1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * This module enables machines with Intel VT-x extensions to run virtual 6 * machines without emulation or binary translation. 7 * 8 * MMU support 9 * 10 * Copyright (C) 2006 Qumranet, Inc. 11 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 12 * 13 * Authors: 14 * Yaniv Kamay <yaniv@qumranet.com> 15 * Avi Kivity <avi@qumranet.com> 16 */ 17 18 #include "irq.h" 19 #include "ioapic.h" 20 #include "mmu.h" 21 #include "mmu_internal.h" 22 #include "tdp_mmu.h" 23 #include "x86.h" 24 #include "kvm_cache_regs.h" 25 #include "kvm_emulate.h" 26 #include "cpuid.h" 27 #include "spte.h" 28 29 #include <linux/kvm_host.h> 30 #include <linux/types.h> 31 #include <linux/string.h> 32 #include <linux/mm.h> 33 #include <linux/highmem.h> 34 #include <linux/moduleparam.h> 35 #include <linux/export.h> 36 #include <linux/swap.h> 37 #include <linux/hugetlb.h> 38 #include <linux/compiler.h> 39 #include <linux/srcu.h> 40 #include <linux/slab.h> 41 #include <linux/sched/signal.h> 42 #include <linux/uaccess.h> 43 #include <linux/hash.h> 44 #include <linux/kern_levels.h> 45 #include <linux/kthread.h> 46 47 #include <asm/page.h> 48 #include <asm/memtype.h> 49 #include <asm/cmpxchg.h> 50 #include <asm/io.h> 51 #include <asm/set_memory.h> 52 #include <asm/vmx.h> 53 #include <asm/kvm_page_track.h> 54 #include "trace.h" 55 56 #include "paging.h" 57 58 extern bool itlb_multihit_kvm_mitigation; 59 60 int __read_mostly nx_huge_pages = -1; 61 static uint __read_mostly nx_huge_pages_recovery_period_ms; 62 #ifdef CONFIG_PREEMPT_RT 63 /* Recovery can cause latency spikes, disable it for PREEMPT_RT. */ 64 static uint __read_mostly nx_huge_pages_recovery_ratio = 0; 65 #else 66 static uint __read_mostly nx_huge_pages_recovery_ratio = 60; 67 #endif 68 69 static int set_nx_huge_pages(const char *val, const struct kernel_param *kp); 70 static int set_nx_huge_pages_recovery_param(const char *val, const struct kernel_param *kp); 71 72 static const struct kernel_param_ops nx_huge_pages_ops = { 73 .set = set_nx_huge_pages, 74 .get = param_get_bool, 75 }; 76 77 static const struct kernel_param_ops nx_huge_pages_recovery_param_ops = { 78 .set = set_nx_huge_pages_recovery_param, 79 .get = param_get_uint, 80 }; 81 82 module_param_cb(nx_huge_pages, &nx_huge_pages_ops, &nx_huge_pages, 0644); 83 __MODULE_PARM_TYPE(nx_huge_pages, "bool"); 84 module_param_cb(nx_huge_pages_recovery_ratio, &nx_huge_pages_recovery_param_ops, 85 &nx_huge_pages_recovery_ratio, 0644); 86 __MODULE_PARM_TYPE(nx_huge_pages_recovery_ratio, "uint"); 87 module_param_cb(nx_huge_pages_recovery_period_ms, &nx_huge_pages_recovery_param_ops, 88 &nx_huge_pages_recovery_period_ms, 0644); 89 __MODULE_PARM_TYPE(nx_huge_pages_recovery_period_ms, "uint"); 90 91 static bool __read_mostly force_flush_and_sync_on_reuse; 92 module_param_named(flush_on_reuse, force_flush_and_sync_on_reuse, bool, 0644); 93 94 /* 95 * When setting this variable to true it enables Two-Dimensional-Paging 96 * where the hardware walks 2 page tables: 97 * 1. the guest-virtual to guest-physical 98 * 2. while doing 1. it walks guest-physical to host-physical 99 * If the hardware supports that we don't need to do shadow paging. 100 */ 101 bool tdp_enabled = false; 102 103 static int max_huge_page_level __read_mostly; 104 static int tdp_root_level __read_mostly; 105 static int max_tdp_level __read_mostly; 106 107 #ifdef MMU_DEBUG 108 bool dbg = 0; 109 module_param(dbg, bool, 0644); 110 #endif 111 112 #define PTE_PREFETCH_NUM 8 113 114 #define PT32_LEVEL_BITS 10 115 116 #define PT32_LEVEL_SHIFT(level) \ 117 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS) 118 119 #define PT32_LVL_OFFSET_MASK(level) \ 120 (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \ 121 * PT32_LEVEL_BITS))) - 1)) 122 123 #define PT32_INDEX(address, level)\ 124 (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1)) 125 126 127 #define PT32_BASE_ADDR_MASK PAGE_MASK 128 #define PT32_DIR_BASE_ADDR_MASK \ 129 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1)) 130 #define PT32_LVL_ADDR_MASK(level) \ 131 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \ 132 * PT32_LEVEL_BITS))) - 1)) 133 134 #include <trace/events/kvm.h> 135 136 /* make pte_list_desc fit well in cache lines */ 137 #define PTE_LIST_EXT 14 138 139 /* 140 * Slight optimization of cacheline layout, by putting `more' and `spte_count' 141 * at the start; then accessing it will only use one single cacheline for 142 * either full (entries==PTE_LIST_EXT) case or entries<=6. 143 */ 144 struct pte_list_desc { 145 struct pte_list_desc *more; 146 /* 147 * Stores number of entries stored in the pte_list_desc. No need to be 148 * u64 but just for easier alignment. When PTE_LIST_EXT, means full. 149 */ 150 u64 spte_count; 151 u64 *sptes[PTE_LIST_EXT]; 152 }; 153 154 struct kvm_shadow_walk_iterator { 155 u64 addr; 156 hpa_t shadow_addr; 157 u64 *sptep; 158 int level; 159 unsigned index; 160 }; 161 162 #define for_each_shadow_entry_using_root(_vcpu, _root, _addr, _walker) \ 163 for (shadow_walk_init_using_root(&(_walker), (_vcpu), \ 164 (_root), (_addr)); \ 165 shadow_walk_okay(&(_walker)); \ 166 shadow_walk_next(&(_walker))) 167 168 #define for_each_shadow_entry(_vcpu, _addr, _walker) \ 169 for (shadow_walk_init(&(_walker), _vcpu, _addr); \ 170 shadow_walk_okay(&(_walker)); \ 171 shadow_walk_next(&(_walker))) 172 173 #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte) \ 174 for (shadow_walk_init(&(_walker), _vcpu, _addr); \ 175 shadow_walk_okay(&(_walker)) && \ 176 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; }); \ 177 __shadow_walk_next(&(_walker), spte)) 178 179 static struct kmem_cache *pte_list_desc_cache; 180 struct kmem_cache *mmu_page_header_cache; 181 static struct percpu_counter kvm_total_used_mmu_pages; 182 183 static void mmu_spte_set(u64 *sptep, u64 spte); 184 185 struct kvm_mmu_role_regs { 186 const unsigned long cr0; 187 const unsigned long cr4; 188 const u64 efer; 189 }; 190 191 #define CREATE_TRACE_POINTS 192 #include "mmutrace.h" 193 194 /* 195 * Yes, lot's of underscores. They're a hint that you probably shouldn't be 196 * reading from the role_regs. Once the mmu_role is constructed, it becomes 197 * the single source of truth for the MMU's state. 198 */ 199 #define BUILD_MMU_ROLE_REGS_ACCESSOR(reg, name, flag) \ 200 static inline bool __maybe_unused ____is_##reg##_##name(struct kvm_mmu_role_regs *regs)\ 201 { \ 202 return !!(regs->reg & flag); \ 203 } 204 BUILD_MMU_ROLE_REGS_ACCESSOR(cr0, pg, X86_CR0_PG); 205 BUILD_MMU_ROLE_REGS_ACCESSOR(cr0, wp, X86_CR0_WP); 206 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pse, X86_CR4_PSE); 207 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pae, X86_CR4_PAE); 208 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, smep, X86_CR4_SMEP); 209 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, smap, X86_CR4_SMAP); 210 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pke, X86_CR4_PKE); 211 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, la57, X86_CR4_LA57); 212 BUILD_MMU_ROLE_REGS_ACCESSOR(efer, nx, EFER_NX); 213 BUILD_MMU_ROLE_REGS_ACCESSOR(efer, lma, EFER_LMA); 214 215 /* 216 * The MMU itself (with a valid role) is the single source of truth for the 217 * MMU. Do not use the regs used to build the MMU/role, nor the vCPU. The 218 * regs don't account for dependencies, e.g. clearing CR4 bits if CR0.PG=1, 219 * and the vCPU may be incorrect/irrelevant. 220 */ 221 #define BUILD_MMU_ROLE_ACCESSOR(base_or_ext, reg, name) \ 222 static inline bool __maybe_unused is_##reg##_##name(struct kvm_mmu *mmu) \ 223 { \ 224 return !!(mmu->mmu_role. base_or_ext . reg##_##name); \ 225 } 226 BUILD_MMU_ROLE_ACCESSOR(ext, cr0, pg); 227 BUILD_MMU_ROLE_ACCESSOR(base, cr0, wp); 228 BUILD_MMU_ROLE_ACCESSOR(ext, cr4, pse); 229 BUILD_MMU_ROLE_ACCESSOR(ext, cr4, pae); 230 BUILD_MMU_ROLE_ACCESSOR(ext, cr4, smep); 231 BUILD_MMU_ROLE_ACCESSOR(ext, cr4, smap); 232 BUILD_MMU_ROLE_ACCESSOR(ext, cr4, pke); 233 BUILD_MMU_ROLE_ACCESSOR(ext, cr4, la57); 234 BUILD_MMU_ROLE_ACCESSOR(base, efer, nx); 235 236 static struct kvm_mmu_role_regs vcpu_to_role_regs(struct kvm_vcpu *vcpu) 237 { 238 struct kvm_mmu_role_regs regs = { 239 .cr0 = kvm_read_cr0_bits(vcpu, KVM_MMU_CR0_ROLE_BITS), 240 .cr4 = kvm_read_cr4_bits(vcpu, KVM_MMU_CR4_ROLE_BITS), 241 .efer = vcpu->arch.efer, 242 }; 243 244 return regs; 245 } 246 247 static int role_regs_to_root_level(struct kvm_mmu_role_regs *regs) 248 { 249 if (!____is_cr0_pg(regs)) 250 return 0; 251 else if (____is_efer_lma(regs)) 252 return ____is_cr4_la57(regs) ? PT64_ROOT_5LEVEL : 253 PT64_ROOT_4LEVEL; 254 else if (____is_cr4_pae(regs)) 255 return PT32E_ROOT_LEVEL; 256 else 257 return PT32_ROOT_LEVEL; 258 } 259 260 static inline bool kvm_available_flush_tlb_with_range(void) 261 { 262 return kvm_x86_ops.tlb_remote_flush_with_range; 263 } 264 265 static void kvm_flush_remote_tlbs_with_range(struct kvm *kvm, 266 struct kvm_tlb_range *range) 267 { 268 int ret = -ENOTSUPP; 269 270 if (range && kvm_x86_ops.tlb_remote_flush_with_range) 271 ret = static_call(kvm_x86_tlb_remote_flush_with_range)(kvm, range); 272 273 if (ret) 274 kvm_flush_remote_tlbs(kvm); 275 } 276 277 void kvm_flush_remote_tlbs_with_address(struct kvm *kvm, 278 u64 start_gfn, u64 pages) 279 { 280 struct kvm_tlb_range range; 281 282 range.start_gfn = start_gfn; 283 range.pages = pages; 284 285 kvm_flush_remote_tlbs_with_range(kvm, &range); 286 } 287 288 static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn, 289 unsigned int access) 290 { 291 u64 spte = make_mmio_spte(vcpu, gfn, access); 292 293 trace_mark_mmio_spte(sptep, gfn, spte); 294 mmu_spte_set(sptep, spte); 295 } 296 297 static gfn_t get_mmio_spte_gfn(u64 spte) 298 { 299 u64 gpa = spte & shadow_nonpresent_or_rsvd_lower_gfn_mask; 300 301 gpa |= (spte >> SHADOW_NONPRESENT_OR_RSVD_MASK_LEN) 302 & shadow_nonpresent_or_rsvd_mask; 303 304 return gpa >> PAGE_SHIFT; 305 } 306 307 static unsigned get_mmio_spte_access(u64 spte) 308 { 309 return spte & shadow_mmio_access_mask; 310 } 311 312 static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte) 313 { 314 u64 kvm_gen, spte_gen, gen; 315 316 gen = kvm_vcpu_memslots(vcpu)->generation; 317 if (unlikely(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS)) 318 return false; 319 320 kvm_gen = gen & MMIO_SPTE_GEN_MASK; 321 spte_gen = get_mmio_spte_generation(spte); 322 323 trace_check_mmio_spte(spte, kvm_gen, spte_gen); 324 return likely(kvm_gen == spte_gen); 325 } 326 327 static int is_cpuid_PSE36(void) 328 { 329 return 1; 330 } 331 332 static gfn_t pse36_gfn_delta(u32 gpte) 333 { 334 int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT; 335 336 return (gpte & PT32_DIR_PSE36_MASK) << shift; 337 } 338 339 #ifdef CONFIG_X86_64 340 static void __set_spte(u64 *sptep, u64 spte) 341 { 342 WRITE_ONCE(*sptep, spte); 343 } 344 345 static void __update_clear_spte_fast(u64 *sptep, u64 spte) 346 { 347 WRITE_ONCE(*sptep, spte); 348 } 349 350 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte) 351 { 352 return xchg(sptep, spte); 353 } 354 355 static u64 __get_spte_lockless(u64 *sptep) 356 { 357 return READ_ONCE(*sptep); 358 } 359 #else 360 union split_spte { 361 struct { 362 u32 spte_low; 363 u32 spte_high; 364 }; 365 u64 spte; 366 }; 367 368 static void count_spte_clear(u64 *sptep, u64 spte) 369 { 370 struct kvm_mmu_page *sp = sptep_to_sp(sptep); 371 372 if (is_shadow_present_pte(spte)) 373 return; 374 375 /* Ensure the spte is completely set before we increase the count */ 376 smp_wmb(); 377 sp->clear_spte_count++; 378 } 379 380 static void __set_spte(u64 *sptep, u64 spte) 381 { 382 union split_spte *ssptep, sspte; 383 384 ssptep = (union split_spte *)sptep; 385 sspte = (union split_spte)spte; 386 387 ssptep->spte_high = sspte.spte_high; 388 389 /* 390 * If we map the spte from nonpresent to present, We should store 391 * the high bits firstly, then set present bit, so cpu can not 392 * fetch this spte while we are setting the spte. 393 */ 394 smp_wmb(); 395 396 WRITE_ONCE(ssptep->spte_low, sspte.spte_low); 397 } 398 399 static void __update_clear_spte_fast(u64 *sptep, u64 spte) 400 { 401 union split_spte *ssptep, sspte; 402 403 ssptep = (union split_spte *)sptep; 404 sspte = (union split_spte)spte; 405 406 WRITE_ONCE(ssptep->spte_low, sspte.spte_low); 407 408 /* 409 * If we map the spte from present to nonpresent, we should clear 410 * present bit firstly to avoid vcpu fetch the old high bits. 411 */ 412 smp_wmb(); 413 414 ssptep->spte_high = sspte.spte_high; 415 count_spte_clear(sptep, spte); 416 } 417 418 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte) 419 { 420 union split_spte *ssptep, sspte, orig; 421 422 ssptep = (union split_spte *)sptep; 423 sspte = (union split_spte)spte; 424 425 /* xchg acts as a barrier before the setting of the high bits */ 426 orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low); 427 orig.spte_high = ssptep->spte_high; 428 ssptep->spte_high = sspte.spte_high; 429 count_spte_clear(sptep, spte); 430 431 return orig.spte; 432 } 433 434 /* 435 * The idea using the light way get the spte on x86_32 guest is from 436 * gup_get_pte (mm/gup.c). 437 * 438 * An spte tlb flush may be pending, because kvm_set_pte_rmapp 439 * coalesces them and we are running out of the MMU lock. Therefore 440 * we need to protect against in-progress updates of the spte. 441 * 442 * Reading the spte while an update is in progress may get the old value 443 * for the high part of the spte. The race is fine for a present->non-present 444 * change (because the high part of the spte is ignored for non-present spte), 445 * but for a present->present change we must reread the spte. 446 * 447 * All such changes are done in two steps (present->non-present and 448 * non-present->present), hence it is enough to count the number of 449 * present->non-present updates: if it changed while reading the spte, 450 * we might have hit the race. This is done using clear_spte_count. 451 */ 452 static u64 __get_spte_lockless(u64 *sptep) 453 { 454 struct kvm_mmu_page *sp = sptep_to_sp(sptep); 455 union split_spte spte, *orig = (union split_spte *)sptep; 456 int count; 457 458 retry: 459 count = sp->clear_spte_count; 460 smp_rmb(); 461 462 spte.spte_low = orig->spte_low; 463 smp_rmb(); 464 465 spte.spte_high = orig->spte_high; 466 smp_rmb(); 467 468 if (unlikely(spte.spte_low != orig->spte_low || 469 count != sp->clear_spte_count)) 470 goto retry; 471 472 return spte.spte; 473 } 474 #endif 475 476 static bool spte_has_volatile_bits(u64 spte) 477 { 478 if (!is_shadow_present_pte(spte)) 479 return false; 480 481 /* 482 * Always atomically update spte if it can be updated 483 * out of mmu-lock, it can ensure dirty bit is not lost, 484 * also, it can help us to get a stable is_writable_pte() 485 * to ensure tlb flush is not missed. 486 */ 487 if (spte_can_locklessly_be_made_writable(spte) || 488 is_access_track_spte(spte)) 489 return true; 490 491 if (spte_ad_enabled(spte)) { 492 if ((spte & shadow_accessed_mask) == 0 || 493 (is_writable_pte(spte) && (spte & shadow_dirty_mask) == 0)) 494 return true; 495 } 496 497 return false; 498 } 499 500 /* Rules for using mmu_spte_set: 501 * Set the sptep from nonpresent to present. 502 * Note: the sptep being assigned *must* be either not present 503 * or in a state where the hardware will not attempt to update 504 * the spte. 505 */ 506 static void mmu_spte_set(u64 *sptep, u64 new_spte) 507 { 508 WARN_ON(is_shadow_present_pte(*sptep)); 509 __set_spte(sptep, new_spte); 510 } 511 512 /* 513 * Update the SPTE (excluding the PFN), but do not track changes in its 514 * accessed/dirty status. 515 */ 516 static u64 mmu_spte_update_no_track(u64 *sptep, u64 new_spte) 517 { 518 u64 old_spte = *sptep; 519 520 WARN_ON(!is_shadow_present_pte(new_spte)); 521 check_spte_writable_invariants(new_spte); 522 523 if (!is_shadow_present_pte(old_spte)) { 524 mmu_spte_set(sptep, new_spte); 525 return old_spte; 526 } 527 528 if (!spte_has_volatile_bits(old_spte)) 529 __update_clear_spte_fast(sptep, new_spte); 530 else 531 old_spte = __update_clear_spte_slow(sptep, new_spte); 532 533 WARN_ON(spte_to_pfn(old_spte) != spte_to_pfn(new_spte)); 534 535 return old_spte; 536 } 537 538 /* Rules for using mmu_spte_update: 539 * Update the state bits, it means the mapped pfn is not changed. 540 * 541 * Whenever an MMU-writable SPTE is overwritten with a read-only SPTE, remote 542 * TLBs must be flushed. Otherwise rmap_write_protect will find a read-only 543 * spte, even though the writable spte might be cached on a CPU's TLB. 544 * 545 * Returns true if the TLB needs to be flushed 546 */ 547 static bool mmu_spte_update(u64 *sptep, u64 new_spte) 548 { 549 bool flush = false; 550 u64 old_spte = mmu_spte_update_no_track(sptep, new_spte); 551 552 if (!is_shadow_present_pte(old_spte)) 553 return false; 554 555 /* 556 * For the spte updated out of mmu-lock is safe, since 557 * we always atomically update it, see the comments in 558 * spte_has_volatile_bits(). 559 */ 560 if (spte_can_locklessly_be_made_writable(old_spte) && 561 !is_writable_pte(new_spte)) 562 flush = true; 563 564 /* 565 * Flush TLB when accessed/dirty states are changed in the page tables, 566 * to guarantee consistency between TLB and page tables. 567 */ 568 569 if (is_accessed_spte(old_spte) && !is_accessed_spte(new_spte)) { 570 flush = true; 571 kvm_set_pfn_accessed(spte_to_pfn(old_spte)); 572 } 573 574 if (is_dirty_spte(old_spte) && !is_dirty_spte(new_spte)) { 575 flush = true; 576 kvm_set_pfn_dirty(spte_to_pfn(old_spte)); 577 } 578 579 return flush; 580 } 581 582 /* 583 * Rules for using mmu_spte_clear_track_bits: 584 * It sets the sptep from present to nonpresent, and track the 585 * state bits, it is used to clear the last level sptep. 586 * Returns the old PTE. 587 */ 588 static int mmu_spte_clear_track_bits(struct kvm *kvm, u64 *sptep) 589 { 590 kvm_pfn_t pfn; 591 u64 old_spte = *sptep; 592 int level = sptep_to_sp(sptep)->role.level; 593 594 if (!spte_has_volatile_bits(old_spte)) 595 __update_clear_spte_fast(sptep, 0ull); 596 else 597 old_spte = __update_clear_spte_slow(sptep, 0ull); 598 599 if (!is_shadow_present_pte(old_spte)) 600 return old_spte; 601 602 kvm_update_page_stats(kvm, level, -1); 603 604 pfn = spte_to_pfn(old_spte); 605 606 /* 607 * KVM does not hold the refcount of the page used by 608 * kvm mmu, before reclaiming the page, we should 609 * unmap it from mmu first. 610 */ 611 WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn))); 612 613 if (is_accessed_spte(old_spte)) 614 kvm_set_pfn_accessed(pfn); 615 616 if (is_dirty_spte(old_spte)) 617 kvm_set_pfn_dirty(pfn); 618 619 return old_spte; 620 } 621 622 /* 623 * Rules for using mmu_spte_clear_no_track: 624 * Directly clear spte without caring the state bits of sptep, 625 * it is used to set the upper level spte. 626 */ 627 static void mmu_spte_clear_no_track(u64 *sptep) 628 { 629 __update_clear_spte_fast(sptep, 0ull); 630 } 631 632 static u64 mmu_spte_get_lockless(u64 *sptep) 633 { 634 return __get_spte_lockless(sptep); 635 } 636 637 /* Returns the Accessed status of the PTE and resets it at the same time. */ 638 static bool mmu_spte_age(u64 *sptep) 639 { 640 u64 spte = mmu_spte_get_lockless(sptep); 641 642 if (!is_accessed_spte(spte)) 643 return false; 644 645 if (spte_ad_enabled(spte)) { 646 clear_bit((ffs(shadow_accessed_mask) - 1), 647 (unsigned long *)sptep); 648 } else { 649 /* 650 * Capture the dirty status of the page, so that it doesn't get 651 * lost when the SPTE is marked for access tracking. 652 */ 653 if (is_writable_pte(spte)) 654 kvm_set_pfn_dirty(spte_to_pfn(spte)); 655 656 spte = mark_spte_for_access_track(spte); 657 mmu_spte_update_no_track(sptep, spte); 658 } 659 660 return true; 661 } 662 663 static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu) 664 { 665 if (is_tdp_mmu(vcpu->arch.mmu)) { 666 kvm_tdp_mmu_walk_lockless_begin(); 667 } else { 668 /* 669 * Prevent page table teardown by making any free-er wait during 670 * kvm_flush_remote_tlbs() IPI to all active vcpus. 671 */ 672 local_irq_disable(); 673 674 /* 675 * Make sure a following spte read is not reordered ahead of the write 676 * to vcpu->mode. 677 */ 678 smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES); 679 } 680 } 681 682 static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu) 683 { 684 if (is_tdp_mmu(vcpu->arch.mmu)) { 685 kvm_tdp_mmu_walk_lockless_end(); 686 } else { 687 /* 688 * Make sure the write to vcpu->mode is not reordered in front of 689 * reads to sptes. If it does, kvm_mmu_commit_zap_page() can see us 690 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table. 691 */ 692 smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE); 693 local_irq_enable(); 694 } 695 } 696 697 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu, bool maybe_indirect) 698 { 699 int r; 700 701 /* 1 rmap, 1 parent PTE per level, and the prefetched rmaps. */ 702 r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache, 703 1 + PT64_ROOT_MAX_LEVEL + PTE_PREFETCH_NUM); 704 if (r) 705 return r; 706 r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_shadow_page_cache, 707 PT64_ROOT_MAX_LEVEL); 708 if (r) 709 return r; 710 if (maybe_indirect) { 711 r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_gfn_array_cache, 712 PT64_ROOT_MAX_LEVEL); 713 if (r) 714 return r; 715 } 716 return kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache, 717 PT64_ROOT_MAX_LEVEL); 718 } 719 720 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu) 721 { 722 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache); 723 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_shadow_page_cache); 724 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_gfn_array_cache); 725 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache); 726 } 727 728 static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu) 729 { 730 return kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache); 731 } 732 733 static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc) 734 { 735 kmem_cache_free(pte_list_desc_cache, pte_list_desc); 736 } 737 738 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index) 739 { 740 if (!sp->role.direct) 741 return sp->gfns[index]; 742 743 return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS)); 744 } 745 746 static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn) 747 { 748 if (!sp->role.direct) { 749 sp->gfns[index] = gfn; 750 return; 751 } 752 753 if (WARN_ON(gfn != kvm_mmu_page_get_gfn(sp, index))) 754 pr_err_ratelimited("gfn mismatch under direct page %llx " 755 "(expected %llx, got %llx)\n", 756 sp->gfn, 757 kvm_mmu_page_get_gfn(sp, index), gfn); 758 } 759 760 /* 761 * Return the pointer to the large page information for a given gfn, 762 * handling slots that are not large page aligned. 763 */ 764 static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn, 765 const struct kvm_memory_slot *slot, int level) 766 { 767 unsigned long idx; 768 769 idx = gfn_to_index(gfn, slot->base_gfn, level); 770 return &slot->arch.lpage_info[level - 2][idx]; 771 } 772 773 static void update_gfn_disallow_lpage_count(const struct kvm_memory_slot *slot, 774 gfn_t gfn, int count) 775 { 776 struct kvm_lpage_info *linfo; 777 int i; 778 779 for (i = PG_LEVEL_2M; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) { 780 linfo = lpage_info_slot(gfn, slot, i); 781 linfo->disallow_lpage += count; 782 WARN_ON(linfo->disallow_lpage < 0); 783 } 784 } 785 786 void kvm_mmu_gfn_disallow_lpage(const struct kvm_memory_slot *slot, gfn_t gfn) 787 { 788 update_gfn_disallow_lpage_count(slot, gfn, 1); 789 } 790 791 void kvm_mmu_gfn_allow_lpage(const struct kvm_memory_slot *slot, gfn_t gfn) 792 { 793 update_gfn_disallow_lpage_count(slot, gfn, -1); 794 } 795 796 static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp) 797 { 798 struct kvm_memslots *slots; 799 struct kvm_memory_slot *slot; 800 gfn_t gfn; 801 802 kvm->arch.indirect_shadow_pages++; 803 gfn = sp->gfn; 804 slots = kvm_memslots_for_spte_role(kvm, sp->role); 805 slot = __gfn_to_memslot(slots, gfn); 806 807 /* the non-leaf shadow pages are keeping readonly. */ 808 if (sp->role.level > PG_LEVEL_4K) 809 return kvm_slot_page_track_add_page(kvm, slot, gfn, 810 KVM_PAGE_TRACK_WRITE); 811 812 kvm_mmu_gfn_disallow_lpage(slot, gfn); 813 } 814 815 void account_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp) 816 { 817 if (sp->lpage_disallowed) 818 return; 819 820 ++kvm->stat.nx_lpage_splits; 821 list_add_tail(&sp->lpage_disallowed_link, 822 &kvm->arch.lpage_disallowed_mmu_pages); 823 sp->lpage_disallowed = true; 824 } 825 826 static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp) 827 { 828 struct kvm_memslots *slots; 829 struct kvm_memory_slot *slot; 830 gfn_t gfn; 831 832 kvm->arch.indirect_shadow_pages--; 833 gfn = sp->gfn; 834 slots = kvm_memslots_for_spte_role(kvm, sp->role); 835 slot = __gfn_to_memslot(slots, gfn); 836 if (sp->role.level > PG_LEVEL_4K) 837 return kvm_slot_page_track_remove_page(kvm, slot, gfn, 838 KVM_PAGE_TRACK_WRITE); 839 840 kvm_mmu_gfn_allow_lpage(slot, gfn); 841 } 842 843 void unaccount_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp) 844 { 845 --kvm->stat.nx_lpage_splits; 846 sp->lpage_disallowed = false; 847 list_del(&sp->lpage_disallowed_link); 848 } 849 850 static struct kvm_memory_slot * 851 gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn, 852 bool no_dirty_log) 853 { 854 struct kvm_memory_slot *slot; 855 856 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 857 if (!slot || slot->flags & KVM_MEMSLOT_INVALID) 858 return NULL; 859 if (no_dirty_log && kvm_slot_dirty_track_enabled(slot)) 860 return NULL; 861 862 return slot; 863 } 864 865 /* 866 * About rmap_head encoding: 867 * 868 * If the bit zero of rmap_head->val is clear, then it points to the only spte 869 * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct 870 * pte_list_desc containing more mappings. 