1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * This module enables machines with Intel VT-x extensions to run virtual 6 * machines without emulation or binary translation. 7 * 8 * MMU support 9 * 10 * Copyright (C) 2006 Qumranet, Inc. 11 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 12 * 13 * Authors: 14 * Yaniv Kamay <yaniv@qumranet.com> 15 * Avi Kivity <avi@qumranet.com> 16 */ 17 18 #include "irq.h" 19 #include "mmu.h" 20 #include "x86.h" 21 #include "kvm_cache_regs.h" 22 #include "cpuid.h" 23 24 #include <linux/kvm_host.h> 25 #include <linux/types.h> 26 #include <linux/string.h> 27 #include <linux/mm.h> 28 #include <linux/highmem.h> 29 #include <linux/moduleparam.h> 30 #include <linux/export.h> 31 #include <linux/swap.h> 32 #include <linux/hugetlb.h> 33 #include <linux/compiler.h> 34 #include <linux/srcu.h> 35 #include <linux/slab.h> 36 #include <linux/sched/signal.h> 37 #include <linux/uaccess.h> 38 #include <linux/hash.h> 39 #include <linux/kern_levels.h> 40 #include <linux/kthread.h> 41 42 #include <asm/page.h> 43 #include <asm/pat.h> 44 #include <asm/cmpxchg.h> 45 #include <asm/e820/api.h> 46 #include <asm/io.h> 47 #include <asm/vmx.h> 48 #include <asm/kvm_page_track.h> 49 #include "trace.h" 50 51 extern bool itlb_multihit_kvm_mitigation; 52 53 static int __read_mostly nx_huge_pages = -1; 54 #ifdef CONFIG_PREEMPT_RT 55 /* Recovery can cause latency spikes, disable it for PREEMPT_RT. */ 56 static uint __read_mostly nx_huge_pages_recovery_ratio = 0; 57 #else 58 static uint __read_mostly nx_huge_pages_recovery_ratio = 60; 59 #endif 60 61 static int set_nx_huge_pages(const char *val, const struct kernel_param *kp); 62 static int set_nx_huge_pages_recovery_ratio(const char *val, const struct kernel_param *kp); 63 64 static struct kernel_param_ops nx_huge_pages_ops = { 65 .set = set_nx_huge_pages, 66 .get = param_get_bool, 67 }; 68 69 static struct kernel_param_ops nx_huge_pages_recovery_ratio_ops = { 70 .set = set_nx_huge_pages_recovery_ratio, 71 .get = param_get_uint, 72 }; 73 74 module_param_cb(nx_huge_pages, &nx_huge_pages_ops, &nx_huge_pages, 0644); 75 __MODULE_PARM_TYPE(nx_huge_pages, "bool"); 76 module_param_cb(nx_huge_pages_recovery_ratio, &nx_huge_pages_recovery_ratio_ops, 77 &nx_huge_pages_recovery_ratio, 0644); 78 __MODULE_PARM_TYPE(nx_huge_pages_recovery_ratio, "uint"); 79 80 /* 81 * When setting this variable to true it enables Two-Dimensional-Paging 82 * where the hardware walks 2 page tables: 83 * 1. the guest-virtual to guest-physical 84 * 2. while doing 1. it walks guest-physical to host-physical 85 * If the hardware supports that we don't need to do shadow paging. 86 */ 87 bool tdp_enabled = false; 88 89 enum { 90 AUDIT_PRE_PAGE_FAULT, 91 AUDIT_POST_PAGE_FAULT, 92 AUDIT_PRE_PTE_WRITE, 93 AUDIT_POST_PTE_WRITE, 94 AUDIT_PRE_SYNC, 95 AUDIT_POST_SYNC 96 }; 97 98 #undef MMU_DEBUG 99 100 #ifdef MMU_DEBUG 101 static bool dbg = 0; 102 module_param(dbg, bool, 0644); 103 104 #define pgprintk(x...) do { if (dbg) printk(x); } while (0) 105 #define rmap_printk(x...) do { if (dbg) printk(x); } while (0) 106 #define MMU_WARN_ON(x) WARN_ON(x) 107 #else 108 #define pgprintk(x...) do { } while (0) 109 #define rmap_printk(x...) do { } while (0) 110 #define MMU_WARN_ON(x) do { } while (0) 111 #endif 112 113 #define PTE_PREFETCH_NUM 8 114 115 #define PT_FIRST_AVAIL_BITS_SHIFT 10 116 #define PT64_SECOND_AVAIL_BITS_SHIFT 54 117 118 /* 119 * The mask used to denote special SPTEs, which can be either MMIO SPTEs or 120 * Access Tracking SPTEs. 121 */ 122 #define SPTE_SPECIAL_MASK (3ULL << 52) 123 #define SPTE_AD_ENABLED_MASK (0ULL << 52) 124 #define SPTE_AD_DISABLED_MASK (1ULL << 52) 125 #define SPTE_AD_WRPROT_ONLY_MASK (2ULL << 52) 126 #define SPTE_MMIO_MASK (3ULL << 52) 127 128 #define PT64_LEVEL_BITS 9 129 130 #define PT64_LEVEL_SHIFT(level) \ 131 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS) 132 133 #define PT64_INDEX(address, level)\ 134 (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1)) 135 136 137 #define PT32_LEVEL_BITS 10 138 139 #define PT32_LEVEL_SHIFT(level) \ 140 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS) 141 142 #define PT32_LVL_OFFSET_MASK(level) \ 143 (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \ 144 * PT32_LEVEL_BITS))) - 1)) 145 146 #define PT32_INDEX(address, level)\ 147 (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1)) 148 149 150 #ifdef CONFIG_DYNAMIC_PHYSICAL_MASK 151 #define PT64_BASE_ADDR_MASK (physical_mask & ~(u64)(PAGE_SIZE-1)) 152 #else 153 #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1)) 154 #endif 155 #define PT64_LVL_ADDR_MASK(level) \ 156 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \ 157 * PT64_LEVEL_BITS))) - 1)) 158 #define PT64_LVL_OFFSET_MASK(level) \ 159 (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \ 160 * PT64_LEVEL_BITS))) - 1)) 161 162 #define PT32_BASE_ADDR_MASK PAGE_MASK 163 #define PT32_DIR_BASE_ADDR_MASK \ 164 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1)) 165 #define PT32_LVL_ADDR_MASK(level) \ 166 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \ 167 * PT32_LEVEL_BITS))) - 1)) 168 169 #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | shadow_user_mask \ 170 | shadow_x_mask | shadow_nx_mask | shadow_me_mask) 171 172 #define ACC_EXEC_MASK 1 173 #define ACC_WRITE_MASK PT_WRITABLE_MASK 174 #define ACC_USER_MASK PT_USER_MASK 175 #define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK) 176 177 /* The mask for the R/X bits in EPT PTEs */ 178 #define PT64_EPT_READABLE_MASK 0x1ull 179 #define PT64_EPT_EXECUTABLE_MASK 0x4ull 180 181 #include <trace/events/kvm.h> 182 183 #define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT) 184 #define SPTE_MMU_WRITEABLE (1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1)) 185 186 #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level) 187 188 /* make pte_list_desc fit well in cache line */ 189 #define PTE_LIST_EXT 3 190 191 /* 192 * Return values of handle_mmio_page_fault and mmu.page_fault: 193 * RET_PF_RETRY: let CPU fault again on the address. 194 * RET_PF_EMULATE: mmio page fault, emulate the instruction directly. 195 * 196 * For handle_mmio_page_fault only: 197 * RET_PF_INVALID: the spte is invalid, let the real page fault path update it. 198 */ 199 enum { 200 RET_PF_RETRY = 0, 201 RET_PF_EMULATE = 1, 202 RET_PF_INVALID = 2, 203 }; 204 205 struct pte_list_desc { 206 u64 *sptes[PTE_LIST_EXT]; 207 struct pte_list_desc *more; 208 }; 209 210 struct kvm_shadow_walk_iterator { 211 u64 addr; 212 hpa_t shadow_addr; 213 u64 *sptep; 214 int level; 215 unsigned index; 216 }; 217 218 static const union kvm_mmu_page_role mmu_base_role_mask = { 219 .cr0_wp = 1, 220 .gpte_is_8_bytes = 1, 221 .nxe = 1, 222 .smep_andnot_wp = 1, 223 .smap_andnot_wp = 1, 224 .smm = 1, 225 .guest_mode = 1, 226 .ad_disabled = 1, 227 }; 228 229 #define for_each_shadow_entry_using_root(_vcpu, _root, _addr, _walker) \ 230 for (shadow_walk_init_using_root(&(_walker), (_vcpu), \ 231 (_root), (_addr)); \ 232 shadow_walk_okay(&(_walker)); \ 233 shadow_walk_next(&(_walker))) 234 235 #define for_each_shadow_entry(_vcpu, _addr, _walker) \ 236 for (shadow_walk_init(&(_walker), _vcpu, _addr); \ 237 shadow_walk_okay(&(_walker)); \ 238 shadow_walk_next(&(_walker))) 239 240 #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte) \ 241 for (shadow_walk_init(&(_walker), _vcpu, _addr); \ 242 shadow_walk_okay(&(_walker)) && \ 243 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; }); \ 244 __shadow_walk_next(&(_walker), spte)) 245 246 static struct kmem_cache *pte_list_desc_cache; 247 static struct kmem_cache *mmu_page_header_cache; 248 static struct percpu_counter kvm_total_used_mmu_pages; 249 250 static u64 __read_mostly shadow_nx_mask; 251 static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */ 252 static u64 __read_mostly shadow_user_mask; 253 static u64 __read_mostly shadow_accessed_mask; 254 static u64 __read_mostly shadow_dirty_mask; 255 static u64 __read_mostly shadow_mmio_mask; 256 static u64 __read_mostly shadow_mmio_value; 257 static u64 __read_mostly shadow_mmio_access_mask; 258 static u64 __read_mostly shadow_present_mask; 259 static u64 __read_mostly shadow_me_mask; 260 261 /* 262 * SPTEs used by MMUs without A/D bits are marked with SPTE_AD_DISABLED_MASK; 263 * shadow_acc_track_mask is the set of bits to be cleared in non-accessed 264 * pages. 265 */ 266 static u64 __read_mostly shadow_acc_track_mask; 267 268 /* 269 * The mask/shift to use for saving the original R/X bits when marking the PTE 270 * as not-present for access tracking purposes. We do not save the W bit as the 271 * PTEs being access tracked also need to be dirty tracked, so the W bit will be 272 * restored only when a write is attempted to the page. 273 */ 274 static const u64 shadow_acc_track_saved_bits_mask = PT64_EPT_READABLE_MASK | 275 PT64_EPT_EXECUTABLE_MASK; 276 static const u64 shadow_acc_track_saved_bits_shift = PT64_SECOND_AVAIL_BITS_SHIFT; 277 278 /* 279 * This mask must be set on all non-zero Non-Present or Reserved SPTEs in order 280 * to guard against L1TF attacks. 281 */ 282 static u64 __read_mostly shadow_nonpresent_or_rsvd_mask; 283 284 /* 285 * The number of high-order 1 bits to use in the mask above. 286 */ 287 static const u64 shadow_nonpresent_or_rsvd_mask_len = 5; 288 289 /* 290 * In some cases, we need to preserve the GFN of a non-present or reserved 291 * SPTE when we usurp the upper five bits of the physical address space to 292 * defend against L1TF, e.g. for MMIO SPTEs. To preserve the GFN, we'll 293 * shift bits of the GFN that overlap with shadow_nonpresent_or_rsvd_mask 294 * left into the reserved bits, i.e. the GFN in the SPTE will be split into 295 * high and low parts. This mask covers the lower bits of the GFN. 296 */ 297 static u64 __read_mostly shadow_nonpresent_or_rsvd_lower_gfn_mask; 298 299 /* 300 * The number of non-reserved physical address bits irrespective of features 301 * that repurpose legal bits, e.g. MKTME. 302 */ 303 static u8 __read_mostly shadow_phys_bits; 304 305 static void mmu_spte_set(u64 *sptep, u64 spte); 306 static bool is_executable_pte(u64 spte); 307 static union kvm_mmu_page_role 308 kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu); 309 310 #define CREATE_TRACE_POINTS 311 #include "mmutrace.h" 312 313 314 static inline bool kvm_available_flush_tlb_with_range(void) 315 { 316 return kvm_x86_ops->tlb_remote_flush_with_range; 317 } 318 319 static void kvm_flush_remote_tlbs_with_range(struct kvm *kvm, 320 struct kvm_tlb_range *range) 321 { 322 int ret = -ENOTSUPP; 323 324 if (range && kvm_x86_ops->tlb_remote_flush_with_range) 325 ret = kvm_x86_ops->tlb_remote_flush_with_range(kvm, range); 326 327 if (ret) 328 kvm_flush_remote_tlbs(kvm); 329 } 330 331 static void kvm_flush_remote_tlbs_with_address(struct kvm *kvm, 332 u64 start_gfn, u64 pages) 333 { 334 struct kvm_tlb_range range; 335 336 range.start_gfn = start_gfn; 337 range.pages = pages; 338 339 kvm_flush_remote_tlbs_with_range(kvm, &range); 340 } 341 342 void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask, u64 mmio_value, u64 access_mask) 343 { 344 BUG_ON((u64)(unsigned)access_mask != access_mask); 345 BUG_ON((mmio_mask & mmio_value) != mmio_value); 346 shadow_mmio_value = mmio_value | SPTE_MMIO_MASK; 347 shadow_mmio_mask = mmio_mask | SPTE_SPECIAL_MASK; 348 shadow_mmio_access_mask = access_mask; 349 } 350 EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask); 351 352 static bool is_mmio_spte(u64 spte) 353 { 354 return (spte & shadow_mmio_mask) == shadow_mmio_value; 355 } 356 357 static inline bool sp_ad_disabled(struct kvm_mmu_page *sp) 358 { 359 return sp->role.ad_disabled; 360 } 361 362 static inline bool kvm_vcpu_ad_need_write_protect(struct kvm_vcpu *vcpu) 363 { 364 /* 365 * When using the EPT page-modification log, the GPAs in the log 366 * would come from L2 rather than L1. Therefore, we need to rely 367 * on write protection to record dirty pages. This also bypasses 368 * PML, since writes now result in a vmexit. 369 */ 370 return vcpu->arch.mmu == &vcpu->arch.guest_mmu; 371 } 372 373 static inline bool spte_ad_enabled(u64 spte) 374 { 375 MMU_WARN_ON(is_mmio_spte(spte)); 376 return (spte & SPTE_SPECIAL_MASK) != SPTE_AD_DISABLED_MASK; 377 } 378 379 static inline bool spte_ad_need_write_protect(u64 spte) 380 { 381 MMU_WARN_ON(is_mmio_spte(spte)); 382 return (spte & SPTE_SPECIAL_MASK) != SPTE_AD_ENABLED_MASK; 383 } 384 385 static bool is_nx_huge_page_enabled(void) 386 { 387 return READ_ONCE(nx_huge_pages); 388 } 389 390 static inline u64 spte_shadow_accessed_mask(u64 spte) 391 { 392 MMU_WARN_ON(is_mmio_spte(spte)); 393 return spte_ad_enabled(spte) ? shadow_accessed_mask : 0; 394 } 395 396 static inline u64 spte_shadow_dirty_mask(u64 spte) 397 { 398 MMU_WARN_ON(is_mmio_spte(spte)); 399 return spte_ad_enabled(spte) ? shadow_dirty_mask : 0; 400 } 401 402 static inline bool is_access_track_spte(u64 spte) 403 { 404 return !spte_ad_enabled(spte) && (spte & shadow_acc_track_mask) == 0; 405 } 406 407 /* 408 * Due to limited space in PTEs, the MMIO generation is a 19 bit subset of 409 * the memslots generation and is derived as follows: 410 * 411 * Bits 0-8 of the MMIO generation are propagated to spte bits 3-11 412 * Bits 9-18 of the MMIO generation are propagated to spte bits 52-61 413 * 414 * The KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS flag is intentionally not included in 415 * the MMIO generation number, as doing so would require stealing a bit from 416 * the "real" generation number and thus effectively halve the maximum number 417 * of MMIO generations that can be handled before encountering a wrap (which 418 * requires a full MMU zap). The flag is instead explicitly queried when 419 * checking for MMIO spte cache hits. 420 */ 421 #define MMIO_SPTE_GEN_MASK GENMASK_ULL(18, 0) 422 423 #define MMIO_SPTE_GEN_LOW_START 3 424 #define MMIO_SPTE_GEN_LOW_END 11 425 #define MMIO_SPTE_GEN_LOW_MASK GENMASK_ULL(MMIO_SPTE_GEN_LOW_END, \ 426 MMIO_SPTE_GEN_LOW_START) 427 428 #define MMIO_SPTE_GEN_HIGH_START 52 429 #define MMIO_SPTE_GEN_HIGH_END 61 430 #define MMIO_SPTE_GEN_HIGH_MASK GENMASK_ULL(MMIO_SPTE_GEN_HIGH_END, \ 431 MMIO_SPTE_GEN_HIGH_START) 432 static u64 generation_mmio_spte_mask(u64 gen) 433 { 434 u64 mask; 435 436 WARN_ON(gen & ~MMIO_SPTE_GEN_MASK); 437 438 mask = (gen << MMIO_SPTE_GEN_LOW_START) & MMIO_SPTE_GEN_LOW_MASK; 439 mask |= (gen << MMIO_SPTE_GEN_HIGH_START) & MMIO_SPTE_GEN_HIGH_MASK; 440 return mask; 441 } 442 443 static u64 get_mmio_spte_generation(u64 spte) 444 { 445 u64 gen; 446 447 spte &= ~shadow_mmio_mask; 448 449 gen = (spte & MMIO_SPTE_GEN_LOW_MASK) >> MMIO_SPTE_GEN_LOW_START; 450 gen |= (spte & MMIO_SPTE_GEN_HIGH_MASK) >> MMIO_SPTE_GEN_HIGH_START; 451 return gen; 452 } 453 454 static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn, 455 unsigned access) 456 { 457 u64 gen = kvm_vcpu_memslots(vcpu)->generation & MMIO_SPTE_GEN_MASK; 458 u64 mask = generation_mmio_spte_mask(gen); 459 u64 gpa = gfn << PAGE_SHIFT; 460 461 access &= shadow_mmio_access_mask; 462 mask |= shadow_mmio_value | access; 463 mask |= gpa | shadow_nonpresent_or_rsvd_mask; 464 mask |= (gpa & shadow_nonpresent_or_rsvd_mask) 465 << shadow_nonpresent_or_rsvd_mask_len; 466 467 trace_mark_mmio_spte(sptep, gfn, access, gen); 468 mmu_spte_set(sptep, mask); 469 } 470 471 static gfn_t get_mmio_spte_gfn(u64 spte) 472 { 473 u64 gpa = spte & shadow_nonpresent_or_rsvd_lower_gfn_mask; 474 475 gpa |= (spte >> shadow_nonpresent_or_rsvd_mask_len) 476 & shadow_nonpresent_or_rsvd_mask; 477 478 return gpa >> PAGE_SHIFT; 479 } 480 481 static unsigned get_mmio_spte_access(u64 spte) 482 { 483 return spte & shadow_mmio_access_mask; 484 } 485 486 static bool set_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn, 487 kvm_pfn_t pfn, unsigned access) 488 { 489 if (unlikely(is_noslot_pfn(pfn))) { 490 mark_mmio_spte(vcpu, sptep, gfn, access); 491 return true; 492 } 493 494 return false; 495 } 496 497 static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte) 498 { 499 u64 kvm_gen, spte_gen, gen; 500 501 gen = kvm_vcpu_memslots(vcpu)->generation; 502 if (unlikely(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS)) 503 return false; 504 505 kvm_gen = gen & MMIO_SPTE_GEN_MASK; 506 spte_gen = get_mmio_spte_generation(spte); 507 508 trace_check_mmio_spte(spte, kvm_gen, spte_gen); 509 return likely(kvm_gen == spte_gen); 510 } 511 512 /* 513 * Sets the shadow PTE masks used by the MMU. 514 * 515 * Assumptions: 516 * - Setting either @accessed_mask or @dirty_mask requires setting both 517 * - At least one of @accessed_mask or @acc_track_mask must be set 518 */ 519 void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask, 520 u64 dirty_mask, u64 nx_mask, u64 x_mask, u64 p_mask, 521 u64 acc_track_mask, u64 me_mask) 522 { 523 BUG_ON(!dirty_mask != !accessed_mask); 524 BUG_ON(!accessed_mask && !acc_track_mask); 525 BUG_ON(acc_track_mask & SPTE_SPECIAL_MASK); 526 527 shadow_user_mask = user_mask; 528 shadow_accessed_mask = accessed_mask; 529 shadow_dirty_mask = dirty_mask; 530 shadow_nx_mask = nx_mask; 531 shadow_x_mask = x_mask; 532 shadow_present_mask = p_mask; 533 shadow_acc_track_mask = acc_track_mask; 534 shadow_me_mask = me_mask; 535 } 536 EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes); 537 538 static u8 kvm_get_shadow_phys_bits(void) 539 { 540 /* 541 * boot_cpu_data.x86_phys_bits is reduced when MKTME is detected 542 * in CPU detection code, but MKTME treats those reduced bits as 543 * 'keyID' thus they are not reserved bits. Therefore for MKTME 544 * we should still return physical address bits reported by CPUID. 545 */ 546 if (!boot_cpu_has(X86_FEATURE_TME) || 547 WARN_ON_ONCE(boot_cpu_data.extended_cpuid_level < 0x80000008)) 548 return boot_cpu_data.x86_phys_bits; 549 550 return cpuid_eax(0x80000008) & 0xff; 551 } 552 553 static void kvm_mmu_reset_all_pte_masks(void) 554 { 555 u8 low_phys_bits; 556 557 shadow_user_mask = 0; 558 shadow_accessed_mask = 0; 559 shadow_dirty_mask = 0; 560 shadow_nx_mask = 0; 561 shadow_x_mask = 0; 562 shadow_mmio_mask = 0; 563 shadow_present_mask = 0; 564 shadow_acc_track_mask = 0; 565 566 shadow_phys_bits = kvm_get_shadow_phys_bits(); 567 568 /* 569 * If the CPU has 46 or less physical address bits, then set an 570 * appropriate mask to guard against L1TF attacks. Otherwise, it is 571 * assumed that the CPU is not vulnerable to L1TF. 572 * 573 * Some Intel CPUs address the L1 cache using more PA bits than are 574 * reported by CPUID. Use the PA width of the L1 cache when possible 575 * to achieve more effective mitigation, e.g. if system RAM overlaps 576 * the most significant bits of legal physical address space. 577 */ 578 shadow_nonpresent_or_rsvd_mask = 0; 579 low_phys_bits = boot_cpu_data.x86_cache_bits; 580 if (boot_cpu_data.x86_cache_bits < 581 52 - shadow_nonpresent_or_rsvd_mask_len) { 582 shadow_nonpresent_or_rsvd_mask = 583 rsvd_bits(boot_cpu_data.x86_cache_bits - 584 shadow_nonpresent_or_rsvd_mask_len, 585 boot_cpu_data.x86_cache_bits - 1); 586 low_phys_bits -= shadow_nonpresent_or_rsvd_mask_len; 587 } else 588 WARN_ON_ONCE(boot_cpu_has_bug(X86_BUG_L1TF)); 589 590 shadow_nonpresent_or_rsvd_lower_gfn_mask = 591 GENMASK_ULL(low_phys_bits - 1, PAGE_SHIFT); 592 } 593 594 static int is_cpuid_PSE36(void) 595 { 596 return 1; 597 } 598 599 static int is_nx(struct kvm_vcpu *vcpu) 600 { 601 return vcpu->arch.efer & EFER_NX; 602 } 603 604 static int is_shadow_present_pte(u64 pte) 605 { 606 return (pte != 0) && !is_mmio_spte(pte); 607 } 608 609 static int is_large_pte(u64 pte) 610 { 611 return pte & PT_PAGE_SIZE_MASK; 612 } 613 614 static int is_last_spte(u64 pte, int level) 615 { 616 if (level == PT_PAGE_TABLE_LEVEL) 617 return 1; 618 if (is_large_pte(pte)) 619 return 1; 620 return 0; 621 } 622 623 static bool is_executable_pte(u64 spte) 624 { 625 return (spte & (shadow_x_mask | shadow_nx_mask)) == shadow_x_mask; 626 } 627 628 static kvm_pfn_t spte_to_pfn(u64 pte) 629 { 630 return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT; 631 } 632 633 static gfn_t pse36_gfn_delta(u32 gpte) 634 { 635 int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT; 636 637 return (gpte & PT32_DIR_PSE36_MASK) << shift; 638 } 639 640 #ifdef CONFIG_X86_64 641 static void __set_spte(u64 *sptep, u64 spte) 642 { 643 WRITE_ONCE(*sptep, spte); 644 } 645 646 static void __update_clear_spte_fast(u64 *sptep, u64 spte) 647 { 648 WRITE_ONCE(*sptep, spte); 649 } 650 651 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte) 652 { 653 return xchg(sptep, spte); 654 } 655 656 static u64 __get_spte_lockless(u64 *sptep) 657 { 658 return READ_ONCE(*sptep); 659 } 660 #else 661 union split_spte { 662 struct { 663 u32 spte_low; 664 u32 spte_high; 665 }; 666 u64 spte; 667 }; 668 669 static void count_spte_clear(u64 *sptep, u64 spte) 670 { 671 struct kvm_mmu_page *sp = page_header(__pa(sptep)); 672 673 if (is_shadow_present_pte(spte)) 674 return; 675 676 /* Ensure the spte is completely set before we increase the count */ 677 smp_wmb(); 678 sp->clear_spte_count++; 679 } 680 681 static void __set_spte(u64 *sptep, u64 spte) 682 { 683 union split_spte *ssptep, sspte; 684 685 ssptep = (union split_spte *)sptep; 686 sspte = (union split_spte)spte; 687 688 ssptep->spte_high = sspte.spte_high; 689 690 /* 691 * If we map the spte from nonpresent to present, We should store 692 * the high bits firstly, then set present bit, so cpu can not 693 * fetch this spte while we are setting the spte. 694 */ 695 smp_wmb(); 696 697 WRITE_ONCE(ssptep->spte_low, sspte.spte_low); 698 } 699 700 static void __update_clear_spte_fast(u64 *sptep, u64 spte) 701 { 702 union split_spte *ssptep, sspte; 703 704 ssptep = (union split_spte *)sptep; 705 sspte = (union split_spte)spte; 706 707 WRITE_ONCE(ssptep->spte_low, sspte.spte_low); 708 709 /* 710 * If we map the spte from present to nonpresent, we should clear 711 * present bit firstly to avoid vcpu fetch the old high bits. 712 */ 713 smp_wmb(); 714 715 ssptep->spte_high = sspte.spte_high; 716 count_spte_clear(sptep, spte); 717 } 718 719 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte) 720 { 721 union split_spte *ssptep, sspte, orig; 722 723 ssptep = (union split_spte *)sptep; 724 sspte = (union split_spte)spte; 725 726 /* xchg acts as a barrier before the setting of the high bits */ 727 orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low); 728 orig.spte_high = ssptep->spte_high; 729 ssptep->spte_high = sspte.spte_high; 730 count_spte_clear(sptep, spte); 731 732 return orig.spte; 733 } 734 735 /* 736 * The idea using the light way get the spte on x86_32 guest is from 737 * gup_get_pte (mm/gup.c). 738 * 739 * An spte tlb flush may be pending, because kvm_set_pte_rmapp 740 * coalesces them and we are running out of the MMU lock. Therefore 741 * we need to protect against in-progress updates of the spte. 742 * 743 * Reading the spte while an update is in progress may get the old value 744 * for the high part of the spte. The race is fine for a present->non-present 745 * change (because the high part of the spte is ignored for non-present spte), 746 * but for a present->present change we must reread the spte. 747 * 748 * All such changes are done in two steps (present->non-present and 749 * non-present->present), hence it is enough to count the number of 750 * present->non-present updates: if it changed while reading the spte, 751 * we might have hit the race. This is done using clear_spte_count. 752 */ 753 static u64 __get_spte_lockless(u64 *sptep) 754 { 755 struct kvm_mmu_page *sp = page_header(__pa(sptep)); 756 union split_spte spte, *orig = (union split_spte *)sptep; 757 int count; 758 759 retry: 760 count = sp->clear_spte_count; 761 smp_rmb(); 762 763 spte.spte_low = orig->spte_low; 764 smp_rmb(); 765 766 spte.spte_high = orig->spte_high; 767 smp_rmb(); 768 769 if (unlikely(spte.spte_low != orig->spte_low || 770 count != sp->clear_spte_count)) 771 goto retry; 772 773 return spte.spte; 774 } 775 #endif 776 777 static bool spte_can_locklessly_be_made_writable(u64 spte) 778 { 779 return (spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE)) == 780 (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE); 781 } 782 783 static bool spte_has_volatile_bits(u64 spte) 784 { 785 if (!is_shadow_present_pte(spte)) 786 return false; 787 788 /* 789 * Always atomically update spte if it can be updated 790 * out of mmu-lock, it can ensure dirty bit is not lost, 791 * also, it can help us to get a stable is_writable_pte() 792 * to ensure tlb flush is not missed. 