1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * This module enables machines with Intel VT-x extensions to run virtual 6 * machines without emulation or binary translation. 7 * 8 * MMU support 9 * 10 * Copyright (C) 2006 Qumranet, Inc. 11 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 12 * 13 * Authors: 14 * Yaniv Kamay <yaniv@qumranet.com> 15 * Avi Kivity <avi@qumranet.com> 16 */ 17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 18 19 #include "irq.h" 20 #include "ioapic.h" 21 #include "mmu.h" 22 #include "mmu_internal.h" 23 #include "tdp_mmu.h" 24 #include "x86.h" 25 #include "kvm_cache_regs.h" 26 #include "smm.h" 27 #include "kvm_emulate.h" 28 #include "page_track.h" 29 #include "cpuid.h" 30 #include "spte.h" 31 32 #include <linux/kvm_host.h> 33 #include <linux/types.h> 34 #include <linux/string.h> 35 #include <linux/mm.h> 36 #include <linux/highmem.h> 37 #include <linux/moduleparam.h> 38 #include <linux/export.h> 39 #include <linux/swap.h> 40 #include <linux/hugetlb.h> 41 #include <linux/compiler.h> 42 #include <linux/srcu.h> 43 #include <linux/slab.h> 44 #include <linux/sched/signal.h> 45 #include <linux/uaccess.h> 46 #include <linux/hash.h> 47 #include <linux/kern_levels.h> 48 #include <linux/kstrtox.h> 49 #include <linux/kthread.h> 50 51 #include <asm/page.h> 52 #include <asm/memtype.h> 53 #include <asm/cmpxchg.h> 54 #include <asm/io.h> 55 #include <asm/set_memory.h> 56 #include <asm/vmx.h> 57 58 #include "trace.h" 59 60 extern bool itlb_multihit_kvm_mitigation; 61 62 static bool nx_hugepage_mitigation_hard_disabled; 63 64 int __read_mostly nx_huge_pages = -1; 65 static uint __read_mostly nx_huge_pages_recovery_period_ms; 66 #ifdef CONFIG_PREEMPT_RT 67 /* Recovery can cause latency spikes, disable it for PREEMPT_RT. */ 68 static uint __read_mostly nx_huge_pages_recovery_ratio = 0; 69 #else 70 static uint __read_mostly nx_huge_pages_recovery_ratio = 60; 71 #endif 72 73 static int get_nx_huge_pages(char *buffer, const struct kernel_param *kp); 74 static int set_nx_huge_pages(const char *val, const struct kernel_param *kp); 75 static int set_nx_huge_pages_recovery_param(const char *val, const struct kernel_param *kp); 76 77 static const struct kernel_param_ops nx_huge_pages_ops = { 78 .set = set_nx_huge_pages, 79 .get = get_nx_huge_pages, 80 }; 81 82 static const struct kernel_param_ops nx_huge_pages_recovery_param_ops = { 83 .set = set_nx_huge_pages_recovery_param, 84 .get = param_get_uint, 85 }; 86 87 module_param_cb(nx_huge_pages, &nx_huge_pages_ops, &nx_huge_pages, 0644); 88 __MODULE_PARM_TYPE(nx_huge_pages, "bool"); 89 module_param_cb(nx_huge_pages_recovery_ratio, &nx_huge_pages_recovery_param_ops, 90 &nx_huge_pages_recovery_ratio, 0644); 91 __MODULE_PARM_TYPE(nx_huge_pages_recovery_ratio, "uint"); 92 module_param_cb(nx_huge_pages_recovery_period_ms, &nx_huge_pages_recovery_param_ops, 93 &nx_huge_pages_recovery_period_ms, 0644); 94 __MODULE_PARM_TYPE(nx_huge_pages_recovery_period_ms, "uint"); 95 96 static bool __read_mostly force_flush_and_sync_on_reuse; 97 module_param_named(flush_on_reuse, force_flush_and_sync_on_reuse, bool, 0644); 98 99 /* 100 * When setting this variable to true it enables Two-Dimensional-Paging 101 * where the hardware walks 2 page tables: 102 * 1. the guest-virtual to guest-physical 103 * 2. while doing 1. it walks guest-physical to host-physical 104 * If the hardware supports that we don't need to do shadow paging. 105 */ 106 bool tdp_enabled = false; 107 108 static bool __ro_after_init tdp_mmu_allowed; 109 110 #ifdef CONFIG_X86_64 111 bool __read_mostly tdp_mmu_enabled = true; 112 module_param_named(tdp_mmu, tdp_mmu_enabled, bool, 0444); 113 #endif 114 115 static int max_huge_page_level __read_mostly; 116 static int tdp_root_level __read_mostly; 117 static int max_tdp_level __read_mostly; 118 119 #define PTE_PREFETCH_NUM 8 120 121 #include <trace/events/kvm.h> 122 123 /* make pte_list_desc fit well in cache lines */ 124 #define PTE_LIST_EXT 14 125 126 /* 127 * struct pte_list_desc is the core data structure used to implement a custom 128 * list for tracking a set of related SPTEs, e.g. all the SPTEs that map a 129 * given GFN when used in the context of rmaps. Using a custom list allows KVM 130 * to optimize for the common case where many GFNs will have at most a handful 131 * of SPTEs pointing at them, i.e. allows packing multiple SPTEs into a small 132 * memory footprint, which in turn improves runtime performance by exploiting 133 * cache locality. 134 * 135 * A list is comprised of one or more pte_list_desc objects (descriptors). 136 * Each individual descriptor stores up to PTE_LIST_EXT SPTEs. If a descriptor 137 * is full and a new SPTEs needs to be added, a new descriptor is allocated and 138 * becomes the head of the list. This means that by definitions, all tail 139 * descriptors are full. 140 * 141 * Note, the meta data fields are deliberately placed at the start of the 142 * structure to optimize the cacheline layout; accessing the descriptor will 143 * touch only a single cacheline so long as @spte_count<=6 (or if only the 144 * descriptors metadata is accessed). 145 */ 146 struct pte_list_desc { 147 struct pte_list_desc *more; 148 /* The number of PTEs stored in _this_ descriptor. */ 149 u32 spte_count; 150 /* The number of PTEs stored in all tails of this descriptor. */ 151 u32 tail_count; 152 u64 *sptes[PTE_LIST_EXT]; 153 }; 154 155 struct kvm_shadow_walk_iterator { 156 u64 addr; 157 hpa_t shadow_addr; 158 u64 *sptep; 159 int level; 160 unsigned index; 161 }; 162 163 #define for_each_shadow_entry_using_root(_vcpu, _root, _addr, _walker) \ 164 for (shadow_walk_init_using_root(&(_walker), (_vcpu), \ 165 (_root), (_addr)); \ 166 shadow_walk_okay(&(_walker)); \ 167 shadow_walk_next(&(_walker))) 168 169 #define for_each_shadow_entry(_vcpu, _addr, _walker) \ 170 for (shadow_walk_init(&(_walker), _vcpu, _addr); \ 171 shadow_walk_okay(&(_walker)); \ 172 shadow_walk_next(&(_walker))) 173 174 #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte) \ 175 for (shadow_walk_init(&(_walker), _vcpu, _addr); \ 176 shadow_walk_okay(&(_walker)) && \ 177 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; }); \ 178 __shadow_walk_next(&(_walker), spte)) 179 180 static struct kmem_cache *pte_list_desc_cache; 181 struct kmem_cache *mmu_page_header_cache; 182 static struct percpu_counter kvm_total_used_mmu_pages; 183 184 static void mmu_spte_set(u64 *sptep, u64 spte); 185 186 struct kvm_mmu_role_regs { 187 const unsigned long cr0; 188 const unsigned long cr4; 189 const u64 efer; 190 }; 191 192 #define CREATE_TRACE_POINTS 193 #include "mmutrace.h" 194 195 /* 196 * Yes, lot's of underscores. They're a hint that you probably shouldn't be 197 * reading from the role_regs. Once the root_role is constructed, it becomes 198 * the single source of truth for the MMU's state. 199 */ 200 #define BUILD_MMU_ROLE_REGS_ACCESSOR(reg, name, flag) \ 201 static inline bool __maybe_unused \ 202 ____is_##reg##_##name(const struct kvm_mmu_role_regs *regs) \ 203 { \ 204 return !!(regs->reg & flag); \ 205 } 206 BUILD_MMU_ROLE_REGS_ACCESSOR(cr0, pg, X86_CR0_PG); 207 BUILD_MMU_ROLE_REGS_ACCESSOR(cr0, wp, X86_CR0_WP); 208 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pse, X86_CR4_PSE); 209 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pae, X86_CR4_PAE); 210 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, smep, X86_CR4_SMEP); 211 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, smap, X86_CR4_SMAP); 212 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pke, X86_CR4_PKE); 213 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, la57, X86_CR4_LA57); 214 BUILD_MMU_ROLE_REGS_ACCESSOR(efer, nx, EFER_NX); 215 BUILD_MMU_ROLE_REGS_ACCESSOR(efer, lma, EFER_LMA); 216 217 /* 218 * The MMU itself (with a valid role) is the single source of truth for the 219 * MMU. Do not use the regs used to build the MMU/role, nor the vCPU. The 220 * regs don't account for dependencies, e.g. clearing CR4 bits if CR0.PG=1, 221 * and the vCPU may be incorrect/irrelevant. 222 */ 223 #define BUILD_MMU_ROLE_ACCESSOR(base_or_ext, reg, name) \ 224 static inline bool __maybe_unused is_##reg##_##name(struct kvm_mmu *mmu) \ 225 { \ 226 return !!(mmu->cpu_role. base_or_ext . reg##_##name); \ 227 } 228 BUILD_MMU_ROLE_ACCESSOR(base, cr0, wp); 229 BUILD_MMU_ROLE_ACCESSOR(ext, cr4, pse); 230 BUILD_MMU_ROLE_ACCESSOR(ext, cr4, smep); 231 BUILD_MMU_ROLE_ACCESSOR(ext, cr4, smap); 232 BUILD_MMU_ROLE_ACCESSOR(ext, cr4, pke); 233 BUILD_MMU_ROLE_ACCESSOR(ext, cr4, la57); 234 BUILD_MMU_ROLE_ACCESSOR(base, efer, nx); 235 BUILD_MMU_ROLE_ACCESSOR(ext, efer, lma); 236 237 static inline bool is_cr0_pg(struct kvm_mmu *mmu) 238 { 239 return mmu->cpu_role.base.level > 0; 240 } 241 242 static inline bool is_cr4_pae(struct kvm_mmu *mmu) 243 { 244 return !mmu->cpu_role.base.has_4_byte_gpte; 245 } 246 247 static struct kvm_mmu_role_regs vcpu_to_role_regs(struct kvm_vcpu *vcpu) 248 { 249 struct kvm_mmu_role_regs regs = { 250 .cr0 = kvm_read_cr0_bits(vcpu, KVM_MMU_CR0_ROLE_BITS), 251 .cr4 = kvm_read_cr4_bits(vcpu, KVM_MMU_CR4_ROLE_BITS), 252 .efer = vcpu->arch.efer, 253 }; 254 255 return regs; 256 } 257 258 static unsigned long get_guest_cr3(struct kvm_vcpu *vcpu) 259 { 260 return kvm_read_cr3(vcpu); 261 } 262 263 static inline unsigned long kvm_mmu_get_guest_pgd(struct kvm_vcpu *vcpu, 264 struct kvm_mmu *mmu) 265 { 266 if (IS_ENABLED(CONFIG_RETPOLINE) && mmu->get_guest_pgd == get_guest_cr3) 267 return kvm_read_cr3(vcpu); 268 269 return mmu->get_guest_pgd(vcpu); 270 } 271 272 static inline bool kvm_available_flush_remote_tlbs_range(void) 273 { 274 return kvm_x86_ops.flush_remote_tlbs_range; 275 } 276 277 int kvm_arch_flush_remote_tlbs_range(struct kvm *kvm, gfn_t gfn, u64 nr_pages) 278 { 279 if (!kvm_x86_ops.flush_remote_tlbs_range) 280 return -EOPNOTSUPP; 281 282 return static_call(kvm_x86_flush_remote_tlbs_range)(kvm, gfn, nr_pages); 283 } 284 285 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index); 286 287 /* Flush the range of guest memory mapped by the given SPTE. */ 288 static void kvm_flush_remote_tlbs_sptep(struct kvm *kvm, u64 *sptep) 289 { 290 struct kvm_mmu_page *sp = sptep_to_sp(sptep); 291 gfn_t gfn = kvm_mmu_page_get_gfn(sp, spte_index(sptep)); 292 293 kvm_flush_remote_tlbs_gfn(kvm, gfn, sp->role.level); 294 } 295 296 static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn, 297 unsigned int access) 298 { 299 u64 spte = make_mmio_spte(vcpu, gfn, access); 300 301 trace_mark_mmio_spte(sptep, gfn, spte); 302 mmu_spte_set(sptep, spte); 303 } 304 305 static gfn_t get_mmio_spte_gfn(u64 spte) 306 { 307 u64 gpa = spte & shadow_nonpresent_or_rsvd_lower_gfn_mask; 308 309 gpa |= (spte >> SHADOW_NONPRESENT_OR_RSVD_MASK_LEN) 310 & shadow_nonpresent_or_rsvd_mask; 311 312 return gpa >> PAGE_SHIFT; 313 } 314 315 static unsigned get_mmio_spte_access(u64 spte) 316 { 317 return spte & shadow_mmio_access_mask; 318 } 319 320 static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte) 321 { 322 u64 kvm_gen, spte_gen, gen; 323 324 gen = kvm_vcpu_memslots(vcpu)->generation; 325 if (unlikely(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS)) 326 return false; 327 328 kvm_gen = gen & MMIO_SPTE_GEN_MASK; 329 spte_gen = get_mmio_spte_generation(spte); 330 331 trace_check_mmio_spte(spte, kvm_gen, spte_gen); 332 return likely(kvm_gen == spte_gen); 333 } 334 335 static int is_cpuid_PSE36(void) 336 { 337 return 1; 338 } 339 340 #ifdef CONFIG_X86_64 341 static void __set_spte(u64 *sptep, u64 spte) 342 { 343 WRITE_ONCE(*sptep, spte); 344 } 345 346 static void __update_clear_spte_fast(u64 *sptep, u64 spte) 347 { 348 WRITE_ONCE(*sptep, spte); 349 } 350 351 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte) 352 { 353 return xchg(sptep, spte); 354 } 355 356 static u64 __get_spte_lockless(u64 *sptep) 357 { 358 return READ_ONCE(*sptep); 359 } 360 #else 361 union split_spte { 362 struct { 363 u32 spte_low; 364 u32 spte_high; 365 }; 366 u64 spte; 367 }; 368 369 static void count_spte_clear(u64 *sptep, u64 spte) 370 { 371 struct kvm_mmu_page *sp = sptep_to_sp(sptep); 372 373 if (is_shadow_present_pte(spte)) 374 return; 375 376 /* Ensure the spte is completely set before we increase the count */ 377 smp_wmb(); 378 sp->clear_spte_count++; 379 } 380 381 static void __set_spte(u64 *sptep, u64 spte) 382 { 383 union split_spte *ssptep, sspte; 384 385 ssptep = (union split_spte *)sptep; 386 sspte = (union split_spte)spte; 387 388 ssptep->spte_high = sspte.spte_high; 389 390 /* 391 * If we map the spte from nonpresent to present, We should store 392 * the high bits firstly, then set present bit, so cpu can not 393 * fetch this spte while we are setting the spte. 394 */ 395 smp_wmb(); 396 397 WRITE_ONCE(ssptep->spte_low, sspte.spte_low); 398 } 399 400 static void __update_clear_spte_fast(u64 *sptep, u64 spte) 401 { 402 union split_spte *ssptep, sspte; 403 404 ssptep = (union split_spte *)sptep; 405 sspte = (union split_spte)spte; 406 407 WRITE_ONCE(ssptep->spte_low, sspte.spte_low); 408 409 /* 410 * If we map the spte from present to nonpresent, we should clear 411 * present bit firstly to avoid vcpu fetch the old high bits. 412 */ 413 smp_wmb(); 414 415 ssptep->spte_high = sspte.spte_high; 416 count_spte_clear(sptep, spte); 417 } 418 419 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte) 420 { 421 union split_spte *ssptep, sspte, orig; 422 423 ssptep = (union split_spte *)sptep; 424 sspte = (union split_spte)spte; 425 426 /* xchg acts as a barrier before the setting of the high bits */ 427 orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low); 428 orig.spte_high = ssptep->spte_high; 429 ssptep->spte_high = sspte.spte_high; 430 count_spte_clear(sptep, spte); 431 432 return orig.spte; 433 } 434 435 /* 436 * The idea using the light way get the spte on x86_32 guest is from 437 * gup_get_pte (mm/gup.c). 438 * 439 * An spte tlb flush may be pending, because kvm_set_pte_rmap 440 * coalesces them and we are running out of the MMU lock. Therefore 441 * we need to protect against in-progress updates of the spte. 442 * 443 * Reading the spte while an update is in progress may get the old value 444 * for the high part of the spte. The race is fine for a present->non-present 445 * change (because the high part of the spte is ignored for non-present spte), 446 * but for a present->present change we must reread the spte. 447 * 448 * All such changes are done in two steps (present->non-present and 449 * non-present->present), hence it is enough to count the number of 450 * present->non-present updates: if it changed while reading the spte, 451 * we might have hit the race. This is done using clear_spte_count. 452 */ 453 static u64 __get_spte_lockless(u64 *sptep) 454 { 455 struct kvm_mmu_page *sp = sptep_to_sp(sptep); 456 union split_spte spte, *orig = (union split_spte *)sptep; 457 int count; 458 459 retry: 460 count = sp->clear_spte_count; 461 smp_rmb(); 462 463 spte.spte_low = orig->spte_low; 464 smp_rmb(); 465 466 spte.spte_high = orig->spte_high; 467 smp_rmb(); 468 469 if (unlikely(spte.spte_low != orig->spte_low || 470 count != sp->clear_spte_count)) 471 goto retry; 472 473 return spte.spte; 474 } 475 #endif 476 477 /* Rules for using mmu_spte_set: 478 * Set the sptep from nonpresent to present. 479 * Note: the sptep being assigned *must* be either not present 480 * or in a state where the hardware will not attempt to update 481 * the spte. 482 */ 483 static void mmu_spte_set(u64 *sptep, u64 new_spte) 484 { 485 WARN_ON_ONCE(is_shadow_present_pte(*sptep)); 486 __set_spte(sptep, new_spte); 487 } 488 489 /* 490 * Update the SPTE (excluding the PFN), but do not track changes in its 491 * accessed/dirty status. 492 */ 493 static u64 mmu_spte_update_no_track(u64 *sptep, u64 new_spte) 494 { 495 u64 old_spte = *sptep; 496 497 WARN_ON_ONCE(!is_shadow_present_pte(new_spte)); 498 check_spte_writable_invariants(new_spte); 499 500 if (!is_shadow_present_pte(old_spte)) { 501 mmu_spte_set(sptep, new_spte); 502 return old_spte; 503 } 504 505 if (!spte_has_volatile_bits(old_spte)) 506 __update_clear_spte_fast(sptep, new_spte); 507 else 508 old_spte = __update_clear_spte_slow(sptep, new_spte); 509 510 WARN_ON_ONCE(spte_to_pfn(old_spte) != spte_to_pfn(new_spte)); 511 512 return old_spte; 513 } 514 515 /* Rules for using mmu_spte_update: 516 * Update the state bits, it means the mapped pfn is not changed. 517 * 518 * Whenever an MMU-writable SPTE is overwritten with a read-only SPTE, remote 519 * TLBs must be flushed. Otherwise rmap_write_protect will find a read-only 520 * spte, even though the writable spte might be cached on a CPU's TLB. 521 * 522 * Returns true if the TLB needs to be flushed 523 */ 524 static bool mmu_spte_update(u64 *sptep, u64 new_spte) 525 { 526 bool flush = false; 527 u64 old_spte = mmu_spte_update_no_track(sptep, new_spte); 528 529 if (!is_shadow_present_pte(old_spte)) 530 return false; 531 532 /* 533 * For the spte updated out of mmu-lock is safe, since 534 * we always atomically update it, see the comments in 535 * spte_has_volatile_bits(). 536 */ 537 if (is_mmu_writable_spte(old_spte) && 538 !is_writable_pte(new_spte)) 539 flush = true; 540 541 /* 542 * Flush TLB when accessed/dirty states are changed in the page tables, 543 * to guarantee consistency between TLB and page tables. 544 */ 545 546 if (is_accessed_spte(old_spte) && !is_accessed_spte(new_spte)) { 547 flush = true; 548 kvm_set_pfn_accessed(spte_to_pfn(old_spte)); 549 } 550 551 if (is_dirty_spte(old_spte) && !is_dirty_spte(new_spte)) { 552 flush = true; 553 kvm_set_pfn_dirty(spte_to_pfn(old_spte)); 554 } 555 556 return flush; 557 } 558 559 /* 560 * Rules for using mmu_spte_clear_track_bits: 561 * It sets the sptep from present to nonpresent, and track the 562 * state bits, it is used to clear the last level sptep. 563 * Returns the old PTE. 564 */ 565 static u64 mmu_spte_clear_track_bits(struct kvm *kvm, u64 *sptep) 566 { 567 kvm_pfn_t pfn; 568 u64 old_spte = *sptep; 569 int level = sptep_to_sp(sptep)->role.level; 570 struct page *page; 571 572 if (!is_shadow_present_pte(old_spte) || 573 !spte_has_volatile_bits(old_spte)) 574 __update_clear_spte_fast(sptep, 0ull); 575 else 576 old_spte = __update_clear_spte_slow(sptep, 0ull); 577 578 if (!is_shadow_present_pte(old_spte)) 579 return old_spte; 580 581 kvm_update_page_stats(kvm, level, -1); 582 583 pfn = spte_to_pfn(old_spte); 584 585 /* 586 * KVM doesn't hold a reference to any pages mapped into the guest, and 587 * instead uses the mmu_notifier to ensure that KVM unmaps any pages 588 * before they are reclaimed. Sanity check that, if the pfn is backed 589 * by a refcounted page, the refcount is elevated. 590 */ 591 page = kvm_pfn_to_refcounted_page(pfn); 592 WARN_ON_ONCE(page && !page_count(page)); 593 594 if (is_accessed_spte(old_spte)) 595 kvm_set_pfn_accessed(pfn); 596 597 if (is_dirty_spte(old_spte)) 598 kvm_set_pfn_dirty(pfn); 599 600 return old_spte; 601 } 602 603 /* 604 * Rules for using mmu_spte_clear_no_track: 605 * Directly clear spte without caring the state bits of sptep, 606 * it is used to set the upper level spte. 607 */ 608 static void mmu_spte_clear_no_track(u64 *sptep) 609 { 610 __update_clear_spte_fast(sptep, 0ull); 611 } 612 613 static u64 mmu_spte_get_lockless(u64 *sptep) 614 { 615 return __get_spte_lockless(sptep); 616 } 617 618 /* Returns the Accessed status of the PTE and resets it at the same time. */ 619 static bool mmu_spte_age(u64 *sptep) 620 { 621 u64 spte = mmu_spte_get_lockless(sptep); 622 623 if (!is_accessed_spte(spte)) 624 return false; 625 626 if (spte_ad_enabled(spte)) { 627 clear_bit((ffs(shadow_accessed_mask) - 1), 628 (unsigned long *)sptep); 629 } else { 630 /* 631 * Capture the dirty status of the page, so that it doesn't get 632 * lost when the SPTE is marked for access tracking. 633 */ 634 if (is_writable_pte(spte)) 635 kvm_set_pfn_dirty(spte_to_pfn(spte)); 636 637 spte = mark_spte_for_access_track(spte); 638 mmu_spte_update_no_track(sptep, spte); 639 } 640 641 return true; 642 } 643 644 static inline bool is_tdp_mmu_active(struct kvm_vcpu *vcpu) 645 { 646 return tdp_mmu_enabled && vcpu->arch.mmu->root_role.direct; 647 } 648 649 static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu) 650 { 651 if (is_tdp_mmu_active(vcpu)) { 652 kvm_tdp_mmu_walk_lockless_begin(); 653 } else { 654 /* 655 * Prevent page table teardown by making any free-er wait during 656 * kvm_flush_remote_tlbs() IPI to all active vcpus. 657 */ 658 local_irq_disable(); 659 660 /* 661 * Make sure a following spte read is not reordered ahead of the write 662 * to vcpu->mode. 663 */ 664 smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES); 665 } 666 } 667 668 static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu) 669 { 670 if (is_tdp_mmu_active(vcpu)) { 671 kvm_tdp_mmu_walk_lockless_end(); 672 } else { 673 /* 674 * Make sure the write to vcpu->mode is not reordered in front of 675 * reads to sptes. If it does, kvm_mmu_commit_zap_page() can see us 676 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table. 677 */ 678 smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE); 679 local_irq_enable(); 680 } 681 } 682 683 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu, bool maybe_indirect) 684 { 685 int r; 686 687 /* 1 rmap, 1 parent PTE per level, and the prefetched rmaps. */ 688 r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache, 689 1 + PT64_ROOT_MAX_LEVEL + PTE_PREFETCH_NUM); 690 if (r) 691 return r; 692 r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_shadow_page_cache, 693 PT64_ROOT_MAX_LEVEL); 694 if (r) 695 return r; 696 if (maybe_indirect) { 697 r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_shadowed_info_cache, 698 PT64_ROOT_MAX_LEVEL); 699 if (r) 700 return r; 701 } 702 return kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache, 703 PT64_ROOT_MAX_LEVEL); 704 } 705 706 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu) 707 { 708 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache); 709 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_shadow_page_cache); 710 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_shadowed_info_cache); 711 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache); 712 } 713 714 static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc) 715 { 716 kmem_cache_free(pte_list_desc_cache, pte_list_desc); 717 } 718 719 static bool sp_has_gptes(struct kvm_mmu_page *sp); 720 721 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index) 722 { 723 if (sp->role.passthrough) 724 return sp->gfn; 725 726 if (!sp->role.direct) 727 return sp->shadowed_translation[index] >> PAGE_SHIFT; 728 729 return sp->gfn + (index << ((sp->role.level - 1) * SPTE_LEVEL_BITS)); 730 } 731 732 /* 733 * For leaf SPTEs, fetch the *guest* access permissions being shadowed. Note 734 * that the SPTE itself may have a more constrained access permissions that 735 * what the guest enforces. For example, a guest may create an executable 736 * huge PTE but KVM may disallow execution to mitigate iTLB multihit. 737 */ 738 static u32 kvm_mmu_page_get_access(struct kvm_mmu_page *sp, int index) 739 { 740 if (sp_has_gptes(sp)) 741 return sp->shadowed_translation[index] & ACC_ALL; 742 743 /* 744 * For direct MMUs (e.g. TDP or non-paging guests) or passthrough SPs, 745 * KVM is not shadowing any guest page tables, so the "guest access 746 * permissions" are just ACC_ALL. 747 * 748 * For direct SPs in indirect MMUs (shadow paging), i.e. when KVM 749 * is shadowing a guest huge page with small pages, the guest access 750 * permissions being shadowed are the access permissions of the huge 751 * page. 752 * 753 * In both cases, sp->role.access contains the correct access bits. 754 */ 755 return sp->role.access; 756 } 757 758 static void kvm_mmu_page_set_translation(struct kvm_mmu_page *sp, int index, 759 gfn_t gfn, unsigned int access) 760 { 761 if (sp_has_gptes(sp)) { 762 sp->shadowed_translation[index] = (gfn << PAGE_SHIFT) | access; 763 return; 764 } 765 766 WARN_ONCE(access != kvm_mmu_page_get_access(sp, index), 767 "access mismatch under %s page %llx (expected %u, got %u)\n", 768 sp->role.passthrough ? "passthrough" : "direct", 769 sp->gfn, kvm_mmu_page_get_access(sp, index), access); 770 771 WARN_ONCE(gfn != kvm_mmu_page_get_gfn(sp, index), 772 "gfn mismatch under %s page %llx (expected %llx, got %llx)\n", 773 sp->role.passthrough ? "passthrough" : "direct", 774 sp->gfn, kvm_mmu_page_get_gfn(sp, index), gfn); 775 } 776 777 static void kvm_mmu_page_set_access(struct kvm_mmu_page *sp, int index, 778 unsigned int access) 779 { 780 gfn_t gfn = kvm_mmu_page_get_gfn(sp, index); 781 782 kvm_mmu_page_set_translation(sp, index, gfn, access); 783 } 784 785 /* 786 * Return the pointer to the large page information for a given gfn, 787 * handling slots that are not large page aligned. 788 */ 789 static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn, 790 const struct kvm_memory_slot *slot, int level) 791 { 792 unsigned long idx; 793 794 idx = gfn_to_index(gfn, slot->base_gfn, level); 795 return &slot->arch.lpage_info[level - 2][idx]; 796 } 797 798 static void update_gfn_disallow_lpage_count(const struct kvm_memory_slot *slot, 799 gfn_t gfn, int count) 800 { 801 struct kvm_lpage_info *linfo; 802 int i; 803 804 for (i = PG_LEVEL_2M; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) { 805 linfo = lpage_info_slot(gfn, slot, i); 806 linfo->disallow_lpage += count; 807 WARN_ON_ONCE(linfo->disallow_lpage < 0); 808 } 809 } 810 811 void kvm_mmu_gfn_disallow_lpage(const struct kvm_memory_slot *slot, gfn_t gfn) 812 { 813 update_gfn_disallow_lpage_count(slot, gfn, 1); 814 } 815 816 void kvm_mmu_gfn_allow_lpage(const struct kvm_memory_slot *slot, gfn_t gfn) 817 { 818 update_gfn_disallow_lpage_count(slot, gfn, -1); 819 } 820 821 static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp) 822 { 823 struct kvm_memslots *slots; 824 struct kvm_memory_slot *slot; 825 gfn_t gfn; 826 827 kvm->arch.indirect_shadow_pages++; 828 gfn = sp->gfn; 829 slots = kvm_memslots_for_spte_role(kvm, sp->role); 830 slot = __gfn_to_memslot(slots, gfn); 831 832 /* the non-leaf shadow pages are keeping readonly. */ 833 if (sp->role.level > PG_LEVEL_4K) 834 return __kvm_write_track_add_gfn(kvm, slot, gfn); 835 836 kvm_mmu_gfn_disallow_lpage(slot, gfn); 837 838 if (kvm_mmu_slot_gfn_write_protect(kvm, slot, gfn, PG_LEVEL_4K)) 839 kvm_flush_remote_tlbs_gfn(kvm, gfn, PG_LEVEL_4K); 840 } 841 842 void track_possible_nx_huge_page(struct kvm *kvm, struct kvm_mmu_page *sp) 843 { 844 /* 845 * If it's possible to replace the shadow page with an NX huge page, 846 * i.e. if the shadow page is the only thing currently preventing KVM 847 * from using a huge page, add the shadow page to the list of "to be 848 * zapped for NX recovery" pages. Note, the shadow page can already be 849 * on the list if KVM is reusing an existing shadow page, i.e. if KVM 850 * links a shadow page at multiple points. 851 */ 852 if (!list_empty(&sp->possible_nx_huge_page_link)) 853 return; 854 855 ++kvm->stat.nx_lpage_splits; 856 list_add_tail(&sp->possible_nx_huge_page_link, 857 &kvm->arch.possible_nx_huge_pages); 858 } 859 860 static void account_nx_huge_page(struct kvm *kvm, struct kvm_mmu_page *sp, 861 bool nx_huge_page_possible) 862 { 863 sp->nx_huge_page_disallowed = true; 864 865 if (nx_huge_page_possible) 866 track_possible_nx_huge_page(kvm, sp); 867 } 868 869 static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp) 870 { 871 struct kvm_memslots *slots; 872 struct kvm_memory_slot *slot; 873 gfn_t gfn; 874 875 kvm->arch.indirect_shadow_pages--; 876 gfn = sp->gfn; 877 slots = kvm_memslots_for_spte_role(kvm, sp->role); 878 slot = __gfn_to_memslot(slots, gfn); 879 if (sp->role.level > PG_LEVEL_4K) 880 return __kvm_write_track_remove_gfn(kvm, slot, gfn); 881 882 kvm_mmu_gfn_allow_lpage(slot, gfn); 883 } 884 885 void untrack_possible_nx_huge_page(struct kvm *kvm, struct kvm_mmu_page *sp) 886 { 887 if (list_empty(&sp->possible_nx_huge_page_link)) 888 return; 889 890 --kvm->stat.nx_lpage_splits; 891 list_del_init(&sp->possible_nx_huge_page_link); 892 } 893 894 static void unaccount_nx_huge_page(struct kvm *kvm, struct kvm_mmu_page *sp) 895 { 896 sp->nx_huge_page_disallowed = false; 897 898 untrack_possible_nx_huge_page(kvm, sp); 899 } 900 901 static struct kvm_memory_slot *gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, 902 gfn_t gfn, 903 bool no_dirty_log) 904 { 905 struct kvm_memory_slot *slot; 906 907 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 908 if (!slot || slot->flags & KVM_MEMSLOT_INVALID) 909 return NULL; 910 if (no_dirty_log && kvm_slot_dirty_track_enabled(slot)) 911 return NULL; 912 913 return slot; 914 } 915 916 /* 917 * About rmap_head encoding: 918 * 919 * If the bit zero of rmap_head->val is clear, then it points to the only spte 920 * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct 921 * pte_list_desc containing more mappings. 