871 */ 872 873 /* 874 * Returns the number of pointers in the rmap chain, not counting the new one. 875 */ 876 static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte, 877 struct kvm_rmap_head *rmap_head) 878 { 879 struct pte_list_desc *desc; 880 int count = 0; 881 882 if (!rmap_head->val) { 883 rmap_printk("%p %llx 0->1\n", spte, *spte); 884 rmap_head->val = (unsigned long)spte; 885 } else if (!(rmap_head->val & 1)) { 886 rmap_printk("%p %llx 1->many\n", spte, *spte); 887 desc = mmu_alloc_pte_list_desc(vcpu); 888 desc->sptes[0] = (u64 *)rmap_head->val; 889 desc->sptes[1] = spte; 890 desc->spte_count = 2; 891 rmap_head->val = (unsigned long)desc | 1; 892 ++count; 893 } else { 894 rmap_printk("%p %llx many->many\n", spte, *spte); 895 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul); 896 while (desc->spte_count == PTE_LIST_EXT) { 897 count += PTE_LIST_EXT; 898 if (!desc->more) { 899 desc->more = mmu_alloc_pte_list_desc(vcpu); 900 desc = desc->more; 901 desc->spte_count = 0; 902 break; 903 } 904 desc = desc->more; 905 } 906 count += desc->spte_count; 907 desc->sptes[desc->spte_count++] = spte; 908 } 909 return count; 910 } 911 912 static void 913 pte_list_desc_remove_entry(struct kvm_rmap_head *rmap_head, 914 struct pte_list_desc *desc, int i, 915 struct pte_list_desc *prev_desc) 916 { 917 int j = desc->spte_count - 1; 918 919 desc->sptes[i] = desc->sptes[j]; 920 desc->sptes[j] = NULL; 921 desc->spte_count--; 922 if (desc->spte_count) 923 return; 924 if (!prev_desc && !desc->more) 925 rmap_head->val = 0; 926 else 927 if (prev_desc) 928 prev_desc->more = desc->more; 929 else 930 rmap_head->val = (unsigned long)desc->more | 1; 931 mmu_free_pte_list_desc(desc); 932 } 933 934 static void __pte_list_remove(u64 *spte, struct kvm_rmap_head *rmap_head) 935 { 936 struct pte_list_desc *desc; 937 struct pte_list_desc *prev_desc; 938 int i; 939 940 if (!rmap_head->val) { 941 pr_err("%s: %p 0->BUG\n", __func__, spte); 942 BUG(); 943 } else if (!(rmap_head->val & 1)) { 944 rmap_printk("%p 1->0\n", spte); 945 if ((u64 *)rmap_head->val != spte) { 946 pr_err("%s: %p 1->BUG\n", __func__, spte); 947 BUG(); 948 } 949 rmap_head->val = 0; 950 } else { 951 rmap_printk("%p many->many\n", spte); 952 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul); 953 prev_desc = NULL; 954 while (desc) { 955 for (i = 0; i < desc->spte_count; ++i) { 956 if (desc->sptes[i] == spte) { 957 pte_list_desc_remove_entry(rmap_head, 958 desc, i, prev_desc); 959 return; 960 } 961 } 962 prev_desc = desc; 963 desc = desc->more; 964 } 965 pr_err("%s: %p many->many\n", __func__, spte); 966 BUG(); 967 } 968 } 969 970 static void pte_list_remove(struct kvm *kvm, struct kvm_rmap_head *rmap_head, 971 u64 *sptep) 972 { 973 mmu_spte_clear_track_bits(kvm, sptep); 974 __pte_list_remove(sptep, rmap_head); 975 } 976 977 /* Return true if rmap existed, false otherwise */ 978 static bool pte_list_destroy(struct kvm *kvm, struct kvm_rmap_head *rmap_head) 979 { 980 struct pte_list_desc *desc, *next; 981 int i; 982 983 if (!rmap_head->val) 984 return false; 985 986 if (!(rmap_head->val & 1)) { 987 mmu_spte_clear_track_bits(kvm, (u64 *)rmap_head->val); 988 goto out; 989 } 990 991 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul); 992 993 for (; desc; desc = next) { 994 for (i = 0; i < desc->spte_count; i++) 995 mmu_spte_clear_track_bits(kvm, desc->sptes[i]); 996 next = desc->more; 997 mmu_free_pte_list_desc(desc); 998 } 999 out: 1000 /* rmap_head is meaningless now, remember to reset it */ 1001 rmap_head->val = 0; 1002 return true; 1003 } 1004 1005 unsigned int pte_list_count(struct kvm_rmap_head *rmap_head) 1006 { 1007 struct pte_list_desc *desc; 1008 unsigned int count = 0; 1009 1010 if (!rmap_head->val) 1011 return 0; 1012 else if (!(rmap_head->val & 1)) 1013 return 1; 1014 1015 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul); 1016 1017 while (desc) { 1018 count += desc->spte_count; 1019 desc = desc->more; 1020 } 1021 1022 return count; 1023 } 1024 1025 static struct kvm_rmap_head *gfn_to_rmap(gfn_t gfn, int level, 1026 const struct kvm_memory_slot *slot) 1027 { 1028 unsigned long idx; 1029 1030 idx = gfn_to_index(gfn, slot->base_gfn, level); 1031 return &slot->arch.rmap[level - PG_LEVEL_4K][idx]; 1032 } 1033 1034 static bool rmap_can_add(struct kvm_vcpu *vcpu) 1035 { 1036 struct kvm_mmu_memory_cache *mc; 1037 1038 mc = &vcpu->arch.mmu_pte_list_desc_cache; 1039 return kvm_mmu_memory_cache_nr_free_objects(mc); 1040 } 1041 1042 static void rmap_remove(struct kvm *kvm, u64 *spte) 1043 { 1044 struct kvm_memslots *slots; 1045 struct kvm_memory_slot *slot; 1046 struct kvm_mmu_page *sp; 1047 gfn_t gfn; 1048 struct kvm_rmap_head *rmap_head; 1049 1050 sp = sptep_to_sp(spte); 1051 gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt); 1052 1053 /* 1054 * Unlike rmap_add, rmap_remove does not run in the context of a vCPU 1055 * so we have to determine which memslots to use based on context 1056 * information in sp->role. 1057 */ 1058 slots = kvm_memslots_for_spte_role(kvm, sp->role); 1059 1060 slot = __gfn_to_memslot(slots, gfn); 1061 rmap_head = gfn_to_rmap(gfn, sp->role.level, slot); 1062 1063 __pte_list_remove(spte, rmap_head); 1064 } 1065 1066 /* 1067 * Used by the following functions to iterate through the sptes linked by a 1068 * rmap. All fields are private and not assumed to be used outside. 1069 */ 1070 struct rmap_iterator { 1071 /* private fields */ 1072 struct pte_list_desc *desc; /* holds the sptep if not NULL */ 1073 int pos; /* index of the sptep */ 1074 }; 1075 1076 /* 1077 * Iteration must be started by this function. This should also be used after 1078 * removing/dropping sptes from the rmap link because in such cases the 1079 * information in the iterator may not be valid. 1080 * 1081 * Returns sptep if found, NULL otherwise. 1082 */ 1083 static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head, 1084 struct rmap_iterator *iter) 1085 { 1086 u64 *sptep; 1087 1088 if (!rmap_head->val) 1089 return NULL; 1090 1091 if (!(rmap_head->val & 1)) { 1092 iter->desc = NULL; 1093 sptep = (u64 *)rmap_head->val; 1094 goto out; 1095 } 1096 1097 iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul); 1098 iter->pos = 0; 1099 sptep = iter->desc->sptes[iter->pos]; 1100 out: 1101 BUG_ON(!is_shadow_present_pte(*sptep)); 1102 return sptep; 1103 } 1104 1105 /* 1106 * Must be used with a valid iterator: e.g. after rmap_get_first(). 1107 * 1108 * Returns sptep if found, NULL otherwise. 1109 */ 1110 static u64 *rmap_get_next(struct rmap_iterator *iter) 1111 { 1112 u64 *sptep; 1113 1114 if (iter->desc) { 1115 if (iter->pos < PTE_LIST_EXT - 1) { 1116 ++iter->pos; 1117 sptep = iter->desc->sptes[iter->pos]; 1118 if (sptep) 1119 goto out; 1120 } 1121 1122 iter->desc = iter->desc->more; 1123 1124 if (iter->desc) { 1125 iter->pos = 0; 1126 /* desc->sptes[0] cannot be NULL */ 1127 sptep = iter->desc->sptes[iter->pos]; 1128 goto out; 1129 } 1130 } 1131 1132 return NULL; 1133 out: 1134 BUG_ON(!is_shadow_present_pte(*sptep)); 1135 return sptep; 1136 } 1137 1138 #define for_each_rmap_spte(_rmap_head_, _iter_, _spte_) \ 1139 for (_spte_ = rmap_get_first(_rmap_head_, _iter_); \ 1140 _spte_; _spte_ = rmap_get_next(_iter_)) 1141 1142 static void drop_spte(struct kvm *kvm, u64 *sptep) 1143 { 1144 u64 old_spte = mmu_spte_clear_track_bits(kvm, sptep); 1145 1146 if (is_shadow_present_pte(old_spte)) 1147 rmap_remove(kvm, sptep); 1148 } 1149 1150 1151 static bool __drop_large_spte(struct kvm *kvm, u64 *sptep) 1152 { 1153 if (is_large_pte(*sptep)) { 1154 WARN_ON(sptep_to_sp(sptep)->role.level == PG_LEVEL_4K); 1155 drop_spte(kvm, sptep); 1156 return true; 1157 } 1158 1159 return false; 1160 } 1161 1162 static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep) 1163 { 1164 if (__drop_large_spte(vcpu->kvm, sptep)) { 1165 struct kvm_mmu_page *sp = sptep_to_sp(sptep); 1166 1167 kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn, 1168 KVM_PAGES_PER_HPAGE(sp->role.level)); 1169 } 1170 } 1171 1172 /* 1173 * Write-protect on the specified @sptep, @pt_protect indicates whether 1174 * spte write-protection is caused by protecting shadow page table. 1175 * 1176 * Note: write protection is difference between dirty logging and spte 1177 * protection: 1178 * - for dirty logging, the spte can be set to writable at anytime if 1179 * its dirty bitmap is properly set. 1180 * - for spte protection, the spte can be writable only after unsync-ing 1181 * shadow page. 1182 * 1183 * Return true if tlb need be flushed. 1184 */ 1185 static bool spte_write_protect(u64 *sptep, bool pt_protect) 1186 { 1187 u64 spte = *sptep; 1188 1189 if (!is_writable_pte(spte) && 1190 !(pt_protect && spte_can_locklessly_be_made_writable(spte))) 1191 return false; 1192 1193 rmap_printk("spte %p %llx\n", sptep, *sptep); 1194 1195 if (pt_protect) 1196 spte &= ~shadow_mmu_writable_mask; 1197 spte = spte & ~PT_WRITABLE_MASK; 1198 1199 return mmu_spte_update(sptep, spte); 1200 } 1201 1202 static bool rmap_write_protect(struct kvm_rmap_head *rmap_head, 1203 bool pt_protect) 1204 { 1205 u64 *sptep; 1206 struct rmap_iterator iter; 1207 bool flush = false; 1208 1209 for_each_rmap_spte(rmap_head, &iter, sptep) 1210 flush |= spte_write_protect(sptep, pt_protect); 1211 1212 return flush; 1213 } 1214 1215 static bool spte_clear_dirty(u64 *sptep) 1216 { 1217 u64 spte = *sptep; 1218 1219 rmap_printk("spte %p %llx\n", sptep, *sptep); 1220 1221 MMU_WARN_ON(!spte_ad_enabled(spte)); 1222 spte &= ~shadow_dirty_mask; 1223 return mmu_spte_update(sptep, spte); 1224 } 1225 1226 static bool spte_wrprot_for_clear_dirty(u64 *sptep) 1227 { 1228 bool was_writable = test_and_clear_bit(PT_WRITABLE_SHIFT, 1229 (unsigned long *)sptep); 1230 if (was_writable && !spte_ad_enabled(*sptep)) 1231 kvm_set_pfn_dirty(spte_to_pfn(*sptep)); 1232 1233 return was_writable; 1234 } 1235 1236 /* 1237 * Gets the GFN ready for another round of dirty logging by clearing the 1238 * - D bit on ad-enabled SPTEs, and 1239 * - W bit on ad-disabled SPTEs. 1240 * Returns true iff any D or W bits were cleared. 1241 */ 1242 static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head, 1243 const struct kvm_memory_slot *slot) 1244 { 1245 u64 *sptep; 1246 struct rmap_iterator iter; 1247 bool flush = false; 1248 1249 for_each_rmap_spte(rmap_head, &iter, sptep) 1250 if (spte_ad_need_write_protect(*sptep)) 1251 flush |= spte_wrprot_for_clear_dirty(sptep); 1252 else 1253 flush |= spte_clear_dirty(sptep); 1254 1255 return flush; 1256 } 1257 1258 /** 1259 * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages 1260 * @kvm: kvm instance 1261 * @slot: slot to protect 1262 * @gfn_offset: start of the BITS_PER_LONG pages we care about 1263 * @mask: indicates which pages we should protect 1264 * 1265 * Used when we do not need to care about huge page mappings. 1266 */ 1267 static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm, 1268 struct kvm_memory_slot *slot, 1269 gfn_t gfn_offset, unsigned long mask) 1270 { 1271 struct kvm_rmap_head *rmap_head; 1272 1273 if (is_tdp_mmu_enabled(kvm)) 1274 kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot, 1275 slot->base_gfn + gfn_offset, mask, true); 1276 1277 if (!kvm_memslots_have_rmaps(kvm)) 1278 return; 1279 1280 while (mask) { 1281 rmap_head = gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask), 1282 PG_LEVEL_4K, slot); 1283 rmap_write_protect(rmap_head, false); 1284 1285 /* clear the first set bit */ 1286 mask &= mask - 1; 1287 } 1288 } 1289 1290 /** 1291 * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages, or write 1292 * protect the page if the D-bit isn't supported. 1293 * @kvm: kvm instance 1294 * @slot: slot to clear D-bit 1295 * @gfn_offset: start of the BITS_PER_LONG pages we care about 1296 * @mask: indicates which pages we should clear D-bit 1297 * 1298 * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap. 1299 */ 1300 static void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm, 1301 struct kvm_memory_slot *slot, 1302 gfn_t gfn_offset, unsigned long mask) 1303 { 1304 struct kvm_rmap_head *rmap_head; 1305 1306 if (is_tdp_mmu_enabled(kvm)) 1307 kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot, 1308 slot->base_gfn + gfn_offset, mask, false); 1309 1310 if (!kvm_memslots_have_rmaps(kvm)) 1311 return; 1312 1313 while (mask) { 1314 rmap_head = gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask), 1315 PG_LEVEL_4K, slot); 1316 __rmap_clear_dirty(kvm, rmap_head, slot); 1317 1318 /* clear the first set bit */ 1319 mask &= mask - 1; 1320 } 1321 } 1322 1323 /** 1324 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected 1325 * PT level pages. 1326 * 1327 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to 1328 * enable dirty logging for them. 1329 * 1330 * We need to care about huge page mappings: e.g. during dirty logging we may 1331 * have such mappings. 1332 */ 1333 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm, 1334 struct kvm_memory_slot *slot, 1335 gfn_t gfn_offset, unsigned long mask) 1336 { 1337 /* 1338 * Huge pages are NOT write protected when we start dirty logging in 1339 * initially-all-set mode; must write protect them here so that they 1340 * are split to 4K on the first write. 1341 * 1342 * The gfn_offset is guaranteed to be aligned to 64, but the base_gfn 1343 * of memslot has no such restriction, so the range can cross two large 1344 * pages. 1345 */ 1346 if (kvm_dirty_log_manual_protect_and_init_set(kvm)) { 1347 gfn_t start = slot->base_gfn + gfn_offset + __ffs(mask); 1348 gfn_t end = slot->base_gfn + gfn_offset + __fls(mask); 1349 1350 if (READ_ONCE(eager_page_split)) 1351 kvm_mmu_try_split_huge_pages(kvm, slot, start, end, PG_LEVEL_4K); 1352 1353 kvm_mmu_slot_gfn_write_protect(kvm, slot, start, PG_LEVEL_2M); 1354 1355 /* Cross two large pages? */ 1356 if (ALIGN(start << PAGE_SHIFT, PMD_SIZE) != 1357 ALIGN(end << PAGE_SHIFT, PMD_SIZE)) 1358 kvm_mmu_slot_gfn_write_protect(kvm, slot, end, 1359 PG_LEVEL_2M); 1360 } 1361 1362 /* Now handle 4K PTEs. */ 1363 if (kvm_x86_ops.cpu_dirty_log_size) 1364 kvm_mmu_clear_dirty_pt_masked(kvm, slot, gfn_offset, mask); 1365 else 1366 kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask); 1367 } 1368 1369 int kvm_cpu_dirty_log_size(void) 1370 { 1371 return kvm_x86_ops.cpu_dirty_log_size; 1372 } 1373 1374 bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm, 1375 struct kvm_memory_slot *slot, u64 gfn, 1376 int min_level) 1377 { 1378 struct kvm_rmap_head *rmap_head; 1379 int i; 1380 bool write_protected = false; 1381 1382 if (kvm_memslots_have_rmaps(kvm)) { 1383 for (i = min_level; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) { 1384 rmap_head = gfn_to_rmap(gfn, i, slot); 1385 write_protected |= rmap_write_protect(rmap_head, true); 1386 } 1387 } 1388 1389 if (is_tdp_mmu_enabled(kvm)) 1390 write_protected |= 1391 kvm_tdp_mmu_write_protect_gfn(kvm, slot, gfn, min_level); 1392 1393 return write_protected; 1394 } 1395 1396 static bool kvm_vcpu_write_protect_gfn(struct kvm_vcpu *vcpu, u64 gfn) 1397 { 1398 struct kvm_memory_slot *slot; 1399 1400 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 1401 return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn, PG_LEVEL_4K); 1402 } 1403 1404 static bool kvm_zap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head, 1405 const struct kvm_memory_slot *slot) 1406 { 1407 return pte_list_destroy(kvm, rmap_head); 1408 } 1409 1410 static bool kvm_unmap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head, 1411 struct kvm_memory_slot *slot, gfn_t gfn, int level, 1412 pte_t unused) 1413 { 1414 return kvm_zap_rmapp(kvm, rmap_head, slot); 1415 } 1416 1417 static bool kvm_set_pte_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head, 1418 struct kvm_memory_slot *slot, gfn_t gfn, int level, 1419 pte_t pte) 1420 { 1421 u64 *sptep; 1422 struct rmap_iterator iter; 1423 bool need_flush = false; 1424 u64 new_spte; 1425 kvm_pfn_t new_pfn; 1426 1427 WARN_ON(pte_huge(pte)); 1428 new_pfn = pte_pfn(pte); 1429 1430 restart: 1431 for_each_rmap_spte(rmap_head, &iter, sptep) { 1432 rmap_printk("spte %p %llx gfn %llx (%d)\n", 1433 sptep, *sptep, gfn, level); 1434 1435 need_flush = true; 1436 1437 if (pte_write(pte)) { 1438 pte_list_remove(kvm, rmap_head, sptep); 1439 goto restart; 1440 } else { 1441 new_spte = kvm_mmu_changed_pte_notifier_make_spte( 1442 *sptep, new_pfn); 1443 1444 mmu_spte_clear_track_bits(kvm, sptep); 1445 mmu_spte_set(sptep, new_spte); 1446 } 1447 } 1448 1449 if (need_flush && kvm_available_flush_tlb_with_range()) { 1450 kvm_flush_remote_tlbs_with_address(kvm, gfn, 1); 1451 return false; 1452 } 1453 1454 return need_flush; 1455 } 1456 1457 struct slot_rmap_walk_iterator { 1458 /* input fields. */ 1459 const struct kvm_memory_slot *slot; 1460 gfn_t start_gfn; 1461 gfn_t end_gfn; 1462 int start_level; 1463 int end_level; 1464 1465 /* output fields. */ 1466 gfn_t gfn; 1467 struct kvm_rmap_head *rmap; 1468 int level; 1469 1470 /* private field. */ 1471 struct kvm_rmap_head *end_rmap; 1472 }; 1473 1474 static void 1475 rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level) 1476 { 1477 iterator->level = level; 1478 iterator->gfn = iterator->start_gfn; 1479 iterator->rmap = gfn_to_rmap(iterator->gfn, level, iterator->slot); 1480 iterator->end_rmap = gfn_to_rmap(iterator->end_gfn, level, iterator->slot); 1481 } 1482 1483 static void 1484 slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator, 1485 const struct kvm_memory_slot *slot, int start_level, 1486 int end_level, gfn_t start_gfn, gfn_t end_gfn) 1487 { 1488 iterator->slot = slot; 1489 iterator->start_level = start_level; 1490 iterator->end_level = end_level; 1491 iterator->start_gfn = start_gfn; 1492 iterator->end_gfn = end_gfn; 1493 1494 rmap_walk_init_level(iterator, iterator->start_level); 1495 } 1496 1497 static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator) 1498 { 1499 return !!iterator->rmap; 1500 } 1501 1502 static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator) 1503 { 1504 if (++iterator->rmap <= iterator->end_rmap) { 1505 iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level)); 1506 return; 1507 } 1508 1509 if (++iterator->level > iterator->end_level) { 1510 iterator->rmap = NULL; 1511 return; 1512 } 1513 1514 rmap_walk_init_level(iterator, iterator->level); 1515 } 1516 1517 #define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_, \ 1518 _start_gfn, _end_gfn, _iter_) \ 1519 for (slot_rmap_walk_init(_iter_, _slot_, _start_level_, \ 1520 _end_level_, _start_gfn, _end_gfn); \ 1521 slot_rmap_walk_okay(_iter_); \ 1522 slot_rmap_walk_next(_iter_)) 1523 1524 typedef bool (*rmap_handler_t)(struct kvm *kvm, struct kvm_rmap_head *rmap_head, 1525 struct kvm_memory_slot *slot, gfn_t gfn, 1526 int level, pte_t pte); 1527 1528 static __always_inline bool kvm_handle_gfn_range(struct kvm *kvm, 1529 struct kvm_gfn_range *range, 1530 rmap_handler_t handler) 1531 { 1532 struct slot_rmap_walk_iterator iterator; 1533 bool ret = false; 1534 1535 for_each_slot_rmap_range(range->slot, PG_LEVEL_4K, KVM_MAX_HUGEPAGE_LEVEL, 1536 range->start, range->end - 1, &iterator) 1537 ret |= handler(kvm, iterator.rmap, range->slot, iterator.gfn, 1538 iterator.level, range->pte); 1539 1540 return ret; 1541 } 1542 1543 bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range) 1544 { 1545 bool flush = false; 1546 1547 if (kvm_memslots_have_rmaps(kvm)) 1548 flush = kvm_handle_gfn_range(kvm, range, kvm_unmap_rmapp); 1549 1550 if (is_tdp_mmu_enabled(kvm)) 1551 flush = kvm_tdp_mmu_unmap_gfn_range(kvm, range, flush); 1552 1553 return flush; 1554 } 1555 1556 bool kvm_set_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range) 1557 { 1558 bool flush = false; 1559 1560 if (kvm_memslots_have_rmaps(kvm)) 1561 flush = kvm_handle_gfn_range(kvm, range, kvm_set_pte_rmapp); 1562 1563 if (is_tdp_mmu_enabled(kvm)) 1564 flush |= kvm_tdp_mmu_set_spte_gfn(kvm, range); 1565 1566 return flush; 1567 } 1568 1569 static bool kvm_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head, 1570 struct kvm_memory_slot *slot, gfn_t gfn, int level, 1571 pte_t unused) 1572 { 1573 u64 *sptep; 1574 struct rmap_iterator iter; 1575 int young = 0; 1576 1577 for_each_rmap_spte(rmap_head, &iter, sptep) 1578 young |= mmu_spte_age(sptep); 1579 1580 return young; 1581 } 1582 1583 static bool kvm_test_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head, 1584 struct kvm_memory_slot *slot, gfn_t gfn, 1585 int level, pte_t unused) 1586 { 1587 u64 *sptep; 1588 struct rmap_iterator iter; 1589 1590 for_each_rmap_spte(rmap_head, &iter, sptep) 1591 if (is_accessed_spte(*sptep)) 1592 return true; 1593 return false; 1594 } 1595 1596 #define RMAP_RECYCLE_THRESHOLD 1000 1597 1598 static void rmap_add(struct kvm_vcpu *vcpu, struct kvm_memory_slot *slot, 1599 u64 *spte, gfn_t gfn) 1600 { 1601 struct kvm_mmu_page *sp; 1602 struct kvm_rmap_head *rmap_head; 1603 int rmap_count; 1604 1605 sp = sptep_to_sp(spte); 1606 kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn); 1607 rmap_head = gfn_to_rmap(gfn, sp->role.level, slot); 1608 rmap_count = pte_list_add(vcpu, spte, rmap_head); 1609 1610 if (rmap_count > RMAP_RECYCLE_THRESHOLD) { 1611 kvm_unmap_rmapp(vcpu->kvm, rmap_head, NULL, gfn, sp->role.level, __pte(0)); 1612 kvm_flush_remote_tlbs_with_address( 1613 vcpu->kvm, sp->gfn, KVM_PAGES_PER_HPAGE(sp->role.level)); 1614 } 1615 } 1616 1617 bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range) 1618 { 1619 bool young = false; 1620 1621 if (kvm_memslots_have_rmaps(kvm)) 1622 young = kvm_handle_gfn_range(kvm, range, kvm_age_rmapp); 1623 1624 if (is_tdp_mmu_enabled(kvm)) 1625 young |= kvm_tdp_mmu_age_gfn_range(kvm, range); 1626 1627 return young; 1628 } 1629 1630 bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range) 1631 { 1632 bool young = false; 1633 1634 if (kvm_memslots_have_rmaps(kvm)) 1635 young = kvm_handle_gfn_range(kvm, range, kvm_test_age_rmapp); 1636 1637 if (is_tdp_mmu_enabled(kvm)) 1638 young |= kvm_tdp_mmu_test_age_gfn(kvm, range); 1639 1640 return young; 1641 } 1642 1643 #ifdef MMU_DEBUG 1644 static int is_empty_shadow_page(u64 *spt) 1645 { 1646 u64 *pos; 1647 u64 *end; 1648 1649 for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++) 1650 if (is_shadow_present_pte(*pos)) { 1651 printk(KERN_ERR "%s: %p %llx\n", __func__, 1652 pos, *pos); 1653 return 0; 1654 } 1655 return 1; 1656 } 1657 #endif 1658 1659 /* 1660 * This value is the sum of all of the kvm instances's 1661 * kvm->arch.n_used_mmu_pages values. We need a global, 1662 * aggregate version in order to make the slab shrinker 1663 * faster 1664 */ 1665 static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, long nr) 1666 { 1667 kvm->arch.n_used_mmu_pages += nr; 1668 percpu_counter_add(&kvm_total_used_mmu_pages, nr); 1669 } 1670 1671 static void kvm_mmu_free_page(struct kvm_mmu_page *sp) 1672 { 1673 MMU_WARN_ON(!is_empty_shadow_page(sp->spt)); 1674 hlist_del(&sp->hash_link); 1675 list_del(&sp->link); 1676 free_page((unsigned long)sp->spt); 1677 if (!sp->role.direct) 1678 free_page((unsigned long)sp->gfns); 1679 kmem_cache_free(mmu_page_header_cache, sp); 1680 } 1681 1682 static unsigned kvm_page_table_hashfn(gfn_t gfn) 1683 { 1684 return hash_64(gfn, KVM_MMU_HASH_SHIFT); 1685 } 1686 1687 static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu, 1688 struct kvm_mmu_page *sp, u64 *parent_pte) 1689 { 1690 if (!parent_pte) 1691 return; 1692 1693 pte_list_add(vcpu, parent_pte, &sp->parent_ptes); 1694 } 1695 1696 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp, 1697 u64 *parent_pte) 1698 { 1699 __pte_list_remove(parent_pte, &sp->parent_ptes); 1700 } 1701 1702 static void drop_parent_pte(struct kvm_mmu_page *sp, 1703 u64 *parent_pte) 1704 { 1705 mmu_page_remove_parent_pte(sp, parent_pte); 1706 mmu_spte_clear_no_track(parent_pte); 1707 } 1708 1709 static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu, int direct) 1710 { 1711 struct kvm_mmu_page *sp; 1712 1713 sp = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache); 1714 sp->spt = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_shadow_page_cache); 1715 if (!direct) 1716 sp->gfns = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_gfn_array_cache); 1717 set_page_private(virt_to_page(sp->spt), (unsigned long)sp); 1718 1719 /* 1720 * active_mmu_pages must be a FIFO list, as kvm_zap_obsolete_pages() 1721 * depends on valid pages being added to the head of the list. See 1722 * comments in kvm_zap_obsolete_pages(). 