793 */ 794 if (spte_can_locklessly_be_made_writable(spte) || 795 is_access_track_spte(spte)) 796 return true; 797 798 if (spte_ad_enabled(spte)) { 799 if ((spte & shadow_accessed_mask) == 0 || 800 (is_writable_pte(spte) && (spte & shadow_dirty_mask) == 0)) 801 return true; 802 } 803 804 return false; 805 } 806 807 static bool is_accessed_spte(u64 spte) 808 { 809 u64 accessed_mask = spte_shadow_accessed_mask(spte); 810 811 return accessed_mask ? spte & accessed_mask 812 : !is_access_track_spte(spte); 813 } 814 815 static bool is_dirty_spte(u64 spte) 816 { 817 u64 dirty_mask = spte_shadow_dirty_mask(spte); 818 819 return dirty_mask ? spte & dirty_mask : spte & PT_WRITABLE_MASK; 820 } 821 822 /* Rules for using mmu_spte_set: 823 * Set the sptep from nonpresent to present. 824 * Note: the sptep being assigned *must* be either not present 825 * or in a state where the hardware will not attempt to update 826 * the spte. 827 */ 828 static void mmu_spte_set(u64 *sptep, u64 new_spte) 829 { 830 WARN_ON(is_shadow_present_pte(*sptep)); 831 __set_spte(sptep, new_spte); 832 } 833 834 /* 835 * Update the SPTE (excluding the PFN), but do not track changes in its 836 * accessed/dirty status. 837 */ 838 static u64 mmu_spte_update_no_track(u64 *sptep, u64 new_spte) 839 { 840 u64 old_spte = *sptep; 841 842 WARN_ON(!is_shadow_present_pte(new_spte)); 843 844 if (!is_shadow_present_pte(old_spte)) { 845 mmu_spte_set(sptep, new_spte); 846 return old_spte; 847 } 848 849 if (!spte_has_volatile_bits(old_spte)) 850 __update_clear_spte_fast(sptep, new_spte); 851 else 852 old_spte = __update_clear_spte_slow(sptep, new_spte); 853 854 WARN_ON(spte_to_pfn(old_spte) != spte_to_pfn(new_spte)); 855 856 return old_spte; 857 } 858 859 /* Rules for using mmu_spte_update: 860 * Update the state bits, it means the mapped pfn is not changed. 861 * 862 * Whenever we overwrite a writable spte with a read-only one we 863 * should flush remote TLBs. Otherwise rmap_write_protect 864 * will find a read-only spte, even though the writable spte 865 * might be cached on a CPU's TLB, the return value indicates this 866 * case. 867 * 868 * Returns true if the TLB needs to be flushed 869 */ 870 static bool mmu_spte_update(u64 *sptep, u64 new_spte) 871 { 872 bool flush = false; 873 u64 old_spte = mmu_spte_update_no_track(sptep, new_spte); 874 875 if (!is_shadow_present_pte(old_spte)) 876 return false; 877 878 /* 879 * For the spte updated out of mmu-lock is safe, since 880 * we always atomically update it, see the comments in 881 * spte_has_volatile_bits(). 882 */ 883 if (spte_can_locklessly_be_made_writable(old_spte) && 884 !is_writable_pte(new_spte)) 885 flush = true; 886 887 /* 888 * Flush TLB when accessed/dirty states are changed in the page tables, 889 * to guarantee consistency between TLB and page tables. 890 */ 891 892 if (is_accessed_spte(old_spte) && !is_accessed_spte(new_spte)) { 893 flush = true; 894 kvm_set_pfn_accessed(spte_to_pfn(old_spte)); 895 } 896 897 if (is_dirty_spte(old_spte) && !is_dirty_spte(new_spte)) { 898 flush = true; 899 kvm_set_pfn_dirty(spte_to_pfn(old_spte)); 900 } 901 902 return flush; 903 } 904 905 /* 906 * Rules for using mmu_spte_clear_track_bits: 907 * It sets the sptep from present to nonpresent, and track the 908 * state bits, it is used to clear the last level sptep. 909 * Returns non-zero if the PTE was previously valid. 910 */ 911 static int mmu_spte_clear_track_bits(u64 *sptep) 912 { 913 kvm_pfn_t pfn; 914 u64 old_spte = *sptep; 915 916 if (!spte_has_volatile_bits(old_spte)) 917 __update_clear_spte_fast(sptep, 0ull); 918 else 919 old_spte = __update_clear_spte_slow(sptep, 0ull); 920 921 if (!is_shadow_present_pte(old_spte)) 922 return 0; 923 924 pfn = spte_to_pfn(old_spte); 925 926 /* 927 * KVM does not hold the refcount of the page used by 928 * kvm mmu, before reclaiming the page, we should 929 * unmap it from mmu first. 930 */ 931 WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn))); 932 933 if (is_accessed_spte(old_spte)) 934 kvm_set_pfn_accessed(pfn); 935 936 if (is_dirty_spte(old_spte)) 937 kvm_set_pfn_dirty(pfn); 938 939 return 1; 940 } 941 942 /* 943 * Rules for using mmu_spte_clear_no_track: 944 * Directly clear spte without caring the state bits of sptep, 945 * it is used to set the upper level spte. 946 */ 947 static void mmu_spte_clear_no_track(u64 *sptep) 948 { 949 __update_clear_spte_fast(sptep, 0ull); 950 } 951 952 static u64 mmu_spte_get_lockless(u64 *sptep) 953 { 954 return __get_spte_lockless(sptep); 955 } 956 957 static u64 mark_spte_for_access_track(u64 spte) 958 { 959 if (spte_ad_enabled(spte)) 960 return spte & ~shadow_accessed_mask; 961 962 if (is_access_track_spte(spte)) 963 return spte; 964 965 /* 966 * Making an Access Tracking PTE will result in removal of write access 967 * from the PTE. So, verify that we will be able to restore the write 968 * access in the fast page fault path later on. 969 */ 970 WARN_ONCE((spte & PT_WRITABLE_MASK) && 971 !spte_can_locklessly_be_made_writable(spte), 972 "kvm: Writable SPTE is not locklessly dirty-trackable\n"); 973 974 WARN_ONCE(spte & (shadow_acc_track_saved_bits_mask << 975 shadow_acc_track_saved_bits_shift), 976 "kvm: Access Tracking saved bit locations are not zero\n"); 977 978 spte |= (spte & shadow_acc_track_saved_bits_mask) << 979 shadow_acc_track_saved_bits_shift; 980 spte &= ~shadow_acc_track_mask; 981 982 return spte; 983 } 984 985 /* Restore an acc-track PTE back to a regular PTE */ 986 static u64 restore_acc_track_spte(u64 spte) 987 { 988 u64 new_spte = spte; 989 u64 saved_bits = (spte >> shadow_acc_track_saved_bits_shift) 990 & shadow_acc_track_saved_bits_mask; 991 992 WARN_ON_ONCE(spte_ad_enabled(spte)); 993 WARN_ON_ONCE(!is_access_track_spte(spte)); 994 995 new_spte &= ~shadow_acc_track_mask; 996 new_spte &= ~(shadow_acc_track_saved_bits_mask << 997 shadow_acc_track_saved_bits_shift); 998 new_spte |= saved_bits; 999 1000 return new_spte; 1001 } 1002 1003 /* Returns the Accessed status of the PTE and resets it at the same time. */ 1004 static bool mmu_spte_age(u64 *sptep) 1005 { 1006 u64 spte = mmu_spte_get_lockless(sptep); 1007 1008 if (!is_accessed_spte(spte)) 1009 return false; 1010 1011 if (spte_ad_enabled(spte)) { 1012 clear_bit((ffs(shadow_accessed_mask) - 1), 1013 (unsigned long *)sptep); 1014 } else { 1015 /* 1016 * Capture the dirty status of the page, so that it doesn't get 1017 * lost when the SPTE is marked for access tracking. 1018 */ 1019 if (is_writable_pte(spte)) 1020 kvm_set_pfn_dirty(spte_to_pfn(spte)); 1021 1022 spte = mark_spte_for_access_track(spte); 1023 mmu_spte_update_no_track(sptep, spte); 1024 } 1025 1026 return true; 1027 } 1028 1029 static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu) 1030 { 1031 /* 1032 * Prevent page table teardown by making any free-er wait during 1033 * kvm_flush_remote_tlbs() IPI to all active vcpus. 1034 */ 1035 local_irq_disable(); 1036 1037 /* 1038 * Make sure a following spte read is not reordered ahead of the write 1039 * to vcpu->mode. 1040 */ 1041 smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES); 1042 } 1043 1044 static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu) 1045 { 1046 /* 1047 * Make sure the write to vcpu->mode is not reordered in front of 1048 * reads to sptes. If it does, kvm_mmu_commit_zap_page() can see us 1049 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table. 1050 */ 1051 smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE); 1052 local_irq_enable(); 1053 } 1054 1055 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache, 1056 struct kmem_cache *base_cache, int min) 1057 { 1058 void *obj; 1059 1060 if (cache->nobjs >= min) 1061 return 0; 1062 while (cache->nobjs < ARRAY_SIZE(cache->objects)) { 1063 obj = kmem_cache_zalloc(base_cache, GFP_KERNEL_ACCOUNT); 1064 if (!obj) 1065 return cache->nobjs >= min ? 0 : -ENOMEM; 1066 cache->objects[cache->nobjs++] = obj; 1067 } 1068 return 0; 1069 } 1070 1071 static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache) 1072 { 1073 return cache->nobjs; 1074 } 1075 1076 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc, 1077 struct kmem_cache *cache) 1078 { 1079 while (mc->nobjs) 1080 kmem_cache_free(cache, mc->objects[--mc->nobjs]); 1081 } 1082 1083 static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache, 1084 int min) 1085 { 1086 void *page; 1087 1088 if (cache->nobjs >= min) 1089 return 0; 1090 while (cache->nobjs < ARRAY_SIZE(cache->objects)) { 1091 page = (void *)__get_free_page(GFP_KERNEL_ACCOUNT); 1092 if (!page) 1093 return cache->nobjs >= min ? 0 : -ENOMEM; 1094 cache->objects[cache->nobjs++] = page; 1095 } 1096 return 0; 1097 } 1098 1099 static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc) 1100 { 1101 while (mc->nobjs) 1102 free_page((unsigned long)mc->objects[--mc->nobjs]); 1103 } 1104 1105 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu) 1106 { 1107 int r; 1108 1109 r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache, 1110 pte_list_desc_cache, 8 + PTE_PREFETCH_NUM); 1111 if (r) 1112 goto out; 1113 r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8); 1114 if (r) 1115 goto out; 1116 r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache, 1117 mmu_page_header_cache, 4); 1118 out: 1119 return r; 1120 } 1121 1122 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu) 1123 { 1124 mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache, 1125 pte_list_desc_cache); 1126 mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache); 1127 mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache, 1128 mmu_page_header_cache); 1129 } 1130 1131 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc) 1132 { 1133 void *p; 1134 1135 BUG_ON(!mc->nobjs); 1136 p = mc->objects[--mc->nobjs]; 1137 return p; 1138 } 1139 1140 static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu) 1141 { 1142 return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache); 1143 } 1144 1145 static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc) 1146 { 1147 kmem_cache_free(pte_list_desc_cache, pte_list_desc); 1148 } 1149 1150 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index) 1151 { 1152 if (!sp->role.direct) 1153 return sp->gfns[index]; 1154 1155 return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS)); 1156 } 1157 1158 static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn) 1159 { 1160 if (!sp->role.direct) { 1161 sp->gfns[index] = gfn; 1162 return; 1163 } 1164 1165 if (WARN_ON(gfn != kvm_mmu_page_get_gfn(sp, index))) 1166 pr_err_ratelimited("gfn mismatch under direct page %llx " 1167 "(expected %llx, got %llx)\n", 1168 sp->gfn, 1169 kvm_mmu_page_get_gfn(sp, index), gfn); 1170 } 1171 1172 /* 1173 * Return the pointer to the large page information for a given gfn, 1174 * handling slots that are not large page aligned. 1175 */ 1176 static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn, 1177 struct kvm_memory_slot *slot, 1178 int level) 1179 { 1180 unsigned long idx; 1181 1182 idx = gfn_to_index(gfn, slot->base_gfn, level); 1183 return &slot->arch.lpage_info[level - 2][idx]; 1184 } 1185 1186 static void update_gfn_disallow_lpage_count(struct kvm_memory_slot *slot, 1187 gfn_t gfn, int count) 1188 { 1189 struct kvm_lpage_info *linfo; 1190 int i; 1191 1192 for (i = PT_DIRECTORY_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) { 1193 linfo = lpage_info_slot(gfn, slot, i); 1194 linfo->disallow_lpage += count; 1195 WARN_ON(linfo->disallow_lpage < 0); 1196 } 1197 } 1198 1199 void kvm_mmu_gfn_disallow_lpage(struct kvm_memory_slot *slot, gfn_t gfn) 1200 { 1201 update_gfn_disallow_lpage_count(slot, gfn, 1); 1202 } 1203 1204 void kvm_mmu_gfn_allow_lpage(struct kvm_memory_slot *slot, gfn_t gfn) 1205 { 1206 update_gfn_disallow_lpage_count(slot, gfn, -1); 1207 } 1208 1209 static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp) 1210 { 1211 struct kvm_memslots *slots; 1212 struct kvm_memory_slot *slot; 1213 gfn_t gfn; 1214 1215 kvm->arch.indirect_shadow_pages++; 1216 gfn = sp->gfn; 1217 slots = kvm_memslots_for_spte_role(kvm, sp->role); 1218 slot = __gfn_to_memslot(slots, gfn); 1219 1220 /* the non-leaf shadow pages are keeping readonly. */ 1221 if (sp->role.level > PT_PAGE_TABLE_LEVEL) 1222 return kvm_slot_page_track_add_page(kvm, slot, gfn, 1223 KVM_PAGE_TRACK_WRITE); 1224 1225 kvm_mmu_gfn_disallow_lpage(slot, gfn); 1226 } 1227 1228 static void account_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp) 1229 { 1230 if (sp->lpage_disallowed) 1231 return; 1232 1233 ++kvm->stat.nx_lpage_splits; 1234 list_add_tail(&sp->lpage_disallowed_link, 1235 &kvm->arch.lpage_disallowed_mmu_pages); 1236 sp->lpage_disallowed = true; 1237 } 1238 1239 static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp) 1240 { 1241 struct kvm_memslots *slots; 1242 struct kvm_memory_slot *slot; 1243 gfn_t gfn; 1244 1245 kvm->arch.indirect_shadow_pages--; 1246 gfn = sp->gfn; 1247 slots = kvm_memslots_for_spte_role(kvm, sp->role); 1248 slot = __gfn_to_memslot(slots, gfn); 1249 if (sp->role.level > PT_PAGE_TABLE_LEVEL) 1250 return kvm_slot_page_track_remove_page(kvm, slot, gfn, 1251 KVM_PAGE_TRACK_WRITE); 1252 1253 kvm_mmu_gfn_allow_lpage(slot, gfn); 1254 } 1255 1256 static void unaccount_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp) 1257 { 1258 --kvm->stat.nx_lpage_splits; 1259 sp->lpage_disallowed = false; 1260 list_del(&sp->lpage_disallowed_link); 1261 } 1262 1263 static bool __mmu_gfn_lpage_is_disallowed(gfn_t gfn, int level, 1264 struct kvm_memory_slot *slot) 1265 { 1266 struct kvm_lpage_info *linfo; 1267 1268 if (slot) { 1269 linfo = lpage_info_slot(gfn, slot, level); 1270 return !!linfo->disallow_lpage; 1271 } 1272 1273 return true; 1274 } 1275 1276 static bool mmu_gfn_lpage_is_disallowed(struct kvm_vcpu *vcpu, gfn_t gfn, 1277 int level) 1278 { 1279 struct kvm_memory_slot *slot; 1280 1281 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 1282 return __mmu_gfn_lpage_is_disallowed(gfn, level, slot); 1283 } 1284 1285 static int host_mapping_level(struct kvm *kvm, gfn_t gfn) 1286 { 1287 unsigned long page_size; 1288 int i, ret = 0; 1289 1290 page_size = kvm_host_page_size(kvm, gfn); 1291 1292 for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) { 1293 if (page_size >= KVM_HPAGE_SIZE(i)) 1294 ret = i; 1295 else 1296 break; 1297 } 1298 1299 return ret; 1300 } 1301 1302 static inline bool memslot_valid_for_gpte(struct kvm_memory_slot *slot, 1303 bool no_dirty_log) 1304 { 1305 if (!slot || slot->flags & KVM_MEMSLOT_INVALID) 1306 return false; 1307 if (no_dirty_log && slot->dirty_bitmap) 1308 return false; 1309 1310 return true; 1311 } 1312 1313 static struct kvm_memory_slot * 1314 gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn, 1315 bool no_dirty_log) 1316 { 1317 struct kvm_memory_slot *slot; 1318 1319 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 1320 if (!memslot_valid_for_gpte(slot, no_dirty_log)) 1321 slot = NULL; 1322 1323 return slot; 1324 } 1325 1326 static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn, 1327 bool *force_pt_level) 1328 { 1329 int host_level, level, max_level; 1330 struct kvm_memory_slot *slot; 1331 1332 if (unlikely(*force_pt_level)) 1333 return PT_PAGE_TABLE_LEVEL; 1334 1335 slot = kvm_vcpu_gfn_to_memslot(vcpu, large_gfn); 1336 *force_pt_level = !memslot_valid_for_gpte(slot, true); 1337 if (unlikely(*force_pt_level)) 1338 return PT_PAGE_TABLE_LEVEL; 1339 1340 host_level = host_mapping_level(vcpu->kvm, large_gfn); 1341 1342 if (host_level == PT_PAGE_TABLE_LEVEL) 1343 return host_level; 1344 1345 max_level = min(kvm_x86_ops->get_lpage_level(), host_level); 1346 1347 for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level) 1348 if (__mmu_gfn_lpage_is_disallowed(large_gfn, level, slot)) 1349 break; 1350 1351 return level - 1; 1352 } 1353 1354 /* 1355 * About rmap_head encoding: 1356 * 1357 * If the bit zero of rmap_head->val is clear, then it points to the only spte 1358 * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct 1359 * pte_list_desc containing more mappings. 1360 */ 1361 1362 /* 1363 * Returns the number of pointers in the rmap chain, not counting the new one. 1364 */ 1365 static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte, 1366 struct kvm_rmap_head *rmap_head) 1367 { 1368 struct pte_list_desc *desc; 1369 int i, count = 0; 1370 1371 if (!rmap_head->val) { 1372 rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte); 1373 rmap_head->val = (unsigned long)spte; 1374 } else if (!(rmap_head->val & 1)) { 1375 rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte); 1376 desc = mmu_alloc_pte_list_desc(vcpu); 1377 desc->sptes[0] = (u64 *)rmap_head->val; 1378 desc->sptes[1] = spte; 1379 rmap_head->val = (unsigned long)desc | 1; 1380 ++count; 1381 } else { 1382 rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte); 1383 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul); 1384 while (desc->sptes[PTE_LIST_EXT-1] && desc->more) { 1385 desc = desc->more; 1386 count += PTE_LIST_EXT; 1387 } 1388 if (desc->sptes[PTE_LIST_EXT-1]) { 1389 desc->more = mmu_alloc_pte_list_desc(vcpu); 1390 desc = desc->more; 1391 } 1392 for (i = 0; desc->sptes[i]; ++i) 1393 ++count; 1394 desc->sptes[i] = spte; 1395 } 1396 return count; 1397 } 1398 1399 static void 1400 pte_list_desc_remove_entry(struct kvm_rmap_head *rmap_head, 1401 struct pte_list_desc *desc, int i, 1402 struct pte_list_desc *prev_desc) 1403 { 1404 int j; 1405 1406 for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j) 1407 ; 1408 desc->sptes[i] = desc->sptes[j]; 1409 desc->sptes[j] = NULL; 1410 if (j != 0) 1411 return; 1412 if (!prev_desc && !desc->more) 1413 rmap_head->val = (unsigned long)desc->sptes[0]; 1414 else 1415 if (prev_desc) 1416 prev_desc->more = desc->more; 1417 else 1418 rmap_head->val = (unsigned long)desc->more | 1; 1419 mmu_free_pte_list_desc(desc); 1420 } 1421 1422 static void __pte_list_remove(u64 *spte, struct kvm_rmap_head *rmap_head) 1423 { 1424 struct pte_list_desc *desc; 1425 struct pte_list_desc *prev_desc; 1426 int i; 1427 1428 if (!rmap_head->val) { 1429 pr_err("%s: %p 0->BUG\n", __func__, spte); 1430 BUG(); 1431 } else if (!(rmap_head->val & 1)) { 1432 rmap_printk("%s: %p 1->0\n", __func__, spte); 1433 if ((u64 *)rmap_head->val != spte) { 1434 pr_err("%s: %p 1->BUG\n", __func__, spte); 1435 BUG(); 1436 } 1437 rmap_head->val = 0; 1438 } else { 1439 rmap_printk("%s: %p many->many\n", __func__, spte); 1440 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul); 1441 prev_desc = NULL; 1442 while (desc) { 1443 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i) { 1444 if (desc->sptes[i] == spte) { 1445 pte_list_desc_remove_entry(rmap_head, 1446 desc, i, prev_desc); 1447 return; 1448 } 1449 } 1450 prev_desc = desc; 1451 desc = desc->more; 1452 } 1453 pr_err("%s: %p many->many\n", __func__, spte); 1454 BUG(); 1455 } 1456 } 1457 1458 static void pte_list_remove(struct kvm_rmap_head *rmap_head, u64 *sptep) 1459 { 1460 mmu_spte_clear_track_bits(sptep); 1461 __pte_list_remove(sptep, rmap_head); 1462 } 1463 1464 static struct kvm_rmap_head *__gfn_to_rmap(gfn_t gfn, int level, 1465 struct kvm_memory_slot *slot) 1466 { 1467 unsigned long idx; 1468 1469 idx = gfn_to_index(gfn, slot->base_gfn, level); 1470 return &slot->arch.rmap[level - PT_PAGE_TABLE_LEVEL][idx]; 1471 } 1472 1473 static struct kvm_rmap_head *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, 1474 struct kvm_mmu_page *sp) 1475 { 1476 struct kvm_memslots *slots; 1477 struct kvm_memory_slot *slot; 1478 1479 slots = kvm_memslots_for_spte_role(kvm, sp->role); 1480 slot = __gfn_to_memslot(slots, gfn); 1481 return __gfn_to_rmap(gfn, sp->role.level, slot); 1482 } 1483 1484 static bool rmap_can_add(struct kvm_vcpu *vcpu) 1485 { 1486 struct kvm_mmu_memory_cache *cache; 1487 1488 cache = &vcpu->arch.mmu_pte_list_desc_cache; 1489 return mmu_memory_cache_free_objects(cache); 1490 } 1491 1492 static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn) 1493 { 1494 struct kvm_mmu_page *sp; 1495 struct kvm_rmap_head *rmap_head; 1496 1497 sp = page_header(__pa(spte)); 1498 kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn); 1499 rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp); 1500 return pte_list_add(vcpu, spte, rmap_head); 1501 } 1502 1503 static void rmap_remove(struct kvm *kvm, u64 *spte) 1504 { 1505 struct kvm_mmu_page *sp; 1506 gfn_t gfn; 1507 struct kvm_rmap_head *rmap_head; 1508 1509 sp = page_header(__pa(spte)); 1510 gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt); 1511 rmap_head = gfn_to_rmap(kvm, gfn, sp); 1512 __pte_list_remove(spte, rmap_head); 1513 } 1514 1515 /* 1516 * Used by the following functions to iterate through the sptes linked by a 1517 * rmap. All fields are private and not assumed to be used outside. 1518 */ 1519 struct rmap_iterator { 1520 /* private fields */ 1521 struct pte_list_desc *desc; /* holds the sptep if not NULL */ 1522 int pos; /* index of the sptep */ 1523 }; 1524 1525 /* 1526 * Iteration must be started by this function. This should also be used after 1527 * removing/dropping sptes from the rmap link because in such cases the 1528 * information in the itererator may not be valid. 1529 * 1530 * Returns sptep if found, NULL otherwise. 1531 */ 1532 static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head, 1533 struct rmap_iterator *iter) 1534 { 1535 u64 *sptep; 1536 1537 if (!rmap_head->val) 1538 return NULL; 1539 1540 if (!(rmap_head->val & 1)) { 1541 iter->desc = NULL; 1542 sptep = (u64 *)rmap_head->val; 1543 goto out; 1544 } 1545 1546 iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul); 1547 iter->pos = 0; 1548 sptep = iter->desc->sptes[iter->pos]; 1549 out: 1550 BUG_ON(!is_shadow_present_pte(*sptep)); 1551 return sptep; 1552 } 1553 1554 /* 1555 * Must be used with a valid iterator: e.g. after rmap_get_first(). 1556 * 1557 * Returns sptep if found, NULL otherwise. 1558 */ 1559 static u64 *rmap_get_next(struct rmap_iterator *iter) 1560 { 1561 u64 *sptep; 1562 1563 if (iter->desc) { 1564 if (iter->pos < PTE_LIST_EXT - 1) { 1565 ++iter->pos; 1566 sptep = iter->desc->sptes[iter->pos]; 1567 if (sptep) 1568 goto out; 1569 } 1570 1571 iter->desc = iter->desc->more; 1572 1573 if (iter->desc) { 1574 iter->pos = 0; 1575 /* desc->sptes[0] cannot be NULL */ 1576 sptep = iter->desc->sptes[iter->pos]; 1577 goto out; 1578 } 1579 } 1580 1581 return NULL; 1582 out: 1583 BUG_ON(!is_shadow_present_pte(*sptep)); 1584 return sptep; 1585 } 1586 1587 #define for_each_rmap_spte(_rmap_head_, _iter_, _spte_) \ 1588 for (_spte_ = rmap_get_first(_rmap_head_, _iter_); \ 1589 _spte_; _spte_ = rmap_get_next(_iter_)) 1590 1591 static void drop_spte(struct kvm *kvm, u64 *sptep) 1592 { 1593 if (mmu_spte_clear_track_bits(sptep)) 1594 rmap_remove(kvm, sptep); 1595 } 1596 1597 1598 static bool __drop_large_spte(struct kvm *kvm, u64 *sptep) 1599 { 1600 if (is_large_pte(*sptep)) { 1601 WARN_ON(page_header(__pa(sptep))->role.level == 1602 PT_PAGE_TABLE_LEVEL); 1603 drop_spte(kvm, sptep); 1604 --kvm->stat.lpages; 1605 return true; 1606 } 1607 1608 return false; 1609 } 1610 1611 static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep) 1612 { 1613 if (__drop_large_spte(vcpu->kvm, sptep)) { 1614 struct kvm_mmu_page *sp = page_header(__pa(sptep)); 1615 1616 kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn, 1617 KVM_PAGES_PER_HPAGE(sp->role.level)); 1618 } 1619 } 1620 1621 /* 1622 * Write-protect on the specified @sptep, @pt_protect indicates whether 1623 * spte write-protection is caused by protecting shadow page table. 1624 * 1625 * Note: write protection is difference between dirty logging and spte 1626 * protection: 1627 * - for dirty logging, the spte can be set to writable at anytime if 1628 * its dirty bitmap is properly set. 1629 * - for spte protection, the spte can be writable only after unsync-ing 1630 * shadow page. 1631 * 1632 * Return true if tlb need be flushed. 1633 */ 1634 static bool spte_write_protect(u64 *sptep, bool pt_protect) 1635 { 1636 u64 spte = *sptep; 1637 1638 if (!is_writable_pte(spte) && 1639 !