xref: /openbmc/linux/arch/x86/kvm/mmu/mmu.c (revision 22a41e9a5044bf3519f05b4a00e99af34bfeb40c)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This module enables machines with Intel VT-x extensions to run virtual
6  * machines without emulation or binary translation.
7  *
8  * MMU support
9  *
10  * Copyright (C) 2006 Qumranet, Inc.
11  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
12  *
13  * Authors:
14  *   Yaniv Kamay  <yaniv@qumranet.com>
15  *   Avi Kivity   <avi@qumranet.com>
16  */
17 
18 #include "irq.h"
19 #include "ioapic.h"
20 #include "mmu.h"
21 #include "mmu_internal.h"
22 #include "tdp_mmu.h"
23 #include "x86.h"
24 #include "kvm_cache_regs.h"
25 #include "kvm_emulate.h"
26 #include "cpuid.h"
27 #include "spte.h"
28 
29 #include <linux/kvm_host.h>
30 #include <linux/types.h>
31 #include <linux/string.h>
32 #include <linux/mm.h>
33 #include <linux/highmem.h>
34 #include <linux/moduleparam.h>
35 #include <linux/export.h>
36 #include <linux/swap.h>
37 #include <linux/hugetlb.h>
38 #include <linux/compiler.h>
39 #include <linux/srcu.h>
40 #include <linux/slab.h>
41 #include <linux/sched/signal.h>
42 #include <linux/uaccess.h>
43 #include <linux/hash.h>
44 #include <linux/kern_levels.h>
45 #include <linux/kthread.h>
46 
47 #include <asm/page.h>
48 #include <asm/memtype.h>
49 #include <asm/cmpxchg.h>
50 #include <asm/io.h>
51 #include <asm/set_memory.h>
52 #include <asm/vmx.h>
53 #include <asm/kvm_page_track.h>
54 #include "trace.h"
55 
56 #include "paging.h"
57 
58 extern bool itlb_multihit_kvm_mitigation;
59 
60 int __read_mostly nx_huge_pages = -1;
61 static uint __read_mostly nx_huge_pages_recovery_period_ms;
62 #ifdef CONFIG_PREEMPT_RT
63 /* Recovery can cause latency spikes, disable it for PREEMPT_RT.  */
64 static uint __read_mostly nx_huge_pages_recovery_ratio = 0;
65 #else
66 static uint __read_mostly nx_huge_pages_recovery_ratio = 60;
67 #endif
68 
69 static int set_nx_huge_pages(const char *val, const struct kernel_param *kp);
70 static int set_nx_huge_pages_recovery_param(const char *val, const struct kernel_param *kp);
71 
72 static const struct kernel_param_ops nx_huge_pages_ops = {
73 	.set = set_nx_huge_pages,
74 	.get = param_get_bool,
75 };
76 
77 static const struct kernel_param_ops nx_huge_pages_recovery_param_ops = {
78 	.set = set_nx_huge_pages_recovery_param,
79 	.get = param_get_uint,
80 };
81 
82 module_param_cb(nx_huge_pages, &nx_huge_pages_ops, &nx_huge_pages, 0644);
83 __MODULE_PARM_TYPE(nx_huge_pages, "bool");
84 module_param_cb(nx_huge_pages_recovery_ratio, &nx_huge_pages_recovery_param_ops,
85 		&nx_huge_pages_recovery_ratio, 0644);
86 __MODULE_PARM_TYPE(nx_huge_pages_recovery_ratio, "uint");
87 module_param_cb(nx_huge_pages_recovery_period_ms, &nx_huge_pages_recovery_param_ops,
88 		&nx_huge_pages_recovery_period_ms, 0644);
89 __MODULE_PARM_TYPE(nx_huge_pages_recovery_period_ms, "uint");
90 
91 static bool __read_mostly force_flush_and_sync_on_reuse;
92 module_param_named(flush_on_reuse, force_flush_and_sync_on_reuse, bool, 0644);
93 
94 /*
95  * When setting this variable to true it enables Two-Dimensional-Paging
96  * where the hardware walks 2 page tables:
97  * 1. the guest-virtual to guest-physical
98  * 2. while doing 1. it walks guest-physical to host-physical
99  * If the hardware supports that we don't need to do shadow paging.
100  */
101 bool tdp_enabled = false;
102 
103 static int max_huge_page_level __read_mostly;
104 static int tdp_root_level __read_mostly;
105 static int max_tdp_level __read_mostly;
106 
107 #ifdef MMU_DEBUG
108 bool dbg = 0;
109 module_param(dbg, bool, 0644);
110 #endif
111 
112 #define PTE_PREFETCH_NUM		8
113 
114 #define PT32_LEVEL_BITS 10
115 
116 #define PT32_LEVEL_SHIFT(level) \
117 		(PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
118 
119 #define PT32_LVL_OFFSET_MASK(level) \
120 	(PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
121 						* PT32_LEVEL_BITS))) - 1))
122 
123 #define PT32_INDEX(address, level)\
124 	(((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
125 
126 
127 #define PT32_BASE_ADDR_MASK PAGE_MASK
128 #define PT32_DIR_BASE_ADDR_MASK \
129 	(PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
130 #define PT32_LVL_ADDR_MASK(level) \
131 	(PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
132 					    * PT32_LEVEL_BITS))) - 1))
133 
134 #include <trace/events/kvm.h>
135 
136 /* make pte_list_desc fit well in cache lines */
137 #define PTE_LIST_EXT 14
138 
139 /*
140  * Slight optimization of cacheline layout, by putting `more' and `spte_count'
141  * at the start; then accessing it will only use one single cacheline for
142  * either full (entries==PTE_LIST_EXT) case or entries<=6.
143  */
144 struct pte_list_desc {
145 	struct pte_list_desc *more;
146 	/*
147 	 * Stores number of entries stored in the pte_list_desc.  No need to be
148 	 * u64 but just for easier alignment.  When PTE_LIST_EXT, means full.
149 	 */
150 	u64 spte_count;
151 	u64 *sptes[PTE_LIST_EXT];
152 };
153 
154 struct kvm_shadow_walk_iterator {
155 	u64 addr;
156 	hpa_t shadow_addr;
157 	u64 *sptep;
158 	int level;
159 	unsigned index;
160 };
161 
162 #define for_each_shadow_entry_using_root(_vcpu, _root, _addr, _walker)     \
163 	for (shadow_walk_init_using_root(&(_walker), (_vcpu),              \
164 					 (_root), (_addr));                \
165 	     shadow_walk_okay(&(_walker));			           \
166 	     shadow_walk_next(&(_walker)))
167 
168 #define for_each_shadow_entry(_vcpu, _addr, _walker)            \
169 	for (shadow_walk_init(&(_walker), _vcpu, _addr);	\
170 	     shadow_walk_okay(&(_walker));			\
171 	     shadow_walk_next(&(_walker)))
172 
173 #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte)	\
174 	for (shadow_walk_init(&(_walker), _vcpu, _addr);		\
175 	     shadow_walk_okay(&(_walker)) &&				\
176 		({ spte = mmu_spte_get_lockless(_walker.sptep); 1; });	\
177 	     __shadow_walk_next(&(_walker), spte))
178 
179 static struct kmem_cache *pte_list_desc_cache;
180 struct kmem_cache *mmu_page_header_cache;
181 static struct percpu_counter kvm_total_used_mmu_pages;
182 
183 static void mmu_spte_set(u64 *sptep, u64 spte);
184 
185 struct kvm_mmu_role_regs {
186 	const unsigned long cr0;
187 	const unsigned long cr4;
188 	const u64 efer;
189 };
190 
191 #define CREATE_TRACE_POINTS
192 #include "mmutrace.h"
193 
194 /*
195  * Yes, lot's of underscores.  They're a hint that you probably shouldn't be
196  * reading from the role_regs.  Once the mmu_role is constructed, it becomes
197  * the single source of truth for the MMU's state.
198  */
199 #define BUILD_MMU_ROLE_REGS_ACCESSOR(reg, name, flag)			\
200 static inline bool __maybe_unused ____is_##reg##_##name(struct kvm_mmu_role_regs *regs)\
201 {									\
202 	return !!(regs->reg & flag);					\
203 }
204 BUILD_MMU_ROLE_REGS_ACCESSOR(cr0, pg, X86_CR0_PG);
205 BUILD_MMU_ROLE_REGS_ACCESSOR(cr0, wp, X86_CR0_WP);
206 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pse, X86_CR4_PSE);
207 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pae, X86_CR4_PAE);
208 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, smep, X86_CR4_SMEP);
209 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, smap, X86_CR4_SMAP);
210 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pke, X86_CR4_PKE);
211 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, la57, X86_CR4_LA57);
212 BUILD_MMU_ROLE_REGS_ACCESSOR(efer, nx, EFER_NX);
213 BUILD_MMU_ROLE_REGS_ACCESSOR(efer, lma, EFER_LMA);
214 
215 /*
216  * The MMU itself (with a valid role) is the single source of truth for the
217  * MMU.  Do not use the regs used to build the MMU/role, nor the vCPU.  The
218  * regs don't account for dependencies, e.g. clearing CR4 bits if CR0.PG=1,
219  * and the vCPU may be incorrect/irrelevant.
220  */
221 #define BUILD_MMU_ROLE_ACCESSOR(base_or_ext, reg, name)		\
222 static inline bool __maybe_unused is_##reg##_##name(struct kvm_mmu *mmu)	\
223 {								\
224 	return !!(mmu->mmu_role. base_or_ext . reg##_##name);	\
225 }
226 BUILD_MMU_ROLE_ACCESSOR(ext,  cr0, pg);
227 BUILD_MMU_ROLE_ACCESSOR(base, cr0, wp);
228 BUILD_MMU_ROLE_ACCESSOR(ext,  cr4, pse);
229 BUILD_MMU_ROLE_ACCESSOR(ext,  cr4, pae);
230 BUILD_MMU_ROLE_ACCESSOR(ext,  cr4, smep);
231 BUILD_MMU_ROLE_ACCESSOR(ext,  cr4, smap);
232 BUILD_MMU_ROLE_ACCESSOR(ext,  cr4, pke);
233 BUILD_MMU_ROLE_ACCESSOR(ext,  cr4, la57);
234 BUILD_MMU_ROLE_ACCESSOR(base, efer, nx);
235 
236 static struct kvm_mmu_role_regs vcpu_to_role_regs(struct kvm_vcpu *vcpu)
237 {
238 	struct kvm_mmu_role_regs regs = {
239 		.cr0 = kvm_read_cr0_bits(vcpu, KVM_MMU_CR0_ROLE_BITS),
240 		.cr4 = kvm_read_cr4_bits(vcpu, KVM_MMU_CR4_ROLE_BITS),
241 		.efer = vcpu->arch.efer,
242 	};
243 
244 	return regs;
245 }
246 
247 static int role_regs_to_root_level(struct kvm_mmu_role_regs *regs)
248 {
249 	if (!____is_cr0_pg(regs))
250 		return 0;
251 	else if (____is_efer_lma(regs))
252 		return ____is_cr4_la57(regs) ? PT64_ROOT_5LEVEL :
253 					       PT64_ROOT_4LEVEL;
254 	else if (____is_cr4_pae(regs))
255 		return PT32E_ROOT_LEVEL;
256 	else
257 		return PT32_ROOT_LEVEL;
258 }
259 
260 static inline bool kvm_available_flush_tlb_with_range(void)
261 {
262 	return kvm_x86_ops.tlb_remote_flush_with_range;
263 }
264 
265 static void kvm_flush_remote_tlbs_with_range(struct kvm *kvm,
266 		struct kvm_tlb_range *range)
267 {
268 	int ret = -ENOTSUPP;
269 
270 	if (range && kvm_x86_ops.tlb_remote_flush_with_range)
271 		ret = static_call(kvm_x86_tlb_remote_flush_with_range)(kvm, range);
272 
273 	if (ret)
274 		kvm_flush_remote_tlbs(kvm);
275 }
276 
277 void kvm_flush_remote_tlbs_with_address(struct kvm *kvm,
278 		u64 start_gfn, u64 pages)
279 {
280 	struct kvm_tlb_range range;
281 
282 	range.start_gfn = start_gfn;
283 	range.pages = pages;
284 
285 	kvm_flush_remote_tlbs_with_range(kvm, &range);
286 }
287 
288 static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn,
289 			   unsigned int access)
290 {
291 	u64 spte = make_mmio_spte(vcpu, gfn, access);
292 
293 	trace_mark_mmio_spte(sptep, gfn, spte);
294 	mmu_spte_set(sptep, spte);
295 }
296 
297 static gfn_t get_mmio_spte_gfn(u64 spte)
298 {
299 	u64 gpa = spte & shadow_nonpresent_or_rsvd_lower_gfn_mask;
300 
301 	gpa |= (spte >> SHADOW_NONPRESENT_OR_RSVD_MASK_LEN)
302 	       & shadow_nonpresent_or_rsvd_mask;
303 
304 	return gpa >> PAGE_SHIFT;
305 }
306 
307 static unsigned get_mmio_spte_access(u64 spte)
308 {
309 	return spte & shadow_mmio_access_mask;
310 }
311 
312 static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte)
313 {
314 	u64 kvm_gen, spte_gen, gen;
315 
316 	gen = kvm_vcpu_memslots(vcpu)->generation;
317 	if (unlikely(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS))
318 		return false;
319 
320 	kvm_gen = gen & MMIO_SPTE_GEN_MASK;
321 	spte_gen = get_mmio_spte_generation(spte);
322 
323 	trace_check_mmio_spte(spte, kvm_gen, spte_gen);
324 	return likely(kvm_gen == spte_gen);
325 }
326 
327 static int is_cpuid_PSE36(void)
328 {
329 	return 1;
330 }
331 
332 static gfn_t pse36_gfn_delta(u32 gpte)
333 {
334 	int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
335 
336 	return (gpte & PT32_DIR_PSE36_MASK) << shift;
337 }
338 
339 #ifdef CONFIG_X86_64
340 static void __set_spte(u64 *sptep, u64 spte)
341 {
342 	WRITE_ONCE(*sptep, spte);
343 }
344 
345 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
346 {
347 	WRITE_ONCE(*sptep, spte);
348 }
349 
350 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
351 {
352 	return xchg(sptep, spte);
353 }
354 
355 static u64 __get_spte_lockless(u64 *sptep)
356 {
357 	return READ_ONCE(*sptep);
358 }
359 #else
360 union split_spte {
361 	struct {
362 		u32 spte_low;
363 		u32 spte_high;
364 	};
365 	u64 spte;
366 };
367 
368 static void count_spte_clear(u64 *sptep, u64 spte)
369 {
370 	struct kvm_mmu_page *sp =  sptep_to_sp(sptep);
371 
372 	if (is_shadow_present_pte(spte))
373 		return;
374 
375 	/* Ensure the spte is completely set before we increase the count */
376 	smp_wmb();
377 	sp->clear_spte_count++;
378 }
379 
380 static void __set_spte(u64 *sptep, u64 spte)
381 {
382 	union split_spte *ssptep, sspte;
383 
384 	ssptep = (union split_spte *)sptep;
385 	sspte = (union split_spte)spte;
386 
387 	ssptep->spte_high = sspte.spte_high;
388 
389 	/*
390 	 * If we map the spte from nonpresent to present, We should store
391 	 * the high bits firstly, then set present bit, so cpu can not
392 	 * fetch this spte while we are setting the spte.
393 	 */
394 	smp_wmb();
395 
396 	WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
397 }
398 
399 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
400 {
401 	union split_spte *ssptep, sspte;
402 
403 	ssptep = (union split_spte *)sptep;
404 	sspte = (union split_spte)spte;
405 
406 	WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
407 
408 	/*
409 	 * If we map the spte from present to nonpresent, we should clear
410 	 * present bit firstly to avoid vcpu fetch the old high bits.
411 	 */
412 	smp_wmb();
413 
414 	ssptep->spte_high = sspte.spte_high;
415 	count_spte_clear(sptep, spte);
416 }
417 
418 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
419 {
420 	union split_spte *ssptep, sspte, orig;
421 
422 	ssptep = (union split_spte *)sptep;
423 	sspte = (union split_spte)spte;
424 
425 	/* xchg acts as a barrier before the setting of the high bits */
426 	orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
427 	orig.spte_high = ssptep->spte_high;
428 	ssptep->spte_high = sspte.spte_high;
429 	count_spte_clear(sptep, spte);
430 
431 	return orig.spte;
432 }
433 
434 /*
435  * The idea using the light way get the spte on x86_32 guest is from
436  * gup_get_pte (mm/gup.c).
437  *
438  * An spte tlb flush may be pending, because kvm_set_pte_rmapp
439  * coalesces them and we are running out of the MMU lock.  Therefore
440  * we need to protect against in-progress updates of the spte.
441  *
442  * Reading the spte while an update is in progress may get the old value
443  * for the high part of the spte.  The race is fine for a present->non-present
444  * change (because the high part of the spte is ignored for non-present spte),
445  * but for a present->present change we must reread the spte.
446  *
447  * All such changes are done in two steps (present->non-present and
448  * non-present->present), hence it is enough to count the number of
449  * present->non-present updates: if it changed while reading the spte,
450  * we might have hit the race.  This is done using clear_spte_count.
451  */
452 static u64 __get_spte_lockless(u64 *sptep)
453 {
454 	struct kvm_mmu_page *sp =  sptep_to_sp(sptep);
455 	union split_spte spte, *orig = (union split_spte *)sptep;
456 	int count;
457 
458 retry:
459 	count = sp->clear_spte_count;
460 	smp_rmb();
461 
462 	spte.spte_low = orig->spte_low;
463 	smp_rmb();
464 
465 	spte.spte_high = orig->spte_high;
466 	smp_rmb();
467 
468 	if (unlikely(spte.spte_low != orig->spte_low ||
469 	      count != sp->clear_spte_count))
470 		goto retry;
471 
472 	return spte.spte;
473 }
474 #endif
475 
476 static bool spte_has_volatile_bits(u64 spte)
477 {
478 	if (!is_shadow_present_pte(spte))
479 		return false;
480 
481 	/*
482 	 * Always atomically update spte if it can be updated
483 	 * out of mmu-lock, it can ensure dirty bit is not lost,
484 	 * also, it can help us to get a stable is_writable_pte()
485 	 * to ensure tlb flush is not missed.
486 	 */
487 	if (spte_can_locklessly_be_made_writable(spte) ||
488 	    is_access_track_spte(spte))
489 		return true;
490 
491 	if (spte_ad_enabled(spte)) {
492 		if ((spte & shadow_accessed_mask) == 0 ||
493 	    	    (is_writable_pte(spte) && (spte & shadow_dirty_mask) == 0))
494 			return true;
495 	}
496 
497 	return false;
498 }
499 
500 /* Rules for using mmu_spte_set:
501  * Set the sptep from nonpresent to present.
502  * Note: the sptep being assigned *must* be either not present
503  * or in a state where the hardware will not attempt to update
504  * the spte.
505  */
506 static void mmu_spte_set(u64 *sptep, u64 new_spte)
507 {
508 	WARN_ON(is_shadow_present_pte(*sptep));
509 	__set_spte(sptep, new_spte);
510 }
511 
512 /*
513  * Update the SPTE (excluding the PFN), but do not track changes in its
514  * accessed/dirty status.
515  */
516 static u64 mmu_spte_update_no_track(u64 *sptep, u64 new_spte)
517 {
518 	u64 old_spte = *sptep;
519 
520 	WARN_ON(!is_shadow_present_pte(new_spte));
521 	check_spte_writable_invariants(new_spte);
522 
523 	if (!is_shadow_present_pte(old_spte)) {
524 		mmu_spte_set(sptep, new_spte);
525 		return old_spte;
526 	}
527 
528 	if (!spte_has_volatile_bits(old_spte))
529 		__update_clear_spte_fast(sptep, new_spte);
530 	else
531 		old_spte = __update_clear_spte_slow(sptep, new_spte);
532 
533 	WARN_ON(spte_to_pfn(old_spte) != spte_to_pfn(new_spte));
534 
535 	return old_spte;
536 }
537 
538 /* Rules for using mmu_spte_update:
539  * Update the state bits, it means the mapped pfn is not changed.
540  *
541  * Whenever an MMU-writable SPTE is overwritten with a read-only SPTE, remote
542  * TLBs must be flushed. Otherwise rmap_write_protect will find a read-only
543  * spte, even though the writable spte might be cached on a CPU's TLB.
544  *
545  * Returns true if the TLB needs to be flushed
546  */
547 static bool mmu_spte_update(u64 *sptep, u64 new_spte)
548 {
549 	bool flush = false;
550 	u64 old_spte = mmu_spte_update_no_track(sptep, new_spte);
551 
552 	if (!is_shadow_present_pte(old_spte))
553 		return false;
554 
555 	/*
556 	 * For the spte updated out of mmu-lock is safe, since
557 	 * we always atomically update it, see the comments in
558 	 * spte_has_volatile_bits().
559 	 */
560 	if (spte_can_locklessly_be_made_writable(old_spte) &&
561 	      !is_writable_pte(new_spte))
562 		flush = true;
563 
564 	/*
565 	 * Flush TLB when accessed/dirty states are changed in the page tables,
566 	 * to guarantee consistency between TLB and page tables.
567 	 */
568 
569 	if (is_accessed_spte(old_spte) && !is_accessed_spte(new_spte)) {
570 		flush = true;
571 		kvm_set_pfn_accessed(spte_to_pfn(old_spte));
572 	}
573 
574 	if (is_dirty_spte(old_spte) && !is_dirty_spte(new_spte)) {
575 		flush = true;
576 		kvm_set_pfn_dirty(spte_to_pfn(old_spte));
577 	}
578 
579 	return flush;
580 }
581 
582 /*
583  * Rules for using mmu_spte_clear_track_bits:
584  * It sets the sptep from present to nonpresent, and track the
585  * state bits, it is used to clear the last level sptep.
586  * Returns the old PTE.
587  */
588 static int mmu_spte_clear_track_bits(struct kvm *kvm, u64 *sptep)
589 {
590 	kvm_pfn_t pfn;
591 	u64 old_spte = *sptep;
592 	int level = sptep_to_sp(sptep)->role.level;
593 
594 	if (!spte_has_volatile_bits(old_spte))
595 		__update_clear_spte_fast(sptep, 0ull);
596 	else
597 		old_spte = __update_clear_spte_slow(sptep, 0ull);
598 
599 	if (!is_shadow_present_pte(old_spte))
600 		return old_spte;
601 
602 	kvm_update_page_stats(kvm, level, -1);
603 
604 	pfn = spte_to_pfn(old_spte);
605 
606 	/*
607 	 * KVM does not hold the refcount of the page used by
608 	 * kvm mmu, before reclaiming the page, we should
609 	 * unmap it from mmu first.
610 	 */
611 	WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn)));
612 
613 	if (is_accessed_spte(old_spte))
614 		kvm_set_pfn_accessed(pfn);
615 
616 	if (is_dirty_spte(old_spte))
617 		kvm_set_pfn_dirty(pfn);
618 
619 	return old_spte;
620 }
621 
622 /*
623  * Rules for using mmu_spte_clear_no_track:
624  * Directly clear spte without caring the state bits of sptep,
625  * it is used to set the upper level spte.
626  */
627 static void mmu_spte_clear_no_track(u64 *sptep)
628 {
629 	__update_clear_spte_fast(sptep, 0ull);
630 }
631 
632 static u64 mmu_spte_get_lockless(u64 *sptep)
633 {
634 	return __get_spte_lockless(sptep);
635 }
636 
637 /* Returns the Accessed status of the PTE and resets it at the same time. */
638 static bool mmu_spte_age(u64 *sptep)
639 {
640 	u64 spte = mmu_spte_get_lockless(sptep);
641 
642 	if (!is_accessed_spte(spte))
643 		return false;
644 
645 	if (spte_ad_enabled(spte)) {
646 		clear_bit((ffs(shadow_accessed_mask) - 1),
647 			  (unsigned long *)sptep);
648 	} else {
649 		/*
650 		 * Capture the dirty status of the page, so that it doesn't get
651 		 * lost when the SPTE is marked for access tracking.
652 		 */
653 		if (is_writable_pte(spte))
654 			kvm_set_pfn_dirty(spte_to_pfn(spte));
655 
656 		spte = mark_spte_for_access_track(spte);
657 		mmu_spte_update_no_track(sptep, spte);
658 	}
659 
660 	return true;
661 }
662 
663 static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
664 {
665 	if (is_tdp_mmu(vcpu->arch.mmu)) {
666 		kvm_tdp_mmu_walk_lockless_begin();
667 	} else {
668 		/*
669 		 * Prevent page table teardown by making any free-er wait during
670 		 * kvm_flush_remote_tlbs() IPI to all active vcpus.
671 		 */
672 		local_irq_disable();
673 
674 		/*
675 		 * Make sure a following spte read is not reordered ahead of the write
676 		 * to vcpu->mode.
677 		 */
678 		smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES);
679 	}
680 }
681 
682 static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
683 {
684 	if (is_tdp_mmu(vcpu->arch.mmu)) {
685 		kvm_tdp_mmu_walk_lockless_end();
686 	} else {
687 		/*
688 		 * Make sure the write to vcpu->mode is not reordered in front of
689 		 * reads to sptes.  If it does, kvm_mmu_commit_zap_page() can see us
690 		 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
691 		 */
692 		smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE);
693 		local_irq_enable();
694 	}
695 }
696 
697 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu, bool maybe_indirect)
698 {
699 	int r;
700 
701 	/* 1 rmap, 1 parent PTE per level, and the prefetched rmaps. */
702 	r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
703 				       1 + PT64_ROOT_MAX_LEVEL + PTE_PREFETCH_NUM);
704 	if (r)
705 		return r;
706 	r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_shadow_page_cache,
707 				       PT64_ROOT_MAX_LEVEL);
708 	if (r)
709 		return r;
710 	if (maybe_indirect) {
711 		r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_gfn_array_cache,
712 					       PT64_ROOT_MAX_LEVEL);
713 		if (r)
714 			return r;
715 	}
716 	return kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
717 					  PT64_ROOT_MAX_LEVEL);
718 }
719 
720 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
721 {
722 	kvm_mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache);
723 	kvm_mmu_free_memory_cache(&vcpu->arch.mmu_shadow_page_cache);
724 	kvm_mmu_free_memory_cache(&vcpu->arch.mmu_gfn_array_cache);
725 	kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache);
726 }
727 
728 static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
729 {
730 	return kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
731 }
732 
733 static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
734 {
735 	kmem_cache_free(pte_list_desc_cache, pte_list_desc);
736 }
737 
738 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
739 {
740 	if (!sp->role.direct)
741 		return sp->gfns[index];
742 
743 	return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
744 }
745 
746 static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
747 {
748 	if (!sp->role.direct) {
749 		sp->gfns[index] = gfn;
750 		return;
751 	}
752 
753 	if (WARN_ON(gfn != kvm_mmu_page_get_gfn(sp, index)))
754 		pr_err_ratelimited("gfn mismatch under direct page %llx "
755 				   "(expected %llx, got %llx)\n",
756 				   sp->gfn,
757 				   kvm_mmu_page_get_gfn(sp, index), gfn);
758 }
759 
760 /*
761  * Return the pointer to the large page information for a given gfn,
762  * handling slots that are not large page aligned.
763  */
764 static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
765 		const struct kvm_memory_slot *slot, int level)
766 {
767 	unsigned long idx;
768 
769 	idx = gfn_to_index(gfn, slot->base_gfn, level);
770 	return &slot->arch.lpage_info[level - 2][idx];
771 }
772 
773 static void update_gfn_disallow_lpage_count(const struct kvm_memory_slot *slot,
774 					    gfn_t gfn, int count)
775 {
776 	struct kvm_lpage_info *linfo;
777 	int i;
778 
779 	for (i = PG_LEVEL_2M; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) {
780 		linfo = lpage_info_slot(gfn, slot, i);
781 		linfo->disallow_lpage += count;
782 		WARN_ON(linfo->disallow_lpage < 0);
783 	}
784 }
785 
786 void kvm_mmu_gfn_disallow_lpage(const struct kvm_memory_slot *slot, gfn_t gfn)
787 {
788 	update_gfn_disallow_lpage_count(slot, gfn, 1);
789 }
790 
791 void kvm_mmu_gfn_allow_lpage(const struct kvm_memory_slot *slot, gfn_t gfn)
792 {
793 	update_gfn_disallow_lpage_count(slot, gfn, -1);
794 }
795 
796 static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
797 {
798 	struct kvm_memslots *slots;
799 	struct kvm_memory_slot *slot;
800 	gfn_t gfn;
801 
802 	kvm->arch.indirect_shadow_pages++;
803 	gfn = sp->gfn;
804 	slots = kvm_memslots_for_spte_role(kvm, sp->role);
805 	slot = __gfn_to_memslot(slots, gfn);
806 
807 	/* the non-leaf shadow pages are keeping readonly. */
808 	if (sp->role.level > PG_LEVEL_4K)
809 		return kvm_slot_page_track_add_page(kvm, slot, gfn,
810 						    KVM_PAGE_TRACK_WRITE);
811 
812 	kvm_mmu_gfn_disallow_lpage(slot, gfn);
813 }
814 
815 void account_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp)
816 {
817 	if (sp->lpage_disallowed)
818 		return;
819 
820 	++kvm->stat.nx_lpage_splits;
821 	list_add_tail(&sp->lpage_disallowed_link,
822 		      &kvm->arch.lpage_disallowed_mmu_pages);
823 	sp->lpage_disallowed = true;
824 }
825 
826 static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
827 {
828 	struct kvm_memslots *slots;
829 	struct kvm_memory_slot *slot;
830 	gfn_t gfn;
831 
832 	kvm->arch.indirect_shadow_pages--;
833 	gfn = sp->gfn;
834 	slots = kvm_memslots_for_spte_role(kvm, sp->role);
835 	slot = __gfn_to_memslot(slots, gfn);
836 	if (sp->role.level > PG_LEVEL_4K)
837 		return kvm_slot_page_track_remove_page(kvm, slot, gfn,
838 						       KVM_PAGE_TRACK_WRITE);
839 
840 	kvm_mmu_gfn_allow_lpage(slot, gfn);
841 }
842 
843 void unaccount_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp)
844 {
845 	--kvm->stat.nx_lpage_splits;
846 	sp->lpage_disallowed = false;
847 	list_del(&sp->lpage_disallowed_link);
848 }
849 
850 static struct kvm_memory_slot *
851 gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
852 			    bool no_dirty_log)
853 {
854 	struct kvm_memory_slot *slot;
855 
856 	slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
857 	if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
858 		return NULL;
859 	if (no_dirty_log && kvm_slot_dirty_track_enabled(slot))
860 		return NULL;
861 
862 	return slot;
863 }
864 
865 /*
866  * About rmap_head encoding:
867  *
868  * If the bit zero of rmap_head->val is clear, then it points to the only spte
869  * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct
870  * pte_list_desc containing more mappings.
871  */
872 
873 /*
874  * Returns the number of pointers in the rmap chain, not counting the new one.
