xref: /openbmc/linux/arch/x86/kvm/mmu/mmu.c (revision 19b438592238b3b40c3f945bb5f9c4ca971c0c45)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This module enables machines with Intel VT-x extensions to run virtual
6  * machines without emulation or binary translation.
7  *
8  * MMU support
9  *
10  * Copyright (C) 2006 Qumranet, Inc.
11  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
12  *
13  * Authors:
14  *   Yaniv Kamay  <yaniv@qumranet.com>
15  *   Avi Kivity   <avi@qumranet.com>
16  */
17 
18 #include "irq.h"
19 #include "ioapic.h"
20 #include "mmu.h"
21 #include "mmu_internal.h"
22 #include "tdp_mmu.h"
23 #include "x86.h"
24 #include "kvm_cache_regs.h"
25 #include "kvm_emulate.h"
26 #include "cpuid.h"
27 #include "spte.h"
28 
29 #include <linux/kvm_host.h>
30 #include <linux/types.h>
31 #include <linux/string.h>
32 #include <linux/mm.h>
33 #include <linux/highmem.h>
34 #include <linux/moduleparam.h>
35 #include <linux/export.h>
36 #include <linux/swap.h>
37 #include <linux/hugetlb.h>
38 #include <linux/compiler.h>
39 #include <linux/srcu.h>
40 #include <linux/slab.h>
41 #include <linux/sched/signal.h>
42 #include <linux/uaccess.h>
43 #include <linux/hash.h>
44 #include <linux/kern_levels.h>
45 #include <linux/kthread.h>
46 
47 #include <asm/page.h>
48 #include <asm/memtype.h>
49 #include <asm/cmpxchg.h>
50 #include <asm/io.h>
51 #include <asm/set_memory.h>
52 #include <asm/vmx.h>
53 #include <asm/kvm_page_track.h>
54 #include "trace.h"
55 
56 extern bool itlb_multihit_kvm_mitigation;
57 
58 int __read_mostly nx_huge_pages = -1;
59 #ifdef CONFIG_PREEMPT_RT
60 /* Recovery can cause latency spikes, disable it for PREEMPT_RT.  */
61 static uint __read_mostly nx_huge_pages_recovery_ratio = 0;
62 #else
63 static uint __read_mostly nx_huge_pages_recovery_ratio = 60;
64 #endif
65 
66 static int set_nx_huge_pages(const char *val, const struct kernel_param *kp);
67 static int set_nx_huge_pages_recovery_ratio(const char *val, const struct kernel_param *kp);
68 
69 static const struct kernel_param_ops nx_huge_pages_ops = {
70 	.set = set_nx_huge_pages,
71 	.get = param_get_bool,
72 };
73 
74 static const struct kernel_param_ops nx_huge_pages_recovery_ratio_ops = {
75 	.set = set_nx_huge_pages_recovery_ratio,
76 	.get = param_get_uint,
77 };
78 
79 module_param_cb(nx_huge_pages, &nx_huge_pages_ops, &nx_huge_pages, 0644);
80 __MODULE_PARM_TYPE(nx_huge_pages, "bool");
81 module_param_cb(nx_huge_pages_recovery_ratio, &nx_huge_pages_recovery_ratio_ops,
82 		&nx_huge_pages_recovery_ratio, 0644);
83 __MODULE_PARM_TYPE(nx_huge_pages_recovery_ratio, "uint");
84 
85 static bool __read_mostly force_flush_and_sync_on_reuse;
86 module_param_named(flush_on_reuse, force_flush_and_sync_on_reuse, bool, 0644);
87 
88 /*
89  * When setting this variable to true it enables Two-Dimensional-Paging
90  * where the hardware walks 2 page tables:
91  * 1. the guest-virtual to guest-physical
92  * 2. while doing 1. it walks guest-physical to host-physical
93  * If the hardware supports that we don't need to do shadow paging.
94  */
95 bool tdp_enabled = false;
96 
97 static int max_huge_page_level __read_mostly;
98 static int max_tdp_level __read_mostly;
99 
100 enum {
101 	AUDIT_PRE_PAGE_FAULT,
102 	AUDIT_POST_PAGE_FAULT,
103 	AUDIT_PRE_PTE_WRITE,
104 	AUDIT_POST_PTE_WRITE,
105 	AUDIT_PRE_SYNC,
106 	AUDIT_POST_SYNC
107 };
108 
109 #ifdef MMU_DEBUG
110 bool dbg = 0;
111 module_param(dbg, bool, 0644);
112 #endif
113 
114 #define PTE_PREFETCH_NUM		8
115 
116 #define PT32_LEVEL_BITS 10
117 
118 #define PT32_LEVEL_SHIFT(level) \
119 		(PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
120 
121 #define PT32_LVL_OFFSET_MASK(level) \
122 	(PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
123 						* PT32_LEVEL_BITS))) - 1))
124 
125 #define PT32_INDEX(address, level)\
126 	(((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
127 
128 
129 #define PT32_BASE_ADDR_MASK PAGE_MASK
130 #define PT32_DIR_BASE_ADDR_MASK \
131 	(PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
132 #define PT32_LVL_ADDR_MASK(level) \
133 	(PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
134 					    * PT32_LEVEL_BITS))) - 1))
135 
136 #include <trace/events/kvm.h>
137 
138 /* make pte_list_desc fit well in cache line */
139 #define PTE_LIST_EXT 3
140 
141 struct pte_list_desc {
142 	u64 *sptes[PTE_LIST_EXT];
143 	struct pte_list_desc *more;
144 };
145 
146 struct kvm_shadow_walk_iterator {
147 	u64 addr;
148 	hpa_t shadow_addr;
149 	u64 *sptep;
150 	int level;
151 	unsigned index;
152 };
153 
154 #define for_each_shadow_entry_using_root(_vcpu, _root, _addr, _walker)     \
155 	for (shadow_walk_init_using_root(&(_walker), (_vcpu),              \
156 					 (_root), (_addr));                \
157 	     shadow_walk_okay(&(_walker));			           \
158 	     shadow_walk_next(&(_walker)))
159 
160 #define for_each_shadow_entry(_vcpu, _addr, _walker)            \
161 	for (shadow_walk_init(&(_walker), _vcpu, _addr);	\
162 	     shadow_walk_okay(&(_walker));			\
163 	     shadow_walk_next(&(_walker)))
164 
165 #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte)	\
166 	for (shadow_walk_init(&(_walker), _vcpu, _addr);		\
167 	     shadow_walk_okay(&(_walker)) &&				\
168 		({ spte = mmu_spte_get_lockless(_walker.sptep); 1; });	\
169 	     __shadow_walk_next(&(_walker), spte))
170 
171 static struct kmem_cache *pte_list_desc_cache;
172 struct kmem_cache *mmu_page_header_cache;
173 static struct percpu_counter kvm_total_used_mmu_pages;
174 
175 static void mmu_spte_set(u64 *sptep, u64 spte);
176 static union kvm_mmu_page_role
177 kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu);
178 
179 struct kvm_mmu_role_regs {
180 	const unsigned long cr0;
181 	const unsigned long cr4;
182 	const u64 efer;
183 };
184 
185 #define CREATE_TRACE_POINTS
186 #include "mmutrace.h"
187 
188 /*
189  * Yes, lot's of underscores.  They're a hint that you probably shouldn't be
190  * reading from the role_regs.  Once the mmu_role is constructed, it becomes
191  * the single source of truth for the MMU's state.
192  */
193 #define BUILD_MMU_ROLE_REGS_ACCESSOR(reg, name, flag)			\
194 static inline bool ____is_##reg##_##name(struct kvm_mmu_role_regs *regs)\
195 {									\
196 	return !!(regs->reg & flag);					\
197 }
198 BUILD_MMU_ROLE_REGS_ACCESSOR(cr0, pg, X86_CR0_PG);
199 BUILD_MMU_ROLE_REGS_ACCESSOR(cr0, wp, X86_CR0_WP);
200 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pse, X86_CR4_PSE);
201 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pae, X86_CR4_PAE);
202 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, smep, X86_CR4_SMEP);
203 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, smap, X86_CR4_SMAP);
204 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pke, X86_CR4_PKE);
205 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, la57, X86_CR4_LA57);
206 BUILD_MMU_ROLE_REGS_ACCESSOR(efer, nx, EFER_NX);
207 BUILD_MMU_ROLE_REGS_ACCESSOR(efer, lma, EFER_LMA);
208 
209 /*
210  * The MMU itself (with a valid role) is the single source of truth for the
211  * MMU.  Do not use the regs used to build the MMU/role, nor the vCPU.  The
212  * regs don't account for dependencies, e.g. clearing CR4 bits if CR0.PG=1,
213  * and the vCPU may be incorrect/irrelevant.
214  */
215 #define BUILD_MMU_ROLE_ACCESSOR(base_or_ext, reg, name)		\
216 static inline bool is_##reg##_##name(struct kvm_mmu *mmu)	\
217 {								\
218 	return !!(mmu->mmu_role. base_or_ext . reg##_##name);	\
219 }
220 BUILD_MMU_ROLE_ACCESSOR(ext,  cr0, pg);
221 BUILD_MMU_ROLE_ACCESSOR(base, cr0, wp);
222 BUILD_MMU_ROLE_ACCESSOR(ext,  cr4, pse);
223 BUILD_MMU_ROLE_ACCESSOR(ext,  cr4, pae);
224 BUILD_MMU_ROLE_ACCESSOR(ext,  cr4, smep);
225 BUILD_MMU_ROLE_ACCESSOR(ext,  cr4, smap);
226 BUILD_MMU_ROLE_ACCESSOR(ext,  cr4, pke);
227 BUILD_MMU_ROLE_ACCESSOR(ext,  cr4, la57);
228 BUILD_MMU_ROLE_ACCESSOR(base, efer, nx);
229 
230 static struct kvm_mmu_role_regs vcpu_to_role_regs(struct kvm_vcpu *vcpu)
231 {
232 	struct kvm_mmu_role_regs regs = {
233 		.cr0 = kvm_read_cr0_bits(vcpu, KVM_MMU_CR0_ROLE_BITS),
234 		.cr4 = kvm_read_cr4_bits(vcpu, KVM_MMU_CR4_ROLE_BITS),
235 		.efer = vcpu->arch.efer,
236 	};
237 
238 	return regs;
239 }
240 
241 static int role_regs_to_root_level(struct kvm_mmu_role_regs *regs)
242 {
243 	if (!____is_cr0_pg(regs))
244 		return 0;
245 	else if (____is_efer_lma(regs))
246 		return ____is_cr4_la57(regs) ? PT64_ROOT_5LEVEL :
247 					       PT64_ROOT_4LEVEL;
248 	else if (____is_cr4_pae(regs))
249 		return PT32E_ROOT_LEVEL;
250 	else
251 		return PT32_ROOT_LEVEL;
252 }
253 
254 static inline bool kvm_available_flush_tlb_with_range(void)
255 {
256 	return kvm_x86_ops.tlb_remote_flush_with_range;
257 }
258 
259 static void kvm_flush_remote_tlbs_with_range(struct kvm *kvm,
260 		struct kvm_tlb_range *range)
261 {
262 	int ret = -ENOTSUPP;
263 
264 	if (range && kvm_x86_ops.tlb_remote_flush_with_range)
265 		ret = static_call(kvm_x86_tlb_remote_flush_with_range)(kvm, range);
266 
267 	if (ret)
268 		kvm_flush_remote_tlbs(kvm);
269 }
270 
271 void kvm_flush_remote_tlbs_with_address(struct kvm *kvm,
272 		u64 start_gfn, u64 pages)
273 {
274 	struct kvm_tlb_range range;
275 
276 	range.start_gfn = start_gfn;
277 	range.pages = pages;
278 
279 	kvm_flush_remote_tlbs_with_range(kvm, &range);
280 }
281 
282 static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn,
283 			   unsigned int access)
284 {
285 	u64 spte = make_mmio_spte(vcpu, gfn, access);
286 
287 	trace_mark_mmio_spte(sptep, gfn, spte);
288 	mmu_spte_set(sptep, spte);
289 }
290 
291 static gfn_t get_mmio_spte_gfn(u64 spte)
292 {
293 	u64 gpa = spte & shadow_nonpresent_or_rsvd_lower_gfn_mask;
294 
295 	gpa |= (spte >> SHADOW_NONPRESENT_OR_RSVD_MASK_LEN)
296 	       & shadow_nonpresent_or_rsvd_mask;
297 
298 	return gpa >> PAGE_SHIFT;
299 }
300 
301 static unsigned get_mmio_spte_access(u64 spte)
302 {
303 	return spte & shadow_mmio_access_mask;
304 }
305 
306 static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte)
307 {
308 	u64 kvm_gen, spte_gen, gen;
309 
310 	gen = kvm_vcpu_memslots(vcpu)->generation;
311 	if (unlikely(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS))
312 		return false;
313 
314 	kvm_gen = gen & MMIO_SPTE_GEN_MASK;
315 	spte_gen = get_mmio_spte_generation(spte);
316 
317 	trace_check_mmio_spte(spte, kvm_gen, spte_gen);
318 	return likely(kvm_gen == spte_gen);
319 }
320 
321 static gpa_t translate_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
322                                   struct x86_exception *exception)
323 {
324 	/* Check if guest physical address doesn't exceed guest maximum */
325 	if (kvm_vcpu_is_illegal_gpa(vcpu, gpa)) {
326 		exception->error_code |= PFERR_RSVD_MASK;
327 		return UNMAPPED_GVA;
328 	}
329 
330         return gpa;
331 }
332 
333 static int is_cpuid_PSE36(void)
334 {
335 	return 1;
336 }
337 
338 static gfn_t pse36_gfn_delta(u32 gpte)
339 {
340 	int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
341 
342 	return (gpte & PT32_DIR_PSE36_MASK) << shift;
343 }
344 
345 #ifdef CONFIG_X86_64
346 static void __set_spte(u64 *sptep, u64 spte)
347 {
348 	WRITE_ONCE(*sptep, spte);
349 }
350 
351 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
352 {
353 	WRITE_ONCE(*sptep, spte);
354 }
355 
356 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
357 {
358 	return xchg(sptep, spte);
359 }
360 
361 static u64 __get_spte_lockless(u64 *sptep)
362 {
363 	return READ_ONCE(*sptep);
364 }
365 #else
366 union split_spte {
367 	struct {
368 		u32 spte_low;
369 		u32 spte_high;
370 	};
371 	u64 spte;
372 };
373 
374 static void count_spte_clear(u64 *sptep, u64 spte)
375 {
376 	struct kvm_mmu_page *sp =  sptep_to_sp(sptep);
377 
378 	if (is_shadow_present_pte(spte))
379 		return;
380 
381 	/* Ensure the spte is completely set before we increase the count */
382 	smp_wmb();
383 	sp->clear_spte_count++;
384 }
385 
386 static void __set_spte(u64 *sptep, u64 spte)
387 {
388 	union split_spte *ssptep, sspte;
389 
390 	ssptep = (union split_spte *)sptep;
391 	sspte = (union split_spte)spte;
392 
393 	ssptep->spte_high = sspte.spte_high;
394 
395 	/*
396 	 * If we map the spte from nonpresent to present, We should store
397 	 * the high bits firstly, then set present bit, so cpu can not
398 	 * fetch this spte while we are setting the spte.
399 	 */
400 	smp_wmb();
401 
402 	WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
403 }
404 
405 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
406 {
407 	union split_spte *ssptep, sspte;
408 
409 	ssptep = (union split_spte *)sptep;
410 	sspte = (union split_spte)spte;
411 
412 	WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
413 
414 	/*
415 	 * If we map the spte from present to nonpresent, we should clear
416 	 * present bit firstly to avoid vcpu fetch the old high bits.
417 	 */
418 	smp_wmb();
419 
420 	ssptep->spte_high = sspte.spte_high;
421 	count_spte_clear(sptep, spte);
422 }
423 
424 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
425 {
426 	union split_spte *ssptep, sspte, orig;
427 
428 	ssptep = (union split_spte *)sptep;
429 	sspte = (union split_spte)spte;
430 
431 	/* xchg acts as a barrier before the setting of the high bits */
432 	orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
433 	orig.spte_high = ssptep->spte_high;
434 	ssptep->spte_high = sspte.spte_high;
435 	count_spte_clear(sptep, spte);
436 
437 	return orig.spte;
438 }
439 
440 /*
441  * The idea using the light way get the spte on x86_32 guest is from
442  * gup_get_pte (mm/gup.c).
443  *
444  * An spte tlb flush may be pending, because kvm_set_pte_rmapp
445  * coalesces them and we are running out of the MMU lock.  Therefore
446  * we need to protect against in-progress updates of the spte.
447  *
448  * Reading the spte while an update is in progress may get the old value
449  * for the high part of the spte.  The race is fine for a present->non-present
450  * change (because the high part of the spte is ignored for non-present spte),
451  * but for a present->present change we must reread the spte.
452  *
453  * All such changes are done in two steps (present->non-present and
454  * non-present->present), hence it is enough to count the number of
455  * present->non-present updates: if it changed while reading the spte,
456  * we might have hit the race.  This is done using clear_spte_count.
457  */
458 static u64 __get_spte_lockless(u64 *sptep)
459 {
460 	struct kvm_mmu_page *sp =  sptep_to_sp(sptep);
461 	union split_spte spte, *orig = (union split_spte *)sptep;
462 	int count;
463 
464 retry:
465 	count = sp->clear_spte_count;
466 	smp_rmb();
467 
468 	spte.spte_low = orig->spte_low;
469 	smp_rmb();
470 
471 	spte.spte_high = orig->spte_high;
472 	smp_rmb();
473 
474 	if (unlikely(spte.spte_low != orig->spte_low ||
475 	      count != sp->clear_spte_count))
476 		goto retry;
477 
478 	return spte.spte;
479 }
480 #endif
481 
482 static bool spte_has_volatile_bits(u64 spte)
483 {
484 	if (!is_shadow_present_pte(spte))
485 		return false;
486 
487 	/*
488 	 * Always atomically update spte if it can be updated
489 	 * out of mmu-lock, it can ensure dirty bit is not lost,
490 	 * also, it can help us to get a stable is_writable_pte()
491 	 * to ensure tlb flush is not missed.
492 	 */
493 	if (spte_can_locklessly_be_made_writable(spte) ||
494 	    is_access_track_spte(spte))
495 		return true;
496 
497 	if (spte_ad_enabled(spte)) {
498 		if ((spte & shadow_accessed_mask) == 0 ||
499 	    	    (is_writable_pte(spte) && (spte & shadow_dirty_mask) == 0))
500 			return true;
501 	}
502 
503 	return false;
504 }
505 
506 /* Rules for using mmu_spte_set:
507  * Set the sptep from nonpresent to present.
508  * Note: the sptep being assigned *must* be either not present
509  * or in a state where the hardware will not attempt to update
510  * the spte.
511  */
512 static void mmu_spte_set(u64 *sptep, u64 new_spte)
513 {
514 	WARN_ON(is_shadow_present_pte(*sptep));
515 	__set_spte(sptep, new_spte);
516 }
517 
518 /*
519  * Update the SPTE (excluding the PFN), but do not track changes in its
520  * accessed/dirty status.
521  */
522 static u64 mmu_spte_update_no_track(u64 *sptep, u64 new_spte)
523 {
524 	u64 old_spte = *sptep;
525 
526 	WARN_ON(!is_shadow_present_pte(new_spte));
527 
528 	if (!is_shadow_present_pte(old_spte)) {
529 		mmu_spte_set(sptep, new_spte);
530 		return old_spte;
531 	}
532 
533 	if (!spte_has_volatile_bits(old_spte))
534 		__update_clear_spte_fast(sptep, new_spte);
535 	else
536 		old_spte = __update_clear_spte_slow(sptep, new_spte);
537 
538 	WARN_ON(spte_to_pfn(old_spte) != spte_to_pfn(new_spte));
539 
540 	return old_spte;
541 }
542 
543 /* Rules for using mmu_spte_update:
544  * Update the state bits, it means the mapped pfn is not changed.
545  *
546  * Whenever we overwrite a writable spte with a read-only one we
547  * should flush remote TLBs. Otherwise rmap_write_protect
548  * will find a read-only spte, even though the writable spte
549  * might be cached on a CPU's TLB, the return value indicates this
550  * case.
551  *
552  * Returns true if the TLB needs to be flushed
553  */
554 static bool mmu_spte_update(u64 *sptep, u64 new_spte)
555 {
556 	bool flush = false;
557 	u64 old_spte = mmu_spte_update_no_track(sptep, new_spte);
558 
559 	if (!is_shadow_present_pte(old_spte))
560 		return false;
561 
562 	/*
563 	 * For the spte updated out of mmu-lock is safe, since
564 	 * we always atomically update it, see the comments in
565 	 * spte_has_volatile_bits().
566 	 */
567 	if (spte_can_locklessly_be_made_writable(old_spte) &&
568 	      !is_writable_pte(new_spte))
569 		flush = true;
570 
571 	/*
572 	 * Flush TLB when accessed/dirty states are changed in the page tables,
573 	 * to guarantee consistency between TLB and page tables.
574 	 */
575 
576 	if (is_accessed_spte(old_spte) && !is_accessed_spte(new_spte)) {
577 		flush = true;
578 		kvm_set_pfn_accessed(spte_to_pfn(old_spte));
579 	}
580 
581 	if (is_dirty_spte(old_spte) && !is_dirty_spte(new_spte)) {
582 		flush = true;
583 		kvm_set_pfn_dirty(spte_to_pfn(old_spte));
584 	}
585 
586 	return flush;
587 }
588 
589 /*
590  * Rules for using mmu_spte_clear_track_bits:
591  * It sets the sptep from present to nonpresent, and track the
592  * state bits, it is used to clear the last level sptep.
593  * Returns non-zero if the PTE was previously valid.
594  */
595 static int mmu_spte_clear_track_bits(u64 *sptep)
596 {
597 	kvm_pfn_t pfn;
598 	u64 old_spte = *sptep;
599 
600 	if (!spte_has_volatile_bits(old_spte))
601 		__update_clear_spte_fast(sptep, 0ull);
602 	else
603 		old_spte = __update_clear_spte_slow(sptep, 0ull);
604 
605 	if (!is_shadow_present_pte(old_spte))
606 		return 0;
607 
608 	pfn = spte_to_pfn(old_spte);
609 
610 	/*
611 	 * KVM does not hold the refcount of the page used by
612 	 * kvm mmu, before reclaiming the page, we should
613 	 * unmap it from mmu first.
614 	 */
615 	WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn)));
616 
617 	if (is_accessed_spte(old_spte))
618 		kvm_set_pfn_accessed(pfn);
619 
620 	if (is_dirty_spte(old_spte))
621 		kvm_set_pfn_dirty(pfn);
622 
623 	return 1;
624 }
625 
626 /*
627  * Rules for using mmu_spte_clear_no_track:
628  * Directly clear spte without caring the state bits of sptep,
629  * it is used to set the upper level spte.
630  */
631 static void mmu_spte_clear_no_track(u64 *sptep)
632 {
633 	__update_clear_spte_fast(sptep, 0ull);
634 }
635 
636 static u64 mmu_spte_get_lockless(u64 *sptep)
637 {
638 	return __get_spte_lockless(sptep);
639 }
640 
641 /* Restore an acc-track PTE back to a regular PTE */
642 static u64 restore_acc_track_spte(u64 spte)
643 {
644 	u64 new_spte = spte;
645 	u64 saved_bits = (spte >> SHADOW_ACC_TRACK_SAVED_BITS_SHIFT)
646 			 & SHADOW_ACC_TRACK_SAVED_BITS_MASK;
647 
648 	WARN_ON_ONCE(spte_ad_enabled(spte));
649 	WARN_ON_ONCE(!is_access_track_spte(spte));
650 
651 	new_spte &= ~shadow_acc_track_mask;
652 	new_spte &= ~(SHADOW_ACC_TRACK_SAVED_BITS_MASK <<
653 		      SHADOW_ACC_TRACK_SAVED_BITS_SHIFT);
654 	new_spte |= saved_bits;
655 
656 	return new_spte;
657 }
658 
659 /* Returns the Accessed status of the PTE and resets it at the same time. */
660 static bool mmu_spte_age(u64 *sptep)
661 {
662 	u64 spte = mmu_spte_get_lockless(sptep);
663 
664 	if (!is_accessed_spte(spte))
665 		return false;
666 
667 	if (spte_ad_enabled(spte)) {
668 		clear_bit((ffs(shadow_accessed_mask) - 1),
669 			  (unsigned long *)sptep);
670 	} else {
671 		/*
672 		 * Capture the dirty status of the page, so that it doesn't get
673 		 * lost when the SPTE is marked for access tracking.
674 		 */
675 		if (is_writable_pte(spte))
676 			kvm_set_pfn_dirty(spte_to_pfn(spte));
677 
678 		spte = mark_spte_for_access_track(spte);
679 		mmu_spte_update_no_track(sptep, spte);
680 	}
681 
682 	return true;
683 }
684 
685 static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
686 {
687 	/*
688 	 * Prevent page table teardown by making any free-er wait during
689 	 * kvm_flush_remote_tlbs() IPI to all active vcpus.
690 	 */
691 	local_irq_disable();
692 
693 	/*
694 	 * Make sure a following spte read is not reordered ahead of the write
695 	 * to vcpu->mode.
696 	 */
697 	smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES);
698 }
699 
700 static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
701 {
702 	/*
703 	 * Make sure the write to vcpu->mode is not reordered in front of
704 	 * reads to sptes.  If it does, kvm_mmu_commit_zap_page() can see us
705 	 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
706 	 */
707 	smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE);
708 	local_irq_enable();
709 }
710 
711 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu, bool maybe_indirect)
712 {
713 	int r;
714 
715 	/* 1 rmap, 1 parent PTE per level, and the prefetched rmaps. */
716 	r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
717 				       1 + PT64_ROOT_MAX_LEVEL + PTE_PREFETCH_NUM);
718 	if (r)
719 		return r;
720 	r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_shadow_page_cache,
721 				       PT64_ROOT_MAX_LEVEL);
722 	if (r)
723 		return r;
724 	if (maybe_indirect) {
725 		r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_gfn_array_cache,
726 					       PT64_ROOT_MAX_LEVEL);
727 		if (r)
728 			return r;
729 	}
730 	return kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
731 					  PT64_ROOT_MAX_LEVEL);
732 }
733 
734 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
735 {
736 	kvm_mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache);
737 	kvm_mmu_free_memory_cache(&vcpu->arch.mmu_shadow_page_cache);
738 	kvm_mmu_free_memory_cache(&vcpu->arch.mmu_gfn_array_cache);
739 	kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache);
740 }
741 
742 static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
743 {
744 	return kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
745 }
746 
747 static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
748 {
749 	kmem_cache_free(pte_list_desc_cache, pte_list_desc);
750 }
751 
752 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
753 {
754 	if (!sp->role.direct)
755 		return sp->gfns[index];
756 
757 	return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
758 }
759 
760 static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
761 {
762 	if (!sp->role.direct) {
763 		sp->gfns[index] = gfn;
764 		return;
765 	}
766 
767 	if (WARN_ON(gfn != kvm_mmu_page_get_gfn(sp, index)))
768 		pr_err_ratelimited("gfn mismatch under direct page %llx "
769 				   "(expected %llx, got %llx)\n",
770 				   sp->gfn,
771 				   kvm_mmu_page_get_gfn(sp, index), gfn);
772 }
773 
774 /*
775  * Return the pointer to the large page information for a given gfn,
776  * handling slots that are not large page aligned.
