1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * This module enables machines with Intel VT-x extensions to run virtual 6 * machines without emulation or binary translation. 7 * 8 * MMU support 9 * 10 * Copyright (C) 2006 Qumranet, Inc. 11 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 12 * 13 * Authors: 14 * Yaniv Kamay <yaniv@qumranet.com> 15 * Avi Kivity <avi@qumranet.com> 16 */ 17 18 #include "irq.h" 19 #include "ioapic.h" 20 #include "mmu.h" 21 #include "mmu_internal.h" 22 #include "x86.h" 23 #include "kvm_cache_regs.h" 24 #include "kvm_emulate.h" 25 #include "cpuid.h" 26 27 #include <linux/kvm_host.h> 28 #include <linux/types.h> 29 #include <linux/string.h> 30 #include <linux/mm.h> 31 #include <linux/highmem.h> 32 #include <linux/moduleparam.h> 33 #include <linux/export.h> 34 #include <linux/swap.h> 35 #include <linux/hugetlb.h> 36 #include <linux/compiler.h> 37 #include <linux/srcu.h> 38 #include <linux/slab.h> 39 #include <linux/sched/signal.h> 40 #include <linux/uaccess.h> 41 #include <linux/hash.h> 42 #include <linux/kern_levels.h> 43 #include <linux/kthread.h> 44 45 #include <asm/page.h> 46 #include <asm/memtype.h> 47 #include <asm/cmpxchg.h> 48 #include <asm/e820/api.h> 49 #include <asm/io.h> 50 #include <asm/vmx.h> 51 #include <asm/kvm_page_track.h> 52 #include "trace.h" 53 54 extern bool itlb_multihit_kvm_mitigation; 55 56 static int __read_mostly nx_huge_pages = -1; 57 #ifdef CONFIG_PREEMPT_RT 58 /* Recovery can cause latency spikes, disable it for PREEMPT_RT. */ 59 static uint __read_mostly nx_huge_pages_recovery_ratio = 0; 60 #else 61 static uint __read_mostly nx_huge_pages_recovery_ratio = 60; 62 #endif 63 64 static int set_nx_huge_pages(const char *val, const struct kernel_param *kp); 65 static int set_nx_huge_pages_recovery_ratio(const char *val, const struct kernel_param *kp); 66 67 static struct kernel_param_ops nx_huge_pages_ops = { 68 .set = set_nx_huge_pages, 69 .get = param_get_bool, 70 }; 71 72 static struct kernel_param_ops nx_huge_pages_recovery_ratio_ops = { 73 .set = set_nx_huge_pages_recovery_ratio, 74 .get = param_get_uint, 75 }; 76 77 module_param_cb(nx_huge_pages, &nx_huge_pages_ops, &nx_huge_pages, 0644); 78 __MODULE_PARM_TYPE(nx_huge_pages, "bool"); 79 module_param_cb(nx_huge_pages_recovery_ratio, &nx_huge_pages_recovery_ratio_ops, 80 &nx_huge_pages_recovery_ratio, 0644); 81 __MODULE_PARM_TYPE(nx_huge_pages_recovery_ratio, "uint"); 82 83 static bool __read_mostly force_flush_and_sync_on_reuse; 84 module_param_named(flush_on_reuse, force_flush_and_sync_on_reuse, bool, 0644); 85 86 /* 87 * When setting this variable to true it enables Two-Dimensional-Paging 88 * where the hardware walks 2 page tables: 89 * 1. the guest-virtual to guest-physical 90 * 2. while doing 1. it walks guest-physical to host-physical 91 * If the hardware supports that we don't need to do shadow paging. 92 */ 93 bool tdp_enabled = false; 94 95 static int max_huge_page_level __read_mostly; 96 static int max_tdp_level __read_mostly; 97 98 enum { 99 AUDIT_PRE_PAGE_FAULT, 100 AUDIT_POST_PAGE_FAULT, 101 AUDIT_PRE_PTE_WRITE, 102 AUDIT_POST_PTE_WRITE, 103 AUDIT_PRE_SYNC, 104 AUDIT_POST_SYNC 105 }; 106 107 #undef MMU_DEBUG 108 109 #ifdef MMU_DEBUG 110 static bool dbg = 0; 111 module_param(dbg, bool, 0644); 112 113 #define pgprintk(x...) do { if (dbg) printk(x); } while (0) 114 #define rmap_printk(x...) do { if (dbg) printk(x); } while (0) 115 #define MMU_WARN_ON(x) WARN_ON(x) 116 #else 117 #define pgprintk(x...) do { } while (0) 118 #define rmap_printk(x...) do { } while (0) 119 #define MMU_WARN_ON(x) do { } while (0) 120 #endif 121 122 #define PTE_PREFETCH_NUM 8 123 124 #define PT_FIRST_AVAIL_BITS_SHIFT 10 125 #define PT64_SECOND_AVAIL_BITS_SHIFT 54 126 127 /* 128 * The mask used to denote special SPTEs, which can be either MMIO SPTEs or 129 * Access Tracking SPTEs. 130 */ 131 #define SPTE_SPECIAL_MASK (3ULL << 52) 132 #define SPTE_AD_ENABLED_MASK (0ULL << 52) 133 #define SPTE_AD_DISABLED_MASK (1ULL << 52) 134 #define SPTE_AD_WRPROT_ONLY_MASK (2ULL << 52) 135 #define SPTE_MMIO_MASK (3ULL << 52) 136 137 #define PT64_LEVEL_BITS 9 138 139 #define PT64_LEVEL_SHIFT(level) \ 140 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS) 141 142 #define PT64_INDEX(address, level)\ 143 (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1)) 144 145 146 #define PT32_LEVEL_BITS 10 147 148 #define PT32_LEVEL_SHIFT(level) \ 149 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS) 150 151 #define PT32_LVL_OFFSET_MASK(level) \ 152 (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \ 153 * PT32_LEVEL_BITS))) - 1)) 154 155 #define PT32_INDEX(address, level)\ 156 (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1)) 157 158 159 #ifdef CONFIG_DYNAMIC_PHYSICAL_MASK 160 #define PT64_BASE_ADDR_MASK (physical_mask & ~(u64)(PAGE_SIZE-1)) 161 #else 162 #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1)) 163 #endif 164 #define PT64_LVL_ADDR_MASK(level) \ 165 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \ 166 * PT64_LEVEL_BITS))) - 1)) 167 #define PT64_LVL_OFFSET_MASK(level) \ 168 (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \ 169 * PT64_LEVEL_BITS))) - 1)) 170 171 #define PT32_BASE_ADDR_MASK PAGE_MASK 172 #define PT32_DIR_BASE_ADDR_MASK \ 173 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1)) 174 #define PT32_LVL_ADDR_MASK(level) \ 175 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \ 176 * PT32_LEVEL_BITS))) - 1)) 177 178 #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | shadow_user_mask \ 179 | shadow_x_mask | shadow_nx_mask | shadow_me_mask) 180 181 #define ACC_EXEC_MASK 1 182 #define ACC_WRITE_MASK PT_WRITABLE_MASK 183 #define ACC_USER_MASK PT_USER_MASK 184 #define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK) 185 186 /* The mask for the R/X bits in EPT PTEs */ 187 #define PT64_EPT_READABLE_MASK 0x1ull 188 #define PT64_EPT_EXECUTABLE_MASK 0x4ull 189 190 #include <trace/events/kvm.h> 191 192 #define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT) 193 #define SPTE_MMU_WRITEABLE (1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1)) 194 195 #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level) 196 197 /* make pte_list_desc fit well in cache line */ 198 #define PTE_LIST_EXT 3 199 200 /* 201 * Return values of handle_mmio_page_fault and mmu.page_fault: 202 * RET_PF_RETRY: let CPU fault again on the address. 203 * RET_PF_EMULATE: mmio page fault, emulate the instruction directly. 204 * 205 * For handle_mmio_page_fault only: 206 * RET_PF_INVALID: the spte is invalid, let the real page fault path update it. 207 */ 208 enum { 209 RET_PF_RETRY = 0, 210 RET_PF_EMULATE = 1, 211 RET_PF_INVALID = 2, 212 }; 213 214 struct pte_list_desc { 215 u64 *sptes[PTE_LIST_EXT]; 216 struct pte_list_desc *more; 217 }; 218 219 struct kvm_shadow_walk_iterator { 220 u64 addr; 221 hpa_t shadow_addr; 222 u64 *sptep; 223 int level; 224 unsigned index; 225 }; 226 227 #define for_each_shadow_entry_using_root(_vcpu, _root, _addr, _walker) \ 228 for (shadow_walk_init_using_root(&(_walker), (_vcpu), \ 229 (_root), (_addr)); \ 230 shadow_walk_okay(&(_walker)); \ 231 shadow_walk_next(&(_walker))) 232 233 #define for_each_shadow_entry(_vcpu, _addr, _walker) \ 234 for (shadow_walk_init(&(_walker), _vcpu, _addr); \ 235 shadow_walk_okay(&(_walker)); \ 236 shadow_walk_next(&(_walker))) 237 238 #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte) \ 239 for (shadow_walk_init(&(_walker), _vcpu, _addr); \ 240 shadow_walk_okay(&(_walker)) && \ 241 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; }); \ 242 __shadow_walk_next(&(_walker), spte)) 243 244 static struct kmem_cache *pte_list_desc_cache; 245 static struct kmem_cache *mmu_page_header_cache; 246 static struct percpu_counter kvm_total_used_mmu_pages; 247 248 static u64 __read_mostly shadow_nx_mask; 249 static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */ 250 static u64 __read_mostly shadow_user_mask; 251 static u64 __read_mostly shadow_accessed_mask; 252 static u64 __read_mostly shadow_dirty_mask; 253 static u64 __read_mostly shadow_mmio_value; 254 static u64 __read_mostly shadow_mmio_access_mask; 255 static u64 __read_mostly shadow_present_mask; 256 static u64 __read_mostly shadow_me_mask; 257 258 /* 259 * SPTEs used by MMUs without A/D bits are marked with SPTE_AD_DISABLED_MASK; 260 * shadow_acc_track_mask is the set of bits to be cleared in non-accessed 261 * pages. 262 */ 263 static u64 __read_mostly shadow_acc_track_mask; 264 265 /* 266 * The mask/shift to use for saving the original R/X bits when marking the PTE 267 * as not-present for access tracking purposes. We do not save the W bit as the 268 * PTEs being access tracked also need to be dirty tracked, so the W bit will be 269 * restored only when a write is attempted to the page. 270 */ 271 static const u64 shadow_acc_track_saved_bits_mask = PT64_EPT_READABLE_MASK | 272 PT64_EPT_EXECUTABLE_MASK; 273 static const u64 shadow_acc_track_saved_bits_shift = PT64_SECOND_AVAIL_BITS_SHIFT; 274 275 /* 276 * This mask must be set on all non-zero Non-Present or Reserved SPTEs in order 277 * to guard against L1TF attacks. 278 */ 279 static u64 __read_mostly shadow_nonpresent_or_rsvd_mask; 280 281 /* 282 * The number of high-order 1 bits to use in the mask above. 283 */ 284 static const u64 shadow_nonpresent_or_rsvd_mask_len = 5; 285 286 /* 287 * In some cases, we need to preserve the GFN of a non-present or reserved 288 * SPTE when we usurp the upper five bits of the physical address space to 289 * defend against L1TF, e.g. for MMIO SPTEs. To preserve the GFN, we'll 290 * shift bits of the GFN that overlap with shadow_nonpresent_or_rsvd_mask 291 * left into the reserved bits, i.e. the GFN in the SPTE will be split into 292 * high and low parts. This mask covers the lower bits of the GFN. 293 */ 294 static u64 __read_mostly shadow_nonpresent_or_rsvd_lower_gfn_mask; 295 296 /* 297 * The number of non-reserved physical address bits irrespective of features 298 * that repurpose legal bits, e.g. MKTME. 299 */ 300 static u8 __read_mostly shadow_phys_bits; 301 302 static void mmu_spte_set(u64 *sptep, u64 spte); 303 static bool is_executable_pte(u64 spte); 304 static union kvm_mmu_page_role 305 kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu); 306 307 #define CREATE_TRACE_POINTS 308 #include "mmutrace.h" 309 310 311 static inline bool kvm_available_flush_tlb_with_range(void) 312 { 313 return kvm_x86_ops.tlb_remote_flush_with_range; 314 } 315 316 static void kvm_flush_remote_tlbs_with_range(struct kvm *kvm, 317 struct kvm_tlb_range *range) 318 { 319 int ret = -ENOTSUPP; 320 321 if (range && kvm_x86_ops.tlb_remote_flush_with_range) 322 ret = kvm_x86_ops.tlb_remote_flush_with_range(kvm, range); 323 324 if (ret) 325 kvm_flush_remote_tlbs(kvm); 326 } 327 328 static void kvm_flush_remote_tlbs_with_address(struct kvm *kvm, 329 u64 start_gfn, u64 pages) 330 { 331 struct kvm_tlb_range range; 332 333 range.start_gfn = start_gfn; 334 range.pages = pages; 335 336 kvm_flush_remote_tlbs_with_range(kvm, &range); 337 } 338 339 void kvm_mmu_set_mmio_spte_mask(u64 mmio_value, u64 access_mask) 340 { 341 BUG_ON((u64)(unsigned)access_mask != access_mask); 342 WARN_ON(mmio_value & (shadow_nonpresent_or_rsvd_mask << shadow_nonpresent_or_rsvd_mask_len)); 343 WARN_ON(mmio_value & shadow_nonpresent_or_rsvd_lower_gfn_mask); 344 shadow_mmio_value = mmio_value | SPTE_MMIO_MASK; 345 shadow_mmio_access_mask = access_mask; 346 } 347 EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask); 348 349 static bool is_mmio_spte(u64 spte) 350 { 351 return (spte & SPTE_SPECIAL_MASK) == SPTE_MMIO_MASK; 352 } 353 354 static inline bool sp_ad_disabled(struct kvm_mmu_page *sp) 355 { 356 return sp->role.ad_disabled; 357 } 358 359 static inline bool kvm_vcpu_ad_need_write_protect(struct kvm_vcpu *vcpu) 360 { 361 /* 362 * When using the EPT page-modification log, the GPAs in the log 363 * would come from L2 rather than L1. Therefore, we need to rely 364 * on write protection to record dirty pages. This also bypasses 365 * PML, since writes now result in a vmexit. 366 */ 367 return vcpu->arch.mmu == &vcpu->arch.guest_mmu; 368 } 369 370 static inline bool spte_ad_enabled(u64 spte) 371 { 372 MMU_WARN_ON(is_mmio_spte(spte)); 373 return (spte & SPTE_SPECIAL_MASK) != SPTE_AD_DISABLED_MASK; 374 } 375 376 static inline bool spte_ad_need_write_protect(u64 spte) 377 { 378 MMU_WARN_ON(is_mmio_spte(spte)); 379 return (spte & SPTE_SPECIAL_MASK) != SPTE_AD_ENABLED_MASK; 380 } 381 382 static bool is_nx_huge_page_enabled(void) 383 { 384 return READ_ONCE(nx_huge_pages); 385 } 386 387 static inline u64 spte_shadow_accessed_mask(u64 spte) 388 { 389 MMU_WARN_ON(is_mmio_spte(spte)); 390 return spte_ad_enabled(spte) ? shadow_accessed_mask : 0; 391 } 392 393 static inline u64 spte_shadow_dirty_mask(u64 spte) 394 { 395 MMU_WARN_ON(is_mmio_spte(spte)); 396 return spte_ad_enabled(spte) ? shadow_dirty_mask : 0; 397 } 398 399 static inline bool is_access_track_spte(u64 spte) 400 { 401 return !spte_ad_enabled(spte) && (spte & shadow_acc_track_mask) == 0; 402 } 403 404 /* 405 * Due to limited space in PTEs, the MMIO generation is a 19 bit subset of 406 * the memslots generation and is derived as follows: 407 * 408 * Bits 0-8 of the MMIO generation are propagated to spte bits 3-11 409 * Bits 9-18 of the MMIO generation are propagated to spte bits 52-61 410 * 411 * The KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS flag is intentionally not included in 412 * the MMIO generation number, as doing so would require stealing a bit from 413 * the "real" generation number and thus effectively halve the maximum number 414 * of MMIO generations that can be handled before encountering a wrap (which 415 * requires a full MMU zap). The flag is instead explicitly queried when 416 * checking for MMIO spte cache hits. 417 */ 418 #define MMIO_SPTE_GEN_MASK GENMASK_ULL(17, 0) 419 420 #define MMIO_SPTE_GEN_LOW_START 3 421 #define MMIO_SPTE_GEN_LOW_END 11 422 #define MMIO_SPTE_GEN_LOW_MASK GENMASK_ULL(MMIO_SPTE_GEN_LOW_END, \ 423 MMIO_SPTE_GEN_LOW_START) 424 425 #define MMIO_SPTE_GEN_HIGH_START PT64_SECOND_AVAIL_BITS_SHIFT 426 #define MMIO_SPTE_GEN_HIGH_END 62 427 #define MMIO_SPTE_GEN_HIGH_MASK GENMASK_ULL(MMIO_SPTE_GEN_HIGH_END, \ 428 MMIO_SPTE_GEN_HIGH_START) 429 430 static u64 generation_mmio_spte_mask(u64 gen) 431 { 432 u64 mask; 433 434 WARN_ON(gen & ~MMIO_SPTE_GEN_MASK); 435 BUILD_BUG_ON((MMIO_SPTE_GEN_HIGH_MASK | MMIO_SPTE_GEN_LOW_MASK) & SPTE_SPECIAL_MASK); 436 437 mask = (gen << MMIO_SPTE_GEN_LOW_START) & MMIO_SPTE_GEN_LOW_MASK; 438 mask |= (gen << MMIO_SPTE_GEN_HIGH_START) & MMIO_SPTE_GEN_HIGH_MASK; 439 return mask; 440 } 441 442 static u64 get_mmio_spte_generation(u64 spte) 443 { 444 u64 gen; 445 446 gen = (spte & MMIO_SPTE_GEN_LOW_MASK) >> MMIO_SPTE_GEN_LOW_START; 447 gen |= (spte & MMIO_SPTE_GEN_HIGH_MASK) >> MMIO_SPTE_GEN_HIGH_START; 448 return gen; 449 } 450 451 static u64 make_mmio_spte(struct kvm_vcpu *vcpu, u64 gfn, unsigned int access) 452 { 453 454 u64 gen = kvm_vcpu_memslots(vcpu)->generation & MMIO_SPTE_GEN_MASK; 455 u64 mask = generation_mmio_spte_mask(gen); 456 u64 gpa = gfn << PAGE_SHIFT; 457 458 access &= shadow_mmio_access_mask; 459 mask |= shadow_mmio_value | access; 460 mask |= gpa | shadow_nonpresent_or_rsvd_mask; 461 mask |= (gpa & shadow_nonpresent_or_rsvd_mask) 462 << shadow_nonpresent_or_rsvd_mask_len; 463 464 return mask; 465 } 466 467 static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn, 468 unsigned int access) 469 { 470 u64 mask = make_mmio_spte(vcpu, gfn, access); 471 unsigned int gen = get_mmio_spte_generation(mask); 472 473 access = mask & ACC_ALL; 474 475 trace_mark_mmio_spte(sptep, gfn, access, gen); 476 mmu_spte_set(sptep, mask); 477 } 478 479 static gfn_t get_mmio_spte_gfn(u64 spte) 480 { 481 u64 gpa = spte & shadow_nonpresent_or_rsvd_lower_gfn_mask; 482 483 gpa |= (spte >> shadow_nonpresent_or_rsvd_mask_len) 484 & shadow_nonpresent_or_rsvd_mask; 485 486 return gpa >> PAGE_SHIFT; 487 } 488 489 static unsigned get_mmio_spte_access(u64 spte) 490 { 491 return spte & shadow_mmio_access_mask; 492 } 493 494 static bool set_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn, 495 kvm_pfn_t pfn, unsigned int access) 496 { 497 if (unlikely(is_noslot_pfn(pfn))) { 498 mark_mmio_spte(vcpu, sptep, gfn, access); 499 return true; 500 } 501 502 return false; 503 } 504 505 static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte) 506 { 507 u64 kvm_gen, spte_gen, gen; 508 509 gen = kvm_vcpu_memslots(vcpu)->generation; 510 if (unlikely(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS)) 511 return false; 512 513 kvm_gen = gen & MMIO_SPTE_GEN_MASK; 514 spte_gen = get_mmio_spte_generation(spte); 515 516 trace_check_mmio_spte(spte, kvm_gen, spte_gen); 517 return likely(kvm_gen == spte_gen); 518 } 519 520 static gpa_t translate_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access, 521 struct x86_exception *exception) 522 { 523 /* Check if guest physical address doesn't exceed guest maximum */ 524 if (kvm_mmu_is_illegal_gpa(vcpu, gpa)) { 525 exception->error_code |= PFERR_RSVD_MASK; 526 return UNMAPPED_GVA; 527 } 528 529 return gpa; 530 } 531 532 /* 533 * Sets the shadow PTE masks used by the MMU. 534 * 535 * Assumptions: 536 * - Setting either @accessed_mask or @dirty_mask requires setting both 537 * - At least one of @accessed_mask or @acc_track_mask must be set 538 */ 539 void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask, 540 u64 dirty_mask, u64 nx_mask, u64 x_mask, u64 p_mask, 541 u64 acc_track_mask, u64 me_mask) 542 { 543 BUG_ON(!dirty_mask != !accessed_mask); 544 BUG_ON(!accessed_mask && !acc_track_mask); 545 BUG_ON(acc_track_mask & SPTE_SPECIAL_MASK); 546 547 shadow_user_mask = user_mask; 548 shadow_accessed_mask = accessed_mask; 549 shadow_dirty_mask = dirty_mask; 550 shadow_nx_mask = nx_mask; 551 shadow_x_mask = x_mask; 552 shadow_present_mask = p_mask; 553 shadow_acc_track_mask = acc_track_mask; 554 shadow_me_mask = me_mask; 555 } 556 EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes); 557 558 static u8 kvm_get_shadow_phys_bits(void) 559 { 560 /* 561 * boot_cpu_data.x86_phys_bits is reduced when MKTME or SME are detected 562 * in CPU detection code, but the processor treats those reduced bits as 563 * 'keyID' thus they are not reserved bits. Therefore KVM needs to look at 564 * the physical address bits reported by CPUID. 565 */ 566 if (likely(boot_cpu_data.extended_cpuid_level >= 0x80000008)) 567 return cpuid_eax(0x80000008) & 0xff; 568 569 /* 570 * Quite weird to have VMX or SVM but not MAXPHYADDR; probably a VM with 571 * custom CPUID. Proceed with whatever the kernel found since these features 572 * aren't virtualizable (SME/SEV also require CPUIDs higher than 0x80000008). 573 */ 574 return boot_cpu_data.x86_phys_bits; 575 } 576 577 static void kvm_mmu_reset_all_pte_masks(void) 578 { 579 u8 low_phys_bits; 580 581 shadow_user_mask = 0; 582 shadow_accessed_mask = 0; 583 shadow_dirty_mask = 0; 584 shadow_nx_mask = 0; 585 shadow_x_mask = 0; 586 shadow_present_mask = 0; 587 shadow_acc_track_mask = 0; 588 589 shadow_phys_bits = kvm_get_shadow_phys_bits(); 590 591 /* 592 * If the CPU has 46 or less physical address bits, then set an 593 * appropriate mask to guard against L1TF attacks. Otherwise, it is 594 * assumed that the CPU is not vulnerable to L1TF. 595 * 596 * Some Intel CPUs address the L1 cache using more PA bits than are 597 * reported by CPUID. Use the PA width of the L1 cache when possible 598 * to achieve more effective mitigation, e.g. if system RAM overlaps 599 * the most significant bits of legal physical address space. 600 */ 601 shadow_nonpresent_or_rsvd_mask = 0; 602 low_phys_bits = boot_cpu_data.x86_phys_bits; 603 if (boot_cpu_has_bug(X86_BUG_L1TF) && 604 !WARN_ON_ONCE(boot_cpu_data.x86_cache_bits >= 605 52 - shadow_nonpresent_or_rsvd_mask_len)) { 606 low_phys_bits = boot_cpu_data.x86_cache_bits 607 - shadow_nonpresent_or_rsvd_mask_len; 608 shadow_nonpresent_or_rsvd_mask = 609 rsvd_bits(low_phys_bits, boot_cpu_data.x86_cache_bits - 1); 610 } 611 612 shadow_nonpresent_or_rsvd_lower_gfn_mask = 613 GENMASK_ULL(low_phys_bits - 1, PAGE_SHIFT); 614 } 615 616 static int is_cpuid_PSE36(void) 617 { 618 return 1; 619 } 620 621 static int is_nx(struct kvm_vcpu *vcpu) 622 { 623 return vcpu->arch.efer & EFER_NX; 624 } 625 626 static int is_shadow_present_pte(u64 pte) 627 { 628 return (pte != 0) && !is_mmio_spte(pte); 629 } 630 631 static int is_large_pte(u64 pte) 632 { 633 return pte & PT_PAGE_SIZE_MASK; 634 } 635 636 static int is_last_spte(u64 pte, int level) 637 { 638 if (level == PG_LEVEL_4K) 639 return 1; 640 if (is_large_pte(pte)) 641 return 1; 642 return 0; 643 } 644 645 static bool is_executable_pte(u64 spte) 646 { 647 return (spte & (shadow_x_mask | shadow_nx_mask)) == shadow_x_mask; 648 } 649 650 static kvm_pfn_t spte_to_pfn(u64 pte) 651 { 652 return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT; 653 } 654 655 static gfn_t pse36_gfn_delta(u32 gpte) 656 { 657 int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT; 658 659 return (gpte & PT32_DIR_PSE36_MASK) << shift; 660 } 661 662 #ifdef CONFIG_X86_64 663 static void __set_spte(u64 *sptep, u64 spte) 664 { 665 WRITE_ONCE(*sptep, spte); 666 } 667 668 static void __update_clear_spte_fast(u64 *sptep, u64 spte) 669 { 670 WRITE_ONCE(*sptep, spte); 671 } 672 673 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte) 674 { 675 return xchg(sptep, spte); 676 } 677 678 static u64 __get_spte_lockless(u64 *sptep) 679 { 680 return READ_ONCE(*sptep); 681 } 682 #else 683 union split_spte { 684 struct { 685 u32 spte_low; 686 u32 spte_high; 687 }; 688 u64 spte; 689 }; 690 691 static void count_spte_clear(u64 *sptep, u64 spte) 692 { 693 struct kvm_mmu_page *sp = sptep_to_sp(sptep); 694 695 if (is_shadow_present_pte(spte)) 696 return; 697 698 /* Ensure the spte is completely set before we increase the count */ 699 smp_wmb(); 700 sp->clear_spte_count++; 701 } 702 703 static void __set_spte(u64 *sptep, u64 spte) 704 { 705 union split_spte *ssptep, sspte; 706 707 ssptep = (union split_spte *)sptep; 708 sspte = (union split_spte)spte; 709 710 ssptep->spte_high = sspte.spte_high; 711 712 /* 713 * If we map the spte from nonpresent to present, We should store 714 * the high bits firstly, then set present bit, so cpu can not 715 * fetch this spte while we are setting the spte. 716 */ 717 smp_wmb(); 718 719 WRITE_ONCE(ssptep->spte_low, sspte.spte_low); 720 } 721 722 static void __update_clear_spte_fast(u64 *sptep, u64 spte) 723 { 724 union split_spte *ssptep, sspte; 725 726 ssptep = (union split_spte *)sptep; 727 sspte = (union split_spte)spte; 728 729 WRITE_ONCE(ssptep->spte_low, sspte.spte_low); 730 731 /* 732 * If we map the spte from present to nonpresent, we should clear 733 * present bit firstly to avoid vcpu fetch the old high bits. 734 */ 735 smp_wmb(); 736 737 ssptep->spte_high = sspte.spte_high; 738 count_spte_clear(sptep, spte); 739 } 740 741 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte) 742 { 743 union split_spte *ssptep, sspte, orig; 744 745 ssptep = (union split_spte *)sptep; 746 sspte = (union split_spte)spte; 747 748 /* xchg acts as a barrier before the setting of the high bits */ 749 orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low); 750 orig.spte_high = ssptep->spte_high; 751 ssptep->spte_high = sspte.spte_high; 752 count_spte_clear(sptep, spte); 753 754 return orig.spte; 755 } 756 757 /* 758 * The idea using the light way get the spte on x86_32 guest is from 759 * gup_get_pte (mm/gup.c). 760 * 761 * An spte tlb flush may be pending, because kvm_set_pte_rmapp 762 * coalesces them and we are running out of the MMU lock. Therefore 763 * we need to protect against in-progress updates of the spte. 764 * 765 * Reading the spte while an update is in progress may get the old value 766 * for the high part of the spte. The race is fine for a present->non-present 767 * change (because the high part of the spte is ignored for non-present spte), 768 * but for a present->present change we must reread the spte. 769 * 770 * All such changes are done in two steps (present->non-present and 771 * non-present->present), hence it is enough to count the number of 772 * present->non-present updates: if it changed while reading the spte, 773 * we might have hit the race. This is done using clear_spte_count. 