875  */
876 static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
877 			struct kvm_rmap_head *rmap_head)
878 {
879 	struct pte_list_desc *desc;
880 	int count = 0;
881 
882 	if (!rmap_head->val) {
883 		rmap_printk("%p %llx 0->1\n", spte, *spte);
884 		rmap_head->val = (unsigned long)spte;
885 	} else if (!(rmap_head->val & 1)) {
886 		rmap_printk("%p %llx 1->many\n", spte, *spte);
887 		desc = mmu_alloc_pte_list_desc(vcpu);
888 		desc->sptes[0] = (u64 *)rmap_head->val;
889 		desc->sptes[1] = spte;
890 		desc->spte_count = 2;
891 		rmap_head->val = (unsigned long)desc | 1;
892 		++count;
893 	} else {
894 		rmap_printk("%p %llx many->many\n", spte, *spte);
895 		desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
896 		while (desc->spte_count == PTE_LIST_EXT) {
897 			count += PTE_LIST_EXT;
898 			if (!desc->more) {
899 				desc->more = mmu_alloc_pte_list_desc(vcpu);
900 				desc = desc->more;
901 				desc->spte_count = 0;
902 				break;
903 			}
904 			desc = desc->more;
905 		}
906 		count += desc->spte_count;
907 		desc->sptes[desc->spte_count++] = spte;
908 	}
909 	return count;
910 }
911 
912 static void
913 pte_list_desc_remove_entry(struct kvm_rmap_head *rmap_head,
914 			   struct pte_list_desc *desc, int i,
915 			   struct pte_list_desc *prev_desc)
916 {
917 	int j = desc->spte_count - 1;
918 
919 	desc->sptes[i] = desc->sptes[j];
920 	desc->sptes[j] = NULL;
921 	desc->spte_count--;
922 	if (desc->spte_count)
923 		return;
924 	if (!prev_desc && !desc->more)
925 		rmap_head->val = 0;
926 	else
927 		if (prev_desc)
928 			prev_desc->more = desc->more;
929 		else
930 			rmap_head->val = (unsigned long)desc->more | 1;
931 	mmu_free_pte_list_desc(desc);
932 }
933 
934 static void __pte_list_remove(u64 *spte, struct kvm_rmap_head *rmap_head)
935 {
936 	struct pte_list_desc *desc;
937 	struct pte_list_desc *prev_desc;
938 	int i;
939 
940 	if (!rmap_head->val) {
941 		pr_err("%s: %p 0->BUG\n", __func__, spte);
942 		BUG();
943 	} else if (!(rmap_head->val & 1)) {
944 		rmap_printk("%p 1->0\n", spte);
945 		if ((u64 *)rmap_head->val != spte) {
946 			pr_err("%s:  %p 1->BUG\n", __func__, spte);
947 			BUG();
948 		}
949 		rmap_head->val = 0;
950 	} else {
951 		rmap_printk("%p many->many\n", spte);
952 		desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
953 		prev_desc = NULL;
954 		while (desc) {
955 			for (i = 0; i < desc->spte_count; ++i) {
956 				if (desc->sptes[i] == spte) {
957 					pte_list_desc_remove_entry(rmap_head,
958 							desc, i, prev_desc);
959 					return;
960 				}
961 			}
962 			prev_desc = desc;
963 			desc = desc->more;
964 		}
965 		pr_err("%s: %p many->many\n", __func__, spte);
966 		BUG();
967 	}
968 }
969 
970 static void pte_list_remove(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
971 			    u64 *sptep)
972 {
973 	mmu_spte_clear_track_bits(kvm, sptep);
974 	__pte_list_remove(sptep, rmap_head);
975 }
976 
977 /* Return true if rmap existed, false otherwise */
978 static bool pte_list_destroy(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
979 {
980 	struct pte_list_desc *desc, *next;
981 	int i;
982 
983 	if (!rmap_head->val)
984 		return false;
985 
986 	if (!(rmap_head->val & 1)) {
987 		mmu_spte_clear_track_bits(kvm, (u64 *)rmap_head->val);
988 		goto out;
989 	}
990 
991 	desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
992 
993 	for (; desc; desc = next) {
994 		for (i = 0; i < desc->spte_count; i++)
995 			mmu_spte_clear_track_bits(kvm, desc->sptes[i]);
996 		next = desc->more;
997 		mmu_free_pte_list_desc(desc);
998 	}
999 out:
1000 	/* rmap_head is meaningless now, remember to reset it */
1001 	rmap_head->val = 0;
1002 	return true;
1003 }
1004 
1005 unsigned int pte_list_count(struct kvm_rmap_head *rmap_head)
1006 {
1007 	struct pte_list_desc *desc;
1008 	unsigned int count = 0;
1009 
1010 	if (!rmap_head->val)
1011 		return 0;
1012 	else if (!(rmap_head->val & 1))
1013 		return 1;
1014 
1015 	desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1016 
1017 	while (desc) {
1018 		count += desc->spte_count;
1019 		desc = desc->more;
1020 	}
1021 
1022 	return count;
1023 }
1024 
1025 static struct kvm_rmap_head *gfn_to_rmap(gfn_t gfn, int level,
1026 					 const struct kvm_memory_slot *slot)
1027 {
1028 	unsigned long idx;
1029 
1030 	idx = gfn_to_index(gfn, slot->base_gfn, level);
1031 	return &slot->arch.rmap[level - PG_LEVEL_4K][idx];
1032 }
1033 
1034 static bool rmap_can_add(struct kvm_vcpu *vcpu)
1035 {
1036 	struct kvm_mmu_memory_cache *mc;
1037 
1038 	mc = &vcpu->arch.mmu_pte_list_desc_cache;
1039 	return kvm_mmu_memory_cache_nr_free_objects(mc);
1040 }
1041 
1042 static void rmap_remove(struct kvm *kvm, u64 *spte)
1043 {
1044 	struct kvm_memslots *slots;
1045 	struct kvm_memory_slot *slot;
1046 	struct kvm_mmu_page *sp;
1047 	gfn_t gfn;
1048 	struct kvm_rmap_head *rmap_head;
1049 
1050 	sp = sptep_to_sp(spte);
1051 	gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
1052 
1053 	/*
1054 	 * Unlike rmap_add, rmap_remove does not run in the context of a vCPU
1055 	 * so we have to determine which memslots to use based on context
1056 	 * information in sp->role.
1057 	 */
1058 	slots = kvm_memslots_for_spte_role(kvm, sp->role);
1059 
1060 	slot = __gfn_to_memslot(slots, gfn);
1061 	rmap_head = gfn_to_rmap(gfn, sp->role.level, slot);
1062 
1063 	__pte_list_remove(spte, rmap_head);
1064 }
1065 
1066 /*
1067  * Used by the following functions to iterate through the sptes linked by a
1068  * rmap.  All fields are private and not assumed to be used outside.
1069  */
1070 struct rmap_iterator {
1071 	/* private fields */
1072 	struct pte_list_desc *desc;	/* holds the sptep if not NULL */
1073 	int pos;			/* index of the sptep */
1074 };
1075 
1076 /*
1077  * Iteration must be started by this function.  This should also be used after
1078  * removing/dropping sptes from the rmap link because in such cases the
1079  * information in the iterator may not be valid.
1080  *
1081  * Returns sptep if found, NULL otherwise.
1082  */
1083 static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head,
1084 			   struct rmap_iterator *iter)
1085 {
1086 	u64 *sptep;
1087 
1088 	if (!rmap_head->val)
1089 		return NULL;
1090 
1091 	if (!(rmap_head->val & 1)) {
1092 		iter->desc = NULL;
1093 		sptep = (u64 *)rmap_head->val;
1094 		goto out;
1095 	}
1096 
1097 	iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1098 	iter->pos = 0;
1099 	sptep = iter->desc->sptes[iter->pos];
1100 out:
1101 	BUG_ON(!is_shadow_present_pte(*sptep));
1102 	return sptep;
1103 }
1104 
1105 /*
1106  * Must be used with a valid iterator: e.g. after rmap_get_first().
1107  *
1108  * Returns sptep if found, NULL otherwise.
1109  */
1110 static u64 *rmap_get_next(struct rmap_iterator *iter)
1111 {
1112 	u64 *sptep;
1113 
1114 	if (iter->desc) {
1115 		if (iter->pos < PTE_LIST_EXT - 1) {
1116 			++iter->pos;
1117 			sptep = iter->desc->sptes[iter->pos];
1118 			if (sptep)
1119 				goto out;
1120 		}
1121 
1122 		iter->desc = iter->desc->more;
1123 
1124 		if (iter->desc) {
1125 			iter->pos = 0;
1126 			/* desc->sptes[0] cannot be NULL */
1127 			sptep = iter->desc->sptes[iter->pos];
1128 			goto out;
1129 		}
1130 	}
1131 
1132 	return NULL;
1133 out:
1134 	BUG_ON(!is_shadow_present_pte(*sptep));
1135 	return sptep;
1136 }
1137 
1138 #define for_each_rmap_spte(_rmap_head_, _iter_, _spte_)			\
1139 	for (_spte_ = rmap_get_first(_rmap_head_, _iter_);		\
1140 	     _spte_; _spte_ = rmap_get_next(_iter_))
1141 
1142 static void drop_spte(struct kvm *kvm, u64 *sptep)
1143 {
1144 	u64 old_spte = mmu_spte_clear_track_bits(kvm, sptep);
1145 
1146 	if (is_shadow_present_pte(old_spte))
1147 		rmap_remove(kvm, sptep);
1148 }
1149 
1150 
1151 static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
1152 {
1153 	if (is_large_pte(*sptep)) {
1154 		WARN_ON(sptep_to_sp(sptep)->role.level == PG_LEVEL_4K);
1155 		drop_spte(kvm, sptep);
1156 		return true;
1157 	}
1158 
1159 	return false;
1160 }
1161 
1162 static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1163 {
1164 	if (__drop_large_spte(vcpu->kvm, sptep)) {
1165 		struct kvm_mmu_page *sp = sptep_to_sp(sptep);
1166 
1167 		kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn,
1168 			KVM_PAGES_PER_HPAGE(sp->role.level));
1169 	}
1170 }
1171 
1172 /*
1173  * Write-protect on the specified @sptep, @pt_protect indicates whether
1174  * spte write-protection is caused by protecting shadow page table.
1175  *
1176  * Note: write protection is difference between dirty logging and spte
1177  * protection:
1178  * - for dirty logging, the spte can be set to writable at anytime if
1179  *   its dirty bitmap is properly set.
1180  * - for spte protection, the spte can be writable only after unsync-ing
1181  *   shadow page.
1182  *
1183  * Return true if tlb need be flushed.
1184  */
1185 static bool spte_write_protect(u64 *sptep, bool pt_protect)
1186 {
1187 	u64 spte = *sptep;
1188 
1189 	if (!is_writable_pte(spte) &&
1190 	      !(pt_protect && spte_can_locklessly_be_made_writable(spte)))
1191 		return false;
1192 
1193 	rmap_printk("spte %p %llx\n", sptep, *sptep);
1194 
1195 	if (pt_protect)
1196 		spte &= ~shadow_mmu_writable_mask;
1197 	spte = spte & ~PT_WRITABLE_MASK;
1198 
1199 	return mmu_spte_update(sptep, spte);
1200 }
1201 
1202 static bool rmap_write_protect(struct kvm_rmap_head *rmap_head,
1203 			       bool pt_protect)
1204 {
1205 	u64 *sptep;
1206 	struct rmap_iterator iter;
1207 	bool flush = false;
1208 
1209 	for_each_rmap_spte(rmap_head, &iter, sptep)
1210 		flush |= spte_write_protect(sptep, pt_protect);
1211 
1212 	return flush;
1213 }
1214 
1215 static bool spte_clear_dirty(u64 *sptep)
1216 {
1217 	u64 spte = *sptep;
1218 
1219 	rmap_printk("spte %p %llx\n", sptep, *sptep);
1220 
1221 	MMU_WARN_ON(!spte_ad_enabled(spte));
1222 	spte &= ~shadow_dirty_mask;
1223 	return mmu_spte_update(sptep, spte);
1224 }
1225 
1226 static bool spte_wrprot_for_clear_dirty(u64 *sptep)
1227 {
1228 	bool was_writable = test_and_clear_bit(PT_WRITABLE_SHIFT,
1229 					       (unsigned long *)sptep);
1230 	if (was_writable && !spte_ad_enabled(*sptep))
1231 		kvm_set_pfn_dirty(spte_to_pfn(*sptep));
1232 
1233 	return was_writable;
1234 }
1235 
1236 /*
1237  * Gets the GFN ready for another round of dirty logging by clearing the
1238  *	- D bit on ad-enabled SPTEs, and
1239  *	- W bit on ad-disabled SPTEs.
1240  * Returns true iff any D or W bits were cleared.
1241  */
1242 static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1243 			       const struct kvm_memory_slot *slot)
1244 {
1245 	u64 *sptep;
1246 	struct rmap_iterator iter;
1247 	bool flush = false;
1248 
1249 	for_each_rmap_spte(rmap_head, &iter, sptep)
1250 		if (spte_ad_need_write_protect(*sptep))
1251 			flush |= spte_wrprot_for_clear_dirty(sptep);
1252 		else
1253 			flush |= spte_clear_dirty(sptep);
1254 
1255 	return flush;
1256 }
1257 
1258 /**
1259  * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1260  * @kvm: kvm instance
1261  * @slot: slot to protect
1262  * @gfn_offset: start of the BITS_PER_LONG pages we care about
1263  * @mask: indicates which pages we should protect
1264  *
1265  * Used when we do not need to care about huge page mappings.
1266  */
1267 static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1268 				     struct kvm_memory_slot *slot,
1269 				     gfn_t gfn_offset, unsigned long mask)
1270 {
1271 	struct kvm_rmap_head *rmap_head;
1272 
1273 	if (is_tdp_mmu_enabled(kvm))
1274 		kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot,
1275 				slot->base_gfn + gfn_offset, mask, true);
1276 
1277 	if (!kvm_memslots_have_rmaps(kvm))
1278 		return;
1279 
1280 	while (mask) {
1281 		rmap_head = gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1282 					PG_LEVEL_4K, slot);
1283 		rmap_write_protect(rmap_head, false);
1284 
1285 		/* clear the first set bit */
1286 		mask &= mask - 1;
1287 	}
1288 }
1289 
1290 /**
1291  * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages, or write
1292  * protect the page if the D-bit isn't supported.
1293  * @kvm: kvm instance
1294  * @slot: slot to clear D-bit
1295  * @gfn_offset: start of the BITS_PER_LONG pages we care about
1296  * @mask: indicates which pages we should clear D-bit
1297  *
1298  * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap.
1299  */
1300 static void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
1301 					 struct kvm_memory_slot *slot,
1302 					 gfn_t gfn_offset, unsigned long mask)
1303 {
1304 	struct kvm_rmap_head *rmap_head;
1305 
1306 	if (is_tdp_mmu_enabled(kvm))
1307 		kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot,
1308 				slot->base_gfn + gfn_offset, mask, false);
1309 
1310 	if (!kvm_memslots_have_rmaps(kvm))
1311 		return;
1312 
1313 	while (mask) {
1314 		rmap_head = gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1315 					PG_LEVEL_4K, slot);
1316 		__rmap_clear_dirty(kvm, rmap_head, slot);
1317 
1318 		/* clear the first set bit */
1319 		mask &= mask - 1;
1320 	}
1321 }
1322 
1323 /**
1324  * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
1325  * PT level pages.
1326  *
1327  * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
1328  * enable dirty logging for them.
1329  *
1330  * We need to care about huge page mappings: e.g. during dirty logging we may
1331  * have such mappings.
1332  */
1333 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1334 				struct kvm_memory_slot *slot,
1335 				gfn_t gfn_offset, unsigned long mask)
1336 {
1337 	/*
1338 	 * Huge pages are NOT write protected when we start dirty logging in
1339 	 * initially-all-set mode; must write protect them here so that they
1340 	 * are split to 4K on the first write.
1341 	 *
1342 	 * The gfn_offset is guaranteed to be aligned to 64, but the base_gfn
1343 	 * of memslot has no such restriction, so the range can cross two large
1344 	 * pages.
1345 	 */
1346 	if (kvm_dirty_log_manual_protect_and_init_set(kvm)) {
1347 		gfn_t start = slot->base_gfn + gfn_offset + __ffs(mask);
1348 		gfn_t end = slot->base_gfn + gfn_offset + __fls(mask);
1349 
1350 		if (READ_ONCE(eager_page_split))
1351 			kvm_mmu_try_split_huge_pages(kvm, slot, start, end, PG_LEVEL_4K);
1352 
1353 		kvm_mmu_slot_gfn_write_protect(kvm, slot, start, PG_LEVEL_2M);
1354 
1355 		/* Cross two large pages? */
1356 		if (ALIGN(start << PAGE_SHIFT, PMD_SIZE) !=
1357 		    ALIGN(end << PAGE_SHIFT, PMD_SIZE))
1358 			kvm_mmu_slot_gfn_write_protect(kvm, slot, end,
1359 						       PG_LEVEL_2M);
1360 	}
1361 
1362 	/* Now handle 4K PTEs.  */
1363 	if (kvm_x86_ops.cpu_dirty_log_size)
1364 		kvm_mmu_clear_dirty_pt_masked(kvm, slot, gfn_offset, mask);
1365 	else
1366 		kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
1367 }
1368 
1369 int kvm_cpu_dirty_log_size(void)
1370 {
1371 	return kvm_x86_ops.cpu_dirty_log_size;
1372 }
1373 
1374 bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
1375 				    struct kvm_memory_slot *slot, u64 gfn,
1376 				    int min_level)
1377 {
1378 	struct kvm_rmap_head *rmap_head;
1379 	int i;
1380 	bool write_protected = false;
1381 
1382 	if (kvm_memslots_have_rmaps(kvm)) {
1383 		for (i = min_level; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) {
1384 			rmap_head = gfn_to_rmap(gfn, i, slot);
1385 			write_protected |= rmap_write_protect(rmap_head, true);
1386 		}
1387 	}
1388 
1389 	if (is_tdp_mmu_enabled(kvm))
1390 		write_protected |=
1391 			kvm_tdp_mmu_write_protect_gfn(kvm, slot, gfn, min_level);
1392 
1393 	return write_protected;
1394 }
1395 
1396 static bool kvm_vcpu_write_protect_gfn(struct kvm_vcpu *vcpu, u64 gfn)
1397 {
1398 	struct kvm_memory_slot *slot;
1399 
1400 	slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1401 	return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn, PG_LEVEL_4K);
1402 }
1403 
1404 static bool kvm_zap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1405 			  const struct kvm_memory_slot *slot)
1406 {
1407 	return pte_list_destroy(kvm, rmap_head);
1408 }
1409 
1410 static bool kvm_unmap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1411 			    struct kvm_memory_slot *slot, gfn_t gfn, int level,
1412 			    pte_t unused)
1413 {
1414 	return kvm_zap_rmapp(kvm, rmap_head, slot);
1415 }
1416 
1417 static bool kvm_set_pte_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1418 			      struct kvm_memory_slot *slot, gfn_t gfn, int level,
1419 			      pte_t pte)
1420 {
1421 	u64 *sptep;
1422 	struct rmap_iterator iter;
1423 	bool need_flush = false;
1424 	u64 new_spte;
1425 	kvm_pfn_t new_pfn;
1426 
1427 	WARN_ON(pte_huge(pte));
1428 	new_pfn = pte_pfn(pte);
1429 
1430 restart:
1431 	for_each_rmap_spte(rmap_head, &iter, sptep) {
1432 		rmap_printk("spte %p %llx gfn %llx (%d)\n",
1433 			    sptep, *sptep, gfn, level);
1434 
1435 		need_flush = true;
1436 
1437 		if (pte_write(pte)) {
1438 			pte_list_remove(kvm, rmap_head, sptep);
1439 			goto restart;
1440 		} else {
1441 			new_spte = kvm_mmu_changed_pte_notifier_make_spte(
1442 					*sptep, new_pfn);
1443 
1444 			mmu_spte_clear_track_bits(kvm, sptep);
1445 			mmu_spte_set(sptep, new_spte);
1446 		}
1447 	}
1448 
1449 	if (need_flush && kvm_available_flush_tlb_with_range()) {
1450 		kvm_flush_remote_tlbs_with_address(kvm, gfn, 1);
1451 		return false;
1452 	}
1453 
1454 	return need_flush;
1455 }
1456 
1457 struct slot_rmap_walk_iterator {
1458 	/* input fields. */
1459 	const struct kvm_memory_slot *slot;
1460 	gfn_t start_gfn;
1461 	gfn_t end_gfn;
1462 	int start_level;
1463 	int end_level;
1464 
1465 	/* output fields. */
1466 	gfn_t gfn;
1467 	struct kvm_rmap_head *rmap;
1468 	int level;
1469 
1470 	/* private field. */
1471 	struct kvm_rmap_head *end_rmap;
1472 };
1473 
1474 static void
1475 rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level)
1476 {
1477 	iterator->level = level;
1478 	iterator->gfn = iterator->start_gfn;
1479 	iterator->rmap = gfn_to_rmap(iterator->gfn, level, iterator->slot);
1480 	iterator->end_rmap = gfn_to_rmap(iterator->end_gfn, level, iterator->slot);
1481 }
1482 
1483 static void
1484 slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator,
1485 		    const struct kvm_memory_slot *slot, int start_level,
1486 		    int end_level, gfn_t start_gfn, gfn_t end_gfn)
1487 {
1488 	iterator->slot = slot;
1489 	iterator->start_level = start_level;
1490 	iterator->end_level = end_level;
1491 	iterator->start_gfn = start_gfn;
1492 	iterator->end_gfn = end_gfn;
1493 
1494 	rmap_walk_init_level(iterator, iterator->start_level);
1495 }
1496 
1497 static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator)
1498 {
1499 	return !!iterator->rmap;
1500 }
1501 
1502 static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
1503 {
1504 	if (++iterator->rmap <= iterator->end_rmap) {
1505 		iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level));
1506 		return;
1507 	}
1508 
1509 	if (++iterator->level > iterator->end_level) {
1510 		iterator->rmap = NULL;
1511 		return;
1512 	}
1513 
1514 	rmap_walk_init_level(iterator, iterator->level);
1515 }
1516 
1517 #define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_,	\
1518 	   _start_gfn, _end_gfn, _iter_)				\
1519 	for (slot_rmap_walk_init(_iter_, _slot_, _start_level_,		\
1520 				 _end_level_, _start_gfn, _end_gfn);	\
1521 	     slot_rmap_walk_okay(_iter_);				\
1522 	     slot_rmap_walk_next(_iter_))
1523 
1524 typedef bool (*rmap_handler_t)(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1525 			       struct kvm_memory_slot *slot, gfn_t gfn,
1526 			       int level, pte_t pte);
1527 
1528 static __always_inline bool kvm_handle_gfn_range(struct kvm *kvm,
1529 						 struct kvm_gfn_range *range,
1530 						 rmap_handler_t handler)
1531 {
1532 	struct slot_rmap_walk_iterator iterator;
1533 	bool ret = false;
1534 
1535 	for_each_slot_rmap_range(range->slot, PG_LEVEL_4K, KVM_MAX_HUGEPAGE_LEVEL,
1536 				 range->start, range->end - 1, &iterator)
1537 		ret |= handler(kvm, iterator.rmap, range->slot, iterator.gfn,
1538 			       iterator.level, range->pte);
1539 
1540 	return ret;
1541 }
1542 
1543 bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range)
1544 {
1545 	bool flush = false;
1546 
1547 	if (kvm_memslots_have_rmaps(kvm))
1548 		flush = kvm_handle_gfn_range(kvm, range, kvm_unmap_rmapp);
1549 
1550 	if (is_tdp_mmu_enabled(kvm))
1551 		flush = kvm_tdp_mmu_unmap_gfn_range(kvm, range, flush);
1552 
1553 	return flush;
1554 }
1555 
1556 bool kvm_set_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
1557 {
1558 	bool flush = false;
1559 
1560 	if (kvm_memslots_have_rmaps(kvm))
1561 		flush = kvm_handle_gfn_range(kvm, range, kvm_set_pte_rmapp);
1562 
1563 	if (is_tdp_mmu_enabled(kvm))
1564 		flush |= kvm_tdp_mmu_set_spte_gfn(kvm, range);
1565 
1566 	return flush;
1567 }
1568 
1569 static bool kvm_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1570 			  struct kvm_memory_slot *slot, gfn_t gfn, int level,
1571 			  pte_t unused)
1572 {
1573 	u64 *sptep;
1574 	struct rmap_iterator iter;
1575 	int young = 0;
1576 
1577 	for_each_rmap_spte(rmap_head, &iter, sptep)
1578 		young |= mmu_spte_age(sptep);
1579 
1580 	return young;
1581 }
1582 
1583 static bool kvm_test_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1584 			       struct kvm_memory_slot *slot, gfn_t gfn,
1585 			       int level, pte_t unused)
1586 {
1587 	u64 *sptep;
1588 	struct rmap_iterator iter;
1589 
1590 	for_each_rmap_spte(rmap_head, &iter, sptep)
1591 		if (is_accessed_spte(*sptep))
1592 			return true;
1593 	return false;
1594 }
1595 
1596 #define RMAP_RECYCLE_THRESHOLD 1000
1597 
1598 static void rmap_add(struct kvm_vcpu *vcpu, struct kvm_memory_slot *slot,
1599 		     u64 *spte, gfn_t gfn)
1600 {
1601 	struct kvm_mmu_page *sp;
1602 	struct kvm_rmap_head *rmap_head;
1603 	int rmap_count;
1604 
1605 	sp = sptep_to_sp(spte);
1606 	kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
1607 	rmap_head = gfn_to_rmap(gfn, sp->role.level, slot);
1608 	rmap_count = pte_list_add(vcpu, spte, rmap_head);
1609 
1610 	if (rmap_count > RMAP_RECYCLE_THRESHOLD) {
1611 		kvm_unmap_rmapp(vcpu->kvm, rmap_head, NULL, gfn, sp->role.level, __pte(0));
1612 		kvm_flush_remote_tlbs_with_address(
1613 				vcpu->kvm, sp->gfn, KVM_PAGES_PER_HPAGE(sp->role.level));
1614 	}
1615 }
1616 
1617 bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
1618 {
1619 	bool young = false;
1620 
1621 	if (kvm_memslots_have_rmaps(kvm))
1622 		young = kvm_handle_gfn_range(kvm, range, kvm_age_rmapp);
1623 
1624 	if (is_tdp_mmu_enabled(kvm))
1625 		young |= kvm_tdp_mmu_age_gfn_range(kvm, range);
1626 
1627 	return young;
1628 }
1629 
1630 bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
1631 {
1632 	bool young = false;
1633 
1634 	if (kvm_memslots_have_rmaps(kvm))
1635 		young = kvm_handle_gfn_range(kvm, range, kvm_test_age_rmapp);
1636 
1637 	if (is_tdp_mmu_enabled(kvm))
1638 		young |= kvm_tdp_mmu_test_age_gfn(kvm, range);
1639 
1640 	return young;
1641 }
1642 
1643 #ifdef MMU_DEBUG
1644 static int is_empty_shadow_page(u64 *spt)
1645 {
1646 	u64 *pos;
1647 	u64 *end;
1648 
1649 	for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
1650 		if (is_shadow_present_pte(*pos)) {
1651 			printk(KERN_ERR "%s: %p %llx\n", __func__,
1652 			       pos, *pos);
1653 			return 0;
1654 		}
1655 	return 1;
1656 }
1657 #endif
1658 
1659 /*
1660  * This value is the sum of all of the kvm instances's
1661  * kvm->arch.n_used_mmu_pages values.  We need a global,
1662  * aggregate version in order to make the slab shrinker
1663  * faster
1664  */
1665 static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, long nr)
1666 {
1667 	kvm->arch.n_used_mmu_pages += nr;
1668 	percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1669 }
1670 
1671 static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
1672 {
1673 	MMU_WARN_ON(!is_empty_shadow_page(sp->spt));
1674 	hlist_del(&sp->hash_link);
1675 	list_del(&sp->link);
1676 	free_page((unsigned long)sp->spt);
1677 	if (!sp->role.direct)
1678 		free_page((unsigned long)sp->gfns);
1679 	kmem_cache_free(mmu_page_header_cache, sp);
1680 }
1681 
1682 static unsigned kvm_page_table_hashfn(gfn_t gfn)
1683 {
1684 	return hash_64(gfn, KVM_MMU_HASH_SHIFT);
1685 }
1686 
1687 static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
1688 				    struct kvm_mmu_page *sp, u64 *parent_pte)
1689 {
1690 	if (!parent_pte)
1691 		return;
1692 
1693 	pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
1694 }
1695 
1696 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
1697 				       u64 *parent_pte)
1698 {
1699 	__pte_list_remove(parent_pte, &sp->parent_ptes);
1700 }
1701 
1702 static void drop_parent_pte(struct kvm_mmu_page *sp,
1703 			    u64 *parent_pte)
1704 {
1705 	mmu_page_remove_parent_pte(sp, parent_pte);
1706 	mmu_spte_clear_no_track(parent_pte);
1707 }
1708 
1709 static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu, int direct)
1710 {
1711 	struct kvm_mmu_page *sp;
1712 
1713 	sp = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
1714 	sp->spt = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_shadow_page_cache);
1715 	if (!direct)
1716 		sp->gfns = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_gfn_array_cache);
1717 	set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
1718 
1719 	/*
1720 	 * active_mmu_pages must be a FIFO list, as kvm_zap_obsolete_pages()
1721 	 * depends on valid pages being added to the head of the list.  See
1722 	 * comments in kvm_zap_obsolete_pages().