922 */ 923 924 /* 925 * Returns the number of pointers in the rmap chain, not counting the new one. 926 */ 927 static int pte_list_add(struct kvm_mmu_memory_cache *cache, u64 *spte, 928 struct kvm_rmap_head *rmap_head) 929 { 930 struct pte_list_desc *desc; 931 int count = 0; 932 933 if (!rmap_head->val) { 934 rmap_head->val = (unsigned long)spte; 935 } else if (!(rmap_head->val & 1)) { 936 desc = kvm_mmu_memory_cache_alloc(cache); 937 desc->sptes[0] = (u64 *)rmap_head->val; 938 desc->sptes[1] = spte; 939 desc->spte_count = 2; 940 desc->tail_count = 0; 941 rmap_head->val = (unsigned long)desc | 1; 942 ++count; 943 } else { 944 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul); 945 count = desc->tail_count + desc->spte_count; 946 947 /* 948 * If the previous head is full, allocate a new head descriptor 949 * as tail descriptors are always kept full. 950 */ 951 if (desc->spte_count == PTE_LIST_EXT) { 952 desc = kvm_mmu_memory_cache_alloc(cache); 953 desc->more = (struct pte_list_desc *)(rmap_head->val & ~1ul); 954 desc->spte_count = 0; 955 desc->tail_count = count; 956 rmap_head->val = (unsigned long)desc | 1; 957 } 958 desc->sptes[desc->spte_count++] = spte; 959 } 960 return count; 961 } 962 963 static void pte_list_desc_remove_entry(struct kvm *kvm, 964 struct kvm_rmap_head *rmap_head, 965 struct pte_list_desc *desc, int i) 966 { 967 struct pte_list_desc *head_desc = (struct pte_list_desc *)(rmap_head->val & ~1ul); 968 int j = head_desc->spte_count - 1; 969 970 /* 971 * The head descriptor should never be empty. A new head is added only 972 * when adding an entry and the previous head is full, and heads are 973 * removed (this flow) when they become empty. 974 */ 975 KVM_BUG_ON_DATA_CORRUPTION(j < 0, kvm); 976 977 /* 978 * Replace the to-be-freed SPTE with the last valid entry from the head 979 * descriptor to ensure that tail descriptors are full at all times. 980 * Note, this also means that tail_count is stable for each descriptor. 981 */ 982 desc->sptes[i] = head_desc->sptes[j]; 983 head_desc->sptes[j] = NULL; 984 head_desc->spte_count--; 985 if (head_desc->spte_count) 986 return; 987 988 /* 989 * The head descriptor is empty. If there are no tail descriptors, 990 * nullify the rmap head to mark the list as emtpy, else point the rmap 991 * head at the next descriptor, i.e. the new head. 992 */ 993 if (!head_desc->more) 994 rmap_head->val = 0; 995 else 996 rmap_head->val = (unsigned long)head_desc->more | 1; 997 mmu_free_pte_list_desc(head_desc); 998 } 999 1000 static void pte_list_remove(struct kvm *kvm, u64 *spte, 1001 struct kvm_rmap_head *rmap_head) 1002 { 1003 struct pte_list_desc *desc; 1004 int i; 1005 1006 if (KVM_BUG_ON_DATA_CORRUPTION(!rmap_head->val, kvm)) 1007 return; 1008 1009 if (!(rmap_head->val & 1)) { 1010 if (KVM_BUG_ON_DATA_CORRUPTION((u64 *)rmap_head->val != spte, kvm)) 1011 return; 1012 1013 rmap_head->val = 0; 1014 } else { 1015 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul); 1016 while (desc) { 1017 for (i = 0; i < desc->spte_count; ++i) { 1018 if (desc->sptes[i] == spte) { 1019 pte_list_desc_remove_entry(kvm, rmap_head, 1020 desc, i); 1021 return; 1022 } 1023 } 1024 desc = desc->more; 1025 } 1026 1027 KVM_BUG_ON_DATA_CORRUPTION(true, kvm); 1028 } 1029 } 1030 1031 static void kvm_zap_one_rmap_spte(struct kvm *kvm, 1032 struct kvm_rmap_head *rmap_head, u64 *sptep) 1033 { 1034 mmu_spte_clear_track_bits(kvm, sptep); 1035 pte_list_remove(kvm, sptep, rmap_head); 1036 } 1037 1038 /* Return true if at least one SPTE was zapped, false otherwise */ 1039 static bool kvm_zap_all_rmap_sptes(struct kvm *kvm, 1040 struct kvm_rmap_head *rmap_head) 1041 { 1042 struct pte_list_desc *desc, *next; 1043 int i; 1044 1045 if (!rmap_head->val) 1046 return false; 1047 1048 if (!(rmap_head->val & 1)) { 1049 mmu_spte_clear_track_bits(kvm, (u64 *)rmap_head->val); 1050 goto out; 1051 } 1052 1053 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul); 1054 1055 for (; desc; desc = next) { 1056 for (i = 0; i < desc->spte_count; i++) 1057 mmu_spte_clear_track_bits(kvm, desc->sptes[i]); 1058 next = desc->more; 1059 mmu_free_pte_list_desc(desc); 1060 } 1061 out: 1062 /* rmap_head is meaningless now, remember to reset it */ 1063 rmap_head->val = 0; 1064 return true; 1065 } 1066 1067 unsigned int pte_list_count(struct kvm_rmap_head *rmap_head) 1068 { 1069 struct pte_list_desc *desc; 1070 1071 if (!rmap_head->val) 1072 return 0; 1073 else if (!(rmap_head->val & 1)) 1074 return 1; 1075 1076 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul); 1077 return desc->tail_count + desc->spte_count; 1078 } 1079 1080 static struct kvm_rmap_head *gfn_to_rmap(gfn_t gfn, int level, 1081 const struct kvm_memory_slot *slot) 1082 { 1083 unsigned long idx; 1084 1085 idx = gfn_to_index(gfn, slot->base_gfn, level); 1086 return &slot->arch.rmap[level - PG_LEVEL_4K][idx]; 1087 } 1088 1089 static void rmap_remove(struct kvm *kvm, u64 *spte) 1090 { 1091 struct kvm_memslots *slots; 1092 struct kvm_memory_slot *slot; 1093 struct kvm_mmu_page *sp; 1094 gfn_t gfn; 1095 struct kvm_rmap_head *rmap_head; 1096 1097 sp = sptep_to_sp(spte); 1098 gfn = kvm_mmu_page_get_gfn(sp, spte_index(spte)); 1099 1100 /* 1101 * Unlike rmap_add, rmap_remove does not run in the context of a vCPU 1102 * so we have to determine which memslots to use based on context 1103 * information in sp->role. 1104 */ 1105 slots = kvm_memslots_for_spte_role(kvm, sp->role); 1106 1107 slot = __gfn_to_memslot(slots, gfn); 1108 rmap_head = gfn_to_rmap(gfn, sp->role.level, slot); 1109 1110 pte_list_remove(kvm, spte, rmap_head); 1111 } 1112 1113 /* 1114 * Used by the following functions to iterate through the sptes linked by a 1115 * rmap. All fields are private and not assumed to be used outside. 1116 */ 1117 struct rmap_iterator { 1118 /* private fields */ 1119 struct pte_list_desc *desc; /* holds the sptep if not NULL */ 1120 int pos; /* index of the sptep */ 1121 }; 1122 1123 /* 1124 * Iteration must be started by this function. This should also be used after 1125 * removing/dropping sptes from the rmap link because in such cases the 1126 * information in the iterator may not be valid. 1127 * 1128 * Returns sptep if found, NULL otherwise. 1129 */ 1130 static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head, 1131 struct rmap_iterator *iter) 1132 { 1133 u64 *sptep; 1134 1135 if (!rmap_head->val) 1136 return NULL; 1137 1138 if (!(rmap_head->val & 1)) { 1139 iter->desc = NULL; 1140 sptep = (u64 *)rmap_head->val; 1141 goto out; 1142 } 1143 1144 iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul); 1145 iter->pos = 0; 1146 sptep = iter->desc->sptes[iter->pos]; 1147 out: 1148 BUG_ON(!is_shadow_present_pte(*sptep)); 1149 return sptep; 1150 } 1151 1152 /* 1153 * Must be used with a valid iterator: e.g. after rmap_get_first(). 1154 * 1155 * Returns sptep if found, NULL otherwise. 1156 */ 1157 static u64 *rmap_get_next(struct rmap_iterator *iter) 1158 { 1159 u64 *sptep; 1160 1161 if (iter->desc) { 1162 if (iter->pos < PTE_LIST_EXT - 1) { 1163 ++iter->pos; 1164 sptep = iter->desc->sptes[iter->pos]; 1165 if (sptep) 1166 goto out; 1167 } 1168 1169 iter->desc = iter->desc->more; 1170 1171 if (iter->desc) { 1172 iter->pos = 0; 1173 /* desc->sptes[0] cannot be NULL */ 1174 sptep = iter->desc->sptes[iter->pos]; 1175 goto out; 1176 } 1177 } 1178 1179 return NULL; 1180 out: 1181 BUG_ON(!is_shadow_present_pte(*sptep)); 1182 return sptep; 1183 } 1184 1185 #define for_each_rmap_spte(_rmap_head_, _iter_, _spte_) \ 1186 for (_spte_ = rmap_get_first(_rmap_head_, _iter_); \ 1187 _spte_; _spte_ = rmap_get_next(_iter_)) 1188 1189 static void drop_spte(struct kvm *kvm, u64 *sptep) 1190 { 1191 u64 old_spte = mmu_spte_clear_track_bits(kvm, sptep); 1192 1193 if (is_shadow_present_pte(old_spte)) 1194 rmap_remove(kvm, sptep); 1195 } 1196 1197 static void drop_large_spte(struct kvm *kvm, u64 *sptep, bool flush) 1198 { 1199 struct kvm_mmu_page *sp; 1200 1201 sp = sptep_to_sp(sptep); 1202 WARN_ON_ONCE(sp->role.level == PG_LEVEL_4K); 1203 1204 drop_spte(kvm, sptep); 1205 1206 if (flush) 1207 kvm_flush_remote_tlbs_sptep(kvm, sptep); 1208 } 1209 1210 /* 1211 * Write-protect on the specified @sptep, @pt_protect indicates whether 1212 * spte write-protection is caused by protecting shadow page table. 1213 * 1214 * Note: write protection is difference between dirty logging and spte 1215 * protection: 1216 * - for dirty logging, the spte can be set to writable at anytime if 1217 * its dirty bitmap is properly set. 1218 * - for spte protection, the spte can be writable only after unsync-ing 1219 * shadow page. 1220 * 1221 * Return true if tlb need be flushed. 1222 */ 1223 static bool spte_write_protect(u64 *sptep, bool pt_protect) 1224 { 1225 u64 spte = *sptep; 1226 1227 if (!is_writable_pte(spte) && 1228 !(pt_protect && is_mmu_writable_spte(spte))) 1229 return false; 1230 1231 if (pt_protect) 1232 spte &= ~shadow_mmu_writable_mask; 1233 spte = spte & ~PT_WRITABLE_MASK; 1234 1235 return mmu_spte_update(sptep, spte); 1236 } 1237 1238 static bool rmap_write_protect(struct kvm_rmap_head *rmap_head, 1239 bool pt_protect) 1240 { 1241 u64 *sptep; 1242 struct rmap_iterator iter; 1243 bool flush = false; 1244 1245 for_each_rmap_spte(rmap_head, &iter, sptep) 1246 flush |= spte_write_protect(sptep, pt_protect); 1247 1248 return flush; 1249 } 1250 1251 static bool spte_clear_dirty(u64 *sptep) 1252 { 1253 u64 spte = *sptep; 1254 1255 KVM_MMU_WARN_ON(!spte_ad_enabled(spte)); 1256 spte &= ~shadow_dirty_mask; 1257 return mmu_spte_update(sptep, spte); 1258 } 1259 1260 static bool spte_wrprot_for_clear_dirty(u64 *sptep) 1261 { 1262 bool was_writable = test_and_clear_bit(PT_WRITABLE_SHIFT, 1263 (unsigned long *)sptep); 1264 if (was_writable && !spte_ad_enabled(*sptep)) 1265 kvm_set_pfn_dirty(spte_to_pfn(*sptep)); 1266 1267 return was_writable; 1268 } 1269 1270 /* 1271 * Gets the GFN ready for another round of dirty logging by clearing the 1272 * - D bit on ad-enabled SPTEs, and 1273 * - W bit on ad-disabled SPTEs. 1274 * Returns true iff any D or W bits were cleared. 1275 */ 1276 static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head, 1277 const struct kvm_memory_slot *slot) 1278 { 1279 u64 *sptep; 1280 struct rmap_iterator iter; 1281 bool flush = false; 1282 1283 for_each_rmap_spte(rmap_head, &iter, sptep) 1284 if (spte_ad_need_write_protect(*sptep)) 1285 flush |= spte_wrprot_for_clear_dirty(sptep); 1286 else 1287 flush |= spte_clear_dirty(sptep); 1288 1289 return flush; 1290 } 1291 1292 /** 1293 * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages 1294 * @kvm: kvm instance 1295 * @slot: slot to protect 1296 * @gfn_offset: start of the BITS_PER_LONG pages we care about 1297 * @mask: indicates which pages we should protect 1298 * 1299 * Used when we do not need to care about huge page mappings. 1300 */ 1301 static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm, 1302 struct kvm_memory_slot *slot, 1303 gfn_t gfn_offset, unsigned long mask) 1304 { 1305 struct kvm_rmap_head *rmap_head; 1306 1307 if (tdp_mmu_enabled) 1308 kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot, 1309 slot->base_gfn + gfn_offset, mask, true); 1310 1311 if (!kvm_memslots_have_rmaps(kvm)) 1312 return; 1313 1314 while (mask) { 1315 rmap_head = gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask), 1316 PG_LEVEL_4K, slot); 1317 rmap_write_protect(rmap_head, false); 1318 1319 /* clear the first set bit */ 1320 mask &= mask - 1; 1321 } 1322 } 1323 1324 /** 1325 * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages, or write 1326 * protect the page if the D-bit isn't supported. 1327 * @kvm: kvm instance 1328 * @slot: slot to clear D-bit 1329 * @gfn_offset: start of the BITS_PER_LONG pages we care about 1330 * @mask: indicates which pages we should clear D-bit 1331 * 1332 * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap. 1333 */ 1334 static void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm, 1335 struct kvm_memory_slot *slot, 1336 gfn_t gfn_offset, unsigned long mask) 1337 { 1338 struct kvm_rmap_head *rmap_head; 1339 1340 if (tdp_mmu_enabled) 1341 kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot, 1342 slot->base_gfn + gfn_offset, mask, false); 1343 1344 if (!kvm_memslots_have_rmaps(kvm)) 1345 return; 1346 1347 while (mask) { 1348 rmap_head = gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask), 1349 PG_LEVEL_4K, slot); 1350 __rmap_clear_dirty(kvm, rmap_head, slot); 1351 1352 /* clear the first set bit */ 1353 mask &= mask - 1; 1354 } 1355 } 1356 1357 /** 1358 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected 1359 * PT level pages. 1360 * 1361 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to 1362 * enable dirty logging for them. 1363 * 1364 * We need to care about huge page mappings: e.g. during dirty logging we may 1365 * have such mappings. 1366 */ 1367 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm, 1368 struct kvm_memory_slot *slot, 1369 gfn_t gfn_offset, unsigned long mask) 1370 { 1371 /* 1372 * Huge pages are NOT write protected when we start dirty logging in 1373 * initially-all-set mode; must write protect them here so that they 1374 * are split to 4K on the first write. 1375 * 1376 * The gfn_offset is guaranteed to be aligned to 64, but the base_gfn 1377 * of memslot has no such restriction, so the range can cross two large 1378 * pages. 1379 */ 1380 if (kvm_dirty_log_manual_protect_and_init_set(kvm)) { 1381 gfn_t start = slot->base_gfn + gfn_offset + __ffs(mask); 1382 gfn_t end = slot->base_gfn + gfn_offset + __fls(mask); 1383 1384 if (READ_ONCE(eager_page_split)) 1385 kvm_mmu_try_split_huge_pages(kvm, slot, start, end, PG_LEVEL_4K); 1386 1387 kvm_mmu_slot_gfn_write_protect(kvm, slot, start, PG_LEVEL_2M); 1388 1389 /* Cross two large pages? */ 1390 if (ALIGN(start << PAGE_SHIFT, PMD_SIZE) != 1391 ALIGN(end << PAGE_SHIFT, PMD_SIZE)) 1392 kvm_mmu_slot_gfn_write_protect(kvm, slot, end, 1393 PG_LEVEL_2M); 1394 } 1395 1396 /* Now handle 4K PTEs. */ 1397 if (kvm_x86_ops.cpu_dirty_log_size) 1398 kvm_mmu_clear_dirty_pt_masked(kvm, slot, gfn_offset, mask); 1399 else 1400 kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask); 1401 } 1402 1403 int kvm_cpu_dirty_log_size(void) 1404 { 1405 return kvm_x86_ops.cpu_dirty_log_size; 1406 } 1407 1408 bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm, 1409 struct kvm_memory_slot *slot, u64 gfn, 1410 int min_level) 1411 { 1412 struct kvm_rmap_head *rmap_head; 1413 int i; 1414 bool write_protected = false; 1415 1416 if (kvm_memslots_have_rmaps(kvm)) { 1417 for (i = min_level; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) { 1418 rmap_head = gfn_to_rmap(gfn, i, slot); 1419 write_protected |= rmap_write_protect(rmap_head, true); 1420 } 1421 } 1422 1423 if (tdp_mmu_enabled) 1424 write_protected |= 1425 kvm_tdp_mmu_write_protect_gfn(kvm, slot, gfn, min_level); 1426 1427 return write_protected; 1428 } 1429 1430 static bool kvm_vcpu_write_protect_gfn(struct kvm_vcpu *vcpu, u64 gfn) 1431 { 1432 struct kvm_memory_slot *slot; 1433 1434 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 1435 return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn, PG_LEVEL_4K); 1436 } 1437 1438 static bool __kvm_zap_rmap(struct kvm *kvm, struct kvm_rmap_head *rmap_head, 1439 const struct kvm_memory_slot *slot) 1440 { 1441 return kvm_zap_all_rmap_sptes(kvm, rmap_head); 1442 } 1443 1444 static bool kvm_zap_rmap(struct kvm *kvm, struct kvm_rmap_head *rmap_head, 1445 struct kvm_memory_slot *slot, gfn_t gfn, int level, 1446 pte_t unused) 1447 { 1448 return __kvm_zap_rmap(kvm, rmap_head, slot); 1449 } 1450 1451 static bool kvm_set_pte_rmap(struct kvm *kvm, struct kvm_rmap_head *rmap_head, 1452 struct kvm_memory_slot *slot, gfn_t gfn, int level, 1453 pte_t pte) 1454 { 1455 u64 *sptep; 1456 struct rmap_iterator iter; 1457 bool need_flush = false; 1458 u64 new_spte; 1459 kvm_pfn_t new_pfn; 1460 1461 WARN_ON_ONCE(pte_huge(pte)); 1462 new_pfn = pte_pfn(pte); 1463 1464 restart: 1465 for_each_rmap_spte(rmap_head, &iter, sptep) { 1466 need_flush = true; 1467 1468 if (pte_write(pte)) { 1469 kvm_zap_one_rmap_spte(kvm, rmap_head, sptep); 1470 goto restart; 1471 } else { 1472 new_spte = kvm_mmu_changed_pte_notifier_make_spte( 1473 *sptep, new_pfn); 1474 1475 mmu_spte_clear_track_bits(kvm, sptep); 1476 mmu_spte_set(sptep, new_spte); 1477 } 1478 } 1479 1480 if (need_flush && kvm_available_flush_remote_tlbs_range()) { 1481 kvm_flush_remote_tlbs_gfn(kvm, gfn, level); 1482 return false; 1483 } 1484 1485 return need_flush; 1486 } 1487 1488 struct slot_rmap_walk_iterator { 1489 /* input fields. */ 1490 const struct kvm_memory_slot *slot; 1491 gfn_t start_gfn; 1492 gfn_t end_gfn; 1493 int start_level; 1494 int end_level; 1495 1496 /* output fields. */ 1497 gfn_t gfn; 1498 struct kvm_rmap_head *rmap; 1499 int level; 1500 1501 /* private field. */ 1502 struct kvm_rmap_head *end_rmap; 1503 }; 1504 1505 static void rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, 1506 int level) 1507 { 1508 iterator->level = level; 1509 iterator->gfn = iterator->start_gfn; 1510 iterator->rmap = gfn_to_rmap(iterator->gfn, level, iterator->slot); 1511 iterator->end_rmap = gfn_to_rmap(iterator->end_gfn, level, iterator->slot); 1512 } 1513 1514 static void slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator, 1515 const struct kvm_memory_slot *slot, 1516 int start_level, int end_level, 1517 gfn_t start_gfn, gfn_t end_gfn) 1518 { 1519 iterator->slot = slot; 1520 iterator->start_level = start_level; 1521 iterator->end_level = end_level; 1522 iterator->start_gfn = start_gfn; 1523 iterator->end_gfn = end_gfn; 1524 1525 rmap_walk_init_level(iterator, iterator->start_level); 1526 } 1527 1528 static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator) 1529 { 1530 return !!iterator->rmap; 1531 } 1532 1533 static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator) 1534 { 1535 while (++iterator->rmap <= iterator->end_rmap) { 1536 iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level)); 1537 1538 if (iterator->rmap->val) 1539 return; 1540 } 1541 1542 if (++iterator->level > iterator->end_level) { 1543 iterator->rmap = NULL; 1544 return; 1545 } 1546 1547 rmap_walk_init_level(iterator, iterator->level); 1548 } 1549 1550 #define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_, \ 1551 _start_gfn, _end_gfn, _iter_) \ 1552 for (slot_rmap_walk_init(_iter_, _slot_, _start_level_, \ 1553 _end_level_, _start_gfn, _end_gfn); \ 1554 slot_rmap_walk_okay(_iter_); \ 1555 slot_rmap_walk_next(_iter_)) 1556 1557 typedef bool (*rmap_handler_t)(struct kvm *kvm, struct kvm_rmap_head *rmap_head, 1558 struct kvm_memory_slot *slot, gfn_t gfn, 1559 int level, pte_t pte); 1560 1561 static __always_inline bool kvm_handle_gfn_range(struct kvm *kvm, 1562 struct kvm_gfn_range *range, 1563 rmap_handler_t handler) 1564 { 1565 struct slot_rmap_walk_iterator iterator; 1566 bool ret = false; 1567 1568 for_each_slot_rmap_range(range->slot, PG_LEVEL_4K, KVM_MAX_HUGEPAGE_LEVEL, 1569 range->start, range->end - 1, &iterator) 1570 ret |= handler(kvm, iterator.rmap, range->slot, iterator.gfn, 1571 iterator.level, range->arg.pte); 1572 1573 return ret; 1574 } 1575 1576 bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range) 1577 { 1578 bool flush = false; 1579 1580 if (kvm_memslots_have_rmaps(kvm)) 1581 flush = kvm_handle_gfn_range(kvm, range, kvm_zap_rmap); 1582 1583 if (tdp_mmu_enabled) 1584 flush = kvm_tdp_mmu_unmap_gfn_range(kvm, range, flush); 1585 1586 if (kvm_x86_ops.set_apic_access_page_addr && 1587 range->slot->id == APIC_ACCESS_PAGE_PRIVATE_MEMSLOT) 1588 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD); 1589 1590 return flush; 1591 } 1592 1593 bool kvm_set_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range) 1594 { 1595 bool flush = false; 1596 1597 if (kvm_memslots_have_rmaps(kvm)) 1598 flush = kvm_handle_gfn_range(kvm, range, kvm_set_pte_rmap); 1599 1600 if (tdp_mmu_enabled) 1601 flush |= kvm_tdp_mmu_set_spte_gfn(kvm, range); 1602 1603 return flush; 1604 } 1605 1606 static bool kvm_age_rmap(struct kvm *kvm, struct kvm_rmap_head *rmap_head, 1607 struct kvm_memory_slot *slot, gfn_t gfn, int level, 1608 pte_t unused) 1609 { 1610 u64 *sptep; 1611 struct rmap_iterator iter; 1612 int young = 0; 1613 1614 for_each_rmap_spte(rmap_head, &iter, sptep) 1615 young |= mmu_spte_age(sptep); 1616 1617 return young; 1618 } 1619 1620 static bool kvm_test_age_rmap(struct kvm *kvm, struct kvm_rmap_head *rmap_head, 1621 struct kvm_memory_slot *slot, gfn_t gfn, 1622 int level, pte_t unused) 1623 { 1624 u64 *sptep; 1625 struct rmap_iterator iter; 1626 1627 for_each_rmap_spte(rmap_head, &iter, sptep) 1628 if (is_accessed_spte(*sptep)) 1629 return true; 1630 return false; 1631 } 1632 1633 #define RMAP_RECYCLE_THRESHOLD 1000 1634 1635 static void __rmap_add(struct kvm *kvm, 1636 struct kvm_mmu_memory_cache *cache, 1637 const struct kvm_memory_slot *slot, 1638 u64 *spte, gfn_t gfn, unsigned int access) 1639 { 1640 struct kvm_mmu_page *sp; 1641 struct kvm_rmap_head *rmap_head; 1642 int rmap_count; 1643 1644 sp = sptep_to_sp(spte); 1645 kvm_mmu_page_set_translation(sp, spte_index(spte), gfn, access); 1646 kvm_update_page_stats(kvm, sp->role.level, 1); 1647 1648 rmap_head = gfn_to_rmap(gfn, sp->role.level, slot); 1649 rmap_count = pte_list_add(cache, spte, rmap_head); 1650 1651 if (rmap_count > kvm->stat.max_mmu_rmap_size) 1652 kvm->stat.max_mmu_rmap_size = rmap_count; 1653 if (rmap_count > RMAP_RECYCLE_THRESHOLD) { 1654 kvm_zap_all_rmap_sptes(kvm, rmap_head); 1655 kvm_flush_remote_tlbs_gfn(kvm, gfn, sp->role.level); 1656 } 1657 } 1658 1659 static void rmap_add(struct kvm_vcpu *vcpu, const struct kvm_memory_slot *slot, 1660 u64 *spte, gfn_t gfn, unsigned int access) 1661 { 1662 struct kvm_mmu_memory_cache *cache = &vcpu->arch.mmu_pte_list_desc_cache; 1663 1664 __rmap_add(vcpu->kvm, cache, slot, spte, gfn, access); 1665 } 1666 1667 bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range) 1668 { 1669 bool young = false; 1670 1671 if (kvm_memslots_have_rmaps(kvm)) 1672 young = kvm_handle_gfn_range(kvm, range, kvm_age_rmap); 1673 1674 if (tdp_mmu_enabled) 1675 young |= kvm_tdp_mmu_age_gfn_range(kvm, range); 1676 1677 return young; 1678 } 1679 1680 bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range) 1681 { 1682 bool young = false; 1683 1684 if (kvm_memslots_have_rmaps(kvm)) 1685 young = kvm_handle_gfn_range(kvm, range, kvm_test_age_rmap); 1686 1687 if (tdp_mmu_enabled) 1688 young |= kvm_tdp_mmu_test_age_gfn(kvm, range); 1689 1690 return young; 1691 } 1692 1693 static void kvm_mmu_check_sptes_at_free(struct kvm_mmu_page *sp) 1694 { 1695 #ifdef CONFIG_KVM_PROVE_MMU 1696 int i; 1697 1698 for (i = 0; i < SPTE_ENT_PER_PAGE; i++) { 1699 if (KVM_MMU_WARN_ON(is_shadow_present_pte(sp->spt[i]))) 1700 pr_err_ratelimited("SPTE %llx (@ %p) for gfn %llx shadow-present at free", 1701 sp->spt[i], &sp->spt[i], 1702 kvm_mmu_page_get_gfn(sp, i)); 1703 } 1704 #endif 1705 } 1706 1707 /* 1708 * This value is the sum of all of the kvm instances's 1709 * kvm->arch.n_used_mmu_pages values. We need a global, 1710 * aggregate version in order to make the slab shrinker 1711 * faster 1712 */ 1713 static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, long nr) 1714 { 1715 kvm->arch.n_used_mmu_pages += nr; 1716 percpu_counter_add(&kvm_total_used_mmu_pages, nr); 1717 } 1718 1719 static void kvm_account_mmu_page(struct kvm *kvm, struct kvm_mmu_page *sp) 1720 { 1721 kvm_mod_used_mmu_pages(kvm, +1); 1722 kvm_account_pgtable_pages((void *)sp->spt, +1); 1723 } 1724 1725 static void kvm_unaccount_mmu_page(struct kvm *kvm, struct kvm_mmu_page *sp) 1726 { 1727 kvm_mod_used_mmu_pages(kvm, -1); 1728 kvm_account_pgtable_pages((void *)sp->spt, -1); 1729 } 1730 1731 static void kvm_mmu_free_shadow_page(struct kvm_mmu_page *sp) 1732 { 1733 kvm_mmu_check_sptes_at_free(sp); 1734 1735 hlist_del(&sp->hash_link); 1736 list_del(&sp->link); 1737 free_page((unsigned long)sp->spt); 1738 if (!sp->role.direct) 1739 free_page((unsigned long)sp->shadowed_translation); 1740 kmem_cache_free(mmu_page_header_cache, sp); 1741 } 1742 1743 static unsigned kvm_page_table_hashfn(gfn_t gfn) 1744 { 1745 return hash_64(gfn, KVM_MMU_HASH_SHIFT); 1746 } 1747 1748 static void mmu_page_add_parent_pte(struct kvm_mmu_memory_cache *cache, 1749 struct kvm_mmu_page *sp, u64 *parent_pte) 1750 { 1751 if (!parent_pte) 1752 return; 1753 1754 pte_list_add(cache, parent_pte, &sp->parent_ptes); 1755 } 1756 1757 static void mmu_page_remove_parent_pte(struct kvm *kvm, struct kvm_mmu_page *sp, 1758 u64 *parent_pte) 1759 { 1760 pte_list_remove(kvm, parent_pte, &sp->parent_ptes); 1761 } 1762 1763 static void drop_parent_pte(struct kvm *kvm, struct kvm_mmu_page *sp, 1764 u64 *parent_pte) 1765 { 1766 mmu_page_remove_parent_pte(kvm, sp, parent_pte); 1767 mmu_spte_clear_no_track(parent_pte); 1768 } 1769 1770 static void mark_unsync(u64 *spte); 1771 static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp) 1772 { 1773 u64 *sptep; 1774 struct rmap_iterator iter; 1775 1776 for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) { 1777 mark_unsync(sptep); 1778 } 1779 } 1780 1781 static void mark_unsync(u64 *spte) 1782 { 1783 struct kvm_mmu_page *sp; 1784 1785 sp = sptep_to_sp(spte); 1786 if (__test_and_set_bit(spte_index(spte), sp->unsync_child_bitmap)) 1787 return; 1788 if (sp->unsync_children++) 1789 return; 1790 kvm_mmu_mark_parents_unsync(sp); 1791 } 1792 1793 #define KVM_PAGE_ARRAY_NR 16 1794 1795 struct kvm_mmu_pages { 1796 struct mmu_page_and_offset { 1797 struct kvm_mmu_page *sp; 1798 unsigned int idx; 1799 } page[KVM_PAGE_ARRAY_NR]; 1800 unsigned int nr; 1801 }; 1802 1803 static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp, 1804 int idx) 1805 { 1806 int i; 1807 1808 if (sp->unsync) 1809 for (i=0; i < pvec->nr; i++) 1810 if (pvec->page[i].sp == sp) 1811 return 0; 1812 1813 pvec->page[pvec->nr].sp = sp; 1814 pvec->page[pvec->nr].idx = idx; 1815 pvec->nr++; 1816 return (pvec->nr == KVM_PAGE_ARRAY_NR); 1817 } 1818 1819 static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx) 1820 { 1821 --sp->unsync_children; 1822 WARN_ON_ONCE((int)sp->unsync_children < 0); 1823 __clear_bit(idx, sp->unsync_child_bitmap); 1824 } 1825 1826 static int __mmu_unsync_walk(struct kvm_mmu_page *sp, 1827 struct kvm_mmu_pages *pvec) 1828 { 1829 int i, ret, nr_unsync_leaf = 0; 1830 1831 for_each_set_bit(i, sp->unsync_child_bitmap, 512) { 1832 struct kvm_mmu_page *child; 1833 u64 ent = sp->spt[i]; 1834 1835 if (!is_shadow_present_pte(ent) || is_large_pte(ent)) { 1836 clear_unsync_child_bit(sp, i); 1837 continue; 1838 } 1839 1840 child = spte_to_child_sp(ent); 1841 1842 if (child->unsync_children) { 1843 if (mmu_pages_add(pvec, child, i)) 1844 return -ENOSPC; 1845 1846 ret = __mmu_unsync_walk(child, pvec); 1847 if (!ret) { 1848 clear_unsync_child_bit(sp, i); 1849 continue; 1850 } else if (ret > 0) { 1851 nr_unsync_leaf += ret; 1852 } else 1853 return ret; 1854 } else if (child->unsync) { 1855 nr_unsync_leaf++; 1856 if (mmu_pages_add(pvec, child, i)) 1857 return -ENOSPC; 1858 } else 1859 clear_unsync_child_bit(sp, i); 1860 } 1861 1862 return nr_unsync_leaf; 1863 } 1864 1865 #define INVALID_INDEX (-1) 1866 1867 static int mmu_unsync_walk(struct kvm_mmu_page *sp, 1868 struct kvm_mmu_pages *pvec) 1869 { 1870 pvec->nr = 0; 1871 if (!sp->unsync_children) 1872 return 0; 1873 1874 mmu_pages_add(pvec, sp, INVALID_INDEX); 1875 return __mmu_unsync_walk(sp, pvec); 1876 } 1877 1878 static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp) 1879 { 1880 WARN_ON_ONCE(!sp->unsync); 1881 trace_kvm_mmu_sync_page(sp); 1882 sp->unsync = 0; 1883 --kvm->stat.mmu_unsync; 1884 } 1885 1886 static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp, 1887 struct list_head *invalid_list); 1888 static void kvm_mmu_commit_zap_page(struct kvm *kvm, 1889 struct list_head *invalid_list); 1890 1891 static bool sp_has_gptes(struct kvm_mmu_page *sp) 1892 { 1893 if (sp->role.direct) 1894 return false; 1895 1896 if (sp->role.passthrough) 1897 return false; 1898 1899 return true; 1900 } 1901 1902 #define for_each_valid_sp(_kvm, _sp, _list) \ 1903 hlist_for_each_entry(_sp, _list, hash_link) \ 1904 if (is_obsolete_sp((_kvm), (_sp))) { \ 1905 } else 1906 1907 #define for_each_gfn_valid_sp_with_gptes(_kvm, _sp, _gfn) \ 1908 for_each_valid_sp(_kvm, _sp, \ 1909 &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)]) \ 1910 if ((_sp)->gfn != (_gfn) || !sp_has_gptes(_sp)) {} else 1911 1912 static bool kvm_sync_page_check(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp) 1913 { 1914 union kvm_mmu_page_role root_role = vcpu->arch.mmu->root_role; 1915 1916 /* 1917 * Ignore various flags when verifying that it's safe to sync a shadow 1918 * page using the current MMU context. 