
5957 {
5958 	u64 start = memslot->base_gfn;
5959 	u64 end = start + memslot->npages;
5960 
5961 	if (is_tdp_mmu_enabled(kvm)) {
5962 		read_lock(&kvm->mmu_lock);
5963 		kvm_tdp_mmu_try_split_huge_pages(kvm, memslot, start, end, target_level, true);
5964 		read_unlock(&kvm->mmu_lock);
5965 	}
5966 
5967 	/*
5968 	 * No TLB flush is necessary here. KVM will flush TLBs after
5969 	 * write-protecting and/or clearing dirty on the newly split SPTEs to
5970 	 * ensure that guest writes are reflected in the dirty log before the
5971 	 * ioctl to enable dirty logging on this memslot completes. Since the
5972 	 * split SPTEs retain the write and dirty bits of the huge SPTE, it is
5973 	 * safe for KVM to decide if a TLB flush is necessary based on the split
5974 	 * SPTEs.
5975 	 */
5976 }
5977 
5978 static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
5979 					 struct kvm_rmap_head *rmap_head,
5980 					 const struct kvm_memory_slot *slot)
5981 {
5982 	u64 *sptep;
5983 	struct rmap_iterator iter;
5984 	int need_tlb_flush = 0;
5985 	kvm_pfn_t pfn;
5986 	struct kvm_mmu_page *sp;
5987 
5988 restart:
5989 	for_each_rmap_spte(rmap_head, &iter, sptep) {
5990 		sp = sptep_to_sp(sptep);
5991 		pfn = spte_to_pfn(*sptep);
5992 
5993 		/*
5994 		 * We cannot do huge page mapping for indirect shadow pages,
5995 		 * which are found on the last rmap (level = 1) when not using
5996 		 * tdp; such shadow pages are synced with the page table in
5997 		 * the guest, and the guest page table is using 4K page size
5998 		 * mapping if the indirect sp has level = 1.
5999 		 */
6000 		if (sp->role.direct && !kvm_is_reserved_pfn(pfn) &&
6001 		    sp->role.level < kvm_mmu_max_mapping_level(kvm, slot, sp->gfn,
6002 							       pfn, PG_LEVEL_NUM)) {
6003 			pte_list_remove(kvm, rmap_head, sptep);
6004 
6005 			if (kvm_available_flush_tlb_with_range())
6006 				kvm_flush_remote_tlbs_with_address(kvm, sp->gfn,
6007 					KVM_PAGES_PER_HPAGE(sp->role.level));
6008 			else
6009 				need_tlb_flush = 1;
6010 
6011 			goto restart;
6012 		}
6013 	}
6014 
6015 	return need_tlb_flush;
6016 }
6017 
6018 void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
6019 				   const struct kvm_memory_slot *slot)
6020 {
6021 	if (kvm_memslots_have_rmaps(kvm)) {
6022 		write_lock(&kvm->mmu_lock);
6023 		/*
6024 		 * Zap only 4k SPTEs since the legacy MMU only supports dirty
6025 		 * logging at a 4k granularity and never creates collapsible
6026 		 * 2m SPTEs during dirty logging.
6027 		 */
6028 		if (slot_handle_level_4k(kvm, slot, kvm_mmu_zap_collapsible_spte, true))
6029 			kvm_arch_flush_remote_tlbs_memslot(kvm, slot);
6030 		write_unlock(&kvm->mmu_lock);
6031 	}
6032 
6033 	if (is_tdp_mmu_enabled(kvm)) {
6034 		read_lock(&kvm->mmu_lock);
6035 		kvm_tdp_mmu_zap_collapsible_sptes(kvm, slot);
6036 		read_unlock(&kvm->mmu_lock);
6037 	}
6038 }
6039 
6040 void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
6041 					const struct kvm_memory_slot *memslot)
6042 {
6043 	/*
6044 	 * All current use cases for flushing the TLBs for a specific memslot
6045 	 * related to dirty logging, and many do the TLB flush out of mmu_lock.
6046 	 * The interaction between the various operations on memslot must be
6047 	 * serialized by slots_locks to ensure the TLB flush from one operation
6048 	 * is observed by any other operation on the same memslot.