1723 	 */
1724 	sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
1725 	list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
1726 	kvm_mod_used_mmu_pages(vcpu->kvm, +1);
1727 	return sp;
1728 }
1729 
1730 static void mark_unsync(u64 *spte);
1731 static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
1732 {
1733 	u64 *sptep;
1734 	struct rmap_iterator iter;
1735 
1736 	for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) {
1737 		mark_unsync(sptep);
1738 	}
1739 }
1740 
1741 static void mark_unsync(u64 *spte)
1742 {
1743 	struct kvm_mmu_page *sp;
1744 	unsigned int index;
1745 
1746 	sp = sptep_to_sp(spte);
1747 	index = spte - sp->spt;
1748 	if (__test_and_set_bit(index, sp->unsync_child_bitmap))
1749 		return;
1750 	if (sp->unsync_children++)
1751 		return;
1752 	kvm_mmu_mark_parents_unsync(sp);
1753 }
1754 
1755 static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
1756 			       struct kvm_mmu_page *sp)
1757 {
1758 	return -1;
1759 }
1760 
1761 #define KVM_PAGE_ARRAY_NR 16
1762 
1763 struct kvm_mmu_pages {
1764 	struct mmu_page_and_offset {
1765 		struct kvm_mmu_page *sp;
1766 		unsigned int idx;
1767 	} page[KVM_PAGE_ARRAY_NR];
1768 	unsigned int nr;
1769 };
1770 
1771 static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
1772 			 int idx)
1773 {
1774 	int i;
1775 
1776 	if (sp->unsync)
1777 		for (i=0; i < pvec->nr; i++)
1778 			if (pvec->page[i].sp == sp)
1779 				return 0;
1780 
1781 	pvec->page[pvec->nr].sp = sp;
1782 	pvec->page[pvec->nr].idx = idx;
1783 	pvec->nr++;
1784 	return (pvec->nr == KVM_PAGE_ARRAY_NR);
1785 }
1786 
1787 static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx)
1788 {
1789 	--sp->unsync_children;
1790 	WARN_ON((int)sp->unsync_children < 0);
1791 	__clear_bit(idx, sp->unsync_child_bitmap);
1792 }
1793 
1794 static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
1795 			   struct kvm_mmu_pages *pvec)
1796 {
1797 	int i, ret, nr_unsync_leaf = 0;
1798 
1799 	for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
1800 		struct kvm_mmu_page *child;
1801 		u64 ent = sp->spt[i];
1802 
1803 		if (!is_shadow_present_pte(ent) || is_large_pte(ent)) {
1804 			clear_unsync_child_bit(sp, i);
1805 			continue;
1806 		}
1807 
1808 		child = to_shadow_page(ent & PT64_BASE_ADDR_MASK);
1809 
1810 		if (child->unsync_children) {
1811 			if (mmu_pages_add(pvec, child, i))
1812 				return -ENOSPC;
1813 
1814 			ret = __mmu_unsync_walk(child, pvec);
1815 			if (!ret) {
1816 				clear_unsync_child_bit(sp, i);
1817 				continue;
1818 			} else if (ret > 0) {
1819 				nr_unsync_leaf += ret;
1820 			} else
1821 				return ret;
1822 		} else if (child->unsync) {
1823 			nr_unsync_leaf++;
1824 			if (mmu_pages_add(pvec, child, i))
1825 				return -ENOSPC;
1826 		} else
1827 			clear_unsync_child_bit(sp, i);
1828 	}
1829 
1830 	return nr_unsync_leaf;
1831 }
1832 
1833 #define INVALID_INDEX (-1)
1834 
1835 static int mmu_unsync_walk(struct kvm_mmu_page *sp,
1836 			   struct kvm_mmu_pages *pvec)
1837 {
1838 	pvec->nr = 0;
1839 	if (!sp->unsync_children)
1840 		return 0;
1841 
1842 	mmu_pages_add(pvec, sp, INVALID_INDEX);
1843 	return __mmu_unsync_walk(sp, pvec);
1844 }
1845 
1846 static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1847 {
1848 	WARN_ON(!sp->unsync);
1849 	trace_kvm_mmu_sync_page(sp);
1850 	sp->unsync = 0;
1851 	--kvm->stat.mmu_unsync;
1852 }
1853 
1854 static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1855 				     struct list_head *invalid_list);
1856 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1857 				    struct list_head *invalid_list);
1858 
1859 #define for_each_valid_sp(_kvm, _sp, _list)				\
1860 	hlist_for_each_entry(_sp, _list, hash_link)			\
1861 		if (is_obsolete_sp((_kvm), (_sp))) {			\
1862 		} else
1863 
1864 #define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn)			\
1865 	for_each_valid_sp(_kvm, _sp,					\
1866 	  &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)])	\
1867 		if ((_sp)->gfn != (_gfn) || (_sp)->role.direct) {} else
1868 
1869 static bool kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1870 			 struct list_head *invalid_list)
1871 {
1872 	int ret = vcpu->arch.mmu->sync_page(vcpu, sp);
1873 
1874 	if (ret < 0) {
1875 		kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1876 		return false;
1877 	}
1878 
1879 	return !!ret;
1880 }
1881 
1882 static bool kvm_mmu_remote_flush_or_zap(struct kvm *kvm,
1883 					struct list_head *invalid_list,
1884 					bool remote_flush)
1885 {
1886 	if (!remote_flush && list_empty(invalid_list))
1887 		return false;
1888 
1889 	if (!list_empty(invalid_list))
1890 		kvm_mmu_commit_zap_page(kvm, invalid_list);
1891 	else
1892 		kvm_flush_remote_tlbs(kvm);
1893 	return true;
1894 }
1895 
1896 static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
1897 {
1898 	if (sp->role.invalid)
1899 		return true;
1900 
1901 	/* TDP MMU pages due not use the MMU generation. */
1902 	return !sp->tdp_mmu_page &&
1903 	       unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
1904 }
1905 
1906 struct mmu_page_path {
1907 	struct kvm_mmu_page *parent[PT64_ROOT_MAX_LEVEL];
1908 	unsigned int idx[PT64_ROOT_MAX_LEVEL];
1909 };
1910 
1911 #define for_each_sp(pvec, sp, parents, i)			\
1912 		for (i = mmu_pages_first(&pvec, &parents);	\
1913 			i < pvec.nr && ({ sp = pvec.page[i].sp; 1;});	\
1914 			i = mmu_pages_next(&pvec, &parents, i))
1915 
1916 static int mmu_pages_next(struct kvm_mmu_pages *pvec,
1917 			  struct mmu_page_path *parents,
1918 			  int i)
1919 {
1920 	int n;
1921 
1922 	for (n = i+1; n < pvec->nr; n++) {
1923 		struct kvm_mmu_page *sp = pvec->page[n].sp;
1924 		unsigned idx = pvec->page[n].idx;
1925 		int level = sp->role.level;
1926 
1927 		parents->idx[level-1] = idx;
1928 		if (level == PG_LEVEL_4K)
1929 			break;
1930 
1931 		parents->parent[level-2] = sp;
1932 	}
1933 
1934 	return n;
1935 }
1936 
1937 static int mmu_pages_first(struct kvm_mmu_pages *pvec,
1938 			   struct mmu_page_path *parents)
1939 {
1940 	struct kvm_mmu_page *sp;
1941 	int level;
1942 
1943 	if (pvec->nr == 0)
1944 		return 0;
1945 
1946 	WARN_ON(pvec->page[0].idx != INVALID_INDEX);
1947 
1948 	sp = pvec->page[0].sp;
1949 	level = sp->role.level;
1950 	WARN_ON(level == PG_LEVEL_4K);
1951 
1952 	parents->parent[level-2] = sp;
1953 
1954 	/* Also set up a sentinel.  Further entries in pvec are all
1955 	 * children of sp, so this element is never overwritten.
1956 	 */
1957 	parents->parent[level-1] = NULL;
1958 	return mmu_pages_next(pvec, parents, 0);
1959 }
1960 
1961 static void mmu_pages_clear_parents(struct mmu_page_path *parents)
1962 {
1963 	struct kvm_mmu_page *sp;
1964 	unsigned int level = 0;
1965 
1966 	do {
1967 		unsigned int idx = parents->idx[level];
1968 		sp = parents->parent[level];
1969 		if (!sp)
1970 			return;
1971 
1972 		WARN_ON(idx == INVALID_INDEX);
1973 		clear_unsync_child_bit(sp, idx);
1974 		level++;
1975 	} while (!sp->unsync_children);
1976 }
1977 
1978 static int mmu_sync_children(struct kvm_vcpu *vcpu,
1979 			     struct kvm_mmu_page *parent, bool can_yield)
1980 {
1981 	int i;
1982 	struct kvm_mmu_page *sp;
1983 	struct mmu_page_path parents;
1984 	struct kvm_mmu_pages pages;
1985 	LIST_HEAD(invalid_list);
1986 	bool flush = false;
1987 
1988 	while (mmu_unsync_walk(parent, &pages)) {
1989 		bool protected = false;
1990 
1991 		for_each_sp(pages, sp, parents, i)
1992 			protected |= kvm_vcpu_write_protect_gfn(vcpu, sp->gfn);
1993 
1994 		if (protected) {
1995 			kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, true);
1996 			flush = false;
1997 		}
1998 
1999 		for_each_sp(pages, sp, parents, i) {
2000 			kvm_unlink_unsync_page(vcpu->kvm, sp);
2001 			flush |= kvm_sync_page(vcpu, sp, &invalid_list);
2002 			mmu_pages_clear_parents(&parents);
2003 		}
2004 		if (need_resched() || rwlock_needbreak(&vcpu->kvm->mmu_lock)) {
2005 			kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, flush);
2006 			if (!can_yield) {
2007 				kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
2008 				return -EINTR;
2009 			}
2010 
2011 			cond_resched_rwlock_write(&vcpu->kvm->mmu_lock);
2012 			flush = false;
2013 		}
2014 	}
2015 
2016 	kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, flush);
2017 	return 0;
2018 }
2019 
2020 static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
2021 {
2022 	atomic_set(&sp->write_flooding_count,  0);
2023 }
2024 
2025 static void clear_sp_write_flooding_count(u64 *spte)
2026 {
2027 	__clear_sp_write_flooding_count(sptep_to_sp(spte));
2028 }
2029 
2030 static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
2031 					     gfn_t gfn,
2032 					     gva_t gaddr,
2033 					     unsigned level,
2034 					     int direct,
2035 					     unsigned int access)
2036 {
2037 	bool direct_mmu = vcpu->arch.mmu->direct_map;
2038 	union kvm_mmu_page_role role;
2039 	struct hlist_head *sp_list;
2040 	unsigned quadrant;
2041 	struct kvm_mmu_page *sp;
2042 	int collisions = 0;
2043 	LIST_HEAD(invalid_list);
2044 
2045 	role = vcpu->arch.mmu->mmu_role.base;
2046 	role.level = level;
2047 	role.direct = direct;
2048 	role.access = access;
2049 	if (role.has_4_byte_gpte) {
2050 		quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
2051 		quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
2052 		role.quadrant = quadrant;
2053 	}
2054 
2055 	sp_list = &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)];
2056 	for_each_valid_sp(vcpu->kvm, sp, sp_list) {
2057 		if (sp->gfn != gfn) {
2058 			collisions++;
2059 			continue;
2060 		}
2061 
2062 		if (sp->role.word != role.word) {
2063 			/*
2064 			 * If the guest is creating an upper-level page, zap
2065 			 * unsync pages for the same gfn.  While it's possible
2066 			 * the guest is using recursive page tables, in all
2067 			 * likelihood the guest has stopped using the unsync
2068 			 * page and is installing a completely unrelated page.
2069 			 * Unsync pages must not be left as is, because the new
2070 			 * upper-level page will be write-protected.
2071 			 */
2072 			if (level > PG_LEVEL_4K && sp->unsync)
2073 				kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
2074 							 &invalid_list);
2075 			continue;
2076 		}
2077 
2078 		if (direct_mmu)
2079 			goto trace_get_page;
2080 
2081 		if (sp->unsync) {
2082 			/*
2083 			 * The page is good, but is stale.  kvm_sync_page does
2084 			 * get the latest guest state, but (unlike mmu_unsync_children)
2085 			 * it doesn't write-protect the page or mark it synchronized!
2086 			 * This way the validity of the mapping is ensured, but the
2087 			 * overhead of write protection is not incurred until the
2088 			 * guest invalidates the TLB mapping.  This allows multiple
2089 			 * SPs for a single gfn to be unsync.
2090 			 *
2091 			 * If the sync fails, the page is zapped.  If so, break
2092 			 * in order to rebuild it.
2093 			 */
2094 			if (!kvm_sync_page(vcpu, sp, &invalid_list))
2095 				break;
2096 
2097 			WARN_ON(!list_empty(&invalid_list));
2098 			kvm_flush_remote_tlbs(vcpu->kvm);
2099 		}
2100 
2101 		__clear_sp_write_flooding_count(sp);
2102 
2103 trace_get_page:
2104 		trace_kvm_mmu_get_page(sp, false);
2105 		goto out;
2106 	}
2107 
2108 	++vcpu->kvm->stat.mmu_cache_miss;
2109 
2110 	sp = kvm_mmu_alloc_page(vcpu, direct);
2111 
2112 	sp->gfn = gfn;
2113 	sp->role = role;
2114 	hlist_add_head(&sp->hash_link, sp_list);
2115 	if (!direct) {
2116 		account_shadowed(vcpu->kvm, sp);
2117 		if (level == PG_LEVEL_4K && kvm_vcpu_write_protect_gfn(vcpu, gfn))
2118 			kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn, 1);
2119 	}
2120 	trace_kvm_mmu_get_page(sp, true);
2121 out:
2122 	kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2123 
2124 	if (collisions > vcpu->kvm->stat.max_mmu_page_hash_collisions)
2125 		vcpu->kvm->stat.max_mmu_page_hash_collisions = collisions;
2126 	return sp;
2127 }
2128 
2129 static void shadow_walk_init_using_root(struct kvm_shadow_walk_iterator *iterator,
2130 					struct kvm_vcpu *vcpu, hpa_t root,
2131 					u64 addr)
2132 {
2133 	iterator->addr = addr;
2134 	iterator->shadow_addr = root;
2135 	iterator->level = vcpu->arch.mmu->shadow_root_level;
2136 
2137 	if (iterator->level >= PT64_ROOT_4LEVEL &&
2138 	    vcpu->arch.mmu->root_level < PT64_ROOT_4LEVEL &&
2139 	    !vcpu->arch.mmu->direct_map)
2140 		iterator->level = PT32E_ROOT_LEVEL;
2141 
2142 	if (iterator->level == PT32E_ROOT_LEVEL) {
2143 		/*
2144 		 * prev_root is currently only used for 64-bit hosts. So only
2145 		 * the active root_hpa is valid here.
2146 		 */
2147 		BUG_ON(root != vcpu->arch.mmu->root.hpa);
2148 
2149 		iterator->shadow_addr
2150 			= vcpu->arch.mmu->pae_root[(addr >> 30) & 3];
2151 		iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
2152 		--iterator->level;
2153 		if (!iterator->shadow_addr)
2154 			iterator->level = 0;
2155 	}
2156 }
2157 
2158 static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
2159 			     struct kvm_vcpu *vcpu, u64 addr)
2160 {
2161 	shadow_walk_init_using_root(iterator, vcpu, vcpu->arch.mmu->root.hpa,
2162 				    addr);
2163 }
2164 
2165 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
2166 {
2167 	if (iterator->level < PG_LEVEL_4K)
2168 		return false;
2169 
2170 	iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
2171 	iterator->sptep	= ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
2172 	return true;
2173 }
2174 
2175 static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
2176 			       u64 spte)
2177 {
2178 	if (!is_shadow_present_pte(spte) || is_last_spte(spte, iterator->level)) {
2179 		iterator->level = 0;
2180 		return;
2181 	}
2182 
2183 	iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2184 	--iterator->level;
2185 }
2186 
2187 static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
2188 {
2189 	__shadow_walk_next(iterator, *iterator->sptep);
2190 }
2191 
2192 static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep,
2193 			     struct kvm_mmu_page *sp)
2194 {
2195 	u64 spte;
2196 
2197 	BUILD_BUG_ON(VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);
2198 
2199 	spte = make_nonleaf_spte(sp->spt, sp_ad_disabled(sp));
2200 
2201 	mmu_spte_set(sptep, spte);
2202 
2203 	mmu_page_add_parent_pte(vcpu, sp, sptep);
2204 
2205 	if (sp->unsync_children || sp->unsync)
2206 		mark_unsync(sptep);
2207 }
2208 
2209 static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2210 				   unsigned direct_access)
2211 {
2212 	if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
2213 		struct kvm_mmu_page *child;
2214 
2215 		/*
2216 		 * For the direct sp, if the guest pte's dirty bit
2217 		 * changed form clean to dirty, it will corrupt the
2218 		 * sp's access: allow writable in the read-only sp,
2219 		 * so we should update the spte at this point to get
2220 		 * a new sp with the correct access.
2221 		 */
2222 		child = to_shadow_page(*sptep & PT64_BASE_ADDR_MASK);
2223 		if (child->role.access == direct_access)
2224 			return;
2225 
2226 		drop_parent_pte(child, sptep);
2227 		kvm_flush_remote_tlbs_with_address(vcpu->kvm, child->gfn, 1);
2228 	}
2229 }
2230 
2231 /* Returns the number of zapped non-leaf child shadow pages. */
2232 static int mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
2233 			    u64 *spte, struct list_head *invalid_list)
2234 {
2235 	u64 pte;
2236 	struct kvm_mmu_page *child;
2237 
2238 	pte = *spte;
2239 	if (is_shadow_present_pte(pte)) {
2240 		if (is_last_spte(pte, sp->role.level)) {
2241 			drop_spte(kvm, spte);
2242 		} else {
2243 			child = to_shadow_page(pte & PT64_BASE_ADDR_MASK);
2244 			drop_parent_pte(child, spte);
2245 
2246 			/*
2247 			 * Recursively zap nested TDP SPs, parentless SPs are
2248 			 * unlikely to be used again in the near future.  This
2249 			 * avoids retaining a large number of stale nested SPs.
2250 			 */
2251 			if (tdp_enabled && invalid_list &&
2252 			    child->role.guest_mode && !child->parent_ptes.val)
2253 				return kvm_mmu_prepare_zap_page(kvm, child,
2254 								invalid_list);
2255 		}
2256 	} else if (is_mmio_spte(pte)) {
2257 		mmu_spte_clear_no_track(spte);
2258 	}
2259 	return 0;
2260 }
2261 
2262 static int kvm_mmu_page_unlink_children(struct kvm *kvm,
2263 					struct kvm_mmu_page *sp,
2264 					struct list_head *invalid_list)
2265 {
2266 	int zapped = 0;
2267 	unsigned i;
2268 
2269 	for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2270 		zapped += mmu_page_zap_pte(kvm, sp, sp->spt + i, invalid_list);
2271 
2272 	return zapped;
2273 }
2274 
2275 static void kvm_mmu_unlink_parents(struct kvm_mmu_page *sp)
2276 {
2277 	u64 *sptep;
2278 	struct rmap_iterator iter;
2279 
2280 	while ((sptep = rmap_get_first(&sp->parent_ptes, &iter)))
2281 		drop_parent_pte(sp, sptep);
2282 }
2283 
2284 static int mmu_zap_unsync_children(struct kvm *kvm,
2285 				   struct kvm_mmu_page *parent,
2286 				   struct list_head *invalid_list)
2287 {
2288 	int i, zapped = 0;
2289 	struct mmu_page_path parents;
2290 	struct kvm_mmu_pages pages;
2291 
2292 	if (parent->role.level == PG_LEVEL_4K)
2293 		return 0;
2294 
2295 	while (mmu_unsync_walk(parent, &pages)) {
2296 		struct kvm_mmu_page *sp;
2297 
2298 		for_each_sp(pages, sp, parents, i) {
2299 			kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2300 			mmu_pages_clear_parents(&parents);
2301 			zapped++;
2302 		}
2303 	}
2304 
2305 	return zapped;
2306 }
2307 
2308 static bool __kvm_mmu_prepare_zap_page(struct kvm *kvm,
2309 				       struct kvm_mmu_page *sp,
2310 				       struct list_head *invalid_list,
2311 				       int *nr_zapped)
2312 {
2313 	bool list_unstable, zapped_root = false;
2314 
2315 	trace_kvm_mmu_prepare_zap_page(sp);
2316 	++kvm->stat.mmu_shadow_zapped;
2317 	*nr_zapped = mmu_zap_unsync_children(kvm, sp, invalid_list);
2318 	*nr_zapped += kvm_mmu_page_unlink_children(kvm, sp, invalid_list);
2319 	kvm_mmu_unlink_parents(sp);
2320 
2321 	/* Zapping children means active_mmu_pages has become unstable. */
2322 	list_unstable = *nr_zapped;
2323 
2324 	if (!sp->role.invalid && !sp->role.direct)
2325 		unaccount_shadowed(kvm, sp);
2326 
2327 	if (sp->unsync)
2328 		kvm_unlink_unsync_page(kvm, sp);
2329 	if (!sp->root_count) {
2330 		/* Count self */
2331 		(*nr_zapped)++;
2332 
2333 		/*
2334 		 * Already invalid pages (previously active roots) are not on
2335 		 * the active page list.  See list_del() in the "else" case of
2336 		 * !sp->root_count.
2337 		 */
2338 		if (sp->role.invalid)
2339 			list_add(&sp->link, invalid_list);
2340 		else
2341 			list_move(&sp->link, invalid_list);
2342 		kvm_mod_used_mmu_pages(kvm, -1);
2343 	} else {
2344 		/*
2345 		 * Remove the active root from the active page list, the root
2346 		 * will be explicitly freed when the root_count hits zero.
2347 		 */
2348 		list_del(&sp->link);
2349 
2350 		/*
2351 		 * Obsolete pages cannot be used on any vCPUs, see the comment
2352 		 * in kvm_mmu_zap_all_fast().  Note, is_obsolete_sp() also
2353 		 * treats invalid shadow pages as being obsolete.
2354 		 */
2355 		zapped_root = !is_obsolete_sp(kvm, sp);
2356 	}
2357 
2358 	if (sp->lpage_disallowed)
2359 		unaccount_huge_nx_page(kvm, sp);
2360 
2361 	sp->role.invalid = 1;
2362 
2363 	/*
2364 	 * Make the request to free obsolete roots after marking the root
2365 	 * invalid, otherwise other vCPUs may not see it as invalid.
2366 	 */
2367 	if (zapped_root)
2368 		kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_FREE_OBSOLETE_ROOTS);
2369 	return list_unstable;
2370 }
2371 
2372 static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2373 				     struct list_head *invalid_list)
2374 {
2375 	int nr_zapped;
2376 
2377 	__kvm_mmu_prepare_zap_page(kvm, sp, invalid_list, &nr_zapped);
2378 	return nr_zapped;
2379 }
2380 
2381 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2382 				    struct list_head *invalid_list)
2383 {
2384 	struct kvm_mmu_page *sp, *nsp;
2385 
2386 	if (list_empty(invalid_list))
2387 		return;
2388 
2389 	/*
2390 	 * We need to make sure everyone sees our modifications to
2391 	 * the page tables and see changes to vcpu->mode here. The barrier
2392 	 * in the kvm_flush_remote_tlbs() achieves this. This pairs
2393 	 * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end.
2394 	 *
2395 	 * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit
2396 	 * guest mode and/or lockless shadow page table walks.
2397 	 */
2398 	kvm_flush_remote_tlbs(kvm);
2399 
2400 	list_for_each_entry_safe(sp, nsp, invalid_list, link) {
2401 		WARN_ON(!sp->role.invalid || sp->root_count);
2402 		kvm_mmu_free_page(sp);
2403 	}
2404 }
2405 
2406 static unsigned long kvm_mmu_zap_oldest_mmu_pages(struct kvm *kvm,
2407 						  unsigned long nr_to_zap)
2408 {
2409 	unsigned long total_zapped = 0;
2410 	struct kvm_mmu_page *sp, *tmp;
2411 	LIST_HEAD(invalid_list);
2412 	bool unstable;
2413 	int nr_zapped;
2414 
2415 	if (list_empty(&kvm->arch.active_mmu_pages))
2416 		return 0;
2417 
2418 restart:
2419 	list_for_each_entry_safe_reverse(sp, tmp, &kvm->arch.active_mmu_pages, link) {
2420 		/*
2421 		 * Don't zap active root pages, the page itself can't be freed
2422 		 * and zapping it will just force vCPUs to realloc and reload.
2423 		 */
2424 		if (sp->root_count)
2425 			continue;
2426 
2427 		unstable = __kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list,
2428 						      &nr_zapped);
2429 		total_zapped += nr_zapped;
2430 		if (total_zapped >= nr_to_zap)
2431 			break;
2432 
2433 		if (unstable)
2434 			goto restart;
2435 	}
2436 
2437 	kvm_mmu_commit_zap_page(kvm, &invalid_list);
2438 
2439 	kvm->stat.mmu_recycled += total_zapped;
2440 	return total_zapped;
2441 }
2442 
2443 static inline unsigned long kvm_mmu_available_pages(struct kvm *kvm)
2444 {
2445 	if (kvm->arch.n_max_mmu_pages > kvm->arch.n_used_mmu_pages)
2446 		return kvm->arch.n_max_mmu_pages -
2447 			kvm->arch.n_used_mmu_pages;
2448 
2449 	return 0;
2450 }
2451 
2452 static int make_mmu_pages_available(struct kvm_vcpu *vcpu)
2453 {
2454 	unsigned long avail = kvm_mmu_available_pages(vcpu->kvm);
2455 
2456 	if (likely(avail >= KVM_MIN_FREE_MMU_PAGES))
2457 		return 0;
2458 
2459 	kvm_mmu_zap_oldest_mmu_pages(vcpu->kvm, KVM_REFILL_PAGES - avail);
2460 
2461 	/*
2462 	 * Note, this check is intentionally soft, it only guarantees that one
2463 	 * page is available, while the caller may end up allocating as many as
2464 	 * four pages, e.g. for PAE roots or for 5-level paging.  Temporarily
2465 	 * exceeding the (arbitrary by default) limit will not harm the host,
2466 	 * being too aggressive may unnecessarily kill the guest, and getting an
2467 	 * exact count is far more trouble than it's worth, especially in the
2468 	 * page fault paths.
2469 	 */
2470 	if (!kvm_mmu_available_pages(vcpu->kvm))
2471 		return -ENOSPC;
2472 	return 0;
2473 }
2474 
2475 /*
2476  * Changing the number of mmu pages allocated to the vm
2477  * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2478  */
2479 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long goal_nr_mmu_pages)
2480 {
2481 	write_lock(&kvm->mmu_lock);
2482 
2483 	if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2484 		kvm_mmu_zap_oldest_mmu_pages(kvm, kvm->arch.n_used_mmu_pages -
2485 						  goal_nr_mmu_pages);
2486 
2487 		goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2488 	}
2489 
2490 	kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2491 
2492 	write_unlock(&kvm->mmu_lock);
2493 }
2494 
2495 int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2496 {
2497 	struct kvm_mmu_page *sp;
2498 	LIST_HEAD(invalid_list);
2499 	int r;
2500 
2501 	pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
2502 	r = 0;
2503 	write_lock(&kvm->mmu_lock);
2504 	for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
2505 		pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
2506 			 sp->role.word);
2507 		r = 1;
2508 		kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2509 	}
2510 	kvm_mmu_commit_zap_page(kvm, &invalid_list);
2511 	write_unlock(&kvm->mmu_lock);
2512 
2513 	return r;
2514 }
2515 
2516 static int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
2517 {
2518 	gpa_t gpa;
2519 	int r;
2520 
2521 	if (vcpu->arch.mmu->direct_map)
2522 		return 0;
2523 
2524 	gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
2525 
2526 	r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
2527 
2528 	return r;
2529 }
2530 
2531 static void kvm_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
2532 {
2533 	trace_kvm_mmu_unsync_page(sp);
2534 	++kvm->stat.mmu_unsync;
2535 	sp->unsync = 1;
2536 
2537 	kvm_mmu_mark_parents_unsync(sp);
2538 }
2539 
2540 /*
2541  * Attempt to unsync any shadow pages that can be reached by the specified gfn,
2542  * KVM is creating a writable mapping for said gfn.  Returns 0 if all pages
2543  * were marked unsync (or if there is no shadow page), -EPERM if the SPTE must
2544  * be write-protected.
2545  */
2546 int mmu_try_to_unsync_pages(struct kvm *kvm, const struct kvm_memory_slot *slot,
2547 			    gfn_t gfn, bool can_unsync, bool prefetch)
2548 {
2549 	struct kvm_mmu_page *sp;
2550 	bool locked = false;
2551 
2552 	/*
2553 	 * Force write-protection if the page is being tracked.  Note, the page
2554 	 * track machinery is used to write-protect upper-level shadow pages,
2555 	 * i.e. this guards the role.level == 4K assertion below!
2556 	 */
2557 	if (kvm_slot_page_track_is_active(kvm, slot, gfn, KVM_PAGE_TRACK_WRITE))
2558 		return -EPERM;
2559 
2560 	/*
2561 	 * The page is not write-tracked, mark existing shadow pages unsync
2562 	 * unless KVM is synchronizing an unsync SP (can_unsync = false).  In
2563 	 * that case, KVM must complete emulation of the guest TLB flush before
2564 	 * allowing shadow pages to become unsync (writable by the guest).
2565 	 */
2566 	for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
2567 		if (!can_unsync)
2568 			return -EPERM;
2569 
2570 		if (sp->unsync)
2571 			continue;
2572 
2573 		if (prefetch)
2574 			return -EEXIST;
2575 
2576 		/*
2577 		 * TDP MMU page faults require an additional spinlock as they
2578 		 * run with mmu_lock held for read, not write, and the unsync
2579 		 * logic is not thread safe.  Take the spinklock regardless of
2580 		 * the MMU type to avoid extra conditionals/parameters, there's
2581 		 * no meaningful penalty if mmu_lock is held for write.
2582 		 */
2583 		if (!locked) {
2584 			locked = true;
2585 			spin_lock(&kvm->arch.mmu_unsync_pages_lock);
2586 
2587 			/*
2588 			 * Recheck after taking the spinlock, a different vCPU
2589 			 * may have since marked the page unsync.  A false
2590 			 * positive on the unprotected check above is not
2591 			 * possible as clearing sp->unsync _must_ hold mmu_lock
2592 			 * for write, i.e. unsync cannot transition from 0->1
2593 			 * while this CPU holds mmu_lock for read (or write).
2594 			 */
2595 			if (READ_ONCE(sp->unsync))
2596 				continue;
2597 		}
2598 
2599 		WARN_ON(sp->role.level != PG_LEVEL_4K);
2600 		kvm_unsync_page(kvm, sp);
2601 	}
2602 	if (locked)
2603 		spin_unlock(&kvm->arch.mmu_unsync_pages_lock);
2604 
2605 	/*
2606 	 * We need to ensure that the marking of unsync pages is visible
2607 	 * before the SPTE is updated to allow writes because
2608 	 * kvm_mmu_sync_roots() checks the unsync flags without holding
2609 	 * the MMU lock and so can race with this. If the SPTE was updated
2610 	 * before the page had been marked as unsync-ed, something like the
2611 	 * following could happen:
2612 	 *
2613 	 * CPU 1                    CPU 2
2614 	 * ---------------------------------------------------------------------
2615 	 * 1.2 Host updates SPTE
2616 	 *     to be writable
2617 	 *                      2.1 Guest writes a GPTE for GVA X.
2618 	 *                          (GPTE being in the guest page table shadowed
2619 	 *                           by the SP from CPU 1.)
2620 	 *                          This reads SPTE during the page table walk.
2621 	 *                          Since SPTE.W is read as 1, there is no
2622 	 *                          fault.
2623 	 *
2624 	 *                      2.2 Guest issues TLB flush.
2625 	 *                          That causes a VM Exit.
2626 	 *
2627 	 *                      2.3 Walking of unsync pages sees sp->unsync is
2628 	 *                          false and skips the page.
2629 	 *
2630 	 *                      2.4 Guest accesses GVA X.
2631 	 *                          Since the mapping in the SP was not updated,
2632 	 *                          so the old mapping for GVA X incorrectly
2633 	 *                          gets used.