1919 * 1920 * - level: not part of the overall MMU role and will never match as the MMU's 1921 * level tracks the root level 1922 * - access: updated based on the new guest PTE 1923 * - quadrant: not part of the overall MMU role (similar to level) 1924 */ 1925 const union kvm_mmu_page_role sync_role_ign = { 1926 .level = 0xf, 1927 .access = 0x7, 1928 .quadrant = 0x3, 1929 .passthrough = 0x1, 1930 }; 1931 1932 /* 1933 * Direct pages can never be unsync, and KVM should never attempt to 1934 * sync a shadow page for a different MMU context, e.g. if the role 1935 * differs then the memslot lookup (SMM vs. non-SMM) will be bogus, the 1936 * reserved bits checks will be wrong, etc... 1937 */ 1938 if (WARN_ON_ONCE(sp->role.direct || !vcpu->arch.mmu->sync_spte || 1939 (sp->role.word ^ root_role.word) & ~sync_role_ign.word)) 1940 return false; 1941 1942 return true; 1943 } 1944 1945 static int kvm_sync_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp, int i) 1946 { 1947 if (!sp->spt[i]) 1948 return 0; 1949 1950 return vcpu->arch.mmu->sync_spte(vcpu, sp, i); 1951 } 1952 1953 static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp) 1954 { 1955 int flush = 0; 1956 int i; 1957 1958 if (!kvm_sync_page_check(vcpu, sp)) 1959 return -1; 1960 1961 for (i = 0; i < SPTE_ENT_PER_PAGE; i++) { 1962 int ret = kvm_sync_spte(vcpu, sp, i); 1963 1964 if (ret < -1) 1965 return -1; 1966 flush |= ret; 1967 } 1968 1969 /* 1970 * Note, any flush is purely for KVM's correctness, e.g. when dropping 1971 * an existing SPTE or clearing W/A/D bits to ensure an mmu_notifier 1972 * unmap or dirty logging event doesn't fail to flush. The guest is 1973 * responsible for flushing the TLB to ensure any changes in protection 1974 * bits are recognized, i.e. until the guest flushes or page faults on 1975 * a relevant address, KVM is architecturally allowed to let vCPUs use 1976 * cached translations with the old protection bits. 1977 */ 1978 return flush; 1979 } 1980 1981 static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp, 1982 struct list_head *invalid_list) 1983 { 1984 int ret = __kvm_sync_page(vcpu, sp); 1985 1986 if (ret < 0) 1987 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list); 1988 return ret; 1989 } 1990 1991 static bool kvm_mmu_remote_flush_or_zap(struct kvm *kvm, 1992 struct list_head *invalid_list, 1993 bool remote_flush) 1994 { 1995 if (!remote_flush && list_empty(invalid_list)) 1996 return false; 1997 1998 if (!list_empty(invalid_list)) 1999 kvm_mmu_commit_zap_page(kvm, invalid_list); 2000 else 2001 kvm_flush_remote_tlbs(kvm); 2002 return true; 2003 } 2004 2005 static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp) 2006 { 2007 if (sp->role.invalid) 2008 return true; 2009 2010 /* TDP MMU pages do not use the MMU generation. */ 2011 return !is_tdp_mmu_page(sp) && 2012 unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen); 2013 } 2014 2015 struct mmu_page_path { 2016 struct kvm_mmu_page *parent[PT64_ROOT_MAX_LEVEL]; 2017 unsigned int idx[PT64_ROOT_MAX_LEVEL]; 2018 }; 2019 2020 #define for_each_sp(pvec, sp, parents, i) \ 2021 for (i = mmu_pages_first(&pvec, &parents); \ 2022 i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \ 2023 i = mmu_pages_next(&pvec, &parents, i)) 2024 2025 static int mmu_pages_next(struct kvm_mmu_pages *pvec, 2026 struct mmu_page_path *parents, 2027 int i) 2028 { 2029 int n; 2030 2031 for (n = i+1; n < pvec->nr; n++) { 2032 struct kvm_mmu_page *sp = pvec->page[n].sp; 2033 unsigned idx = pvec->page[n].idx; 2034 int level = sp->role.level; 2035 2036 parents->idx[level-1] = idx; 2037 if (level == PG_LEVEL_4K) 2038 break; 2039 2040 parents->parent[level-2] = sp; 2041 } 2042 2043 return n; 2044 } 2045 2046 static int mmu_pages_first(struct kvm_mmu_pages *pvec, 2047 struct mmu_page_path *parents) 2048 { 2049 struct kvm_mmu_page *sp; 2050 int level; 2051 2052 if (pvec->nr == 0) 2053 return 0; 2054 2055 WARN_ON_ONCE(pvec->page[0].idx != INVALID_INDEX); 2056 2057 sp = pvec->page[0].sp; 2058 level = sp->role.level; 2059 WARN_ON_ONCE(level == PG_LEVEL_4K); 2060 2061 parents->parent[level-2] = sp; 2062 2063 /* Also set up a sentinel. Further entries in pvec are all 2064 * children of sp, so this element is never overwritten. 2065 */ 2066 parents->parent[level-1] = NULL; 2067 return mmu_pages_next(pvec, parents, 0); 2068 } 2069 2070 static void mmu_pages_clear_parents(struct mmu_page_path *parents) 2071 { 2072 struct kvm_mmu_page *sp; 2073 unsigned int level = 0; 2074 2075 do { 2076 unsigned int idx = parents->idx[level]; 2077 sp = parents->parent[level]; 2078 if (!sp) 2079 return; 2080 2081 WARN_ON_ONCE(idx == INVALID_INDEX); 2082 clear_unsync_child_bit(sp, idx); 2083 level++; 2084 } while (!sp->unsync_children); 2085 } 2086 2087 static int mmu_sync_children(struct kvm_vcpu *vcpu, 2088 struct kvm_mmu_page *parent, bool can_yield) 2089 { 2090 int i; 2091 struct kvm_mmu_page *sp; 2092 struct mmu_page_path parents; 2093 struct kvm_mmu_pages pages; 2094 LIST_HEAD(invalid_list); 2095 bool flush = false; 2096 2097 while (mmu_unsync_walk(parent, &pages)) { 2098 bool protected = false; 2099 2100 for_each_sp(pages, sp, parents, i) 2101 protected |= kvm_vcpu_write_protect_gfn(vcpu, sp->gfn); 2102 2103 if (protected) { 2104 kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, true); 2105 flush = false; 2106 } 2107 2108 for_each_sp(pages, sp, parents, i) { 2109 kvm_unlink_unsync_page(vcpu->kvm, sp); 2110 flush |= kvm_sync_page(vcpu, sp, &invalid_list) > 0; 2111 mmu_pages_clear_parents(&parents); 2112 } 2113 if (need_resched() || rwlock_needbreak(&vcpu->kvm->mmu_lock)) { 2114 kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, flush); 2115 if (!can_yield) { 2116 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu); 2117 return -EINTR; 2118 } 2119 2120 cond_resched_rwlock_write(&vcpu->kvm->mmu_lock); 2121 flush = false; 2122 } 2123 } 2124 2125 kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, flush); 2126 return 0; 2127 } 2128 2129 static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp) 2130 { 2131 atomic_set(&sp->write_flooding_count, 0); 2132 } 2133 2134 static void clear_sp_write_flooding_count(u64 *spte) 2135 { 2136 __clear_sp_write_flooding_count(sptep_to_sp(spte)); 2137 } 2138 2139 /* 2140 * The vCPU is required when finding indirect shadow pages; the shadow 2141 * page may already exist and syncing it needs the vCPU pointer in 2142 * order to read guest page tables. Direct shadow pages are never 2143 * unsync, thus @vcpu can be NULL if @role.direct is true. 2144 */ 2145 static struct kvm_mmu_page *kvm_mmu_find_shadow_page(struct kvm *kvm, 2146 struct kvm_vcpu *vcpu, 2147 gfn_t gfn, 2148 struct hlist_head *sp_list, 2149 union kvm_mmu_page_role role) 2150 { 2151 struct kvm_mmu_page *sp; 2152 int ret; 2153 int collisions = 0; 2154 LIST_HEAD(invalid_list); 2155 2156 for_each_valid_sp(kvm, sp, sp_list) { 2157 if (sp->gfn != gfn) { 2158 collisions++; 2159 continue; 2160 } 2161 2162 if (sp->role.word != role.word) { 2163 /* 2164 * If the guest is creating an upper-level page, zap 2165 * unsync pages for the same gfn. While it's possible 2166 * the guest is using recursive page tables, in all 2167 * likelihood the guest has stopped using the unsync 2168 * page and is installing a completely unrelated page. 2169 * Unsync pages must not be left as is, because the new 2170 * upper-level page will be write-protected. 2171 */ 2172 if (role.level > PG_LEVEL_4K && sp->unsync) 2173 kvm_mmu_prepare_zap_page(kvm, sp, 2174 &invalid_list); 2175 continue; 2176 } 2177 2178 /* unsync and write-flooding only apply to indirect SPs. */ 2179 if (sp->role.direct) 2180 goto out; 2181 2182 if (sp->unsync) { 2183 if (KVM_BUG_ON(!vcpu, kvm)) 2184 break; 2185 2186 /* 2187 * The page is good, but is stale. kvm_sync_page does 2188 * get the latest guest state, but (unlike mmu_unsync_children) 2189 * it doesn't write-protect the page or mark it synchronized! 2190 * This way the validity of the mapping is ensured, but the 2191 * overhead of write protection is not incurred until the 2192 * guest invalidates the TLB mapping. This allows multiple 2193 * SPs for a single gfn to be unsync. 2194 * 2195 * If the sync fails, the page is zapped. If so, break 2196 * in order to rebuild it. 2197 */ 2198 ret = kvm_sync_page(vcpu, sp, &invalid_list); 2199 if (ret < 0) 2200 break; 2201 2202 WARN_ON_ONCE(!list_empty(&invalid_list)); 2203 if (ret > 0) 2204 kvm_flush_remote_tlbs(kvm); 2205 } 2206 2207 __clear_sp_write_flooding_count(sp); 2208 2209 goto out; 2210 } 2211 2212 sp = NULL; 2213 ++kvm->stat.mmu_cache_miss; 2214 2215 out: 2216 kvm_mmu_commit_zap_page(kvm, &invalid_list); 2217 2218 if (collisions > kvm->stat.max_mmu_page_hash_collisions) 2219 kvm->stat.max_mmu_page_hash_collisions = collisions; 2220 return sp; 2221 } 2222 2223 /* Caches used when allocating a new shadow page. */ 2224 struct shadow_page_caches { 2225 struct kvm_mmu_memory_cache *page_header_cache; 2226 struct kvm_mmu_memory_cache *shadow_page_cache; 2227 struct kvm_mmu_memory_cache *shadowed_info_cache; 2228 }; 2229 2230 static struct kvm_mmu_page *kvm_mmu_alloc_shadow_page(struct kvm *kvm, 2231 struct shadow_page_caches *caches, 2232 gfn_t gfn, 2233 struct hlist_head *sp_list, 2234 union kvm_mmu_page_role role) 2235 { 2236 struct kvm_mmu_page *sp; 2237 2238 sp = kvm_mmu_memory_cache_alloc(caches->page_header_cache); 2239 sp->spt = kvm_mmu_memory_cache_alloc(caches->shadow_page_cache); 2240 if (!role.direct) 2241 sp->shadowed_translation = kvm_mmu_memory_cache_alloc(caches->shadowed_info_cache); 2242 2243 set_page_private(virt_to_page(sp->spt), (unsigned long)sp); 2244 2245 INIT_LIST_HEAD(&sp->possible_nx_huge_page_link); 2246 2247 /* 2248 * active_mmu_pages must be a FIFO list, as kvm_zap_obsolete_pages() 2249 * depends on valid pages being added to the head of the list. See 2250 * comments in kvm_zap_obsolete_pages(). 2251 */ 2252 sp->mmu_valid_gen = kvm->arch.mmu_valid_gen; 2253 list_add(&sp->link, &kvm->arch.active_mmu_pages); 2254 kvm_account_mmu_page(kvm, sp); 2255 2256 sp->gfn = gfn; 2257 sp->role = role; 2258 hlist_add_head(&sp->hash_link, sp_list); 2259 if (sp_has_gptes(sp)) 2260 account_shadowed(kvm, sp); 2261 2262 return sp; 2263 } 2264 2265 /* Note, @vcpu may be NULL if @role.direct is true; see kvm_mmu_find_shadow_page. */ 2266 static struct kvm_mmu_page *__kvm_mmu_get_shadow_page(struct kvm *kvm, 2267 struct kvm_vcpu *vcpu, 2268 struct shadow_page_caches *caches, 2269 gfn_t gfn, 2270 union kvm_mmu_page_role role) 2271 { 2272 struct hlist_head *sp_list; 2273 struct kvm_mmu_page *sp; 2274 bool created = false; 2275 2276 sp_list = &kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]; 2277 2278 sp = kvm_mmu_find_shadow_page(kvm, vcpu, gfn, sp_list, role); 2279 if (!sp) { 2280 created = true; 2281 sp = kvm_mmu_alloc_shadow_page(kvm, caches, gfn, sp_list, role); 2282 } 2283 2284 trace_kvm_mmu_get_page(sp, created); 2285 return sp; 2286 } 2287 2288 static struct kvm_mmu_page *kvm_mmu_get_shadow_page(struct kvm_vcpu *vcpu, 2289 gfn_t gfn, 2290 union kvm_mmu_page_role role) 2291 { 2292 struct shadow_page_caches caches = { 2293 .page_header_cache = &vcpu->arch.mmu_page_header_cache, 2294 .shadow_page_cache = &vcpu->arch.mmu_shadow_page_cache, 2295 .shadowed_info_cache = &vcpu->arch.mmu_shadowed_info_cache, 2296 }; 2297 2298 return __kvm_mmu_get_shadow_page(vcpu->kvm, vcpu, &caches, gfn, role); 2299 } 2300 2301 static union kvm_mmu_page_role kvm_mmu_child_role(u64 *sptep, bool direct, 2302 unsigned int access) 2303 { 2304 struct kvm_mmu_page *parent_sp = sptep_to_sp(sptep); 2305 union kvm_mmu_page_role role; 2306 2307 role = parent_sp->role; 2308 role.level--; 2309 role.access = access; 2310 role.direct = direct; 2311 role.passthrough = 0; 2312 2313 /* 2314 * If the guest has 4-byte PTEs then that means it's using 32-bit, 2315 * 2-level, non-PAE paging. KVM shadows such guests with PAE paging 2316 * (i.e. 8-byte PTEs). The difference in PTE size means that KVM must 2317 * shadow each guest page table with multiple shadow page tables, which 2318 * requires extra bookkeeping in the role. 2319 * 2320 * Specifically, to shadow the guest's page directory (which covers a 2321 * 4GiB address space), KVM uses 4 PAE page directories, each mapping 2322 * 1GiB of the address space. @role.quadrant encodes which quarter of 2323 * the address space each maps. 2324 * 2325 * To shadow the guest's page tables (which each map a 4MiB region), KVM 2326 * uses 2 PAE page tables, each mapping a 2MiB region. For these, 2327 * @role.quadrant encodes which half of the region they map. 2328 * 2329 * Concretely, a 4-byte PDE consumes bits 31:22, while an 8-byte PDE 2330 * consumes bits 29:21. To consume bits 31:30, KVM's uses 4 shadow 2331 * PDPTEs; those 4 PAE page directories are pre-allocated and their 2332 * quadrant is assigned in mmu_alloc_root(). A 4-byte PTE consumes 2333 * bits 21:12, while an 8-byte PTE consumes bits 20:12. To consume 2334 * bit 21 in the PTE (the child here), KVM propagates that bit to the 2335 * quadrant, i.e. sets quadrant to '0' or '1'. The parent 8-byte PDE 2336 * covers bit 21 (see above), thus the quadrant is calculated from the 2337 * _least_ significant bit of the PDE index. 2338 */ 2339 if (role.has_4_byte_gpte) { 2340 WARN_ON_ONCE(role.level != PG_LEVEL_4K); 2341 role.quadrant = spte_index(sptep) & 1; 2342 } 2343 2344 return role; 2345 } 2346 2347 static struct kvm_mmu_page *kvm_mmu_get_child_sp(struct kvm_vcpu *vcpu, 2348 u64 *sptep, gfn_t gfn, 2349 bool direct, unsigned int access) 2350 { 2351 union kvm_mmu_page_role role; 2352 2353 if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) 2354 return ERR_PTR(-EEXIST); 2355 2356 role = kvm_mmu_child_role(sptep, direct, access); 2357 return kvm_mmu_get_shadow_page(vcpu, gfn, role); 2358 } 2359 2360 static void shadow_walk_init_using_root(struct kvm_shadow_walk_iterator *iterator, 2361 struct kvm_vcpu *vcpu, hpa_t root, 2362 u64 addr) 2363 { 2364 iterator->addr = addr; 2365 iterator->shadow_addr = root; 2366 iterator->level = vcpu->arch.mmu->root_role.level; 2367 2368 if (iterator->level >= PT64_ROOT_4LEVEL && 2369 vcpu->arch.mmu->cpu_role.base.level < PT64_ROOT_4LEVEL && 2370 !vcpu->arch.mmu->root_role.direct) 2371 iterator->level = PT32E_ROOT_LEVEL; 2372 2373 if (iterator->level == PT32E_ROOT_LEVEL) { 2374 /* 2375 * prev_root is currently only used for 64-bit hosts. So only 2376 * the active root_hpa is valid here. 2377 */ 2378 BUG_ON(root != vcpu->arch.mmu->root.hpa); 2379 2380 iterator->shadow_addr 2381 = vcpu->arch.mmu->pae_root[(addr >> 30) & 3]; 2382 iterator->shadow_addr &= SPTE_BASE_ADDR_MASK; 2383 --iterator->level; 2384 if (!iterator->shadow_addr) 2385 iterator->level = 0; 2386 } 2387 } 2388 2389 static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator, 2390 struct kvm_vcpu *vcpu, u64 addr) 2391 { 2392 shadow_walk_init_using_root(iterator, vcpu, vcpu->arch.mmu->root.hpa, 2393 addr); 2394 } 2395 2396 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator) 2397 { 2398 if (iterator->level < PG_LEVEL_4K) 2399 return false; 2400 2401 iterator->index = SPTE_INDEX(iterator->addr, iterator->level); 2402 iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index; 2403 return true; 2404 } 2405 2406 static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator, 2407 u64 spte) 2408 { 2409 if (!is_shadow_present_pte(spte) || is_last_spte(spte, iterator->level)) { 2410 iterator->level = 0; 2411 return; 2412 } 2413 2414 iterator->shadow_addr = spte & SPTE_BASE_ADDR_MASK; 2415 --iterator->level; 2416 } 2417 2418 static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator) 2419 { 2420 __shadow_walk_next(iterator, *iterator->sptep); 2421 } 2422 2423 static void __link_shadow_page(struct kvm *kvm, 2424 struct kvm_mmu_memory_cache *cache, u64 *sptep, 2425 struct kvm_mmu_page *sp, bool flush) 2426 { 2427 u64 spte; 2428 2429 BUILD_BUG_ON(VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK); 2430 2431 /* 2432 * If an SPTE is present already, it must be a leaf and therefore 2433 * a large one. Drop it, and flush the TLB if needed, before 2434 * installing sp. 2435 */ 2436 if (is_shadow_present_pte(*sptep)) 2437 drop_large_spte(kvm, sptep, flush); 2438 2439 spte = make_nonleaf_spte(sp->spt, sp_ad_disabled(sp)); 2440 2441 mmu_spte_set(sptep, spte); 2442 2443 mmu_page_add_parent_pte(cache, sp, sptep); 2444 2445 /* 2446 * The non-direct sub-pagetable must be updated before linking. For 2447 * L1 sp, the pagetable is updated via kvm_sync_page() in 2448 * kvm_mmu_find_shadow_page() without write-protecting the gfn, 2449 * so sp->unsync can be true or false. For higher level non-direct 2450 * sp, the pagetable is updated/synced via mmu_sync_children() in 2451 * FNAME(fetch)(), so sp->unsync_children can only be false. 2452 * WARN_ON_ONCE() if anything happens unexpectedly. 2453 */ 2454 if (WARN_ON_ONCE(sp->unsync_children) || sp->unsync) 2455 mark_unsync(sptep); 2456 } 2457 2458 static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep, 2459 struct kvm_mmu_page *sp) 2460 { 2461 __link_shadow_page(vcpu->kvm, &vcpu->arch.mmu_pte_list_desc_cache, sptep, sp, true); 2462 } 2463 2464 static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep, 2465 unsigned direct_access) 2466 { 2467 if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) { 2468 struct kvm_mmu_page *child; 2469 2470 /* 2471 * For the direct sp, if the guest pte's dirty bit 2472 * changed form clean to dirty, it will corrupt the 2473 * sp's access: allow writable in the read-only sp, 2474 * so we should update the spte at this point to get 2475 * a new sp with the correct access. 2476 */ 2477 child = spte_to_child_sp(*sptep); 2478 if (child->role.access == direct_access) 2479 return; 2480 2481 drop_parent_pte(vcpu->kvm, child, sptep); 2482 kvm_flush_remote_tlbs_sptep(vcpu->kvm, sptep); 2483 } 2484 } 2485 2486 /* Returns the number of zapped non-leaf child shadow pages. */ 2487 static int mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp, 2488 u64 *spte, struct list_head *invalid_list) 2489 { 2490 u64 pte; 2491 struct kvm_mmu_page *child; 2492 2493 pte = *spte; 2494 if (is_shadow_present_pte(pte)) { 2495 if (is_last_spte(pte, sp->role.level)) { 2496 drop_spte(kvm, spte); 2497 } else { 2498 child = spte_to_child_sp(pte); 2499 drop_parent_pte(kvm, child, spte); 2500 2501 /* 2502 * Recursively zap nested TDP SPs, parentless SPs are 2503 * unlikely to be used again in the near future. This 2504 * avoids retaining a large number of stale nested SPs. 2505 */ 2506 if (tdp_enabled && invalid_list && 2507 child->role.guest_mode && !child->parent_ptes.val) 2508 return kvm_mmu_prepare_zap_page(kvm, child, 2509 invalid_list); 2510 } 2511 } else if (is_mmio_spte(pte)) { 2512 mmu_spte_clear_no_track(spte); 2513 } 2514 return 0; 2515 } 2516 2517 static int kvm_mmu_page_unlink_children(struct kvm *kvm, 2518 struct kvm_mmu_page *sp, 2519 struct list_head *invalid_list) 2520 { 2521 int zapped = 0; 2522 unsigned i; 2523 2524 for (i = 0; i < SPTE_ENT_PER_PAGE; ++i) 2525 zapped += mmu_page_zap_pte(kvm, sp, sp->spt + i, invalid_list); 2526 2527 return zapped; 2528 } 2529 2530 static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp) 2531 { 2532 u64 *sptep; 2533 struct rmap_iterator iter; 2534 2535 while ((sptep = rmap_get_first(&sp->parent_ptes, &iter))) 2536 drop_parent_pte(kvm, sp, sptep); 2537 } 2538 2539 static int mmu_zap_unsync_children(struct kvm *kvm, 2540 struct kvm_mmu_page *parent, 2541 struct list_head *invalid_list) 2542 { 2543 int i, zapped = 0; 2544 struct mmu_page_path parents; 2545 struct kvm_mmu_pages pages; 2546 2547 if (parent->role.level == PG_LEVEL_4K) 2548 return 0; 2549 2550 while (mmu_unsync_walk(parent, &pages)) { 2551 struct kvm_mmu_page *sp; 2552 2553 for_each_sp(pages, sp, parents, i) { 2554 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list); 2555 mmu_pages_clear_parents(&parents); 2556 zapped++; 2557 } 2558 } 2559 2560 return zapped; 2561 } 2562 2563 static bool __kvm_mmu_prepare_zap_page(struct kvm *kvm, 2564 struct kvm_mmu_page *sp, 2565 struct list_head *invalid_list, 2566 int *nr_zapped) 2567 { 2568 bool list_unstable, zapped_root = false; 2569 2570 lockdep_assert_held_write(&kvm->mmu_lock); 2571 trace_kvm_mmu_prepare_zap_page(sp); 2572 ++kvm->stat.mmu_shadow_zapped; 2573 *nr_zapped = mmu_zap_unsync_children(kvm, sp, invalid_list); 2574 *nr_zapped += kvm_mmu_page_unlink_children(kvm, sp, invalid_list); 2575 kvm_mmu_unlink_parents(kvm, sp); 2576 2577 /* Zapping children means active_mmu_pages has become unstable. */ 2578 list_unstable = *nr_zapped; 2579 2580 if (!sp->role.invalid && sp_has_gptes(sp)) 2581 unaccount_shadowed(kvm, sp); 2582 2583 if (sp->unsync) 2584 kvm_unlink_unsync_page(kvm, sp); 2585 if (!sp->root_count) { 2586 /* Count self */ 2587 (*nr_zapped)++; 2588 2589 /* 2590 * Already invalid pages (previously active roots) are not on 2591 * the active page list. See list_del() in the "else" case of 2592 * !sp->root_count. 2593 */ 2594 if (sp->role.invalid) 2595 list_add(&sp->link, invalid_list); 2596 else 2597 list_move(&sp->link, invalid_list); 2598 kvm_unaccount_mmu_page(kvm, sp); 2599 } else { 2600 /* 2601 * Remove the active root from the active page list, the root 2602 * will be explicitly freed when the root_count hits zero. 2603 */ 2604 list_del(&sp->link); 2605 2606 /* 2607 * Obsolete pages cannot be used on any vCPUs, see the comment 2608 * in kvm_mmu_zap_all_fast(). Note, is_obsolete_sp() also 2609 * treats invalid shadow pages as being obsolete. 2610 */ 2611 zapped_root = !is_obsolete_sp(kvm, sp); 2612 } 2613 2614 if (sp->nx_huge_page_disallowed) 2615 unaccount_nx_huge_page(kvm, sp); 2616 2617 sp->role.invalid = 1; 2618 2619 /* 2620 * Make the request to free obsolete roots after marking the root 2621 * invalid, otherwise other vCPUs may not see it as invalid. 2622 */ 2623 if (zapped_root) 2624 kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_FREE_OBSOLETE_ROOTS); 2625 return list_unstable; 2626 } 2627 2628 static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp, 2629 struct list_head *invalid_list) 2630 { 2631 int nr_zapped; 2632 2633 __kvm_mmu_prepare_zap_page(kvm, sp, invalid_list, &nr_zapped); 2634 return nr_zapped; 2635 } 2636 2637 static void kvm_mmu_commit_zap_page(struct kvm *kvm, 2638 struct list_head *invalid_list) 2639 { 2640 struct kvm_mmu_page *sp, *nsp; 2641 2642 if (list_empty(invalid_list)) 2643 return; 2644 2645 /* 2646 * We need to make sure everyone sees our modifications to 2647 * the page tables and see changes to vcpu->mode here. The barrier 2648 * in the kvm_flush_remote_tlbs() achieves this. This pairs 2649 * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end. 2650 * 2651 * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit 2652 * guest mode and/or lockless shadow page table walks. 2653 */ 2654 kvm_flush_remote_tlbs(kvm); 2655 2656 list_for_each_entry_safe(sp, nsp, invalid_list, link) { 2657 WARN_ON_ONCE(!sp->role.invalid || sp->root_count); 2658 kvm_mmu_free_shadow_page(sp); 2659 } 2660 } 2661 2662 static unsigned long kvm_mmu_zap_oldest_mmu_pages(struct kvm *kvm, 2663 unsigned long nr_to_zap) 2664 { 2665 unsigned long total_zapped = 0; 2666 struct kvm_mmu_page *sp, *tmp; 2667 LIST_HEAD(invalid_list); 2668 bool unstable; 2669 int nr_zapped; 2670 2671 if (list_empty(&kvm->arch.active_mmu_pages)) 2672 return 0; 2673 2674 restart: 2675 list_for_each_entry_safe_reverse(sp, tmp, &kvm->arch.active_mmu_pages, link) { 2676 /* 2677 * Don't zap active root pages, the page itself can't be freed 2678 * and zapping it will just force vCPUs to realloc and reload. 2679 */ 2680 if (sp->root_count) 2681 continue; 2682 2683 unstable = __kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list, 2684 &nr_zapped); 2685 total_zapped += nr_zapped; 2686 if (total_zapped >= nr_to_zap) 2687 break; 2688 2689 if (unstable) 2690 goto restart; 2691 } 2692 2693 kvm_mmu_commit_zap_page(kvm, &invalid_list); 2694 2695 kvm->stat.mmu_recycled += total_zapped; 2696 return total_zapped; 2697 } 2698 2699 static inline unsigned long kvm_mmu_available_pages(struct kvm *kvm) 2700 { 2701 if (kvm->arch.n_max_mmu_pages > kvm->arch.n_used_mmu_pages) 2702 return kvm->arch.n_max_mmu_pages - 2703 kvm->arch.n_used_mmu_pages; 2704 2705 return 0; 2706 } 2707 2708 static int make_mmu_pages_available(struct kvm_vcpu *vcpu) 2709 { 2710 unsigned long avail = kvm_mmu_available_pages(vcpu->kvm); 2711 2712 if (likely(avail >= KVM_MIN_FREE_MMU_PAGES)) 2713 return 0; 2714 2715 kvm_mmu_zap_oldest_mmu_pages(vcpu->kvm, KVM_REFILL_PAGES - avail); 2716 2717 /* 2718 * Note, this check is intentionally soft, it only guarantees that one 2719 * page is available, while the caller may end up allocating as many as 2720 * four pages, e.g. for PAE roots or for 5-level paging. Temporarily 2721 * exceeding the (arbitrary by default) limit will not harm the host, 2722 * being too aggressive may unnecessarily kill the guest, and getting an 2723 * exact count is far more trouble than it's worth, especially in the 2724 * page fault paths. 2725 */ 2726 if (!kvm_mmu_available_pages(vcpu->kvm)) 2727 return -ENOSPC; 2728 return 0; 2729 } 2730 2731 /* 2732 * Changing the number of mmu pages allocated to the vm 2733 * Note: if goal_nr_mmu_pages is too small, you will get dead lock 2734 */ 2735 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long goal_nr_mmu_pages) 2736 { 2737 write_lock(&kvm->mmu_lock); 2738 2739 if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) { 2740 kvm_mmu_zap_oldest_mmu_pages(kvm, kvm->arch.n_used_mmu_pages - 2741 goal_nr_mmu_pages); 2742 2743 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages; 2744 } 2745 2746 kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages; 2747 2748 write_unlock(&kvm->mmu_lock); 2749 } 2750 2751 int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn) 2752 { 2753 struct kvm_mmu_page *sp; 2754 LIST_HEAD(invalid_list); 2755 int r; 2756 2757 r = 0; 2758 write_lock(&kvm->mmu_lock); 2759 for_each_gfn_valid_sp_with_gptes(kvm, sp, gfn) { 2760 r = 1; 2761 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list); 2762 } 2763 kvm_mmu_commit_zap_page(kvm, &invalid_list); 2764 write_unlock(&kvm->mmu_lock); 2765 2766 return r; 2767 } 2768 2769 static int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva) 2770 { 2771 gpa_t gpa; 2772 int r; 2773 2774 if (vcpu->arch.mmu->root_role.direct) 2775 return 0; 2776 2777 gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL); 2778 2779 r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT); 2780 2781 return r; 2782 } 2783 2784 static void kvm_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp) 2785 { 2786 trace_kvm_mmu_unsync_page(sp); 2787 ++kvm->stat.mmu_unsync; 2788 sp->unsync = 1; 2789 2790 kvm_mmu_mark_parents_unsync(sp); 2791 } 2792 2793 /* 2794 * Attempt to unsync any shadow pages that can be reached by the specified gfn, 2795 * KVM is creating a writable mapping for said gfn. Returns 0 if all pages 2796 * were marked unsync (or if there is no shadow page), -EPERM if the SPTE must 2797 * be write-protected. 