1723 */ 1724 sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen; 1725 list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages); 1726 kvm_mod_used_mmu_pages(vcpu->kvm, +1); 1727 return sp; 1728 } 1729 1730 static void mark_unsync(u64 *spte); 1731 static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp) 1732 { 1733 u64 *sptep; 1734 struct rmap_iterator iter; 1735 1736 for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) { 1737 mark_unsync(sptep); 1738 } 1739 } 1740 1741 static void mark_unsync(u64 *spte) 1742 { 1743 struct kvm_mmu_page *sp; 1744 unsigned int index; 1745 1746 sp = sptep_to_sp(spte); 1747 index = spte - sp->spt; 1748 if (__test_and_set_bit(index, sp->unsync_child_bitmap)) 1749 return; 1750 if (sp->unsync_children++) 1751 return; 1752 kvm_mmu_mark_parents_unsync(sp); 1753 } 1754 1755 static int nonpaging_sync_page(struct kvm_vcpu *vcpu, 1756 struct kvm_mmu_page *sp) 1757 { 1758 return -1; 1759 } 1760 1761 #define KVM_PAGE_ARRAY_NR 16 1762 1763 struct kvm_mmu_pages { 1764 struct mmu_page_and_offset { 1765 struct kvm_mmu_page *sp; 1766 unsigned int idx; 1767 } page[KVM_PAGE_ARRAY_NR]; 1768 unsigned int nr; 1769 }; 1770 1771 static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp, 1772 int idx) 1773 { 1774 int i; 1775 1776 if (sp->unsync) 1777 for (i=0; i < pvec->nr; i++) 1778 if (pvec->page[i].sp == sp) 1779 return 0; 1780 1781 pvec->page[pvec->nr].sp = sp; 1782 pvec->page[pvec->nr].idx = idx; 1783 pvec->nr++; 1784 return (pvec->nr == KVM_PAGE_ARRAY_NR); 1785 } 1786 1787 static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx) 1788 { 1789 --sp->unsync_children; 1790 WARN_ON((int)sp->unsync_children < 0); 1791 __clear_bit(idx, sp->unsync_child_bitmap); 1792 } 1793 1794 static int __mmu_unsync_walk(struct kvm_mmu_page *sp, 1795 struct kvm_mmu_pages *pvec) 1796 { 1797 int i, ret, nr_unsync_leaf = 0; 1798 1799 for_each_set_bit(i, sp->unsync_child_bitmap, 512) { 1800 struct kvm_mmu_page *child; 1801 u64 ent = sp->spt[i]; 1802 1803 if (!is_shadow_present_pte(ent) || is_large_pte(ent)) { 1804 clear_unsync_child_bit(sp, i); 1805 continue; 1806 } 1807 1808 child = to_shadow_page(ent & PT64_BASE_ADDR_MASK); 1809 1810 if (child->unsync_children) { 1811 if (mmu_pages_add(pvec, child, i)) 1812 return -ENOSPC; 1813 1814 ret = __mmu_unsync_walk(child, pvec); 1815 if (!ret) { 1816 clear_unsync_child_bit(sp, i); 1817 continue; 1818 } else if (ret > 0) { 1819 nr_unsync_leaf += ret; 1820 } else 1821 return ret; 1822 } else if (child->unsync) { 1823 nr_unsync_leaf++; 1824 if (mmu_pages_add(pvec, child, i)) 1825 return -ENOSPC; 1826 } else 1827 clear_unsync_child_bit(sp, i); 1828 } 1829 1830 return nr_unsync_leaf; 1831 } 1832 1833 #define INVALID_INDEX (-1) 1834 1835 static int mmu_unsync_walk(struct kvm_mmu_page *sp, 1836 struct kvm_mmu_pages *pvec) 1837 { 1838 pvec->nr = 0; 1839 if (!sp->unsync_children) 1840 return 0; 1841 1842 mmu_pages_add(pvec, sp, INVALID_INDEX); 1843 return __mmu_unsync_walk(sp, pvec); 1844 } 1845 1846 static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp) 1847 { 1848 WARN_ON(!sp->unsync); 1849 trace_kvm_mmu_sync_page(sp); 1850 sp->unsync = 0; 1851 --kvm->stat.mmu_unsync; 1852 } 1853 1854 static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp, 1855 struct list_head *invalid_list); 1856 static void kvm_mmu_commit_zap_page(struct kvm *kvm, 1857 struct list_head *invalid_list); 1858 1859 #define for_each_valid_sp(_kvm, _sp, _list) \ 1860 hlist_for_each_entry(_sp, _list, hash_link) \ 1861 if (is_obsolete_sp((_kvm), (_sp))) { \ 1862 } else 1863 1864 #define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn) \ 1865 for_each_valid_sp(_kvm, _sp, \ 1866 &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)]) \ 1867 if ((_sp)->gfn != (_gfn) || (_sp)->role.direct) {} else 1868 1869 static bool kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp, 1870 struct list_head *invalid_list) 1871 { 1872 int ret = vcpu->arch.mmu->sync_page(vcpu, sp); 1873 1874 if (ret < 0) { 1875 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list); 1876 return false; 1877 } 1878 1879 return !!ret; 1880 } 1881 1882 static bool kvm_mmu_remote_flush_or_zap(struct kvm *kvm, 1883 struct list_head *invalid_list, 1884 bool remote_flush) 1885 { 1886 if (!remote_flush && list_empty(invalid_list)) 1887 return false; 1888 1889 if (!list_empty(invalid_list)) 1890 kvm_mmu_commit_zap_page(kvm, invalid_list); 1891 else 1892 kvm_flush_remote_tlbs(kvm); 1893 return true; 1894 } 1895 1896 static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp) 1897 { 1898 if (sp->role.invalid) 1899 return true; 1900 1901 /* TDP MMU pages due not use the MMU generation. */ 1902 return !sp->tdp_mmu_page && 1903 unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen); 1904 } 1905 1906 struct mmu_page_path { 1907 struct kvm_mmu_page *parent[PT64_ROOT_MAX_LEVEL]; 1908 unsigned int idx[PT64_ROOT_MAX_LEVEL]; 1909 }; 1910 1911 #define for_each_sp(pvec, sp, parents, i) \ 1912 for (i = mmu_pages_first(&pvec, &parents); \ 1913 i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \ 1914 i = mmu_pages_next(&pvec, &parents, i)) 1915 1916 static int mmu_pages_next(struct kvm_mmu_pages *pvec, 1917 struct mmu_page_path *parents, 1918 int i) 1919 { 1920 int n; 1921 1922 for (n = i+1; n < pvec->nr; n++) { 1923 struct kvm_mmu_page *sp = pvec->page[n].sp; 1924 unsigned idx = pvec->page[n].idx; 1925 int level = sp->role.level; 1926 1927 parents->idx[level-1] = idx; 1928 if (level == PG_LEVEL_4K) 1929 break; 1930 1931 parents->parent[level-2] = sp; 1932 } 1933 1934 return n; 1935 } 1936 1937 static int mmu_pages_first(struct kvm_mmu_pages *pvec, 1938 struct mmu_page_path *parents) 1939 { 1940 struct kvm_mmu_page *sp; 1941 int level; 1942 1943 if (pvec->nr == 0) 1944 return 0; 1945 1946 WARN_ON(pvec->page[0].idx != INVALID_INDEX); 1947 1948 sp = pvec->page[0].sp; 1949 level = sp->role.level; 1950 WARN_ON(level == PG_LEVEL_4K); 1951 1952 parents->parent[level-2] = sp; 1953 1954 /* Also set up a sentinel. Further entries in pvec are all 1955 * children of sp, so this element is never overwritten. 1956 */ 1957 parents->parent[level-1] = NULL; 1958 return mmu_pages_next(pvec, parents, 0); 1959 } 1960 1961 static void mmu_pages_clear_parents(struct mmu_page_path *parents) 1962 { 1963 struct kvm_mmu_page *sp; 1964 unsigned int level = 0; 1965 1966 do { 1967 unsigned int idx = parents->idx[level]; 1968 sp = parents->parent[level]; 1969 if (!sp) 1970 return; 1971 1972 WARN_ON(idx == INVALID_INDEX); 1973 clear_unsync_child_bit(sp, idx); 1974 level++; 1975 } while (!sp->unsync_children); 1976 } 1977 1978 static int mmu_sync_children(struct kvm_vcpu *vcpu, 1979 struct kvm_mmu_page *parent, bool can_yield) 1980 { 1981 int i; 1982 struct kvm_mmu_page *sp; 1983 struct mmu_page_path parents; 1984 struct kvm_mmu_pages pages; 1985 LIST_HEAD(invalid_list); 1986 bool flush = false; 1987 1988 while (mmu_unsync_walk(parent, &pages)) { 1989 bool protected = false; 1990 1991 for_each_sp(pages, sp, parents, i) 1992 protected |= kvm_vcpu_write_protect_gfn(vcpu, sp->gfn); 1993 1994 if (protected) { 1995 kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, true); 1996 flush = false; 1997 } 1998 1999 for_each_sp(pages, sp, parents, i) { 2000 kvm_unlink_unsync_page(vcpu->kvm, sp); 2001 flush |= kvm_sync_page(vcpu, sp, &invalid_list); 2002 mmu_pages_clear_parents(&parents); 2003 } 2004 if (need_resched() || rwlock_needbreak(&vcpu->kvm->mmu_lock)) { 2005 kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, flush); 2006 if (!can_yield) { 2007 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu); 2008 return -EINTR; 2009 } 2010 2011 cond_resched_rwlock_write(&vcpu->kvm->mmu_lock); 2012 flush = false; 2013 } 2014 } 2015 2016 kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, flush); 2017 return 0; 2018 } 2019 2020 static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp) 2021 { 2022 atomic_set(&sp->write_flooding_count, 0); 2023 } 2024 2025 static void clear_sp_write_flooding_count(u64 *spte) 2026 { 2027 __clear_sp_write_flooding_count(sptep_to_sp(spte)); 2028 } 2029 2030 static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu, 2031 gfn_t gfn, 2032 gva_t gaddr, 2033 unsigned level, 2034 int direct, 2035 unsigned int access) 2036 { 2037 bool direct_mmu = vcpu->arch.mmu->direct_map; 2038 union kvm_mmu_page_role role; 2039 struct hlist_head *sp_list; 2040 unsigned quadrant; 2041 struct kvm_mmu_page *sp; 2042 int collisions = 0; 2043 LIST_HEAD(invalid_list); 2044 2045 role = vcpu->arch.mmu->mmu_role.base; 2046 role.level = level; 2047 role.direct = direct; 2048 role.access = access; 2049 if (role.has_4_byte_gpte) { 2050 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level)); 2051 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1; 2052 role.quadrant = quadrant; 2053 } 2054 2055 sp_list = &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]; 2056 for_each_valid_sp(vcpu->kvm, sp, sp_list) { 2057 if (sp->gfn != gfn) { 2058 collisions++; 2059 continue; 2060 } 2061 2062 if (sp->role.word != role.word) { 2063 /* 2064 * If the guest is creating an upper-level page, zap 2065 * unsync pages for the same gfn. While it's possible 2066 * the guest is using recursive page tables, in all 2067 * likelihood the guest has stopped using the unsync 2068 * page and is installing a completely unrelated page. 2069 * Unsync pages must not be left as is, because the new 2070 * upper-level page will be write-protected. 2071 */ 2072 if (level > PG_LEVEL_4K && sp->unsync) 2073 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, 2074 &invalid_list); 2075 continue; 2076 } 2077 2078 if (direct_mmu) 2079 goto trace_get_page; 2080 2081 if (sp->unsync) { 2082 /* 2083 * The page is good, but is stale. kvm_sync_page does 2084 * get the latest guest state, but (unlike mmu_unsync_children) 2085 * it doesn't write-protect the page or mark it synchronized! 2086 * This way the validity of the mapping is ensured, but the 2087 * overhead of write protection is not incurred until the 2088 * guest invalidates the TLB mapping. This allows multiple 2089 * SPs for a single gfn to be unsync. 2090 * 2091 * If the sync fails, the page is zapped. If so, break 2092 * in order to rebuild it. 2093 */ 2094 if (!kvm_sync_page(vcpu, sp, &invalid_list)) 2095 break; 2096 2097 WARN_ON(!list_empty(&invalid_list)); 2098 kvm_flush_remote_tlbs(vcpu->kvm); 2099 } 2100 2101 __clear_sp_write_flooding_count(sp); 2102 2103 trace_get_page: 2104 trace_kvm_mmu_get_page(sp, false); 2105 goto out; 2106 } 2107 2108 ++vcpu->kvm->stat.mmu_cache_miss; 2109 2110 sp = kvm_mmu_alloc_page(vcpu, direct); 2111 2112 sp->gfn = gfn; 2113 sp->role = role; 2114 hlist_add_head(&sp->hash_link, sp_list); 2115 if (!direct) { 2116 account_shadowed(vcpu->kvm, sp); 2117 if (level == PG_LEVEL_4K && kvm_vcpu_write_protect_gfn(vcpu, gfn)) 2118 kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn, 1); 2119 } 2120 trace_kvm_mmu_get_page(sp, true); 2121 out: 2122 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list); 2123 2124 if (collisions > vcpu->kvm->stat.max_mmu_page_hash_collisions) 2125 vcpu->kvm->stat.max_mmu_page_hash_collisions = collisions; 2126 return sp; 2127 } 2128 2129 static void shadow_walk_init_using_root(struct kvm_shadow_walk_iterator *iterator, 2130 struct kvm_vcpu *vcpu, hpa_t root, 2131 u64 addr) 2132 { 2133 iterator->addr = addr; 2134 iterator->shadow_addr = root; 2135 iterator->level = vcpu->arch.mmu->shadow_root_level; 2136 2137 if (iterator->level >= PT64_ROOT_4LEVEL && 2138 vcpu->arch.mmu->root_level < PT64_ROOT_4LEVEL && 2139 !vcpu->arch.mmu->direct_map) 2140 iterator->level = PT32E_ROOT_LEVEL; 2141 2142 if (iterator->level == PT32E_ROOT_LEVEL) { 2143 /* 2144 * prev_root is currently only used for 64-bit hosts. So only 2145 * the active root_hpa is valid here. 2146 */ 2147 BUG_ON(root != vcpu->arch.mmu->root.hpa); 2148 2149 iterator->shadow_addr 2150 = vcpu->arch.mmu->pae_root[(addr >> 30) & 3]; 2151 iterator->shadow_addr &= PT64_BASE_ADDR_MASK; 2152 --iterator->level; 2153 if (!iterator->shadow_addr) 2154 iterator->level = 0; 2155 } 2156 } 2157 2158 static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator, 2159 struct kvm_vcpu *vcpu, u64 addr) 2160 { 2161 shadow_walk_init_using_root(iterator, vcpu, vcpu->arch.mmu->root.hpa, 2162 addr); 2163 } 2164 2165 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator) 2166 { 2167 if (iterator->level < PG_LEVEL_4K) 2168 return false; 2169 2170 iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level); 2171 iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index; 2172 return true; 2173 } 2174 2175 static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator, 2176 u64 spte) 2177 { 2178 if (!is_shadow_present_pte(spte) || is_last_spte(spte, iterator->level)) { 2179 iterator->level = 0; 2180 return; 2181 } 2182 2183 iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK; 2184 --iterator->level; 2185 } 2186 2187 static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator) 2188 { 2189 __shadow_walk_next(iterator, *iterator->sptep); 2190 } 2191 2192 static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep, 2193 struct kvm_mmu_page *sp) 2194 { 2195 u64 spte; 2196 2197 BUILD_BUG_ON(VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK); 2198 2199 spte = make_nonleaf_spte(sp->spt, sp_ad_disabled(sp)); 2200 2201 mmu_spte_set(sptep, spte); 2202 2203 mmu_page_add_parent_pte(vcpu, sp, sptep); 2204 2205 if (sp->unsync_children || sp->unsync) 2206 mark_unsync(sptep); 2207 } 2208 2209 static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep, 2210 unsigned direct_access) 2211 { 2212 if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) { 2213 struct kvm_mmu_page *child; 2214 2215 /* 2216 * For the direct sp, if the guest pte's dirty bit 2217 * changed form clean to dirty, it will corrupt the 2218 * sp's access: allow writable in the read-only sp, 2219 * so we should update the spte at this point to get 2220 * a new sp with the correct access. 2221 */ 2222 child = to_shadow_page(*sptep & PT64_BASE_ADDR_MASK); 2223 if (child->role.access == direct_access) 2224 return; 2225 2226 drop_parent_pte(child, sptep); 2227 kvm_flush_remote_tlbs_with_address(vcpu->kvm, child->gfn, 1); 2228 } 2229 } 2230 2231 /* Returns the number of zapped non-leaf child shadow pages. */ 2232 static int mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp, 2233 u64 *spte, struct list_head *invalid_list) 2234 { 2235 u64 pte; 2236 struct kvm_mmu_page *child; 2237 2238 pte = *spte; 2239 if (is_shadow_present_pte(pte)) { 2240 if (is_last_spte(pte, sp->role.level)) { 2241 drop_spte(kvm, spte); 2242 } else { 2243 child = to_shadow_page(pte & PT64_BASE_ADDR_MASK); 2244 drop_parent_pte(child, spte); 2245 2246 /* 2247 * Recursively zap nested TDP SPs, parentless SPs are 2248 * unlikely to be used again in the near future. This 2249 * avoids retaining a large number of stale nested SPs. 2250 */ 2251 if (tdp_enabled && invalid_list && 2252 child->role.guest_mode && !child->parent_ptes.val) 2253 return kvm_mmu_prepare_zap_page(kvm, child, 2254 invalid_list); 2255 } 2256 } else if (is_mmio_spte(pte)) { 2257 mmu_spte_clear_no_track(spte); 2258 } 2259 return 0; 2260 } 2261 2262 static int kvm_mmu_page_unlink_children(struct kvm *kvm, 2263 struct kvm_mmu_page *sp, 2264 struct list_head *invalid_list) 2265 { 2266 int zapped = 0; 2267 unsigned i; 2268 2269 for (i = 0; i < PT64_ENT_PER_PAGE; ++i) 2270 zapped += mmu_page_zap_pte(kvm, sp, sp->spt + i, invalid_list); 2271 2272 return zapped; 2273 } 2274 2275 static void kvm_mmu_unlink_parents(struct kvm_mmu_page *sp) 2276 { 2277 u64 *sptep; 2278 struct rmap_iterator iter; 2279 2280 while ((sptep = rmap_get_first(&sp->parent_ptes, &iter))) 2281 drop_parent_pte(sp, sptep); 2282 } 2283 2284 static int mmu_zap_unsync_children(struct kvm *kvm, 2285 struct kvm_mmu_page *parent, 2286 struct list_head *invalid_list) 2287 { 2288 int i, zapped = 0; 2289 struct mmu_page_path parents; 2290 struct kvm_mmu_pages pages; 2291 2292 if (parent->role.level == PG_LEVEL_4K) 2293 return 0; 2294 2295 while (mmu_unsync_walk(parent, &pages)) { 2296 struct kvm_mmu_page *sp; 2297 2298 for_each_sp(pages, sp, parents, i) { 2299 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list); 2300 mmu_pages_clear_parents(&parents); 2301 zapped++; 2302 } 2303 } 2304 2305 return zapped; 2306 } 2307 2308 static bool __kvm_mmu_prepare_zap_page(struct kvm *kvm, 2309 struct kvm_mmu_page *sp, 2310 struct list_head *invalid_list, 2311 int *nr_zapped) 2312 { 2313 bool list_unstable, zapped_root = false; 2314 2315 trace_kvm_mmu_prepare_zap_page(sp); 2316 ++kvm->stat.mmu_shadow_zapped; 2317 *nr_zapped = mmu_zap_unsync_children(kvm, sp, invalid_list); 2318 *nr_zapped += kvm_mmu_page_unlink_children(kvm, sp, invalid_list); 2319 kvm_mmu_unlink_parents(sp); 2320 2321 /* Zapping children means active_mmu_pages has become unstable. */ 2322 list_unstable = *nr_zapped; 2323 2324 if (!sp->role.invalid && !sp->role.direct) 2325 unaccount_shadowed(kvm, sp); 2326 2327 if (sp->unsync) 2328 kvm_unlink_unsync_page(kvm, sp); 2329 if (!sp->root_count) { 2330 /* Count self */ 2331 (*nr_zapped)++; 2332 2333 /* 2334 * Already invalid pages (previously active roots) are not on 2335 * the active page list. See list_del() in the "else" case of 2336 * !sp->root_count. 2337 */ 2338 if (sp->role.invalid) 2339 list_add(&sp->link, invalid_list); 2340 else 2341 list_move(&sp->link, invalid_list); 2342 kvm_mod_used_mmu_pages(kvm, -1); 2343 } else { 2344 /* 2345 * Remove the active root from the active page list, the root 2346 * will be explicitly freed when the root_count hits zero. 2347 */ 2348 list_del(&sp->link); 2349 2350 /* 2351 * Obsolete pages cannot be used on any vCPUs, see the comment 2352 * in kvm_mmu_zap_all_fast(). Note, is_obsolete_sp() also 2353 * treats invalid shadow pages as being obsolete. 2354 */ 2355 zapped_root = !is_obsolete_sp(kvm, sp); 2356 } 2357 2358 if (sp->lpage_disallowed) 2359 unaccount_huge_nx_page(kvm, sp); 2360 2361 sp->role.invalid = 1; 2362 2363 /* 2364 * Make the request to free obsolete roots after marking the root 2365 * invalid, otherwise other vCPUs may not see it as invalid. 2366 */ 2367 if (zapped_root) 2368 kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_FREE_OBSOLETE_ROOTS); 2369 return list_unstable; 2370 } 2371 2372 static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp, 2373 struct list_head *invalid_list) 2374 { 2375 int nr_zapped; 2376 2377 __kvm_mmu_prepare_zap_page(kvm, sp, invalid_list, &nr_zapped); 2378 return nr_zapped; 2379 } 2380 2381 static void kvm_mmu_commit_zap_page(struct kvm *kvm, 2382 struct list_head *invalid_list) 2383 { 2384 struct kvm_mmu_page *sp, *nsp; 2385 2386 if (list_empty(invalid_list)) 2387 return; 2388 2389 /* 2390 * We need to make sure everyone sees our modifications to 2391 * the page tables and see changes to vcpu->mode here. The barrier 2392 * in the kvm_flush_remote_tlbs() achieves this. This pairs 2393 * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end. 2394 * 2395 * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit 2396 * guest mode and/or lockless shadow page table walks. 2397 */ 2398 kvm_flush_remote_tlbs(kvm); 2399 2400 list_for_each_entry_safe(sp, nsp, invalid_list, link) { 2401 WARN_ON(!sp->role.invalid || sp->root_count); 2402 kvm_mmu_free_page(sp); 2403 } 2404 } 2405 2406 static unsigned long kvm_mmu_zap_oldest_mmu_pages(struct kvm *kvm, 2407 unsigned long nr_to_zap) 2408 { 2409 unsigned long total_zapped = 0; 2410 struct kvm_mmu_page *sp, *tmp; 2411 LIST_HEAD(invalid_list); 2412 bool unstable; 2413 int nr_zapped; 2414 2415 if (list_empty(&kvm->arch.active_mmu_pages)) 2416 return 0; 2417 2418 restart: 2419 list_for_each_entry_safe_reverse(sp, tmp, &kvm->arch.active_mmu_pages, link) { 2420 /* 2421 * Don't zap active root pages, the page itself can't be freed 2422 * and zapping it will just force vCPUs to realloc and reload. 2423 */ 2424 if (sp->root_count) 2425 continue; 2426 2427 unstable = __kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list, 2428 &nr_zapped); 2429 total_zapped += nr_zapped; 2430 if (total_zapped >= nr_to_zap) 2431 break; 2432 2433 if (unstable) 2434 goto restart; 2435 } 2436 2437 kvm_mmu_commit_zap_page(kvm, &invalid_list); 2438 2439 kvm->stat.mmu_recycled += total_zapped; 2440 return total_zapped; 2441 } 2442 2443 static inline unsigned long kvm_mmu_available_pages(struct kvm *kvm) 2444 { 2445 if (kvm->arch.n_max_mmu_pages > kvm->arch.n_used_mmu_pages) 2446 return kvm->arch.n_max_mmu_pages - 2447 kvm->arch.n_used_mmu_pages; 2448 2449 return 0; 2450 } 2451 2452 static int make_mmu_pages_available(struct kvm_vcpu *vcpu) 2453 { 2454 unsigned long avail = kvm_mmu_available_pages(vcpu->kvm); 2455 2456 if (likely(avail >= KVM_MIN_FREE_MMU_PAGES)) 2457 return 0; 2458 2459 kvm_mmu_zap_oldest_mmu_pages(vcpu->kvm, KVM_REFILL_PAGES - avail); 2460 2461 /* 2462 * Note, this check is intentionally soft, it only guarantees that one 2463 * page is available, while the caller may end up allocating as many as 2464 * four pages, e.g. for PAE roots or for 5-level paging. Temporarily 2465 * exceeding the (arbitrary by default) limit will not harm the host, 2466 * being too aggressive may unnecessarily kill the guest, and getting an 2467 * exact count is far more trouble than it's worth, especially in the 2468 * page fault paths. 2469 */ 2470 if (!kvm_mmu_available_pages(vcpu->kvm)) 2471 return -ENOSPC; 2472 return 0; 2473 } 2474 2475 /* 2476 * Changing the number of mmu pages allocated to the vm 2477 * Note: if goal_nr_mmu_pages is too small, you will get dead lock 2478 */ 2479 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long goal_nr_mmu_pages) 2480 { 2481 write_lock(&kvm->mmu_lock); 2482 2483 if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) { 2484 kvm_mmu_zap_oldest_mmu_pages(kvm, kvm->arch.n_used_mmu_pages - 2485 goal_nr_mmu_pages); 2486 2487 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages; 2488 } 2489 2490 kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages; 2491 2492 write_unlock(&kvm->mmu_lock); 2493 } 2494 2495 int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn) 2496 { 2497 struct kvm_mmu_page *sp; 2498 LIST_HEAD(invalid_list); 2499 int r; 2500 2501 pgprintk("%s: looking for gfn %llx\n", __func__, gfn); 2502 r = 0; 2503 write_lock(&kvm->mmu_lock); 2504 for_each_gfn_indirect_valid_sp(kvm, sp, gfn) { 2505 pgprintk("%s: gfn %llx role %x\n", __func__, gfn, 2506 sp->role.word); 2507 r = 1; 2508 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list); 2509 } 2510 kvm_mmu_commit_zap_page(kvm, &invalid_list); 2511 write_unlock(&kvm->mmu_lock); 2512 2513 return r; 2514 } 2515 2516 static int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva) 2517 { 2518 gpa_t gpa; 2519 int r; 2520 2521 if (vcpu->arch.mmu->direct_map) 2522 return 0; 2523 2524 gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL); 2525 2526 r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT); 2527 2528 return r; 2529 } 2530 2531 static void kvm_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp) 2532 { 2533 trace_kvm_mmu_unsync_page(sp); 2534 ++kvm->stat.mmu_unsync; 2535 sp->unsync = 1; 2536 2537 kvm_mmu_mark_parents_unsync(sp); 2538 } 2539 2540 /* 2541 * Attempt to unsync any shadow pages that can be reached by the specified gfn, 2542 * KVM is creating a writable mapping for said gfn. Returns 0 if all pages 2543 * were marked unsync (or if there is no shadow page), -EPERM if the SPTE must 2544 * be write-protected. 2545 */ 2546 int mmu_try_to_unsync_pages(struct kvm *kvm, const struct kvm_memory_slot *slot, 2547 gfn_t gfn, bool can_unsync, bool prefetch) 2548 { 2549 struct kvm_mmu_page *sp; 2550 bool locked = false; 2551 2552 /* 2553 * Force write-protection if the page is being tracked. Note, the page 2554 * track machinery is used to write-protect upper-level shadow pages, 2555 * i.e. this guards the role.level == 4K assertion below! 