2634 	 * 1.1 Host marks SP
2635 	 *     as unsync
2636 	 *     (sp->unsync = true)
2637 	 *
2638 	 * The write barrier below ensures that 1.1 happens before 1.2 and thus
2639 	 * the situation in 2.4 does not arise.  It pairs with the read barrier
2640 	 * in is_unsync_root(), placed between 2.1's load of SPTE.W and 2.3.
2641 	 */
2642 	smp_wmb();
2643 
2644 	return 0;
2645 }
2646 
2647 static int mmu_set_spte(struct kvm_vcpu *vcpu, struct kvm_memory_slot *slot,
2648 			u64 *sptep, unsigned int pte_access, gfn_t gfn,
2649 			kvm_pfn_t pfn, struct kvm_page_fault *fault)
2650 {
2651 	struct kvm_mmu_page *sp = sptep_to_sp(sptep);
2652 	int level = sp->role.level;
2653 	int was_rmapped = 0;
2654 	int ret = RET_PF_FIXED;
2655 	bool flush = false;
2656 	bool wrprot;
2657 	u64 spte;
2658 
2659 	/* Prefetching always gets a writable pfn.  */
2660 	bool host_writable = !fault || fault->map_writable;
2661 	bool prefetch = !fault || fault->prefetch;
2662 	bool write_fault = fault && fault->write;
2663 
2664 	pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
2665 		 *sptep, write_fault, gfn);
2666 
2667 	if (unlikely(is_noslot_pfn(pfn))) {
2668 		mark_mmio_spte(vcpu, sptep, gfn, pte_access);
2669 		return RET_PF_EMULATE;
2670 	}
2671 
2672 	if (is_shadow_present_pte(*sptep)) {
2673 		/*
2674 		 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2675 		 * the parent of the now unreachable PTE.
2676 		 */
2677 		if (level > PG_LEVEL_4K && !is_large_pte(*sptep)) {
2678 			struct kvm_mmu_page *child;
2679 			u64 pte = *sptep;
2680 
2681 			child = to_shadow_page(pte & PT64_BASE_ADDR_MASK);
2682 			drop_parent_pte(child, sptep);
2683 			flush = true;
2684 		} else if (pfn != spte_to_pfn(*sptep)) {
2685 			pgprintk("hfn old %llx new %llx\n",
2686 				 spte_to_pfn(*sptep), pfn);
2687 			drop_spte(vcpu->kvm, sptep);
2688 			flush = true;
2689 		} else
2690 			was_rmapped = 1;
2691 	}
2692 
2693 	wrprot = make_spte(vcpu, sp, slot, pte_access, gfn, pfn, *sptep, prefetch,
2694 			   true, host_writable, &spte);
2695 
2696 	if (*sptep == spte) {
2697 		ret = RET_PF_SPURIOUS;
2698 	} else {
2699 		trace_kvm_mmu_set_spte(level, gfn, sptep);
2700 		flush |= mmu_spte_update(sptep, spte);
2701 	}
2702 
2703 	if (wrprot) {
2704 		if (write_fault)
2705 			ret = RET_PF_EMULATE;
2706 	}
2707 
2708 	if (flush)
2709 		kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn,
2710 				KVM_PAGES_PER_HPAGE(level));
2711 
2712 	pgprintk("%s: setting spte %llx\n", __func__, *sptep);
2713 
2714 	if (!was_rmapped) {
2715 		WARN_ON_ONCE(ret == RET_PF_SPURIOUS);
2716 		kvm_update_page_stats(vcpu->kvm, level, 1);
2717 		rmap_add(vcpu, slot, sptep, gfn);
2718 	}
2719 
2720 	return ret;
2721 }
2722 
2723 static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2724 				    struct kvm_mmu_page *sp,
2725 				    u64 *start, u64 *end)
2726 {
2727 	struct page *pages[PTE_PREFETCH_NUM];
2728 	struct kvm_memory_slot *slot;
2729 	unsigned int access = sp->role.access;
2730 	int i, ret;
2731 	gfn_t gfn;
2732 
2733 	gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
2734 	slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK);
2735 	if (!slot)
2736 		return -1;
2737 
2738 	ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start);
2739 	if (ret <= 0)
2740 		return -1;
2741 
2742 	for (i = 0; i < ret; i++, gfn++, start++) {
2743 		mmu_set_spte(vcpu, slot, start, access, gfn,
2744 			     page_to_pfn(pages[i]), NULL);
2745 		put_page(pages[i]);
2746 	}
2747 
2748 	return 0;
2749 }
2750 
2751 static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
2752 				  struct kvm_mmu_page *sp, u64 *sptep)
2753 {
2754 	u64 *spte, *start = NULL;
2755 	int i;
2756 
2757 	WARN_ON(!sp->role.direct);
2758 
2759 	i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
2760 	spte = sp->spt + i;
2761 
2762 	for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
2763 		if (is_shadow_present_pte(*spte) || spte == sptep) {
2764 			if (!start)
2765 				continue;
2766 			if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2767 				return;
2768 			start = NULL;
2769 		} else if (!start)
2770 			start = spte;
2771 	}
2772 	if (start)
2773 		direct_pte_prefetch_many(vcpu, sp, start, spte);
2774 }
2775 
2776 static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
2777 {
2778 	struct kvm_mmu_page *sp;
2779 
2780 	sp = sptep_to_sp(sptep);
2781 
2782 	/*
2783 	 * Without accessed bits, there's no way to distinguish between
2784 	 * actually accessed translations and prefetched, so disable pte
2785 	 * prefetch if accessed bits aren't available.
2786 	 */
2787 	if (sp_ad_disabled(sp))
2788 		return;
2789 
2790 	if (sp->role.level > PG_LEVEL_4K)
2791 		return;
2792 
2793 	/*
2794 	 * If addresses are being invalidated, skip prefetching to avoid
2795 	 * accidentally prefetching those addresses.
2796 	 */
2797 	if (unlikely(vcpu->kvm->mmu_notifier_count))
2798 		return;
2799 
2800 	__direct_pte_prefetch(vcpu, sp, sptep);
2801 }
2802 
2803 static int host_pfn_mapping_level(struct kvm *kvm, gfn_t gfn, kvm_pfn_t pfn,
2804 				  const struct kvm_memory_slot *slot)
2805 {
2806 	unsigned long hva;
2807 	pte_t *pte;
2808 	int level;
2809 
2810 	if (!PageCompound(pfn_to_page(pfn)) && !kvm_is_zone_device_pfn(pfn))
2811 		return PG_LEVEL_4K;
2812 
2813 	/*
2814 	 * Note, using the already-retrieved memslot and __gfn_to_hva_memslot()
2815 	 * is not solely for performance, it's also necessary to avoid the
2816 	 * "writable" check in __gfn_to_hva_many(), which will always fail on
2817 	 * read-only memslots due to gfn_to_hva() assuming writes.  Earlier
2818 	 * page fault steps have already verified the guest isn't writing a
2819 	 * read-only memslot.
2820 	 */
2821 	hva = __gfn_to_hva_memslot(slot, gfn);
2822 
2823 	pte = lookup_address_in_mm(kvm->mm, hva, &level);
2824 	if (unlikely(!pte))
2825 		return PG_LEVEL_4K;
2826 
2827 	return level;
2828 }
2829 
2830 int kvm_mmu_max_mapping_level(struct kvm *kvm,
2831 			      const struct kvm_memory_slot *slot, gfn_t gfn,
2832 			      kvm_pfn_t pfn, int max_level)
2833 {
2834 	struct kvm_lpage_info *linfo;
2835 	int host_level;
2836 
2837 	max_level = min(max_level, max_huge_page_level);
2838 	for ( ; max_level > PG_LEVEL_4K; max_level--) {
2839 		linfo = lpage_info_slot(gfn, slot, max_level);
2840 		if (!linfo->disallow_lpage)
2841 			break;
2842 	}
2843 
2844 	if (max_level == PG_LEVEL_4K)
2845 		return PG_LEVEL_4K;
2846 
2847 	host_level = host_pfn_mapping_level(kvm, gfn, pfn, slot);
2848 	return min(host_level, max_level);
2849 }
2850 
2851 void kvm_mmu_hugepage_adjust(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault)
2852 {
2853 	struct kvm_memory_slot *slot = fault->slot;
2854 	kvm_pfn_t mask;
2855 
2856 	fault->huge_page_disallowed = fault->exec && fault->nx_huge_page_workaround_enabled;
2857 
2858 	if (unlikely(fault->max_level == PG_LEVEL_4K))
2859 		return;
2860 
2861 	if (is_error_noslot_pfn(fault->pfn) || kvm_is_reserved_pfn(fault->pfn))
2862 		return;
2863 
2864 	if (kvm_slot_dirty_track_enabled(slot))
2865 		return;
2866 
2867 	/*
2868 	 * Enforce the iTLB multihit workaround after capturing the requested
2869 	 * level, which will be used to do precise, accurate accounting.
2870 	 */
2871 	fault->req_level = kvm_mmu_max_mapping_level(vcpu->kvm, slot,
2872 						     fault->gfn, fault->pfn,
2873 						     fault->max_level);
2874 	if (fault->req_level == PG_LEVEL_4K || fault->huge_page_disallowed)
2875 		return;
2876 
2877 	/*
2878 	 * mmu_notifier_retry() was successful and mmu_lock is held, so
2879 	 * the pmd can't be split from under us.
2880 	 */
2881 	fault->goal_level = fault->req_level;
2882 	mask = KVM_PAGES_PER_HPAGE(fault->goal_level) - 1;
2883 	VM_BUG_ON((fault->gfn & mask) != (fault->pfn & mask));
2884 	fault->pfn &= ~mask;
2885 }
2886 
2887 void disallowed_hugepage_adjust(struct kvm_page_fault *fault, u64 spte, int cur_level)
2888 {
2889 	if (cur_level > PG_LEVEL_4K &&
2890 	    cur_level == fault->goal_level &&
2891 	    is_shadow_present_pte(spte) &&
2892 	    !is_large_pte(spte)) {
2893 		/*
2894 		 * A small SPTE exists for this pfn, but FNAME(fetch)
2895 		 * and __direct_map would like to create a large PTE
2896 		 * instead: just force them to go down another level,
2897 		 * patching back for them into pfn the next 9 bits of
2898 		 * the address.
2899 		 */
2900 		u64 page_mask = KVM_PAGES_PER_HPAGE(cur_level) -
2901 				KVM_PAGES_PER_HPAGE(cur_level - 1);
2902 		fault->pfn |= fault->gfn & page_mask;
2903 		fault->goal_level--;
2904 	}
2905 }
2906 
2907 static int __direct_map(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault)
2908 {
2909 	struct kvm_shadow_walk_iterator it;
2910 	struct kvm_mmu_page *sp;
2911 	int ret;
2912 	gfn_t base_gfn = fault->gfn;
2913 
2914 	kvm_mmu_hugepage_adjust(vcpu, fault);
2915 
2916 	trace_kvm_mmu_spte_requested(fault);
2917 	for_each_shadow_entry(vcpu, fault->addr, it) {
2918 		/*
2919 		 * We cannot overwrite existing page tables with an NX
2920 		 * large page, as the leaf could be executable.
2921 		 */
2922 		if (fault->nx_huge_page_workaround_enabled)
2923 			disallowed_hugepage_adjust(fault, *it.sptep, it.level);
2924 
2925 		base_gfn = fault->gfn & ~(KVM_PAGES_PER_HPAGE(it.level) - 1);
2926 		if (it.level == fault->goal_level)
2927 			break;
2928 
2929 		drop_large_spte(vcpu, it.sptep);
2930 		if (is_shadow_present_pte(*it.sptep))
2931 			continue;
2932 
2933 		sp = kvm_mmu_get_page(vcpu, base_gfn, it.addr,
2934 				      it.level - 1, true, ACC_ALL);
2935 
2936 		link_shadow_page(vcpu, it.sptep, sp);
2937 		if (fault->is_tdp && fault->huge_page_disallowed &&
2938 		    fault->req_level >= it.level)
2939 			account_huge_nx_page(vcpu->kvm, sp);
2940 	}
2941 
2942 	if (WARN_ON_ONCE(it.level != fault->goal_level))
2943 		return -EFAULT;
2944 
2945 	ret = mmu_set_spte(vcpu, fault->slot, it.sptep, ACC_ALL,
2946 			   base_gfn, fault->pfn, fault);
2947 	if (ret == RET_PF_SPURIOUS)
2948 		return ret;
2949 
2950 	direct_pte_prefetch(vcpu, it.sptep);
2951 	++vcpu->stat.pf_fixed;
2952 	return ret;
2953 }
2954 
2955 static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
2956 {
2957 	send_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, PAGE_SHIFT, tsk);
2958 }
2959 
2960 static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, kvm_pfn_t pfn)
2961 {
2962 	/*
2963 	 * Do not cache the mmio info caused by writing the readonly gfn
2964 	 * into the spte otherwise read access on readonly gfn also can
2965 	 * caused mmio page fault and treat it as mmio access.
2966 	 */
2967 	if (pfn == KVM_PFN_ERR_RO_FAULT)
2968 		return RET_PF_EMULATE;
2969 
2970 	if (pfn == KVM_PFN_ERR_HWPOISON) {
2971 		kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current);
2972 		return RET_PF_RETRY;
2973 	}
2974 
2975 	return -EFAULT;
2976 }
2977 
2978 static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault,
2979 				unsigned int access, int *ret_val)
2980 {
2981 	/* The pfn is invalid, report the error! */
2982 	if (unlikely(is_error_pfn(fault->pfn))) {
2983 		*ret_val = kvm_handle_bad_page(vcpu, fault->gfn, fault->pfn);
2984 		return true;
2985 	}
2986 
2987 	if (unlikely(!fault->slot)) {
2988 		gva_t gva = fault->is_tdp ? 0 : fault->addr;
2989 
2990 		vcpu_cache_mmio_info(vcpu, gva, fault->gfn,
2991 				     access & shadow_mmio_access_mask);
2992 		/*
2993 		 * If MMIO caching is disabled, emulate immediately without
2994 		 * touching the shadow page tables as attempting to install an
2995 		 * MMIO SPTE will just be an expensive nop.
2996 		 */
2997 		if (unlikely(!shadow_mmio_value)) {
2998 			*ret_val = RET_PF_EMULATE;
2999 			return true;
3000 		}
3001 	}
3002 
3003 	return false;
3004 }
3005 
3006 static bool page_fault_can_be_fast(struct kvm_page_fault *fault)
3007 {
3008 	/*
3009 	 * Do not fix the mmio spte with invalid generation number which
3010 	 * need to be updated by slow page fault path.
3011 	 */
3012 	if (fault->rsvd)
3013 		return false;
3014 
3015 	/* See if the page fault is due to an NX violation */
3016 	if (unlikely(fault->exec && fault->present))
3017 		return false;
3018 
3019 	/*
3020 	 * #PF can be fast if:
3021 	 * 1. The shadow page table entry is not present, which could mean that
3022 	 *    the fault is potentially caused by access tracking (if enabled).
3023 	 * 2. The shadow page table entry is present and the fault
3024 	 *    is caused by write-protect, that means we just need change the W
3025 	 *    bit of the spte which can be done out of mmu-lock.
3026 	 *
3027 	 * However, if access tracking is disabled we know that a non-present
3028 	 * page must be a genuine page fault where we have to create a new SPTE.
3029 	 * So, if access tracking is disabled, we return true only for write
3030 	 * accesses to a present page.
3031 	 */
3032 
3033 	return shadow_acc_track_mask != 0 || (fault->write && fault->present);
3034 }
3035 
3036 /*
3037  * Returns true if the SPTE was fixed successfully. Otherwise,
3038  * someone else modified the SPTE from its original value.
3039  */
3040 static bool
3041 fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault,
3042 			u64 *sptep, u64 old_spte, u64 new_spte)
3043 {
3044 	/*
3045 	 * Theoretically we could also set dirty bit (and flush TLB) here in
3046 	 * order to eliminate unnecessary PML logging. See comments in
3047 	 * set_spte. But fast_page_fault is very unlikely to happen with PML
3048 	 * enabled, so we do not do this. This might result in the same GPA
3049 	 * to be logged in PML buffer again when the write really happens, and
3050 	 * eventually to be called by mark_page_dirty twice. But it's also no
3051 	 * harm. This also avoids the TLB flush needed after setting dirty bit
3052 	 * so non-PML cases won't be impacted.
3053 	 *
3054 	 * Compare with set_spte where instead shadow_dirty_mask is set.
3055 	 */
3056 	if (cmpxchg64(sptep, old_spte, new_spte) != old_spte)
3057 		return false;
3058 
3059 	if (is_writable_pte(new_spte) && !is_writable_pte(old_spte))
3060 		mark_page_dirty_in_slot(vcpu->kvm, fault->slot, fault->gfn);
3061 
3062 	return true;
3063 }
3064 
3065 static bool is_access_allowed(struct kvm_page_fault *fault, u64 spte)
3066 {
3067 	if (fault->exec)
3068 		return is_executable_pte(spte);
3069 
3070 	if (fault->write)
3071 		return is_writable_pte(spte);
3072 
3073 	/* Fault was on Read access */
3074 	return spte & PT_PRESENT_MASK;
3075 }
3076 
3077 /*
3078  * Returns the last level spte pointer of the shadow page walk for the given
3079  * gpa, and sets *spte to the spte value. This spte may be non-preset. If no
3080  * walk could be performed, returns NULL and *spte does not contain valid data.
3081  *
3082  * Contract:
3083  *  - Must be called between walk_shadow_page_lockless_{begin,end}.
3084  *  - The returned sptep must not be used after walk_shadow_page_lockless_end.
3085  */
3086 static u64 *fast_pf_get_last_sptep(struct kvm_vcpu *vcpu, gpa_t gpa, u64 *spte)
3087 {
3088 	struct kvm_shadow_walk_iterator iterator;
3089 	u64 old_spte;
3090 	u64 *sptep = NULL;
3091 
3092 	for_each_shadow_entry_lockless(vcpu, gpa, iterator, old_spte) {
3093 		sptep = iterator.sptep;
3094 		*spte = old_spte;
3095 	}
3096 
3097 	return sptep;
3098 }
3099 
3100 /*
3101  * Returns one of RET_PF_INVALID, RET_PF_FIXED or RET_PF_SPURIOUS.
3102  */
3103 static int fast_page_fault(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault)
3104 {
3105 	struct kvm_mmu_page *sp;
3106 	int ret = RET_PF_INVALID;
3107 	u64 spte = 0ull;
3108 	u64 *sptep = NULL;
3109 	uint retry_count = 0;
3110 
3111 	if (!page_fault_can_be_fast(fault))
3112 		return ret;
3113 
3114 	walk_shadow_page_lockless_begin(vcpu);
3115 
3116 	do {
3117 		u64 new_spte;
3118 
3119 		if (is_tdp_mmu(vcpu->arch.mmu))
3120 			sptep = kvm_tdp_mmu_fast_pf_get_last_sptep(vcpu, fault->addr, &spte);
3121 		else
3122 			sptep = fast_pf_get_last_sptep(vcpu, fault->addr, &spte);
3123 
3124 		if (!is_shadow_present_pte(spte))
3125 			break;
3126 
3127 		sp = sptep_to_sp(sptep);
3128 		if (!is_last_spte(spte, sp->role.level))
3129 			break;
3130 
3131 		/*
3132 		 * Check whether the memory access that caused the fault would
3133 		 * still cause it if it were to be performed right now. If not,
3134 		 * then this is a spurious fault caused by TLB lazily flushed,
3135 		 * or some other CPU has already fixed the PTE after the
3136 		 * current CPU took the fault.
3137 		 *
3138 		 * Need not check the access of upper level table entries since
3139 		 * they are always ACC_ALL.
3140 		 */
3141 		if (is_access_allowed(fault, spte)) {
3142 			ret = RET_PF_SPURIOUS;
3143 			break;
3144 		}
3145 
3146 		new_spte = spte;
3147 
3148 		if (is_access_track_spte(spte))
3149 			new_spte = restore_acc_track_spte(new_spte);
3150 
3151 		/*
3152 		 * Currently, to simplify the code, write-protection can
3153 		 * be removed in the fast path only if the SPTE was
3154 		 * write-protected for dirty-logging or access tracking.
3155 		 */
3156 		if (fault->write &&
3157 		    spte_can_locklessly_be_made_writable(spte)) {
3158 			new_spte |= PT_WRITABLE_MASK;
3159 
3160 			/*
3161 			 * Do not fix write-permission on the large spte when
3162 			 * dirty logging is enabled. Since we only dirty the
3163 			 * first page into the dirty-bitmap in
3164 			 * fast_pf_fix_direct_spte(), other pages are missed
3165 			 * if its slot has dirty logging enabled.
3166 			 *
3167 			 * Instead, we let the slow page fault path create a
3168 			 * normal spte to fix the access.
3169 			 */
3170 			if (sp->role.level > PG_LEVEL_4K &&
3171 			    kvm_slot_dirty_track_enabled(fault->slot))
3172 				break;
3173 		}
3174 
3175 		/* Verify that the fault can be handled in the fast path */
3176 		if (new_spte == spte ||
3177 		    !is_access_allowed(fault, new_spte))
3178 			break;
3179 
3180 		/*
3181 		 * Currently, fast page fault only works for direct mapping
3182 		 * since the gfn is not stable for indirect shadow page. See
3183 		 * Documentation/virt/kvm/locking.rst to get more detail.
3184 		 */
3185 		if (fast_pf_fix_direct_spte(vcpu, fault, sptep, spte, new_spte)) {
3186 			ret = RET_PF_FIXED;
3187 			break;
3188 		}
3189 
3190 		if (++retry_count > 4) {
3191 			printk_once(KERN_WARNING
3192 				"kvm: Fast #PF retrying more than 4 times.\n");
3193 			break;
3194 		}
3195 
3196 	} while (true);
3197 
3198 	trace_fast_page_fault(vcpu, fault, sptep, spte, ret);
3199 	walk_shadow_page_lockless_end(vcpu);
3200 
3201 	return ret;
3202 }
3203 
3204 static void mmu_free_root_page(struct kvm *kvm, hpa_t *root_hpa,
3205 			       struct list_head *invalid_list)
3206 {
3207 	struct kvm_mmu_page *sp;
3208 
3209 	if (!VALID_PAGE(*root_hpa))
3210 		return;
3211 
3212 	sp = to_shadow_page(*root_hpa & PT64_BASE_ADDR_MASK);
3213 	if (WARN_ON(!sp))
3214 		return;
3215 
3216 	if (is_tdp_mmu_page(sp))
3217 		kvm_tdp_mmu_put_root(kvm, sp, false);
3218 	else if (!--sp->root_count && sp->role.invalid)
3219 		kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
3220 
3221 	*root_hpa = INVALID_PAGE;
3222 }
3223 
3224 /* roots_to_free must be some combination of the KVM_MMU_ROOT_* flags */
3225 void kvm_mmu_free_roots(struct kvm *kvm, struct kvm_mmu *mmu,
3226 			ulong roots_to_free)
3227 {
3228 	int i;
3229 	LIST_HEAD(invalid_list);
3230 	bool free_active_root;
3231 
3232 	BUILD_BUG_ON(KVM_MMU_NUM_PREV_ROOTS >= BITS_PER_LONG);
3233 
3234 	/* Before acquiring the MMU lock, see if we need to do any real work. */
3235 	free_active_root = (roots_to_free & KVM_MMU_ROOT_CURRENT)
3236 		&& VALID_PAGE(mmu->root.hpa);
3237 
3238 	if (!free_active_root) {
3239 		for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
3240 			if ((roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) &&
3241 			    VALID_PAGE(mmu->prev_roots[i].hpa))
3242 				break;
3243 
3244 		if (i == KVM_MMU_NUM_PREV_ROOTS)
3245 			return;
3246 	}
3247 
3248 	write_lock(&kvm->mmu_lock);
3249 
3250 	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
3251 		if (roots_to_free & KVM_MMU_ROOT_PREVIOUS(i))
3252 			mmu_free_root_page(kvm, &mmu->prev_roots[i].hpa,
3253 					   &invalid_list);
3254 
3255 	if (free_active_root) {
3256 		if (to_shadow_page(mmu->root.hpa)) {
3257 			mmu_free_root_page(kvm, &mmu->root.hpa, &invalid_list);
3258 		} else if (mmu->pae_root) {
3259 			for (i = 0; i < 4; ++i) {
3260 				if (!IS_VALID_PAE_ROOT(mmu->pae_root[i]))
3261 					continue;
3262 
3263 				mmu_free_root_page(kvm, &mmu->pae_root[i],
3264 						   &invalid_list);
3265 				mmu->pae_root[i] = INVALID_PAE_ROOT;
3266 			}
3267 		}
3268 		mmu->root.hpa = INVALID_PAGE;
3269 		mmu->root.pgd = 0;
3270 	}
3271 
3272 	kvm_mmu_commit_zap_page(kvm, &invalid_list);
3273 	write_unlock(&kvm->mmu_lock);
3274 }
3275 EXPORT_SYMBOL_GPL(kvm_mmu_free_roots);
3276 
3277 void kvm_mmu_free_guest_mode_roots(struct kvm *kvm, struct kvm_mmu *mmu)
3278 {
3279 	unsigned long roots_to_free = 0;
3280 	hpa_t root_hpa;
3281 	int i;
3282 
3283 	/*
3284 	 * This should not be called while L2 is active, L2 can't invalidate
3285 	 * _only_ its own roots, e.g. INVVPID unconditionally exits.
3286 	 */
3287 	WARN_ON_ONCE(mmu->mmu_role.base.guest_mode);
3288 
3289 	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
3290 		root_hpa = mmu->prev_roots[i].hpa;
3291 		if (!VALID_PAGE(root_hpa))
3292 			continue;
3293 
3294 		if (!to_shadow_page(root_hpa) ||
3295 			to_shadow_page(root_hpa)->role.guest_mode)
3296 			roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
3297 	}
3298 
3299 	kvm_mmu_free_roots(kvm, mmu, roots_to_free);
3300 }
3301 EXPORT_SYMBOL_GPL(kvm_mmu_free_guest_mode_roots);
3302 
3303 
3304 static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
3305 {
3306 	int ret = 0;
3307 
3308 	if (!kvm_vcpu_is_visible_gfn(vcpu, root_gfn)) {
3309 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3310 		ret = 1;
3311 	}
3312 
3313 	return ret;
3314 }
3315 
3316 static hpa_t mmu_alloc_root(struct kvm_vcpu *vcpu, gfn_t gfn, gva_t gva,
3317 			    u8 level, bool direct)
3318 {
3319 	struct kvm_mmu_page *sp;
3320 
3321 	sp = kvm_mmu_get_page(vcpu, gfn, gva, level, direct, ACC_ALL);
3322 	++sp->root_count;
3323 
3324 	return __pa(sp->spt);
3325 }
3326 
3327 static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
3328 {
3329 	struct kvm_mmu *mmu = vcpu->arch.mmu;
3330 	u8 shadow_root_level = mmu->shadow_root_level;
3331 	hpa_t root;
3332 	unsigned i;
3333 	int r;
3334 
3335 	write_lock(&vcpu->kvm->mmu_lock);
3336 	r = make_mmu_pages_available(vcpu);
3337 	if (r < 0)
3338 		goto out_unlock;
3339 
3340 	if (is_tdp_mmu_enabled(vcpu->kvm)) {
3341 		root = kvm_tdp_mmu_get_vcpu_root_hpa(vcpu);
3342 		mmu->root.hpa = root;
3343 	} else if (shadow_root_level >= PT64_ROOT_4LEVEL) {
3344 		root = mmu_alloc_root(vcpu, 0, 0, shadow_root_level, true);
3345 		mmu->root.hpa = root;
3346 	} else if (shadow_root_level == PT32E_ROOT_LEVEL) {
3347 		if (WARN_ON_ONCE(!mmu->pae_root)) {
3348 			r = -EIO;
3349 			goto out_unlock;
3350 		}
3351 
3352 		for (i = 0; i < 4; ++i) {
3353 			WARN_ON_ONCE(IS_VALID_PAE_ROOT(mmu->pae_root[i]));
3354 
3355 			root = mmu_alloc_root(vcpu, i << (30 - PAGE_SHIFT),
3356 					      i << 30, PT32_ROOT_LEVEL, true);
3357 			mmu->pae_root[i] = root | PT_PRESENT_MASK |
3358 					   shadow_me_mask;
3359 		}
3360 		mmu->root.hpa = __pa(mmu->pae_root);
3361 	} else {
3362 		WARN_ONCE(1, "Bad TDP root level = %d\n", shadow_root_level);
3363 		r = -EIO;
3364 		goto out_unlock;
3365 	}
3366 
3367 	/* root.pgd is ignored for direct MMUs. */
3368 	mmu->root.pgd = 0;
3369 out_unlock:
3370 	write_unlock(&vcpu->kvm->mmu_lock);
3371 	return r;
3372 }
3373 
3374 static int mmu_first_shadow_root_alloc(struct kvm *kvm)
3375 {
3376 	struct kvm_memslots *slots;
3377 	struct kvm_memory_slot *slot;
3378 	int r = 0, i, bkt;
3379 
3380 	/*
3381 	 * Check if this is the first shadow root being allocated before
3382 	 * taking the lock.
3383 	 */
3384 	if (kvm_shadow_root_allocated(kvm))
3385 		return 0;
3386 
3387 	mutex_lock(&kvm->slots_arch_lock);
3388 
3389 	/* Recheck, under the lock, whether this is the first shadow root. */
3390 	if (kvm_shadow_root_allocated(kvm))
3391 		goto out_unlock;
3392 
3393 	/*
3394 	 * Check if anything actually needs to be allocated, e.g. all metadata
3395 	 * will be allocated upfront if TDP is disabled.
3396 	 */
3397 	if (kvm_memslots_have_rmaps(kvm) &&
3398 	    kvm_page_track_write_tracking_enabled(kvm))
3399 		goto out_success;
3400 
3401 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
3402 		slots = __kvm_memslots(kvm, i);
3403 		kvm_for_each_memslot(slot, bkt, slots) {
3404 			/*
3405 			 * Both of these functions are no-ops if the target is
3406 			 * already allocated, so unconditionally calling both
3407 			 * is safe.  Intentionally do NOT free allocations on
3408 			 * failure to avoid having to track which allocations
3409 			 * were made now versus when the memslot was created.
3410 			 * The metadata is guaranteed to be freed when the slot
3411 			 * is freed, and will be kept/used if userspace retries
3412 			 * KVM_RUN instead of killing the VM.
3413 			 */
3414 			r = memslot_rmap_alloc(slot, slot->npages);
3415 			if (r)
3416 				goto out_unlock;
3417 			r = kvm_page_track_write_tracking_alloc(slot);
3418 			if (r)
3419 				goto out_unlock;
3420 		}
3421 	}
3422 
3423 	/*
3424 	 * Ensure that shadow_root_allocated becomes true strictly after
3425 	 * all the related pointers are set.
