1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * This module enables machines with Intel VT-x extensions to run virtual 6 * machines without emulation or binary translation. 7 * 8 * MMU support 9 * 10 * Copyright (C) 2006 Qumranet, Inc. 11 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 12 * 13 * Authors: 14 * Yaniv Kamay <yaniv@qumranet.com> 15 * Avi Kivity <avi@qumranet.com> 16 */ 17 18 #include "irq.h" 19 #include "ioapic.h" 20 #include "mmu.h" 21 #include "mmu_internal.h" 22 #include "tdp_mmu.h" 23 #include "x86.h" 24 #include "kvm_cache_regs.h" 25 #include "kvm_emulate.h" 26 #include "cpuid.h" 27 #include "spte.h" 28 29 #include <linux/kvm_host.h> 30 #include <linux/types.h> 31 #include <linux/string.h> 32 #include <linux/mm.h> 33 #include <linux/highmem.h> 34 #include <linux/moduleparam.h> 35 #include <linux/export.h> 36 #include <linux/swap.h> 37 #include <linux/hugetlb.h> 38 #include <linux/compiler.h> 39 #include <linux/srcu.h> 40 #include <linux/slab.h> 41 #include <linux/sched/signal.h> 42 #include <linux/uaccess.h> 43 #include <linux/hash.h> 44 #include <linux/kern_levels.h> 45 #include <linux/kthread.h> 46 47 #include <asm/page.h> 48 #include <asm/memtype.h> 49 #include <asm/cmpxchg.h> 50 #include <asm/io.h> 51 #include <asm/set_memory.h> 52 #include <asm/vmx.h> 53 #include <asm/kvm_page_track.h> 54 #include "trace.h" 55 56 #include "paging.h" 57 58 extern bool itlb_multihit_kvm_mitigation; 59 60 int __read_mostly nx_huge_pages = -1; 61 #ifdef CONFIG_PREEMPT_RT 62 /* Recovery can cause latency spikes, disable it for PREEMPT_RT. */ 63 static uint __read_mostly nx_huge_pages_recovery_ratio = 0; 64 #else 65 static uint __read_mostly nx_huge_pages_recovery_ratio = 60; 66 #endif 67 68 static int set_nx_huge_pages(const char *val, const struct kernel_param *kp); 69 static int set_nx_huge_pages_recovery_ratio(const char *val, const struct kernel_param *kp); 70 71 static const struct kernel_param_ops nx_huge_pages_ops = { 72 .set = set_nx_huge_pages, 73 .get = param_get_bool, 74 }; 75 76 static const struct kernel_param_ops nx_huge_pages_recovery_ratio_ops = { 77 .set = set_nx_huge_pages_recovery_ratio, 78 .get = param_get_uint, 79 }; 80 81 module_param_cb(nx_huge_pages, &nx_huge_pages_ops, &nx_huge_pages, 0644); 82 __MODULE_PARM_TYPE(nx_huge_pages, "bool"); 83 module_param_cb(nx_huge_pages_recovery_ratio, &nx_huge_pages_recovery_ratio_ops, 84 &nx_huge_pages_recovery_ratio, 0644); 85 __MODULE_PARM_TYPE(nx_huge_pages_recovery_ratio, "uint"); 86 87 static bool __read_mostly force_flush_and_sync_on_reuse; 88 module_param_named(flush_on_reuse, force_flush_and_sync_on_reuse, bool, 0644); 89 90 /* 91 * When setting this variable to true it enables Two-Dimensional-Paging 92 * where the hardware walks 2 page tables: 93 * 1. the guest-virtual to guest-physical 94 * 2. while doing 1. it walks guest-physical to host-physical 95 * If the hardware supports that we don't need to do shadow paging. 96 */ 97 bool tdp_enabled = false; 98 99 static int max_huge_page_level __read_mostly; 100 static int max_tdp_level __read_mostly; 101 102 enum { 103 AUDIT_PRE_PAGE_FAULT, 104 AUDIT_POST_PAGE_FAULT, 105 AUDIT_PRE_PTE_WRITE, 106 AUDIT_POST_PTE_WRITE, 107 AUDIT_PRE_SYNC, 108 AUDIT_POST_SYNC 109 }; 110 111 #ifdef MMU_DEBUG 112 bool dbg = 0; 113 module_param(dbg, bool, 0644); 114 #endif 115 116 #define PTE_PREFETCH_NUM 8 117 118 #define PT32_LEVEL_BITS 10 119 120 #define PT32_LEVEL_SHIFT(level) \ 121 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS) 122 123 #define