774 */ 775 static u64 __get_spte_lockless(u64 *sptep) 776 { 777 struct kvm_mmu_page *sp = sptep_to_sp(sptep); 778 union split_spte spte, *orig = (union split_spte *)sptep; 779 int count; 780 781 retry: 782 count = sp->clear_spte_count; 783 smp_rmb(); 784 785 spte.spte_low = orig->spte_low; 786 smp_rmb(); 787 788 spte.spte_high = orig->spte_high; 789 smp_rmb(); 790 791 if (unlikely(spte.spte_low != orig->spte_low || 792 count != sp->clear_spte_count)) 793 goto retry; 794 795 return spte.spte; 796 } 797 #endif 798 799 static bool spte_can_locklessly_be_made_writable(u64 spte) 800 { 801 return (spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE)) == 802 (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE); 803 } 804 805 static bool spte_has_volatile_bits(u64 spte) 806 { 807 if (!is_shadow_present_pte(spte)) 808 return false; 809 810 /* 811 * Always atomically update spte if it can be updated 812 * out of mmu-lock, it can ensure dirty bit is not lost, 813 * also, it can help us to get a stable is_writable_pte() 814 * to ensure tlb flush is not missed. 815 */ 816 if (spte_can_locklessly_be_made_writable(spte) || 817 is_access_track_spte(spte)) 818 return true; 819 820 if (spte_ad_enabled(spte)) { 821 if ((spte & shadow_accessed_mask) == 0 || 822 (is_writable_pte(spte) && (spte & shadow_dirty_mask) == 0)) 823 return true; 824 } 825 826 return false; 827 } 828 829 static bool is_accessed_spte(u64 spte) 830 { 831 u64 accessed_mask = spte_shadow_accessed_mask(spte); 832 833 return accessed_mask ? spte & accessed_mask 834 : !is_access_track_spte(spte); 835 } 836 837 static bool is_dirty_spte(u64 spte) 838 { 839 u64 dirty_mask = spte_shadow_dirty_mask(spte); 840 841 return dirty_mask ? spte & dirty_mask : spte & PT_WRITABLE_MASK; 842 } 843 844 /* Rules for using mmu_spte_set: 845 * Set the sptep from nonpresent to present. 846 * Note: the sptep being assigned *must* be either not present 847 * or in a state where the hardware will not attempt to update 848 * the spte. 849 */ 850 static void mmu_spte_set(u64 *sptep, u64 new_spte) 851 { 852 WARN_ON(is_shadow_present_pte(*sptep)); 853 __set_spte(sptep, new_spte); 854 } 855 856 /* 857 * Update the SPTE (excluding the PFN), but do not track changes in its 858 * accessed/dirty status. 859 */ 860 static u64 mmu_spte_update_no_track(u64 *sptep, u64 new_spte) 861 { 862 u64 old_spte = *sptep; 863 864 WARN_ON(!is_shadow_present_pte(new_spte)); 865 866 if (!is_shadow_present_pte(old_spte)) { 867 mmu_spte_set(sptep, new_spte); 868 return old_spte; 869 } 870 871 if (!spte_has_volatile_bits(old_spte)) 872 __update_clear_spte_fast(sptep, new_spte); 873 else 874 old_spte = __update_clear_spte_slow(sptep, new_spte); 875 876 WARN_ON(spte_to_pfn(old_spte) != spte_to_pfn(new_spte)); 877 878 return old_spte; 879 } 880 881 /* Rules for using mmu_spte_update: 882 * Update the state bits, it means the mapped pfn is not changed. 883 * 884 * Whenever we overwrite a writable spte with a read-only one we 885 * should flush remote TLBs. Otherwise rmap_write_protect 886 * will find a read-only spte, even though the writable spte 887 * might be cached on a CPU's TLB, the return value indicates this 888 * case. 889 * 890 * Returns true if the TLB needs to be flushed 891 */ 892 static bool mmu_spte_update(u64 *sptep, u64 new_spte) 893 { 894 bool flush = false; 895 u64 old_spte = mmu_spte_update_no_track(sptep, new_spte); 896 897 if (!is_shadow_present_pte(old_spte)) 898 return false; 899 900 /* 901 * For the spte updated out of mmu-lock is safe, since 902 * we always atomically update it, see the comments in 903 * spte_has_volatile_bits(). 904 */ 905 if (spte_can_locklessly_be_made_writable(old_spte) && 906 !is_writable_pte(new_spte)) 907 flush = true; 908 909 /* 910 * Flush TLB when accessed/dirty states are changed in the page tables, 911 * to guarantee consistency between TLB and page tables. 912 */ 913 914 if (is_accessed_spte(old_spte) && !is_accessed_spte(new_spte)) { 915 flush = true; 916 kvm_set_pfn_accessed(spte_to_pfn(old_spte)); 917 } 918 919 if (is_dirty_spte(old_spte) && !is_dirty_spte(new_spte)) { 920 flush = true; 921 kvm_set_pfn_dirty(spte_to_pfn(old_spte)); 922 } 923 924 return flush; 925 } 926 927 /* 928 * Rules for using mmu_spte_clear_track_bits: 929 * It sets the sptep from present to nonpresent, and track the 930 * state bits, it is used to clear the last level sptep. 931 * Returns non-zero if the PTE was previously valid. 932 */ 933 static int mmu_spte_clear_track_bits(u64 *sptep) 934 { 935 kvm_pfn_t pfn; 936 u64 old_spte = *sptep; 937 938 if (!spte_has_volatile_bits(old_spte)) 939 __update_clear_spte_fast(sptep, 0ull); 940 else 941 old_spte = __update_clear_spte_slow(sptep, 0ull); 942 943 if (!is_shadow_present_pte(old_spte)) 944 return 0; 945 946 pfn = spte_to_pfn(old_spte); 947 948 /* 949 * KVM does not hold the refcount of the page used by 950 * kvm mmu, before reclaiming the page, we should 951 * unmap it from mmu first. 952 */ 953 WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn))); 954 955 if (is_accessed_spte(old_spte)) 956 kvm_set_pfn_accessed(pfn); 957 958 if (is_dirty_spte(old_spte)) 959 kvm_set_pfn_dirty(pfn); 960 961 return 1; 962 } 963 964 /* 965 * Rules for using mmu_spte_clear_no_track: 966 * Directly clear spte without caring the state bits of sptep, 967 * it is used to set the upper level spte. 968 */ 969 static void mmu_spte_clear_no_track(u64 *sptep) 970 { 971 __update_clear_spte_fast(sptep, 0ull); 972 } 973 974 static u64 mmu_spte_get_lockless(u64 *sptep) 975 { 976 return __get_spte_lockless(sptep); 977 } 978 979 static u64 mark_spte_for_access_track(u64 spte) 980 { 981 if (spte_ad_enabled(spte)) 982 return spte & ~shadow_accessed_mask; 983 984 if (is_access_track_spte(spte)) 985 return spte; 986 987 /* 988 * Making an Access Tracking PTE will result in removal of write access 989 * from the PTE. So, verify that we will be able to restore the write 990 * access in the fast page fault path later on. 991 */ 992 WARN_ONCE((spte & PT_WRITABLE_MASK) && 993 !spte_can_locklessly_be_made_writable(spte), 994 "kvm: Writable SPTE is not locklessly dirty-trackable\n"); 995 996 WARN_ONCE(spte & (shadow_acc_track_saved_bits_mask << 997 shadow_acc_track_saved_bits_shift), 998 "kvm: Access Tracking saved bit locations are not zero\n"); 999 1000 spte |= (spte & shadow_acc_track_saved_bits_mask) << 1001 shadow_acc_track_saved_bits_shift; 1002 spte &= ~shadow_acc_track_mask; 1003 1004 return spte; 1005 } 1006 1007 /* Restore an acc-track PTE back to a regular PTE */ 1008 static u64 restore_acc_track_spte(u64 spte) 1009 { 1010 u64 new_spte = spte; 1011 u64 saved_bits = (spte >> shadow_acc_track_saved_bits_shift) 1012 & shadow_acc_track_saved_bits_mask; 1013 1014 WARN_ON_ONCE(spte_ad_enabled(spte)); 1015 WARN_ON_ONCE(!is_access_track_spte(spte)); 1016 1017 new_spte &= ~shadow_acc_track_mask; 1018 new_spte &= ~(shadow_acc_track_saved_bits_mask << 1019 shadow_acc_track_saved_bits_shift); 1020 new_spte |= saved_bits; 1021 1022 return new_spte; 1023 } 1024 1025 /* Returns the Accessed status of the PTE and resets it at the same time. */ 1026 static bool mmu_spte_age(u64 *sptep) 1027 { 1028 u64 spte = mmu_spte_get_lockless(sptep); 1029 1030 if (!is_accessed_spte(spte)) 1031 return false; 1032 1033 if (spte_ad_enabled(spte)) { 1034 clear_bit((ffs(shadow_accessed_mask) - 1), 1035 (unsigned long *)sptep); 1036 } else { 1037 /* 1038 * Capture the dirty status of the page, so that it doesn't get 1039 * lost when the SPTE is marked for access tracking. 1040 */ 1041 if (is_writable_pte(spte)) 1042 kvm_set_pfn_dirty(spte_to_pfn(spte)); 1043 1044 spte = mark_spte_for_access_track(spte); 1045 mmu_spte_update_no_track(sptep, spte); 1046 } 1047 1048 return true; 1049 } 1050 1051 static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu) 1052 { 1053 /* 1054 * Prevent page table teardown by making any free-er wait during 1055 * kvm_flush_remote_tlbs() IPI to all active vcpus. 1056 */ 1057 local_irq_disable(); 1058 1059 /* 1060 * Make sure a following spte read is not reordered ahead of the write 1061 * to vcpu->mode. 1062 */ 1063 smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES); 1064 } 1065 1066 static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu) 1067 { 1068 /* 1069 * Make sure the write to vcpu->mode is not reordered in front of 1070 * reads to sptes. If it does, kvm_mmu_commit_zap_page() can see us 1071 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table. 1072 */ 1073 smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE); 1074 local_irq_enable(); 1075 } 1076 1077 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu, bool maybe_indirect) 1078 { 1079 int r; 1080 1081 /* 1 rmap, 1 parent PTE per level, and the prefetched rmaps. */ 1082 r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache, 1083 1 + PT64_ROOT_MAX_LEVEL + PTE_PREFETCH_NUM); 1084 if (r) 1085 return r; 1086 r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_shadow_page_cache, 1087 PT64_ROOT_MAX_LEVEL); 1088 if (r) 1089 return r; 1090 if (maybe_indirect) { 1091 r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_gfn_array_cache, 1092 PT64_ROOT_MAX_LEVEL); 1093 if (r) 1094 return r; 1095 } 1096 return kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache, 1097 PT64_ROOT_MAX_LEVEL); 1098 } 1099 1100 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu) 1101 { 1102 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache); 1103 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_shadow_page_cache); 1104 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_gfn_array_cache); 1105 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache); 1106 } 1107 1108 static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu) 1109 { 1110 return kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache); 1111 } 1112 1113 static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc) 1114 { 1115 kmem_cache_free(pte_list_desc_cache, pte_list_desc); 1116 } 1117 1118 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index) 1119 { 1120 if (!sp->role.direct) 1121 return sp->gfns[index]; 1122 1123 return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS)); 1124 } 1125 1126 static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn) 1127 { 1128 if (!sp->role.direct) { 1129 sp->gfns[index] = gfn; 1130 return; 1131 } 1132 1133 if (WARN_ON(gfn != kvm_mmu_page_get_gfn(sp, index))) 1134 pr_err_ratelimited("gfn mismatch under direct page %llx " 1135 "(expected %llx, got %llx)\n", 1136 sp->gfn, 1137 kvm_mmu_page_get_gfn(sp, index), gfn); 1138 } 1139 1140 /* 1141 * Return the pointer to the large page information for a given gfn, 1142 * handling slots that are not large page aligned. 1143 */ 1144 static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn, 1145 struct kvm_memory_slot *slot, 1146 int level) 1147 { 1148 unsigned long idx; 1149 1150 idx = gfn_to_index(gfn, slot->base_gfn, level); 1151 return &slot->arch.lpage_info[level - 2][idx]; 1152 } 1153 1154 static void update_gfn_disallow_lpage_count(struct kvm_memory_slot *slot, 1155 gfn_t gfn, int count) 1156 { 1157 struct kvm_lpage_info *linfo; 1158 int i; 1159 1160 for (i = PG_LEVEL_2M; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) { 1161 linfo = lpage_info_slot(gfn, slot, i); 1162 linfo->disallow_lpage += count; 1163 WARN_ON(linfo->disallow_lpage < 0); 1164 } 1165 } 1166 1167 void kvm_mmu_gfn_disallow_lpage(struct kvm_memory_slot *slot, gfn_t gfn) 1168 { 1169 update_gfn_disallow_lpage_count(slot, gfn, 1); 1170 } 1171 1172 void kvm_mmu_gfn_allow_lpage(struct kvm_memory_slot *slot, gfn_t gfn) 1173 { 1174 update_gfn_disallow_lpage_count(slot, gfn, -1); 1175 } 1176 1177 static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp) 1178 { 1179 struct kvm_memslots *slots; 1180 struct kvm_memory_slot *slot; 1181 gfn_t gfn; 1182 1183 kvm->arch.indirect_shadow_pages++; 1184 gfn = sp->gfn; 1185 slots = kvm_memslots_for_spte_role(kvm, sp->role); 1186 slot = __gfn_to_memslot(slots, gfn); 1187 1188 /* the non-leaf shadow pages are keeping readonly. */ 1189 if (sp->role.level > PG_LEVEL_4K) 1190 return kvm_slot_page_track_add_page(kvm, slot, gfn, 1191 KVM_PAGE_TRACK_WRITE); 1192 1193 kvm_mmu_gfn_disallow_lpage(slot, gfn); 1194 } 1195 1196 static void account_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp) 1197 { 1198 if (sp->lpage_disallowed) 1199 return; 1200 1201 ++kvm->stat.nx_lpage_splits; 1202 list_add_tail(&sp->lpage_disallowed_link, 1203 &kvm->arch.lpage_disallowed_mmu_pages); 1204 sp->lpage_disallowed = true; 1205 } 1206 1207 static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp) 1208 { 1209 struct kvm_memslots *slots; 1210 struct kvm_memory_slot *slot; 1211 gfn_t gfn; 1212 1213 kvm->arch.indirect_shadow_pages--; 1214 gfn = sp->gfn; 1215 slots = kvm_memslots_for_spte_role(kvm, sp->role); 1216 slot = __gfn_to_memslot(slots, gfn); 1217 if (sp->role.level > PG_LEVEL_4K) 1218 return kvm_slot_page_track_remove_page(kvm, slot, gfn, 1219 KVM_PAGE_TRACK_WRITE); 1220 1221 kvm_mmu_gfn_allow_lpage(slot, gfn); 1222 } 1223 1224 static void unaccount_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp) 1225 { 1226 --kvm->stat.nx_lpage_splits; 1227 sp->lpage_disallowed = false; 1228 list_del(&sp->lpage_disallowed_link); 1229 } 1230 1231 static struct kvm_memory_slot * 1232 gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn, 1233 bool no_dirty_log) 1234 { 1235 struct kvm_memory_slot *slot; 1236 1237 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 1238 if (!slot || slot->flags & KVM_MEMSLOT_INVALID) 1239 return NULL; 1240 if (no_dirty_log && slot->dirty_bitmap) 1241 return NULL; 1242 1243 return slot; 1244 } 1245 1246 /* 1247 * About rmap_head encoding: 1248 * 1249 * If the bit zero of rmap_head->val is clear, then it points to the only spte 1250 * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct 1251 * pte_list_desc containing more mappings. 1252 */ 1253 1254 /* 1255 * Returns the number of pointers in the rmap chain, not counting the new one. 1256 */ 1257 static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte, 1258 struct kvm_rmap_head *rmap_head) 1259 { 1260 struct pte_list_desc *desc; 1261 int i, count = 0; 1262 1263 if (!rmap_head->val) { 1264 rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte); 1265 rmap_head->val = (unsigned long)spte; 1266 } else if (!(rmap_head->val & 1)) { 1267 rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte); 1268 desc = mmu_alloc_pte_list_desc(vcpu); 1269 desc->sptes[0] = (u64 *)rmap_head->val; 1270 desc->sptes[1] = spte; 1271 rmap_head->val = (unsigned long)desc | 1; 1272 ++count; 1273 } else { 1274 rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte); 1275 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul); 1276 while (desc->sptes[PTE_LIST_EXT-1] && desc->more) { 1277 desc = desc->more; 1278 count += PTE_LIST_EXT; 1279 } 1280 if (desc->sptes[PTE_LIST_EXT-1]) { 1281 desc->more = mmu_alloc_pte_list_desc(vcpu); 1282 desc = desc->more; 1283 } 1284 for (i = 0; desc->sptes[i]; ++i) 1285 ++count; 1286 desc->sptes[i] = spte; 1287 } 1288 return count; 1289 } 1290 1291 static void 1292 pte_list_desc_remove_entry(struct kvm_rmap_head *rmap_head, 1293 struct pte_list_desc *desc, int i, 1294 struct pte_list_desc *prev_desc) 1295 { 1296 int j; 1297 1298 for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j) 1299 ; 1300 desc->sptes[i] = desc->sptes[j]; 1301 desc->sptes[j] = NULL; 1302 if (j != 0) 1303 return; 1304 if (!prev_desc && !desc->more) 1305 rmap_head->val = 0; 1306 else 1307 if (prev_desc) 1308 prev_desc->more = desc->more; 1309 else 1310 rmap_head->val = (unsigned long)desc->more | 1; 1311 mmu_free_pte_list_desc(desc); 1312 } 1313 1314 static void __pte_list_remove(u64 *spte, struct kvm_rmap_head *rmap_head) 1315 { 1316 struct pte_list_desc *desc; 1317 struct pte_list_desc *prev_desc; 1318 int i; 1319 1320 if (!rmap_head->val) { 1321 pr_err("%s: %p 0->BUG\n", __func__, spte); 1322 BUG(); 1323 } else if (!(rmap_head->val & 1)) { 1324 rmap_printk("%s: %p 1->0\n", __func__, spte); 1325 if ((u64 *)rmap_head->val != spte) { 1326 pr_err("%s: %p 1->BUG\n", __func__, spte); 1327 BUG(); 1328 } 1329 rmap_head->val = 0; 1330 } else { 1331 rmap_printk("%s: %p many->many\n", __func__, spte); 1332 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul); 1333 prev_desc = NULL; 1334 while (desc) { 1335 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i) { 1336 if (desc->sptes[i] == spte) { 1337 pte_list_desc_remove_entry(rmap_head, 1338 desc, i, prev_desc); 1339 return; 1340 } 1341 } 1342 prev_desc = desc; 1343 desc = desc->more; 1344 } 1345 pr_err("%s: %p many->many\n", __func__, spte); 1346 BUG(); 1347 } 1348 } 1349 1350 static void pte_list_remove(struct kvm_rmap_head *rmap_head, u64 *sptep) 1351 { 1352 mmu_spte_clear_track_bits(sptep); 1353 __pte_list_remove(sptep, rmap_head); 1354 } 1355 1356 static struct kvm_rmap_head *__gfn_to_rmap(gfn_t gfn, int level, 1357 struct kvm_memory_slot *slot) 1358 { 1359 unsigned long idx; 1360 1361 idx = gfn_to_index(gfn, slot->base_gfn, level); 1362 return &slot->arch.rmap[level - PG_LEVEL_4K][idx]; 1363 } 1364 1365 static struct kvm_rmap_head *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, 1366 struct kvm_mmu_page *sp) 1367 { 1368 struct kvm_memslots *slots; 1369 struct kvm_memory_slot *slot; 1370 1371 slots = kvm_memslots_for_spte_role(kvm, sp->role); 1372 slot = __gfn_to_memslot(slots, gfn); 1373 return __gfn_to_rmap(gfn, sp->role.level, slot); 1374 } 1375 1376 static bool rmap_can_add(struct kvm_vcpu *vcpu) 1377 { 1378 struct kvm_mmu_memory_cache *mc; 1379 1380 mc = &vcpu->arch.mmu_pte_list_desc_cache; 1381 return kvm_mmu_memory_cache_nr_free_objects(mc); 1382 } 1383 1384 static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn) 1385 { 1386 struct kvm_mmu_page *sp; 1387 struct kvm_rmap_head *rmap_head; 1388 1389 sp = sptep_to_sp(spte); 1390 kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn); 1391 rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp); 1392 return pte_list_add(vcpu, spte, rmap_head); 1393 } 1394 1395 static void rmap_remove(struct kvm *kvm, u64 *spte) 1396 { 1397 struct kvm_mmu_page *sp; 1398 gfn_t gfn; 1399 struct kvm_rmap_head *rmap_head; 1400 1401 sp = sptep_to_sp(spte); 1402 gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt); 1403 rmap_head = gfn_to_rmap(kvm, gfn, sp); 1404 __pte_list_remove(spte, rmap_head); 1405 } 1406 1407 /* 1408 * Used by the following functions to iterate through the sptes linked by a 1409 * rmap. All fields are private and not assumed to be used outside. 1410 */ 1411 struct rmap_iterator { 1412 /* private fields */ 1413 struct pte_list_desc *desc; /* holds the sptep if not NULL */ 1414 int pos; /* index of the sptep */ 1415 }; 1416 1417 /* 1418 * Iteration must be started by this function. This should also be used after 1419 * removing/dropping sptes from the rmap link because in such cases the 1420 * information in the iterator may not be valid. 1421 * 1422 * Returns sptep if found, NULL otherwise. 1423 */ 1424 static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head, 1425 struct rmap_iterator *iter) 1426 { 1427 u64 *sptep; 1428 1429 if (!rmap_head->val) 1430 return NULL; 1431 1432 if (!(rmap_head->val & 1)) { 1433 iter->desc = NULL; 1434 sptep = (u64 *)rmap_head->val; 1435 goto out; 1436 } 1437 1438 iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul); 1439 iter->pos = 0; 1440 sptep = iter->desc->sptes[iter->pos]; 1441 out: 1442 BUG_ON(!is_shadow_present_pte(*sptep)); 1443 return sptep; 1444 } 1445 1446 /* 1447 * Must be used with a valid iterator: e.g. after rmap_get_first(). 1448 * 1449 * Returns sptep if found, NULL otherwise. 1450 */ 1451 static u64 *rmap_get_next(struct rmap_iterator *iter) 1452 { 1453 u64 *sptep; 1454 1455 if (iter->desc) { 1456 if (iter->pos < PTE_LIST_EXT - 1) { 1457 ++iter->pos; 1458 sptep = iter->desc->sptes[iter->pos]; 1459 if (sptep) 1460 goto out; 1461 } 1462 1463 iter->desc = iter->desc->more; 1464 1465 if (iter->desc) { 1466 iter->pos = 0; 1467 /* desc->sptes[0] cannot be NULL */ 1468 sptep = iter->desc->sptes[iter->pos]; 1469 goto out; 1470 } 1471 } 1472 1473 return NULL; 1474 out: 1475 BUG_ON(!is_shadow_present_pte(*sptep)); 1476 return sptep; 1477 } 1478 1479 #define for_each_rmap_spte(_rmap_head_, _iter_, _spte_) \ 1480 for (_spte_ = rmap_get_first(_rmap_head_, _iter_); \ 1481 _spte_; _spte_ = rmap_get_next(_iter_)) 1482 1483 static void drop_spte(struct kvm *kvm, u64 *sptep) 1484 { 1485 if (mmu_spte_clear_track_bits(sptep)) 1486 rmap_remove(kvm, sptep); 1487 } 1488 1489 1490 static bool __drop_large_spte(struct kvm *kvm, u64 *sptep) 1491 { 1492 if (is_large_pte(*sptep)) { 1493 WARN_ON(sptep_to_sp(sptep)->role.level == PG_LEVEL_4K); 1494 drop_spte(kvm, sptep); 1495 --kvm->stat.lpages; 1496 return true; 1497 } 1498 1499 return false; 1500 } 1501 1502 static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep) 1503 { 1504 if (__drop_large_spte(vcpu->kvm, sptep)) { 1505 struct kvm_mmu_page *sp = sptep_to_sp(sptep); 1506 1507 kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn, 1508 KVM_PAGES_PER_HPAGE(sp->role.level)); 1509 } 1510 } 1511 1512 /* 1513 * Write-protect on the specified @sptep, @pt_protect indicates whether 1514 * spte write-protection is caused by protecting shadow page table. 1515 * 1516 * Note: write protection is difference between dirty logging and spte 1517 * protection: 1518 * - for dirty logging, the spte can be set to writable at anytime if 1519 * its dirty bitmap is properly set. 1520 * - for spte protection, the spte can be writable only after unsync-ing 1521 * shadow page. 1522 * 1523 * Return true if tlb need be flushed. 1524 */ 1525 static bool spte_write_protect(u64 *sptep, bool pt_protect) 1526 { 1527 u64 spte = *sptep; 1528 1529 if (!is_writable_pte(spte) && 1530 !(pt_protect && spte_can_locklessly_be_made_writable(spte))) 1531 return false; 1532 1533 rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep); 1534 1535 if (pt_protect) 1536 spte &= ~SPTE_MMU_WRITEABLE; 1537 spte = spte & ~PT_WRITABLE_MASK; 1538 1539 return mmu_spte_update(sptep, spte); 1540 } 1541 1542 static bool __rmap_write_protect(struct kvm *kvm, 1543 struct kvm_rmap_head *rmap_head, 1544 bool pt_protect) 1545 { 1546 u64 *sptep; 1547 struct rmap_iterator iter; 1548 bool flush = false; 1549 1550 for_each_rmap_spte(rmap_head, &iter, sptep) 1551 flush |= spte_write_protect(sptep, pt_protect); 1552 1553 return flush; 1554 } 1555 1556 static bool spte_clear_dirty(u64 *sptep) 1557 { 1558 u64 spte = *sptep; 1559 1560 rmap_printk("rmap_clear_dirty: spte %p %llx\n", sptep, *sptep); 1561 1562 MMU_WARN_ON(!spte_ad_enabled(spte)); 1563 spte &= ~shadow_dirty_mask; 1564 return mmu_spte_update(sptep, spte); 1565 } 1566 1567 static bool spte_wrprot_for_clear_dirty(u64 *sptep) 1568 { 1569 bool was_writable = test_and_clear_bit(PT_WRITABLE_SHIFT, 1570 (unsigned long *)sptep); 1571 if (was_writable && !spte_ad_enabled(*sptep)) 1572 kvm_set_pfn_dirty(spte_to_pfn(*sptep)); 1573 1574 return was_writable; 1575 } 1576 1577 /* 1578 * Gets the GFN ready for another round of dirty logging by clearing the 1579 * - D bit on ad-enabled SPTEs, and 1580 * - W bit on ad-disabled SPTEs. 1581 * Returns true iff any D or W bits were cleared. 1582 */ 1583 static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head) 1584 { 1585 u64 *sptep; 1586 struct rmap_iterator iter; 1587 bool flush = false; 1588 1589 for_each_rmap_spte(rmap_head, &iter, sptep) 1590 if (spte_ad_need_write_protect(*sptep)) 1591 flush |= spte_wrprot_for_clear_dirty(sptep); 1592 else 1593 flush |= spte_clear_dirty(sptep); 1594 1595 return flush; 1596 } 1597 1598 static bool spte_set_dirty(u64 *sptep) 1599 { 1600 u64 spte = *sptep; 1601 1602 rmap_printk("rmap_set_dirty: spte %p %llx\n", sptep, *sptep); 1603 1604 /* 1605 * Similar to the !kvm_x86_ops.slot_disable_log_dirty case, 1606 * do not bother adding back write access to pages marked 1607 * SPTE_AD_WRPROT_ONLY_MASK. 1608 */ 1609 spte |= shadow_dirty_mask; 1610 1611 return mmu_spte_update(sptep, spte); 1612 } 1613 1614 static bool __rmap_set_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head) 1615 { 1616 u64 *sptep; 1617 struct rmap_iterator iter; 1618 bool flush = false; 1619 1620 for_each_rmap_spte(rmap_head, &iter, sptep) 1621 if (spte_ad_enabled(*sptep)) 1622 flush |= spte_set_dirty(sptep); 1623 1624 return flush; 1625 } 1626 1627 /** 1628 * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages 1629 * @kvm: kvm instance 1630 * @slot: slot to protect 1631 * @gfn_offset: start of the BITS_PER_LONG pages we care about 1632 * @mask: indicates which pages we should protect 1633 * 1634 * Used when we do not need to care about huge page mappings: e.g. during dirty 1635 * logging we do not have any such mappings. 