3426 	 */
3427 out_success:
3428 	smp_store_release(&kvm->arch.shadow_root_allocated, true);
3429 
3430 out_unlock:
3431 	mutex_unlock(&kvm->slots_arch_lock);
3432 	return r;
3433 }
3434 
3435 static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
3436 {
3437 	struct kvm_mmu *mmu = vcpu->arch.mmu;
3438 	u64 pdptrs[4], pm_mask;
3439 	gfn_t root_gfn, root_pgd;
3440 	hpa_t root;
3441 	unsigned i;
3442 	int r;
3443 
3444 	root_pgd = mmu->get_guest_pgd(vcpu);
3445 	root_gfn = root_pgd >> PAGE_SHIFT;
3446 
3447 	if (mmu_check_root(vcpu, root_gfn))
3448 		return 1;
3449 
3450 	/*
3451 	 * On SVM, reading PDPTRs might access guest memory, which might fault
3452 	 * and thus might sleep.  Grab the PDPTRs before acquiring mmu_lock.
3453 	 */
3454 	if (mmu->root_level == PT32E_ROOT_LEVEL) {
3455 		for (i = 0; i < 4; ++i) {
3456 			pdptrs[i] = mmu->get_pdptr(vcpu, i);
3457 			if (!(pdptrs[i] & PT_PRESENT_MASK))
3458 				continue;
3459 
3460 			if (mmu_check_root(vcpu, pdptrs[i] >> PAGE_SHIFT))
3461 				return 1;
3462 		}
3463 	}
3464 
3465 	r = mmu_first_shadow_root_alloc(vcpu->kvm);
3466 	if (r)
3467 		return r;
3468 
3469 	write_lock(&vcpu->kvm->mmu_lock);
3470 	r = make_mmu_pages_available(vcpu);
3471 	if (r < 0)
3472 		goto out_unlock;
3473 
3474 	/*
3475 	 * Do we shadow a long mode page table? If so we need to
3476 	 * write-protect the guests page table root.
3477 	 */
3478 	if (mmu->root_level >= PT64_ROOT_4LEVEL) {
3479 		root = mmu_alloc_root(vcpu, root_gfn, 0,
3480 				      mmu->shadow_root_level, false);
3481 		mmu->root.hpa = root;
3482 		goto set_root_pgd;
3483 	}
3484 
3485 	if (WARN_ON_ONCE(!mmu->pae_root)) {
3486 		r = -EIO;
3487 		goto out_unlock;
3488 	}
3489 
3490 	/*
3491 	 * We shadow a 32 bit page table. This may be a legacy 2-level
3492 	 * or a PAE 3-level page table. In either case we need to be aware that
3493 	 * the shadow page table may be a PAE or a long mode page table.
3494 	 */
3495 	pm_mask = PT_PRESENT_MASK | shadow_me_mask;
3496 	if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL) {
3497 		pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
3498 
3499 		if (WARN_ON_ONCE(!mmu->pml4_root)) {
3500 			r = -EIO;
3501 			goto out_unlock;
3502 		}
3503 		mmu->pml4_root[0] = __pa(mmu->pae_root) | pm_mask;
3504 
3505 		if (mmu->shadow_root_level == PT64_ROOT_5LEVEL) {
3506 			if (WARN_ON_ONCE(!mmu->pml5_root)) {
3507 				r = -EIO;
3508 				goto out_unlock;
3509 			}
3510 			mmu->pml5_root[0] = __pa(mmu->pml4_root) | pm_mask;
3511 		}
3512 	}
3513 
3514 	for (i = 0; i < 4; ++i) {
3515 		WARN_ON_ONCE(IS_VALID_PAE_ROOT(mmu->pae_root[i]));
3516 
3517 		if (mmu->root_level == PT32E_ROOT_LEVEL) {
3518 			if (!(pdptrs[i] & PT_PRESENT_MASK)) {
3519 				mmu->pae_root[i] = INVALID_PAE_ROOT;
3520 				continue;
3521 			}
3522 			root_gfn = pdptrs[i] >> PAGE_SHIFT;
3523 		}
3524 
3525 		root = mmu_alloc_root(vcpu, root_gfn, i << 30,
3526 				      PT32_ROOT_LEVEL, false);
3527 		mmu->pae_root[i] = root | pm_mask;
3528 	}
3529 
3530 	if (mmu->shadow_root_level == PT64_ROOT_5LEVEL)
3531 		mmu->root.hpa = __pa(mmu->pml5_root);
3532 	else if (mmu->shadow_root_level == PT64_ROOT_4LEVEL)
3533 		mmu->root.hpa = __pa(mmu->pml4_root);
3534 	else
3535 		mmu->root.hpa = __pa(mmu->pae_root);
3536 
3537 set_root_pgd:
3538 	mmu->root.pgd = root_pgd;
3539 out_unlock:
3540 	write_unlock(&vcpu->kvm->mmu_lock);
3541 
3542 	return r;
3543 }
3544 
3545 static int mmu_alloc_special_roots(struct kvm_vcpu *vcpu)
3546 {
3547 	struct kvm_mmu *mmu = vcpu->arch.mmu;
3548 	bool need_pml5 = mmu->shadow_root_level > PT64_ROOT_4LEVEL;
3549 	u64 *pml5_root = NULL;
3550 	u64 *pml4_root = NULL;
3551 	u64 *pae_root;
3552 
3553 	/*
3554 	 * When shadowing 32-bit or PAE NPT with 64-bit NPT, the PML4 and PDP
3555 	 * tables are allocated and initialized at root creation as there is no
3556 	 * equivalent level in the guest's NPT to shadow.  Allocate the tables
3557 	 * on demand, as running a 32-bit L1 VMM on 64-bit KVM is very rare.
3558 	 */
3559 	if (mmu->direct_map || mmu->root_level >= PT64_ROOT_4LEVEL ||
3560 	    mmu->shadow_root_level < PT64_ROOT_4LEVEL)
3561 		return 0;
3562 
3563 	/*
3564 	 * NPT, the only paging mode that uses this horror, uses a fixed number
3565 	 * of levels for the shadow page tables, e.g. all MMUs are 4-level or
3566 	 * all MMus are 5-level.  Thus, this can safely require that pml5_root
3567 	 * is allocated if the other roots are valid and pml5 is needed, as any
3568 	 * prior MMU would also have required pml5.
3569 	 */
3570 	if (mmu->pae_root && mmu->pml4_root && (!need_pml5 || mmu->pml5_root))
3571 		return 0;
3572 
3573 	/*
3574 	 * The special roots should always be allocated in concert.  Yell and
3575 	 * bail if KVM ends up in a state where only one of the roots is valid.
3576 	 */
3577 	if (WARN_ON_ONCE(!tdp_enabled || mmu->pae_root || mmu->pml4_root ||
3578 			 (need_pml5 && mmu->pml5_root)))
3579 		return -EIO;
3580 
3581 	/*
3582 	 * Unlike 32-bit NPT, the PDP table doesn't need to be in low mem, and
3583 	 * doesn't need to be decrypted.
3584 	 */
3585 	pae_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT);
3586 	if (!pae_root)
3587 		return -ENOMEM;
3588 
3589 #ifdef CONFIG_X86_64
3590 	pml4_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT);
3591 	if (!pml4_root)
3592 		goto err_pml4;
3593 
3594 	if (need_pml5) {
3595 		pml5_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT);
3596 		if (!pml5_root)
3597 			goto err_pml5;
3598 	}
3599 #endif
3600 
3601 	mmu->pae_root = pae_root;
3602 	mmu->pml4_root = pml4_root;
3603 	mmu->pml5_root = pml5_root;
3604 
3605 	return 0;
3606 
3607 #ifdef CONFIG_X86_64
3608 err_pml5:
3609 	free_page((unsigned long)pml4_root);
3610 err_pml4:
3611 	free_page((unsigned long)pae_root);
3612 	return -ENOMEM;
3613 #endif
3614 }
3615 
3616 static bool is_unsync_root(hpa_t root)
3617 {
3618 	struct kvm_mmu_page *sp;
3619 
3620 	if (!VALID_PAGE(root))
3621 		return false;
3622 
3623 	/*
3624 	 * The read barrier orders the CPU's read of SPTE.W during the page table
3625 	 * walk before the reads of sp->unsync/sp->unsync_children here.
3626 	 *
3627 	 * Even if another CPU was marking the SP as unsync-ed simultaneously,
3628 	 * any guest page table changes are not guaranteed to be visible anyway
3629 	 * until this VCPU issues a TLB flush strictly after those changes are
3630 	 * made.  We only need to ensure that the other CPU sets these flags
3631 	 * before any actual changes to the page tables are made.  The comments
3632 	 * in mmu_try_to_unsync_pages() describe what could go wrong if this
3633 	 * requirement isn't satisfied.
3634 	 */
3635 	smp_rmb();
3636 	sp = to_shadow_page(root);
3637 
3638 	/*
3639 	 * PAE roots (somewhat arbitrarily) aren't backed by shadow pages, the
3640 	 * PDPTEs for a given PAE root need to be synchronized individually.
3641 	 */
3642 	if (WARN_ON_ONCE(!sp))
3643 		return false;
3644 
3645 	if (sp->unsync || sp->unsync_children)
3646 		return true;
3647 
3648 	return false;
3649 }
3650 
3651 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3652 {
3653 	int i;
3654 	struct kvm_mmu_page *sp;
3655 
3656 	if (vcpu->arch.mmu->direct_map)
3657 		return;
3658 
3659 	if (!VALID_PAGE(vcpu->arch.mmu->root.hpa))
3660 		return;
3661 
3662 	vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
3663 
3664 	if (vcpu->arch.mmu->root_level >= PT64_ROOT_4LEVEL) {
3665 		hpa_t root = vcpu->arch.mmu->root.hpa;
3666 		sp = to_shadow_page(root);
3667 
3668 		if (!is_unsync_root(root))
3669 			return;
3670 
3671 		write_lock(&vcpu->kvm->mmu_lock);
3672 		mmu_sync_children(vcpu, sp, true);
3673 		write_unlock(&vcpu->kvm->mmu_lock);
3674 		return;
3675 	}
3676 
3677 	write_lock(&vcpu->kvm->mmu_lock);
3678 
3679 	for (i = 0; i < 4; ++i) {
3680 		hpa_t root = vcpu->arch.mmu->pae_root[i];
3681 
3682 		if (IS_VALID_PAE_ROOT(root)) {
3683 			root &= PT64_BASE_ADDR_MASK;
3684 			sp = to_shadow_page(root);
3685 			mmu_sync_children(vcpu, sp, true);
3686 		}
3687 	}
3688 
3689 	write_unlock(&vcpu->kvm->mmu_lock);
3690 }
3691 
3692 void kvm_mmu_sync_prev_roots(struct kvm_vcpu *vcpu)
3693 {
3694 	unsigned long roots_to_free = 0;
3695 	int i;
3696 
3697 	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
3698 		if (is_unsync_root(vcpu->arch.mmu->prev_roots[i].hpa))
3699 			roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
3700 
3701 	/* sync prev_roots by simply freeing them */
3702 	kvm_mmu_free_roots(vcpu->kvm, vcpu->arch.mmu, roots_to_free);
3703 }
3704 
3705 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
3706 				  gpa_t vaddr, u32 access,
3707 				  struct x86_exception *exception)
3708 {
3709 	if (exception)
3710 		exception->error_code = 0;
3711 	return kvm_translate_gpa(vcpu, mmu, vaddr, access, exception);
3712 }
3713 
3714 static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3715 {
3716 	/*
3717 	 * A nested guest cannot use the MMIO cache if it is using nested
3718 	 * page tables, because cr2 is a nGPA while the cache stores GPAs.
3719 	 */
3720 	if (mmu_is_nested(vcpu))
3721 		return false;
3722 
3723 	if (direct)
3724 		return vcpu_match_mmio_gpa(vcpu, addr);
3725 
3726 	return vcpu_match_mmio_gva(vcpu, addr);
3727 }
3728 
3729 /*
3730  * Return the level of the lowest level SPTE added to sptes.
3731  * That SPTE may be non-present.
3732  *
3733  * Must be called between walk_shadow_page_lockless_{begin,end}.
3734  */
3735 static int get_walk(struct kvm_vcpu *vcpu, u64 addr, u64 *sptes, int *root_level)
3736 {
3737 	struct kvm_shadow_walk_iterator iterator;
3738 	int leaf = -1;
3739 	u64 spte;
3740 
3741 	for (shadow_walk_init(&iterator, vcpu, addr),
3742 	     *root_level = iterator.level;
3743 	     shadow_walk_okay(&iterator);
3744 	     __shadow_walk_next(&iterator, spte)) {
3745 		leaf = iterator.level;
3746 		spte = mmu_spte_get_lockless(iterator.sptep);
3747 
3748 		sptes[leaf] = spte;
3749 	}
3750 
3751 	return leaf;
3752 }
3753 
3754 /* return true if reserved bit(s) are detected on a valid, non-MMIO SPTE. */
3755 static bool get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep)
3756 {
3757 	u64 sptes[PT64_ROOT_MAX_LEVEL + 1];
3758 	struct rsvd_bits_validate *rsvd_check;
3759 	int root, leaf, level;
3760 	bool reserved = false;
3761 
3762 	walk_shadow_page_lockless_begin(vcpu);
3763 
3764 	if (is_tdp_mmu(vcpu->arch.mmu))
3765 		leaf = kvm_tdp_mmu_get_walk(vcpu, addr, sptes, &root);
3766 	else
3767 		leaf = get_walk(vcpu, addr, sptes, &root);
3768 
3769 	walk_shadow_page_lockless_end(vcpu);
3770 
3771 	if (unlikely(leaf < 0)) {
3772 		*sptep = 0ull;
3773 		return reserved;
3774 	}
3775 
3776 	*sptep = sptes[leaf];
3777 
3778 	/*
3779 	 * Skip reserved bits checks on the terminal leaf if it's not a valid
3780 	 * SPTE.  Note, this also (intentionally) skips MMIO SPTEs, which, by
3781 	 * design, always have reserved bits set.  The purpose of the checks is
3782 	 * to detect reserved bits on non-MMIO SPTEs. i.e. buggy SPTEs.
3783 	 */
3784 	if (!is_shadow_present_pte(sptes[leaf]))
3785 		leaf++;
3786 
3787 	rsvd_check = &vcpu->arch.mmu->shadow_zero_check;
3788 
3789 	for (level = root; level >= leaf; level--)
3790 		reserved |= is_rsvd_spte(rsvd_check, sptes[level], level);
3791 
3792 	if (reserved) {
3793 		pr_err("%s: reserved bits set on MMU-present spte, addr 0x%llx, hierarchy:\n",
3794 		       __func__, addr);
3795 		for (level = root; level >= leaf; level--)
3796 			pr_err("------ spte = 0x%llx level = %d, rsvd bits = 0x%llx",
3797 			       sptes[level], level,
3798 			       get_rsvd_bits(rsvd_check, sptes[level], level));
3799 	}
3800 
3801 	return reserved;
3802 }
3803 
3804 static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3805 {
3806 	u64 spte;
3807 	bool reserved;
3808 
3809 	if (mmio_info_in_cache(vcpu, addr, direct))
3810 		return RET_PF_EMULATE;
3811 
3812 	reserved = get_mmio_spte(vcpu, addr, &spte);
3813 	if (WARN_ON(reserved))
3814 		return -EINVAL;
3815 
3816 	if (is_mmio_spte(spte)) {
3817 		gfn_t gfn = get_mmio_spte_gfn(spte);
3818 		unsigned int access = get_mmio_spte_access(spte);
3819 
3820 		if (!check_mmio_spte(vcpu, spte))
3821 			return RET_PF_INVALID;
3822 
3823 		if (direct)
3824 			addr = 0;
3825 
3826 		trace_handle_mmio_page_fault(addr, gfn, access);
3827 		vcpu_cache_mmio_info(vcpu, addr, gfn, access);
3828 		return RET_PF_EMULATE;
3829 	}
3830 
3831 	/*
3832 	 * If the page table is zapped by other cpus, let CPU fault again on
3833 	 * the address.
3834 	 */
3835 	return RET_PF_RETRY;
3836 }
3837 
3838 static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu,
3839 					 struct kvm_page_fault *fault)
3840 {
3841 	if (unlikely(fault->rsvd))
3842 		return false;
3843 
3844 	if (!fault->present || !fault->write)
3845 		return false;
3846 
3847 	/*
3848 	 * guest is writing the page which is write tracked which can
3849 	 * not be fixed by page fault handler.
3850 	 */
3851 	if (kvm_slot_page_track_is_active(vcpu->kvm, fault->slot, fault->gfn, KVM_PAGE_TRACK_WRITE))
3852 		return true;
3853 
3854 	return false;
3855 }
3856 
3857 static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr)
3858 {
3859 	struct kvm_shadow_walk_iterator iterator;
3860 	u64 spte;
3861 
3862 	walk_shadow_page_lockless_begin(vcpu);
3863 	for_each_shadow_entry_lockless(vcpu, addr, iterator, spte)
3864 		clear_sp_write_flooding_count(iterator.sptep);
3865 	walk_shadow_page_lockless_end(vcpu);
3866 }
3867 
3868 static u32 alloc_apf_token(struct kvm_vcpu *vcpu)
3869 {
3870 	/* make sure the token value is not 0 */
3871 	u32 id = vcpu->arch.apf.id;
3872 
3873 	if (id << 12 == 0)
3874 		vcpu->arch.apf.id = 1;
3875 
3876 	return (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
3877 }
3878 
3879 static bool kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
3880 				    gfn_t gfn)
3881 {
3882 	struct kvm_arch_async_pf arch;
3883 
3884 	arch.token = alloc_apf_token(vcpu);
3885 	arch.gfn = gfn;
3886 	arch.direct_map = vcpu->arch.mmu->direct_map;
3887 	arch.cr3 = vcpu->arch.mmu->get_guest_pgd(vcpu);
3888 
3889 	return kvm_setup_async_pf(vcpu, cr2_or_gpa,
3890 				  kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch);
3891 }
3892 
3893 static bool kvm_faultin_pfn(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault, int *r)
3894 {
3895 	struct kvm_memory_slot *slot = fault->slot;
3896 	bool async;
3897 
3898 	/*
3899 	 * Retry the page fault if the gfn hit a memslot that is being deleted
3900 	 * or moved.  This ensures any existing SPTEs for the old memslot will
3901 	 * be zapped before KVM inserts a new MMIO SPTE for the gfn.
3902 	 */
3903 	if (slot && (slot->flags & KVM_MEMSLOT_INVALID))
3904 		goto out_retry;
3905 
3906 	if (!kvm_is_visible_memslot(slot)) {
3907 		/* Don't expose private memslots to L2. */
3908 		if (is_guest_mode(vcpu)) {
3909 			fault->slot = NULL;
3910 			fault->pfn = KVM_PFN_NOSLOT;
3911 			fault->map_writable = false;
3912 			return false;
3913 		}
3914 		/*
3915 		 * If the APIC access page exists but is disabled, go directly
3916 		 * to emulation without caching the MMIO access or creating a
3917 		 * MMIO SPTE.  That way the cache doesn't need to be purged
3918 		 * when the AVIC is re-enabled.
3919 		 */
3920 		if (slot && slot->id == APIC_ACCESS_PAGE_PRIVATE_MEMSLOT &&
3921 		    !kvm_apicv_activated(vcpu->kvm)) {
3922 			*r = RET_PF_EMULATE;
3923 			return true;
3924 		}
3925 	}
3926 
3927 	async = false;
3928 	fault->pfn = __gfn_to_pfn_memslot(slot, fault->gfn, false, &async,
3929 					  fault->write, &fault->map_writable,
3930 					  &fault->hva);
3931 	if (!async)
3932 		return false; /* *pfn has correct page already */
3933 
3934 	if (!fault->prefetch && kvm_can_do_async_pf(vcpu)) {
3935 		trace_kvm_try_async_get_page(fault->addr, fault->gfn);
3936 		if (kvm_find_async_pf_gfn(vcpu, fault->gfn)) {
3937 			trace_kvm_async_pf_doublefault(fault->addr, fault->gfn);
3938 			kvm_make_request(KVM_REQ_APF_HALT, vcpu);
3939 			goto out_retry;
3940 		} else if (kvm_arch_setup_async_pf(vcpu, fault->addr, fault->gfn))
3941 			goto out_retry;
3942 	}
3943 
3944 	fault->pfn = __gfn_to_pfn_memslot(slot, fault->gfn, false, NULL,
3945 					  fault->write, &fault->map_writable,
3946 					  &fault->hva);
3947 	return false;
3948 
3949 out_retry:
3950 	*r = RET_PF_RETRY;
3951 	return true;
3952 }
3953 
3954 /*
3955  * Returns true if the page fault is stale and needs to be retried, i.e. if the
3956  * root was invalidated by a memslot update or a relevant mmu_notifier fired.
3957  */
3958 static bool is_page_fault_stale(struct kvm_vcpu *vcpu,
3959 				struct kvm_page_fault *fault, int mmu_seq)
3960 {
3961 	struct kvm_mmu_page *sp = to_shadow_page(vcpu->arch.mmu->root.hpa);
3962 
3963 	/* Special roots, e.g. pae_root, are not backed by shadow pages. */
3964 	if (sp && is_obsolete_sp(vcpu->kvm, sp))
3965 		return true;
3966 
3967 	/*
3968 	 * Roots without an associated shadow page are considered invalid if
3969 	 * there is a pending request to free obsolete roots.  The request is
3970 	 * only a hint that the current root _may_ be obsolete and needs to be
3971 	 * reloaded, e.g. if the guest frees a PGD that KVM is tracking as a
3972 	 * previous root, then __kvm_mmu_prepare_zap_page() signals all vCPUs
3973 	 * to reload even if no vCPU is actively using the root.
3974 	 */
3975 	if (!sp && kvm_test_request(KVM_REQ_MMU_FREE_OBSOLETE_ROOTS, vcpu))
3976 		return true;
3977 
3978 	return fault->slot &&
3979 	       mmu_notifier_retry_hva(vcpu->kvm, mmu_seq, fault->hva);
3980 }
3981 
3982 static int direct_page_fault(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault)
3983 {
3984 	bool is_tdp_mmu_fault = is_tdp_mmu(vcpu->arch.mmu);
3985 
3986 	unsigned long mmu_seq;
3987 	int r;
3988 
3989 	fault->gfn = fault->addr >> PAGE_SHIFT;
3990 	fault->slot = kvm_vcpu_gfn_to_memslot(vcpu, fault->gfn);
3991 
3992 	if (page_fault_handle_page_track(vcpu, fault))
3993 		return RET_PF_EMULATE;
3994 
3995 	r = fast_page_fault(vcpu, fault);
3996 	if (r != RET_PF_INVALID)
3997 		return r;
3998 
3999 	r = mmu_topup_memory_caches(vcpu, false);
4000 	if (r)
4001 		return r;
4002 
4003 	mmu_seq = vcpu->kvm->mmu_notifier_seq;
4004 	smp_rmb();
4005 
4006 	if (kvm_faultin_pfn(vcpu, fault, &r))
4007 		return r;
4008 
4009 	if (handle_abnormal_pfn(vcpu, fault, ACC_ALL, &r))
4010 		return r;
4011 
4012 	r = RET_PF_RETRY;
4013 
4014 	if (is_tdp_mmu_fault)
4015 		read_lock(&vcpu->kvm->mmu_lock);
4016 	else
4017 		write_lock(&vcpu->kvm->mmu_lock);
4018 
4019 	if (is_page_fault_stale(vcpu, fault, mmu_seq))
4020 		goto out_unlock;
4021 
4022 	r = make_mmu_pages_available(vcpu);
4023 	if (r)
4024 		goto out_unlock;
4025 
4026 	if (is_tdp_mmu_fault)
4027 		r = kvm_tdp_mmu_map(vcpu, fault);
4028 	else
4029 		r = __direct_map(vcpu, fault);
4030 
4031 out_unlock:
4032 	if (is_tdp_mmu_fault)
4033 		read_unlock(&vcpu->kvm->mmu_lock);
4034 	else
4035 		write_unlock(&vcpu->kvm->mmu_lock);
4036 	kvm_release_pfn_clean(fault->pfn);
4037 	return r;
4038 }
4039 
4040 static int nonpaging_page_fault(struct kvm_vcpu *vcpu,
4041 				struct kvm_page_fault *fault)
4042 {
4043 	pgprintk("%s: gva %lx error %x\n", __func__, fault->addr, fault->error_code);
4044 
4045 	/* This path builds a PAE pagetable, we can map 2mb pages at maximum. */
4046 	fault->max_level = PG_LEVEL_2M;
4047 	return direct_page_fault(vcpu, fault);
4048 }
4049 
4050 int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code,
4051 				u64 fault_address, char *insn, int insn_len)
4052 {
4053 	int r = 1;
4054 	u32 flags = vcpu->arch.apf.host_apf_flags;
4055 
4056 #ifndef CONFIG_X86_64
4057 	/* A 64-bit CR2 should be impossible on 32-bit KVM. */
4058 	if (WARN_ON_ONCE(fault_address >> 32))
4059 		return -EFAULT;
4060 #endif
4061 
4062 	vcpu->arch.l1tf_flush_l1d = true;
4063 	if (!flags) {
4064 		trace_kvm_page_fault(fault_address, error_code);
4065 
4066 		if (kvm_event_needs_reinjection(vcpu))
4067 			kvm_mmu_unprotect_page_virt(vcpu, fault_address);
4068 		r = kvm_mmu_page_fault(vcpu, fault_address, error_code, insn,
4069 				insn_len);
4070 	} else if (flags & KVM_PV_REASON_PAGE_NOT_PRESENT) {
4071 		vcpu->arch.apf.host_apf_flags = 0;
4072 		local_irq_disable();
4073 		kvm_async_pf_task_wait_schedule(fault_address);
4074 		local_irq_enable();
4075 	} else {
4076 		WARN_ONCE(1, "Unexpected host async PF flags: %x\n", flags);
4077 	}
4078 
4079 	return r;
4080 }
4081 EXPORT_SYMBOL_GPL(kvm_handle_page_fault);
4082 
4083 int kvm_tdp_page_fault(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault)
4084 {
4085 	while (fault->max_level > PG_LEVEL_4K) {
4086 		int page_num = KVM_PAGES_PER_HPAGE(fault->max_level);
4087 		gfn_t base = (fault->addr >> PAGE_SHIFT) & ~(page_num - 1);
4088 
4089 		if (kvm_mtrr_check_gfn_range_consistency(vcpu, base, page_num))
4090 			break;
4091 
4092 		--fault->max_level;
4093 	}
4094 
4095 	return direct_page_fault(vcpu, fault);
4096 }
4097 
4098 static void nonpaging_init_context(struct kvm_mmu *context)
4099 {
4100 	context->page_fault = nonpaging_page_fault;
4101 	context->gva_to_gpa = nonpaging_gva_to_gpa;
4102 	context->sync_page = nonpaging_sync_page;
4103 	context->invlpg = NULL;
4104 	context->direct_map = true;
4105 }
4106 
4107 static inline bool is_root_usable(struct kvm_mmu_root_info *root, gpa_t pgd,
4108 				  union kvm_mmu_page_role role)
4109 {
4110 	return (role.direct || pgd == root->pgd) &&
4111 	       VALID_PAGE(root->hpa) &&
4112 	       role.word == to_shadow_page(root->hpa)->role.word;
4113 }
4114 
4115 /*
4116  * Find out if a previously cached root matching the new pgd/role is available,
4117  * and insert the current root as the MRU in the cache.
4118  * If a matching root is found, it is assigned to kvm_mmu->root and
4119  * true is returned.
4120  * If no match is found, kvm_mmu->root is left invalid, the LRU root is
4121  * evicted to make room for the current root, and false is returned.
4122  */
4123 static bool cached_root_find_and_keep_current(struct kvm *kvm, struct kvm_mmu *mmu,
4124 					      gpa_t new_pgd,
4125 					      union kvm_mmu_page_role new_role)
4126 {
4127 	uint i;
4128 
4129 	if (is_root_usable(&mmu->root, new_pgd, new_role))
4130 		return true;
4131 
4132 	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
4133 		/*
4134 		 * The swaps end up rotating the cache like this:
4135 		 *   C   0 1 2 3   (on entry to the function)
4136 		 *   0   C 1 2 3
4137 		 *   1   C 0 2 3
4138 		 *   2   C 0 1 3
4139 		 *   3   C 0 1 2   (on exit from the loop)
4140 		 */
4141 		swap(mmu->root, mmu->prev_roots[i]);
4142 		if (is_root_usable(&mmu->root, new_pgd, new_role))
4143 			return true;
4144 	}
4145 
4146 	kvm_mmu_free_roots(kvm, mmu, KVM_MMU_ROOT_CURRENT);
4147 	return false;
4148 }
4149 
4150 /*
4151  * Find out if a previously cached root matching the new pgd/role is available.
4152  * On entry, mmu->root is invalid.
4153  * If a matching root is found, it is assigned to kvm_mmu->root, the LRU entry
4154  * of the cache becomes invalid, and true is returned.
4155  * If no match is found, kvm_mmu->root is left invalid and false is returned.
4156  */
4157 static bool cached_root_find_without_current(struct kvm *kvm, struct kvm_mmu *mmu,
4158 					     gpa_t new_pgd,
4159 					     union kvm_mmu_page_role new_role)
4160 {
4161 	uint i;
4162 
4163 	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
4164 		if (is_root_usable(&mmu->prev_roots[i], new_pgd, new_role))
4165 			goto hit;
4166 
4167 	return false;
4168 
4169 hit:
4170 	swap(mmu->root, mmu->prev_roots[i]);
4171 	/* Bubble up the remaining roots.  */
4172 	for (; i < KVM_MMU_NUM_PREV_ROOTS - 1; i++)
4173 		mmu->prev_roots[i] = mmu->prev_roots[i + 1];
4174 	mmu->prev_roots[i].hpa = INVALID_PAGE;
4175 	return true;
4176 }
4177 
4178 static bool fast_pgd_switch(struct kvm *kvm, struct kvm_mmu *mmu,
4179 			    gpa_t new_pgd, union kvm_mmu_page_role new_role)
4180 {
4181 	/*
4182 	 * For now, limit the caching to 64-bit hosts+VMs in order to avoid
4183 	 * having to deal with PDPTEs. We may add support for 32-bit hosts/VMs
4184 	 * later if necessary.
4185 	 */
4186 	if (VALID_PAGE(mmu->root.hpa) && !to_shadow_page(mmu->root.hpa))
4187 		kvm_mmu_free_roots(kvm, mmu, KVM_MMU_ROOT_CURRENT);
4188 
4189 	if (VALID_PAGE(mmu->root.hpa))
4190 		return cached_root_find_and_keep_current(kvm, mmu, new_pgd, new_role);
4191 	else
4192 		return cached_root_find_without_current(kvm, mmu, new_pgd, new_role);
4193 }
4194 
4195 void kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd)
4196 {
4197 	struct kvm_mmu *mmu = vcpu->arch.mmu;
4198 	union kvm_mmu_page_role new_role = mmu->mmu_role.base;
4199 
4200 	if (!fast_pgd_switch(vcpu->kvm, mmu, new_pgd, new_role)) {
4201 		/* kvm_mmu_ensure_valid_pgd will set up a new root.  */
4202 		return;
4203 	}
4204 
4205 	/*
4206 	 * It's possible that the cached previous root page is obsolete because
4207 	 * of a change in the MMU generation number. However, changing the
4208 	 * generation number is accompanied by KVM_REQ_MMU_FREE_OBSOLETE_ROOTS,
4209 	 * which will free the root set here and allocate a new one.