2556 */ 2557 if (kvm_slot_page_track_is_active(kvm, slot, gfn, KVM_PAGE_TRACK_WRITE)) 2558 return -EPERM; 2559 2560 /* 2561 * The page is not write-tracked, mark existing shadow pages unsync 2562 * unless KVM is synchronizing an unsync SP (can_unsync = false). In 2563 * that case, KVM must complete emulation of the guest TLB flush before 2564 * allowing shadow pages to become unsync (writable by the guest). 2565 */ 2566 for_each_gfn_indirect_valid_sp(kvm, sp, gfn) { 2567 if (!can_unsync) 2568 return -EPERM; 2569 2570 if (sp->unsync) 2571 continue; 2572 2573 if (prefetch) 2574 return -EEXIST; 2575 2576 /* 2577 * TDP MMU page faults require an additional spinlock as they 2578 * run with mmu_lock held for read, not write, and the unsync 2579 * logic is not thread safe. Take the spinklock regardless of 2580 * the MMU type to avoid extra conditionals/parameters, there's 2581 * no meaningful penalty if mmu_lock is held for write. 2582 */ 2583 if (!locked) { 2584 locked = true; 2585 spin_lock(&kvm->arch.mmu_unsync_pages_lock); 2586 2587 /* 2588 * Recheck after taking the spinlock, a different vCPU 2589 * may have since marked the page unsync. A false 2590 * positive on the unprotected check above is not 2591 * possible as clearing sp->unsync _must_ hold mmu_lock 2592 * for write, i.e. unsync cannot transition from 0->1 2593 * while this CPU holds mmu_lock for read (or write). 2594 */ 2595 if (READ_ONCE(sp->unsync)) 2596 continue; 2597 } 2598 2599 WARN_ON(sp->role.level != PG_LEVEL_4K); 2600 kvm_unsync_page(kvm, sp); 2601 } 2602 if (locked) 2603 spin_unlock(&kvm->arch.mmu_unsync_pages_lock); 2604 2605 /* 2606 * We need to ensure that the marking of unsync pages is visible 2607 * before the SPTE is updated to allow writes because 2608 * kvm_mmu_sync_roots() checks the unsync flags without holding 2609 * the MMU lock and so can race with this. If the SPTE was updated 2610 * before the page had been marked as unsync-ed, something like the 2611 * following could happen: 2612 * 2613 * CPU 1 CPU 2 2614 * --------------------------------------------------------------------- 2615 * 1.2 Host updates SPTE 2616 * to be writable 2617 * 2.1 Guest writes a GPTE for GVA X. 2618 * (GPTE being in the guest page table shadowed 2619 * by the SP from CPU 1.) 2620 * This reads SPTE during the page table walk. 2621 * Since SPTE.W is read as 1, there is no 2622 * fault. 2623 * 2624 * 2.2 Guest issues TLB flush. 2625 * That causes a VM Exit. 2626 * 2627 * 2.3 Walking of unsync pages sees sp->unsync is 2628 * false and skips the page. 2629 * 2630 * 2.4 Guest accesses GVA X. 2631 * Since the mapping in the SP was not updated, 2632 * so the old mapping for GVA X incorrectly 2633 * gets used. 2634 * 1.1 Host marks SP 2635 * as unsync 2636 * (sp->unsync = true) 2637 * 2638 * The write barrier below ensures that 1.1 happens before 1.2 and thus 2639 * the situation in 2.4 does not arise. It pairs with the read barrier 2640 * in is_unsync_root(), placed between 2.1's load of SPTE.W and 2.3. 2641 */ 2642 smp_wmb(); 2643 2644 return 0; 2645 } 2646 2647 static int mmu_set_spte(struct kvm_vcpu *vcpu, struct kvm_memory_slot *slot, 2648 u64 *sptep, unsigned int pte_access, gfn_t gfn, 2649 kvm_pfn_t pfn, struct kvm_page_fault *fault) 2650 { 2651 struct kvm_mmu_page *sp = sptep_to_sp(sptep); 2652 int level = sp->role.level; 2653 int was_rmapped = 0; 2654 int ret = RET_PF_FIXED; 2655 bool flush = false; 2656 bool wrprot; 2657 u64 spte; 2658 2659 /* Prefetching always gets a writable pfn. */ 2660 bool host_writable = !fault || fault->map_writable; 2661 bool prefetch = !fault || fault->prefetch; 2662 bool write_fault = fault && fault->write; 2663 2664 pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__, 2665 *sptep, write_fault, gfn); 2666 2667 if (unlikely(is_noslot_pfn(pfn))) { 2668 mark_mmio_spte(vcpu, sptep, gfn, pte_access); 2669 return RET_PF_EMULATE; 2670 } 2671 2672 if (is_shadow_present_pte(*sptep)) { 2673 /* 2674 * If we overwrite a PTE page pointer with a 2MB PMD, unlink 2675 * the parent of the now unreachable PTE. 2676 */ 2677 if (level > PG_LEVEL_4K && !is_large_pte(*sptep)) { 2678 struct kvm_mmu_page *child; 2679 u64 pte = *sptep; 2680 2681 child = to_shadow_page(pte & PT64_BASE_ADDR_MASK); 2682 drop_parent_pte(child, sptep); 2683 flush = true; 2684 } else if (pfn != spte_to_pfn(*sptep)) { 2685 pgprintk("hfn old %llx new %llx\n", 2686 spte_to_pfn(*sptep), pfn); 2687 drop_spte(vcpu->kvm, sptep); 2688 flush = true; 2689 } else 2690 was_rmapped = 1; 2691 } 2692 2693 wrprot = make_spte(vcpu, sp, slot, pte_access, gfn, pfn, *sptep, prefetch, 2694 true, host_writable, &spte); 2695 2696 if (*sptep == spte) { 2697 ret = RET_PF_SPURIOUS; 2698 } else { 2699 flush |= mmu_spte_update(sptep, spte); 2700 trace_kvm_mmu_set_spte(level, gfn, sptep); 2701 } 2702 2703 if (wrprot) { 2704 if (write_fault) 2705 ret = RET_PF_EMULATE; 2706 } 2707 2708 if (flush) 2709 kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn, 2710 KVM_PAGES_PER_HPAGE(level)); 2711 2712 pgprintk("%s: setting spte %llx\n", __func__, *sptep); 2713 2714 if (!was_rmapped) { 2715 WARN_ON_ONCE(ret == RET_PF_SPURIOUS); 2716 kvm_update_page_stats(vcpu->kvm, level, 1); 2717 rmap_add(vcpu, slot, sptep, gfn); 2718 } 2719 2720 return ret; 2721 } 2722 2723 static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu, 2724 struct kvm_mmu_page *sp, 2725 u64 *start, u64 *end) 2726 { 2727 struct page *pages[PTE_PREFETCH_NUM]; 2728 struct kvm_memory_slot *slot; 2729 unsigned int access = sp->role.access; 2730 int i, ret; 2731 gfn_t gfn; 2732 2733 gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt); 2734 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK); 2735 if (!slot) 2736 return -1; 2737 2738 ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start); 2739 if (ret <= 0) 2740 return -1; 2741 2742 for (i = 0; i < ret; i++, gfn++, start++) { 2743 mmu_set_spte(vcpu, slot, start, access, gfn, 2744 page_to_pfn(pages[i]), NULL); 2745 put_page(pages[i]); 2746 } 2747 2748 return 0; 2749 } 2750 2751 static void __direct_pte_prefetch(struct kvm_vcpu *vcpu, 2752 struct kvm_mmu_page *sp, u64 *sptep) 2753 { 2754 u64 *spte, *start = NULL; 2755 int i; 2756 2757 WARN_ON(!sp->role.direct); 2758 2759 i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1); 2760 spte = sp->spt + i; 2761 2762 for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) { 2763 if (is_shadow_present_pte(*spte) || spte == sptep) { 2764 if (!start) 2765 continue; 2766 if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0) 2767 return; 2768 start = NULL; 2769 } else if (!start) 2770 start = spte; 2771 } 2772 if (start) 2773 direct_pte_prefetch_many(vcpu, sp, start, spte); 2774 } 2775 2776 static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep) 2777 { 2778 struct kvm_mmu_page *sp; 2779 2780 sp = sptep_to_sp(sptep); 2781 2782 /* 2783 * Without accessed bits, there's no way to distinguish between 2784 * actually accessed translations and prefetched, so disable pte 2785 * prefetch if accessed bits aren't available. 2786 */ 2787 if (sp_ad_disabled(sp)) 2788 return; 2789 2790 if (sp->role.level > PG_LEVEL_4K) 2791 return; 2792 2793 /* 2794 * If addresses are being invalidated, skip prefetching to avoid 2795 * accidentally prefetching those addresses. 2796 */ 2797 if (unlikely(vcpu->kvm->mmu_notifier_count)) 2798 return; 2799 2800 __direct_pte_prefetch(vcpu, sp, sptep); 2801 } 2802 2803 static int host_pfn_mapping_level(struct kvm *kvm, gfn_t gfn, kvm_pfn_t pfn, 2804 const struct kvm_memory_slot *slot) 2805 { 2806 unsigned long hva; 2807 pte_t *pte; 2808 int level; 2809 2810 if (!PageCompound(pfn_to_page(pfn)) && !kvm_is_zone_device_pfn(pfn)) 2811 return PG_LEVEL_4K; 2812 2813 /* 2814 * Note, using the already-retrieved memslot and __gfn_to_hva_memslot() 2815 * is not solely for performance, it's also necessary to avoid the 2816 * "writable" check in __gfn_to_hva_many(), which will always fail on 2817 * read-only memslots due to gfn_to_hva() assuming writes. Earlier 2818 * page fault steps have already verified the guest isn't writing a 2819 * read-only memslot. 2820 */ 2821 hva = __gfn_to_hva_memslot(slot, gfn); 2822 2823 pte = lookup_address_in_mm(kvm->mm, hva, &level); 2824 if (unlikely(!pte)) 2825 return PG_LEVEL_4K; 2826 2827 return level; 2828 } 2829 2830 int kvm_mmu_max_mapping_level(struct kvm *kvm, 2831 const struct kvm_memory_slot *slot, gfn_t gfn, 2832 kvm_pfn_t pfn, int max_level) 2833 { 2834 struct kvm_lpage_info *linfo; 2835 int host_level; 2836 2837 max_level = min(max_level, max_huge_page_level); 2838 for ( ; max_level > PG_LEVEL_4K; max_level--) { 2839 linfo = lpage_info_slot(gfn, slot, max_level); 2840 if (!linfo->disallow_lpage) 2841 break; 2842 } 2843 2844 if (max_level == PG_LEVEL_4K) 2845 return PG_LEVEL_4K; 2846 2847 host_level = host_pfn_mapping_level(kvm, gfn, pfn, slot); 2848 return min(host_level, max_level); 2849 } 2850 2851 void kvm_mmu_hugepage_adjust(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault) 2852 { 2853 struct kvm_memory_slot *slot = fault->slot; 2854 kvm_pfn_t mask; 2855 2856 fault->huge_page_disallowed = fault->exec && fault->nx_huge_page_workaround_enabled; 2857 2858 if (unlikely(fault->max_level == PG_LEVEL_4K)) 2859 return; 2860 2861 if (is_error_noslot_pfn(fault->pfn) || kvm_is_reserved_pfn(fault->pfn)) 2862 return; 2863 2864 if (kvm_slot_dirty_track_enabled(slot)) 2865 return; 2866 2867 /* 2868 * Enforce the iTLB multihit workaround after capturing the requested 2869 * level, which will be used to do precise, accurate accounting. 2870 */ 2871 fault->req_level = kvm_mmu_max_mapping_level(vcpu->kvm, slot, 2872 fault->gfn, fault->pfn, 2873 fault->max_level); 2874 if (fault->req_level == PG_LEVEL_4K || fault->huge_page_disallowed) 2875 return; 2876 2877 /* 2878 * mmu_notifier_retry() was successful and mmu_lock is held, so 2879 * the pmd can't be split from under us. 2880 */ 2881 fault->goal_level = fault->req_level; 2882 mask = KVM_PAGES_PER_HPAGE(fault->goal_level) - 1; 2883 VM_BUG_ON((fault->gfn & mask) != (fault->pfn & mask)); 2884 fault->pfn &= ~mask; 2885 } 2886 2887 void disallowed_hugepage_adjust(struct kvm_page_fault *fault, u64 spte, int cur_level) 2888 { 2889 if (cur_level > PG_LEVEL_4K && 2890 cur_level == fault->goal_level && 2891 is_shadow_present_pte(spte) && 2892 !is_large_pte(spte)) { 2893 /* 2894 * A small SPTE exists for this pfn, but FNAME(fetch) 2895 * and __direct_map would like to create a large PTE 2896 * instead: just force them to go down another level, 2897 * patching back for them into pfn the next 9 bits of 2898 * the address. 2899 */ 2900 u64 page_mask = KVM_PAGES_PER_HPAGE(cur_level) - 2901 KVM_PAGES_PER_HPAGE(cur_level - 1); 2902 fault->pfn |= fault->gfn & page_mask; 2903 fault->goal_level--; 2904 } 2905 } 2906 2907 static int __direct_map(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault) 2908 { 2909 struct kvm_shadow_walk_iterator it; 2910 struct kvm_mmu_page *sp; 2911 int ret; 2912 gfn_t base_gfn = fault->gfn; 2913 2914 kvm_mmu_hugepage_adjust(vcpu, fault); 2915 2916 trace_kvm_mmu_spte_requested(fault); 2917 for_each_shadow_entry(vcpu, fault->addr, it) { 2918 /* 2919 * We cannot overwrite existing page tables with an NX 2920 * large page, as the leaf could be executable. 2921 */ 2922 if (fault->nx_huge_page_workaround_enabled) 2923 disallowed_hugepage_adjust(fault, *it.sptep, it.level); 2924 2925 base_gfn = fault->gfn & ~(KVM_PAGES_PER_HPAGE(it.level) - 1); 2926 if (it.level == fault->goal_level) 2927 break; 2928 2929 drop_large_spte(vcpu, it.sptep); 2930 if (is_shadow_present_pte(*it.sptep)) 2931 continue; 2932 2933 sp = kvm_mmu_get_page(vcpu, base_gfn, it.addr, 2934 it.level - 1, true, ACC_ALL); 2935 2936 link_shadow_page(vcpu, it.sptep, sp); 2937 if (fault->is_tdp && fault->huge_page_disallowed && 2938 fault->req_level >= it.level) 2939 account_huge_nx_page(vcpu->kvm, sp); 2940 } 2941 2942 if (WARN_ON_ONCE(it.level != fault->goal_level)) 2943 return -EFAULT; 2944 2945 ret = mmu_set_spte(vcpu, fault->slot, it.sptep, ACC_ALL, 2946 base_gfn, fault->pfn, fault); 2947 if (ret == RET_PF_SPURIOUS) 2948 return ret; 2949 2950 direct_pte_prefetch(vcpu, it.sptep); 2951 ++vcpu->stat.pf_fixed; 2952 return ret; 2953 } 2954 2955 static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk) 2956 { 2957 send_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, PAGE_SHIFT, tsk); 2958 } 2959 2960 static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, kvm_pfn_t pfn) 2961 { 2962 /* 2963 * Do not cache the mmio info caused by writing the readonly gfn 2964 * into the spte otherwise read access on readonly gfn also can 2965 * caused mmio page fault and treat it as mmio access. 2966 */ 2967 if (pfn == KVM_PFN_ERR_RO_FAULT) 2968 return RET_PF_EMULATE; 2969 2970 if (pfn == KVM_PFN_ERR_HWPOISON) { 2971 kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current); 2972 return RET_PF_RETRY; 2973 } 2974 2975 return -EFAULT; 2976 } 2977 2978 static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault, 2979 unsigned int access, int *ret_val) 2980 { 2981 /* The pfn is invalid, report the error! */ 2982 if (unlikely(is_error_pfn(fault->pfn))) { 2983 *ret_val = kvm_handle_bad_page(vcpu, fault->gfn, fault->pfn); 2984 return true; 2985 } 2986 2987 if (unlikely(!fault->slot)) { 2988 gva_t gva = fault->is_tdp ? 0 : fault->addr; 2989 2990 vcpu_cache_mmio_info(vcpu, gva, fault->gfn, 2991 access & shadow_mmio_access_mask); 2992 /* 2993 * If MMIO caching is disabled, emulate immediately without 2994 * touching the shadow page tables as attempting to install an 2995 * MMIO SPTE will just be an expensive nop. 2996 */ 2997 if (unlikely(!shadow_mmio_value)) { 2998 *ret_val = RET_PF_EMULATE; 2999 return true; 3000 } 3001 } 3002 3003 return false; 3004 } 3005 3006 static bool page_fault_can_be_fast(struct kvm_page_fault *fault) 3007 { 3008 /* 3009 * Do not fix the mmio spte with invalid generation number which 3010 * need to be updated by slow page fault path. 3011 */ 3012 if (fault->rsvd) 3013 return false; 3014 3015 /* See if the page fault is due to an NX violation */ 3016 if (unlikely(fault->exec && fault->present)) 3017 return false; 3018 3019 /* 3020 * #PF can be fast if: 3021 * 1. The shadow page table entry is not present, which could mean that 3022 * the fault is potentially caused by access tracking (if enabled). 3023 * 2. The shadow page table entry is present and the fault 3024 * is caused by write-protect, that means we just need change the W 3025 * bit of the spte which can be done out of mmu-lock. 3026 * 3027 * However, if access tracking is disabled we know that a non-present 3028 * page must be a genuine page fault where we have to create a new SPTE. 3029 * So, if access tracking is disabled, we return true only for write 3030 * accesses to a present page. 3031 */ 3032 3033 return shadow_acc_track_mask != 0 || (fault->write && fault->present); 3034 } 3035 3036 /* 3037 * Returns true if the SPTE was fixed successfully. Otherwise, 3038 * someone else modified the SPTE from its original value. 3039 */ 3040 static bool 3041 fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault, 3042 u64 *sptep, u64 old_spte, u64 new_spte) 3043 { 3044 /* 3045 * Theoretically we could also set dirty bit (and flush TLB) here in 3046 * order to eliminate unnecessary PML logging. See comments in 3047 * set_spte. But fast_page_fault is very unlikely to happen with PML 3048 * enabled, so we do not do this. This might result in the same GPA 3049 * to be logged in PML buffer again when the write really happens, and 3050 * eventually to be called by mark_page_dirty twice. But it's also no 3051 * harm. This also avoids the TLB flush needed after setting dirty bit 3052 * so non-PML cases won't be impacted. 3053 * 3054 * Compare with set_spte where instead shadow_dirty_mask is set. 3055 */ 3056 if (cmpxchg64(sptep, old_spte, new_spte) != old_spte) 3057 return false; 3058 3059 if (is_writable_pte(new_spte) && !is_writable_pte(old_spte)) 3060 mark_page_dirty_in_slot(vcpu->kvm, fault->slot, fault->gfn); 3061 3062 return true; 3063 } 3064 3065 static bool is_access_allowed(struct kvm_page_fault *fault, u64 spte) 3066 { 3067 if (fault->exec) 3068 return is_executable_pte(spte); 3069 3070 if (fault->write) 3071 return is_writable_pte(spte); 3072 3073 /* Fault was on Read access */ 3074 return spte & PT_PRESENT_MASK; 3075 } 3076 3077 /* 3078 * Returns the last level spte pointer of the shadow page walk for the given 3079 * gpa, and sets *spte to the spte value. This spte may be non-preset. If no 3080 * walk could be performed, returns NULL and *spte does not contain valid data. 3081 * 3082 * Contract: 3083 * - Must be called between walk_shadow_page_lockless_{begin,end}. 3084 * - The returned sptep must not be used after walk_shadow_page_lockless_end. 3085 */ 3086 static u64 *fast_pf_get_last_sptep(struct kvm_vcpu *vcpu, gpa_t gpa, u64 *spte) 3087 { 3088 struct kvm_shadow_walk_iterator iterator; 3089 u64 old_spte; 3090 u64 *sptep = NULL; 3091 3092 for_each_shadow_entry_lockless(vcpu, gpa, iterator, old_spte) { 3093 sptep = iterator.sptep; 3094 *spte = old_spte; 3095 } 3096 3097 return sptep; 3098 } 3099 3100 /* 3101 * Returns one of RET_PF_INVALID, RET_PF_FIXED or RET_PF_SPURIOUS. 3102 */ 3103 static int fast_page_fault(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault) 3104 { 3105 struct kvm_mmu_page *sp; 3106 int ret = RET_PF_INVALID; 3107 u64 spte = 0ull; 3108 u64 *sptep = NULL; 3109 uint retry_count = 0; 3110 3111 if (!page_fault_can_be_fast(fault)) 3112 return ret; 3113 3114 walk_shadow_page_lockless_begin(vcpu); 3115 3116 do { 3117 u64 new_spte; 3118 3119 if (is_tdp_mmu(vcpu->arch.mmu)) 3120 sptep = kvm_tdp_mmu_fast_pf_get_last_sptep(vcpu, fault->addr, &spte); 3121 else 3122 sptep = fast_pf_get_last_sptep(vcpu, fault->addr, &spte); 3123 3124 if (!is_shadow_present_pte(spte)) 3125 break; 3126 3127 sp = sptep_to_sp(sptep); 3128 if (!is_last_spte(spte, sp->role.level)) 3129 break; 3130 3131 /* 3132 * Check whether the memory access that caused the fault would 3133 * still cause it if it were to be performed right now. If not, 3134 * then this is a spurious fault caused by TLB lazily flushed, 3135 * or some other CPU has already fixed the PTE after the 3136 * current CPU took the fault. 3137 * 3138 * Need not check the access of upper level table entries since 3139 * they are always ACC_ALL. 3140 */ 3141 if (is_access_allowed(fault, spte)) { 3142 ret = RET_PF_SPURIOUS; 3143 break; 3144 } 3145 3146 new_spte = spte; 3147 3148 if (is_access_track_spte(spte)) 3149 new_spte = restore_acc_track_spte(new_spte); 3150 3151 /* 3152 * Currently, to simplify the code, write-protection can 3153 * be removed in the fast path only if the SPTE was 3154 * write-protected for dirty-logging or access tracking. 3155 */ 3156 if (fault->write && 3157 spte_can_locklessly_be_made_writable(spte)) { 3158 new_spte |= PT_WRITABLE_MASK; 3159 3160 /* 3161 * Do not fix write-permission on the large spte when 3162 * dirty logging is enabled. Since we only dirty the 3163 * first page into the dirty-bitmap in 3164 * fast_pf_fix_direct_spte(), other pages are missed 3165 * if its slot has dirty logging enabled. 3166 * 3167 * Instead, we let the slow page fault path create a 3168 * normal spte to fix the access. 3169 */ 3170 if (sp->role.level > PG_LEVEL_4K && 3171 kvm_slot_dirty_track_enabled(fault->slot)) 3172 break; 3173 } 3174 3175 /* Verify that the fault can be handled in the fast path */ 3176 if (new_spte == spte || 3177 !is_access_allowed(fault, new_spte)) 3178 break; 3179 3180 /* 3181 * Currently, fast page fault only works for direct mapping 3182 * since the gfn is not stable for indirect shadow page. See 3183 * Documentation/virt/kvm/locking.rst to get more detail. 3184 */ 3185 if (fast_pf_fix_direct_spte(vcpu, fault, sptep, spte, new_spte)) { 3186 ret = RET_PF_FIXED; 3187 break; 3188 } 3189 3190 if (++retry_count > 4) { 3191 printk_once(KERN_WARNING 3192 "kvm: Fast #PF retrying more than 4 times.\n"); 3193 break; 3194 } 3195 3196 } while (true); 3197 3198 trace_fast_page_fault(vcpu, fault, sptep, spte, ret); 3199 walk_shadow_page_lockless_end(vcpu); 3200 3201 return ret; 3202 } 3203 3204 static void mmu_free_root_page(struct kvm *kvm, hpa_t *root_hpa, 3205 struct list_head *invalid_list) 3206 { 3207 struct kvm_mmu_page *sp; 3208 3209 if (!VALID_PAGE(*root_hpa)) 3210 return; 3211 3212 sp = to_shadow_page(*root_hpa & PT64_BASE_ADDR_MASK); 3213 if (WARN_ON(!sp)) 3214 return; 3215 3216 if (is_tdp_mmu_page(sp)) 3217 kvm_tdp_mmu_put_root(kvm, sp, false); 3218 else if (!--sp->root_count && sp->role.invalid) 3219 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list); 3220 3221 *root_hpa = INVALID_PAGE; 3222 } 3223 3224 /* roots_to_free must be some combination of the KVM_MMU_ROOT_* flags */ 3225 void kvm_mmu_free_roots(struct kvm *kvm, struct kvm_mmu *mmu, 3226 ulong roots_to_free) 3227 { 3228 int i; 3229 LIST_HEAD(invalid_list); 3230 bool free_active_root; 3231 3232 BUILD_BUG_ON(KVM_MMU_NUM_PREV_ROOTS >= BITS_PER_LONG); 3233 3234 /* Before acquiring the MMU lock, see if we need to do any real work. */ 3235 free_active_root = (roots_to_free & KVM_MMU_ROOT_CURRENT) 3236 && VALID_PAGE(mmu->root.hpa); 3237 3238 if (!free_active_root) { 3239 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 3240 if ((roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) && 3241 VALID_PAGE(mmu->prev_roots[i].hpa)) 3242 break; 3243 3244 if (i == KVM_MMU_NUM_PREV_ROOTS) 3245 return; 3246 } 3247 3248 write_lock(&kvm->mmu_lock); 3249 3250 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 3251 if (roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) 3252 mmu_free_root_page(kvm, &mmu->prev_roots[i].hpa, 3253 &invalid_list); 3254 3255 if (free_active_root) { 3256 if (to_shadow_page(mmu->root.hpa)) { 3257 mmu_free_root_page(kvm, &mmu->root.hpa, &invalid_list); 3258 } else if (mmu->pae_root) { 3259 for (i = 0; i < 4; ++i) { 3260 if (!IS_VALID_PAE_ROOT(mmu->pae_root[i])) 3261 continue; 3262 3263 mmu_free_root_page(kvm, &mmu->pae_root[i], 3264 &invalid_list); 3265 mmu->pae_root[i] = INVALID_PAE_ROOT; 3266 } 3267 } 3268 mmu->root.hpa = INVALID_PAGE; 3269 mmu->root.pgd = 0; 3270 } 3271 3272 kvm_mmu_commit_zap_page(kvm, &invalid_list); 3273 write_unlock(&kvm->mmu_lock); 3274 } 3275 EXPORT_SYMBOL_GPL(kvm_mmu_free_roots); 3276 3277 void kvm_mmu_free_guest_mode_roots(struct kvm *kvm, struct kvm_mmu *mmu) 3278 { 3279 unsigned long roots_to_free = 0; 3280 hpa_t root_hpa; 3281 int i; 3282 3283 /* 3284 * This should not be called while L2 is active, L2 can't invalidate 3285 * _only_ its own roots, e.g. INVVPID unconditionally exits. 3286 */ 3287 WARN_ON_ONCE(mmu->mmu_role.base.guest_mode); 3288 3289 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) { 3290 root_hpa = mmu->prev_roots[i].hpa; 3291 if (!VALID_PAGE(root_hpa)) 3292 continue; 3293 3294 if (!to_shadow_page(root_hpa) || 3295 to_shadow_page(root_hpa)->role.guest_mode) 3296 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i); 3297 } 3298 3299 kvm_mmu_free_roots(kvm, mmu, roots_to_free); 3300 } 3301 EXPORT_SYMBOL_GPL(kvm_mmu_free_guest_mode_roots); 3302 3303 3304 static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn) 3305 { 3306 int ret = 0; 3307 3308 if (!kvm_vcpu_is_visible_gfn(vcpu, root_gfn)) { 3309 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 3310 ret = 1; 3311 } 3312 3313 return ret; 3314 } 3315 3316 static hpa_t mmu_alloc_root(struct kvm_vcpu *vcpu, gfn_t gfn, gva_t gva, 3317 u8 level, bool direct) 3318 { 3319 struct kvm_mmu_page *sp; 3320 3321 sp = kvm_mmu_get_page(vcpu, gfn, gva, level, direct, ACC_ALL); 3322 ++sp->root_count; 3323 3324 return __pa(sp->spt); 3325 } 3326 3327 static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu) 3328 { 3329 struct kvm_mmu *mmu = vcpu->arch.mmu; 3330 u8 shadow_root_level = mmu->shadow_root_level; 3331 hpa_t root; 3332 unsigned i; 3333 int r; 3334 3335 write_lock(&vcpu->kvm->mmu_lock); 3336 r = make_mmu_pages_available(vcpu); 3337 if (r < 0) 3338 goto out_unlock; 3339 3340 if (is_tdp_mmu_enabled(vcpu->kvm)) { 3341 root = kvm_tdp_mmu_get_vcpu_root_hpa(vcpu); 3342 mmu->root.hpa = root; 3343 } else if (shadow_root_level >= PT64_ROOT_4LEVEL) { 3344 root = mmu_alloc_root(vcpu, 0, 0, shadow_root_level, true); 3345 mmu->root.hpa = root; 3346 } else if (shadow_root_level == PT32E_ROOT_LEVEL) { 3347 if (WARN_ON_ONCE(!mmu->pae_root)) { 3348 r = -EIO; 3349 goto out_unlock; 3350 } 3351 3352 for (i = 0; i < 4; ++i) { 3353 WARN_ON_ONCE(IS_VALID_PAE_ROOT(mmu->pae_root[i])); 3354 3355 root = mmu_alloc_root(vcpu, i << (30 - PAGE_SHIFT), 3356 i << 30, PT32_ROOT_LEVEL, true); 3357 mmu->pae_root[i] = root | PT_PRESENT_MASK | 3358 shadow_me_mask; 3359 } 3360 mmu->root.hpa = __pa(mmu->pae_root); 3361 } else { 3362 WARN_ONCE(1, "Bad TDP root level = %d\n", shadow_root_level); 3363 r = -EIO; 3364 goto out_unlock; 3365 } 3366 3367 /* root.pgd is ignored for direct MMUs. */ 3368 mmu->root.pgd = 0; 3369 out_unlock: 3370 write_unlock(&vcpu->kvm->mmu_lock); 3371 return r; 3372 } 3373 3374 static int mmu_first_shadow_root_alloc(struct kvm *kvm) 3375 { 3376 struct kvm_memslots *slots; 3377 struct kvm_memory_slot *slot; 3378 int r = 0, i, bkt; 3379 3380 /* 3381 * Check if this is the first shadow root being allocated before 3382 * taking the lock. 3383 */ 3384 if (kvm_shadow_root_allocated(kvm)) 3385 return 0; 3386 3387 mutex_lock(&kvm->slots_arch_lock); 3388 3389 /* Recheck, under the lock, whether this is the first shadow root. */ 3390 if (kvm_shadow_root_allocated(kvm)) 3391 goto out_unlock; 3392 3393 /* 3394 * Check if anything actually needs to be allocated, e.g. all metadata 3395 * will be allocated upfront if TDP is disabled. 