(pt_protect && spte_can_locklessly_be_made_writable(spte))) 1640 return false; 1641 1642 rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep); 1643 1644 if (pt_protect) 1645 spte &= ~SPTE_MMU_WRITEABLE; 1646 spte = spte & ~PT_WRITABLE_MASK; 1647 1648 return mmu_spte_update(sptep, spte); 1649 } 1650 1651 static bool __rmap_write_protect(struct kvm *kvm, 1652 struct kvm_rmap_head *rmap_head, 1653 bool pt_protect) 1654 { 1655 u64 *sptep; 1656 struct rmap_iterator iter; 1657 bool flush = false; 1658 1659 for_each_rmap_spte(rmap_head, &iter, sptep) 1660 flush |= spte_write_protect(sptep, pt_protect); 1661 1662 return flush; 1663 } 1664 1665 static bool spte_clear_dirty(u64 *sptep) 1666 { 1667 u64 spte = *sptep; 1668 1669 rmap_printk("rmap_clear_dirty: spte %p %llx\n", sptep, *sptep); 1670 1671 MMU_WARN_ON(!spte_ad_enabled(spte)); 1672 spte &= ~shadow_dirty_mask; 1673 return mmu_spte_update(sptep, spte); 1674 } 1675 1676 static bool spte_wrprot_for_clear_dirty(u64 *sptep) 1677 { 1678 bool was_writable = test_and_clear_bit(PT_WRITABLE_SHIFT, 1679 (unsigned long *)sptep); 1680 if (was_writable && !spte_ad_enabled(*sptep)) 1681 kvm_set_pfn_dirty(spte_to_pfn(*sptep)); 1682 1683 return was_writable; 1684 } 1685 1686 /* 1687 * Gets the GFN ready for another round of dirty logging by clearing the 1688 * - D bit on ad-enabled SPTEs, and 1689 * - W bit on ad-disabled SPTEs. 1690 * Returns true iff any D or W bits were cleared. 1691 */ 1692 static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head) 1693 { 1694 u64 *sptep; 1695 struct rmap_iterator iter; 1696 bool flush = false; 1697 1698 for_each_rmap_spte(rmap_head, &iter, sptep) 1699 if (spte_ad_need_write_protect(*sptep)) 1700 flush |= spte_wrprot_for_clear_dirty(sptep); 1701 else 1702 flush |= spte_clear_dirty(sptep); 1703 1704 return flush; 1705 } 1706 1707 static bool spte_set_dirty(u64 *sptep) 1708 { 1709 u64 spte = *sptep; 1710 1711 rmap_printk("rmap_set_dirty: spte %p %llx\n", sptep, *sptep); 1712 1713 /* 1714 * Similar to the !kvm_x86_ops->slot_disable_log_dirty case, 1715 * do not bother adding back write access to pages marked 1716 * SPTE_AD_WRPROT_ONLY_MASK. 1717 */ 1718 spte |= shadow_dirty_mask; 1719 1720 return mmu_spte_update(sptep, spte); 1721 } 1722 1723 static bool __rmap_set_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head) 1724 { 1725 u64 *sptep; 1726 struct rmap_iterator iter; 1727 bool flush = false; 1728 1729 for_each_rmap_spte(rmap_head, &iter, sptep) 1730 if (spte_ad_enabled(*sptep)) 1731 flush |= spte_set_dirty(sptep); 1732 1733 return flush; 1734 } 1735 1736 /** 1737 * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages 1738 * @kvm: kvm instance 1739 * @slot: slot to protect 1740 * @gfn_offset: start of the BITS_PER_LONG pages we care about 1741 * @mask: indicates which pages we should protect 1742 * 1743 * Used when we do not need to care about huge page mappings: e.g. during dirty 1744 * logging we do not have any such mappings. 1745 */ 1746 static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm, 1747 struct kvm_memory_slot *slot, 1748 gfn_t gfn_offset, unsigned long mask) 1749 { 1750 struct kvm_rmap_head *rmap_head; 1751 1752 while (mask) { 1753 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask), 1754 PT_PAGE_TABLE_LEVEL, slot); 1755 __rmap_write_protect(kvm, rmap_head, false); 1756 1757 /* clear the first set bit */ 1758 mask &= mask - 1; 1759 } 1760 } 1761 1762 /** 1763 * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages, or write 1764 * protect the page if the D-bit isn't supported. 1765 * @kvm: kvm instance 1766 * @slot: slot to clear D-bit 1767 * @gfn_offset: start of the BITS_PER_LONG pages we care about 1768 * @mask: indicates which pages we should clear D-bit 1769 * 1770 * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap. 1771 */ 1772 void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm, 1773 struct kvm_memory_slot *slot, 1774 gfn_t gfn_offset, unsigned long mask) 1775 { 1776 struct kvm_rmap_head *rmap_head; 1777 1778 while (mask) { 1779 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask), 1780 PT_PAGE_TABLE_LEVEL, slot); 1781 __rmap_clear_dirty(kvm, rmap_head); 1782 1783 /* clear the first set bit */ 1784 mask &= mask - 1; 1785 } 1786 } 1787 EXPORT_SYMBOL_GPL(kvm_mmu_clear_dirty_pt_masked); 1788 1789 /** 1790 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected 1791 * PT level pages. 1792 * 1793 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to 1794 * enable dirty logging for them. 1795 * 1796 * Used when we do not need to care about huge page mappings: e.g. during dirty 1797 * logging we do not have any such mappings. 1798 */ 1799 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm, 1800 struct kvm_memory_slot *slot, 1801 gfn_t gfn_offset, unsigned long mask) 1802 { 1803 if (kvm_x86_ops->enable_log_dirty_pt_masked) 1804 kvm_x86_ops->enable_log_dirty_pt_masked(kvm, slot, gfn_offset, 1805 mask); 1806 else 1807 kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask); 1808 } 1809 1810 /** 1811 * kvm_arch_write_log_dirty - emulate dirty page logging 1812 * @vcpu: Guest mode vcpu 1813 * 1814 * Emulate arch specific page modification logging for the 1815 * nested hypervisor 1816 */ 1817 int kvm_arch_write_log_dirty(struct kvm_vcpu *vcpu) 1818 { 1819 if (kvm_x86_ops->write_log_dirty) 1820 return kvm_x86_ops->write_log_dirty(vcpu); 1821 1822 return 0; 1823 } 1824 1825 bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm, 1826 struct kvm_memory_slot *slot, u64 gfn) 1827 { 1828 struct kvm_rmap_head *rmap_head; 1829 int i; 1830 bool write_protected = false; 1831 1832 for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) { 1833 rmap_head = __gfn_to_rmap(gfn, i, slot); 1834 write_protected |= __rmap_write_protect(kvm, rmap_head, true); 1835 } 1836 1837 return write_protected; 1838 } 1839 1840 static bool rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn) 1841 { 1842 struct kvm_memory_slot *slot; 1843 1844 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 1845 return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn); 1846 } 1847 1848 static bool kvm_zap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head) 1849 { 1850 u64 *sptep; 1851 struct rmap_iterator iter; 1852 bool flush = false; 1853 1854 while ((sptep = rmap_get_first(rmap_head, &iter))) { 1855 rmap_printk("%s: spte %p %llx.\n", __func__, sptep, *sptep); 1856 1857 pte_list_remove(rmap_head, sptep); 1858 flush = true; 1859 } 1860 1861 return flush; 1862 } 1863 1864 static int kvm_unmap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head, 1865 struct kvm_memory_slot *slot, gfn_t gfn, int level, 1866 unsigned long data) 1867 { 1868 return kvm_zap_rmapp(kvm, rmap_head); 1869 } 1870 1871 static int kvm_set_pte_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head, 1872 struct kvm_memory_slot *slot, gfn_t gfn, int level, 1873 unsigned long data) 1874 { 1875 u64 *sptep; 1876 struct rmap_iterator iter; 1877 int need_flush = 0; 1878 u64 new_spte; 1879 pte_t *ptep = (pte_t *)data; 1880 kvm_pfn_t new_pfn; 1881 1882 WARN_ON(pte_huge(*ptep)); 1883 new_pfn = pte_pfn(*ptep); 1884 1885 restart: 1886 for_each_rmap_spte(rmap_head, &iter, sptep) { 1887 rmap_printk("kvm_set_pte_rmapp: spte %p %llx gfn %llx (%d)\n", 1888 sptep, *sptep, gfn, level); 1889 1890 need_flush = 1; 1891 1892 if (pte_write(*ptep)) { 1893 pte_list_remove(rmap_head, sptep); 1894 goto restart; 1895 } else { 1896 new_spte = *sptep & ~PT64_BASE_ADDR_MASK; 1897 new_spte |= (u64)new_pfn << PAGE_SHIFT; 1898 1899 new_spte &= ~PT_WRITABLE_MASK; 1900 new_spte &= ~SPTE_HOST_WRITEABLE; 1901 1902 new_spte = mark_spte_for_access_track(new_spte); 1903 1904 mmu_spte_clear_track_bits(sptep); 1905 mmu_spte_set(sptep, new_spte); 1906 } 1907 } 1908 1909 if (need_flush && kvm_available_flush_tlb_with_range()) { 1910 kvm_flush_remote_tlbs_with_address(kvm, gfn, 1); 1911 return 0; 1912 } 1913 1914 return need_flush; 1915 } 1916 1917 struct slot_rmap_walk_iterator { 1918 /* input fields. */ 1919 struct kvm_memory_slot *slot; 1920 gfn_t start_gfn; 1921 gfn_t end_gfn; 1922 int start_level; 1923 int end_level; 1924 1925 /* output fields. */ 1926 gfn_t gfn; 1927 struct kvm_rmap_head *rmap; 1928 int level; 1929 1930 /* private field. */ 1931 struct kvm_rmap_head *end_rmap; 1932 }; 1933 1934 static void 1935 rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level) 1936 { 1937 iterator->level = level; 1938 iterator->gfn = iterator->start_gfn; 1939 iterator->rmap = __gfn_to_rmap(iterator->gfn, level, iterator->slot); 1940 iterator->end_rmap = __gfn_to_rmap(iterator->end_gfn, level, 1941 iterator->slot); 1942 } 1943 1944 static void 1945 slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator, 1946 struct kvm_memory_slot *slot, int start_level, 1947 int end_level, gfn_t start_gfn, gfn_t end_gfn) 1948 { 1949 iterator->slot = slot; 1950 iterator->start_level = start_level; 1951 iterator->end_level = end_level; 1952 iterator->start_gfn = start_gfn; 1953 iterator->end_gfn = end_gfn; 1954 1955 rmap_walk_init_level(iterator, iterator->start_level); 1956 } 1957 1958 static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator) 1959 { 1960 return !!iterator->rmap; 1961 } 1962 1963 static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator) 1964 { 1965 if (++iterator->rmap <= iterator->end_rmap) { 1966 iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level)); 1967 return; 1968 } 1969 1970 if (++iterator->level > iterator->end_level) { 1971 iterator->rmap = NULL; 1972 return; 1973 } 1974 1975 rmap_walk_init_level(iterator, iterator->level); 1976 } 1977 1978 #define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_, \ 1979 _start_gfn, _end_gfn, _iter_) \ 1980 for (slot_rmap_walk_init(_iter_, _slot_, _start_level_, \ 1981 _end_level_, _start_gfn, _end_gfn); \ 1982 slot_rmap_walk_okay(_iter_); \ 1983 slot_rmap_walk_next(_iter_)) 1984 1985 static int kvm_handle_hva_range(struct kvm *kvm, 1986 unsigned long start, 1987 unsigned long end, 1988 unsigned long data, 1989 int (*handler)(struct kvm *kvm, 1990 struct kvm_rmap_head *rmap_head, 1991 struct kvm_memory_slot *slot, 1992 gfn_t gfn, 1993 int level, 1994 unsigned long data)) 1995 { 1996 struct kvm_memslots *slots; 1997 struct kvm_memory_slot *memslot; 1998 struct slot_rmap_walk_iterator iterator; 1999 int ret = 0; 2000 int i; 2001 2002 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { 2003 slots = __kvm_memslots(kvm, i); 2004 kvm_for_each_memslot(memslot, slots) { 2005 unsigned long hva_start, hva_end; 2006 gfn_t gfn_start, gfn_end; 2007 2008 hva_start = max(start, memslot->userspace_addr); 2009 hva_end = min(end, memslot->userspace_addr + 2010 (memslot->npages << PAGE_SHIFT)); 2011 if (hva_start >= hva_end) 2012 continue; 2013 /* 2014 * {gfn(page) | page intersects with [hva_start, hva_end)} = 2015 * {gfn_start, gfn_start+1, ..., gfn_end-1}. 2016 */ 2017 gfn_start = hva_to_gfn_memslot(hva_start, memslot); 2018 gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot); 2019 2020 for_each_slot_rmap_range(memslot, PT_PAGE_TABLE_LEVEL, 2021 PT_MAX_HUGEPAGE_LEVEL, 2022 gfn_start, gfn_end - 1, 2023 &iterator) 2024 ret |= handler(kvm, iterator.rmap, memslot, 2025 iterator.gfn, iterator.level, data); 2026 } 2027 } 2028 2029 return ret; 2030 } 2031 2032 static int kvm_handle_hva(struct kvm *kvm, unsigned long hva, 2033 unsigned long data, 2034 int (*handler)(struct kvm *kvm, 2035 struct kvm_rmap_head *rmap_head, 2036 struct kvm_memory_slot *slot, 2037 gfn_t gfn, int level, 2038 unsigned long data)) 2039 { 2040 return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler); 2041 } 2042 2043 int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end) 2044 { 2045 return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp); 2046 } 2047 2048 int kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte) 2049 { 2050 return kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp); 2051 } 2052 2053 static int kvm_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head, 2054 struct kvm_memory_slot *slot, gfn_t gfn, int level, 2055 unsigned long data) 2056 { 2057 u64 *sptep; 2058 struct rmap_iterator uninitialized_var(iter); 2059 int young = 0; 2060 2061 for_each_rmap_spte(rmap_head, &iter, sptep) 2062 young |= mmu_spte_age(sptep); 2063 2064 trace_kvm_age_page(gfn, level, slot, young); 2065 return young; 2066 } 2067 2068 static int kvm_test_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head, 2069 struct kvm_memory_slot *slot, gfn_t gfn, 2070 int level, unsigned long data) 2071 { 2072 u64 *sptep; 2073 struct rmap_iterator iter; 2074 2075 for_each_rmap_spte(rmap_head, &iter, sptep) 2076 if (is_accessed_spte(*sptep)) 2077 return 1; 2078 return 0; 2079 } 2080 2081 #define RMAP_RECYCLE_THRESHOLD 1000 2082 2083 static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn) 2084 { 2085 struct kvm_rmap_head *rmap_head; 2086 struct kvm_mmu_page *sp; 2087 2088 sp = page_header(__pa(spte)); 2089 2090 rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp); 2091 2092 kvm_unmap_rmapp(vcpu->kvm, rmap_head, NULL, gfn, sp->role.level, 0); 2093 kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn, 2094 KVM_PAGES_PER_HPAGE(sp->role.level)); 2095 } 2096 2097 int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end) 2098 { 2099 return kvm_handle_hva_range(kvm, start, end, 0, kvm_age_rmapp); 2100 } 2101 2102 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva) 2103 { 2104 return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp); 2105 } 2106 2107 #ifdef MMU_DEBUG 2108 static int is_empty_shadow_page(u64 *spt) 2109 { 2110 u64 *pos; 2111 u64 *end; 2112 2113 for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++) 2114 if (is_shadow_present_pte(*pos)) { 2115 printk(KERN_ERR "%s: %p %llx\n", __func__, 2116 pos, *pos); 2117 return 0; 2118 } 2119 return 1; 2120 } 2121 #endif 2122 2123 /* 2124 * This value is the sum of all of the kvm instances's 2125 * kvm->arch.n_used_mmu_pages values. We need a global, 2126 * aggregate version in order to make the slab shrinker 2127 * faster 2128 */ 2129 static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, unsigned long nr) 2130 { 2131 kvm->arch.n_used_mmu_pages += nr; 2132 percpu_counter_add(&kvm_total_used_mmu_pages, nr); 2133 } 2134 2135 static void kvm_mmu_free_page(struct kvm_mmu_page *sp) 2136 { 2137 MMU_WARN_ON(!is_empty_shadow_page(sp->spt)); 2138 hlist_del(&sp->hash_link); 2139 list_del(&sp->link); 2140 free_page((unsigned long)sp->spt); 2141 if (!sp->role.direct) 2142 free_page((unsigned long)sp->gfns); 2143 kmem_cache_free(mmu_page_header_cache, sp); 2144 } 2145 2146 static unsigned kvm_page_table_hashfn(gfn_t gfn) 2147 { 2148 return hash_64(gfn, KVM_MMU_HASH_SHIFT); 2149 } 2150 2151 static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu, 2152 struct kvm_mmu_page *sp, u64 *parent_pte) 2153 { 2154 if (!parent_pte) 2155 return; 2156 2157 pte_list_add(vcpu, parent_pte, &sp->parent_ptes); 2158 } 2159 2160 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp, 2161 u64 *parent_pte) 2162 { 2163 __pte_list_remove(parent_pte, &sp->parent_ptes); 2164 } 2165 2166 static void drop_parent_pte(struct kvm_mmu_page *sp, 2167 u64 *parent_pte) 2168 { 2169 mmu_page_remove_parent_pte(sp, parent_pte); 2170 mmu_spte_clear_no_track(parent_pte); 2171 } 2172 2173 static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu, int direct) 2174 { 2175 struct kvm_mmu_page *sp; 2176 2177 sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache); 2178 sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache); 2179 if (!direct) 2180 sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache); 2181 set_page_private(virt_to_page(sp->spt), (unsigned long)sp); 2182 2183 /* 2184 * active_mmu_pages must be a FIFO list, as kvm_zap_obsolete_pages() 2185 * depends on valid pages being added to the head of the list. See 2186 * comments in kvm_zap_obsolete_pages(). 2187 */ 2188 sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen; 2189 list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages); 2190 kvm_mod_used_mmu_pages(vcpu->kvm, +1); 2191 return sp; 2192 } 2193 2194 static void mark_unsync(u64 *spte); 2195 static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp) 2196 { 2197 u64 *sptep; 2198 struct rmap_iterator iter; 2199 2200 for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) { 2201 mark_unsync(sptep); 2202 } 2203 } 2204 2205 static void mark_unsync(u64 *spte) 2206 { 2207 struct kvm_mmu_page *sp; 2208 unsigned int index; 2209 2210 sp = page_header(__pa(spte)); 2211 index = spte - sp->spt; 2212 if (__test_and_set_bit(index, sp->unsync_child_bitmap)) 2213 return; 2214 if (sp->unsync_children++) 2215 return; 2216 kvm_mmu_mark_parents_unsync(sp); 2217 } 2218 2219 static int nonpaging_sync_page(struct kvm_vcpu *vcpu, 2220 struct kvm_mmu_page *sp) 2221 { 2222 return 0; 2223 } 2224 2225 static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva, hpa_t root) 2226 { 2227 } 2228 2229 static void nonpaging_update_pte(struct kvm_vcpu *vcpu, 2230 struct kvm_mmu_page *sp, u64 *spte, 2231 const void *pte) 2232 { 2233 WARN_ON(1); 2234 } 2235 2236 #define KVM_PAGE_ARRAY_NR 16 2237 2238 struct kvm_mmu_pages { 2239 struct mmu_page_and_offset { 2240 struct kvm_mmu_page *sp; 2241 unsigned int idx; 2242 } page[KVM_PAGE_ARRAY_NR]; 2243 unsigned int nr; 2244 }; 2245 2246 static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp, 2247 int idx) 2248 { 2249 int i; 2250 2251 if (sp->unsync) 2252 for (i=0; i < pvec->nr; i++) 2253 if (pvec->page[i].sp == sp) 2254 return 0; 2255 2256 pvec->page[pvec->nr].sp = sp; 2257 pvec->page[pvec->nr].idx = idx; 2258 pvec->nr++; 2259 return (pvec->nr == KVM_PAGE_ARRAY_NR); 2260 } 2261 2262 static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx) 2263 { 2264 --sp->unsync_children; 2265 WARN_ON((int)sp->unsync_children < 0); 2266 __clear_bit(idx, sp->unsync_child_bitmap); 2267 } 2268 2269 static int __mmu_unsync_walk(struct kvm_mmu_page *sp, 2270 struct kvm_mmu_pages *pvec) 2271 { 2272 int i, ret, nr_unsync_leaf = 0; 2273 2274 for_each_set_bit(i, sp->unsync_child_bitmap, 512) { 2275 struct kvm_mmu_page *child; 2276 u64 ent = sp->spt[i]; 2277 2278 if (!is_shadow_present_pte(ent) || is_large_pte(ent)) { 2279 clear_unsync_child_bit(sp, i); 2280 continue; 2281 } 2282 2283 child = page_header(ent & PT64_BASE_ADDR_MASK); 2284 2285 if (child->unsync_children) { 2286 if (mmu_pages_add(pvec, child, i)) 2287 return -ENOSPC; 2288 2289 ret = __mmu_unsync_walk(child, pvec); 2290 if (!ret) { 2291 clear_unsync_child_bit(sp, i); 2292 continue; 2293 } else if (ret > 0) { 2294 nr_unsync_leaf += ret; 2295 } else 2296 return ret; 2297 } else if (child->unsync) { 2298 nr_unsync_leaf++; 2299 if (mmu_pages_add(pvec, child, i)) 2300 return -ENOSPC; 2301 } else 2302 clear_unsync_child_bit(sp, i); 2303 } 2304 2305 return nr_unsync_leaf; 2306 } 2307 2308 #define INVALID_INDEX (-1) 2309 2310 static int mmu_unsync_walk(struct kvm_mmu_page *sp, 2311 struct kvm_mmu_pages *pvec) 2312 { 2313 pvec->nr = 0; 2314 if (!sp->unsync_children) 2315 return 0; 2316 2317 mmu_pages_add(pvec, sp, INVALID_INDEX); 2318 return __mmu_unsync_walk(sp, pvec); 2319 } 2320 2321 static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp) 2322 { 2323 WARN_ON(!sp->unsync); 2324 trace_kvm_mmu_sync_page(sp); 2325 sp->unsync = 0; 2326 --kvm->stat.mmu_unsync; 2327 } 2328 2329 static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp, 2330 struct list_head *invalid_list); 2331 static void kvm_mmu_commit_zap_page(struct kvm *kvm, 2332 struct list_head *invalid_list); 2333 2334 2335 #define for_each_valid_sp(_kvm, _sp, _gfn) \ 2336 hlist_for_each_entry(_sp, \ 2337 &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)], hash_link) \ 2338 if (is_obsolete_sp((_kvm), (_sp))) { \ 2339 } else 2340 2341 #define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn) \ 2342 for_each_valid_sp(_kvm, _sp, _gfn) \ 2343 if ((_sp)->gfn != (_gfn) || (_sp)->role.direct) {} else 2344 2345 static inline bool is_ept_sp(struct kvm_mmu_page *sp) 2346 { 2347 return sp->role.cr0_wp && sp->role.smap_andnot_wp; 2348 } 2349 2350 /* @sp->gfn should be write-protected at the call site */ 2351 static bool __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp, 2352 struct list_head *invalid_list) 2353 { 2354 if ((!is_ept_sp(sp) && sp->role.gpte_is_8_bytes != !!is_pae(vcpu)) || 2355 vcpu->arch.mmu->sync_page(vcpu, sp) == 0) { 2356 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list); 2357 return false; 2358 } 2359 2360 return true; 2361 } 2362 2363 static bool kvm_mmu_remote_flush_or_zap(struct kvm *kvm, 2364 struct list_head *invalid_list, 2365 bool remote_flush) 2366 { 2367 if (!remote_flush && list_empty(invalid_list)) 2368 return false; 2369 2370 if (!list_empty(invalid_list)) 2371 kvm_mmu_commit_zap_page(kvm, invalid_list); 2372 else 2373 kvm_flush_remote_tlbs(kvm); 2374 return true; 2375 } 2376 2377 static void kvm_mmu_flush_or_zap(struct kvm_vcpu *vcpu, 2378 struct list_head *invalid_list, 2379 bool remote_flush, bool local_flush) 2380 { 2381 if (kvm_mmu_remote_flush_or_zap(vcpu->kvm, invalid_list, remote_flush)) 2382 return; 2383 2384 if (local_flush) 2385 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu); 2386 } 2387 2388 #ifdef CONFIG_KVM_MMU_AUDIT 2389 #include "mmu_audit.c" 2390 #else 2391 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { } 2392 static void mmu_audit_disable(void) { } 2393 #endif 2394 2395 static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp) 2396 { 2397 return sp->role.invalid || 2398 unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen); 2399 } 2400 2401 static bool kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp, 2402 struct list_head *invalid_list) 2403 { 2404 kvm_unlink_unsync_page(vcpu->kvm, sp); 2405 return __kvm_sync_page(vcpu, sp, invalid_list); 2406 } 2407 2408 /* @gfn should be write-protected at the call site */ 2409 static bool kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn, 2410 struct list_head *invalid_list) 2411 { 2412 struct kvm_mmu_page *s; 2413 bool ret = false; 2414 2415 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) { 2416 if (!s->unsync) 2417 continue; 2418 2419 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL); 2420 ret |= kvm_sync_page(vcpu, s, invalid_list); 2421 } 2422 2423 return ret; 2424 } 2425 2426 struct mmu_page_path { 2427 struct kvm_mmu_page *parent[PT64_ROOT_MAX_LEVEL]; 2428 unsigned int idx[PT64_ROOT_MAX_LEVEL]; 2429 }; 2430 2431 #define for_each_sp(pvec, sp, parents, i) \ 2432 for (i = mmu_pages_first(&pvec, &parents); \ 2433 i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \ 2434 i = mmu_pages_next(&pvec, &parents, i)) 2435 2436 static int mmu_pages_next(struct kvm_mmu_pages *pvec, 2437 struct mmu_page_path *parents, 2438 int i) 2439 { 2440 int n; 2441 2442 for (n = i+1; n < pvec->nr; n++) { 2443 struct kvm_mmu_page *sp = pvec->page[n].sp; 2444 unsigned idx = pvec->page[n].idx; 2445 int level = sp->role.level; 2446 2447 parents->idx[level-1] = idx; 2448 if (level == PT_PAGE_TABLE_LEVEL) 2449 break; 2450 2451 parents->parent[level-2] = sp; 2452 } 2453 2454 return n; 2455 } 2456 2457 static int mmu_pages_first(struct kvm_mmu_pages *pvec, 2458 struct mmu_page_path *parents) 2459 { 2460 struct kvm_mmu_page *sp; 2461 int level; 2462 2463 if (pvec->nr == 0) 2464 return 0; 2465 2466 WARN_ON(pvec->page[0].idx != INVALID_INDEX); 2467 2468 sp = pvec->page[0].sp; 2469 level = sp->role.level; 2470 WARN_ON(level == PT_PAGE_TABLE_LEVEL); 2471 2472 parents->parent[level-2] = sp; 2473 2474 /* Also set up a sentinel. Further entries in pvec are all 2475 * children of sp, so this element is never overwritten. 