4210 	 */
4211 	kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu);
4212 
4213 	if (force_flush_and_sync_on_reuse) {
4214 		kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
4215 		kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
4216 	}
4217 
4218 	/*
4219 	 * The last MMIO access's GVA and GPA are cached in the VCPU. When
4220 	 * switching to a new CR3, that GVA->GPA mapping may no longer be
4221 	 * valid. So clear any cached MMIO info even when we don't need to sync
4222 	 * the shadow page tables.
4223 	 */
4224 	vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
4225 
4226 	/*
4227 	 * If this is a direct root page, it doesn't have a write flooding
4228 	 * count. Otherwise, clear the write flooding count.
4229 	 */
4230 	if (!new_role.direct)
4231 		__clear_sp_write_flooding_count(
4232 				to_shadow_page(vcpu->arch.mmu->root.hpa));
4233 }
4234 EXPORT_SYMBOL_GPL(kvm_mmu_new_pgd);
4235 
4236 static unsigned long get_cr3(struct kvm_vcpu *vcpu)
4237 {
4238 	return kvm_read_cr3(vcpu);
4239 }
4240 
4241 static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
4242 			   unsigned int access)
4243 {
4244 	if (unlikely(is_mmio_spte(*sptep))) {
4245 		if (gfn != get_mmio_spte_gfn(*sptep)) {
4246 			mmu_spte_clear_no_track(sptep);
4247 			return true;
4248 		}
4249 
4250 		mark_mmio_spte(vcpu, sptep, gfn, access);
4251 		return true;
4252 	}
4253 
4254 	return false;
4255 }
4256 
4257 #define PTTYPE_EPT 18 /* arbitrary */
4258 #define PTTYPE PTTYPE_EPT
4259 #include "paging_tmpl.h"
4260 #undef PTTYPE
4261 
4262 #define PTTYPE 64
4263 #include "paging_tmpl.h"
4264 #undef PTTYPE
4265 
4266 #define PTTYPE 32
4267 #include "paging_tmpl.h"
4268 #undef PTTYPE
4269 
4270 static void
4271 __reset_rsvds_bits_mask(struct rsvd_bits_validate *rsvd_check,
4272 			u64 pa_bits_rsvd, int level, bool nx, bool gbpages,
4273 			bool pse, bool amd)
4274 {
4275 	u64 gbpages_bit_rsvd = 0;
4276 	u64 nonleaf_bit8_rsvd = 0;
4277 	u64 high_bits_rsvd;
4278 
4279 	rsvd_check->bad_mt_xwr = 0;
4280 
4281 	if (!gbpages)
4282 		gbpages_bit_rsvd = rsvd_bits(7, 7);
4283 
4284 	if (level == PT32E_ROOT_LEVEL)
4285 		high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 62);
4286 	else
4287 		high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 51);
4288 
4289 	/* Note, NX doesn't exist in PDPTEs, this is handled below. */
4290 	if (!nx)
4291 		high_bits_rsvd |= rsvd_bits(63, 63);
4292 
4293 	/*
4294 	 * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
4295 	 * leaf entries) on AMD CPUs only.
4296 	 */
4297 	if (amd)
4298 		nonleaf_bit8_rsvd = rsvd_bits(8, 8);
4299 
4300 	switch (level) {
4301 	case PT32_ROOT_LEVEL:
4302 		/* no rsvd bits for 2 level 4K page table entries */
4303 		rsvd_check->rsvd_bits_mask[0][1] = 0;
4304 		rsvd_check->rsvd_bits_mask[0][0] = 0;
4305 		rsvd_check->rsvd_bits_mask[1][0] =
4306 			rsvd_check->rsvd_bits_mask[0][0];
4307 
4308 		if (!pse) {
4309 			rsvd_check->rsvd_bits_mask[1][1] = 0;
4310 			break;
4311 		}
4312 
4313 		if (is_cpuid_PSE36())
4314 			/* 36bits PSE 4MB page */
4315 			rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
4316 		else
4317 			/* 32 bits PSE 4MB page */
4318 			rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
4319 		break;
4320 	case PT32E_ROOT_LEVEL:
4321 		rsvd_check->rsvd_bits_mask[0][2] = rsvd_bits(63, 63) |
4322 						   high_bits_rsvd |
4323 						   rsvd_bits(5, 8) |
4324 						   rsvd_bits(1, 2);	/* PDPTE */
4325 		rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd;	/* PDE */
4326 		rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd;	/* PTE */
4327 		rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd |
4328 						   rsvd_bits(13, 20);	/* large page */
4329 		rsvd_check->rsvd_bits_mask[1][0] =
4330 			rsvd_check->rsvd_bits_mask[0][0];
4331 		break;
4332 	case PT64_ROOT_5LEVEL:
4333 		rsvd_check->rsvd_bits_mask[0][4] = high_bits_rsvd |
4334 						   nonleaf_bit8_rsvd |
4335 						   rsvd_bits(7, 7);
4336 		rsvd_check->rsvd_bits_mask[1][4] =
4337 			rsvd_check->rsvd_bits_mask[0][4];
4338 		fallthrough;
4339 	case PT64_ROOT_4LEVEL:
4340 		rsvd_check->rsvd_bits_mask[0][3] = high_bits_rsvd |
4341 						   nonleaf_bit8_rsvd |
4342 						   rsvd_bits(7, 7);
4343 		rsvd_check->rsvd_bits_mask[0][2] = high_bits_rsvd |
4344 						   gbpages_bit_rsvd;
4345 		rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd;
4346 		rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd;
4347 		rsvd_check->rsvd_bits_mask[1][3] =
4348 			rsvd_check->rsvd_bits_mask[0][3];
4349 		rsvd_check->rsvd_bits_mask[1][2] = high_bits_rsvd |
4350 						   gbpages_bit_rsvd |
4351 						   rsvd_bits(13, 29);
4352 		rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd |
4353 						   rsvd_bits(13, 20); /* large page */
4354 		rsvd_check->rsvd_bits_mask[1][0] =
4355 			rsvd_check->rsvd_bits_mask[0][0];
4356 		break;
4357 	}
4358 }
4359 
4360 static bool guest_can_use_gbpages(struct kvm_vcpu *vcpu)
4361 {
4362 	/*
4363 	 * If TDP is enabled, let the guest use GBPAGES if they're supported in
4364 	 * hardware.  The hardware page walker doesn't let KVM disable GBPAGES,
4365 	 * i.e. won't treat them as reserved, and KVM doesn't redo the GVA->GPA
4366 	 * walk for performance and complexity reasons.  Not to mention KVM
4367 	 * _can't_ solve the problem because GVA->GPA walks aren't visible to
4368 	 * KVM once a TDP translation is installed.  Mimic hardware behavior so
4369 	 * that KVM's is at least consistent, i.e. doesn't randomly inject #PF.
4370 	 */
4371 	return tdp_enabled ? boot_cpu_has(X86_FEATURE_GBPAGES) :
4372 			     guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES);
4373 }
4374 
4375 static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
4376 				  struct kvm_mmu *context)
4377 {
4378 	__reset_rsvds_bits_mask(&context->guest_rsvd_check,
4379 				vcpu->arch.reserved_gpa_bits,
4380 				context->root_level, is_efer_nx(context),
4381 				guest_can_use_gbpages(vcpu),
4382 				is_cr4_pse(context),
4383 				guest_cpuid_is_amd_or_hygon(vcpu));
4384 }
4385 
4386 static void
4387 __reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check,
4388 			    u64 pa_bits_rsvd, bool execonly, int huge_page_level)
4389 {
4390 	u64 high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 51);
4391 	u64 large_1g_rsvd = 0, large_2m_rsvd = 0;
4392 	u64 bad_mt_xwr;
4393 
4394 	if (huge_page_level < PG_LEVEL_1G)
4395 		large_1g_rsvd = rsvd_bits(7, 7);
4396 	if (huge_page_level < PG_LEVEL_2M)
4397 		large_2m_rsvd = rsvd_bits(7, 7);
4398 
4399 	rsvd_check->rsvd_bits_mask[0][4] = high_bits_rsvd | rsvd_bits(3, 7);
4400 	rsvd_check->rsvd_bits_mask[0][3] = high_bits_rsvd | rsvd_bits(3, 7);
4401 	rsvd_check->rsvd_bits_mask[0][2] = high_bits_rsvd | rsvd_bits(3, 6) | large_1g_rsvd;
4402 	rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd | rsvd_bits(3, 6) | large_2m_rsvd;
4403 	rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd;
4404 
4405 	/* large page */
4406 	rsvd_check->rsvd_bits_mask[1][4] = rsvd_check->rsvd_bits_mask[0][4];
4407 	rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3];
4408 	rsvd_check->rsvd_bits_mask[1][2] = high_bits_rsvd | rsvd_bits(12, 29) | large_1g_rsvd;
4409 	rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd | rsvd_bits(12, 20) | large_2m_rsvd;
4410 	rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0];
4411 
4412 	bad_mt_xwr = 0xFFull << (2 * 8);	/* bits 3..5 must not be 2 */
4413 	bad_mt_xwr |= 0xFFull << (3 * 8);	/* bits 3..5 must not be 3 */
4414 	bad_mt_xwr |= 0xFFull << (7 * 8);	/* bits 3..5 must not be 7 */
4415 	bad_mt_xwr |= REPEAT_BYTE(1ull << 2);	/* bits 0..2 must not be 010 */
4416 	bad_mt_xwr |= REPEAT_BYTE(1ull << 6);	/* bits 0..2 must not be 110 */
4417 	if (!execonly) {
4418 		/* bits 0..2 must not be 100 unless VMX capabilities allow it */
4419 		bad_mt_xwr |= REPEAT_BYTE(1ull << 4);
4420 	}
4421 	rsvd_check->bad_mt_xwr = bad_mt_xwr;
4422 }
4423 
4424 static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
4425 		struct kvm_mmu *context, bool execonly, int huge_page_level)
4426 {
4427 	__reset_rsvds_bits_mask_ept(&context->guest_rsvd_check,
4428 				    vcpu->arch.reserved_gpa_bits, execonly,
4429 				    huge_page_level);
4430 }
4431 
4432 static inline u64 reserved_hpa_bits(void)
4433 {
4434 	return rsvd_bits(shadow_phys_bits, 63);
4435 }
4436 
4437 /*
4438  * the page table on host is the shadow page table for the page
4439  * table in guest or amd nested guest, its mmu features completely
4440  * follow the features in guest.
4441  */
4442 static void reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4443 					struct kvm_mmu *context)
4444 {
4445 	/*
4446 	 * KVM uses NX when TDP is disabled to handle a variety of scenarios,
4447 	 * notably for huge SPTEs if iTLB multi-hit mitigation is enabled and
4448 	 * to generate correct permissions for CR0.WP=0/CR4.SMEP=1/EFER.NX=0.
4449 	 * The iTLB multi-hit workaround can be toggled at any time, so assume
4450 	 * NX can be used by any non-nested shadow MMU to avoid having to reset
4451 	 * MMU contexts.  Note, KVM forces EFER.NX=1 when TDP is disabled.
4452 	 */
4453 	bool uses_nx = is_efer_nx(context) || !tdp_enabled;
4454 
4455 	/* @amd adds a check on bit of SPTEs, which KVM shouldn't use anyways. */
4456 	bool is_amd = true;
4457 	/* KVM doesn't use 2-level page tables for the shadow MMU. */
4458 	bool is_pse = false;
4459 	struct rsvd_bits_validate *shadow_zero_check;
4460 	int i;
4461 
4462 	WARN_ON_ONCE(context->shadow_root_level < PT32E_ROOT_LEVEL);
4463 
4464 	shadow_zero_check = &context->shadow_zero_check;
4465 	__reset_rsvds_bits_mask(shadow_zero_check, reserved_hpa_bits(),
4466 				context->shadow_root_level, uses_nx,
4467 				guest_can_use_gbpages(vcpu), is_pse, is_amd);
4468 
4469 	if (!shadow_me_mask)
4470 		return;
4471 
4472 	for (i = context->shadow_root_level; --i >= 0;) {
4473 		shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
4474 		shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
4475 	}
4476 
4477 }
4478 
4479 static inline bool boot_cpu_is_amd(void)
4480 {
4481 	WARN_ON_ONCE(!tdp_enabled);
4482 	return shadow_x_mask == 0;
4483 }
4484 
4485 /*
4486  * the direct page table on host, use as much mmu features as
4487  * possible, however, kvm currently does not do execution-protection.
4488  */
4489 static void
4490 reset_tdp_shadow_zero_bits_mask(struct kvm_mmu *context)
4491 {
4492 	struct rsvd_bits_validate *shadow_zero_check;
4493 	int i;
4494 
4495 	shadow_zero_check = &context->shadow_zero_check;
4496 
4497 	if (boot_cpu_is_amd())
4498 		__reset_rsvds_bits_mask(shadow_zero_check, reserved_hpa_bits(),
4499 					context->shadow_root_level, false,
4500 					boot_cpu_has(X86_FEATURE_GBPAGES),
4501 					false, true);
4502 	else
4503 		__reset_rsvds_bits_mask_ept(shadow_zero_check,
4504 					    reserved_hpa_bits(), false,
4505 					    max_huge_page_level);
4506 
4507 	if (!shadow_me_mask)
4508 		return;
4509 
4510 	for (i = context->shadow_root_level; --i >= 0;) {
4511 		shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
4512 		shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
4513 	}
4514 }
4515 
4516 /*
4517  * as the comments in reset_shadow_zero_bits_mask() except it
4518  * is the shadow page table for intel nested guest.
4519  */
4520 static void
4521 reset_ept_shadow_zero_bits_mask(struct kvm_mmu *context, bool execonly)
4522 {
4523 	__reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
4524 				    reserved_hpa_bits(), execonly,
4525 				    max_huge_page_level);
4526 }
4527 
4528 #define BYTE_MASK(access) \
4529 	((1 & (access) ? 2 : 0) | \
4530 	 (2 & (access) ? 4 : 0) | \
4531 	 (3 & (access) ? 8 : 0) | \
4532 	 (4 & (access) ? 16 : 0) | \
4533 	 (5 & (access) ? 32 : 0) | \
4534 	 (6 & (access) ? 64 : 0) | \
4535 	 (7 & (access) ? 128 : 0))
4536 
4537 
4538 static void update_permission_bitmask(struct kvm_mmu *mmu, bool ept)
4539 {
4540 	unsigned byte;
4541 
4542 	const u8 x = BYTE_MASK(ACC_EXEC_MASK);
4543 	const u8 w = BYTE_MASK(ACC_WRITE_MASK);
4544 	const u8 u = BYTE_MASK(ACC_USER_MASK);
4545 
4546 	bool cr4_smep = is_cr4_smep(mmu);
4547 	bool cr4_smap = is_cr4_smap(mmu);
4548 	bool cr0_wp = is_cr0_wp(mmu);
4549 	bool efer_nx = is_efer_nx(mmu);
4550 
4551 	for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
4552 		unsigned pfec = byte << 1;
4553 
4554 		/*
4555 		 * Each "*f" variable has a 1 bit for each UWX value
4556 		 * that causes a fault with the given PFEC.
4557 		 */
4558 
4559 		/* Faults from writes to non-writable pages */
4560 		u8 wf = (pfec & PFERR_WRITE_MASK) ? (u8)~w : 0;
4561 		/* Faults from user mode accesses to supervisor pages */
4562 		u8 uf = (pfec & PFERR_USER_MASK) ? (u8)~u : 0;
4563 		/* Faults from fetches of non-executable pages*/
4564 		u8 ff = (pfec & PFERR_FETCH_MASK) ? (u8)~x : 0;
4565 		/* Faults from kernel mode fetches of user pages */
4566 		u8 smepf = 0;
4567 		/* Faults from kernel mode accesses of user pages */
4568 		u8 smapf = 0;
4569 
4570 		if (!ept) {
4571 			/* Faults from kernel mode accesses to user pages */
4572 			u8 kf = (pfec & PFERR_USER_MASK) ? 0 : u;
4573 
4574 			/* Not really needed: !nx will cause pte.nx to fault */
4575 			if (!efer_nx)
4576 				ff = 0;
4577 
4578 			/* Allow supervisor writes if !cr0.wp */
4579 			if (!cr0_wp)
4580 				wf = (pfec & PFERR_USER_MASK) ? wf : 0;
4581 
4582 			/* Disallow supervisor fetches of user code if cr4.smep */
4583 			if (cr4_smep)
4584 				smepf = (pfec & PFERR_FETCH_MASK) ? kf : 0;
4585 
4586 			/*
4587 			 * SMAP:kernel-mode data accesses from user-mode
4588 			 * mappings should fault. A fault is considered
4589 			 * as a SMAP violation if all of the following
4590 			 * conditions are true:
4591 			 *   - X86_CR4_SMAP is set in CR4
4592 			 *   - A user page is accessed
4593 			 *   - The access is not a fetch
4594 			 *   - Page fault in kernel mode
4595 			 *   - if CPL = 3 or X86_EFLAGS_AC is clear
4596 			 *
4597 			 * Here, we cover the first three conditions.
4598 			 * The fourth is computed dynamically in permission_fault();
4599 			 * PFERR_RSVD_MASK bit will be set in PFEC if the access is
4600 			 * *not* subject to SMAP restrictions.
4601 			 */
4602 			if (cr4_smap)
4603 				smapf = (pfec & (PFERR_RSVD_MASK|PFERR_FETCH_MASK)) ? 0 : kf;
4604 		}
4605 
4606 		mmu->permissions[byte] = ff | uf | wf | smepf | smapf;
4607 	}
4608 }
4609 
4610 /*
4611 * PKU is an additional mechanism by which the paging controls access to
4612 * user-mode addresses based on the value in the PKRU register.  Protection
4613 * key violations are reported through a bit in the page fault error code.
4614 * Unlike other bits of the error code, the PK bit is not known at the
4615 * call site of e.g. gva_to_gpa; it must be computed directly in
4616 * permission_fault based on two bits of PKRU, on some machine state (CR4,
4617 * CR0, EFER, CPL), and on other bits of the error code and the page tables.
4618 *
4619 * In particular the following conditions come from the error code, the
4620 * page tables and the machine state:
4621 * - PK is always zero unless CR4.PKE=1 and EFER.LMA=1
4622 * - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch)
4623 * - PK is always zero if U=0 in the page tables
4624 * - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access.
4625 *
4626 * The PKRU bitmask caches the result of these four conditions.  The error
4627 * code (minus the P bit) and the page table's U bit form an index into the
4628 * PKRU bitmask.  Two bits of the PKRU bitmask are then extracted and ANDed
4629 * with the two bits of the PKRU register corresponding to the protection key.
4630 * For the first three conditions above the bits will be 00, thus masking
4631 * away both AD and WD.  For all reads or if the last condition holds, WD
4632 * only will be masked away.
4633 */
4634 static void update_pkru_bitmask(struct kvm_mmu *mmu)
4635 {
4636 	unsigned bit;
4637 	bool wp;
4638 
4639 	mmu->pkru_mask = 0;
4640 
4641 	if (!is_cr4_pke(mmu))
4642 		return;
4643 
4644 	wp = is_cr0_wp(mmu);
4645 
4646 	for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) {
4647 		unsigned pfec, pkey_bits;
4648 		bool check_pkey, check_write, ff, uf, wf, pte_user;
4649 
4650 		pfec = bit << 1;
4651 		ff = pfec & PFERR_FETCH_MASK;
4652 		uf = pfec & PFERR_USER_MASK;
4653 		wf = pfec & PFERR_WRITE_MASK;
4654 
4655 		/* PFEC.RSVD is replaced by ACC_USER_MASK. */
4656 		pte_user = pfec & PFERR_RSVD_MASK;
4657 
4658 		/*
4659 		 * Only need to check the access which is not an
4660 		 * instruction fetch and is to a user page.
4661 		 */
4662 		check_pkey = (!ff && pte_user);
4663 		/*
4664 		 * write access is controlled by PKRU if it is a
4665 		 * user access or CR0.WP = 1.
4666 		 */
4667 		check_write = check_pkey && wf && (uf || wp);
4668 
4669 		/* PKRU.AD stops both read and write access. */
4670 		pkey_bits = !!check_pkey;
4671 		/* PKRU.WD stops write access. */
4672 		pkey_bits |= (!!check_write) << 1;
4673 
4674 		mmu->pkru_mask |= (pkey_bits & 3) << pfec;
4675 	}
4676 }
4677 
4678 static void reset_guest_paging_metadata(struct kvm_vcpu *vcpu,
4679 					struct kvm_mmu *mmu)
4680 {
4681 	if (!is_cr0_pg(mmu))
4682 		return;
4683 
4684 	reset_rsvds_bits_mask(vcpu, mmu);
4685 	update_permission_bitmask(mmu, false);
4686 	update_pkru_bitmask(mmu);
4687 }
4688 
4689 static void paging64_init_context(struct kvm_mmu *context)
4690 {
4691 	context->page_fault = paging64_page_fault;
4692 	context->gva_to_gpa = paging64_gva_to_gpa;
4693 	context->sync_page = paging64_sync_page;
4694 	context->invlpg = paging64_invlpg;
4695 	context->direct_map = false;
4696 }
4697 
4698 static void paging32_init_context(struct kvm_mmu *context)
4699 {
4700 	context->page_fault = paging32_page_fault;
4701 	context->gva_to_gpa = paging32_gva_to_gpa;
4702 	context->sync_page = paging32_sync_page;
4703 	context->invlpg = paging32_invlpg;
4704 	context->direct_map = false;
4705 }
4706 
4707 static union kvm_mmu_extended_role kvm_calc_mmu_role_ext(struct kvm_vcpu *vcpu,
4708 							 struct kvm_mmu_role_regs *regs)
4709 {
4710 	union kvm_mmu_extended_role ext = {0};
4711 
4712 	if (____is_cr0_pg(regs)) {
4713 		ext.cr0_pg = 1;
4714 		ext.cr4_pae = ____is_cr4_pae(regs);
4715 		ext.cr4_smep = ____is_cr4_smep(regs);
4716 		ext.cr4_smap = ____is_cr4_smap(regs);
4717 		ext.cr4_pse = ____is_cr4_pse(regs);
4718 
4719 		/* PKEY and LA57 are active iff long mode is active. */
4720 		ext.cr4_pke = ____is_efer_lma(regs) && ____is_cr4_pke(regs);
4721 		ext.cr4_la57 = ____is_efer_lma(regs) && ____is_cr4_la57(regs);
4722 		ext.efer_lma = ____is_efer_lma(regs);
4723 	}
4724 
4725 	ext.valid = 1;
4726 
4727 	return ext;
4728 }
4729 
4730 static union kvm_mmu_role kvm_calc_mmu_role_common(struct kvm_vcpu *vcpu,
4731 						   struct kvm_mmu_role_regs *regs,
4732 						   bool base_only)
4733 {
4734 	union kvm_mmu_role role = {0};
4735 
4736 	role.base.access = ACC_ALL;
4737 	if (____is_cr0_pg(regs)) {
4738 		role.base.efer_nx = ____is_efer_nx(regs);
4739 		role.base.cr0_wp = ____is_cr0_wp(regs);
4740 	}
4741 	role.base.smm = is_smm(vcpu);
4742 	role.base.guest_mode = is_guest_mode(vcpu);
4743 
4744 	if (base_only)
4745 		return role;
4746 
4747 	role.ext = kvm_calc_mmu_role_ext(vcpu, regs);
4748 
4749 	return role;
4750 }
4751 
4752 static inline int kvm_mmu_get_tdp_level(struct kvm_vcpu *vcpu)
4753 {
4754 	/* tdp_root_level is architecture forced level, use it if nonzero */
4755 	if (tdp_root_level)
4756 		return tdp_root_level;
4757 
4758 	/* Use 5-level TDP if and only if it's useful/necessary. */
4759 	if (max_tdp_level == 5 && cpuid_maxphyaddr(vcpu) <= 48)
4760 		return 4;
4761 
4762 	return max_tdp_level;
4763 }
4764 
4765 static union kvm_mmu_role
4766 kvm_calc_tdp_mmu_root_page_role(struct kvm_vcpu *vcpu,
4767 				struct kvm_mmu_role_regs *regs, bool base_only)
4768 {
4769 	union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, regs, base_only);
4770 
4771 	role.base.ad_disabled = (shadow_accessed_mask == 0);
4772 	role.base.level = kvm_mmu_get_tdp_level(vcpu);
4773 	role.base.direct = true;
4774 	role.base.has_4_byte_gpte = false;
4775 
4776 	return role;
4777 }
4778 
4779 static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
4780 {
4781 	struct kvm_mmu *context = &vcpu->arch.root_mmu;
4782 	struct kvm_mmu_role_regs regs = vcpu_to_role_regs(vcpu);
4783 	union kvm_mmu_role new_role =
4784 		kvm_calc_tdp_mmu_root_page_role(vcpu, &regs, false);
4785 
4786 	if (new_role.as_u64 == context->mmu_role.as_u64)
4787 		return;
4788 
4789 	context->mmu_role.as_u64 = new_role.as_u64;
4790 	context->page_fault = kvm_tdp_page_fault;
4791 	context->sync_page = nonpaging_sync_page;
4792 	context->invlpg = NULL;
4793 	context->shadow_root_level = kvm_mmu_get_tdp_level(vcpu);
4794 	context->direct_map = true;
4795 	context->get_guest_pgd = get_cr3;
4796 	context->get_pdptr = kvm_pdptr_read;
4797 	context->inject_page_fault = kvm_inject_page_fault;
4798 	context->root_level = role_regs_to_root_level(&regs);
4799 
4800 	if (!is_cr0_pg(context))
4801 		context->gva_to_gpa = nonpaging_gva_to_gpa;
4802 	else if (is_cr4_pae(context))
4803 		context->gva_to_gpa = paging64_gva_to_gpa;
4804 	else
4805 		context->gva_to_gpa = paging32_gva_to_gpa;
4806 
4807 	reset_guest_paging_metadata(vcpu, context);
4808 	reset_tdp_shadow_zero_bits_mask(context);
4809 }
4810 
4811 static union kvm_mmu_role
4812 kvm_calc_shadow_root_page_role_common(struct kvm_vcpu *vcpu,
4813 				      struct kvm_mmu_role_regs *regs, bool base_only)
4814 {
4815 	union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, regs, base_only);
4816 
4817 	role.base.smep_andnot_wp = role.ext.cr4_smep && !____is_cr0_wp(regs);
4818 	role.base.smap_andnot_wp = role.ext.cr4_smap && !____is_cr0_wp(regs);
4819 	role.base.has_4_byte_gpte = ____is_cr0_pg(regs) && !____is_cr4_pae(regs);
4820 
4821 	return role;
4822 }
4823 
4824 static union kvm_mmu_role
4825 kvm_calc_shadow_mmu_root_page_role(struct kvm_vcpu *vcpu,
4826 				   struct kvm_mmu_role_regs *regs, bool base_only)
4827 {
4828 	union kvm_mmu_role role =
4829 		kvm_calc_shadow_root_page_role_common(vcpu, regs, base_only);
4830 
4831 	role.base.direct = !____is_cr0_pg(regs);
4832 
4833 	if (!____is_efer_lma(regs))
4834 		role.base.level = PT32E_ROOT_LEVEL;
4835 	else if (____is_cr4_la57(regs))
4836 		role.base.level = PT64_ROOT_5LEVEL;
4837 	else
4838 		role.base.level = PT64_ROOT_4LEVEL;
4839 
4840 	return role;
4841 }
4842 
4843 static void shadow_mmu_init_context(struct kvm_vcpu *vcpu, struct kvm_mmu *context,
4844 				    struct kvm_mmu_role_regs *regs,
4845 				    union kvm_mmu_role new_role)
4846 {
4847 	if (new_role.as_u64 == context->mmu_role.as_u64)
4848 		return;
4849 
4850 	context->mmu_role.as_u64 = new_role.as_u64;
4851 
4852 	if (!is_cr0_pg(context))
4853 		nonpaging_init_context(context);
4854 	else if (is_cr4_pae(context))
4855 		paging64_init_context(context);
4856 	else
4857 		paging32_init_context(context);
4858 	context->root_level = role_regs_to_root_level(regs);
4859 
4860 	reset_guest_paging_metadata(vcpu, context);
4861 	context->shadow_root_level = new_role.base.level;
4862 
4863 	reset_shadow_zero_bits_mask(vcpu, context);
4864 }
4865 
4866 static void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu,
4867 				struct kvm_mmu_role_regs *regs)
4868 {
4869 	struct kvm_mmu *context = &vcpu->arch.root_mmu;
4870 	union kvm_mmu_role new_role =
4871 		kvm_calc_shadow_mmu_root_page_role(vcpu, regs, false);
4872 
4873 	shadow_mmu_init_context(vcpu, context, regs, new_role);
4874 }
4875 
4876 static union kvm_mmu_role
4877 kvm_calc_shadow_npt_root_page_role(struct kvm_vcpu *vcpu,
4878 				   struct kvm_mmu_role_regs *regs)
4879 {
4880 	union kvm_mmu_role role =
4881 		kvm_calc_shadow_root_page_role_common(vcpu, regs, false);
4882 
4883 	role.base.direct = false;
4884 	role.base.level = kvm_mmu_get_tdp_level(vcpu);
4885 
4886 	return role;
4887 }
4888 
4889 void kvm_init_shadow_npt_mmu(struct kvm_vcpu *vcpu, unsigned long cr0,
4890 			     unsigned long cr4, u64 efer, gpa_t nested_cr3)
4891 {
4892 	struct kvm_mmu *context = &vcpu->arch.guest_mmu;
4893 	struct kvm_mmu_role_regs regs = {
4894 		.cr0 = cr0,
4895 		.cr4 = cr4 & ~X86_CR4_PKE,
4896 		.efer = efer,
4897 	};
4898 	union kvm_mmu_role new_role;
4899 
4900 	new_role = kvm_calc_shadow_npt_root_page_role(vcpu, &regs);
4901 
4902 	shadow_mmu_init_context(vcpu, context, &regs, new_role);
4903 	kvm_mmu_new_pgd(vcpu, nested_cr3);
4904 }
4905 EXPORT_SYMBOL_GPL(kvm_init_shadow_npt_mmu);
4906 
4907 static union kvm_mmu_role
4908 kvm_calc_shadow_ept_root_page_role(struct kvm_vcpu *vcpu, bool accessed_dirty,
4909 				   bool execonly, u8 level)
4910 {
4911 	union kvm_mmu_role role = {0};
4912 
4913 	/* SMM flag is inherited from root_mmu */
4914 	role.base.smm = vcpu->arch.root_mmu.mmu_role.base.smm;
4915 
4916 	role.base.level = level;
4917 	role.base.has_4_byte_gpte = false;
4918 	role.base.direct = false;
4919 	role.base.ad_disabled = !accessed_dirty;
4920 	role.base.guest_mode = true;
4921 	role.base.access = ACC_ALL;
4922 
4923 	/* EPT, and thus nested EPT, does not consume CR0, CR4, nor EFER. */
4924 	role.ext.word = 0;
4925 	role.ext.execonly = execonly;
4926 	role.ext.valid = 1;
4927 
4928 	return role;
4929 }
4930 
4931 void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly,
4932 			     int huge_page_level, bool accessed_dirty,
4933 			     gpa_t new_eptp)
4934 {
4935 	struct kvm_mmu *context = &vcpu->arch.guest_mmu;
4936 	u8 level = vmx_eptp_page_walk_level(new_eptp);
4937 	union kvm_mmu_role new_role =
4938 		kvm_calc_shadow_ept_root_page_role(vcpu, accessed_dirty,
4939 						   execonly, level);
4940 
4941 	if (new_role.as_u64 != context->mmu_role.as_u64) {
4942 		context->mmu_role.as_u64 = new_role.as_u64;
4943 
4944 		context->shadow_root_level = level;
4945 
4946 		context->ept_ad = accessed_dirty;
4947 		context->page_fault = ept_page_fault;
4948 		context->gva_to_gpa = ept_gva_to_gpa;
4949 		context->sync_page = ept_sync_page;
4950 		context->invlpg = ept_invlpg;
4951 		context->root_level = level;
4952 		context->direct_map = false;
4953 		update_permission_bitmask(context, true);
4954 		context->pkru_mask = 0;
4955 		reset_rsvds_bits_mask_ept(vcpu, context, execonly, huge_page_level);
4956 		reset_ept_shadow_zero_bits_mask(context, execonly);
4957 	}
4958 
4959 	kvm_mmu_new_pgd(vcpu, new_eptp);
4960 }
4961 EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);
4962 
4963 static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
4964 {
4965 	struct kvm_mmu *context = &vcpu->arch.root_mmu;
4966 	struct kvm_mmu_role_regs regs = vcpu_to_role_regs(vcpu);
4967 
4968 	kvm_init_shadow_mmu(vcpu, &regs);
4969 
4970 	context->get_guest_pgd     = get_cr3;
4971 	context->get_pdptr         = kvm_pdptr_read;
4972 	context->inject_page_fault = kvm_inject_page_fault;
4973 }
4974 
4975 static union kvm_mmu_role
4976 kvm_calc_nested_mmu_role(struct kvm_vcpu *vcpu, struct kvm_mmu_role_regs *regs)
4977 {
4978 	union kvm_mmu_role role;
4979 
4980 	role = kvm_calc_shadow_root_page_role_common(vcpu, regs, false);
4981 
4982 	/*
4983 	 * Nested MMUs are used only for walking L2's gva->gpa, they never have
4984 	 * shadow pages of their own and so "direct" has no meaning.   Set it
4985 	 * to "true" to try to detect bogus usage of the nested MMU.