2798 */ 2799 int mmu_try_to_unsync_pages(struct kvm *kvm, const struct kvm_memory_slot *slot, 2800 gfn_t gfn, bool can_unsync, bool prefetch) 2801 { 2802 struct kvm_mmu_page *sp; 2803 bool locked = false; 2804 2805 /* 2806 * Force write-protection if the page is being tracked. Note, the page 2807 * track machinery is used to write-protect upper-level shadow pages, 2808 * i.e. this guards the role.level == 4K assertion below! 2809 */ 2810 if (kvm_gfn_is_write_tracked(kvm, slot, gfn)) 2811 return -EPERM; 2812 2813 /* 2814 * The page is not write-tracked, mark existing shadow pages unsync 2815 * unless KVM is synchronizing an unsync SP (can_unsync = false). In 2816 * that case, KVM must complete emulation of the guest TLB flush before 2817 * allowing shadow pages to become unsync (writable by the guest). 2818 */ 2819 for_each_gfn_valid_sp_with_gptes(kvm, sp, gfn) { 2820 if (!can_unsync) 2821 return -EPERM; 2822 2823 if (sp->unsync) 2824 continue; 2825 2826 if (prefetch) 2827 return -EEXIST; 2828 2829 /* 2830 * TDP MMU page faults require an additional spinlock as they 2831 * run with mmu_lock held for read, not write, and the unsync 2832 * logic is not thread safe. Take the spinklock regardless of 2833 * the MMU type to avoid extra conditionals/parameters, there's 2834 * no meaningful penalty if mmu_lock is held for write. 2835 */ 2836 if (!locked) { 2837 locked = true; 2838 spin_lock(&kvm->arch.mmu_unsync_pages_lock); 2839 2840 /* 2841 * Recheck after taking the spinlock, a different vCPU 2842 * may have since marked the page unsync. A false 2843 * positive on the unprotected check above is not 2844 * possible as clearing sp->unsync _must_ hold mmu_lock 2845 * for write, i.e. unsync cannot transition from 0->1 2846 * while this CPU holds mmu_lock for read (or write). 2847 */ 2848 if (READ_ONCE(sp->unsync)) 2849 continue; 2850 } 2851 2852 WARN_ON_ONCE(sp->role.level != PG_LEVEL_4K); 2853 kvm_unsync_page(kvm, sp); 2854 } 2855 if (locked) 2856 spin_unlock(&kvm->arch.mmu_unsync_pages_lock); 2857 2858 /* 2859 * We need to ensure that the marking of unsync pages is visible 2860 * before the SPTE is updated to allow writes because 2861 * kvm_mmu_sync_roots() checks the unsync flags without holding 2862 * the MMU lock and so can race with this. If the SPTE was updated 2863 * before the page had been marked as unsync-ed, something like the 2864 * following could happen: 2865 * 2866 * CPU 1 CPU 2 2867 * --------------------------------------------------------------------- 2868 * 1.2 Host updates SPTE 2869 * to be writable 2870 * 2.1 Guest writes a GPTE for GVA X. 2871 * (GPTE being in the guest page table shadowed 2872 * by the SP from CPU 1.) 2873 * This reads SPTE during the page table walk. 2874 * Since SPTE.W is read as 1, there is no 2875 * fault. 2876 * 2877 * 2.2 Guest issues TLB flush. 2878 * That causes a VM Exit. 2879 * 2880 * 2.3 Walking of unsync pages sees sp->unsync is 2881 * false and skips the page. 2882 * 2883 * 2.4 Guest accesses GVA X. 2884 * Since the mapping in the SP was not updated, 2885 * so the old mapping for GVA X incorrectly 2886 * gets used. 2887 * 1.1 Host marks SP 2888 * as unsync 2889 * (sp->unsync = true) 2890 * 2891 * The write barrier below ensures that 1.1 happens before 1.2 and thus 2892 * the situation in 2.4 does not arise. It pairs with the read barrier 2893 * in is_unsync_root(), placed between 2.1's load of SPTE.W and 2.3. 2894 */ 2895 smp_wmb(); 2896 2897 return 0; 2898 } 2899 2900 static int mmu_set_spte(struct kvm_vcpu *vcpu, struct kvm_memory_slot *slot, 2901 u64 *sptep, unsigned int pte_access, gfn_t gfn, 2902 kvm_pfn_t pfn, struct kvm_page_fault *fault) 2903 { 2904 struct kvm_mmu_page *sp = sptep_to_sp(sptep); 2905 int level = sp->role.level; 2906 int was_rmapped = 0; 2907 int ret = RET_PF_FIXED; 2908 bool flush = false; 2909 bool wrprot; 2910 u64 spte; 2911 2912 /* Prefetching always gets a writable pfn. */ 2913 bool host_writable = !fault || fault->map_writable; 2914 bool prefetch = !fault || fault->prefetch; 2915 bool write_fault = fault && fault->write; 2916 2917 if (unlikely(is_noslot_pfn(pfn))) { 2918 vcpu->stat.pf_mmio_spte_created++; 2919 mark_mmio_spte(vcpu, sptep, gfn, pte_access); 2920 return RET_PF_EMULATE; 2921 } 2922 2923 if (is_shadow_present_pte(*sptep)) { 2924 /* 2925 * If we overwrite a PTE page pointer with a 2MB PMD, unlink 2926 * the parent of the now unreachable PTE. 2927 */ 2928 if (level > PG_LEVEL_4K && !is_large_pte(*sptep)) { 2929 struct kvm_mmu_page *child; 2930 u64 pte = *sptep; 2931 2932 child = spte_to_child_sp(pte); 2933 drop_parent_pte(vcpu->kvm, child, sptep); 2934 flush = true; 2935 } else if (pfn != spte_to_pfn(*sptep)) { 2936 drop_spte(vcpu->kvm, sptep); 2937 flush = true; 2938 } else 2939 was_rmapped = 1; 2940 } 2941 2942 wrprot = make_spte(vcpu, sp, slot, pte_access, gfn, pfn, *sptep, prefetch, 2943 true, host_writable, &spte); 2944 2945 if (*sptep == spte) { 2946 ret = RET_PF_SPURIOUS; 2947 } else { 2948 flush |= mmu_spte_update(sptep, spte); 2949 trace_kvm_mmu_set_spte(level, gfn, sptep); 2950 } 2951 2952 if (wrprot) { 2953 if (write_fault) 2954 ret = RET_PF_EMULATE; 2955 } 2956 2957 if (flush) 2958 kvm_flush_remote_tlbs_gfn(vcpu->kvm, gfn, level); 2959 2960 if (!was_rmapped) { 2961 WARN_ON_ONCE(ret == RET_PF_SPURIOUS); 2962 rmap_add(vcpu, slot, sptep, gfn, pte_access); 2963 } else { 2964 /* Already rmapped but the pte_access bits may have changed. */ 2965 kvm_mmu_page_set_access(sp, spte_index(sptep), pte_access); 2966 } 2967 2968 return ret; 2969 } 2970 2971 static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu, 2972 struct kvm_mmu_page *sp, 2973 u64 *start, u64 *end) 2974 { 2975 struct page *pages[PTE_PREFETCH_NUM]; 2976 struct kvm_memory_slot *slot; 2977 unsigned int access = sp->role.access; 2978 int i, ret; 2979 gfn_t gfn; 2980 2981 gfn = kvm_mmu_page_get_gfn(sp, spte_index(start)); 2982 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK); 2983 if (!slot) 2984 return -1; 2985 2986 ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start); 2987 if (ret <= 0) 2988 return -1; 2989 2990 for (i = 0; i < ret; i++, gfn++, start++) { 2991 mmu_set_spte(vcpu, slot, start, access, gfn, 2992 page_to_pfn(pages[i]), NULL); 2993 put_page(pages[i]); 2994 } 2995 2996 return 0; 2997 } 2998 2999 static void __direct_pte_prefetch(struct kvm_vcpu *vcpu, 3000 struct kvm_mmu_page *sp, u64 *sptep) 3001 { 3002 u64 *spte, *start = NULL; 3003 int i; 3004 3005 WARN_ON_ONCE(!sp->role.direct); 3006 3007 i = spte_index(sptep) & ~(PTE_PREFETCH_NUM - 1); 3008 spte = sp->spt + i; 3009 3010 for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) { 3011 if (is_shadow_present_pte(*spte) || spte == sptep) { 3012 if (!start) 3013 continue; 3014 if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0) 3015 return; 3016 start = NULL; 3017 } else if (!start) 3018 start = spte; 3019 } 3020 if (start) 3021 direct_pte_prefetch_many(vcpu, sp, start, spte); 3022 } 3023 3024 static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep) 3025 { 3026 struct kvm_mmu_page *sp; 3027 3028 sp = sptep_to_sp(sptep); 3029 3030 /* 3031 * Without accessed bits, there's no way to distinguish between 3032 * actually accessed translations and prefetched, so disable pte 3033 * prefetch if accessed bits aren't available. 3034 */ 3035 if (sp_ad_disabled(sp)) 3036 return; 3037 3038 if (sp->role.level > PG_LEVEL_4K) 3039 return; 3040 3041 /* 3042 * If addresses are being invalidated, skip prefetching to avoid 3043 * accidentally prefetching those addresses. 3044 */ 3045 if (unlikely(vcpu->kvm->mmu_invalidate_in_progress)) 3046 return; 3047 3048 __direct_pte_prefetch(vcpu, sp, sptep); 3049 } 3050 3051 /* 3052 * Lookup the mapping level for @gfn in the current mm. 3053 * 3054 * WARNING! Use of host_pfn_mapping_level() requires the caller and the end 3055 * consumer to be tied into KVM's handlers for MMU notifier events! 3056 * 3057 * There are several ways to safely use this helper: 3058 * 3059 * - Check mmu_invalidate_retry_hva() after grabbing the mapping level, before 3060 * consuming it. In this case, mmu_lock doesn't need to be held during the 3061 * lookup, but it does need to be held while checking the MMU notifier. 3062 * 3063 * - Hold mmu_lock AND ensure there is no in-progress MMU notifier invalidation 3064 * event for the hva. This can be done by explicit checking the MMU notifier 3065 * or by ensuring that KVM already has a valid mapping that covers the hva. 3066 * 3067 * - Do not use the result to install new mappings, e.g. use the host mapping 3068 * level only to decide whether or not to zap an entry. In this case, it's 3069 * not required to hold mmu_lock (though it's highly likely the caller will 3070 * want to hold mmu_lock anyways, e.g. to modify SPTEs). 3071 * 3072 * Note! The lookup can still race with modifications to host page tables, but 3073 * the above "rules" ensure KVM will not _consume_ the result of the walk if a 3074 * race with the primary MMU occurs. 3075 */ 3076 static int host_pfn_mapping_level(struct kvm *kvm, gfn_t gfn, 3077 const struct kvm_memory_slot *slot) 3078 { 3079 int level = PG_LEVEL_4K; 3080 unsigned long hva; 3081 unsigned long flags; 3082 pgd_t pgd; 3083 p4d_t p4d; 3084 pud_t pud; 3085 pmd_t pmd; 3086 3087 /* 3088 * Note, using the already-retrieved memslot and __gfn_to_hva_memslot() 3089 * is not solely for performance, it's also necessary to avoid the 3090 * "writable" check in __gfn_to_hva_many(), which will always fail on 3091 * read-only memslots due to gfn_to_hva() assuming writes. Earlier 3092 * page fault steps have already verified the guest isn't writing a 3093 * read-only memslot. 3094 */ 3095 hva = __gfn_to_hva_memslot(slot, gfn); 3096 3097 /* 3098 * Disable IRQs to prevent concurrent tear down of host page tables, 3099 * e.g. if the primary MMU promotes a P*D to a huge page and then frees 3100 * the original page table. 3101 */ 3102 local_irq_save(flags); 3103 3104 /* 3105 * Read each entry once. As above, a non-leaf entry can be promoted to 3106 * a huge page _during_ this walk. Re-reading the entry could send the 3107 * walk into the weeks, e.g. p*d_large() returns false (sees the old 3108 * value) and then p*d_offset() walks into the target huge page instead 3109 * of the old page table (sees the new value). 3110 */ 3111 pgd = READ_ONCE(*pgd_offset(kvm->mm, hva)); 3112 if (pgd_none(pgd)) 3113 goto out; 3114 3115 p4d = READ_ONCE(*p4d_offset(&pgd, hva)); 3116 if (p4d_none(p4d) || !p4d_present(p4d)) 3117 goto out; 3118 3119 pud = READ_ONCE(*pud_offset(&p4d, hva)); 3120 if (pud_none(pud) || !pud_present(pud)) 3121 goto out; 3122 3123 if (pud_large(pud)) { 3124 level = PG_LEVEL_1G; 3125 goto out; 3126 } 3127 3128 pmd = READ_ONCE(*pmd_offset(&pud, hva)); 3129 if (pmd_none(pmd) || !pmd_present(pmd)) 3130 goto out; 3131 3132 if (pmd_large(pmd)) 3133 level = PG_LEVEL_2M; 3134 3135 out: 3136 local_irq_restore(flags); 3137 return level; 3138 } 3139 3140 int kvm_mmu_max_mapping_level(struct kvm *kvm, 3141 const struct kvm_memory_slot *slot, gfn_t gfn, 3142 int max_level) 3143 { 3144 struct kvm_lpage_info *linfo; 3145 int host_level; 3146 3147 max_level = min(max_level, max_huge_page_level); 3148 for ( ; max_level > PG_LEVEL_4K; max_level--) { 3149 linfo = lpage_info_slot(gfn, slot, max_level); 3150 if (!linfo->disallow_lpage) 3151 break; 3152 } 3153 3154 if (max_level == PG_LEVEL_4K) 3155 return PG_LEVEL_4K; 3156 3157 host_level = host_pfn_mapping_level(kvm, gfn, slot); 3158 return min(host_level, max_level); 3159 } 3160 3161 void kvm_mmu_hugepage_adjust(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault) 3162 { 3163 struct kvm_memory_slot *slot = fault->slot; 3164 kvm_pfn_t mask; 3165 3166 fault->huge_page_disallowed = fault->exec && fault->nx_huge_page_workaround_enabled; 3167 3168 if (unlikely(fault->max_level == PG_LEVEL_4K)) 3169 return; 3170 3171 if (is_error_noslot_pfn(fault->pfn)) 3172 return; 3173 3174 if (kvm_slot_dirty_track_enabled(slot)) 3175 return; 3176 3177 /* 3178 * Enforce the iTLB multihit workaround after capturing the requested 3179 * level, which will be used to do precise, accurate accounting. 3180 */ 3181 fault->req_level = kvm_mmu_max_mapping_level(vcpu->kvm, slot, 3182 fault->gfn, fault->max_level); 3183 if (fault->req_level == PG_LEVEL_4K || fault->huge_page_disallowed) 3184 return; 3185 3186 /* 3187 * mmu_invalidate_retry() was successful and mmu_lock is held, so 3188 * the pmd can't be split from under us. 3189 */ 3190 fault->goal_level = fault->req_level; 3191 mask = KVM_PAGES_PER_HPAGE(fault->goal_level) - 1; 3192 VM_BUG_ON((fault->gfn & mask) != (fault->pfn & mask)); 3193 fault->pfn &= ~mask; 3194 } 3195 3196 void disallowed_hugepage_adjust(struct kvm_page_fault *fault, u64 spte, int cur_level) 3197 { 3198 if (cur_level > PG_LEVEL_4K && 3199 cur_level == fault->goal_level && 3200 is_shadow_present_pte(spte) && 3201 !is_large_pte(spte) && 3202 spte_to_child_sp(spte)->nx_huge_page_disallowed) { 3203 /* 3204 * A small SPTE exists for this pfn, but FNAME(fetch), 3205 * direct_map(), or kvm_tdp_mmu_map() would like to create a 3206 * large PTE instead: just force them to go down another level, 3207 * patching back for them into pfn the next 9 bits of the 3208 * address. 3209 */ 3210 u64 page_mask = KVM_PAGES_PER_HPAGE(cur_level) - 3211 KVM_PAGES_PER_HPAGE(cur_level - 1); 3212 fault->pfn |= fault->gfn & page_mask; 3213 fault->goal_level--; 3214 } 3215 } 3216 3217 static int direct_map(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault) 3218 { 3219 struct kvm_shadow_walk_iterator it; 3220 struct kvm_mmu_page *sp; 3221 int ret; 3222 gfn_t base_gfn = fault->gfn; 3223 3224 kvm_mmu_hugepage_adjust(vcpu, fault); 3225 3226 trace_kvm_mmu_spte_requested(fault); 3227 for_each_shadow_entry(vcpu, fault->addr, it) { 3228 /* 3229 * We cannot overwrite existing page tables with an NX 3230 * large page, as the leaf could be executable. 3231 */ 3232 if (fault->nx_huge_page_workaround_enabled) 3233 disallowed_hugepage_adjust(fault, *it.sptep, it.level); 3234 3235 base_gfn = gfn_round_for_level(fault->gfn, it.level); 3236 if (it.level == fault->goal_level) 3237 break; 3238 3239 sp = kvm_mmu_get_child_sp(vcpu, it.sptep, base_gfn, true, ACC_ALL); 3240 if (sp == ERR_PTR(-EEXIST)) 3241 continue; 3242 3243 link_shadow_page(vcpu, it.sptep, sp); 3244 if (fault->huge_page_disallowed) 3245 account_nx_huge_page(vcpu->kvm, sp, 3246 fault->req_level >= it.level); 3247 } 3248 3249 if (WARN_ON_ONCE(it.level != fault->goal_level)) 3250 return -EFAULT; 3251 3252 ret = mmu_set_spte(vcpu, fault->slot, it.sptep, ACC_ALL, 3253 base_gfn, fault->pfn, fault); 3254 if (ret == RET_PF_SPURIOUS) 3255 return ret; 3256 3257 direct_pte_prefetch(vcpu, it.sptep); 3258 return ret; 3259 } 3260 3261 static void kvm_send_hwpoison_signal(struct kvm_memory_slot *slot, gfn_t gfn) 3262 { 3263 unsigned long hva = gfn_to_hva_memslot(slot, gfn); 3264 3265 send_sig_mceerr(BUS_MCEERR_AR, (void __user *)hva, PAGE_SHIFT, current); 3266 } 3267 3268 static int kvm_handle_error_pfn(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault) 3269 { 3270 if (is_sigpending_pfn(fault->pfn)) { 3271 kvm_handle_signal_exit(vcpu); 3272 return -EINTR; 3273 } 3274 3275 /* 3276 * Do not cache the mmio info caused by writing the readonly gfn 3277 * into the spte otherwise read access on readonly gfn also can 3278 * caused mmio page fault and treat it as mmio access. 3279 */ 3280 if (fault->pfn == KVM_PFN_ERR_RO_FAULT) 3281 return RET_PF_EMULATE; 3282 3283 if (fault->pfn == KVM_PFN_ERR_HWPOISON) { 3284 kvm_send_hwpoison_signal(fault->slot, fault->gfn); 3285 return RET_PF_RETRY; 3286 } 3287 3288 return -EFAULT; 3289 } 3290 3291 static int kvm_handle_noslot_fault(struct kvm_vcpu *vcpu, 3292 struct kvm_page_fault *fault, 3293 unsigned int access) 3294 { 3295 gva_t gva = fault->is_tdp ? 0 : fault->addr; 3296 3297 vcpu_cache_mmio_info(vcpu, gva, fault->gfn, 3298 access & shadow_mmio_access_mask); 3299 3300 /* 3301 * If MMIO caching is disabled, emulate immediately without 3302 * touching the shadow page tables as attempting to install an 3303 * MMIO SPTE will just be an expensive nop. 3304 */ 3305 if (unlikely(!enable_mmio_caching)) 3306 return RET_PF_EMULATE; 3307 3308 /* 3309 * Do not create an MMIO SPTE for a gfn greater than host.MAXPHYADDR, 3310 * any guest that generates such gfns is running nested and is being 3311 * tricked by L0 userspace (you can observe gfn > L1.MAXPHYADDR if and 3312 * only if L1's MAXPHYADDR is inaccurate with respect to the 3313 * hardware's). 3314 */ 3315 if (unlikely(fault->gfn > kvm_mmu_max_gfn())) 3316 return RET_PF_EMULATE; 3317 3318 return RET_PF_CONTINUE; 3319 } 3320 3321 static bool page_fault_can_be_fast(struct kvm_page_fault *fault) 3322 { 3323 /* 3324 * Page faults with reserved bits set, i.e. faults on MMIO SPTEs, only 3325 * reach the common page fault handler if the SPTE has an invalid MMIO 3326 * generation number. Refreshing the MMIO generation needs to go down 3327 * the slow path. Note, EPT Misconfigs do NOT set the PRESENT flag! 3328 */ 3329 if (fault->rsvd) 3330 return false; 3331 3332 /* 3333 * #PF can be fast if: 3334 * 3335 * 1. The shadow page table entry is not present and A/D bits are 3336 * disabled _by KVM_, which could mean that the fault is potentially 3337 * caused by access tracking (if enabled). If A/D bits are enabled 3338 * by KVM, but disabled by L1 for L2, KVM is forced to disable A/D 3339 * bits for L2 and employ access tracking, but the fast page fault 3340 * mechanism only supports direct MMUs. 3341 * 2. The shadow page table entry is present, the access is a write, 3342 * and no reserved bits are set (MMIO SPTEs cannot be "fixed"), i.e. 3343 * the fault was caused by a write-protection violation. If the 3344 * SPTE is MMU-writable (determined later), the fault can be fixed 3345 * by setting the Writable bit, which can be done out of mmu_lock. 3346 */ 3347 if (!fault->present) 3348 return !kvm_ad_enabled(); 3349 3350 /* 3351 * Note, instruction fetches and writes are mutually exclusive, ignore 3352 * the "exec" flag. 3353 */ 3354 return fault->write; 3355 } 3356 3357 /* 3358 * Returns true if the SPTE was fixed successfully. Otherwise, 3359 * someone else modified the SPTE from its original value. 3360 */ 3361 static bool fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, 3362 struct kvm_page_fault *fault, 3363 u64 *sptep, u64 old_spte, u64 new_spte) 3364 { 3365 /* 3366 * Theoretically we could also set dirty bit (and flush TLB) here in 3367 * order to eliminate unnecessary PML logging. See comments in 3368 * set_spte. But fast_page_fault is very unlikely to happen with PML 3369 * enabled, so we do not do this. This might result in the same GPA 3370 * to be logged in PML buffer again when the write really happens, and 3371 * eventually to be called by mark_page_dirty twice. But it's also no 3372 * harm. This also avoids the TLB flush needed after setting dirty bit 3373 * so non-PML cases won't be impacted. 3374 * 3375 * Compare with set_spte where instead shadow_dirty_mask is set. 3376 */ 3377 if (!try_cmpxchg64(sptep, &old_spte, new_spte)) 3378 return false; 3379 3380 if (is_writable_pte(new_spte) && !is_writable_pte(old_spte)) 3381 mark_page_dirty_in_slot(vcpu->kvm, fault->slot, fault->gfn); 3382 3383 return true; 3384 } 3385 3386 static bool is_access_allowed(struct kvm_page_fault *fault, u64 spte) 3387 { 3388 if (fault->exec) 3389 return is_executable_pte(spte); 3390 3391 if (fault->write) 3392 return is_writable_pte(spte); 3393 3394 /* Fault was on Read access */ 3395 return spte & PT_PRESENT_MASK; 3396 } 3397 3398 /* 3399 * Returns the last level spte pointer of the shadow page walk for the given 3400 * gpa, and sets *spte to the spte value. This spte may be non-preset. If no 3401 * walk could be performed, returns NULL and *spte does not contain valid data. 3402 * 3403 * Contract: 3404 * - Must be called between walk_shadow_page_lockless_{begin,end}. 3405 * - The returned sptep must not be used after walk_shadow_page_lockless_end. 3406 */ 3407 static u64 *fast_pf_get_last_sptep(struct kvm_vcpu *vcpu, gpa_t gpa, u64 *spte) 3408 { 3409 struct kvm_shadow_walk_iterator iterator; 3410 u64 old_spte; 3411 u64 *sptep = NULL; 3412 3413 for_each_shadow_entry_lockless(vcpu, gpa, iterator, old_spte) { 3414 sptep = iterator.sptep; 3415 *spte = old_spte; 3416 } 3417 3418 return sptep; 3419 } 3420 3421 /* 3422 * Returns one of RET_PF_INVALID, RET_PF_FIXED or RET_PF_SPURIOUS. 3423 */ 3424 static int fast_page_fault(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault) 3425 { 3426 struct kvm_mmu_page *sp; 3427 int ret = RET_PF_INVALID; 3428 u64 spte = 0ull; 3429 u64 *sptep = NULL; 3430 uint retry_count = 0; 3431 3432 if (!page_fault_can_be_fast(fault)) 3433 return ret; 3434 3435 walk_shadow_page_lockless_begin(vcpu); 3436 3437 do { 3438 u64 new_spte; 3439 3440 if (tdp_mmu_enabled) 3441 sptep = kvm_tdp_mmu_fast_pf_get_last_sptep(vcpu, fault->addr, &spte); 3442 else 3443 sptep = fast_pf_get_last_sptep(vcpu, fault->addr, &spte); 3444 3445 if (!is_shadow_present_pte(spte)) 3446 break; 3447 3448 sp = sptep_to_sp(sptep); 3449 if (!is_last_spte(spte, sp->role.level)) 3450 break; 3451 3452 /* 3453 * Check whether the memory access that caused the fault would 3454 * still cause it if it were to be performed right now. If not, 3455 * then this is a spurious fault caused by TLB lazily flushed, 3456 * or some other CPU has already fixed the PTE after the 3457 * current CPU took the fault. 3458 * 3459 * Need not check the access of upper level table entries since 3460 * they are always ACC_ALL. 3461 */ 3462 if (is_access_allowed(fault, spte)) { 3463 ret = RET_PF_SPURIOUS; 3464 break; 3465 } 3466 3467 new_spte = spte; 3468 3469 /* 3470 * KVM only supports fixing page faults outside of MMU lock for 3471 * direct MMUs, nested MMUs are always indirect, and KVM always 3472 * uses A/D bits for non-nested MMUs. Thus, if A/D bits are 3473 * enabled, the SPTE can't be an access-tracked SPTE. 3474 */ 3475 if (unlikely(!kvm_ad_enabled()) && is_access_track_spte(spte)) 3476 new_spte = restore_acc_track_spte(new_spte); 3477 3478 /* 3479 * To keep things simple, only SPTEs that are MMU-writable can 3480 * be made fully writable outside of mmu_lock, e.g. only SPTEs 3481 * that were write-protected for dirty-logging or access 3482 * tracking are handled here. Don't bother checking if the 3483 * SPTE is writable to prioritize running with A/D bits enabled. 3484 * The is_access_allowed() check above handles the common case 3485 * of the fault being spurious, and the SPTE is known to be 3486 * shadow-present, i.e. except for access tracking restoration 3487 * making the new SPTE writable, the check is wasteful. 3488 */ 3489 if (fault->write && is_mmu_writable_spte(spte)) { 3490 new_spte |= PT_WRITABLE_MASK; 3491 3492 /* 3493 * Do not fix write-permission on the large spte when 3494 * dirty logging is enabled. Since we only dirty the 3495 * first page into the dirty-bitmap in 3496 * fast_pf_fix_direct_spte(), other pages are missed 3497 * if its slot has dirty logging enabled. 3498 * 3499 * Instead, we let the slow page fault path create a 3500 * normal spte to fix the access. 3501 */ 3502 if (sp->role.level > PG_LEVEL_4K && 3503 kvm_slot_dirty_track_enabled(fault->slot)) 3504 break; 3505 } 3506 3507 /* Verify that the fault can be handled in the fast path */ 3508 if (new_spte == spte || 3509 !is_access_allowed(fault, new_spte)) 3510 break; 3511 3512 /* 3513 * Currently, fast page fault only works for direct mapping 3514 * since the gfn is not stable for indirect shadow page. See 3515 * Documentation/virt/kvm/locking.rst to get more detail. 3516 */ 3517 if (fast_pf_fix_direct_spte(vcpu, fault, sptep, spte, new_spte)) { 3518 ret = RET_PF_FIXED; 3519 break; 3520 } 3521 3522 if (++retry_count > 4) { 3523 pr_warn_once("Fast #PF retrying more than 4 times.\n"); 3524 break; 3525 } 3526 3527 } while (true); 3528 3529 trace_fast_page_fault(vcpu, fault, sptep, spte, ret); 3530 walk_shadow_page_lockless_end(vcpu); 3531 3532 if (ret != RET_PF_INVALID) 3533 vcpu->stat.pf_fast++; 3534 3535 return ret; 3536 } 3537 3538 static void mmu_free_root_page(struct kvm *kvm, hpa_t *root_hpa, 3539 struct list_head *invalid_list) 3540 { 3541 struct kvm_mmu_page *sp; 3542 3543 if (!VALID_PAGE(*root_hpa)) 3544 return; 3545 3546 sp = root_to_sp(*root_hpa); 3547 if (WARN_ON_ONCE(!sp)) 3548 return; 3549 3550 if (is_tdp_mmu_page(sp)) 3551 kvm_tdp_mmu_put_root(kvm, sp, false); 3552 else if (!--sp->root_count && sp->role.invalid) 3553 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list); 3554 3555 *root_hpa = INVALID_PAGE; 3556 } 3557 3558 /* roots_to_free must be some combination of the KVM_MMU_ROOT_* flags */ 3559 void kvm_mmu_free_roots(struct kvm *kvm, struct kvm_mmu *mmu, 3560 ulong roots_to_free) 3561 { 3562 int i; 3563 LIST_HEAD(invalid_list); 3564 bool free_active_root; 3565 3566 WARN_ON_ONCE(roots_to_free & ~KVM_MMU_ROOTS_ALL); 3567 3568 BUILD_BUG_ON(KVM_MMU_NUM_PREV_ROOTS >= BITS_PER_LONG); 3569 3570 /* Before acquiring the MMU lock, see if we need to do any real work. */ 3571 free_active_root = (roots_to_free & KVM_MMU_ROOT_CURRENT) 3572 && VALID_PAGE(mmu->root.hpa); 3573 3574 if (!free_active_root) { 3575 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 3576 if ((roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) && 3577 VALID_PAGE(mmu->prev_roots[i].hpa)) 3578 break; 3579 3580 if (i == KVM_MMU_NUM_PREV_ROOTS) 3581 return; 3582 } 3583 3584 write_lock(&kvm->mmu_lock); 3585 3586 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 3587 if (roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) 3588 mmu_free_root_page(kvm, &mmu->prev_roots[i].hpa, 3589 &invalid_list); 3590 3591 if (free_active_root) { 3592 if (kvm_mmu_is_dummy_root(mmu->root.hpa)) { 3593 /* Nothing to cleanup for dummy roots. */ 3594 } else if (root_to_sp(mmu->root.hpa)) { 3595 mmu_free_root_page(kvm, &mmu->root.hpa, &invalid_list); 3596 } else if (mmu->pae_root) { 3597 for (i = 0; i < 4; ++i) { 3598 if (!IS_VALID_PAE_ROOT(mmu->pae_root[i])) 3599 continue; 3600 3601 mmu_free_root_page(kvm, &mmu->pae_root[i], 3602 &invalid_list); 3603 mmu->pae_root[i] = INVALID_PAE_ROOT; 3604 } 3605 } 3606 mmu->root.hpa = INVALID_PAGE; 3607 mmu->root.pgd = 0; 3608 } 3609 3610 kvm_mmu_commit_zap_page(kvm, &invalid_list); 3611 write_unlock(&kvm->mmu_lock); 3612 } 3613 EXPORT_SYMBOL_GPL(kvm_mmu_free_roots); 3614 3615 void kvm_mmu_free_guest_mode_roots(struct kvm *kvm, struct kvm_mmu *mmu) 3616 { 3617 unsigned long roots_to_free = 0; 3618 struct kvm_mmu_page *sp; 3619 hpa_t root_hpa; 3620 int i; 3621 3622 /* 3623 * This should not be called while L2 is active, L2 can't invalidate 3624 * _only_ its own roots, e.g. INVVPID unconditionally exits. 