3396 */ 3397 if (kvm_memslots_have_rmaps(kvm) && 3398 kvm_page_track_write_tracking_enabled(kvm)) 3399 goto out_success; 3400 3401 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { 3402 slots = __kvm_memslots(kvm, i); 3403 kvm_for_each_memslot(slot, bkt, slots) { 3404 /* 3405 * Both of these functions are no-ops if the target is 3406 * already allocated, so unconditionally calling both 3407 * is safe. Intentionally do NOT free allocations on 3408 * failure to avoid having to track which allocations 3409 * were made now versus when the memslot was created. 3410 * The metadata is guaranteed to be freed when the slot 3411 * is freed, and will be kept/used if userspace retries 3412 * KVM_RUN instead of killing the VM. 3413 */ 3414 r = memslot_rmap_alloc(slot, slot->npages); 3415 if (r) 3416 goto out_unlock; 3417 r = kvm_page_track_write_tracking_alloc(slot); 3418 if (r) 3419 goto out_unlock; 3420 } 3421 } 3422 3423 /* 3424 * Ensure that shadow_root_allocated becomes true strictly after 3425 * all the related pointers are set. 3426 */ 3427 out_success: 3428 smp_store_release(&kvm->arch.shadow_root_allocated, true); 3429 3430 out_unlock: 3431 mutex_unlock(&kvm->slots_arch_lock); 3432 return r; 3433 } 3434 3435 static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu) 3436 { 3437 struct kvm_mmu *mmu = vcpu->arch.mmu; 3438 u64 pdptrs[4], pm_mask; 3439 gfn_t root_gfn, root_pgd; 3440 hpa_t root; 3441 unsigned i; 3442 int r; 3443 3444 root_pgd = mmu->get_guest_pgd(vcpu); 3445 root_gfn = root_pgd >> PAGE_SHIFT; 3446 3447 if (mmu_check_root(vcpu, root_gfn)) 3448 return 1; 3449 3450 /* 3451 * On SVM, reading PDPTRs might access guest memory, which might fault 3452 * and thus might sleep. Grab the PDPTRs before acquiring mmu_lock. 3453 */ 3454 if (mmu->root_level == PT32E_ROOT_LEVEL) { 3455 for (i = 0; i < 4; ++i) { 3456 pdptrs[i] = mmu->get_pdptr(vcpu, i); 3457 if (!(pdptrs[i] & PT_PRESENT_MASK)) 3458 continue; 3459 3460 if (mmu_check_root(vcpu, pdptrs[i] >> PAGE_SHIFT)) 3461 return 1; 3462 } 3463 } 3464 3465 r = mmu_first_shadow_root_alloc(vcpu->kvm); 3466 if (r) 3467 return r; 3468 3469 write_lock(&vcpu->kvm->mmu_lock); 3470 r = make_mmu_pages_available(vcpu); 3471 if (r < 0) 3472 goto out_unlock; 3473 3474 /* 3475 * Do we shadow a long mode page table? If so we need to 3476 * write-protect the guests page table root. 3477 */ 3478 if (mmu->root_level >= PT64_ROOT_4LEVEL) { 3479 root = mmu_alloc_root(vcpu, root_gfn, 0, 3480 mmu->shadow_root_level, false); 3481 mmu->root.hpa = root; 3482 goto set_root_pgd; 3483 } 3484 3485 if (WARN_ON_ONCE(!mmu->pae_root)) { 3486 r = -EIO; 3487 goto out_unlock; 3488 } 3489 3490 /* 3491 * We shadow a 32 bit page table. This may be a legacy 2-level 3492 * or a PAE 3-level page table. In either case we need to be aware that 3493 * the shadow page table may be a PAE or a long mode page table. 3494 */ 3495 pm_mask = PT_PRESENT_MASK | shadow_me_mask; 3496 if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL) { 3497 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK; 3498 3499 if (WARN_ON_ONCE(!mmu->pml4_root)) { 3500 r = -EIO; 3501 goto out_unlock; 3502 } 3503 mmu->pml4_root[0] = __pa(mmu->pae_root) | pm_mask; 3504 3505 if (mmu->shadow_root_level == PT64_ROOT_5LEVEL) { 3506 if (WARN_ON_ONCE(!mmu->pml5_root)) { 3507 r = -EIO; 3508 goto out_unlock; 3509 } 3510 mmu->pml5_root[0] = __pa(mmu->pml4_root) | pm_mask; 3511 } 3512 } 3513 3514 for (i = 0; i < 4; ++i) { 3515 WARN_ON_ONCE(IS_VALID_PAE_ROOT(mmu->pae_root[i])); 3516 3517 if (mmu->root_level == PT32E_ROOT_LEVEL) { 3518 if (!(pdptrs[i] & PT_PRESENT_MASK)) { 3519 mmu->pae_root[i] = INVALID_PAE_ROOT; 3520 continue; 3521 } 3522 root_gfn = pdptrs[i] >> PAGE_SHIFT; 3523 } 3524 3525 root = mmu_alloc_root(vcpu, root_gfn, i << 30, 3526 PT32_ROOT_LEVEL, false); 3527 mmu->pae_root[i] = root | pm_mask; 3528 } 3529 3530 if (mmu->shadow_root_level == PT64_ROOT_5LEVEL) 3531 mmu->root.hpa = __pa(mmu->pml5_root); 3532 else if (mmu->shadow_root_level == PT64_ROOT_4LEVEL) 3533 mmu->root.hpa = __pa(mmu->pml4_root); 3534 else 3535 mmu->root.hpa = __pa(mmu->pae_root); 3536 3537 set_root_pgd: 3538 mmu->root.pgd = root_pgd; 3539 out_unlock: 3540 write_unlock(&vcpu->kvm->mmu_lock); 3541 3542 return r; 3543 } 3544 3545 static int mmu_alloc_special_roots(struct kvm_vcpu *vcpu) 3546 { 3547 struct kvm_mmu *mmu = vcpu->arch.mmu; 3548 bool need_pml5 = mmu->shadow_root_level > PT64_ROOT_4LEVEL; 3549 u64 *pml5_root = NULL; 3550 u64 *pml4_root = NULL; 3551 u64 *pae_root; 3552 3553 /* 3554 * When shadowing 32-bit or PAE NPT with 64-bit NPT, the PML4 and PDP 3555 * tables are allocated and initialized at root creation as there is no 3556 * equivalent level in the guest's NPT to shadow. Allocate the tables 3557 * on demand, as running a 32-bit L1 VMM on 64-bit KVM is very rare. 3558 */ 3559 if (mmu->direct_map || mmu->root_level >= PT64_ROOT_4LEVEL || 3560 mmu->shadow_root_level < PT64_ROOT_4LEVEL) 3561 return 0; 3562 3563 /* 3564 * NPT, the only paging mode that uses this horror, uses a fixed number 3565 * of levels for the shadow page tables, e.g. all MMUs are 4-level or 3566 * all MMus are 5-level. Thus, this can safely require that pml5_root 3567 * is allocated if the other roots are valid and pml5 is needed, as any 3568 * prior MMU would also have required pml5. 3569 */ 3570 if (mmu->pae_root && mmu->pml4_root && (!need_pml5 || mmu->pml5_root)) 3571 return 0; 3572 3573 /* 3574 * The special roots should always be allocated in concert. Yell and 3575 * bail if KVM ends up in a state where only one of the roots is valid. 3576 */ 3577 if (WARN_ON_ONCE(!tdp_enabled || mmu->pae_root || mmu->pml4_root || 3578 (need_pml5 && mmu->pml5_root))) 3579 return -EIO; 3580 3581 /* 3582 * Unlike 32-bit NPT, the PDP table doesn't need to be in low mem, and 3583 * doesn't need to be decrypted. 3584 */ 3585 pae_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT); 3586 if (!pae_root) 3587 return -ENOMEM; 3588 3589 #ifdef CONFIG_X86_64 3590 pml4_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT); 3591 if (!pml4_root) 3592 goto err_pml4; 3593 3594 if (need_pml5) { 3595 pml5_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT); 3596 if (!pml5_root) 3597 goto err_pml5; 3598 } 3599 #endif 3600 3601 mmu->pae_root = pae_root; 3602 mmu->pml4_root = pml4_root; 3603 mmu->pml5_root = pml5_root; 3604 3605 return 0; 3606 3607 #ifdef CONFIG_X86_64 3608 err_pml5: 3609 free_page((unsigned long)pml4_root); 3610 err_pml4: 3611 free_page((unsigned long)pae_root); 3612 return -ENOMEM; 3613 #endif 3614 } 3615 3616 static bool is_unsync_root(hpa_t root) 3617 { 3618 struct kvm_mmu_page *sp; 3619 3620 if (!VALID_PAGE(root)) 3621 return false; 3622 3623 /* 3624 * The read barrier orders the CPU's read of SPTE.W during the page table 3625 * walk before the reads of sp->unsync/sp->unsync_children here. 3626 * 3627 * Even if another CPU was marking the SP as unsync-ed simultaneously, 3628 * any guest page table changes are not guaranteed to be visible anyway 3629 * until this VCPU issues a TLB flush strictly after those changes are 3630 * made. We only need to ensure that the other CPU sets these flags 3631 * before any actual changes to the page tables are made. The comments 3632 * in mmu_try_to_unsync_pages() describe what could go wrong if this 3633 * requirement isn't satisfied. 3634 */ 3635 smp_rmb(); 3636 sp = to_shadow_page(root); 3637 3638 /* 3639 * PAE roots (somewhat arbitrarily) aren't backed by shadow pages, the 3640 * PDPTEs for a given PAE root need to be synchronized individually. 3641 */ 3642 if (WARN_ON_ONCE(!sp)) 3643 return false; 3644 3645 if (sp->unsync || sp->unsync_children) 3646 return true; 3647 3648 return false; 3649 } 3650 3651 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu) 3652 { 3653 int i; 3654 struct kvm_mmu_page *sp; 3655 3656 if (vcpu->arch.mmu->direct_map) 3657 return; 3658 3659 if (!VALID_PAGE(vcpu->arch.mmu->root.hpa)) 3660 return; 3661 3662 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY); 3663 3664 if (vcpu->arch.mmu->root_level >= PT64_ROOT_4LEVEL) { 3665 hpa_t root = vcpu->arch.mmu->root.hpa; 3666 sp = to_shadow_page(root); 3667 3668 if (!is_unsync_root(root)) 3669 return; 3670 3671 write_lock(&vcpu->kvm->mmu_lock); 3672 mmu_sync_children(vcpu, sp, true); 3673 write_unlock(&vcpu->kvm->mmu_lock); 3674 return; 3675 } 3676 3677 write_lock(&vcpu->kvm->mmu_lock); 3678 3679 for (i = 0; i < 4; ++i) { 3680 hpa_t root = vcpu->arch.mmu->pae_root[i]; 3681 3682 if (IS_VALID_PAE_ROOT(root)) { 3683 root &= PT64_BASE_ADDR_MASK; 3684 sp = to_shadow_page(root); 3685 mmu_sync_children(vcpu, sp, true); 3686 } 3687 } 3688 3689 write_unlock(&vcpu->kvm->mmu_lock); 3690 } 3691 3692 void kvm_mmu_sync_prev_roots(struct kvm_vcpu *vcpu) 3693 { 3694 unsigned long roots_to_free = 0; 3695 int i; 3696 3697 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 3698 if (is_unsync_root(vcpu->arch.mmu->prev_roots[i].hpa)) 3699 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i); 3700 3701 /* sync prev_roots by simply freeing them */ 3702 kvm_mmu_free_roots(vcpu->kvm, vcpu->arch.mmu, roots_to_free); 3703 } 3704 3705 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, 3706 gpa_t vaddr, u64 access, 3707 struct x86_exception *exception) 3708 { 3709 if (exception) 3710 exception->error_code = 0; 3711 return kvm_translate_gpa(vcpu, mmu, vaddr, access, exception); 3712 } 3713 3714 static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct) 3715 { 3716 /* 3717 * A nested guest cannot use the MMIO cache if it is using nested 3718 * page tables, because cr2 is a nGPA while the cache stores GPAs. 3719 */ 3720 if (mmu_is_nested(vcpu)) 3721 return false; 3722 3723 if (direct) 3724 return vcpu_match_mmio_gpa(vcpu, addr); 3725 3726 return vcpu_match_mmio_gva(vcpu, addr); 3727 } 3728 3729 /* 3730 * Return the level of the lowest level SPTE added to sptes. 3731 * That SPTE may be non-present. 3732 * 3733 * Must be called between walk_shadow_page_lockless_{begin,end}. 3734 */ 3735 static int get_walk(struct kvm_vcpu *vcpu, u64 addr, u64 *sptes, int *root_level) 3736 { 3737 struct kvm_shadow_walk_iterator iterator; 3738 int leaf = -1; 3739 u64 spte; 3740 3741 for (shadow_walk_init(&iterator, vcpu, addr), 3742 *root_level = iterator.level; 3743 shadow_walk_okay(&iterator); 3744 __shadow_walk_next(&iterator, spte)) { 3745 leaf = iterator.level; 3746 spte = mmu_spte_get_lockless(iterator.sptep); 3747 3748 sptes[leaf] = spte; 3749 } 3750 3751 return leaf; 3752 } 3753 3754 /* return true if reserved bit(s) are detected on a valid, non-MMIO SPTE. */ 3755 static bool get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep) 3756 { 3757 u64 sptes[PT64_ROOT_MAX_LEVEL + 1]; 3758 struct rsvd_bits_validate *rsvd_check; 3759 int root, leaf, level; 3760 bool reserved = false; 3761 3762 walk_shadow_page_lockless_begin(vcpu); 3763 3764 if (is_tdp_mmu(vcpu->arch.mmu)) 3765 leaf = kvm_tdp_mmu_get_walk(vcpu, addr, sptes, &root); 3766 else 3767 leaf = get_walk(vcpu, addr, sptes, &root); 3768 3769 walk_shadow_page_lockless_end(vcpu); 3770 3771 if (unlikely(leaf < 0)) { 3772 *sptep = 0ull; 3773 return reserved; 3774 } 3775 3776 *sptep = sptes[leaf]; 3777 3778 /* 3779 * Skip reserved bits checks on the terminal leaf if it's not a valid 3780 * SPTE. Note, this also (intentionally) skips MMIO SPTEs, which, by 3781 * design, always have reserved bits set. The purpose of the checks is 3782 * to detect reserved bits on non-MMIO SPTEs. i.e. buggy SPTEs. 3783 */ 3784 if (!is_shadow_present_pte(sptes[leaf])) 3785 leaf++; 3786 3787 rsvd_check = &vcpu->arch.mmu->shadow_zero_check; 3788 3789 for (level = root; level >= leaf; level--) 3790 reserved |= is_rsvd_spte(rsvd_check, sptes[level], level); 3791 3792 if (reserved) { 3793 pr_err("%s: reserved bits set on MMU-present spte, addr 0x%llx, hierarchy:\n", 3794 __func__, addr); 3795 for (level = root; level >= leaf; level--) 3796 pr_err("------ spte = 0x%llx level = %d, rsvd bits = 0x%llx", 3797 sptes[level], level, 3798 get_rsvd_bits(rsvd_check, sptes[level], level)); 3799 } 3800 3801 return reserved; 3802 } 3803 3804 static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct) 3805 { 3806 u64 spte; 3807 bool reserved; 3808 3809 if (mmio_info_in_cache(vcpu, addr, direct)) 3810 return RET_PF_EMULATE; 3811 3812 reserved = get_mmio_spte(vcpu, addr, &spte); 3813 if (WARN_ON(reserved)) 3814 return -EINVAL; 3815 3816 if (is_mmio_spte(spte)) { 3817 gfn_t gfn = get_mmio_spte_gfn(spte); 3818 unsigned int access = get_mmio_spte_access(spte); 3819 3820 if (!check_mmio_spte(vcpu, spte)) 3821 return RET_PF_INVALID; 3822 3823 if (direct) 3824 addr = 0; 3825 3826 trace_handle_mmio_page_fault(addr, gfn, access); 3827 vcpu_cache_mmio_info(vcpu, addr, gfn, access); 3828 return RET_PF_EMULATE; 3829 } 3830 3831 /* 3832 * If the page table is zapped by other cpus, let CPU fault again on 3833 * the address. 3834 */ 3835 return RET_PF_RETRY; 3836 } 3837 3838 static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu, 3839 struct kvm_page_fault *fault) 3840 { 3841 if (unlikely(fault->rsvd)) 3842 return false; 3843 3844 if (!fault->present || !fault->write) 3845 return false; 3846 3847 /* 3848 * guest is writing the page which is write tracked which can 3849 * not be fixed by page fault handler. 3850 */ 3851 if (kvm_slot_page_track_is_active(vcpu->kvm, fault->slot, fault->gfn, KVM_PAGE_TRACK_WRITE)) 3852 return true; 3853 3854 return false; 3855 } 3856 3857 static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr) 3858 { 3859 struct kvm_shadow_walk_iterator iterator; 3860 u64 spte; 3861 3862 walk_shadow_page_lockless_begin(vcpu); 3863 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) 3864 clear_sp_write_flooding_count(iterator.sptep); 3865 walk_shadow_page_lockless_end(vcpu); 3866 } 3867 3868 static u32 alloc_apf_token(struct kvm_vcpu *vcpu) 3869 { 3870 /* make sure the token value is not 0 */ 3871 u32 id = vcpu->arch.apf.id; 3872 3873 if (id << 12 == 0) 3874 vcpu->arch.apf.id = 1; 3875 3876 return (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id; 3877 } 3878 3879 static bool kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, 3880 gfn_t gfn) 3881 { 3882 struct kvm_arch_async_pf arch; 3883 3884 arch.token = alloc_apf_token(vcpu); 3885 arch.gfn = gfn; 3886 arch.direct_map = vcpu->arch.mmu->direct_map; 3887 arch.cr3 = vcpu->arch.mmu->get_guest_pgd(vcpu); 3888 3889 return kvm_setup_async_pf(vcpu, cr2_or_gpa, 3890 kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch); 3891 } 3892 3893 static bool kvm_faultin_pfn(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault, int *r) 3894 { 3895 struct kvm_memory_slot *slot = fault->slot; 3896 bool async; 3897 3898 /* 3899 * Retry the page fault if the gfn hit a memslot that is being deleted 3900 * or moved. This ensures any existing SPTEs for the old memslot will 3901 * be zapped before KVM inserts a new MMIO SPTE for the gfn. 3902 */ 3903 if (slot && (slot->flags & KVM_MEMSLOT_INVALID)) 3904 goto out_retry; 3905 3906 if (!kvm_is_visible_memslot(slot)) { 3907 /* Don't expose private memslots to L2. */ 3908 if (is_guest_mode(vcpu)) { 3909 fault->slot = NULL; 3910 fault->pfn = KVM_PFN_NOSLOT; 3911 fault->map_writable = false; 3912 return false; 3913 } 3914 /* 3915 * If the APIC access page exists but is disabled, go directly 3916 * to emulation without caching the MMIO access or creating a 3917 * MMIO SPTE. That way the cache doesn't need to be purged 3918 * when the AVIC is re-enabled. 3919 */ 3920 if (slot && slot->id == APIC_ACCESS_PAGE_PRIVATE_MEMSLOT && 3921 !kvm_apicv_activated(vcpu->kvm)) { 3922 *r = RET_PF_EMULATE; 3923 return true; 3924 } 3925 } 3926 3927 async = false; 3928 fault->pfn = __gfn_to_pfn_memslot(slot, fault->gfn, false, &async, 3929 fault->write, &fault->map_writable, 3930 &fault->hva); 3931 if (!async) 3932 return false; /* *pfn has correct page already */ 3933 3934 if (!fault->prefetch && kvm_can_do_async_pf(vcpu)) { 3935 trace_kvm_try_async_get_page(fault->addr, fault->gfn); 3936 if (kvm_find_async_pf_gfn(vcpu, fault->gfn)) { 3937 trace_kvm_async_pf_doublefault(fault->addr, fault->gfn); 3938 kvm_make_request(KVM_REQ_APF_HALT, vcpu); 3939 goto out_retry; 3940 } else if (kvm_arch_setup_async_pf(vcpu, fault->addr, fault->gfn)) 3941 goto out_retry; 3942 } 3943 3944 fault->pfn = __gfn_to_pfn_memslot(slot, fault->gfn, false, NULL, 3945 fault->write, &fault->map_writable, 3946 &fault->hva); 3947 return false; 3948 3949 out_retry: 3950 *r = RET_PF_RETRY; 3951 return true; 3952 } 3953 3954 /* 3955 * Returns true if the page fault is stale and needs to be retried, i.e. if the 3956 * root was invalidated by a memslot update or a relevant mmu_notifier fired. 3957 */ 3958 static bool is_page_fault_stale(struct kvm_vcpu *vcpu, 3959 struct kvm_page_fault *fault, int mmu_seq) 3960 { 3961 struct kvm_mmu_page *sp = to_shadow_page(vcpu->arch.mmu->root.hpa); 3962 3963 /* Special roots, e.g. pae_root, are not backed by shadow pages. */ 3964 if (sp && is_obsolete_sp(vcpu->kvm, sp)) 3965 return true; 3966 3967 /* 3968 * Roots without an associated shadow page are considered invalid if 3969 * there is a pending request to free obsolete roots. The request is 3970 * only a hint that the current root _may_ be obsolete and needs to be 3971 * reloaded, e.g. if the guest frees a PGD that KVM is tracking as a 3972 * previous root, then __kvm_mmu_prepare_zap_page() signals all vCPUs 3973 * to reload even if no vCPU is actively using the root. 3974 */ 3975 if (!sp && kvm_test_request(KVM_REQ_MMU_FREE_OBSOLETE_ROOTS, vcpu)) 3976 return true; 3977 3978 return fault->slot && 3979 mmu_notifier_retry_hva(vcpu->kvm, mmu_seq, fault->hva); 3980 } 3981 3982 static int direct_page_fault(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault) 3983 { 3984 bool is_tdp_mmu_fault = is_tdp_mmu(vcpu->arch.mmu); 3985 3986 unsigned long mmu_seq; 3987 int r; 3988 3989 fault->gfn = fault->addr >> PAGE_SHIFT; 3990 fault->slot = kvm_vcpu_gfn_to_memslot(vcpu, fault->gfn); 3991 3992 if (page_fault_handle_page_track(vcpu, fault)) 3993 return RET_PF_EMULATE; 3994 3995 r = fast_page_fault(vcpu, fault); 3996 if (r != RET_PF_INVALID) 3997 return r; 3998 3999 r = mmu_topup_memory_caches(vcpu, false); 4000 if (r) 4001 return r; 4002 4003 mmu_seq = vcpu->kvm->mmu_notifier_seq; 4004 smp_rmb(); 4005 4006 if (kvm_faultin_pfn(vcpu, fault, &r)) 4007 return r; 4008 4009 if (handle_abnormal_pfn(vcpu, fault, ACC_ALL, &r)) 4010 return r; 4011 4012 r = RET_PF_RETRY; 4013 4014 if (is_tdp_mmu_fault) 4015 read_lock(&vcpu->kvm->mmu_lock); 4016 else 4017 write_lock(&vcpu->kvm->mmu_lock); 4018 4019 if (is_page_fault_stale(vcpu, fault, mmu_seq)) 4020 goto out_unlock; 4021 4022 r = make_mmu_pages_available(vcpu); 4023 if (r) 4024 goto out_unlock; 4025 4026 if (is_tdp_mmu_fault) 4027 r = kvm_tdp_mmu_map(vcpu, fault); 4028 else 4029 r = __direct_map(vcpu, fault); 4030 4031 out_unlock: 4032 if (is_tdp_mmu_fault) 4033 read_unlock(&vcpu->kvm->mmu_lock); 4034 else 4035 write_unlock(&vcpu->kvm->mmu_lock); 4036 kvm_release_pfn_clean(fault->pfn); 4037 return r; 4038 } 4039 4040 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, 4041 struct kvm_page_fault *fault) 4042 { 4043 pgprintk("%s: gva %lx error %x\n", __func__, fault->addr, fault->error_code); 4044 4045 /* This path builds a PAE pagetable, we can map 2mb pages at maximum. */ 4046 fault->max_level = PG_LEVEL_2M; 4047 return direct_page_fault(vcpu, fault); 4048 } 4049 4050 int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code, 4051 u64 fault_address, char *insn, int insn_len) 4052 { 4053 int r = 1; 4054 u32 flags = vcpu->arch.apf.host_apf_flags; 4055 4056 #ifndef CONFIG_X86_64 4057 /* A 64-bit CR2 should be impossible on 32-bit KVM. */ 4058 if (WARN_ON_ONCE(fault_address >> 32)) 4059 return -EFAULT; 4060 #endif 4061 4062 vcpu->arch.l1tf_flush_l1d = true; 4063 if (!flags) { 4064 trace_kvm_page_fault(fault_address, error_code); 4065 4066 if (kvm_event_needs_reinjection(vcpu)) 4067 kvm_mmu_unprotect_page_virt(vcpu, fault_address); 4068 r = kvm_mmu_page_fault(vcpu, fault_address, error_code, insn, 4069 insn_len); 4070 } else if (flags & KVM_PV_REASON_PAGE_NOT_PRESENT) { 4071 vcpu->arch.apf.host_apf_flags = 0; 4072 local_irq_disable(); 4073 kvm_async_pf_task_wait_schedule(fault_address); 4074 local_irq_enable(); 4075 } else { 4076 WARN_ONCE(1, "Unexpected host async PF flags: %x\n", flags); 4077 } 4078 4079 return r; 4080 } 4081 EXPORT_SYMBOL_GPL(kvm_handle_page_fault); 4082 4083 int kvm_tdp_page_fault(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault) 4084 { 4085 while (fault->max_level > PG_LEVEL_4K) { 4086 int page_num = KVM_PAGES_PER_HPAGE(fault->max_level); 4087 gfn_t base = (fault->addr >> PAGE_SHIFT) & ~(page_num - 1); 4088 4089 if (kvm_mtrr_check_gfn_range_consistency(vcpu, base, page_num)) 4090 break; 4091 4092 --fault->max_level; 4093 } 4094 4095 return direct_page_fault(vcpu, fault); 4096 } 4097 4098 static void nonpaging_init_context(struct kvm_mmu *context) 4099 { 4100 context->page_fault = nonpaging_page_fault; 4101 context->gva_to_gpa = nonpaging_gva_to_gpa; 4102 context->sync_page = nonpaging_sync_page; 4103 context->invlpg = NULL; 4104 context->direct_map = true; 4105 } 4106 4107 static inline bool is_root_usable(struct kvm_mmu_root_info *root, gpa_t pgd, 4108 union kvm_mmu_page_role role) 4109 { 4110 return (role.direct || pgd == root->pgd) && 4111 VALID_PAGE(root->hpa) && 4112 role.word == to_shadow_page(root->hpa)->role.word; 4113 } 4114 4115 /* 4116 * Find out if a previously cached root matching the new pgd/role is available, 4117 * and insert the current root as the MRU in the cache. 4118 * If a matching root is found, it is assigned to kvm_mmu->root and 4119 * true is returned. 4120 * If no match is found, kvm_mmu->root is left invalid, the LRU root is 4121 * evicted to make room for the current root, and false is returned. 4122 */ 4123 static bool cached_root_find_and_keep_current(struct kvm *kvm, struct kvm_mmu *mmu, 4124 gpa_t new_pgd, 4125 union kvm_mmu_page_role new_role) 4126 { 4127 uint i; 4128 4129 if (is_root_usable(&mmu->root, new_pgd, new_role)) 4130 return true; 4131 4132 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) { 4133 /* 4134 * The swaps end up rotating the cache like this: 4135 * C 0 1 2 3 (on entry to the function) 4136 * 0 C 1 2 3 4137 * 1 C 0 2 3 4138 * 2 C 0 1 3 4139 * 3 C 0 1 2 (on exit from the loop) 4140 */ 4141 swap(mmu->root, mmu->prev_roots[i]); 4142 if (is_root_usable(&mmu->root, new_pgd, new_role)) 4143 return true; 4144 } 4145 4146 kvm_mmu_free_roots(kvm, mmu, KVM_MMU_ROOT_CURRENT); 4147 return false; 4148 } 4149 4150 /* 4151 * Find out if a previously cached root matching the new pgd/role is available. 4152 * On entry, mmu->root is invalid. 4153 * If a matching root is found, it is assigned to kvm_mmu->root, the LRU entry 4154 * of the cache becomes invalid, and true is returned. 4155 * If no match is found, kvm_mmu->root is left invalid and false is returned. 4156 */ 4157 static bool cached_root_find_without_current(struct kvm *kvm, struct kvm_mmu *mmu, 4158 gpa_t new_pgd, 4159 union kvm_mmu_page_role new_role) 4160 { 4161 uint i; 4162 4163 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 4164 if (is_root_usable(&mmu->prev_roots[i], new_pgd, new_role)) 4165 goto hit; 4166 4167 return false; 4168 4169 hit: 4170 swap(mmu->root, mmu->prev_roots[i]); 4171 /* Bubble up the remaining roots. */ 4172 for (; i < KVM_MMU_NUM_PREV_ROOTS - 1; i++) 4173 mmu->prev_roots[i] = mmu->prev_roots[i + 1]; 4174 mmu->prev_roots[i].hpa = INVALID_PAGE; 4175 return true; 4176 } 4177 4178 static bool fast_pgd_switch(struct kvm *kvm, struct kvm_mmu *mmu, 4179 gpa_t new_pgd, union kvm_mmu_page_role new_role) 4180 { 4181 /* 4182 * For now, limit the caching to 64-bit hosts+VMs in order to avoid 4183 * having to deal with PDPTEs. We may add support for 32-bit hosts/VMs 4184 * later if necessary. 