777  */
778 static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
779 		const struct kvm_memory_slot *slot, int level)
780 {
781 	unsigned long idx;
782 
783 	idx = gfn_to_index(gfn, slot->base_gfn, level);
784 	return &slot->arch.lpage_info[level - 2][idx];
785 }
786 
787 static void update_gfn_disallow_lpage_count(struct kvm_memory_slot *slot,
788 					    gfn_t gfn, int count)
789 {
790 	struct kvm_lpage_info *linfo;
791 	int i;
792 
793 	for (i = PG_LEVEL_2M; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) {
794 		linfo = lpage_info_slot(gfn, slot, i);
795 		linfo->disallow_lpage += count;
796 		WARN_ON(linfo->disallow_lpage < 0);
797 	}
798 }
799 
800 void kvm_mmu_gfn_disallow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
801 {
802 	update_gfn_disallow_lpage_count(slot, gfn, 1);
803 }
804 
805 void kvm_mmu_gfn_allow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
806 {
807 	update_gfn_disallow_lpage_count(slot, gfn, -1);
808 }
809 
810 static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
811 {
812 	struct kvm_memslots *slots;
813 	struct kvm_memory_slot *slot;
814 	gfn_t gfn;
815 
816 	kvm->arch.indirect_shadow_pages++;
817 	gfn = sp->gfn;
818 	slots = kvm_memslots_for_spte_role(kvm, sp->role);
819 	slot = __gfn_to_memslot(slots, gfn);
820 
821 	/* the non-leaf shadow pages are keeping readonly. */
822 	if (sp->role.level > PG_LEVEL_4K)
823 		return kvm_slot_page_track_add_page(kvm, slot, gfn,
824 						    KVM_PAGE_TRACK_WRITE);
825 
826 	kvm_mmu_gfn_disallow_lpage(slot, gfn);
827 }
828 
829 void account_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp)
830 {
831 	if (sp->lpage_disallowed)
832 		return;
833 
834 	++kvm->stat.nx_lpage_splits;
835 	list_add_tail(&sp->lpage_disallowed_link,
836 		      &kvm->arch.lpage_disallowed_mmu_pages);
837 	sp->lpage_disallowed = true;
838 }
839 
840 static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
841 {
842 	struct kvm_memslots *slots;
843 	struct kvm_memory_slot *slot;
844 	gfn_t gfn;
845 
846 	kvm->arch.indirect_shadow_pages--;
847 	gfn = sp->gfn;
848 	slots = kvm_memslots_for_spte_role(kvm, sp->role);
849 	slot = __gfn_to_memslot(slots, gfn);
850 	if (sp->role.level > PG_LEVEL_4K)
851 		return kvm_slot_page_track_remove_page(kvm, slot, gfn,
852 						       KVM_PAGE_TRACK_WRITE);
853 
854 	kvm_mmu_gfn_allow_lpage(slot, gfn);
855 }
856 
857 void unaccount_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp)
858 {
859 	--kvm->stat.nx_lpage_splits;
860 	sp->lpage_disallowed = false;
861 	list_del(&sp->lpage_disallowed_link);
862 }
863 
864 static struct kvm_memory_slot *
865 gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
866 			    bool no_dirty_log)
867 {
868 	struct kvm_memory_slot *slot;
869 
870 	slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
871 	if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
872 		return NULL;
873 	if (no_dirty_log && kvm_slot_dirty_track_enabled(slot))
874 		return NULL;
875 
876 	return slot;
877 }
878 
879 /*
880  * About rmap_head encoding:
881  *
882  * If the bit zero of rmap_head->val is clear, then it points to the only spte
883  * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct
884  * pte_list_desc containing more mappings.
885  */
886 
887 /*
888  * Returns the number of pointers in the rmap chain, not counting the new one.
889  */
890 static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
891 			struct kvm_rmap_head *rmap_head)
892 {
893 	struct pte_list_desc *desc;
894 	int i, count = 0;
895 
896 	if (!rmap_head->val) {
897 		rmap_printk("%p %llx 0->1\n", spte, *spte);
898 		rmap_head->val = (unsigned long)spte;
899 	} else if (!(rmap_head->val & 1)) {
900 		rmap_printk("%p %llx 1->many\n", spte, *spte);
901 		desc = mmu_alloc_pte_list_desc(vcpu);
902 		desc->sptes[0] = (u64 *)rmap_head->val;
903 		desc->sptes[1] = spte;
904 		rmap_head->val = (unsigned long)desc | 1;
905 		++count;
906 	} else {
907 		rmap_printk("%p %llx many->many\n", spte, *spte);
908 		desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
909 		while (desc->sptes[PTE_LIST_EXT-1]) {
910 			count += PTE_LIST_EXT;
911 
912 			if (!desc->more) {
913 				desc->more = mmu_alloc_pte_list_desc(vcpu);
914 				desc = desc->more;
915 				break;
916 			}
917 			desc = desc->more;
918 		}
919 		for (i = 0; desc->sptes[i]; ++i)
920 			++count;
921 		desc->sptes[i] = spte;
922 	}
923 	return count;
924 }
925 
926 static void
927 pte_list_desc_remove_entry(struct kvm_rmap_head *rmap_head,
928 			   struct pte_list_desc *desc, int i,
929 			   struct pte_list_desc *prev_desc)
930 {
931 	int j;
932 
933 	for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
934 		;
935 	desc->sptes[i] = desc->sptes[j];
936 	desc->sptes[j] = NULL;
937 	if (j != 0)
938 		return;
939 	if (!prev_desc && !desc->more)
940 		rmap_head->val = 0;
941 	else
942 		if (prev_desc)
943 			prev_desc->more = desc->more;
944 		else
945 			rmap_head->val = (unsigned long)desc->more | 1;
946 	mmu_free_pte_list_desc(desc);
947 }
948 
949 static void __pte_list_remove(u64 *spte, struct kvm_rmap_head *rmap_head)
950 {
951 	struct pte_list_desc *desc;
952 	struct pte_list_desc *prev_desc;
953 	int i;
954 
955 	if (!rmap_head->val) {
956 		pr_err("%s: %p 0->BUG\n", __func__, spte);
957 		BUG();
958 	} else if (!(rmap_head->val & 1)) {
959 		rmap_printk("%p 1->0\n", spte);
960 		if ((u64 *)rmap_head->val != spte) {
961 			pr_err("%s:  %p 1->BUG\n", __func__, spte);
962 			BUG();
963 		}
964 		rmap_head->val = 0;
965 	} else {
966 		rmap_printk("%p many->many\n", spte);
967 		desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
968 		prev_desc = NULL;
969 		while (desc) {
970 			for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i) {
971 				if (desc->sptes[i] == spte) {
972 					pte_list_desc_remove_entry(rmap_head,
973 							desc, i, prev_desc);
974 					return;
975 				}
976 			}
977 			prev_desc = desc;
978 			desc = desc->more;
979 		}
980 		pr_err("%s: %p many->many\n", __func__, spte);
981 		BUG();
982 	}
983 }
984 
985 static void pte_list_remove(struct kvm_rmap_head *rmap_head, u64 *sptep)
986 {
987 	mmu_spte_clear_track_bits(sptep);
988 	__pte_list_remove(sptep, rmap_head);
989 }
990 
991 static struct kvm_rmap_head *__gfn_to_rmap(gfn_t gfn, int level,
992 					   struct kvm_memory_slot *slot)
993 {
994 	unsigned long idx;
995 
996 	idx = gfn_to_index(gfn, slot->base_gfn, level);
997 	return &slot->arch.rmap[level - PG_LEVEL_4K][idx];
998 }
999 
1000 static struct kvm_rmap_head *gfn_to_rmap(struct kvm *kvm, gfn_t gfn,
1001 					 struct kvm_mmu_page *sp)
1002 {
1003 	struct kvm_memslots *slots;
1004 	struct kvm_memory_slot *slot;
1005 
1006 	slots = kvm_memslots_for_spte_role(kvm, sp->role);
1007 	slot = __gfn_to_memslot(slots, gfn);
1008 	return __gfn_to_rmap(gfn, sp->role.level, slot);
1009 }
1010 
1011 static bool rmap_can_add(struct kvm_vcpu *vcpu)
1012 {
1013 	struct kvm_mmu_memory_cache *mc;
1014 
1015 	mc = &vcpu->arch.mmu_pte_list_desc_cache;
1016 	return kvm_mmu_memory_cache_nr_free_objects(mc);
1017 }
1018 
1019 static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1020 {
1021 	struct kvm_mmu_page *sp;
1022 	struct kvm_rmap_head *rmap_head;
1023 
1024 	sp = sptep_to_sp(spte);
1025 	kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
1026 	rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
1027 	return pte_list_add(vcpu, spte, rmap_head);
1028 }
1029 
1030 static void rmap_remove(struct kvm *kvm, u64 *spte)
1031 {
1032 	struct kvm_mmu_page *sp;
1033 	gfn_t gfn;
1034 	struct kvm_rmap_head *rmap_head;
1035 
1036 	sp = sptep_to_sp(spte);
1037 	gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
1038 	rmap_head = gfn_to_rmap(kvm, gfn, sp);
1039 	__pte_list_remove(spte, rmap_head);
1040 }
1041 
1042 /*
1043  * Used by the following functions to iterate through the sptes linked by a
1044  * rmap.  All fields are private and not assumed to be used outside.
1045  */
1046 struct rmap_iterator {
1047 	/* private fields */
1048 	struct pte_list_desc *desc;	/* holds the sptep if not NULL */
1049 	int pos;			/* index of the sptep */
1050 };
1051 
1052 /*
1053  * Iteration must be started by this function.  This should also be used after
1054  * removing/dropping sptes from the rmap link because in such cases the
1055  * information in the iterator may not be valid.
1056  *
1057  * Returns sptep if found, NULL otherwise.
1058  */
1059 static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head,
1060 			   struct rmap_iterator *iter)
1061 {
1062 	u64 *sptep;
1063 
1064 	if (!rmap_head->val)
1065 		return NULL;
1066 
1067 	if (!(rmap_head->val & 1)) {
1068 		iter->desc = NULL;
1069 		sptep = (u64 *)rmap_head->val;
1070 		goto out;
1071 	}
1072 
1073 	iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1074 	iter->pos = 0;
1075 	sptep = iter->desc->sptes[iter->pos];
1076 out:
1077 	BUG_ON(!is_shadow_present_pte(*sptep));
1078 	return sptep;
1079 }
1080 
1081 /*
1082  * Must be used with a valid iterator: e.g. after rmap_get_first().
1083  *
1084  * Returns sptep if found, NULL otherwise.
1085  */
1086 static u64 *rmap_get_next(struct rmap_iterator *iter)
1087 {
1088 	u64 *sptep;
1089 
1090 	if (iter->desc) {
1091 		if (iter->pos < PTE_LIST_EXT - 1) {
1092 			++iter->pos;
1093 			sptep = iter->desc->sptes[iter->pos];
1094 			if (sptep)
1095 				goto out;
1096 		}
1097 
1098 		iter->desc = iter->desc->more;
1099 
1100 		if (iter->desc) {
1101 			iter->pos = 0;
1102 			/* desc->sptes[0] cannot be NULL */
1103 			sptep = iter->desc->sptes[iter->pos];
1104 			goto out;
1105 		}
1106 	}
1107 
1108 	return NULL;
1109 out:
1110 	BUG_ON(!is_shadow_present_pte(*sptep));
1111 	return sptep;
1112 }
1113 
1114 #define for_each_rmap_spte(_rmap_head_, _iter_, _spte_)			\
1115 	for (_spte_ = rmap_get_first(_rmap_head_, _iter_);		\
1116 	     _spte_; _spte_ = rmap_get_next(_iter_))
1117 
1118 static void drop_spte(struct kvm *kvm, u64 *sptep)
1119 {
1120 	if (mmu_spte_clear_track_bits(sptep))
1121 		rmap_remove(kvm, sptep);
1122 }
1123 
1124 
1125 static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
1126 {
1127 	if (is_large_pte(*sptep)) {
1128 		WARN_ON(sptep_to_sp(sptep)->role.level == PG_LEVEL_4K);
1129 		drop_spte(kvm, sptep);
1130 		--kvm->stat.lpages;
1131 		return true;
1132 	}
1133 
1134 	return false;
1135 }
1136 
1137 static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1138 {
1139 	if (__drop_large_spte(vcpu->kvm, sptep)) {
1140 		struct kvm_mmu_page *sp = sptep_to_sp(sptep);
1141 
1142 		kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn,
1143 			KVM_PAGES_PER_HPAGE(sp->role.level));
1144 	}
1145 }
1146 
1147 /*
1148  * Write-protect on the specified @sptep, @pt_protect indicates whether
1149  * spte write-protection is caused by protecting shadow page table.
1150  *
1151  * Note: write protection is difference between dirty logging and spte
1152  * protection:
1153  * - for dirty logging, the spte can be set to writable at anytime if
1154  *   its dirty bitmap is properly set.
1155  * - for spte protection, the spte can be writable only after unsync-ing
1156  *   shadow page.
1157  *
1158  * Return true if tlb need be flushed.
1159  */
1160 static bool spte_write_protect(u64 *sptep, bool pt_protect)
1161 {
1162 	u64 spte = *sptep;
1163 
1164 	if (!is_writable_pte(spte) &&
1165 	      !(pt_protect && spte_can_locklessly_be_made_writable(spte)))
1166 		return false;
1167 
1168 	rmap_printk("spte %p %llx\n", sptep, *sptep);
1169 
1170 	if (pt_protect)
1171 		spte &= ~shadow_mmu_writable_mask;
1172 	spte = spte & ~PT_WRITABLE_MASK;
1173 
1174 	return mmu_spte_update(sptep, spte);
1175 }
1176 
1177 static bool __rmap_write_protect(struct kvm *kvm,
1178 				 struct kvm_rmap_head *rmap_head,
1179 				 bool pt_protect)
1180 {
1181 	u64 *sptep;
1182 	struct rmap_iterator iter;
1183 	bool flush = false;
1184 
1185 	for_each_rmap_spte(rmap_head, &iter, sptep)
1186 		flush |= spte_write_protect(sptep, pt_protect);
1187 
1188 	return flush;
1189 }
1190 
1191 static bool spte_clear_dirty(u64 *sptep)
1192 {
1193 	u64 spte = *sptep;
1194 
1195 	rmap_printk("spte %p %llx\n", sptep, *sptep);
1196 
1197 	MMU_WARN_ON(!spte_ad_enabled(spte));
1198 	spte &= ~shadow_dirty_mask;
1199 	return mmu_spte_update(sptep, spte);
1200 }
1201 
1202 static bool spte_wrprot_for_clear_dirty(u64 *sptep)
1203 {
1204 	bool was_writable = test_and_clear_bit(PT_WRITABLE_SHIFT,
1205 					       (unsigned long *)sptep);
1206 	if (was_writable && !spte_ad_enabled(*sptep))
1207 		kvm_set_pfn_dirty(spte_to_pfn(*sptep));
1208 
1209 	return was_writable;
1210 }
1211 
1212 /*
1213  * Gets the GFN ready for another round of dirty logging by clearing the
1214  *	- D bit on ad-enabled SPTEs, and
1215  *	- W bit on ad-disabled SPTEs.
1216  * Returns true iff any D or W bits were cleared.
1217  */
1218 static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1219 			       struct kvm_memory_slot *slot)
1220 {
1221 	u64 *sptep;
1222 	struct rmap_iterator iter;
1223 	bool flush = false;
1224 
1225 	for_each_rmap_spte(rmap_head, &iter, sptep)
1226 		if (spte_ad_need_write_protect(*sptep))
1227 			flush |= spte_wrprot_for_clear_dirty(sptep);
1228 		else
1229 			flush |= spte_clear_dirty(sptep);
1230 
1231 	return flush;
1232 }
1233 
1234 /**
1235  * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1236  * @kvm: kvm instance
1237  * @slot: slot to protect
1238  * @gfn_offset: start of the BITS_PER_LONG pages we care about
1239  * @mask: indicates which pages we should protect
1240  *
1241  * Used when we do not need to care about huge page mappings.
1242  */
1243 static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1244 				     struct kvm_memory_slot *slot,
1245 				     gfn_t gfn_offset, unsigned long mask)
1246 {
1247 	struct kvm_rmap_head *rmap_head;
1248 
1249 	if (is_tdp_mmu_enabled(kvm))
1250 		kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot,
1251 				slot->base_gfn + gfn_offset, mask, true);
1252 
1253 	if (!kvm_memslots_have_rmaps(kvm))
1254 		return;
1255 
1256 	while (mask) {
1257 		rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1258 					  PG_LEVEL_4K, slot);
1259 		__rmap_write_protect(kvm, rmap_head, false);
1260 
1261 		/* clear the first set bit */
1262 		mask &= mask - 1;
1263 	}
1264 }
1265 
1266 /**
1267  * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages, or write
1268  * protect the page if the D-bit isn't supported.
1269  * @kvm: kvm instance
1270  * @slot: slot to clear D-bit
1271  * @gfn_offset: start of the BITS_PER_LONG pages we care about
1272  * @mask: indicates which pages we should clear D-bit
1273  *
1274  * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap.
1275  */
1276 static void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
1277 					 struct kvm_memory_slot *slot,
1278 					 gfn_t gfn_offset, unsigned long mask)
1279 {
1280 	struct kvm_rmap_head *rmap_head;
1281 
1282 	if (is_tdp_mmu_enabled(kvm))
1283 		kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot,
1284 				slot->base_gfn + gfn_offset, mask, false);
1285 
1286 	if (!kvm_memslots_have_rmaps(kvm))
1287 		return;
1288 
1289 	while (mask) {
1290 		rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1291 					  PG_LEVEL_4K, slot);
1292 		__rmap_clear_dirty(kvm, rmap_head, slot);
1293 
1294 		/* clear the first set bit */
1295 		mask &= mask - 1;
1296 	}
1297 }
1298 
1299 /**
1300  * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
1301  * PT level pages.
1302  *
1303  * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
1304  * enable dirty logging for them.
1305  *
1306  * We need to care about huge page mappings: e.g. during dirty logging we may
1307  * have such mappings.
1308  */
1309 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1310 				struct kvm_memory_slot *slot,
1311 				gfn_t gfn_offset, unsigned long mask)
1312 {
1313 	/*
1314 	 * Huge pages are NOT write protected when we start dirty logging in
1315 	 * initially-all-set mode; must write protect them here so that they
1316 	 * are split to 4K on the first write.
1317 	 *
1318 	 * The gfn_offset is guaranteed to be aligned to 64, but the base_gfn
1319 	 * of memslot has no such restriction, so the range can cross two large
1320 	 * pages.
1321 	 */
1322 	if (kvm_dirty_log_manual_protect_and_init_set(kvm)) {
1323 		gfn_t start = slot->base_gfn + gfn_offset + __ffs(mask);
1324 		gfn_t end = slot->base_gfn + gfn_offset + __fls(mask);
1325 
1326 		kvm_mmu_slot_gfn_write_protect(kvm, slot, start, PG_LEVEL_2M);
1327 
1328 		/* Cross two large pages? */
1329 		if (ALIGN(start << PAGE_SHIFT, PMD_SIZE) !=
1330 		    ALIGN(end << PAGE_SHIFT, PMD_SIZE))
1331 			kvm_mmu_slot_gfn_write_protect(kvm, slot, end,
1332 						       PG_LEVEL_2M);
1333 	}
1334 
1335 	/* Now handle 4K PTEs.  */
1336 	if (kvm_x86_ops.cpu_dirty_log_size)
1337 		kvm_mmu_clear_dirty_pt_masked(kvm, slot, gfn_offset, mask);
1338 	else
1339 		kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
1340 }
1341 
1342 int kvm_cpu_dirty_log_size(void)
1343 {
1344 	return kvm_x86_ops.cpu_dirty_log_size;
1345 }
1346 
1347 bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
1348 				    struct kvm_memory_slot *slot, u64 gfn,
1349 				    int min_level)
1350 {
1351 	struct kvm_rmap_head *rmap_head;
1352 	int i;
1353 	bool write_protected = false;
1354 
1355 	if (kvm_memslots_have_rmaps(kvm)) {
1356 		for (i = min_level; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) {
1357 			rmap_head = __gfn_to_rmap(gfn, i, slot);
1358 			write_protected |= __rmap_write_protect(kvm, rmap_head, true);
1359 		}
1360 	}
1361 
1362 	if (is_tdp_mmu_enabled(kvm))
1363 		write_protected |=
1364 			kvm_tdp_mmu_write_protect_gfn(kvm, slot, gfn, min_level);
1365 
1366 	return write_protected;
1367 }
1368 
1369 static bool rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn)
1370 {
1371 	struct kvm_memory_slot *slot;
1372 
1373 	slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1374 	return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn, PG_LEVEL_4K);
1375 }
1376 
1377 static bool kvm_zap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1378 			  struct kvm_memory_slot *slot)
1379 {
1380 	u64 *sptep;
1381 	struct rmap_iterator iter;
1382 	bool flush = false;
1383 
1384 	while ((sptep = rmap_get_first(rmap_head, &iter))) {
1385 		rmap_printk("spte %p %llx.\n", sptep, *sptep);
1386 
1387 		pte_list_remove(rmap_head, sptep);
1388 		flush = true;
1389 	}
1390 
1391 	return flush;
1392 }
1393 
1394 static bool kvm_unmap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1395 			    struct kvm_memory_slot *slot, gfn_t gfn, int level,
1396 			    pte_t unused)
1397 {
1398 	return kvm_zap_rmapp(kvm, rmap_head, slot);
1399 }
1400 
1401 static bool kvm_set_pte_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1402 			      struct kvm_memory_slot *slot, gfn_t gfn, int level,
1403 			      pte_t pte)
1404 {
1405 	u64 *sptep;
1406 	struct rmap_iterator iter;
1407 	int need_flush = 0;
1408 	u64 new_spte;
1409 	kvm_pfn_t new_pfn;
1410 
1411 	WARN_ON(pte_huge(pte));
1412 	new_pfn = pte_pfn(pte);
1413 
1414 restart:
1415 	for_each_rmap_spte(rmap_head, &iter, sptep) {
1416 		rmap_printk("spte %p %llx gfn %llx (%d)\n",
1417 			    sptep, *sptep, gfn, level);
1418 
1419 		need_flush = 1;
1420 
1421 		if (pte_write(pte)) {
1422 			pte_list_remove(rmap_head, sptep);
1423 			goto restart;
1424 		} else {
1425 			new_spte = kvm_mmu_changed_pte_notifier_make_spte(
1426 					*sptep, new_pfn);
1427 
1428 			mmu_spte_clear_track_bits(sptep);
1429 			mmu_spte_set(sptep, new_spte);
1430 		}
1431 	}
1432 
1433 	if (need_flush && kvm_available_flush_tlb_with_range()) {
1434 		kvm_flush_remote_tlbs_with_address(kvm, gfn, 1);
1435 		return 0;
1436 	}
1437 
1438 	return need_flush;
1439 }
1440 
1441 struct slot_rmap_walk_iterator {
1442 	/* input fields. */
1443 	struct kvm_memory_slot *slot;
1444 	gfn_t start_gfn;
1445 	gfn_t end_gfn;
1446 	int start_level;
1447 	int end_level;
1448 
1449 	/* output fields. */
1450 	gfn_t gfn;
1451 	struct kvm_rmap_head *rmap;
1452 	int level;
1453 
1454 	/* private field. */
1455 	struct kvm_rmap_head *end_rmap;
1456 };
1457 
1458 static void
1459 rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level)
1460 {
1461 	iterator->level = level;
1462 	iterator->gfn = iterator->start_gfn;
1463 	iterator->rmap = __gfn_to_rmap(iterator->gfn, level, iterator->slot);
1464 	iterator->end_rmap = __gfn_to_rmap(iterator->end_gfn, level,
1465 					   iterator->slot);
1466 }
1467 
1468 static void
1469 slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator,
1470 		    struct kvm_memory_slot *slot, int start_level,
1471 		    int end_level, gfn_t start_gfn, gfn_t end_gfn)
1472 {
1473 	iterator->slot = slot;
1474 	iterator->start_level = start_level;
1475 	iterator->end_level = end_level;
1476 	iterator->start_gfn = start_gfn;
1477 	iterator->end_gfn = end_gfn;
1478 
1479 	rmap_walk_init_level(iterator, iterator->start_level);
1480 }
1481 
1482 static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator)
1483 {
1484 	return !!iterator->rmap;
1485 }
1486 
1487 static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
1488 {
1489 	if (++iterator->rmap <= iterator->end_rmap) {
1490 		iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level));
1491 		return;
1492 	}
1493 
1494 	if (++iterator->level > iterator->end_level) {
1495 		iterator->rmap = NULL;
1496 		return;
1497 	}
1498 
1499 	rmap_walk_init_level(iterator, iterator->level);
1500 }
1501 
1502 #define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_,	\
1503 	   _start_gfn, _end_gfn, _iter_)				\
1504 	for (slot_rmap_walk_init(_iter_, _slot_, _start_level_,		\
1505 				 _end_level_, _start_gfn, _end_gfn);	\
1506 	     slot_rmap_walk_okay(_iter_);				\
1507 	     slot_rmap_walk_next(_iter_))
1508 
1509 typedef bool (*rmap_handler_t)(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1510 			       struct kvm_memory_slot *slot, gfn_t gfn,
1511 			       int level, pte_t pte);
1512 
1513 static __always_inline bool kvm_handle_gfn_range(struct kvm *kvm,
1514 						 struct kvm_gfn_range *range,
1515 						 rmap_handler_t handler)
1516 {
1517 	struct slot_rmap_walk_iterator iterator;
1518 	bool ret = false;
1519 
1520 	for_each_slot_rmap_range(range->slot, PG_LEVEL_4K, KVM_MAX_HUGEPAGE_LEVEL,
1521 				 range->start, range->end - 1, &iterator)
1522 		ret |= handler(kvm, iterator.rmap, range->slot, iterator.gfn,
1523 			       iterator.level, range->pte);
1524 
1525 	return ret;
1526 }
1527 
1528 bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range)
1529 {
1530 	bool flush = false;
1531 
1532 	if (kvm_memslots_have_rmaps(kvm))
1533 		flush = kvm_handle_gfn_range(kvm, range, kvm_unmap_rmapp);
1534 
1535 	if (is_tdp_mmu_enabled(kvm))
1536 		flush |= kvm_tdp_mmu_unmap_gfn_range(kvm, range, flush);
1537 
1538 	return flush;
1539 }
1540 
1541 bool kvm_set_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
1542 {
1543 	bool flush = false;
1544 
1545 	if (kvm_memslots_have_rmaps(kvm))
1546 		flush = kvm_handle_gfn_range(kvm, range, kvm_set_pte_rmapp);
1547 
1548 	if (is_tdp_mmu_enabled(kvm))
1549 		flush |= kvm_tdp_mmu_set_spte_gfn(kvm, range);
1550 
1551 	return flush;
1552 }
1553 
1554 static bool kvm_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1555 			  struct kvm_memory_slot *slot, gfn_t gfn, int level,
1556 			  pte_t unused)
1557 {
1558 	u64 *sptep;
1559 	struct rmap_iterator iter;
1560 	int young = 0;
1561 
1562 	for_each_rmap_spte(rmap_head, &iter, sptep)
1563 		young |= mmu_spte_age(sptep);
1564 
1565 	return young;
1566 }
1567 
1568 static bool kvm_test_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1569 			       struct kvm_memory_slot *slot, gfn_t gfn,
1570 			       int level, pte_t unused)
1571 {
1572 	u64 *sptep;
1573 	struct rmap_iterator iter;
1574 
1575 	for_each_rmap_spte(rmap_head, &iter, sptep)
1576 		if (is_accessed_spte(*sptep))
1577 			return 1;
1578 	return 0;
1579 }
1580 
1581 #define RMAP_RECYCLE_THRESHOLD 1000
1582 
1583 static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1584 {
1585 	struct kvm_rmap_head *rmap_head;
1586 	struct kvm_mmu_page *sp;
1587 
1588 	sp = sptep_to_sp(spte);
1589 
1590 	rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
1591 
1592 	kvm_unmap_rmapp(vcpu->kvm, rmap_head, NULL, gfn, sp->role.level, __pte(0));
1593 	kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn,
1594 			KVM_PAGES_PER_HPAGE(sp->role.level));
1595 }
1596 
1597 bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
1598 {
1599 	bool young = false;
1600 
1601 	if (kvm_memslots_have_rmaps(kvm))
1602 		young = kvm_handle_gfn_range(kvm, range, kvm_age_rmapp);
1603 
1604 	if (is_tdp_mmu_enabled(kvm))
1605 		young |= kvm_tdp_mmu_age_gfn_range(kvm, range);
1606 
1607 	return young;
1608 }
1609 
1610 bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
1611 {
1612 	bool young = false;
1613 
1614 	if (kvm_memslots_have_rmaps(kvm))
1615 		young = kvm_handle_gfn_range(kvm, range, kvm_test_age_rmapp);
1616 
1617 	if (is_tdp_mmu_enabled(kvm))
1618 		young |= kvm_tdp_mmu_test_age_gfn(kvm, range);
1619 
1620 	return young;
1621 }
1622 
1623 #ifdef MMU_DEBUG
1624 static int is_empty_shadow_page(u64 *spt)
1625 {
1626 	u64 *pos;
1627 	u64 *end;
1628 
1629 	for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
1630 		if (is_shadow_present_pte(*pos)) {
1631 			printk(KERN_ERR "%s: %p %llx\n", __func__,
1632 			       pos, *pos);
1633 			return 0;
1634 		}
1635 	return 1;
1636 }
1637 #endif
1638 
1639 /*
1640  * This value is the sum of all of the kvm instances's
1641  * kvm->arch.n_used_mmu_pages values.  We need a global,
1642  * aggregate version in order to make the slab shrinker
1643  * faster
1644  */
1645 static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, unsigned long nr)
1646 {
1647 	kvm->arch.n_used_mmu_pages += nr;
1648 	percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1649 }
1650 
1651 static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
1652 {
1653 	MMU_WARN_ON(!is_empty_shadow_page(sp->spt));
1654 	hlist_del(&sp->hash_link);
1655 	list_del(&sp->link);
1656 	free_page((unsigned long)sp->spt);
1657 	if (!sp->role.direct)
1658 		free_page((unsigned long)sp->gfns);
1659 	kmem_cache_free(mmu_page_header_cache, sp);
1660 }
1661 
1662 static unsigned kvm_page_table_hashfn(gfn_t gfn)
1663 {
1664 	return hash_64(gfn, KVM_MMU_HASH_SHIFT);
1665 }
1666 
1667 static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
1668 				    struct kvm_mmu_page *sp, u64 *parent_pte)
1669 {
1670 	if (!parent_pte)
1671 		return;
1672 
1673 	pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
1674 }
1675 
1676 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
1677 				       u64 *parent_pte)
1678 {
1679 	__pte_list_remove(parent_pte, &sp->parent_ptes);
1680 }
1681 
1682 static void drop_parent_pte(struct kvm_mmu_page *sp,
1683 			    u64 *parent_pte)
1684 {
1685 	mmu_page_remove_parent_pte(sp, parent_pte);
1686 	mmu_spte_clear_no_track(parent_pte);
1687 }
1688 
1689 static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu, int direct)
1690 {
1691 	struct kvm_mmu_page *sp;
1692 
1693 	sp = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
1694 	sp->spt = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_shadow_page_cache);
1695 	if (!direct)
1696 		sp->gfns = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_gfn_array_cache);
1697 	set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
1698 
1699 	/*
1700 	 * active_mmu_pages must be a FIFO list, as kvm_zap_obsolete_pages()
1701 	 * depends on valid pages being added to the head of the list.  See
1702 	 * comments in kvm_zap_obsolete_pages().