3625 */ 3626 WARN_ON_ONCE(mmu->root_role.guest_mode); 3627 3628 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) { 3629 root_hpa = mmu->prev_roots[i].hpa; 3630 if (!VALID_PAGE(root_hpa)) 3631 continue; 3632 3633 sp = root_to_sp(root_hpa); 3634 if (!sp || sp->role.guest_mode) 3635 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i); 3636 } 3637 3638 kvm_mmu_free_roots(kvm, mmu, roots_to_free); 3639 } 3640 EXPORT_SYMBOL_GPL(kvm_mmu_free_guest_mode_roots); 3641 3642 static hpa_t mmu_alloc_root(struct kvm_vcpu *vcpu, gfn_t gfn, int quadrant, 3643 u8 level) 3644 { 3645 union kvm_mmu_page_role role = vcpu->arch.mmu->root_role; 3646 struct kvm_mmu_page *sp; 3647 3648 role.level = level; 3649 role.quadrant = quadrant; 3650 3651 WARN_ON_ONCE(quadrant && !role.has_4_byte_gpte); 3652 WARN_ON_ONCE(role.direct && role.has_4_byte_gpte); 3653 3654 sp = kvm_mmu_get_shadow_page(vcpu, gfn, role); 3655 ++sp->root_count; 3656 3657 return __pa(sp->spt); 3658 } 3659 3660 static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu) 3661 { 3662 struct kvm_mmu *mmu = vcpu->arch.mmu; 3663 u8 shadow_root_level = mmu->root_role.level; 3664 hpa_t root; 3665 unsigned i; 3666 int r; 3667 3668 write_lock(&vcpu->kvm->mmu_lock); 3669 r = make_mmu_pages_available(vcpu); 3670 if (r < 0) 3671 goto out_unlock; 3672 3673 if (tdp_mmu_enabled) { 3674 root = kvm_tdp_mmu_get_vcpu_root_hpa(vcpu); 3675 mmu->root.hpa = root; 3676 } else if (shadow_root_level >= PT64_ROOT_4LEVEL) { 3677 root = mmu_alloc_root(vcpu, 0, 0, shadow_root_level); 3678 mmu->root.hpa = root; 3679 } else if (shadow_root_level == PT32E_ROOT_LEVEL) { 3680 if (WARN_ON_ONCE(!mmu->pae_root)) { 3681 r = -EIO; 3682 goto out_unlock; 3683 } 3684 3685 for (i = 0; i < 4; ++i) { 3686 WARN_ON_ONCE(IS_VALID_PAE_ROOT(mmu->pae_root[i])); 3687 3688 root = mmu_alloc_root(vcpu, i << (30 - PAGE_SHIFT), 0, 3689 PT32_ROOT_LEVEL); 3690 mmu->pae_root[i] = root | PT_PRESENT_MASK | 3691 shadow_me_value; 3692 } 3693 mmu->root.hpa = __pa(mmu->pae_root); 3694 } else { 3695 WARN_ONCE(1, "Bad TDP root level = %d\n", shadow_root_level); 3696 r = -EIO; 3697 goto out_unlock; 3698 } 3699 3700 /* root.pgd is ignored for direct MMUs. */ 3701 mmu->root.pgd = 0; 3702 out_unlock: 3703 write_unlock(&vcpu->kvm->mmu_lock); 3704 return r; 3705 } 3706 3707 static int mmu_first_shadow_root_alloc(struct kvm *kvm) 3708 { 3709 struct kvm_memslots *slots; 3710 struct kvm_memory_slot *slot; 3711 int r = 0, i, bkt; 3712 3713 /* 3714 * Check if this is the first shadow root being allocated before 3715 * taking the lock. 3716 */ 3717 if (kvm_shadow_root_allocated(kvm)) 3718 return 0; 3719 3720 mutex_lock(&kvm->slots_arch_lock); 3721 3722 /* Recheck, under the lock, whether this is the first shadow root. */ 3723 if (kvm_shadow_root_allocated(kvm)) 3724 goto out_unlock; 3725 3726 /* 3727 * Check if anything actually needs to be allocated, e.g. all metadata 3728 * will be allocated upfront if TDP is disabled. 3729 */ 3730 if (kvm_memslots_have_rmaps(kvm) && 3731 kvm_page_track_write_tracking_enabled(kvm)) 3732 goto out_success; 3733 3734 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { 3735 slots = __kvm_memslots(kvm, i); 3736 kvm_for_each_memslot(slot, bkt, slots) { 3737 /* 3738 * Both of these functions are no-ops if the target is 3739 * already allocated, so unconditionally calling both 3740 * is safe. Intentionally do NOT free allocations on 3741 * failure to avoid having to track which allocations 3742 * were made now versus when the memslot was created. 3743 * The metadata is guaranteed to be freed when the slot 3744 * is freed, and will be kept/used if userspace retries 3745 * KVM_RUN instead of killing the VM. 3746 */ 3747 r = memslot_rmap_alloc(slot, slot->npages); 3748 if (r) 3749 goto out_unlock; 3750 r = kvm_page_track_write_tracking_alloc(slot); 3751 if (r) 3752 goto out_unlock; 3753 } 3754 } 3755 3756 /* 3757 * Ensure that shadow_root_allocated becomes true strictly after 3758 * all the related pointers are set. 3759 */ 3760 out_success: 3761 smp_store_release(&kvm->arch.shadow_root_allocated, true); 3762 3763 out_unlock: 3764 mutex_unlock(&kvm->slots_arch_lock); 3765 return r; 3766 } 3767 3768 static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu) 3769 { 3770 struct kvm_mmu *mmu = vcpu->arch.mmu; 3771 u64 pdptrs[4], pm_mask; 3772 gfn_t root_gfn, root_pgd; 3773 int quadrant, i, r; 3774 hpa_t root; 3775 3776 root_pgd = kvm_mmu_get_guest_pgd(vcpu, mmu); 3777 root_gfn = root_pgd >> PAGE_SHIFT; 3778 3779 if (!kvm_vcpu_is_visible_gfn(vcpu, root_gfn)) { 3780 mmu->root.hpa = kvm_mmu_get_dummy_root(); 3781 return 0; 3782 } 3783 3784 /* 3785 * On SVM, reading PDPTRs might access guest memory, which might fault 3786 * and thus might sleep. Grab the PDPTRs before acquiring mmu_lock. 3787 */ 3788 if (mmu->cpu_role.base.level == PT32E_ROOT_LEVEL) { 3789 for (i = 0; i < 4; ++i) { 3790 pdptrs[i] = mmu->get_pdptr(vcpu, i); 3791 if (!(pdptrs[i] & PT_PRESENT_MASK)) 3792 continue; 3793 3794 if (!kvm_vcpu_is_visible_gfn(vcpu, pdptrs[i] >> PAGE_SHIFT)) 3795 pdptrs[i] = 0; 3796 } 3797 } 3798 3799 r = mmu_first_shadow_root_alloc(vcpu->kvm); 3800 if (r) 3801 return r; 3802 3803 write_lock(&vcpu->kvm->mmu_lock); 3804 r = make_mmu_pages_available(vcpu); 3805 if (r < 0) 3806 goto out_unlock; 3807 3808 /* 3809 * Do we shadow a long mode page table? If so we need to 3810 * write-protect the guests page table root. 3811 */ 3812 if (mmu->cpu_role.base.level >= PT64_ROOT_4LEVEL) { 3813 root = mmu_alloc_root(vcpu, root_gfn, 0, 3814 mmu->root_role.level); 3815 mmu->root.hpa = root; 3816 goto set_root_pgd; 3817 } 3818 3819 if (WARN_ON_ONCE(!mmu->pae_root)) { 3820 r = -EIO; 3821 goto out_unlock; 3822 } 3823 3824 /* 3825 * We shadow a 32 bit page table. This may be a legacy 2-level 3826 * or a PAE 3-level page table. In either case we need to be aware that 3827 * the shadow page table may be a PAE or a long mode page table. 3828 */ 3829 pm_mask = PT_PRESENT_MASK | shadow_me_value; 3830 if (mmu->root_role.level >= PT64_ROOT_4LEVEL) { 3831 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK; 3832 3833 if (WARN_ON_ONCE(!mmu->pml4_root)) { 3834 r = -EIO; 3835 goto out_unlock; 3836 } 3837 mmu->pml4_root[0] = __pa(mmu->pae_root) | pm_mask; 3838 3839 if (mmu->root_role.level == PT64_ROOT_5LEVEL) { 3840 if (WARN_ON_ONCE(!mmu->pml5_root)) { 3841 r = -EIO; 3842 goto out_unlock; 3843 } 3844 mmu->pml5_root[0] = __pa(mmu->pml4_root) | pm_mask; 3845 } 3846 } 3847 3848 for (i = 0; i < 4; ++i) { 3849 WARN_ON_ONCE(IS_VALID_PAE_ROOT(mmu->pae_root[i])); 3850 3851 if (mmu->cpu_role.base.level == PT32E_ROOT_LEVEL) { 3852 if (!(pdptrs[i] & PT_PRESENT_MASK)) { 3853 mmu->pae_root[i] = INVALID_PAE_ROOT; 3854 continue; 3855 } 3856 root_gfn = pdptrs[i] >> PAGE_SHIFT; 3857 } 3858 3859 /* 3860 * If shadowing 32-bit non-PAE page tables, each PAE page 3861 * directory maps one quarter of the guest's non-PAE page 3862 * directory. Othwerise each PAE page direct shadows one guest 3863 * PAE page directory so that quadrant should be 0. 3864 */ 3865 quadrant = (mmu->cpu_role.base.level == PT32_ROOT_LEVEL) ? i : 0; 3866 3867 root = mmu_alloc_root(vcpu, root_gfn, quadrant, PT32_ROOT_LEVEL); 3868 mmu->pae_root[i] = root | pm_mask; 3869 } 3870 3871 if (mmu->root_role.level == PT64_ROOT_5LEVEL) 3872 mmu->root.hpa = __pa(mmu->pml5_root); 3873 else if (mmu->root_role.level == PT64_ROOT_4LEVEL) 3874 mmu->root.hpa = __pa(mmu->pml4_root); 3875 else 3876 mmu->root.hpa = __pa(mmu->pae_root); 3877 3878 set_root_pgd: 3879 mmu->root.pgd = root_pgd; 3880 out_unlock: 3881 write_unlock(&vcpu->kvm->mmu_lock); 3882 3883 return r; 3884 } 3885 3886 static int mmu_alloc_special_roots(struct kvm_vcpu *vcpu) 3887 { 3888 struct kvm_mmu *mmu = vcpu->arch.mmu; 3889 bool need_pml5 = mmu->root_role.level > PT64_ROOT_4LEVEL; 3890 u64 *pml5_root = NULL; 3891 u64 *pml4_root = NULL; 3892 u64 *pae_root; 3893 3894 /* 3895 * When shadowing 32-bit or PAE NPT with 64-bit NPT, the PML4 and PDP 3896 * tables are allocated and initialized at root creation as there is no 3897 * equivalent level in the guest's NPT to shadow. Allocate the tables 3898 * on demand, as running a 32-bit L1 VMM on 64-bit KVM is very rare. 3899 */ 3900 if (mmu->root_role.direct || 3901 mmu->cpu_role.base.level >= PT64_ROOT_4LEVEL || 3902 mmu->root_role.level < PT64_ROOT_4LEVEL) 3903 return 0; 3904 3905 /* 3906 * NPT, the only paging mode that uses this horror, uses a fixed number 3907 * of levels for the shadow page tables, e.g. all MMUs are 4-level or 3908 * all MMus are 5-level. Thus, this can safely require that pml5_root 3909 * is allocated if the other roots are valid and pml5 is needed, as any 3910 * prior MMU would also have required pml5. 3911 */ 3912 if (mmu->pae_root && mmu->pml4_root && (!need_pml5 || mmu->pml5_root)) 3913 return 0; 3914 3915 /* 3916 * The special roots should always be allocated in concert. Yell and 3917 * bail if KVM ends up in a state where only one of the roots is valid. 3918 */ 3919 if (WARN_ON_ONCE(!tdp_enabled || mmu->pae_root || mmu->pml4_root || 3920 (need_pml5 && mmu->pml5_root))) 3921 return -EIO; 3922 3923 /* 3924 * Unlike 32-bit NPT, the PDP table doesn't need to be in low mem, and 3925 * doesn't need to be decrypted. 3926 */ 3927 pae_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT); 3928 if (!pae_root) 3929 return -ENOMEM; 3930 3931 #ifdef CONFIG_X86_64 3932 pml4_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT); 3933 if (!pml4_root) 3934 goto err_pml4; 3935 3936 if (need_pml5) { 3937 pml5_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT); 3938 if (!pml5_root) 3939 goto err_pml5; 3940 } 3941 #endif 3942 3943 mmu->pae_root = pae_root; 3944 mmu->pml4_root = pml4_root; 3945 mmu->pml5_root = pml5_root; 3946 3947 return 0; 3948 3949 #ifdef CONFIG_X86_64 3950 err_pml5: 3951 free_page((unsigned long)pml4_root); 3952 err_pml4: 3953 free_page((unsigned long)pae_root); 3954 return -ENOMEM; 3955 #endif 3956 } 3957 3958 static bool is_unsync_root(hpa_t root) 3959 { 3960 struct kvm_mmu_page *sp; 3961 3962 if (!VALID_PAGE(root) || kvm_mmu_is_dummy_root(root)) 3963 return false; 3964 3965 /* 3966 * The read barrier orders the CPU's read of SPTE.W during the page table 3967 * walk before the reads of sp->unsync/sp->unsync_children here. 3968 * 3969 * Even if another CPU was marking the SP as unsync-ed simultaneously, 3970 * any guest page table changes are not guaranteed to be visible anyway 3971 * until this VCPU issues a TLB flush strictly after those changes are 3972 * made. We only need to ensure that the other CPU sets these flags 3973 * before any actual changes to the page tables are made. The comments 3974 * in mmu_try_to_unsync_pages() describe what could go wrong if this 3975 * requirement isn't satisfied. 3976 */ 3977 smp_rmb(); 3978 sp = root_to_sp(root); 3979 3980 /* 3981 * PAE roots (somewhat arbitrarily) aren't backed by shadow pages, the 3982 * PDPTEs for a given PAE root need to be synchronized individually. 3983 */ 3984 if (WARN_ON_ONCE(!sp)) 3985 return false; 3986 3987 if (sp->unsync || sp->unsync_children) 3988 return true; 3989 3990 return false; 3991 } 3992 3993 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu) 3994 { 3995 int i; 3996 struct kvm_mmu_page *sp; 3997 3998 if (vcpu->arch.mmu->root_role.direct) 3999 return; 4000 4001 if (!VALID_PAGE(vcpu->arch.mmu->root.hpa)) 4002 return; 4003 4004 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY); 4005 4006 if (vcpu->arch.mmu->cpu_role.base.level >= PT64_ROOT_4LEVEL) { 4007 hpa_t root = vcpu->arch.mmu->root.hpa; 4008 4009 if (!is_unsync_root(root)) 4010 return; 4011 4012 sp = root_to_sp(root); 4013 4014 write_lock(&vcpu->kvm->mmu_lock); 4015 mmu_sync_children(vcpu, sp, true); 4016 write_unlock(&vcpu->kvm->mmu_lock); 4017 return; 4018 } 4019 4020 write_lock(&vcpu->kvm->mmu_lock); 4021 4022 for (i = 0; i < 4; ++i) { 4023 hpa_t root = vcpu->arch.mmu->pae_root[i]; 4024 4025 if (IS_VALID_PAE_ROOT(root)) { 4026 sp = spte_to_child_sp(root); 4027 mmu_sync_children(vcpu, sp, true); 4028 } 4029 } 4030 4031 write_unlock(&vcpu->kvm->mmu_lock); 4032 } 4033 4034 void kvm_mmu_sync_prev_roots(struct kvm_vcpu *vcpu) 4035 { 4036 unsigned long roots_to_free = 0; 4037 int i; 4038 4039 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 4040 if (is_unsync_root(vcpu->arch.mmu->prev_roots[i].hpa)) 4041 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i); 4042 4043 /* sync prev_roots by simply freeing them */ 4044 kvm_mmu_free_roots(vcpu->kvm, vcpu->arch.mmu, roots_to_free); 4045 } 4046 4047 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, 4048 gpa_t vaddr, u64 access, 4049 struct x86_exception *exception) 4050 { 4051 if (exception) 4052 exception->error_code = 0; 4053 return kvm_translate_gpa(vcpu, mmu, vaddr, access, exception); 4054 } 4055 4056 static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct) 4057 { 4058 /* 4059 * A nested guest cannot use the MMIO cache if it is using nested 4060 * page tables, because cr2 is a nGPA while the cache stores GPAs. 4061 */ 4062 if (mmu_is_nested(vcpu)) 4063 return false; 4064 4065 if (direct) 4066 return vcpu_match_mmio_gpa(vcpu, addr); 4067 4068 return vcpu_match_mmio_gva(vcpu, addr); 4069 } 4070 4071 /* 4072 * Return the level of the lowest level SPTE added to sptes. 4073 * That SPTE may be non-present. 4074 * 4075 * Must be called between walk_shadow_page_lockless_{begin,end}. 4076 */ 4077 static int get_walk(struct kvm_vcpu *vcpu, u64 addr, u64 *sptes, int *root_level) 4078 { 4079 struct kvm_shadow_walk_iterator iterator; 4080 int leaf = -1; 4081 u64 spte; 4082 4083 for (shadow_walk_init(&iterator, vcpu, addr), 4084 *root_level = iterator.level; 4085 shadow_walk_okay(&iterator); 4086 __shadow_walk_next(&iterator, spte)) { 4087 leaf = iterator.level; 4088 spte = mmu_spte_get_lockless(iterator.sptep); 4089 4090 sptes[leaf] = spte; 4091 } 4092 4093 return leaf; 4094 } 4095 4096 /* return true if reserved bit(s) are detected on a valid, non-MMIO SPTE. */ 4097 static bool get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep) 4098 { 4099 u64 sptes[PT64_ROOT_MAX_LEVEL + 1]; 4100 struct rsvd_bits_validate *rsvd_check; 4101 int root, leaf, level; 4102 bool reserved = false; 4103 4104 walk_shadow_page_lockless_begin(vcpu); 4105 4106 if (is_tdp_mmu_active(vcpu)) 4107 leaf = kvm_tdp_mmu_get_walk(vcpu, addr, sptes, &root); 4108 else 4109 leaf = get_walk(vcpu, addr, sptes, &root); 4110 4111 walk_shadow_page_lockless_end(vcpu); 4112 4113 if (unlikely(leaf < 0)) { 4114 *sptep = 0ull; 4115 return reserved; 4116 } 4117 4118 *sptep = sptes[leaf]; 4119 4120 /* 4121 * Skip reserved bits checks on the terminal leaf if it's not a valid 4122 * SPTE. Note, this also (intentionally) skips MMIO SPTEs, which, by 4123 * design, always have reserved bits set. The purpose of the checks is 4124 * to detect reserved bits on non-MMIO SPTEs. i.e. buggy SPTEs. 4125 */ 4126 if (!is_shadow_present_pte(sptes[leaf])) 4127 leaf++; 4128 4129 rsvd_check = &vcpu->arch.mmu->shadow_zero_check; 4130 4131 for (level = root; level >= leaf; level--) 4132 reserved |= is_rsvd_spte(rsvd_check, sptes[level], level); 4133 4134 if (reserved) { 4135 pr_err("%s: reserved bits set on MMU-present spte, addr 0x%llx, hierarchy:\n", 4136 __func__, addr); 4137 for (level = root; level >= leaf; level--) 4138 pr_err("------ spte = 0x%llx level = %d, rsvd bits = 0x%llx", 4139 sptes[level], level, 4140 get_rsvd_bits(rsvd_check, sptes[level], level)); 4141 } 4142 4143 return reserved; 4144 } 4145 4146 static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct) 4147 { 4148 u64 spte; 4149 bool reserved; 4150 4151 if (mmio_info_in_cache(vcpu, addr, direct)) 4152 return RET_PF_EMULATE; 4153 4154 reserved = get_mmio_spte(vcpu, addr, &spte); 4155 if (WARN_ON_ONCE(reserved)) 4156 return -EINVAL; 4157 4158 if (is_mmio_spte(spte)) { 4159 gfn_t gfn = get_mmio_spte_gfn(spte); 4160 unsigned int access = get_mmio_spte_access(spte); 4161 4162 if (!check_mmio_spte(vcpu, spte)) 4163 return RET_PF_INVALID; 4164 4165 if (direct) 4166 addr = 0; 4167 4168 trace_handle_mmio_page_fault(addr, gfn, access); 4169 vcpu_cache_mmio_info(vcpu, addr, gfn, access); 4170 return RET_PF_EMULATE; 4171 } 4172 4173 /* 4174 * If the page table is zapped by other cpus, let CPU fault again on 4175 * the address. 4176 */ 4177 return RET_PF_RETRY; 4178 } 4179 4180 static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu, 4181 struct kvm_page_fault *fault) 4182 { 4183 if (unlikely(fault->rsvd)) 4184 return false; 4185 4186 if (!fault->present || !fault->write) 4187 return false; 4188 4189 /* 4190 * guest is writing the page which is write tracked which can 4191 * not be fixed by page fault handler. 4192 */ 4193 if (kvm_gfn_is_write_tracked(vcpu->kvm, fault->slot, fault->gfn)) 4194 return true; 4195 4196 return false; 4197 } 4198 4199 static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr) 4200 { 4201 struct kvm_shadow_walk_iterator iterator; 4202 u64 spte; 4203 4204 walk_shadow_page_lockless_begin(vcpu); 4205 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) 4206 clear_sp_write_flooding_count(iterator.sptep); 4207 walk_shadow_page_lockless_end(vcpu); 4208 } 4209 4210 static u32 alloc_apf_token(struct kvm_vcpu *vcpu) 4211 { 4212 /* make sure the token value is not 0 */ 4213 u32 id = vcpu->arch.apf.id; 4214 4215 if (id << 12 == 0) 4216 vcpu->arch.apf.id = 1; 4217 4218 return (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id; 4219 } 4220 4221 static bool kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, 4222 gfn_t gfn) 4223 { 4224 struct kvm_arch_async_pf arch; 4225 4226 arch.token = alloc_apf_token(vcpu); 4227 arch.gfn = gfn; 4228 arch.direct_map = vcpu->arch.mmu->root_role.direct; 4229 arch.cr3 = kvm_mmu_get_guest_pgd(vcpu, vcpu->arch.mmu); 4230 4231 return kvm_setup_async_pf(vcpu, cr2_or_gpa, 4232 kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch); 4233 } 4234 4235 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work) 4236 { 4237 int r; 4238 4239 if ((vcpu->arch.mmu->root_role.direct != work->arch.direct_map) || 4240 work->wakeup_all) 4241 return; 4242 4243 r = kvm_mmu_reload(vcpu); 4244 if (unlikely(r)) 4245 return; 4246 4247 if (!vcpu->arch.mmu->root_role.direct && 4248 work->arch.cr3 != kvm_mmu_get_guest_pgd(vcpu, vcpu->arch.mmu)) 4249 return; 4250 4251 kvm_mmu_do_page_fault(vcpu, work->cr2_or_gpa, 0, true, NULL); 4252 } 4253 4254 static int __kvm_faultin_pfn(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault) 4255 { 4256 struct kvm_memory_slot *slot = fault->slot; 4257 bool async; 4258 4259 /* 4260 * Retry the page fault if the gfn hit a memslot that is being deleted 4261 * or moved. This ensures any existing SPTEs for the old memslot will 4262 * be zapped before KVM inserts a new MMIO SPTE for the gfn. 4263 */ 4264 if (slot && (slot->flags & KVM_MEMSLOT_INVALID)) 4265 return RET_PF_RETRY; 4266 4267 if (!kvm_is_visible_memslot(slot)) { 4268 /* Don't expose private memslots to L2. */ 4269 if (is_guest_mode(vcpu)) { 4270 fault->slot = NULL; 4271 fault->pfn = KVM_PFN_NOSLOT; 4272 fault->map_writable = false; 4273 return RET_PF_CONTINUE; 4274 } 4275 /* 4276 * If the APIC access page exists but is disabled, go directly 4277 * to emulation without caching the MMIO access or creating a 4278 * MMIO SPTE. That way the cache doesn't need to be purged 4279 * when the AVIC is re-enabled. 4280 */ 4281 if (slot && slot->id == APIC_ACCESS_PAGE_PRIVATE_MEMSLOT && 4282 !kvm_apicv_activated(vcpu->kvm)) 4283 return RET_PF_EMULATE; 4284 } 4285 4286 async = false; 4287 fault->pfn = __gfn_to_pfn_memslot(slot, fault->gfn, false, false, &async, 4288 fault->write, &fault->map_writable, 4289 &fault->hva); 4290 if (!async) 4291 return RET_PF_CONTINUE; /* *pfn has correct page already */ 4292 4293 if (!fault->prefetch && kvm_can_do_async_pf(vcpu)) { 4294 trace_kvm_try_async_get_page(fault->addr, fault->gfn); 4295 if (kvm_find_async_pf_gfn(vcpu, fault->gfn)) { 4296 trace_kvm_async_pf_repeated_fault(fault->addr, fault->gfn); 4297 kvm_make_request(KVM_REQ_APF_HALT, vcpu); 4298 return RET_PF_RETRY; 4299 } else if (kvm_arch_setup_async_pf(vcpu, fault->addr, fault->gfn)) { 4300 return RET_PF_RETRY; 4301 } 4302 } 4303 4304 /* 4305 * Allow gup to bail on pending non-fatal signals when it's also allowed 4306 * to wait for IO. Note, gup always bails if it is unable to quickly 4307 * get a page and a fatal signal, i.e. SIGKILL, is pending. 4308 */ 4309 fault->pfn = __gfn_to_pfn_memslot(slot, fault->gfn, false, true, NULL, 4310 fault->write, &fault->map_writable, 4311 &fault->hva); 4312 return RET_PF_CONTINUE; 4313 } 4314 4315 static int kvm_faultin_pfn(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault, 4316 unsigned int access) 4317 { 4318 int ret; 4319 4320 fault->mmu_seq = vcpu->kvm->mmu_invalidate_seq; 4321 smp_rmb(); 4322 4323 ret = __kvm_faultin_pfn(vcpu, fault); 4324 if (ret != RET_PF_CONTINUE) 4325 return ret; 4326 4327 if (unlikely(is_error_pfn(fault->pfn))) 4328 return kvm_handle_error_pfn(vcpu, fault); 4329 4330 if (unlikely(!fault->slot)) 4331 return kvm_handle_noslot_fault(vcpu, fault, access); 4332 4333 return RET_PF_CONTINUE; 4334 } 4335 4336 /* 4337 * Returns true if the page fault is stale and needs to be retried, i.e. if the 4338 * root was invalidated by a memslot update or a relevant mmu_notifier fired. 4339 */ 4340 static bool is_page_fault_stale(struct kvm_vcpu *vcpu, 4341 struct kvm_page_fault *fault) 4342 { 4343 struct kvm_mmu_page *sp = root_to_sp(vcpu->arch.mmu->root.hpa); 4344 4345 /* Special roots, e.g. pae_root, are not backed by shadow pages. */ 4346 if (sp && is_obsolete_sp(vcpu->kvm, sp)) 4347 return true; 4348 4349 /* 4350 * Roots without an associated shadow page are considered invalid if 4351 * there is a pending request to free obsolete roots. The request is 4352 * only a hint that the current root _may_ be obsolete and needs to be 4353 * reloaded, e.g. if the guest frees a PGD that KVM is tracking as a 4354 * previous root, then __kvm_mmu_prepare_zap_page() signals all vCPUs 4355 * to reload even if no vCPU is actively using the root. 4356 */ 4357 if (!sp && kvm_test_request(KVM_REQ_MMU_FREE_OBSOLETE_ROOTS, vcpu)) 4358 return true; 4359 4360 return fault->slot && 4361 mmu_invalidate_retry_hva(vcpu->kvm, fault->mmu_seq, fault->hva); 4362 } 4363 4364 static int direct_page_fault(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault) 4365 { 4366 int r; 4367 4368 /* Dummy roots are used only for shadowing bad guest roots. */ 4369 if (WARN_ON_ONCE(kvm_mmu_is_dummy_root(vcpu->arch.mmu->root.hpa))) 4370 return RET_PF_RETRY; 4371 4372 if (page_fault_handle_page_track(vcpu, fault)) 4373 return RET_PF_EMULATE; 4374 4375 r = fast_page_fault(vcpu, fault); 4376 if (r != RET_PF_INVALID) 4377 return r; 4378 4379 r = mmu_topup_memory_caches(vcpu, false); 4380 if (r) 4381 return r; 4382 4383 r = kvm_faultin_pfn(vcpu, fault, ACC_ALL); 4384 if (r != RET_PF_CONTINUE) 4385 return r; 4386 4387 r = RET_PF_RETRY; 4388 write_lock(&vcpu->kvm->mmu_lock); 4389 4390 if (is_page_fault_stale(vcpu, fault)) 4391 goto out_unlock; 4392 4393 r = make_mmu_pages_available(vcpu); 4394 if (r) 4395 goto out_unlock; 4396 4397 r = direct_map(vcpu, fault); 4398 4399 out_unlock: 4400 write_unlock(&vcpu->kvm->mmu_lock); 4401 kvm_release_pfn_clean(fault->pfn); 4402 return r; 4403 } 4404 4405 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, 4406 struct kvm_page_fault *fault) 4407 { 4408 /* This path builds a PAE pagetable, we can map 2mb pages at maximum. */ 4409 fault->max_level = PG_LEVEL_2M; 4410 return direct_page_fault(vcpu, fault); 4411 } 4412 4413 int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code, 4414 u64 fault_address, char *insn, int insn_len) 4415 { 4416 int r = 1; 4417 u32 flags = vcpu->arch.apf.host_apf_flags; 4418 4419 #ifndef CONFIG_X86_64 4420 /* A 64-bit CR2 should be impossible on 32-bit KVM. */ 4421 if (WARN_ON_ONCE(fault_address >> 32)) 4422 return -EFAULT; 4423 #endif 4424 4425 vcpu->arch.l1tf_flush_l1d = true; 4426 if (!flags) { 4427 trace_kvm_page_fault(vcpu, fault_address, error_code); 4428 4429 if (kvm_event_needs_reinjection(vcpu)) 4430 kvm_mmu_unprotect_page_virt(vcpu, fault_address); 4431 r = kvm_mmu_page_fault(vcpu, fault_address, error_code, insn, 4432 insn_len); 4433 } else if (flags & KVM_PV_REASON_PAGE_NOT_PRESENT) { 4434 vcpu->arch.apf.host_apf_flags = 0; 4435 local_irq_disable(); 4436 kvm_async_pf_task_wait_schedule(fault_address); 4437 local_irq_enable(); 4438 } else { 4439 WARN_ONCE(1, "Unexpected host async PF flags: %x\n", flags); 4440 } 4441 4442 return r; 4443 } 4444 EXPORT_SYMBOL_GPL(kvm_handle_page_fault); 4445 4446 #ifdef CONFIG_X86_64 4447 static int kvm_tdp_mmu_page_fault(struct kvm_vcpu *vcpu, 4448 struct kvm_page_fault *fault) 4449 { 4450 int r; 4451 4452 if (page_fault_handle_page_track(vcpu, fault)) 4453 return RET_PF_EMULATE; 4454 4455 r = fast_page_fault(vcpu, fault); 4456 if (r != RET_PF_INVALID) 4457 return r; 4458 4459 r = mmu_topup_memory_caches(vcpu, false); 4460 if (r) 4461 return r; 4462 4463 r = kvm_faultin_pfn(vcpu, fault, ACC_ALL); 4464 if (r != RET_PF_CONTINUE) 4465 return r; 4466 4467 r = RET_PF_RETRY; 4468 read_lock(&vcpu->kvm->mmu_lock); 4469 4470 if (is_page_fault_stale(vcpu, fault)) 4471 goto out_unlock; 4472 4473 r = kvm_tdp_mmu_map(vcpu, fault); 4474 4475 out_unlock: 4476 read_unlock(&vcpu->kvm->mmu_lock); 4477 kvm_release_pfn_clean(fault->pfn); 4478 return r; 4479 } 4480 #endif 4481 4482 int kvm_tdp_page_fault(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault) 4483 { 4484 /* 4485 * If the guest's MTRRs may be used to compute the "real" memtype, 4486 * restrict the mapping level to ensure KVM uses a consistent memtype 4487 * across the entire mapping. If the host MTRRs are ignored by TDP 4488 * (shadow_memtype_mask is non-zero), and the VM has non-coherent DMA 4489 * (DMA doesn't snoop CPU caches), KVM's ABI is to honor the memtype 4490 * from the guest's MTRRs so that guest accesses to memory that is 4491 * DMA'd aren't cached against the guest's wishes. 4492 * 4493 * Note, KVM may still ultimately ignore guest MTRRs for certain PFNs, 4494 * e.g. KVM will force UC memtype for host MMIO. 4495 */ 4496 if (shadow_memtype_mask && kvm_arch_has_noncoherent_dma(vcpu->kvm)) { 4497 for ( ; fault->max_level > PG_LEVEL_4K; --fault->max_level) { 4498 int page_num = KVM_PAGES_PER_HPAGE(fault->max_level); 4499 gfn_t base = gfn_round_for_level(fault->gfn, 4500 fault->max_level); 4501 4502 if (kvm_mtrr_check_gfn_range_consistency(vcpu, base, page_num)) 4503 break; 4504 } 4505 } 4506 4507 #ifdef CONFIG_X86_64 4508 if (tdp_mmu_enabled) 4509 return kvm_tdp_mmu_page_fault(vcpu, fault); 4510 #endif 4511 4512 return direct_page_fault(vcpu, fault); 4513 } 4514 4515 static void nonpaging_init_context(struct kvm_mmu *context) 4516 { 4517 context->page_fault = nonpaging_page_fault; 4518 context->gva_to_gpa = nonpaging_gva_to_gpa; 4519 context->sync_spte = NULL; 4520 } 4521 4522 static inline bool is_root_usable(struct kvm_mmu_root_info *root, gpa_t pgd, 4523 union kvm_mmu_page_role role) 4524 { 4525 struct kvm_mmu_page *sp; 4526 4527 if (!VALID_PAGE(root->hpa)) 4528 return false; 4529 4530 if (!role.direct && pgd != root->pgd) 4531 return false; 4532 4533 sp = root_to_sp(root->hpa); 4534 if (WARN_ON_ONCE(!sp)) 4535 return false; 4536 4537 return role.word == sp->role.word; 4538 } 4539 4540 /* 4541 * Find out if a previously cached root matching the new pgd/role is available, 4542 * and insert the current root as the MRU in the cache. 4543 * If a matching root is found, it is assigned to kvm_mmu->root and 4544 * true is returned. 4545 * If no match is found, kvm_mmu->root is left invalid, the LRU root is 4546 * evicted to make room for the current root, and false is returned. 4547 */ 4548 static bool cached_root_find_and_keep_current(struct kvm *kvm, struct kvm_mmu *mmu, 4549 gpa_t new_pgd, 4550 union kvm_mmu_page_role new_role) 4551 { 4552 uint i; 4553 4554 if (is_root_usable(&mmu->root, new_pgd, new_role)) 4555 return true; 4556 4557 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) { 4558 /* 4559 * The swaps end up rotating the cache like this: 4560 * C 0 1 2 3 (on entry to the function) 4561 * 0 C 1 2 3 4562 * 1 C 0 2 3 4563 * 2 C 0 1 3 4564 * 3 C 0 1 2 (on exit from the loop) 4565 */ 4566 swap(mmu->root, mmu->prev_roots[i]); 4567 if (is_root_usable(&mmu->root, new_pgd, new_role)) 4568 return true; 4569 } 4570 4571 kvm_mmu_free_roots(kvm, mmu, KVM_MMU_ROOT_CURRENT); 4572 return false; 4573 } 4574 4575 /* 4576 * Find out if a previously cached root matching the new pgd/role is available. 4577 * On entry, mmu->root is invalid. 4578 * If a matching root is found, it is assigned to kvm_mmu->root, the LRU entry 4579 * of the cache becomes invalid, and true is returned. 4580 * If no match is found, kvm_mmu->root is left invalid and false is returned. 4581 */ 4582 static bool cached_root_find_without_current(struct kvm *kvm, struct kvm_mmu *mmu, 4583 gpa_t new_pgd, 4584 union kvm_mmu_page_role new_role) 4585 { 4586 uint i; 4587 4588 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 4589 if (is_root_usable(&mmu->prev_roots[i], new_pgd, new_role)) 4590 goto hit; 4591 4592 return false; 4593 4594 hit: 4595 swap(mmu->root, mmu->prev_roots[i]); 4596 /* Bubble up the remaining roots. */ 4597 for (; i < KVM_MMU_NUM_PREV_ROOTS - 1; i++) 4598 mmu->prev_roots[i] = mmu->prev_roots[i + 1]; 4599 mmu->prev_roots[i].hpa = INVALID_PAGE; 4600 return true; 4601 } 4602 4603 static bool fast_pgd_switch(struct kvm *kvm, struct kvm_mmu *mmu, 4604 gpa_t new_pgd, union kvm_mmu_page_role new_role) 4605 { 4606 /* 4607 * Limit reuse to 64-bit hosts+VMs without "special" roots in order to 4608 * avoid having to deal with PDPTEs and other complexities. 