4185 */ 4186 if (VALID_PAGE(mmu->root.hpa) && !to_shadow_page(mmu->root.hpa)) 4187 kvm_mmu_free_roots(kvm, mmu, KVM_MMU_ROOT_CURRENT); 4188 4189 if (VALID_PAGE(mmu->root.hpa)) 4190 return cached_root_find_and_keep_current(kvm, mmu, new_pgd, new_role); 4191 else 4192 return cached_root_find_without_current(kvm, mmu, new_pgd, new_role); 4193 } 4194 4195 void kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd) 4196 { 4197 struct kvm_mmu *mmu = vcpu->arch.mmu; 4198 union kvm_mmu_page_role new_role = mmu->mmu_role.base; 4199 4200 if (!fast_pgd_switch(vcpu->kvm, mmu, new_pgd, new_role)) { 4201 /* kvm_mmu_ensure_valid_pgd will set up a new root. */ 4202 return; 4203 } 4204 4205 /* 4206 * It's possible that the cached previous root page is obsolete because 4207 * of a change in the MMU generation number. However, changing the 4208 * generation number is accompanied by KVM_REQ_MMU_FREE_OBSOLETE_ROOTS, 4209 * which will free the root set here and allocate a new one. 4210 */ 4211 kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu); 4212 4213 if (force_flush_and_sync_on_reuse) { 4214 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu); 4215 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 4216 } 4217 4218 /* 4219 * The last MMIO access's GVA and GPA are cached in the VCPU. When 4220 * switching to a new CR3, that GVA->GPA mapping may no longer be 4221 * valid. So clear any cached MMIO info even when we don't need to sync 4222 * the shadow page tables. 4223 */ 4224 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY); 4225 4226 /* 4227 * If this is a direct root page, it doesn't have a write flooding 4228 * count. Otherwise, clear the write flooding count. 4229 */ 4230 if (!new_role.direct) 4231 __clear_sp_write_flooding_count( 4232 to_shadow_page(vcpu->arch.mmu->root.hpa)); 4233 } 4234 EXPORT_SYMBOL_GPL(kvm_mmu_new_pgd); 4235 4236 static unsigned long get_cr3(struct kvm_vcpu *vcpu) 4237 { 4238 return kvm_read_cr3(vcpu); 4239 } 4240 4241 static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn, 4242 unsigned int access) 4243 { 4244 if (unlikely(is_mmio_spte(*sptep))) { 4245 if (gfn != get_mmio_spte_gfn(*sptep)) { 4246 mmu_spte_clear_no_track(sptep); 4247 return true; 4248 } 4249 4250 mark_mmio_spte(vcpu, sptep, gfn, access); 4251 return true; 4252 } 4253 4254 return false; 4255 } 4256 4257 #define PTTYPE_EPT 18 /* arbitrary */ 4258 #define PTTYPE PTTYPE_EPT 4259 #include "paging_tmpl.h" 4260 #undef PTTYPE 4261 4262 #define PTTYPE 64 4263 #include "paging_tmpl.h" 4264 #undef PTTYPE 4265 4266 #define PTTYPE 32 4267 #include "paging_tmpl.h" 4268 #undef PTTYPE 4269 4270 static void 4271 __reset_rsvds_bits_mask(struct rsvd_bits_validate *rsvd_check, 4272 u64 pa_bits_rsvd, int level, bool nx, bool gbpages, 4273 bool pse, bool amd) 4274 { 4275 u64 gbpages_bit_rsvd = 0; 4276 u64 nonleaf_bit8_rsvd = 0; 4277 u64 high_bits_rsvd; 4278 4279 rsvd_check->bad_mt_xwr = 0; 4280 4281 if (!gbpages) 4282 gbpages_bit_rsvd = rsvd_bits(7, 7); 4283 4284 if (level == PT32E_ROOT_LEVEL) 4285 high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 62); 4286 else 4287 high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 51); 4288 4289 /* Note, NX doesn't exist in PDPTEs, this is handled below. */ 4290 if (!nx) 4291 high_bits_rsvd |= rsvd_bits(63, 63); 4292 4293 /* 4294 * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for 4295 * leaf entries) on AMD CPUs only. 4296 */ 4297 if (amd) 4298 nonleaf_bit8_rsvd = rsvd_bits(8, 8); 4299 4300 switch (level) { 4301 case PT32_ROOT_LEVEL: 4302 /* no rsvd bits for 2 level 4K page table entries */ 4303 rsvd_check->rsvd_bits_mask[0][1] = 0; 4304 rsvd_check->rsvd_bits_mask[0][0] = 0; 4305 rsvd_check->rsvd_bits_mask[1][0] = 4306 rsvd_check->rsvd_bits_mask[0][0]; 4307 4308 if (!pse) { 4309 rsvd_check->rsvd_bits_mask[1][1] = 0; 4310 break; 4311 } 4312 4313 if (is_cpuid_PSE36()) 4314 /* 36bits PSE 4MB page */ 4315 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21); 4316 else 4317 /* 32 bits PSE 4MB page */ 4318 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21); 4319 break; 4320 case PT32E_ROOT_LEVEL: 4321 rsvd_check->rsvd_bits_mask[0][2] = rsvd_bits(63, 63) | 4322 high_bits_rsvd | 4323 rsvd_bits(5, 8) | 4324 rsvd_bits(1, 2); /* PDPTE */ 4325 rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd; /* PDE */ 4326 rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd; /* PTE */ 4327 rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd | 4328 rsvd_bits(13, 20); /* large page */ 4329 rsvd_check->rsvd_bits_mask[1][0] = 4330 rsvd_check->rsvd_bits_mask[0][0]; 4331 break; 4332 case PT64_ROOT_5LEVEL: 4333 rsvd_check->rsvd_bits_mask[0][4] = high_bits_rsvd | 4334 nonleaf_bit8_rsvd | 4335 rsvd_bits(7, 7); 4336 rsvd_check->rsvd_bits_mask[1][4] = 4337 rsvd_check->rsvd_bits_mask[0][4]; 4338 fallthrough; 4339 case PT64_ROOT_4LEVEL: 4340 rsvd_check->rsvd_bits_mask[0][3] = high_bits_rsvd | 4341 nonleaf_bit8_rsvd | 4342 rsvd_bits(7, 7); 4343 rsvd_check->rsvd_bits_mask[0][2] = high_bits_rsvd | 4344 gbpages_bit_rsvd; 4345 rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd; 4346 rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd; 4347 rsvd_check->rsvd_bits_mask[1][3] = 4348 rsvd_check->rsvd_bits_mask[0][3]; 4349 rsvd_check->rsvd_bits_mask[1][2] = high_bits_rsvd | 4350 gbpages_bit_rsvd | 4351 rsvd_bits(13, 29); 4352 rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd | 4353 rsvd_bits(13, 20); /* large page */ 4354 rsvd_check->rsvd_bits_mask[1][0] = 4355 rsvd_check->rsvd_bits_mask[0][0]; 4356 break; 4357 } 4358 } 4359 4360 static bool guest_can_use_gbpages(struct kvm_vcpu *vcpu) 4361 { 4362 /* 4363 * If TDP is enabled, let the guest use GBPAGES if they're supported in 4364 * hardware. The hardware page walker doesn't let KVM disable GBPAGES, 4365 * i.e. won't treat them as reserved, and KVM doesn't redo the GVA->GPA 4366 * walk for performance and complexity reasons. Not to mention KVM 4367 * _can't_ solve the problem because GVA->GPA walks aren't visible to 4368 * KVM once a TDP translation is installed. Mimic hardware behavior so 4369 * that KVM's is at least consistent, i.e. doesn't randomly inject #PF. 4370 */ 4371 return tdp_enabled ? boot_cpu_has(X86_FEATURE_GBPAGES) : 4372 guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES); 4373 } 4374 4375 static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu, 4376 struct kvm_mmu *context) 4377 { 4378 __reset_rsvds_bits_mask(&context->guest_rsvd_check, 4379 vcpu->arch.reserved_gpa_bits, 4380 context->root_level, is_efer_nx(context), 4381 guest_can_use_gbpages(vcpu), 4382 is_cr4_pse(context), 4383 guest_cpuid_is_amd_or_hygon(vcpu)); 4384 } 4385 4386 static void 4387 __reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check, 4388 u64 pa_bits_rsvd, bool execonly, int huge_page_level) 4389 { 4390 u64 high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 51); 4391 u64 large_1g_rsvd = 0, large_2m_rsvd = 0; 4392 u64 bad_mt_xwr; 4393 4394 if (huge_page_level < PG_LEVEL_1G) 4395 large_1g_rsvd = rsvd_bits(7, 7); 4396 if (huge_page_level < PG_LEVEL_2M) 4397 large_2m_rsvd = rsvd_bits(7, 7); 4398 4399 rsvd_check->rsvd_bits_mask[0][4] = high_bits_rsvd | rsvd_bits(3, 7); 4400 rsvd_check->rsvd_bits_mask[0][3] = high_bits_rsvd | rsvd_bits(3, 7); 4401 rsvd_check->rsvd_bits_mask[0][2] = high_bits_rsvd | rsvd_bits(3, 6) | large_1g_rsvd; 4402 rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd | rsvd_bits(3, 6) | large_2m_rsvd; 4403 rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd; 4404 4405 /* large page */ 4406 rsvd_check->rsvd_bits_mask[1][4] = rsvd_check->rsvd_bits_mask[0][4]; 4407 rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3]; 4408 rsvd_check->rsvd_bits_mask[1][2] = high_bits_rsvd | rsvd_bits(12, 29) | large_1g_rsvd; 4409 rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd | rsvd_bits(12, 20) | large_2m_rsvd; 4410 rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0]; 4411 4412 bad_mt_xwr = 0xFFull << (2 * 8); /* bits 3..5 must not be 2 */ 4413 bad_mt_xwr |= 0xFFull << (3 * 8); /* bits 3..5 must not be 3 */ 4414 bad_mt_xwr |= 0xFFull << (7 * 8); /* bits 3..5 must not be 7 */ 4415 bad_mt_xwr |= REPEAT_BYTE(1ull << 2); /* bits 0..2 must not be 010 */ 4416 bad_mt_xwr |= REPEAT_BYTE(1ull << 6); /* bits 0..2 must not be 110 */ 4417 if (!execonly) { 4418 /* bits 0..2 must not be 100 unless VMX capabilities allow it */ 4419 bad_mt_xwr |= REPEAT_BYTE(1ull << 4); 4420 } 4421 rsvd_check->bad_mt_xwr = bad_mt_xwr; 4422 } 4423 4424 static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu, 4425 struct kvm_mmu *context, bool execonly, int huge_page_level) 4426 { 4427 __reset_rsvds_bits_mask_ept(&context->guest_rsvd_check, 4428 vcpu->arch.reserved_gpa_bits, execonly, 4429 huge_page_level); 4430 } 4431 4432 static inline u64 reserved_hpa_bits(void) 4433 { 4434 return rsvd_bits(shadow_phys_bits, 63); 4435 } 4436 4437 /* 4438 * the page table on host is the shadow page table for the page 4439 * table in guest or amd nested guest, its mmu features completely 4440 * follow the features in guest. 4441 */ 4442 static void reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, 4443 struct kvm_mmu *context) 4444 { 4445 /* 4446 * KVM uses NX when TDP is disabled to handle a variety of scenarios, 4447 * notably for huge SPTEs if iTLB multi-hit mitigation is enabled and 4448 * to generate correct permissions for CR0.WP=0/CR4.SMEP=1/EFER.NX=0. 4449 * The iTLB multi-hit workaround can be toggled at any time, so assume 4450 * NX can be used by any non-nested shadow MMU to avoid having to reset 4451 * MMU contexts. Note, KVM forces EFER.NX=1 when TDP is disabled. 4452 */ 4453 bool uses_nx = is_efer_nx(context) || !tdp_enabled; 4454 4455 /* @amd adds a check on bit of SPTEs, which KVM shouldn't use anyways. */ 4456 bool is_amd = true; 4457 /* KVM doesn't use 2-level page tables for the shadow MMU. */ 4458 bool is_pse = false; 4459 struct rsvd_bits_validate *shadow_zero_check; 4460 int i; 4461 4462 WARN_ON_ONCE(context->shadow_root_level < PT32E_ROOT_LEVEL); 4463 4464 shadow_zero_check = &context->shadow_zero_check; 4465 __reset_rsvds_bits_mask(shadow_zero_check, reserved_hpa_bits(), 4466 context->shadow_root_level, uses_nx, 4467 guest_can_use_gbpages(vcpu), is_pse, is_amd); 4468 4469 if (!shadow_me_mask) 4470 return; 4471 4472 for (i = context->shadow_root_level; --i >= 0;) { 4473 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask; 4474 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask; 4475 } 4476 4477 } 4478 4479 static inline bool boot_cpu_is_amd(void) 4480 { 4481 WARN_ON_ONCE(!tdp_enabled); 4482 return shadow_x_mask == 0; 4483 } 4484 4485 /* 4486 * the direct page table on host, use as much mmu features as 4487 * possible, however, kvm currently does not do execution-protection. 4488 */ 4489 static void 4490 reset_tdp_shadow_zero_bits_mask(struct kvm_mmu *context) 4491 { 4492 struct rsvd_bits_validate *shadow_zero_check; 4493 int i; 4494 4495 shadow_zero_check = &context->shadow_zero_check; 4496 4497 if (boot_cpu_is_amd()) 4498 __reset_rsvds_bits_mask(shadow_zero_check, reserved_hpa_bits(), 4499 context->shadow_root_level, false, 4500 boot_cpu_has(X86_FEATURE_GBPAGES), 4501 false, true); 4502 else 4503 __reset_rsvds_bits_mask_ept(shadow_zero_check, 4504 reserved_hpa_bits(), false, 4505 max_huge_page_level); 4506 4507 if (!shadow_me_mask) 4508 return; 4509 4510 for (i = context->shadow_root_level; --i >= 0;) { 4511 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask; 4512 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask; 4513 } 4514 } 4515 4516 /* 4517 * as the comments in reset_shadow_zero_bits_mask() except it 4518 * is the shadow page table for intel nested guest. 4519 */ 4520 static void 4521 reset_ept_shadow_zero_bits_mask(struct kvm_mmu *context, bool execonly) 4522 { 4523 __reset_rsvds_bits_mask_ept(&context->shadow_zero_check, 4524 reserved_hpa_bits(), execonly, 4525 max_huge_page_level); 4526 } 4527 4528 #define BYTE_MASK(access) \ 4529 ((1 & (access) ? 2 : 0) | \ 4530 (2 & (access) ? 4 : 0) | \ 4531 (3 & (access) ? 8 : 0) | \ 4532 (4 & (access) ? 16 : 0) | \ 4533 (5 & (access) ? 32 : 0) | \ 4534 (6 & (access) ? 64 : 0) | \ 4535 (7 & (access) ? 128 : 0)) 4536 4537 4538 static void update_permission_bitmask(struct kvm_mmu *mmu, bool ept) 4539 { 4540 unsigned byte; 4541 4542 const u8 x = BYTE_MASK(ACC_EXEC_MASK); 4543 const u8 w = BYTE_MASK(ACC_WRITE_MASK); 4544 const u8 u = BYTE_MASK(ACC_USER_MASK); 4545 4546 bool cr4_smep = is_cr4_smep(mmu); 4547 bool cr4_smap = is_cr4_smap(mmu); 4548 bool cr0_wp = is_cr0_wp(mmu); 4549 bool efer_nx = is_efer_nx(mmu); 4550 4551 for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) { 4552 unsigned pfec = byte << 1; 4553 4554 /* 4555 * Each "*f" variable has a 1 bit for each UWX value 4556 * that causes a fault with the given PFEC. 4557 */ 4558 4559 /* Faults from writes to non-writable pages */ 4560 u8 wf = (pfec & PFERR_WRITE_MASK) ? (u8)~w : 0; 4561 /* Faults from user mode accesses to supervisor pages */ 4562 u8 uf = (pfec & PFERR_USER_MASK) ? (u8)~u : 0; 4563 /* Faults from fetches of non-executable pages*/ 4564 u8 ff = (pfec & PFERR_FETCH_MASK) ? (u8)~x : 0; 4565 /* Faults from kernel mode fetches of user pages */ 4566 u8 smepf = 0; 4567 /* Faults from kernel mode accesses of user pages */ 4568 u8 smapf = 0; 4569 4570 if (!ept) { 4571 /* Faults from kernel mode accesses to user pages */ 4572 u8 kf = (pfec & PFERR_USER_MASK) ? 0 : u; 4573 4574 /* Not really needed: !nx will cause pte.nx to fault */ 4575 if (!efer_nx) 4576 ff = 0; 4577 4578 /* Allow supervisor writes if !cr0.wp */ 4579 if (!cr0_wp) 4580 wf = (pfec & PFERR_USER_MASK) ? wf : 0; 4581 4582 /* Disallow supervisor fetches of user code if cr4.smep */ 4583 if (cr4_smep) 4584 smepf = (pfec & PFERR_FETCH_MASK) ? kf : 0; 4585 4586 /* 4587 * SMAP:kernel-mode data accesses from user-mode 4588 * mappings should fault. A fault is considered 4589 * as a SMAP violation if all of the following 4590 * conditions are true: 4591 * - X86_CR4_SMAP is set in CR4 4592 * - A user page is accessed 4593 * - The access is not a fetch 4594 * - The access is supervisor mode 4595 * - If implicit supervisor access or X86_EFLAGS_AC is clear 4596 * 4597 * Here, we cover the first four conditions. 4598 * The fifth is computed dynamically in permission_fault(); 4599 * PFERR_RSVD_MASK bit will be set in PFEC if the access is 4600 * *not* subject to SMAP restrictions. 4601 */ 4602 if (cr4_smap) 4603 smapf = (pfec & (PFERR_RSVD_MASK|PFERR_FETCH_MASK)) ? 0 : kf; 4604 } 4605 4606 mmu->permissions[byte] = ff | uf | wf | smepf | smapf; 4607 } 4608 } 4609 4610 /* 4611 * PKU is an additional mechanism by which the paging controls access to 4612 * user-mode addresses based on the value in the PKRU register. Protection 4613 * key violations are reported through a bit in the page fault error code. 4614 * Unlike other bits of the error code, the PK bit is not known at the 4615 * call site of e.g. gva_to_gpa; it must be computed directly in 4616 * permission_fault based on two bits of PKRU, on some machine state (CR4, 4617 * CR0, EFER, CPL), and on other bits of the error code and the page tables. 4618 * 4619 * In particular the following conditions come from the error code, the 4620 * page tables and the machine state: 4621 * - PK is always zero unless CR4.PKE=1 and EFER.LMA=1 4622 * - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch) 4623 * - PK is always zero if U=0 in the page tables 4624 * - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access. 4625 * 4626 * The PKRU bitmask caches the result of these four conditions. The error 4627 * code (minus the P bit) and the page table's U bit form an index into the 4628 * PKRU bitmask. Two bits of the PKRU bitmask are then extracted and ANDed 4629 * with the two bits of the PKRU register corresponding to the protection key. 4630 * For the first three conditions above the bits will be 00, thus masking 4631 * away both AD and WD. For all reads or if the last condition holds, WD 4632 * only will be masked away. 4633 */ 4634 static void update_pkru_bitmask(struct kvm_mmu *mmu) 4635 { 4636 unsigned bit; 4637 bool wp; 4638 4639 mmu->pkru_mask = 0; 4640 4641 if (!is_cr4_pke(mmu)) 4642 return; 4643 4644 wp = is_cr0_wp(mmu); 4645 4646 for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) { 4647 unsigned pfec, pkey_bits; 4648 bool check_pkey, check_write, ff, uf, wf, pte_user; 4649 4650 pfec = bit << 1; 4651 ff = pfec & PFERR_FETCH_MASK; 4652 uf = pfec & PFERR_USER_MASK; 4653 wf = pfec & PFERR_WRITE_MASK; 4654 4655 /* PFEC.RSVD is replaced by ACC_USER_MASK. */ 4656 pte_user = pfec & PFERR_RSVD_MASK; 4657 4658 /* 4659 * Only need to check the access which is not an 4660 * instruction fetch and is to a user page. 4661 */ 4662 check_pkey = (!ff && pte_user); 4663 /* 4664 * write access is controlled by PKRU if it is a 4665 * user access or CR0.WP = 1. 4666 */ 4667 check_write = check_pkey && wf && (uf || wp); 4668 4669 /* PKRU.AD stops both read and write access. */ 4670 pkey_bits = !!check_pkey; 4671 /* PKRU.WD stops write access. */ 4672 pkey_bits |= (!!check_write) << 1; 4673 4674 mmu->pkru_mask |= (pkey_bits & 3) << pfec; 4675 } 4676 } 4677 4678 static void reset_guest_paging_metadata(struct kvm_vcpu *vcpu, 4679 struct kvm_mmu *mmu) 4680 { 4681 if (!is_cr0_pg(mmu)) 4682 return; 4683 4684 reset_rsvds_bits_mask(vcpu, mmu); 4685 update_permission_bitmask(mmu, false); 4686 update_pkru_bitmask(mmu); 4687 } 4688 4689 static void paging64_init_context(struct kvm_mmu *context) 4690 { 4691 context->page_fault = paging64_page_fault; 4692 context->gva_to_gpa = paging64_gva_to_gpa; 4693 context->sync_page = paging64_sync_page; 4694 context->invlpg = paging64_invlpg; 4695 context->direct_map = false; 4696 } 4697 4698 static void paging32_init_context(struct kvm_mmu *context) 4699 { 4700 context->page_fault = paging32_page_fault; 4701 context->gva_to_gpa = paging32_gva_to_gpa; 4702 context->sync_page = paging32_sync_page; 4703 context->invlpg = paging32_invlpg; 4704 context->direct_map = false; 4705 } 4706 4707 static union kvm_mmu_extended_role kvm_calc_mmu_role_ext(struct kvm_vcpu *vcpu, 4708 struct kvm_mmu_role_regs *regs) 4709 { 4710 union kvm_mmu_extended_role ext = {0}; 4711 4712 if (____is_cr0_pg(regs)) { 4713 ext.cr0_pg = 1; 4714 ext.cr4_pae = ____is_cr4_pae(regs); 4715 ext.cr4_smep = ____is_cr4_smep(regs); 4716 ext.cr4_smap = ____is_cr4_smap(regs); 4717 ext.cr4_pse = ____is_cr4_pse(regs); 4718 4719 /* PKEY and LA57 are active iff long mode is active. */ 4720 ext.cr4_pke = ____is_efer_lma(regs) && ____is_cr4_pke(regs); 4721 ext.cr4_la57 = ____is_efer_lma(regs) && ____is_cr4_la57(regs); 4722 ext.efer_lma = ____is_efer_lma(regs); 4723 } 4724 4725 ext.valid = 1; 4726 4727 return ext; 4728 } 4729 4730 static union kvm_mmu_role kvm_calc_mmu_role_common(struct kvm_vcpu *vcpu, 4731 struct kvm_mmu_role_regs *regs, 4732 bool base_only) 4733 { 4734 union kvm_mmu_role role = {0}; 4735 4736 role.base.access = ACC_ALL; 4737 if (____is_cr0_pg(regs)) { 4738 role.base.efer_nx = ____is_efer_nx(regs); 4739 role.base.cr0_wp = ____is_cr0_wp(regs); 4740 } 4741 role.base.smm = is_smm(vcpu); 4742 role.base.guest_mode = is_guest_mode(vcpu); 4743 4744 if (base_only) 4745 return role; 4746 4747 role.ext = kvm_calc_mmu_role_ext(vcpu, regs); 4748 4749 return role; 4750 } 4751 4752 static inline int kvm_mmu_get_tdp_level(struct kvm_vcpu *vcpu) 4753 { 4754 /* tdp_root_level is architecture forced level, use it if nonzero */ 4755 if (tdp_root_level) 4756 return tdp_root_level; 4757 4758 /* Use 5-level TDP if and only if it's useful/necessary. */ 4759 if (max_tdp_level == 5 && cpuid_maxphyaddr(vcpu) <= 48) 4760 return 4; 4761 4762 return max_tdp_level; 4763 } 4764 4765 static union kvm_mmu_role 4766 kvm_calc_tdp_mmu_root_page_role(struct kvm_vcpu *vcpu, 4767 struct kvm_mmu_role_regs *regs, bool base_only) 4768 { 4769 union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, regs, base_only); 4770 4771 role.base.ad_disabled = (shadow_accessed_mask == 0); 4772 role.base.level = kvm_mmu_get_tdp_level(vcpu); 4773 role.base.direct = true; 4774 role.base.has_4_byte_gpte = false; 4775 4776 return role; 4777 } 4778 4779 static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu) 4780 { 4781 struct kvm_mmu *context = &vcpu->arch.root_mmu; 4782 struct kvm_mmu_role_regs regs = vcpu_to_role_regs(vcpu); 4783 union kvm_mmu_role new_role = 4784 kvm_calc_tdp_mmu_root_page_role(vcpu, ®s, false); 4785 4786 if (new_role.as_u64 == context->mmu_role.as_u64) 4787 return; 4788 4789 context->mmu_role.as_u64 = new_role.as_u64; 4790 context->page_fault = kvm_tdp_page_fault; 4791 context->sync_page = nonpaging_sync_page; 4792 context->invlpg = NULL; 4793 context->shadow_root_level = kvm_mmu_get_tdp_level(vcpu); 4794 context->direct_map = true; 4795 context->get_guest_pgd = get_cr3; 4796 context->get_pdptr = kvm_pdptr_read; 4797 context->inject_page_fault = kvm_inject_page_fault; 4798 context->root_level = role_regs_to_root_level(®s); 4799 4800 if (!is_cr0_pg(context)) 4801 context->gva_to_gpa = nonpaging_gva_to_gpa; 4802 else if (is_cr4_pae(context)) 4803 context->gva_to_gpa = paging64_gva_to_gpa; 4804 else 4805 context->gva_to_gpa = paging32_gva_to_gpa; 4806 4807 reset_guest_paging_metadata(vcpu, context); 4808 reset_tdp_shadow_zero_bits_mask(context); 4809 } 4810 4811 static union kvm_mmu_role 4812 kvm_calc_shadow_root_page_role_common(struct kvm_vcpu *vcpu, 4813 struct kvm_mmu_role_regs *regs, bool base_only) 4814 { 4815 union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, regs, base_only); 4816 4817 role.base.smep_andnot_wp = role.ext.cr4_smep && !____is_cr0_wp(regs); 4818 role.base.smap_andnot_wp = role.ext.cr4_smap && !____is_cr0_wp(regs); 4819 role.base.has_4_byte_gpte = ____is_cr0_pg(regs) && !____is_cr4_pae(regs); 4820 4821 return role; 4822 } 4823 4824 static union kvm_mmu_role 4825 kvm_calc_shadow_mmu_root_page_role(struct kvm_vcpu *vcpu, 4826 struct kvm_mmu_role_regs *regs, bool base_only) 4827 { 4828 union kvm_mmu_role role = 4829 kvm_calc_shadow_root_page_role_common(vcpu, regs, base_only); 4830 4831 role.base.direct = !____is_cr0_pg(regs); 4832 4833 if (!