2476 */ 2477 parents->parent[level-1] = NULL; 2478 return mmu_pages_next(pvec, parents, 0); 2479 } 2480 2481 static void mmu_pages_clear_parents(struct mmu_page_path *parents) 2482 { 2483 struct kvm_mmu_page *sp; 2484 unsigned int level = 0; 2485 2486 do { 2487 unsigned int idx = parents->idx[level]; 2488 sp = parents->parent[level]; 2489 if (!sp) 2490 return; 2491 2492 WARN_ON(idx == INVALID_INDEX); 2493 clear_unsync_child_bit(sp, idx); 2494 level++; 2495 } while (!sp->unsync_children); 2496 } 2497 2498 static void mmu_sync_children(struct kvm_vcpu *vcpu, 2499 struct kvm_mmu_page *parent) 2500 { 2501 int i; 2502 struct kvm_mmu_page *sp; 2503 struct mmu_page_path parents; 2504 struct kvm_mmu_pages pages; 2505 LIST_HEAD(invalid_list); 2506 bool flush = false; 2507 2508 while (mmu_unsync_walk(parent, &pages)) { 2509 bool protected = false; 2510 2511 for_each_sp(pages, sp, parents, i) 2512 protected |= rmap_write_protect(vcpu, sp->gfn); 2513 2514 if (protected) { 2515 kvm_flush_remote_tlbs(vcpu->kvm); 2516 flush = false; 2517 } 2518 2519 for_each_sp(pages, sp, parents, i) { 2520 flush |= kvm_sync_page(vcpu, sp, &invalid_list); 2521 mmu_pages_clear_parents(&parents); 2522 } 2523 if (need_resched() || spin_needbreak(&vcpu->kvm->mmu_lock)) { 2524 kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush); 2525 cond_resched_lock(&vcpu->kvm->mmu_lock); 2526 flush = false; 2527 } 2528 } 2529 2530 kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush); 2531 } 2532 2533 static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp) 2534 { 2535 atomic_set(&sp->write_flooding_count, 0); 2536 } 2537 2538 static void clear_sp_write_flooding_count(u64 *spte) 2539 { 2540 struct kvm_mmu_page *sp = page_header(__pa(spte)); 2541 2542 __clear_sp_write_flooding_count(sp); 2543 } 2544 2545 static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu, 2546 gfn_t gfn, 2547 gva_t gaddr, 2548 unsigned level, 2549 int direct, 2550 unsigned access) 2551 { 2552 union kvm_mmu_page_role role; 2553 unsigned quadrant; 2554 struct kvm_mmu_page *sp; 2555 bool need_sync = false; 2556 bool flush = false; 2557 int collisions = 0; 2558 LIST_HEAD(invalid_list); 2559 2560 role = vcpu->arch.mmu->mmu_role.base; 2561 role.level = level; 2562 role.direct = direct; 2563 if (role.direct) 2564 role.gpte_is_8_bytes = true; 2565 role.access = access; 2566 if (!vcpu->arch.mmu->direct_map 2567 && vcpu->arch.mmu->root_level <= PT32_ROOT_LEVEL) { 2568 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level)); 2569 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1; 2570 role.quadrant = quadrant; 2571 } 2572 for_each_valid_sp(vcpu->kvm, sp, gfn) { 2573 if (sp->gfn != gfn) { 2574 collisions++; 2575 continue; 2576 } 2577 2578 if (!need_sync && sp->unsync) 2579 need_sync = true; 2580 2581 if (sp->role.word != role.word) 2582 continue; 2583 2584 if (sp->unsync) { 2585 /* The page is good, but __kvm_sync_page might still end 2586 * up zapping it. If so, break in order to rebuild it. 2587 */ 2588 if (!__kvm_sync_page(vcpu, sp, &invalid_list)) 2589 break; 2590 2591 WARN_ON(!list_empty(&invalid_list)); 2592 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu); 2593 } 2594 2595 if (sp->unsync_children) 2596 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu); 2597 2598 __clear_sp_write_flooding_count(sp); 2599 trace_kvm_mmu_get_page(sp, false); 2600 goto out; 2601 } 2602 2603 ++vcpu->kvm->stat.mmu_cache_miss; 2604 2605 sp = kvm_mmu_alloc_page(vcpu, direct); 2606 2607 sp->gfn = gfn; 2608 sp->role = role; 2609 hlist_add_head(&sp->hash_link, 2610 &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]); 2611 if (!direct) { 2612 /* 2613 * we should do write protection before syncing pages 2614 * otherwise the content of the synced shadow page may 2615 * be inconsistent with guest page table. 2616 */ 2617 account_shadowed(vcpu->kvm, sp); 2618 if (level == PT_PAGE_TABLE_LEVEL && 2619 rmap_write_protect(vcpu, gfn)) 2620 kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn, 1); 2621 2622 if (level > PT_PAGE_TABLE_LEVEL && need_sync) 2623 flush |= kvm_sync_pages(vcpu, gfn, &invalid_list); 2624 } 2625 clear_page(sp->spt); 2626 trace_kvm_mmu_get_page(sp, true); 2627 2628 kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush); 2629 out: 2630 if (collisions > vcpu->kvm->stat.max_mmu_page_hash_collisions) 2631 vcpu->kvm->stat.max_mmu_page_hash_collisions = collisions; 2632 return sp; 2633 } 2634 2635 static void shadow_walk_init_using_root(struct kvm_shadow_walk_iterator *iterator, 2636 struct kvm_vcpu *vcpu, hpa_t root, 2637 u64 addr) 2638 { 2639 iterator->addr = addr; 2640 iterator->shadow_addr = root; 2641 iterator->level = vcpu->arch.mmu->shadow_root_level; 2642 2643 if (iterator->level == PT64_ROOT_4LEVEL && 2644 vcpu->arch.mmu->root_level < PT64_ROOT_4LEVEL && 2645 !vcpu->arch.mmu->direct_map) 2646 --iterator->level; 2647 2648 if (iterator->level == PT32E_ROOT_LEVEL) { 2649 /* 2650 * prev_root is currently only used for 64-bit hosts. So only 2651 * the active root_hpa is valid here. 2652 */ 2653 BUG_ON(root != vcpu->arch.mmu->root_hpa); 2654 2655 iterator->shadow_addr 2656 = vcpu->arch.mmu->pae_root[(addr >> 30) & 3]; 2657 iterator->shadow_addr &= PT64_BASE_ADDR_MASK; 2658 --iterator->level; 2659 if (!iterator->shadow_addr) 2660 iterator->level = 0; 2661 } 2662 } 2663 2664 static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator, 2665 struct kvm_vcpu *vcpu, u64 addr) 2666 { 2667 shadow_walk_init_using_root(iterator, vcpu, vcpu->arch.mmu->root_hpa, 2668 addr); 2669 } 2670 2671 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator) 2672 { 2673 if (iterator->level < PT_PAGE_TABLE_LEVEL) 2674 return false; 2675 2676 iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level); 2677 iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index; 2678 return true; 2679 } 2680 2681 static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator, 2682 u64 spte) 2683 { 2684 if (is_last_spte(spte, iterator->level)) { 2685 iterator->level = 0; 2686 return; 2687 } 2688 2689 iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK; 2690 --iterator->level; 2691 } 2692 2693 static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator) 2694 { 2695 __shadow_walk_next(iterator, *iterator->sptep); 2696 } 2697 2698 static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep, 2699 struct kvm_mmu_page *sp) 2700 { 2701 u64 spte; 2702 2703 BUILD_BUG_ON(VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK); 2704 2705 spte = __pa(sp->spt) | shadow_present_mask | PT_WRITABLE_MASK | 2706 shadow_user_mask | shadow_x_mask | shadow_me_mask; 2707 2708 if (sp_ad_disabled(sp)) 2709 spte |= SPTE_AD_DISABLED_MASK; 2710 else 2711 spte |= shadow_accessed_mask; 2712 2713 mmu_spte_set(sptep, spte); 2714 2715 mmu_page_add_parent_pte(vcpu, sp, sptep); 2716 2717 if (sp->unsync_children || sp->unsync) 2718 mark_unsync(sptep); 2719 } 2720 2721 static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep, 2722 unsigned direct_access) 2723 { 2724 if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) { 2725 struct kvm_mmu_page *child; 2726 2727 /* 2728 * For the direct sp, if the guest pte's dirty bit 2729 * changed form clean to dirty, it will corrupt the 2730 * sp's access: allow writable in the read-only sp, 2731 * so we should update the spte at this point to get 2732 * a new sp with the correct access. 2733 */ 2734 child = page_header(*sptep & PT64_BASE_ADDR_MASK); 2735 if (child->role.access == direct_access) 2736 return; 2737 2738 drop_parent_pte(child, sptep); 2739 kvm_flush_remote_tlbs_with_address(vcpu->kvm, child->gfn, 1); 2740 } 2741 } 2742 2743 static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp, 2744 u64 *spte) 2745 { 2746 u64 pte; 2747 struct kvm_mmu_page *child; 2748 2749 pte = *spte; 2750 if (is_shadow_present_pte(pte)) { 2751 if (is_last_spte(pte, sp->role.level)) { 2752 drop_spte(kvm, spte); 2753 if (is_large_pte(pte)) 2754 --kvm->stat.lpages; 2755 } else { 2756 child = page_header(pte & PT64_BASE_ADDR_MASK); 2757 drop_parent_pte(child, spte); 2758 } 2759 return true; 2760 } 2761 2762 if (is_mmio_spte(pte)) 2763 mmu_spte_clear_no_track(spte); 2764 2765 return false; 2766 } 2767 2768 static void kvm_mmu_page_unlink_children(struct kvm *kvm, 2769 struct kvm_mmu_page *sp) 2770 { 2771 unsigned i; 2772 2773 for (i = 0; i < PT64_ENT_PER_PAGE; ++i) 2774 mmu_page_zap_pte(kvm, sp, sp->spt + i); 2775 } 2776 2777 static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp) 2778 { 2779 u64 *sptep; 2780 struct rmap_iterator iter; 2781 2782 while ((sptep = rmap_get_first(&sp->parent_ptes, &iter))) 2783 drop_parent_pte(sp, sptep); 2784 } 2785 2786 static int mmu_zap_unsync_children(struct kvm *kvm, 2787 struct kvm_mmu_page *parent, 2788 struct list_head *invalid_list) 2789 { 2790 int i, zapped = 0; 2791 struct mmu_page_path parents; 2792 struct kvm_mmu_pages pages; 2793 2794 if (parent->role.level == PT_PAGE_TABLE_LEVEL) 2795 return 0; 2796 2797 while (mmu_unsync_walk(parent, &pages)) { 2798 struct kvm_mmu_page *sp; 2799 2800 for_each_sp(pages, sp, parents, i) { 2801 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list); 2802 mmu_pages_clear_parents(&parents); 2803 zapped++; 2804 } 2805 } 2806 2807 return zapped; 2808 } 2809 2810 static bool __kvm_mmu_prepare_zap_page(struct kvm *kvm, 2811 struct kvm_mmu_page *sp, 2812 struct list_head *invalid_list, 2813 int *nr_zapped) 2814 { 2815 bool list_unstable; 2816 2817 trace_kvm_mmu_prepare_zap_page(sp); 2818 ++kvm->stat.mmu_shadow_zapped; 2819 *nr_zapped = mmu_zap_unsync_children(kvm, sp, invalid_list); 2820 kvm_mmu_page_unlink_children(kvm, sp); 2821 kvm_mmu_unlink_parents(kvm, sp); 2822 2823 /* Zapping children means active_mmu_pages has become unstable. */ 2824 list_unstable = *nr_zapped; 2825 2826 if (!sp->role.invalid && !sp->role.direct) 2827 unaccount_shadowed(kvm, sp); 2828 2829 if (sp->unsync) 2830 kvm_unlink_unsync_page(kvm, sp); 2831 if (!sp->root_count) { 2832 /* Count self */ 2833 (*nr_zapped)++; 2834 list_move(&sp->link, invalid_list); 2835 kvm_mod_used_mmu_pages(kvm, -1); 2836 } else { 2837 list_move(&sp->link, &kvm->arch.active_mmu_pages); 2838 2839 /* 2840 * Obsolete pages cannot be used on any vCPUs, see the comment 2841 * in kvm_mmu_zap_all_fast(). Note, is_obsolete_sp() also 2842 * treats invalid shadow pages as being obsolete. 2843 */ 2844 if (!is_obsolete_sp(kvm, sp)) 2845 kvm_reload_remote_mmus(kvm); 2846 } 2847 2848 if (sp->lpage_disallowed) 2849 unaccount_huge_nx_page(kvm, sp); 2850 2851 sp->role.invalid = 1; 2852 return list_unstable; 2853 } 2854 2855 static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp, 2856 struct list_head *invalid_list) 2857 { 2858 int nr_zapped; 2859 2860 __kvm_mmu_prepare_zap_page(kvm, sp, invalid_list, &nr_zapped); 2861 return nr_zapped; 2862 } 2863 2864 static void kvm_mmu_commit_zap_page(struct kvm *kvm, 2865 struct list_head *invalid_list) 2866 { 2867 struct kvm_mmu_page *sp, *nsp; 2868 2869 if (list_empty(invalid_list)) 2870 return; 2871 2872 /* 2873 * We need to make sure everyone sees our modifications to 2874 * the page tables and see changes to vcpu->mode here. The barrier 2875 * in the kvm_flush_remote_tlbs() achieves this. This pairs 2876 * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end. 2877 * 2878 * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit 2879 * guest mode and/or lockless shadow page table walks. 2880 */ 2881 kvm_flush_remote_tlbs(kvm); 2882 2883 list_for_each_entry_safe(sp, nsp, invalid_list, link) { 2884 WARN_ON(!sp->role.invalid || sp->root_count); 2885 kvm_mmu_free_page(sp); 2886 } 2887 } 2888 2889 static bool prepare_zap_oldest_mmu_page(struct kvm *kvm, 2890 struct list_head *invalid_list) 2891 { 2892 struct kvm_mmu_page *sp; 2893 2894 if (list_empty(&kvm->arch.active_mmu_pages)) 2895 return false; 2896 2897 sp = list_last_entry(&kvm->arch.active_mmu_pages, 2898 struct kvm_mmu_page, link); 2899 return kvm_mmu_prepare_zap_page(kvm, sp, invalid_list); 2900 } 2901 2902 /* 2903 * Changing the number of mmu pages allocated to the vm 2904 * Note: if goal_nr_mmu_pages is too small, you will get dead lock 2905 */ 2906 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long goal_nr_mmu_pages) 2907 { 2908 LIST_HEAD(invalid_list); 2909 2910 spin_lock(&kvm->mmu_lock); 2911 2912 if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) { 2913 /* Need to free some mmu pages to achieve the goal. */ 2914 while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) 2915 if (!prepare_zap_oldest_mmu_page(kvm, &invalid_list)) 2916 break; 2917 2918 kvm_mmu_commit_zap_page(kvm, &invalid_list); 2919 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages; 2920 } 2921 2922 kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages; 2923 2924 spin_unlock(&kvm->mmu_lock); 2925 } 2926 2927 int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn) 2928 { 2929 struct kvm_mmu_page *sp; 2930 LIST_HEAD(invalid_list); 2931 int r; 2932 2933 pgprintk("%s: looking for gfn %llx\n", __func__, gfn); 2934 r = 0; 2935 spin_lock(&kvm->mmu_lock); 2936 for_each_gfn_indirect_valid_sp(kvm, sp, gfn) { 2937 pgprintk("%s: gfn %llx role %x\n", __func__, gfn, 2938 sp->role.word); 2939 r = 1; 2940 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list); 2941 } 2942 kvm_mmu_commit_zap_page(kvm, &invalid_list); 2943 spin_unlock(&kvm->mmu_lock); 2944 2945 return r; 2946 } 2947 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page); 2948 2949 static void kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp) 2950 { 2951 trace_kvm_mmu_unsync_page(sp); 2952 ++vcpu->kvm->stat.mmu_unsync; 2953 sp->unsync = 1; 2954 2955 kvm_mmu_mark_parents_unsync(sp); 2956 } 2957 2958 static bool mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn, 2959 bool can_unsync) 2960 { 2961 struct kvm_mmu_page *sp; 2962 2963 if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE)) 2964 return true; 2965 2966 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) { 2967 if (!can_unsync) 2968 return true; 2969 2970 if (sp->unsync) 2971 continue; 2972 2973 WARN_ON(sp->role.level != PT_PAGE_TABLE_LEVEL); 2974 kvm_unsync_page(vcpu, sp); 2975 } 2976 2977 /* 2978 * We need to ensure that the marking of unsync pages is visible 2979 * before the SPTE is updated to allow writes because 2980 * kvm_mmu_sync_roots() checks the unsync flags without holding 2981 * the MMU lock and so can race with this. If the SPTE was updated 2982 * before the page had been marked as unsync-ed, something like the 2983 * following could happen: 2984 * 2985 * CPU 1 CPU 2 2986 * --------------------------------------------------------------------- 2987 * 1.2 Host updates SPTE 2988 * to be writable 2989 * 2.1 Guest writes a GPTE for GVA X. 2990 * (GPTE being in the guest page table shadowed 2991 * by the SP from CPU 1.) 2992 * This reads SPTE during the page table walk. 2993 * Since SPTE.W is read as 1, there is no 2994 * fault. 2995 * 2996 * 2.2 Guest issues TLB flush. 2997 * That causes a VM Exit. 2998 * 2999 * 2.3 kvm_mmu_sync_pages() reads sp->unsync. 3000 * Since it is false, so it just returns. 3001 * 3002 * 2.4 Guest accesses GVA X. 3003 * Since the mapping in the SP was not updated, 3004 * so the old mapping for GVA X incorrectly 3005 * gets used. 3006 * 1.1 Host marks SP 3007 * as unsync 3008 * (sp->unsync = true) 3009 * 3010 * The write barrier below ensures that 1.1 happens before 1.2 and thus 3011 * the situation in 2.4 does not arise. The implicit barrier in 2.2 3012 * pairs with this write barrier. 3013 */ 3014 smp_wmb(); 3015 3016 return false; 3017 } 3018 3019 static bool kvm_is_mmio_pfn(kvm_pfn_t pfn) 3020 { 3021 if (pfn_valid(pfn)) 3022 return !is_zero_pfn(pfn) && PageReserved(pfn_to_page(pfn)) && 3023 /* 3024 * Some reserved pages, such as those from NVDIMM 3025 * DAX devices, are not for MMIO, and can be mapped 3026 * with cached memory type for better performance. 3027 * However, the above check misconceives those pages 3028 * as MMIO, and results in KVM mapping them with UC 3029 * memory type, which would hurt the performance. 3030 * Therefore, we check the host memory type in addition 3031 * and only treat UC/UC-/WC pages as MMIO. 3032 */ 3033 (!pat_enabled() || pat_pfn_immune_to_uc_mtrr(pfn)); 3034 3035 return !e820__mapped_raw_any(pfn_to_hpa(pfn), 3036 pfn_to_hpa(pfn + 1) - 1, 3037 E820_TYPE_RAM); 3038 } 3039 3040 /* Bits which may be returned by set_spte() */ 3041 #define SET_SPTE_WRITE_PROTECTED_PT BIT(0) 3042 #define SET_SPTE_NEED_REMOTE_TLB_FLUSH BIT(1) 3043 3044 static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep, 3045 unsigned pte_access, int level, 3046 gfn_t gfn, kvm_pfn_t pfn, bool speculative, 3047 bool can_unsync, bool host_writable) 3048 { 3049 u64 spte = 0; 3050 int ret = 0; 3051 struct kvm_mmu_page *sp; 3052 3053 if (set_mmio_spte(vcpu, sptep, gfn, pfn, pte_access)) 3054 return 0; 3055 3056 sp = page_header(__pa(sptep)); 3057 if (sp_ad_disabled(sp)) 3058 spte |= SPTE_AD_DISABLED_MASK; 3059 else if (kvm_vcpu_ad_need_write_protect(vcpu)) 3060 spte |= SPTE_AD_WRPROT_ONLY_MASK; 3061 3062 /* 3063 * For the EPT case, shadow_present_mask is 0 if hardware 3064 * supports exec-only page table entries. In that case, 3065 * ACC_USER_MASK and shadow_user_mask are used to represent 3066 * read access. See FNAME(gpte_access) in paging_tmpl.h. 3067 */ 3068 spte |= shadow_present_mask; 3069 if (!speculative) 3070 spte |= spte_shadow_accessed_mask(spte); 3071 3072 if (level > PT_PAGE_TABLE_LEVEL && (pte_access & ACC_EXEC_MASK) && 3073 is_nx_huge_page_enabled()) { 3074 pte_access &= ~ACC_EXEC_MASK; 3075 } 3076 3077 if (pte_access & ACC_EXEC_MASK) 3078 spte |= shadow_x_mask; 3079 else 3080 spte |= shadow_nx_mask; 3081 3082 if (pte_access & ACC_USER_MASK) 3083 spte |= shadow_user_mask; 3084 3085 if (level > PT_PAGE_TABLE_LEVEL) 3086 spte |= PT_PAGE_SIZE_MASK; 3087 if (tdp_enabled) 3088 spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn, 3089 kvm_is_mmio_pfn(pfn)); 3090 3091 if (host_writable) 3092 spte |= SPTE_HOST_WRITEABLE; 3093 else 3094 pte_access &= ~ACC_WRITE_MASK; 3095 3096 if (!kvm_is_mmio_pfn(pfn)) 3097 spte |= shadow_me_mask; 3098 3099 spte |= (u64)pfn << PAGE_SHIFT; 3100 3101 if (pte_access & ACC_WRITE_MASK) { 3102 3103 /* 3104 * Other vcpu creates new sp in the window between 3105 * mapping_level() and acquiring mmu-lock. We can 3106 * allow guest to retry the access, the mapping can 3107 * be fixed if guest refault. 3108 */ 3109 if (level > PT_PAGE_TABLE_LEVEL && 3110 mmu_gfn_lpage_is_disallowed(vcpu, gfn, level)) 3111 goto done; 3112 3113 spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE; 3114 3115 /* 3116 * Optimization: for pte sync, if spte was writable the hash 3117 * lookup is unnecessary (and expensive). Write protection 3118 * is responsibility of mmu_get_page / kvm_sync_page. 3119 * Same reasoning can be applied to dirty page accounting. 3120 */ 3121 if (!can_unsync && is_writable_pte(*sptep)) 3122 goto set_pte; 3123 3124 if (mmu_need_write_protect(vcpu, gfn, can_unsync)) { 3125 pgprintk("%s: found shadow page for %llx, marking ro\n", 3126 __func__, gfn); 3127 ret |= SET_SPTE_WRITE_PROTECTED_PT; 3128 pte_access &= ~ACC_WRITE_MASK; 3129 spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE); 3130 } 3131 } 3132 3133 if (pte_access & ACC_WRITE_MASK) { 3134 kvm_vcpu_mark_page_dirty(vcpu, gfn); 3135 spte |= spte_shadow_dirty_mask(spte); 3136 } 3137 3138 if (speculative) 3139 spte = mark_spte_for_access_track(spte); 3140 3141 set_pte: 3142 if (mmu_spte_update(sptep, spte)) 3143 ret |= SET_SPTE_NEED_REMOTE_TLB_FLUSH; 3144 done: 3145 return ret; 3146 } 3147 3148 static int mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep, unsigned pte_access, 3149 int write_fault, int level, gfn_t gfn, kvm_pfn_t pfn, 3150 bool speculative, bool host_writable) 3151 { 3152 int was_rmapped = 0; 3153 int rmap_count; 3154 int set_spte_ret; 3155 int ret = RET_PF_RETRY; 3156 bool flush = false; 3157 3158 pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__, 3159 *sptep, write_fault, gfn); 3160 3161 if (is_shadow_present_pte(*sptep)) { 3162 /* 3163 * If we overwrite a PTE page pointer with a 2MB PMD, unlink 3164 * the parent of the now unreachable PTE. 3165 */ 3166 if (level > PT_PAGE_TABLE_LEVEL && 3167 !is_large_pte(*sptep)) { 3168 struct kvm_mmu_page *child; 3169 u64 pte = *sptep; 3170 3171 child = page_header(pte & PT64_BASE_ADDR_MASK); 3172 drop_parent_pte(child, sptep); 3173 flush = true; 3174 } else if (pfn != spte_to_pfn(*sptep)) { 3175 pgprintk("hfn old %llx new %llx\n", 3176 spte_to_pfn(*sptep), pfn); 3177 drop_spte(vcpu->kvm, sptep); 3178 flush = true; 3179 } else 3180 was_rmapped = 1; 3181 } 3182 3183 set_spte_ret = set_spte(vcpu, sptep, pte_access, level, gfn, pfn, 3184 speculative, true, host_writable); 3185 if (set_spte_ret & SET_SPTE_WRITE_PROTECTED_PT) { 3186 if (write_fault) 3187 ret = RET_PF_EMULATE; 3188 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu); 3189 } 3190 3191 if (set_spte_ret & SET_SPTE_NEED_REMOTE_TLB_FLUSH || flush) 3192 kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn, 3193 KVM_PAGES_PER_HPAGE(level)); 3194 3195 if (unlikely(is_mmio_spte(*sptep))) 3196 ret = RET_PF_EMULATE; 3197 3198 pgprintk("%s: setting spte %llx\n", __func__, *sptep); 3199 trace_kvm_mmu_set_spte(level, gfn, sptep); 3200 if (!was_rmapped && is_large_pte(*sptep)) 3201 ++vcpu->kvm->stat.lpages; 3202 3203 if (is_shadow_present_pte(*sptep)) { 3204 if (!was_rmapped) { 3205 rmap_count = rmap_add(vcpu, sptep, gfn); 3206 if (rmap_count > RMAP_RECYCLE_THRESHOLD) 3207 rmap_recycle(vcpu, sptep, gfn); 3208 } 3209 } 3210 3211 return ret; 3212 } 3213 3214 static kvm_pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn, 3215 bool no_dirty_log) 3216 { 3217 struct kvm_memory_slot *slot; 3218 3219 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log); 3220 if (!slot) 3221 return KVM_PFN_ERR_FAULT; 3222 3223 return gfn_to_pfn_memslot_atomic(slot, gfn); 3224 } 3225 3226 static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu, 3227 struct kvm_mmu_page *sp, 3228 u64 *start, u64 *end) 3229 { 3230 struct page *pages[PTE_PREFETCH_NUM]; 3231 struct kvm_memory_slot *slot; 3232 unsigned access = sp->role.access; 3233 int i, ret; 3234 gfn_t gfn; 3235 3236 gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt); 3237 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK); 3238 if (!slot) 3239 return -1; 3240 3241 ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start); 3242 if (ret <= 0) 3243 return -1; 3244 3245 for (i = 0; i < ret; i++, gfn++, start++) { 3246 mmu_set_spte(vcpu, start, access, 0, sp->role.level, gfn, 3247 page_to_pfn(pages[i]), true, true); 3248 put_page(pages[i]); 3249 } 3250 3251 return 0; 3252 } 3253 3254 static void __direct_pte_prefetch(struct kvm_vcpu *vcpu, 3255 struct kvm_mmu_page *sp, u64 *sptep) 3256 { 3257 u64 *spte, *start = NULL; 3258 int i; 3259 3260 WARN_ON(!sp->role.direct); 3261 3262 i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1); 3263 spte = sp->spt + i; 3264 3265 for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) { 3266 if (is_shadow_present_pte(*spte) || spte == sptep) { 3267 if (!start) 3268 continue; 3269 if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0) 3270 break; 3271 start = NULL; 3272 } else if (!start) 3273 start = spte; 3274 } 3275 } 3276 3277 static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep) 3278 { 3279 struct kvm_mmu_page *sp; 3280 3281 sp = page_header(__pa(sptep)); 3282 3283 /* 3284 * Without accessed bits, there's no way to distinguish between 3285 * actually accessed translations and prefetched, so disable pte 3286 * prefetch if accessed bits aren't available. 3287 */ 3288 if (sp_ad_disabled(sp)) 3289 return; 3290 3291 if (sp->role.level > PT_PAGE_TABLE_LEVEL) 3292 return; 3293 3294 __direct_pte_prefetch(vcpu, sp, sptep); 3295 } 3296 3297 static void disallowed_hugepage_adjust(struct kvm_shadow_walk_iterator it, 3298 gfn_t gfn, kvm_pfn_t *pfnp, int *levelp) 3299 { 3300 int level = *levelp; 3301 u64 spte = *it.sptep; 3302 3303 if (it.level == level && level > PT_PAGE_TABLE_LEVEL && 3304 is_nx_huge_page_enabled() && 3305 is_shadow_present_pte(spte) && 3306 !is_large_pte(spte)) { 3307 /* 3308 * A small SPTE exists for this pfn, but FNAME(fetch) 3309 * and __direct_map would like to create a large PTE 3310 * instead: just force them to go down another level, 3311 * patching back for them into pfn the next 9 bits of 3312 * the address. 3313 */ 3314 u64 page_mask = KVM_PAGES_PER_HPAGE(level) - KVM_PAGES_PER_HPAGE(level - 1); 3315 *pfnp |= gfn & page_mask; 3316 (*levelp)--; 3317 } 3318 } 3319 3320 static int __direct_map(struct kvm_vcpu *vcpu, gpa_t gpa, int write, 3321 int map_writable, int level, kvm_pfn_t pfn, 3322 bool prefault, bool lpage_disallowed) 3323 { 3324 struct kvm_shadow_walk_iterator it; 3325 struct kvm_mmu_page *sp; 3326 int ret; 3327 gfn_t gfn = gpa >> PAGE_SHIFT; 3328 gfn_t base_gfn = gfn; 3329 3330 if (!VALID_PAGE(vcpu->arch.mmu->root_hpa)) 3331 return RET_PF_RETRY; 3332 3333 trace_kvm_mmu_spte_requested(gpa, level, pfn); 3334 for_each_shadow_entry(vcpu, gpa, it) { 3335 /* 3336 * We cannot overwrite existing page tables with an NX 3337 * large page, as the leaf could be executable. 3338 */ 3339 disallowed_hugepage_adjust(it, gfn, &pfn, &level); 3340 3341 base_gfn = gfn & ~(KVM_PAGES_PER_HPAGE(it.level) - 1); 3342 if (it.level == level) 3343 break; 3344 3345 drop_large_spte(vcpu, it.sptep); 3346 if (!is_shadow_present_pte(*it.sptep)) { 3347 sp = kvm_mmu_get_page(vcpu, base_gfn, it.addr, 3348 it.level - 1, true, ACC_ALL); 3349 3350 link_shadow_page(vcpu, it.sptep, sp); 3351 if (lpage_disallowed) 3352 account_huge_nx_page(vcpu->kvm, sp); 3353 } 3354 } 3355 3356 ret = mmu_set_spte(vcpu, it.sptep, ACC_ALL, 3357 write, level, base_gfn, pfn, prefault, 3358 map_writable); 3359 direct_pte_prefetch(vcpu, it.sptep); 3360 ++vcpu->stat.pf_fixed; 3361 return ret; 3362 } 3363 3364 static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk) 3365 { 3366 send_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, PAGE_SHIFT, tsk); 3367 } 3368 3369 static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, kvm_pfn_t pfn) 3370 { 3371 /* 3372 * Do not cache the mmio info caused by writing the readonly gfn 3373 * into the spte otherwise read access on readonly gfn also can 3374 * caused mmio page fault and treat it as mmio access. 