4609 */ 4610 if (VALID_PAGE(mmu->root.hpa) && !root_to_sp(mmu->root.hpa)) 4611 kvm_mmu_free_roots(kvm, mmu, KVM_MMU_ROOT_CURRENT); 4612 4613 if (VALID_PAGE(mmu->root.hpa)) 4614 return cached_root_find_and_keep_current(kvm, mmu, new_pgd, new_role); 4615 else 4616 return cached_root_find_without_current(kvm, mmu, new_pgd, new_role); 4617 } 4618 4619 void kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd) 4620 { 4621 struct kvm_mmu *mmu = vcpu->arch.mmu; 4622 union kvm_mmu_page_role new_role = mmu->root_role; 4623 4624 /* 4625 * Return immediately if no usable root was found, kvm_mmu_reload() 4626 * will establish a valid root prior to the next VM-Enter. 4627 */ 4628 if (!fast_pgd_switch(vcpu->kvm, mmu, new_pgd, new_role)) 4629 return; 4630 4631 /* 4632 * It's possible that the cached previous root page is obsolete because 4633 * of a change in the MMU generation number. However, changing the 4634 * generation number is accompanied by KVM_REQ_MMU_FREE_OBSOLETE_ROOTS, 4635 * which will free the root set here and allocate a new one. 4636 */ 4637 kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu); 4638 4639 if (force_flush_and_sync_on_reuse) { 4640 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu); 4641 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 4642 } 4643 4644 /* 4645 * The last MMIO access's GVA and GPA are cached in the VCPU. When 4646 * switching to a new CR3, that GVA->GPA mapping may no longer be 4647 * valid. So clear any cached MMIO info even when we don't need to sync 4648 * the shadow page tables. 4649 */ 4650 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY); 4651 4652 /* 4653 * If this is a direct root page, it doesn't have a write flooding 4654 * count. Otherwise, clear the write flooding count. 4655 */ 4656 if (!new_role.direct) { 4657 struct kvm_mmu_page *sp = root_to_sp(vcpu->arch.mmu->root.hpa); 4658 4659 if (!WARN_ON_ONCE(!sp)) 4660 __clear_sp_write_flooding_count(sp); 4661 } 4662 } 4663 EXPORT_SYMBOL_GPL(kvm_mmu_new_pgd); 4664 4665 static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn, 4666 unsigned int access) 4667 { 4668 if (unlikely(is_mmio_spte(*sptep))) { 4669 if (gfn != get_mmio_spte_gfn(*sptep)) { 4670 mmu_spte_clear_no_track(sptep); 4671 return true; 4672 } 4673 4674 mark_mmio_spte(vcpu, sptep, gfn, access); 4675 return true; 4676 } 4677 4678 return false; 4679 } 4680 4681 #define PTTYPE_EPT 18 /* arbitrary */ 4682 #define PTTYPE PTTYPE_EPT 4683 #include "paging_tmpl.h" 4684 #undef PTTYPE 4685 4686 #define PTTYPE 64 4687 #include "paging_tmpl.h" 4688 #undef PTTYPE 4689 4690 #define PTTYPE 32 4691 #include "paging_tmpl.h" 4692 #undef PTTYPE 4693 4694 static void __reset_rsvds_bits_mask(struct rsvd_bits_validate *rsvd_check, 4695 u64 pa_bits_rsvd, int level, bool nx, 4696 bool gbpages, bool pse, bool amd) 4697 { 4698 u64 gbpages_bit_rsvd = 0; 4699 u64 nonleaf_bit8_rsvd = 0; 4700 u64 high_bits_rsvd; 4701 4702 rsvd_check->bad_mt_xwr = 0; 4703 4704 if (!gbpages) 4705 gbpages_bit_rsvd = rsvd_bits(7, 7); 4706 4707 if (level == PT32E_ROOT_LEVEL) 4708 high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 62); 4709 else 4710 high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 51); 4711 4712 /* Note, NX doesn't exist in PDPTEs, this is handled below. */ 4713 if (!nx) 4714 high_bits_rsvd |= rsvd_bits(63, 63); 4715 4716 /* 4717 * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for 4718 * leaf entries) on AMD CPUs only. 4719 */ 4720 if (amd) 4721 nonleaf_bit8_rsvd = rsvd_bits(8, 8); 4722 4723 switch (level) { 4724 case PT32_ROOT_LEVEL: 4725 /* no rsvd bits for 2 level 4K page table entries */ 4726 rsvd_check->rsvd_bits_mask[0][1] = 0; 4727 rsvd_check->rsvd_bits_mask[0][0] = 0; 4728 rsvd_check->rsvd_bits_mask[1][0] = 4729 rsvd_check->rsvd_bits_mask[0][0]; 4730 4731 if (!pse) { 4732 rsvd_check->rsvd_bits_mask[1][1] = 0; 4733 break; 4734 } 4735 4736 if (is_cpuid_PSE36()) 4737 /* 36bits PSE 4MB page */ 4738 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21); 4739 else 4740 /* 32 bits PSE 4MB page */ 4741 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21); 4742 break; 4743 case PT32E_ROOT_LEVEL: 4744 rsvd_check->rsvd_bits_mask[0][2] = rsvd_bits(63, 63) | 4745 high_bits_rsvd | 4746 rsvd_bits(5, 8) | 4747 rsvd_bits(1, 2); /* PDPTE */ 4748 rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd; /* PDE */ 4749 rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd; /* PTE */ 4750 rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd | 4751 rsvd_bits(13, 20); /* large page */ 4752 rsvd_check->rsvd_bits_mask[1][0] = 4753 rsvd_check->rsvd_bits_mask[0][0]; 4754 break; 4755 case PT64_ROOT_5LEVEL: 4756 rsvd_check->rsvd_bits_mask[0][4] = high_bits_rsvd | 4757 nonleaf_bit8_rsvd | 4758 rsvd_bits(7, 7); 4759 rsvd_check->rsvd_bits_mask[1][4] = 4760 rsvd_check->rsvd_bits_mask[0][4]; 4761 fallthrough; 4762 case PT64_ROOT_4LEVEL: 4763 rsvd_check->rsvd_bits_mask[0][3] = high_bits_rsvd | 4764 nonleaf_bit8_rsvd | 4765 rsvd_bits(7, 7); 4766 rsvd_check->rsvd_bits_mask[0][2] = high_bits_rsvd | 4767 gbpages_bit_rsvd; 4768 rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd; 4769 rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd; 4770 rsvd_check->rsvd_bits_mask[1][3] = 4771 rsvd_check->rsvd_bits_mask[0][3]; 4772 rsvd_check->rsvd_bits_mask[1][2] = high_bits_rsvd | 4773 gbpages_bit_rsvd | 4774 rsvd_bits(13, 29); 4775 rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd | 4776 rsvd_bits(13, 20); /* large page */ 4777 rsvd_check->rsvd_bits_mask[1][0] = 4778 rsvd_check->rsvd_bits_mask[0][0]; 4779 break; 4780 } 4781 } 4782 4783 static void reset_guest_rsvds_bits_mask(struct kvm_vcpu *vcpu, 4784 struct kvm_mmu *context) 4785 { 4786 __reset_rsvds_bits_mask(&context->guest_rsvd_check, 4787 vcpu->arch.reserved_gpa_bits, 4788 context->cpu_role.base.level, is_efer_nx(context), 4789 guest_can_use(vcpu, X86_FEATURE_GBPAGES), 4790 is_cr4_pse(context), 4791 guest_cpuid_is_amd_or_hygon(vcpu)); 4792 } 4793 4794 static void __reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check, 4795 u64 pa_bits_rsvd, bool execonly, 4796 int huge_page_level) 4797 { 4798 u64 high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 51); 4799 u64 large_1g_rsvd = 0, large_2m_rsvd = 0; 4800 u64 bad_mt_xwr; 4801 4802 if (huge_page_level < PG_LEVEL_1G) 4803 large_1g_rsvd = rsvd_bits(7, 7); 4804 if (huge_page_level < PG_LEVEL_2M) 4805 large_2m_rsvd = rsvd_bits(7, 7); 4806 4807 rsvd_check->rsvd_bits_mask[0][4] = high_bits_rsvd | rsvd_bits(3, 7); 4808 rsvd_check->rsvd_bits_mask[0][3] = high_bits_rsvd | rsvd_bits(3, 7); 4809 rsvd_check->rsvd_bits_mask[0][2] = high_bits_rsvd | rsvd_bits(3, 6) | large_1g_rsvd; 4810 rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd | rsvd_bits(3, 6) | large_2m_rsvd; 4811 rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd; 4812 4813 /* large page */ 4814 rsvd_check->rsvd_bits_mask[1][4] = rsvd_check->rsvd_bits_mask[0][4]; 4815 rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3]; 4816 rsvd_check->rsvd_bits_mask[1][2] = high_bits_rsvd | rsvd_bits(12, 29) | large_1g_rsvd; 4817 rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd | rsvd_bits(12, 20) | large_2m_rsvd; 4818 rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0]; 4819 4820 bad_mt_xwr = 0xFFull << (2 * 8); /* bits 3..5 must not be 2 */ 4821 bad_mt_xwr |= 0xFFull << (3 * 8); /* bits 3..5 must not be 3 */ 4822 bad_mt_xwr |= 0xFFull << (7 * 8); /* bits 3..5 must not be 7 */ 4823 bad_mt_xwr |= REPEAT_BYTE(1ull << 2); /* bits 0..2 must not be 010 */ 4824 bad_mt_xwr |= REPEAT_BYTE(1ull << 6); /* bits 0..2 must not be 110 */ 4825 if (!execonly) { 4826 /* bits 0..2 must not be 100 unless VMX capabilities allow it */ 4827 bad_mt_xwr |= REPEAT_BYTE(1ull << 4); 4828 } 4829 rsvd_check->bad_mt_xwr = bad_mt_xwr; 4830 } 4831 4832 static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu, 4833 struct kvm_mmu *context, bool execonly, int huge_page_level) 4834 { 4835 __reset_rsvds_bits_mask_ept(&context->guest_rsvd_check, 4836 vcpu->arch.reserved_gpa_bits, execonly, 4837 huge_page_level); 4838 } 4839 4840 static inline u64 reserved_hpa_bits(void) 4841 { 4842 return rsvd_bits(shadow_phys_bits, 63); 4843 } 4844 4845 /* 4846 * the page table on host is the shadow page table for the page 4847 * table in guest or amd nested guest, its mmu features completely 4848 * follow the features in guest. 4849 */ 4850 static void reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, 4851 struct kvm_mmu *context) 4852 { 4853 /* @amd adds a check on bit of SPTEs, which KVM shouldn't use anyways. */ 4854 bool is_amd = true; 4855 /* KVM doesn't use 2-level page tables for the shadow MMU. */ 4856 bool is_pse = false; 4857 struct rsvd_bits_validate *shadow_zero_check; 4858 int i; 4859 4860 WARN_ON_ONCE(context->root_role.level < PT32E_ROOT_LEVEL); 4861 4862 shadow_zero_check = &context->shadow_zero_check; 4863 __reset_rsvds_bits_mask(shadow_zero_check, reserved_hpa_bits(), 4864 context->root_role.level, 4865 context->root_role.efer_nx, 4866 guest_can_use(vcpu, X86_FEATURE_GBPAGES), 4867 is_pse, is_amd); 4868 4869 if (!shadow_me_mask) 4870 return; 4871 4872 for (i = context->root_role.level; --i >= 0;) { 4873 /* 4874 * So far shadow_me_value is a constant during KVM's life 4875 * time. Bits in shadow_me_value are allowed to be set. 4876 * Bits in shadow_me_mask but not in shadow_me_value are 4877 * not allowed to be set. 4878 */ 4879 shadow_zero_check->rsvd_bits_mask[0][i] |= shadow_me_mask; 4880 shadow_zero_check->rsvd_bits_mask[1][i] |= shadow_me_mask; 4881 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_value; 4882 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_value; 4883 } 4884 4885 } 4886 4887 static inline bool boot_cpu_is_amd(void) 4888 { 4889 WARN_ON_ONCE(!tdp_enabled); 4890 return shadow_x_mask == 0; 4891 } 4892 4893 /* 4894 * the direct page table on host, use as much mmu features as 4895 * possible, however, kvm currently does not do execution-protection. 4896 */ 4897 static void reset_tdp_shadow_zero_bits_mask(struct kvm_mmu *context) 4898 { 4899 struct rsvd_bits_validate *shadow_zero_check; 4900 int i; 4901 4902 shadow_zero_check = &context->shadow_zero_check; 4903 4904 if (boot_cpu_is_amd()) 4905 __reset_rsvds_bits_mask(shadow_zero_check, reserved_hpa_bits(), 4906 context->root_role.level, true, 4907 boot_cpu_has(X86_FEATURE_GBPAGES), 4908 false, true); 4909 else 4910 __reset_rsvds_bits_mask_ept(shadow_zero_check, 4911 reserved_hpa_bits(), false, 4912 max_huge_page_level); 4913 4914 if (!shadow_me_mask) 4915 return; 4916 4917 for (i = context->root_role.level; --i >= 0;) { 4918 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask; 4919 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask; 4920 } 4921 } 4922 4923 /* 4924 * as the comments in reset_shadow_zero_bits_mask() except it 4925 * is the shadow page table for intel nested guest. 4926 */ 4927 static void 4928 reset_ept_shadow_zero_bits_mask(struct kvm_mmu *context, bool execonly) 4929 { 4930 __reset_rsvds_bits_mask_ept(&context->shadow_zero_check, 4931 reserved_hpa_bits(), execonly, 4932 max_huge_page_level); 4933 } 4934 4935 #define BYTE_MASK(access) \ 4936 ((1 & (access) ? 2 : 0) | \ 4937 (2 & (access) ? 4 : 0) | \ 4938 (3 & (access) ? 8 : 0) | \ 4939 (4 & (access) ? 16 : 0) | \ 4940 (5 & (access) ? 32 : 0) | \ 4941 (6 & (access) ? 64 : 0) | \ 4942 (7 & (access) ? 128 : 0)) 4943 4944 4945 static void update_permission_bitmask(struct kvm_mmu *mmu, bool ept) 4946 { 4947 unsigned byte; 4948 4949 const u8 x = BYTE_MASK(ACC_EXEC_MASK); 4950 const u8 w = BYTE_MASK(ACC_WRITE_MASK); 4951 const u8 u = BYTE_MASK(ACC_USER_MASK); 4952 4953 bool cr4_smep = is_cr4_smep(mmu); 4954 bool cr4_smap = is_cr4_smap(mmu); 4955 bool cr0_wp = is_cr0_wp(mmu); 4956 bool efer_nx = is_efer_nx(mmu); 4957 4958 for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) { 4959 unsigned pfec = byte << 1; 4960 4961 /* 4962 * Each "*f" variable has a 1 bit for each UWX value 4963 * that causes a fault with the given PFEC. 4964 */ 4965 4966 /* Faults from writes to non-writable pages */ 4967 u8 wf = (pfec & PFERR_WRITE_MASK) ? (u8)~w : 0; 4968 /* Faults from user mode accesses to supervisor pages */ 4969 u8 uf = (pfec & PFERR_USER_MASK) ? (u8)~u : 0; 4970 /* Faults from fetches of non-executable pages*/ 4971 u8 ff = (pfec & PFERR_FETCH_MASK) ? (u8)~x : 0; 4972 /* Faults from kernel mode fetches of user pages */ 4973 u8 smepf = 0; 4974 /* Faults from kernel mode accesses of user pages */ 4975 u8 smapf = 0; 4976 4977 if (!ept) { 4978 /* Faults from kernel mode accesses to user pages */ 4979 u8 kf = (pfec & PFERR_USER_MASK) ? 0 : u; 4980 4981 /* Not really needed: !nx will cause pte.nx to fault */ 4982 if (!efer_nx) 4983 ff = 0; 4984 4985 /* Allow supervisor writes if !cr0.wp */ 4986 if (!cr0_wp) 4987 wf = (pfec & PFERR_USER_MASK) ? wf : 0; 4988 4989 /* Disallow supervisor fetches of user code if cr4.smep */ 4990 if (cr4_smep) 4991 smepf = (pfec & PFERR_FETCH_MASK) ? kf : 0; 4992 4993 /* 4994 * SMAP:kernel-mode data accesses from user-mode 4995 * mappings should fault. A fault is considered 4996 * as a SMAP violation if all of the following 4997 * conditions are true: 4998 * - X86_CR4_SMAP is set in CR4 4999 * - A user page is accessed 5000 * - The access is not a fetch 5001 * - The access is supervisor mode 5002 * - If implicit supervisor access or X86_EFLAGS_AC is clear 5003 * 5004 * Here, we cover the first four conditions. 5005 * The fifth is computed dynamically in permission_fault(); 5006 * PFERR_RSVD_MASK bit will be set in PFEC if the access is 5007 * *not* subject to SMAP restrictions. 5008 */ 5009 if (cr4_smap) 5010 smapf = (pfec & (PFERR_RSVD_MASK|PFERR_FETCH_MASK)) ? 0 : kf; 5011 } 5012 5013 mmu->permissions[byte] = ff | uf | wf | smepf | smapf; 5014 } 5015 } 5016 5017 /* 5018 * PKU is an additional mechanism by which the paging controls access to 5019 * user-mode addresses based on the value in the PKRU register. Protection 5020 * key violations are reported through a bit in the page fault error code. 5021 * Unlike other bits of the error code, the PK bit is not known at the 5022 * call site of e.g. gva_to_gpa; it must be computed directly in 5023 * permission_fault based on two bits of PKRU, on some machine state (CR4, 5024 * CR0, EFER, CPL), and on other bits of the error code and the page tables. 5025 * 5026 * In particular the following conditions come from the error code, the 5027 * page tables and the machine state: 5028 * - PK is always zero unless CR4.PKE=1 and EFER.LMA=1 5029 * - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch) 5030 * - PK is always zero if U=0 in the page tables 5031 * - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access. 5032 * 5033 * The PKRU bitmask caches the result of these four conditions. The error 5034 * code (minus the P bit) and the page table's U bit form an index into the 5035 * PKRU bitmask. Two bits of the PKRU bitmask are then extracted and ANDed 5036 * with the two bits of the PKRU register corresponding to the protection key. 5037 * For the first three conditions above the bits will be 00, thus masking 5038 * away both AD and WD. For all reads or if the last condition holds, WD 5039 * only will be masked away. 5040 */ 5041 static void update_pkru_bitmask(struct kvm_mmu *mmu) 5042 { 5043 unsigned bit; 5044 bool wp; 5045 5046 mmu->pkru_mask = 0; 5047 5048 if (!is_cr4_pke(mmu)) 5049 return; 5050 5051 wp = is_cr0_wp(mmu); 5052 5053 for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) { 5054 unsigned pfec, pkey_bits; 5055 bool check_pkey, check_write, ff, uf, wf, pte_user; 5056 5057 pfec = bit << 1; 5058 ff = pfec & PFERR_FETCH_MASK; 5059 uf = pfec & PFERR_USER_MASK; 5060 wf = pfec & PFERR_WRITE_MASK; 5061 5062 /* PFEC.RSVD is replaced by ACC_USER_MASK. */ 5063 pte_user = pfec & PFERR_RSVD_MASK; 5064 5065 /* 5066 * Only need to check the access which is not an 5067 * instruction fetch and is to a user page. 5068 */ 5069 check_pkey = (!ff && pte_user); 5070 /* 5071 * write access is controlled by PKRU if it is a 5072 * user access or CR0.WP = 1. 5073 */ 5074 check_write = check_pkey && wf && (uf || wp); 5075 5076 /* PKRU.AD stops both read and write access. */ 5077 pkey_bits = !!check_pkey; 5078 /* PKRU.WD stops write access. */ 5079 pkey_bits |= (!!check_write) << 1; 5080 5081 mmu->pkru_mask |= (pkey_bits & 3) << pfec; 5082 } 5083 } 5084 5085 static void reset_guest_paging_metadata(struct kvm_vcpu *vcpu, 5086 struct kvm_mmu *mmu) 5087 { 5088 if (!is_cr0_pg(mmu)) 5089 return; 5090 5091 reset_guest_rsvds_bits_mask(vcpu, mmu); 5092 update_permission_bitmask(mmu, false); 5093 update_pkru_bitmask(mmu); 5094 } 5095 5096 static void paging64_init_context(struct kvm_mmu *context) 5097 { 5098 context->page_fault = paging64_page_fault; 5099 context->gva_to_gpa = paging64_gva_to_gpa; 5100 context->sync_spte = paging64_sync_spte; 5101 } 5102 5103 static void paging32_init_context(struct kvm_mmu *context) 5104 { 5105 context->page_fault = paging32_page_fault; 5106 context->gva_to_gpa = paging32_gva_to_gpa; 5107 context->sync_spte = paging32_sync_spte; 5108 } 5109 5110 static union kvm_cpu_role kvm_calc_cpu_role(struct kvm_vcpu *vcpu, 5111 const struct kvm_mmu_role_regs *regs) 5112 { 5113 union kvm_cpu_role role = {0}; 5114 5115 role.base.access = ACC_ALL; 5116 role.base.smm = is_smm(vcpu); 5117 role.base.guest_mode = is_guest_mode(vcpu); 5118 role.ext.valid = 1; 5119 5120 if (!____is_cr0_pg(regs)) { 5121 role.base.direct = 1; 5122 return role; 5123 } 5124 5125 role.base.efer_nx = ____is_efer_nx(regs); 5126 role.base.cr0_wp = ____is_cr0_wp(regs); 5127 role.base.smep_andnot_wp = ____is_cr4_smep(regs) && !____is_cr0_wp(regs); 5128 role.base.smap_andnot_wp = ____is_cr4_smap(regs) && !____is_cr0_wp(regs); 5129 role.base.has_4_byte_gpte = !____is_cr4_pae(regs); 5130 5131 if (____is_efer_lma(regs)) 5132 role.base.level = ____is_cr4_la57(regs) ? PT64_ROOT_5LEVEL 5133 : PT64_ROOT_4LEVEL; 5134 else if (____is_cr4_pae(regs)) 5135 role.base.level = PT32E_ROOT_LEVEL; 5136 else 5137 role.base.level = PT32_ROOT_LEVEL; 5138 5139 role.ext.cr4_smep = ____is_cr4_smep(regs); 5140 role.ext.cr4_smap = ____is_cr4_smap(regs); 5141 role.ext.cr4_pse = ____is_cr4_pse(regs); 5142 5143 /* PKEY and LA57 are active iff long mode is active. */ 5144 role.ext.cr4_pke = ____is_efer_lma(regs) && ____is_cr4_pke(regs); 5145 role.ext.cr4_la57 = ____is_efer_lma(regs) && ____is_cr4_la57(regs); 5146 role.ext.efer_lma = ____is_efer_lma(regs); 5147 return role; 5148 } 5149 5150 void __kvm_mmu_refresh_passthrough_bits(struct kvm_vcpu *vcpu, 5151 struct kvm_mmu *mmu) 5152 { 5153 const bool cr0_wp = kvm_is_cr0_bit_set(vcpu, X86_CR0_WP); 5154 5155 BUILD_BUG_ON((KVM_MMU_CR0_ROLE_BITS & KVM_POSSIBLE_CR0_GUEST_BITS) != X86_CR0_WP); 5156 BUILD_BUG_ON((KVM_MMU_CR4_ROLE_BITS & KVM_POSSIBLE_CR4_GUEST_BITS)); 5157 5158 if (is_cr0_wp(mmu) == cr0_wp) 5159 return; 5160 5161 mmu->cpu_role.base.cr0_wp = cr0_wp; 5162 reset_guest_paging_metadata(vcpu, mmu); 5163 } 5164 5165 static inline int kvm_mmu_get_tdp_level(struct kvm_vcpu *vcpu) 5166 { 5167 /* tdp_root_level is architecture forced level, use it if nonzero */ 5168 if (tdp_root_level) 5169 return tdp_root_level; 5170 5171 /* Use 5-level TDP if and only if it's useful/necessary. */ 5172 if (max_tdp_level == 5 && cpuid_maxphyaddr(vcpu) <= 48) 5173 return 4; 5174 5175 return max_tdp_level; 5176 } 5177 5178 static union kvm_mmu_page_role 5179 kvm_calc_tdp_mmu_root_page_role(struct kvm_vcpu *vcpu, 5180 union kvm_cpu_role cpu_role) 5181 { 5182 union kvm_mmu_page_role role = {0}; 5183 5184 role.access = ACC_ALL; 5185 role.cr0_wp = true; 5186 role.efer_nx = true; 5187 role.smm = cpu_role.base.smm; 5188 role.guest_mode = cpu_role.base.guest_mode; 5189 role.ad_disabled = !kvm_ad_enabled(); 5190 role.level = kvm_mmu_get_tdp_level(vcpu); 5191 role.direct = true; 5192 role.has_4_byte_gpte = false; 5193 5194 return role; 5195 } 5196 5197 static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu, 5198 union kvm_cpu_role cpu_role) 5199 { 5200 struct kvm_mmu *context = &vcpu->arch.root_mmu; 5201 union kvm_mmu_page_role root_role = kvm_calc_tdp_mmu_root_page_role(vcpu, cpu_role); 5202 5203 if (cpu_role.as_u64 == context->cpu_role.as_u64 && 5204 root_role.word == context->root_role.word) 5205 return; 5206 5207 context->cpu_role.as_u64 = cpu_role.as_u64; 5208 context->root_role.word = root_role.word; 5209 context->page_fault = kvm_tdp_page_fault; 5210 context->sync_spte = NULL; 5211 context->get_guest_pgd = get_guest_cr3; 5212 context->get_pdptr = kvm_pdptr_read; 5213 context->inject_page_fault = kvm_inject_page_fault; 5214 5215 if (!is_cr0_pg(context)) 5216 context->gva_to_gpa = nonpaging_gva_to_gpa; 5217 else if (is_cr4_pae(context)) 5218 context->gva_to_gpa = paging64_gva_to_gpa; 5219 else 5220 context->gva_to_gpa = paging32_gva_to_gpa; 5221 5222 reset_guest_paging_metadata(vcpu, context); 5223 reset_tdp_shadow_zero_bits_mask(context); 5224 } 5225 5226 static void shadow_mmu_init_context(struct kvm_vcpu *vcpu, struct kvm_mmu *context, 5227 union kvm_cpu_role cpu_role, 5228 union kvm_mmu_page_role root_role) 5229 { 5230 if (cpu_role.as_u64 == context->cpu_role.as_u64 && 5231 root_role.word == context->root_role.word) 5232 return; 5233 5234 context->cpu_role.as_u64 = cpu_role.as_u64; 5235 context->root_role.word = root_role.word; 5236 5237 if (!is_cr0_pg(context)) 5238 nonpaging_init_context(context); 5239 else if (is_cr4_pae(context)) 5240 paging64_init_context(context); 5241 else 5242 paging32_init_context(context); 5243 5244 reset_guest_paging_metadata(vcpu, context); 5245 reset_shadow_zero_bits_mask(vcpu, context); 5246 } 5247 5248 static void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, 5249 union kvm_cpu_role cpu_role) 5250 { 5251 struct kvm_mmu *context = &vcpu->arch.root_mmu; 5252 union kvm_mmu_page_role root_role; 5253 5254 root_role = cpu_role.base; 5255 5256 /* KVM uses PAE paging whenever the guest isn't using 64-bit paging. */ 5257 root_role.level = max_t(u32, root_role.level, PT32E_ROOT_LEVEL); 5258 5259 /* 5260 * KVM forces EFER.NX=1 when TDP is disabled, reflect it in the MMU role. 5261 * KVM uses NX when TDP is disabled to handle a variety of scenarios, 5262 * notably for huge SPTEs if iTLB multi-hit mitigation is enabled and 5263 * to generate correct permissions for CR0.WP=0/CR4.SMEP=1/EFER.NX=0. 5264 * The iTLB multi-hit workaround can be toggled at any time, so assume 5265 * NX can be used by any non-nested shadow MMU to avoid having to reset 5266 * MMU contexts. 5267 */ 5268 root_role.efer_nx = true; 5269 5270 shadow_mmu_init_context(vcpu, context, cpu_role, root_role); 5271 } 5272 5273 void kvm_init_shadow_npt_mmu(struct kvm_vcpu *vcpu, unsigned long cr0, 5274 unsigned long cr4, u64 efer, gpa_t nested_cr3) 5275 { 5276 struct kvm_mmu *context = &vcpu->arch.guest_mmu; 5277 struct kvm_mmu_role_regs regs = { 5278 .cr0 = cr0, 5279 .cr4 = cr4 & ~X86_CR4_PKE, 5280 .efer = efer, 5281 }; 5282 union kvm_cpu_role cpu_role = kvm_calc_cpu_role(vcpu, ®s); 5283 union kvm_mmu_page_role root_role; 5284 5285 /* NPT requires CR0.PG=1. */ 5286 WARN_ON_ONCE(cpu_role.base.direct); 5287 5288 root_role = cpu_role.base; 5289 root_role.level = kvm_mmu_get_tdp_level(vcpu); 5290 if (root_role.level == PT64_ROOT_5LEVEL && 5291 cpu_role.base.level == PT64_ROOT_4LEVEL) 5292 root_role.passthrough = 1; 5293 5294 shadow_mmu_init_context(vcpu, context, cpu_role, root_role); 5295 kvm_mmu_new_pgd(vcpu, nested_cr3); 5296 } 5297 EXPORT_SYMBOL_GPL(kvm_init_shadow_npt_mmu); 5298 5299 static union kvm_cpu_role 5300 kvm_calc_shadow_ept_root_page_role(struct kvm_vcpu *vcpu, bool accessed_dirty, 5301 bool execonly, u8 level) 5302 { 5303 union kvm_cpu_role role = {0}; 5304 5305 /* 5306 * KVM does not support SMM transfer monitors, and consequently does not 5307 * support the "entry to SMM" control either. role.base.smm is always 0. 5308 */ 5309 WARN_ON_ONCE(is_smm(vcpu)); 5310 role.base.level = level; 5311 role.base.has_4_byte_gpte = false; 5312 role.base.direct = false; 5313 role.base.ad_disabled = !accessed_dirty; 5314 role.base.guest_mode = true; 5315 role.base.access = ACC_ALL; 5316 5317 role.ext.word = 0; 5318 role.ext.execonly = execonly; 5319 role.ext.valid = 1; 5320 5321 return role; 5322 } 5323 5324 void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly, 5325 int huge_page_level, bool accessed_dirty, 5326 gpa_t new_eptp) 5327 { 5328 struct kvm_mmu *context = &vcpu->arch.guest_mmu; 5329 u8 level = vmx_eptp_page_walk_level(new_eptp); 5330 union kvm_cpu_role new_mode = 5331 kvm_calc_shadow_ept_root_page_role(vcpu, accessed_dirty, 5332 execonly, level); 5333 5334 if (new_mode.as_u64 != context->cpu_role.as_u64) { 5335 /* EPT, and thus nested EPT, does not consume CR0, CR4, nor EFER. */ 5336 context->cpu_role.as_u64 = new_mode.as_u64; 5337 context->root_role.word = new_mode.base.word; 5338 5339 context->page_fault = ept_page_fault; 5340 context->gva_to_gpa = ept_gva_to_gpa; 5341 context->sync_spte = ept_sync_spte; 5342 5343 update_permission_bitmask(context, true); 5344 context->pkru_mask = 0; 5345 reset_rsvds_bits_mask_ept(vcpu, context, execonly, huge_page_level); 5346 reset_ept_shadow_zero_bits_mask(context, execonly); 5347 } 5348 5349 kvm_mmu_new_pgd(vcpu, new_eptp); 5350 } 5351 EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu); 5352 5353 static void init_kvm_softmmu(struct kvm_vcpu *vcpu, 5354 union kvm_cpu_role cpu_role) 5355 { 5356 struct kvm_mmu *context = &vcpu->arch.root_mmu; 5357 5358 kvm_init_shadow_mmu(vcpu, cpu_role); 5359 5360 context->get_guest_pgd = get_guest_cr3; 5361 context->get_pdptr = kvm_pdptr_read; 5362 context->inject_page_fault = kvm_inject_page_fault; 5363 } 5364 5365 static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu, 5366 union kvm_cpu_role new_mode) 5367 { 5368 struct kvm_mmu *g_context = &vcpu->arch.nested_mmu; 5369 5370 if (new_mode.as_u64 == g_context->cpu_role.as_u64) 5371 return; 5372 5373 g_context->cpu_role.as_u64 = new_mode.as_u64; 5374 g_context->get_guest_pgd = get_guest_cr3; 5375 g_context->get_pdptr = kvm_pdptr_read; 5376 g_context->inject_page_fault = kvm_inject_page_fault; 5377 5378 /* 5379 * L2 page tables are never shadowed, so there is no need to sync 5380 * SPTEs. 5381 */ 5382 g_context->sync_spte = NULL; 5383 5384 /* 5385 * Note that arch.mmu->gva_to_gpa translates l2_gpa to l1_gpa using 5386 * L1's nested page tables (e.g. EPT12). The nested translation 5387 * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using 5388 * L2's page tables as the first level of translation and L1's 5389 * nested page tables as the second level of translation. Basically 5390 * the gva_to_gpa functions between mmu and nested_mmu are swapped. 5391 */ 5392 if (!is_paging(vcpu)) 5393 g_context->gva_to_gpa = nonpaging_gva_to_gpa; 5394 else if (is_long_mode(vcpu)) 5395 g_context->gva_to_gpa = paging64_gva_to_gpa; 5396 else if (is_pae(vcpu)) 5397 g_context->gva_to_gpa = paging64_gva_to_gpa; 5398 else 5399 g_context->gva_to_gpa = paging32_gva_to_gpa; 5400 5401 reset_guest_paging_metadata(vcpu, g_context); 5402 } 5403 5404 void kvm_init_mmu(struct kvm_vcpu *vcpu) 5405 { 5406 struct kvm_mmu_role_regs regs = vcpu_to_role_regs(vcpu); 5407 union kvm_cpu_role cpu_role = kvm_calc_cpu_role(vcpu, ®s); 5408 5409 if (mmu_is_nested(vcpu)) 5410 init_kvm_nested_mmu(vcpu, cpu_role); 5411 else if (tdp_enabled) 5412 init_kvm_tdp_mmu(vcpu, cpu_role); 5413 else 5414 init_kvm_softmmu(vcpu, cpu_role); 5415 } 5416 EXPORT_SYMBOL_GPL(kvm_init_mmu); 5417 5418 void kvm_mmu_after_set_cpuid(struct kvm_vcpu *vcpu) 5419 { 5420 /* 5421 * Invalidate all MMU roles to force them to reinitialize as CPUID 5422 * information is factored into reserved bit calculations. 