4986 	 */
4987 	role.base.direct = true;
4988 	role.base.level = role_regs_to_root_level(regs);
4989 	return role;
4990 }
4991 
4992 static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
4993 {
4994 	struct kvm_mmu_role_regs regs = vcpu_to_role_regs(vcpu);
4995 	union kvm_mmu_role new_role = kvm_calc_nested_mmu_role(vcpu, &regs);
4996 	struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
4997 
4998 	if (new_role.as_u64 == g_context->mmu_role.as_u64)
4999 		return;
5000 
5001 	g_context->mmu_role.as_u64 = new_role.as_u64;
5002 	g_context->get_guest_pgd     = get_cr3;
5003 	g_context->get_pdptr         = kvm_pdptr_read;
5004 	g_context->inject_page_fault = kvm_inject_page_fault;
5005 	g_context->root_level        = new_role.base.level;
5006 
5007 	/*
5008 	 * L2 page tables are never shadowed, so there is no need to sync
5009 	 * SPTEs.
5010 	 */
5011 	g_context->invlpg            = NULL;
5012 
5013 	/*
5014 	 * Note that arch.mmu->gva_to_gpa translates l2_gpa to l1_gpa using
5015 	 * L1's nested page tables (e.g. EPT12). The nested translation
5016 	 * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using
5017 	 * L2's page tables as the first level of translation and L1's
5018 	 * nested page tables as the second level of translation. Basically
5019 	 * the gva_to_gpa functions between mmu and nested_mmu are swapped.
5020 	 */
5021 	if (!is_paging(vcpu))
5022 		g_context->gva_to_gpa = nonpaging_gva_to_gpa;
5023 	else if (is_long_mode(vcpu))
5024 		g_context->gva_to_gpa = paging64_gva_to_gpa;
5025 	else if (is_pae(vcpu))
5026 		g_context->gva_to_gpa = paging64_gva_to_gpa;
5027 	else
5028 		g_context->gva_to_gpa = paging32_gva_to_gpa;
5029 
5030 	reset_guest_paging_metadata(vcpu, g_context);
5031 }
5032 
5033 void kvm_init_mmu(struct kvm_vcpu *vcpu)
5034 {
5035 	if (mmu_is_nested(vcpu))
5036 		init_kvm_nested_mmu(vcpu);
5037 	else if (tdp_enabled)
5038 		init_kvm_tdp_mmu(vcpu);
5039 	else
5040 		init_kvm_softmmu(vcpu);
5041 }
5042 EXPORT_SYMBOL_GPL(kvm_init_mmu);
5043 
5044 void kvm_mmu_after_set_cpuid(struct kvm_vcpu *vcpu)
5045 {
5046 	/*
5047 	 * Invalidate all MMU roles to force them to reinitialize as CPUID
5048 	 * information is factored into reserved bit calculations.
5049 	 *
5050 	 * Correctly handling multiple vCPU models with respect to paging and
5051 	 * physical address properties) in a single VM would require tracking
5052 	 * all relevant CPUID information in kvm_mmu_page_role. That is very
5053 	 * undesirable as it would increase the memory requirements for
5054 	 * gfn_track (see struct kvm_mmu_page_role comments).  For now that
5055 	 * problem is swept under the rug; KVM's CPUID API is horrific and
5056 	 * it's all but impossible to solve it without introducing a new API.
5057 	 */
5058 	vcpu->arch.root_mmu.mmu_role.ext.valid = 0;
5059 	vcpu->arch.guest_mmu.mmu_role.ext.valid = 0;
5060 	vcpu->arch.nested_mmu.mmu_role.ext.valid = 0;
5061 	kvm_mmu_reset_context(vcpu);
5062 
5063 	/*
5064 	 * Changing guest CPUID after KVM_RUN is forbidden, see the comment in
5065 	 * kvm_arch_vcpu_ioctl().
5066 	 */
5067 	KVM_BUG_ON(vcpu->arch.last_vmentry_cpu != -1, vcpu->kvm);
5068 }
5069 
5070 void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
5071 {
5072 	kvm_mmu_unload(vcpu);
5073 	kvm_init_mmu(vcpu);
5074 }
5075 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
5076 
5077 int kvm_mmu_load(struct kvm_vcpu *vcpu)
5078 {
5079 	int r;
5080 
5081 	r = mmu_topup_memory_caches(vcpu, !vcpu->arch.mmu->direct_map);
5082 	if (r)
5083 		goto out;
5084 	r = mmu_alloc_special_roots(vcpu);
5085 	if (r)
5086 		goto out;
5087 	if (vcpu->arch.mmu->direct_map)
5088 		r = mmu_alloc_direct_roots(vcpu);
5089 	else
5090 		r = mmu_alloc_shadow_roots(vcpu);
5091 	if (r)
5092 		goto out;
5093 
5094 	kvm_mmu_sync_roots(vcpu);
5095 
5096 	kvm_mmu_load_pgd(vcpu);
5097 
5098 	/*
5099 	 * Flush any TLB entries for the new root, the provenance of the root
5100 	 * is unknown.  Even if KVM ensures there are no stale TLB entries
5101 	 * for a freed root, in theory another hypervisor could have left
5102 	 * stale entries.  Flushing on alloc also allows KVM to skip the TLB
5103 	 * flush when freeing a root (see kvm_tdp_mmu_put_root()).
5104 	 */
5105 	static_call(kvm_x86_flush_tlb_current)(vcpu);
5106 out:
5107 	return r;
5108 }
5109 
5110 void kvm_mmu_unload(struct kvm_vcpu *vcpu)
5111 {
5112 	struct kvm *kvm = vcpu->kvm;
5113 
5114 	kvm_mmu_free_roots(kvm, &vcpu->arch.root_mmu, KVM_MMU_ROOTS_ALL);
5115 	WARN_ON(VALID_PAGE(vcpu->arch.root_mmu.root.hpa));
5116 	kvm_mmu_free_roots(kvm, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
5117 	WARN_ON(VALID_PAGE(vcpu->arch.guest_mmu.root.hpa));
5118 	vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
5119 }
5120 
5121 static bool is_obsolete_root(struct kvm *kvm, hpa_t root_hpa)
5122 {
5123 	struct kvm_mmu_page *sp;
5124 
5125 	if (!VALID_PAGE(root_hpa))
5126 		return false;
5127 
5128 	/*
5129 	 * When freeing obsolete roots, treat roots as obsolete if they don't
5130 	 * have an associated shadow page.  This does mean KVM will get false
5131 	 * positives and free roots that don't strictly need to be freed, but
5132 	 * such false positives are relatively rare:
5133 	 *
5134 	 *  (a) only PAE paging and nested NPT has roots without shadow pages
5135 	 *  (b) remote reloads due to a memslot update obsoletes _all_ roots
5136 	 *  (c) KVM doesn't track previous roots for PAE paging, and the guest
5137 	 *      is unlikely to zap an in-use PGD.
5138 	 */
5139 	sp = to_shadow_page(root_hpa);
5140 	return !sp || is_obsolete_sp(kvm, sp);
5141 }
5142 
5143 static void __kvm_mmu_free_obsolete_roots(struct kvm *kvm, struct kvm_mmu *mmu)
5144 {
5145 	unsigned long roots_to_free = 0;
5146 	int i;
5147 
5148 	if (is_obsolete_root(kvm, mmu->root.hpa))
5149 		roots_to_free |= KVM_MMU_ROOT_CURRENT;
5150 
5151 	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
5152 		if (is_obsolete_root(kvm, mmu->root.hpa))
5153 			roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
5154 	}
5155 
5156 	if (roots_to_free)
5157 		kvm_mmu_free_roots(kvm, mmu, roots_to_free);
5158 }
5159 
5160 void kvm_mmu_free_obsolete_roots(struct kvm_vcpu *vcpu)
5161 {
5162 	__kvm_mmu_free_obsolete_roots(vcpu->kvm, &vcpu->arch.root_mmu);
5163 	__kvm_mmu_free_obsolete_roots(vcpu->kvm, &vcpu->arch.guest_mmu);
5164 }
5165 
5166 static bool need_remote_flush(u64 old, u64 new)
5167 {
5168 	if (!is_shadow_present_pte(old))
5169 		return false;
5170 	if (!is_shadow_present_pte(new))
5171 		return true;
5172 	if ((old ^ new) & PT64_BASE_ADDR_MASK)
5173 		return true;
5174 	old ^= shadow_nx_mask;
5175 	new ^= shadow_nx_mask;
5176 	return (old & ~new & PT64_PERM_MASK) != 0;
5177 }
5178 
5179 static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
5180 				    int *bytes)
5181 {
5182 	u64 gentry = 0;
5183 	int r;
5184 
5185 	/*
5186 	 * Assume that the pte write on a page table of the same type
5187 	 * as the current vcpu paging mode since we update the sptes only
5188 	 * when they have the same mode.
5189 	 */
5190 	if (is_pae(vcpu) && *bytes == 4) {
5191 		/* Handle a 32-bit guest writing two halves of a 64-bit gpte */
5192 		*gpa &= ~(gpa_t)7;
5193 		*bytes = 8;
5194 	}
5195 
5196 	if (*bytes == 4 || *bytes == 8) {
5197 		r = kvm_vcpu_read_guest_atomic(vcpu, *gpa, &gentry, *bytes);
5198 		if (r)
5199 			gentry = 0;
5200 	}
5201 
5202 	return gentry;
5203 }
5204 
5205 /*
5206  * If we're seeing too many writes to a page, it may no longer be a page table,
5207  * or we may be forking, in which case it is better to unmap the page.
5208  */
5209 static bool detect_write_flooding(struct kvm_mmu_page *sp)
5210 {
5211 	/*
5212 	 * Skip write-flooding detected for the sp whose level is 1, because
5213 	 * it can become unsync, then the guest page is not write-protected.
5214 	 */
5215 	if (sp->role.level == PG_LEVEL_4K)
5216 		return false;
5217 
5218 	atomic_inc(&sp->write_flooding_count);
5219 	return atomic_read(&sp->write_flooding_count) >= 3;
5220 }
5221 
5222 /*
5223  * Misaligned accesses are too much trouble to fix up; also, they usually
5224  * indicate a page is not used as a page table.
5225  */
5226 static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
5227 				    int bytes)
5228 {
5229 	unsigned offset, pte_size, misaligned;
5230 
5231 	pgprintk("misaligned: gpa %llx bytes %d role %x\n",
5232 		 gpa, bytes, sp->role.word);
5233 
5234 	offset = offset_in_page(gpa);
5235 	pte_size = sp->role.has_4_byte_gpte ? 4 : 8;
5236 
5237 	/*
5238 	 * Sometimes, the OS only writes the last one bytes to update status
5239 	 * bits, for example, in linux, andb instruction is used in clear_bit().
5240 	 */
5241 	if (!(offset & (pte_size - 1)) && bytes == 1)
5242 		return false;
5243 
5244 	misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
5245 	misaligned |= bytes < 4;
5246 
5247 	return misaligned;
5248 }
5249 
5250 static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
5251 {
5252 	unsigned page_offset, quadrant;
5253 	u64 *spte;
5254 	int level;
5255 
5256 	page_offset = offset_in_page(gpa);
5257 	level = sp->role.level;
5258 	*nspte = 1;
5259 	if (sp->role.has_4_byte_gpte) {
5260 		page_offset <<= 1;	/* 32->64 */
5261 		/*
5262 		 * A 32-bit pde maps 4MB while the shadow pdes map
5263 		 * only 2MB.  So we need to double the offset again
5264 		 * and zap two pdes instead of one.
5265 		 */
5266 		if (level == PT32_ROOT_LEVEL) {
5267 			page_offset &= ~7; /* kill rounding error */
5268 			page_offset <<= 1;
5269 			*nspte = 2;
5270 		}
5271 		quadrant = page_offset >> PAGE_SHIFT;
5272 		page_offset &= ~PAGE_MASK;
5273 		if (quadrant != sp->role.quadrant)
5274 			return NULL;
5275 	}
5276 
5277 	spte = &sp->spt[page_offset / sizeof(*spte)];
5278 	return spte;
5279 }
5280 
5281 static void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
5282 			      const u8 *new, int bytes,
5283 			      struct kvm_page_track_notifier_node *node)
5284 {
5285 	gfn_t gfn = gpa >> PAGE_SHIFT;
5286 	struct kvm_mmu_page *sp;
5287 	LIST_HEAD(invalid_list);
5288 	u64 entry, gentry, *spte;
5289 	int npte;
5290 	bool flush = false;
5291 
5292 	/*
5293 	 * If we don't have indirect shadow pages, it means no page is
5294 	 * write-protected, so we can exit simply.
5295 	 */
5296 	if (!READ_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
5297 		return;
5298 
5299 	pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
5300 
5301 	/*
5302 	 * No need to care whether allocation memory is successful
5303 	 * or not since pte prefetch is skipped if it does not have
5304 	 * enough objects in the cache.
5305 	 */
5306 	mmu_topup_memory_caches(vcpu, true);
5307 
5308 	write_lock(&vcpu->kvm->mmu_lock);
5309 
5310 	gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, &bytes);
5311 
5312 	++vcpu->kvm->stat.mmu_pte_write;
5313 
5314 	for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
5315 		if (detect_write_misaligned(sp, gpa, bytes) ||
5316 		      detect_write_flooding(sp)) {
5317 			kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
5318 			++vcpu->kvm->stat.mmu_flooded;
5319 			continue;
5320 		}
5321 
5322 		spte = get_written_sptes(sp, gpa, &npte);
5323 		if (!spte)
5324 			continue;
5325 
5326 		while (npte--) {
5327 			entry = *spte;
5328 			mmu_page_zap_pte(vcpu->kvm, sp, spte, NULL);
5329 			if (gentry && sp->role.level != PG_LEVEL_4K)
5330 				++vcpu->kvm->stat.mmu_pde_zapped;
5331 			if (need_remote_flush(entry, *spte))
5332 				flush = true;
5333 			++spte;
5334 		}
5335 	}
5336 	kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, flush);
5337 	write_unlock(&vcpu->kvm->mmu_lock);
5338 }
5339 
5340 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 error_code,
5341 		       void *insn, int insn_len)
5342 {
5343 	int r, emulation_type = EMULTYPE_PF;
5344 	bool direct = vcpu->arch.mmu->direct_map;
5345 
5346 	if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root.hpa)))
5347 		return RET_PF_RETRY;
5348 
5349 	r = RET_PF_INVALID;
5350 	if (unlikely(error_code & PFERR_RSVD_MASK)) {
5351 		r = handle_mmio_page_fault(vcpu, cr2_or_gpa, direct);
5352 		if (r == RET_PF_EMULATE)
5353 			goto emulate;
5354 	}
5355 
5356 	if (r == RET_PF_INVALID) {
5357 		r = kvm_mmu_do_page_fault(vcpu, cr2_or_gpa,
5358 					  lower_32_bits(error_code), false);
5359 		if (KVM_BUG_ON(r == RET_PF_INVALID, vcpu->kvm))
5360 			return -EIO;
5361 	}
5362 
5363 	if (r < 0)
5364 		return r;
5365 	if (r != RET_PF_EMULATE)
5366 		return 1;
5367 
5368 	/*
5369 	 * Before emulating the instruction, check if the error code
5370 	 * was due to a RO violation while translating the guest page.
5371 	 * This can occur when using nested virtualization with nested
5372 	 * paging in both guests. If true, we simply unprotect the page
5373 	 * and resume the guest.
5374 	 */
5375 	if (vcpu->arch.mmu->direct_map &&
5376 	    (error_code & PFERR_NESTED_GUEST_PAGE) == PFERR_NESTED_GUEST_PAGE) {
5377 		kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(cr2_or_gpa));
5378 		return 1;
5379 	}
5380 
5381 	/*
5382 	 * vcpu->arch.mmu.page_fault returned RET_PF_EMULATE, but we can still
5383 	 * optimistically try to just unprotect the page and let the processor
5384 	 * re-execute the instruction that caused the page fault.  Do not allow
5385 	 * retrying MMIO emulation, as it's not only pointless but could also
5386 	 * cause us to enter an infinite loop because the processor will keep
5387 	 * faulting on the non-existent MMIO address.  Retrying an instruction
5388 	 * from a nested guest is also pointless and dangerous as we are only
5389 	 * explicitly shadowing L1's page tables, i.e. unprotecting something
5390 	 * for L1 isn't going to magically fix whatever issue cause L2 to fail.
5391 	 */
5392 	if (!mmio_info_in_cache(vcpu, cr2_or_gpa, direct) && !is_guest_mode(vcpu))
5393 		emulation_type |= EMULTYPE_ALLOW_RETRY_PF;
5394 emulate:
5395 	return x86_emulate_instruction(vcpu, cr2_or_gpa, emulation_type, insn,
5396 				       insn_len);
5397 }
5398 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
5399 
5400 void kvm_mmu_invalidate_gva(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
5401 			    gva_t gva, hpa_t root_hpa)
5402 {
5403 	int i;
5404 
5405 	/* It's actually a GPA for vcpu->arch.guest_mmu.  */
5406 	if (mmu != &vcpu->arch.guest_mmu) {
5407 		/* INVLPG on a non-canonical address is a NOP according to the SDM.  */
5408 		if (is_noncanonical_address(gva, vcpu))
5409 			return;
5410 
5411 		static_call(kvm_x86_flush_tlb_gva)(vcpu, gva);
5412 	}
5413 
5414 	if (!mmu->invlpg)
5415 		return;
5416 
5417 	if (root_hpa == INVALID_PAGE) {
5418 		mmu->invlpg(vcpu, gva, mmu->root.hpa);
5419 
5420 		/*
5421 		 * INVLPG is required to invalidate any global mappings for the VA,
5422 		 * irrespective of PCID. Since it would take us roughly similar amount
5423 		 * of work to determine whether any of the prev_root mappings of the VA
5424 		 * is marked global, or to just sync it blindly, so we might as well
5425 		 * just always sync it.
5426 		 *
5427 		 * Mappings not reachable via the current cr3 or the prev_roots will be
5428 		 * synced when switching to that cr3, so nothing needs to be done here
5429 		 * for them.
5430 		 */
5431 		for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5432 			if (VALID_PAGE(mmu->prev_roots[i].hpa))
5433 				mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
5434 	} else {
5435 		mmu->invlpg(vcpu, gva, root_hpa);
5436 	}
5437 }
5438 
5439 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
5440 {
5441 	kvm_mmu_invalidate_gva(vcpu, vcpu->arch.walk_mmu, gva, INVALID_PAGE);
5442 	++vcpu->stat.invlpg;
5443 }
5444 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
5445 
5446 
5447 void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid)
5448 {
5449 	struct kvm_mmu *mmu = vcpu->arch.mmu;
5450 	bool tlb_flush = false;
5451 	uint i;
5452 
5453 	if (pcid == kvm_get_active_pcid(vcpu)) {
5454 		mmu->invlpg(vcpu, gva, mmu->root.hpa);
5455 		tlb_flush = true;
5456 	}
5457 
5458 	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
5459 		if (VALID_PAGE(mmu->prev_roots[i].hpa) &&
5460 		    pcid == kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd)) {
5461 			mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
5462 			tlb_flush = true;
5463 		}
5464 	}
5465 
5466 	if (tlb_flush)
5467 		static_call(kvm_x86_flush_tlb_gva)(vcpu, gva);
5468 
5469 	++vcpu->stat.invlpg;
5470 
5471 	/*
5472 	 * Mappings not reachable via the current cr3 or the prev_roots will be
5473 	 * synced when switching to that cr3, so nothing needs to be done here
5474 	 * for them.
5475 	 */
5476 }
5477 
5478 void kvm_configure_mmu(bool enable_tdp, int tdp_forced_root_level,
5479 		       int tdp_max_root_level, int tdp_huge_page_level)
5480 {
5481 	tdp_enabled = enable_tdp;
5482 	tdp_root_level = tdp_forced_root_level;
5483 	max_tdp_level = tdp_max_root_level;
5484 
5485 	/*
5486 	 * max_huge_page_level reflects KVM's MMU capabilities irrespective
5487 	 * of kernel support, e.g. KVM may be capable of using 1GB pages when
5488 	 * the kernel is not.  But, KVM never creates a page size greater than
5489 	 * what is used by the kernel for any given HVA, i.e. the kernel's
5490 	 * capabilities are ultimately consulted by kvm_mmu_hugepage_adjust().
5491 	 */
5492 	if (tdp_enabled)
5493 		max_huge_page_level = tdp_huge_page_level;
5494 	else if (boot_cpu_has(X86_FEATURE_GBPAGES))
5495 		max_huge_page_level = PG_LEVEL_1G;
5496 	else
5497 		max_huge_page_level = PG_LEVEL_2M;
5498 }
5499 EXPORT_SYMBOL_GPL(kvm_configure_mmu);
5500 
5501 /* The return value indicates if tlb flush on all vcpus is needed. */
5502 typedef bool (*slot_level_handler) (struct kvm *kvm,
5503 				    struct kvm_rmap_head *rmap_head,
5504 				    const struct kvm_memory_slot *slot);
5505 
5506 /* The caller should hold mmu-lock before calling this function. */
5507 static __always_inline bool
5508 slot_handle_level_range(struct kvm *kvm, const struct kvm_memory_slot *memslot,
5509 			slot_level_handler fn, int start_level, int end_level,
5510 			gfn_t start_gfn, gfn_t end_gfn, bool flush_on_yield,
5511 			bool flush)
5512 {
5513 	struct slot_rmap_walk_iterator iterator;
5514 
5515 	for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn,
5516 			end_gfn, &iterator) {
5517 		if (iterator.rmap)
5518 			flush |= fn(kvm, iterator.rmap, memslot);
5519 
5520 		if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) {
5521 			if (flush && flush_on_yield) {
5522 				kvm_flush_remote_tlbs_with_address(kvm,
5523 						start_gfn,
5524 						iterator.gfn - start_gfn + 1);
5525 				flush = false;
5526 			}
5527 			cond_resched_rwlock_write(&kvm->mmu_lock);
5528 		}
5529 	}
5530 
5531 	return flush;
5532 }
5533 
5534 static __always_inline bool
5535 slot_handle_level(struct kvm *kvm, const struct kvm_memory_slot *memslot,
5536 		  slot_level_handler fn, int start_level, int end_level,
5537 		  bool flush_on_yield)
5538 {
5539 	return slot_handle_level_range(kvm, memslot, fn, start_level,
5540 			end_level, memslot->base_gfn,
5541 			memslot->base_gfn + memslot->npages - 1,
5542 			flush_on_yield, false);
5543 }
5544 
5545 static __always_inline bool
5546 slot_handle_level_4k(struct kvm *kvm, const struct kvm_memory_slot *memslot,
5547 		     slot_level_handler fn, bool flush_on_yield)
5548 {
5549 	return slot_handle_level(kvm, memslot, fn, PG_LEVEL_4K,
5550 				 PG_LEVEL_4K, flush_on_yield);
5551 }
5552 
5553 static void free_mmu_pages(struct kvm_mmu *mmu)
5554 {
5555 	if (!tdp_enabled && mmu->pae_root)
5556 		set_memory_encrypted((unsigned long)mmu->pae_root, 1);
5557 	free_page((unsigned long)mmu->pae_root);
5558 	free_page((unsigned long)mmu->pml4_root);
5559 	free_page((unsigned long)mmu->pml5_root);
5560 }
5561 
5562 static int __kvm_mmu_create(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
5563 {
5564 	struct page *page;
5565 	int i;
5566 
5567 	mmu->root.hpa = INVALID_PAGE;
5568 	mmu->root.pgd = 0;
5569 	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5570 		mmu->prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
5571 
5572 	/* vcpu->arch.guest_mmu isn't used when !tdp_enabled. */
5573 	if (!tdp_enabled && mmu == &vcpu->arch.guest_mmu)
5574 		return 0;
5575 
5576 	/*
5577 	 * When using PAE paging, the four PDPTEs are treated as 'root' pages,
5578 	 * while the PDP table is a per-vCPU construct that's allocated at MMU
5579 	 * creation.  When emulating 32-bit mode, cr3 is only 32 bits even on
5580 	 * x86_64.  Therefore we need to allocate the PDP table in the first
5581 	 * 4GB of memory, which happens to fit the DMA32 zone.  TDP paging
5582 	 * generally doesn't use PAE paging and can skip allocating the PDP
5583 	 * table.  The main exception, handled here, is SVM's 32-bit NPT.  The
5584 	 * other exception is for shadowing L1's 32-bit or PAE NPT on 64-bit
5585 	 * KVM; that horror is handled on-demand by mmu_alloc_special_roots().
5586 	 */
5587 	if (tdp_enabled && kvm_mmu_get_tdp_level(vcpu) > PT32E_ROOT_LEVEL)
5588 		return 0;
5589 
5590 	page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_DMA32);
5591 	if (!page)
5592 		return -ENOMEM;
5593 
5594 	mmu->pae_root = page_address(page);
5595 
5596 	/*
5597 	 * CR3 is only 32 bits when PAE paging is used, thus it's impossible to
5598 	 * get the CPU to treat the PDPTEs as encrypted.  Decrypt the page so
5599 	 * that KVM's writes and the CPU's reads get along.  Note, this is
5600 	 * only necessary when using shadow paging, as 64-bit NPT can get at
5601 	 * the C-bit even when shadowing 32-bit NPT, and SME isn't supported
5602 	 * by 32-bit kernels (when KVM itself uses 32-bit NPT).
5603 	 */
5604 	if (!tdp_enabled)
5605 		set_memory_decrypted((unsigned long)mmu->pae_root, 1);
5606 	else
5607 		WARN_ON_ONCE(shadow_me_mask);
5608 
5609 	for (i = 0; i < 4; ++i)
5610 		mmu->pae_root[i] = INVALID_PAE_ROOT;
5611 
5612 	return 0;
5613 }
5614 
5615 int kvm_mmu_create(struct kvm_vcpu *vcpu)
5616 {
5617 	int ret;
5618 
5619 	vcpu->arch.mmu_pte_list_desc_cache.kmem_cache = pte_list_desc_cache;
5620 	vcpu->arch.mmu_pte_list_desc_cache.gfp_zero = __GFP_ZERO;
5621 
5622 	vcpu->arch.mmu_page_header_cache.kmem_cache = mmu_page_header_cache;
5623 	vcpu->arch.mmu_page_header_cache.gfp_zero = __GFP_ZERO;
5624 
5625 	vcpu->arch.mmu_shadow_page_cache.gfp_zero = __GFP_ZERO;
5626 
5627 	vcpu->arch.mmu = &vcpu->arch.root_mmu;
5628 	vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
5629 
5630 	ret = __kvm_mmu_create(vcpu, &vcpu->arch.guest_mmu);
5631 	if (ret)
5632 		return ret;
5633 
5634 	ret = __kvm_mmu_create(vcpu, &vcpu->arch.root_mmu);
5635 	if (ret)
5636 		goto fail_allocate_root;
5637 
5638 	return ret;
5639  fail_allocate_root:
5640 	free_mmu_pages(&vcpu->arch.guest_mmu);
5641 	return ret;
5642 }
5643 
5644 #define BATCH_ZAP_PAGES	10
5645 static void kvm_zap_obsolete_pages(struct kvm *kvm)
5646 {
5647 	struct kvm_mmu_page *sp, *node;
5648 	int nr_zapped, batch = 0;
5649 
5650 restart:
5651 	list_for_each_entry_safe_reverse(sp, node,
5652 	      &kvm->arch.active_mmu_pages, link) {
5653 		/*
5654 		 * No obsolete valid page exists before a newly created page
5655 		 * since active_mmu_pages is a FIFO list.
5656 		 */
5657 		if (!is_obsolete_sp(kvm, sp))
5658 			break;
5659 
5660 		/*
5661 		 * Invalid pages should never land back on the list of active
5662 		 * pages.  Skip the bogus page, otherwise we'll get stuck in an
5663 		 * infinite loop if the page gets put back on the list (again).
5664 		 */
5665 		if (WARN_ON(sp->role.invalid))
5666 			continue;
5667 
5668 		/*
5669 		 * No need to flush the TLB since we're only zapping shadow
5670 		 * pages with an obsolete generation number and all vCPUS have
5671 		 * loaded a new root, i.e. the shadow pages being zapped cannot
5672 		 * be in active use by the guest.