1703 	 */
1704 	sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
1705 	list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
1706 	kvm_mod_used_mmu_pages(vcpu->kvm, +1);
1707 	return sp;
1708 }
1709 
1710 static void mark_unsync(u64 *spte);
1711 static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
1712 {
1713 	u64 *sptep;
1714 	struct rmap_iterator iter;
1715 
1716 	for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) {
1717 		mark_unsync(sptep);
1718 	}
1719 }
1720 
1721 static void mark_unsync(u64 *spte)
1722 {
1723 	struct kvm_mmu_page *sp;
1724 	unsigned int index;
1725 
1726 	sp = sptep_to_sp(spte);
1727 	index = spte - sp->spt;
1728 	if (__test_and_set_bit(index, sp->unsync_child_bitmap))
1729 		return;
1730 	if (sp->unsync_children++)
1731 		return;
1732 	kvm_mmu_mark_parents_unsync(sp);
1733 }
1734 
1735 static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
1736 			       struct kvm_mmu_page *sp)
1737 {
1738 	return 0;
1739 }
1740 
1741 #define KVM_PAGE_ARRAY_NR 16
1742 
1743 struct kvm_mmu_pages {
1744 	struct mmu_page_and_offset {
1745 		struct kvm_mmu_page *sp;
1746 		unsigned int idx;
1747 	} page[KVM_PAGE_ARRAY_NR];
1748 	unsigned int nr;
1749 };
1750 
1751 static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
1752 			 int idx)
1753 {
1754 	int i;
1755 
1756 	if (sp->unsync)
1757 		for (i=0; i < pvec->nr; i++)
1758 			if (pvec->page[i].sp == sp)
1759 				return 0;
1760 
1761 	pvec->page[pvec->nr].sp = sp;
1762 	pvec->page[pvec->nr].idx = idx;
1763 	pvec->nr++;
1764 	return (pvec->nr == KVM_PAGE_ARRAY_NR);
1765 }
1766 
1767 static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx)
1768 {
1769 	--sp->unsync_children;
1770 	WARN_ON((int)sp->unsync_children < 0);
1771 	__clear_bit(idx, sp->unsync_child_bitmap);
1772 }
1773 
1774 static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
1775 			   struct kvm_mmu_pages *pvec)
1776 {
1777 	int i, ret, nr_unsync_leaf = 0;
1778 
1779 	for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
1780 		struct kvm_mmu_page *child;
1781 		u64 ent = sp->spt[i];
1782 
1783 		if (!is_shadow_present_pte(ent) || is_large_pte(ent)) {
1784 			clear_unsync_child_bit(sp, i);
1785 			continue;
1786 		}
1787 
1788 		child = to_shadow_page(ent & PT64_BASE_ADDR_MASK);
1789 
1790 		if (child->unsync_children) {
1791 			if (mmu_pages_add(pvec, child, i))
1792 				return -ENOSPC;
1793 
1794 			ret = __mmu_unsync_walk(child, pvec);
1795 			if (!ret) {
1796 				clear_unsync_child_bit(sp, i);
1797 				continue;
1798 			} else if (ret > 0) {
1799 				nr_unsync_leaf += ret;
1800 			} else
1801 				return ret;
1802 		} else if (child->unsync) {
1803 			nr_unsync_leaf++;
1804 			if (mmu_pages_add(pvec, child, i))
1805 				return -ENOSPC;
1806 		} else
1807 			clear_unsync_child_bit(sp, i);
1808 	}
1809 
1810 	return nr_unsync_leaf;
1811 }
1812 
1813 #define INVALID_INDEX (-1)
1814 
1815 static int mmu_unsync_walk(struct kvm_mmu_page *sp,
1816 			   struct kvm_mmu_pages *pvec)
1817 {
1818 	pvec->nr = 0;
1819 	if (!sp->unsync_children)
1820 		return 0;
1821 
1822 	mmu_pages_add(pvec, sp, INVALID_INDEX);
1823 	return __mmu_unsync_walk(sp, pvec);
1824 }
1825 
1826 static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1827 {
1828 	WARN_ON(!sp->unsync);
1829 	trace_kvm_mmu_sync_page(sp);
1830 	sp->unsync = 0;
1831 	--kvm->stat.mmu_unsync;
1832 }
1833 
1834 static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1835 				     struct list_head *invalid_list);
1836 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1837 				    struct list_head *invalid_list);
1838 
1839 #define for_each_valid_sp(_kvm, _sp, _list)				\
1840 	hlist_for_each_entry(_sp, _list, hash_link)			\
1841 		if (is_obsolete_sp((_kvm), (_sp))) {			\
1842 		} else
1843 
1844 #define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn)			\
1845 	for_each_valid_sp(_kvm, _sp,					\
1846 	  &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)])	\
1847 		if ((_sp)->gfn != (_gfn) || (_sp)->role.direct) {} else
1848 
1849 static bool kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1850 			 struct list_head *invalid_list)
1851 {
1852 	if (vcpu->arch.mmu->sync_page(vcpu, sp) == 0) {
1853 		kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1854 		return false;
1855 	}
1856 
1857 	return true;
1858 }
1859 
1860 static bool kvm_mmu_remote_flush_or_zap(struct kvm *kvm,
1861 					struct list_head *invalid_list,
1862 					bool remote_flush)
1863 {
1864 	if (!remote_flush && list_empty(invalid_list))
1865 		return false;
1866 
1867 	if (!list_empty(invalid_list))
1868 		kvm_mmu_commit_zap_page(kvm, invalid_list);
1869 	else
1870 		kvm_flush_remote_tlbs(kvm);
1871 	return true;
1872 }
1873 
1874 static void kvm_mmu_flush_or_zap(struct kvm_vcpu *vcpu,
1875 				 struct list_head *invalid_list,
1876 				 bool remote_flush, bool local_flush)
1877 {
1878 	if (kvm_mmu_remote_flush_or_zap(vcpu->kvm, invalid_list, remote_flush))
1879 		return;
1880 
1881 	if (local_flush)
1882 		kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1883 }
1884 
1885 #ifdef CONFIG_KVM_MMU_AUDIT
1886 #include "mmu_audit.c"
1887 #else
1888 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
1889 static void mmu_audit_disable(void) { }
1890 #endif
1891 
1892 static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
1893 {
1894 	return sp->role.invalid ||
1895 	       unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
1896 }
1897 
1898 struct mmu_page_path {
1899 	struct kvm_mmu_page *parent[PT64_ROOT_MAX_LEVEL];
1900 	unsigned int idx[PT64_ROOT_MAX_LEVEL];
1901 };
1902 
1903 #define for_each_sp(pvec, sp, parents, i)			\
1904 		for (i = mmu_pages_first(&pvec, &parents);	\
1905 			i < pvec.nr && ({ sp = pvec.page[i].sp; 1;});	\
1906 			i = mmu_pages_next(&pvec, &parents, i))
1907 
1908 static int mmu_pages_next(struct kvm_mmu_pages *pvec,
1909 			  struct mmu_page_path *parents,
1910 			  int i)
1911 {
1912 	int n;
1913 
1914 	for (n = i+1; n < pvec->nr; n++) {
1915 		struct kvm_mmu_page *sp = pvec->page[n].sp;
1916 		unsigned idx = pvec->page[n].idx;
1917 		int level = sp->role.level;
1918 
1919 		parents->idx[level-1] = idx;
1920 		if (level == PG_LEVEL_4K)
1921 			break;
1922 
1923 		parents->parent[level-2] = sp;
1924 	}
1925 
1926 	return n;
1927 }
1928 
1929 static int mmu_pages_first(struct kvm_mmu_pages *pvec,
1930 			   struct mmu_page_path *parents)
1931 {
1932 	struct kvm_mmu_page *sp;
1933 	int level;
1934 
1935 	if (pvec->nr == 0)
1936 		return 0;
1937 
1938 	WARN_ON(pvec->page[0].idx != INVALID_INDEX);
1939 
1940 	sp = pvec->page[0].sp;
1941 	level = sp->role.level;
1942 	WARN_ON(level == PG_LEVEL_4K);
1943 
1944 	parents->parent[level-2] = sp;
1945 
1946 	/* Also set up a sentinel.  Further entries in pvec are all
1947 	 * children of sp, so this element is never overwritten.
1948 	 */
1949 	parents->parent[level-1] = NULL;
1950 	return mmu_pages_next(pvec, parents, 0);
1951 }
1952 
1953 static void mmu_pages_clear_parents(struct mmu_page_path *parents)
1954 {
1955 	struct kvm_mmu_page *sp;
1956 	unsigned int level = 0;
1957 
1958 	do {
1959 		unsigned int idx = parents->idx[level];
1960 		sp = parents->parent[level];
1961 		if (!sp)
1962 			return;
1963 
1964 		WARN_ON(idx == INVALID_INDEX);
1965 		clear_unsync_child_bit(sp, idx);
1966 		level++;
1967 	} while (!sp->unsync_children);
1968 }
1969 
1970 static void mmu_sync_children(struct kvm_vcpu *vcpu,
1971 			      struct kvm_mmu_page *parent)
1972 {
1973 	int i;
1974 	struct kvm_mmu_page *sp;
1975 	struct mmu_page_path parents;
1976 	struct kvm_mmu_pages pages;
1977 	LIST_HEAD(invalid_list);
1978 	bool flush = false;
1979 
1980 	while (mmu_unsync_walk(parent, &pages)) {
1981 		bool protected = false;
1982 
1983 		for_each_sp(pages, sp, parents, i)
1984 			protected |= rmap_write_protect(vcpu, sp->gfn);
1985 
1986 		if (protected) {
1987 			kvm_flush_remote_tlbs(vcpu->kvm);
1988 			flush = false;
1989 		}
1990 
1991 		for_each_sp(pages, sp, parents, i) {
1992 			kvm_unlink_unsync_page(vcpu->kvm, sp);
1993 			flush |= kvm_sync_page(vcpu, sp, &invalid_list);
1994 			mmu_pages_clear_parents(&parents);
1995 		}
1996 		if (need_resched() || rwlock_needbreak(&vcpu->kvm->mmu_lock)) {
1997 			kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
1998 			cond_resched_rwlock_write(&vcpu->kvm->mmu_lock);
1999 			flush = false;
2000 		}
2001 	}
2002 
2003 	kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2004 }
2005 
2006 static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
2007 {
2008 	atomic_set(&sp->write_flooding_count,  0);
2009 }
2010 
2011 static void clear_sp_write_flooding_count(u64 *spte)
2012 {
2013 	__clear_sp_write_flooding_count(sptep_to_sp(spte));
2014 }
2015 
2016 static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
2017 					     gfn_t gfn,
2018 					     gva_t gaddr,
2019 					     unsigned level,
2020 					     int direct,
2021 					     unsigned int access)
2022 {
2023 	bool direct_mmu = vcpu->arch.mmu->direct_map;
2024 	union kvm_mmu_page_role role;
2025 	struct hlist_head *sp_list;
2026 	unsigned quadrant;
2027 	struct kvm_mmu_page *sp;
2028 	int collisions = 0;
2029 	LIST_HEAD(invalid_list);
2030 
2031 	role = vcpu->arch.mmu->mmu_role.base;
2032 	role.level = level;
2033 	role.direct = direct;
2034 	if (role.direct)
2035 		role.gpte_is_8_bytes = true;
2036 	role.access = access;
2037 	if (!direct_mmu && vcpu->arch.mmu->root_level <= PT32_ROOT_LEVEL) {
2038 		quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
2039 		quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
2040 		role.quadrant = quadrant;
2041 	}
2042 
2043 	sp_list = &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)];
2044 	for_each_valid_sp(vcpu->kvm, sp, sp_list) {
2045 		if (sp->gfn != gfn) {
2046 			collisions++;
2047 			continue;
2048 		}
2049 
2050 		if (sp->role.word != role.word) {
2051 			/*
2052 			 * If the guest is creating an upper-level page, zap
2053 			 * unsync pages for the same gfn.  While it's possible
2054 			 * the guest is using recursive page tables, in all
2055 			 * likelihood the guest has stopped using the unsync
2056 			 * page and is installing a completely unrelated page.
2057 			 * Unsync pages must not be left as is, because the new
2058 			 * upper-level page will be write-protected.
2059 			 */
2060 			if (level > PG_LEVEL_4K && sp->unsync)
2061 				kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
2062 							 &invalid_list);
2063 			continue;
2064 		}
2065 
2066 		if (direct_mmu)
2067 			goto trace_get_page;
2068 
2069 		if (sp->unsync) {
2070 			/*
2071 			 * The page is good, but is stale.  kvm_sync_page does
2072 			 * get the latest guest state, but (unlike mmu_unsync_children)
2073 			 * it doesn't write-protect the page or mark it synchronized!
2074 			 * This way the validity of the mapping is ensured, but the
2075 			 * overhead of write protection is not incurred until the
2076 			 * guest invalidates the TLB mapping.  This allows multiple
2077 			 * SPs for a single gfn to be unsync.
2078 			 *
2079 			 * If the sync fails, the page is zapped.  If so, break
2080 			 * in order to rebuild it.
2081 			 */
2082 			if (!kvm_sync_page(vcpu, sp, &invalid_list))
2083 				break;
2084 
2085 			WARN_ON(!list_empty(&invalid_list));
2086 			kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
2087 		}
2088 
2089 		if (sp->unsync_children)
2090 			kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
2091 
2092 		__clear_sp_write_flooding_count(sp);
2093 
2094 trace_get_page:
2095 		trace_kvm_mmu_get_page(sp, false);
2096 		goto out;
2097 	}
2098 
2099 	++vcpu->kvm->stat.mmu_cache_miss;
2100 
2101 	sp = kvm_mmu_alloc_page(vcpu, direct);
2102 
2103 	sp->gfn = gfn;
2104 	sp->role = role;
2105 	hlist_add_head(&sp->hash_link, sp_list);
2106 	if (!direct) {
2107 		account_shadowed(vcpu->kvm, sp);
2108 		if (level == PG_LEVEL_4K && rmap_write_protect(vcpu, gfn))
2109 			kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn, 1);
2110 	}
2111 	trace_kvm_mmu_get_page(sp, true);
2112 out:
2113 	kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2114 
2115 	if (collisions > vcpu->kvm->stat.max_mmu_page_hash_collisions)
2116 		vcpu->kvm->stat.max_mmu_page_hash_collisions = collisions;
2117 	return sp;
2118 }
2119 
2120 static void shadow_walk_init_using_root(struct kvm_shadow_walk_iterator *iterator,
2121 					struct kvm_vcpu *vcpu, hpa_t root,
2122 					u64 addr)
2123 {
2124 	iterator->addr = addr;
2125 	iterator->shadow_addr = root;
2126 	iterator->level = vcpu->arch.mmu->shadow_root_level;
2127 
2128 	if (iterator->level == PT64_ROOT_4LEVEL &&
2129 	    vcpu->arch.mmu->root_level < PT64_ROOT_4LEVEL &&
2130 	    !vcpu->arch.mmu->direct_map)
2131 		--iterator->level;
2132 
2133 	if (iterator->level == PT32E_ROOT_LEVEL) {
2134 		/*
2135 		 * prev_root is currently only used for 64-bit hosts. So only
2136 		 * the active root_hpa is valid here.
2137 		 */
2138 		BUG_ON(root != vcpu->arch.mmu->root_hpa);
2139 
2140 		iterator->shadow_addr
2141 			= vcpu->arch.mmu->pae_root[(addr >> 30) & 3];
2142 		iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
2143 		--iterator->level;
2144 		if (!iterator->shadow_addr)
2145 			iterator->level = 0;
2146 	}
2147 }
2148 
2149 static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
2150 			     struct kvm_vcpu *vcpu, u64 addr)
2151 {
2152 	shadow_walk_init_using_root(iterator, vcpu, vcpu->arch.mmu->root_hpa,
2153 				    addr);
2154 }
2155 
2156 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
2157 {
2158 	if (iterator->level < PG_LEVEL_4K)
2159 		return false;
2160 
2161 	iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
2162 	iterator->sptep	= ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
2163 	return true;
2164 }
2165 
2166 static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
2167 			       u64 spte)
2168 {
2169 	if (is_last_spte(spte, iterator->level)) {
2170 		iterator->level = 0;
2171 		return;
2172 	}
2173 
2174 	iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2175 	--iterator->level;
2176 }
2177 
2178 static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
2179 {
2180 	__shadow_walk_next(iterator, *iterator->sptep);
2181 }
2182 
2183 static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep,
2184 			     struct kvm_mmu_page *sp)
2185 {
2186 	u64 spte;
2187 
2188 	BUILD_BUG_ON(VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);
2189 
2190 	spte = make_nonleaf_spte(sp->spt, sp_ad_disabled(sp));
2191 
2192 	mmu_spte_set(sptep, spte);
2193 
2194 	mmu_page_add_parent_pte(vcpu, sp, sptep);
2195 
2196 	if (sp->unsync_children || sp->unsync)
2197 		mark_unsync(sptep);
2198 }
2199 
2200 static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2201 				   unsigned direct_access)
2202 {
2203 	if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
2204 		struct kvm_mmu_page *child;
2205 
2206 		/*
2207 		 * For the direct sp, if the guest pte's dirty bit
2208 		 * changed form clean to dirty, it will corrupt the
2209 		 * sp's access: allow writable in the read-only sp,
2210 		 * so we should update the spte at this point to get
2211 		 * a new sp with the correct access.
2212 		 */
2213 		child = to_shadow_page(*sptep & PT64_BASE_ADDR_MASK);
2214 		if (child->role.access == direct_access)
2215 			return;
2216 
2217 		drop_parent_pte(child, sptep);
2218 		kvm_flush_remote_tlbs_with_address(vcpu->kvm, child->gfn, 1);
2219 	}
2220 }
2221 
2222 /* Returns the number of zapped non-leaf child shadow pages. */
2223 static int mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
2224 			    u64 *spte, struct list_head *invalid_list)
2225 {
2226 	u64 pte;
2227 	struct kvm_mmu_page *child;
2228 
2229 	pte = *spte;
2230 	if (is_shadow_present_pte(pte)) {
2231 		if (is_last_spte(pte, sp->role.level)) {
2232 			drop_spte(kvm, spte);
2233 			if (is_large_pte(pte))
2234 				--kvm->stat.lpages;
2235 		} else {
2236 			child = to_shadow_page(pte & PT64_BASE_ADDR_MASK);
2237 			drop_parent_pte(child, spte);
2238 
2239 			/*
2240 			 * Recursively zap nested TDP SPs, parentless SPs are
2241 			 * unlikely to be used again in the near future.  This
2242 			 * avoids retaining a large number of stale nested SPs.
2243 			 */
2244 			if (tdp_enabled && invalid_list &&
2245 			    child->role.guest_mode && !child->parent_ptes.val)
2246 				return kvm_mmu_prepare_zap_page(kvm, child,
2247 								invalid_list);
2248 		}
2249 	} else if (is_mmio_spte(pte)) {
2250 		mmu_spte_clear_no_track(spte);
2251 	}
2252 	return 0;
2253 }
2254 
2255 static int kvm_mmu_page_unlink_children(struct kvm *kvm,
2256 					struct kvm_mmu_page *sp,
2257 					struct list_head *invalid_list)
2258 {
2259 	int zapped = 0;
2260 	unsigned i;
2261 
2262 	for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2263 		zapped += mmu_page_zap_pte(kvm, sp, sp->spt + i, invalid_list);
2264 
2265 	return zapped;
2266 }
2267 
2268 static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
2269 {
2270 	u64 *sptep;
2271 	struct rmap_iterator iter;
2272 
2273 	while ((sptep = rmap_get_first(&sp->parent_ptes, &iter)))
2274 		drop_parent_pte(sp, sptep);
2275 }
2276 
2277 static int mmu_zap_unsync_children(struct kvm *kvm,
2278 				   struct kvm_mmu_page *parent,
2279 				   struct list_head *invalid_list)
2280 {
2281 	int i, zapped = 0;
2282 	struct mmu_page_path parents;
2283 	struct kvm_mmu_pages pages;
2284 
2285 	if (parent->role.level == PG_LEVEL_4K)
2286 		return 0;
2287 
2288 	while (mmu_unsync_walk(parent, &pages)) {
2289 		struct kvm_mmu_page *sp;
2290 
2291 		for_each_sp(pages, sp, parents, i) {
2292 			kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2293 			mmu_pages_clear_parents(&parents);
2294 			zapped++;
2295 		}
2296 	}
2297 
2298 	return zapped;
2299 }
2300 
2301 static bool __kvm_mmu_prepare_zap_page(struct kvm *kvm,
2302 				       struct kvm_mmu_page *sp,
2303 				       struct list_head *invalid_list,
2304 				       int *nr_zapped)
2305 {
2306 	bool list_unstable;
2307 
2308 	trace_kvm_mmu_prepare_zap_page(sp);
2309 	++kvm->stat.mmu_shadow_zapped;
2310 	*nr_zapped = mmu_zap_unsync_children(kvm, sp, invalid_list);
2311 	*nr_zapped += kvm_mmu_page_unlink_children(kvm, sp, invalid_list);
2312 	kvm_mmu_unlink_parents(kvm, sp);
2313 
2314 	/* Zapping children means active_mmu_pages has become unstable. */
2315 	list_unstable = *nr_zapped;
2316 
2317 	if (!sp->role.invalid && !sp->role.direct)
2318 		unaccount_shadowed(kvm, sp);
2319 
2320 	if (sp->unsync)
2321 		kvm_unlink_unsync_page(kvm, sp);
2322 	if (!sp->root_count) {
2323 		/* Count self */
2324 		(*nr_zapped)++;
2325 
2326 		/*
2327 		 * Already invalid pages (previously active roots) are not on
2328 		 * the active page list.  See list_del() in the "else" case of
2329 		 * !sp->root_count.
2330 		 */
2331 		if (sp->role.invalid)
2332 			list_add(&sp->link, invalid_list);
2333 		else
2334 			list_move(&sp->link, invalid_list);
2335 		kvm_mod_used_mmu_pages(kvm, -1);
2336 	} else {
2337 		/*
2338 		 * Remove the active root from the active page list, the root
2339 		 * will be explicitly freed when the root_count hits zero.
2340 		 */
2341 		list_del(&sp->link);
2342 
2343 		/*
2344 		 * Obsolete pages cannot be used on any vCPUs, see the comment
2345 		 * in kvm_mmu_zap_all_fast().  Note, is_obsolete_sp() also
2346 		 * treats invalid shadow pages as being obsolete.
2347 		 */
2348 		if (!is_obsolete_sp(kvm, sp))
2349 			kvm_reload_remote_mmus(kvm);
2350 	}
2351 
2352 	if (sp->lpage_disallowed)
2353 		unaccount_huge_nx_page(kvm, sp);
2354 
2355 	sp->role.invalid = 1;
2356 	return list_unstable;
2357 }
2358 
2359 static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2360 				     struct list_head *invalid_list)
2361 {
2362 	int nr_zapped;
2363 
2364 	__kvm_mmu_prepare_zap_page(kvm, sp, invalid_list, &nr_zapped);
2365 	return nr_zapped;
2366 }
2367 
2368 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2369 				    struct list_head *invalid_list)
2370 {
2371 	struct kvm_mmu_page *sp, *nsp;
2372 
2373 	if (list_empty(invalid_list))
2374 		return;
2375 
2376 	/*
2377 	 * We need to make sure everyone sees our modifications to
2378 	 * the page tables and see changes to vcpu->mode here. The barrier
2379 	 * in the kvm_flush_remote_tlbs() achieves this. This pairs
2380 	 * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end.
2381 	 *
2382 	 * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit
2383 	 * guest mode and/or lockless shadow page table walks.
2384 	 */
2385 	kvm_flush_remote_tlbs(kvm);
2386 
2387 	list_for_each_entry_safe(sp, nsp, invalid_list, link) {
2388 		WARN_ON(!sp->role.invalid || sp->root_count);
2389 		kvm_mmu_free_page(sp);
2390 	}
2391 }
2392 
2393 static unsigned long kvm_mmu_zap_oldest_mmu_pages(struct kvm *kvm,
2394 						  unsigned long nr_to_zap)
2395 {
2396 	unsigned long total_zapped = 0;
2397 	struct kvm_mmu_page *sp, *tmp;
2398 	LIST_HEAD(invalid_list);
2399 	bool unstable;
2400 	int nr_zapped;
2401 
2402 	if (list_empty(&kvm->arch.active_mmu_pages))
2403 		return 0;
2404 
2405 restart:
2406 	list_for_each_entry_safe_reverse(sp, tmp, &kvm->arch.active_mmu_pages, link) {
2407 		/*
2408 		 * Don't zap active root pages, the page itself can't be freed
2409 		 * and zapping it will just force vCPUs to realloc and reload.
2410 		 */
2411 		if (sp->root_count)
2412 			continue;
2413 
2414 		unstable = __kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list,
2415 						      &nr_zapped);
2416 		total_zapped += nr_zapped;
2417 		if (total_zapped >= nr_to_zap)
2418 			break;
2419 
2420 		if (unstable)
2421 			goto restart;
2422 	}
2423 
2424 	kvm_mmu_commit_zap_page(kvm, &invalid_list);
2425 
2426 	kvm->stat.mmu_recycled += total_zapped;
2427 	return total_zapped;
2428 }
2429 
2430 static inline unsigned long kvm_mmu_available_pages(struct kvm *kvm)
2431 {
2432 	if (kvm->arch.n_max_mmu_pages > kvm->arch.n_used_mmu_pages)
2433 		return kvm->arch.n_max_mmu_pages -
2434 			kvm->arch.n_used_mmu_pages;
2435 
2436 	return 0;
2437 }
2438 
2439 static int make_mmu_pages_available(struct kvm_vcpu *vcpu)
2440 {
2441 	unsigned long avail = kvm_mmu_available_pages(vcpu->kvm);
2442 
2443 	if (likely(avail >= KVM_MIN_FREE_MMU_PAGES))
2444 		return 0;
2445 
2446 	kvm_mmu_zap_oldest_mmu_pages(vcpu->kvm, KVM_REFILL_PAGES - avail);
2447 
2448 	/*
2449 	 * Note, this check is intentionally soft, it only guarantees that one
2450 	 * page is available, while the caller may end up allocating as many as
2451 	 * four pages, e.g. for PAE roots or for 5-level paging.  Temporarily
2452 	 * exceeding the (arbitrary by default) limit will not harm the host,
2453 	 * being too aggressive may unnecessarily kill the guest, and getting an
2454 	 * exact count is far more trouble than it's worth, especially in the
2455 	 * page fault paths.
2456 	 */
2457 	if (!kvm_mmu_available_pages(vcpu->kvm))
2458 		return -ENOSPC;
2459 	return 0;
2460 }
2461 
2462 /*
2463  * Changing the number of mmu pages allocated to the vm
2464  * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2465  */
2466 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long goal_nr_mmu_pages)
2467 {
2468 	write_lock(&kvm->mmu_lock);
2469 
2470 	if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2471 		kvm_mmu_zap_oldest_mmu_pages(kvm, kvm->arch.n_used_mmu_pages -
2472 						  goal_nr_mmu_pages);
2473 
2474 		goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2475 	}
2476 
2477 	kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2478 
2479 	write_unlock(&kvm->mmu_lock);
2480 }
2481 
2482 int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2483 {
2484 	struct kvm_mmu_page *sp;
2485 	LIST_HEAD(invalid_list);
2486 	int r;
2487 
2488 	pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
2489 	r = 0;
2490 	write_lock(&kvm->mmu_lock);
2491 	for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
2492 		pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
2493 			 sp->role.word);
2494 		r = 1;
2495 		kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2496 	}
2497 	kvm_mmu_commit_zap_page(kvm, &invalid_list);
2498 	write_unlock(&kvm->mmu_lock);
2499 
2500 	return r;
2501 }
2502 
2503 static int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
2504 {
2505 	gpa_t gpa;
2506 	int r;
2507 
2508 	if (vcpu->arch.mmu->direct_map)
2509 		return 0;
2510 
2511 	gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
2512 
2513 	r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
2514 
2515 	return r;
2516 }
2517 
2518 static void kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2519 {
2520 	trace_kvm_mmu_unsync_page(sp);
2521 	++vcpu->kvm->stat.mmu_unsync;
2522 	sp->unsync = 1;
2523 
2524 	kvm_mmu_mark_parents_unsync(sp);
2525 }
2526 
2527 /*
2528  * Attempt to unsync any shadow pages that can be reached by the specified gfn,
2529  * KVM is creating a writable mapping for said gfn.  Returns 0 if all pages
2530  * were marked unsync (or if there is no shadow page), -EPERM if the SPTE must
2531  * be write-protected.