____is_efer_lma(regs)) 4834 role.base.level = PT32E_ROOT_LEVEL; 4835 else if (____is_cr4_la57(regs)) 4836 role.base.level = PT64_ROOT_5LEVEL; 4837 else 4838 role.base.level = PT64_ROOT_4LEVEL; 4839 4840 return role; 4841 } 4842 4843 static void shadow_mmu_init_context(struct kvm_vcpu *vcpu, struct kvm_mmu *context, 4844 struct kvm_mmu_role_regs *regs, 4845 union kvm_mmu_role new_role) 4846 { 4847 if (new_role.as_u64 == context->mmu_role.as_u64) 4848 return; 4849 4850 context->mmu_role.as_u64 = new_role.as_u64; 4851 4852 if (!is_cr0_pg(context)) 4853 nonpaging_init_context(context); 4854 else if (is_cr4_pae(context)) 4855 paging64_init_context(context); 4856 else 4857 paging32_init_context(context); 4858 context->root_level = role_regs_to_root_level(regs); 4859 4860 reset_guest_paging_metadata(vcpu, context); 4861 context->shadow_root_level = new_role.base.level; 4862 4863 reset_shadow_zero_bits_mask(vcpu, context); 4864 } 4865 4866 static void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, 4867 struct kvm_mmu_role_regs *regs) 4868 { 4869 struct kvm_mmu *context = &vcpu->arch.root_mmu; 4870 union kvm_mmu_role new_role = 4871 kvm_calc_shadow_mmu_root_page_role(vcpu, regs, false); 4872 4873 shadow_mmu_init_context(vcpu, context, regs, new_role); 4874 } 4875 4876 static union kvm_mmu_role 4877 kvm_calc_shadow_npt_root_page_role(struct kvm_vcpu *vcpu, 4878 struct kvm_mmu_role_regs *regs) 4879 { 4880 union kvm_mmu_role role = 4881 kvm_calc_shadow_root_page_role_common(vcpu, regs, false); 4882 4883 role.base.direct = false; 4884 role.base.level = kvm_mmu_get_tdp_level(vcpu); 4885 4886 return role; 4887 } 4888 4889 void kvm_init_shadow_npt_mmu(struct kvm_vcpu *vcpu, unsigned long cr0, 4890 unsigned long cr4, u64 efer, gpa_t nested_cr3) 4891 { 4892 struct kvm_mmu *context = &vcpu->arch.guest_mmu; 4893 struct kvm_mmu_role_regs regs = { 4894 .cr0 = cr0, 4895 .cr4 = cr4 & ~X86_CR4_PKE, 4896 .efer = efer, 4897 }; 4898 union kvm_mmu_role new_role; 4899 4900 new_role = kvm_calc_shadow_npt_root_page_role(vcpu, ®s); 4901 4902 shadow_mmu_init_context(vcpu, context, ®s, new_role); 4903 kvm_mmu_new_pgd(vcpu, nested_cr3); 4904 } 4905 EXPORT_SYMBOL_GPL(kvm_init_shadow_npt_mmu); 4906 4907 static union kvm_mmu_role 4908 kvm_calc_shadow_ept_root_page_role(struct kvm_vcpu *vcpu, bool accessed_dirty, 4909 bool execonly, u8 level) 4910 { 4911 union kvm_mmu_role role = {0}; 4912 4913 /* SMM flag is inherited from root_mmu */ 4914 role.base.smm = vcpu->arch.root_mmu.mmu_role.base.smm; 4915 4916 role.base.level = level; 4917 role.base.has_4_byte_gpte = false; 4918 role.base.direct = false; 4919 role.base.ad_disabled = !accessed_dirty; 4920 role.base.guest_mode = true; 4921 role.base.access = ACC_ALL; 4922 4923 /* EPT, and thus nested EPT, does not consume CR0, CR4, nor EFER. */ 4924 role.ext.word = 0; 4925 role.ext.execonly = execonly; 4926 role.ext.valid = 1; 4927 4928 return role; 4929 } 4930 4931 void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly, 4932 int huge_page_level, bool accessed_dirty, 4933 gpa_t new_eptp) 4934 { 4935 struct kvm_mmu *context = &vcpu->arch.guest_mmu; 4936 u8 level = vmx_eptp_page_walk_level(new_eptp); 4937 union kvm_mmu_role new_role = 4938 kvm_calc_shadow_ept_root_page_role(vcpu, accessed_dirty, 4939 execonly, level); 4940 4941 if (new_role.as_u64 != context->mmu_role.as_u64) { 4942 context->mmu_role.as_u64 = new_role.as_u64; 4943 4944 context->shadow_root_level = level; 4945 4946 context->ept_ad = accessed_dirty; 4947 context->page_fault = ept_page_fault; 4948 context->gva_to_gpa = ept_gva_to_gpa; 4949 context->sync_page = ept_sync_page; 4950 context->invlpg = ept_invlpg; 4951 context->root_level = level; 4952 context->direct_map = false; 4953 update_permission_bitmask(context, true); 4954 context->pkru_mask = 0; 4955 reset_rsvds_bits_mask_ept(vcpu, context, execonly, huge_page_level); 4956 reset_ept_shadow_zero_bits_mask(context, execonly); 4957 } 4958 4959 kvm_mmu_new_pgd(vcpu, new_eptp); 4960 } 4961 EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu); 4962 4963 static void init_kvm_softmmu(struct kvm_vcpu *vcpu) 4964 { 4965 struct kvm_mmu *context = &vcpu->arch.root_mmu; 4966 struct kvm_mmu_role_regs regs = vcpu_to_role_regs(vcpu); 4967 4968 kvm_init_shadow_mmu(vcpu, ®s); 4969 4970 context->get_guest_pgd = get_cr3; 4971 context->get_pdptr = kvm_pdptr_read; 4972 context->inject_page_fault = kvm_inject_page_fault; 4973 } 4974 4975 static union kvm_mmu_role 4976 kvm_calc_nested_mmu_role(struct kvm_vcpu *vcpu, struct kvm_mmu_role_regs *regs) 4977 { 4978 union kvm_mmu_role role; 4979 4980 role = kvm_calc_shadow_root_page_role_common(vcpu, regs, false); 4981 4982 /* 4983 * Nested MMUs are used only for walking L2's gva->gpa, they never have 4984 * shadow pages of their own and so "direct" has no meaning. Set it 4985 * to "true" to try to detect bogus usage of the nested MMU. 4986 */ 4987 role.base.direct = true; 4988 role.base.level = role_regs_to_root_level(regs); 4989 return role; 4990 } 4991 4992 static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu) 4993 { 4994 struct kvm_mmu_role_regs regs = vcpu_to_role_regs(vcpu); 4995 union kvm_mmu_role new_role = kvm_calc_nested_mmu_role(vcpu, ®s); 4996 struct kvm_mmu *g_context = &vcpu->arch.nested_mmu; 4997 4998 if (new_role.as_u64 == g_context->mmu_role.as_u64) 4999 return; 5000 5001 g_context->mmu_role.as_u64 = new_role.as_u64; 5002 g_context->get_guest_pgd = get_cr3; 5003 g_context->get_pdptr = kvm_pdptr_read; 5004 g_context->inject_page_fault = kvm_inject_page_fault; 5005 g_context->root_level = new_role.base.level; 5006 5007 /* 5008 * L2 page tables are never shadowed, so there is no need to sync 5009 * SPTEs. 5010 */ 5011 g_context->invlpg = NULL; 5012 5013 /* 5014 * Note that arch.mmu->gva_to_gpa translates l2_gpa to l1_gpa using 5015 * L1's nested page tables (e.g. EPT12). The nested translation 5016 * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using 5017 * L2's page tables as the first level of translation and L1's 5018 * nested page tables as the second level of translation. Basically 5019 * the gva_to_gpa functions between mmu and nested_mmu are swapped. 5020 */ 5021 if (!is_paging(vcpu)) 5022 g_context->gva_to_gpa = nonpaging_gva_to_gpa; 5023 else if (is_long_mode(vcpu)) 5024 g_context->gva_to_gpa = paging64_gva_to_gpa; 5025 else if (is_pae(vcpu)) 5026 g_context->gva_to_gpa = paging64_gva_to_gpa; 5027 else 5028 g_context->gva_to_gpa = paging32_gva_to_gpa; 5029 5030 reset_guest_paging_metadata(vcpu, g_context); 5031 } 5032 5033 void kvm_init_mmu(struct kvm_vcpu *vcpu) 5034 { 5035 if (mmu_is_nested(vcpu)) 5036 init_kvm_nested_mmu(vcpu); 5037 else if (tdp_enabled) 5038 init_kvm_tdp_mmu(vcpu); 5039 else 5040 init_kvm_softmmu(vcpu); 5041 } 5042 EXPORT_SYMBOL_GPL(kvm_init_mmu); 5043 5044 void kvm_mmu_after_set_cpuid(struct kvm_vcpu *vcpu) 5045 { 5046 /* 5047 * Invalidate all MMU roles to force them to reinitialize as CPUID 5048 * information is factored into reserved bit calculations. 5049 * 5050 * Correctly handling multiple vCPU models with respect to paging and 5051 * physical address properties) in a single VM would require tracking 5052 * all relevant CPUID information in kvm_mmu_page_role. That is very 5053 * undesirable as it would increase the memory requirements for 5054 * gfn_track (see struct kvm_mmu_page_role comments). For now that 5055 * problem is swept under the rug; KVM's CPUID API is horrific and 5056 * it's all but impossible to solve it without introducing a new API. 5057 */ 5058 vcpu->arch.root_mmu.mmu_role.ext.valid = 0; 5059 vcpu->arch.guest_mmu.mmu_role.ext.valid = 0; 5060 vcpu->arch.nested_mmu.mmu_role.ext.valid = 0; 5061 kvm_mmu_reset_context(vcpu); 5062 5063 /* 5064 * Changing guest CPUID after KVM_RUN is forbidden, see the comment in 5065 * kvm_arch_vcpu_ioctl(). 5066 */ 5067 KVM_BUG_ON(vcpu->arch.last_vmentry_cpu != -1, vcpu->kvm); 5068 } 5069 5070 void kvm_mmu_reset_context(struct kvm_vcpu *vcpu) 5071 { 5072 kvm_mmu_unload(vcpu); 5073 kvm_init_mmu(vcpu); 5074 } 5075 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context); 5076 5077 int kvm_mmu_load(struct kvm_vcpu *vcpu) 5078 { 5079 int r; 5080 5081 r = mmu_topup_memory_caches(vcpu, !vcpu->arch.mmu->direct_map); 5082 if (r) 5083 goto out; 5084 r = mmu_alloc_special_roots(vcpu); 5085 if (r) 5086 goto out; 5087 if (vcpu->arch.mmu->direct_map) 5088 r = mmu_alloc_direct_roots(vcpu); 5089 else 5090 r = mmu_alloc_shadow_roots(vcpu); 5091 if (r) 5092 goto out; 5093 5094 kvm_mmu_sync_roots(vcpu); 5095 5096 kvm_mmu_load_pgd(vcpu); 5097 5098 /* 5099 * Flush any TLB entries for the new root, the provenance of the root 5100 * is unknown. Even if KVM ensures there are no stale TLB entries 5101 * for a freed root, in theory another hypervisor could have left 5102 * stale entries. Flushing on alloc also allows KVM to skip the TLB 5103 * flush when freeing a root (see kvm_tdp_mmu_put_root()). 5104 */ 5105 static_call(kvm_x86_flush_tlb_current)(vcpu); 5106 out: 5107 return r; 5108 } 5109 5110 void kvm_mmu_unload(struct kvm_vcpu *vcpu) 5111 { 5112 struct kvm *kvm = vcpu->kvm; 5113 5114 kvm_mmu_free_roots(kvm, &vcpu->arch.root_mmu, KVM_MMU_ROOTS_ALL); 5115 WARN_ON(VALID_PAGE(vcpu->arch.root_mmu.root.hpa)); 5116 kvm_mmu_free_roots(kvm, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL); 5117 WARN_ON(VALID_PAGE(vcpu->arch.guest_mmu.root.hpa)); 5118 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY); 5119 } 5120 5121 static bool is_obsolete_root(struct kvm *kvm, hpa_t root_hpa) 5122 { 5123 struct kvm_mmu_page *sp; 5124 5125 if (!VALID_PAGE(root_hpa)) 5126 return false; 5127 5128 /* 5129 * When freeing obsolete roots, treat roots as obsolete if they don't 5130 * have an associated shadow page. This does mean KVM will get false 5131 * positives and free roots that don't strictly need to be freed, but 5132 * such false positives are relatively rare: 5133 * 5134 * (a) only PAE paging and nested NPT has roots without shadow pages 5135 * (b) remote reloads due to a memslot update obsoletes _all_ roots 5136 * (c) KVM doesn't track previous roots for PAE paging, and the guest 5137 * is unlikely to zap an in-use PGD. 5138 */ 5139 sp = to_shadow_page(root_hpa); 5140 return !sp || is_obsolete_sp(kvm, sp); 5141 } 5142 5143 static void __kvm_mmu_free_obsolete_roots(struct kvm *kvm, struct kvm_mmu *mmu) 5144 { 5145 unsigned long roots_to_free = 0; 5146 int i; 5147 5148 if (is_obsolete_root(kvm, mmu->root.hpa)) 5149 roots_to_free |= KVM_MMU_ROOT_CURRENT; 5150 5151 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) { 5152 if (is_obsolete_root(kvm, mmu->root.hpa)) 5153 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i); 5154 } 5155 5156 if (roots_to_free) 5157 kvm_mmu_free_roots(kvm, mmu, roots_to_free); 5158 } 5159 5160 void kvm_mmu_free_obsolete_roots(struct kvm_vcpu *vcpu) 5161 { 5162 __kvm_mmu_free_obsolete_roots(vcpu->kvm, &vcpu->arch.root_mmu); 5163 __kvm_mmu_free_obsolete_roots(vcpu->kvm, &vcpu->arch.guest_mmu); 5164 } 5165 5166 static bool need_remote_flush(u64 old, u64 new) 5167 { 5168 if (!is_shadow_present_pte(old)) 5169 return false; 5170 if (!is_shadow_present_pte(new)) 5171 return true; 5172 if ((old ^ new) & PT64_BASE_ADDR_MASK) 5173 return true; 5174 old ^= shadow_nx_mask; 5175 new ^= shadow_nx_mask; 5176 return (old & ~new & PT64_PERM_MASK) != 0; 5177 } 5178 5179 static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa, 5180 int *bytes) 5181 { 5182 u64 gentry = 0; 5183 int r; 5184 5185 /* 5186 * Assume that the pte write on a page table of the same type 5187 * as the current vcpu paging mode since we update the sptes only 5188 * when they have the same mode. 5189 */ 5190 if (is_pae(vcpu) && *bytes == 4) { 5191 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */ 5192 *gpa &= ~(gpa_t)7; 5193 *bytes = 8; 5194 } 5195 5196 if (*bytes == 4 || *bytes == 8) { 5197 r = kvm_vcpu_read_guest_atomic(vcpu, *gpa, &gentry, *bytes); 5198 if (r) 5199 gentry = 0; 5200 } 5201 5202 return gentry; 5203 } 5204 5205 /* 5206 * If we're seeing too many writes to a page, it may no longer be a page table, 5207 * or we may be forking, in which case it is better to unmap the page. 5208 */ 5209 static bool detect_write_flooding(struct kvm_mmu_page *sp) 5210 { 5211 /* 5212 * Skip write-flooding detected for the sp whose level is 1, because 5213 * it can become unsync, then the guest page is not write-protected. 5214 */ 5215 if (sp->role.level == PG_LEVEL_4K) 5216 return false; 5217 5218 atomic_inc(&sp->write_flooding_count); 5219 return atomic_read(&sp->write_flooding_count) >= 3; 5220 } 5221 5222 /* 5223 * Misaligned accesses are too much trouble to fix up; also, they usually 5224 * indicate a page is not used as a page table. 5225 */ 5226 static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa, 5227 int bytes) 5228 { 5229 unsigned offset, pte_size, misaligned; 5230 5231 pgprintk("misaligned: gpa %llx bytes %d role %x\n", 5232 gpa, bytes, sp->role.word); 5233 5234 offset = offset_in_page(gpa); 5235 pte_size = sp->role.has_4_byte_gpte ? 4 : 8; 5236 5237 /* 5238 * Sometimes, the OS only writes the last one bytes to update status 5239 * bits, for example, in linux, andb instruction is used in clear_bit(). 5240 */ 5241 if (!(offset & (pte_size - 1)) && bytes == 1) 5242 return false; 5243 5244 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1); 5245 misaligned |= bytes < 4; 5246 5247 return misaligned; 5248 } 5249 5250 static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte) 5251 { 5252 unsigned page_offset, quadrant; 5253 u64 *spte; 5254 int level; 5255 5256 page_offset = offset_in_page(gpa); 5257 level = sp->role.level; 5258 *nspte = 1; 5259 if (sp->role.has_4_byte_gpte) { 5260 page_offset <<= 1; /* 32->64 */ 5261 /* 5262 * A 32-bit pde maps 4MB while the shadow pdes map 5263 * only 2MB. So we need to double the offset again 5264 * and zap two pdes instead of one. 5265 */ 5266 if (level == PT32_ROOT_LEVEL) { 5267 page_offset &= ~7; /* kill rounding error */ 5268 page_offset <<= 1; 5269 *nspte = 2; 5270 } 5271 quadrant = page_offset >> PAGE_SHIFT; 5272 page_offset &= ~PAGE_MASK; 5273 if (quadrant != sp->role.quadrant) 5274 return NULL; 5275 } 5276 5277 spte = &sp->spt[page_offset / sizeof(*spte)]; 5278 return spte; 5279 } 5280 5281 static void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa, 5282 const u8 *new, int bytes, 5283 struct kvm_page_track_notifier_node *node) 5284 { 5285 gfn_t gfn = gpa >> PAGE_SHIFT; 5286 struct kvm_mmu_page *sp; 5287 LIST_HEAD(invalid_list); 5288 u64 entry, gentry, *spte; 5289 int npte; 5290 bool flush = false; 5291 5292 /* 5293 * If we don't have indirect shadow pages, it means no page is 5294 * write-protected, so we can exit simply. 5295 */ 5296 if (!READ_ONCE(vcpu->kvm->arch.indirect_shadow_pages)) 5297 return; 5298 5299 pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes); 5300 5301 /* 5302 * No need to care whether allocation memory is successful 5303 * or not since pte prefetch is skipped if it does not have 5304 * enough objects in the cache. 5305 */ 5306 mmu_topup_memory_caches(vcpu, true); 5307 5308 write_lock(&vcpu->kvm->mmu_lock); 5309 5310 gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, &bytes); 5311 5312 ++vcpu->kvm->stat.mmu_pte_write; 5313 5314 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) { 5315 if (detect_write_misaligned(sp, gpa, bytes) || 5316 detect_write_flooding(sp)) { 5317 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list); 5318 ++vcpu->kvm->stat.mmu_flooded; 5319 continue; 5320 } 5321 5322 spte = get_written_sptes(sp, gpa, &npte); 5323 if (!spte) 5324 continue; 5325 5326 while (npte--) { 5327 entry = *spte; 5328 mmu_page_zap_pte(vcpu->kvm, sp, spte, NULL); 5329 if (gentry && sp->role.level != PG_LEVEL_4K) 5330 ++vcpu->kvm->stat.mmu_pde_zapped; 5331 if (need_remote_flush(entry, *spte)) 5332 flush = true; 5333 ++spte; 5334 } 5335 } 5336 kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, flush); 5337 write_unlock(&vcpu->kvm->mmu_lock); 5338 } 5339 5340 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 error_code, 5341 void *insn, int insn_len) 5342 { 5343 int r, emulation_type = EMULTYPE_PF; 5344 bool direct = vcpu->arch.mmu->direct_map; 5345 5346 if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root.hpa))) 5347 return RET_PF_RETRY; 5348 5349 r = RET_PF_INVALID; 5350 if (unlikely(error_code & PFERR_RSVD_MASK)) { 5351 r = handle_mmio_page_fault(vcpu, cr2_or_gpa, direct); 5352 if (r == RET_PF_EMULATE) 5353 goto emulate; 5354 } 5355 5356 if (r == RET_PF_INVALID) { 5357 r = kvm_mmu_do_page_fault(vcpu, cr2_or_gpa, 5358 lower_32_bits(error_code), false); 5359 if (KVM_BUG_ON(r == RET_PF_INVALID, vcpu->kvm)) 5360 return -EIO; 5361 } 5362 5363 if (r < 0) 5364 return r; 5365 if (r != RET_PF_EMULATE) 5366 return 1; 5367 5368 /* 5369 * Before emulating the instruction, check if the error code 5370 * was due to a RO violation while translating the guest page. 5371 * This can occur when using nested virtualization with nested 5372 * paging in both guests. If true, we simply unprotect the page 5373 * and resume the guest. 5374 */ 5375 if (vcpu->arch.mmu->direct_map && 5376 (error_code & PFERR_NESTED_GUEST_PAGE) == PFERR_NESTED_GUEST_PAGE) { 5377 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(cr2_or_gpa)); 5378 return 1; 5379 } 5380 5381 /* 5382 * vcpu->arch.mmu.page_fault returned RET_PF_EMULATE, but we can still 5383 * optimistically try to just unprotect the page and let the processor 5384 * re-execute the instruction that caused the page fault. Do not allow 5385 * retrying MMIO emulation, as it's not only pointless but could also 5386 * cause us to enter an infinite loop because the processor will keep 5387 * faulting on the non-existent MMIO address. Retrying an instruction 5388 * from a nested guest is also pointless and dangerous as we are only 5389 * explicitly shadowing L1's page tables, i.e. unprotecting something 5390 * for L1 isn't going to magically fix whatever issue cause L2 to fail. 5391 */ 5392 if (!mmio_info_in_cache(vcpu, cr2_or_gpa, direct) && !is_guest_mode(vcpu)) 5393 emulation_type |= EMULTYPE_ALLOW_RETRY_PF; 5394 emulate: 5395 return x86_emulate_instruction(vcpu, cr2_or_gpa, emulation_type, insn, 5396 insn_len); 5397 } 5398 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault); 5399 5400 void kvm_mmu_invalidate_gva(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, 5401 gva_t gva, hpa_t root_hpa) 5402 { 5403 int i; 5404 5405 /* It's actually a GPA for vcpu->arch.guest_mmu. */ 5406 if (mmu != &vcpu->arch.guest_mmu) { 5407 /* INVLPG on a non-canonical address is a NOP according to the SDM. */ 5408 if (is_noncanonical_address(gva, vcpu)) 5409 return; 5410 5411 static_call(kvm_x86_flush_tlb_gva)(vcpu, gva); 5412 } 5413 5414 if (!mmu->invlpg) 5415 return; 5416 5417 if (root_hpa == INVALID_PAGE) { 5418 mmu->invlpg(vcpu, gva, mmu->root.hpa); 5419 5420 /* 5421 * INVLPG is required to invalidate any global mappings for the VA, 5422 * irrespective of PCID. Since it would take us roughly similar amount 5423 * of work to determine whether any of the prev_root mappings of the VA 5424 * is marked global, or to just sync it blindly, so we might as well 5425 * just always sync it. 5426 * 5427 * Mappings not reachable via the current cr3 or the prev_roots will be 5428 * synced when switching to that cr3, so nothing needs to be done here 5429 * for them. 5430 */ 5431 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 5432 if (VALID_PAGE(mmu->prev_roots[i].hpa)) 5433 mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa); 5434 } else { 5435 mmu->invlpg(vcpu, gva, root_hpa); 5436 } 5437 } 5438 5439 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva) 5440 { 5441 kvm_mmu_invalidate_gva(vcpu, vcpu->arch.walk_mmu, gva, INVALID_PAGE); 5442 ++vcpu->stat.invlpg; 5443 } 5444 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg); 5445 5446 5447 void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid) 5448 { 5449 struct kvm_mmu *mmu = vcpu->arch.mmu; 5450 bool tlb_flush = false; 5451 uint i; 5452 5453 if (pcid == kvm_get_active_pcid(vcpu)) { 5454 mmu->invlpg(vcpu, gva, mmu->root.hpa); 5455 tlb_flush = true; 5456 } 5457 5458 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) { 5459 if (VALID_PAGE(mmu->prev_roots[i].hpa) && 5460 pcid == kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd)) { 5461 mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa); 5462 tlb_flush = true; 5463 } 5464 } 5465 5466 if (tlb_flush) 5467 static_call(kvm_x86_flush_tlb_gva)(vcpu, gva); 5468 5469 ++vcpu->stat.invlpg; 5470 5471 /* 5472 * Mappings not reachable via the current cr3 or the prev_roots will be 5473 * synced when switching to that cr3, so nothing needs to be done here 5474 * for them. 5475 */ 5476 } 5477 5478 void kvm_configure_mmu(bool enable_tdp, int tdp_forced_root_level, 5479 int tdp_max_root_level, int tdp_huge_page_level) 5480 { 5481 tdp_enabled = enable_tdp; 5482 tdp_root_level = tdp_forced_root_level; 5483 max_tdp_level = tdp_max_root_level; 5484 5485 /* 5486 * max_huge_page_level reflects KVM's MMU capabilities irrespective 5487 * of kernel support, e.g. KVM may be capable of using 1GB pages when 5488 * the kernel is not. But, KVM never creates a page size greater than 5489 * what is used by the kernel for any given HVA, i.e. the kernel's 5490 * capabilities are ultimately consulted by kvm_mmu_hugepage_adjust(). 5491 */ 5492 if (tdp_enabled) 5493 max_huge_page_level = tdp_huge_page_level; 5494 else if (boot_cpu_has(X86_FEATURE_GBPAGES)) 5495 max_huge_page_level = PG_LEVEL_1G; 5496 else 5497 max_huge_page_level = PG_LEVEL_2M; 5498 } 5499 EXPORT_SYMBOL_GPL(kvm_configure_mmu); 5500 5501 /* The return value indicates if tlb flush on all vcpus is needed. */ 5502 typedef bool (*slot_level_handler) (struct kvm *kvm, 5503 struct kvm_rmap_head *rmap_head, 5504 const struct kvm_memory_slot *slot); 5505 5506 /* The caller should hold mmu-lock before calling this function. */ 5507 static __always_inline bool 5508 slot_handle_level_range(struct kvm *kvm, const struct kvm_memory_slot *memslot, 5509 slot_level_handler fn, int start_level, int end_level, 5510 gfn_t start_gfn, gfn_t end_gfn, bool flush_on_yield, 5511 bool flush) 5512 { 5513 struct slot_rmap_walk_iterator iterator; 5514 5515 for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn, 5516 end_gfn, &iterator) { 5517 if (iterator.rmap) 5518 flush |= fn(kvm, iterator.rmap, memslot); 5519 5520 if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) { 5521 if (flush && flush_on_yield) { 5522 kvm_flush_remote_tlbs_with_address(kvm, 5523 start_gfn, 5524 iterator.gfn - start_gfn + 1); 5525 flush = false; 5526 } 5527 cond_resched_rwlock_write(&kvm->mmu_lock); 5528 } 5529 } 5530 5531 return flush; 5532 } 5533 5534 static __always_inline bool 5535 slot_handle_level(struct kvm *kvm, const struct kvm_memory_slot *memslot, 5536 slot_level_handler fn, int start_level, int end_level, 5537 bool flush_on_yield) 5538 { 5539 return slot_handle_level_range(kvm, memslot, fn, start_level, 5540 end_level, memslot->base_gfn, 5541 memslot->base_gfn + memslot->npages - 1, 5542 flush_on_yield, false); 5543 } 5544 5545 static __always_inline bool 5546 slot_handle_level_4k(struct kvm *kvm, const struct kvm_memory_slot *memslot, 5547 slot_level_handler fn, bool flush_on_yield) 5548 { 5549 return slot_handle_level(kvm, memslot, fn, PG_LEVEL_4K, 5550 PG_LEVEL_4K, flush_on_yield); 5551 } 5552 5553 static void free_mmu_pages(struct kvm_mmu *mmu) 5554 { 5555 if (!tdp_enabled && mmu->pae_root) 5556 set_memory_encrypted((unsigned long)mmu->pae_root, 1); 5557 free_page((unsigned long)mmu->pae_root); 5558 free_page((unsigned long)mmu->pml4_root); 5559 free_page((unsigned long)mmu->pml5_root); 5560 } 5561 5562 static int __kvm_mmu_create(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu) 5563 { 5564 struct page *page; 5565 int i; 5566 5567 mmu->root.hpa = INVALID_PAGE; 5568 mmu->root.pgd = 0; 5569 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 5570 mmu->prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID; 5571 5572 /* vcpu->arch.guest_mmu isn't used when !tdp_enabled. */ 5573 if (!tdp_enabled && mmu == &vcpu->arch.guest_mmu) 5574 return 0; 5575 5576 /* 5577 * When using PAE paging, the four PDPTEs are treated as 'root' pages, 5578 * while the PDP table is a per-vCPU construct that's allocated at MMU 5579 * creation. When emulating 32-bit mode, cr3 is only 32 bits even on 5580 * x86_64. Therefore we need to allocate the PDP table in the first 5581 * 4GB of memory, which happens to fit the DMA32 zone. TDP paging 5582 * generally doesn't use PAE paging and can skip allocating the PDP 5583 * table. The main exception, handled here, is SVM's 32-bit NPT. The 5584 * other exception is for shadowing L1's 32-bit or PAE NPT on 64-bit 5585 * KVM; that horror is handled on-demand by mmu_alloc_special_roots(). 5586 */ 5587 if (tdp_enabled && kvm_mmu_get_tdp_level(vcpu) > PT32E_ROOT_LEVEL) 5588 return 0; 5589 5590 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_DMA32); 5591 if (!page) 5592 return -ENOMEM; 5593 5594 mmu->pae_root = page_address(page); 5595 5596 /* 5597 * CR3 is only 32 bits when PAE paging is used, thus it's impossible to 5598 * get the CPU to treat the PDPTEs as encrypted. Decrypt the page so 5599 * that KVM's writes and the CPU's reads get along. Note, this is 5600 * only necessary when using shadow paging, as 64-bit NPT can get at 5601 * the C-bit even when shadowing 32-bit NPT, and SME isn't supported 5602 * by 32-bit kernels (when KVM itself uses 32-bit NPT). 5603 */ 5604 if (!tdp_enabled) 5605 set_memory_decrypted((unsigned long)mmu->pae_root, 1); 5606 else 5607 WARN_ON_ONCE(shadow_me_mask); 5608 5609 for (i = 0; i < 4; ++i) 5610 mmu->pae_root[i] = INVALID_PAE_ROOT; 5611 5612 return 0; 5613 } 5614 5615 int kvm_mmu_create(struct kvm_vcpu *vcpu) 5616 { 5617 int ret; 5618 5619 vcpu->arch.mmu_pte_list_desc_cache.kmem_cache = pte_list_desc_cache; 5620 vcpu->arch.mmu_pte_list_desc_cache.gfp_zero = __GFP_ZERO; 5621 5622 vcpu->arch.mmu_page_header_cache.kmem_cache = mmu_page_header_cache; 5623 vcpu->arch.mmu_page_header_cache.gfp_zero = __GFP_ZERO; 5624 5625 vcpu->arch.mmu_shadow_page_cache.gfp_zero = __GFP_ZERO; 5626 5627 vcpu->arch.mmu = &vcpu->arch.root_mmu; 5628 vcpu->arch.walk_mmu = &vcpu->arch.root_mmu; 5629 5630 ret = __kvm_mmu_create(vcpu, &vcpu->arch.guest_mmu); 5631 if (ret) 5632 return ret; 5633 5634 ret = __kvm_mmu_create(vcpu, &vcpu->arch.root_mmu); 5635 if (ret) 5636 goto fail_allocate_root; 5637 5638 return ret; 5639 fail_allocate_root: 5640 free_mmu_pages(&vcpu->arch.guest_mmu); 5641 return ret; 5642 } 5643 5644 #define BATCH_ZAP_PAGES 10 5645 static void kvm_zap_obsolete_pages(struct kvm *kvm) 5646 { 5647 struct kvm_mmu_page *sp, *node; 5648 int nr_zapped, batch = 0; 5649 5650 restart: 5651 list_for_each_entry_safe_reverse(sp, node, 5652 &kvm->arch.active_mmu_pages, link) { 5653 /* 5654 * No obsolete valid page exists before a newly created page 5655 * since active_mmu_pages is a FIFO list. 5656 */ 5657 if (!is_obsolete_sp(kvm, sp)) 5658 break; 5659 5660 /* 5661 * Invalid pages should never land back on the list of active 5662 * pages. Skip the bogus page, otherwise we'll get stuck in an 5663 * infinite loop if the page gets put back on the list (again). 5664 */ 5665 if (WARN_ON(sp->role.invalid)) 5666 continue; 5667 5668 /* 5669 * No need to flush the TLB since we're only zapping shadow 5670 * pages with an obsolete generation number and all vCPUS have 5671 * loaded a new root, i.e. the shadow pages being zapped cannot 5672 * be in active use by the guest. 