PT32_LVL_OFFSET_MASK(level) \ 124 (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \ 125 * PT32_LEVEL_BITS))) - 1)) 126 127 #define PT32_INDEX(address, level)\ 128 (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1)) 129 130 131 #define PT32_BASE_ADDR_MASK PAGE_MASK 132 #define PT32_DIR_BASE_ADDR_MASK \ 133 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1)) 134 #define PT32_LVL_ADDR_MASK(level) \ 135 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \ 136 * PT32_LEVEL_BITS))) - 1)) 137 138 #include <trace/events/kvm.h> 139 140 /* make pte_list_desc fit well in cache line */ 141 #define PTE_LIST_EXT 3 142 143 struct pte_list_desc { 144 u64 *sptes[PTE_LIST_EXT]; 145 struct pte_list_desc *more; 146 }; 147 148 struct kvm_shadow_walk_iterator { 149 u64 addr; 150 hpa_t shadow_addr; 151 u64 *sptep; 152 int level; 153 unsigned index; 154 }; 155 156 #define for_each_shadow_entry_using_root(_vcpu, _root, _addr, _walker) \ 157 for (shadow_walk_init_using_root(&(_walker), (_vcpu), \ 158 (_root), (_addr)); \ 159 shadow_walk_okay(&(_walker)); \ 160 shadow_walk_next(&(_walker))) 161 162 #define for_each_shadow_entry(_vcpu, _addr, _walker) \ 163 for (shadow_walk_init(&(_walker), _vcpu, _addr); \ 164 shadow_walk_okay(&(_walker)); \ 165 shadow_walk_next(&(_walker))) 166 167 #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte) \ 168 for (shadow_walk_init(&(_walker), _vcpu, _addr); \ 169 shadow_walk_okay(&(_walker)) && \ 170 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; }); \ 171 __shadow_walk_next(&(_walker), spte)) 172 173 static struct kmem_cache *pte_list_desc_cache; 174 struct kmem_cache *mmu_page_header_cache; 175 static struct percpu_counter kvm_total_used_mmu_pages; 176 177 static void mmu_spte_set(u64 *sptep, u64 spte); 178 static union kvm_mmu_page_role 179 kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu); 180 181 struct kvm_mmu_role_regs { 182 const unsigned long cr0; 183 const unsigned long cr4; 184 const u64 efer; 185 }; 186 187 #define CREATE_TRACE_POINTS 188 #include "mmutrace.h" 189 190 /* 191 * Yes, lot's of underscores. They're a hint that you probably shouldn't be 192 * reading from the role_regs. Once the mmu_role is constructed, it becomes 193 * the single source of truth for the MMU's state. 194 */ 195 #define BUILD_MMU_ROLE_REGS_ACCESSOR(reg, name, flag) \ 196 static inline bool ____is_##reg##_##name(struct kvm_mmu_role_regs *regs)\ 197 { \ 198 return !!(regs->reg & flag); \ 199 } 200 BUILD_MMU_ROLE_REGS_ACCESSOR(cr0, pg, X86_CR0_PG); 201 BUILD_MMU_ROLE_REGS_ACCESSOR(cr0, wp, X86_CR0_WP); 202 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pse, X86_CR4_PSE); 203 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pae, X86_CR4_PAE); 204 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, smep, X86_CR4_SMEP); 205 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, smap, X86_CR4_SMAP); 206 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pke, X86_CR4_PKE); 207 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, la57, X86_CR4_LA57); 208 BUILD_MMU_ROLE_REGS_ACCESSOR(efer, nx, EFER_NX); 209 BUILD_MMU_ROLE_REGS_ACCESSOR(efer, lma, EFER_LMA); 210 211 /* 212 * The MMU itself (with a valid role) is the single source of truth for the 213 * MMU. Do not use the regs used to build the MMU/role, nor the vCPU. The 214 * regs don't account for dependencies, e.g. clearing CR4 bits if CR0.PG=1, 215 * and the vCPU may be incorrect/irrelevant. 216 */ 217 #define BUILD_MMU_ROLE_ACCESSOR(base_or_ext, reg, name) \ 218 static inline bool is_##reg##_##name(struct kvm_mmu *mmu) \ 219 { \ 220 return !!