2532  */
2533 int mmu_try_to_unsync_pages(struct kvm_vcpu *vcpu, gfn_t gfn, bool can_unsync)
2534 {
2535 	struct kvm_mmu_page *sp;
2536 
2537 	/*
2538 	 * Force write-protection if the page is being tracked.  Note, the page
2539 	 * track machinery is used to write-protect upper-level shadow pages,
2540 	 * i.e. this guards the role.level == 4K assertion below!
2541 	 */
2542 	if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
2543 		return -EPERM;
2544 
2545 	/*
2546 	 * The page is not write-tracked, mark existing shadow pages unsync
2547 	 * unless KVM is synchronizing an unsync SP (can_unsync = false).  In
2548 	 * that case, KVM must complete emulation of the guest TLB flush before
2549 	 * allowing shadow pages to become unsync (writable by the guest).
2550 	 */
2551 	for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
2552 		if (!can_unsync)
2553 			return -EPERM;
2554 
2555 		if (sp->unsync)
2556 			continue;
2557 
2558 		WARN_ON(sp->role.level != PG_LEVEL_4K);
2559 		kvm_unsync_page(vcpu, sp);
2560 	}
2561 
2562 	/*
2563 	 * We need to ensure that the marking of unsync pages is visible
2564 	 * before the SPTE is updated to allow writes because
2565 	 * kvm_mmu_sync_roots() checks the unsync flags without holding
2566 	 * the MMU lock and so can race with this. If the SPTE was updated
2567 	 * before the page had been marked as unsync-ed, something like the
2568 	 * following could happen:
2569 	 *
2570 	 * CPU 1                    CPU 2
2571 	 * ---------------------------------------------------------------------
2572 	 * 1.2 Host updates SPTE
2573 	 *     to be writable
2574 	 *                      2.1 Guest writes a GPTE for GVA X.
2575 	 *                          (GPTE being in the guest page table shadowed
2576 	 *                           by the SP from CPU 1.)
2577 	 *                          This reads SPTE during the page table walk.
2578 	 *                          Since SPTE.W is read as 1, there is no
2579 	 *                          fault.
2580 	 *
2581 	 *                      2.2 Guest issues TLB flush.
2582 	 *                          That causes a VM Exit.
2583 	 *
2584 	 *                      2.3 Walking of unsync pages sees sp->unsync is
2585 	 *                          false and skips the page.
2586 	 *
2587 	 *                      2.4 Guest accesses GVA X.
2588 	 *                          Since the mapping in the SP was not updated,
2589 	 *                          so the old mapping for GVA X incorrectly
2590 	 *                          gets used.
2591 	 * 1.1 Host marks SP
2592 	 *     as unsync
2593 	 *     (sp->unsync = true)
2594 	 *
2595 	 * The write barrier below ensures that 1.1 happens before 1.2 and thus
2596 	 * the situation in 2.4 does not arise. The implicit barrier in 2.2
2597 	 * pairs with this write barrier.
2598 	 */
2599 	smp_wmb();
2600 
2601 	return 0;
2602 }
2603 
2604 static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2605 		    unsigned int pte_access, int level,
2606 		    gfn_t gfn, kvm_pfn_t pfn, bool speculative,
2607 		    bool can_unsync, bool host_writable)
2608 {
2609 	u64 spte;
2610 	struct kvm_mmu_page *sp;
2611 	int ret;
2612 
2613 	sp = sptep_to_sp(sptep);
2614 
2615 	ret = make_spte(vcpu, pte_access, level, gfn, pfn, *sptep, speculative,
2616 			can_unsync, host_writable, sp_ad_disabled(sp), &spte);
2617 
2618 	if (spte & PT_WRITABLE_MASK)
2619 		kvm_vcpu_mark_page_dirty(vcpu, gfn);
2620 
2621 	if (*sptep == spte)
2622 		ret |= SET_SPTE_SPURIOUS;
2623 	else if (mmu_spte_update(sptep, spte))
2624 		ret |= SET_SPTE_NEED_REMOTE_TLB_FLUSH;
2625 	return ret;
2626 }
2627 
2628 static int mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2629 			unsigned int pte_access, bool write_fault, int level,
2630 			gfn_t gfn, kvm_pfn_t pfn, bool speculative,
2631 			bool host_writable)
2632 {
2633 	int was_rmapped = 0;
2634 	int rmap_count;
2635 	int set_spte_ret;
2636 	int ret = RET_PF_FIXED;
2637 	bool flush = false;
2638 
2639 	pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
2640 		 *sptep, write_fault, gfn);
2641 
2642 	if (unlikely(is_noslot_pfn(pfn))) {
2643 		mark_mmio_spte(vcpu, sptep, gfn, pte_access);
2644 		return RET_PF_EMULATE;
2645 	}
2646 
2647 	if (is_shadow_present_pte(*sptep)) {
2648 		/*
2649 		 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2650 		 * the parent of the now unreachable PTE.
2651 		 */
2652 		if (level > PG_LEVEL_4K && !is_large_pte(*sptep)) {
2653 			struct kvm_mmu_page *child;
2654 			u64 pte = *sptep;
2655 
2656 			child = to_shadow_page(pte & PT64_BASE_ADDR_MASK);
2657 			drop_parent_pte(child, sptep);
2658 			flush = true;
2659 		} else if (pfn != spte_to_pfn(*sptep)) {
2660 			pgprintk("hfn old %llx new %llx\n",
2661 				 spte_to_pfn(*sptep), pfn);
2662 			drop_spte(vcpu->kvm, sptep);
2663 			flush = true;
2664 		} else
2665 			was_rmapped = 1;
2666 	}
2667 
2668 	set_spte_ret = set_spte(vcpu, sptep, pte_access, level, gfn, pfn,
2669 				speculative, true, host_writable);
2670 	if (set_spte_ret & SET_SPTE_WRITE_PROTECTED_PT) {
2671 		if (write_fault)
2672 			ret = RET_PF_EMULATE;
2673 		kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
2674 	}
2675 
2676 	if (set_spte_ret & SET_SPTE_NEED_REMOTE_TLB_FLUSH || flush)
2677 		kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn,
2678 				KVM_PAGES_PER_HPAGE(level));
2679 
2680 	/*
2681 	 * The fault is fully spurious if and only if the new SPTE and old SPTE
2682 	 * are identical, and emulation is not required.
2683 	 */
2684 	if ((set_spte_ret & SET_SPTE_SPURIOUS) && ret == RET_PF_FIXED) {
2685 		WARN_ON_ONCE(!was_rmapped);
2686 		return RET_PF_SPURIOUS;
2687 	}
2688 
2689 	pgprintk("%s: setting spte %llx\n", __func__, *sptep);
2690 	trace_kvm_mmu_set_spte(level, gfn, sptep);
2691 	if (!was_rmapped && is_large_pte(*sptep))
2692 		++vcpu->kvm->stat.lpages;
2693 
2694 	if (is_shadow_present_pte(*sptep)) {
2695 		if (!was_rmapped) {
2696 			rmap_count = rmap_add(vcpu, sptep, gfn);
2697 			if (rmap_count > RMAP_RECYCLE_THRESHOLD)
2698 				rmap_recycle(vcpu, sptep, gfn);
2699 		}
2700 	}
2701 
2702 	return ret;
2703 }
2704 
2705 static kvm_pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
2706 				     bool no_dirty_log)
2707 {
2708 	struct kvm_memory_slot *slot;
2709 
2710 	slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
2711 	if (!slot)
2712 		return KVM_PFN_ERR_FAULT;
2713 
2714 	return gfn_to_pfn_memslot_atomic(slot, gfn);
2715 }
2716 
2717 static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2718 				    struct kvm_mmu_page *sp,
2719 				    u64 *start, u64 *end)
2720 {
2721 	struct page *pages[PTE_PREFETCH_NUM];
2722 	struct kvm_memory_slot *slot;
2723 	unsigned int access = sp->role.access;
2724 	int i, ret;
2725 	gfn_t gfn;
2726 
2727 	gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
2728 	slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK);
2729 	if (!slot)
2730 		return -1;
2731 
2732 	ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start);
2733 	if (ret <= 0)
2734 		return -1;
2735 
2736 	for (i = 0; i < ret; i++, gfn++, start++) {
2737 		mmu_set_spte(vcpu, start, access, false, sp->role.level, gfn,
2738 			     page_to_pfn(pages[i]), true, true);
2739 		put_page(pages[i]);
2740 	}
2741 
2742 	return 0;
2743 }
2744 
2745 static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
2746 				  struct kvm_mmu_page *sp, u64 *sptep)
2747 {
2748 	u64 *spte, *start = NULL;
2749 	int i;
2750 
2751 	WARN_ON(!sp->role.direct);
2752 
2753 	i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
2754 	spte = sp->spt + i;
2755 
2756 	for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
2757 		if (is_shadow_present_pte(*spte) || spte == sptep) {
2758 			if (!start)
2759 				continue;
2760 			if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2761 				break;
2762 			start = NULL;
2763 		} else if (!start)
2764 			start = spte;
2765 	}
2766 }
2767 
2768 static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
2769 {
2770 	struct kvm_mmu_page *sp;
2771 
2772 	sp = sptep_to_sp(sptep);
2773 
2774 	/*
2775 	 * Without accessed bits, there's no way to distinguish between
2776 	 * actually accessed translations and prefetched, so disable pte
2777 	 * prefetch if accessed bits aren't available.
2778 	 */
2779 	if (sp_ad_disabled(sp))
2780 		return;
2781 
2782 	if (sp->role.level > PG_LEVEL_4K)
2783 		return;
2784 
2785 	/*
2786 	 * If addresses are being invalidated, skip prefetching to avoid
2787 	 * accidentally prefetching those addresses.
2788 	 */
2789 	if (unlikely(vcpu->kvm->mmu_notifier_count))
2790 		return;
2791 
2792 	__direct_pte_prefetch(vcpu, sp, sptep);
2793 }
2794 
2795 static int host_pfn_mapping_level(struct kvm *kvm, gfn_t gfn, kvm_pfn_t pfn,
2796 				  const struct kvm_memory_slot *slot)
2797 {
2798 	unsigned long hva;
2799 	pte_t *pte;
2800 	int level;
2801 
2802 	if (!PageCompound(pfn_to_page(pfn)) && !kvm_is_zone_device_pfn(pfn))
2803 		return PG_LEVEL_4K;
2804 
2805 	/*
2806 	 * Note, using the already-retrieved memslot and __gfn_to_hva_memslot()
2807 	 * is not solely for performance, it's also necessary to avoid the
2808 	 * "writable" check in __gfn_to_hva_many(), which will always fail on
2809 	 * read-only memslots due to gfn_to_hva() assuming writes.  Earlier
2810 	 * page fault steps have already verified the guest isn't writing a
2811 	 * read-only memslot.
2812 	 */
2813 	hva = __gfn_to_hva_memslot(slot, gfn);
2814 
2815 	pte = lookup_address_in_mm(kvm->mm, hva, &level);
2816 	if (unlikely(!pte))
2817 		return PG_LEVEL_4K;
2818 
2819 	return level;
2820 }
2821 
2822 int kvm_mmu_max_mapping_level(struct kvm *kvm,
2823 			      const struct kvm_memory_slot *slot, gfn_t gfn,
2824 			      kvm_pfn_t pfn, int max_level)
2825 {
2826 	struct kvm_lpage_info *linfo;
2827 
2828 	max_level = min(max_level, max_huge_page_level);
2829 	for ( ; max_level > PG_LEVEL_4K; max_level--) {
2830 		linfo = lpage_info_slot(gfn, slot, max_level);
2831 		if (!linfo->disallow_lpage)
2832 			break;
2833 	}
2834 
2835 	if (max_level == PG_LEVEL_4K)
2836 		return PG_LEVEL_4K;
2837 
2838 	return host_pfn_mapping_level(kvm, gfn, pfn, slot);
2839 }
2840 
2841 int kvm_mmu_hugepage_adjust(struct kvm_vcpu *vcpu, gfn_t gfn,
2842 			    int max_level, kvm_pfn_t *pfnp,
2843 			    bool huge_page_disallowed, int *req_level)
2844 {
2845 	struct kvm_memory_slot *slot;
2846 	kvm_pfn_t pfn = *pfnp;
2847 	kvm_pfn_t mask;
2848 	int level;
2849 
2850 	*req_level = PG_LEVEL_4K;
2851 
2852 	if (unlikely(max_level == PG_LEVEL_4K))
2853 		return PG_LEVEL_4K;
2854 
2855 	if (is_error_noslot_pfn(pfn) || kvm_is_reserved_pfn(pfn))
2856 		return PG_LEVEL_4K;
2857 
2858 	slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, true);
2859 	if (!slot)
2860 		return PG_LEVEL_4K;
2861 
2862 	level = kvm_mmu_max_mapping_level(vcpu->kvm, slot, gfn, pfn, max_level);
2863 	if (level == PG_LEVEL_4K)
2864 		return level;
2865 
2866 	*req_level = level = min(level, max_level);
2867 
2868 	/*
2869 	 * Enforce the iTLB multihit workaround after capturing the requested
2870 	 * level, which will be used to do precise, accurate accounting.
2871 	 */
2872 	if (huge_page_disallowed)
2873 		return PG_LEVEL_4K;
2874 
2875 	/*
2876 	 * mmu_notifier_retry() was successful and mmu_lock is held, so
2877 	 * the pmd can't be split from under us.
2878 	 */
2879 	mask = KVM_PAGES_PER_HPAGE(level) - 1;
2880 	VM_BUG_ON((gfn & mask) != (pfn & mask));
2881 	*pfnp = pfn & ~mask;
2882 
2883 	return level;
2884 }
2885 
2886 void disallowed_hugepage_adjust(u64 spte, gfn_t gfn, int cur_level,
2887 				kvm_pfn_t *pfnp, int *goal_levelp)
2888 {
2889 	int level = *goal_levelp;
2890 
2891 	if (cur_level == level && level > PG_LEVEL_4K &&
2892 	    is_shadow_present_pte(spte) &&
2893 	    !is_large_pte(spte)) {
2894 		/*
2895 		 * A small SPTE exists for this pfn, but FNAME(fetch)
2896 		 * and __direct_map would like to create a large PTE
2897 		 * instead: just force them to go down another level,
2898 		 * patching back for them into pfn the next 9 bits of
2899 		 * the address.
2900 		 */
2901 		u64 page_mask = KVM_PAGES_PER_HPAGE(level) -
2902 				KVM_PAGES_PER_HPAGE(level - 1);
2903 		*pfnp |= gfn & page_mask;
2904 		(*goal_levelp)--;
2905 	}
2906 }
2907 
2908 static int __direct_map(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
2909 			int map_writable, int max_level, kvm_pfn_t pfn,
2910 			bool prefault, bool is_tdp)
2911 {
2912 	bool nx_huge_page_workaround_enabled = is_nx_huge_page_enabled();
2913 	bool write = error_code & PFERR_WRITE_MASK;
2914 	bool exec = error_code & PFERR_FETCH_MASK;
2915 	bool huge_page_disallowed = exec && nx_huge_page_workaround_enabled;
2916 	struct kvm_shadow_walk_iterator it;
2917 	struct kvm_mmu_page *sp;
2918 	int level, req_level, ret;
2919 	gfn_t gfn = gpa >> PAGE_SHIFT;
2920 	gfn_t base_gfn = gfn;
2921 
2922 	level = kvm_mmu_hugepage_adjust(vcpu, gfn, max_level, &pfn,
2923 					huge_page_disallowed, &req_level);
2924 
2925 	trace_kvm_mmu_spte_requested(gpa, level, pfn);
2926 	for_each_shadow_entry(vcpu, gpa, it) {
2927 		/*
2928 		 * We cannot overwrite existing page tables with an NX
2929 		 * large page, as the leaf could be executable.
2930 		 */
2931 		if (nx_huge_page_workaround_enabled)
2932 			disallowed_hugepage_adjust(*it.sptep, gfn, it.level,
2933 						   &pfn, &level);
2934 
2935 		base_gfn = gfn & ~(KVM_PAGES_PER_HPAGE(it.level) - 1);
2936 		if (it.level == level)
2937 			break;
2938 
2939 		drop_large_spte(vcpu, it.sptep);
2940 		if (!is_shadow_present_pte(*it.sptep)) {
2941 			sp = kvm_mmu_get_page(vcpu, base_gfn, it.addr,
2942 					      it.level - 1, true, ACC_ALL);
2943 
2944 			link_shadow_page(vcpu, it.sptep, sp);
2945 			if (is_tdp && huge_page_disallowed &&
2946 			    req_level >= it.level)
2947 				account_huge_nx_page(vcpu->kvm, sp);
2948 		}
2949 	}
2950 
2951 	ret = mmu_set_spte(vcpu, it.sptep, ACC_ALL,
2952 			   write, level, base_gfn, pfn, prefault,
2953 			   map_writable);
2954 	if (ret == RET_PF_SPURIOUS)
2955 		return ret;
2956 
2957 	direct_pte_prefetch(vcpu, it.sptep);
2958 	++vcpu->stat.pf_fixed;
2959 	return ret;
2960 }
2961 
2962 static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
2963 {
2964 	send_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, PAGE_SHIFT, tsk);
2965 }
2966 
2967 static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, kvm_pfn_t pfn)
2968 {
2969 	/*
2970 	 * Do not cache the mmio info caused by writing the readonly gfn
2971 	 * into the spte otherwise read access on readonly gfn also can
2972 	 * caused mmio page fault and treat it as mmio access.
2973 	 */
2974 	if (pfn == KVM_PFN_ERR_RO_FAULT)
2975 		return RET_PF_EMULATE;
2976 
2977 	if (pfn == KVM_PFN_ERR_HWPOISON) {
2978 		kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current);
2979 		return RET_PF_RETRY;
2980 	}
2981 
2982 	return -EFAULT;
2983 }
2984 
2985 static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
2986 				kvm_pfn_t pfn, unsigned int access,
2987 				int *ret_val)
2988 {
2989 	/* The pfn is invalid, report the error! */
2990 	if (unlikely(is_error_pfn(pfn))) {
2991 		*ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
2992 		return true;
2993 	}
2994 
2995 	if (unlikely(is_noslot_pfn(pfn))) {
2996 		vcpu_cache_mmio_info(vcpu, gva, gfn,
2997 				     access & shadow_mmio_access_mask);
2998 		/*
2999 		 * If MMIO caching is disabled, emulate immediately without
3000 		 * touching the shadow page tables as attempting to install an
3001 		 * MMIO SPTE will just be an expensive nop.
3002 		 */
3003 		if (unlikely(!shadow_mmio_value)) {
3004 			*ret_val = RET_PF_EMULATE;
3005 			return true;
3006 		}
3007 	}
3008 
3009 	return false;
3010 }
3011 
3012 static bool page_fault_can_be_fast(u32 error_code)
3013 {
3014 	/*
3015 	 * Do not fix the mmio spte with invalid generation number which
3016 	 * need to be updated by slow page fault path.
3017 	 */
3018 	if (unlikely(error_code & PFERR_RSVD_MASK))
3019 		return false;
3020 
3021 	/* See if the page fault is due to an NX violation */
3022 	if (unlikely(((error_code & (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))
3023 		      == (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))))
3024 		return false;
3025 
3026 	/*
3027 	 * #PF can be fast if:
3028 	 * 1. The shadow page table entry is not present, which could mean that
3029 	 *    the fault is potentially caused by access tracking (if enabled).
3030 	 * 2. The shadow page table entry is present and the fault
3031 	 *    is caused by write-protect, that means we just need change the W
3032 	 *    bit of the spte which can be done out of mmu-lock.
3033 	 *
3034 	 * However, if access tracking is disabled we know that a non-present
3035 	 * page must be a genuine page fault where we have to create a new SPTE.
3036 	 * So, if access tracking is disabled, we return true only for write
3037 	 * accesses to a present page.
3038 	 */
3039 
3040 	return shadow_acc_track_mask != 0 ||
3041 	       ((error_code & (PFERR_WRITE_MASK | PFERR_PRESENT_MASK))
3042 		== (PFERR_WRITE_MASK | PFERR_PRESENT_MASK));
3043 }
3044 
3045 /*
3046  * Returns true if the SPTE was fixed successfully. Otherwise,
3047  * someone else modified the SPTE from its original value.
3048  */
3049 static bool
3050 fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
3051 			u64 *sptep, u64 old_spte, u64 new_spte)
3052 {
3053 	gfn_t gfn;
3054 
3055 	WARN_ON(!sp->role.direct);
3056 
3057 	/*
3058 	 * Theoretically we could also set dirty bit (and flush TLB) here in
3059 	 * order to eliminate unnecessary PML logging. See comments in
3060 	 * set_spte. But fast_page_fault is very unlikely to happen with PML
3061 	 * enabled, so we do not do this. This might result in the same GPA
3062 	 * to be logged in PML buffer again when the write really happens, and
3063 	 * eventually to be called by mark_page_dirty twice. But it's also no
3064 	 * harm. This also avoids the TLB flush needed after setting dirty bit
3065 	 * so non-PML cases won't be impacted.
3066 	 *
3067 	 * Compare with set_spte where instead shadow_dirty_mask is set.
3068 	 */
3069 	if (cmpxchg64(sptep, old_spte, new_spte) != old_spte)
3070 		return false;
3071 
3072 	if (is_writable_pte(new_spte) && !is_writable_pte(old_spte)) {
3073 		/*
3074 		 * The gfn of direct spte is stable since it is
3075 		 * calculated by sp->gfn.
3076 		 */
3077 		gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
3078 		kvm_vcpu_mark_page_dirty(vcpu, gfn);
3079 	}
3080 
3081 	return true;
3082 }
3083 
3084 static bool is_access_allowed(u32 fault_err_code, u64 spte)
3085 {
3086 	if (fault_err_code & PFERR_FETCH_MASK)
3087 		return is_executable_pte(spte);
3088 
3089 	if (fault_err_code & PFERR_WRITE_MASK)
3090 		return is_writable_pte(spte);
3091 
3092 	/* Fault was on Read access */
3093 	return spte & PT_PRESENT_MASK;
3094 }
3095 
3096 /*
3097  * Returns one of RET_PF_INVALID, RET_PF_FIXED or RET_PF_SPURIOUS.
3098  */
3099 static int fast_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
3100 			   u32 error_code)
3101 {
3102 	struct kvm_shadow_walk_iterator iterator;
3103 	struct kvm_mmu_page *sp;
3104 	int ret = RET_PF_INVALID;
3105 	u64 spte = 0ull;
3106 	uint retry_count = 0;
3107 
3108 	if (!page_fault_can_be_fast(error_code))
3109 		return ret;
3110 
3111 	walk_shadow_page_lockless_begin(vcpu);
3112 
3113 	do {
3114 		u64 new_spte;
3115 
3116 		for_each_shadow_entry_lockless(vcpu, cr2_or_gpa, iterator, spte)
3117 			if (!is_shadow_present_pte(spte))
3118 				break;
3119 
3120 		if (!is_shadow_present_pte(spte))
3121 			break;
3122 
3123 		sp = sptep_to_sp(iterator.sptep);
3124 		if (!is_last_spte(spte, sp->role.level))
3125 			break;
3126 
3127 		/*
3128 		 * Check whether the memory access that caused the fault would
3129 		 * still cause it if it were to be performed right now. If not,
3130 		 * then this is a spurious fault caused by TLB lazily flushed,
3131 		 * or some other CPU has already fixed the PTE after the
3132 		 * current CPU took the fault.
3133 		 *
3134 		 * Need not check the access of upper level table entries since
3135 		 * they are always ACC_ALL.
3136 		 */
3137 		if (is_access_allowed(error_code, spte)) {
3138 			ret = RET_PF_SPURIOUS;
3139 			break;
3140 		}
3141 
3142 		new_spte = spte;
3143 
3144 		if (is_access_track_spte(spte))
3145 			new_spte = restore_acc_track_spte(new_spte);
3146 
3147 		/*
3148 		 * Currently, to simplify the code, write-protection can
3149 		 * be removed in the fast path only if the SPTE was
3150 		 * write-protected for dirty-logging or access tracking.
3151 		 */
3152 		if ((error_code & PFERR_WRITE_MASK) &&
3153 		    spte_can_locklessly_be_made_writable(spte)) {
3154 			new_spte |= PT_WRITABLE_MASK;
3155 
3156 			/*
3157 			 * Do not fix write-permission on the large spte.  Since
3158 			 * we only dirty the first page into the dirty-bitmap in
3159 			 * fast_pf_fix_direct_spte(), other pages are missed
3160 			 * if its slot has dirty logging enabled.
3161 			 *
3162 			 * Instead, we let the slow page fault path create a
3163 			 * normal spte to fix the access.
3164 			 *
3165 			 * See the comments in kvm_arch_commit_memory_region().
3166 			 */
3167 			if (sp->role.level > PG_LEVEL_4K)
3168 				break;
3169 		}
3170 
3171 		/* Verify that the fault can be handled in the fast path */
3172 		if (new_spte == spte ||
3173 		    !is_access_allowed(error_code, new_spte))
3174 			break;
3175 
3176 		/*
3177 		 * Currently, fast page fault only works for direct mapping
3178 		 * since the gfn is not stable for indirect shadow page. See
3179 		 * Documentation/virt/kvm/locking.rst to get more detail.
3180 		 */
3181 		if (fast_pf_fix_direct_spte(vcpu, sp, iterator.sptep, spte,
3182 					    new_spte)) {
3183 			ret = RET_PF_FIXED;
3184 			break;
3185 		}
3186 
3187 		if (++retry_count > 4) {
3188 			printk_once(KERN_WARNING
3189 				"kvm: Fast #PF retrying more than 4 times.\n");
3190 			break;
3191 		}
3192 
3193 	} while (true);
3194 
3195 	trace_fast_page_fault(vcpu, cr2_or_gpa, error_code, iterator.sptep,
3196 			      spte, ret);
3197 	walk_shadow_page_lockless_end(vcpu);
3198 
3199 	return ret;
3200 }
3201 
3202 static void mmu_free_root_page(struct kvm *kvm, hpa_t *root_hpa,
3203 			       struct list_head *invalid_list)
3204 {
3205 	struct kvm_mmu_page *sp;
3206 
3207 	if (!VALID_PAGE(*root_hpa))
3208 		return;
3209 
3210 	sp = to_shadow_page(*root_hpa & PT64_BASE_ADDR_MASK);
3211 
3212 	if (is_tdp_mmu_page(sp))
3213 		kvm_tdp_mmu_put_root(kvm, sp, false);
3214 	else if (!--sp->root_count && sp->role.invalid)
3215 		kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
3216 
3217 	*root_hpa = INVALID_PAGE;
3218 }
3219 
3220 /* roots_to_free must be some combination of the KVM_MMU_ROOT_* flags */
3221 void kvm_mmu_free_roots(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
3222 			ulong roots_to_free)
3223 {
3224 	struct kvm *kvm = vcpu->kvm;
3225 	int i;
3226 	LIST_HEAD(invalid_list);
3227 	bool free_active_root = roots_to_free & KVM_MMU_ROOT_CURRENT;
3228 
3229 	BUILD_BUG_ON(KVM_MMU_NUM_PREV_ROOTS >= BITS_PER_LONG);
3230 
3231 	/* Before acquiring the MMU lock, see if we need to do any real work. */
3232 	if (!(free_active_root && VALID_PAGE(mmu->root_hpa))) {
3233 		for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
3234 			if ((roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) &&
3235 			    VALID_PAGE(mmu->prev_roots[i].hpa))
3236 				break;
3237 
3238 		if (i == KVM_MMU_NUM_PREV_ROOTS)
3239 			return;
3240 	}
3241 
3242 	write_lock(&kvm->mmu_lock);
3243 
3244 	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
3245 		if (roots_to_free & KVM_MMU_ROOT_PREVIOUS(i))
3246 			mmu_free_root_page(kvm, &mmu->prev_roots[i].hpa,
3247 					   &invalid_list);
3248 
3249 	if (free_active_root) {
3250 		if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
3251 		    (mmu->root_level >= PT64_ROOT_4LEVEL || mmu->direct_map)) {
3252 			mmu_free_root_page(kvm, &mmu->root_hpa, &invalid_list);
3253 		} else if (mmu->pae_root) {
3254 			for (i = 0; i < 4; ++i) {
3255 				if (!IS_VALID_PAE_ROOT(mmu->pae_root[i]))
3256 					continue;
3257 
3258 				mmu_free_root_page(kvm, &mmu->pae_root[i],
3259 						   &invalid_list);
3260 				mmu->pae_root[i] = INVALID_PAE_ROOT;
3261 			}
3262 		}
3263 		mmu->root_hpa = INVALID_PAGE;
3264 		mmu->root_pgd = 0;
3265 	}
3266 
3267 	kvm_mmu_commit_zap_page(kvm, &invalid_list);
3268 	write_unlock(&kvm->mmu_lock);
3269 }
3270 EXPORT_SYMBOL_GPL(kvm_mmu_free_roots);
3271 
3272 void kvm_mmu_free_guest_mode_roots(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
3273 {
3274 	unsigned long roots_to_free = 0;
3275 	hpa_t root_hpa;
3276 	int i;
3277 
3278 	/*
3279 	 * This should not be called while L2 is active, L2 can't invalidate
3280 	 * _only_ its own roots, e.g. INVVPID unconditionally exits.