5423 * 5424 * Correctly handling multiple vCPU models with respect to paging and 5425 * physical address properties) in a single VM would require tracking 5426 * all relevant CPUID information in kvm_mmu_page_role. That is very 5427 * undesirable as it would increase the memory requirements for 5428 * gfn_write_track (see struct kvm_mmu_page_role comments). For now 5429 * that problem is swept under the rug; KVM's CPUID API is horrific and 5430 * it's all but impossible to solve it without introducing a new API. 5431 */ 5432 vcpu->arch.root_mmu.root_role.word = 0; 5433 vcpu->arch.guest_mmu.root_role.word = 0; 5434 vcpu->arch.nested_mmu.root_role.word = 0; 5435 vcpu->arch.root_mmu.cpu_role.ext.valid = 0; 5436 vcpu->arch.guest_mmu.cpu_role.ext.valid = 0; 5437 vcpu->arch.nested_mmu.cpu_role.ext.valid = 0; 5438 kvm_mmu_reset_context(vcpu); 5439 5440 /* 5441 * Changing guest CPUID after KVM_RUN is forbidden, see the comment in 5442 * kvm_arch_vcpu_ioctl(). 5443 */ 5444 KVM_BUG_ON(kvm_vcpu_has_run(vcpu), vcpu->kvm); 5445 } 5446 5447 void kvm_mmu_reset_context(struct kvm_vcpu *vcpu) 5448 { 5449 kvm_mmu_unload(vcpu); 5450 kvm_init_mmu(vcpu); 5451 } 5452 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context); 5453 5454 int kvm_mmu_load(struct kvm_vcpu *vcpu) 5455 { 5456 int r; 5457 5458 r = mmu_topup_memory_caches(vcpu, !vcpu->arch.mmu->root_role.direct); 5459 if (r) 5460 goto out; 5461 r = mmu_alloc_special_roots(vcpu); 5462 if (r) 5463 goto out; 5464 if (vcpu->arch.mmu->root_role.direct) 5465 r = mmu_alloc_direct_roots(vcpu); 5466 else 5467 r = mmu_alloc_shadow_roots(vcpu); 5468 if (r) 5469 goto out; 5470 5471 kvm_mmu_sync_roots(vcpu); 5472 5473 kvm_mmu_load_pgd(vcpu); 5474 5475 /* 5476 * Flush any TLB entries for the new root, the provenance of the root 5477 * is unknown. Even if KVM ensures there are no stale TLB entries 5478 * for a freed root, in theory another hypervisor could have left 5479 * stale entries. Flushing on alloc also allows KVM to skip the TLB 5480 * flush when freeing a root (see kvm_tdp_mmu_put_root()). 5481 */ 5482 static_call(kvm_x86_flush_tlb_current)(vcpu); 5483 out: 5484 return r; 5485 } 5486 5487 void kvm_mmu_unload(struct kvm_vcpu *vcpu) 5488 { 5489 struct kvm *kvm = vcpu->kvm; 5490 5491 kvm_mmu_free_roots(kvm, &vcpu->arch.root_mmu, KVM_MMU_ROOTS_ALL); 5492 WARN_ON_ONCE(VALID_PAGE(vcpu->arch.root_mmu.root.hpa)); 5493 kvm_mmu_free_roots(kvm, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL); 5494 WARN_ON_ONCE(VALID_PAGE(vcpu->arch.guest_mmu.root.hpa)); 5495 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY); 5496 } 5497 5498 static bool is_obsolete_root(struct kvm *kvm, hpa_t root_hpa) 5499 { 5500 struct kvm_mmu_page *sp; 5501 5502 if (!VALID_PAGE(root_hpa)) 5503 return false; 5504 5505 /* 5506 * When freeing obsolete roots, treat roots as obsolete if they don't 5507 * have an associated shadow page, as it's impossible to determine if 5508 * such roots are fresh or stale. This does mean KVM will get false 5509 * positives and free roots that don't strictly need to be freed, but 5510 * such false positives are relatively rare: 5511 * 5512 * (a) only PAE paging and nested NPT have roots without shadow pages 5513 * (or any shadow paging flavor with a dummy root, see note below) 5514 * (b) remote reloads due to a memslot update obsoletes _all_ roots 5515 * (c) KVM doesn't track previous roots for PAE paging, and the guest 5516 * is unlikely to zap an in-use PGD. 5517 * 5518 * Note! Dummy roots are unique in that they are obsoleted by memslot 5519 * _creation_! See also FNAME(fetch). 5520 */ 5521 sp = root_to_sp(root_hpa); 5522 return !sp || is_obsolete_sp(kvm, sp); 5523 } 5524 5525 static void __kvm_mmu_free_obsolete_roots(struct kvm *kvm, struct kvm_mmu *mmu) 5526 { 5527 unsigned long roots_to_free = 0; 5528 int i; 5529 5530 if (is_obsolete_root(kvm, mmu->root.hpa)) 5531 roots_to_free |= KVM_MMU_ROOT_CURRENT; 5532 5533 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) { 5534 if (is_obsolete_root(kvm, mmu->prev_roots[i].hpa)) 5535 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i); 5536 } 5537 5538 if (roots_to_free) 5539 kvm_mmu_free_roots(kvm, mmu, roots_to_free); 5540 } 5541 5542 void kvm_mmu_free_obsolete_roots(struct kvm_vcpu *vcpu) 5543 { 5544 __kvm_mmu_free_obsolete_roots(vcpu->kvm, &vcpu->arch.root_mmu); 5545 __kvm_mmu_free_obsolete_roots(vcpu->kvm, &vcpu->arch.guest_mmu); 5546 } 5547 5548 static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa, 5549 int *bytes) 5550 { 5551 u64 gentry = 0; 5552 int r; 5553 5554 /* 5555 * Assume that the pte write on a page table of the same type 5556 * as the current vcpu paging mode since we update the sptes only 5557 * when they have the same mode. 5558 */ 5559 if (is_pae(vcpu) && *bytes == 4) { 5560 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */ 5561 *gpa &= ~(gpa_t)7; 5562 *bytes = 8; 5563 } 5564 5565 if (*bytes == 4 || *bytes == 8) { 5566 r = kvm_vcpu_read_guest_atomic(vcpu, *gpa, &gentry, *bytes); 5567 if (r) 5568 gentry = 0; 5569 } 5570 5571 return gentry; 5572 } 5573 5574 /* 5575 * If we're seeing too many writes to a page, it may no longer be a page table, 5576 * or we may be forking, in which case it is better to unmap the page. 5577 */ 5578 static bool detect_write_flooding(struct kvm_mmu_page *sp) 5579 { 5580 /* 5581 * Skip write-flooding detected for the sp whose level is 1, because 5582 * it can become unsync, then the guest page is not write-protected. 5583 */ 5584 if (sp->role.level == PG_LEVEL_4K) 5585 return false; 5586 5587 atomic_inc(&sp->write_flooding_count); 5588 return atomic_read(&sp->write_flooding_count) >= 3; 5589 } 5590 5591 /* 5592 * Misaligned accesses are too much trouble to fix up; also, they usually 5593 * indicate a page is not used as a page table. 5594 */ 5595 static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa, 5596 int bytes) 5597 { 5598 unsigned offset, pte_size, misaligned; 5599 5600 offset = offset_in_page(gpa); 5601 pte_size = sp->role.has_4_byte_gpte ? 4 : 8; 5602 5603 /* 5604 * Sometimes, the OS only writes the last one bytes to update status 5605 * bits, for example, in linux, andb instruction is used in clear_bit(). 5606 */ 5607 if (!(offset & (pte_size - 1)) && bytes == 1) 5608 return false; 5609 5610 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1); 5611 misaligned |= bytes < 4; 5612 5613 return misaligned; 5614 } 5615 5616 static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte) 5617 { 5618 unsigned page_offset, quadrant; 5619 u64 *spte; 5620 int level; 5621 5622 page_offset = offset_in_page(gpa); 5623 level = sp->role.level; 5624 *nspte = 1; 5625 if (sp->role.has_4_byte_gpte) { 5626 page_offset <<= 1; /* 32->64 */ 5627 /* 5628 * A 32-bit pde maps 4MB while the shadow pdes map 5629 * only 2MB. So we need to double the offset again 5630 * and zap two pdes instead of one. 5631 */ 5632 if (level == PT32_ROOT_LEVEL) { 5633 page_offset &= ~7; /* kill rounding error */ 5634 page_offset <<= 1; 5635 *nspte = 2; 5636 } 5637 quadrant = page_offset >> PAGE_SHIFT; 5638 page_offset &= ~PAGE_MASK; 5639 if (quadrant != sp->role.quadrant) 5640 return NULL; 5641 } 5642 5643 spte = &sp->spt[page_offset / sizeof(*spte)]; 5644 return spte; 5645 } 5646 5647 void kvm_mmu_track_write(struct kvm_vcpu *vcpu, gpa_t gpa, const u8 *new, 5648 int bytes) 5649 { 5650 gfn_t gfn = gpa >> PAGE_SHIFT; 5651 struct kvm_mmu_page *sp; 5652 LIST_HEAD(invalid_list); 5653 u64 entry, gentry, *spte; 5654 int npte; 5655 bool flush = false; 5656 5657 /* 5658 * If we don't have indirect shadow pages, it means no page is 5659 * write-protected, so we can exit simply. 5660 */ 5661 if (!READ_ONCE(vcpu->kvm->arch.indirect_shadow_pages)) 5662 return; 5663 5664 write_lock(&vcpu->kvm->mmu_lock); 5665 5666 gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, &bytes); 5667 5668 ++vcpu->kvm->stat.mmu_pte_write; 5669 5670 for_each_gfn_valid_sp_with_gptes(vcpu->kvm, sp, gfn) { 5671 if (detect_write_misaligned(sp, gpa, bytes) || 5672 detect_write_flooding(sp)) { 5673 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list); 5674 ++vcpu->kvm->stat.mmu_flooded; 5675 continue; 5676 } 5677 5678 spte = get_written_sptes(sp, gpa, &npte); 5679 if (!spte) 5680 continue; 5681 5682 while (npte--) { 5683 entry = *spte; 5684 mmu_page_zap_pte(vcpu->kvm, sp, spte, NULL); 5685 if (gentry && sp->role.level != PG_LEVEL_4K) 5686 ++vcpu->kvm->stat.mmu_pde_zapped; 5687 if (is_shadow_present_pte(entry)) 5688 flush = true; 5689 ++spte; 5690 } 5691 } 5692 kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, flush); 5693 write_unlock(&vcpu->kvm->mmu_lock); 5694 } 5695 5696 int noinline kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 error_code, 5697 void *insn, int insn_len) 5698 { 5699 int r, emulation_type = EMULTYPE_PF; 5700 bool direct = vcpu->arch.mmu->root_role.direct; 5701 5702 /* 5703 * IMPLICIT_ACCESS is a KVM-defined flag used to correctly perform SMAP 5704 * checks when emulating instructions that triggers implicit access. 5705 * WARN if hardware generates a fault with an error code that collides 5706 * with the KVM-defined value. Clear the flag and continue on, i.e. 5707 * don't terminate the VM, as KVM can't possibly be relying on a flag 5708 * that KVM doesn't know about. 5709 */ 5710 if (WARN_ON_ONCE(error_code & PFERR_IMPLICIT_ACCESS)) 5711 error_code &= ~PFERR_IMPLICIT_ACCESS; 5712 5713 if (WARN_ON_ONCE(!VALID_PAGE(vcpu->arch.mmu->root.hpa))) 5714 return RET_PF_RETRY; 5715 5716 r = RET_PF_INVALID; 5717 if (unlikely(error_code & PFERR_RSVD_MASK)) { 5718 r = handle_mmio_page_fault(vcpu, cr2_or_gpa, direct); 5719 if (r == RET_PF_EMULATE) 5720 goto emulate; 5721 } 5722 5723 if (r == RET_PF_INVALID) { 5724 r = kvm_mmu_do_page_fault(vcpu, cr2_or_gpa, 5725 lower_32_bits(error_code), false, 5726 &emulation_type); 5727 if (KVM_BUG_ON(r == RET_PF_INVALID, vcpu->kvm)) 5728 return -EIO; 5729 } 5730 5731 if (r < 0) 5732 return r; 5733 if (r != RET_PF_EMULATE) 5734 return 1; 5735 5736 /* 5737 * Before emulating the instruction, check if the error code 5738 * was due to a RO violation while translating the guest page. 5739 * This can occur when using nested virtualization with nested 5740 * paging in both guests. If true, we simply unprotect the page 5741 * and resume the guest. 5742 */ 5743 if (vcpu->arch.mmu->root_role.direct && 5744 (error_code & PFERR_NESTED_GUEST_PAGE) == PFERR_NESTED_GUEST_PAGE) { 5745 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(cr2_or_gpa)); 5746 return 1; 5747 } 5748 5749 /* 5750 * vcpu->arch.mmu.page_fault returned RET_PF_EMULATE, but we can still 5751 * optimistically try to just unprotect the page and let the processor 5752 * re-execute the instruction that caused the page fault. Do not allow 5753 * retrying MMIO emulation, as it's not only pointless but could also 5754 * cause us to enter an infinite loop because the processor will keep 5755 * faulting on the non-existent MMIO address. Retrying an instruction 5756 * from a nested guest is also pointless and dangerous as we are only 5757 * explicitly shadowing L1's page tables, i.e. unprotecting something 5758 * for L1 isn't going to magically fix whatever issue cause L2 to fail. 5759 */ 5760 if (!mmio_info_in_cache(vcpu, cr2_or_gpa, direct) && !is_guest_mode(vcpu)) 5761 emulation_type |= EMULTYPE_ALLOW_RETRY_PF; 5762 emulate: 5763 return x86_emulate_instruction(vcpu, cr2_or_gpa, emulation_type, insn, 5764 insn_len); 5765 } 5766 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault); 5767 5768 static void __kvm_mmu_invalidate_addr(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, 5769 u64 addr, hpa_t root_hpa) 5770 { 5771 struct kvm_shadow_walk_iterator iterator; 5772 5773 vcpu_clear_mmio_info(vcpu, addr); 5774 5775 /* 5776 * Walking and synchronizing SPTEs both assume they are operating in 5777 * the context of the current MMU, and would need to be reworked if 5778 * this is ever used to sync the guest_mmu, e.g. to emulate INVEPT. 5779 */ 5780 if (WARN_ON_ONCE(mmu != vcpu->arch.mmu)) 5781 return; 5782 5783 if (!VALID_PAGE(root_hpa)) 5784 return; 5785 5786 write_lock(&vcpu->kvm->mmu_lock); 5787 for_each_shadow_entry_using_root(vcpu, root_hpa, addr, iterator) { 5788 struct kvm_mmu_page *sp = sptep_to_sp(iterator.sptep); 5789 5790 if (sp->unsync) { 5791 int ret = kvm_sync_spte(vcpu, sp, iterator.index); 5792 5793 if (ret < 0) 5794 mmu_page_zap_pte(vcpu->kvm, sp, iterator.sptep, NULL); 5795 if (ret) 5796 kvm_flush_remote_tlbs_sptep(vcpu->kvm, iterator.sptep); 5797 } 5798 5799 if (!sp->unsync_children) 5800 break; 5801 } 5802 write_unlock(&vcpu->kvm->mmu_lock); 5803 } 5804 5805 void kvm_mmu_invalidate_addr(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, 5806 u64 addr, unsigned long roots) 5807 { 5808 int i; 5809 5810 WARN_ON_ONCE(roots & ~KVM_MMU_ROOTS_ALL); 5811 5812 /* It's actually a GPA for vcpu->arch.guest_mmu. */ 5813 if (mmu != &vcpu->arch.guest_mmu) { 5814 /* INVLPG on a non-canonical address is a NOP according to the SDM. */ 5815 if (is_noncanonical_address(addr, vcpu)) 5816 return; 5817 5818 static_call(kvm_x86_flush_tlb_gva)(vcpu, addr); 5819 } 5820 5821 if (!mmu->sync_spte) 5822 return; 5823 5824 if (roots & KVM_MMU_ROOT_CURRENT) 5825 __kvm_mmu_invalidate_addr(vcpu, mmu, addr, mmu->root.hpa); 5826 5827 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) { 5828 if (roots & KVM_MMU_ROOT_PREVIOUS(i)) 5829 __kvm_mmu_invalidate_addr(vcpu, mmu, addr, mmu->prev_roots[i].hpa); 5830 } 5831 } 5832 EXPORT_SYMBOL_GPL(kvm_mmu_invalidate_addr); 5833 5834 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva) 5835 { 5836 /* 5837 * INVLPG is required to invalidate any global mappings for the VA, 5838 * irrespective of PCID. Blindly sync all roots as it would take 5839 * roughly the same amount of work/time to determine whether any of the 5840 * previous roots have a global mapping. 5841 * 5842 * Mappings not reachable via the current or previous cached roots will 5843 * be synced when switching to that new cr3, so nothing needs to be 5844 * done here for them. 5845 */ 5846 kvm_mmu_invalidate_addr(vcpu, vcpu->arch.walk_mmu, gva, KVM_MMU_ROOTS_ALL); 5847 ++vcpu->stat.invlpg; 5848 } 5849 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg); 5850 5851 5852 void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid) 5853 { 5854 struct kvm_mmu *mmu = vcpu->arch.mmu; 5855 unsigned long roots = 0; 5856 uint i; 5857 5858 if (pcid == kvm_get_active_pcid(vcpu)) 5859 roots |= KVM_MMU_ROOT_CURRENT; 5860 5861 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) { 5862 if (VALID_PAGE(mmu->prev_roots[i].hpa) && 5863 pcid == kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd)) 5864 roots |= KVM_MMU_ROOT_PREVIOUS(i); 5865 } 5866 5867 if (roots) 5868 kvm_mmu_invalidate_addr(vcpu, mmu, gva, roots); 5869 ++vcpu->stat.invlpg; 5870 5871 /* 5872 * Mappings not reachable via the current cr3 or the prev_roots will be 5873 * synced when switching to that cr3, so nothing needs to be done here 5874 * for them. 5875 */ 5876 } 5877 5878 void kvm_configure_mmu(bool enable_tdp, int tdp_forced_root_level, 5879 int tdp_max_root_level, int tdp_huge_page_level) 5880 { 5881 tdp_enabled = enable_tdp; 5882 tdp_root_level = tdp_forced_root_level; 5883 max_tdp_level = tdp_max_root_level; 5884 5885 #ifdef CONFIG_X86_64 5886 tdp_mmu_enabled = tdp_mmu_allowed && tdp_enabled; 5887 #endif 5888 /* 5889 * max_huge_page_level reflects KVM's MMU capabilities irrespective 5890 * of kernel support, e.g. KVM may be capable of using 1GB pages when 5891 * the kernel is not. But, KVM never creates a page size greater than 5892 * what is used by the kernel for any given HVA, i.e. the kernel's 5893 * capabilities are ultimately consulted by kvm_mmu_hugepage_adjust(). 5894 */ 5895 if (tdp_enabled) 5896 max_huge_page_level = tdp_huge_page_level; 5897 else if (boot_cpu_has(X86_FEATURE_GBPAGES)) 5898 max_huge_page_level = PG_LEVEL_1G; 5899 else 5900 max_huge_page_level = PG_LEVEL_2M; 5901 } 5902 EXPORT_SYMBOL_GPL(kvm_configure_mmu); 5903 5904 /* The return value indicates if tlb flush on all vcpus is needed. */ 5905 typedef bool (*slot_rmaps_handler) (struct kvm *kvm, 5906 struct kvm_rmap_head *rmap_head, 5907 const struct kvm_memory_slot *slot); 5908 5909 static __always_inline bool __walk_slot_rmaps(struct kvm *kvm, 5910 const struct kvm_memory_slot *slot, 5911 slot_rmaps_handler fn, 5912 int start_level, int end_level, 5913 gfn_t start_gfn, gfn_t end_gfn, 5914 bool flush_on_yield, bool flush) 5915 { 5916 struct slot_rmap_walk_iterator iterator; 5917 5918 lockdep_assert_held_write(&kvm->mmu_lock); 5919 5920 for_each_slot_rmap_range(slot, start_level, end_level, start_gfn, 5921 end_gfn, &iterator) { 5922 if (iterator.rmap) 5923 flush |= fn(kvm, iterator.rmap, slot); 5924 5925 if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) { 5926 if (flush && flush_on_yield) { 5927 kvm_flush_remote_tlbs_range(kvm, start_gfn, 5928 iterator.gfn - start_gfn + 1); 5929 flush = false; 5930 } 5931 cond_resched_rwlock_write(&kvm->mmu_lock); 5932 } 5933 } 5934 5935 return flush; 5936 } 5937 5938 static __always_inline bool walk_slot_rmaps(struct kvm *kvm, 5939 const struct kvm_memory_slot *slot, 5940 slot_rmaps_handler fn, 5941 int start_level, int end_level, 5942 bool flush_on_yield) 5943 { 5944 return __walk_slot_rmaps(kvm, slot, fn, start_level, end_level, 5945 slot->base_gfn, slot->base_gfn + slot->npages - 1, 5946 flush_on_yield, false); 5947 } 5948 5949 static __always_inline bool walk_slot_rmaps_4k(struct kvm *kvm, 5950 const struct kvm_memory_slot *slot, 5951 slot_rmaps_handler fn, 5952 bool flush_on_yield) 5953 { 5954 return walk_slot_rmaps(kvm, slot, fn, PG_LEVEL_4K, PG_LEVEL_4K, flush_on_yield); 5955 } 5956 5957 static void free_mmu_pages(struct kvm_mmu *mmu) 5958 { 5959 if (!tdp_enabled && mmu->pae_root) 5960 set_memory_encrypted((unsigned long)mmu->pae_root, 1); 5961 free_page((unsigned long)mmu->pae_root); 5962 free_page((unsigned long)mmu->pml4_root); 5963 free_page((unsigned long)mmu->pml5_root); 5964 } 5965 5966 static int __kvm_mmu_create(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu) 5967 { 5968 struct page *page; 5969 int i; 5970 5971 mmu->root.hpa = INVALID_PAGE; 5972 mmu->root.pgd = 0; 5973 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 5974 mmu->prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID; 5975 5976 /* vcpu->arch.guest_mmu isn't used when !tdp_enabled. */ 5977 if (!tdp_enabled && mmu == &vcpu->arch.guest_mmu) 5978 return 0; 5979 5980 /* 5981 * When using PAE paging, the four PDPTEs are treated as 'root' pages, 5982 * while the PDP table is a per-vCPU construct that's allocated at MMU 5983 * creation. When emulating 32-bit mode, cr3 is only 32 bits even on 5984 * x86_64. Therefore we need to allocate the PDP table in the first 5985 * 4GB of memory, which happens to fit the DMA32 zone. TDP paging 5986 * generally doesn't use PAE paging and can skip allocating the PDP 5987 * table. The main exception, handled here, is SVM's 32-bit NPT. The 5988 * other exception is for shadowing L1's 32-bit or PAE NPT on 64-bit 5989 * KVM; that horror is handled on-demand by mmu_alloc_special_roots(). 5990 */ 5991 if (tdp_enabled && kvm_mmu_get_tdp_level(vcpu) > PT32E_ROOT_LEVEL) 5992 return 0; 5993 5994 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_DMA32); 5995 if (!page) 5996 return -ENOMEM; 5997 5998 mmu->pae_root = page_address(page); 5999 6000 /* 6001 * CR3 is only 32 bits when PAE paging is used, thus it's impossible to 6002 * get the CPU to treat the PDPTEs as encrypted. Decrypt the page so 6003 * that KVM's writes and the CPU's reads get along. Note, this is 6004 * only necessary when using shadow paging, as 64-bit NPT can get at 6005 * the C-bit even when shadowing 32-bit NPT, and SME isn't supported 6006 * by 32-bit kernels (when KVM itself uses 32-bit NPT). 6007 */ 6008 if (!tdp_enabled) 6009 set_memory_decrypted((unsigned long)mmu->pae_root, 1); 6010 else 6011 WARN_ON_ONCE(shadow_me_value); 6012 6013 for (i = 0; i < 4; ++i) 6014 mmu->pae_root[i] = INVALID_PAE_ROOT; 6015 6016 return 0; 6017 } 6018 6019 int kvm_mmu_create(struct kvm_vcpu *vcpu) 6020 { 6021 int ret; 6022 6023 vcpu->arch.mmu_pte_list_desc_cache.kmem_cache = pte_list_desc_cache; 6024 vcpu->arch.mmu_pte_list_desc_cache.gfp_zero = __GFP_ZERO; 6025 6026 vcpu->arch.mmu_page_header_cache.kmem_cache = mmu_page_header_cache; 6027 vcpu->arch.mmu_page_header_cache.gfp_zero = __GFP_ZERO; 6028 6029 vcpu->arch.mmu_shadow_page_cache.gfp_zero = __GFP_ZERO; 6030 6031 vcpu->arch.mmu = &vcpu->arch.root_mmu; 6032 vcpu->arch.walk_mmu = &vcpu->arch.root_mmu; 6033 6034 ret = __kvm_mmu_create(vcpu, &vcpu->arch.guest_mmu); 6035 if (ret) 6036 return ret; 6037 6038 ret = __kvm_mmu_create(vcpu, &vcpu->arch.root_mmu); 6039 if (ret) 6040 goto fail_allocate_root; 6041 6042 return ret; 6043 fail_allocate_root: 6044 free_mmu_pages(&vcpu->arch.guest_mmu); 6045 return ret; 6046 } 6047 6048 #define BATCH_ZAP_PAGES 10 6049 static void kvm_zap_obsolete_pages(struct kvm *kvm) 6050 { 6051 struct kvm_mmu_page *sp, *node; 6052 int nr_zapped, batch = 0; 6053 bool unstable; 6054 6055 restart: 6056 list_for_each_entry_safe_reverse(sp, node, 6057 &kvm->arch.active_mmu_pages, link) { 6058 /* 6059 * No obsolete valid page exists before a newly created page 6060 * since active_mmu_pages is a FIFO list. 6061 */ 6062 if (!is_obsolete_sp(kvm, sp)) 6063 break; 6064 6065 /* 6066 * Invalid pages should never land back on the list of active 6067 * pages. Skip the bogus page, otherwise we'll get stuck in an 6068 * infinite loop if the page gets put back on the list (again). 6069 */ 6070 if (WARN_ON_ONCE(sp->role.invalid)) 6071 continue; 6072 6073 /* 6074 * No need to flush the TLB since we're only zapping shadow 6075 * pages with an obsolete generation number and all vCPUS have 6076 * loaded a new root, i.e. the shadow pages being zapped cannot 6077 * be in active use by the guest. 6078 */ 6079 if (batch >= BATCH_ZAP_PAGES && 6080 cond_resched_rwlock_write(&kvm->mmu_lock)) { 6081 batch = 0; 6082 goto restart; 6083 } 6084 6085 unstable = __kvm_mmu_prepare_zap_page(kvm, sp, 6086 &kvm->arch.zapped_obsolete_pages, &nr_zapped); 6087 batch += nr_zapped; 6088 6089 if (unstable) 6090 goto restart; 6091 } 6092 6093 /* 6094 * Kick all vCPUs (via remote TLB flush) before freeing the page tables 6095 * to ensure KVM is not in the middle of a lockless shadow page table 6096 * walk, which may reference the pages. The remote TLB flush itself is 6097 * not required and is simply a convenient way to kick vCPUs as needed. 6098 * KVM performs a local TLB flush when allocating a new root (see 6099 * kvm_mmu_load()), and the reload in the caller ensure no vCPUs are 6100 * running with an obsolete MMU. 6101 */ 6102 kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages); 6103 } 6104 6105 /* 6106 * Fast invalidate all shadow pages and use lock-break technique 6107 * to zap obsolete pages. 6108 * 6109 * It's required when memslot is being deleted or VM is being 6110 * destroyed, in these cases, we should ensure that KVM MMU does 6111 * not use any resource of the being-deleted slot or all slots 6112 * after calling the function. 6113 */ 6114 static void kvm_mmu_zap_all_fast(struct kvm *kvm) 6115 { 6116 lockdep_assert_held(&kvm->slots_lock); 6117 6118 write_lock(&kvm->mmu_lock); 6119 trace_kvm_mmu_zap_all_fast(kvm); 6120 6121 /* 6122 * Toggle mmu_valid_gen between '0' and '1'. Because slots_lock is 6123 * held for the entire duration of zapping obsolete pages, it's 6124 * impossible for there to be multiple invalid generations associated 6125 * with *valid* shadow pages at any given time, i.e. there is exactly 6126 * one valid generation and (at most) one invalid generation. 6127 */ 6128 kvm->arch.mmu_valid_gen = kvm->arch.mmu_valid_gen ? 0 : 1; 6129 6130 /* 6131 * In order to ensure all vCPUs drop their soon-to-be invalid roots, 6132 * invalidating TDP MMU roots must be done while holding mmu_lock for 6133 * write and in the same critical section as making the reload request, 6134 * e.g. before kvm_zap_obsolete_pages() could drop mmu_lock and yield. 6135 */ 6136 if (tdp_mmu_enabled) 6137 kvm_tdp_mmu_invalidate_all_roots(kvm); 6138 6139 /* 6140 * Notify all vcpus to reload its shadow page table and flush TLB. 6141 * Then all vcpus will switch to new shadow page table with the new 6142 * mmu_valid_gen. 6143 * 6144 * Note: we need to do this under the protection of mmu_lock, 6145 * otherwise, vcpu would purge shadow page but miss tlb flush. 6146 */ 6147 kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_FREE_OBSOLETE_ROOTS); 6148 6149 kvm_zap_obsolete_pages(kvm); 6150 6151 write_unlock(&kvm->mmu_lock); 6152 6153 /* 6154 * Zap the invalidated TDP MMU roots, all SPTEs must be dropped before 6155 * returning to the caller, e.g. if the zap is in response to a memslot 6156 * deletion, mmu_notifier callbacks will be unable to reach the SPTEs 6157 * associated with the deleted memslot once the update completes, and 6158 * Deferring the zap until the final reference to the root is put would 6159 * lead to use-after-free. 6160 */ 6161 if (tdp_mmu_enabled) 6162 kvm_tdp_mmu_zap_invalidated_roots(kvm); 6163 } 6164 6165 static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm) 6166 { 6167 return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages)); 6168 } 6169 6170 int kvm_mmu_init_vm(struct kvm *kvm) 6171 { 6172 int r; 6173 6174 INIT_LIST_HEAD(&kvm->arch.active_mmu_pages); 6175 INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages); 6176 INIT_LIST_HEAD(&kvm->arch.possible_nx_huge_pages); 6177 spin_lock_init(&kvm->arch.mmu_unsync_pages_lock); 6178 6179 if (tdp_mmu_enabled) { 6180 r = kvm_mmu_init_tdp_mmu(kvm); 6181 if (r < 0) 6182 return r; 6183 } 6184 6185 kvm->arch.split_page_header_cache.kmem_cache = mmu_page_header_cache; 6186 kvm->arch.split_page_header_cache.gfp_zero = __GFP_ZERO; 6187 6188 kvm->arch.split_shadow_page_cache.gfp_zero = __GFP_ZERO; 6189 6190 kvm->arch.split_desc_cache.kmem_cache = pte_list_desc_cache; 6191 kvm->arch.split_desc_cache.gfp_zero = __GFP_ZERO; 6192 6193 return 0; 6194 } 6195 6196 static void mmu_free_vm_memory_caches(struct kvm *kvm) 6197 { 6198 kvm_mmu_free_memory_cache(&kvm->arch.split_desc_cache); 6199 kvm_mmu_free_memory_cache(&kvm->arch.split_page_header_cache); 6200 kvm_mmu_free_memory_cache(&kvm->arch.split_shadow_page_cache); 6201 } 6202 6203 void kvm_mmu_uninit_vm(struct kvm *kvm) 6204 { 6205 if (tdp_mmu_enabled) 6206 kvm_mmu_uninit_tdp_mmu(kvm); 6207 6208 mmu_free_vm_memory_caches(kvm); 6209 } 6210 6211 static bool kvm_rmap_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end) 6212 { 6213 const struct kvm_memory_slot *memslot; 6214 struct kvm_memslots *slots; 6215 struct kvm_memslot_iter iter; 6216 bool flush = false; 6217 gfn_t start, end; 6218 int i; 6219 6220 if (!kvm_memslots_have_rmaps(kvm)) 6221 return flush; 6222 6223 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { 6224 slots = __kvm_memslots(kvm, i); 6225 6226 kvm_for_each_memslot_in_gfn_range(&iter, slots, gfn_start, gfn_end) { 6227 memslot = iter.slot; 6228 start = max(gfn_start, memslot->base_gfn); 6229 end = min(gfn_end, memslot->base_gfn + memslot->npages); 6230 if (WARN_ON_ONCE(start >= end)) 6231 continue; 6232 6233 flush = __walk_slot_rmaps(kvm, memslot, __kvm_zap_rmap, 6234 PG_LEVEL_4K, KVM_MAX_HUGEPAGE_LEVEL, 6235 start, end - 1, true, flush); 6236 } 6237 } 6238 6239 return flush; 6240 } 6241 6242 /* 6243 * Invalidate (zap) SPTEs that cover GFNs from gfn_start and up to gfn_end 6244 * (not including it) 6245 */ 6246 void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end) 6247 { 6248 bool flush; 6249 int i; 6250 6251 if (WARN_ON_ONCE(gfn_end <= gfn_start)) 6252 return; 6253 6254 write_lock(&kvm->mmu_lock); 6255 6256 kvm_mmu_invalidate_begin(kvm, 0, -1ul); 6257 6258 flush = kvm_rmap_zap_gfn_range(kvm, gfn_start, gfn_end); 6259 6260 if (tdp_mmu_enabled) { 6261 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) 6262 flush = kvm_tdp_mmu_zap_leafs(kvm, i, gfn_start, 6263 gfn_end, true, flush); 6264 } 6265 6266 if (flush) 6267 kvm_flush_remote_tlbs_range(kvm, gfn_start, gfn_end - gfn_start); 6268 6269 kvm_mmu_invalidate_end(kvm, 0, -1ul); 6270 6271 write_unlock(&kvm->mmu_lock); 6272 } 6273 6274 static bool slot_rmap_write_protect(struct kvm *kvm, 6275 struct kvm_rmap_head *rmap_head, 6276 const struct kvm_memory_slot *slot) 6277 { 6278 return rmap_write_protect(rmap_head, false); 6279 } 6280 6281 void kvm_mmu_slot_remove_write_access(struct kvm *kvm, 6282 const struct kvm_memory_slot *memslot, 6283 int start_level) 6284 { 6285 if (kvm_memslots_have_rmaps(kvm)) { 6286 write_lock(&kvm->mmu_lock); 6287 walk_slot_rmaps(kvm, memslot, slot_rmap_write_protect, 6288 start_level, KVM_MAX_HUGEPAGE_LEVEL, false); 6289 write_unlock(&kvm->mmu_lock); 6290 } 6291 6292 if (tdp_mmu_enabled) { 6293 read_lock(&kvm->mmu_lock); 6294 kvm_tdp_mmu_wrprot_slot(kvm, memslot, start_level); 6295 read_unlock(&kvm->mmu_lock); 6296 } 6297 } 6298 6299 static inline bool need_topup(struct kvm_mmu_memory_cache *cache, int min) 6300 { 6301 return kvm_mmu_memory_cache_nr_free_objects(cache) < min; 6302 } 6303 6304 static bool need_topup_split_caches_or_resched(struct kvm *kvm) 6305 { 6306 if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) 6307 return true; 6308 6309 /* 6310 * In the worst case, SPLIT_DESC_CACHE_MIN_NR_OBJECTS descriptors are needed 6311 * to split a single huge page. Calculating how many are actually needed 6312 * is possible but not worth the complexity. 