3375 */ 3376 if (pfn == KVM_PFN_ERR_RO_FAULT) 3377 return RET_PF_EMULATE; 3378 3379 if (pfn == KVM_PFN_ERR_HWPOISON) { 3380 kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current); 3381 return RET_PF_RETRY; 3382 } 3383 3384 return -EFAULT; 3385 } 3386 3387 static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu, 3388 gfn_t gfn, kvm_pfn_t *pfnp, 3389 int *levelp) 3390 { 3391 kvm_pfn_t pfn = *pfnp; 3392 int level = *levelp; 3393 3394 /* 3395 * Check if it's a transparent hugepage. If this would be an 3396 * hugetlbfs page, level wouldn't be set to 3397 * PT_PAGE_TABLE_LEVEL and there would be no adjustment done 3398 * here. 3399 */ 3400 if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn) && 3401 !kvm_is_zone_device_pfn(pfn) && level == PT_PAGE_TABLE_LEVEL && 3402 PageTransCompoundMap(pfn_to_page(pfn)) && 3403 !mmu_gfn_lpage_is_disallowed(vcpu, gfn, PT_DIRECTORY_LEVEL)) { 3404 unsigned long mask; 3405 /* 3406 * mmu_notifier_retry was successful and we hold the 3407 * mmu_lock here, so the pmd can't become splitting 3408 * from under us, and in turn 3409 * __split_huge_page_refcount() can't run from under 3410 * us and we can safely transfer the refcount from 3411 * PG_tail to PG_head as we switch the pfn to tail to 3412 * head. 3413 */ 3414 *levelp = level = PT_DIRECTORY_LEVEL; 3415 mask = KVM_PAGES_PER_HPAGE(level) - 1; 3416 VM_BUG_ON((gfn & mask) != (pfn & mask)); 3417 if (pfn & mask) { 3418 kvm_release_pfn_clean(pfn); 3419 pfn &= ~mask; 3420 kvm_get_pfn(pfn); 3421 *pfnp = pfn; 3422 } 3423 } 3424 } 3425 3426 static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn, 3427 kvm_pfn_t pfn, unsigned access, int *ret_val) 3428 { 3429 /* The pfn is invalid, report the error! */ 3430 if (unlikely(is_error_pfn(pfn))) { 3431 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn); 3432 return true; 3433 } 3434 3435 if (unlikely(is_noslot_pfn(pfn))) 3436 vcpu_cache_mmio_info(vcpu, gva, gfn, 3437 access & shadow_mmio_access_mask); 3438 3439 return false; 3440 } 3441 3442 static bool page_fault_can_be_fast(u32 error_code) 3443 { 3444 /* 3445 * Do not fix the mmio spte with invalid generation number which 3446 * need to be updated by slow page fault path. 3447 */ 3448 if (unlikely(error_code & PFERR_RSVD_MASK)) 3449 return false; 3450 3451 /* See if the page fault is due to an NX violation */ 3452 if (unlikely(((error_code & (PFERR_FETCH_MASK | PFERR_PRESENT_MASK)) 3453 == (PFERR_FETCH_MASK | PFERR_PRESENT_MASK)))) 3454 return false; 3455 3456 /* 3457 * #PF can be fast if: 3458 * 1. The shadow page table entry is not present, which could mean that 3459 * the fault is potentially caused by access tracking (if enabled). 3460 * 2. The shadow page table entry is present and the fault 3461 * is caused by write-protect, that means we just need change the W 3462 * bit of the spte which can be done out of mmu-lock. 3463 * 3464 * However, if access tracking is disabled we know that a non-present 3465 * page must be a genuine page fault where we have to create a new SPTE. 3466 * So, if access tracking is disabled, we return true only for write 3467 * accesses to a present page. 3468 */ 3469 3470 return shadow_acc_track_mask != 0 || 3471 ((error_code & (PFERR_WRITE_MASK | PFERR_PRESENT_MASK)) 3472 == (PFERR_WRITE_MASK | PFERR_PRESENT_MASK)); 3473 } 3474 3475 /* 3476 * Returns true if the SPTE was fixed successfully. Otherwise, 3477 * someone else modified the SPTE from its original value. 3478 */ 3479 static bool 3480 fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp, 3481 u64 *sptep, u64 old_spte, u64 new_spte) 3482 { 3483 gfn_t gfn; 3484 3485 WARN_ON(!sp->role.direct); 3486 3487 /* 3488 * Theoretically we could also set dirty bit (and flush TLB) here in 3489 * order to eliminate unnecessary PML logging. See comments in 3490 * set_spte. But fast_page_fault is very unlikely to happen with PML 3491 * enabled, so we do not do this. This might result in the same GPA 3492 * to be logged in PML buffer again when the write really happens, and 3493 * eventually to be called by mark_page_dirty twice. But it's also no 3494 * harm. This also avoids the TLB flush needed after setting dirty bit 3495 * so non-PML cases won't be impacted. 3496 * 3497 * Compare with set_spte where instead shadow_dirty_mask is set. 3498 */ 3499 if (cmpxchg64(sptep, old_spte, new_spte) != old_spte) 3500 return false; 3501 3502 if (is_writable_pte(new_spte) && !is_writable_pte(old_spte)) { 3503 /* 3504 * The gfn of direct spte is stable since it is 3505 * calculated by sp->gfn. 3506 */ 3507 gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt); 3508 kvm_vcpu_mark_page_dirty(vcpu, gfn); 3509 } 3510 3511 return true; 3512 } 3513 3514 static bool is_access_allowed(u32 fault_err_code, u64 spte) 3515 { 3516 if (fault_err_code & PFERR_FETCH_MASK) 3517 return is_executable_pte(spte); 3518 3519 if (fault_err_code & PFERR_WRITE_MASK) 3520 return is_writable_pte(spte); 3521 3522 /* Fault was on Read access */ 3523 return spte & PT_PRESENT_MASK; 3524 } 3525 3526 /* 3527 * Return value: 3528 * - true: let the vcpu to access on the same address again. 3529 * - false: let the real page fault path to fix it. 3530 */ 3531 static bool fast_page_fault(struct kvm_vcpu *vcpu, gva_t gva, int level, 3532 u32 error_code) 3533 { 3534 struct kvm_shadow_walk_iterator iterator; 3535 struct kvm_mmu_page *sp; 3536 bool fault_handled = false; 3537 u64 spte = 0ull; 3538 uint retry_count = 0; 3539 3540 if (!VALID_PAGE(vcpu->arch.mmu->root_hpa)) 3541 return false; 3542 3543 if (!page_fault_can_be_fast(error_code)) 3544 return false; 3545 3546 walk_shadow_page_lockless_begin(vcpu); 3547 3548 do { 3549 u64 new_spte; 3550 3551 for_each_shadow_entry_lockless(vcpu, gva, iterator, spte) 3552 if (!is_shadow_present_pte(spte) || 3553 iterator.level < level) 3554 break; 3555 3556 sp = page_header(__pa(iterator.sptep)); 3557 if (!is_last_spte(spte, sp->role.level)) 3558 break; 3559 3560 /* 3561 * Check whether the memory access that caused the fault would 3562 * still cause it if it were to be performed right now. If not, 3563 * then this is a spurious fault caused by TLB lazily flushed, 3564 * or some other CPU has already fixed the PTE after the 3565 * current CPU took the fault. 3566 * 3567 * Need not check the access of upper level table entries since 3568 * they are always ACC_ALL. 3569 */ 3570 if (is_access_allowed(error_code, spte)) { 3571 fault_handled = true; 3572 break; 3573 } 3574 3575 new_spte = spte; 3576 3577 if (is_access_track_spte(spte)) 3578 new_spte = restore_acc_track_spte(new_spte); 3579 3580 /* 3581 * Currently, to simplify the code, write-protection can 3582 * be removed in the fast path only if the SPTE was 3583 * write-protected for dirty-logging or access tracking. 3584 */ 3585 if ((error_code & PFERR_WRITE_MASK) && 3586 spte_can_locklessly_be_made_writable(spte)) 3587 { 3588 new_spte |= PT_WRITABLE_MASK; 3589 3590 /* 3591 * Do not fix write-permission on the large spte. Since 3592 * we only dirty the first page into the dirty-bitmap in 3593 * fast_pf_fix_direct_spte(), other pages are missed 3594 * if its slot has dirty logging enabled. 3595 * 3596 * Instead, we let the slow page fault path create a 3597 * normal spte to fix the access. 3598 * 3599 * See the comments in kvm_arch_commit_memory_region(). 3600 */ 3601 if (sp->role.level > PT_PAGE_TABLE_LEVEL) 3602 break; 3603 } 3604 3605 /* Verify that the fault can be handled in the fast path */ 3606 if (new_spte == spte || 3607 !is_access_allowed(error_code, new_spte)) 3608 break; 3609 3610 /* 3611 * Currently, fast page fault only works for direct mapping 3612 * since the gfn is not stable for indirect shadow page. See 3613 * Documentation/virt/kvm/locking.txt to get more detail. 3614 */ 3615 fault_handled = fast_pf_fix_direct_spte(vcpu, sp, 3616 iterator.sptep, spte, 3617 new_spte); 3618 if (fault_handled) 3619 break; 3620 3621 if (++retry_count > 4) { 3622 printk_once(KERN_WARNING 3623 "kvm: Fast #PF retrying more than 4 times.\n"); 3624 break; 3625 } 3626 3627 } while (true); 3628 3629 trace_fast_page_fault(vcpu, gva, error_code, iterator.sptep, 3630 spte, fault_handled); 3631 walk_shadow_page_lockless_end(vcpu); 3632 3633 return fault_handled; 3634 } 3635 3636 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn, 3637 gva_t gva, kvm_pfn_t *pfn, bool write, bool *writable); 3638 static int make_mmu_pages_available(struct kvm_vcpu *vcpu); 3639 3640 static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, u32 error_code, 3641 gfn_t gfn, bool prefault) 3642 { 3643 int r; 3644 int level; 3645 bool force_pt_level; 3646 kvm_pfn_t pfn; 3647 unsigned long mmu_seq; 3648 bool map_writable, write = error_code & PFERR_WRITE_MASK; 3649 bool lpage_disallowed = (error_code & PFERR_FETCH_MASK) && 3650 is_nx_huge_page_enabled(); 3651 3652 force_pt_level = lpage_disallowed; 3653 level = mapping_level(vcpu, gfn, &force_pt_level); 3654 if (likely(!force_pt_level)) { 3655 /* 3656 * This path builds a PAE pagetable - so we can map 3657 * 2mb pages at maximum. Therefore check if the level 3658 * is larger than that. 3659 */ 3660 if (level > PT_DIRECTORY_LEVEL) 3661 level = PT_DIRECTORY_LEVEL; 3662 3663 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1); 3664 } 3665 3666 if (fast_page_fault(vcpu, v, level, error_code)) 3667 return RET_PF_RETRY; 3668 3669 mmu_seq = vcpu->kvm->mmu_notifier_seq; 3670 smp_rmb(); 3671 3672 if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable)) 3673 return RET_PF_RETRY; 3674 3675 if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r)) 3676 return r; 3677 3678 r = RET_PF_RETRY; 3679 spin_lock(&vcpu->kvm->mmu_lock); 3680 if (mmu_notifier_retry(vcpu->kvm, mmu_seq)) 3681 goto out_unlock; 3682 if (make_mmu_pages_available(vcpu) < 0) 3683 goto out_unlock; 3684 if (likely(!force_pt_level)) 3685 transparent_hugepage_adjust(vcpu, gfn, &pfn, &level); 3686 r = __direct_map(vcpu, v, write, map_writable, level, pfn, 3687 prefault, false); 3688 out_unlock: 3689 spin_unlock(&vcpu->kvm->mmu_lock); 3690 kvm_release_pfn_clean(pfn); 3691 return r; 3692 } 3693 3694 static void mmu_free_root_page(struct kvm *kvm, hpa_t *root_hpa, 3695 struct list_head *invalid_list) 3696 { 3697 struct kvm_mmu_page *sp; 3698 3699 if (!VALID_PAGE(*root_hpa)) 3700 return; 3701 3702 sp = page_header(*root_hpa & PT64_BASE_ADDR_MASK); 3703 --sp->root_count; 3704 if (!sp->root_count && sp->role.invalid) 3705 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list); 3706 3707 *root_hpa = INVALID_PAGE; 3708 } 3709 3710 /* roots_to_free must be some combination of the KVM_MMU_ROOT_* flags */ 3711 void kvm_mmu_free_roots(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, 3712 ulong roots_to_free) 3713 { 3714 int i; 3715 LIST_HEAD(invalid_list); 3716 bool free_active_root = roots_to_free & KVM_MMU_ROOT_CURRENT; 3717 3718 BUILD_BUG_ON(KVM_MMU_NUM_PREV_ROOTS >= BITS_PER_LONG); 3719 3720 /* Before acquiring the MMU lock, see if we need to do any real work. */ 3721 if (!(free_active_root && VALID_PAGE(mmu->root_hpa))) { 3722 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 3723 if ((roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) && 3724 VALID_PAGE(mmu->prev_roots[i].hpa)) 3725 break; 3726 3727 if (i == KVM_MMU_NUM_PREV_ROOTS) 3728 return; 3729 } 3730 3731 spin_lock(&vcpu->kvm->mmu_lock); 3732 3733 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 3734 if (roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) 3735 mmu_free_root_page(vcpu->kvm, &mmu->prev_roots[i].hpa, 3736 &invalid_list); 3737 3738 if (free_active_root) { 3739 if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL && 3740 (mmu->root_level >= PT64_ROOT_4LEVEL || mmu->direct_map)) { 3741 mmu_free_root_page(vcpu->kvm, &mmu->root_hpa, 3742 &invalid_list); 3743 } else { 3744 for (i = 0; i < 4; ++i) 3745 if (mmu->pae_root[i] != 0) 3746 mmu_free_root_page(vcpu->kvm, 3747 &mmu->pae_root[i], 3748 &invalid_list); 3749 mmu->root_hpa = INVALID_PAGE; 3750 } 3751 mmu->root_cr3 = 0; 3752 } 3753 3754 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list); 3755 spin_unlock(&vcpu->kvm->mmu_lock); 3756 } 3757 EXPORT_SYMBOL_GPL(kvm_mmu_free_roots); 3758 3759 static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn) 3760 { 3761 int ret = 0; 3762 3763 if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) { 3764 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 3765 ret = 1; 3766 } 3767 3768 return ret; 3769 } 3770 3771 static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu) 3772 { 3773 struct kvm_mmu_page *sp; 3774 unsigned i; 3775 3776 if (vcpu->arch.mmu->shadow_root_level >= PT64_ROOT_4LEVEL) { 3777 spin_lock(&vcpu->kvm->mmu_lock); 3778 if(make_mmu_pages_available(vcpu) < 0) { 3779 spin_unlock(&vcpu->kvm->mmu_lock); 3780 return -ENOSPC; 3781 } 3782 sp = kvm_mmu_get_page(vcpu, 0, 0, 3783 vcpu->arch.mmu->shadow_root_level, 1, ACC_ALL); 3784 ++sp->root_count; 3785 spin_unlock(&vcpu->kvm->mmu_lock); 3786 vcpu->arch.mmu->root_hpa = __pa(sp->spt); 3787 } else if (vcpu->arch.mmu->shadow_root_level == PT32E_ROOT_LEVEL) { 3788 for (i = 0; i < 4; ++i) { 3789 hpa_t root = vcpu->arch.mmu->pae_root[i]; 3790 3791 MMU_WARN_ON(VALID_PAGE(root)); 3792 spin_lock(&vcpu->kvm->mmu_lock); 3793 if (make_mmu_pages_available(vcpu) < 0) { 3794 spin_unlock(&vcpu->kvm->mmu_lock); 3795 return -ENOSPC; 3796 } 3797 sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT), 3798 i << 30, PT32_ROOT_LEVEL, 1, ACC_ALL); 3799 root = __pa(sp->spt); 3800 ++sp->root_count; 3801 spin_unlock(&vcpu->kvm->mmu_lock); 3802 vcpu->arch.mmu->pae_root[i] = root | PT_PRESENT_MASK; 3803 } 3804 vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->pae_root); 3805 } else 3806 BUG(); 3807 vcpu->arch.mmu->root_cr3 = vcpu->arch.mmu->get_cr3(vcpu); 3808 3809 return 0; 3810 } 3811 3812 static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu) 3813 { 3814 struct kvm_mmu_page *sp; 3815 u64 pdptr, pm_mask; 3816 gfn_t root_gfn, root_cr3; 3817 int i; 3818 3819 root_cr3 = vcpu->arch.mmu->get_cr3(vcpu); 3820 root_gfn = root_cr3 >> PAGE_SHIFT; 3821 3822 if (mmu_check_root(vcpu, root_gfn)) 3823 return 1; 3824 3825 /* 3826 * Do we shadow a long mode page table? If so we need to 3827 * write-protect the guests page table root. 3828 */ 3829 if (vcpu->arch.mmu->root_level >= PT64_ROOT_4LEVEL) { 3830 hpa_t root = vcpu->arch.mmu->root_hpa; 3831 3832 MMU_WARN_ON(VALID_PAGE(root)); 3833 3834 spin_lock(&vcpu->kvm->mmu_lock); 3835 if (make_mmu_pages_available(vcpu) < 0) { 3836 spin_unlock(&vcpu->kvm->mmu_lock); 3837 return -ENOSPC; 3838 } 3839 sp = kvm_mmu_get_page(vcpu, root_gfn, 0, 3840 vcpu->arch.mmu->shadow_root_level, 0, ACC_ALL); 3841 root = __pa(sp->spt); 3842 ++sp->root_count; 3843 spin_unlock(&vcpu->kvm->mmu_lock); 3844 vcpu->arch.mmu->root_hpa = root; 3845 goto set_root_cr3; 3846 } 3847 3848 /* 3849 * We shadow a 32 bit page table. This may be a legacy 2-level 3850 * or a PAE 3-level page table. In either case we need to be aware that 3851 * the shadow page table may be a PAE or a long mode page table. 3852 */ 3853 pm_mask = PT_PRESENT_MASK; 3854 if (vcpu->arch.mmu->shadow_root_level == PT64_ROOT_4LEVEL) 3855 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK; 3856 3857 for (i = 0; i < 4; ++i) { 3858 hpa_t root = vcpu->arch.mmu->pae_root[i]; 3859 3860 MMU_WARN_ON(VALID_PAGE(root)); 3861 if (vcpu->arch.mmu->root_level == PT32E_ROOT_LEVEL) { 3862 pdptr = vcpu->arch.mmu->get_pdptr(vcpu, i); 3863 if (!(pdptr & PT_PRESENT_MASK)) { 3864 vcpu->arch.mmu->pae_root[i] = 0; 3865 continue; 3866 } 3867 root_gfn = pdptr >> PAGE_SHIFT; 3868 if (mmu_check_root(vcpu, root_gfn)) 3869 return 1; 3870 } 3871 spin_lock(&vcpu->kvm->mmu_lock); 3872 if (make_mmu_pages_available(vcpu) < 0) { 3873 spin_unlock(&vcpu->kvm->mmu_lock); 3874 return -ENOSPC; 3875 } 3876 sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30, PT32_ROOT_LEVEL, 3877 0, ACC_ALL); 3878 root = __pa(sp->spt); 3879 ++sp->root_count; 3880 spin_unlock(&vcpu->kvm->mmu_lock); 3881 3882 vcpu->arch.mmu->pae_root[i] = root | pm_mask; 3883 } 3884 vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->pae_root); 3885 3886 /* 3887 * If we shadow a 32 bit page table with a long mode page 3888 * table we enter this path. 3889 */ 3890 if (vcpu->arch.mmu->shadow_root_level == PT64_ROOT_4LEVEL) { 3891 if (vcpu->arch.mmu->lm_root == NULL) { 3892 /* 3893 * The additional page necessary for this is only 3894 * allocated on demand. 3895 */ 3896 3897 u64 *lm_root; 3898 3899 lm_root = (void*)get_zeroed_page(GFP_KERNEL_ACCOUNT); 3900 if (lm_root == NULL) 3901 return 1; 3902 3903 lm_root[0] = __pa(vcpu->arch.mmu->pae_root) | pm_mask; 3904 3905 vcpu->arch.mmu->lm_root = lm_root; 3906 } 3907 3908 vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->lm_root); 3909 } 3910 3911 set_root_cr3: 3912 vcpu->arch.mmu->root_cr3 = root_cr3; 3913 3914 return 0; 3915 } 3916 3917 static int mmu_alloc_roots(struct kvm_vcpu *vcpu) 3918 { 3919 if (vcpu->arch.mmu->direct_map) 3920 return mmu_alloc_direct_roots(vcpu); 3921 else 3922 return mmu_alloc_shadow_roots(vcpu); 3923 } 3924 3925 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu) 3926 { 3927 int i; 3928 struct kvm_mmu_page *sp; 3929 3930 if (vcpu->arch.mmu->direct_map) 3931 return; 3932 3933 if (!VALID_PAGE(vcpu->arch.mmu->root_hpa)) 3934 return; 3935 3936 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY); 3937 3938 if (vcpu->arch.mmu->root_level >= PT64_ROOT_4LEVEL) { 3939 hpa_t root = vcpu->arch.mmu->root_hpa; 3940 sp = page_header(root); 3941 3942 /* 3943 * Even if another CPU was marking the SP as unsync-ed 3944 * simultaneously, any guest page table changes are not 3945 * guaranteed to be visible anyway until this VCPU issues a TLB 3946 * flush strictly after those changes are made. We only need to 3947 * ensure that the other CPU sets these flags before any actual 3948 * changes to the page tables are made. The comments in 3949 * mmu_need_write_protect() describe what could go wrong if this 3950 * requirement isn't satisfied. 3951 */ 3952 if (!smp_load_acquire(&sp->unsync) && 3953 !smp_load_acquire(&sp->unsync_children)) 3954 return; 3955 3956 spin_lock(&vcpu->kvm->mmu_lock); 3957 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC); 3958 3959 mmu_sync_children(vcpu, sp); 3960 3961 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC); 3962 spin_unlock(&vcpu->kvm->mmu_lock); 3963 return; 3964 } 3965 3966 spin_lock(&vcpu->kvm->mmu_lock); 3967 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC); 3968 3969 for (i = 0; i < 4; ++i) { 3970 hpa_t root = vcpu->arch.mmu->pae_root[i]; 3971 3972 if (root && VALID_PAGE(root)) { 3973 root &= PT64_BASE_ADDR_MASK; 3974 sp = page_header(root); 3975 mmu_sync_children(vcpu, sp); 3976 } 3977 } 3978 3979 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC); 3980 spin_unlock(&vcpu->kvm->mmu_lock); 3981 } 3982 EXPORT_SYMBOL_GPL(kvm_mmu_sync_roots); 3983 3984 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr, 3985 u32 access, struct x86_exception *exception) 3986 { 3987 if (exception) 3988 exception->error_code = 0; 3989 return vaddr; 3990 } 3991 3992 static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr, 3993 u32 access, 3994 struct x86_exception *exception) 3995 { 3996 if (exception) 3997 exception->error_code = 0; 3998 return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception); 3999 } 4000 4001 static bool 4002 __is_rsvd_bits_set(struct rsvd_bits_validate *rsvd_check, u64 pte, int level) 4003 { 4004 int bit7 = (pte >> 7) & 1, low6 = pte & 0x3f; 4005 4006 return (pte & rsvd_check->rsvd_bits_mask[bit7][level-1]) | 4007 ((rsvd_check->bad_mt_xwr & (1ull << low6)) != 0); 4008 } 4009 4010 static bool is_rsvd_bits_set(struct kvm_mmu *mmu, u64 gpte, int level) 4011 { 4012 return __is_rsvd_bits_set(&mmu->guest_rsvd_check, gpte, level); 4013 } 4014 4015 static bool is_shadow_zero_bits_set(struct kvm_mmu *mmu, u64 spte, int level) 4016 { 4017 return __is_rsvd_bits_set(&mmu->shadow_zero_check, spte, level); 4018 } 4019 4020 static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct) 4021 { 4022 /* 4023 * A nested guest cannot use the MMIO cache if it is using nested 4024 * page tables, because cr2 is a nGPA while the cache stores GPAs. 4025 */ 4026 if (mmu_is_nested(vcpu)) 4027 return false; 4028 4029 if (direct) 4030 return vcpu_match_mmio_gpa(vcpu, addr); 4031 4032 return vcpu_match_mmio_gva(vcpu, addr); 4033 } 4034 4035 /* return true if reserved bit is detected on spte. */ 4036 static bool 4037 walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep) 4038 { 4039 struct kvm_shadow_walk_iterator iterator; 4040 u64 sptes[PT64_ROOT_MAX_LEVEL], spte = 0ull; 4041 int root, leaf; 4042 bool reserved = false; 4043 4044 if (!VALID_PAGE(vcpu->arch.mmu->root_hpa)) 4045 goto exit; 4046 4047 walk_shadow_page_lockless_begin(vcpu); 4048 4049 for (shadow_walk_init(&iterator, vcpu, addr), 4050 leaf = root = iterator.level; 4051 shadow_walk_okay(&iterator); 4052 __shadow_walk_next(&iterator, spte)) { 4053 spte = mmu_spte_get_lockless(iterator.sptep); 4054 4055 sptes[leaf - 1] = spte; 4056 leaf--; 4057 4058 if (!is_shadow_present_pte(spte)) 4059 break; 4060 4061 reserved |= is_shadow_zero_bits_set(vcpu->arch.mmu, spte, 4062 iterator.level); 4063 } 4064 4065 walk_shadow_page_lockless_end(vcpu); 4066 4067 if (reserved) { 4068 pr_err("%s: detect reserved bits on spte, addr 0x%llx, dump hierarchy:\n", 4069 __func__, addr); 4070 while (root > leaf) { 4071 pr_err("------ spte 0x%llx level %d.\n", 4072 sptes[root - 1], root); 4073 root--; 4074 } 4075 } 4076 exit: 4077 *sptep = spte; 4078 return reserved; 4079 } 4080 4081 static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct) 4082 { 4083 u64 spte; 4084 bool reserved; 4085 4086 if (mmio_info_in_cache(vcpu, addr, direct)) 4087 return RET_PF_EMULATE; 4088 4089 reserved = walk_shadow_page_get_mmio_spte(vcpu, addr, &spte); 4090 if (WARN_ON(reserved)) 4091 return -EINVAL; 4092 4093 if (is_mmio_spte(spte)) { 4094 gfn_t gfn = get_mmio_spte_gfn(spte); 4095 unsigned access = get_mmio_spte_access(spte); 4096 4097 if (!check_mmio_spte(vcpu, spte)) 4098 return RET_PF_INVALID; 4099 4100 if (direct) 4101 addr = 0; 4102 4103 trace_handle_mmio_page_fault(addr, gfn, access); 4104 vcpu_cache_mmio_info(vcpu, addr, gfn, access); 4105 return RET_PF_EMULATE; 4106 } 4107 4108 /* 4109 * If the page table is zapped by other cpus, let CPU fault again on 4110 * the address. 4111 */ 4112 return RET_PF_RETRY; 4113 } 4114 4115 static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu, 4116 u32 error_code, gfn_t gfn) 4117 { 4118 if (unlikely(error_code & PFERR_RSVD_MASK)) 4119 return false; 4120 4121 if (!(error_code & PFERR_PRESENT_MASK) || 4122 !(error_code & PFERR_WRITE_MASK)) 4123 return false; 4124 4125 /* 4126 * guest is writing the page which is write tracked which can 4127 * not be fixed by page fault handler. 4128 */ 4129 if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE)) 4130 return true; 4131 4132 return false; 4133 } 4134 4135 static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr) 4136 { 4137 struct kvm_shadow_walk_iterator iterator; 4138 u64 spte; 4139 4140 if (!VALID_PAGE(vcpu->arch.mmu->root_hpa)) 4141 return; 4142 4143 walk_shadow_page_lockless_begin(vcpu); 4144 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) { 4145 clear_sp_write_flooding_count(iterator.sptep); 4146 if (!is_shadow_present_pte(spte)) 4147 break; 4148 } 4149 walk_shadow_page_lockless_end(vcpu); 4150 } 4151 4152 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva, 4153 u32 error_code, bool prefault) 4154 { 4155 gfn_t gfn = gva >> PAGE_SHIFT; 4156 int r; 4157 4158 pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code); 4159 4160 if (page_fault_handle_page_track(vcpu, error_code, gfn)) 4161 return RET_PF_EMULATE; 4162 4163 r = mmu_topup_memory_caches(vcpu); 4164 if (r) 4165 return r; 4166 4167 MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa)); 4168 4169 4170 return nonpaging_map(vcpu, gva & PAGE_MASK, 4171 error_code, gfn, prefault); 4172 } 4173 4174 static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn) 4175 { 4176 struct kvm_arch_async_pf arch; 4177 4178 arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id; 4179 arch.gfn = gfn; 4180 arch.direct_map = vcpu->arch.mmu->direct_map; 4181 arch.cr3 = vcpu->arch.mmu->get_cr3(vcpu); 4182 4183 return kvm_setup_async_pf(vcpu, gva, kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch); 4184 } 4185 4186 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn, 4187 gva_t gva, kvm_pfn_t *pfn, bool write, bool *writable) 4188 { 4189 struct kvm_memory_slot *slot; 4190 bool async; 4191 4192 /* 4193 * Don't expose private memslots to L2. 