3281 	 */
3282 	WARN_ON_ONCE(mmu->mmu_role.base.guest_mode);
3283 
3284 	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
3285 		root_hpa = mmu->prev_roots[i].hpa;
3286 		if (!VALID_PAGE(root_hpa))
3287 			continue;
3288 
3289 		if (!to_shadow_page(root_hpa) ||
3290 			to_shadow_page(root_hpa)->role.guest_mode)
3291 			roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
3292 	}
3293 
3294 	kvm_mmu_free_roots(vcpu, mmu, roots_to_free);
3295 }
3296 EXPORT_SYMBOL_GPL(kvm_mmu_free_guest_mode_roots);
3297 
3298 
3299 static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
3300 {
3301 	int ret = 0;
3302 
3303 	if (!kvm_vcpu_is_visible_gfn(vcpu, root_gfn)) {
3304 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3305 		ret = 1;
3306 	}
3307 
3308 	return ret;
3309 }
3310 
3311 static hpa_t mmu_alloc_root(struct kvm_vcpu *vcpu, gfn_t gfn, gva_t gva,
3312 			    u8 level, bool direct)
3313 {
3314 	struct kvm_mmu_page *sp;
3315 
3316 	sp = kvm_mmu_get_page(vcpu, gfn, gva, level, direct, ACC_ALL);
3317 	++sp->root_count;
3318 
3319 	return __pa(sp->spt);
3320 }
3321 
3322 static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
3323 {
3324 	struct kvm_mmu *mmu = vcpu->arch.mmu;
3325 	u8 shadow_root_level = mmu->shadow_root_level;
3326 	hpa_t root;
3327 	unsigned i;
3328 	int r;
3329 
3330 	write_lock(&vcpu->kvm->mmu_lock);
3331 	r = make_mmu_pages_available(vcpu);
3332 	if (r < 0)
3333 		goto out_unlock;
3334 
3335 	if (is_tdp_mmu_enabled(vcpu->kvm)) {
3336 		root = kvm_tdp_mmu_get_vcpu_root_hpa(vcpu);
3337 		mmu->root_hpa = root;
3338 	} else if (shadow_root_level >= PT64_ROOT_4LEVEL) {
3339 		root = mmu_alloc_root(vcpu, 0, 0, shadow_root_level, true);
3340 		mmu->root_hpa = root;
3341 	} else if (shadow_root_level == PT32E_ROOT_LEVEL) {
3342 		if (WARN_ON_ONCE(!mmu->pae_root)) {
3343 			r = -EIO;
3344 			goto out_unlock;
3345 		}
3346 
3347 		for (i = 0; i < 4; ++i) {
3348 			WARN_ON_ONCE(IS_VALID_PAE_ROOT(mmu->pae_root[i]));
3349 
3350 			root = mmu_alloc_root(vcpu, i << (30 - PAGE_SHIFT),
3351 					      i << 30, PT32_ROOT_LEVEL, true);
3352 			mmu->pae_root[i] = root | PT_PRESENT_MASK |
3353 					   shadow_me_mask;
3354 		}
3355 		mmu->root_hpa = __pa(mmu->pae_root);
3356 	} else {
3357 		WARN_ONCE(1, "Bad TDP root level = %d\n", shadow_root_level);
3358 		r = -EIO;
3359 		goto out_unlock;
3360 	}
3361 
3362 	/* root_pgd is ignored for direct MMUs. */
3363 	mmu->root_pgd = 0;
3364 out_unlock:
3365 	write_unlock(&vcpu->kvm->mmu_lock);
3366 	return r;
3367 }
3368 
3369 static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
3370 {
3371 	struct kvm_mmu *mmu = vcpu->arch.mmu;
3372 	u64 pdptrs[4], pm_mask;
3373 	gfn_t root_gfn, root_pgd;
3374 	hpa_t root;
3375 	unsigned i;
3376 	int r;
3377 
3378 	root_pgd = mmu->get_guest_pgd(vcpu);
3379 	root_gfn = root_pgd >> PAGE_SHIFT;
3380 
3381 	if (mmu_check_root(vcpu, root_gfn))
3382 		return 1;
3383 
3384 	/*
3385 	 * On SVM, reading PDPTRs might access guest memory, which might fault
3386 	 * and thus might sleep.  Grab the PDPTRs before acquiring mmu_lock.
3387 	 */
3388 	if (mmu->root_level == PT32E_ROOT_LEVEL) {
3389 		for (i = 0; i < 4; ++i) {
3390 			pdptrs[i] = mmu->get_pdptr(vcpu, i);
3391 			if (!(pdptrs[i] & PT_PRESENT_MASK))
3392 				continue;
3393 
3394 			if (mmu_check_root(vcpu, pdptrs[i] >> PAGE_SHIFT))
3395 				return 1;
3396 		}
3397 	}
3398 
3399 	r = alloc_all_memslots_rmaps(vcpu->kvm);
3400 	if (r)
3401 		return r;
3402 
3403 	write_lock(&vcpu->kvm->mmu_lock);
3404 	r = make_mmu_pages_available(vcpu);
3405 	if (r < 0)
3406 		goto out_unlock;
3407 
3408 	/*
3409 	 * Do we shadow a long mode page table? If so we need to
3410 	 * write-protect the guests page table root.
3411 	 */
3412 	if (mmu->root_level >= PT64_ROOT_4LEVEL) {
3413 		root = mmu_alloc_root(vcpu, root_gfn, 0,
3414 				      mmu->shadow_root_level, false);
3415 		mmu->root_hpa = root;
3416 		goto set_root_pgd;
3417 	}
3418 
3419 	if (WARN_ON_ONCE(!mmu->pae_root)) {
3420 		r = -EIO;
3421 		goto out_unlock;
3422 	}
3423 
3424 	/*
3425 	 * We shadow a 32 bit page table. This may be a legacy 2-level
3426 	 * or a PAE 3-level page table. In either case we need to be aware that
3427 	 * the shadow page table may be a PAE or a long mode page table.
3428 	 */
3429 	pm_mask = PT_PRESENT_MASK | shadow_me_mask;
3430 	if (mmu->shadow_root_level == PT64_ROOT_4LEVEL) {
3431 		pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
3432 
3433 		if (WARN_ON_ONCE(!mmu->pml4_root)) {
3434 			r = -EIO;
3435 			goto out_unlock;
3436 		}
3437 
3438 		mmu->pml4_root[0] = __pa(mmu->pae_root) | pm_mask;
3439 	}
3440 
3441 	for (i = 0; i < 4; ++i) {
3442 		WARN_ON_ONCE(IS_VALID_PAE_ROOT(mmu->pae_root[i]));
3443 
3444 		if (mmu->root_level == PT32E_ROOT_LEVEL) {
3445 			if (!(pdptrs[i] & PT_PRESENT_MASK)) {
3446 				mmu->pae_root[i] = INVALID_PAE_ROOT;
3447 				continue;
3448 			}
3449 			root_gfn = pdptrs[i] >> PAGE_SHIFT;
3450 		}
3451 
3452 		root = mmu_alloc_root(vcpu, root_gfn, i << 30,
3453 				      PT32_ROOT_LEVEL, false);
3454 		mmu->pae_root[i] = root | pm_mask;
3455 	}
3456 
3457 	if (mmu->shadow_root_level == PT64_ROOT_4LEVEL)
3458 		mmu->root_hpa = __pa(mmu->pml4_root);
3459 	else
3460 		mmu->root_hpa = __pa(mmu->pae_root);
3461 
3462 set_root_pgd:
3463 	mmu->root_pgd = root_pgd;
3464 out_unlock:
3465 	write_unlock(&vcpu->kvm->mmu_lock);
3466 
3467 	return 0;
3468 }
3469 
3470 static int mmu_alloc_special_roots(struct kvm_vcpu *vcpu)
3471 {
3472 	struct kvm_mmu *mmu = vcpu->arch.mmu;
3473 	u64 *pml4_root, *pae_root;
3474 
3475 	/*
3476 	 * When shadowing 32-bit or PAE NPT with 64-bit NPT, the PML4 and PDP
3477 	 * tables are allocated and initialized at root creation as there is no
3478 	 * equivalent level in the guest's NPT to shadow.  Allocate the tables
3479 	 * on demand, as running a 32-bit L1 VMM on 64-bit KVM is very rare.
3480 	 */
3481 	if (mmu->direct_map || mmu->root_level >= PT64_ROOT_4LEVEL ||
3482 	    mmu->shadow_root_level < PT64_ROOT_4LEVEL)
3483 		return 0;
3484 
3485 	/*
3486 	 * This mess only works with 4-level paging and needs to be updated to
3487 	 * work with 5-level paging.
3488 	 */
3489 	if (WARN_ON_ONCE(mmu->shadow_root_level != PT64_ROOT_4LEVEL))
3490 		return -EIO;
3491 
3492 	if (mmu->pae_root && mmu->pml4_root)
3493 		return 0;
3494 
3495 	/*
3496 	 * The special roots should always be allocated in concert.  Yell and
3497 	 * bail if KVM ends up in a state where only one of the roots is valid.
3498 	 */
3499 	if (WARN_ON_ONCE(!tdp_enabled || mmu->pae_root || mmu->pml4_root))
3500 		return -EIO;
3501 
3502 	/*
3503 	 * Unlike 32-bit NPT, the PDP table doesn't need to be in low mem, and
3504 	 * doesn't need to be decrypted.
3505 	 */
3506 	pae_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT);
3507 	if (!pae_root)
3508 		return -ENOMEM;
3509 
3510 	pml4_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT);
3511 	if (!pml4_root) {
3512 		free_page((unsigned long)pae_root);
3513 		return -ENOMEM;
3514 	}
3515 
3516 	mmu->pae_root = pae_root;
3517 	mmu->pml4_root = pml4_root;
3518 
3519 	return 0;
3520 }
3521 
3522 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3523 {
3524 	int i;
3525 	struct kvm_mmu_page *sp;
3526 
3527 	if (vcpu->arch.mmu->direct_map)
3528 		return;
3529 
3530 	if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
3531 		return;
3532 
3533 	vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
3534 
3535 	if (vcpu->arch.mmu->root_level >= PT64_ROOT_4LEVEL) {
3536 		hpa_t root = vcpu->arch.mmu->root_hpa;
3537 		sp = to_shadow_page(root);
3538 
3539 		/*
3540 		 * Even if another CPU was marking the SP as unsync-ed
3541 		 * simultaneously, any guest page table changes are not
3542 		 * guaranteed to be visible anyway until this VCPU issues a TLB
3543 		 * flush strictly after those changes are made. We only need to
3544 		 * ensure that the other CPU sets these flags before any actual
3545 		 * changes to the page tables are made. The comments in
3546 		 * mmu_try_to_unsync_pages() describe what could go wrong if
3547 		 * this requirement isn't satisfied.
3548 		 */
3549 		if (!smp_load_acquire(&sp->unsync) &&
3550 		    !smp_load_acquire(&sp->unsync_children))
3551 			return;
3552 
3553 		write_lock(&vcpu->kvm->mmu_lock);
3554 		kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3555 
3556 		mmu_sync_children(vcpu, sp);
3557 
3558 		kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3559 		write_unlock(&vcpu->kvm->mmu_lock);
3560 		return;
3561 	}
3562 
3563 	write_lock(&vcpu->kvm->mmu_lock);
3564 	kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3565 
3566 	for (i = 0; i < 4; ++i) {
3567 		hpa_t root = vcpu->arch.mmu->pae_root[i];
3568 
3569 		if (IS_VALID_PAE_ROOT(root)) {
3570 			root &= PT64_BASE_ADDR_MASK;
3571 			sp = to_shadow_page(root);
3572 			mmu_sync_children(vcpu, sp);
3573 		}
3574 	}
3575 
3576 	kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3577 	write_unlock(&vcpu->kvm->mmu_lock);
3578 }
3579 
3580 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gpa_t vaddr,
3581 				  u32 access, struct x86_exception *exception)
3582 {
3583 	if (exception)
3584 		exception->error_code = 0;
3585 	return vaddr;
3586 }
3587 
3588 static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gpa_t vaddr,
3589 					 u32 access,
3590 					 struct x86_exception *exception)
3591 {
3592 	if (exception)
3593 		exception->error_code = 0;
3594 	return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception);
3595 }
3596 
3597 static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3598 {
3599 	/*
3600 	 * A nested guest cannot use the MMIO cache if it is using nested
3601 	 * page tables, because cr2 is a nGPA while the cache stores GPAs.
3602 	 */
3603 	if (mmu_is_nested(vcpu))
3604 		return false;
3605 
3606 	if (direct)
3607 		return vcpu_match_mmio_gpa(vcpu, addr);
3608 
3609 	return vcpu_match_mmio_gva(vcpu, addr);
3610 }
3611 
3612 /*
3613  * Return the level of the lowest level SPTE added to sptes.
3614  * That SPTE may be non-present.
3615  */
3616 static int get_walk(struct kvm_vcpu *vcpu, u64 addr, u64 *sptes, int *root_level)
3617 {
3618 	struct kvm_shadow_walk_iterator iterator;
3619 	int leaf = -1;
3620 	u64 spte;
3621 
3622 	walk_shadow_page_lockless_begin(vcpu);
3623 
3624 	for (shadow_walk_init(&iterator, vcpu, addr),
3625 	     *root_level = iterator.level;
3626 	     shadow_walk_okay(&iterator);
3627 	     __shadow_walk_next(&iterator, spte)) {
3628 		leaf = iterator.level;
3629 		spte = mmu_spte_get_lockless(iterator.sptep);
3630 
3631 		sptes[leaf] = spte;
3632 
3633 		if (!is_shadow_present_pte(spte))
3634 			break;
3635 	}
3636 
3637 	walk_shadow_page_lockless_end(vcpu);
3638 
3639 	return leaf;
3640 }
3641 
3642 /* return true if reserved bit(s) are detected on a valid, non-MMIO SPTE. */
3643 static bool get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep)
3644 {
3645 	u64 sptes[PT64_ROOT_MAX_LEVEL + 1];
3646 	struct rsvd_bits_validate *rsvd_check;
3647 	int root, leaf, level;
3648 	bool reserved = false;
3649 
3650 	if (is_tdp_mmu(vcpu->arch.mmu))
3651 		leaf = kvm_tdp_mmu_get_walk(vcpu, addr, sptes, &root);
3652 	else
3653 		leaf = get_walk(vcpu, addr, sptes, &root);
3654 
3655 	if (unlikely(leaf < 0)) {
3656 		*sptep = 0ull;
3657 		return reserved;
3658 	}
3659 
3660 	*sptep = sptes[leaf];
3661 
3662 	/*
3663 	 * Skip reserved bits checks on the terminal leaf if it's not a valid
3664 	 * SPTE.  Note, this also (intentionally) skips MMIO SPTEs, which, by
3665 	 * design, always have reserved bits set.  The purpose of the checks is
3666 	 * to detect reserved bits on non-MMIO SPTEs. i.e. buggy SPTEs.
3667 	 */
3668 	if (!is_shadow_present_pte(sptes[leaf]))
3669 		leaf++;
3670 
3671 	rsvd_check = &vcpu->arch.mmu->shadow_zero_check;
3672 
3673 	for (level = root; level >= leaf; level--)
3674 		reserved |= is_rsvd_spte(rsvd_check, sptes[level], level);
3675 
3676 	if (reserved) {
3677 		pr_err("%s: reserved bits set on MMU-present spte, addr 0x%llx, hierarchy:\n",
3678 		       __func__, addr);
3679 		for (level = root; level >= leaf; level--)
3680 			pr_err("------ spte = 0x%llx level = %d, rsvd bits = 0x%llx",
3681 			       sptes[level], level,
3682 			       get_rsvd_bits(rsvd_check, sptes[level], level));
3683 	}
3684 
3685 	return reserved;
3686 }
3687 
3688 static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3689 {
3690 	u64 spte;
3691 	bool reserved;
3692 
3693 	if (mmio_info_in_cache(vcpu, addr, direct))
3694 		return RET_PF_EMULATE;
3695 
3696 	reserved = get_mmio_spte(vcpu, addr, &spte);
3697 	if (WARN_ON(reserved))
3698 		return -EINVAL;
3699 
3700 	if (is_mmio_spte(spte)) {
3701 		gfn_t gfn = get_mmio_spte_gfn(spte);
3702 		unsigned int access = get_mmio_spte_access(spte);
3703 
3704 		if (!check_mmio_spte(vcpu, spte))
3705 			return RET_PF_INVALID;
3706 
3707 		if (direct)
3708 			addr = 0;
3709 
3710 		trace_handle_mmio_page_fault(addr, gfn, access);
3711 		vcpu_cache_mmio_info(vcpu, addr, gfn, access);
3712 		return RET_PF_EMULATE;
3713 	}
3714 
3715 	/*
3716 	 * If the page table is zapped by other cpus, let CPU fault again on
3717 	 * the address.
3718 	 */
3719 	return RET_PF_RETRY;
3720 }
3721 
3722 static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu,
3723 					 u32 error_code, gfn_t gfn)
3724 {
3725 	if (unlikely(error_code & PFERR_RSVD_MASK))
3726 		return false;
3727 
3728 	if (!(error_code & PFERR_PRESENT_MASK) ||
3729 	      !(error_code & PFERR_WRITE_MASK))
3730 		return false;
3731 
3732 	/*
3733 	 * guest is writing the page which is write tracked which can
3734 	 * not be fixed by page fault handler.
3735 	 */
3736 	if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
3737 		return true;
3738 
3739 	return false;
3740 }
3741 
3742 static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr)
3743 {
3744 	struct kvm_shadow_walk_iterator iterator;
3745 	u64 spte;
3746 
3747 	walk_shadow_page_lockless_begin(vcpu);
3748 	for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
3749 		clear_sp_write_flooding_count(iterator.sptep);
3750 		if (!is_shadow_present_pte(spte))
3751 			break;
3752 	}
3753 	walk_shadow_page_lockless_end(vcpu);
3754 }
3755 
3756 static bool kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
3757 				    gfn_t gfn)
3758 {
3759 	struct kvm_arch_async_pf arch;
3760 
3761 	arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
3762 	arch.gfn = gfn;
3763 	arch.direct_map = vcpu->arch.mmu->direct_map;
3764 	arch.cr3 = vcpu->arch.mmu->get_guest_pgd(vcpu);
3765 
3766 	return kvm_setup_async_pf(vcpu, cr2_or_gpa,
3767 				  kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch);
3768 }
3769 
3770 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
3771 			 gpa_t cr2_or_gpa, kvm_pfn_t *pfn, hva_t *hva,
3772 			 bool write, bool *writable)
3773 {
3774 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3775 	bool async;
3776 
3777 	/*
3778 	 * Retry the page fault if the gfn hit a memslot that is being deleted
3779 	 * or moved.  This ensures any existing SPTEs for the old memslot will
3780 	 * be zapped before KVM inserts a new MMIO SPTE for the gfn.
3781 	 */
3782 	if (slot && (slot->flags & KVM_MEMSLOT_INVALID))
3783 		return true;
3784 
3785 	/* Don't expose private memslots to L2. */
3786 	if (is_guest_mode(vcpu) && !kvm_is_visible_memslot(slot)) {
3787 		*pfn = KVM_PFN_NOSLOT;
3788 		*writable = false;
3789 		return false;
3790 	}
3791 
3792 	async = false;
3793 	*pfn = __gfn_to_pfn_memslot(slot, gfn, false, &async,
3794 				    write, writable, hva);
3795 	if (!async)
3796 		return false; /* *pfn has correct page already */
3797 
3798 	if (!prefault && kvm_can_do_async_pf(vcpu)) {
3799 		trace_kvm_try_async_get_page(cr2_or_gpa, gfn);
3800 		if (kvm_find_async_pf_gfn(vcpu, gfn)) {
3801 			trace_kvm_async_pf_doublefault(cr2_or_gpa, gfn);
3802 			kvm_make_request(KVM_REQ_APF_HALT, vcpu);
3803 			return true;
3804 		} else if (kvm_arch_setup_async_pf(vcpu, cr2_or_gpa, gfn))
3805 			return true;
3806 	}
3807 
3808 	*pfn = __gfn_to_pfn_memslot(slot, gfn, false, NULL,
3809 				    write, writable, hva);
3810 	return false;
3811 }
3812 
3813 static int direct_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
3814 			     bool prefault, int max_level, bool is_tdp)
3815 {
3816 	bool is_tdp_mmu_fault = is_tdp_mmu(vcpu->arch.mmu);
3817 	bool write = error_code & PFERR_WRITE_MASK;
3818 	bool map_writable;
3819 
3820 	gfn_t gfn = gpa >> PAGE_SHIFT;
3821 	unsigned long mmu_seq;
3822 	kvm_pfn_t pfn;
3823 	hva_t hva;
3824 	int r;
3825 
3826 	if (page_fault_handle_page_track(vcpu, error_code, gfn))
3827 		return RET_PF_EMULATE;
3828 
3829 	if (!is_tdp_mmu_fault) {
3830 		r = fast_page_fault(vcpu, gpa, error_code);
3831 		if (r != RET_PF_INVALID)
3832 			return r;
3833 	}
3834 
3835 	r = mmu_topup_memory_caches(vcpu, false);
3836 	if (r)
3837 		return r;
3838 
3839 	mmu_seq = vcpu->kvm->mmu_notifier_seq;
3840 	smp_rmb();
3841 
3842 	if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, &hva,
3843 			 write, &map_writable))
3844 		return RET_PF_RETRY;
3845 
3846 	if (handle_abnormal_pfn(vcpu, is_tdp ? 0 : gpa, gfn, pfn, ACC_ALL, &r))
3847 		return r;
3848 
3849 	r = RET_PF_RETRY;
3850 
3851 	if (is_tdp_mmu_fault)
3852 		read_lock(&vcpu->kvm->mmu_lock);
3853 	else
3854 		write_lock(&vcpu->kvm->mmu_lock);
3855 
3856 	if (!is_noslot_pfn(pfn) && mmu_notifier_retry_hva(vcpu->kvm, mmu_seq, hva))
3857 		goto out_unlock;
3858 	r = make_mmu_pages_available(vcpu);
3859 	if (r)
3860 		goto out_unlock;
3861 
3862 	if (is_tdp_mmu_fault)
3863 		r = kvm_tdp_mmu_map(vcpu, gpa, error_code, map_writable, max_level,
3864 				    pfn, prefault);
3865 	else
3866 		r = __direct_map(vcpu, gpa, error_code, map_writable, max_level, pfn,
3867 				 prefault, is_tdp);
3868 
3869 out_unlock:
3870 	if (is_tdp_mmu_fault)
3871 		read_unlock(&vcpu->kvm->mmu_lock);
3872 	else
3873 		write_unlock(&vcpu->kvm->mmu_lock);
3874 	kvm_release_pfn_clean(pfn);
3875 	return r;
3876 }
3877 
3878 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa,
3879 				u32 error_code, bool prefault)
3880 {
3881 	pgprintk("%s: gva %lx error %x\n", __func__, gpa, error_code);
3882 
3883 	/* This path builds a PAE pagetable, we can map 2mb pages at maximum. */
3884 	return direct_page_fault(vcpu, gpa & PAGE_MASK, error_code, prefault,
3885 				 PG_LEVEL_2M, false);
3886 }
3887 
3888 int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code,
3889 				u64 fault_address, char *insn, int insn_len)
3890 {
3891 	int r = 1;
3892 	u32 flags = vcpu->arch.apf.host_apf_flags;
3893 
3894 #ifndef CONFIG_X86_64
3895 	/* A 64-bit CR2 should be impossible on 32-bit KVM. */
3896 	if (WARN_ON_ONCE(fault_address >> 32))
3897 		return -EFAULT;
3898 #endif
3899 
3900 	vcpu->arch.l1tf_flush_l1d = true;
3901 	if (!flags) {
3902 		trace_kvm_page_fault(fault_address, error_code);
3903 
3904 		if (kvm_event_needs_reinjection(vcpu))
3905 			kvm_mmu_unprotect_page_virt(vcpu, fault_address);
3906 		r = kvm_mmu_page_fault(vcpu, fault_address, error_code, insn,
3907 				insn_len);
3908 	} else if (flags & KVM_PV_REASON_PAGE_NOT_PRESENT) {
3909 		vcpu->arch.apf.host_apf_flags = 0;
3910 		local_irq_disable();
3911 		kvm_async_pf_task_wait_schedule(fault_address);
3912 		local_irq_enable();
3913 	} else {
3914 		WARN_ONCE(1, "Unexpected host async PF flags: %x\n", flags);
3915 	}
3916 
3917 	return r;
3918 }
3919 EXPORT_SYMBOL_GPL(kvm_handle_page_fault);
3920 
3921 int kvm_tdp_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
3922 		       bool prefault)
3923 {
3924 	int max_level;
3925 
3926 	for (max_level = KVM_MAX_HUGEPAGE_LEVEL;
3927 	     max_level > PG_LEVEL_4K;
3928 	     max_level--) {
3929 		int page_num = KVM_PAGES_PER_HPAGE(max_level);
3930 		gfn_t base = (gpa >> PAGE_SHIFT) & ~(page_num - 1);
3931 
3932 		if (kvm_mtrr_check_gfn_range_consistency(vcpu, base, page_num))
3933 			break;
3934 	}
3935 
3936 	return direct_page_fault(vcpu, gpa, error_code, prefault,
3937 				 max_level, true);
3938 }
3939 
3940 static void nonpaging_init_context(struct kvm_mmu *context)
3941 {
3942 	context->page_fault = nonpaging_page_fault;
3943 	context->gva_to_gpa = nonpaging_gva_to_gpa;
3944 	context->sync_page = nonpaging_sync_page;
3945 	context->invlpg = NULL;
3946 	context->direct_map = true;
3947 }
3948 
3949 static inline bool is_root_usable(struct kvm_mmu_root_info *root, gpa_t pgd,
3950 				  union kvm_mmu_page_role role)
3951 {
3952 	return (role.direct || pgd == root->pgd) &&
3953 	       VALID_PAGE(root->hpa) && to_shadow_page(root->hpa) &&
3954 	       role.word == to_shadow_page(root->hpa)->role.word;
3955 }
3956 
3957 /*
3958  * Find out if a previously cached root matching the new pgd/role is available.
3959  * The current root is also inserted into the cache.
3960  * If a matching root was found, it is assigned to kvm_mmu->root_hpa and true is
3961  * returned.
3962  * Otherwise, the LRU root from the cache is assigned to kvm_mmu->root_hpa and
3963  * false is returned. This root should now be freed by the caller.
3964  */
3965 static bool cached_root_available(struct kvm_vcpu *vcpu, gpa_t new_pgd,
3966 				  union kvm_mmu_page_role new_role)
3967 {
3968 	uint i;
3969 	struct kvm_mmu_root_info root;
3970 	struct kvm_mmu *mmu = vcpu->arch.mmu;
3971 
3972 	root.pgd = mmu->root_pgd;
3973 	root.hpa = mmu->root_hpa;
3974 
3975 	if (is_root_usable(&root, new_pgd, new_role))
3976 		return true;
3977 
3978 	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
3979 		swap(root, mmu->prev_roots[i]);
3980 
3981 		if (is_root_usable(&root, new_pgd, new_role))
3982 			break;
3983 	}
3984 
3985 	mmu->root_hpa = root.hpa;
3986 	mmu->root_pgd = root.pgd;
3987 
3988 	return i < KVM_MMU_NUM_PREV_ROOTS;
3989 }
3990 
3991 static bool fast_pgd_switch(struct kvm_vcpu *vcpu, gpa_t new_pgd,
3992 			    union kvm_mmu_page_role new_role)
3993 {
3994 	struct kvm_mmu *mmu = vcpu->arch.mmu;
3995 
3996 	/*
3997 	 * For now, limit the fast switch to 64-bit hosts+VMs in order to avoid
3998 	 * having to deal with PDPTEs. We may add support for 32-bit hosts/VMs
3999 	 * later if necessary.