1636 */ 1637 static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm, 1638 struct kvm_memory_slot *slot, 1639 gfn_t gfn_offset, unsigned long mask) 1640 { 1641 struct kvm_rmap_head *rmap_head; 1642 1643 while (mask) { 1644 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask), 1645 PG_LEVEL_4K, slot); 1646 __rmap_write_protect(kvm, rmap_head, false); 1647 1648 /* clear the first set bit */ 1649 mask &= mask - 1; 1650 } 1651 } 1652 1653 /** 1654 * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages, or write 1655 * protect the page if the D-bit isn't supported. 1656 * @kvm: kvm instance 1657 * @slot: slot to clear D-bit 1658 * @gfn_offset: start of the BITS_PER_LONG pages we care about 1659 * @mask: indicates which pages we should clear D-bit 1660 * 1661 * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap. 1662 */ 1663 void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm, 1664 struct kvm_memory_slot *slot, 1665 gfn_t gfn_offset, unsigned long mask) 1666 { 1667 struct kvm_rmap_head *rmap_head; 1668 1669 while (mask) { 1670 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask), 1671 PG_LEVEL_4K, slot); 1672 __rmap_clear_dirty(kvm, rmap_head); 1673 1674 /* clear the first set bit */ 1675 mask &= mask - 1; 1676 } 1677 } 1678 EXPORT_SYMBOL_GPL(kvm_mmu_clear_dirty_pt_masked); 1679 1680 /** 1681 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected 1682 * PT level pages. 1683 * 1684 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to 1685 * enable dirty logging for them. 1686 * 1687 * Used when we do not need to care about huge page mappings: e.g. during dirty 1688 * logging we do not have any such mappings. 1689 */ 1690 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm, 1691 struct kvm_memory_slot *slot, 1692 gfn_t gfn_offset, unsigned long mask) 1693 { 1694 if (kvm_x86_ops.enable_log_dirty_pt_masked) 1695 kvm_x86_ops.enable_log_dirty_pt_masked(kvm, slot, gfn_offset, 1696 mask); 1697 else 1698 kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask); 1699 } 1700 1701 bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm, 1702 struct kvm_memory_slot *slot, u64 gfn) 1703 { 1704 struct kvm_rmap_head *rmap_head; 1705 int i; 1706 bool write_protected = false; 1707 1708 for (i = PG_LEVEL_4K; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) { 1709 rmap_head = __gfn_to_rmap(gfn, i, slot); 1710 write_protected |= __rmap_write_protect(kvm, rmap_head, true); 1711 } 1712 1713 return write_protected; 1714 } 1715 1716 static bool rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn) 1717 { 1718 struct kvm_memory_slot *slot; 1719 1720 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 1721 return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn); 1722 } 1723 1724 static bool kvm_zap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head) 1725 { 1726 u64 *sptep; 1727 struct rmap_iterator iter; 1728 bool flush = false; 1729 1730 while ((sptep = rmap_get_first(rmap_head, &iter))) { 1731 rmap_printk("%s: spte %p %llx.\n", __func__, sptep, *sptep); 1732 1733 pte_list_remove(rmap_head, sptep); 1734 flush = true; 1735 } 1736 1737 return flush; 1738 } 1739 1740 static int kvm_unmap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head, 1741 struct kvm_memory_slot *slot, gfn_t gfn, int level, 1742 unsigned long data) 1743 { 1744 return kvm_zap_rmapp(kvm, rmap_head); 1745 } 1746 1747 static int kvm_set_pte_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head, 1748 struct kvm_memory_slot *slot, gfn_t gfn, int level, 1749 unsigned long data) 1750 { 1751 u64 *sptep; 1752 struct rmap_iterator iter; 1753 int need_flush = 0; 1754 u64 new_spte; 1755 pte_t *ptep = (pte_t *)data; 1756 kvm_pfn_t new_pfn; 1757 1758 WARN_ON(pte_huge(*ptep)); 1759 new_pfn = pte_pfn(*ptep); 1760 1761 restart: 1762 for_each_rmap_spte(rmap_head, &iter, sptep) { 1763 rmap_printk("kvm_set_pte_rmapp: spte %p %llx gfn %llx (%d)\n", 1764 sptep, *sptep, gfn, level); 1765 1766 need_flush = 1; 1767 1768 if (pte_write(*ptep)) { 1769 pte_list_remove(rmap_head, sptep); 1770 goto restart; 1771 } else { 1772 new_spte = *sptep & ~PT64_BASE_ADDR_MASK; 1773 new_spte |= (u64)new_pfn << PAGE_SHIFT; 1774 1775 new_spte &= ~PT_WRITABLE_MASK; 1776 new_spte &= ~SPTE_HOST_WRITEABLE; 1777 1778 new_spte = mark_spte_for_access_track(new_spte); 1779 1780 mmu_spte_clear_track_bits(sptep); 1781 mmu_spte_set(sptep, new_spte); 1782 } 1783 } 1784 1785 if (need_flush && kvm_available_flush_tlb_with_range()) { 1786 kvm_flush_remote_tlbs_with_address(kvm, gfn, 1); 1787 return 0; 1788 } 1789 1790 return need_flush; 1791 } 1792 1793 struct slot_rmap_walk_iterator { 1794 /* input fields. */ 1795 struct kvm_memory_slot *slot; 1796 gfn_t start_gfn; 1797 gfn_t end_gfn; 1798 int start_level; 1799 int end_level; 1800 1801 /* output fields. */ 1802 gfn_t gfn; 1803 struct kvm_rmap_head *rmap; 1804 int level; 1805 1806 /* private field. */ 1807 struct kvm_rmap_head *end_rmap; 1808 }; 1809 1810 static void 1811 rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level) 1812 { 1813 iterator->level = level; 1814 iterator->gfn = iterator->start_gfn; 1815 iterator->rmap = __gfn_to_rmap(iterator->gfn, level, iterator->slot); 1816 iterator->end_rmap = __gfn_to_rmap(iterator->end_gfn, level, 1817 iterator->slot); 1818 } 1819 1820 static void 1821 slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator, 1822 struct kvm_memory_slot *slot, int start_level, 1823 int end_level, gfn_t start_gfn, gfn_t end_gfn) 1824 { 1825 iterator->slot = slot; 1826 iterator->start_level = start_level; 1827 iterator->end_level = end_level; 1828 iterator->start_gfn = start_gfn; 1829 iterator->end_gfn = end_gfn; 1830 1831 rmap_walk_init_level(iterator, iterator->start_level); 1832 } 1833 1834 static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator) 1835 { 1836 return !!iterator->rmap; 1837 } 1838 1839 static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator) 1840 { 1841 if (++iterator->rmap <= iterator->end_rmap) { 1842 iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level)); 1843 return; 1844 } 1845 1846 if (++iterator->level > iterator->end_level) { 1847 iterator->rmap = NULL; 1848 return; 1849 } 1850 1851 rmap_walk_init_level(iterator, iterator->level); 1852 } 1853 1854 #define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_, \ 1855 _start_gfn, _end_gfn, _iter_) \ 1856 for (slot_rmap_walk_init(_iter_, _slot_, _start_level_, \ 1857 _end_level_, _start_gfn, _end_gfn); \ 1858 slot_rmap_walk_okay(_iter_); \ 1859 slot_rmap_walk_next(_iter_)) 1860 1861 static int kvm_handle_hva_range(struct kvm *kvm, 1862 unsigned long start, 1863 unsigned long end, 1864 unsigned long data, 1865 int (*handler)(struct kvm *kvm, 1866 struct kvm_rmap_head *rmap_head, 1867 struct kvm_memory_slot *slot, 1868 gfn_t gfn, 1869 int level, 1870 unsigned long data)) 1871 { 1872 struct kvm_memslots *slots; 1873 struct kvm_memory_slot *memslot; 1874 struct slot_rmap_walk_iterator iterator; 1875 int ret = 0; 1876 int i; 1877 1878 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { 1879 slots = __kvm_memslots(kvm, i); 1880 kvm_for_each_memslot(memslot, slots) { 1881 unsigned long hva_start, hva_end; 1882 gfn_t gfn_start, gfn_end; 1883 1884 hva_start = max(start, memslot->userspace_addr); 1885 hva_end = min(end, memslot->userspace_addr + 1886 (memslot->npages << PAGE_SHIFT)); 1887 if (hva_start >= hva_end) 1888 continue; 1889 /* 1890 * {gfn(page) | page intersects with [hva_start, hva_end)} = 1891 * {gfn_start, gfn_start+1, ..., gfn_end-1}. 1892 */ 1893 gfn_start = hva_to_gfn_memslot(hva_start, memslot); 1894 gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot); 1895 1896 for_each_slot_rmap_range(memslot, PG_LEVEL_4K, 1897 KVM_MAX_HUGEPAGE_LEVEL, 1898 gfn_start, gfn_end - 1, 1899 &iterator) 1900 ret |= handler(kvm, iterator.rmap, memslot, 1901 iterator.gfn, iterator.level, data); 1902 } 1903 } 1904 1905 return ret; 1906 } 1907 1908 static int kvm_handle_hva(struct kvm *kvm, unsigned long hva, 1909 unsigned long data, 1910 int (*handler)(struct kvm *kvm, 1911 struct kvm_rmap_head *rmap_head, 1912 struct kvm_memory_slot *slot, 1913 gfn_t gfn, int level, 1914 unsigned long data)) 1915 { 1916 return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler); 1917 } 1918 1919 int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end) 1920 { 1921 return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp); 1922 } 1923 1924 int kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte) 1925 { 1926 return kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp); 1927 } 1928 1929 static int kvm_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head, 1930 struct kvm_memory_slot *slot, gfn_t gfn, int level, 1931 unsigned long data) 1932 { 1933 u64 *sptep; 1934 struct rmap_iterator iter; 1935 int young = 0; 1936 1937 for_each_rmap_spte(rmap_head, &iter, sptep) 1938 young |= mmu_spte_age(sptep); 1939 1940 trace_kvm_age_page(gfn, level, slot, young); 1941 return young; 1942 } 1943 1944 static int kvm_test_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head, 1945 struct kvm_memory_slot *slot, gfn_t gfn, 1946 int level, unsigned long data) 1947 { 1948 u64 *sptep; 1949 struct rmap_iterator iter; 1950 1951 for_each_rmap_spte(rmap_head, &iter, sptep) 1952 if (is_accessed_spte(*sptep)) 1953 return 1; 1954 return 0; 1955 } 1956 1957 #define RMAP_RECYCLE_THRESHOLD 1000 1958 1959 static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn) 1960 { 1961 struct kvm_rmap_head *rmap_head; 1962 struct kvm_mmu_page *sp; 1963 1964 sp = sptep_to_sp(spte); 1965 1966 rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp); 1967 1968 kvm_unmap_rmapp(vcpu->kvm, rmap_head, NULL, gfn, sp->role.level, 0); 1969 kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn, 1970 KVM_PAGES_PER_HPAGE(sp->role.level)); 1971 } 1972 1973 int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end) 1974 { 1975 return kvm_handle_hva_range(kvm, start, end, 0, kvm_age_rmapp); 1976 } 1977 1978 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva) 1979 { 1980 return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp); 1981 } 1982 1983 #ifdef MMU_DEBUG 1984 static int is_empty_shadow_page(u64 *spt) 1985 { 1986 u64 *pos; 1987 u64 *end; 1988 1989 for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++) 1990 if (is_shadow_present_pte(*pos)) { 1991 printk(KERN_ERR "%s: %p %llx\n", __func__, 1992 pos, *pos); 1993 return 0; 1994 } 1995 return 1; 1996 } 1997 #endif 1998 1999 /* 2000 * This value is the sum of all of the kvm instances's 2001 * kvm->arch.n_used_mmu_pages values. We need a global, 2002 * aggregate version in order to make the slab shrinker 2003 * faster 2004 */ 2005 static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, unsigned long nr) 2006 { 2007 kvm->arch.n_used_mmu_pages += nr; 2008 percpu_counter_add(&kvm_total_used_mmu_pages, nr); 2009 } 2010 2011 static void kvm_mmu_free_page(struct kvm_mmu_page *sp) 2012 { 2013 MMU_WARN_ON(!is_empty_shadow_page(sp->spt)); 2014 hlist_del(&sp->hash_link); 2015 list_del(&sp->link); 2016 free_page((unsigned long)sp->spt); 2017 if (!sp->role.direct) 2018 free_page((unsigned long)sp->gfns); 2019 kmem_cache_free(mmu_page_header_cache, sp); 2020 } 2021 2022 static unsigned kvm_page_table_hashfn(gfn_t gfn) 2023 { 2024 return hash_64(gfn, KVM_MMU_HASH_SHIFT); 2025 } 2026 2027 static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu, 2028 struct kvm_mmu_page *sp, u64 *parent_pte) 2029 { 2030 if (!parent_pte) 2031 return; 2032 2033 pte_list_add(vcpu, parent_pte, &sp->parent_ptes); 2034 } 2035 2036 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp, 2037 u64 *parent_pte) 2038 { 2039 __pte_list_remove(parent_pte, &sp->parent_ptes); 2040 } 2041 2042 static void drop_parent_pte(struct kvm_mmu_page *sp, 2043 u64 *parent_pte) 2044 { 2045 mmu_page_remove_parent_pte(sp, parent_pte); 2046 mmu_spte_clear_no_track(parent_pte); 2047 } 2048 2049 static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu, int direct) 2050 { 2051 struct kvm_mmu_page *sp; 2052 2053 sp = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache); 2054 sp->spt = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_shadow_page_cache); 2055 if (!direct) 2056 sp->gfns = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_gfn_array_cache); 2057 set_page_private(virt_to_page(sp->spt), (unsigned long)sp); 2058 2059 /* 2060 * active_mmu_pages must be a FIFO list, as kvm_zap_obsolete_pages() 2061 * depends on valid pages being added to the head of the list. See 2062 * comments in kvm_zap_obsolete_pages(). 2063 */ 2064 sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen; 2065 list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages); 2066 kvm_mod_used_mmu_pages(vcpu->kvm, +1); 2067 return sp; 2068 } 2069 2070 static void mark_unsync(u64 *spte); 2071 static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp) 2072 { 2073 u64 *sptep; 2074 struct rmap_iterator iter; 2075 2076 for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) { 2077 mark_unsync(sptep); 2078 } 2079 } 2080 2081 static void mark_unsync(u64 *spte) 2082 { 2083 struct kvm_mmu_page *sp; 2084 unsigned int index; 2085 2086 sp = sptep_to_sp(spte); 2087 index = spte - sp->spt; 2088 if (__test_and_set_bit(index, sp->unsync_child_bitmap)) 2089 return; 2090 if (sp->unsync_children++) 2091 return; 2092 kvm_mmu_mark_parents_unsync(sp); 2093 } 2094 2095 static int nonpaging_sync_page(struct kvm_vcpu *vcpu, 2096 struct kvm_mmu_page *sp) 2097 { 2098 return 0; 2099 } 2100 2101 static void nonpaging_update_pte(struct kvm_vcpu *vcpu, 2102 struct kvm_mmu_page *sp, u64 *spte, 2103 const void *pte) 2104 { 2105 WARN_ON(1); 2106 } 2107 2108 #define KVM_PAGE_ARRAY_NR 16 2109 2110 struct kvm_mmu_pages { 2111 struct mmu_page_and_offset { 2112 struct kvm_mmu_page *sp; 2113 unsigned int idx; 2114 } page[KVM_PAGE_ARRAY_NR]; 2115 unsigned int nr; 2116 }; 2117 2118 static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp, 2119 int idx) 2120 { 2121 int i; 2122 2123 if (sp->unsync) 2124 for (i=0; i < pvec->nr; i++) 2125 if (pvec->page[i].sp == sp) 2126 return 0; 2127 2128 pvec->page[pvec->nr].sp = sp; 2129 pvec->page[pvec->nr].idx = idx; 2130 pvec->nr++; 2131 return (pvec->nr == KVM_PAGE_ARRAY_NR); 2132 } 2133 2134 static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx) 2135 { 2136 --sp->unsync_children; 2137 WARN_ON((int)sp->unsync_children < 0); 2138 __clear_bit(idx, sp->unsync_child_bitmap); 2139 } 2140 2141 static int __mmu_unsync_walk(struct kvm_mmu_page *sp, 2142 struct kvm_mmu_pages *pvec) 2143 { 2144 int i, ret, nr_unsync_leaf = 0; 2145 2146 for_each_set_bit(i, sp->unsync_child_bitmap, 512) { 2147 struct kvm_mmu_page *child; 2148 u64 ent = sp->spt[i]; 2149 2150 if (!is_shadow_present_pte(ent) || is_large_pte(ent)) { 2151 clear_unsync_child_bit(sp, i); 2152 continue; 2153 } 2154 2155 child = to_shadow_page(ent & PT64_BASE_ADDR_MASK); 2156 2157 if (child->unsync_children) { 2158 if (mmu_pages_add(pvec, child, i)) 2159 return -ENOSPC; 2160 2161 ret = __mmu_unsync_walk(child, pvec); 2162 if (!ret) { 2163 clear_unsync_child_bit(sp, i); 2164 continue; 2165 } else if (ret > 0) { 2166 nr_unsync_leaf += ret; 2167 } else 2168 return ret; 2169 } else if (child->unsync) { 2170 nr_unsync_leaf++; 2171 if (mmu_pages_add(pvec, child, i)) 2172 return -ENOSPC; 2173 } else 2174 clear_unsync_child_bit(sp, i); 2175 } 2176 2177 return nr_unsync_leaf; 2178 } 2179 2180 #define INVALID_INDEX (-1) 2181 2182 static int mmu_unsync_walk(struct kvm_mmu_page *sp, 2183 struct kvm_mmu_pages *pvec) 2184 { 2185 pvec->nr = 0; 2186 if (!sp->unsync_children) 2187 return 0; 2188 2189 mmu_pages_add(pvec, sp, INVALID_INDEX); 2190 return __mmu_unsync_walk(sp, pvec); 2191 } 2192 2193 static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp) 2194 { 2195 WARN_ON(!sp->unsync); 2196 trace_kvm_mmu_sync_page(sp); 2197 sp->unsync = 0; 2198 --kvm->stat.mmu_unsync; 2199 } 2200 2201 static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp, 2202 struct list_head *invalid_list); 2203 static void kvm_mmu_commit_zap_page(struct kvm *kvm, 2204 struct list_head *invalid_list); 2205 2206 #define for_each_valid_sp(_kvm, _sp, _list) \ 2207 hlist_for_each_entry(_sp, _list, hash_link) \ 2208 if (is_obsolete_sp((_kvm), (_sp))) { \ 2209 } else 2210 2211 #define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn) \ 2212 for_each_valid_sp(_kvm, _sp, \ 2213 &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)]) \ 2214 if ((_sp)->gfn != (_gfn) || (_sp)->role.direct) {} else 2215 2216 static inline bool is_ept_sp(struct kvm_mmu_page *sp) 2217 { 2218 return sp->role.cr0_wp && sp->role.smap_andnot_wp; 2219 } 2220 2221 /* @sp->gfn should be write-protected at the call site */ 2222 static bool __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp, 2223 struct list_head *invalid_list) 2224 { 2225 if ((!is_ept_sp(sp) && sp->role.gpte_is_8_bytes != !!is_pae(vcpu)) || 2226 vcpu->arch.mmu->sync_page(vcpu, sp) == 0) { 2227 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list); 2228 return false; 2229 } 2230 2231 return true; 2232 } 2233 2234 static bool kvm_mmu_remote_flush_or_zap(struct kvm *kvm, 2235 struct list_head *invalid_list, 2236 bool remote_flush) 2237 { 2238 if (!remote_flush && list_empty(invalid_list)) 2239 return false; 2240 2241 if (!list_empty(invalid_list)) 2242 kvm_mmu_commit_zap_page(kvm, invalid_list); 2243 else 2244 kvm_flush_remote_tlbs(kvm); 2245 return true; 2246 } 2247 2248 static void kvm_mmu_flush_or_zap(struct kvm_vcpu *vcpu, 2249 struct list_head *invalid_list, 2250 bool remote_flush, bool local_flush) 2251 { 2252 if (kvm_mmu_remote_flush_or_zap(vcpu->kvm, invalid_list, remote_flush)) 2253 return; 2254 2255 if (local_flush) 2256 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 2257 } 2258 2259 #ifdef CONFIG_KVM_MMU_AUDIT 2260 #include "mmu_audit.c" 2261 #else 2262 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { } 2263 static void mmu_audit_disable(void) { } 2264 #endif 2265 2266 static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp) 2267 { 2268 return sp->role.invalid || 2269 unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen); 2270 } 2271 2272 static bool kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp, 2273 struct list_head *invalid_list) 2274 { 2275 kvm_unlink_unsync_page(vcpu->kvm, sp); 2276 return __kvm_sync_page(vcpu, sp, invalid_list); 2277 } 2278 2279 /* @gfn should be write-protected at the call site */ 2280 static bool kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn, 2281 struct list_head *invalid_list) 2282 { 2283 struct kvm_mmu_page *s; 2284 bool ret = false; 2285 2286 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) { 2287 if (!s->unsync) 2288 continue; 2289 2290 WARN_ON(s->role.level != PG_LEVEL_4K); 2291 ret |= kvm_sync_page(vcpu, s, invalid_list); 2292 } 2293 2294 return ret; 2295 } 2296 2297 struct mmu_page_path { 2298 struct kvm_mmu_page *parent[PT64_ROOT_MAX_LEVEL]; 2299 unsigned int idx[PT64_ROOT_MAX_LEVEL]; 2300 }; 2301 2302 #define for_each_sp(pvec, sp, parents, i) \ 2303 for (i = mmu_pages_first(&pvec, &parents); \ 2304 i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \ 2305 i = mmu_pages_next(&pvec, &parents, i)) 2306 2307 static int mmu_pages_next(struct kvm_mmu_pages *pvec, 2308 struct mmu_page_path *parents, 2309 int i) 2310 { 2311 int n; 2312 2313 for (n = i+1; n < pvec->nr; n++) { 2314 struct kvm_mmu_page *sp = pvec->page[n].sp; 2315 unsigned idx = pvec->page[n].idx; 2316 int level = sp->role.level; 2317 2318 parents->idx[level-1] = idx; 2319 if (level == PG_LEVEL_4K) 2320 break; 2321 2322 parents->parent[level-2] = sp; 2323 } 2324 2325 return n; 2326 } 2327 2328 static int mmu_pages_first(struct kvm_mmu_pages *pvec, 2329 struct mmu_page_path *parents) 2330 { 2331 struct kvm_mmu_page *sp; 2332 int level; 2333 2334 if (pvec->nr == 0) 2335 return 0; 2336 2337 WARN_ON(pvec->page[0].idx != INVALID_INDEX); 2338 2339 sp = pvec->page[0].sp; 2340 level = sp->role.level; 2341 WARN_ON(level == PG_LEVEL_4K); 2342 2343 parents->parent[level-2] = sp; 2344 2345 /* Also set up a sentinel. Further entries in pvec are all 2346 * children of sp, so this element is never overwritten. 2347 */ 2348 parents->parent[level-1] = NULL; 2349 return mmu_pages_next(pvec, parents, 0); 2350 } 2351 2352 static void mmu_pages_clear_parents(struct mmu_page_path *parents) 2353 { 2354 struct kvm_mmu_page *sp; 2355 unsigned int level = 0; 2356 2357 do { 2358 unsigned int idx = parents->idx[level]; 2359 sp = parents->parent[level]; 2360 if (!sp) 2361 return; 2362 2363 WARN_ON(idx == INVALID_INDEX); 2364 clear_unsync_child_bit(sp, idx); 2365 level++; 2366 } while (!sp->unsync_children); 2367 } 2368 2369 static void mmu_sync_children(struct kvm_vcpu *vcpu, 2370 struct kvm_mmu_page *parent) 2371 { 2372 int i; 2373 struct kvm_mmu_page *sp; 2374 struct mmu_page_path parents; 2375 struct kvm_mmu_pages pages; 2376 LIST_HEAD(invalid_list); 2377 bool flush = false; 2378 2379 while (mmu_unsync_walk(parent, &pages)) { 2380 bool protected = false; 2381 2382 for_each_sp(pages, sp, parents, i) 2383 protected |= rmap_write_protect(vcpu, sp->gfn); 2384 2385 if (protected) { 2386 kvm_flush_remote_tlbs(vcpu->kvm); 2387 flush = false; 2388 } 2389 2390 for_each_sp(pages, sp, parents, i) { 2391 flush |= kvm_sync_page(vcpu, sp, &invalid_list); 2392 mmu_pages_clear_parents(&parents); 2393 } 2394 if (need_resched() || spin_needbreak(&vcpu->kvm->mmu_lock)) { 2395 kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush); 2396 cond_resched_lock(&vcpu->kvm->mmu_lock); 2397 flush = false; 2398 } 2399 } 2400 2401 kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush); 2402 } 2403 2404 static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp) 2405 { 2406 atomic_set(&sp->write_flooding_count, 0); 2407 } 2408 2409 static void clear_sp_write_flooding_count(u64 *spte) 2410 { 2411 __clear_sp_write_flooding_count(sptep_to_sp(spte)); 2412 } 2413 2414 static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu, 2415 gfn_t gfn, 2416 gva_t gaddr, 2417 unsigned level, 2418 int direct, 2419 unsigned int access) 2420 { 2421 bool direct_mmu = vcpu->arch.mmu->direct_map; 2422 union kvm_mmu_page_role role; 2423 struct hlist_head *sp_list; 2424 unsigned quadrant; 2425 struct kvm_mmu_page *sp; 2426 bool need_sync = false; 2427 bool flush = false; 2428 int collisions = 0; 2429 LIST_HEAD(invalid_list); 2430 2431 role = vcpu->arch.mmu->mmu_role.base; 2432 role.level = level; 2433 role.direct = direct; 2434 if (role.direct) 2435 role.gpte_is_8_bytes = true; 2436 role.access = access; 2437 if (!direct_mmu && vcpu->arch.mmu->root_level <= PT32_ROOT_LEVEL) { 2438 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level)); 2439 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1; 2440 role.quadrant = quadrant; 2441 } 2442 2443 sp_list = &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]; 2444 for_each_valid_sp(vcpu->kvm, sp, sp_list) { 2445 if (sp->gfn != gfn) { 2446 collisions++; 2447 continue; 2448 } 2449 2450 if (!need_sync && sp->unsync) 2451 need_sync = true; 2452 2453 if (sp->role.word != role.word) 2454 continue; 2455 2456 if (direct_mmu) 2457 goto trace_get_page; 2458 2459 if (sp->unsync) { 2460 /* The page is good, but __kvm_sync_page might still end 2461 * up zapping it. If so, break in order to rebuild it. 2462 */ 2463 if (!__kvm_sync_page(vcpu, sp, &invalid_list)) 2464 break; 2465 2466 WARN_ON(!list_empty(&invalid_list)); 2467 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 2468 } 2469 2470 if (sp->unsync_children) 2471 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 2472 2473 __clear_sp_write_flooding_count(sp); 2474 2475 trace_get_page: 2476 trace_kvm_mmu_get_page(sp, false); 2477 goto out; 2478 } 2479 2480 ++vcpu->kvm->stat.mmu_cache_miss; 2481 2482 sp = kvm_mmu_alloc_page(vcpu, direct); 2483 2484 sp->gfn = gfn; 2485 sp->role = role; 2486 hlist_add_head(&sp->hash_link, sp_list); 2487 if (!direct) { 2488 /* 2489 * we should do write protection before syncing pages 2490 * otherwise the content of the synced shadow page may 2491 * be inconsistent with guest page table. 