4194 */ 4195 if (is_guest_mode(vcpu) && !kvm_is_visible_gfn(vcpu->kvm, gfn)) { 4196 *pfn = KVM_PFN_NOSLOT; 4197 return false; 4198 } 4199 4200 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 4201 async = false; 4202 *pfn = __gfn_to_pfn_memslot(slot, gfn, false, &async, write, writable); 4203 if (!async) 4204 return false; /* *pfn has correct page already */ 4205 4206 if (!prefault && kvm_can_do_async_pf(vcpu)) { 4207 trace_kvm_try_async_get_page(gva, gfn); 4208 if (kvm_find_async_pf_gfn(vcpu, gfn)) { 4209 trace_kvm_async_pf_doublefault(gva, gfn); 4210 kvm_make_request(KVM_REQ_APF_HALT, vcpu); 4211 return true; 4212 } else if (kvm_arch_setup_async_pf(vcpu, gva, gfn)) 4213 return true; 4214 } 4215 4216 *pfn = __gfn_to_pfn_memslot(slot, gfn, false, NULL, write, writable); 4217 return false; 4218 } 4219 4220 int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code, 4221 u64 fault_address, char *insn, int insn_len) 4222 { 4223 int r = 1; 4224 4225 vcpu->arch.l1tf_flush_l1d = true; 4226 switch (vcpu->arch.apf.host_apf_reason) { 4227 default: 4228 trace_kvm_page_fault(fault_address, error_code); 4229 4230 if (kvm_event_needs_reinjection(vcpu)) 4231 kvm_mmu_unprotect_page_virt(vcpu, fault_address); 4232 r = kvm_mmu_page_fault(vcpu, fault_address, error_code, insn, 4233 insn_len); 4234 break; 4235 case KVM_PV_REASON_PAGE_NOT_PRESENT: 4236 vcpu->arch.apf.host_apf_reason = 0; 4237 local_irq_disable(); 4238 kvm_async_pf_task_wait(fault_address, 0); 4239 local_irq_enable(); 4240 break; 4241 case KVM_PV_REASON_PAGE_READY: 4242 vcpu->arch.apf.host_apf_reason = 0; 4243 local_irq_disable(); 4244 kvm_async_pf_task_wake(fault_address); 4245 local_irq_enable(); 4246 break; 4247 } 4248 return r; 4249 } 4250 EXPORT_SYMBOL_GPL(kvm_handle_page_fault); 4251 4252 static bool 4253 check_hugepage_cache_consistency(struct kvm_vcpu *vcpu, gfn_t gfn, int level) 4254 { 4255 int page_num = KVM_PAGES_PER_HPAGE(level); 4256 4257 gfn &= ~(page_num - 1); 4258 4259 return kvm_mtrr_check_gfn_range_consistency(vcpu, gfn, page_num); 4260 } 4261 4262 static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code, 4263 bool prefault) 4264 { 4265 kvm_pfn_t pfn; 4266 int r; 4267 int level; 4268 bool force_pt_level; 4269 gfn_t gfn = gpa >> PAGE_SHIFT; 4270 unsigned long mmu_seq; 4271 int write = error_code & PFERR_WRITE_MASK; 4272 bool map_writable; 4273 bool lpage_disallowed = (error_code & PFERR_FETCH_MASK) && 4274 is_nx_huge_page_enabled(); 4275 4276 MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa)); 4277 4278 if (page_fault_handle_page_track(vcpu, error_code, gfn)) 4279 return RET_PF_EMULATE; 4280 4281 r = mmu_topup_memory_caches(vcpu); 4282 if (r) 4283 return r; 4284 4285 force_pt_level = 4286 lpage_disallowed || 4287 !check_hugepage_cache_consistency(vcpu, gfn, PT_DIRECTORY_LEVEL); 4288 level = mapping_level(vcpu, gfn, &force_pt_level); 4289 if (likely(!force_pt_level)) { 4290 if (level > PT_DIRECTORY_LEVEL && 4291 !check_hugepage_cache_consistency(vcpu, gfn, level)) 4292 level = PT_DIRECTORY_LEVEL; 4293 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1); 4294 } 4295 4296 if (fast_page_fault(vcpu, gpa, level, error_code)) 4297 return RET_PF_RETRY; 4298 4299 mmu_seq = vcpu->kvm->mmu_notifier_seq; 4300 smp_rmb(); 4301 4302 if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable)) 4303 return RET_PF_RETRY; 4304 4305 if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r)) 4306 return r; 4307 4308 r = RET_PF_RETRY; 4309 spin_lock(&vcpu->kvm->mmu_lock); 4310 if (mmu_notifier_retry(vcpu->kvm, mmu_seq)) 4311 goto out_unlock; 4312 if (make_mmu_pages_available(vcpu) < 0) 4313 goto out_unlock; 4314 if (likely(!force_pt_level)) 4315 transparent_hugepage_adjust(vcpu, gfn, &pfn, &level); 4316 r = __direct_map(vcpu, gpa, write, map_writable, level, pfn, 4317 prefault, lpage_disallowed); 4318 out_unlock: 4319 spin_unlock(&vcpu->kvm->mmu_lock); 4320 kvm_release_pfn_clean(pfn); 4321 return r; 4322 } 4323 4324 static void nonpaging_init_context(struct kvm_vcpu *vcpu, 4325 struct kvm_mmu *context) 4326 { 4327 context->page_fault = nonpaging_page_fault; 4328 context->gva_to_gpa = nonpaging_gva_to_gpa; 4329 context->sync_page = nonpaging_sync_page; 4330 context->invlpg = nonpaging_invlpg; 4331 context->update_pte = nonpaging_update_pte; 4332 context->root_level = 0; 4333 context->shadow_root_level = PT32E_ROOT_LEVEL; 4334 context->direct_map = true; 4335 context->nx = false; 4336 } 4337 4338 /* 4339 * Find out if a previously cached root matching the new CR3/role is available. 4340 * The current root is also inserted into the cache. 4341 * If a matching root was found, it is assigned to kvm_mmu->root_hpa and true is 4342 * returned. 4343 * Otherwise, the LRU root from the cache is assigned to kvm_mmu->root_hpa and 4344 * false is returned. This root should now be freed by the caller. 4345 */ 4346 static bool cached_root_available(struct kvm_vcpu *vcpu, gpa_t new_cr3, 4347 union kvm_mmu_page_role new_role) 4348 { 4349 uint i; 4350 struct kvm_mmu_root_info root; 4351 struct kvm_mmu *mmu = vcpu->arch.mmu; 4352 4353 root.cr3 = mmu->root_cr3; 4354 root.hpa = mmu->root_hpa; 4355 4356 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) { 4357 swap(root, mmu->prev_roots[i]); 4358 4359 if (new_cr3 == root.cr3 && VALID_PAGE(root.hpa) && 4360 page_header(root.hpa) != NULL && 4361 new_role.word == page_header(root.hpa)->role.word) 4362 break; 4363 } 4364 4365 mmu->root_hpa = root.hpa; 4366 mmu->root_cr3 = root.cr3; 4367 4368 return i < KVM_MMU_NUM_PREV_ROOTS; 4369 } 4370 4371 static bool fast_cr3_switch(struct kvm_vcpu *vcpu, gpa_t new_cr3, 4372 union kvm_mmu_page_role new_role, 4373 bool skip_tlb_flush) 4374 { 4375 struct kvm_mmu *mmu = vcpu->arch.mmu; 4376 4377 /* 4378 * For now, limit the fast switch to 64-bit hosts+VMs in order to avoid 4379 * having to deal with PDPTEs. We may add support for 32-bit hosts/VMs 4380 * later if necessary. 4381 */ 4382 if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL && 4383 mmu->root_level >= PT64_ROOT_4LEVEL) { 4384 if (mmu_check_root(vcpu, new_cr3 >> PAGE_SHIFT)) 4385 return false; 4386 4387 if (cached_root_available(vcpu, new_cr3, new_role)) { 4388 /* 4389 * It is possible that the cached previous root page is 4390 * obsolete because of a change in the MMU generation 4391 * number. However, changing the generation number is 4392 * accompanied by KVM_REQ_MMU_RELOAD, which will free 4393 * the root set here and allocate a new one. 4394 */ 4395 kvm_make_request(KVM_REQ_LOAD_CR3, vcpu); 4396 if (!skip_tlb_flush) { 4397 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu); 4398 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu); 4399 } 4400 4401 /* 4402 * The last MMIO access's GVA and GPA are cached in the 4403 * VCPU. When switching to a new CR3, that GVA->GPA 4404 * mapping may no longer be valid. So clear any cached 4405 * MMIO info even when we don't need to sync the shadow 4406 * page tables. 4407 */ 4408 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY); 4409 4410 __clear_sp_write_flooding_count( 4411 page_header(mmu->root_hpa)); 4412 4413 return true; 4414 } 4415 } 4416 4417 return false; 4418 } 4419 4420 static void __kvm_mmu_new_cr3(struct kvm_vcpu *vcpu, gpa_t new_cr3, 4421 union kvm_mmu_page_role new_role, 4422 bool skip_tlb_flush) 4423 { 4424 if (!fast_cr3_switch(vcpu, new_cr3, new_role, skip_tlb_flush)) 4425 kvm_mmu_free_roots(vcpu, vcpu->arch.mmu, 4426 KVM_MMU_ROOT_CURRENT); 4427 } 4428 4429 void kvm_mmu_new_cr3(struct kvm_vcpu *vcpu, gpa_t new_cr3, bool skip_tlb_flush) 4430 { 4431 __kvm_mmu_new_cr3(vcpu, new_cr3, kvm_mmu_calc_root_page_role(vcpu), 4432 skip_tlb_flush); 4433 } 4434 EXPORT_SYMBOL_GPL(kvm_mmu_new_cr3); 4435 4436 static unsigned long get_cr3(struct kvm_vcpu *vcpu) 4437 { 4438 return kvm_read_cr3(vcpu); 4439 } 4440 4441 static void inject_page_fault(struct kvm_vcpu *vcpu, 4442 struct x86_exception *fault) 4443 { 4444 vcpu->arch.mmu->inject_page_fault(vcpu, fault); 4445 } 4446 4447 static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn, 4448 unsigned access, int *nr_present) 4449 { 4450 if (unlikely(is_mmio_spte(*sptep))) { 4451 if (gfn != get_mmio_spte_gfn(*sptep)) { 4452 mmu_spte_clear_no_track(sptep); 4453 return true; 4454 } 4455 4456 (*nr_present)++; 4457 mark_mmio_spte(vcpu, sptep, gfn, access); 4458 return true; 4459 } 4460 4461 return false; 4462 } 4463 4464 static inline bool is_last_gpte(struct kvm_mmu *mmu, 4465 unsigned level, unsigned gpte) 4466 { 4467 /* 4468 * The RHS has bit 7 set iff level < mmu->last_nonleaf_level. 4469 * If it is clear, there are no large pages at this level, so clear 4470 * PT_PAGE_SIZE_MASK in gpte if that is the case. 4471 */ 4472 gpte &= level - mmu->last_nonleaf_level; 4473 4474 /* 4475 * PT_PAGE_TABLE_LEVEL always terminates. The RHS has bit 7 set 4476 * iff level <= PT_PAGE_TABLE_LEVEL, which for our purpose means 4477 * level == PT_PAGE_TABLE_LEVEL; set PT_PAGE_SIZE_MASK in gpte then. 4478 */ 4479 gpte |= level - PT_PAGE_TABLE_LEVEL - 1; 4480 4481 return gpte & PT_PAGE_SIZE_MASK; 4482 } 4483 4484 #define PTTYPE_EPT 18 /* arbitrary */ 4485 #define PTTYPE PTTYPE_EPT 4486 #include "paging_tmpl.h" 4487 #undef PTTYPE 4488 4489 #define PTTYPE 64 4490 #include "paging_tmpl.h" 4491 #undef PTTYPE 4492 4493 #define PTTYPE 32 4494 #include "paging_tmpl.h" 4495 #undef PTTYPE 4496 4497 static void 4498 __reset_rsvds_bits_mask(struct kvm_vcpu *vcpu, 4499 struct rsvd_bits_validate *rsvd_check, 4500 int maxphyaddr, int level, bool nx, bool gbpages, 4501 bool pse, bool amd) 4502 { 4503 u64 exb_bit_rsvd = 0; 4504 u64 gbpages_bit_rsvd = 0; 4505 u64 nonleaf_bit8_rsvd = 0; 4506 4507 rsvd_check->bad_mt_xwr = 0; 4508 4509 if (!nx) 4510 exb_bit_rsvd = rsvd_bits(63, 63); 4511 if (!gbpages) 4512 gbpages_bit_rsvd = rsvd_bits(7, 7); 4513 4514 /* 4515 * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for 4516 * leaf entries) on AMD CPUs only. 4517 */ 4518 if (amd) 4519 nonleaf_bit8_rsvd = rsvd_bits(8, 8); 4520 4521 switch (level) { 4522 case PT32_ROOT_LEVEL: 4523 /* no rsvd bits for 2 level 4K page table entries */ 4524 rsvd_check->rsvd_bits_mask[0][1] = 0; 4525 rsvd_check->rsvd_bits_mask[0][0] = 0; 4526 rsvd_check->rsvd_bits_mask[1][0] = 4527 rsvd_check->rsvd_bits_mask[0][0]; 4528 4529 if (!pse) { 4530 rsvd_check->rsvd_bits_mask[1][1] = 0; 4531 break; 4532 } 4533 4534 if (is_cpuid_PSE36()) 4535 /* 36bits PSE 4MB page */ 4536 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21); 4537 else 4538 /* 32 bits PSE 4MB page */ 4539 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21); 4540 break; 4541 case PT32E_ROOT_LEVEL: 4542 rsvd_check->rsvd_bits_mask[0][2] = 4543 rsvd_bits(maxphyaddr, 63) | 4544 rsvd_bits(5, 8) | rsvd_bits(1, 2); /* PDPTE */ 4545 rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd | 4546 rsvd_bits(maxphyaddr, 62); /* PDE */ 4547 rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd | 4548 rsvd_bits(maxphyaddr, 62); /* PTE */ 4549 rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd | 4550 rsvd_bits(maxphyaddr, 62) | 4551 rsvd_bits(13, 20); /* large page */ 4552 rsvd_check->rsvd_bits_mask[1][0] = 4553 rsvd_check->rsvd_bits_mask[0][0]; 4554 break; 4555 case PT64_ROOT_5LEVEL: 4556 rsvd_check->rsvd_bits_mask[0][4] = exb_bit_rsvd | 4557 nonleaf_bit8_rsvd | rsvd_bits(7, 7) | 4558 rsvd_bits(maxphyaddr, 51); 4559 rsvd_check->rsvd_bits_mask[1][4] = 4560 rsvd_check->rsvd_bits_mask[0][4]; 4561 /* fall through */ 4562 case PT64_ROOT_4LEVEL: 4563 rsvd_check->rsvd_bits_mask[0][3] = exb_bit_rsvd | 4564 nonleaf_bit8_rsvd | rsvd_bits(7, 7) | 4565 rsvd_bits(maxphyaddr, 51); 4566 rsvd_check->rsvd_bits_mask[0][2] = exb_bit_rsvd | 4567 nonleaf_bit8_rsvd | gbpages_bit_rsvd | 4568 rsvd_bits(maxphyaddr, 51); 4569 rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd | 4570 rsvd_bits(maxphyaddr, 51); 4571 rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd | 4572 rsvd_bits(maxphyaddr, 51); 4573 rsvd_check->rsvd_bits_mask[1][3] = 4574 rsvd_check->rsvd_bits_mask[0][3]; 4575 rsvd_check->rsvd_bits_mask[1][2] = exb_bit_rsvd | 4576 gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51) | 4577 rsvd_bits(13, 29); 4578 rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd | 4579 rsvd_bits(maxphyaddr, 51) | 4580 rsvd_bits(13, 20); /* large page */ 4581 rsvd_check->rsvd_bits_mask[1][0] = 4582 rsvd_check->rsvd_bits_mask[0][0]; 4583 break; 4584 } 4585 } 4586 4587 static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu, 4588 struct kvm_mmu *context) 4589 { 4590 __reset_rsvds_bits_mask(vcpu, &context->guest_rsvd_check, 4591 cpuid_maxphyaddr(vcpu), context->root_level, 4592 context->nx, 4593 guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES), 4594 is_pse(vcpu), guest_cpuid_is_amd(vcpu)); 4595 } 4596 4597 static void 4598 __reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check, 4599 int maxphyaddr, bool execonly) 4600 { 4601 u64 bad_mt_xwr; 4602 4603 rsvd_check->rsvd_bits_mask[0][4] = 4604 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7); 4605 rsvd_check->rsvd_bits_mask[0][3] = 4606 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7); 4607 rsvd_check->rsvd_bits_mask[0][2] = 4608 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6); 4609 rsvd_check->rsvd_bits_mask[0][1] = 4610 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6); 4611 rsvd_check->rsvd_bits_mask[0][0] = rsvd_bits(maxphyaddr, 51); 4612 4613 /* large page */ 4614 rsvd_check->rsvd_bits_mask[1][4] = rsvd_check->rsvd_bits_mask[0][4]; 4615 rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3]; 4616 rsvd_check->rsvd_bits_mask[1][2] = 4617 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 29); 4618 rsvd_check->rsvd_bits_mask[1][1] = 4619 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 20); 4620 rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0]; 4621 4622 bad_mt_xwr = 0xFFull << (2 * 8); /* bits 3..5 must not be 2 */ 4623 bad_mt_xwr |= 0xFFull << (3 * 8); /* bits 3..5 must not be 3 */ 4624 bad_mt_xwr |= 0xFFull << (7 * 8); /* bits 3..5 must not be 7 */ 4625 bad_mt_xwr |= REPEAT_BYTE(1ull << 2); /* bits 0..2 must not be 010 */ 4626 bad_mt_xwr |= REPEAT_BYTE(1ull << 6); /* bits 0..2 must not be 110 */ 4627 if (!execonly) { 4628 /* bits 0..2 must not be 100 unless VMX capabilities allow it */ 4629 bad_mt_xwr |= REPEAT_BYTE(1ull << 4); 4630 } 4631 rsvd_check->bad_mt_xwr = bad_mt_xwr; 4632 } 4633 4634 static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu, 4635 struct kvm_mmu *context, bool execonly) 4636 { 4637 __reset_rsvds_bits_mask_ept(&context->guest_rsvd_check, 4638 cpuid_maxphyaddr(vcpu), execonly); 4639 } 4640 4641 /* 4642 * the page table on host is the shadow page table for the page 4643 * table in guest or amd nested guest, its mmu features completely 4644 * follow the features in guest. 4645 */ 4646 void 4647 reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, struct kvm_mmu *context) 4648 { 4649 bool uses_nx = context->nx || 4650 context->mmu_role.base.smep_andnot_wp; 4651 struct rsvd_bits_validate *shadow_zero_check; 4652 int i; 4653 4654 /* 4655 * Passing "true" to the last argument is okay; it adds a check 4656 * on bit 8 of the SPTEs which KVM doesn't use anyway. 4657 */ 4658 shadow_zero_check = &context->shadow_zero_check; 4659 __reset_rsvds_bits_mask(vcpu, shadow_zero_check, 4660 shadow_phys_bits, 4661 context->shadow_root_level, uses_nx, 4662 guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES), 4663 is_pse(vcpu), true); 4664 4665 if (!shadow_me_mask) 4666 return; 4667 4668 for (i = context->shadow_root_level; --i >= 0;) { 4669 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask; 4670 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask; 4671 } 4672 4673 } 4674 EXPORT_SYMBOL_GPL(reset_shadow_zero_bits_mask); 4675 4676 static inline bool boot_cpu_is_amd(void) 4677 { 4678 WARN_ON_ONCE(!tdp_enabled); 4679 return shadow_x_mask == 0; 4680 } 4681 4682 /* 4683 * the direct page table on host, use as much mmu features as 4684 * possible, however, kvm currently does not do execution-protection. 4685 */ 4686 static void 4687 reset_tdp_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, 4688 struct kvm_mmu *context) 4689 { 4690 struct rsvd_bits_validate *shadow_zero_check; 4691 int i; 4692 4693 shadow_zero_check = &context->shadow_zero_check; 4694 4695 if (boot_cpu_is_amd()) 4696 __reset_rsvds_bits_mask(vcpu, shadow_zero_check, 4697 shadow_phys_bits, 4698 context->shadow_root_level, false, 4699 boot_cpu_has(X86_FEATURE_GBPAGES), 4700 true, true); 4701 else 4702 __reset_rsvds_bits_mask_ept(shadow_zero_check, 4703 shadow_phys_bits, 4704 false); 4705 4706 if (!shadow_me_mask) 4707 return; 4708 4709 for (i = context->shadow_root_level; --i >= 0;) { 4710 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask; 4711 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask; 4712 } 4713 } 4714 4715 /* 4716 * as the comments in reset_shadow_zero_bits_mask() except it 4717 * is the shadow page table for intel nested guest. 4718 */ 4719 static void 4720 reset_ept_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, 4721 struct kvm_mmu *context, bool execonly) 4722 { 4723 __reset_rsvds_bits_mask_ept(&context->shadow_zero_check, 4724 shadow_phys_bits, execonly); 4725 } 4726 4727 #define BYTE_MASK(access) \ 4728 ((1 & (access) ? 2 : 0) | \ 4729 (2 & (access) ? 4 : 0) | \ 4730 (3 & (access) ? 8 : 0) | \ 4731 (4 & (access) ? 16 : 0) | \ 4732 (5 & (access) ? 32 : 0) | \ 4733 (6 & (access) ? 64 : 0) | \ 4734 (7 & (access) ? 128 : 0)) 4735 4736 4737 static void update_permission_bitmask(struct kvm_vcpu *vcpu, 4738 struct kvm_mmu *mmu, bool ept) 4739 { 4740 unsigned byte; 4741 4742 const u8 x = BYTE_MASK(ACC_EXEC_MASK); 4743 const u8 w = BYTE_MASK(ACC_WRITE_MASK); 4744 const u8 u = BYTE_MASK(ACC_USER_MASK); 4745 4746 bool cr4_smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP) != 0; 4747 bool cr4_smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP) != 0; 4748 bool cr0_wp = is_write_protection(vcpu); 4749 4750 for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) { 4751 unsigned pfec = byte << 1; 4752 4753 /* 4754 * Each "*f" variable has a 1 bit for each UWX value 4755 * that causes a fault with the given PFEC. 4756 */ 4757 4758 /* Faults from writes to non-writable pages */ 4759 u8 wf = (pfec & PFERR_WRITE_MASK) ? (u8)~w : 0; 4760 /* Faults from user mode accesses to supervisor pages */ 4761 u8 uf = (pfec & PFERR_USER_MASK) ? (u8)~u : 0; 4762 /* Faults from fetches of non-executable pages*/ 4763 u8 ff = (pfec & PFERR_FETCH_MASK) ? (u8)~x : 0; 4764 /* Faults from kernel mode fetches of user pages */ 4765 u8 smepf = 0; 4766 /* Faults from kernel mode accesses of user pages */ 4767 u8 smapf = 0; 4768 4769 if (!ept) { 4770 /* Faults from kernel mode accesses to user pages */ 4771 u8 kf = (pfec & PFERR_USER_MASK) ? 0 : u; 4772 4773 /* Not really needed: !nx will cause pte.nx to fault */ 4774 if (!mmu->nx) 4775 ff = 0; 4776 4777 /* Allow supervisor writes if !cr0.wp */ 4778 if (!cr0_wp) 4779 wf = (pfec & PFERR_USER_MASK) ? wf : 0; 4780 4781 /* Disallow supervisor fetches of user code if cr4.smep */ 4782 if (cr4_smep) 4783 smepf = (pfec & PFERR_FETCH_MASK) ? kf : 0; 4784 4785 /* 4786 * SMAP:kernel-mode data accesses from user-mode 4787 * mappings should fault. A fault is considered 4788 * as a SMAP violation if all of the following 4789 * conditions are true: 4790 * - X86_CR4_SMAP is set in CR4 4791 * - A user page is accessed 4792 * - The access is not a fetch 4793 * - Page fault in kernel mode 4794 * - if CPL = 3 or X86_EFLAGS_AC is clear 4795 * 4796 * Here, we cover the first three conditions. 4797 * The fourth is computed dynamically in permission_fault(); 4798 * PFERR_RSVD_MASK bit will be set in PFEC if the access is 4799 * *not* subject to SMAP restrictions. 4800 */ 4801 if (cr4_smap) 4802 smapf = (pfec & (PFERR_RSVD_MASK|PFERR_FETCH_MASK)) ? 0 : kf; 4803 } 4804 4805 mmu->permissions[byte] = ff | uf | wf | smepf | smapf; 4806 } 4807 } 4808 4809 /* 4810 * PKU is an additional mechanism by which the paging controls access to 4811 * user-mode addresses based on the value in the PKRU register. Protection 4812 * key violations are reported through a bit in the page fault error code. 4813 * Unlike other bits of the error code, the PK bit is not known at the 4814 * call site of e.g. gva_to_gpa; it must be computed directly in 4815 * permission_fault based on two bits of PKRU, on some machine state (CR4, 4816 * CR0, EFER, CPL), and on other bits of the error code and the page tables. 4817 * 4818 * In particular the following conditions come from the error code, the 4819 * page tables and the machine state: 4820 * - PK is always zero unless CR4.PKE=1 and EFER.LMA=1 4821 * - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch) 4822 * - PK is always zero if U=0 in the page tables 4823 * - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access. 4824 * 4825 * The PKRU bitmask caches the result of these four conditions. The error 4826 * code (minus the P bit) and the page table's U bit form an index into the 4827 * PKRU bitmask. Two bits of the PKRU bitmask are then extracted and ANDed 4828 * with the two bits of the PKRU register corresponding to the protection key. 4829 * For the first three conditions above the bits will be 00, thus masking 4830 * away both AD and WD. For all reads or if the last condition holds, WD 4831 * only will be masked away. 4832 */ 4833 static void update_pkru_bitmask(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, 4834 bool ept) 4835 { 4836 unsigned bit; 4837 bool wp; 4838 4839 if (ept) { 4840 mmu->pkru_mask = 0; 4841 return; 4842 } 4843 4844 /* PKEY is enabled only if CR4.PKE and EFER.LMA are both set. */ 4845 if (!kvm_read_cr4_bits(vcpu, X86_CR4_PKE) || !is_long_mode(vcpu)) { 4846 mmu->pkru_mask = 0; 4847 return; 4848 } 4849 4850 wp = is_write_protection(vcpu); 4851 4852 for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) { 4853 unsigned pfec, pkey_bits; 4854 bool check_pkey, check_write, ff, uf, wf, pte_user; 4855 4856 pfec = bit << 1; 4857 ff = pfec & PFERR_FETCH_MASK; 4858 uf = pfec & PFERR_USER_MASK; 4859 wf = pfec & PFERR_WRITE_MASK; 4860 4861 /* PFEC.RSVD is replaced by ACC_USER_MASK. */ 4862 pte_user = pfec & PFERR_RSVD_MASK; 4863 4864 /* 4865 * Only need to check the access which is not an 4866 * instruction fetch and is to a user page. 4867 */ 4868 check_pkey = (!ff && pte_user); 4869 /* 4870 * write access is controlled by PKRU if it is a 4871 * user access or CR0.WP = 1. 4872 */ 4873 check_write = check_pkey && wf && (uf || wp); 4874 4875 /* PKRU.AD stops both read and write access. */ 4876 pkey_bits = !!check_pkey; 4877 /* PKRU.WD stops write access. */ 4878 pkey_bits |= (!!check_write) << 1; 4879 4880 mmu->pkru_mask |= (pkey_bits & 3) << pfec; 4881 } 4882 } 4883 4884 static void update_last_nonleaf_level(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu) 4885 { 4886 unsigned root_level = mmu->root_level; 4887 4888 mmu->last_nonleaf_level = root_level; 4889 if (root_level == PT32_ROOT_LEVEL && is_pse(vcpu)) 4890 mmu->last_nonleaf_level++; 4891 } 4892 4893 static void paging64_init_context_common(struct kvm_vcpu *vcpu, 4894 struct kvm_mmu *context, 4895 int level) 4896 { 4897 context->nx = is_nx(vcpu); 4898 context->root_level = level; 4899 4900 reset_rsvds_bits_mask(vcpu, context); 4901 update_permission_bitmask(vcpu, context, false); 4902 update_pkru_bitmask(vcpu, context, false); 4903 update_last_nonleaf_level(vcpu, context); 4904 4905 MMU_WARN_ON(!is_pae(vcpu)); 4906 context->page_fault = paging64_page_fault; 4907 context->gva_to_gpa = paging64_gva_to_gpa; 4908 context->sync_page = paging64_sync_page; 4909 context->invlpg = paging64_invlpg; 4910 context->update_pte = paging64_update_pte; 4911 context->shadow_root_level = level; 4912 context->direct_map = false; 4913 } 4914 4915 static void paging64_init_context(struct kvm_vcpu *vcpu, 4916 struct kvm_mmu *context) 4917 { 4918 int root_level = is_la57_mode(vcpu) ? 