4000 	 */
4001 	if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
4002 	    mmu->root_level >= PT64_ROOT_4LEVEL)
4003 		return cached_root_available(vcpu, new_pgd, new_role);
4004 
4005 	return false;
4006 }
4007 
4008 static void __kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd,
4009 			      union kvm_mmu_page_role new_role)
4010 {
4011 	if (!fast_pgd_switch(vcpu, new_pgd, new_role)) {
4012 		kvm_mmu_free_roots(vcpu, vcpu->arch.mmu, KVM_MMU_ROOT_CURRENT);
4013 		return;
4014 	}
4015 
4016 	/*
4017 	 * It's possible that the cached previous root page is obsolete because
4018 	 * of a change in the MMU generation number. However, changing the
4019 	 * generation number is accompanied by KVM_REQ_MMU_RELOAD, which will
4020 	 * free the root set here and allocate a new one.
4021 	 */
4022 	kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu);
4023 
4024 	if (force_flush_and_sync_on_reuse) {
4025 		kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
4026 		kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
4027 	}
4028 
4029 	/*
4030 	 * The last MMIO access's GVA and GPA are cached in the VCPU. When
4031 	 * switching to a new CR3, that GVA->GPA mapping may no longer be
4032 	 * valid. So clear any cached MMIO info even when we don't need to sync
4033 	 * the shadow page tables.
4034 	 */
4035 	vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
4036 
4037 	/*
4038 	 * If this is a direct root page, it doesn't have a write flooding
4039 	 * count. Otherwise, clear the write flooding count.
4040 	 */
4041 	if (!new_role.direct)
4042 		__clear_sp_write_flooding_count(
4043 				to_shadow_page(vcpu->arch.mmu->root_hpa));
4044 }
4045 
4046 void kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd)
4047 {
4048 	__kvm_mmu_new_pgd(vcpu, new_pgd, kvm_mmu_calc_root_page_role(vcpu));
4049 }
4050 EXPORT_SYMBOL_GPL(kvm_mmu_new_pgd);
4051 
4052 static unsigned long get_cr3(struct kvm_vcpu *vcpu)
4053 {
4054 	return kvm_read_cr3(vcpu);
4055 }
4056 
4057 static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
4058 			   unsigned int access, int *nr_present)
4059 {
4060 	if (unlikely(is_mmio_spte(*sptep))) {
4061 		if (gfn != get_mmio_spte_gfn(*sptep)) {
4062 			mmu_spte_clear_no_track(sptep);
4063 			return true;
4064 		}
4065 
4066 		(*nr_present)++;
4067 		mark_mmio_spte(vcpu, sptep, gfn, access);
4068 		return true;
4069 	}
4070 
4071 	return false;
4072 }
4073 
4074 #define PTTYPE_EPT 18 /* arbitrary */
4075 #define PTTYPE PTTYPE_EPT
4076 #include "paging_tmpl.h"
4077 #undef PTTYPE
4078 
4079 #define PTTYPE 64
4080 #include "paging_tmpl.h"
4081 #undef PTTYPE
4082 
4083 #define PTTYPE 32
4084 #include "paging_tmpl.h"
4085 #undef PTTYPE
4086 
4087 static void
4088 __reset_rsvds_bits_mask(struct rsvd_bits_validate *rsvd_check,
4089 			u64 pa_bits_rsvd, int level, bool nx, bool gbpages,
4090 			bool pse, bool amd)
4091 {
4092 	u64 gbpages_bit_rsvd = 0;
4093 	u64 nonleaf_bit8_rsvd = 0;
4094 	u64 high_bits_rsvd;
4095 
4096 	rsvd_check->bad_mt_xwr = 0;
4097 
4098 	if (!gbpages)
4099 		gbpages_bit_rsvd = rsvd_bits(7, 7);
4100 
4101 	if (level == PT32E_ROOT_LEVEL)
4102 		high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 62);
4103 	else
4104 		high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 51);
4105 
4106 	/* Note, NX doesn't exist in PDPTEs, this is handled below. */
4107 	if (!nx)
4108 		high_bits_rsvd |= rsvd_bits(63, 63);
4109 
4110 	/*
4111 	 * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
4112 	 * leaf entries) on AMD CPUs only.
4113 	 */
4114 	if (amd)
4115 		nonleaf_bit8_rsvd = rsvd_bits(8, 8);
4116 
4117 	switch (level) {
4118 	case PT32_ROOT_LEVEL:
4119 		/* no rsvd bits for 2 level 4K page table entries */
4120 		rsvd_check->rsvd_bits_mask[0][1] = 0;
4121 		rsvd_check->rsvd_bits_mask[0][0] = 0;
4122 		rsvd_check->rsvd_bits_mask[1][0] =
4123 			rsvd_check->rsvd_bits_mask[0][0];
4124 
4125 		if (!pse) {
4126 			rsvd_check->rsvd_bits_mask[1][1] = 0;
4127 			break;
4128 		}
4129 
4130 		if (is_cpuid_PSE36())
4131 			/* 36bits PSE 4MB page */
4132 			rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
4133 		else
4134 			/* 32 bits PSE 4MB page */
4135 			rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
4136 		break;
4137 	case PT32E_ROOT_LEVEL:
4138 		rsvd_check->rsvd_bits_mask[0][2] = rsvd_bits(63, 63) |
4139 						   high_bits_rsvd |
4140 						   rsvd_bits(5, 8) |
4141 						   rsvd_bits(1, 2);	/* PDPTE */
4142 		rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd;	/* PDE */
4143 		rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd;	/* PTE */
4144 		rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd |
4145 						   rsvd_bits(13, 20);	/* large page */
4146 		rsvd_check->rsvd_bits_mask[1][0] =
4147 			rsvd_check->rsvd_bits_mask[0][0];
4148 		break;
4149 	case PT64_ROOT_5LEVEL:
4150 		rsvd_check->rsvd_bits_mask[0][4] = high_bits_rsvd |
4151 						   nonleaf_bit8_rsvd |
4152 						   rsvd_bits(7, 7);
4153 		rsvd_check->rsvd_bits_mask[1][4] =
4154 			rsvd_check->rsvd_bits_mask[0][4];
4155 		fallthrough;
4156 	case PT64_ROOT_4LEVEL:
4157 		rsvd_check->rsvd_bits_mask[0][3] = high_bits_rsvd |
4158 						   nonleaf_bit8_rsvd |
4159 						   rsvd_bits(7, 7);
4160 		rsvd_check->rsvd_bits_mask[0][2] = high_bits_rsvd |
4161 						   gbpages_bit_rsvd;
4162 		rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd;
4163 		rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd;
4164 		rsvd_check->rsvd_bits_mask[1][3] =
4165 			rsvd_check->rsvd_bits_mask[0][3];
4166 		rsvd_check->rsvd_bits_mask[1][2] = high_bits_rsvd |
4167 						   gbpages_bit_rsvd |
4168 						   rsvd_bits(13, 29);
4169 		rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd |
4170 						   rsvd_bits(13, 20); /* large page */
4171 		rsvd_check->rsvd_bits_mask[1][0] =
4172 			rsvd_check->rsvd_bits_mask[0][0];
4173 		break;
4174 	}
4175 }
4176 
4177 static bool guest_can_use_gbpages(struct kvm_vcpu *vcpu)
4178 {
4179 	/*
4180 	 * If TDP is enabled, let the guest use GBPAGES if they're supported in
4181 	 * hardware.  The hardware page walker doesn't let KVM disable GBPAGES,
4182 	 * i.e. won't treat them as reserved, and KVM doesn't redo the GVA->GPA
4183 	 * walk for performance and complexity reasons.  Not to mention KVM
4184 	 * _can't_ solve the problem because GVA->GPA walks aren't visible to
4185 	 * KVM once a TDP translation is installed.  Mimic hardware behavior so
4186 	 * that KVM's is at least consistent, i.e. doesn't randomly inject #PF.
4187 	 */
4188 	return tdp_enabled ? boot_cpu_has(X86_FEATURE_GBPAGES) :
4189 			     guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES);
4190 }
4191 
4192 static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
4193 				  struct kvm_mmu *context)
4194 {
4195 	__reset_rsvds_bits_mask(&context->guest_rsvd_check,
4196 				vcpu->arch.reserved_gpa_bits,
4197 				context->root_level, is_efer_nx(context),
4198 				guest_can_use_gbpages(vcpu),
4199 				is_cr4_pse(context),
4200 				guest_cpuid_is_amd_or_hygon(vcpu));
4201 }
4202 
4203 static void
4204 __reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check,
4205 			    u64 pa_bits_rsvd, bool execonly)
4206 {
4207 	u64 high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 51);
4208 	u64 bad_mt_xwr;
4209 
4210 	rsvd_check->rsvd_bits_mask[0][4] = high_bits_rsvd | rsvd_bits(3, 7);
4211 	rsvd_check->rsvd_bits_mask[0][3] = high_bits_rsvd | rsvd_bits(3, 7);
4212 	rsvd_check->rsvd_bits_mask[0][2] = high_bits_rsvd | rsvd_bits(3, 6);
4213 	rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd | rsvd_bits(3, 6);
4214 	rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd;
4215 
4216 	/* large page */
4217 	rsvd_check->rsvd_bits_mask[1][4] = rsvd_check->rsvd_bits_mask[0][4];
4218 	rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3];
4219 	rsvd_check->rsvd_bits_mask[1][2] = high_bits_rsvd | rsvd_bits(12, 29);
4220 	rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd | rsvd_bits(12, 20);
4221 	rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0];
4222 
4223 	bad_mt_xwr = 0xFFull << (2 * 8);	/* bits 3..5 must not be 2 */
4224 	bad_mt_xwr |= 0xFFull << (3 * 8);	/* bits 3..5 must not be 3 */
4225 	bad_mt_xwr |= 0xFFull << (7 * 8);	/* bits 3..5 must not be 7 */
4226 	bad_mt_xwr |= REPEAT_BYTE(1ull << 2);	/* bits 0..2 must not be 010 */
4227 	bad_mt_xwr |= REPEAT_BYTE(1ull << 6);	/* bits 0..2 must not be 110 */
4228 	if (!execonly) {
4229 		/* bits 0..2 must not be 100 unless VMX capabilities allow it */
4230 		bad_mt_xwr |= REPEAT_BYTE(1ull << 4);
4231 	}
4232 	rsvd_check->bad_mt_xwr = bad_mt_xwr;
4233 }
4234 
4235 static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
4236 		struct kvm_mmu *context, bool execonly)
4237 {
4238 	__reset_rsvds_bits_mask_ept(&context->guest_rsvd_check,
4239 				    vcpu->arch.reserved_gpa_bits, execonly);
4240 }
4241 
4242 static inline u64 reserved_hpa_bits(void)
4243 {
4244 	return rsvd_bits(shadow_phys_bits, 63);
4245 }
4246 
4247 /*
4248  * the page table on host is the shadow page table for the page
4249  * table in guest or amd nested guest, its mmu features completely
4250  * follow the features in guest.
4251  */
4252 static void reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4253 					struct kvm_mmu *context)
4254 {
4255 	/*
4256 	 * KVM uses NX when TDP is disabled to handle a variety of scenarios,
4257 	 * notably for huge SPTEs if iTLB multi-hit mitigation is enabled and
4258 	 * to generate correct permissions for CR0.WP=0/CR4.SMEP=1/EFER.NX=0.
4259 	 * The iTLB multi-hit workaround can be toggled at any time, so assume
4260 	 * NX can be used by any non-nested shadow MMU to avoid having to reset
4261 	 * MMU contexts.  Note, KVM forces EFER.NX=1 when TDP is disabled.
4262 	 */
4263 	bool uses_nx = is_efer_nx(context) || !tdp_enabled;
4264 
4265 	/* @amd adds a check on bit of SPTEs, which KVM shouldn't use anyways. */
4266 	bool is_amd = true;
4267 	/* KVM doesn't use 2-level page tables for the shadow MMU. */
4268 	bool is_pse = false;
4269 	struct rsvd_bits_validate *shadow_zero_check;
4270 	int i;
4271 
4272 	WARN_ON_ONCE(context->shadow_root_level < PT32E_ROOT_LEVEL);
4273 
4274 	shadow_zero_check = &context->shadow_zero_check;
4275 	__reset_rsvds_bits_mask(shadow_zero_check, reserved_hpa_bits(),
4276 				context->shadow_root_level, uses_nx,
4277 				guest_can_use_gbpages(vcpu), is_pse, is_amd);
4278 
4279 	if (!shadow_me_mask)
4280 		return;
4281 
4282 	for (i = context->shadow_root_level; --i >= 0;) {
4283 		shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
4284 		shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
4285 	}
4286 
4287 }
4288 
4289 static inline bool boot_cpu_is_amd(void)
4290 {
4291 	WARN_ON_ONCE(!tdp_enabled);
4292 	return shadow_x_mask == 0;
4293 }
4294 
4295 /*
4296  * the direct page table on host, use as much mmu features as
4297  * possible, however, kvm currently does not do execution-protection.
4298  */
4299 static void
4300 reset_tdp_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4301 				struct kvm_mmu *context)
4302 {
4303 	struct rsvd_bits_validate *shadow_zero_check;
4304 	int i;
4305 
4306 	shadow_zero_check = &context->shadow_zero_check;
4307 
4308 	if (boot_cpu_is_amd())
4309 		__reset_rsvds_bits_mask(shadow_zero_check, reserved_hpa_bits(),
4310 					context->shadow_root_level, false,
4311 					boot_cpu_has(X86_FEATURE_GBPAGES),
4312 					false, true);
4313 	else
4314 		__reset_rsvds_bits_mask_ept(shadow_zero_check,
4315 					    reserved_hpa_bits(), false);
4316 
4317 	if (!shadow_me_mask)
4318 		return;
4319 
4320 	for (i = context->shadow_root_level; --i >= 0;) {
4321 		shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
4322 		shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
4323 	}
4324 }
4325 
4326 /*
4327  * as the comments in reset_shadow_zero_bits_mask() except it
4328  * is the shadow page table for intel nested guest.
4329  */
4330 static void
4331 reset_ept_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4332 				struct kvm_mmu *context, bool execonly)
4333 {
4334 	__reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
4335 				    reserved_hpa_bits(), execonly);
4336 }
4337 
4338 #define BYTE_MASK(access) \
4339 	((1 & (access) ? 2 : 0) | \
4340 	 (2 & (access) ? 4 : 0) | \
4341 	 (3 & (access) ? 8 : 0) | \
4342 	 (4 & (access) ? 16 : 0) | \
4343 	 (5 & (access) ? 32 : 0) | \
4344 	 (6 & (access) ? 64 : 0) | \
4345 	 (7 & (access) ? 128 : 0))
4346 
4347 
4348 static void update_permission_bitmask(struct kvm_mmu *mmu, bool ept)
4349 {
4350 	unsigned byte;
4351 
4352 	const u8 x = BYTE_MASK(ACC_EXEC_MASK);
4353 	const u8 w = BYTE_MASK(ACC_WRITE_MASK);
4354 	const u8 u = BYTE_MASK(ACC_USER_MASK);
4355 
4356 	bool cr4_smep = is_cr4_smep(mmu);
4357 	bool cr4_smap = is_cr4_smap(mmu);
4358 	bool cr0_wp = is_cr0_wp(mmu);
4359 	bool efer_nx = is_efer_nx(mmu);
4360 
4361 	for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
4362 		unsigned pfec = byte << 1;
4363 
4364 		/*
4365 		 * Each "*f" variable has a 1 bit for each UWX value
4366 		 * that causes a fault with the given PFEC.
4367 		 */
4368 
4369 		/* Faults from writes to non-writable pages */
4370 		u8 wf = (pfec & PFERR_WRITE_MASK) ? (u8)~w : 0;
4371 		/* Faults from user mode accesses to supervisor pages */
4372 		u8 uf = (pfec & PFERR_USER_MASK) ? (u8)~u : 0;
4373 		/* Faults from fetches of non-executable pages*/
4374 		u8 ff = (pfec & PFERR_FETCH_MASK) ? (u8)~x : 0;
4375 		/* Faults from kernel mode fetches of user pages */
4376 		u8 smepf = 0;
4377 		/* Faults from kernel mode accesses of user pages */
4378 		u8 smapf = 0;
4379 
4380 		if (!ept) {
4381 			/* Faults from kernel mode accesses to user pages */
4382 			u8 kf = (pfec & PFERR_USER_MASK) ? 0 : u;
4383 
4384 			/* Not really needed: !nx will cause pte.nx to fault */
4385 			if (!efer_nx)
4386 				ff = 0;
4387 
4388 			/* Allow supervisor writes if !cr0.wp */
4389 			if (!cr0_wp)
4390 				wf = (pfec & PFERR_USER_MASK) ? wf : 0;
4391 
4392 			/* Disallow supervisor fetches of user code if cr4.smep */
4393 			if (cr4_smep)
4394 				smepf = (pfec & PFERR_FETCH_MASK) ? kf : 0;
4395 
4396 			/*
4397 			 * SMAP:kernel-mode data accesses from user-mode
4398 			 * mappings should fault. A fault is considered
4399 			 * as a SMAP violation if all of the following
4400 			 * conditions are true:
4401 			 *   - X86_CR4_SMAP is set in CR4
4402 			 *   - A user page is accessed
4403 			 *   - The access is not a fetch
4404 			 *   - Page fault in kernel mode
4405 			 *   - if CPL = 3 or X86_EFLAGS_AC is clear
4406 			 *
4407 			 * Here, we cover the first three conditions.
4408 			 * The fourth is computed dynamically in permission_fault();
4409 			 * PFERR_RSVD_MASK bit will be set in PFEC if the access is
4410 			 * *not* subject to SMAP restrictions.
4411 			 */
4412 			if (cr4_smap)
4413 				smapf = (pfec & (PFERR_RSVD_MASK|PFERR_FETCH_MASK)) ? 0 : kf;
4414 		}
4415 
4416 		mmu->permissions[byte] = ff | uf | wf | smepf | smapf;
4417 	}
4418 }
4419 
4420 /*
4421 * PKU is an additional mechanism by which the paging controls access to
4422 * user-mode addresses based on the value in the PKRU register.  Protection
4423 * key violations are reported through a bit in the page fault error code.
4424 * Unlike other bits of the error code, the PK bit is not known at the
4425 * call site of e.g. gva_to_gpa; it must be computed directly in
4426 * permission_fault based on two bits of PKRU, on some machine state (CR4,
4427 * CR0, EFER, CPL), and on other bits of the error code and the page tables.
4428 *
4429 * In particular the following conditions come from the error code, the
4430 * page tables and the machine state:
4431 * - PK is always zero unless CR4.PKE=1 and EFER.LMA=1
4432 * - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch)
4433 * - PK is always zero if U=0 in the page tables
4434 * - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access.
4435 *
4436 * The PKRU bitmask caches the result of these four conditions.  The error
4437 * code (minus the P bit) and the page table's U bit form an index into the
4438 * PKRU bitmask.  Two bits of the PKRU bitmask are then extracted and ANDed
4439 * with the two bits of the PKRU register corresponding to the protection key.
4440 * For the first three conditions above the bits will be 00, thus masking
4441 * away both AD and WD.  For all reads or if the last condition holds, WD
4442 * only will be masked away.
4443 */
4444 static void update_pkru_bitmask(struct kvm_mmu *mmu)
4445 {
4446 	unsigned bit;
4447 	bool wp;
4448 
4449 	if (!is_cr4_pke(mmu)) {
4450 		mmu->pkru_mask = 0;
4451 		return;
4452 	}
4453 
4454 	wp = is_cr0_wp(mmu);
4455 
4456 	for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) {
4457 		unsigned pfec, pkey_bits;
4458 		bool check_pkey, check_write, ff, uf, wf, pte_user;
4459 
4460 		pfec = bit << 1;
4461 		ff = pfec & PFERR_FETCH_MASK;
4462 		uf = pfec & PFERR_USER_MASK;
4463 		wf = pfec & PFERR_WRITE_MASK;
4464 
4465 		/* PFEC.RSVD is replaced by ACC_USER_MASK. */
4466 		pte_user = pfec & PFERR_RSVD_MASK;
4467 
4468 		/*
4469 		 * Only need to check the access which is not an
4470 		 * instruction fetch and is to a user page.
4471 		 */
4472 		check_pkey = (!ff && pte_user);
4473 		/*
4474 		 * write access is controlled by PKRU if it is a
4475 		 * user access or CR0.WP = 1.
4476 		 */
4477 		check_write = check_pkey && wf && (uf || wp);
4478 
4479 		/* PKRU.AD stops both read and write access. */
4480 		pkey_bits = !!check_pkey;
4481 		/* PKRU.WD stops write access. */
4482 		pkey_bits |= (!!check_write) << 1;
4483 
4484 		mmu->pkru_mask |= (pkey_bits & 3) << pfec;
4485 	}
4486 }
4487 
4488 static void reset_guest_paging_metadata(struct kvm_vcpu *vcpu,
4489 					struct kvm_mmu *mmu)
4490 {
4491 	if (!is_cr0_pg(mmu))
4492 		return;
4493 
4494 	reset_rsvds_bits_mask(vcpu, mmu);
4495 	update_permission_bitmask(mmu, false);
4496 	update_pkru_bitmask(mmu);
4497 }
4498 
4499 static void paging64_init_context(struct kvm_mmu *context)
4500 {
4501 	context->page_fault = paging64_page_fault;
4502 	context->gva_to_gpa = paging64_gva_to_gpa;
4503 	context->sync_page = paging64_sync_page;
4504 	context->invlpg = paging64_invlpg;
4505 	context->direct_map = false;
4506 }
4507 
4508 static void paging32_init_context(struct kvm_mmu *context)
4509 {
4510 	context->page_fault = paging32_page_fault;
4511 	context->gva_to_gpa = paging32_gva_to_gpa;
4512 	context->sync_page = paging32_sync_page;
4513 	context->invlpg = paging32_invlpg;
4514 	context->direct_map = false;
4515 }
4516 
4517 static union kvm_mmu_extended_role kvm_calc_mmu_role_ext(struct kvm_vcpu *vcpu,
4518 							 struct kvm_mmu_role_regs *regs)
4519 {
4520 	union kvm_mmu_extended_role ext = {0};
4521 
4522 	if (____is_cr0_pg(regs)) {
4523 		ext.cr0_pg = 1;
4524 		ext.cr4_pae = ____is_cr4_pae(regs);
4525 		ext.cr4_smep = ____is_cr4_smep(regs);
4526 		ext.cr4_smap = ____is_cr4_smap(regs);
4527 		ext.cr4_pse = ____is_cr4_pse(regs);
4528 
4529 		/* PKEY and LA57 are active iff long mode is active. */
4530 		ext.cr4_pke = ____is_efer_lma(regs) && ____is_cr4_pke(regs);
4531 		ext.cr4_la57 = ____is_efer_lma(regs) && ____is_cr4_la57(regs);
4532 	}
4533 
4534 	ext.valid = 1;
4535 
4536 	return ext;
4537 }
4538 
4539 static union kvm_mmu_role kvm_calc_mmu_role_common(struct kvm_vcpu *vcpu,
4540 						   struct kvm_mmu_role_regs *regs,
4541 						   bool base_only)
4542 {
4543 	union kvm_mmu_role role = {0};
4544 
4545 	role.base.access = ACC_ALL;
4546 	if (____is_cr0_pg(regs)) {
4547 		role.base.efer_nx = ____is_efer_nx(regs);
4548 		role.base.cr0_wp = ____is_cr0_wp(regs);
4549 	}
4550 	role.base.smm = is_smm(vcpu);
4551 	role.base.guest_mode = is_guest_mode(vcpu);
4552 
4553 	if (base_only)
4554 		return role;
4555 
4556 	role.ext = kvm_calc_mmu_role_ext(vcpu, regs);
4557 
4558 	return role;
4559 }
4560 
4561 static inline int kvm_mmu_get_tdp_level(struct kvm_vcpu *vcpu)
4562 {
4563 	/* Use 5-level TDP if and only if it's useful/necessary. */
4564 	if (max_tdp_level == 5 && cpuid_maxphyaddr(vcpu) <= 48)
4565 		return 4;
4566 
4567 	return max_tdp_level;
4568 }
4569 
4570 static union kvm_mmu_role
4571 kvm_calc_tdp_mmu_root_page_role(struct kvm_vcpu *vcpu,
4572 				struct kvm_mmu_role_regs *regs, bool base_only)
4573 {
4574 	union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, regs, base_only);
4575 
4576 	role.base.ad_disabled = (shadow_accessed_mask == 0);
4577 	role.base.level = kvm_mmu_get_tdp_level(vcpu);
4578 	role.base.direct = true;
4579 	role.base.gpte_is_8_bytes = true;
4580 
4581 	return role;
4582 }
4583 
4584 static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
4585 {
4586 	struct kvm_mmu *context = &vcpu->arch.root_mmu;
4587 	struct kvm_mmu_role_regs regs = vcpu_to_role_regs(vcpu);
4588 	union kvm_mmu_role new_role =
4589 		kvm_calc_tdp_mmu_root_page_role(vcpu, &regs, false);
4590 
4591 	if (new_role.as_u64 == context->mmu_role.as_u64)
4592 		return;
4593 
4594 	context->mmu_role.as_u64 = new_role.as_u64;
4595 	context->page_fault = kvm_tdp_page_fault;
4596 	context->sync_page = nonpaging_sync_page;
4597 	context->invlpg = NULL;
4598 	context->shadow_root_level = kvm_mmu_get_tdp_level(vcpu);
4599 	context->direct_map = true;
4600 	context->get_guest_pgd = get_cr3;
4601 	context->get_pdptr = kvm_pdptr_read;
4602 	context->inject_page_fault = kvm_inject_page_fault;
4603 	context->root_level = role_regs_to_root_level(&regs);
4604 
4605 	if (!is_cr0_pg(context))
4606 		context->gva_to_gpa = nonpaging_gva_to_gpa;
4607 	else if (is_cr4_pae(context))
4608 		context->gva_to_gpa = paging64_gva_to_gpa;
4609 	else
4610 		context->gva_to_gpa = paging32_gva_to_gpa;
4611 
4612 	reset_guest_paging_metadata(vcpu, context);
4613 	reset_tdp_shadow_zero_bits_mask(vcpu, context);
4614 }
4615 
4616 static union kvm_mmu_role
4617 kvm_calc_shadow_root_page_role_common(struct kvm_vcpu *vcpu,
4618 				      struct kvm_mmu_role_regs *regs, bool base_only)
4619 {
4620 	union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, regs, base_only);
4621 
4622 	role.base.smep_andnot_wp = role.ext.cr4_smep && !____is_cr0_wp(regs);
4623 	role.base.smap_andnot_wp = role.ext.cr4_smap && !____is_cr0_wp(regs);
4624 	role.base.gpte_is_8_bytes = ____is_cr0_pg(regs) && ____is_cr4_pae(regs);
4625 
4626 	return role;
4627 }
4628 
4629 static union kvm_mmu_role
4630 kvm_calc_shadow_mmu_root_page_role(struct kvm_vcpu *vcpu,
4631 				   struct kvm_mmu_role_regs *regs, bool base_only)
4632 {
4633 	union kvm_mmu_role role =
4634 		kvm_calc_shadow_root_page_role_common(vcpu, regs, base_only);
4635 
4636 	role.base.direct = !____is_cr0_pg(regs);
4637 
4638 	if (!____is_efer_lma(regs))
4639 		role.base.level = PT32E_ROOT_LEVEL;
4640 	else if (____is_cr4_la57(regs))
4641 		role.base.level = PT64_ROOT_5LEVEL;
4642 	else
4643 		role.base.level = PT64_ROOT_4LEVEL;
4644 
4645 	return role;
4646 }
4647 
4648 static void shadow_mmu_init_context(struct kvm_vcpu *vcpu, struct kvm_mmu *context,
4649 				    struct kvm_mmu_role_regs *regs,
4650 				    union kvm_mmu_role new_role)
4651 {
4652 	if (new_role.as_u64 == context->mmu_role.as_u64)
4653 		return;
4654 
4655 	context->mmu_role.as_u64 = new_role.as_u64;
4656 
4657 	if (!is_cr0_pg(context))
4658 		nonpaging_init_context(context);
4659 	else if (is_cr4_pae(context))
4660 		paging64_init_context(context);
4661 	else
4662 		paging32_init_context(context);
4663 	context->root_level = role_regs_to_root_level(regs);
4664 
4665 	reset_guest_paging_metadata(vcpu, context);
4666 	context->shadow_root_level = new_role.base.level;
4667 
4668 	reset_shadow_zero_bits_mask(vcpu, context);
4669 }
4670 
4671 static void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu,
4672 				struct kvm_mmu_role_regs *regs)
4673 {
4674 	struct kvm_mmu *context = &vcpu->arch.root_mmu;
4675 	union kvm_mmu_role new_role =
4676 		kvm_calc_shadow_mmu_root_page_role(vcpu, regs, false);
4677 
4678 	shadow_mmu_init_context(vcpu, context, regs, new_role);
4679 }
4680 
4681 static union kvm_mmu_role
4682 kvm_calc_shadow_npt_root_page_role(struct kvm_vcpu *vcpu,
4683 				   struct kvm_mmu_role_regs *regs)
4684 {
4685 	union kvm_mmu_role role =
4686 		kvm_calc_shadow_root_page_role_common(vcpu, regs, false);
4687 
4688 	role.base.direct = false;
4689 	role.base.level = kvm_mmu_get_tdp_level(vcpu);
4690 
4691 	return role;
4692 }
4693 
4694 void kvm_init_shadow_npt_mmu(struct kvm_vcpu *vcpu, unsigned long cr0,
4695 			     unsigned long cr4, u64 efer, gpa_t nested_cr3)
4696 {
4697 	struct kvm_mmu *context = &vcpu->arch.guest_mmu;
4698 	struct kvm_mmu_role_regs regs = {
4699 		.cr0 = cr0,
4700 		.cr4 = cr4,
4701 		.efer = efer,
4702 	};
4703 	union kvm_mmu_role new_role;
4704 
4705 	new_role = kvm_calc_shadow_npt_root_page_role(vcpu, &regs);
4706 
4707 	__kvm_mmu_new_pgd(vcpu, nested_cr3, new_role.base);
4708 
4709 	shadow_mmu_init_context(vcpu, context, &regs, new_role);
4710 }
4711 EXPORT_SYMBOL_GPL(kvm_init_shadow_npt_mmu);
4712 
4713 static union kvm_mmu_role
4714 kvm_calc_shadow_ept_root_page_role(struct kvm_vcpu *vcpu, bool accessed_dirty,
4715 				   bool execonly, u8 level)
4716 {
4717 	union kvm_mmu_role role = {0};
4718 
4719 	/* SMM flag is inherited from root_mmu */
4720 	role.base.smm = vcpu->arch.root_mmu.mmu_role.base.smm;
4721 
4722 	role.base.level = level;
4723 	role.base.gpte_is_8_bytes = true;
4724 	role.base.direct = false;
4725 	role.base.ad_disabled = !accessed_dirty;
4726 	role.base.guest_mode = true;
4727 	role.base.access = ACC_ALL;
4728 
4729 	/* EPT, and thus nested EPT, does not consume CR0, CR4, nor EFER. */
4730 	role.ext.word = 0;
4731 	role.ext.execonly = execonly;
4732 	role.ext.valid = 1;
4733 
4734 	return role;
4735 }
4736 
4737 void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly,
4738 			     bool accessed_dirty, gpa_t new_eptp)
4739 {
4740 	struct kvm_mmu *context = &vcpu->arch.guest_mmu;
4741 	u8 level = vmx_eptp_page_walk_level(new_eptp);
4742 	union kvm_mmu_role new_role =
4743 		kvm_calc_shadow_ept_root_page_role(vcpu, accessed_dirty,
4744 						   execonly, level);
4745 
4746 	__kvm_mmu_new_pgd(vcpu, new_eptp, new_role.base);
4747 
4748 	if (new_role.as_u64 == context->mmu_role.as_u64)
4749 		return;
4750 
4751 	context->mmu_role.as_u64 = new_role.as_u64;
4752 
4753 	context->shadow_root_level = level;
4754 
4755 	context->ept_ad = accessed_dirty;
4756 	context->page_fault = ept_page_fault;
4757 	context->gva_to_gpa = ept_gva_to_gpa;
4758 	context->sync_page = ept_sync_page;
4759 	context->invlpg = ept_invlpg;
4760 	context->root_level = level;
4761 	context->direct_map = false;
4762 
4763 	update_permission_bitmask(context, true);
4764 	update_pkru_bitmask(context);
4765 	reset_rsvds_bits_mask_ept(vcpu, context, execonly);
4766 	reset_ept_shadow_zero_bits_mask(vcpu, context, execonly);
4767 }
4768 EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);
4769 
4770 static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
4771 {
4772 	struct kvm_mmu *context = &vcpu->arch.root_mmu;
4773 	struct kvm_mmu_role_regs regs = vcpu_to_role_regs(vcpu);
4774 
4775 	kvm_init_shadow_mmu(vcpu, &regs);
4776 
4777 	context->get_guest_pgd     = get_cr3;
4778 	context->get_pdptr         = kvm_pdptr_read;
4779 	context->inject_page_fault = kvm_inject_page_fault;
4780 }
4781 
4782 static union kvm_mmu_role
4783 kvm_calc_nested_mmu_role(struct kvm_vcpu *vcpu, struct kvm_mmu_role_regs *regs)
4784 {
4785 	union kvm_mmu_role role;
4786 
4787 	role = kvm_calc_shadow_root_page_role_common(vcpu, regs, false);
4788 
4789 	/*
4790 	 * Nested MMUs are used only for walking L2's gva->gpa, they never have
4791 	 * shadow pages of their own and so "direct" has no meaning.   Set it
4792 	 * to "true" to try to detect bogus usage of the nested MMU.