6049 	 */
6050 	lockdep_assert_held(&kvm->slots_lock);
6051 	kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn,
6052 					   memslot->npages);
6053 }
6054 
6055 void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
6056 				   const struct kvm_memory_slot *memslot)
6057 {
6058 	bool flush = false;
6059 
6060 	if (kvm_memslots_have_rmaps(kvm)) {
6061 		write_lock(&kvm->mmu_lock);
6062 		/*
6063 		 * Clear dirty bits only on 4k SPTEs since the legacy MMU only
6064 		 * support dirty logging at a 4k granularity.
6065 		 */
6066 		flush = slot_handle_level_4k(kvm, memslot, __rmap_clear_dirty, false);
6067 		write_unlock(&kvm->mmu_lock);
6068 	}
6069 
6070 	if (is_tdp_mmu_enabled(kvm)) {
6071 		read_lock(&kvm->mmu_lock);
6072 		flush |= kvm_tdp_mmu_clear_dirty_slot(kvm, memslot);
6073 		read_unlock(&kvm->mmu_lock);
6074 	}
6075 
6076 	/*
6077 	 * It's also safe to flush TLBs out of mmu lock here as currently this
6078 	 * function is only used for dirty logging, in which case flushing TLB
6079 	 * out of mmu lock also guarantees no dirty pages will be lost in
6080 	 * dirty_bitmap.
6081 	 */
6082 	if (flush)
6083 		kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
6084 }
6085 
6086 void kvm_mmu_zap_all(struct kvm *kvm)
6087 {
6088 	struct kvm_mmu_page *sp, *node;
6089 	LIST_HEAD(invalid_list);
6090 	int ign;
6091 
6092 	write_lock(&kvm->mmu_lock);
6093 restart:
6094 	list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link) {
6095 		if (WARN_ON(sp->role.invalid))
6096 			continue;
6097 		if (__kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list, &ign))
6098 			goto restart;
6099 		if (cond_resched_rwlock_write(&kvm->mmu_lock))
6100 			goto restart;
6101 	}
6102 
6103 	kvm_mmu_commit_zap_page(kvm, &invalid_list);
6104 
6105 	if (is_tdp_mmu_enabled(kvm))
6106 		kvm_tdp_mmu_zap_all(kvm);
6107 
6108 	write_unlock(&kvm->mmu_lock);
6109 }
6110 
6111 void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen)
6112 {
6113 	WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
6114 
6115 	gen &= MMIO_SPTE_GEN_MASK;
6116 
6117 	/*
6118 	 * Generation numbers are incremented in multiples of the number of
6119 	 * address spaces in order to provide unique generations across all
6120 	 * address spaces.  Strip what is effectively the address space
6121 	 * modifier prior to checking for a wrap of the MMIO generation so
6122 	 * that a wrap in any address space is detected.
6123 	 */
6124 	gen &= ~((u64)KVM_ADDRESS_SPACE_NUM - 1);
6125 
6126 	/*
6127 	 * The very rare case: if the MMIO generation number has wrapped,
6128 	 * zap all shadow pages.
6129 	 */
6130 	if (unlikely(gen == 0)) {
6131 		kvm_debug_ratelimited("kvm: zapping shadow pages for mmio generation wraparound\n");
6132 		kvm_mmu_zap_all_fast(kvm);
6133 	}
6134 }
6135 
6136 static unsigned long
6137 mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
6138 {
6139 	struct kvm *kvm;
6140 	int nr_to_scan = sc->nr_to_scan;
6141 	unsigned long freed = 0;
6142 
6143 	mutex_lock(&kvm_lock);
6144 
6145 	list_for_each_entry(kvm, &vm_list, vm_list) {
6146 		int idx;
6147 		LIST_HEAD(invalid_list);
6148 
6149 		/*
6150 		 * Never scan more than sc->nr_to_scan VM instances.
6151 		 * Will not hit this condition practically since we do not try
6152 		 * to shrink more than one VM and it is very unlikely to see
6153 		 * !n_used_mmu_pages so many times.
6154 		 */
6155 		if (!nr_to_scan--)
6156 			break;
6157 		/*
6158 		 * n_used_mmu_pages is accessed without holding kvm->mmu_lock
6159 		 * here. We may skip a VM instance errorneosly, but we do not
6160 		 * want to shrink a VM that only started to populate its MMU
6161 		 * anyway.