2492 */ 2493 account_shadowed(vcpu->kvm, sp); 2494 if (level == PG_LEVEL_4K && rmap_write_protect(vcpu, gfn)) 2495 kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn, 1); 2496 2497 if (level > PG_LEVEL_4K && need_sync) 2498 flush |= kvm_sync_pages(vcpu, gfn, &invalid_list); 2499 } 2500 trace_kvm_mmu_get_page(sp, true); 2501 2502 kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush); 2503 out: 2504 if (collisions > vcpu->kvm->stat.max_mmu_page_hash_collisions) 2505 vcpu->kvm->stat.max_mmu_page_hash_collisions = collisions; 2506 return sp; 2507 } 2508 2509 static void shadow_walk_init_using_root(struct kvm_shadow_walk_iterator *iterator, 2510 struct kvm_vcpu *vcpu, hpa_t root, 2511 u64 addr) 2512 { 2513 iterator->addr = addr; 2514 iterator->shadow_addr = root; 2515 iterator->level = vcpu->arch.mmu->shadow_root_level; 2516 2517 if (iterator->level == PT64_ROOT_4LEVEL && 2518 vcpu->arch.mmu->root_level < PT64_ROOT_4LEVEL && 2519 !vcpu->arch.mmu->direct_map) 2520 --iterator->level; 2521 2522 if (iterator->level == PT32E_ROOT_LEVEL) { 2523 /* 2524 * prev_root is currently only used for 64-bit hosts. So only 2525 * the active root_hpa is valid here. 2526 */ 2527 BUG_ON(root != vcpu->arch.mmu->root_hpa); 2528 2529 iterator->shadow_addr 2530 = vcpu->arch.mmu->pae_root[(addr >> 30) & 3]; 2531 iterator->shadow_addr &= PT64_BASE_ADDR_MASK; 2532 --iterator->level; 2533 if (!iterator->shadow_addr) 2534 iterator->level = 0; 2535 } 2536 } 2537 2538 static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator, 2539 struct kvm_vcpu *vcpu, u64 addr) 2540 { 2541 shadow_walk_init_using_root(iterator, vcpu, vcpu->arch.mmu->root_hpa, 2542 addr); 2543 } 2544 2545 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator) 2546 { 2547 if (iterator->level < PG_LEVEL_4K) 2548 return false; 2549 2550 iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level); 2551 iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index; 2552 return true; 2553 } 2554 2555 static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator, 2556 u64 spte) 2557 { 2558 if (is_last_spte(spte, iterator->level)) { 2559 iterator->level = 0; 2560 return; 2561 } 2562 2563 iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK; 2564 --iterator->level; 2565 } 2566 2567 static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator) 2568 { 2569 __shadow_walk_next(iterator, *iterator->sptep); 2570 } 2571 2572 static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep, 2573 struct kvm_mmu_page *sp) 2574 { 2575 u64 spte; 2576 2577 BUILD_BUG_ON(VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK); 2578 2579 spte = __pa(sp->spt) | shadow_present_mask | PT_WRITABLE_MASK | 2580 shadow_user_mask | shadow_x_mask | shadow_me_mask; 2581 2582 if (sp_ad_disabled(sp)) 2583 spte |= SPTE_AD_DISABLED_MASK; 2584 else 2585 spte |= shadow_accessed_mask; 2586 2587 mmu_spte_set(sptep, spte); 2588 2589 mmu_page_add_parent_pte(vcpu, sp, sptep); 2590 2591 if (sp->unsync_children || sp->unsync) 2592 mark_unsync(sptep); 2593 } 2594 2595 static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep, 2596 unsigned direct_access) 2597 { 2598 if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) { 2599 struct kvm_mmu_page *child; 2600 2601 /* 2602 * For the direct sp, if the guest pte's dirty bit 2603 * changed form clean to dirty, it will corrupt the 2604 * sp's access: allow writable in the read-only sp, 2605 * so we should update the spte at this point to get 2606 * a new sp with the correct access. 2607 */ 2608 child = to_shadow_page(*sptep & PT64_BASE_ADDR_MASK); 2609 if (child->role.access == direct_access) 2610 return; 2611 2612 drop_parent_pte(child, sptep); 2613 kvm_flush_remote_tlbs_with_address(vcpu->kvm, child->gfn, 1); 2614 } 2615 } 2616 2617 static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp, 2618 u64 *spte) 2619 { 2620 u64 pte; 2621 struct kvm_mmu_page *child; 2622 2623 pte = *spte; 2624 if (is_shadow_present_pte(pte)) { 2625 if (is_last_spte(pte, sp->role.level)) { 2626 drop_spte(kvm, spte); 2627 if (is_large_pte(pte)) 2628 --kvm->stat.lpages; 2629 } else { 2630 child = to_shadow_page(pte & PT64_BASE_ADDR_MASK); 2631 drop_parent_pte(child, spte); 2632 } 2633 return true; 2634 } 2635 2636 if (is_mmio_spte(pte)) 2637 mmu_spte_clear_no_track(spte); 2638 2639 return false; 2640 } 2641 2642 static void kvm_mmu_page_unlink_children(struct kvm *kvm, 2643 struct kvm_mmu_page *sp) 2644 { 2645 unsigned i; 2646 2647 for (i = 0; i < PT64_ENT_PER_PAGE; ++i) 2648 mmu_page_zap_pte(kvm, sp, sp->spt + i); 2649 } 2650 2651 static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp) 2652 { 2653 u64 *sptep; 2654 struct rmap_iterator iter; 2655 2656 while ((sptep = rmap_get_first(&sp->parent_ptes, &iter))) 2657 drop_parent_pte(sp, sptep); 2658 } 2659 2660 static int mmu_zap_unsync_children(struct kvm *kvm, 2661 struct kvm_mmu_page *parent, 2662 struct list_head *invalid_list) 2663 { 2664 int i, zapped = 0; 2665 struct mmu_page_path parents; 2666 struct kvm_mmu_pages pages; 2667 2668 if (parent->role.level == PG_LEVEL_4K) 2669 return 0; 2670 2671 while (mmu_unsync_walk(parent, &pages)) { 2672 struct kvm_mmu_page *sp; 2673 2674 for_each_sp(pages, sp, parents, i) { 2675 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list); 2676 mmu_pages_clear_parents(&parents); 2677 zapped++; 2678 } 2679 } 2680 2681 return zapped; 2682 } 2683 2684 static bool __kvm_mmu_prepare_zap_page(struct kvm *kvm, 2685 struct kvm_mmu_page *sp, 2686 struct list_head *invalid_list, 2687 int *nr_zapped) 2688 { 2689 bool list_unstable; 2690 2691 trace_kvm_mmu_prepare_zap_page(sp); 2692 ++kvm->stat.mmu_shadow_zapped; 2693 *nr_zapped = mmu_zap_unsync_children(kvm, sp, invalid_list); 2694 kvm_mmu_page_unlink_children(kvm, sp); 2695 kvm_mmu_unlink_parents(kvm, sp); 2696 2697 /* Zapping children means active_mmu_pages has become unstable. */ 2698 list_unstable = *nr_zapped; 2699 2700 if (!sp->role.invalid && !sp->role.direct) 2701 unaccount_shadowed(kvm, sp); 2702 2703 if (sp->unsync) 2704 kvm_unlink_unsync_page(kvm, sp); 2705 if (!sp->root_count) { 2706 /* Count self */ 2707 (*nr_zapped)++; 2708 2709 /* 2710 * Already invalid pages (previously active roots) are not on 2711 * the active page list. See list_del() in the "else" case of 2712 * !sp->root_count. 2713 */ 2714 if (sp->role.invalid) 2715 list_add(&sp->link, invalid_list); 2716 else 2717 list_move(&sp->link, invalid_list); 2718 kvm_mod_used_mmu_pages(kvm, -1); 2719 } else { 2720 /* 2721 * Remove the active root from the active page list, the root 2722 * will be explicitly freed when the root_count hits zero. 2723 */ 2724 list_del(&sp->link); 2725 2726 /* 2727 * Obsolete pages cannot be used on any vCPUs, see the comment 2728 * in kvm_mmu_zap_all_fast(). Note, is_obsolete_sp() also 2729 * treats invalid shadow pages as being obsolete. 2730 */ 2731 if (!is_obsolete_sp(kvm, sp)) 2732 kvm_reload_remote_mmus(kvm); 2733 } 2734 2735 if (sp->lpage_disallowed) 2736 unaccount_huge_nx_page(kvm, sp); 2737 2738 sp->role.invalid = 1; 2739 return list_unstable; 2740 } 2741 2742 static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp, 2743 struct list_head *invalid_list) 2744 { 2745 int nr_zapped; 2746 2747 __kvm_mmu_prepare_zap_page(kvm, sp, invalid_list, &nr_zapped); 2748 return nr_zapped; 2749 } 2750 2751 static void kvm_mmu_commit_zap_page(struct kvm *kvm, 2752 struct list_head *invalid_list) 2753 { 2754 struct kvm_mmu_page *sp, *nsp; 2755 2756 if (list_empty(invalid_list)) 2757 return; 2758 2759 /* 2760 * We need to make sure everyone sees our modifications to 2761 * the page tables and see changes to vcpu->mode here. The barrier 2762 * in the kvm_flush_remote_tlbs() achieves this. This pairs 2763 * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end. 2764 * 2765 * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit 2766 * guest mode and/or lockless shadow page table walks. 2767 */ 2768 kvm_flush_remote_tlbs(kvm); 2769 2770 list_for_each_entry_safe(sp, nsp, invalid_list, link) { 2771 WARN_ON(!sp->role.invalid || sp->root_count); 2772 kvm_mmu_free_page(sp); 2773 } 2774 } 2775 2776 static unsigned long kvm_mmu_zap_oldest_mmu_pages(struct kvm *kvm, 2777 unsigned long nr_to_zap) 2778 { 2779 unsigned long total_zapped = 0; 2780 struct kvm_mmu_page *sp, *tmp; 2781 LIST_HEAD(invalid_list); 2782 bool unstable; 2783 int nr_zapped; 2784 2785 if (list_empty(&kvm->arch.active_mmu_pages)) 2786 return 0; 2787 2788 restart: 2789 list_for_each_entry_safe(sp, tmp, &kvm->arch.active_mmu_pages, link) { 2790 /* 2791 * Don't zap active root pages, the page itself can't be freed 2792 * and zapping it will just force vCPUs to realloc and reload. 2793 */ 2794 if (sp->root_count) 2795 continue; 2796 2797 unstable = __kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list, 2798 &nr_zapped); 2799 total_zapped += nr_zapped; 2800 if (total_zapped >= nr_to_zap) 2801 break; 2802 2803 if (unstable) 2804 goto restart; 2805 } 2806 2807 kvm_mmu_commit_zap_page(kvm, &invalid_list); 2808 2809 kvm->stat.mmu_recycled += total_zapped; 2810 return total_zapped; 2811 } 2812 2813 static inline unsigned long kvm_mmu_available_pages(struct kvm *kvm) 2814 { 2815 if (kvm->arch.n_max_mmu_pages > kvm->arch.n_used_mmu_pages) 2816 return kvm->arch.n_max_mmu_pages - 2817 kvm->arch.n_used_mmu_pages; 2818 2819 return 0; 2820 } 2821 2822 static int make_mmu_pages_available(struct kvm_vcpu *vcpu) 2823 { 2824 unsigned long avail = kvm_mmu_available_pages(vcpu->kvm); 2825 2826 if (likely(avail >= KVM_MIN_FREE_MMU_PAGES)) 2827 return 0; 2828 2829 kvm_mmu_zap_oldest_mmu_pages(vcpu->kvm, KVM_REFILL_PAGES - avail); 2830 2831 if (!kvm_mmu_available_pages(vcpu->kvm)) 2832 return -ENOSPC; 2833 return 0; 2834 } 2835 2836 /* 2837 * Changing the number of mmu pages allocated to the vm 2838 * Note: if goal_nr_mmu_pages is too small, you will get dead lock 2839 */ 2840 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long goal_nr_mmu_pages) 2841 { 2842 spin_lock(&kvm->mmu_lock); 2843 2844 if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) { 2845 kvm_mmu_zap_oldest_mmu_pages(kvm, kvm->arch.n_used_mmu_pages - 2846 goal_nr_mmu_pages); 2847 2848 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages; 2849 } 2850 2851 kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages; 2852 2853 spin_unlock(&kvm->mmu_lock); 2854 } 2855 2856 int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn) 2857 { 2858 struct kvm_mmu_page *sp; 2859 LIST_HEAD(invalid_list); 2860 int r; 2861 2862 pgprintk("%s: looking for gfn %llx\n", __func__, gfn); 2863 r = 0; 2864 spin_lock(&kvm->mmu_lock); 2865 for_each_gfn_indirect_valid_sp(kvm, sp, gfn) { 2866 pgprintk("%s: gfn %llx role %x\n", __func__, gfn, 2867 sp->role.word); 2868 r = 1; 2869 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list); 2870 } 2871 kvm_mmu_commit_zap_page(kvm, &invalid_list); 2872 spin_unlock(&kvm->mmu_lock); 2873 2874 return r; 2875 } 2876 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page); 2877 2878 static void kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp) 2879 { 2880 trace_kvm_mmu_unsync_page(sp); 2881 ++vcpu->kvm->stat.mmu_unsync; 2882 sp->unsync = 1; 2883 2884 kvm_mmu_mark_parents_unsync(sp); 2885 } 2886 2887 static bool mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn, 2888 bool can_unsync) 2889 { 2890 struct kvm_mmu_page *sp; 2891 2892 if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE)) 2893 return true; 2894 2895 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) { 2896 if (!can_unsync) 2897 return true; 2898 2899 if (sp->unsync) 2900 continue; 2901 2902 WARN_ON(sp->role.level != PG_LEVEL_4K); 2903 kvm_unsync_page(vcpu, sp); 2904 } 2905 2906 /* 2907 * We need to ensure that the marking of unsync pages is visible 2908 * before the SPTE is updated to allow writes because 2909 * kvm_mmu_sync_roots() checks the unsync flags without holding 2910 * the MMU lock and so can race with this. If the SPTE was updated 2911 * before the page had been marked as unsync-ed, something like the 2912 * following could happen: 2913 * 2914 * CPU 1 CPU 2 2915 * --------------------------------------------------------------------- 2916 * 1.2 Host updates SPTE 2917 * to be writable 2918 * 2.1 Guest writes a GPTE for GVA X. 2919 * (GPTE being in the guest page table shadowed 2920 * by the SP from CPU 1.) 2921 * This reads SPTE during the page table walk. 2922 * Since SPTE.W is read as 1, there is no 2923 * fault. 2924 * 2925 * 2.2 Guest issues TLB flush. 2926 * That causes a VM Exit. 2927 * 2928 * 2.3 kvm_mmu_sync_pages() reads sp->unsync. 2929 * Since it is false, so it just returns. 2930 * 2931 * 2.4 Guest accesses GVA X. 2932 * Since the mapping in the SP was not updated, 2933 * so the old mapping for GVA X incorrectly 2934 * gets used. 2935 * 1.1 Host marks SP 2936 * as unsync 2937 * (sp->unsync = true) 2938 * 2939 * The write barrier below ensures that 1.1 happens before 1.2 and thus 2940 * the situation in 2.4 does not arise. The implicit barrier in 2.2 2941 * pairs with this write barrier. 2942 */ 2943 smp_wmb(); 2944 2945 return false; 2946 } 2947 2948 static bool kvm_is_mmio_pfn(kvm_pfn_t pfn) 2949 { 2950 if (pfn_valid(pfn)) 2951 return !is_zero_pfn(pfn) && PageReserved(pfn_to_page(pfn)) && 2952 /* 2953 * Some reserved pages, such as those from NVDIMM 2954 * DAX devices, are not for MMIO, and can be mapped 2955 * with cached memory type for better performance. 2956 * However, the above check misconceives those pages 2957 * as MMIO, and results in KVM mapping them with UC 2958 * memory type, which would hurt the performance. 2959 * Therefore, we check the host memory type in addition 2960 * and only treat UC/UC-/WC pages as MMIO. 2961 */ 2962 (!pat_enabled() || pat_pfn_immune_to_uc_mtrr(pfn)); 2963 2964 return !e820__mapped_raw_any(pfn_to_hpa(pfn), 2965 pfn_to_hpa(pfn + 1) - 1, 2966 E820_TYPE_RAM); 2967 } 2968 2969 /* Bits which may be returned by set_spte() */ 2970 #define SET_SPTE_WRITE_PROTECTED_PT BIT(0) 2971 #define SET_SPTE_NEED_REMOTE_TLB_FLUSH BIT(1) 2972 2973 static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep, 2974 unsigned int pte_access, int level, 2975 gfn_t gfn, kvm_pfn_t pfn, bool speculative, 2976 bool can_unsync, bool host_writable) 2977 { 2978 u64 spte = 0; 2979 int ret = 0; 2980 struct kvm_mmu_page *sp; 2981 2982 if (set_mmio_spte(vcpu, sptep, gfn, pfn, pte_access)) 2983 return 0; 2984 2985 sp = sptep_to_sp(sptep); 2986 if (sp_ad_disabled(sp)) 2987 spte |= SPTE_AD_DISABLED_MASK; 2988 else if (kvm_vcpu_ad_need_write_protect(vcpu)) 2989 spte |= SPTE_AD_WRPROT_ONLY_MASK; 2990 2991 /* 2992 * For the EPT case, shadow_present_mask is 0 if hardware 2993 * supports exec-only page table entries. In that case, 2994 * ACC_USER_MASK and shadow_user_mask are used to represent 2995 * read access. See FNAME(gpte_access) in paging_tmpl.h. 2996 */ 2997 spte |= shadow_present_mask; 2998 if (!speculative) 2999 spte |= spte_shadow_accessed_mask(spte); 3000 3001 if (level > PG_LEVEL_4K && (pte_access & ACC_EXEC_MASK) && 3002 is_nx_huge_page_enabled()) { 3003 pte_access &= ~ACC_EXEC_MASK; 3004 } 3005 3006 if (pte_access & ACC_EXEC_MASK) 3007 spte |= shadow_x_mask; 3008 else 3009 spte |= shadow_nx_mask; 3010 3011 if (pte_access & ACC_USER_MASK) 3012 spte |= shadow_user_mask; 3013 3014 if (level > PG_LEVEL_4K) 3015 spte |= PT_PAGE_SIZE_MASK; 3016 if (tdp_enabled) 3017 spte |= kvm_x86_ops.get_mt_mask(vcpu, gfn, 3018 kvm_is_mmio_pfn(pfn)); 3019 3020 if (host_writable) 3021 spte |= SPTE_HOST_WRITEABLE; 3022 else 3023 pte_access &= ~ACC_WRITE_MASK; 3024 3025 if (!kvm_is_mmio_pfn(pfn)) 3026 spte |= shadow_me_mask; 3027 3028 spte |= (u64)pfn << PAGE_SHIFT; 3029 3030 if (pte_access & ACC_WRITE_MASK) { 3031 spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE; 3032 3033 /* 3034 * Optimization: for pte sync, if spte was writable the hash 3035 * lookup is unnecessary (and expensive). Write protection 3036 * is responsibility of mmu_get_page / kvm_sync_page. 3037 * Same reasoning can be applied to dirty page accounting. 3038 */ 3039 if (!can_unsync && is_writable_pte(*sptep)) 3040 goto set_pte; 3041 3042 if (mmu_need_write_protect(vcpu, gfn, can_unsync)) { 3043 pgprintk("%s: found shadow page for %llx, marking ro\n", 3044 __func__, gfn); 3045 ret |= SET_SPTE_WRITE_PROTECTED_PT; 3046 pte_access &= ~ACC_WRITE_MASK; 3047 spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE); 3048 } 3049 } 3050 3051 if (pte_access & ACC_WRITE_MASK) { 3052 kvm_vcpu_mark_page_dirty(vcpu, gfn); 3053 spte |= spte_shadow_dirty_mask(spte); 3054 } 3055 3056 if (speculative) 3057 spte = mark_spte_for_access_track(spte); 3058 3059 set_pte: 3060 if (mmu_spte_update(sptep, spte)) 3061 ret |= SET_SPTE_NEED_REMOTE_TLB_FLUSH; 3062 return ret; 3063 } 3064 3065 static int mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep, 3066 unsigned int pte_access, int write_fault, int level, 3067 gfn_t gfn, kvm_pfn_t pfn, bool speculative, 3068 bool host_writable) 3069 { 3070 int was_rmapped = 0; 3071 int rmap_count; 3072 int set_spte_ret; 3073 int ret = RET_PF_RETRY; 3074 bool flush = false; 3075 3076 pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__, 3077 *sptep, write_fault, gfn); 3078 3079 if (is_shadow_present_pte(*sptep)) { 3080 /* 3081 * If we overwrite a PTE page pointer with a 2MB PMD, unlink 3082 * the parent of the now unreachable PTE. 3083 */ 3084 if (level > PG_LEVEL_4K && !is_large_pte(*sptep)) { 3085 struct kvm_mmu_page *child; 3086 u64 pte = *sptep; 3087 3088 child = to_shadow_page(pte & PT64_BASE_ADDR_MASK); 3089 drop_parent_pte(child, sptep); 3090 flush = true; 3091 } else if (pfn != spte_to_pfn(*sptep)) { 3092 pgprintk("hfn old %llx new %llx\n", 3093 spte_to_pfn(*sptep), pfn); 3094 drop_spte(vcpu->kvm, sptep); 3095 flush = true; 3096 } else 3097 was_rmapped = 1; 3098 } 3099 3100 set_spte_ret = set_spte(vcpu, sptep, pte_access, level, gfn, pfn, 3101 speculative, true, host_writable); 3102 if (set_spte_ret & SET_SPTE_WRITE_PROTECTED_PT) { 3103 if (write_fault) 3104 ret = RET_PF_EMULATE; 3105 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 3106 } 3107 3108 if (set_spte_ret & SET_SPTE_NEED_REMOTE_TLB_FLUSH || flush) 3109 kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn, 3110 KVM_PAGES_PER_HPAGE(level)); 3111 3112 if (unlikely(is_mmio_spte(*sptep))) 3113 ret = RET_PF_EMULATE; 3114 3115 pgprintk("%s: setting spte %llx\n", __func__, *sptep); 3116 trace_kvm_mmu_set_spte(level, gfn, sptep); 3117 if (!was_rmapped && is_large_pte(*sptep)) 3118 ++vcpu->kvm->stat.lpages; 3119 3120 if (is_shadow_present_pte(*sptep)) { 3121 if (!was_rmapped) { 3122 rmap_count = rmap_add(vcpu, sptep, gfn); 3123 if (rmap_count > RMAP_RECYCLE_THRESHOLD) 3124 rmap_recycle(vcpu, sptep, gfn); 3125 } 3126 } 3127 3128 return ret; 3129 } 3130 3131 static kvm_pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn, 3132 bool no_dirty_log) 3133 { 3134 struct kvm_memory_slot *slot; 3135 3136 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log); 3137 if (!slot) 3138 return KVM_PFN_ERR_FAULT; 3139 3140 return gfn_to_pfn_memslot_atomic(slot, gfn); 3141 } 3142 3143 static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu, 3144 struct kvm_mmu_page *sp, 3145 u64 *start, u64 *end) 3146 { 3147 struct page *pages[PTE_PREFETCH_NUM]; 3148 struct kvm_memory_slot *slot; 3149 unsigned int access = sp->role.access; 3150 int i, ret; 3151 gfn_t gfn; 3152 3153 gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt); 3154 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK); 3155 if (!slot) 3156 return -1; 3157 3158 ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start); 3159 if (ret <= 0) 3160 return -1; 3161 3162 for (i = 0; i < ret; i++, gfn++, start++) { 3163 mmu_set_spte(vcpu, start, access, 0, sp->role.level, gfn, 3164 page_to_pfn(pages[i]), true, true); 3165 put_page(pages[i]); 3166 } 3167 3168 return 0; 3169 } 3170 3171 static void __direct_pte_prefetch(struct kvm_vcpu *vcpu, 3172 struct kvm_mmu_page *sp, u64 *sptep) 3173 { 3174 u64 *spte, *start = NULL; 3175 int i; 3176 3177 WARN_ON(!sp->role.direct); 3178 3179 i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1); 3180 spte = sp->spt + i; 3181 3182 for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) { 3183 if (is_shadow_present_pte(*spte) || spte == sptep) { 3184 if (!start) 3185 continue; 3186 if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0) 3187 break; 3188 start = NULL; 3189 } else if (!start) 3190 start = spte; 3191 } 3192 } 3193 3194 static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep) 3195 { 3196 struct kvm_mmu_page *sp; 3197 3198 sp = sptep_to_sp(sptep); 3199 3200 /* 3201 * Without accessed bits, there's no way to distinguish between 3202 * actually accessed translations and prefetched, so disable pte 3203 * prefetch if accessed bits aren't available. 3204 */ 3205 if (sp_ad_disabled(sp)) 3206 return; 3207 3208 if (sp->role.level > PG_LEVEL_4K) 3209 return; 3210 3211 __direct_pte_prefetch(vcpu, sp, sptep); 3212 } 3213 3214 static int host_pfn_mapping_level(struct kvm_vcpu *vcpu, gfn_t gfn, 3215 kvm_pfn_t pfn, struct kvm_memory_slot *slot) 3216 { 3217 unsigned long hva; 3218 pte_t *pte; 3219 int level; 3220 3221 if (!PageCompound(pfn_to_page(pfn)) && !kvm_is_zone_device_pfn(pfn)) 3222 return PG_LEVEL_4K; 3223 3224 /* 3225 * Note, using the already-retrieved memslot and __gfn_to_hva_memslot() 3226 * is not solely for performance, it's also necessary to avoid the 3227 * "writable" check in __gfn_to_hva_many(), which will always fail on 3228 * read-only memslots due to gfn_to_hva() assuming writes. Earlier 3229 * page fault steps have already verified the guest isn't writing a 3230 * read-only memslot. 3231 */ 3232 hva = __gfn_to_hva_memslot(slot, gfn); 3233 3234 pte = lookup_address_in_mm(vcpu->kvm->mm, hva, &level); 3235 if (unlikely(!pte)) 3236 return PG_LEVEL_4K; 3237 3238 return level; 3239 } 3240 3241 static int kvm_mmu_hugepage_adjust(struct kvm_vcpu *vcpu, gfn_t gfn, 3242 int max_level, kvm_pfn_t *pfnp) 3243 { 3244 struct kvm_memory_slot *slot; 3245 struct kvm_lpage_info *linfo; 3246 kvm_pfn_t pfn = *pfnp; 3247 kvm_pfn_t mask; 3248 int level; 3249 3250 if (unlikely(max_level == PG_LEVEL_4K)) 3251 return PG_LEVEL_4K; 3252 3253 if (is_error_noslot_pfn(pfn) || kvm_is_reserved_pfn(pfn)) 3254 return PG_LEVEL_4K; 3255 3256 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, true); 3257 if (!slot) 3258 return PG_LEVEL_4K; 3259 3260 max_level = min(max_level, max_huge_page_level); 3261 for ( ; max_level > PG_LEVEL_4K; max_level--) { 3262 linfo = lpage_info_slot(gfn, slot, max_level); 3263 if (!linfo->disallow_lpage) 3264 break; 3265 } 3266 3267 if (max_level == PG_LEVEL_4K) 3268 return PG_LEVEL_4K; 3269 3270 level = host_pfn_mapping_level(vcpu, gfn, pfn, slot); 3271 if (level == PG_LEVEL_4K) 3272 return level; 3273 3274 level = min(level, max_level); 3275 3276 /* 3277 * mmu_notifier_retry() was successful and mmu_lock is held, so 3278 * the pmd can't be split from under us. 3279 */ 3280 mask = KVM_PAGES_PER_HPAGE(level) - 1; 3281 VM_BUG_ON((gfn & mask) != (pfn & mask)); 3282 *pfnp = pfn & ~mask; 3283 3284 return level; 3285 } 3286 3287 static void disallowed_hugepage_adjust(struct kvm_shadow_walk_iterator it, 3288 gfn_t gfn, kvm_pfn_t *pfnp, int *levelp) 3289 { 3290 int level = *levelp; 3291 u64 spte = *it.sptep; 3292 3293 if (it.level == level && level > PG_LEVEL_4K && 3294 is_nx_huge_page_enabled() && 3295 is_shadow_present_pte(spte) && 3296 !is_large_pte(spte)) { 3297 /* 3298 * A small SPTE exists for this pfn, but FNAME(fetch) 3299 * and __direct_map would like to create a large PTE 3300 * instead: just force them to go down another level, 3301 * patching back for them into pfn the next 9 bits of 3302 * the address. 3303 */ 3304 u64 page_mask = KVM_PAGES_PER_HPAGE(level) - KVM_PAGES_PER_HPAGE(level - 1); 3305 *pfnp |= gfn & page_mask; 3306 (*levelp)--; 3307 } 3308 } 3309 3310 static int __direct_map(struct kvm_vcpu *vcpu, gpa_t gpa, int write, 3311 int map_writable, int max_level, kvm_pfn_t pfn, 3312 bool prefault, bool account_disallowed_nx_lpage) 3313 { 3314 struct kvm_shadow_walk_iterator it; 3315 struct kvm_mmu_page *sp; 3316 int level, ret; 3317 gfn_t gfn = gpa >> PAGE_SHIFT; 3318 gfn_t base_gfn = gfn; 3319 3320 if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa))) 3321 return RET_PF_RETRY; 3322 3323 level = kvm_mmu_hugepage_adjust(vcpu, gfn, max_level, &pfn); 3324 3325 trace_kvm_mmu_spte_requested(gpa, level, pfn); 3326 for_each_shadow_entry(vcpu, gpa, it) { 3327 /* 3328 * We cannot overwrite existing page tables with an NX 3329 * large page, as the leaf could be executable. 