4793 	 */
4794 	role.base.direct = true;
4795 	role.base.level = role_regs_to_root_level(regs);
4796 	return role;
4797 }
4798 
4799 static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
4800 {
4801 	struct kvm_mmu_role_regs regs = vcpu_to_role_regs(vcpu);
4802 	union kvm_mmu_role new_role = kvm_calc_nested_mmu_role(vcpu, &regs);
4803 	struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
4804 
4805 	if (new_role.as_u64 == g_context->mmu_role.as_u64)
4806 		return;
4807 
4808 	g_context->mmu_role.as_u64 = new_role.as_u64;
4809 	g_context->get_guest_pgd     = get_cr3;
4810 	g_context->get_pdptr         = kvm_pdptr_read;
4811 	g_context->inject_page_fault = kvm_inject_page_fault;
4812 	g_context->root_level        = new_role.base.level;
4813 
4814 	/*
4815 	 * L2 page tables are never shadowed, so there is no need to sync
4816 	 * SPTEs.
4817 	 */
4818 	g_context->invlpg            = NULL;
4819 
4820 	/*
4821 	 * Note that arch.mmu->gva_to_gpa translates l2_gpa to l1_gpa using
4822 	 * L1's nested page tables (e.g. EPT12). The nested translation
4823 	 * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using
4824 	 * L2's page tables as the first level of translation and L1's
4825 	 * nested page tables as the second level of translation. Basically
4826 	 * the gva_to_gpa functions between mmu and nested_mmu are swapped.
4827 	 */
4828 	if (!is_paging(vcpu))
4829 		g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
4830 	else if (is_long_mode(vcpu))
4831 		g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4832 	else if (is_pae(vcpu))
4833 		g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4834 	else
4835 		g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
4836 
4837 	reset_guest_paging_metadata(vcpu, g_context);
4838 }
4839 
4840 void kvm_init_mmu(struct kvm_vcpu *vcpu)
4841 {
4842 	if (mmu_is_nested(vcpu))
4843 		init_kvm_nested_mmu(vcpu);
4844 	else if (tdp_enabled)
4845 		init_kvm_tdp_mmu(vcpu);
4846 	else
4847 		init_kvm_softmmu(vcpu);
4848 }
4849 EXPORT_SYMBOL_GPL(kvm_init_mmu);
4850 
4851 static union kvm_mmu_page_role
4852 kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu)
4853 {
4854 	struct kvm_mmu_role_regs regs = vcpu_to_role_regs(vcpu);
4855 	union kvm_mmu_role role;
4856 
4857 	if (tdp_enabled)
4858 		role = kvm_calc_tdp_mmu_root_page_role(vcpu, &regs, true);
4859 	else
4860 		role = kvm_calc_shadow_mmu_root_page_role(vcpu, &regs, true);
4861 
4862 	return role.base;
4863 }
4864 
4865 void kvm_mmu_after_set_cpuid(struct kvm_vcpu *vcpu)
4866 {
4867 	/*
4868 	 * Invalidate all MMU roles to force them to reinitialize as CPUID
4869 	 * information is factored into reserved bit calculations.
4870 	 */
4871 	vcpu->arch.root_mmu.mmu_role.ext.valid = 0;
4872 	vcpu->arch.guest_mmu.mmu_role.ext.valid = 0;
4873 	vcpu->arch.nested_mmu.mmu_role.ext.valid = 0;
4874 	kvm_mmu_reset_context(vcpu);
4875 
4876 	/*
4877 	 * KVM does not correctly handle changing guest CPUID after KVM_RUN, as
4878 	 * MAXPHYADDR, GBPAGES support, AMD reserved bit behavior, etc.. aren't
4879 	 * tracked in kvm_mmu_page_role.  As a result, KVM may miss guest page
4880 	 * faults due to reusing SPs/SPTEs.  Alert userspace, but otherwise
4881 	 * sweep the problem under the rug.
4882 	 *
4883 	 * KVM's horrific CPUID ABI makes the problem all but impossible to
4884 	 * solve, as correctly handling multiple vCPU models (with respect to
4885 	 * paging and physical address properties) in a single VM would require
4886 	 * tracking all relevant CPUID information in kvm_mmu_page_role.  That
4887 	 * is very undesirable as it would double the memory requirements for
4888 	 * gfn_track (see struct kvm_mmu_page_role comments), and in practice
4889 	 * no sane VMM mucks with the core vCPU model on the fly.
4890 	 */
4891 	if (vcpu->arch.last_vmentry_cpu != -1) {
4892 		pr_warn_ratelimited("KVM: KVM_SET_CPUID{,2} after KVM_RUN may cause guest instability\n");
4893 		pr_warn_ratelimited("KVM: KVM_SET_CPUID{,2} will fail after KVM_RUN starting with Linux 5.16\n");
4894 	}
4895 }
4896 
4897 void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
4898 {
4899 	kvm_mmu_unload(vcpu);
4900 	kvm_init_mmu(vcpu);
4901 }
4902 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
4903 
4904 int kvm_mmu_load(struct kvm_vcpu *vcpu)
4905 {
4906 	int r;
4907 
4908 	r = mmu_topup_memory_caches(vcpu, !vcpu->arch.mmu->direct_map);
4909 	if (r)
4910 		goto out;
4911 	r = mmu_alloc_special_roots(vcpu);
4912 	if (r)
4913 		goto out;
4914 	if (vcpu->arch.mmu->direct_map)
4915 		r = mmu_alloc_direct_roots(vcpu);
4916 	else
4917 		r = mmu_alloc_shadow_roots(vcpu);
4918 	if (r)
4919 		goto out;
4920 
4921 	kvm_mmu_sync_roots(vcpu);
4922 
4923 	kvm_mmu_load_pgd(vcpu);
4924 	static_call(kvm_x86_tlb_flush_current)(vcpu);
4925 out:
4926 	return r;
4927 }
4928 
4929 void kvm_mmu_unload(struct kvm_vcpu *vcpu)
4930 {
4931 	kvm_mmu_free_roots(vcpu, &vcpu->arch.root_mmu, KVM_MMU_ROOTS_ALL);
4932 	WARN_ON(VALID_PAGE(vcpu->arch.root_mmu.root_hpa));
4933 	kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
4934 	WARN_ON(VALID_PAGE(vcpu->arch.guest_mmu.root_hpa));
4935 }
4936 
4937 static bool need_remote_flush(u64 old, u64 new)
4938 {
4939 	if (!is_shadow_present_pte(old))
4940 		return false;
4941 	if (!is_shadow_present_pte(new))
4942 		return true;
4943 	if ((old ^ new) & PT64_BASE_ADDR_MASK)
4944 		return true;
4945 	old ^= shadow_nx_mask;
4946 	new ^= shadow_nx_mask;
4947 	return (old & ~new & PT64_PERM_MASK) != 0;
4948 }
4949 
4950 static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
4951 				    int *bytes)
4952 {
4953 	u64 gentry = 0;
4954 	int r;
4955 
4956 	/*
4957 	 * Assume that the pte write on a page table of the same type
4958 	 * as the current vcpu paging mode since we update the sptes only
4959 	 * when they have the same mode.
4960 	 */
4961 	if (is_pae(vcpu) && *bytes == 4) {
4962 		/* Handle a 32-bit guest writing two halves of a 64-bit gpte */
4963 		*gpa &= ~(gpa_t)7;
4964 		*bytes = 8;
4965 	}
4966 
4967 	if (*bytes == 4 || *bytes == 8) {
4968 		r = kvm_vcpu_read_guest_atomic(vcpu, *gpa, &gentry, *bytes);
4969 		if (r)
4970 			gentry = 0;
4971 	}
4972 
4973 	return gentry;
4974 }
4975 
4976 /*
4977  * If we're seeing too many writes to a page, it may no longer be a page table,
4978  * or we may be forking, in which case it is better to unmap the page.
4979  */
4980 static bool detect_write_flooding(struct kvm_mmu_page *sp)
4981 {
4982 	/*
4983 	 * Skip write-flooding detected for the sp whose level is 1, because
4984 	 * it can become unsync, then the guest page is not write-protected.
4985 	 */
4986 	if (sp->role.level == PG_LEVEL_4K)
4987 		return false;
4988 
4989 	atomic_inc(&sp->write_flooding_count);
4990 	return atomic_read(&sp->write_flooding_count) >= 3;
4991 }
4992 
4993 /*
4994  * Misaligned accesses are too much trouble to fix up; also, they usually
4995  * indicate a page is not used as a page table.
4996  */
4997 static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
4998 				    int bytes)
4999 {
5000 	unsigned offset, pte_size, misaligned;
5001 
5002 	pgprintk("misaligned: gpa %llx bytes %d role %x\n",
5003 		 gpa, bytes, sp->role.word);
5004 
5005 	offset = offset_in_page(gpa);
5006 	pte_size = sp->role.gpte_is_8_bytes ? 8 : 4;
5007 
5008 	/*
5009 	 * Sometimes, the OS only writes the last one bytes to update status
5010 	 * bits, for example, in linux, andb instruction is used in clear_bit().
5011 	 */
5012 	if (!(offset & (pte_size - 1)) && bytes == 1)
5013 		return false;
5014 
5015 	misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
5016 	misaligned |= bytes < 4;
5017 
5018 	return misaligned;
5019 }
5020 
5021 static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
5022 {
5023 	unsigned page_offset, quadrant;
5024 	u64 *spte;
5025 	int level;
5026 
5027 	page_offset = offset_in_page(gpa);
5028 	level = sp->role.level;
5029 	*nspte = 1;
5030 	if (!sp->role.gpte_is_8_bytes) {
5031 		page_offset <<= 1;	/* 32->64 */
5032 		/*
5033 		 * A 32-bit pde maps 4MB while the shadow pdes map
5034 		 * only 2MB.  So we need to double the offset again
5035 		 * and zap two pdes instead of one.
5036 		 */
5037 		if (level == PT32_ROOT_LEVEL) {
5038 			page_offset &= ~7; /* kill rounding error */
5039 			page_offset <<= 1;
5040 			*nspte = 2;
5041 		}
5042 		quadrant = page_offset >> PAGE_SHIFT;
5043 		page_offset &= ~PAGE_MASK;
5044 		if (quadrant != sp->role.quadrant)
5045 			return NULL;
5046 	}
5047 
5048 	spte = &sp->spt[page_offset / sizeof(*spte)];
5049 	return spte;
5050 }
5051 
5052 static void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
5053 			      const u8 *new, int bytes,
5054 			      struct kvm_page_track_notifier_node *node)
5055 {
5056 	gfn_t gfn = gpa >> PAGE_SHIFT;
5057 	struct kvm_mmu_page *sp;
5058 	LIST_HEAD(invalid_list);
5059 	u64 entry, gentry, *spte;
5060 	int npte;
5061 	bool remote_flush, local_flush;
5062 
5063 	/*
5064 	 * If we don't have indirect shadow pages, it means no page is
5065 	 * write-protected, so we can exit simply.
5066 	 */
5067 	if (!READ_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
5068 		return;
5069 
5070 	remote_flush = local_flush = false;
5071 
5072 	pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
5073 
5074 	/*
5075 	 * No need to care whether allocation memory is successful
5076 	 * or not since pte prefetch is skipped if it does not have
5077 	 * enough objects in the cache.
5078 	 */
5079 	mmu_topup_memory_caches(vcpu, true);
5080 
5081 	write_lock(&vcpu->kvm->mmu_lock);
5082 
5083 	gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, &bytes);
5084 
5085 	++vcpu->kvm->stat.mmu_pte_write;
5086 	kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
5087 
5088 	for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
5089 		if (detect_write_misaligned(sp, gpa, bytes) ||
5090 		      detect_write_flooding(sp)) {
5091 			kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
5092 			++vcpu->kvm->stat.mmu_flooded;
5093 			continue;
5094 		}
5095 
5096 		spte = get_written_sptes(sp, gpa, &npte);
5097 		if (!spte)
5098 			continue;
5099 
5100 		local_flush = true;
5101 		while (npte--) {
5102 			entry = *spte;
5103 			mmu_page_zap_pte(vcpu->kvm, sp, spte, NULL);
5104 			if (gentry && sp->role.level != PG_LEVEL_4K)
5105 				++vcpu->kvm->stat.mmu_pde_zapped;
5106 			if (need_remote_flush(entry, *spte))
5107 				remote_flush = true;
5108 			++spte;
5109 		}
5110 	}
5111 	kvm_mmu_flush_or_zap(vcpu, &invalid_list, remote_flush, local_flush);
5112 	kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
5113 	write_unlock(&vcpu->kvm->mmu_lock);
5114 }
5115 
5116 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 error_code,
5117 		       void *insn, int insn_len)
5118 {
5119 	int r, emulation_type = EMULTYPE_PF;
5120 	bool direct = vcpu->arch.mmu->direct_map;
5121 
5122 	if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa)))
5123 		return RET_PF_RETRY;
5124 
5125 	r = RET_PF_INVALID;
5126 	if (unlikely(error_code & PFERR_RSVD_MASK)) {
5127 		r = handle_mmio_page_fault(vcpu, cr2_or_gpa, direct);
5128 		if (r == RET_PF_EMULATE)
5129 			goto emulate;
5130 	}
5131 
5132 	if (r == RET_PF_INVALID) {
5133 		r = kvm_mmu_do_page_fault(vcpu, cr2_or_gpa,
5134 					  lower_32_bits(error_code), false);
5135 		if (WARN_ON_ONCE(r == RET_PF_INVALID))
5136 			return -EIO;
5137 	}
5138 
5139 	if (r < 0)
5140 		return r;
5141 	if (r != RET_PF_EMULATE)
5142 		return 1;
5143 
5144 	/*
5145 	 * Before emulating the instruction, check if the error code
5146 	 * was due to a RO violation while translating the guest page.
5147 	 * This can occur when using nested virtualization with nested
5148 	 * paging in both guests. If true, we simply unprotect the page
5149 	 * and resume the guest.
5150 	 */
5151 	if (vcpu->arch.mmu->direct_map &&
5152 	    (error_code & PFERR_NESTED_GUEST_PAGE) == PFERR_NESTED_GUEST_PAGE) {
5153 		kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(cr2_or_gpa));
5154 		return 1;
5155 	}
5156 
5157 	/*
5158 	 * vcpu->arch.mmu.page_fault returned RET_PF_EMULATE, but we can still
5159 	 * optimistically try to just unprotect the page and let the processor
5160 	 * re-execute the instruction that caused the page fault.  Do not allow
5161 	 * retrying MMIO emulation, as it's not only pointless but could also
5162 	 * cause us to enter an infinite loop because the processor will keep
5163 	 * faulting on the non-existent MMIO address.  Retrying an instruction
5164 	 * from a nested guest is also pointless and dangerous as we are only
5165 	 * explicitly shadowing L1's page tables, i.e. unprotecting something
5166 	 * for L1 isn't going to magically fix whatever issue cause L2 to fail.
5167 	 */
5168 	if (!mmio_info_in_cache(vcpu, cr2_or_gpa, direct) && !is_guest_mode(vcpu))
5169 		emulation_type |= EMULTYPE_ALLOW_RETRY_PF;
5170 emulate:
5171 	return x86_emulate_instruction(vcpu, cr2_or_gpa, emulation_type, insn,
5172 				       insn_len);
5173 }
5174 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
5175 
5176 void kvm_mmu_invalidate_gva(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
5177 			    gva_t gva, hpa_t root_hpa)
5178 {
5179 	int i;
5180 
5181 	/* It's actually a GPA for vcpu->arch.guest_mmu.  */
5182 	if (mmu != &vcpu->arch.guest_mmu) {
5183 		/* INVLPG on a non-canonical address is a NOP according to the SDM.  */
5184 		if (is_noncanonical_address(gva, vcpu))
5185 			return;
5186 
5187 		static_call(kvm_x86_tlb_flush_gva)(vcpu, gva);
5188 	}
5189 
5190 	if (!mmu->invlpg)
5191 		return;
5192 
5193 	if (root_hpa == INVALID_PAGE) {
5194 		mmu->invlpg(vcpu, gva, mmu->root_hpa);
5195 
5196 		/*
5197 		 * INVLPG is required to invalidate any global mappings for the VA,
5198 		 * irrespective of PCID. Since it would take us roughly similar amount
5199 		 * of work to determine whether any of the prev_root mappings of the VA
5200 		 * is marked global, or to just sync it blindly, so we might as well
5201 		 * just always sync it.
5202 		 *
5203 		 * Mappings not reachable via the current cr3 or the prev_roots will be
5204 		 * synced when switching to that cr3, so nothing needs to be done here
5205 		 * for them.
5206 		 */
5207 		for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5208 			if (VALID_PAGE(mmu->prev_roots[i].hpa))
5209 				mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
5210 	} else {
5211 		mmu->invlpg(vcpu, gva, root_hpa);
5212 	}
5213 }
5214 
5215 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
5216 {
5217 	kvm_mmu_invalidate_gva(vcpu, vcpu->arch.mmu, gva, INVALID_PAGE);
5218 	++vcpu->stat.invlpg;
5219 }
5220 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
5221 
5222 
5223 void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid)
5224 {
5225 	struct kvm_mmu *mmu = vcpu->arch.mmu;
5226 	bool tlb_flush = false;
5227 	uint i;
5228 
5229 	if (pcid == kvm_get_active_pcid(vcpu)) {
5230 		mmu->invlpg(vcpu, gva, mmu->root_hpa);
5231 		tlb_flush = true;
5232 	}
5233 
5234 	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
5235 		if (VALID_PAGE(mmu->prev_roots[i].hpa) &&
5236 		    pcid == kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd)) {
5237 			mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
5238 			tlb_flush = true;
5239 		}
5240 	}
5241 
5242 	if (tlb_flush)
5243 		static_call(kvm_x86_tlb_flush_gva)(vcpu, gva);
5244 
5245 	++vcpu->stat.invlpg;
5246 
5247 	/*
5248 	 * Mappings not reachable via the current cr3 or the prev_roots will be
5249 	 * synced when switching to that cr3, so nothing needs to be done here
5250 	 * for them.
5251 	 */
5252 }
5253 
5254 void kvm_configure_mmu(bool enable_tdp, int tdp_max_root_level,
5255 		       int tdp_huge_page_level)
5256 {
5257 	tdp_enabled = enable_tdp;
5258 	max_tdp_level = tdp_max_root_level;
5259 
5260 	/*
5261 	 * max_huge_page_level reflects KVM's MMU capabilities irrespective
5262 	 * of kernel support, e.g. KVM may be capable of using 1GB pages when
5263 	 * the kernel is not.  But, KVM never creates a page size greater than
5264 	 * what is used by the kernel for any given HVA, i.e. the kernel's
5265 	 * capabilities are ultimately consulted by kvm_mmu_hugepage_adjust().
5266 	 */
5267 	if (tdp_enabled)
5268 		max_huge_page_level = tdp_huge_page_level;
5269 	else if (boot_cpu_has(X86_FEATURE_GBPAGES))
5270 		max_huge_page_level = PG_LEVEL_1G;
5271 	else
5272 		max_huge_page_level = PG_LEVEL_2M;
5273 }
5274 EXPORT_SYMBOL_GPL(kvm_configure_mmu);
5275 
5276 /* The return value indicates if tlb flush on all vcpus is needed. */
5277 typedef bool (*slot_level_handler) (struct kvm *kvm, struct kvm_rmap_head *rmap_head,
5278 				    struct kvm_memory_slot *slot);
5279 
5280 /* The caller should hold mmu-lock before calling this function. */
5281 static __always_inline bool
5282 slot_handle_level_range(struct kvm *kvm, struct kvm_memory_slot *memslot,
5283 			slot_level_handler fn, int start_level, int end_level,
5284 			gfn_t start_gfn, gfn_t end_gfn, bool flush_on_yield,
5285 			bool flush)
5286 {
5287 	struct slot_rmap_walk_iterator iterator;
5288 
5289 	for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn,
5290 			end_gfn, &iterator) {
5291 		if (iterator.rmap)
5292 			flush |= fn(kvm, iterator.rmap, memslot);
5293 
5294 		if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) {
5295 			if (flush && flush_on_yield) {
5296 				kvm_flush_remote_tlbs_with_address(kvm,
5297 						start_gfn,
5298 						iterator.gfn - start_gfn + 1);
5299 				flush = false;
5300 			}
5301 			cond_resched_rwlock_write(&kvm->mmu_lock);
5302 		}
5303 	}
5304 
5305 	return flush;
5306 }
5307 
5308 static __always_inline bool
5309 slot_handle_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5310 		  slot_level_handler fn, int start_level, int end_level,
5311 		  bool flush_on_yield)
5312 {
5313 	return slot_handle_level_range(kvm, memslot, fn, start_level,
5314 			end_level, memslot->base_gfn,
5315 			memslot->base_gfn + memslot->npages - 1,
5316 			flush_on_yield, false);
5317 }
5318 
5319 static __always_inline bool
5320 slot_handle_leaf(struct kvm *kvm, struct kvm_memory_slot *memslot,
5321 		 slot_level_handler fn, bool flush_on_yield)
5322 {
5323 	return slot_handle_level(kvm, memslot, fn, PG_LEVEL_4K,
5324 				 PG_LEVEL_4K, flush_on_yield);
5325 }
5326 
5327 static void free_mmu_pages(struct kvm_mmu *mmu)
5328 {
5329 	if (!tdp_enabled && mmu->pae_root)
5330 		set_memory_encrypted((unsigned long)mmu->pae_root, 1);
5331 	free_page((unsigned long)mmu->pae_root);
5332 	free_page((unsigned long)mmu->pml4_root);
5333 }
5334 
5335 static int __kvm_mmu_create(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
5336 {
5337 	struct page *page;
5338 	int i;
5339 
5340 	mmu->root_hpa = INVALID_PAGE;
5341 	mmu->root_pgd = 0;
5342 	mmu->translate_gpa = translate_gpa;
5343 	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5344 		mmu->prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
5345 
5346 	/*
5347 	 * When using PAE paging, the four PDPTEs are treated as 'root' pages,
5348 	 * while the PDP table is a per-vCPU construct that's allocated at MMU
5349 	 * creation.  When emulating 32-bit mode, cr3 is only 32 bits even on
5350 	 * x86_64.  Therefore we need to allocate the PDP table in the first
5351 	 * 4GB of memory, which happens to fit the DMA32 zone.  TDP paging
5352 	 * generally doesn't use PAE paging and can skip allocating the PDP
5353 	 * table.  The main exception, handled here, is SVM's 32-bit NPT.  The
5354 	 * other exception is for shadowing L1's 32-bit or PAE NPT on 64-bit
5355 	 * KVM; that horror is handled on-demand by mmu_alloc_shadow_roots().
5356 	 */
5357 	if (tdp_enabled && kvm_mmu_get_tdp_level(vcpu) > PT32E_ROOT_LEVEL)
5358 		return 0;
5359 
5360 	page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_DMA32);
5361 	if (!page)
5362 		return -ENOMEM;
5363 
5364 	mmu->pae_root = page_address(page);
5365 
5366 	/*
5367 	 * CR3 is only 32 bits when PAE paging is used, thus it's impossible to
5368 	 * get the CPU to treat the PDPTEs as encrypted.  Decrypt the page so
5369 	 * that KVM's writes and the CPU's reads get along.  Note, this is
5370 	 * only necessary when using shadow paging, as 64-bit NPT can get at
5371 	 * the C-bit even when shadowing 32-bit NPT, and SME isn't supported
5372 	 * by 32-bit kernels (when KVM itself uses 32-bit NPT).