5673 		 */
5674 		if (batch >= BATCH_ZAP_PAGES &&
5675 		    cond_resched_rwlock_write(&kvm->mmu_lock)) {
5676 			batch = 0;
5677 			goto restart;
5678 		}
5679 
5680 		if (__kvm_mmu_prepare_zap_page(kvm, sp,
5681 				&kvm->arch.zapped_obsolete_pages, &nr_zapped)) {
5682 			batch += nr_zapped;
5683 			goto restart;
5684 		}
5685 	}
5686 
5687 	/*
5688 	 * Kick all vCPUs (via remote TLB flush) before freeing the page tables
5689 	 * to ensure KVM is not in the middle of a lockless shadow page table
5690 	 * walk, which may reference the pages.  The remote TLB flush itself is
5691 	 * not required and is simply a convenient way to kick vCPUs as needed.
5692 	 * KVM performs a local TLB flush when allocating a new root (see
5693 	 * kvm_mmu_load()), and the reload in the caller ensure no vCPUs are
5694 	 * running with an obsolete MMU.
5695 	 */
5696 	kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
5697 }
5698 
5699 /*
5700  * Fast invalidate all shadow pages and use lock-break technique
5701  * to zap obsolete pages.
5702  *
5703  * It's required when memslot is being deleted or VM is being
5704  * destroyed, in these cases, we should ensure that KVM MMU does
5705  * not use any resource of the being-deleted slot or all slots
5706  * after calling the function.
5707  */
5708 static void kvm_mmu_zap_all_fast(struct kvm *kvm)
5709 {
5710 	lockdep_assert_held(&kvm->slots_lock);
5711 
5712 	write_lock(&kvm->mmu_lock);
5713 	trace_kvm_mmu_zap_all_fast(kvm);
5714 
5715 	/*
5716 	 * Toggle mmu_valid_gen between '0' and '1'.  Because slots_lock is
5717 	 * held for the entire duration of zapping obsolete pages, it's
5718 	 * impossible for there to be multiple invalid generations associated
5719 	 * with *valid* shadow pages at any given time, i.e. there is exactly
5720 	 * one valid generation and (at most) one invalid generation.
5721 	 */
5722 	kvm->arch.mmu_valid_gen = kvm->arch.mmu_valid_gen ? 0 : 1;
5723 
5724 	/*
5725 	 * In order to ensure all vCPUs drop their soon-to-be invalid roots,
5726 	 * invalidating TDP MMU roots must be done while holding mmu_lock for
5727 	 * write and in the same critical section as making the reload request,
5728 	 * e.g. before kvm_zap_obsolete_pages() could drop mmu_lock and yield.
5729 	 */
5730 	if (is_tdp_mmu_enabled(kvm))
5731 		kvm_tdp_mmu_invalidate_all_roots(kvm);
5732 
5733 	/*
5734 	 * Notify all vcpus to reload its shadow page table and flush TLB.
5735 	 * Then all vcpus will switch to new shadow page table with the new
5736 	 * mmu_valid_gen.
5737 	 *
5738 	 * Note: we need to do this under the protection of mmu_lock,
5739 	 * otherwise, vcpu would purge shadow page but miss tlb flush.
5740 	 */
5741 	kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_FREE_OBSOLETE_ROOTS);
5742 
5743 	kvm_zap_obsolete_pages(kvm);
5744 
5745 	write_unlock(&kvm->mmu_lock);
5746 
5747 	/*
5748 	 * Zap the invalidated TDP MMU roots, all SPTEs must be dropped before
5749 	 * returning to the caller, e.g. if the zap is in response to a memslot
5750 	 * deletion, mmu_notifier callbacks will be unable to reach the SPTEs
5751 	 * associated with the deleted memslot once the update completes, and
5752 	 * Deferring the zap until the final reference to the root is put would
5753 	 * lead to use-after-free.
5754 	 */
5755 	if (is_tdp_mmu_enabled(kvm))
5756 		kvm_tdp_mmu_zap_invalidated_roots(kvm);
5757 }
5758 
5759 static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
5760 {
5761 	return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
5762 }
5763 
5764 static void kvm_mmu_invalidate_zap_pages_in_memslot(struct kvm *kvm,
5765 			struct kvm_memory_slot *slot,
5766 			struct kvm_page_track_notifier_node *node)
5767 {
5768 	kvm_mmu_zap_all_fast(kvm);
5769 }
5770 
5771 void kvm_mmu_init_vm(struct kvm *kvm)
5772 {
5773 	struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5774 
5775 	spin_lock_init(&kvm->arch.mmu_unsync_pages_lock);
5776 
5777 	kvm_mmu_init_tdp_mmu(kvm);
5778 
5779 	node->track_write = kvm_mmu_pte_write;
5780 	node->track_flush_slot = kvm_mmu_invalidate_zap_pages_in_memslot;
5781 	kvm_page_track_register_notifier(kvm, node);
5782 }
5783 
5784 void kvm_mmu_uninit_vm(struct kvm *kvm)
5785 {
5786 	struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5787 
5788 	kvm_page_track_unregister_notifier(kvm, node);
5789 
5790 	kvm_mmu_uninit_tdp_mmu(kvm);
5791 }
5792 
5793 static bool __kvm_zap_rmaps(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
5794 {
5795 	const struct kvm_memory_slot *memslot;
5796 	struct kvm_memslots *slots;
5797 	struct kvm_memslot_iter iter;
5798 	bool flush = false;
5799 	gfn_t start, end;
5800 	int i;
5801 
5802 	if (!kvm_memslots_have_rmaps(kvm))
5803 		return flush;
5804 
5805 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
5806 		slots = __kvm_memslots(kvm, i);
5807 
5808 		kvm_for_each_memslot_in_gfn_range(&iter, slots, gfn_start, gfn_end) {
5809 			memslot = iter.slot;
5810 			start = max(gfn_start, memslot->base_gfn);
5811 			end = min(gfn_end, memslot->base_gfn + memslot->npages);
5812 			if (WARN_ON_ONCE(start >= end))
5813 				continue;
5814 
5815 			flush = slot_handle_level_range(kvm, memslot, kvm_zap_rmapp,
5816 
5817 							PG_LEVEL_4K, KVM_MAX_HUGEPAGE_LEVEL,
5818 							start, end - 1, true, flush);
5819 		}
5820 	}
5821 
5822 	return flush;
5823 }
5824 
5825 /*
5826  * Invalidate (zap) SPTEs that cover GFNs from gfn_start and up to gfn_end
5827  * (not including it)
5828  */
5829 void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
5830 {
5831 	bool flush;
5832 	int i;
5833 
5834 	if (WARN_ON_ONCE(gfn_end <= gfn_start))
5835 		return;
5836 
5837 	write_lock(&kvm->mmu_lock);
5838 
5839 	kvm_inc_notifier_count(kvm, gfn_start, gfn_end);
5840 
5841 	flush = __kvm_zap_rmaps(kvm, gfn_start, gfn_end);
5842 
5843 	if (is_tdp_mmu_enabled(kvm)) {
5844 		for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
5845 			flush = kvm_tdp_mmu_zap_gfn_range(kvm, i, gfn_start,
5846 							  gfn_end, flush);
5847 	}
5848 
5849 	if (flush)
5850 		kvm_flush_remote_tlbs_with_address(kvm, gfn_start,
5851 						   gfn_end - gfn_start);
5852 
5853 	kvm_dec_notifier_count(kvm, gfn_start, gfn_end);
5854 
5855 	write_unlock(&kvm->mmu_lock);
5856 }
5857 
5858 static bool slot_rmap_write_protect(struct kvm *kvm,
5859 				    struct kvm_rmap_head *rmap_head,
5860 				    const struct kvm_memory_slot *slot)
5861 {
5862 	return rmap_write_protect(rmap_head, false);
5863 }
5864 
5865 void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
5866 				      const struct kvm_memory_slot *memslot,
5867 				      int start_level)
5868 {
5869 	bool flush = false;
5870 
5871 	if (kvm_memslots_have_rmaps(kvm)) {
5872 		write_lock(&kvm->mmu_lock);
5873 		flush = slot_handle_level(kvm, memslot, slot_rmap_write_protect,
5874 					  start_level, KVM_MAX_HUGEPAGE_LEVEL,
5875 					  false);
5876 		write_unlock(&kvm->mmu_lock);
5877 	}
5878 
5879 	if (is_tdp_mmu_enabled(kvm)) {
5880 		read_lock(&kvm->mmu_lock);
5881 		flush |= kvm_tdp_mmu_wrprot_slot(kvm, memslot, start_level);
5882 		read_unlock(&kvm->mmu_lock);
5883 	}
5884 
5885 	/*
5886 	 * Flush TLBs if any SPTEs had to be write-protected to ensure that
5887 	 * guest writes are reflected in the dirty bitmap before the memslot
5888 	 * update completes, i.e. before enabling dirty logging is visible to
5889 	 * userspace.
5890 	 *
5891 	 * Perform the TLB flush outside the mmu_lock to reduce the amount of
5892 	 * time the lock is held. However, this does mean that another CPU can
5893 	 * now grab mmu_lock and encounter a write-protected SPTE while CPUs
5894 	 * still have a writable mapping for the associated GFN in their TLB.
5895 	 *
5896 	 * This is safe but requires KVM to be careful when making decisions
5897 	 * based on the write-protection status of an SPTE. Specifically, KVM
5898 	 * also write-protects SPTEs to monitor changes to guest page tables
5899 	 * during shadow paging, and must guarantee no CPUs can write to those
5900 	 * page before the lock is dropped. As mentioned in the previous
5901 	 * paragraph, a write-protected SPTE is no guarantee that CPU cannot
5902 	 * perform writes. So to determine if a TLB flush is truly required, KVM
5903 	 * will clear a separate software-only bit (MMU-writable) and skip the
5904 	 * flush if-and-only-if this bit was already clear.
5905 	 *
5906 	 * See is_writable_pte() for more details.
5907 	 */
5908 	if (flush)
5909 		kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
5910 }
5911 
5912 /* Must be called with the mmu_lock held in write-mode. */
5913 void kvm_mmu_try_split_huge_pages(struct kvm *kvm,
5914 				   const struct kvm_memory_slot *memslot,
5915 				   u64 start, u64 end,
5916 				   int target_level)
5917 {
5918 	if (is_tdp_mmu_enabled(kvm))
5919 		kvm_tdp_mmu_try_split_huge_pages(kvm, memslot, start, end,
5920 						 target_level, false);
5921 
5922 	/*
5923 	 * A TLB flush is unnecessary at this point for the same resons as in
5924 	 * kvm_mmu_slot_try_split_huge_pages().
5925 	 */
5926 }
5927 
5928 void kvm_mmu_slot_try_split_huge_pages(struct kvm *kvm,
5929 					const struct kvm_memory_slot *memslot,
5930 					int target_level)
5931 {
5932 	u64 start = memslot->base_gfn;
5933 	u64 end = start + memslot->npages;
5934 
5935 	if (is_tdp_mmu_enabled(kvm)) {
5936 		read_lock(&kvm->mmu_lock);
5937 		kvm_tdp_mmu_try_split_huge_pages(kvm, memslot, start, end, target_level, true);
5938 		read_unlock(&kvm->mmu_lock);
5939 	}
5940 
5941 	/*
5942 	 * No TLB flush is necessary here. KVM will flush TLBs after
5943 	 * write-protecting and/or clearing dirty on the newly split SPTEs to
5944 	 * ensure that guest writes are reflected in the dirty log before the
5945 	 * ioctl to enable dirty logging on this memslot completes. Since the
5946 	 * split SPTEs retain the write and dirty bits of the huge SPTE, it is
5947 	 * safe for KVM to decide if a TLB flush is necessary based on the split
5948 	 * SPTEs.
5949 	 */
5950 }
5951 
5952 static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
5953 					 struct kvm_rmap_head *rmap_head,
5954 					 const struct kvm_memory_slot *slot)
5955 {
5956 	u64 *sptep;
5957 	struct rmap_iterator iter;
5958 	int need_tlb_flush = 0;
5959 	kvm_pfn_t pfn;
5960 	struct kvm_mmu_page *sp;
5961 
5962 restart:
5963 	for_each_rmap_spte(rmap_head, &iter, sptep) {
5964 		sp = sptep_to_sp(sptep);
5965 		pfn = spte_to_pfn(*sptep);
5966 
5967 		/*
5968 		 * We cannot do huge page mapping for indirect shadow pages,
5969 		 * which are found on the last rmap (level = 1) when not using
5970 		 * tdp; such shadow pages are synced with the page table in
5971 		 * the guest, and the guest page table is using 4K page size
5972 		 * mapping if the indirect sp has level = 1.
5973 		 */
5974 		if (sp->role.direct && !kvm_is_reserved_pfn(pfn) &&
5975 		    sp->role.level < kvm_mmu_max_mapping_level(kvm, slot, sp->gfn,
5976 							       pfn, PG_LEVEL_NUM)) {
5977 			pte_list_remove(kvm, rmap_head, sptep);
5978 
5979 			if (kvm_available_flush_tlb_with_range())
5980 				kvm_flush_remote_tlbs_with_address(kvm, sp->gfn,
5981 					KVM_PAGES_PER_HPAGE(sp->role.level));
5982 			else
5983 				need_tlb_flush = 1;
5984 
5985 			goto restart;
5986 		}
5987 	}
5988 
5989 	return need_tlb_flush;
5990 }
5991 
5992 void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
5993 				   const struct kvm_memory_slot *slot)
5994 {
5995 	if (kvm_memslots_have_rmaps(kvm)) {
5996 		write_lock(&kvm->mmu_lock);
5997 		/*
5998 		 * Zap only 4k SPTEs since the legacy MMU only supports dirty
5999 		 * logging at a 4k granularity and never creates collapsible
6000 		 * 2m SPTEs during dirty logging.
6001 		 */
6002 		if (slot_handle_level_4k(kvm, slot, kvm_mmu_zap_collapsible_spte, true))
6003 			kvm_arch_flush_remote_tlbs_memslot(kvm, slot);
6004 		write_unlock(&kvm->mmu_lock);
6005 	}
6006 
6007 	if (is_tdp_mmu_enabled(kvm)) {
6008 		read_lock(&kvm->mmu_lock);
6009 		kvm_tdp_mmu_zap_collapsible_sptes(kvm, slot);
6010 		read_unlock(&kvm->mmu_lock);
6011 	}
6012 }
6013 
6014 void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
6015 					const struct kvm_memory_slot *memslot)
6016 {
6017 	/*
6018 	 * All current use cases for flushing the TLBs for a specific memslot
6019 	 * related to dirty logging, and many do the TLB flush out of mmu_lock.
6020 	 * The interaction between the various operations on memslot must be
6021 	 * serialized by slots_locks to ensure the TLB flush from one operation
6022 	 * is observed by any other operation on the same memslot.
6023 	 */
6024 	lockdep_assert_held(&kvm->slots_lock);
6025 	kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn,
6026 					   memslot->npages);
6027 }
6028 
6029 void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
6030 				   const struct kvm_memory_slot *memslot)
6031 {
6032 	bool flush = false;
6033 
6034 	if (kvm_memslots_have_rmaps(kvm)) {
6035 		write_lock(&kvm->mmu_lock);
6036 		/*
6037 		 * Clear dirty bits only on 4k SPTEs since the legacy MMU only
6038 		 * support dirty logging at a 4k granularity.
6039 		 */
6040 		flush = slot_handle_level_4k(kvm, memslot, __rmap_clear_dirty, false);
6041 		write_unlock(&kvm->mmu_lock);
6042 	}
6043 
6044 	if (is_tdp_mmu_enabled(kvm)) {
6045 		read_lock(&kvm->mmu_lock);
6046 		flush |= kvm_tdp_mmu_clear_dirty_slot(kvm, memslot);
6047 		read_unlock(&kvm->mmu_lock);
6048 	}
6049 
6050 	/*
6051 	 * It's also safe to flush TLBs out of mmu lock here as currently this
6052 	 * function is only used for dirty logging, in which case flushing TLB
6053 	 * out of mmu lock also guarantees no dirty pages will be lost in
6054 	 * dirty_bitmap.
6055 	 */
6056 	if (flush)
6057 		kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
6058 }
6059 
6060 void kvm_mmu_zap_all(struct kvm *kvm)
6061 {
6062 	struct kvm_mmu_page *sp, *node;
6063 	LIST_HEAD(invalid_list);
6064 	int ign;
6065 
6066 	write_lock(&kvm->mmu_lock);
6067 restart:
6068 	list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link) {
6069 		if (WARN_ON(sp->role.invalid))
6070 			continue;
6071 		if (__kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list, &ign))
6072 			goto restart;
6073 		if (cond_resched_rwlock_write(&kvm->mmu_lock))
6074 			goto restart;
6075 	}
6076 
6077 	kvm_mmu_commit_zap_page(kvm, &invalid_list);
6078 
6079 	if (is_tdp_mmu_enabled(kvm))
6080 		kvm_tdp_mmu_zap_all(kvm);
6081 
6082 	write_unlock(&kvm->mmu_lock);
6083 }
6084 
6085 void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen)
6086 {
6087 	WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
6088 
6089 	gen &= MMIO_SPTE_GEN_MASK;
6090 
6091 	/*
6092 	 * Generation numbers are incremented in multiples of the number of
6093 	 * address spaces in order to provide unique generations across all
6094 	 * address spaces.  Strip what is effectively the address space
6095 	 * modifier prior to checking for a wrap of the MMIO generation so
6096 	 * that a wrap in any address space is detected.
6097 	 */
6098 	gen &= ~((u64)KVM_ADDRESS_SPACE_NUM - 1);
6099 
6100 	/*
6101 	 * The very rare case: if the MMIO generation number has wrapped,
6102 	 * zap all shadow pages.
6103 	 */
6104 	if (unlikely(gen == 0)) {
6105 		kvm_debug_ratelimited("kvm: zapping shadow pages for mmio generation wraparound\n");
6106 		kvm_mmu_zap_all_fast(kvm);
6107 	}
6108 }
6109 
6110 static unsigned long
6111 mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
6112 {
6113 	struct kvm *kvm;
6114 	int nr_to_scan = sc->nr_to_scan;
6115 	unsigned long freed = 0;
6116 
6117 	mutex_lock(&kvm_lock);
6118 
6119 	list_for_each_entry(kvm, &vm_list, vm_list) {
6120 		int idx;
6121 		LIST_HEAD(invalid_list);
6122 
6123 		/*
6124 		 * Never scan more than sc->nr_to_scan VM instances.
6125 		 * Will not hit this condition practically since we do not try
6126 		 * to shrink more than one VM and it is very unlikely to see
6127 		 * !n_used_mmu_pages so many times.
6128 		 */
6129 		if (!nr_to_scan--)
6130 			break;
6131 		/*
6132 		 * n_used_mmu_pages is accessed without holding kvm->mmu_lock
6133 		 * here. We may skip a VM instance errorneosly, but we do not
6134 		 * want to shrink a VM that only started to populate its MMU
6135 		 * anyway.
6136 		 */
6137 		if (!kvm->arch.n_used_mmu_pages &&
6138 		    !kvm_has_zapped_obsolete_pages(kvm))
6139 			continue;
6140 
6141 		idx = srcu_read_lock(&kvm->srcu);
6142 		write_lock(&kvm->mmu_lock);
6143 
6144 		if (kvm_has_zapped_obsolete_pages(kvm)) {
6145 			kvm_mmu_commit_zap_page(kvm,
6146 			      &kvm->arch.zapped_obsolete_pages);
6147 			goto unlock;
6148 		}
6149 
6150 		freed = kvm_mmu_zap_oldest_mmu_pages(kvm, sc->nr_to_scan);
6151 
6152 unlock:
6153 		write_unlock(&kvm->mmu_lock);
6154 		srcu_read_unlock(&kvm->srcu, idx);
6155 
6156 		/*
6157 		 * unfair on small ones
6158 		 * per-vm shrinkers cry out
6159 		 * sadness comes quickly
6160 		 */
6161 		list_move_tail(&kvm->vm_list, &vm_list);
6162 		break;
6163 	}
6164 
6165 	mutex_unlock(&kvm_lock);
6166 	return freed;
6167 }
6168 
6169 static unsigned long
6170 mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
6171 {
6172 	return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
6173 }
6174 
6175 static struct shrinker mmu_shrinker = {
6176 	.count_objects = mmu_shrink_count,
6177 	.scan_objects = mmu_shrink_scan,
6178 	.seeks = DEFAULT_SEEKS * 10,
6179 };
6180 
6181 static void mmu_destroy_caches(void)
6182 {
6183 	kmem_cache_destroy(pte_list_desc_cache);
6184 	kmem_cache_destroy(mmu_page_header_cache);
6185 }
6186 
6187 static bool get_nx_auto_mode(void)
6188 {
6189 	/* Return true when CPU has the bug, and mitigations are ON */
6190 	return boot_cpu_has_bug(X86_BUG_ITLB_MULTIHIT) && !cpu_mitigations_off();
6191 }
6192 
6193 static void __set_nx_huge_pages(bool val)
6194 {
6195 	nx_huge_pages = itlb_multihit_kvm_mitigation = val;
6196 }
6197 
6198 static int set_nx_huge_pages(const char *val, const struct kernel_param *kp)
6199 {
6200 	bool old_val = nx_huge_pages;
6201 	bool new_val;
6202 
6203 	/* In "auto" mode deploy workaround only if CPU has the bug. */
6204 	if (sysfs_streq(val, "off"))
6205 		new_val = 0;
6206 	else if (sysfs_streq(val, "force"))
6207 		new_val = 1;
6208 	else if (sysfs_streq(val, "auto"))
6209 		new_val = get_nx_auto_mode();
6210 	else if (strtobool(val, &new_val) < 0)
6211 		return -EINVAL;
6212 
6213 	__set_nx_huge_pages(new_val);
6214 
6215 	if (new_val != old_val) {
6216 		struct kvm *kvm;
6217 
6218 		mutex_lock(&kvm_lock);
6219 
6220 		list_for_each_entry(kvm, &vm_list, vm_list) {
6221 			mutex_lock(&kvm->slots_lock);
6222 			kvm_mmu_zap_all_fast(kvm);
6223 			mutex_unlock(&kvm->slots_lock);
6224 
6225 			wake_up_process(kvm->arch.nx_lpage_recovery_thread);
6226 		}
6227 		mutex_unlock(&kvm_lock);
6228 	}
6229 
6230 	return 0;
6231 }
6232 
6233 int kvm_mmu_module_init(void)
6234 {
6235 	int ret = -ENOMEM;
6236 
6237 	if (nx_huge_pages == -1)
6238 		__set_nx_huge_pages(get_nx_auto_mode());
6239 
6240 	/*
6241 	 * MMU roles use union aliasing which is, generally speaking, an
6242 	 * undefined behavior. However, we supposedly know how compilers behave
6243 	 * and the current status quo is unlikely to change. Guardians below are
6244 	 * supposed to let us know if the assumption becomes false.
6245 	 */
6246 	BUILD_BUG_ON(sizeof(union kvm_mmu_page_role) != sizeof(u32));
6247 	BUILD_BUG_ON(sizeof(union kvm_mmu_extended_role) != sizeof(u32));
6248 	BUILD_BUG_ON(sizeof(union kvm_mmu_role) != sizeof(u64));
6249 
6250 	kvm_mmu_reset_all_pte_masks();
6251 
6252 	pte_list_desc_cache = kmem_cache_create("pte_list_desc",
6253 					    sizeof(struct pte_list_desc),
6254 					    0, SLAB_ACCOUNT, NULL);
6255 	if (!pte_list_desc_cache)
6256 		goto out;
6257 
6258 	mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
6259 						  sizeof(struct kvm_mmu_page),
6260 						  0, SLAB_ACCOUNT, NULL);
6261 	if (!mmu_page_header_cache)
6262 		goto out;
6263 
6264 	if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
6265 		goto out;
6266 
6267 	ret = register_shrinker(&mmu_shrinker);
6268 	if (ret)
6269 		goto out;
6270 
6271 	return 0;
6272 
6273 out:
6274 	mmu_destroy_caches();
6275 	return ret;
6276 }
6277 
6278 void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
6279 {
6280 	kvm_mmu_unload(vcpu);
6281 	free_mmu_pages(&vcpu->arch.root_mmu);
6282 	free_mmu_pages(&vcpu->arch.guest_mmu);
6283 	mmu_free_memory_caches(vcpu);
6284 }
6285 
6286 void kvm_mmu_module_exit(void)
6287 {
6288 	mmu_destroy_caches();
6289 	percpu_counter_destroy(&kvm_total_used_mmu_pages);
6290 	unregister_shrinker(&mmu_shrinker);
6291 }
6292 
6293 /*
6294  * Calculate the effective recovery period, accounting for '0' meaning "let KVM
6295  * select a halving time of 1 hour".  Returns true if recovery is enabled.
6296  */
6297 static bool calc_nx_huge_pages_recovery_period(uint *period)
6298 {
6299 	/*
6300 	 * Use READ_ONCE to get the params, this may be called outside of the
6301 	 * param setters, e.g. by the kthread to compute its next timeout.
6302 	 */
6303 	bool enabled = READ_ONCE(nx_huge_pages);
6304 	uint ratio = READ_ONCE(nx_huge_pages_recovery_ratio);
6305 
6306 	if (!enabled || !ratio)
6307 		return false;
6308 
6309 	*period = READ_ONCE(nx_huge_pages_recovery_period_ms);
6310 	if (!*period) {
6311 		/* Make sure the period is not less than one second.  */
6312 		ratio = min(ratio, 3600u);
6313 		*period = 60 * 60 * 1000 / ratio;
6314 	}
6315 	return true;
6316 }
6317 
6318 static int set_nx_huge_pages_recovery_param(const char *val, const struct kernel_param *kp)
6319 {
6320 	bool was_recovery_enabled, is_recovery_enabled;
6321 	uint old_period, new_period;
6322 	int err;
6323 
6324 	was_recovery_enabled = calc_nx_huge_pages_recovery_period(&old_period);
6325 
6326 	err = param_set_uint(val, kp);
6327 	if (err)
6328 		return err;
6329 
6330 	is_recovery_enabled = calc_nx_huge_pages_recovery_period(&new_period);
6331 
6332 	if (is_recovery_enabled &&
6333 	    (!was_recovery_enabled || old_period > new_period)) {
6334 		struct kvm *kvm;
6335 
6336 		mutex_lock(&kvm_lock);
6337 
6338 		list_for_each_entry(kvm, &vm_list, vm_list)
6339 			wake_up_process(kvm->arch.nx_lpage_recovery_thread);
6340 
6341 		mutex_unlock(&kvm_lock);
6342 	}
6343 
6344 	return err;
6345 }
6346 
6347 static void kvm_recover_nx_lpages(struct kvm *kvm)
6348 {
6349 	unsigned long nx_lpage_splits = kvm->stat.nx_lpage_splits;
6350 	int rcu_idx;
6351 	struct kvm_mmu_page *sp;
6352 	unsigned int ratio;
6353 	LIST_HEAD(invalid_list);
6354 	bool flush = false;
6355 	ulong to_zap;
6356 
6357 	rcu_idx = srcu_read_lock(&kvm->srcu);
6358 	write_lock(&kvm->mmu_lock);
6359 
6360 	/*
6361 	 * Zapping TDP MMU shadow pages, including the remote TLB flush, must
6362 	 * be done under RCU protection, because the pages are freed via RCU
6363 	 * callback.
6364 	 */
6365 	rcu_read_lock();
6366 
6367 	ratio = READ_ONCE(nx_huge_pages_recovery_ratio);
6368 	to_zap = ratio ? DIV_ROUND_UP(nx_lpage_splits, ratio) : 0;
6369 	for ( ; to_zap; --to_zap) {
6370 		if (list_empty(&kvm->arch.lpage_disallowed_mmu_pages))
6371 			break;
6372 
6373 		/*
6374 		 * We use a separate list instead of just using active_mmu_pages
6375 		 * because the number of lpage_disallowed pages is expected to
6376 		 * be relatively small compared to the total.
6377 		 */
6378 		sp = list_first_entry(&kvm->arch.lpage_disallowed_mmu_pages,
6379 				      struct kvm_mmu_page,
6380 				      lpage_disallowed_link);
6381 		WARN_ON_ONCE(!sp->lpage_disallowed);
6382 		if (is_tdp_mmu_page(sp)) {
6383 			flush |= kvm_tdp_mmu_zap_sp(kvm, sp);
6384 		} else {
6385 			kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
6386 			WARN_ON_ONCE(sp->lpage_disallowed);
6387 		}
6388 
6389 		if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) {
6390 			kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush);
6391 			rcu_read_unlock();
6392 
6393 			cond_resched_rwlock_write(&kvm->mmu_lock);
6394 			flush = false;
6395 
6396 			rcu_read_lock();
6397 		}
6398 	}
6399 	kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush);
6400 
6401 	rcu_read_unlock();
6402 
6403 	write_unlock(&kvm->mmu_lock);
6404 	srcu_read_unlock(&kvm->srcu, rcu_idx);
6405 }
6406 
6407 static long get_nx_lpage_recovery_timeout(u64 start_time)
6408 {
6409 	bool enabled;
6410 	uint period;
6411 
6412 	enabled = calc_nx_huge_pages_recovery_period(&period);
6413 
6414 	return enabled ? start_time + msecs_to_jiffies(period) - get_jiffies_64()
6415 		       : MAX_SCHEDULE_TIMEOUT;
6416 }
6417 
6418 static int kvm_nx_lpage_recovery_worker(struct kvm *kvm, uintptr_t data)
6419 {
6420 	u64 start_time;
6421 	long remaining_time;
6422 
6423 	while (true) {
6424 		start_time = get_jiffies_64();
6425 		remaining_time = get_nx_lpage_recovery_timeout(start_time);
6426 
6427 		set_current_state(TASK_INTERRUPTIBLE);
6428 		while (!kthread_should_stop() && remaining_time > 0) {
6429 			schedule_timeout(remaining_time);
6430 			remaining_time = get_nx_lpage_recovery_timeout(start_time);
6431 			set_current_state(TASK_INTERRUPTIBLE);
6432 		}
6433 
6434 		set_current_state(TASK_RUNNING);
6435 
6436 		if (kthread_should_stop())
6437 			return 0;
6438 
6439 		kvm_recover_nx_lpages(kvm);
6440 	}
6441 }
6442 
6443 int kvm_mmu_post_init_vm(struct kvm *kvm)
6444 {
6445 	int err;
6446 
6447 	err = kvm_vm_create_worker_thread(kvm, kvm_nx_lpage_recovery_worker, 0,
6448 					  "kvm-nx-lpage-recovery",
6449 					  &kvm->arch.nx_lpage_recovery_thread);
6450 	if (!err)
6451 		kthread_unpark(kvm->arch.nx_lpage_recovery_thread);
6452 
6453 	return err;
6454 }
6455 
6456 void kvm_mmu_pre_destroy_vm(struct kvm *kvm)
6457 {
6458 	if (kvm->arch.nx_lpage_recovery_thread)
6459 		kthread_stop(kvm->arch.nx_lpage_recovery_thread);
6460 }
6461