(mmu->mmu_role. base_or_ext . reg##_##name); \ 221 } 222 BUILD_MMU_ROLE_ACCESSOR(ext, cr0, pg); 223 BUILD_MMU_ROLE_ACCESSOR(base, cr0, wp); 224 BUILD_MMU_ROLE_ACCESSOR(ext, cr4, pse); 225 BUILD_MMU_ROLE_ACCESSOR(ext, cr4, pae); 226 BUILD_MMU_ROLE_ACCESSOR(ext, cr4, smep); 227 BUILD_MMU_ROLE_ACCESSOR(ext, cr4, smap); 228 BUILD_MMU_ROLE_ACCESSOR(ext, cr4, pke); 229 BUILD_MMU_ROLE_ACCESSOR(ext, cr4, la57); 230 BUILD_MMU_ROLE_ACCESSOR(base, efer, nx); 231 232 static struct kvm_mmu_role_regs vcpu_to_role_regs(struct kvm_vcpu *vcpu) 233 { 234 struct kvm_mmu_role_regs regs = { 235 .cr0 = kvm_read_cr0_bits(vcpu, KVM_MMU_CR0_ROLE_BITS), 236 .cr4 = kvm_read_cr4_bits(vcpu, KVM_MMU_CR4_ROLE_BITS), 237 .efer = vcpu->arch.efer, 238 }; 239 240 return regs; 241 } 242 243 static int role_regs_to_root_level(struct kvm_mmu_role_regs *regs) 244 { 245 if (!____is_cr0_pg(regs)) 246 return 0; 247 else if (____is_efer_lma(regs)) 248 return ____is_cr4_la57(regs) ? PT64_ROOT_5LEVEL : 249 PT64_ROOT_4LEVEL; 250 else if (____is_cr4_pae(regs)) 251 return PT32E_ROOT_LEVEL; 252 else 253 return PT32_ROOT_LEVEL; 254 } 255 256 static inline bool kvm_available_flush_tlb_with_range(void) 257 { 258 return kvm_x86_ops.tlb_remote_flush_with_range; 259 } 260 261 static void kvm_flush_remote_tlbs_with_range(struct kvm *kvm, 262 struct kvm_tlb_range *range) 263 { 264 int ret = -ENOTSUPP; 265 266 if (range && kvm_x86_ops.tlb_remote_flush_with_range) 267 ret = static_call(kvm_x86_tlb_remote_flush_with_range)(kvm, range); 268 269 if (ret) 270 kvm_flush_remote_tlbs(kvm); 271 } 272 273 void kvm_flush_remote_tlbs_with_address(struct kvm *kvm, 274 u64 start_gfn, u64 pages) 275 { 276 struct kvm_tlb_range range; 277 278 range.start_gfn = start_gfn; 279 range.pages = pages; 280 281 kvm_flush_remote_tlbs_with_range(kvm, &range); 282 } 283 284 static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn, 285 unsigned int access) 286 { 287 u64 spte = make_mmio_spte(vcpu, gfn, access); 288 289 trace_mark_mmio_spte(sptep, gfn, spte); 290 mmu_spte_set(sptep, spte); 291 } 292 293 static gfn_t get_mmio_spte_gfn(u64 spte) 294 { 295 u64 gpa = spte & shadow_nonpresent_or_rsvd_lower_gfn_mask; 296 297 gpa |= (spte >> SHADOW_NONPRESENT_OR_RSVD_MASK_LEN) 298 & shadow_nonpresent_or_rsvd_mask; 299 300 return gpa >> PAGE_SHIFT; 301 } 302 303 static unsigned get_mmio_spte_access(u64 spte) 304 { 305 return spte & shadow_mmio_access_mask; 306 } 307 308 static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte) 309 { 310 u64 kvm_gen, spte_gen, gen; 311 312 gen = kvm_vcpu_memslots(vcpu)->generation; 313 if (unlikely(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS)) 314 return false; 315 316 kvm_gen = gen & MMIO_SPTE_GEN_MASK; 317 spte_gen = get_mmio_spte_generation(spte); 318 319 trace_check_mmio_spte(spte, kvm_gen, spte_gen); 320 return likely(kvm_gen == spte_gen); 321 } 322 323 static gpa_t translate_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access, 324 struct x86_exception *exception) 325 { 326 /* Check if guest physical address doesn't exceed guest maximum */ 327 if (kvm_vcpu_is_illegal_gpa(vcpu, gpa)) { 328 exception->error_code |= PFERR_RSVD_MASK; 329 return UNMAPPED_GVA; 330 } 331 332 return gpa; 333 } 334 335 static int is_cpuid_PSE36(void) 336 { 337 return 1; 338 } 339 340 static gfn_t pse36_gfn_delta(u32 gpte) 341 { 342 int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT; 343 344 return (gpte & PT32_DIR_PSE36_MASK) << shift; 345 } 346 347 #ifdef CONFIG_X86_64 348 static