3330 */ 3331 disallowed_hugepage_adjust(it, gfn, &pfn, &level); 3332 3333 base_gfn = gfn & ~(KVM_PAGES_PER_HPAGE(it.level) - 1); 3334 if (it.level == level) 3335 break; 3336 3337 drop_large_spte(vcpu, it.sptep); 3338 if (!is_shadow_present_pte(*it.sptep)) { 3339 sp = kvm_mmu_get_page(vcpu, base_gfn, it.addr, 3340 it.level - 1, true, ACC_ALL); 3341 3342 link_shadow_page(vcpu, it.sptep, sp); 3343 if (account_disallowed_nx_lpage) 3344 account_huge_nx_page(vcpu->kvm, sp); 3345 } 3346 } 3347 3348 ret = mmu_set_spte(vcpu, it.sptep, ACC_ALL, 3349 write, level, base_gfn, pfn, prefault, 3350 map_writable); 3351 direct_pte_prefetch(vcpu, it.sptep); 3352 ++vcpu->stat.pf_fixed; 3353 return ret; 3354 } 3355 3356 static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk) 3357 { 3358 send_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, PAGE_SHIFT, tsk); 3359 } 3360 3361 static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, kvm_pfn_t pfn) 3362 { 3363 /* 3364 * Do not cache the mmio info caused by writing the readonly gfn 3365 * into the spte otherwise read access on readonly gfn also can 3366 * caused mmio page fault and treat it as mmio access. 3367 */ 3368 if (pfn == KVM_PFN_ERR_RO_FAULT) 3369 return RET_PF_EMULATE; 3370 3371 if (pfn == KVM_PFN_ERR_HWPOISON) { 3372 kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current); 3373 return RET_PF_RETRY; 3374 } 3375 3376 return -EFAULT; 3377 } 3378 3379 static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn, 3380 kvm_pfn_t pfn, unsigned int access, 3381 int *ret_val) 3382 { 3383 /* The pfn is invalid, report the error! */ 3384 if (unlikely(is_error_pfn(pfn))) { 3385 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn); 3386 return true; 3387 } 3388 3389 if (unlikely(is_noslot_pfn(pfn))) 3390 vcpu_cache_mmio_info(vcpu, gva, gfn, 3391 access & shadow_mmio_access_mask); 3392 3393 return false; 3394 } 3395 3396 static bool page_fault_can_be_fast(u32 error_code) 3397 { 3398 /* 3399 * Do not fix the mmio spte with invalid generation number which 3400 * need to be updated by slow page fault path. 3401 */ 3402 if (unlikely(error_code & PFERR_RSVD_MASK)) 3403 return false; 3404 3405 /* See if the page fault is due to an NX violation */ 3406 if (unlikely(((error_code & (PFERR_FETCH_MASK | PFERR_PRESENT_MASK)) 3407 == (PFERR_FETCH_MASK | PFERR_PRESENT_MASK)))) 3408 return false; 3409 3410 /* 3411 * #PF can be fast if: 3412 * 1. The shadow page table entry is not present, which could mean that 3413 * the fault is potentially caused by access tracking (if enabled). 3414 * 2. The shadow page table entry is present and the fault 3415 * is caused by write-protect, that means we just need change the W 3416 * bit of the spte which can be done out of mmu-lock. 3417 * 3418 * However, if access tracking is disabled we know that a non-present 3419 * page must be a genuine page fault where we have to create a new SPTE. 3420 * So, if access tracking is disabled, we return true only for write 3421 * accesses to a present page. 3422 */ 3423 3424 return shadow_acc_track_mask != 0 || 3425 ((error_code & (PFERR_WRITE_MASK | PFERR_PRESENT_MASK)) 3426 == (PFERR_WRITE_MASK | PFERR_PRESENT_MASK)); 3427 } 3428 3429 /* 3430 * Returns true if the SPTE was fixed successfully. Otherwise, 3431 * someone else modified the SPTE from its original value. 3432 */ 3433 static bool 3434 fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp, 3435 u64 *sptep, u64 old_spte, u64 new_spte) 3436 { 3437 gfn_t gfn; 3438 3439 WARN_ON(!sp->role.direct); 3440 3441 /* 3442 * Theoretically we could also set dirty bit (and flush TLB) here in 3443 * order to eliminate unnecessary PML logging. See comments in 3444 * set_spte. But fast_page_fault is very unlikely to happen with PML 3445 * enabled, so we do not do this. This might result in the same GPA 3446 * to be logged in PML buffer again when the write really happens, and 3447 * eventually to be called by mark_page_dirty twice. But it's also no 3448 * harm. This also avoids the TLB flush needed after setting dirty bit 3449 * so non-PML cases won't be impacted. 3450 * 3451 * Compare with set_spte where instead shadow_dirty_mask is set. 3452 */ 3453 if (cmpxchg64(sptep, old_spte, new_spte) != old_spte) 3454 return false; 3455 3456 if (is_writable_pte(new_spte) && !is_writable_pte(old_spte)) { 3457 /* 3458 * The gfn of direct spte is stable since it is 3459 * calculated by sp->gfn. 3460 */ 3461 gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt); 3462 kvm_vcpu_mark_page_dirty(vcpu, gfn); 3463 } 3464 3465 return true; 3466 } 3467 3468 static bool is_access_allowed(u32 fault_err_code, u64 spte) 3469 { 3470 if (fault_err_code & PFERR_FETCH_MASK) 3471 return is_executable_pte(spte); 3472 3473 if (fault_err_code & PFERR_WRITE_MASK) 3474 return is_writable_pte(spte); 3475 3476 /* Fault was on Read access */ 3477 return spte & PT_PRESENT_MASK; 3478 } 3479 3480 /* 3481 * Return value: 3482 * - true: let the vcpu to access on the same address again. 3483 * - false: let the real page fault path to fix it. 3484 */ 3485 static bool fast_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, 3486 u32 error_code) 3487 { 3488 struct kvm_shadow_walk_iterator iterator; 3489 struct kvm_mmu_page *sp; 3490 bool fault_handled = false; 3491 u64 spte = 0ull; 3492 uint retry_count = 0; 3493 3494 if (!page_fault_can_be_fast(error_code)) 3495 return false; 3496 3497 walk_shadow_page_lockless_begin(vcpu); 3498 3499 do { 3500 u64 new_spte; 3501 3502 for_each_shadow_entry_lockless(vcpu, cr2_or_gpa, iterator, spte) 3503 if (!is_shadow_present_pte(spte)) 3504 break; 3505 3506 sp = sptep_to_sp(iterator.sptep); 3507 if (!is_last_spte(spte, sp->role.level)) 3508 break; 3509 3510 /* 3511 * Check whether the memory access that caused the fault would 3512 * still cause it if it were to be performed right now. If not, 3513 * then this is a spurious fault caused by TLB lazily flushed, 3514 * or some other CPU has already fixed the PTE after the 3515 * current CPU took the fault. 3516 * 3517 * Need not check the access of upper level table entries since 3518 * they are always ACC_ALL. 3519 */ 3520 if (is_access_allowed(error_code, spte)) { 3521 fault_handled = true; 3522 break; 3523 } 3524 3525 new_spte = spte; 3526 3527 if (is_access_track_spte(spte)) 3528 new_spte = restore_acc_track_spte(new_spte); 3529 3530 /* 3531 * Currently, to simplify the code, write-protection can 3532 * be removed in the fast path only if the SPTE was 3533 * write-protected for dirty-logging or access tracking. 3534 */ 3535 if ((error_code & PFERR_WRITE_MASK) && 3536 spte_can_locklessly_be_made_writable(spte)) { 3537 new_spte |= PT_WRITABLE_MASK; 3538 3539 /* 3540 * Do not fix write-permission on the large spte. Since 3541 * we only dirty the first page into the dirty-bitmap in 3542 * fast_pf_fix_direct_spte(), other pages are missed 3543 * if its slot has dirty logging enabled. 3544 * 3545 * Instead, we let the slow page fault path create a 3546 * normal spte to fix the access. 3547 * 3548 * See the comments in kvm_arch_commit_memory_region(). 3549 */ 3550 if (sp->role.level > PG_LEVEL_4K) 3551 break; 3552 } 3553 3554 /* Verify that the fault can be handled in the fast path */ 3555 if (new_spte == spte || 3556 !is_access_allowed(error_code, new_spte)) 3557 break; 3558 3559 /* 3560 * Currently, fast page fault only works for direct mapping 3561 * since the gfn is not stable for indirect shadow page. See 3562 * Documentation/virt/kvm/locking.rst to get more detail. 3563 */ 3564 fault_handled = fast_pf_fix_direct_spte(vcpu, sp, 3565 iterator.sptep, spte, 3566 new_spte); 3567 if (fault_handled) 3568 break; 3569 3570 if (++retry_count > 4) { 3571 printk_once(KERN_WARNING 3572 "kvm: Fast #PF retrying more than 4 times.\n"); 3573 break; 3574 } 3575 3576 } while (true); 3577 3578 trace_fast_page_fault(vcpu, cr2_or_gpa, error_code, iterator.sptep, 3579 spte, fault_handled); 3580 walk_shadow_page_lockless_end(vcpu); 3581 3582 return fault_handled; 3583 } 3584 3585 static void mmu_free_root_page(struct kvm *kvm, hpa_t *root_hpa, 3586 struct list_head *invalid_list) 3587 { 3588 struct kvm_mmu_page *sp; 3589 3590 if (!VALID_PAGE(*root_hpa)) 3591 return; 3592 3593 sp = to_shadow_page(*root_hpa & PT64_BASE_ADDR_MASK); 3594 --sp->root_count; 3595 if (!sp->root_count && sp->role.invalid) 3596 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list); 3597 3598 *root_hpa = INVALID_PAGE; 3599 } 3600 3601 /* roots_to_free must be some combination of the KVM_MMU_ROOT_* flags */ 3602 void kvm_mmu_free_roots(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, 3603 ulong roots_to_free) 3604 { 3605 int i; 3606 LIST_HEAD(invalid_list); 3607 bool free_active_root = roots_to_free & KVM_MMU_ROOT_CURRENT; 3608 3609 BUILD_BUG_ON(KVM_MMU_NUM_PREV_ROOTS >= BITS_PER_LONG); 3610 3611 /* Before acquiring the MMU lock, see if we need to do any real work. */ 3612 if (!(free_active_root && VALID_PAGE(mmu->root_hpa))) { 3613 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 3614 if ((roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) && 3615 VALID_PAGE(mmu->prev_roots[i].hpa)) 3616 break; 3617 3618 if (i == KVM_MMU_NUM_PREV_ROOTS) 3619 return; 3620 } 3621 3622 spin_lock(&vcpu->kvm->mmu_lock); 3623 3624 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 3625 if (roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) 3626 mmu_free_root_page(vcpu->kvm, &mmu->prev_roots[i].hpa, 3627 &invalid_list); 3628 3629 if (free_active_root) { 3630 if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL && 3631 (mmu->root_level >= PT64_ROOT_4LEVEL || mmu->direct_map)) { 3632 mmu_free_root_page(vcpu->kvm, &mmu->root_hpa, 3633 &invalid_list); 3634 } else { 3635 for (i = 0; i < 4; ++i) 3636 if (mmu->pae_root[i] != 0) 3637 mmu_free_root_page(vcpu->kvm, 3638 &mmu->pae_root[i], 3639 &invalid_list); 3640 mmu->root_hpa = INVALID_PAGE; 3641 } 3642 mmu->root_pgd = 0; 3643 } 3644 3645 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list); 3646 spin_unlock(&vcpu->kvm->mmu_lock); 3647 } 3648 EXPORT_SYMBOL_GPL(kvm_mmu_free_roots); 3649 3650 static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn) 3651 { 3652 int ret = 0; 3653 3654 if (!kvm_vcpu_is_visible_gfn(vcpu, root_gfn)) { 3655 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 3656 ret = 1; 3657 } 3658 3659 return ret; 3660 } 3661 3662 static hpa_t mmu_alloc_root(struct kvm_vcpu *vcpu, gfn_t gfn, gva_t gva, 3663 u8 level, bool direct) 3664 { 3665 struct kvm_mmu_page *sp; 3666 3667 spin_lock(&vcpu->kvm->mmu_lock); 3668 3669 if (make_mmu_pages_available(vcpu)) { 3670 spin_unlock(&vcpu->kvm->mmu_lock); 3671 return INVALID_PAGE; 3672 } 3673 sp = kvm_mmu_get_page(vcpu, gfn, gva, level, direct, ACC_ALL); 3674 ++sp->root_count; 3675 3676 spin_unlock(&vcpu->kvm->mmu_lock); 3677 return __pa(sp->spt); 3678 } 3679 3680 static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu) 3681 { 3682 u8 shadow_root_level = vcpu->arch.mmu->shadow_root_level; 3683 hpa_t root; 3684 unsigned i; 3685 3686 if (shadow_root_level >= PT64_ROOT_4LEVEL) { 3687 root = mmu_alloc_root(vcpu, 0, 0, shadow_root_level, true); 3688 if (!VALID_PAGE(root)) 3689 return -ENOSPC; 3690 vcpu->arch.mmu->root_hpa = root; 3691 } else if (shadow_root_level == PT32E_ROOT_LEVEL) { 3692 for (i = 0; i < 4; ++i) { 3693 MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu->pae_root[i])); 3694 3695 root = mmu_alloc_root(vcpu, i << (30 - PAGE_SHIFT), 3696 i << 30, PT32_ROOT_LEVEL, true); 3697 if (!VALID_PAGE(root)) 3698 return -ENOSPC; 3699 vcpu->arch.mmu->pae_root[i] = root | PT_PRESENT_MASK; 3700 } 3701 vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->pae_root); 3702 } else 3703 BUG(); 3704 3705 /* root_pgd is ignored for direct MMUs. */ 3706 vcpu->arch.mmu->root_pgd = 0; 3707 3708 return 0; 3709 } 3710 3711 static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu) 3712 { 3713 u64 pdptr, pm_mask; 3714 gfn_t root_gfn, root_pgd; 3715 hpa_t root; 3716 int i; 3717 3718 root_pgd = vcpu->arch.mmu->get_guest_pgd(vcpu); 3719 root_gfn = root_pgd >> PAGE_SHIFT; 3720 3721 if (mmu_check_root(vcpu, root_gfn)) 3722 return 1; 3723 3724 /* 3725 * Do we shadow a long mode page table? If so we need to 3726 * write-protect the guests page table root. 3727 */ 3728 if (vcpu->arch.mmu->root_level >= PT64_ROOT_4LEVEL) { 3729 MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu->root_hpa)); 3730 3731 root = mmu_alloc_root(vcpu, root_gfn, 0, 3732 vcpu->arch.mmu->shadow_root_level, false); 3733 if (!VALID_PAGE(root)) 3734 return -ENOSPC; 3735 vcpu->arch.mmu->root_hpa = root; 3736 goto set_root_pgd; 3737 } 3738 3739 /* 3740 * We shadow a 32 bit page table. This may be a legacy 2-level 3741 * or a PAE 3-level page table. In either case we need to be aware that 3742 * the shadow page table may be a PAE or a long mode page table. 3743 */ 3744 pm_mask = PT_PRESENT_MASK; 3745 if (vcpu->arch.mmu->shadow_root_level == PT64_ROOT_4LEVEL) 3746 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK; 3747 3748 for (i = 0; i < 4; ++i) { 3749 MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu->pae_root[i])); 3750 if (vcpu->arch.mmu->root_level == PT32E_ROOT_LEVEL) { 3751 pdptr = vcpu->arch.mmu->get_pdptr(vcpu, i); 3752 if (!(pdptr & PT_PRESENT_MASK)) { 3753 vcpu->arch.mmu->pae_root[i] = 0; 3754 continue; 3755 } 3756 root_gfn = pdptr >> PAGE_SHIFT; 3757 if (mmu_check_root(vcpu, root_gfn)) 3758 return 1; 3759 } 3760 3761 root = mmu_alloc_root(vcpu, root_gfn, i << 30, 3762 PT32_ROOT_LEVEL, false); 3763 if (!VALID_PAGE(root)) 3764 return -ENOSPC; 3765 vcpu->arch.mmu->pae_root[i] = root | pm_mask; 3766 } 3767 vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->pae_root); 3768 3769 /* 3770 * If we shadow a 32 bit page table with a long mode page 3771 * table we enter this path. 3772 */ 3773 if (vcpu->arch.mmu->shadow_root_level == PT64_ROOT_4LEVEL) { 3774 if (vcpu->arch.mmu->lm_root == NULL) { 3775 /* 3776 * The additional page necessary for this is only 3777 * allocated on demand. 3778 */ 3779 3780 u64 *lm_root; 3781 3782 lm_root = (void*)get_zeroed_page(GFP_KERNEL_ACCOUNT); 3783 if (lm_root == NULL) 3784 return 1; 3785 3786 lm_root[0] = __pa(vcpu->arch.mmu->pae_root) | pm_mask; 3787 3788 vcpu->arch.mmu->lm_root = lm_root; 3789 } 3790 3791 vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->lm_root); 3792 } 3793 3794 set_root_pgd: 3795 vcpu->arch.mmu->root_pgd = root_pgd; 3796 3797 return 0; 3798 } 3799 3800 static int mmu_alloc_roots(struct kvm_vcpu *vcpu) 3801 { 3802 if (vcpu->arch.mmu->direct_map) 3803 return mmu_alloc_direct_roots(vcpu); 3804 else 3805 return mmu_alloc_shadow_roots(vcpu); 3806 } 3807 3808 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu) 3809 { 3810 int i; 3811 struct kvm_mmu_page *sp; 3812 3813 if (vcpu->arch.mmu->direct_map) 3814 return; 3815 3816 if (!VALID_PAGE(vcpu->arch.mmu->root_hpa)) 3817 return; 3818 3819 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY); 3820 3821 if (vcpu->arch.mmu->root_level >= PT64_ROOT_4LEVEL) { 3822 hpa_t root = vcpu->arch.mmu->root_hpa; 3823 sp = to_shadow_page(root); 3824 3825 /* 3826 * Even if another CPU was marking the SP as unsync-ed 3827 * simultaneously, any guest page table changes are not 3828 * guaranteed to be visible anyway until this VCPU issues a TLB 3829 * flush strictly after those changes are made. We only need to 3830 * ensure that the other CPU sets these flags before any actual 3831 * changes to the page tables are made. The comments in 3832 * mmu_need_write_protect() describe what could go wrong if this 3833 * requirement isn't satisfied. 3834 */ 3835 if (!smp_load_acquire(&sp->unsync) && 3836 !smp_load_acquire(&sp->unsync_children)) 3837 return; 3838 3839 spin_lock(&vcpu->kvm->mmu_lock); 3840 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC); 3841 3842 mmu_sync_children(vcpu, sp); 3843 3844 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC); 3845 spin_unlock(&vcpu->kvm->mmu_lock); 3846 return; 3847 } 3848 3849 spin_lock(&vcpu->kvm->mmu_lock); 3850 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC); 3851 3852 for (i = 0; i < 4; ++i) { 3853 hpa_t root = vcpu->arch.mmu->pae_root[i]; 3854 3855 if (root && VALID_PAGE(root)) { 3856 root &= PT64_BASE_ADDR_MASK; 3857 sp = to_shadow_page(root); 3858 mmu_sync_children(vcpu, sp); 3859 } 3860 } 3861 3862 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC); 3863 spin_unlock(&vcpu->kvm->mmu_lock); 3864 } 3865 EXPORT_SYMBOL_GPL(kvm_mmu_sync_roots); 3866 3867 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gpa_t vaddr, 3868 u32 access, struct x86_exception *exception) 3869 { 3870 if (exception) 3871 exception->error_code = 0; 3872 return vaddr; 3873 } 3874 3875 static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gpa_t vaddr, 3876 u32 access, 3877 struct x86_exception *exception) 3878 { 3879 if (exception) 3880 exception->error_code = 0; 3881 return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception); 3882 } 3883 3884 static bool 3885 __is_rsvd_bits_set(struct rsvd_bits_validate *rsvd_check, u64 pte, int level) 3886 { 3887 int bit7 = (pte >> 7) & 1; 3888 3889 return pte & rsvd_check->rsvd_bits_mask[bit7][level-1]; 3890 } 3891 3892 static bool __is_bad_mt_xwr(struct rsvd_bits_validate *rsvd_check, u64 pte) 3893 { 3894 return rsvd_check->bad_mt_xwr & BIT_ULL(pte & 0x3f); 3895 } 3896 3897 static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct) 3898 { 3899 /* 3900 * A nested guest cannot use the MMIO cache if it is using nested 3901 * page tables, because cr2 is a nGPA while the cache stores GPAs. 3902 */ 3903 if (mmu_is_nested(vcpu)) 3904 return false; 3905 3906 if (direct) 3907 return vcpu_match_mmio_gpa(vcpu, addr); 3908 3909 return vcpu_match_mmio_gva(vcpu, addr); 3910 } 3911 3912 /* return true if reserved bit is detected on spte. */ 3913 static bool 3914 walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep) 3915 { 3916 struct kvm_shadow_walk_iterator iterator; 3917 u64 sptes[PT64_ROOT_MAX_LEVEL], spte = 0ull; 3918 struct rsvd_bits_validate *rsvd_check; 3919 int root, leaf; 3920 bool reserved = false; 3921 3922 rsvd_check = &vcpu->arch.mmu->shadow_zero_check; 3923 3924 walk_shadow_page_lockless_begin(vcpu); 3925 3926 for (shadow_walk_init(&iterator, vcpu, addr), 3927 leaf = root = iterator.level; 3928 shadow_walk_okay(&iterator); 3929 __shadow_walk_next(&iterator, spte)) { 3930 spte = mmu_spte_get_lockless(iterator.sptep); 3931 3932 sptes[leaf - 1] = spte; 3933 leaf--; 3934 3935 if (!is_shadow_present_pte(spte)) 3936 break; 3937 3938 /* 3939 * Use a bitwise-OR instead of a logical-OR to aggregate the 3940 * reserved bit and EPT's invalid memtype/XWR checks to avoid 3941 * adding a Jcc in the loop. 3942 */ 3943 reserved |= __is_bad_mt_xwr(rsvd_check, spte) | 3944 __is_rsvd_bits_set(rsvd_check, spte, iterator.level); 3945 } 3946 3947 walk_shadow_page_lockless_end(vcpu); 3948 3949 if (reserved) { 3950 pr_err("%s: detect reserved bits on spte, addr 0x%llx, dump hierarchy:\n", 3951 __func__, addr); 3952 while (root > leaf) { 3953 pr_err("------ spte 0x%llx level %d.\n", 3954 sptes[root - 1], root); 3955 root--; 3956 } 3957 } 3958 3959 *sptep = spte; 3960 return reserved; 3961 } 3962 3963 static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct) 3964 { 3965 u64 spte; 3966 bool reserved; 3967 3968 if (mmio_info_in_cache(vcpu, addr, direct)) 3969 return RET_PF_EMULATE; 3970 3971 reserved = walk_shadow_page_get_mmio_spte(vcpu, addr, &spte); 3972 if (WARN_ON(reserved)) 3973 return -EINVAL; 3974 3975 if (is_mmio_spte(spte)) { 3976 gfn_t gfn = get_mmio_spte_gfn(spte); 3977 unsigned int access = get_mmio_spte_access(spte); 3978 3979 if (!check_mmio_spte(vcpu, spte)) 3980 return RET_PF_INVALID; 3981 3982 if (direct) 3983 addr = 0; 3984 3985 trace_handle_mmio_page_fault(addr, gfn, access); 3986 vcpu_cache_mmio_info(vcpu, addr, gfn, access); 3987 return RET_PF_EMULATE; 3988 } 3989 3990 /* 3991 * If the page table is zapped by other cpus, let CPU fault again on 3992 * the address. 3993 */ 3994 return RET_PF_RETRY; 3995 } 3996 3997 static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu, 3998 u32 error_code, gfn_t gfn) 3999 { 4000 if (unlikely(error_code & PFERR_RSVD_MASK)) 4001 return false; 4002 4003 if (!(error_code & PFERR_PRESENT_MASK) || 4004 !(error_code & PFERR_WRITE_MASK)) 4005 return false; 4006 4007 /* 4008 * guest is writing the page which is write tracked which can 4009 * not be fixed by page fault handler. 4010 */ 4011 if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE)) 4012 return true; 4013 4014 return false; 4015 } 4016 4017 static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr) 4018 { 4019 struct kvm_shadow_walk_iterator iterator; 4020 u64 spte; 4021 4022 walk_shadow_page_lockless_begin(vcpu); 4023 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) { 4024 clear_sp_write_flooding_count(iterator.sptep); 4025 if (!is_shadow_present_pte(spte)) 4026 break; 4027 } 4028 walk_shadow_page_lockless_end(vcpu); 4029 } 4030 4031 static bool kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, 4032 gfn_t gfn) 4033 { 4034 struct kvm_arch_async_pf arch; 4035 4036 arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id; 4037 arch.gfn = gfn; 4038 arch.direct_map = vcpu->arch.mmu->direct_map; 4039 arch.cr3 = vcpu->arch.mmu->get_guest_pgd(vcpu); 4040 4041 return kvm_setup_async_pf(vcpu, cr2_or_gpa, 4042 kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch); 4043 } 4044 4045 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn, 4046 gpa_t cr2_or_gpa, kvm_pfn_t *pfn, bool write, 4047 bool *writable) 4048 { 4049 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 4050 bool async; 4051 4052 /* Don't expose private memslots to L2. */ 4053 if (is_guest_mode(vcpu) && !kvm_is_visible_memslot(slot)) { 4054 *pfn = KVM_PFN_NOSLOT; 4055 *writable = false; 4056 return false; 4057 } 4058 4059 async = false; 4060 *pfn = __gfn_to_pfn_memslot(slot, gfn, false, &async, write, writable); 4061 if (!async) 4062 return false; /* *pfn has correct page already */ 4063 4064 if (!prefault && kvm_can_do_async_pf(vcpu)) { 4065 trace_kvm_try_async_get_page(cr2_or_gpa, gfn); 4066 if (kvm_find_async_pf_gfn(vcpu, gfn)) { 4067 trace_kvm_async_pf_doublefault(cr2_or_gpa, gfn); 4068 kvm_make_request(KVM_REQ_APF_HALT, vcpu); 4069 return true; 4070 } else if (kvm_arch_setup_async_pf(vcpu, cr2_or_gpa, gfn)) 4071 return true; 4072 } 4073 4074 *pfn = __gfn_to_pfn_memslot(slot, gfn, false, NULL, write, writable); 4075 return false; 4076 } 4077 4078 static int direct_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code, 4079 bool prefault, int max_level, bool is_tdp) 4080 { 4081 bool write = error_code & PFERR_WRITE_MASK; 4082 bool exec = error_code & PFERR_FETCH_MASK; 4083 bool lpage_disallowed = exec && is_nx_huge_page_enabled(); 4084 bool map_writable; 4085 4086 gfn_t gfn = gpa >> PAGE_SHIFT; 4087 unsigned long mmu_seq; 4088 kvm_pfn_t pfn; 4089 int r; 4090 4091 if (page_fault_handle_page_track(vcpu, error_code, gfn)) 4092 return RET_PF_EMULATE; 4093 4094 if (fast_page_fault(vcpu, gpa, error_code)) 4095 return RET_PF_RETRY; 4096 4097 r = mmu_topup_memory_caches(vcpu, false); 4098 if (r) 4099 return r; 4100 4101 if (lpage_disallowed) 4102 max_level = PG_LEVEL_4K; 4103 4104 mmu_seq = vcpu->kvm->mmu_notifier_seq; 4105 smp_rmb(); 4106 4107 if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable)) 4108 return RET_PF_RETRY; 4109 4110 if (handle_abnormal_pfn(vcpu, is_tdp ? 