4919 PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL; 4920 4921 paging64_init_context_common(vcpu, context, root_level); 4922 } 4923 4924 static void paging32_init_context(struct kvm_vcpu *vcpu, 4925 struct kvm_mmu *context) 4926 { 4927 context->nx = false; 4928 context->root_level = PT32_ROOT_LEVEL; 4929 4930 reset_rsvds_bits_mask(vcpu, context); 4931 update_permission_bitmask(vcpu, context, false); 4932 update_pkru_bitmask(vcpu, context, false); 4933 update_last_nonleaf_level(vcpu, context); 4934 4935 context->page_fault = paging32_page_fault; 4936 context->gva_to_gpa = paging32_gva_to_gpa; 4937 context->sync_page = paging32_sync_page; 4938 context->invlpg = paging32_invlpg; 4939 context->update_pte = paging32_update_pte; 4940 context->shadow_root_level = PT32E_ROOT_LEVEL; 4941 context->direct_map = false; 4942 } 4943 4944 static void paging32E_init_context(struct kvm_vcpu *vcpu, 4945 struct kvm_mmu *context) 4946 { 4947 paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL); 4948 } 4949 4950 static union kvm_mmu_extended_role kvm_calc_mmu_role_ext(struct kvm_vcpu *vcpu) 4951 { 4952 union kvm_mmu_extended_role ext = {0}; 4953 4954 ext.cr0_pg = !!is_paging(vcpu); 4955 ext.cr4_pae = !!is_pae(vcpu); 4956 ext.cr4_smep = !!kvm_read_cr4_bits(vcpu, X86_CR4_SMEP); 4957 ext.cr4_smap = !!kvm_read_cr4_bits(vcpu, X86_CR4_SMAP); 4958 ext.cr4_pse = !!is_pse(vcpu); 4959 ext.cr4_pke = !!kvm_read_cr4_bits(vcpu, X86_CR4_PKE); 4960 ext.cr4_la57 = !!kvm_read_cr4_bits(vcpu, X86_CR4_LA57); 4961 ext.maxphyaddr = cpuid_maxphyaddr(vcpu); 4962 4963 ext.valid = 1; 4964 4965 return ext; 4966 } 4967 4968 static union kvm_mmu_role kvm_calc_mmu_role_common(struct kvm_vcpu *vcpu, 4969 bool base_only) 4970 { 4971 union kvm_mmu_role role = {0}; 4972 4973 role.base.access = ACC_ALL; 4974 role.base.nxe = !!is_nx(vcpu); 4975 role.base.cr0_wp = is_write_protection(vcpu); 4976 role.base.smm = is_smm(vcpu); 4977 role.base.guest_mode = is_guest_mode(vcpu); 4978 4979 if (base_only) 4980 return role; 4981 4982 role.ext = kvm_calc_mmu_role_ext(vcpu); 4983 4984 return role; 4985 } 4986 4987 static union kvm_mmu_role 4988 kvm_calc_tdp_mmu_root_page_role(struct kvm_vcpu *vcpu, bool base_only) 4989 { 4990 union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, base_only); 4991 4992 role.base.ad_disabled = (shadow_accessed_mask == 0); 4993 role.base.level = kvm_x86_ops->get_tdp_level(vcpu); 4994 role.base.direct = true; 4995 role.base.gpte_is_8_bytes = true; 4996 4997 return role; 4998 } 4999 5000 static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu) 5001 { 5002 struct kvm_mmu *context = vcpu->arch.mmu; 5003 union kvm_mmu_role new_role = 5004 kvm_calc_tdp_mmu_root_page_role(vcpu, false); 5005 5006 new_role.base.word &= mmu_base_role_mask.word; 5007 if (new_role.as_u64 == context->mmu_role.as_u64) 5008 return; 5009 5010 context->mmu_role.as_u64 = new_role.as_u64; 5011 context->page_fault = tdp_page_fault; 5012 context->sync_page = nonpaging_sync_page; 5013 context->invlpg = nonpaging_invlpg; 5014 context->update_pte = nonpaging_update_pte; 5015 context->shadow_root_level = kvm_x86_ops->get_tdp_level(vcpu); 5016 context->direct_map = true; 5017 context->set_cr3 = kvm_x86_ops->set_tdp_cr3; 5018 context->get_cr3 = get_cr3; 5019 context->get_pdptr = kvm_pdptr_read; 5020 context->inject_page_fault = kvm_inject_page_fault; 5021 5022 if (!is_paging(vcpu)) { 5023 context->nx = false; 5024 context->gva_to_gpa = nonpaging_gva_to_gpa; 5025 context->root_level = 0; 5026 } else if (is_long_mode(vcpu)) { 5027 context->nx = is_nx(vcpu); 5028 context->root_level = is_la57_mode(vcpu) ? 5029 PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL; 5030 reset_rsvds_bits_mask(vcpu, context); 5031 context->gva_to_gpa = paging64_gva_to_gpa; 5032 } else if (is_pae(vcpu)) { 5033 context->nx = is_nx(vcpu); 5034 context->root_level = PT32E_ROOT_LEVEL; 5035 reset_rsvds_bits_mask(vcpu, context); 5036 context->gva_to_gpa = paging64_gva_to_gpa; 5037 } else { 5038 context->nx = false; 5039 context->root_level = PT32_ROOT_LEVEL; 5040 reset_rsvds_bits_mask(vcpu, context); 5041 context->gva_to_gpa = paging32_gva_to_gpa; 5042 } 5043 5044 update_permission_bitmask(vcpu, context, false); 5045 update_pkru_bitmask(vcpu, context, false); 5046 update_last_nonleaf_level(vcpu, context); 5047 reset_tdp_shadow_zero_bits_mask(vcpu, context); 5048 } 5049 5050 static union kvm_mmu_role 5051 kvm_calc_shadow_mmu_root_page_role(struct kvm_vcpu *vcpu, bool base_only) 5052 { 5053 union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, base_only); 5054 5055 role.base.smep_andnot_wp = role.ext.cr4_smep && 5056 !is_write_protection(vcpu); 5057 role.base.smap_andnot_wp = role.ext.cr4_smap && 5058 !is_write_protection(vcpu); 5059 role.base.direct = !is_paging(vcpu); 5060 role.base.gpte_is_8_bytes = !!is_pae(vcpu); 5061 5062 if (!is_long_mode(vcpu)) 5063 role.base.level = PT32E_ROOT_LEVEL; 5064 else if (is_la57_mode(vcpu)) 5065 role.base.level = PT64_ROOT_5LEVEL; 5066 else 5067 role.base.level = PT64_ROOT_4LEVEL; 5068 5069 return role; 5070 } 5071 5072 void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu) 5073 { 5074 struct kvm_mmu *context = vcpu->arch.mmu; 5075 union kvm_mmu_role new_role = 5076 kvm_calc_shadow_mmu_root_page_role(vcpu, false); 5077 5078 new_role.base.word &= mmu_base_role_mask.word; 5079 if (new_role.as_u64 == context->mmu_role.as_u64) 5080 return; 5081 5082 if (!is_paging(vcpu)) 5083 nonpaging_init_context(vcpu, context); 5084 else if (is_long_mode(vcpu)) 5085 paging64_init_context(vcpu, context); 5086 else if (is_pae(vcpu)) 5087 paging32E_init_context(vcpu, context); 5088 else 5089 paging32_init_context(vcpu, context); 5090 5091 context->mmu_role.as_u64 = new_role.as_u64; 5092 reset_shadow_zero_bits_mask(vcpu, context); 5093 } 5094 EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu); 5095 5096 static union kvm_mmu_role 5097 kvm_calc_shadow_ept_root_page_role(struct kvm_vcpu *vcpu, bool accessed_dirty, 5098 bool execonly) 5099 { 5100 union kvm_mmu_role role = {0}; 5101 5102 /* SMM flag is inherited from root_mmu */ 5103 role.base.smm = vcpu->arch.root_mmu.mmu_role.base.smm; 5104 5105 role.base.level = PT64_ROOT_4LEVEL; 5106 role.base.gpte_is_8_bytes = true; 5107 role.base.direct = false; 5108 role.base.ad_disabled = !accessed_dirty; 5109 role.base.guest_mode = true; 5110 role.base.access = ACC_ALL; 5111 5112 /* 5113 * WP=1 and NOT_WP=1 is an impossible combination, use WP and the 5114 * SMAP variation to denote shadow EPT entries. 5115 */ 5116 role.base.cr0_wp = true; 5117 role.base.smap_andnot_wp = true; 5118 5119 role.ext = kvm_calc_mmu_role_ext(vcpu); 5120 role.ext.execonly = execonly; 5121 5122 return role; 5123 } 5124 5125 void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly, 5126 bool accessed_dirty, gpa_t new_eptp) 5127 { 5128 struct kvm_mmu *context = vcpu->arch.mmu; 5129 union kvm_mmu_role new_role = 5130 kvm_calc_shadow_ept_root_page_role(vcpu, accessed_dirty, 5131 execonly); 5132 5133 __kvm_mmu_new_cr3(vcpu, new_eptp, new_role.base, false); 5134 5135 new_role.base.word &= mmu_base_role_mask.word; 5136 if (new_role.as_u64 == context->mmu_role.as_u64) 5137 return; 5138 5139 context->shadow_root_level = PT64_ROOT_4LEVEL; 5140 5141 context->nx = true; 5142 context->ept_ad = accessed_dirty; 5143 context->page_fault = ept_page_fault; 5144 context->gva_to_gpa = ept_gva_to_gpa; 5145 context->sync_page = ept_sync_page; 5146 context->invlpg = ept_invlpg; 5147 context->update_pte = ept_update_pte; 5148 context->root_level = PT64_ROOT_4LEVEL; 5149 context->direct_map = false; 5150 context->mmu_role.as_u64 = new_role.as_u64; 5151 5152 update_permission_bitmask(vcpu, context, true); 5153 update_pkru_bitmask(vcpu, context, true); 5154 update_last_nonleaf_level(vcpu, context); 5155 reset_rsvds_bits_mask_ept(vcpu, context, execonly); 5156 reset_ept_shadow_zero_bits_mask(vcpu, context, execonly); 5157 } 5158 EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu); 5159 5160 static void init_kvm_softmmu(struct kvm_vcpu *vcpu) 5161 { 5162 struct kvm_mmu *context = vcpu->arch.mmu; 5163 5164 kvm_init_shadow_mmu(vcpu); 5165 context->set_cr3 = kvm_x86_ops->set_cr3; 5166 context->get_cr3 = get_cr3; 5167 context->get_pdptr = kvm_pdptr_read; 5168 context->inject_page_fault = kvm_inject_page_fault; 5169 } 5170 5171 static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu) 5172 { 5173 union kvm_mmu_role new_role = kvm_calc_mmu_role_common(vcpu, false); 5174 struct kvm_mmu *g_context = &vcpu->arch.nested_mmu; 5175 5176 new_role.base.word &= mmu_base_role_mask.word; 5177 if (new_role.as_u64 == g_context->mmu_role.as_u64) 5178 return; 5179 5180 g_context->mmu_role.as_u64 = new_role.as_u64; 5181 g_context->get_cr3 = get_cr3; 5182 g_context->get_pdptr = kvm_pdptr_read; 5183 g_context->inject_page_fault = kvm_inject_page_fault; 5184 5185 /* 5186 * Note that arch.mmu->gva_to_gpa translates l2_gpa to l1_gpa using 5187 * L1's nested page tables (e.g. EPT12). The nested translation 5188 * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using 5189 * L2's page tables as the first level of translation and L1's 5190 * nested page tables as the second level of translation. Basically 5191 * the gva_to_gpa functions between mmu and nested_mmu are swapped. 5192 */ 5193 if (!is_paging(vcpu)) { 5194 g_context->nx = false; 5195 g_context->root_level = 0; 5196 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested; 5197 } else if (is_long_mode(vcpu)) { 5198 g_context->nx = is_nx(vcpu); 5199 g_context->root_level = is_la57_mode(vcpu) ? 5200 PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL; 5201 reset_rsvds_bits_mask(vcpu, g_context); 5202 g_context->gva_to_gpa = paging64_gva_to_gpa_nested; 5203 } else if (is_pae(vcpu)) { 5204 g_context->nx = is_nx(vcpu); 5205 g_context->root_level = PT32E_ROOT_LEVEL; 5206 reset_rsvds_bits_mask(vcpu, g_context); 5207 g_context->gva_to_gpa = paging64_gva_to_gpa_nested; 5208 } else { 5209 g_context->nx = false; 5210 g_context->root_level = PT32_ROOT_LEVEL; 5211 reset_rsvds_bits_mask(vcpu, g_context); 5212 g_context->gva_to_gpa = paging32_gva_to_gpa_nested; 5213 } 5214 5215 update_permission_bitmask(vcpu, g_context, false); 5216 update_pkru_bitmask(vcpu, g_context, false); 5217 update_last_nonleaf_level(vcpu, g_context); 5218 } 5219 5220 void kvm_init_mmu(struct kvm_vcpu *vcpu, bool reset_roots) 5221 { 5222 if (reset_roots) { 5223 uint i; 5224 5225 vcpu->arch.mmu->root_hpa = INVALID_PAGE; 5226 5227 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 5228 vcpu->arch.mmu->prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID; 5229 } 5230 5231 if (mmu_is_nested(vcpu)) 5232 init_kvm_nested_mmu(vcpu); 5233 else if (tdp_enabled) 5234 init_kvm_tdp_mmu(vcpu); 5235 else 5236 init_kvm_softmmu(vcpu); 5237 } 5238 EXPORT_SYMBOL_GPL(kvm_init_mmu); 5239 5240 static union kvm_mmu_page_role 5241 kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu) 5242 { 5243 union kvm_mmu_role role; 5244 5245 if (tdp_enabled) 5246 role = kvm_calc_tdp_mmu_root_page_role(vcpu, true); 5247 else 5248 role = kvm_calc_shadow_mmu_root_page_role(vcpu, true); 5249 5250 return role.base; 5251 } 5252 5253 void kvm_mmu_reset_context(struct kvm_vcpu *vcpu) 5254 { 5255 kvm_mmu_unload(vcpu); 5256 kvm_init_mmu(vcpu, true); 5257 } 5258 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context); 5259 5260 int kvm_mmu_load(struct kvm_vcpu *vcpu) 5261 { 5262 int r; 5263 5264 r = mmu_topup_memory_caches(vcpu); 5265 if (r) 5266 goto out; 5267 r = mmu_alloc_roots(vcpu); 5268 kvm_mmu_sync_roots(vcpu); 5269 if (r) 5270 goto out; 5271 kvm_mmu_load_cr3(vcpu); 5272 kvm_x86_ops->tlb_flush(vcpu, true); 5273 out: 5274 return r; 5275 } 5276 EXPORT_SYMBOL_GPL(kvm_mmu_load); 5277 5278 void kvm_mmu_unload(struct kvm_vcpu *vcpu) 5279 { 5280 kvm_mmu_free_roots(vcpu, &vcpu->arch.root_mmu, KVM_MMU_ROOTS_ALL); 5281 WARN_ON(VALID_PAGE(vcpu->arch.root_mmu.root_hpa)); 5282 kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL); 5283 WARN_ON(VALID_PAGE(vcpu->arch.guest_mmu.root_hpa)); 5284 } 5285 EXPORT_SYMBOL_GPL(kvm_mmu_unload); 5286 5287 static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu, 5288 struct kvm_mmu_page *sp, u64 *spte, 5289 const void *new) 5290 { 5291 if (sp->role.level != PT_PAGE_TABLE_LEVEL) { 5292 ++vcpu->kvm->stat.mmu_pde_zapped; 5293 return; 5294 } 5295 5296 ++vcpu->kvm->stat.mmu_pte_updated; 5297 vcpu->arch.mmu->update_pte(vcpu, sp, spte, new); 5298 } 5299 5300 static bool need_remote_flush(u64 old, u64 new) 5301 { 5302 if (!is_shadow_present_pte(old)) 5303 return false; 5304 if (!is_shadow_present_pte(new)) 5305 return true; 5306 if ((old ^ new) & PT64_BASE_ADDR_MASK) 5307 return true; 5308 old ^= shadow_nx_mask; 5309 new ^= shadow_nx_mask; 5310 return (old & ~new & PT64_PERM_MASK) != 0; 5311 } 5312 5313 static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa, 5314 int *bytes) 5315 { 5316 u64 gentry = 0; 5317 int r; 5318 5319 /* 5320 * Assume that the pte write on a page table of the same type 5321 * as the current vcpu paging mode since we update the sptes only 5322 * when they have the same mode. 5323 */ 5324 if (is_pae(vcpu) && *bytes == 4) { 5325 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */ 5326 *gpa &= ~(gpa_t)7; 5327 *bytes = 8; 5328 } 5329 5330 if (*bytes == 4 || *bytes == 8) { 5331 r = kvm_vcpu_read_guest_atomic(vcpu, *gpa, &gentry, *bytes); 5332 if (r) 5333 gentry = 0; 5334 } 5335 5336 return gentry; 5337 } 5338 5339 /* 5340 * If we're seeing too many writes to a page, it may no longer be a page table, 5341 * or we may be forking, in which case it is better to unmap the page. 5342 */ 5343 static bool detect_write_flooding(struct kvm_mmu_page *sp) 5344 { 5345 /* 5346 * Skip write-flooding detected for the sp whose level is 1, because 5347 * it can become unsync, then the guest page is not write-protected. 5348 */ 5349 if (sp->role.level == PT_PAGE_TABLE_LEVEL) 5350 return false; 5351 5352 atomic_inc(&sp->write_flooding_count); 5353 return atomic_read(&sp->write_flooding_count) >= 3; 5354 } 5355 5356 /* 5357 * Misaligned accesses are too much trouble to fix up; also, they usually 5358 * indicate a page is not used as a page table. 5359 */ 5360 static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa, 5361 int bytes) 5362 { 5363 unsigned offset, pte_size, misaligned; 5364 5365 pgprintk("misaligned: gpa %llx bytes %d role %x\n", 5366 gpa, bytes, sp->role.word); 5367 5368 offset = offset_in_page(gpa); 5369 pte_size = sp->role.gpte_is_8_bytes ? 8 : 4; 5370 5371 /* 5372 * Sometimes, the OS only writes the last one bytes to update status 5373 * bits, for example, in linux, andb instruction is used in clear_bit(). 5374 */ 5375 if (!(offset & (pte_size - 1)) && bytes == 1) 5376 return false; 5377 5378 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1); 5379 misaligned |= bytes < 4; 5380 5381 return misaligned; 5382 } 5383 5384 static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte) 5385 { 5386 unsigned page_offset, quadrant; 5387 u64 *spte; 5388 int level; 5389 5390 page_offset = offset_in_page(gpa); 5391 level = sp->role.level; 5392 *nspte = 1; 5393 if (!sp->role.gpte_is_8_bytes) { 5394 page_offset <<= 1; /* 32->64 */ 5395 /* 5396 * A 32-bit pde maps 4MB while the shadow pdes map 5397 * only 2MB. So we need to double the offset again 5398 * and zap two pdes instead of one. 5399 */ 5400 if (level == PT32_ROOT_LEVEL) { 5401 page_offset &= ~7; /* kill rounding error */ 5402 page_offset <<= 1; 5403 *nspte = 2; 5404 } 5405 quadrant = page_offset >> PAGE_SHIFT; 5406 page_offset &= ~PAGE_MASK; 5407 if (quadrant != sp->role.quadrant) 5408 return NULL; 5409 } 5410 5411 spte = &sp->spt[page_offset / sizeof(*spte)]; 5412 return spte; 5413 } 5414 5415 static void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa, 5416 const u8 *new, int bytes, 5417 struct kvm_page_track_notifier_node *node) 5418 { 5419 gfn_t gfn = gpa >> PAGE_SHIFT; 5420 struct kvm_mmu_page *sp; 5421 LIST_HEAD(invalid_list); 5422 u64 entry, gentry, *spte; 5423 int npte; 5424 bool remote_flush, local_flush; 5425 5426 /* 5427 * If we don't have indirect shadow pages, it means no page is 5428 * write-protected, so we can exit simply. 5429 */ 5430 if (!READ_ONCE(vcpu->kvm->arch.indirect_shadow_pages)) 5431 return; 5432 5433 remote_flush = local_flush = false; 5434 5435 pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes); 5436 5437 /* 5438 * No need to care whether allocation memory is successful 5439 * or not since pte prefetch is skiped if it does not have 5440 * enough objects in the cache. 5441 */ 5442 mmu_topup_memory_caches(vcpu); 5443 5444 spin_lock(&vcpu->kvm->mmu_lock); 5445 5446 gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, &bytes); 5447 5448 ++vcpu->kvm->stat.mmu_pte_write; 5449 kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE); 5450 5451 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) { 5452 if (detect_write_misaligned(sp, gpa, bytes) || 5453 detect_write_flooding(sp)) { 5454 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list); 5455 ++vcpu->kvm->stat.mmu_flooded; 5456 continue; 5457 } 5458 5459 spte = get_written_sptes(sp, gpa, &npte); 5460 if (!spte) 5461 continue; 5462 5463 local_flush = true; 5464 while (npte--) { 5465 u32 base_role = vcpu->arch.mmu->mmu_role.base.word; 5466 5467 entry = *spte; 5468 mmu_page_zap_pte(vcpu->kvm, sp, spte); 5469 if (gentry && 5470 !((sp->role.word ^ base_role) 5471 & mmu_base_role_mask.word) && rmap_can_add(vcpu)) 5472 mmu_pte_write_new_pte(vcpu, sp, spte, &gentry); 5473 if (need_remote_flush(entry, *spte)) 5474 remote_flush = true; 5475 ++spte; 5476 } 5477 } 5478 kvm_mmu_flush_or_zap(vcpu, &invalid_list, remote_flush, local_flush); 5479 kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE); 5480 spin_unlock(&vcpu->kvm->mmu_lock); 5481 } 5482 5483 int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva) 5484 { 5485 gpa_t gpa; 5486 int r; 5487 5488 if (vcpu->arch.mmu->direct_map) 5489 return 0; 5490 5491 gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL); 5492 5493 r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT); 5494 5495 return r; 5496 } 5497 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt); 5498 5499 static int make_mmu_pages_available(struct kvm_vcpu *vcpu) 5500 { 5501 LIST_HEAD(invalid_list); 5502 5503 if (likely(kvm_mmu_available_pages(vcpu->kvm) >= KVM_MIN_FREE_MMU_PAGES)) 5504 return 0; 5505 5506 while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES) { 5507 if (!prepare_zap_oldest_mmu_page(vcpu->kvm, &invalid_list)) 5508 break; 5509 5510 ++vcpu->kvm->stat.mmu_recycled; 5511 } 5512 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list); 5513 5514 if (!kvm_mmu_available_pages(vcpu->kvm)) 5515 return -ENOSPC; 5516 return 0; 5517 } 5518 5519 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u64 error_code, 5520 void *insn, int insn_len) 5521 { 5522 int r, emulation_type = 0; 5523 bool direct = vcpu->arch.mmu->direct_map; 5524 5525 /* With shadow page tables, fault_address contains a GVA or nGPA. */ 5526 if (vcpu->arch.mmu->direct_map) { 5527 vcpu->arch.gpa_available = true; 5528 vcpu->arch.gpa_val = cr2; 5529 } 5530 5531 r = RET_PF_INVALID; 5532 if (unlikely(error_code & PFERR_RSVD_MASK)) { 5533 r = handle_mmio_page_fault(vcpu, cr2, direct); 5534 if (r == RET_PF_EMULATE) 5535 goto emulate; 5536 } 5537 5538 if (r == RET_PF_INVALID) { 5539 r = vcpu->arch.mmu->page_fault(vcpu, cr2, 5540 lower_32_bits(error_code), 5541 false); 5542 WARN_ON(r == RET_PF_INVALID); 5543 } 5544 5545 if (r == RET_PF_RETRY) 5546 return 1; 5547 if (r < 0) 5548 return r; 5549 5550 /* 5551 * Before emulating the instruction, check if the error code 5552 * was due to a RO violation while translating the guest page. 5553 * This can occur when using nested virtualization with nested 5554 * paging in both guests. If true, we simply unprotect the page 5555 * and resume the guest. 5556 */ 5557 if (vcpu->arch.mmu->direct_map && 5558 (error_code & PFERR_NESTED_GUEST_PAGE) == PFERR_NESTED_GUEST_PAGE) { 5559 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(cr2)); 5560 return 1; 5561 } 5562 5563 /* 5564 * vcpu->arch.mmu.page_fault returned RET_PF_EMULATE, but we can still 5565 * optimistically try to just unprotect the page and let the processor 5566 * re-execute the instruction that caused the page fault. Do not allow 5567 * retrying MMIO emulation, as it's not only pointless but could also 5568 * cause us to enter an infinite loop because the processor will keep 5569 * faulting on the non-existent MMIO address. Retrying an instruction 5570 * from a nested guest is also pointless and dangerous as we are only 5571 * explicitly shadowing L1's page tables, i.e. unprotecting something 5572 * for L1 isn't going to magically fix whatever issue cause L2 to fail. 5573 */ 5574 if (!mmio_info_in_cache(vcpu, cr2, direct) && !is_guest_mode(vcpu)) 5575 emulation_type = EMULTYPE_ALLOW_RETRY; 5576 emulate: 5577 /* 5578 * On AMD platforms, under certain conditions insn_len may be zero on #NPF. 5579 * This can happen if a guest gets a page-fault on data access but the HW 5580 * table walker is not able to read the instruction page (e.g instruction 5581 * page is not present in memory). In those cases we simply restart the 5582 * guest, with the exception of AMD Erratum 1096 which is unrecoverable. 5583 */ 5584 if (unlikely(insn && !insn_len)) { 5585 if (!kvm_x86_ops->need_emulation_on_page_fault(vcpu)) 5586 return 1; 5587 } 5588 5589 return x86_emulate_instruction(vcpu, cr2, emulation_type, insn, 5590 insn_len); 5591 } 5592 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault); 5593 5594 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva) 5595 { 5596 struct kvm_mmu *mmu = vcpu->arch.mmu; 5597 int i; 5598 5599 /* INVLPG on a * non-canonical address is a NOP according to the SDM. */ 5600 if (is_noncanonical_address(gva, vcpu)) 5601 return; 5602 5603 mmu->invlpg(vcpu, gva, mmu->root_hpa); 5604 5605 /* 5606 * INVLPG is required to invalidate any global mappings for the VA, 5607 * irrespective of PCID. Since it would take us roughly similar amount 5608 * of work to determine whether any of the prev_root mappings of the VA 5609 * is marked global, or to just sync it blindly, so we might as well 5610 * just always sync it. 5611 * 5612 * Mappings not reachable via the current cr3 or the prev_roots will be 5613 * synced when switching to that cr3, so nothing needs to be done here 5614 * for them. 5615 */ 5616 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 5617 if (VALID_PAGE(mmu->prev_roots[i].hpa)) 5618 mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa); 5619 5620 kvm_x86_ops->tlb_flush_gva(vcpu, gva); 5621 ++vcpu->stat.invlpg; 5622 } 5623 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg); 5624 5625 void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid) 5626 { 5627 struct kvm_mmu *mmu = vcpu->arch.mmu; 5628 bool tlb_flush = false; 5629 uint i; 5630 5631 if (pcid == kvm_get_active_pcid(vcpu)) { 5632 mmu->invlpg(vcpu, gva, mmu->root_hpa); 5633 tlb_flush = true; 5634 } 5635 5636 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) { 5637 if (VALID_PAGE(mmu->prev_roots[i].hpa) && 5638 pcid == kvm_get_pcid(vcpu, mmu->prev_roots[i].cr3)) { 5639 mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa); 5640 tlb_flush = true; 5641 } 5642 } 5643 5644 if (tlb_flush) 5645 kvm_x86_ops->tlb_flush_gva(vcpu, gva); 5646 5647 ++vcpu->stat.invlpg; 5648 5649 /* 5650 * Mappings not reachable via the current cr3 or the prev_roots will be 5651 * synced when switching to that cr3, so nothing needs to be done here 5652 * for them. 5653 */ 5654 } 5655 EXPORT_SYMBOL_GPL(kvm_mmu_invpcid_gva); 5656 5657 void kvm_enable_tdp(void) 5658 { 5659 tdp_enabled = true; 5660 } 5661 EXPORT_SYMBOL_GPL(kvm_enable_tdp); 5662 5663 void kvm_disable_tdp(void) 5664 { 5665 tdp_enabled = false; 5666 } 5667 EXPORT_SYMBOL_GPL(kvm_disable_tdp); 5668 5669 5670 /* The return value indicates if tlb flush on all vcpus is needed. */ 5671 typedef bool (*slot_level_handler) (struct kvm *kvm, struct kvm_rmap_head *rmap_head); 5672 5673 /* The caller should hold mmu-lock before calling this function. */ 5674 static __always_inline bool 5675 slot_handle_level_range(struct kvm *kvm, struct kvm_memory_slot *memslot, 5676 slot_level_handler fn, int start_level, int end_level, 5677 gfn_t start_gfn, gfn_t end_gfn, bool lock_flush_tlb) 5678 { 5679 struct slot_rmap_walk_iterator iterator; 5680 bool flush = false; 5681 5682 for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn, 5683 end_gfn, &iterator) { 5684 if (iterator.rmap) 5685 flush |= fn(kvm, iterator.rmap); 5686 5687 if (need_resched() || spin_needbreak(&kvm->mmu_lock)) { 5688 if (flush && lock_flush_tlb) { 5689 kvm_flush_remote_tlbs_with_address(kvm, 5690 start_gfn, 5691 iterator.gfn - start_gfn + 1); 5692 flush = false; 5693 } 5694 cond_resched_lock(&kvm->mmu_lock); 5695 } 5696 } 5697 5698 if (flush && lock_flush_tlb) { 5699 kvm_flush_remote_tlbs_with_address(kvm, start_gfn, 5700 end_gfn - start_gfn + 1); 5701 flush = false; 5702 } 5703 5704 return flush; 5705 } 5706 5707 static __always_inline bool 5708 slot_handle_level(struct kvm *kvm, struct kvm_memory_slot *memslot, 5709 slot_level_handler fn, int start_level, int end_level, 5710 bool lock_flush_tlb) 5711 { 5712 return slot_handle_level_range(kvm, memslot, fn, start_level, 5713 end_level, memslot->base_gfn, 5714 memslot->base_gfn + memslot->npages - 1, 5715 lock_flush_tlb); 5716 } 5717 5718 static __always_inline bool 5719 slot_handle_all_level(struct kvm *kvm, struct kvm_memory_slot *memslot, 5720 slot_level_handler fn, bool lock_flush_tlb) 5721 { 5722 return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL, 5723 PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb); 5724 } 5725 5726 static __always_inline bool 5727 slot_handle_large_level(struct kvm *kvm, struct kvm_memory_slot *memslot, 5728 slot_level_handler fn, bool lock_flush_tlb) 5729 { 5730 return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL + 1, 5731 PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb); 5732 } 5733 5734 static __always_inline bool 5735 slot_handle_leaf(struct kvm *kvm, struct kvm_memory_slot *memslot, 5736 slot_level_handler fn, bool lock_flush_tlb) 5737 { 5738 return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL, 5739 PT_PAGE_TABLE_LEVEL, lock_flush_tlb); 5740 } 5741 5742 static void free_mmu_pages(struct kvm_mmu *mmu) 5743 { 5744 free_page((unsigned long)mmu->pae_root); 5745 free_page((unsigned long)mmu->lm_root); 5746 } 5747 5748 static int alloc_mmu_pages(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu) 5749 { 5750 struct page *page; 5751 int i; 5752 5753 /* 5754 * When using PAE paging, the four PDPTEs are treated as 'root' pages, 5755 * while the PDP table is a per-vCPU construct that's allocated at MMU 5756 * creation. When emulating 32-bit mode, cr3 is only 32 bits even on 5757 * x86_64. Therefore we need to allocate the PDP table in the first 5758 * 4GB of memory, which happens to fit the DMA32 zone. Except for 5759 * SVM's 32-bit NPT support, TDP paging doesn't use PAE paging and can 5760 * skip allocating the PDP table. 