6162 		 */
6163 		if (!kvm->arch.n_used_mmu_pages &&
6164 		    !kvm_has_zapped_obsolete_pages(kvm))
6165 			continue;
6166 
6167 		idx = srcu_read_lock(&kvm->srcu);
6168 		write_lock(&kvm->mmu_lock);
6169 
6170 		if (kvm_has_zapped_obsolete_pages(kvm)) {
6171 			kvm_mmu_commit_zap_page(kvm,
6172 			      &kvm->arch.zapped_obsolete_pages);
6173 			goto unlock;
6174 		}
6175 
6176 		freed = kvm_mmu_zap_oldest_mmu_pages(kvm, sc->nr_to_scan);
6177 
6178 unlock:
6179 		write_unlock(&kvm->mmu_lock);
6180 		srcu_read_unlock(&kvm->srcu, idx);
6181 
6182 		/*
6183 		 * unfair on small ones
6184 		 * per-vm shrinkers cry out
6185 		 * sadness comes quickly
6186 		 */
6187 		list_move_tail(&kvm->vm_list, &vm_list);
6188 		break;
6189 	}
6190 
6191 	mutex_unlock(&kvm_lock);
6192 	return freed;
6193 }
6194 
6195 static unsigned long
6196 mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
6197 {
6198 	return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
6199 }
6200 
6201 static struct shrinker mmu_shrinker = {
6202 	.count_objects = mmu_shrink_count,
6203 	.scan_objects = mmu_shrink_scan,
6204 	.seeks = DEFAULT_SEEKS * 10,
6205 };
6206 
6207 static void mmu_destroy_caches(void)
6208 {
6209 	kmem_cache_destroy(pte_list_desc_cache);
6210 	kmem_cache_destroy(mmu_page_header_cache);
6211 }
6212 
6213 static bool get_nx_auto_mode(void)
6214 {
6215 	/* Return true when CPU has the bug, and mitigations are ON */
6216 	return boot_cpu_has_bug(X86_BUG_ITLB_MULTIHIT) && !cpu_mitigations_off();
6217 }
6218 
6219 static void __set_nx_huge_pages(bool val)
6220 {
6221 	nx_huge_pages = itlb_multihit_kvm_mitigation = val;
6222 }
6223 
6224 static int set_nx_huge_pages(const char *val, const struct kernel_param *kp)
6225 {
6226 	bool old_val = nx_huge_pages;
6227 	bool new_val;
6228 
6229 	/* In "auto" mode deploy workaround only if CPU has the bug. */
6230 	if (sysfs_streq(val, "off"))
6231 		new_val = 0;
6232 	else if (sysfs_streq(val, "force"))
6233 		new_val = 1;
6234 	else if (sysfs_streq(val, "auto"))
6235 		new_val = get_nx_auto_mode();
6236 	else if (strtobool(val, &new_val) < 0)
6237 		return -EINVAL;
6238 
6239 	__set_nx_huge_pages(new_val);
6240 
6241 	if (new_val != old_val) {
6242 		struct kvm *kvm;
6243 
6244 		mutex_lock(&kvm_lock);
6245 
6246 		list_for_each_entry(kvm, &vm_list, vm_list) {
6247 			mutex_lock(&kvm->slots_lock);
6248 			kvm_mmu_zap_all_fast(kvm);
6249 			mutex_unlock(&kvm->slots_lock);
6250 
6251 			wake_up_process(kvm->arch.nx_lpage_recovery_thread);
6252 		}
6253 		mutex_unlock(&kvm_lock);
6254 	}
6255 
6256 	return 0;
6257 }
6258 
6259 /*
6260  * nx_huge_pages needs to be resolved to true/false when kvm.ko is loaded, as
6261  * its default value of -1 is technically undefined behavior for a boolean.
6262  */
6263 void kvm_mmu_x86_module_init(void)
6264 {
6265 	if (nx_huge_pages == -1)
6266 		__set_nx_huge_pages(get_nx_auto_mode());
6267 }
6268 
6269 /*
6270  * The bulk of the MMU initialization is deferred until the vendor module is
6271  * loaded as many of the masks/values may be modified by VMX or SVM, i.e. need
6272  * to be reset when a potentially different vendor module is loaded.
6273  */
6274 int kvm_mmu_vendor_module_init(void)
6275 {
6276 	int ret = -ENOMEM;
6277 
6278 	/*
6279 	 * MMU roles use union aliasing which is, generally speaking, an
6280 	 * undefined behavior. However, we supposedly know how compilers behave
6281 	 * and the current status quo is unlikely to change. Guardians below are
6282 	 * supposed to let us know if the assumption becomes false.