0 : gpa, gfn, pfn, ACC_ALL, &r)) 4111 return r; 4112 4113 r = RET_PF_RETRY; 4114 spin_lock(&vcpu->kvm->mmu_lock); 4115 if (mmu_notifier_retry(vcpu->kvm, mmu_seq)) 4116 goto out_unlock; 4117 r = make_mmu_pages_available(vcpu); 4118 if (r) 4119 goto out_unlock; 4120 r = __direct_map(vcpu, gpa, write, map_writable, max_level, pfn, 4121 prefault, is_tdp && lpage_disallowed); 4122 4123 out_unlock: 4124 spin_unlock(&vcpu->kvm->mmu_lock); 4125 kvm_release_pfn_clean(pfn); 4126 return r; 4127 } 4128 4129 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa, 4130 u32 error_code, bool prefault) 4131 { 4132 pgprintk("%s: gva %lx error %x\n", __func__, gpa, error_code); 4133 4134 /* This path builds a PAE pagetable, we can map 2mb pages at maximum. */ 4135 return direct_page_fault(vcpu, gpa & PAGE_MASK, error_code, prefault, 4136 PG_LEVEL_2M, false); 4137 } 4138 4139 int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code, 4140 u64 fault_address, char *insn, int insn_len) 4141 { 4142 int r = 1; 4143 u32 flags = vcpu->arch.apf.host_apf_flags; 4144 4145 #ifndef CONFIG_X86_64 4146 /* A 64-bit CR2 should be impossible on 32-bit KVM. */ 4147 if (WARN_ON_ONCE(fault_address >> 32)) 4148 return -EFAULT; 4149 #endif 4150 4151 vcpu->arch.l1tf_flush_l1d = true; 4152 if (!flags) { 4153 trace_kvm_page_fault(fault_address, error_code); 4154 4155 if (kvm_event_needs_reinjection(vcpu)) 4156 kvm_mmu_unprotect_page_virt(vcpu, fault_address); 4157 r = kvm_mmu_page_fault(vcpu, fault_address, error_code, insn, 4158 insn_len); 4159 } else if (flags & KVM_PV_REASON_PAGE_NOT_PRESENT) { 4160 vcpu->arch.apf.host_apf_flags = 0; 4161 local_irq_disable(); 4162 kvm_async_pf_task_wait_schedule(fault_address); 4163 local_irq_enable(); 4164 } else { 4165 WARN_ONCE(1, "Unexpected host async PF flags: %x\n", flags); 4166 } 4167 4168 return r; 4169 } 4170 EXPORT_SYMBOL_GPL(kvm_handle_page_fault); 4171 4172 int kvm_tdp_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code, 4173 bool prefault) 4174 { 4175 int max_level; 4176 4177 for (max_level = KVM_MAX_HUGEPAGE_LEVEL; 4178 max_level > PG_LEVEL_4K; 4179 max_level--) { 4180 int page_num = KVM_PAGES_PER_HPAGE(max_level); 4181 gfn_t base = (gpa >> PAGE_SHIFT) & ~(page_num - 1); 4182 4183 if (kvm_mtrr_check_gfn_range_consistency(vcpu, base, page_num)) 4184 break; 4185 } 4186 4187 return direct_page_fault(vcpu, gpa, error_code, prefault, 4188 max_level, true); 4189 } 4190 4191 static void nonpaging_init_context(struct kvm_vcpu *vcpu, 4192 struct kvm_mmu *context) 4193 { 4194 context->page_fault = nonpaging_page_fault; 4195 context->gva_to_gpa = nonpaging_gva_to_gpa; 4196 context->sync_page = nonpaging_sync_page; 4197 context->invlpg = NULL; 4198 context->update_pte = nonpaging_update_pte; 4199 context->root_level = 0; 4200 context->shadow_root_level = PT32E_ROOT_LEVEL; 4201 context->direct_map = true; 4202 context->nx = false; 4203 } 4204 4205 static inline bool is_root_usable(struct kvm_mmu_root_info *root, gpa_t pgd, 4206 union kvm_mmu_page_role role) 4207 { 4208 return (role.direct || pgd == root->pgd) && 4209 VALID_PAGE(root->hpa) && to_shadow_page(root->hpa) && 4210 role.word == to_shadow_page(root->hpa)->role.word; 4211 } 4212 4213 /* 4214 * Find out if a previously cached root matching the new pgd/role is available. 4215 * The current root is also inserted into the cache. 4216 * If a matching root was found, it is assigned to kvm_mmu->root_hpa and true is 4217 * returned. 4218 * Otherwise, the LRU root from the cache is assigned to kvm_mmu->root_hpa and 4219 * false is returned. This root should now be freed by the caller. 4220 */ 4221 static bool cached_root_available(struct kvm_vcpu *vcpu, gpa_t new_pgd, 4222 union kvm_mmu_page_role new_role) 4223 { 4224 uint i; 4225 struct kvm_mmu_root_info root; 4226 struct kvm_mmu *mmu = vcpu->arch.mmu; 4227 4228 root.pgd = mmu->root_pgd; 4229 root.hpa = mmu->root_hpa; 4230 4231 if (is_root_usable(&root, new_pgd, new_role)) 4232 return true; 4233 4234 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) { 4235 swap(root, mmu->prev_roots[i]); 4236 4237 if (is_root_usable(&root, new_pgd, new_role)) 4238 break; 4239 } 4240 4241 mmu->root_hpa = root.hpa; 4242 mmu->root_pgd = root.pgd; 4243 4244 return i < KVM_MMU_NUM_PREV_ROOTS; 4245 } 4246 4247 static bool fast_pgd_switch(struct kvm_vcpu *vcpu, gpa_t new_pgd, 4248 union kvm_mmu_page_role new_role) 4249 { 4250 struct kvm_mmu *mmu = vcpu->arch.mmu; 4251 4252 /* 4253 * For now, limit the fast switch to 64-bit hosts+VMs in order to avoid 4254 * having to deal with PDPTEs. We may add support for 32-bit hosts/VMs 4255 * later if necessary. 4256 */ 4257 if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL && 4258 mmu->root_level >= PT64_ROOT_4LEVEL) 4259 return cached_root_available(vcpu, new_pgd, new_role); 4260 4261 return false; 4262 } 4263 4264 static void __kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd, 4265 union kvm_mmu_page_role new_role, 4266 bool skip_tlb_flush, bool skip_mmu_sync) 4267 { 4268 if (!fast_pgd_switch(vcpu, new_pgd, new_role)) { 4269 kvm_mmu_free_roots(vcpu, vcpu->arch.mmu, KVM_MMU_ROOT_CURRENT); 4270 return; 4271 } 4272 4273 /* 4274 * It's possible that the cached previous root page is obsolete because 4275 * of a change in the MMU generation number. However, changing the 4276 * generation number is accompanied by KVM_REQ_MMU_RELOAD, which will 4277 * free the root set here and allocate a new one. 4278 */ 4279 kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu); 4280 4281 if (!skip_mmu_sync || force_flush_and_sync_on_reuse) 4282 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu); 4283 if (!skip_tlb_flush || force_flush_and_sync_on_reuse) 4284 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 4285 4286 /* 4287 * The last MMIO access's GVA and GPA are cached in the VCPU. When 4288 * switching to a new CR3, that GVA->GPA mapping may no longer be 4289 * valid. So clear any cached MMIO info even when we don't need to sync 4290 * the shadow page tables. 4291 */ 4292 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY); 4293 4294 __clear_sp_write_flooding_count(to_shadow_page(vcpu->arch.mmu->root_hpa)); 4295 } 4296 4297 void kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd, bool skip_tlb_flush, 4298 bool skip_mmu_sync) 4299 { 4300 __kvm_mmu_new_pgd(vcpu, new_pgd, kvm_mmu_calc_root_page_role(vcpu), 4301 skip_tlb_flush, skip_mmu_sync); 4302 } 4303 EXPORT_SYMBOL_GPL(kvm_mmu_new_pgd); 4304 4305 static unsigned long get_cr3(struct kvm_vcpu *vcpu) 4306 { 4307 return kvm_read_cr3(vcpu); 4308 } 4309 4310 static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn, 4311 unsigned int access, int *nr_present) 4312 { 4313 if (unlikely(is_mmio_spte(*sptep))) { 4314 if (gfn != get_mmio_spte_gfn(*sptep)) { 4315 mmu_spte_clear_no_track(sptep); 4316 return true; 4317 } 4318 4319 (*nr_present)++; 4320 mark_mmio_spte(vcpu, sptep, gfn, access); 4321 return true; 4322 } 4323 4324 return false; 4325 } 4326 4327 static inline bool is_last_gpte(struct kvm_mmu *mmu, 4328 unsigned level, unsigned gpte) 4329 { 4330 /* 4331 * The RHS has bit 7 set iff level < mmu->last_nonleaf_level. 4332 * If it is clear, there are no large pages at this level, so clear 4333 * PT_PAGE_SIZE_MASK in gpte if that is the case. 4334 */ 4335 gpte &= level - mmu->last_nonleaf_level; 4336 4337 /* 4338 * PG_LEVEL_4K always terminates. The RHS has bit 7 set 4339 * iff level <= PG_LEVEL_4K, which for our purpose means 4340 * level == PG_LEVEL_4K; set PT_PAGE_SIZE_MASK in gpte then. 4341 */ 4342 gpte |= level - PG_LEVEL_4K - 1; 4343 4344 return gpte & PT_PAGE_SIZE_MASK; 4345 } 4346 4347 #define PTTYPE_EPT 18 /* arbitrary */ 4348 #define PTTYPE PTTYPE_EPT 4349 #include "paging_tmpl.h" 4350 #undef PTTYPE 4351 4352 #define PTTYPE 64 4353 #include "paging_tmpl.h" 4354 #undef PTTYPE 4355 4356 #define PTTYPE 32 4357 #include "paging_tmpl.h" 4358 #undef PTTYPE 4359 4360 static void 4361 __reset_rsvds_bits_mask(struct kvm_vcpu *vcpu, 4362 struct rsvd_bits_validate *rsvd_check, 4363 int maxphyaddr, int level, bool nx, bool gbpages, 4364 bool pse, bool amd) 4365 { 4366 u64 exb_bit_rsvd = 0; 4367 u64 gbpages_bit_rsvd = 0; 4368 u64 nonleaf_bit8_rsvd = 0; 4369 4370 rsvd_check->bad_mt_xwr = 0; 4371 4372 if (!nx) 4373 exb_bit_rsvd = rsvd_bits(63, 63); 4374 if (!gbpages) 4375 gbpages_bit_rsvd = rsvd_bits(7, 7); 4376 4377 /* 4378 * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for 4379 * leaf entries) on AMD CPUs only. 4380 */ 4381 if (amd) 4382 nonleaf_bit8_rsvd = rsvd_bits(8, 8); 4383 4384 switch (level) { 4385 case PT32_ROOT_LEVEL: 4386 /* no rsvd bits for 2 level 4K page table entries */ 4387 rsvd_check->rsvd_bits_mask[0][1] = 0; 4388 rsvd_check->rsvd_bits_mask[0][0] = 0; 4389 rsvd_check->rsvd_bits_mask[1][0] = 4390 rsvd_check->rsvd_bits_mask[0][0]; 4391 4392 if (!pse) { 4393 rsvd_check->rsvd_bits_mask[1][1] = 0; 4394 break; 4395 } 4396 4397 if (is_cpuid_PSE36()) 4398 /* 36bits PSE 4MB page */ 4399 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21); 4400 else 4401 /* 32 bits PSE 4MB page */ 4402 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21); 4403 break; 4404 case PT32E_ROOT_LEVEL: 4405 rsvd_check->rsvd_bits_mask[0][2] = 4406 rsvd_bits(maxphyaddr, 63) | 4407 rsvd_bits(5, 8) | rsvd_bits(1, 2); /* PDPTE */ 4408 rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd | 4409 rsvd_bits(maxphyaddr, 62); /* PDE */ 4410 rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd | 4411 rsvd_bits(maxphyaddr, 62); /* PTE */ 4412 rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd | 4413 rsvd_bits(maxphyaddr, 62) | 4414 rsvd_bits(13, 20); /* large page */ 4415 rsvd_check->rsvd_bits_mask[1][0] = 4416 rsvd_check->rsvd_bits_mask[0][0]; 4417 break; 4418 case PT64_ROOT_5LEVEL: 4419 rsvd_check->rsvd_bits_mask[0][4] = exb_bit_rsvd | 4420 nonleaf_bit8_rsvd | rsvd_bits(7, 7) | 4421 rsvd_bits(maxphyaddr, 51); 4422 rsvd_check->rsvd_bits_mask[1][4] = 4423 rsvd_check->rsvd_bits_mask[0][4]; 4424 /* fall through */ 4425 case PT64_ROOT_4LEVEL: 4426 rsvd_check->rsvd_bits_mask[0][3] = exb_bit_rsvd | 4427 nonleaf_bit8_rsvd | rsvd_bits(7, 7) | 4428 rsvd_bits(maxphyaddr, 51); 4429 rsvd_check->rsvd_bits_mask[0][2] = exb_bit_rsvd | 4430 gbpages_bit_rsvd | 4431 rsvd_bits(maxphyaddr, 51); 4432 rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd | 4433 rsvd_bits(maxphyaddr, 51); 4434 rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd | 4435 rsvd_bits(maxphyaddr, 51); 4436 rsvd_check->rsvd_bits_mask[1][3] = 4437 rsvd_check->rsvd_bits_mask[0][3]; 4438 rsvd_check->rsvd_bits_mask[1][2] = exb_bit_rsvd | 4439 gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51) | 4440 rsvd_bits(13, 29); 4441 rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd | 4442 rsvd_bits(maxphyaddr, 51) | 4443 rsvd_bits(13, 20); /* large page */ 4444 rsvd_check->rsvd_bits_mask[1][0] = 4445 rsvd_check->rsvd_bits_mask[0][0]; 4446 break; 4447 } 4448 } 4449 4450 static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu, 4451 struct kvm_mmu *context) 4452 { 4453 __reset_rsvds_bits_mask(vcpu, &context->guest_rsvd_check, 4454 cpuid_maxphyaddr(vcpu), context->root_level, 4455 context->nx, 4456 guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES), 4457 is_pse(vcpu), 4458 guest_cpuid_is_amd_or_hygon(vcpu)); 4459 } 4460 4461 static void 4462 __reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check, 4463 int maxphyaddr, bool execonly) 4464 { 4465 u64 bad_mt_xwr; 4466 4467 rsvd_check->rsvd_bits_mask[0][4] = 4468 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7); 4469 rsvd_check->rsvd_bits_mask[0][3] = 4470 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7); 4471 rsvd_check->rsvd_bits_mask[0][2] = 4472 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6); 4473 rsvd_check->rsvd_bits_mask[0][1] = 4474 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6); 4475 rsvd_check->rsvd_bits_mask[0][0] = rsvd_bits(maxphyaddr, 51); 4476 4477 /* large page */ 4478 rsvd_check->rsvd_bits_mask[1][4] = rsvd_check->rsvd_bits_mask[0][4]; 4479 rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3]; 4480 rsvd_check->rsvd_bits_mask[1][2] = 4481 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 29); 4482 rsvd_check->rsvd_bits_mask[1][1] = 4483 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 20); 4484 rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0]; 4485 4486 bad_mt_xwr = 0xFFull << (2 * 8); /* bits 3..5 must not be 2 */ 4487 bad_mt_xwr |= 0xFFull << (3 * 8); /* bits 3..5 must not be 3 */ 4488 bad_mt_xwr |= 0xFFull << (7 * 8); /* bits 3..5 must not be 7 */ 4489 bad_mt_xwr |= REPEAT_BYTE(1ull << 2); /* bits 0..2 must not be 010 */ 4490 bad_mt_xwr |= REPEAT_BYTE(1ull << 6); /* bits 0..2 must not be 110 */ 4491 if (!execonly) { 4492 /* bits 0..2 must not be 100 unless VMX capabilities allow it */ 4493 bad_mt_xwr |= REPEAT_BYTE(1ull << 4); 4494 } 4495 rsvd_check->bad_mt_xwr = bad_mt_xwr; 4496 } 4497 4498 static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu, 4499 struct kvm_mmu *context, bool execonly) 4500 { 4501 __reset_rsvds_bits_mask_ept(&context->guest_rsvd_check, 4502 cpuid_maxphyaddr(vcpu), execonly); 4503 } 4504 4505 /* 4506 * the page table on host is the shadow page table for the page 4507 * table in guest or amd nested guest, its mmu features completely 4508 * follow the features in guest. 4509 */ 4510 void 4511 reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, struct kvm_mmu *context) 4512 { 4513 bool uses_nx = context->nx || 4514 context->mmu_role.base.smep_andnot_wp; 4515 struct rsvd_bits_validate *shadow_zero_check; 4516 int i; 4517 4518 /* 4519 * Passing "true" to the last argument is okay; it adds a check 4520 * on bit 8 of the SPTEs which KVM doesn't use anyway. 4521 */ 4522 shadow_zero_check = &context->shadow_zero_check; 4523 __reset_rsvds_bits_mask(vcpu, shadow_zero_check, 4524 shadow_phys_bits, 4525 context->shadow_root_level, uses_nx, 4526 guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES), 4527 is_pse(vcpu), true); 4528 4529 if (!shadow_me_mask) 4530 return; 4531 4532 for (i = context->shadow_root_level; --i >= 0;) { 4533 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask; 4534 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask; 4535 } 4536 4537 } 4538 EXPORT_SYMBOL_GPL(reset_shadow_zero_bits_mask); 4539 4540 static inline bool boot_cpu_is_amd(void) 4541 { 4542 WARN_ON_ONCE(!tdp_enabled); 4543 return shadow_x_mask == 0; 4544 } 4545 4546 /* 4547 * the direct page table on host, use as much mmu features as 4548 * possible, however, kvm currently does not do execution-protection. 4549 */ 4550 static void 4551 reset_tdp_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, 4552 struct kvm_mmu *context) 4553 { 4554 struct rsvd_bits_validate *shadow_zero_check; 4555 int i; 4556 4557 shadow_zero_check = &context->shadow_zero_check; 4558 4559 if (boot_cpu_is_amd()) 4560 __reset_rsvds_bits_mask(vcpu, shadow_zero_check, 4561 shadow_phys_bits, 4562 context->shadow_root_level, false, 4563 boot_cpu_has(X86_FEATURE_GBPAGES), 4564 true, true); 4565 else 4566 __reset_rsvds_bits_mask_ept(shadow_zero_check, 4567 shadow_phys_bits, 4568 false); 4569 4570 if (!shadow_me_mask) 4571 return; 4572 4573 for (i = context->shadow_root_level; --i >= 0;) { 4574 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask; 4575 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask; 4576 } 4577 } 4578 4579 /* 4580 * as the comments in reset_shadow_zero_bits_mask() except it 4581 * is the shadow page table for intel nested guest. 4582 */ 4583 static void 4584 reset_ept_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, 4585 struct kvm_mmu *context, bool execonly) 4586 { 4587 __reset_rsvds_bits_mask_ept(&context->shadow_zero_check, 4588 shadow_phys_bits, execonly); 4589 } 4590 4591 #define BYTE_MASK(access) \ 4592 ((1 & (access) ? 2 : 0) | \ 4593 (2 & (access) ? 4 : 0) | \ 4594 (3 & (access) ? 8 : 0) | \ 4595 (4 & (access) ? 16 : 0) | \ 4596 (5 & (access) ? 32 : 0) | \ 4597 (6 & (access) ? 64 : 0) | \ 4598 (7 & (access) ? 128 : 0)) 4599 4600 4601 static void update_permission_bitmask(struct kvm_vcpu *vcpu, 4602 struct kvm_mmu *mmu, bool ept) 4603 { 4604 unsigned byte; 4605 4606 const u8 x = BYTE_MASK(ACC_EXEC_MASK); 4607 const u8 w = BYTE_MASK(ACC_WRITE_MASK); 4608 const u8 u = BYTE_MASK(ACC_USER_MASK); 4609 4610 bool cr4_smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP) != 0; 4611 bool cr4_smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP) != 0; 4612 bool cr0_wp = is_write_protection(vcpu); 4613 4614 for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) { 4615 unsigned pfec = byte << 1; 4616 4617 /* 4618 * Each "*f" variable has a 1 bit for each UWX value 4619 * that causes a fault with the given PFEC. 4620 */ 4621 4622 /* Faults from writes to non-writable pages */ 4623 u8 wf = (pfec & PFERR_WRITE_MASK) ? (u8)~w : 0; 4624 /* Faults from user mode accesses to supervisor pages */ 4625 u8 uf = (pfec & PFERR_USER_MASK) ? (u8)~u : 0; 4626 /* Faults from fetches of non-executable pages*/ 4627 u8 ff = (pfec & PFERR_FETCH_MASK) ? (u8)~x : 0; 4628 /* Faults from kernel mode fetches of user pages */ 4629 u8 smepf = 0; 4630 /* Faults from kernel mode accesses of user pages */ 4631 u8 smapf = 0; 4632 4633 if (!ept) { 4634 /* Faults from kernel mode accesses to user pages */ 4635 u8 kf = (pfec & PFERR_USER_MASK) ? 0 : u; 4636 4637 /* Not really needed: !nx will cause pte.nx to fault */ 4638 if (!mmu->nx) 4639 ff = 0; 4640 4641 /* Allow supervisor writes if !cr0.wp */ 4642 if (!cr0_wp) 4643 wf = (pfec & PFERR_USER_MASK) ? wf : 0; 4644 4645 /* Disallow supervisor fetches of user code if cr4.smep */ 4646 if (cr4_smep) 4647 smepf = (pfec & PFERR_FETCH_MASK) ? kf : 0; 4648 4649 /* 4650 * SMAP:kernel-mode data accesses from user-mode 4651 * mappings should fault. A fault is considered 4652 * as a SMAP violation if all of the following 4653 * conditions are true: 4654 * - X86_CR4_SMAP is set in CR4 4655 * - A user page is accessed 4656 * - The access is not a fetch 4657 * - Page fault in kernel mode 4658 * - if CPL = 3 or X86_EFLAGS_AC is clear 4659 * 4660 * Here, we cover the first three conditions. 4661 * The fourth is computed dynamically in permission_fault(); 4662 * PFERR_RSVD_MASK bit will be set in PFEC if the access is 4663 * *not* subject to SMAP restrictions. 4664 */ 4665 if (cr4_smap) 4666 smapf = (pfec & (PFERR_RSVD_MASK|PFERR_FETCH_MASK)) ? 0 : kf; 4667 } 4668 4669 mmu->permissions[byte] = ff | uf | wf | smepf | smapf; 4670 } 4671 } 4672 4673 /* 4674 * PKU is an additional mechanism by which the paging controls access to 4675 * user-mode addresses based on the value in the PKRU register. Protection 4676 * key violations are reported through a bit in the page fault error code. 4677 * Unlike other bits of the error code, the PK bit is not known at the 4678 * call site of e.g. gva_to_gpa; it must be computed directly in 4679 * permission_fault based on two bits of PKRU, on some machine state (CR4, 4680 * CR0, EFER, CPL), and on other bits of the error code and the page tables. 4681 * 4682 * In particular the following conditions come from the error code, the 4683 * page tables and the machine state: 4684 * - PK is always zero unless CR4.PKE=1 and EFER.LMA=1 4685 * - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch) 4686 * - PK is always zero if U=0 in the page tables 4687 * - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access. 4688 * 4689 * The PKRU bitmask caches the result of these four conditions. The error 4690 * code (minus the P bit) and the page table's U bit form an index into the 4691 * PKRU bitmask. Two bits of the PKRU bitmask are then extracted and ANDed 4692 * with the two bits of the PKRU register corresponding to the protection key. 4693 * For the first three conditions above the bits will be 00, thus masking 4694 * away both AD and WD. For all reads or if the last condition holds, WD 4695 * only will be masked away. 4696 */ 4697 static void update_pkru_bitmask(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, 4698 bool ept) 4699 { 4700 unsigned bit; 4701 bool wp; 4702 4703 if (ept) { 4704 mmu->pkru_mask = 0; 4705 return; 4706 } 4707 4708 /* PKEY is enabled only if CR4.PKE and EFER.LMA are both set. */ 4709 if (!kvm_read_cr4_bits(vcpu, X86_CR4_PKE) || !is_long_mode(vcpu)) { 4710 mmu->pkru_mask = 0; 4711 return; 4712 } 4713 4714 wp = is_write_protection(vcpu); 4715 4716 for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) { 4717 unsigned pfec, pkey_bits; 4718 bool check_pkey, check_write, ff, uf, wf, pte_user; 4719 4720 pfec = bit << 1; 4721 ff = pfec & PFERR_FETCH_MASK; 4722 uf = pfec & PFERR_USER_MASK; 4723 wf = pfec & PFERR_WRITE_MASK; 4724 4725 /* PFEC.RSVD is replaced by ACC_USER_MASK. */ 4726 pte_user = pfec & PFERR_RSVD_MASK; 4727 4728 /* 4729 * Only need to check the access which is not an 4730 * instruction fetch and is to a user page. 4731 */ 4732 check_pkey = (!ff && pte_user); 4733 /* 4734 * write access is controlled by PKRU if it is a 4735 * user access or CR0.WP = 1. 4736 */ 4737 check_write = check_pkey && wf && (uf || wp); 4738 4739 /* PKRU.AD stops both read and write access. */ 4740 pkey_bits = !!check_pkey; 4741 /* PKRU.WD stops write access. */ 4742 pkey_bits |= (!!check_write) << 1; 4743 4744 mmu->pkru_mask |= (pkey_bits & 3) << pfec; 4745 } 4746 } 4747 4748 static void update_last_nonleaf_level(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu) 4749 { 4750 unsigned root_level = mmu->root_level; 4751 4752 mmu->last_nonleaf_level = root_level; 4753 if (root_level == PT32_ROOT_LEVEL && is_pse(vcpu)) 4754 mmu->last_nonleaf_level++; 4755 } 4756 4757 static void paging64_init_context_common(struct kvm_vcpu *vcpu, 4758 struct kvm_mmu *context, 4759 int level) 4760 { 4761 context->nx = is_nx(vcpu); 4762 context->root_level = level; 4763 4764 reset_rsvds_bits_mask(vcpu, context); 4765 update_permission_bitmask(vcpu, context, false); 4766 update_pkru_bitmask(vcpu, context, false); 4767 update_last_nonleaf_level(vcpu, context); 4768 4769 MMU_WARN_ON(!is_pae(vcpu)); 4770 context->page_fault = paging64_page_fault; 4771 context->gva_to_gpa = paging64_gva_to_gpa; 4772 context->sync_page = paging64_sync_page; 4773 context->invlpg = paging64_invlpg; 4774 context->update_pte = paging64_update_pte; 4775 context->shadow_root_level = level; 4776 context->direct_map = false; 4777 } 4778 4779 static void paging64_init_context(struct kvm_vcpu *vcpu, 4780 struct kvm_mmu *context) 4781 { 4782 int root_level = is_la57_mode(vcpu) ? 4783 PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL; 4784 4785 paging64_init_context_common(vcpu, context, root_level); 4786 } 4787 4788 static void paging32_init_context(struct kvm_vcpu *vcpu, 4789 struct kvm_mmu *context) 4790 { 4791 context->nx = false; 4792 context->root_level = PT32_ROOT_LEVEL; 4793 4794 reset_rsvds_bits_mask(vcpu, context); 4795 update_permission_bitmask(vcpu, context, false); 4796 update_pkru_bitmask(vcpu, context, false); 4797 update_last_nonleaf_level(vcpu, context); 4798 4799 context->page_fault = paging32_page_fault; 4800 context->gva_to_gpa = paging32_gva_to_gpa; 4801 context->sync_page = paging32_sync_page; 4802 context->invlpg = paging32_invlpg; 4803 context->update_pte = paging32_update_pte; 4804 context->shadow_root_level = PT32E_ROOT_LEVEL; 4805 context->direct_map = false; 4806 } 4807 4808 static void paging32E_init_context(struct kvm_vcpu *vcpu, 4809 struct kvm_mmu *context) 4810 { 4811 paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL); 4812 } 4813 4814 static union kvm_mmu_extended_role kvm_calc_mmu_role_ext(struct kvm_vcpu *vcpu) 4815 { 4816 union kvm_mmu_extended_role ext = {0}; 4817 4818 ext.cr0_pg = !!is_paging(vcpu); 4819 ext.cr4_pae = !!is_pae(vcpu); 4820 ext.cr4_smep = !!kvm_read_cr4_bits(vcpu, X86_CR4_SMEP); 4821 ext.cr4_smap = !!kvm_read_cr4_bits(vcpu, X86_CR4_SMAP); 4822 ext.cr4_pse = !!is_pse(vcpu); 4823 ext.cr4_pke = !!kvm_read_cr4_bits(vcpu, X86_CR4_PKE); 4824 ext.maxphyaddr = cpuid_maxphyaddr(vcpu); 4825 4826 ext.valid = 1; 4827 4828 return ext; 4829 } 4830 4831 static union kvm_mmu_role kvm_calc_mmu_role_common(struct kvm_vcpu *vcpu, 4832 bool base_only) 4833 { 4834 union kvm_mmu_role role = {0}; 4835 4836 role.base.access = ACC_ALL; 4837 role.base.nxe = !!is_nx(vcpu); 4838 role.base.cr0_wp = is_write_protection(vcpu); 4839 role.base.smm = is_smm(vcpu); 4840 role.base.guest_mode = is_guest_mode(vcpu); 4841 4842 if (base_only) 4843 return role; 4844 4845 role.ext = kvm_calc_mmu_role_ext(vcpu); 4846 4847 return role; 4848 } 4849 4850 static inline int kvm_mmu_get_tdp_level(struct kvm_vcpu *vcpu) 4851 { 4852 /* Use 5-level TDP if and only if it's useful/necessary. */ 4853 if (max_tdp_level == 5 && cpuid_maxphyaddr(vcpu) <= 48) 4854 return 4; 4855 4856 return max_tdp_level; 4857 } 4858 4859 static union kvm_mmu_role 4860 kvm_calc_tdp_mmu_root_page_role(struct kvm_vcpu *vcpu, bool base_only) 4861 { 4862 union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, base_only); 4863 4864 role.base.ad_disabled = (shadow_accessed_mask == 0); 4865 role.base.level = kvm_mmu_get_tdp_level(vcpu); 4866 role.base.direct = true; 4867 role.base.gpte_is_8_bytes = true; 4868 4869 return role; 4870 } 4871 4872 static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu) 4873 { 4874 struct kvm_mmu *context = &vcpu->arch.root_mmu; 4875 union kvm_mmu_role new_role = 4876 kvm_calc_tdp_mmu_root_page_role(vcpu, false); 4877 4878 if (new_role.as_u64 == context->mmu_role.as_u64) 4879 return; 4880 4881 context->mmu_role.as_u64 = new_role.as_u64; 4882 context->page_fault = kvm_tdp_page_fault; 4883 context->sync_page = nonpaging_sync_page; 4884 context->invlpg = NULL; 4885 context->update_pte = nonpaging_update_pte; 4886 context->shadow_root_level = kvm_mmu_get_tdp_level(vcpu); 4887 context->direct_map = true; 4888 context->get_guest_pgd = get_cr3; 4889 context->get_pdptr = kvm_pdptr_read; 4890 context->inject_page_fault = kvm_inject_page_fault; 4891 4892 if (!is_paging(vcpu)) { 4893 context->nx = false; 4894 context->gva_to_gpa = nonpaging_gva_to_gpa; 4895 context->root_level = 0; 4896 } else if (is_long_mode(vcpu)) { 4897 context->nx = is_nx(vcpu); 4898 context->root_level = is_la57_mode(vcpu) ? 