void __set_spte(u64 *sptep, u64 spte) 349 { 350 WRITE_ONCE(*sptep, spte); 351 } 352 353 static void __update_clear_spte_fast(u64 *sptep, u64 spte) 354 { 355 WRITE_ONCE(*sptep, spte); 356 } 357 358 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte) 359 { 360 return xchg(sptep, spte); 361 } 362 363 static u64 __get_spte_lockless(u64 *sptep) 364 { 365 return READ_ONCE(*sptep); 366 } 367 #else 368 union split_spte { 369 struct { 370 u32 spte_low; 371 u32 spte_high; 372 }; 373 u64 spte; 374 }; 375 376 static void count_spte_clear(u64 *sptep, u64 spte) 377 { 378 struct kvm_mmu_page *sp = sptep_to_sp(sptep); 379 380 if (is_shadow_present_pte(spte)) 381 return; 382 383 /* Ensure the spte is completely set before we increase the count */ 384 smp_wmb(); 385 sp->clear_spte_count++; 386 } 387 388 static void __set_spte(u64 *sptep, u64 spte) 389 { 390 union split_spte *ssptep, sspte; 391 392 ssptep = (union split_spte *)sptep; 393 sspte = (union split_spte)spte; 394 395 ssptep->spte_high = sspte.spte_high; 396 397 /* 398 * If we map the spte from nonpresent to present, We should store 399 * the high bits firstly, then set present bit, so cpu can not 400 * fetch this spte while we are setting the spte. 401 */ 402 smp_wmb(); 403 404 WRITE_ONCE(ssptep->spte_low, sspte.spte_low); 405 } 406 407 static void __update_clear_spte_fast(u64 *sptep, u64 spte) 408 { 409 union split_spte *ssptep, sspte; 410 411 ssptep = (union split_spte *)sptep; 412 sspte = (union split_spte)spte; 413 414 WRITE_ONCE(ssptep->spte_low, sspte.spte_low); 415 416 /* 417 * If we map the spte from present to nonpresent, we should clear 418 * present bit firstly to avoid vcpu fetch the old high bits. 419 */ 420 smp_wmb(); 421 422 ssptep->spte_high = sspte.spte_high; 423 count_spte_clear(sptep, spte); 424 } 425 426 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte) 427 { 428 union split_spte *ssptep, sspte, orig; 429 430 ssptep = (union split_spte *)sptep; 431 sspte = (union split_spte)spte; 432 433 /* xchg acts as a barrier before the setting of the high bits */ 434 orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low); 435 orig.spte_high = ssptep->spte_high; 436 ssptep->spte_high = sspte.spte_high; 437 count_spte_clear(sptep, spte); 438 439 return orig.spte; 440 } 441 442 /* 443 * The idea using the light way get the spte on x86_32 guest is from 444 * gup_get_pte (mm/gup.c). 445 * 446 * An spte tlb flush may be pending, because kvm_set_pte_rmapp 447 * coalesces them and we are running out of the MMU lock. Therefore 448 * we need to protect against in-progress updates of the spte. 449 * 450 * Reading the spte while an update is in progress may get the old value 451 * for the high part of the spte. The race is fine for a present->non-present 452 * change (because the high part of the spte is ignored for non-present spte), 453 * but for a present->present change we must reread the spte. 454 * 455 * All such changes are done in two steps (present->non-present and 456 * non-present->present), hence it is enough to count the number of 457 * present->non-present updates: if it changed while reading the spte, 458 * we might have hit the race. This is done using clear_spte_count. 