5373 	 */
5374 	if (!tdp_enabled)
5375 		set_memory_decrypted((unsigned long)mmu->pae_root, 1);
5376 	else
5377 		WARN_ON_ONCE(shadow_me_mask);
5378 
5379 	for (i = 0; i < 4; ++i)
5380 		mmu->pae_root[i] = INVALID_PAE_ROOT;
5381 
5382 	return 0;
5383 }
5384 
5385 int kvm_mmu_create(struct kvm_vcpu *vcpu)
5386 {
5387 	int ret;
5388 
5389 	vcpu->arch.mmu_pte_list_desc_cache.kmem_cache = pte_list_desc_cache;
5390 	vcpu->arch.mmu_pte_list_desc_cache.gfp_zero = __GFP_ZERO;
5391 
5392 	vcpu->arch.mmu_page_header_cache.kmem_cache = mmu_page_header_cache;
5393 	vcpu->arch.mmu_page_header_cache.gfp_zero = __GFP_ZERO;
5394 
5395 	vcpu->arch.mmu_shadow_page_cache.gfp_zero = __GFP_ZERO;
5396 
5397 	vcpu->arch.mmu = &vcpu->arch.root_mmu;
5398 	vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
5399 
5400 	vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
5401 
5402 	ret = __kvm_mmu_create(vcpu, &vcpu->arch.guest_mmu);
5403 	if (ret)
5404 		return ret;
5405 
5406 	ret = __kvm_mmu_create(vcpu, &vcpu->arch.root_mmu);
5407 	if (ret)
5408 		goto fail_allocate_root;
5409 
5410 	return ret;
5411  fail_allocate_root:
5412 	free_mmu_pages(&vcpu->arch.guest_mmu);
5413 	return ret;
5414 }
5415 
5416 #define BATCH_ZAP_PAGES	10
5417 static void kvm_zap_obsolete_pages(struct kvm *kvm)
5418 {
5419 	struct kvm_mmu_page *sp, *node;
5420 	int nr_zapped, batch = 0;
5421 
5422 restart:
5423 	list_for_each_entry_safe_reverse(sp, node,
5424 	      &kvm->arch.active_mmu_pages, link) {
5425 		/*
5426 		 * No obsolete valid page exists before a newly created page
5427 		 * since active_mmu_pages is a FIFO list.
5428 		 */
5429 		if (!is_obsolete_sp(kvm, sp))
5430 			break;
5431 
5432 		/*
5433 		 * Invalid pages should never land back on the list of active
5434 		 * pages.  Skip the bogus page, otherwise we'll get stuck in an
5435 		 * infinite loop if the page gets put back on the list (again).
5436 		 */
5437 		if (WARN_ON(sp->role.invalid))
5438 			continue;
5439 
5440 		/*
5441 		 * No need to flush the TLB since we're only zapping shadow
5442 		 * pages with an obsolete generation number and all vCPUS have
5443 		 * loaded a new root, i.e. the shadow pages being zapped cannot
5444 		 * be in active use by the guest.
5445 		 */
5446 		if (batch >= BATCH_ZAP_PAGES &&
5447 		    cond_resched_rwlock_write(&kvm->mmu_lock)) {
5448 			batch = 0;
5449 			goto restart;
5450 		}
5451 
5452 		if (__kvm_mmu_prepare_zap_page(kvm, sp,
5453 				&kvm->arch.zapped_obsolete_pages, &nr_zapped)) {
5454 			batch += nr_zapped;
5455 			goto restart;
5456 		}
5457 	}
5458 
5459 	/*
5460 	 * Trigger a remote TLB flush before freeing the page tables to ensure
5461 	 * KVM is not in the middle of a lockless shadow page table walk, which
5462 	 * may reference the pages.
5463 	 */
5464 	kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
5465 }
5466 
5467 /*
5468  * Fast invalidate all shadow pages and use lock-break technique
5469  * to zap obsolete pages.
5470  *
5471  * It's required when memslot is being deleted or VM is being
5472  * destroyed, in these cases, we should ensure that KVM MMU does
5473  * not use any resource of the being-deleted slot or all slots
5474  * after calling the function.
5475  */
5476 static void kvm_mmu_zap_all_fast(struct kvm *kvm)
5477 {
5478 	lockdep_assert_held(&kvm->slots_lock);
5479 
5480 	write_lock(&kvm->mmu_lock);
5481 	trace_kvm_mmu_zap_all_fast(kvm);
5482 
5483 	/*
5484 	 * Toggle mmu_valid_gen between '0' and '1'.  Because slots_lock is
5485 	 * held for the entire duration of zapping obsolete pages, it's
5486 	 * impossible for there to be multiple invalid generations associated
5487 	 * with *valid* shadow pages at any given time, i.e. there is exactly
5488 	 * one valid generation and (at most) one invalid generation.
5489 	 */
5490 	kvm->arch.mmu_valid_gen = kvm->arch.mmu_valid_gen ? 0 : 1;
5491 
5492 	/* In order to ensure all threads see this change when
5493 	 * handling the MMU reload signal, this must happen in the
5494 	 * same critical section as kvm_reload_remote_mmus, and
5495 	 * before kvm_zap_obsolete_pages as kvm_zap_obsolete_pages
5496 	 * could drop the MMU lock and yield.
5497 	 */
5498 	if (is_tdp_mmu_enabled(kvm))
5499 		kvm_tdp_mmu_invalidate_all_roots(kvm);
5500 
5501 	/*
5502 	 * Notify all vcpus to reload its shadow page table and flush TLB.
5503 	 * Then all vcpus will switch to new shadow page table with the new
5504 	 * mmu_valid_gen.
5505 	 *
5506 	 * Note: we need to do this under the protection of mmu_lock,
5507 	 * otherwise, vcpu would purge shadow page but miss tlb flush.
5508 	 */
5509 	kvm_reload_remote_mmus(kvm);
5510 
5511 	kvm_zap_obsolete_pages(kvm);
5512 
5513 	write_unlock(&kvm->mmu_lock);
5514 
5515 	if (is_tdp_mmu_enabled(kvm)) {
5516 		read_lock(&kvm->mmu_lock);
5517 		kvm_tdp_mmu_zap_invalidated_roots(kvm);
5518 		read_unlock(&kvm->mmu_lock);
5519 	}
5520 }
5521 
5522 static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
5523 {
5524 	return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
5525 }
5526 
5527 static void kvm_mmu_invalidate_zap_pages_in_memslot(struct kvm *kvm,
5528 			struct kvm_memory_slot *slot,
5529 			struct kvm_page_track_notifier_node *node)
5530 {
5531 	kvm_mmu_zap_all_fast(kvm);
5532 }
5533 
5534 void kvm_mmu_init_vm(struct kvm *kvm)
5535 {
5536 	struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5537 
5538 	if (!kvm_mmu_init_tdp_mmu(kvm))
5539 		/*
5540 		 * No smp_load/store wrappers needed here as we are in
5541 		 * VM init and there cannot be any memslots / other threads
5542 		 * accessing this struct kvm yet.
5543 		 */
5544 		kvm->arch.memslots_have_rmaps = true;
5545 
5546 	node->track_write = kvm_mmu_pte_write;
5547 	node->track_flush_slot = kvm_mmu_invalidate_zap_pages_in_memslot;
5548 	kvm_page_track_register_notifier(kvm, node);
5549 }
5550 
5551 void kvm_mmu_uninit_vm(struct kvm *kvm)
5552 {
5553 	struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5554 
5555 	kvm_page_track_unregister_notifier(kvm, node);
5556 
5557 	kvm_mmu_uninit_tdp_mmu(kvm);
5558 }
5559 
5560 void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
5561 {
5562 	struct kvm_memslots *slots;
5563 	struct kvm_memory_slot *memslot;
5564 	int i;
5565 	bool flush = false;
5566 
5567 	if (kvm_memslots_have_rmaps(kvm)) {
5568 		write_lock(&kvm->mmu_lock);
5569 		for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
5570 			slots = __kvm_memslots(kvm, i);
5571 			kvm_for_each_memslot(memslot, slots) {
5572 				gfn_t start, end;
5573 
5574 				start = max(gfn_start, memslot->base_gfn);
5575 				end = min(gfn_end, memslot->base_gfn + memslot->npages);
5576 				if (start >= end)
5577 					continue;
5578 
5579 				flush = slot_handle_level_range(kvm, memslot,
5580 						kvm_zap_rmapp, PG_LEVEL_4K,
5581 						KVM_MAX_HUGEPAGE_LEVEL, start,
5582 						end - 1, true, flush);
5583 			}
5584 		}
5585 		if (flush)
5586 			kvm_flush_remote_tlbs_with_address(kvm, gfn_start, gfn_end);
5587 		write_unlock(&kvm->mmu_lock);
5588 	}
5589 
5590 	if (is_tdp_mmu_enabled(kvm)) {
5591 		flush = false;
5592 
5593 		read_lock(&kvm->mmu_lock);
5594 		for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
5595 			flush = kvm_tdp_mmu_zap_gfn_range(kvm, i, gfn_start,
5596 							  gfn_end, flush, true);
5597 		if (flush)
5598 			kvm_flush_remote_tlbs_with_address(kvm, gfn_start,
5599 							   gfn_end);
5600 
5601 		read_unlock(&kvm->mmu_lock);
5602 	}
5603 }
5604 
5605 static bool slot_rmap_write_protect(struct kvm *kvm,
5606 				    struct kvm_rmap_head *rmap_head,
5607 				    struct kvm_memory_slot *slot)
5608 {
5609 	return __rmap_write_protect(kvm, rmap_head, false);
5610 }
5611 
5612 void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
5613 				      struct kvm_memory_slot *memslot,
5614 				      int start_level)
5615 {
5616 	bool flush = false;
5617 
5618 	if (kvm_memslots_have_rmaps(kvm)) {
5619 		write_lock(&kvm->mmu_lock);
5620 		flush = slot_handle_level(kvm, memslot, slot_rmap_write_protect,
5621 					  start_level, KVM_MAX_HUGEPAGE_LEVEL,
5622 					  false);
5623 		write_unlock(&kvm->mmu_lock);
5624 	}
5625 
5626 	if (is_tdp_mmu_enabled(kvm)) {
5627 		read_lock(&kvm->mmu_lock);
5628 		flush |= kvm_tdp_mmu_wrprot_slot(kvm, memslot, start_level);
5629 		read_unlock(&kvm->mmu_lock);
5630 	}
5631 
5632 	/*
5633 	 * We can flush all the TLBs out of the mmu lock without TLB
5634 	 * corruption since we just change the spte from writable to
5635 	 * readonly so that we only need to care the case of changing
5636 	 * spte from present to present (changing the spte from present
5637 	 * to nonpresent will flush all the TLBs immediately), in other
5638 	 * words, the only case we care is mmu_spte_update() where we
5639 	 * have checked Host-writable | MMU-writable instead of
5640 	 * PT_WRITABLE_MASK, that means it does not depend on PT_WRITABLE_MASK
5641 	 * anymore.
5642 	 */
5643 	if (flush)
5644 		kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
5645 }
5646 
5647 static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
5648 					 struct kvm_rmap_head *rmap_head,
5649 					 struct kvm_memory_slot *slot)
5650 {
5651 	u64 *sptep;
5652 	struct rmap_iterator iter;
5653 	int need_tlb_flush = 0;
5654 	kvm_pfn_t pfn;
5655 	struct kvm_mmu_page *sp;
5656 
5657 restart:
5658 	for_each_rmap_spte(rmap_head, &iter, sptep) {
5659 		sp = sptep_to_sp(sptep);
5660 		pfn = spte_to_pfn(*sptep);
5661 
5662 		/*
5663 		 * We cannot do huge page mapping for indirect shadow pages,
5664 		 * which are found on the last rmap (level = 1) when not using
5665 		 * tdp; such shadow pages are synced with the page table in
5666 		 * the guest, and the guest page table is using 4K page size
5667 		 * mapping if the indirect sp has level = 1.
5668 		 */
5669 		if (sp->role.direct && !kvm_is_reserved_pfn(pfn) &&
5670 		    sp->role.level < kvm_mmu_max_mapping_level(kvm, slot, sp->gfn,
5671 							       pfn, PG_LEVEL_NUM)) {
5672 			pte_list_remove(rmap_head, sptep);
5673 
5674 			if (kvm_available_flush_tlb_with_range())
5675 				kvm_flush_remote_tlbs_with_address(kvm, sp->gfn,
5676 					KVM_PAGES_PER_HPAGE(sp->role.level));
5677 			else
5678 				need_tlb_flush = 1;
5679 
5680 			goto restart;
5681 		}
5682 	}
5683 
5684 	return need_tlb_flush;
5685 }
5686 
5687 void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
5688 				   const struct kvm_memory_slot *memslot)
5689 {
5690 	/* FIXME: const-ify all uses of struct kvm_memory_slot.  */
5691 	struct kvm_memory_slot *slot = (struct kvm_memory_slot *)memslot;
5692 	bool flush = false;
5693 
5694 	if (kvm_memslots_have_rmaps(kvm)) {
5695 		write_lock(&kvm->mmu_lock);
5696 		flush = slot_handle_leaf(kvm, slot, kvm_mmu_zap_collapsible_spte, true);
5697 		if (flush)
5698 			kvm_arch_flush_remote_tlbs_memslot(kvm, slot);
5699 		write_unlock(&kvm->mmu_lock);
5700 	}
5701 
5702 	if (is_tdp_mmu_enabled(kvm)) {
5703 		read_lock(&kvm->mmu_lock);
5704 		flush = kvm_tdp_mmu_zap_collapsible_sptes(kvm, slot, flush);
5705 		if (flush)
5706 			kvm_arch_flush_remote_tlbs_memslot(kvm, slot);
5707 		read_unlock(&kvm->mmu_lock);
5708 	}
5709 }
5710 
5711 void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
5712 					const struct kvm_memory_slot *memslot)
5713 {
5714 	/*
5715 	 * All current use cases for flushing the TLBs for a specific memslot
5716 	 * related to dirty logging, and many do the TLB flush out of mmu_lock.
5717 	 * The interaction between the various operations on memslot must be
5718 	 * serialized by slots_locks to ensure the TLB flush from one operation
5719 	 * is observed by any other operation on the same memslot.
5720 	 */
5721 	lockdep_assert_held(&kvm->slots_lock);
5722 	kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn,
5723 					   memslot->npages);
5724 }
5725 
5726 void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
5727 				   struct kvm_memory_slot *memslot)
5728 {
5729 	bool flush = false;
5730 
5731 	if (kvm_memslots_have_rmaps(kvm)) {
5732 		write_lock(&kvm->mmu_lock);
5733 		flush = slot_handle_leaf(kvm, memslot, __rmap_clear_dirty,
5734 					 false);
5735 		write_unlock(&kvm->mmu_lock);
5736 	}
5737 
5738 	if (is_tdp_mmu_enabled(kvm)) {
5739 		read_lock(&kvm->mmu_lock);
5740 		flush |= kvm_tdp_mmu_clear_dirty_slot(kvm, memslot);
5741 		read_unlock(&kvm->mmu_lock);
5742 	}
5743 
5744 	/*
5745 	 * It's also safe to flush TLBs out of mmu lock here as currently this
5746 	 * function is only used for dirty logging, in which case flushing TLB
5747 	 * out of mmu lock also guarantees no dirty pages will be lost in
5748 	 * dirty_bitmap.
5749 	 */
5750 	if (flush)
5751 		kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
5752 }
5753 
5754 void kvm_mmu_zap_all(struct kvm *kvm)
5755 {
5756 	struct kvm_mmu_page *sp, *node;
5757 	LIST_HEAD(invalid_list);
5758 	int ign;
5759 
5760 	write_lock(&kvm->mmu_lock);
5761 restart:
5762 	list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link) {
5763 		if (WARN_ON(sp->role.invalid))
5764 			continue;
5765 		if (__kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list, &ign))
5766 			goto restart;
5767 		if (cond_resched_rwlock_write(&kvm->mmu_lock))
5768 			goto restart;
5769 	}
5770 
5771 	kvm_mmu_commit_zap_page(kvm, &invalid_list);
5772 
5773 	if (is_tdp_mmu_enabled(kvm))
5774 		kvm_tdp_mmu_zap_all(kvm);
5775 
5776 	write_unlock(&kvm->mmu_lock);
5777 }
5778 
5779 void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen)
5780 {
5781 	WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
5782 
5783 	gen &= MMIO_SPTE_GEN_MASK;
5784 
5785 	/*
5786 	 * Generation numbers are incremented in multiples of the number of
5787 	 * address spaces in order to provide unique generations across all
5788 	 * address spaces.  Strip what is effectively the address space
5789 	 * modifier prior to checking for a wrap of the MMIO generation so
5790 	 * that a wrap in any address space is detected.
5791 	 */
5792 	gen &= ~((u64)KVM_ADDRESS_SPACE_NUM - 1);
5793 
5794 	/*
5795 	 * The very rare case: if the MMIO generation number has wrapped,
5796 	 * zap all shadow pages.
5797 	 */
5798 	if (unlikely(gen == 0)) {
5799 		kvm_debug_ratelimited("kvm: zapping shadow pages for mmio generation wraparound\n");
5800 		kvm_mmu_zap_all_fast(kvm);
5801 	}
5802 }
5803 
5804 static unsigned long
5805 mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
5806 {
5807 	struct kvm *kvm;
5808 	int nr_to_scan = sc->nr_to_scan;
5809 	unsigned long freed = 0;
5810 
5811 	mutex_lock(&kvm_lock);
5812 
5813 	list_for_each_entry(kvm, &vm_list, vm_list) {
5814 		int idx;
5815 		LIST_HEAD(invalid_list);
5816 
5817 		/*
5818 		 * Never scan more than sc->nr_to_scan VM instances.
5819 		 * Will not hit this condition practically since we do not try
5820 		 * to shrink more than one VM and it is very unlikely to see
5821 		 * !n_used_mmu_pages so many times.
5822 		 */
5823 		if (!nr_to_scan--)
5824 			break;
5825 		/*
5826 		 * n_used_mmu_pages is accessed without holding kvm->mmu_lock
5827 		 * here. We may skip a VM instance errorneosly, but we do not
5828 		 * want to shrink a VM that only started to populate its MMU
5829 		 * anyway.
5830 		 */
5831 		if (!kvm->arch.n_used_mmu_pages &&
5832 		    !kvm_has_zapped_obsolete_pages(kvm))
5833 			continue;
5834 
5835 		idx = srcu_read_lock(&kvm->srcu);
5836 		write_lock(&kvm->mmu_lock);
5837 
5838 		if (kvm_has_zapped_obsolete_pages(kvm)) {
5839 			kvm_mmu_commit_zap_page(kvm,
5840 			      &kvm->arch.zapped_obsolete_pages);
5841 			goto unlock;
5842 		}
5843 
5844 		freed = kvm_mmu_zap_oldest_mmu_pages(kvm, sc->nr_to_scan);
5845 
5846 unlock:
5847 		write_unlock(&kvm->mmu_lock);
5848 		srcu_read_unlock(&kvm->srcu, idx);
5849 
5850 		/*
5851 		 * unfair on small ones
5852 		 * per-vm shrinkers cry out
5853 		 * sadness comes quickly
5854 		 */
5855 		list_move_tail(&kvm->vm_list, &vm_list);
5856 		break;
5857 	}
5858 
5859 	mutex_unlock(&kvm_lock);
5860 	return freed;
5861 }
5862 
5863 static unsigned long
5864 mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
5865 {
5866 	return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
5867 }
5868 
5869 static struct shrinker mmu_shrinker = {
5870 	.count_objects = mmu_shrink_count,
5871 	.scan_objects = mmu_shrink_scan,
5872 	.seeks = DEFAULT_SEEKS * 10,
5873 };
5874 
5875 static void mmu_destroy_caches(void)
5876 {
5877 	kmem_cache_destroy(pte_list_desc_cache);
5878 	kmem_cache_destroy(mmu_page_header_cache);
5879 }
5880 
5881 static bool get_nx_auto_mode(void)
5882 {
5883 	/* Return true when CPU has the bug, and mitigations are ON */
5884 	return boot_cpu_has_bug(X86_BUG_ITLB_MULTIHIT) && !cpu_mitigations_off();
5885 }
5886 
5887 static void __set_nx_huge_pages(bool val)
5888 {
5889 	nx_huge_pages = itlb_multihit_kvm_mitigation = val;
5890 }
5891 
5892 static int set_nx_huge_pages(const char *val, const struct kernel_param *kp)
5893 {
5894 	bool old_val = nx_huge_pages;
5895 	bool new_val;
5896 
5897 	/* In "auto" mode deploy workaround only if CPU has the bug. */
5898 	if (sysfs_streq(val, "off"))
5899 		new_val = 0;
5900 	else if (sysfs_streq(val, "force"))
5901 		new_val = 1;
5902 	else if (sysfs_streq(val, "auto"))
5903 		new_val = get_nx_auto_mode();
5904 	else if (strtobool(val, &new_val) < 0)
5905 		return -EINVAL;
5906 
5907 	__set_nx_huge_pages(new_val);
5908 
5909 	if (new_val != old_val) {
5910 		struct kvm *kvm;
5911 
5912 		mutex_lock(&kvm_lock);
5913 
5914 		list_for_each_entry(kvm, &vm_list, vm_list) {
5915 			mutex_lock(&kvm->slots_lock);
5916 			kvm_mmu_zap_all_fast(kvm);
5917 			mutex_unlock(&kvm->slots_lock);
5918 
5919 			wake_up_process(kvm->arch.nx_lpage_recovery_thread);
5920 		}
5921 		mutex_unlock(&kvm_lock);
5922 	}
5923 
5924 	return 0;
5925 }
5926 
5927 int kvm_mmu_module_init(void)
5928 {
5929 	int ret = -ENOMEM;
5930 
5931 	if (nx_huge_pages == -1)
5932 		__set_nx_huge_pages(get_nx_auto_mode());
5933 
5934 	/*
5935 	 * MMU roles use union aliasing which is, generally speaking, an
5936 	 * undefined behavior. However, we supposedly know how compilers behave
5937 	 * and the current status quo is unlikely to change. Guardians below are
5938 	 * supposed to let us know if the assumption becomes false.
5939 	 */
5940 	BUILD_BUG_ON(sizeof(union kvm_mmu_page_role) != sizeof(u32));
5941 	BUILD_BUG_ON(sizeof(union kvm_mmu_extended_role) != sizeof(u32));
5942 	BUILD_BUG_ON(sizeof(union kvm_mmu_role) != sizeof(u64));
5943 
5944 	kvm_mmu_reset_all_pte_masks();
5945 
5946 	pte_list_desc_cache = kmem_cache_create("pte_list_desc",
5947 					    sizeof(struct pte_list_desc),
5948 					    0, SLAB_ACCOUNT, NULL);
5949 	if (!pte_list_desc_cache)
5950 		goto out;
5951 
5952 	mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
5953 						  sizeof(struct kvm_mmu_page),
5954 						  0, SLAB_ACCOUNT, NULL);
5955 	if (!mmu_page_header_cache)
5956 		goto out;
5957 
5958 	if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
5959 		goto out;
5960 
5961 	ret = register_shrinker(&mmu_shrinker);
5962 	if (ret)
5963 		goto out;
5964 
5965 	return 0;
5966 
5967 out:
5968 	mmu_destroy_caches();
5969 	return ret;
5970 }
5971 
5972 /*
5973  * Calculate mmu pages needed for kvm.
5974  */
5975 unsigned long kvm_mmu_calculate_default_mmu_pages(struct kvm *kvm)
5976 {
5977 	unsigned long nr_mmu_pages;
5978 	unsigned long nr_pages = 0;
5979 	struct kvm_memslots *slots;
5980 	struct kvm_memory_slot *memslot;
5981 	int i;
5982 
5983 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
5984 		slots = __kvm_memslots(kvm, i);
5985 
5986 		kvm_for_each_memslot(memslot, slots)
5987 			nr_pages += memslot->npages;
5988 	}
5989 
5990 	nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
5991 	nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES);
5992 
5993 	return nr_mmu_pages;
5994 }
5995 
5996 void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
5997 {
5998 	kvm_mmu_unload(vcpu);
5999 	free_mmu_pages(&vcpu->arch.root_mmu);
6000 	free_mmu_pages(&vcpu->arch.guest_mmu);
6001 	mmu_free_memory_caches(vcpu);
6002 }
6003 
6004 void kvm_mmu_module_exit(void)
6005 {
6006 	mmu_destroy_caches();
6007 	percpu_counter_destroy(&kvm_total_used_mmu_pages);
6008 	unregister_shrinker(&mmu_shrinker);
6009 	mmu_audit_disable();
6010 }
6011 
6012 static int set_nx_huge_pages_recovery_ratio(const char *val, const struct kernel_param *kp)
6013 {
6014 	unsigned int old_val;
6015 	int err;
6016 
6017 	old_val = nx_huge_pages_recovery_ratio;
6018 	err = param_set_uint(val, kp);
6019 	if (err)
6020 		return err;
6021 
6022 	if (READ_ONCE(nx_huge_pages) &&
6023 	    !old_val && nx_huge_pages_recovery_ratio) {
6024 		struct kvm *kvm;
6025 
6026 		mutex_lock(&kvm_lock);
6027 
6028 		list_for_each_entry(kvm, &vm_list, vm_list)
6029 			wake_up_process(kvm->arch.nx_lpage_recovery_thread);
6030 
6031 		mutex_unlock(&kvm_lock);
6032 	}
6033 
6034 	return err;
6035 }
6036 
6037 static void kvm_recover_nx_lpages(struct kvm *kvm)
6038 {
6039 	unsigned long nx_lpage_splits = kvm->stat.nx_lpage_splits;
6040 	int rcu_idx;
6041 	struct kvm_mmu_page *sp;
6042 	unsigned int ratio;
6043 	LIST_HEAD(invalid_list);
6044 	bool flush = false;
6045 	ulong to_zap;
6046 
6047 	rcu_idx = srcu_read_lock(&kvm->srcu);
6048 	write_lock(&kvm->mmu_lock);
6049 
6050 	ratio = READ_ONCE(nx_huge_pages_recovery_ratio);
6051 	to_zap = ratio ? DIV_ROUND_UP(nx_lpage_splits, ratio) : 0;
6052 	for ( ; to_zap; --to_zap) {
6053 		if (list_empty(&kvm->arch.lpage_disallowed_mmu_pages))
6054 			break;
6055 
6056 		/*
6057 		 * We use a separate list instead of just using active_mmu_pages
6058 		 * because the number of lpage_disallowed pages is expected to
6059 		 * be relatively small compared to the total.
6060 		 */
6061 		sp = list_first_entry(&kvm->arch.lpage_disallowed_mmu_pages,
6062 				      struct kvm_mmu_page,
6063 				      lpage_disallowed_link);
6064 		WARN_ON_ONCE(!sp->lpage_disallowed);
6065 		if (is_tdp_mmu_page(sp)) {
6066 			flush |= kvm_tdp_mmu_zap_sp(kvm, sp);
6067 		} else {
6068 			kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
6069 			WARN_ON_ONCE(sp->lpage_disallowed);
6070 		}
6071 
6072 		if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) {
6073 			kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush);
6074 			cond_resched_rwlock_write(&kvm->mmu_lock);
6075 			flush = false;
6076 		}
6077 	}
6078 	kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush);
6079 
6080 	write_unlock(&kvm->mmu_lock);
6081 	srcu_read_unlock(&kvm->srcu, rcu_idx);
6082 }
6083 
6084 static long get_nx_lpage_recovery_timeout(u64 start_time)
6085 {
6086 	return READ_ONCE(nx_huge_pages) && READ_ONCE(nx_huge_pages_recovery_ratio)
6087 		? start_time + 60 * HZ - get_jiffies_64()
6088 		: MAX_SCHEDULE_TIMEOUT;
6089 }
6090 
6091 static int kvm_nx_lpage_recovery_worker(struct kvm *kvm, uintptr_t data)
6092 {
6093 	u64 start_time;
6094 	long remaining_time;
6095 
6096 	while (true) {
6097 		start_time = get_jiffies_64();
6098 		remaining_time = get_nx_lpage_recovery_timeout(start_time);
6099 
6100 		set_current_state(TASK_INTERRUPTIBLE);
6101 		while (!kthread_should_stop() && remaining_time > 0) {
6102 			schedule_timeout(remaining_time);
6103 			remaining_time = get_nx_lpage_recovery_timeout(start_time);
6104 			set_current_state(TASK_INTERRUPTIBLE);
6105 		}
6106 
6107 		set_current_state(TASK_RUNNING);
6108 
6109 		if (kthread_should_stop())
6110 			return 0;
6111 
6112 		kvm_recover_nx_lpages(kvm);
6113 	}
6114 }
6115 
6116 int kvm_mmu_post_init_vm(struct kvm *kvm)
6117 {
6118 	int err;
6119 
6120 	err = kvm_vm_create_worker_thread(kvm, kvm_nx_lpage_recovery_worker, 0,
6121 					  "kvm-nx-lpage-recovery",
6122 					  &kvm->arch.nx_lpage_recovery_thread);
6123 	if (!err)
6124 		kthread_unpark(kvm->arch.nx_lpage_recovery_thread);
6125 
6126 	return err;
6127 }
6128 
6129 void kvm_mmu_pre_destroy_vm(struct kvm *kvm)
6130 {
6131 	if (kvm->arch.nx_lpage_recovery_thread)
6132 		kthread_stop(kvm->arch.nx_lpage_recovery_thread);
6133 }
6134