5761 */ 5762 if (tdp_enabled && kvm_x86_ops->get_tdp_level(vcpu) > PT32E_ROOT_LEVEL) 5763 return 0; 5764 5765 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_DMA32); 5766 if (!page) 5767 return -ENOMEM; 5768 5769 mmu->pae_root = page_address(page); 5770 for (i = 0; i < 4; ++i) 5771 mmu->pae_root[i] = INVALID_PAGE; 5772 5773 return 0; 5774 } 5775 5776 int kvm_mmu_create(struct kvm_vcpu *vcpu) 5777 { 5778 uint i; 5779 int ret; 5780 5781 vcpu->arch.mmu = &vcpu->arch.root_mmu; 5782 vcpu->arch.walk_mmu = &vcpu->arch.root_mmu; 5783 5784 vcpu->arch.root_mmu.root_hpa = INVALID_PAGE; 5785 vcpu->arch.root_mmu.root_cr3 = 0; 5786 vcpu->arch.root_mmu.translate_gpa = translate_gpa; 5787 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 5788 vcpu->arch.root_mmu.prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID; 5789 5790 vcpu->arch.guest_mmu.root_hpa = INVALID_PAGE; 5791 vcpu->arch.guest_mmu.root_cr3 = 0; 5792 vcpu->arch.guest_mmu.translate_gpa = translate_gpa; 5793 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 5794 vcpu->arch.guest_mmu.prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID; 5795 5796 vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa; 5797 5798 ret = alloc_mmu_pages(vcpu, &vcpu->arch.guest_mmu); 5799 if (ret) 5800 return ret; 5801 5802 ret = alloc_mmu_pages(vcpu, &vcpu->arch.root_mmu); 5803 if (ret) 5804 goto fail_allocate_root; 5805 5806 return ret; 5807 fail_allocate_root: 5808 free_mmu_pages(&vcpu->arch.guest_mmu); 5809 return ret; 5810 } 5811 5812 #define BATCH_ZAP_PAGES 10 5813 static void kvm_zap_obsolete_pages(struct kvm *kvm) 5814 { 5815 struct kvm_mmu_page *sp, *node; 5816 int nr_zapped, batch = 0; 5817 5818 restart: 5819 list_for_each_entry_safe_reverse(sp, node, 5820 &kvm->arch.active_mmu_pages, link) { 5821 /* 5822 * No obsolete valid page exists before a newly created page 5823 * since active_mmu_pages is a FIFO list. 5824 */ 5825 if (!is_obsolete_sp(kvm, sp)) 5826 break; 5827 5828 /* 5829 * Skip invalid pages with a non-zero root count, zapping pages 5830 * with a non-zero root count will never succeed, i.e. the page 5831 * will get thrown back on active_mmu_pages and we'll get stuck 5832 * in an infinite loop. 5833 */ 5834 if (sp->role.invalid && sp->root_count) 5835 continue; 5836 5837 /* 5838 * No need to flush the TLB since we're only zapping shadow 5839 * pages with an obsolete generation number and all vCPUS have 5840 * loaded a new root, i.e. the shadow pages being zapped cannot 5841 * be in active use by the guest. 5842 */ 5843 if (batch >= BATCH_ZAP_PAGES && 5844 cond_resched_lock(&kvm->mmu_lock)) { 5845 batch = 0; 5846 goto restart; 5847 } 5848 5849 if (__kvm_mmu_prepare_zap_page(kvm, sp, 5850 &kvm->arch.zapped_obsolete_pages, &nr_zapped)) { 5851 batch += nr_zapped; 5852 goto restart; 5853 } 5854 } 5855 5856 /* 5857 * Trigger a remote TLB flush before freeing the page tables to ensure 5858 * KVM is not in the middle of a lockless shadow page table walk, which 5859 * may reference the pages. 5860 */ 5861 kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages); 5862 } 5863 5864 /* 5865 * Fast invalidate all shadow pages and use lock-break technique 5866 * to zap obsolete pages. 5867 * 5868 * It's required when memslot is being deleted or VM is being 5869 * destroyed, in these cases, we should ensure that KVM MMU does 5870 * not use any resource of the being-deleted slot or all slots 5871 * after calling the function. 5872 */ 5873 static void kvm_mmu_zap_all_fast(struct kvm *kvm) 5874 { 5875 lockdep_assert_held(&kvm->slots_lock); 5876 5877 spin_lock(&kvm->mmu_lock); 5878 trace_kvm_mmu_zap_all_fast(kvm); 5879 5880 /* 5881 * Toggle mmu_valid_gen between '0' and '1'. Because slots_lock is 5882 * held for the entire duration of zapping obsolete pages, it's 5883 * impossible for there to be multiple invalid generations associated 5884 * with *valid* shadow pages at any given time, i.e. there is exactly 5885 * one valid generation and (at most) one invalid generation. 5886 */ 5887 kvm->arch.mmu_valid_gen = kvm->arch.mmu_valid_gen ? 0 : 1; 5888 5889 /* 5890 * Notify all vcpus to reload its shadow page table and flush TLB. 5891 * Then all vcpus will switch to new shadow page table with the new 5892 * mmu_valid_gen. 5893 * 5894 * Note: we need to do this under the protection of mmu_lock, 5895 * otherwise, vcpu would purge shadow page but miss tlb flush. 5896 */ 5897 kvm_reload_remote_mmus(kvm); 5898 5899 kvm_zap_obsolete_pages(kvm); 5900 spin_unlock(&kvm->mmu_lock); 5901 } 5902 5903 static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm) 5904 { 5905 return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages)); 5906 } 5907 5908 static void kvm_mmu_invalidate_zap_pages_in_memslot(struct kvm *kvm, 5909 struct kvm_memory_slot *slot, 5910 struct kvm_page_track_notifier_node *node) 5911 { 5912 kvm_mmu_zap_all_fast(kvm); 5913 } 5914 5915 void kvm_mmu_init_vm(struct kvm *kvm) 5916 { 5917 struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker; 5918 5919 node->track_write = kvm_mmu_pte_write; 5920 node->track_flush_slot = kvm_mmu_invalidate_zap_pages_in_memslot; 5921 kvm_page_track_register_notifier(kvm, node); 5922 } 5923 5924 void kvm_mmu_uninit_vm(struct kvm *kvm) 5925 { 5926 struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker; 5927 5928 kvm_page_track_unregister_notifier(kvm, node); 5929 } 5930 5931 void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end) 5932 { 5933 struct kvm_memslots *slots; 5934 struct kvm_memory_slot *memslot; 5935 int i; 5936 5937 spin_lock(&kvm->mmu_lock); 5938 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { 5939 slots = __kvm_memslots(kvm, i); 5940 kvm_for_each_memslot(memslot, slots) { 5941 gfn_t start, end; 5942 5943 start = max(gfn_start, memslot->base_gfn); 5944 end = min(gfn_end, memslot->base_gfn + memslot->npages); 5945 if (start >= end) 5946 continue; 5947 5948 slot_handle_level_range(kvm, memslot, kvm_zap_rmapp, 5949 PT_PAGE_TABLE_LEVEL, PT_MAX_HUGEPAGE_LEVEL, 5950 start, end - 1, true); 5951 } 5952 } 5953 5954 spin_unlock(&kvm->mmu_lock); 5955 } 5956 5957 static bool slot_rmap_write_protect(struct kvm *kvm, 5958 struct kvm_rmap_head *rmap_head) 5959 { 5960 return __rmap_write_protect(kvm, rmap_head, false); 5961 } 5962 5963 void kvm_mmu_slot_remove_write_access(struct kvm *kvm, 5964 struct kvm_memory_slot *memslot) 5965 { 5966 bool flush; 5967 5968 spin_lock(&kvm->mmu_lock); 5969 flush = slot_handle_all_level(kvm, memslot, slot_rmap_write_protect, 5970 false); 5971 spin_unlock(&kvm->mmu_lock); 5972 5973 /* 5974 * kvm_mmu_slot_remove_write_access() and kvm_vm_ioctl_get_dirty_log() 5975 * which do tlb flush out of mmu-lock should be serialized by 5976 * kvm->slots_lock otherwise tlb flush would be missed. 5977 */ 5978 lockdep_assert_held(&kvm->slots_lock); 5979 5980 /* 5981 * We can flush all the TLBs out of the mmu lock without TLB 5982 * corruption since we just change the spte from writable to 5983 * readonly so that we only need to care the case of changing 5984 * spte from present to present (changing the spte from present 5985 * to nonpresent will flush all the TLBs immediately), in other 5986 * words, the only case we care is mmu_spte_update() where we 5987 * have checked SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE 5988 * instead of PT_WRITABLE_MASK, that means it does not depend 5989 * on PT_WRITABLE_MASK anymore. 5990 */ 5991 if (flush) 5992 kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn, 5993 memslot->npages); 5994 } 5995 5996 static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm, 5997 struct kvm_rmap_head *rmap_head) 5998 { 5999 u64 *sptep; 6000 struct rmap_iterator iter; 6001 int need_tlb_flush = 0; 6002 kvm_pfn_t pfn; 6003 struct kvm_mmu_page *sp; 6004 6005 restart: 6006 for_each_rmap_spte(rmap_head, &iter, sptep) { 6007 sp = page_header(__pa(sptep)); 6008 pfn = spte_to_pfn(*sptep); 6009 6010 /* 6011 * We cannot do huge page mapping for indirect shadow pages, 6012 * which are found on the last rmap (level = 1) when not using 6013 * tdp; such shadow pages are synced with the page table in 6014 * the guest, and the guest page table is using 4K page size 6015 * mapping if the indirect sp has level = 1. 6016 */ 6017 if (sp->role.direct && !kvm_is_reserved_pfn(pfn) && 6018 !kvm_is_zone_device_pfn(pfn) && 6019 PageTransCompoundMap(pfn_to_page(pfn))) { 6020 pte_list_remove(rmap_head, sptep); 6021 6022 if (kvm_available_flush_tlb_with_range()) 6023 kvm_flush_remote_tlbs_with_address(kvm, sp->gfn, 6024 KVM_PAGES_PER_HPAGE(sp->role.level)); 6025 else 6026 need_tlb_flush = 1; 6027 6028 goto restart; 6029 } 6030 } 6031 6032 return need_tlb_flush; 6033 } 6034 6035 void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm, 6036 const struct kvm_memory_slot *memslot) 6037 { 6038 /* FIXME: const-ify all uses of struct kvm_memory_slot. */ 6039 spin_lock(&kvm->mmu_lock); 6040 slot_handle_leaf(kvm, (struct kvm_memory_slot *)memslot, 6041 kvm_mmu_zap_collapsible_spte, true); 6042 spin_unlock(&kvm->mmu_lock); 6043 } 6044 6045 void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm, 6046 struct kvm_memory_slot *memslot) 6047 { 6048 bool flush; 6049 6050 spin_lock(&kvm->mmu_lock); 6051 flush = slot_handle_leaf(kvm, memslot, __rmap_clear_dirty, false); 6052 spin_unlock(&kvm->mmu_lock); 6053 6054 lockdep_assert_held(&kvm->slots_lock); 6055 6056 /* 6057 * It's also safe to flush TLBs out of mmu lock here as currently this 6058 * function is only used for dirty logging, in which case flushing TLB 6059 * out of mmu lock also guarantees no dirty pages will be lost in 6060 * dirty_bitmap. 6061 */ 6062 if (flush) 6063 kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn, 6064 memslot->npages); 6065 } 6066 EXPORT_SYMBOL_GPL(kvm_mmu_slot_leaf_clear_dirty); 6067 6068 void kvm_mmu_slot_largepage_remove_write_access(struct kvm *kvm, 6069 struct kvm_memory_slot *memslot) 6070 { 6071 bool flush; 6072 6073 spin_lock(&kvm->mmu_lock); 6074 flush = slot_handle_large_level(kvm, memslot, slot_rmap_write_protect, 6075 false); 6076 spin_unlock(&kvm->mmu_lock); 6077 6078 /* see kvm_mmu_slot_remove_write_access */ 6079 lockdep_assert_held(&kvm->slots_lock); 6080 6081 if (flush) 6082 kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn, 6083 memslot->npages); 6084 } 6085 EXPORT_SYMBOL_GPL(kvm_mmu_slot_largepage_remove_write_access); 6086 6087 void kvm_mmu_slot_set_dirty(struct kvm *kvm, 6088 struct kvm_memory_slot *memslot) 6089 { 6090 bool flush; 6091 6092 spin_lock(&kvm->mmu_lock); 6093 flush = slot_handle_all_level(kvm, memslot, __rmap_set_dirty, false); 6094 spin_unlock(&kvm->mmu_lock); 6095 6096 lockdep_assert_held(&kvm->slots_lock); 6097 6098 /* see kvm_mmu_slot_leaf_clear_dirty */ 6099 if (flush) 6100 kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn, 6101 memslot->npages); 6102 } 6103 EXPORT_SYMBOL_GPL(kvm_mmu_slot_set_dirty); 6104 6105 void kvm_mmu_zap_all(struct kvm *kvm) 6106 { 6107 struct kvm_mmu_page *sp, *node; 6108 LIST_HEAD(invalid_list); 6109 int ign; 6110 6111 spin_lock(&kvm->mmu_lock); 6112 restart: 6113 list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link) { 6114 if (sp->role.invalid && sp->root_count) 6115 continue; 6116 if (__kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list, &ign)) 6117 goto restart; 6118 if (cond_resched_lock(&kvm->mmu_lock)) 6119 goto restart; 6120 } 6121 6122 kvm_mmu_commit_zap_page(kvm, &invalid_list); 6123 spin_unlock(&kvm->mmu_lock); 6124 } 6125 6126 void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen) 6127 { 6128 WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS); 6129 6130 gen &= MMIO_SPTE_GEN_MASK; 6131 6132 /* 6133 * Generation numbers are incremented in multiples of the number of 6134 * address spaces in order to provide unique generations across all 6135 * address spaces. Strip what is effectively the address space 6136 * modifier prior to checking for a wrap of the MMIO generation so 6137 * that a wrap in any address space is detected. 6138 */ 6139 gen &= ~((u64)KVM_ADDRESS_SPACE_NUM - 1); 6140 6141 /* 6142 * The very rare case: if the MMIO generation number has wrapped, 6143 * zap all shadow pages. 6144 */ 6145 if (unlikely(gen == 0)) { 6146 kvm_debug_ratelimited("kvm: zapping shadow pages for mmio generation wraparound\n"); 6147 kvm_mmu_zap_all_fast(kvm); 6148 } 6149 } 6150 6151 static unsigned long 6152 mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc) 6153 { 6154 struct kvm *kvm; 6155 int nr_to_scan = sc->nr_to_scan; 6156 unsigned long freed = 0; 6157 6158 mutex_lock(&kvm_lock); 6159 6160 list_for_each_entry(kvm, &vm_list, vm_list) { 6161 int idx; 6162 LIST_HEAD(invalid_list); 6163 6164 /* 6165 * Never scan more than sc->nr_to_scan VM instances. 6166 * Will not hit this condition practically since we do not try 6167 * to shrink more than one VM and it is very unlikely to see 6168 * !n_used_mmu_pages so many times. 6169 */ 6170 if (!nr_to_scan--) 6171 break; 6172 /* 6173 * n_used_mmu_pages is accessed without holding kvm->mmu_lock 6174 * here. We may skip a VM instance errorneosly, but we do not 6175 * want to shrink a VM that only started to populate its MMU 6176 * anyway. 6177 */ 6178 if (!kvm->arch.n_used_mmu_pages && 6179 !kvm_has_zapped_obsolete_pages(kvm)) 6180 continue; 6181 6182 idx = srcu_read_lock(&kvm->srcu); 6183 spin_lock(&kvm->mmu_lock); 6184 6185 if (kvm_has_zapped_obsolete_pages(kvm)) { 6186 kvm_mmu_commit_zap_page(kvm, 6187 &kvm->arch.zapped_obsolete_pages); 6188 goto unlock; 6189 } 6190 6191 if (prepare_zap_oldest_mmu_page(kvm, &invalid_list)) 6192 freed++; 6193 kvm_mmu_commit_zap_page(kvm, &invalid_list); 6194 6195 unlock: 6196 spin_unlock(&kvm->mmu_lock); 6197 srcu_read_unlock(&kvm->srcu, idx); 6198 6199 /* 6200 * unfair on small ones 6201 * per-vm shrinkers cry out 6202 * sadness comes quickly 6203 */ 6204 list_move_tail(&kvm->vm_list, &vm_list); 6205 break; 6206 } 6207 6208 mutex_unlock(&kvm_lock); 6209 return freed; 6210 } 6211 6212 static unsigned long 6213 mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc) 6214 { 6215 return percpu_counter_read_positive(&kvm_total_used_mmu_pages); 6216 } 6217 6218 static struct shrinker mmu_shrinker = { 6219 .count_objects = mmu_shrink_count, 6220 .scan_objects = mmu_shrink_scan, 6221 .seeks = DEFAULT_SEEKS * 10, 6222 }; 6223 6224 static void mmu_destroy_caches(void) 6225 { 6226 kmem_cache_destroy(pte_list_desc_cache); 6227 kmem_cache_destroy(mmu_page_header_cache); 6228 } 6229 6230 static void kvm_set_mmio_spte_mask(void) 6231 { 6232 u64 mask; 6233 6234 /* 6235 * Set the reserved bits and the present bit of an paging-structure 6236 * entry to generate page fault with PFER.RSV = 1. 6237 */ 6238 6239 /* 6240 * Mask the uppermost physical address bit, which would be reserved as 6241 * long as the supported physical address width is less than 52. 6242 */ 6243 mask = 1ull << 51; 6244 6245 /* Set the present bit. */ 6246 mask |= 1ull; 6247 6248 /* 6249 * If reserved bit is not supported, clear the present bit to disable 6250 * mmio page fault. 6251 */ 6252 if (IS_ENABLED(CONFIG_X86_64) && shadow_phys_bits == 52) 6253 mask &= ~1ull; 6254 6255 kvm_mmu_set_mmio_spte_mask(mask, mask, ACC_WRITE_MASK | ACC_USER_MASK); 6256 } 6257 6258 static bool get_nx_auto_mode(void) 6259 { 6260 /* Return true when CPU has the bug, and mitigations are ON */ 6261 return boot_cpu_has_bug(X86_BUG_ITLB_MULTIHIT) && !cpu_mitigations_off(); 6262 } 6263 6264 static void __set_nx_huge_pages(bool val) 6265 { 6266 nx_huge_pages = itlb_multihit_kvm_mitigation = val; 6267 } 6268 6269 static int set_nx_huge_pages(const char *val, const struct kernel_param *kp) 6270 { 6271 bool old_val = nx_huge_pages; 6272 bool new_val; 6273 6274 /* In "auto" mode deploy workaround only if CPU has the bug. */ 6275 if (sysfs_streq(val, "off")) 6276 new_val = 0; 6277 else if (sysfs_streq(val, "force")) 6278 new_val = 1; 6279 else if (sysfs_streq(val, "auto")) 6280 new_val = get_nx_auto_mode(); 6281 else if (strtobool(val, &new_val) < 0) 6282 return -EINVAL; 6283 6284 __set_nx_huge_pages(new_val); 6285 6286 if (new_val != old_val) { 6287 struct kvm *kvm; 6288 6289 mutex_lock(&kvm_lock); 6290 6291 list_for_each_entry(kvm, &vm_list, vm_list) { 6292 mutex_lock(&kvm->slots_lock); 6293 kvm_mmu_zap_all_fast(kvm); 6294 mutex_unlock(&kvm->slots_lock); 6295 6296 wake_up_process(kvm->arch.nx_lpage_recovery_thread); 6297 } 6298 mutex_unlock(&kvm_lock); 6299 } 6300 6301 return 0; 6302 } 6303 6304 int kvm_mmu_module_init(void) 6305 { 6306 int ret = -ENOMEM; 6307 6308 if (nx_huge_pages == -1) 6309 __set_nx_huge_pages(get_nx_auto_mode()); 6310 6311 /* 6312 * MMU roles use union aliasing which is, generally speaking, an 6313 * undefined behavior. However, we supposedly know how compilers behave 6314 * and the current status quo is unlikely to change. Guardians below are 6315 * supposed to let us know if the assumption becomes false. 6316 */ 6317 BUILD_BUG_ON(sizeof(union kvm_mmu_page_role) != sizeof(u32)); 6318 BUILD_BUG_ON(sizeof(union kvm_mmu_extended_role) != sizeof(u32)); 6319 BUILD_BUG_ON(sizeof(union kvm_mmu_role) != sizeof(u64)); 6320 6321 kvm_mmu_reset_all_pte_masks(); 6322 6323 kvm_set_mmio_spte_mask(); 6324 6325 pte_list_desc_cache = kmem_cache_create("pte_list_desc", 6326 sizeof(struct pte_list_desc), 6327 0, SLAB_ACCOUNT, NULL); 6328 if (!pte_list_desc_cache) 6329 goto out; 6330 6331 mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header", 6332 sizeof(struct kvm_mmu_page), 6333 0, SLAB_ACCOUNT, NULL); 6334 if (!mmu_page_header_cache) 6335 goto out; 6336 6337 if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL)) 6338 goto out; 6339 6340 ret = register_shrinker(&mmu_shrinker); 6341 if (ret) 6342 goto out; 6343 6344 return 0; 6345 6346 out: 6347 mmu_destroy_caches(); 6348 return ret; 6349 } 6350 6351 /* 6352 * Calculate mmu pages needed for kvm. 6353 */ 6354 unsigned long kvm_mmu_calculate_default_mmu_pages(struct kvm *kvm) 6355 { 6356 unsigned long nr_mmu_pages; 6357 unsigned long nr_pages = 0; 6358 struct kvm_memslots *slots; 6359 struct kvm_memory_slot *memslot; 6360 int i; 6361 6362 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { 6363 slots = __kvm_memslots(kvm, i); 6364 6365 kvm_for_each_memslot(memslot, slots) 6366 nr_pages += memslot->npages; 6367 } 6368 6369 nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000; 6370 nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES); 6371 6372 return nr_mmu_pages; 6373 } 6374 6375 void kvm_mmu_destroy(struct kvm_vcpu *vcpu) 6376 { 6377 kvm_mmu_unload(vcpu); 6378 free_mmu_pages(&vcpu->arch.root_mmu); 6379 free_mmu_pages(&vcpu->arch.guest_mmu); 6380 mmu_free_memory_caches(vcpu); 6381 } 6382 6383 void kvm_mmu_module_exit(void) 6384 { 6385 mmu_destroy_caches(); 6386 percpu_counter_destroy(&kvm_total_used_mmu_pages); 6387 unregister_shrinker(&mmu_shrinker); 6388 mmu_audit_disable(); 6389 } 6390 6391 static int set_nx_huge_pages_recovery_ratio(const char *val, const struct kernel_param *kp) 6392 { 6393 unsigned int old_val; 6394 int err; 6395 6396 old_val = nx_huge_pages_recovery_ratio; 6397 err = param_set_uint(val, kp); 6398 if (err) 6399 return err; 6400 6401 if (READ_ONCE(nx_huge_pages) && 6402 !old_val && nx_huge_pages_recovery_ratio) { 6403 struct kvm *kvm; 6404 6405 mutex_lock(&kvm_lock); 6406 6407 list_for_each_entry(kvm, &vm_list, vm_list) 6408 wake_up_process(kvm->arch.nx_lpage_recovery_thread); 6409 6410 mutex_unlock(&kvm_lock); 6411 } 6412 6413 return err; 6414 } 6415 6416 static void kvm_recover_nx_lpages(struct kvm *kvm) 6417 { 6418 int rcu_idx; 6419 struct kvm_mmu_page *sp; 6420 unsigned int ratio; 6421 LIST_HEAD(invalid_list); 6422 ulong to_zap; 6423 6424 rcu_idx = srcu_read_lock(&kvm->srcu); 6425 spin_lock(&kvm->mmu_lock); 6426 6427 ratio = READ_ONCE(nx_huge_pages_recovery_ratio); 6428 to_zap = ratio ? DIV_ROUND_UP(kvm->stat.nx_lpage_splits, ratio) : 0; 6429 while (to_zap && !list_empty(&kvm->arch.lpage_disallowed_mmu_pages)) { 6430 /* 6431 * We use a separate list instead of just using active_mmu_pages 6432 * because the number of lpage_disallowed pages is expected to 6433 * be relatively small compared to the total. 6434 */ 6435 sp = list_first_entry(&kvm->arch.lpage_disallowed_mmu_pages, 6436 struct kvm_mmu_page, 6437 lpage_disallowed_link); 6438 WARN_ON_ONCE(!sp->lpage_disallowed); 6439 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list); 6440 WARN_ON_ONCE(sp->lpage_disallowed); 6441 6442 if (!--to_zap || need_resched() || spin_needbreak(&kvm->mmu_lock)) { 6443 kvm_mmu_commit_zap_page(kvm, &invalid_list); 6444 if (to_zap) 6445 cond_resched_lock(&kvm->mmu_lock); 6446 } 6447 } 6448 6449 spin_unlock(&kvm->mmu_lock); 6450 srcu_read_unlock(&kvm->srcu, rcu_idx); 6451 } 6452 6453 static long get_nx_lpage_recovery_timeout(u64 start_time) 6454 { 6455 return READ_ONCE(nx_huge_pages) && READ_ONCE(nx_huge_pages_recovery_ratio) 6456 ? start_time + 60 * HZ - get_jiffies_64() 6457 : MAX_SCHEDULE_TIMEOUT; 6458 } 6459 6460 static int kvm_nx_lpage_recovery_worker(struct kvm *kvm, uintptr_t data) 6461 { 6462 u64 start_time; 6463 long remaining_time; 6464 6465 while (true) { 6466 start_time = get_jiffies_64(); 6467 remaining_time = get_nx_lpage_recovery_timeout(start_time); 6468 6469 set_current_state(TASK_INTERRUPTIBLE); 6470 while (!kthread_should_stop() && remaining_time > 0) { 6471 schedule_timeout(remaining_time); 6472 remaining_time = get_nx_lpage_recovery_timeout(start_time); 6473 set_current_state(TASK_INTERRUPTIBLE); 6474 } 6475 6476 set_current_state(TASK_RUNNING); 6477 6478 if (kthread_should_stop()) 6479 return 0; 6480 6481 kvm_recover_nx_lpages(kvm); 6482 } 6483 } 6484 6485 int kvm_mmu_post_init_vm(struct kvm *kvm) 6486 { 6487 int err; 6488 6489 err = kvm_vm_create_worker_thread(kvm, kvm_nx_lpage_recovery_worker, 0, 6490 "kvm-nx-lpage-recovery", 6491 &kvm->arch.nx_lpage_recovery_thread); 6492 if (!err) 6493 kthread_unpark(kvm->arch.nx_lpage_recovery_thread); 6494 6495 return err; 6496 } 6497 6498 void kvm_mmu_pre_destroy_vm(struct kvm *kvm) 6499 { 6500 if (kvm->arch.nx_lpage_recovery_thread) 6501 kthread_stop(kvm->arch.nx_lpage_recovery_thread); 6502 } 6503