4899 PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL; 4900 reset_rsvds_bits_mask(vcpu, context); 4901 context->gva_to_gpa = paging64_gva_to_gpa; 4902 } else if (is_pae(vcpu)) { 4903 context->nx = is_nx(vcpu); 4904 context->root_level = PT32E_ROOT_LEVEL; 4905 reset_rsvds_bits_mask(vcpu, context); 4906 context->gva_to_gpa = paging64_gva_to_gpa; 4907 } else { 4908 context->nx = false; 4909 context->root_level = PT32_ROOT_LEVEL; 4910 reset_rsvds_bits_mask(vcpu, context); 4911 context->gva_to_gpa = paging32_gva_to_gpa; 4912 } 4913 4914 update_permission_bitmask(vcpu, context, false); 4915 update_pkru_bitmask(vcpu, context, false); 4916 update_last_nonleaf_level(vcpu, context); 4917 reset_tdp_shadow_zero_bits_mask(vcpu, context); 4918 } 4919 4920 static union kvm_mmu_role 4921 kvm_calc_shadow_root_page_role_common(struct kvm_vcpu *vcpu, bool base_only) 4922 { 4923 union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, base_only); 4924 4925 role.base.smep_andnot_wp = role.ext.cr4_smep && 4926 !is_write_protection(vcpu); 4927 role.base.smap_andnot_wp = role.ext.cr4_smap && 4928 !is_write_protection(vcpu); 4929 role.base.gpte_is_8_bytes = !!is_pae(vcpu); 4930 4931 return role; 4932 } 4933 4934 static union kvm_mmu_role 4935 kvm_calc_shadow_mmu_root_page_role(struct kvm_vcpu *vcpu, bool base_only) 4936 { 4937 union kvm_mmu_role role = 4938 kvm_calc_shadow_root_page_role_common(vcpu, base_only); 4939 4940 role.base.direct = !is_paging(vcpu); 4941 4942 if (!is_long_mode(vcpu)) 4943 role.base.level = PT32E_ROOT_LEVEL; 4944 else if (is_la57_mode(vcpu)) 4945 role.base.level = PT64_ROOT_5LEVEL; 4946 else 4947 role.base.level = PT64_ROOT_4LEVEL; 4948 4949 return role; 4950 } 4951 4952 static void shadow_mmu_init_context(struct kvm_vcpu *vcpu, struct kvm_mmu *context, 4953 u32 cr0, u32 cr4, u32 efer, 4954 union kvm_mmu_role new_role) 4955 { 4956 if (!(cr0 & X86_CR0_PG)) 4957 nonpaging_init_context(vcpu, context); 4958 else if (efer & EFER_LMA) 4959 paging64_init_context(vcpu, context); 4960 else if (cr4 & X86_CR4_PAE) 4961 paging32E_init_context(vcpu, context); 4962 else 4963 paging32_init_context(vcpu, context); 4964 4965 context->mmu_role.as_u64 = new_role.as_u64; 4966 reset_shadow_zero_bits_mask(vcpu, context); 4967 } 4968 4969 static void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, u32 cr0, u32 cr4, u32 efer) 4970 { 4971 struct kvm_mmu *context = &vcpu->arch.root_mmu; 4972 union kvm_mmu_role new_role = 4973 kvm_calc_shadow_mmu_root_page_role(vcpu, false); 4974 4975 if (new_role.as_u64 != context->mmu_role.as_u64) 4976 shadow_mmu_init_context(vcpu, context, cr0, cr4, efer, new_role); 4977 } 4978 4979 static union kvm_mmu_role 4980 kvm_calc_shadow_npt_root_page_role(struct kvm_vcpu *vcpu) 4981 { 4982 union kvm_mmu_role role = 4983 kvm_calc_shadow_root_page_role_common(vcpu, false); 4984 4985 role.base.direct = false; 4986 role.base.level = kvm_mmu_get_tdp_level(vcpu); 4987 4988 return role; 4989 } 4990 4991 void kvm_init_shadow_npt_mmu(struct kvm_vcpu *vcpu, u32 cr0, u32 cr4, u32 efer, 4992 gpa_t nested_cr3) 4993 { 4994 struct kvm_mmu *context = &vcpu->arch.guest_mmu; 4995 union kvm_mmu_role new_role = kvm_calc_shadow_npt_root_page_role(vcpu); 4996 4997 context->shadow_root_level = new_role.base.level; 4998 4999 __kvm_mmu_new_pgd(vcpu, nested_cr3, new_role.base, false, false); 5000 5001 if (new_role.as_u64 != context->mmu_role.as_u64) 5002 shadow_mmu_init_context(vcpu, context, cr0, cr4, efer, new_role); 5003 } 5004 EXPORT_SYMBOL_GPL(kvm_init_shadow_npt_mmu); 5005 5006 static union kvm_mmu_role 5007 kvm_calc_shadow_ept_root_page_role(struct kvm_vcpu *vcpu, bool accessed_dirty, 5008 bool execonly, u8 level) 5009 { 5010 union kvm_mmu_role role = {0}; 5011 5012 /* SMM flag is inherited from root_mmu */ 5013 role.base.smm = vcpu->arch.root_mmu.mmu_role.base.smm; 5014 5015 role.base.level = level; 5016 role.base.gpte_is_8_bytes = true; 5017 role.base.direct = false; 5018 role.base.ad_disabled = !accessed_dirty; 5019 role.base.guest_mode = true; 5020 role.base.access = ACC_ALL; 5021 5022 /* 5023 * WP=1 and NOT_WP=1 is an impossible combination, use WP and the 5024 * SMAP variation to denote shadow EPT entries. 5025 */ 5026 role.base.cr0_wp = true; 5027 role.base.smap_andnot_wp = true; 5028 5029 role.ext = kvm_calc_mmu_role_ext(vcpu); 5030 role.ext.execonly = execonly; 5031 5032 return role; 5033 } 5034 5035 void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly, 5036 bool accessed_dirty, gpa_t new_eptp) 5037 { 5038 struct kvm_mmu *context = &vcpu->arch.guest_mmu; 5039 u8 level = vmx_eptp_page_walk_level(new_eptp); 5040 union kvm_mmu_role new_role = 5041 kvm_calc_shadow_ept_root_page_role(vcpu, accessed_dirty, 5042 execonly, level); 5043 5044 __kvm_mmu_new_pgd(vcpu, new_eptp, new_role.base, true, true); 5045 5046 if (new_role.as_u64 == context->mmu_role.as_u64) 5047 return; 5048 5049 context->shadow_root_level = level; 5050 5051 context->nx = true; 5052 context->ept_ad = accessed_dirty; 5053 context->page_fault = ept_page_fault; 5054 context->gva_to_gpa = ept_gva_to_gpa; 5055 context->sync_page = ept_sync_page; 5056 context->invlpg = ept_invlpg; 5057 context->update_pte = ept_update_pte; 5058 context->root_level = level; 5059 context->direct_map = false; 5060 context->mmu_role.as_u64 = new_role.as_u64; 5061 5062 update_permission_bitmask(vcpu, context, true); 5063 update_pkru_bitmask(vcpu, context, true); 5064 update_last_nonleaf_level(vcpu, context); 5065 reset_rsvds_bits_mask_ept(vcpu, context, execonly); 5066 reset_ept_shadow_zero_bits_mask(vcpu, context, execonly); 5067 } 5068 EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu); 5069 5070 static void init_kvm_softmmu(struct kvm_vcpu *vcpu) 5071 { 5072 struct kvm_mmu *context = &vcpu->arch.root_mmu; 5073 5074 kvm_init_shadow_mmu(vcpu, 5075 kvm_read_cr0_bits(vcpu, X86_CR0_PG), 5076 kvm_read_cr4_bits(vcpu, X86_CR4_PAE), 5077 vcpu->arch.efer); 5078 5079 context->get_guest_pgd = get_cr3; 5080 context->get_pdptr = kvm_pdptr_read; 5081 context->inject_page_fault = kvm_inject_page_fault; 5082 } 5083 5084 static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu) 5085 { 5086 union kvm_mmu_role new_role = kvm_calc_mmu_role_common(vcpu, false); 5087 struct kvm_mmu *g_context = &vcpu->arch.nested_mmu; 5088 5089 if (new_role.as_u64 == g_context->mmu_role.as_u64) 5090 return; 5091 5092 g_context->mmu_role.as_u64 = new_role.as_u64; 5093 g_context->get_guest_pgd = get_cr3; 5094 g_context->get_pdptr = kvm_pdptr_read; 5095 g_context->inject_page_fault = kvm_inject_page_fault; 5096 5097 /* 5098 * L2 page tables are never shadowed, so there is no need to sync 5099 * SPTEs. 5100 */ 5101 g_context->invlpg = NULL; 5102 5103 /* 5104 * Note that arch.mmu->gva_to_gpa translates l2_gpa to l1_gpa using 5105 * L1's nested page tables (e.g. EPT12). The nested translation 5106 * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using 5107 * L2's page tables as the first level of translation and L1's 5108 * nested page tables as the second level of translation. Basically 5109 * the gva_to_gpa functions between mmu and nested_mmu are swapped. 5110 */ 5111 if (!is_paging(vcpu)) { 5112 g_context->nx = false; 5113 g_context->root_level = 0; 5114 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested; 5115 } else if (is_long_mode(vcpu)) { 5116 g_context->nx = is_nx(vcpu); 5117 g_context->root_level = is_la57_mode(vcpu) ? 5118 PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL; 5119 reset_rsvds_bits_mask(vcpu, g_context); 5120 g_context->gva_to_gpa = paging64_gva_to_gpa_nested; 5121 } else if (is_pae(vcpu)) { 5122 g_context->nx = is_nx(vcpu); 5123 g_context->root_level = PT32E_ROOT_LEVEL; 5124 reset_rsvds_bits_mask(vcpu, g_context); 5125 g_context->gva_to_gpa = paging64_gva_to_gpa_nested; 5126 } else { 5127 g_context->nx = false; 5128 g_context->root_level = PT32_ROOT_LEVEL; 5129 reset_rsvds_bits_mask(vcpu, g_context); 5130 g_context->gva_to_gpa = paging32_gva_to_gpa_nested; 5131 } 5132 5133 update_permission_bitmask(vcpu, g_context, false); 5134 update_pkru_bitmask(vcpu, g_context, false); 5135 update_last_nonleaf_level(vcpu, g_context); 5136 } 5137 5138 void kvm_init_mmu(struct kvm_vcpu *vcpu, bool reset_roots) 5139 { 5140 if (reset_roots) { 5141 uint i; 5142 5143 vcpu->arch.mmu->root_hpa = INVALID_PAGE; 5144 5145 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 5146 vcpu->arch.mmu->prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID; 5147 } 5148 5149 if (mmu_is_nested(vcpu)) 5150 init_kvm_nested_mmu(vcpu); 5151 else if (tdp_enabled) 5152 init_kvm_tdp_mmu(vcpu); 5153 else 5154 init_kvm_softmmu(vcpu); 5155 } 5156 EXPORT_SYMBOL_GPL(kvm_init_mmu); 5157 5158 static union kvm_mmu_page_role 5159 kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu) 5160 { 5161 union kvm_mmu_role role; 5162 5163 if (tdp_enabled) 5164 role = kvm_calc_tdp_mmu_root_page_role(vcpu, true); 5165 else 5166 role = kvm_calc_shadow_mmu_root_page_role(vcpu, true); 5167 5168 return role.base; 5169 } 5170 5171 void kvm_mmu_reset_context(struct kvm_vcpu *vcpu) 5172 { 5173 kvm_mmu_unload(vcpu); 5174 kvm_init_mmu(vcpu, true); 5175 } 5176 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context); 5177 5178 int kvm_mmu_load(struct kvm_vcpu *vcpu) 5179 { 5180 int r; 5181 5182 r = mmu_topup_memory_caches(vcpu, !vcpu->arch.mmu->direct_map); 5183 if (r) 5184 goto out; 5185 r = mmu_alloc_roots(vcpu); 5186 kvm_mmu_sync_roots(vcpu); 5187 if (r) 5188 goto out; 5189 kvm_mmu_load_pgd(vcpu); 5190 kvm_x86_ops.tlb_flush_current(vcpu); 5191 out: 5192 return r; 5193 } 5194 EXPORT_SYMBOL_GPL(kvm_mmu_load); 5195 5196 void kvm_mmu_unload(struct kvm_vcpu *vcpu) 5197 { 5198 kvm_mmu_free_roots(vcpu, &vcpu->arch.root_mmu, KVM_MMU_ROOTS_ALL); 5199 WARN_ON(VALID_PAGE(vcpu->arch.root_mmu.root_hpa)); 5200 kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL); 5201 WARN_ON(VALID_PAGE(vcpu->arch.guest_mmu.root_hpa)); 5202 } 5203 EXPORT_SYMBOL_GPL(kvm_mmu_unload); 5204 5205 static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu, 5206 struct kvm_mmu_page *sp, u64 *spte, 5207 const void *new) 5208 { 5209 if (sp->role.level != PG_LEVEL_4K) { 5210 ++vcpu->kvm->stat.mmu_pde_zapped; 5211 return; 5212 } 5213 5214 ++vcpu->kvm->stat.mmu_pte_updated; 5215 vcpu->arch.mmu->update_pte(vcpu, sp, spte, new); 5216 } 5217 5218 static bool need_remote_flush(u64 old, u64 new) 5219 { 5220 if (!is_shadow_present_pte(old)) 5221 return false; 5222 if (!is_shadow_present_pte(new)) 5223 return true; 5224 if ((old ^ new) & PT64_BASE_ADDR_MASK) 5225 return true; 5226 old ^= shadow_nx_mask; 5227 new ^= shadow_nx_mask; 5228 return (old & ~new & PT64_PERM_MASK) != 0; 5229 } 5230 5231 static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa, 5232 int *bytes) 5233 { 5234 u64 gentry = 0; 5235 int r; 5236 5237 /* 5238 * Assume that the pte write on a page table of the same type 5239 * as the current vcpu paging mode since we update the sptes only 5240 * when they have the same mode. 5241 */ 5242 if (is_pae(vcpu) && *bytes == 4) { 5243 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */ 5244 *gpa &= ~(gpa_t)7; 5245 *bytes = 8; 5246 } 5247 5248 if (*bytes == 4 || *bytes == 8) { 5249 r = kvm_vcpu_read_guest_atomic(vcpu, *gpa, &gentry, *bytes); 5250 if (r) 5251 gentry = 0; 5252 } 5253 5254 return gentry; 5255 } 5256 5257 /* 5258 * If we're seeing too many writes to a page, it may no longer be a page table, 5259 * or we may be forking, in which case it is better to unmap the page. 5260 */ 5261 static bool detect_write_flooding(struct kvm_mmu_page *sp) 5262 { 5263 /* 5264 * Skip write-flooding detected for the sp whose level is 1, because 5265 * it can become unsync, then the guest page is not write-protected. 5266 */ 5267 if (sp->role.level == PG_LEVEL_4K) 5268 return false; 5269 5270 atomic_inc(&sp->write_flooding_count); 5271 return atomic_read(&sp->write_flooding_count) >= 3; 5272 } 5273 5274 /* 5275 * Misaligned accesses are too much trouble to fix up; also, they usually 5276 * indicate a page is not used as a page table. 5277 */ 5278 static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa, 5279 int bytes) 5280 { 5281 unsigned offset, pte_size, misaligned; 5282 5283 pgprintk("misaligned: gpa %llx bytes %d role %x\n", 5284 gpa, bytes, sp->role.word); 5285 5286 offset = offset_in_page(gpa); 5287 pte_size = sp->role.gpte_is_8_bytes ? 8 : 4; 5288 5289 /* 5290 * Sometimes, the OS only writes the last one bytes to update status 5291 * bits, for example, in linux, andb instruction is used in clear_bit(). 5292 */ 5293 if (!(offset & (pte_size - 1)) && bytes == 1) 5294 return false; 5295 5296 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1); 5297 misaligned |= bytes < 4; 5298 5299 return misaligned; 5300 } 5301 5302 static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte) 5303 { 5304 unsigned page_offset, quadrant; 5305 u64 *spte; 5306 int level; 5307 5308 page_offset = offset_in_page(gpa); 5309 level = sp->role.level; 5310 *nspte = 1; 5311 if (!sp->role.gpte_is_8_bytes) { 5312 page_offset <<= 1; /* 32->64 */ 5313 /* 5314 * A 32-bit pde maps 4MB while the shadow pdes map 5315 * only 2MB. So we need to double the offset again 5316 * and zap two pdes instead of one. 5317 */ 5318 if (level == PT32_ROOT_LEVEL) { 5319 page_offset &= ~7; /* kill rounding error */ 5320 page_offset <<= 1; 5321 *nspte = 2; 5322 } 5323 quadrant = page_offset >> PAGE_SHIFT; 5324 page_offset &= ~PAGE_MASK; 5325 if (quadrant != sp->role.quadrant) 5326 return NULL; 5327 } 5328 5329 spte = &sp->spt[page_offset / sizeof(*spte)]; 5330 return spte; 5331 } 5332 5333 /* 5334 * Ignore various flags when determining if a SPTE can be immediately 5335 * overwritten for the current MMU. 5336 * - level: explicitly checked in mmu_pte_write_new_pte(), and will never 5337 * match the current MMU role, as MMU's level tracks the root level. 5338 * - access: updated based on the new guest PTE 5339 * - quadrant: handled by get_written_sptes() 5340 * - invalid: always false (loop only walks valid shadow pages) 5341 */ 5342 static const union kvm_mmu_page_role role_ign = { 5343 .level = 0xf, 5344 .access = 0x7, 5345 .quadrant = 0x3, 5346 .invalid = 0x1, 5347 }; 5348 5349 static void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa, 5350 const u8 *new, int bytes, 5351 struct kvm_page_track_notifier_node *node) 5352 { 5353 gfn_t gfn = gpa >> PAGE_SHIFT; 5354 struct kvm_mmu_page *sp; 5355 LIST_HEAD(invalid_list); 5356 u64 entry, gentry, *spte; 5357 int npte; 5358 bool remote_flush, local_flush; 5359 5360 /* 5361 * If we don't have indirect shadow pages, it means no page is 5362 * write-protected, so we can exit simply. 5363 */ 5364 if (!READ_ONCE(vcpu->kvm->arch.indirect_shadow_pages)) 5365 return; 5366 5367 remote_flush = local_flush = false; 5368 5369 pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes); 5370 5371 /* 5372 * No need to care whether allocation memory is successful 5373 * or not since pte prefetch is skiped if it does not have 5374 * enough objects in the cache. 5375 */ 5376 mmu_topup_memory_caches(vcpu, true); 5377 5378 spin_lock(&vcpu->kvm->mmu_lock); 5379 5380 gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, &bytes); 5381 5382 ++vcpu->kvm->stat.mmu_pte_write; 5383 kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE); 5384 5385 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) { 5386 if (detect_write_misaligned(sp, gpa, bytes) || 5387 detect_write_flooding(sp)) { 5388 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list); 5389 ++vcpu->kvm->stat.mmu_flooded; 5390 continue; 5391 } 5392 5393 spte = get_written_sptes(sp, gpa, &npte); 5394 if (!spte) 5395 continue; 5396 5397 local_flush = true; 5398 while (npte--) { 5399 u32 base_role = vcpu->arch.mmu->mmu_role.base.word; 5400 5401 entry = *spte; 5402 mmu_page_zap_pte(vcpu->kvm, sp, spte); 5403 if (gentry && 5404 !((sp->role.word ^ base_role) & ~role_ign.word) && 5405 rmap_can_add(vcpu)) 5406 mmu_pte_write_new_pte(vcpu, sp, spte, &gentry); 5407 if (need_remote_flush(entry, *spte)) 5408 remote_flush = true; 5409 ++spte; 5410 } 5411 } 5412 kvm_mmu_flush_or_zap(vcpu, &invalid_list, remote_flush, local_flush); 5413 kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE); 5414 spin_unlock(&vcpu->kvm->mmu_lock); 5415 } 5416 5417 int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva) 5418 { 5419 gpa_t gpa; 5420 int r; 5421 5422 if (vcpu->arch.mmu->direct_map) 5423 return 0; 5424 5425 gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL); 5426 5427 r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT); 5428 5429 return r; 5430 } 5431 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt); 5432 5433 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 error_code, 5434 void *insn, int insn_len) 5435 { 5436 int r, emulation_type = EMULTYPE_PF; 5437 bool direct = vcpu->arch.mmu->direct_map; 5438 5439 if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa))) 5440 return RET_PF_RETRY; 5441 5442 r = RET_PF_INVALID; 5443 if (unlikely(error_code & PFERR_RSVD_MASK)) { 5444 r = handle_mmio_page_fault(vcpu, cr2_or_gpa, direct); 5445 if (r == RET_PF_EMULATE) 5446 goto emulate; 5447 } 5448 5449 if (r == RET_PF_INVALID) { 5450 r = kvm_mmu_do_page_fault(vcpu, cr2_or_gpa, 5451 lower_32_bits(error_code), false); 5452 WARN_ON(r == RET_PF_INVALID); 5453 } 5454 5455 if (r == RET_PF_RETRY) 5456 return 1; 5457 if (r < 0) 5458 return r; 5459 5460 /* 5461 * Before emulating the instruction, check if the error code 5462 * was due to a RO violation while translating the guest page. 5463 * This can occur when using nested virtualization with nested 5464 * paging in both guests. If true, we simply unprotect the page 5465 * and resume the guest. 5466 */ 5467 if (vcpu->arch.mmu->direct_map && 5468 (error_code & PFERR_NESTED_GUEST_PAGE) == PFERR_NESTED_GUEST_PAGE) { 5469 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(cr2_or_gpa)); 5470 return 1; 5471 } 5472 5473 /* 5474 * vcpu->arch.mmu.page_fault returned RET_PF_EMULATE, but we can still 5475 * optimistically try to just unprotect the page and let the processor 5476 * re-execute the instruction that caused the page fault. Do not allow 5477 * retrying MMIO emulation, as it's not only pointless but could also 5478 * cause us to enter an infinite loop because the processor will keep 5479 * faulting on the non-existent MMIO address. Retrying an instruction 5480 * from a nested guest is also pointless and dangerous as we are only 5481 * explicitly shadowing L1's page tables, i.e. unprotecting something 5482 * for L1 isn't going to magically fix whatever issue cause L2 to fail. 5483 */ 5484 if (!mmio_info_in_cache(vcpu, cr2_or_gpa, direct) && !is_guest_mode(vcpu)) 5485 emulation_type |= EMULTYPE_ALLOW_RETRY_PF; 5486 emulate: 5487 /* 5488 * On AMD platforms, under certain conditions insn_len may be zero on #NPF. 5489 * This can happen if a guest gets a page-fault on data access but the HW 5490 * table walker is not able to read the instruction page (e.g instruction 5491 * page is not present in memory). In those cases we simply restart the 5492 * guest, with the exception of AMD Erratum 1096 which is unrecoverable. 5493 */ 5494 if (unlikely(insn && !insn_len)) { 5495 if (!kvm_x86_ops.need_emulation_on_page_fault(vcpu)) 5496 return 1; 5497 } 5498 5499 return x86_emulate_instruction(vcpu, cr2_or_gpa, emulation_type, insn, 5500 insn_len); 5501 } 5502 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault); 5503 5504 void kvm_mmu_invalidate_gva(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, 5505 gva_t gva, hpa_t root_hpa) 5506 { 5507 int i; 5508 5509 /* It's actually a GPA for vcpu->arch.guest_mmu. */ 5510 if (mmu != &vcpu->arch.guest_mmu) { 5511 /* INVLPG on a non-canonical address is a NOP according to the SDM. */ 5512 if (is_noncanonical_address(gva, vcpu)) 5513 return; 5514 5515 kvm_x86_ops.tlb_flush_gva(vcpu, gva); 5516 } 5517 5518 if (!mmu->invlpg) 5519 return; 5520 5521 if (root_hpa == INVALID_PAGE) { 5522 mmu->invlpg(vcpu, gva, mmu->root_hpa); 5523 5524 /* 5525 * INVLPG is required to invalidate any global mappings for the VA, 5526 * irrespective of PCID. Since it would take us roughly similar amount 5527 * of work to determine whether any of the prev_root mappings of the VA 5528 * is marked global, or to just sync it blindly, so we might as well 5529 * just always sync it. 5530 * 5531 * Mappings not reachable via the current cr3 or the prev_roots will be 5532 * synced when switching to that cr3, so nothing needs to be done here 5533 * for them. 5534 */ 5535 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 5536 if (VALID_PAGE(mmu->prev_roots[i].hpa)) 5537 mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa); 5538 } else { 5539 mmu->invlpg(vcpu, gva, root_hpa); 5540 } 5541 } 5542 EXPORT_SYMBOL_GPL(kvm_mmu_invalidate_gva); 5543 5544 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva) 5545 { 5546 kvm_mmu_invalidate_gva(vcpu, vcpu->arch.mmu, gva, INVALID_PAGE); 5547 ++vcpu->stat.invlpg; 5548 } 5549 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg); 5550 5551 5552 void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid) 5553 { 5554 struct kvm_mmu *mmu = vcpu->arch.mmu; 5555 bool tlb_flush = false; 5556 uint i; 5557 5558 if (pcid == kvm_get_active_pcid(vcpu)) { 5559 mmu->invlpg(vcpu, gva, mmu->root_hpa); 5560 tlb_flush = true; 5561 } 5562 5563 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) { 5564 if (VALID_PAGE(mmu->prev_roots[i].hpa) && 5565 pcid == kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd)) { 5566 mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa); 5567 tlb_flush = true; 5568 } 5569 } 5570 5571 if (tlb_flush) 5572 kvm_x86_ops.tlb_flush_gva(vcpu, gva); 5573 5574 ++vcpu->stat.invlpg; 5575 5576 /* 5577 * Mappings not reachable via the current cr3 or the prev_roots will be 5578 * synced when switching to that cr3, so nothing needs to be done here 5579 * for them. 5580 */ 5581 } 5582 EXPORT_SYMBOL_GPL(kvm_mmu_invpcid_gva); 5583 5584 void kvm_configure_mmu(bool enable_tdp, int tdp_max_root_level, 5585 int tdp_huge_page_level) 5586 { 5587 tdp_enabled = enable_tdp; 5588 max_tdp_level = tdp_max_root_level; 5589 5590 /* 5591 * max_huge_page_level reflects KVM's MMU capabilities irrespective 5592 * of kernel support, e.g. KVM may be capable of using 1GB pages when 5593 * the kernel is not. But, KVM never creates a page size greater than 5594 * what is used by the kernel for any given HVA, i.e. the kernel's 5595 * capabilities are ultimately consulted by kvm_mmu_hugepage_adjust(). 