6283 	 */
6284 	BUILD_BUG_ON(sizeof(union kvm_mmu_page_role) != sizeof(u32));
6285 	BUILD_BUG_ON(sizeof(union kvm_mmu_extended_role) != sizeof(u32));
6286 	BUILD_BUG_ON(sizeof(union kvm_mmu_role) != sizeof(u64));
6287 
6288 	kvm_mmu_reset_all_pte_masks();
6289 
6290 	pte_list_desc_cache = kmem_cache_create("pte_list_desc",
6291 					    sizeof(struct pte_list_desc),
6292 					    0, SLAB_ACCOUNT, NULL);
6293 	if (!pte_list_desc_cache)
6294 		goto out;
6295 
6296 	mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
6297 						  sizeof(struct kvm_mmu_page),
6298 						  0, SLAB_ACCOUNT, NULL);
6299 	if (!mmu_page_header_cache)
6300 		goto out;
6301 
6302 	if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
6303 		goto out;
6304 
6305 	ret = register_shrinker(&mmu_shrinker);
6306 	if (ret)
6307 		goto out;
6308 
6309 	return 0;
6310 
6311 out:
6312 	mmu_destroy_caches();
6313 	return ret;
6314 }
6315 
6316 void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
6317 {
6318 	kvm_mmu_unload(vcpu);
6319 	free_mmu_pages(&vcpu->arch.root_mmu);
6320 	free_mmu_pages(&vcpu->arch.guest_mmu);
6321 	mmu_free_memory_caches(vcpu);
6322 }
6323 
6324 void kvm_mmu_vendor_module_exit(void)
6325 {
6326 	mmu_destroy_caches();
6327 	percpu_counter_destroy(&kvm_total_used_mmu_pages);
6328 	unregister_shrinker(&mmu_shrinker);
6329 }
6330 
6331 /*
6332  * Calculate the effective recovery period, accounting for '0' meaning "let KVM
6333  * select a halving time of 1 hour".  Returns true if recovery is enabled.
6334  */
6335 static bool calc_nx_huge_pages_recovery_period(uint *period)
6336 {
6337 	/*
6338 	 * Use READ_ONCE to get the params, this may be called outside of the
6339 	 * param setters, e.g. by the kthread to compute its next timeout.
6340 	 */
6341 	bool enabled = READ_ONCE(nx_huge_pages);
6342 	uint ratio = READ_ONCE(nx_huge_pages_recovery_ratio);
6343 
6344 	if (!enabled || !ratio)
6345 		return false;
6346 
6347 	*period = READ_ONCE(nx_huge_pages_recovery_period_ms);
6348 	if (!*period) {
6349 		/* Make sure the period is not less than one second.  */
6350 		ratio = min(ratio, 3600u);
6351 		*period = 60 * 60 * 1000 / ratio;
6352 	}
6353 	return true;
6354 }
6355 
6356 static int set_nx_huge_pages_recovery_param(const char *val, const struct kernel_param *kp)
6357 {
6358 	bool was_recovery_enabled, is_recovery_enabled;
6359 	uint old_period, new_period;
6360 	int err;
6361 
6362 	was_recovery_enabled = calc_nx_huge_pages_recovery_period(&old_period);
6363 
6364 	err = param_set_uint(val, kp);
6365 	if (err)
6366 		return err;
6367 
6368 	is_recovery_enabled = calc_nx_huge_pages_recovery_period(&new_period);
6369 
6370 	if (is_recovery_enabled &&
6371 	    (!was_recovery_enabled || old_period > new_period)) {
6372 		struct kvm *kvm;
6373 
6374 		mutex_lock(&kvm_lock);
6375 
6376 		list_for_each_entry(kvm, &vm_list, vm_list)
6377 			wake_up_process(kvm->arch.nx_lpage_recovery_thread);
6378 
6379 		mutex_unlock(&kvm_lock);
6380 	}
6381 
6382 	return err;
6383 }
6384 
6385 static void kvm_recover_nx_lpages(struct kvm *kvm)
6386 {
6387 	unsigned long nx_lpage_splits = kvm->stat.nx_lpage_splits;
6388 	int rcu_idx;
6389 	struct kvm_mmu_page *sp;
6390 	unsigned int ratio;
6391 	LIST_HEAD(invalid_list);
6392 	bool flush = false;
6393 	ulong to_zap;
6394 
6395 	rcu_idx = srcu_read_lock(&kvm->srcu);
6396 	write_lock(&kvm->mmu_lock);
6397 
6398 	/*
6399 	 * Zapping TDP MMU shadow pages, including the remote TLB flush, must
6400 	 * be done under RCU protection, because the pages are freed via RCU
6401 	 * callback.