5673 */ 5674 if (batch >= BATCH_ZAP_PAGES && 5675 cond_resched_rwlock_write(&kvm->mmu_lock)) { 5676 batch = 0; 5677 goto restart; 5678 } 5679 5680 if (__kvm_mmu_prepare_zap_page(kvm, sp, 5681 &kvm->arch.zapped_obsolete_pages, &nr_zapped)) { 5682 batch += nr_zapped; 5683 goto restart; 5684 } 5685 } 5686 5687 /* 5688 * Kick all vCPUs (via remote TLB flush) before freeing the page tables 5689 * to ensure KVM is not in the middle of a lockless shadow page table 5690 * walk, which may reference the pages. The remote TLB flush itself is 5691 * not required and is simply a convenient way to kick vCPUs as needed. 5692 * KVM performs a local TLB flush when allocating a new root (see 5693 * kvm_mmu_load()), and the reload in the caller ensure no vCPUs are 5694 * running with an obsolete MMU. 5695 */ 5696 kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages); 5697 } 5698 5699 /* 5700 * Fast invalidate all shadow pages and use lock-break technique 5701 * to zap obsolete pages. 5702 * 5703 * It's required when memslot is being deleted or VM is being 5704 * destroyed, in these cases, we should ensure that KVM MMU does 5705 * not use any resource of the being-deleted slot or all slots 5706 * after calling the function. 5707 */ 5708 static void kvm_mmu_zap_all_fast(struct kvm *kvm) 5709 { 5710 lockdep_assert_held(&kvm->slots_lock); 5711 5712 write_lock(&kvm->mmu_lock); 5713 trace_kvm_mmu_zap_all_fast(kvm); 5714 5715 /* 5716 * Toggle mmu_valid_gen between '0' and '1'. Because slots_lock is 5717 * held for the entire duration of zapping obsolete pages, it's 5718 * impossible for there to be multiple invalid generations associated 5719 * with *valid* shadow pages at any given time, i.e. there is exactly 5720 * one valid generation and (at most) one invalid generation. 5721 */ 5722 kvm->arch.mmu_valid_gen = kvm->arch.mmu_valid_gen ? 0 : 1; 5723 5724 /* 5725 * In order to ensure all vCPUs drop their soon-to-be invalid roots, 5726 * invalidating TDP MMU roots must be done while holding mmu_lock for 5727 * write and in the same critical section as making the reload request, 5728 * e.g. before kvm_zap_obsolete_pages() could drop mmu_lock and yield. 5729 */ 5730 if (is_tdp_mmu_enabled(kvm)) 5731 kvm_tdp_mmu_invalidate_all_roots(kvm); 5732 5733 /* 5734 * Notify all vcpus to reload its shadow page table and flush TLB. 5735 * Then all vcpus will switch to new shadow page table with the new 5736 * mmu_valid_gen. 5737 * 5738 * Note: we need to do this under the protection of mmu_lock, 5739 * otherwise, vcpu would purge shadow page but miss tlb flush. 5740 */ 5741 kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_FREE_OBSOLETE_ROOTS); 5742 5743 kvm_zap_obsolete_pages(kvm); 5744 5745 write_unlock(&kvm->mmu_lock); 5746 5747 /* 5748 * Zap the invalidated TDP MMU roots, all SPTEs must be dropped before 5749 * returning to the caller, e.g. if the zap is in response to a memslot 5750 * deletion, mmu_notifier callbacks will be unable to reach the SPTEs 5751 * associated with the deleted memslot once the update completes, and 5752 * Deferring the zap until the final reference to the root is put would 5753 * lead to use-after-free. 5754 */ 5755 if (is_tdp_mmu_enabled(kvm)) 5756 kvm_tdp_mmu_zap_invalidated_roots(kvm); 5757 } 5758 5759 static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm) 5760 { 5761 return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages)); 5762 } 5763 5764 static void kvm_mmu_invalidate_zap_pages_in_memslot(struct kvm *kvm, 5765 struct kvm_memory_slot *slot, 5766 struct kvm_page_track_notifier_node *node) 5767 { 5768 kvm_mmu_zap_all_fast(kvm); 5769 } 5770 5771 int kvm_mmu_init_vm(struct kvm *kvm) 5772 { 5773 struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker; 5774 int r; 5775 5776 INIT_LIST_HEAD(&kvm->arch.active_mmu_pages); 5777 INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages); 5778 INIT_LIST_HEAD(&kvm->arch.lpage_disallowed_mmu_pages); 5779 spin_lock_init(&kvm->arch.mmu_unsync_pages_lock); 5780 5781 r = kvm_mmu_init_tdp_mmu(kvm); 5782 if (r < 0) 5783 return r; 5784 5785 node->track_write = kvm_mmu_pte_write; 5786 node->track_flush_slot = kvm_mmu_invalidate_zap_pages_in_memslot; 5787 kvm_page_track_register_notifier(kvm, node); 5788 return 0; 5789 } 5790 5791 void kvm_mmu_uninit_vm(struct kvm *kvm) 5792 { 5793 struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker; 5794 5795 kvm_page_track_unregister_notifier(kvm, node); 5796 5797 kvm_mmu_uninit_tdp_mmu(kvm); 5798 } 5799 5800 static bool __kvm_zap_rmaps(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end) 5801 { 5802 const struct kvm_memory_slot *memslot; 5803 struct kvm_memslots *slots; 5804 struct kvm_memslot_iter iter; 5805 bool flush = false; 5806 gfn_t start, end; 5807 int i; 5808 5809 if (!kvm_memslots_have_rmaps(kvm)) 5810 return flush; 5811 5812 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { 5813 slots = __kvm_memslots(kvm, i); 5814 5815 kvm_for_each_memslot_in_gfn_range(&iter, slots, gfn_start, gfn_end) { 5816 memslot = iter.slot; 5817 start = max(gfn_start, memslot->base_gfn); 5818 end = min(gfn_end, memslot->base_gfn + memslot->npages); 5819 if (WARN_ON_ONCE(start >= end)) 5820 continue; 5821 5822 flush = slot_handle_level_range(kvm, memslot, kvm_zap_rmapp, 5823 5824 PG_LEVEL_4K, KVM_MAX_HUGEPAGE_LEVEL, 5825 start, end - 1, true, flush); 5826 } 5827 } 5828 5829 return flush; 5830 } 5831 5832 /* 5833 * Invalidate (zap) SPTEs that cover GFNs from gfn_start and up to gfn_end 5834 * (not including it) 5835 */ 5836 void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end) 5837 { 5838 bool flush; 5839 int i; 5840 5841 if (WARN_ON_ONCE(gfn_end <= gfn_start)) 5842 return; 5843 5844 write_lock(&kvm->mmu_lock); 5845 5846 kvm_inc_notifier_count(kvm, gfn_start, gfn_end); 5847 5848 flush = __kvm_zap_rmaps(kvm, gfn_start, gfn_end); 5849 5850 if (is_tdp_mmu_enabled(kvm)) { 5851 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) 5852 flush = kvm_tdp_mmu_zap_leafs(kvm, i, gfn_start, 5853 gfn_end, true, flush); 5854 } 5855 5856 if (flush) 5857 kvm_flush_remote_tlbs_with_address(kvm, gfn_start, 5858 gfn_end - gfn_start); 5859 5860 kvm_dec_notifier_count(kvm, gfn_start, gfn_end); 5861 5862 write_unlock(&kvm->mmu_lock); 5863 } 5864 5865 static bool slot_rmap_write_protect(struct kvm *kvm, 5866 struct kvm_rmap_head *rmap_head, 5867 const struct kvm_memory_slot *slot) 5868 { 5869 return rmap_write_protect(rmap_head, false); 5870 } 5871 5872 void kvm_mmu_slot_remove_write_access(struct kvm *kvm, 5873 const struct kvm_memory_slot *memslot, 5874 int start_level) 5875 { 5876 bool flush = false; 5877 5878 if (kvm_memslots_have_rmaps(kvm)) { 5879 write_lock(&kvm->mmu_lock); 5880 flush = slot_handle_level(kvm, memslot, slot_rmap_write_protect, 5881 start_level, KVM_MAX_HUGEPAGE_LEVEL, 5882 false); 5883 write_unlock(&kvm->mmu_lock); 5884 } 5885 5886 if (is_tdp_mmu_enabled(kvm)) { 5887 read_lock(&kvm->mmu_lock); 5888 flush |= kvm_tdp_mmu_wrprot_slot(kvm, memslot, start_level); 5889 read_unlock(&kvm->mmu_lock); 5890 } 5891 5892 /* 5893 * Flush TLBs if any SPTEs had to be write-protected to ensure that 5894 * guest writes are reflected in the dirty bitmap before the memslot 5895 * update completes, i.e. before enabling dirty logging is visible to 5896 * userspace. 5897 * 5898 * Perform the TLB flush outside the mmu_lock to reduce the amount of 5899 * time the lock is held. However, this does mean that another CPU can 5900 * now grab mmu_lock and encounter a write-protected SPTE while CPUs 5901 * still have a writable mapping for the associated GFN in their TLB. 5902 * 5903 * This is safe but requires KVM to be careful when making decisions 5904 * based on the write-protection status of an SPTE. Specifically, KVM 5905 * also write-protects SPTEs to monitor changes to guest page tables 5906 * during shadow paging, and must guarantee no CPUs can write to those 5907 * page before the lock is dropped. As mentioned in the previous 5908 * paragraph, a write-protected SPTE is no guarantee that CPU cannot 5909 * perform writes. So to determine if a TLB flush is truly required, KVM 5910 * will clear a separate software-only bit (MMU-writable) and skip the 5911 * flush if-and-only-if this bit was already clear. 5912 * 5913 * See is_writable_pte() for more details. 5914 */ 5915 if (flush) 5916 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot); 5917 } 5918 5919 /* Must be called with the mmu_lock held in write-mode. */ 5920 void kvm_mmu_try_split_huge_pages(struct kvm *kvm, 5921 const struct kvm_memory_slot *memslot, 5922 u64 start, u64 end, 5923 int target_level) 5924 { 5925 if (is_tdp_mmu_enabled(kvm)) 5926 kvm_tdp_mmu_try_split_huge_pages(kvm, memslot, start, end, 5927 target_level, false); 5928 5929 /* 5930 * A TLB flush is unnecessary at this point for the same resons as in 5931 * kvm_mmu_slot_try_split_huge_pages(). 5932 */ 5933 } 5934 5935 void kvm_mmu_slot_try_split_huge_pages(struct kvm *kvm, 5936 const struct kvm_memory_slot *memslot, 5937 int target_level) 5938 { 5939 u64 start = memslot->base_gfn; 5940 u64 end = start + memslot->npages; 5941 5942 if (is_tdp_mmu_enabled(kvm)) { 5943 read_lock(&kvm->mmu_lock); 5944 kvm_tdp_mmu_try_split_huge_pages(kvm, memslot, start, end, target_level, true); 5945 read_unlock(&kvm->mmu_lock); 5946 } 5947 5948 /* 5949 * No TLB flush is necessary here. KVM will flush TLBs after 5950 * write-protecting and/or clearing dirty on the newly split SPTEs to 5951 * ensure that guest writes are reflected in the dirty log before the 5952 * ioctl to enable dirty logging on this memslot completes. Since the 5953 * split SPTEs retain the write and dirty bits of the huge SPTE, it is 5954 * safe for KVM to decide if a TLB flush is necessary based on the split 5955 * SPTEs. 5956 */ 5957 } 5958 5959 static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm, 5960 struct kvm_rmap_head *rmap_head, 5961 const struct kvm_memory_slot *slot) 5962 { 5963 u64 *sptep; 5964 struct rmap_iterator iter; 5965 int need_tlb_flush = 0; 5966 kvm_pfn_t pfn; 5967 struct kvm_mmu_page *sp; 5968 5969 restart: 5970 for_each_rmap_spte(rmap_head, &iter, sptep) { 5971 sp = sptep_to_sp(sptep); 5972 pfn = spte_to_pfn(*sptep); 5973 5974 /* 5975 * We cannot do huge page mapping for indirect shadow pages, 5976 * which are found on the last rmap (level = 1) when not using 5977 * tdp; such shadow pages are synced with the page table in 5978 * the guest, and the guest page table is using 4K page size 5979 * mapping if the indirect sp has level = 1. 5980 */ 5981 if (sp->role.direct && !kvm_is_reserved_pfn(pfn) && 5982 sp->role.level < kvm_mmu_max_mapping_level(kvm, slot, sp->gfn, 5983 pfn, PG_LEVEL_NUM)) { 5984 pte_list_remove(kvm, rmap_head, sptep); 5985 5986 if (kvm_available_flush_tlb_with_range()) 5987 kvm_flush_remote_tlbs_with_address(kvm, sp->gfn, 5988 KVM_PAGES_PER_HPAGE(sp->role.level)); 5989 else 5990 need_tlb_flush = 1; 5991 5992 goto restart; 5993 } 5994 } 5995 5996 return need_tlb_flush; 5997 } 5998 5999 void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm, 6000 const struct kvm_memory_slot *slot) 6001 { 6002 if (kvm_memslots_have_rmaps(kvm)) { 6003 write_lock(&kvm->mmu_lock); 6004 /* 6005 * Zap only 4k SPTEs since the legacy MMU only supports dirty 6006 * logging at a 4k granularity and never creates collapsible 6007 * 2m SPTEs during dirty logging. 6008 */ 6009 if (slot_handle_level_4k(kvm, slot, kvm_mmu_zap_collapsible_spte, true)) 6010 kvm_arch_flush_remote_tlbs_memslot(kvm, slot); 6011 write_unlock(&kvm->mmu_lock); 6012 } 6013 6014 if (is_tdp_mmu_enabled(kvm)) { 6015 read_lock(&kvm->mmu_lock); 6016 kvm_tdp_mmu_zap_collapsible_sptes(kvm, slot); 6017 read_unlock(&kvm->mmu_lock); 6018 } 6019 } 6020 6021 void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm, 6022 const struct kvm_memory_slot *memslot) 6023 { 6024 /* 6025 * All current use cases for flushing the TLBs for a specific memslot 6026 * related to dirty logging, and many do the TLB flush out of mmu_lock. 6027 * The interaction between the various operations on memslot must be 6028 * serialized by slots_locks to ensure the TLB flush from one operation 6029 * is observed by any other operation on the same memslot. 6030 */ 6031 lockdep_assert_held(&kvm->slots_lock); 6032 kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn, 6033 memslot->npages); 6034 } 6035 6036 void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm, 6037 const struct kvm_memory_slot *memslot) 6038 { 6039 bool flush = false; 6040 6041 if (kvm_memslots_have_rmaps(kvm)) { 6042 write_lock(&kvm->mmu_lock); 6043 /* 6044 * Clear dirty bits only on 4k SPTEs since the legacy MMU only 6045 * support dirty logging at a 4k granularity. 6046 */ 6047 flush = slot_handle_level_4k(kvm, memslot, __rmap_clear_dirty, false); 6048 write_unlock(&kvm->mmu_lock); 6049 } 6050 6051 if (is_tdp_mmu_enabled(kvm)) { 6052 read_lock(&kvm->mmu_lock); 6053 flush |= kvm_tdp_mmu_clear_dirty_slot(kvm, memslot); 6054 read_unlock(&kvm->mmu_lock); 6055 } 6056 6057 /* 6058 * It's also safe to flush TLBs out of mmu lock here as currently this 6059 * function is only used for dirty logging, in which case flushing TLB 6060 * out of mmu lock also guarantees no dirty pages will be lost in 6061 * dirty_bitmap. 6062 */ 6063 if (flush) 6064 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot); 6065 } 6066 6067 void kvm_mmu_zap_all(struct kvm *kvm) 6068 { 6069 struct kvm_mmu_page *sp, *node; 6070 LIST_HEAD(invalid_list); 6071 int ign; 6072 6073 write_lock(&kvm->mmu_lock); 6074 restart: 6075 list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link) { 6076 if (WARN_ON(sp->role.invalid)) 6077 continue; 6078 if (__kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list, &ign)) 6079 goto restart; 6080 if (cond_resched_rwlock_write(&kvm->mmu_lock)) 6081 goto restart; 6082 } 6083 6084 kvm_mmu_commit_zap_page(kvm, &invalid_list); 6085 6086 if (is_tdp_mmu_enabled(kvm)) 6087 kvm_tdp_mmu_zap_all(kvm); 6088 6089 write_unlock(&kvm->mmu_lock); 6090 } 6091 6092 void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen) 6093 { 6094 WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS); 6095 6096 gen &= MMIO_SPTE_GEN_MASK; 6097 6098 /* 6099 * Generation numbers are incremented in multiples of the number of 6100 * address spaces in order to provide unique generations across all 6101 * address spaces. Strip what is effectively the address space 6102 * modifier prior to checking for a wrap of the MMIO generation so 6103 * that a wrap in any address space is detected. 6104 */ 6105 gen &= ~((u64)KVM_ADDRESS_SPACE_NUM - 1); 6106 6107 /* 6108 * The very rare case: if the MMIO generation number has wrapped, 6109 * zap all shadow pages. 6110 */ 6111 if (unlikely(gen == 0)) { 6112 kvm_debug_ratelimited("kvm: zapping shadow pages for mmio generation wraparound\n"); 6113 kvm_mmu_zap_all_fast(kvm); 6114 } 6115 } 6116 6117 static unsigned long 6118 mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc) 6119 { 6120 struct kvm *kvm; 6121 int nr_to_scan = sc->nr_to_scan; 6122 unsigned long freed = 0; 6123 6124 mutex_lock(&kvm_lock); 6125 6126 list_for_each_entry(kvm, &vm_list, vm_list) { 6127 int idx; 6128 LIST_HEAD(invalid_list); 6129 6130 /* 6131 * Never scan more than sc->nr_to_scan VM instances. 6132 * Will not hit this condition practically since we do not try 6133 * to shrink more than one VM and it is very unlikely to see 6134 * !n_used_mmu_pages so many times. 6135 */ 6136 if (!nr_to_scan--) 6137 break; 6138 /* 6139 * n_used_mmu_pages is accessed without holding kvm->mmu_lock 6140 * here. We may skip a VM instance errorneosly, but we do not 6141 * want to shrink a VM that only started to populate its MMU 6142 * anyway. 6143 */ 6144 if (!kvm->arch.n_used_mmu_pages && 6145 !kvm_has_zapped_obsolete_pages(kvm)) 6146 continue; 6147 6148 idx = srcu_read_lock(&kvm->srcu); 6149 write_lock(&kvm->mmu_lock); 6150 6151 if (kvm_has_zapped_obsolete_pages(kvm)) { 6152 kvm_mmu_commit_zap_page(kvm, 6153 &kvm->arch.zapped_obsolete_pages); 6154 goto unlock; 6155 } 6156 6157 freed = kvm_mmu_zap_oldest_mmu_pages(kvm, sc->nr_to_scan); 6158 6159 unlock: 6160 write_unlock(&kvm->mmu_lock); 6161 srcu_read_unlock(&kvm->srcu, idx); 6162 6163 /* 6164 * unfair on small ones 6165 * per-vm shrinkers cry out 6166 * sadness comes quickly 6167 */ 6168 list_move_tail(&kvm->vm_list, &vm_list); 6169 break; 6170 } 6171 6172 mutex_unlock(&kvm_lock); 6173 return freed; 6174 } 6175 6176 static unsigned long 6177 mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc) 6178 { 6179 return percpu_counter_read_positive(&kvm_total_used_mmu_pages); 6180 } 6181 6182 static struct shrinker mmu_shrinker = { 6183 .count_objects = mmu_shrink_count, 6184 .scan_objects = mmu_shrink_scan, 6185 .seeks = DEFAULT_SEEKS * 10, 6186 }; 6187 6188 static void mmu_destroy_caches(void) 6189 { 6190 kmem_cache_destroy(pte_list_desc_cache); 6191 kmem_cache_destroy(mmu_page_header_cache); 6192 } 6193 6194 static bool get_nx_auto_mode(void) 6195 { 6196 /* Return true when CPU has the bug, and mitigations are ON */ 6197 return boot_cpu_has_bug(X86_BUG_ITLB_MULTIHIT) && !cpu_mitigations_off(); 6198 } 6199 6200 static void __set_nx_huge_pages(bool val) 6201 { 6202 nx_huge_pages = itlb_multihit_kvm_mitigation = val; 6203 } 6204 6205 static int set_nx_huge_pages(const char *val, const struct kernel_param *kp) 6206 { 6207 bool old_val = nx_huge_pages; 6208 bool new_val; 6209 6210 /* In "auto" mode deploy workaround only if CPU has the bug. */ 6211 if (sysfs_streq(val, "off")) 6212 new_val = 0; 6213 else if (sysfs_streq(val, "force")) 6214 new_val = 1; 6215 else if (sysfs_streq(val, "auto")) 6216 new_val = get_nx_auto_mode(); 6217 else if (strtobool(val, &new_val) < 0) 6218 return -EINVAL; 6219 6220 __set_nx_huge_pages(new_val); 6221 6222 if (new_val != old_val) { 6223 struct kvm *kvm; 6224 6225 mutex_lock(&kvm_lock); 6226 6227 list_for_each_entry(kvm, &vm_list, vm_list) { 6228 mutex_lock(&kvm->slots_lock); 6229 kvm_mmu_zap_all_fast(kvm); 6230 mutex_unlock(&kvm->slots_lock); 6231 6232 wake_up_process(kvm->arch.nx_lpage_recovery_thread); 6233 } 6234 mutex_unlock(&kvm_lock); 6235 } 6236 6237 return 0; 6238 } 6239 6240 int kvm_mmu_module_init(void) 6241 { 6242 int ret = -ENOMEM; 6243 6244 if (nx_huge_pages == -1) 6245 __set_nx_huge_pages(get_nx_auto_mode()); 6246 6247 /* 6248 * MMU roles use union aliasing which is, generally speaking, an 6249 * undefined behavior. However, we supposedly know how compilers behave 6250 * and the current status quo is unlikely to change. Guardians below are 6251 * supposed to let us know if the assumption becomes false. 6252 */ 6253 BUILD_BUG_ON(sizeof(union kvm_mmu_page_role) != sizeof(u32)); 6254 BUILD_BUG_ON(sizeof(union kvm_mmu_extended_role) != sizeof(u32)); 6255 BUILD_BUG_ON(sizeof(union kvm_mmu_role) != sizeof(u64)); 6256 6257 kvm_mmu_reset_all_pte_masks(); 6258 6259 pte_list_desc_cache = kmem_cache_create("pte_list_desc", 6260 sizeof(struct pte_list_desc), 6261 0, SLAB_ACCOUNT, NULL); 6262 if (!pte_list_desc_cache) 6263 goto out; 6264 6265 mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header", 6266 sizeof(struct kvm_mmu_page), 6267 0, SLAB_ACCOUNT, NULL); 6268 if (!mmu_page_header_cache) 6269 goto out; 6270 6271 if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL)) 6272 goto out; 6273 6274 ret = register_shrinker(&mmu_shrinker); 6275 if (ret) 6276 goto out; 6277 6278 return 0; 6279 6280 out: 6281 mmu_destroy_caches(); 6282 return ret; 6283 } 6284 6285 void kvm_mmu_destroy(struct kvm_vcpu *vcpu) 6286 { 6287 kvm_mmu_unload(vcpu); 6288 free_mmu_pages(&vcpu->arch.root_mmu); 6289 free_mmu_pages(&vcpu->arch.guest_mmu); 6290 mmu_free_memory_caches(vcpu); 6291 } 6292 6293 void kvm_mmu_module_exit(void) 6294 { 6295 mmu_destroy_caches(); 6296 percpu_counter_destroy(&kvm_total_used_mmu_pages); 6297 unregister_shrinker(&mmu_shrinker); 6298 } 6299 6300 /* 6301 * Calculate the effective recovery period, accounting for '0' meaning "let KVM 6302 * select a halving time of 1 hour". Returns true if recovery is enabled. 6303 */ 6304 static bool calc_nx_huge_pages_recovery_period(uint *period) 6305 { 6306 /* 6307 * Use READ_ONCE to get the params, this may be called outside of the 6308 * param setters, e.g. by the kthread to compute its next timeout. 6309 */ 6310 bool enabled = READ_ONCE(nx_huge_pages); 6311 uint ratio = READ_ONCE(nx_huge_pages_recovery_ratio); 6312 6313 if (!enabled || !ratio) 6314 return false; 6315 6316 *period = READ_ONCE(nx_huge_pages_recovery_period_ms); 6317 if (!*period) { 6318 /* Make sure the period is not less than one second. */ 6319 ratio = min(ratio, 3600u); 6320 *period = 60 * 60 * 1000 / ratio; 6321 } 6322 return true; 6323 } 6324 6325 static int set_nx_huge_pages_recovery_param(const char *val, const struct kernel_param *kp) 6326 { 6327 bool was_recovery_enabled, is_recovery_enabled; 6328 uint old_period, new_period; 6329 int err; 6330 6331 was_recovery_enabled = calc_nx_huge_pages_recovery_period(&old_period); 6332 6333 err = param_set_uint(val, kp); 6334 if (err) 6335 return err; 6336 6337 is_recovery_enabled = calc_nx_huge_pages_recovery_period(&new_period); 6338 6339 if (is_recovery_enabled && 6340 (!was_recovery_enabled || old_period > new_period)) { 6341 struct kvm *kvm; 6342 6343 mutex_lock(&kvm_lock); 6344 6345 list_for_each_entry(kvm, &vm_list, vm_list) 6346 wake_up_process(kvm->arch.nx_lpage_recovery_thread); 6347 6348 mutex_unlock(&kvm_lock); 6349 } 6350 6351 return err; 6352 } 6353 6354 static void kvm_recover_nx_lpages(struct kvm *kvm) 6355 { 6356 unsigned long nx_lpage_splits = kvm->stat.nx_lpage_splits; 6357 int rcu_idx; 6358 struct kvm_mmu_page *sp; 6359 unsigned int ratio; 6360 LIST_HEAD(invalid_list); 6361 bool flush = false; 6362 ulong to_zap; 6363 6364 rcu_idx = srcu_read_lock(&kvm->srcu); 6365 write_lock(&kvm->mmu_lock); 6366 6367 /* 6368 * Zapping TDP MMU shadow pages, including the remote TLB flush, must 6369 * be done under RCU protection, because the pages are freed via RCU 6370 * callback. 6371 */ 6372 rcu_read_lock(); 6373 6374 ratio = READ_ONCE(nx_huge_pages_recovery_ratio); 6375 to_zap = ratio ? DIV_ROUND_UP(nx_lpage_splits, ratio) : 0; 6376 for ( ; to_zap; --to_zap) { 6377 if (list_empty(&kvm->arch.lpage_disallowed_mmu_pages)) 6378 break; 6379 6380 /* 6381 * We use a separate list instead of just using active_mmu_pages 6382 * because the number of lpage_disallowed pages is expected to 6383 * be relatively small compared to the total. 6384 */ 6385 sp = list_first_entry(&kvm->arch.lpage_disallowed_mmu_pages, 6386 struct kvm_mmu_page, 6387 lpage_disallowed_link); 6388 WARN_ON_ONCE(!sp->lpage_disallowed); 6389 if (is_tdp_mmu_page(sp)) { 6390 flush |= kvm_tdp_mmu_zap_sp(kvm, sp); 6391 } else { 6392 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list); 6393 WARN_ON_ONCE(sp->lpage_disallowed); 6394 } 6395 6396 if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) { 6397 kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush); 6398 rcu_read_unlock(); 6399 6400 cond_resched_rwlock_write(&kvm->mmu_lock); 6401 flush = false; 6402 6403 rcu_read_lock(); 6404 } 6405 } 6406 kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush); 6407 6408 rcu_read_unlock(); 6409 6410 write_unlock(&kvm->mmu_lock); 6411 srcu_read_unlock(&kvm->srcu, rcu_idx); 6412 } 6413 6414 static long get_nx_lpage_recovery_timeout(u64 start_time) 6415 { 6416 bool enabled; 6417 uint period; 6418 6419 enabled = calc_nx_huge_pages_recovery_period(&period); 6420 6421 return enabled ? start_time + msecs_to_jiffies(period) - get_jiffies_64() 6422 : MAX_SCHEDULE_TIMEOUT; 6423 } 6424 6425 static int kvm_nx_lpage_recovery_worker(struct kvm *kvm, uintptr_t data) 6426 { 6427 u64 start_time; 6428 long remaining_time; 6429 6430 while (true) { 6431 start_time = get_jiffies_64(); 6432 remaining_time = get_nx_lpage_recovery_timeout(start_time); 6433 6434 set_current_state(TASK_INTERRUPTIBLE); 6435 while (!kthread_should_stop() && remaining_time > 0) { 6436 schedule_timeout(remaining_time); 6437 remaining_time = get_nx_lpage_recovery_timeout(start_time); 6438 set_current_state(TASK_INTERRUPTIBLE); 6439 } 6440 6441 set_current_state(TASK_RUNNING); 6442 6443 if (kthread_should_stop()) 6444 return 0; 6445 6446 kvm_recover_nx_lpages(kvm); 6447 } 6448 } 6449 6450 int kvm_mmu_post_init_vm(struct kvm *kvm) 6451 { 6452 int err; 6453 6454 err = kvm_vm_create_worker_thread(kvm, kvm_nx_lpage_recovery_worker, 0, 6455 "kvm-nx-lpage-recovery", 6456 &kvm->arch.nx_lpage_recovery_thread); 6457 if (!err) 6458 kthread_unpark(kvm->arch.nx_lpage_recovery_thread); 6459 6460 return err; 6461 } 6462 6463 void kvm_mmu_pre_destroy_vm(struct kvm *kvm) 6464 { 6465 if (kvm->arch.nx_lpage_recovery_thread) 6466 kthread_stop(kvm->arch.nx_lpage_recovery_thread); 6467 } 6468