5596 */ 5597 if (tdp_enabled) 5598 max_huge_page_level = tdp_huge_page_level; 5599 else if (boot_cpu_has(X86_FEATURE_GBPAGES)) 5600 max_huge_page_level = PG_LEVEL_1G; 5601 else 5602 max_huge_page_level = PG_LEVEL_2M; 5603 } 5604 EXPORT_SYMBOL_GPL(kvm_configure_mmu); 5605 5606 /* The return value indicates if tlb flush on all vcpus is needed. */ 5607 typedef bool (*slot_level_handler) (struct kvm *kvm, struct kvm_rmap_head *rmap_head); 5608 5609 /* The caller should hold mmu-lock before calling this function. */ 5610 static __always_inline bool 5611 slot_handle_level_range(struct kvm *kvm, struct kvm_memory_slot *memslot, 5612 slot_level_handler fn, int start_level, int end_level, 5613 gfn_t start_gfn, gfn_t end_gfn, bool lock_flush_tlb) 5614 { 5615 struct slot_rmap_walk_iterator iterator; 5616 bool flush = false; 5617 5618 for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn, 5619 end_gfn, &iterator) { 5620 if (iterator.rmap) 5621 flush |= fn(kvm, iterator.rmap); 5622 5623 if (need_resched() || spin_needbreak(&kvm->mmu_lock)) { 5624 if (flush && lock_flush_tlb) { 5625 kvm_flush_remote_tlbs_with_address(kvm, 5626 start_gfn, 5627 iterator.gfn - start_gfn + 1); 5628 flush = false; 5629 } 5630 cond_resched_lock(&kvm->mmu_lock); 5631 } 5632 } 5633 5634 if (flush && lock_flush_tlb) { 5635 kvm_flush_remote_tlbs_with_address(kvm, start_gfn, 5636 end_gfn - start_gfn + 1); 5637 flush = false; 5638 } 5639 5640 return flush; 5641 } 5642 5643 static __always_inline bool 5644 slot_handle_level(struct kvm *kvm, struct kvm_memory_slot *memslot, 5645 slot_level_handler fn, int start_level, int end_level, 5646 bool lock_flush_tlb) 5647 { 5648 return slot_handle_level_range(kvm, memslot, fn, start_level, 5649 end_level, memslot->base_gfn, 5650 memslot->base_gfn + memslot->npages - 1, 5651 lock_flush_tlb); 5652 } 5653 5654 static __always_inline bool 5655 slot_handle_all_level(struct kvm *kvm, struct kvm_memory_slot *memslot, 5656 slot_level_handler fn, bool lock_flush_tlb) 5657 { 5658 return slot_handle_level(kvm, memslot, fn, PG_LEVEL_4K, 5659 KVM_MAX_HUGEPAGE_LEVEL, lock_flush_tlb); 5660 } 5661 5662 static __always_inline bool 5663 slot_handle_large_level(struct kvm *kvm, struct kvm_memory_slot *memslot, 5664 slot_level_handler fn, bool lock_flush_tlb) 5665 { 5666 return slot_handle_level(kvm, memslot, fn, PG_LEVEL_4K + 1, 5667 KVM_MAX_HUGEPAGE_LEVEL, lock_flush_tlb); 5668 } 5669 5670 static __always_inline bool 5671 slot_handle_leaf(struct kvm *kvm, struct kvm_memory_slot *memslot, 5672 slot_level_handler fn, bool lock_flush_tlb) 5673 { 5674 return slot_handle_level(kvm, memslot, fn, PG_LEVEL_4K, 5675 PG_LEVEL_4K, lock_flush_tlb); 5676 } 5677 5678 static void free_mmu_pages(struct kvm_mmu *mmu) 5679 { 5680 free_page((unsigned long)mmu->pae_root); 5681 free_page((unsigned long)mmu->lm_root); 5682 } 5683 5684 static int alloc_mmu_pages(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu) 5685 { 5686 struct page *page; 5687 int i; 5688 5689 /* 5690 * When using PAE paging, the four PDPTEs are treated as 'root' pages, 5691 * while the PDP table is a per-vCPU construct that's allocated at MMU 5692 * creation. When emulating 32-bit mode, cr3 is only 32 bits even on 5693 * x86_64. Therefore we need to allocate the PDP table in the first 5694 * 4GB of memory, which happens to fit the DMA32 zone. Except for 5695 * SVM's 32-bit NPT support, TDP paging doesn't use PAE paging and can 5696 * skip allocating the PDP table. 5697 */ 5698 if (tdp_enabled && kvm_mmu_get_tdp_level(vcpu) > PT32E_ROOT_LEVEL) 5699 return 0; 5700 5701 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_DMA32); 5702 if (!page) 5703 return -ENOMEM; 5704 5705 mmu->pae_root = page_address(page); 5706 for (i = 0; i < 4; ++i) 5707 mmu->pae_root[i] = INVALID_PAGE; 5708 5709 return 0; 5710 } 5711 5712 int kvm_mmu_create(struct kvm_vcpu *vcpu) 5713 { 5714 uint i; 5715 int ret; 5716 5717 vcpu->arch.mmu_pte_list_desc_cache.kmem_cache = pte_list_desc_cache; 5718 vcpu->arch.mmu_pte_list_desc_cache.gfp_zero = __GFP_ZERO; 5719 5720 vcpu->arch.mmu_page_header_cache.kmem_cache = mmu_page_header_cache; 5721 vcpu->arch.mmu_page_header_cache.gfp_zero = __GFP_ZERO; 5722 5723 vcpu->arch.mmu_shadow_page_cache.gfp_zero = __GFP_ZERO; 5724 5725 vcpu->arch.mmu = &vcpu->arch.root_mmu; 5726 vcpu->arch.walk_mmu = &vcpu->arch.root_mmu; 5727 5728 vcpu->arch.root_mmu.root_hpa = INVALID_PAGE; 5729 vcpu->arch.root_mmu.root_pgd = 0; 5730 vcpu->arch.root_mmu.translate_gpa = translate_gpa; 5731 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 5732 vcpu->arch.root_mmu.prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID; 5733 5734 vcpu->arch.guest_mmu.root_hpa = INVALID_PAGE; 5735 vcpu->arch.guest_mmu.root_pgd = 0; 5736 vcpu->arch.guest_mmu.translate_gpa = translate_gpa; 5737 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 5738 vcpu->arch.guest_mmu.prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID; 5739 5740 vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa; 5741 5742 ret = alloc_mmu_pages(vcpu, &vcpu->arch.guest_mmu); 5743 if (ret) 5744 return ret; 5745 5746 ret = alloc_mmu_pages(vcpu, &vcpu->arch.root_mmu); 5747 if (ret) 5748 goto fail_allocate_root; 5749 5750 return ret; 5751 fail_allocate_root: 5752 free_mmu_pages(&vcpu->arch.guest_mmu); 5753 return ret; 5754 } 5755 5756 #define BATCH_ZAP_PAGES 10 5757 static void kvm_zap_obsolete_pages(struct kvm *kvm) 5758 { 5759 struct kvm_mmu_page *sp, *node; 5760 int nr_zapped, batch = 0; 5761 5762 restart: 5763 list_for_each_entry_safe_reverse(sp, node, 5764 &kvm->arch.active_mmu_pages, link) { 5765 /* 5766 * No obsolete valid page exists before a newly created page 5767 * since active_mmu_pages is a FIFO list. 5768 */ 5769 if (!is_obsolete_sp(kvm, sp)) 5770 break; 5771 5772 /* 5773 * Invalid pages should never land back on the list of active 5774 * pages. Skip the bogus page, otherwise we'll get stuck in an 5775 * infinite loop if the page gets put back on the list (again). 5776 */ 5777 if (WARN_ON(sp->role.invalid)) 5778 continue; 5779 5780 /* 5781 * No need to flush the TLB since we're only zapping shadow 5782 * pages with an obsolete generation number and all vCPUS have 5783 * loaded a new root, i.e. the shadow pages being zapped cannot 5784 * be in active use by the guest. 5785 */ 5786 if (batch >= BATCH_ZAP_PAGES && 5787 cond_resched_lock(&kvm->mmu_lock)) { 5788 batch = 0; 5789 goto restart; 5790 } 5791 5792 if (__kvm_mmu_prepare_zap_page(kvm, sp, 5793 &kvm->arch.zapped_obsolete_pages, &nr_zapped)) { 5794 batch += nr_zapped; 5795 goto restart; 5796 } 5797 } 5798 5799 /* 5800 * Trigger a remote TLB flush before freeing the page tables to ensure 5801 * KVM is not in the middle of a lockless shadow page table walk, which 5802 * may reference the pages. 5803 */ 5804 kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages); 5805 } 5806 5807 /* 5808 * Fast invalidate all shadow pages and use lock-break technique 5809 * to zap obsolete pages. 5810 * 5811 * It's required when memslot is being deleted or VM is being 5812 * destroyed, in these cases, we should ensure that KVM MMU does 5813 * not use any resource of the being-deleted slot or all slots 5814 * after calling the function. 5815 */ 5816 static void kvm_mmu_zap_all_fast(struct kvm *kvm) 5817 { 5818 lockdep_assert_held(&kvm->slots_lock); 5819 5820 spin_lock(&kvm->mmu_lock); 5821 trace_kvm_mmu_zap_all_fast(kvm); 5822 5823 /* 5824 * Toggle mmu_valid_gen between '0' and '1'. Because slots_lock is 5825 * held for the entire duration of zapping obsolete pages, it's 5826 * impossible for there to be multiple invalid generations associated 5827 * with *valid* shadow pages at any given time, i.e. there is exactly 5828 * one valid generation and (at most) one invalid generation. 5829 */ 5830 kvm->arch.mmu_valid_gen = kvm->arch.mmu_valid_gen ? 0 : 1; 5831 5832 /* 5833 * Notify all vcpus to reload its shadow page table and flush TLB. 5834 * Then all vcpus will switch to new shadow page table with the new 5835 * mmu_valid_gen. 5836 * 5837 * Note: we need to do this under the protection of mmu_lock, 5838 * otherwise, vcpu would purge shadow page but miss tlb flush. 5839 */ 5840 kvm_reload_remote_mmus(kvm); 5841 5842 kvm_zap_obsolete_pages(kvm); 5843 spin_unlock(&kvm->mmu_lock); 5844 } 5845 5846 static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm) 5847 { 5848 return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages)); 5849 } 5850 5851 static void kvm_mmu_invalidate_zap_pages_in_memslot(struct kvm *kvm, 5852 struct kvm_memory_slot *slot, 5853 struct kvm_page_track_notifier_node *node) 5854 { 5855 kvm_mmu_zap_all_fast(kvm); 5856 } 5857 5858 void kvm_mmu_init_vm(struct kvm *kvm) 5859 { 5860 struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker; 5861 5862 node->track_write = kvm_mmu_pte_write; 5863 node->track_flush_slot = kvm_mmu_invalidate_zap_pages_in_memslot; 5864 kvm_page_track_register_notifier(kvm, node); 5865 } 5866 5867 void kvm_mmu_uninit_vm(struct kvm *kvm) 5868 { 5869 struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker; 5870 5871 kvm_page_track_unregister_notifier(kvm, node); 5872 } 5873 5874 void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end) 5875 { 5876 struct kvm_memslots *slots; 5877 struct kvm_memory_slot *memslot; 5878 int i; 5879 5880 spin_lock(&kvm->mmu_lock); 5881 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { 5882 slots = __kvm_memslots(kvm, i); 5883 kvm_for_each_memslot(memslot, slots) { 5884 gfn_t start, end; 5885 5886 start = max(gfn_start, memslot->base_gfn); 5887 end = min(gfn_end, memslot->base_gfn + memslot->npages); 5888 if (start >= end) 5889 continue; 5890 5891 slot_handle_level_range(kvm, memslot, kvm_zap_rmapp, 5892 PG_LEVEL_4K, 5893 KVM_MAX_HUGEPAGE_LEVEL, 5894 start, end - 1, true); 5895 } 5896 } 5897 5898 spin_unlock(&kvm->mmu_lock); 5899 } 5900 5901 static bool slot_rmap_write_protect(struct kvm *kvm, 5902 struct kvm_rmap_head *rmap_head) 5903 { 5904 return __rmap_write_protect(kvm, rmap_head, false); 5905 } 5906 5907 void kvm_mmu_slot_remove_write_access(struct kvm *kvm, 5908 struct kvm_memory_slot *memslot, 5909 int start_level) 5910 { 5911 bool flush; 5912 5913 spin_lock(&kvm->mmu_lock); 5914 flush = slot_handle_level(kvm, memslot, slot_rmap_write_protect, 5915 start_level, KVM_MAX_HUGEPAGE_LEVEL, false); 5916 spin_unlock(&kvm->mmu_lock); 5917 5918 /* 5919 * We can flush all the TLBs out of the mmu lock without TLB 5920 * corruption since we just change the spte from writable to 5921 * readonly so that we only need to care the case of changing 5922 * spte from present to present (changing the spte from present 5923 * to nonpresent will flush all the TLBs immediately), in other 5924 * words, the only case we care is mmu_spte_update() where we 5925 * have checked SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE 5926 * instead of PT_WRITABLE_MASK, that means it does not depend 5927 * on PT_WRITABLE_MASK anymore. 5928 */ 5929 if (flush) 5930 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot); 5931 } 5932 5933 static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm, 5934 struct kvm_rmap_head *rmap_head) 5935 { 5936 u64 *sptep; 5937 struct rmap_iterator iter; 5938 int need_tlb_flush = 0; 5939 kvm_pfn_t pfn; 5940 struct kvm_mmu_page *sp; 5941 5942 restart: 5943 for_each_rmap_spte(rmap_head, &iter, sptep) { 5944 sp = sptep_to_sp(sptep); 5945 pfn = spte_to_pfn(*sptep); 5946 5947 /* 5948 * We cannot do huge page mapping for indirect shadow pages, 5949 * which are found on the last rmap (level = 1) when not using 5950 * tdp; such shadow pages are synced with the page table in 5951 * the guest, and the guest page table is using 4K page size 5952 * mapping if the indirect sp has level = 1. 5953 */ 5954 if (sp->role.direct && !kvm_is_reserved_pfn(pfn) && 5955 (kvm_is_zone_device_pfn(pfn) || 5956 PageCompound(pfn_to_page(pfn)))) { 5957 pte_list_remove(rmap_head, sptep); 5958 5959 if (kvm_available_flush_tlb_with_range()) 5960 kvm_flush_remote_tlbs_with_address(kvm, sp->gfn, 5961 KVM_PAGES_PER_HPAGE(sp->role.level)); 5962 else 5963 need_tlb_flush = 1; 5964 5965 goto restart; 5966 } 5967 } 5968 5969 return need_tlb_flush; 5970 } 5971 5972 void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm, 5973 const struct kvm_memory_slot *memslot) 5974 { 5975 /* FIXME: const-ify all uses of struct kvm_memory_slot. */ 5976 spin_lock(&kvm->mmu_lock); 5977 slot_handle_leaf(kvm, (struct kvm_memory_slot *)memslot, 5978 kvm_mmu_zap_collapsible_spte, true); 5979 spin_unlock(&kvm->mmu_lock); 5980 } 5981 5982 void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm, 5983 struct kvm_memory_slot *memslot) 5984 { 5985 /* 5986 * All current use cases for flushing the TLBs for a specific memslot 5987 * are related to dirty logging, and do the TLB flush out of mmu_lock. 5988 * The interaction between the various operations on memslot must be 5989 * serialized by slots_locks to ensure the TLB flush from one operation 5990 * is observed by any other operation on the same memslot. 5991 */ 5992 lockdep_assert_held(&kvm->slots_lock); 5993 kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn, 5994 memslot->npages); 5995 } 5996 5997 void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm, 5998 struct kvm_memory_slot *memslot) 5999 { 6000 bool flush; 6001 6002 spin_lock(&kvm->mmu_lock); 6003 flush = slot_handle_leaf(kvm, memslot, __rmap_clear_dirty, false); 6004 spin_unlock(&kvm->mmu_lock); 6005 6006 /* 6007 * It's also safe to flush TLBs out of mmu lock here as currently this 6008 * function is only used for dirty logging, in which case flushing TLB 6009 * out of mmu lock also guarantees no dirty pages will be lost in 6010 * dirty_bitmap. 6011 */ 6012 if (flush) 6013 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot); 6014 } 6015 EXPORT_SYMBOL_GPL(kvm_mmu_slot_leaf_clear_dirty); 6016 6017 void kvm_mmu_slot_largepage_remove_write_access(struct kvm *kvm, 6018 struct kvm_memory_slot *memslot) 6019 { 6020 bool flush; 6021 6022 spin_lock(&kvm->mmu_lock); 6023 flush = slot_handle_large_level(kvm, memslot, slot_rmap_write_protect, 6024 false); 6025 spin_unlock(&kvm->mmu_lock); 6026 6027 if (flush) 6028 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot); 6029 } 6030 EXPORT_SYMBOL_GPL(kvm_mmu_slot_largepage_remove_write_access); 6031 6032 void kvm_mmu_slot_set_dirty(struct kvm *kvm, 6033 struct kvm_memory_slot *memslot) 6034 { 6035 bool flush; 6036 6037 spin_lock(&kvm->mmu_lock); 6038 flush = slot_handle_all_level(kvm, memslot, __rmap_set_dirty, false); 6039 spin_unlock(&kvm->mmu_lock); 6040 6041 if (flush) 6042 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot); 6043 } 6044 EXPORT_SYMBOL_GPL(kvm_mmu_slot_set_dirty); 6045 6046 void kvm_mmu_zap_all(struct kvm *kvm) 6047 { 6048 struct kvm_mmu_page *sp, *node; 6049 LIST_HEAD(invalid_list); 6050 int ign; 6051 6052 spin_lock(&kvm->mmu_lock); 6053 restart: 6054 list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link) { 6055 if (WARN_ON(sp->role.invalid)) 6056 continue; 6057 if (__kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list, &ign)) 6058 goto restart; 6059 if (cond_resched_lock(&kvm->mmu_lock)) 6060 goto restart; 6061 } 6062 6063 kvm_mmu_commit_zap_page(kvm, &invalid_list); 6064 spin_unlock(&kvm->mmu_lock); 6065 } 6066 6067 void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen) 6068 { 6069 WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS); 6070 6071 gen &= MMIO_SPTE_GEN_MASK; 6072 6073 /* 6074 * Generation numbers are incremented in multiples of the number of 6075 * address spaces in order to provide unique generations across all 6076 * address spaces. Strip what is effectively the address space 6077 * modifier prior to checking for a wrap of the MMIO generation so 6078 * that a wrap in any address space is detected. 6079 */ 6080 gen &= ~((u64)KVM_ADDRESS_SPACE_NUM - 1); 6081 6082 /* 6083 * The very rare case: if the MMIO generation number has wrapped, 6084 * zap all shadow pages. 6085 */ 6086 if (unlikely(gen == 0)) { 6087 kvm_debug_ratelimited("kvm: zapping shadow pages for mmio generation wraparound\n"); 6088 kvm_mmu_zap_all_fast(kvm); 6089 } 6090 } 6091 6092 static unsigned long 6093 mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc) 6094 { 6095 struct kvm *kvm; 6096 int nr_to_scan = sc->nr_to_scan; 6097 unsigned long freed = 0; 6098 6099 mutex_lock(&kvm_lock); 6100 6101 list_for_each_entry(kvm, &vm_list, vm_list) { 6102 int idx; 6103 LIST_HEAD(invalid_list); 6104 6105 /* 6106 * Never scan more than sc->nr_to_scan VM instances. 6107 * Will not hit this condition practically since we do not try 6108 * to shrink more than one VM and it is very unlikely to see 6109 * !n_used_mmu_pages so many times. 6110 */ 6111 if (!nr_to_scan--) 6112 break; 6113 /* 6114 * n_used_mmu_pages is accessed without holding kvm->mmu_lock 6115 * here. We may skip a VM instance errorneosly, but we do not 6116 * want to shrink a VM that only started to populate its MMU 6117 * anyway. 6118 */ 6119 if (!kvm->arch.n_used_mmu_pages && 6120 !kvm_has_zapped_obsolete_pages(kvm)) 6121 continue; 6122 6123 idx = srcu_read_lock(&kvm->srcu); 6124 spin_lock(&kvm->mmu_lock); 6125 6126 if (kvm_has_zapped_obsolete_pages(kvm)) { 6127 kvm_mmu_commit_zap_page(kvm, 6128 &kvm->arch.zapped_obsolete_pages); 6129 goto unlock; 6130 } 6131 6132 freed = kvm_mmu_zap_oldest_mmu_pages(kvm, sc->nr_to_scan); 6133 6134 unlock: 6135 spin_unlock(&kvm->mmu_lock); 6136 srcu_read_unlock(&kvm->srcu, idx); 6137 6138 /* 6139 * unfair on small ones 6140 * per-vm shrinkers cry out 6141 * sadness comes quickly 6142 */ 6143 list_move_tail(&kvm->vm_list, &vm_list); 6144 break; 6145 } 6146 6147 mutex_unlock(&kvm_lock); 6148 return freed; 6149 } 6150 6151 static unsigned long 6152 mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc) 6153 { 6154 return percpu_counter_read_positive(&kvm_total_used_mmu_pages); 6155 } 6156 6157 static struct shrinker mmu_shrinker = { 6158 .count_objects = mmu_shrink_count, 6159 .scan_objects = mmu_shrink_scan, 6160 .seeks = DEFAULT_SEEKS * 10, 6161 }; 6162 6163 static void mmu_destroy_caches(void) 6164 { 6165 kmem_cache_destroy(pte_list_desc_cache); 6166 kmem_cache_destroy(mmu_page_header_cache); 6167 } 6168 6169 static void kvm_set_mmio_spte_mask(void) 6170 { 6171 u64 mask; 6172 6173 /* 6174 * Set a reserved PA bit in MMIO SPTEs to generate page faults with 6175 * PFEC.RSVD=1 on MMIO accesses. 64-bit PTEs (PAE, x86-64, and EPT 6176 * paging) support a maximum of 52 bits of PA, i.e. if the CPU supports 6177 * 52-bit physical addresses then there are no reserved PA bits in the 6178 * PTEs and so the reserved PA approach must be disabled. 6179 */ 6180 if (shadow_phys_bits < 52) 6181 mask = BIT_ULL(51) | PT_PRESENT_MASK; 6182 else 6183 mask = 0; 6184 6185 kvm_mmu_set_mmio_spte_mask(mask, ACC_WRITE_MASK | ACC_USER_MASK); 6186 } 6187 6188 static bool get_nx_auto_mode(void) 6189 { 6190 /* Return true when CPU has the bug, and mitigations are ON */ 6191 return boot_cpu_has_bug(X86_BUG_ITLB_MULTIHIT) && !cpu_mitigations_off(); 6192 } 6193 6194 static void __set_nx_huge_pages(bool val) 6195 { 6196 nx_huge_pages = itlb_multihit_kvm_mitigation = val; 6197 } 6198 6199 static int set_nx_huge_pages(const char *val, const struct kernel_param *kp) 6200 { 6201 bool old_val = nx_huge_pages; 6202 bool new_val; 6203 6204 /* In "auto" mode deploy workaround only if CPU has the bug. */ 6205 if (sysfs_streq(val, "off")) 6206 new_val = 0; 6207 else if (sysfs_streq(val, "force")) 6208 new_val = 1; 6209 else if (sysfs_streq(val, "auto")) 6210 new_val = get_nx_auto_mode(); 6211 else if (strtobool(val, &new_val) < 0) 6212 return -EINVAL; 6213 6214 __set_nx_huge_pages(new_val); 6215 6216 if (new_val != old_val) { 6217 struct kvm *kvm; 6218 6219 mutex_lock(&kvm_lock); 6220 6221 list_for_each_entry(kvm, &vm_list, vm_list) { 6222 mutex_lock(&kvm->slots_lock); 6223 kvm_mmu_zap_all_fast(kvm); 6224 mutex_unlock(&kvm->slots_lock); 6225 6226 wake_up_process(kvm->arch.nx_lpage_recovery_thread); 6227 } 6228 mutex_unlock(&kvm_lock); 6229 } 6230 6231 return 0; 6232 } 6233 6234 int kvm_mmu_module_init(void) 6235 { 6236 int ret = -ENOMEM; 6237 6238 if (nx_huge_pages == -1) 6239 __set_nx_huge_pages(get_nx_auto_mode()); 6240 6241 /* 6242 * MMU roles use union aliasing which is, generally speaking, an 6243 * undefined behavior. However, we supposedly know how compilers behave 6244 * and the current status quo is unlikely to change. Guardians below are 6245 * supposed to let us know if the assumption becomes false. 6246 */ 6247 BUILD_BUG_ON(sizeof(union kvm_mmu_page_role) != sizeof(u32)); 6248 BUILD_BUG_ON(sizeof(union kvm_mmu_extended_role) != sizeof(u32)); 6249 BUILD_BUG_ON(sizeof(union kvm_mmu_role) != sizeof(u64)); 6250 6251 kvm_mmu_reset_all_pte_masks(); 6252 6253 kvm_set_mmio_spte_mask(); 6254 6255 pte_list_desc_cache = kmem_cache_create("pte_list_desc", 6256 sizeof(struct pte_list_desc), 6257 0, SLAB_ACCOUNT, NULL); 6258 if (!pte_list_desc_cache) 6259 goto out; 6260 6261 mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header", 6262 sizeof(struct kvm_mmu_page), 6263 0, SLAB_ACCOUNT, NULL); 6264 if (!mmu_page_header_cache) 6265 goto out; 6266 6267 if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL)) 6268 goto out; 6269 6270 ret = register_shrinker(&mmu_shrinker); 6271 if (ret) 6272 goto out; 6273 6274 return 0; 6275 6276 out: 6277 mmu_destroy_caches(); 6278 return ret; 6279 } 6280 6281 /* 6282 * Calculate mmu pages needed for kvm. 6283 */ 6284 unsigned long kvm_mmu_calculate_default_mmu_pages(struct kvm *kvm) 6285 { 6286 unsigned long nr_mmu_pages; 6287 unsigned long nr_pages = 0; 6288 struct kvm_memslots *slots; 6289 struct kvm_memory_slot *memslot; 6290 int i; 6291 6292 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { 6293 slots = __kvm_memslots(kvm, i); 6294 6295 kvm_for_each_memslot(memslot, slots) 6296 nr_pages += memslot->npages; 6297 } 6298 6299 nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000; 6300 nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES); 6301 6302 return nr_mmu_pages; 6303 } 6304 6305 void kvm_mmu_destroy(struct kvm_vcpu *vcpu) 6306 { 6307 kvm_mmu_unload(vcpu); 6308 free_mmu_pages(&vcpu->arch.root_mmu); 6309 free_mmu_pages(&vcpu->arch.guest_mmu); 6310 mmu_free_memory_caches(vcpu); 6311 } 6312 6313 void kvm_mmu_module_exit(void) 6314 { 6315 mmu_destroy_caches(); 6316 percpu_counter_destroy(&kvm_total_used_mmu_pages); 6317 unregister_shrinker(&mmu_shrinker); 6318 mmu_audit_disable(); 6319 } 6320 6321 static int set_nx_huge_pages_recovery_ratio(const char *val, const struct kernel_param *kp) 6322 { 6323 unsigned int old_val; 6324 int err; 6325 6326 old_val = nx_huge_pages_recovery_ratio; 6327 err = param_set_uint(val, kp); 6328 if (err) 6329 return err; 6330 6331 if (READ_ONCE(nx_huge_pages) && 6332 !old_val && nx_huge_pages_recovery_ratio) { 6333 struct kvm *kvm; 6334 6335 mutex_lock(&kvm_lock); 6336 6337 list_for_each_entry(kvm, &vm_list, vm_list) 6338 wake_up_process(kvm->arch.nx_lpage_recovery_thread); 6339 6340 mutex_unlock(&kvm_lock); 6341 } 6342 6343 return err; 6344 } 6345 6346 static void kvm_recover_nx_lpages(struct kvm *kvm) 6347 { 6348 int rcu_idx; 6349 struct kvm_mmu_page *sp; 6350 unsigned int ratio; 6351 LIST_HEAD(invalid_list); 6352 ulong to_zap; 6353 6354 rcu_idx = srcu_read_lock(&kvm->srcu); 6355 spin_lock(&kvm->mmu_lock); 6356 6357 ratio = READ_ONCE(nx_huge_pages_recovery_ratio); 6358 to_zap = ratio ? DIV_ROUND_UP(kvm->stat.nx_lpage_splits, ratio) : 0; 6359 while (to_zap && !list_empty(&kvm->arch.lpage_disallowed_mmu_pages)) { 6360 /* 6361 * We use a separate list instead of just using active_mmu_pages 6362 * because the number of lpage_disallowed pages is expected to 6363 * be relatively small compared to the total. 6364 */ 6365 sp = list_first_entry(&kvm->arch.lpage_disallowed_mmu_pages, 6366 struct kvm_mmu_page, 6367 lpage_disallowed_link); 6368 WARN_ON_ONCE(!sp->lpage_disallowed); 6369 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list); 6370 WARN_ON_ONCE(sp->lpage_disallowed); 6371 6372 if (!--to_zap || need_resched() || spin_needbreak(&kvm->mmu_lock)) { 6373 kvm_mmu_commit_zap_page(kvm, &invalid_list); 6374 if (to_zap) 6375 cond_resched_lock(&kvm->mmu_lock); 6376 } 6377 } 6378 6379 spin_unlock(&kvm->mmu_lock); 6380 srcu_read_unlock(&kvm->srcu, rcu_idx); 6381 } 6382 6383 static long get_nx_lpage_recovery_timeout(u64 start_time) 6384 { 6385 return READ_ONCE(nx_huge_pages) && READ_ONCE(nx_huge_pages_recovery_ratio) 6386 ? start_time + 60 * HZ - get_jiffies_64() 6387 : MAX_SCHEDULE_TIMEOUT; 6388 } 6389 6390 static int kvm_nx_lpage_recovery_worker(struct kvm *kvm, uintptr_t data) 6391 { 6392 u64 start_time; 6393 long remaining_time; 6394 6395 while (true) { 6396 start_time = get_jiffies_64(); 6397 remaining_time = get_nx_lpage_recovery_timeout(start_time); 6398 6399 set_current_state(TASK_INTERRUPTIBLE); 6400 while (!kthread_should_stop() && remaining_time > 0) { 6401 schedule_timeout(remaining_time); 6402 remaining_time = get_nx_lpage_recovery_timeout(start_time); 6403 set_current_state(TASK_INTERRUPTIBLE); 6404 } 6405 6406 set_current_state(TASK_RUNNING); 6407 6408 if (kthread_should_stop()) 6409 return 0; 6410 6411 kvm_recover_nx_lpages(kvm); 6412 } 6413 } 6414 6415 int kvm_mmu_post_init_vm(struct kvm *kvm) 6416 { 6417 int err; 6418 6419 err = kvm_vm_create_worker_thread(kvm, kvm_nx_lpage_recovery_worker, 0, 6420 "kvm-nx-lpage-recovery", 6421 &kvm->arch.nx_lpage_recovery_thread); 6422 if (!err) 6423 kthread_unpark(kvm->arch.nx_lpage_recovery_thread); 6424 6425 return err; 6426 } 6427 6428 void kvm_mmu_pre_destroy_vm(struct kvm *kvm) 6429 { 6430 if (kvm->arch.nx_lpage_recovery_thread) 6431 kthread_stop(kvm->arch.nx_lpage_recovery_thread); 6432 } 6433