6402 	 */
6403 	rcu_read_lock();
6404 
6405 	ratio = READ_ONCE(nx_huge_pages_recovery_ratio);
6406 	to_zap = ratio ? DIV_ROUND_UP(nx_lpage_splits, ratio) : 0;
6407 	for ( ; to_zap; --to_zap) {
6408 		if (list_empty(&kvm->arch.lpage_disallowed_mmu_pages))
6409 			break;
6410 
6411 		/*
6412 		 * We use a separate list instead of just using active_mmu_pages
6413 		 * because the number of lpage_disallowed pages is expected to
6414 		 * be relatively small compared to the total.
6415 		 */
6416 		sp = list_first_entry(&kvm->arch.lpage_disallowed_mmu_pages,
6417 				      struct kvm_mmu_page,
6418 				      lpage_disallowed_link);
6419 		WARN_ON_ONCE(!sp->lpage_disallowed);
6420 		if (is_tdp_mmu_page(sp)) {
6421 			flush |= kvm_tdp_mmu_zap_sp(kvm, sp);
6422 		} else {
6423 			kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
6424 			WARN_ON_ONCE(sp->lpage_disallowed);
6425 		}
6426 
6427 		if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) {
6428 			kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush);
6429 			rcu_read_unlock();
6430 
6431 			cond_resched_rwlock_write(&kvm->mmu_lock);
6432 			flush = false;
6433 
6434 			rcu_read_lock();
6435 		}
6436 	}
6437 	kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush);
6438 
6439 	rcu_read_unlock();
6440 
6441 	write_unlock(&kvm->mmu_lock);
6442 	srcu_read_unlock(&kvm->srcu, rcu_idx);
6443 }
6444 
6445 static long get_nx_lpage_recovery_timeout(u64 start_time)
6446 {
6447 	bool enabled;
6448 	uint period;
6449 
6450 	enabled = calc_nx_huge_pages_recovery_period(&period);
6451 
6452 	return enabled ? start_time + msecs_to_jiffies(period) - get_jiffies_64()
6453 		       : MAX_SCHEDULE_TIMEOUT;
6454 }
6455 
6456 static int kvm_nx_lpage_recovery_worker(struct kvm *kvm, uintptr_t data)
6457 {
6458 	u64 start_time;
6459 	long remaining_time;
6460 
6461 	while (true) {
6462 		start_time = get_jiffies_64();
6463 		remaining_time = get_nx_lpage_recovery_timeout(start_time);
6464 
6465 		set_current_state(TASK_INTERRUPTIBLE);
6466 		while (!kthread_should_stop() && remaining_time > 0) {
6467 			schedule_timeout(remaining_time);
6468 			remaining_time = get_nx_lpage_recovery_timeout(start_time);
6469 			set_current_state(TASK_INTERRUPTIBLE);
6470 		}
6471 
6472 		set_current_state(TASK_RUNNING);
6473 
6474 		if (kthread_should_stop())
6475 			return 0;
6476 
6477 		kvm_recover_nx_lpages(kvm);
6478 	}
6479 }
6480 
6481 int kvm_mmu_post_init_vm(struct kvm *kvm)
6482 {
6483 	int err;
6484 
6485 	err = kvm_vm_create_worker_thread(kvm, kvm_nx_lpage_recovery_worker, 0,
6486 					  "kvm-nx-lpage-recovery",
6487 					  &kvm->arch.nx_lpage_recovery_thread);
6488 	if (!err)
6489 		kthread_unpark(kvm->arch.nx_lpage_recovery_thread);
6490 
6491 	return err;
6492 }
6493 
6494 void kvm_mmu_pre_destroy_vm(struct kvm *kvm)
6495 {
6496 	if (kvm->arch.nx_lpage_recovery_thread)
6497 		kthread_stop(kvm->arch.nx_lpage_recovery_thread);
6498 }
6499