6313 */ 6314 return need_topup(&kvm->arch.split_desc_cache, SPLIT_DESC_CACHE_MIN_NR_OBJECTS) || 6315 need_topup(&kvm->arch.split_page_header_cache, 1) || 6316 need_topup(&kvm->arch.split_shadow_page_cache, 1); 6317 } 6318 6319 static int topup_split_caches(struct kvm *kvm) 6320 { 6321 /* 6322 * Allocating rmap list entries when splitting huge pages for nested 6323 * MMUs is uncommon as KVM needs to use a list if and only if there is 6324 * more than one rmap entry for a gfn, i.e. requires an L1 gfn to be 6325 * aliased by multiple L2 gfns and/or from multiple nested roots with 6326 * different roles. Aliasing gfns when using TDP is atypical for VMMs; 6327 * a few gfns are often aliased during boot, e.g. when remapping BIOS, 6328 * but aliasing rarely occurs post-boot or for many gfns. If there is 6329 * only one rmap entry, rmap->val points directly at that one entry and 6330 * doesn't need to allocate a list. Buffer the cache by the default 6331 * capacity so that KVM doesn't have to drop mmu_lock to topup if KVM 6332 * encounters an aliased gfn or two. 6333 */ 6334 const int capacity = SPLIT_DESC_CACHE_MIN_NR_OBJECTS + 6335 KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE; 6336 int r; 6337 6338 lockdep_assert_held(&kvm->slots_lock); 6339 6340 r = __kvm_mmu_topup_memory_cache(&kvm->arch.split_desc_cache, capacity, 6341 SPLIT_DESC_CACHE_MIN_NR_OBJECTS); 6342 if (r) 6343 return r; 6344 6345 r = kvm_mmu_topup_memory_cache(&kvm->arch.split_page_header_cache, 1); 6346 if (r) 6347 return r; 6348 6349 return kvm_mmu_topup_memory_cache(&kvm->arch.split_shadow_page_cache, 1); 6350 } 6351 6352 static struct kvm_mmu_page *shadow_mmu_get_sp_for_split(struct kvm *kvm, u64 *huge_sptep) 6353 { 6354 struct kvm_mmu_page *huge_sp = sptep_to_sp(huge_sptep); 6355 struct shadow_page_caches caches = {}; 6356 union kvm_mmu_page_role role; 6357 unsigned int access; 6358 gfn_t gfn; 6359 6360 gfn = kvm_mmu_page_get_gfn(huge_sp, spte_index(huge_sptep)); 6361 access = kvm_mmu_page_get_access(huge_sp, spte_index(huge_sptep)); 6362 6363 /* 6364 * Note, huge page splitting always uses direct shadow pages, regardless 6365 * of whether the huge page itself is mapped by a direct or indirect 6366 * shadow page, since the huge page region itself is being directly 6367 * mapped with smaller pages. 6368 */ 6369 role = kvm_mmu_child_role(huge_sptep, /*direct=*/true, access); 6370 6371 /* Direct SPs do not require a shadowed_info_cache. */ 6372 caches.page_header_cache = &kvm->arch.split_page_header_cache; 6373 caches.shadow_page_cache = &kvm->arch.split_shadow_page_cache; 6374 6375 /* Safe to pass NULL for vCPU since requesting a direct SP. */ 6376 return __kvm_mmu_get_shadow_page(kvm, NULL, &caches, gfn, role); 6377 } 6378 6379 static void shadow_mmu_split_huge_page(struct kvm *kvm, 6380 const struct kvm_memory_slot *slot, 6381 u64 *huge_sptep) 6382 6383 { 6384 struct kvm_mmu_memory_cache *cache = &kvm->arch.split_desc_cache; 6385 u64 huge_spte = READ_ONCE(*huge_sptep); 6386 struct kvm_mmu_page *sp; 6387 bool flush = false; 6388 u64 *sptep, spte; 6389 gfn_t gfn; 6390 int index; 6391 6392 sp = shadow_mmu_get_sp_for_split(kvm, huge_sptep); 6393 6394 for (index = 0; index < SPTE_ENT_PER_PAGE; index++) { 6395 sptep = &sp->spt[index]; 6396 gfn = kvm_mmu_page_get_gfn(sp, index); 6397 6398 /* 6399 * The SP may already have populated SPTEs, e.g. if this huge 6400 * page is aliased by multiple sptes with the same access 6401 * permissions. These entries are guaranteed to map the same 6402 * gfn-to-pfn translation since the SP is direct, so no need to 6403 * modify them. 6404 * 6405 * However, if a given SPTE points to a lower level page table, 6406 * that lower level page table may only be partially populated. 6407 * Installing such SPTEs would effectively unmap a potion of the 6408 * huge page. Unmapping guest memory always requires a TLB flush 6409 * since a subsequent operation on the unmapped regions would 6410 * fail to detect the need to flush. 6411 */ 6412 if (is_shadow_present_pte(*sptep)) { 6413 flush |= !is_last_spte(*sptep, sp->role.level); 6414 continue; 6415 } 6416 6417 spte = make_huge_page_split_spte(kvm, huge_spte, sp->role, index); 6418 mmu_spte_set(sptep, spte); 6419 __rmap_add(kvm, cache, slot, sptep, gfn, sp->role.access); 6420 } 6421 6422 __link_shadow_page(kvm, cache, huge_sptep, sp, flush); 6423 } 6424 6425 static int shadow_mmu_try_split_huge_page(struct kvm *kvm, 6426 const struct kvm_memory_slot *slot, 6427 u64 *huge_sptep) 6428 { 6429 struct kvm_mmu_page *huge_sp = sptep_to_sp(huge_sptep); 6430 int level, r = 0; 6431 gfn_t gfn; 6432 u64 spte; 6433 6434 /* Grab information for the tracepoint before dropping the MMU lock. */ 6435 gfn = kvm_mmu_page_get_gfn(huge_sp, spte_index(huge_sptep)); 6436 level = huge_sp->role.level; 6437 spte = *huge_sptep; 6438 6439 if (kvm_mmu_available_pages(kvm) <= KVM_MIN_FREE_MMU_PAGES) { 6440 r = -ENOSPC; 6441 goto out; 6442 } 6443 6444 if (need_topup_split_caches_or_resched(kvm)) { 6445 write_unlock(&kvm->mmu_lock); 6446 cond_resched(); 6447 /* 6448 * If the topup succeeds, return -EAGAIN to indicate that the 6449 * rmap iterator should be restarted because the MMU lock was 6450 * dropped. 6451 */ 6452 r = topup_split_caches(kvm) ?: -EAGAIN; 6453 write_lock(&kvm->mmu_lock); 6454 goto out; 6455 } 6456 6457 shadow_mmu_split_huge_page(kvm, slot, huge_sptep); 6458 6459 out: 6460 trace_kvm_mmu_split_huge_page(gfn, spte, level, r); 6461 return r; 6462 } 6463 6464 static bool shadow_mmu_try_split_huge_pages(struct kvm *kvm, 6465 struct kvm_rmap_head *rmap_head, 6466 const struct kvm_memory_slot *slot) 6467 { 6468 struct rmap_iterator iter; 6469 struct kvm_mmu_page *sp; 6470 u64 *huge_sptep; 6471 int r; 6472 6473 restart: 6474 for_each_rmap_spte(rmap_head, &iter, huge_sptep) { 6475 sp = sptep_to_sp(huge_sptep); 6476 6477 /* TDP MMU is enabled, so rmap only contains nested MMU SPs. */ 6478 if (WARN_ON_ONCE(!sp->role.guest_mode)) 6479 continue; 6480 6481 /* The rmaps should never contain non-leaf SPTEs. */ 6482 if (WARN_ON_ONCE(!is_large_pte(*huge_sptep))) 6483 continue; 6484 6485 /* SPs with level >PG_LEVEL_4K should never by unsync. */ 6486 if (WARN_ON_ONCE(sp->unsync)) 6487 continue; 6488 6489 /* Don't bother splitting huge pages on invalid SPs. */ 6490 if (sp->role.invalid) 6491 continue; 6492 6493 r = shadow_mmu_try_split_huge_page(kvm, slot, huge_sptep); 6494 6495 /* 6496 * The split succeeded or needs to be retried because the MMU 6497 * lock was dropped. Either way, restart the iterator to get it 6498 * back into a consistent state. 6499 */ 6500 if (!r || r == -EAGAIN) 6501 goto restart; 6502 6503 /* The split failed and shouldn't be retried (e.g. -ENOMEM). */ 6504 break; 6505 } 6506 6507 return false; 6508 } 6509 6510 static void kvm_shadow_mmu_try_split_huge_pages(struct kvm *kvm, 6511 const struct kvm_memory_slot *slot, 6512 gfn_t start, gfn_t end, 6513 int target_level) 6514 { 6515 int level; 6516 6517 /* 6518 * Split huge pages starting with KVM_MAX_HUGEPAGE_LEVEL and working 6519 * down to the target level. This ensures pages are recursively split 6520 * all the way to the target level. There's no need to split pages 6521 * already at the target level. 6522 */ 6523 for (level = KVM_MAX_HUGEPAGE_LEVEL; level > target_level; level--) 6524 __walk_slot_rmaps(kvm, slot, shadow_mmu_try_split_huge_pages, 6525 level, level, start, end - 1, true, false); 6526 } 6527 6528 /* Must be called with the mmu_lock held in write-mode. */ 6529 void kvm_mmu_try_split_huge_pages(struct kvm *kvm, 6530 const struct kvm_memory_slot *memslot, 6531 u64 start, u64 end, 6532 int target_level) 6533 { 6534 if (!tdp_mmu_enabled) 6535 return; 6536 6537 if (kvm_memslots_have_rmaps(kvm)) 6538 kvm_shadow_mmu_try_split_huge_pages(kvm, memslot, start, end, target_level); 6539 6540 kvm_tdp_mmu_try_split_huge_pages(kvm, memslot, start, end, target_level, false); 6541 6542 /* 6543 * A TLB flush is unnecessary at this point for the same resons as in 6544 * kvm_mmu_slot_try_split_huge_pages(). 6545 */ 6546 } 6547 6548 void kvm_mmu_slot_try_split_huge_pages(struct kvm *kvm, 6549 const struct kvm_memory_slot *memslot, 6550 int target_level) 6551 { 6552 u64 start = memslot->base_gfn; 6553 u64 end = start + memslot->npages; 6554 6555 if (!tdp_mmu_enabled) 6556 return; 6557 6558 if (kvm_memslots_have_rmaps(kvm)) { 6559 write_lock(&kvm->mmu_lock); 6560 kvm_shadow_mmu_try_split_huge_pages(kvm, memslot, start, end, target_level); 6561 write_unlock(&kvm->mmu_lock); 6562 } 6563 6564 read_lock(&kvm->mmu_lock); 6565 kvm_tdp_mmu_try_split_huge_pages(kvm, memslot, start, end, target_level, true); 6566 read_unlock(&kvm->mmu_lock); 6567 6568 /* 6569 * No TLB flush is necessary here. KVM will flush TLBs after 6570 * write-protecting and/or clearing dirty on the newly split SPTEs to 6571 * ensure that guest writes are reflected in the dirty log before the 6572 * ioctl to enable dirty logging on this memslot completes. Since the 6573 * split SPTEs retain the write and dirty bits of the huge SPTE, it is 6574 * safe for KVM to decide if a TLB flush is necessary based on the split 6575 * SPTEs. 6576 */ 6577 } 6578 6579 static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm, 6580 struct kvm_rmap_head *rmap_head, 6581 const struct kvm_memory_slot *slot) 6582 { 6583 u64 *sptep; 6584 struct rmap_iterator iter; 6585 int need_tlb_flush = 0; 6586 struct kvm_mmu_page *sp; 6587 6588 restart: 6589 for_each_rmap_spte(rmap_head, &iter, sptep) { 6590 sp = sptep_to_sp(sptep); 6591 6592 /* 6593 * We cannot do huge page mapping for indirect shadow pages, 6594 * which are found on the last rmap (level = 1) when not using 6595 * tdp; such shadow pages are synced with the page table in 6596 * the guest, and the guest page table is using 4K page size 6597 * mapping if the indirect sp has level = 1. 6598 */ 6599 if (sp->role.direct && 6600 sp->role.level < kvm_mmu_max_mapping_level(kvm, slot, sp->gfn, 6601 PG_LEVEL_NUM)) { 6602 kvm_zap_one_rmap_spte(kvm, rmap_head, sptep); 6603 6604 if (kvm_available_flush_remote_tlbs_range()) 6605 kvm_flush_remote_tlbs_sptep(kvm, sptep); 6606 else 6607 need_tlb_flush = 1; 6608 6609 goto restart; 6610 } 6611 } 6612 6613 return need_tlb_flush; 6614 } 6615 6616 static void kvm_rmap_zap_collapsible_sptes(struct kvm *kvm, 6617 const struct kvm_memory_slot *slot) 6618 { 6619 /* 6620 * Note, use KVM_MAX_HUGEPAGE_LEVEL - 1 since there's no need to zap 6621 * pages that are already mapped at the maximum hugepage level. 6622 */ 6623 if (walk_slot_rmaps(kvm, slot, kvm_mmu_zap_collapsible_spte, 6624 PG_LEVEL_4K, KVM_MAX_HUGEPAGE_LEVEL - 1, true)) 6625 kvm_flush_remote_tlbs_memslot(kvm, slot); 6626 } 6627 6628 void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm, 6629 const struct kvm_memory_slot *slot) 6630 { 6631 if (kvm_memslots_have_rmaps(kvm)) { 6632 write_lock(&kvm->mmu_lock); 6633 kvm_rmap_zap_collapsible_sptes(kvm, slot); 6634 write_unlock(&kvm->mmu_lock); 6635 } 6636 6637 if (tdp_mmu_enabled) { 6638 read_lock(&kvm->mmu_lock); 6639 kvm_tdp_mmu_zap_collapsible_sptes(kvm, slot); 6640 read_unlock(&kvm->mmu_lock); 6641 } 6642 } 6643 6644 void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm, 6645 const struct kvm_memory_slot *memslot) 6646 { 6647 if (kvm_memslots_have_rmaps(kvm)) { 6648 write_lock(&kvm->mmu_lock); 6649 /* 6650 * Clear dirty bits only on 4k SPTEs since the legacy MMU only 6651 * support dirty logging at a 4k granularity. 6652 */ 6653 walk_slot_rmaps_4k(kvm, memslot, __rmap_clear_dirty, false); 6654 write_unlock(&kvm->mmu_lock); 6655 } 6656 6657 if (tdp_mmu_enabled) { 6658 read_lock(&kvm->mmu_lock); 6659 kvm_tdp_mmu_clear_dirty_slot(kvm, memslot); 6660 read_unlock(&kvm->mmu_lock); 6661 } 6662 6663 /* 6664 * The caller will flush the TLBs after this function returns. 6665 * 6666 * It's also safe to flush TLBs out of mmu lock here as currently this 6667 * function is only used for dirty logging, in which case flushing TLB 6668 * out of mmu lock also guarantees no dirty pages will be lost in 6669 * dirty_bitmap. 6670 */ 6671 } 6672 6673 static void kvm_mmu_zap_all(struct kvm *kvm) 6674 { 6675 struct kvm_mmu_page *sp, *node; 6676 LIST_HEAD(invalid_list); 6677 int ign; 6678 6679 write_lock(&kvm->mmu_lock); 6680 restart: 6681 list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link) { 6682 if (WARN_ON_ONCE(sp->role.invalid)) 6683 continue; 6684 if (__kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list, &ign)) 6685 goto restart; 6686 if (cond_resched_rwlock_write(&kvm->mmu_lock)) 6687 goto restart; 6688 } 6689 6690 kvm_mmu_commit_zap_page(kvm, &invalid_list); 6691 6692 if (tdp_mmu_enabled) 6693 kvm_tdp_mmu_zap_all(kvm); 6694 6695 write_unlock(&kvm->mmu_lock); 6696 } 6697 6698 void kvm_arch_flush_shadow_all(struct kvm *kvm) 6699 { 6700 kvm_mmu_zap_all(kvm); 6701 } 6702 6703 void kvm_arch_flush_shadow_memslot(struct kvm *kvm, 6704 struct kvm_memory_slot *slot) 6705 { 6706 kvm_mmu_zap_all_fast(kvm); 6707 } 6708 6709 void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen) 6710 { 6711 WARN_ON_ONCE(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS); 6712 6713 gen &= MMIO_SPTE_GEN_MASK; 6714 6715 /* 6716 * Generation numbers are incremented in multiples of the number of 6717 * address spaces in order to provide unique generations across all 6718 * address spaces. Strip what is effectively the address space 6719 * modifier prior to checking for a wrap of the MMIO generation so 6720 * that a wrap in any address space is detected. 6721 */ 6722 gen &= ~((u64)KVM_ADDRESS_SPACE_NUM - 1); 6723 6724 /* 6725 * The very rare case: if the MMIO generation number has wrapped, 6726 * zap all shadow pages. 6727 */ 6728 if (unlikely(gen == 0)) { 6729 kvm_debug_ratelimited("zapping shadow pages for mmio generation wraparound\n"); 6730 kvm_mmu_zap_all_fast(kvm); 6731 } 6732 } 6733 6734 static unsigned long mmu_shrink_scan(struct shrinker *shrink, 6735 struct shrink_control *sc) 6736 { 6737 struct kvm *kvm; 6738 int nr_to_scan = sc->nr_to_scan; 6739 unsigned long freed = 0; 6740 6741 mutex_lock(&kvm_lock); 6742 6743 list_for_each_entry(kvm, &vm_list, vm_list) { 6744 int idx; 6745 LIST_HEAD(invalid_list); 6746 6747 /* 6748 * Never scan more than sc->nr_to_scan VM instances. 6749 * Will not hit this condition practically since we do not try 6750 * to shrink more than one VM and it is very unlikely to see 6751 * !n_used_mmu_pages so many times. 6752 */ 6753 if (!nr_to_scan--) 6754 break; 6755 /* 6756 * n_used_mmu_pages is accessed without holding kvm->mmu_lock 6757 * here. We may skip a VM instance errorneosly, but we do not 6758 * want to shrink a VM that only started to populate its MMU 6759 * anyway. 6760 */ 6761 if (!kvm->arch.n_used_mmu_pages && 6762 !kvm_has_zapped_obsolete_pages(kvm)) 6763 continue; 6764 6765 idx = srcu_read_lock(&kvm->srcu); 6766 write_lock(&kvm->mmu_lock); 6767 6768 if (kvm_has_zapped_obsolete_pages(kvm)) { 6769 kvm_mmu_commit_zap_page(kvm, 6770 &kvm->arch.zapped_obsolete_pages); 6771 goto unlock; 6772 } 6773 6774 freed = kvm_mmu_zap_oldest_mmu_pages(kvm, sc->nr_to_scan); 6775 6776 unlock: 6777 write_unlock(&kvm->mmu_lock); 6778 srcu_read_unlock(&kvm->srcu, idx); 6779 6780 /* 6781 * unfair on small ones 6782 * per-vm shrinkers cry out 6783 * sadness comes quickly 6784 */ 6785 list_move_tail(&kvm->vm_list, &vm_list); 6786 break; 6787 } 6788 6789 mutex_unlock(&kvm_lock); 6790 return freed; 6791 } 6792 6793 static unsigned long mmu_shrink_count(struct shrinker *shrink, 6794 struct shrink_control *sc) 6795 { 6796 return percpu_counter_read_positive(&kvm_total_used_mmu_pages); 6797 } 6798 6799 static struct shrinker mmu_shrinker = { 6800 .count_objects = mmu_shrink_count, 6801 .scan_objects = mmu_shrink_scan, 6802 .seeks = DEFAULT_SEEKS * 10, 6803 }; 6804 6805 static void mmu_destroy_caches(void) 6806 { 6807 kmem_cache_destroy(pte_list_desc_cache); 6808 kmem_cache_destroy(mmu_page_header_cache); 6809 } 6810 6811 static int get_nx_huge_pages(char *buffer, const struct kernel_param *kp) 6812 { 6813 if (nx_hugepage_mitigation_hard_disabled) 6814 return sysfs_emit(buffer, "never\n"); 6815 6816 return param_get_bool(buffer, kp); 6817 } 6818 6819 static bool get_nx_auto_mode(void) 6820 { 6821 /* Return true when CPU has the bug, and mitigations are ON */ 6822 return boot_cpu_has_bug(X86_BUG_ITLB_MULTIHIT) && !cpu_mitigations_off(); 6823 } 6824 6825 static void __set_nx_huge_pages(bool val) 6826 { 6827 nx_huge_pages = itlb_multihit_kvm_mitigation = val; 6828 } 6829 6830 static int set_nx_huge_pages(const char *val, const struct kernel_param *kp) 6831 { 6832 bool old_val = nx_huge_pages; 6833 bool new_val; 6834 6835 if (nx_hugepage_mitigation_hard_disabled) 6836 return -EPERM; 6837 6838 /* In "auto" mode deploy workaround only if CPU has the bug. */ 6839 if (sysfs_streq(val, "off")) { 6840 new_val = 0; 6841 } else if (sysfs_streq(val, "force")) { 6842 new_val = 1; 6843 } else if (sysfs_streq(val, "auto")) { 6844 new_val = get_nx_auto_mode(); 6845 } else if (sysfs_streq(val, "never")) { 6846 new_val = 0; 6847 6848 mutex_lock(&kvm_lock); 6849 if (!list_empty(&vm_list)) { 6850 mutex_unlock(&kvm_lock); 6851 return -EBUSY; 6852 } 6853 nx_hugepage_mitigation_hard_disabled = true; 6854 mutex_unlock(&kvm_lock); 6855 } else if (kstrtobool(val, &new_val) < 0) { 6856 return -EINVAL; 6857 } 6858 6859 __set_nx_huge_pages(new_val); 6860 6861 if (new_val != old_val) { 6862 struct kvm *kvm; 6863 6864 mutex_lock(&kvm_lock); 6865 6866 list_for_each_entry(kvm, &vm_list, vm_list) { 6867 mutex_lock(&kvm->slots_lock); 6868 kvm_mmu_zap_all_fast(kvm); 6869 mutex_unlock(&kvm->slots_lock); 6870 6871 wake_up_process(kvm->arch.nx_huge_page_recovery_thread); 6872 } 6873 mutex_unlock(&kvm_lock); 6874 } 6875 6876 return 0; 6877 } 6878 6879 /* 6880 * nx_huge_pages needs to be resolved to true/false when kvm.ko is loaded, as 6881 * its default value of -1 is technically undefined behavior for a boolean. 6882 * Forward the module init call to SPTE code so that it too can handle module 6883 * params that need to be resolved/snapshot. 6884 */ 6885 void __init kvm_mmu_x86_module_init(void) 6886 { 6887 if (nx_huge_pages == -1) 6888 __set_nx_huge_pages(get_nx_auto_mode()); 6889 6890 /* 6891 * Snapshot userspace's desire to enable the TDP MMU. Whether or not the 6892 * TDP MMU is actually enabled is determined in kvm_configure_mmu() 6893 * when the vendor module is loaded. 6894 */ 6895 tdp_mmu_allowed = tdp_mmu_enabled; 6896 6897 kvm_mmu_spte_module_init(); 6898 } 6899 6900 /* 6901 * The bulk of the MMU initialization is deferred until the vendor module is 6902 * loaded as many of the masks/values may be modified by VMX or SVM, i.e. need 6903 * to be reset when a potentially different vendor module is loaded. 6904 */ 6905 int kvm_mmu_vendor_module_init(void) 6906 { 6907 int ret = -ENOMEM; 6908 6909 /* 6910 * MMU roles use union aliasing which is, generally speaking, an 6911 * undefined behavior. However, we supposedly know how compilers behave 6912 * and the current status quo is unlikely to change. Guardians below are 6913 * supposed to let us know if the assumption becomes false. 6914 */ 6915 BUILD_BUG_ON(sizeof(union kvm_mmu_page_role) != sizeof(u32)); 6916 BUILD_BUG_ON(sizeof(union kvm_mmu_extended_role) != sizeof(u32)); 6917 BUILD_BUG_ON(sizeof(union kvm_cpu_role) != sizeof(u64)); 6918 6919 kvm_mmu_reset_all_pte_masks(); 6920 6921 pte_list_desc_cache = kmem_cache_create("pte_list_desc", 6922 sizeof(struct pte_list_desc), 6923 0, SLAB_ACCOUNT, NULL); 6924 if (!pte_list_desc_cache) 6925 goto out; 6926 6927 mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header", 6928 sizeof(struct kvm_mmu_page), 6929 0, SLAB_ACCOUNT, NULL); 6930 if (!mmu_page_header_cache) 6931 goto out; 6932 6933 if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL)) 6934 goto out; 6935 6936 ret = register_shrinker(&mmu_shrinker, "x86-mmu"); 6937 if (ret) 6938 goto out_shrinker; 6939 6940 return 0; 6941 6942 out_shrinker: 6943 percpu_counter_destroy(&kvm_total_used_mmu_pages); 6944 out: 6945 mmu_destroy_caches(); 6946 return ret; 6947 } 6948 6949 void kvm_mmu_destroy(struct kvm_vcpu *vcpu) 6950 { 6951 kvm_mmu_unload(vcpu); 6952 free_mmu_pages(&vcpu->arch.root_mmu); 6953 free_mmu_pages(&vcpu->arch.guest_mmu); 6954 mmu_free_memory_caches(vcpu); 6955 } 6956 6957 void kvm_mmu_vendor_module_exit(void) 6958 { 6959 mmu_destroy_caches(); 6960 percpu_counter_destroy(&kvm_total_used_mmu_pages); 6961 unregister_shrinker(&mmu_shrinker); 6962 } 6963 6964 /* 6965 * Calculate the effective recovery period, accounting for '0' meaning "let KVM 6966 * select a halving time of 1 hour". Returns true if recovery is enabled. 6967 */ 6968 static bool calc_nx_huge_pages_recovery_period(uint *period) 6969 { 6970 /* 6971 * Use READ_ONCE to get the params, this may be called outside of the 6972 * param setters, e.g. by the kthread to compute its next timeout. 6973 */ 6974 bool enabled = READ_ONCE(nx_huge_pages); 6975 uint ratio = READ_ONCE(nx_huge_pages_recovery_ratio); 6976 6977 if (!enabled || !ratio) 6978 return false; 6979 6980 *period = READ_ONCE(nx_huge_pages_recovery_period_ms); 6981 if (!*period) { 6982 /* Make sure the period is not less than one second. */ 6983 ratio = min(ratio, 3600u); 6984 *period = 60 * 60 * 1000 / ratio; 6985 } 6986 return true; 6987 } 6988 6989 static int set_nx_huge_pages_recovery_param(const char *val, const struct kernel_param *kp) 6990 { 6991 bool was_recovery_enabled, is_recovery_enabled; 6992 uint old_period, new_period; 6993 int err; 6994 6995 if (nx_hugepage_mitigation_hard_disabled) 6996 return -EPERM; 6997 6998 was_recovery_enabled = calc_nx_huge_pages_recovery_period(&old_period); 6999 7000 err = param_set_uint(val, kp); 7001 if (err) 7002 return err; 7003 7004 is_recovery_enabled = calc_nx_huge_pages_recovery_period(&new_period); 7005 7006 if (is_recovery_enabled && 7007 (!was_recovery_enabled || old_period > new_period)) { 7008 struct kvm *kvm; 7009 7010 mutex_lock(&kvm_lock); 7011 7012 list_for_each_entry(kvm, &vm_list, vm_list) 7013 wake_up_process(kvm->arch.nx_huge_page_recovery_thread); 7014 7015 mutex_unlock(&kvm_lock); 7016 } 7017 7018 return err; 7019 } 7020 7021 static void kvm_recover_nx_huge_pages(struct kvm *kvm) 7022 { 7023 unsigned long nx_lpage_splits = kvm->stat.nx_lpage_splits; 7024 struct kvm_memory_slot *slot; 7025 int rcu_idx; 7026 struct kvm_mmu_page *sp; 7027 unsigned int ratio; 7028 LIST_HEAD(invalid_list); 7029 bool flush = false; 7030 ulong to_zap; 7031 7032 rcu_idx = srcu_read_lock(&kvm->srcu); 7033 write_lock(&kvm->mmu_lock); 7034 7035 /* 7036 * Zapping TDP MMU shadow pages, including the remote TLB flush, must 7037 * be done under RCU protection, because the pages are freed via RCU 7038 * callback. 7039 */ 7040 rcu_read_lock(); 7041 7042 ratio = READ_ONCE(nx_huge_pages_recovery_ratio); 7043 to_zap = ratio ? DIV_ROUND_UP(nx_lpage_splits, ratio) : 0; 7044 for ( ; to_zap; --to_zap) { 7045 if (list_empty(&kvm->arch.possible_nx_huge_pages)) 7046 break; 7047 7048 /* 7049 * We use a separate list instead of just using active_mmu_pages 7050 * because the number of shadow pages that be replaced with an 7051 * NX huge page is expected to be relatively small compared to 7052 * the total number of shadow pages. And because the TDP MMU 7053 * doesn't use active_mmu_pages. 7054 */ 7055 sp = list_first_entry(&kvm->arch.possible_nx_huge_pages, 7056 struct kvm_mmu_page, 7057 possible_nx_huge_page_link); 7058 WARN_ON_ONCE(!sp->nx_huge_page_disallowed); 7059 WARN_ON_ONCE(!sp->role.direct); 7060 7061 /* 7062 * Unaccount and do not attempt to recover any NX Huge Pages 7063 * that are being dirty tracked, as they would just be faulted 7064 * back in as 4KiB pages. The NX Huge Pages in this slot will be 7065 * recovered, along with all the other huge pages in the slot, 7066 * when dirty logging is disabled. 7067 * 7068 * Since gfn_to_memslot() is relatively expensive, it helps to 7069 * skip it if it the test cannot possibly return true. On the 7070 * other hand, if any memslot has logging enabled, chances are 7071 * good that all of them do, in which case unaccount_nx_huge_page() 7072 * is much cheaper than zapping the page. 7073 * 7074 * If a memslot update is in progress, reading an incorrect value 7075 * of kvm->nr_memslots_dirty_logging is not a problem: if it is 7076 * becoming zero, gfn_to_memslot() will be done unnecessarily; if 7077 * it is becoming nonzero, the page will be zapped unnecessarily. 7078 * Either way, this only affects efficiency in racy situations, 7079 * and not correctness. 7080 */ 7081 slot = NULL; 7082 if (atomic_read(&kvm->nr_memslots_dirty_logging)) { 7083 struct kvm_memslots *slots; 7084 7085 slots = kvm_memslots_for_spte_role(kvm, sp->role); 7086 slot = __gfn_to_memslot(slots, sp->gfn); 7087 WARN_ON_ONCE(!slot); 7088 } 7089 7090 if (slot && kvm_slot_dirty_track_enabled(slot)) 7091 unaccount_nx_huge_page(kvm, sp); 7092 else if (is_tdp_mmu_page(sp)) 7093 flush |= kvm_tdp_mmu_zap_sp(kvm, sp); 7094 else 7095 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list); 7096 WARN_ON_ONCE(sp->nx_huge_page_disallowed); 7097 7098 if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) { 7099 kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush); 7100 rcu_read_unlock(); 7101 7102 cond_resched_rwlock_write(&kvm->mmu_lock); 7103 flush = false; 7104 7105 rcu_read_lock(); 7106 } 7107 } 7108 kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush); 7109 7110 rcu_read_unlock(); 7111 7112 write_unlock(&kvm->mmu_lock); 7113 srcu_read_unlock(&kvm->srcu, rcu_idx); 7114 } 7115 7116 static long get_nx_huge_page_recovery_timeout(u64 start_time) 7117 { 7118 bool enabled; 7119 uint period; 7120 7121 enabled = calc_nx_huge_pages_recovery_period(&period); 7122 7123 return enabled ? start_time + msecs_to_jiffies(period) - get_jiffies_64() 7124 : MAX_SCHEDULE_TIMEOUT; 7125 } 7126 7127 static int kvm_nx_huge_page_recovery_worker(struct kvm *kvm, uintptr_t data) 7128 { 7129 u64 start_time; 7130 long remaining_time; 7131 7132 while (true) { 7133 start_time = get_jiffies_64(); 7134 remaining_time = get_nx_huge_page_recovery_timeout(start_time); 7135 7136 set_current_state(TASK_INTERRUPTIBLE); 7137 while (!kthread_should_stop() && remaining_time > 0) { 7138 schedule_timeout(remaining_time); 7139 remaining_time = get_nx_huge_page_recovery_timeout(start_time); 7140 set_current_state(TASK_INTERRUPTIBLE); 7141 } 7142 7143 set_current_state(TASK_RUNNING); 7144 7145 if (kthread_should_stop()) 7146 return 0; 7147 7148 kvm_recover_nx_huge_pages(kvm); 7149 } 7150 } 7151 7152 int kvm_mmu_post_init_vm(struct kvm *kvm) 7153 { 7154 int err; 7155 7156 if (nx_hugepage_mitigation_hard_disabled) 7157 return 0; 7158 7159 err = kvm_vm_create_worker_thread(kvm, kvm_nx_huge_page_recovery_worker, 0, 7160 "kvm-nx-lpage-recovery", 7161 &kvm->arch.nx_huge_page_recovery_thread); 7162 if (!err) 7163 kthread_unpark(kvm->arch.nx_huge_page_recovery_thread); 7164 7165 return err; 7166 } 7167 7168 void kvm_mmu_pre_destroy_vm(struct kvm *kvm) 7169 { 7170 if (kvm->arch.nx_huge_page_recovery_thread) 7171 kthread_stop(kvm->arch.nx_huge_page_recovery_thread); 7172 } 7173