459 */ 460 static u64 __get_spte_lockless(u64 *sptep) 461 { 462 struct kvm_mmu_page *sp = sptep_to_sp(sptep); 463 union split_spte spte, *orig = (union split_spte *)sptep; 464 int count; 465 466 retry: 467 count = sp->clear_spte_count; 468 smp_rmb(); 469 470 spte.spte_low = orig->spte_low; 471 smp_rmb(); 472 473 spte.spte_high = orig->spte_high; 474 smp_rmb(); 475 476 if (unlikely(spte.spte_low != orig->spte_low || 477 count != sp->clear_spte_count)) 478 goto retry; 479 480 return spte.spte; 481 } 482 #endif 483 484 static bool spte_has_volatile_bits(u64 spte) 485 { 486 if (!is_shadow_present_pte(spte)) 487 return false; 488 489 /* 490 * Always atomically update spte if it can be updated 491 * out of mmu-lock, it can ensure dirty bit is not lost, 492 * also, it can help us to get a stable is_writable_pte() 493 * to ensure tlb flush is not missed. 494 */ 495 if (spte_can_locklessly_be_made_writable(spte) || 496 is_access_track_spte(spte)) 497 return true; 498 499 if (spte_ad_enabled(spte)) { 500 if ((spte & shadow_accessed_mask) == 0 || 501 (is_writable_pte(spte) && (spte & shadow_dirty_mask) == 0)) 502 return true; 503 } 504 505 return false; 506 } 507 508 /* Rules for using mmu_spte_set: 509 * Set the sptep from nonpresent to present. 510 * Note: the sptep being assigned *must* be either not present 511 * or in a state where the hardware will not attempt to update 512 * the spte. 513 */ 514 static void mmu_spte_set(u64 *sptep, u64 new_spte) 515 { 516 WARN_ON(is_shadow_present_pte(*sptep)); 517 __set_spte(sptep, new_spte); 518 } 519 520 /* 521 * Update the SPTE (excluding the PFN), but do not track changes in its 522 * accessed/dirty status. 523 */ 524 static u64 mmu_spte_update_no_track(u64 *sptep, u64 new_spte) 525 { 526 u64 old_spte = *sptep; 527 528 WARN_ON(!is_shadow_present_pte(new_spte)); 529 530 if (!is_shadow_present_pte(old_spte)) { 531 mmu_spte_set(sptep, new_spte); 532 return old_spte; 533 } 534 535 if (!spte_has_volatile_bits(old_spte)) 536 __update_clear_spte_fast(sptep, new_spte); 537 else 538 old_spte = __update_clear_spte_slow(sptep, new_spte); 539 540 WARN_ON(spte_to_pfn(old_spte) != spte_to_pfn(new_spte)); 541 542 return old_spte; 543 } 544 545 /* Rules for using mmu_spte_update: 546 * Update the state bits, it means the mapped pfn is not changed. 547 * 548 * Whenever we overwrite a writable spte with a read-only one we 549 * should flush remote TLBs. Otherwise rmap_write_protect 550 * will find a read-only spte, even though the writable spte 551 * might be cached on a CPU's TLB, the return value indicates this 552 * case. 553 * 554 * Returns true if the TLB needs to be flushed 555 */ 556 static bool mmu_spte_update(u64 *sptep, u64 new_spte) 557 { 558 bool flush = false; 559 u64 old_spte = mmu_spte_update_no_track(sptep, new_spte); 560 561 if (!is_shadow_present_pte(old_spte)) 562 return false; 563 564 /* 565 * For the spte updated out of mmu-lock is safe, since 566 * we always atomically update it, see the comments in 567 * spte_has_volatile_bits(). 568 */ 569 if (spte_can_locklessly_be_made_writable(old_spte) && 570 !is_writable_pte(new_spte)) 571 flush = true; 572 573 /* 574 * Flush TLB when accessed/dirty states are changed in the page tables, 575 * to guarantee consistency between TLB and page tables. 576 */ 577 578 if (is_accessed_spte(old_spte) && !is_accessed_spte(new_spte)) { 579 flush = true; 580 kvm_set_pfn_accessed(spte_to_pfn(old_spte)); 581 } 582 583 if (is_dirty_spte(old_spte) && !is_dirty_spte(new_spte)) { 584 flush = true; 585 kvm_set_pfn_dirty(spte_to_pfn(old_spte)); 586 } 587 588 return flush; 589 } 590 591 /* 592 * Rules for using mmu_spte_clear_track_bits: 593 * It sets the sptep from present to nonpresent, and track the 594 * state bits, it is used to clear the last level sptep. 595 * Returns non-zero if the PTE was previously valid. 596 */ 597 static int mmu_spte_clear_track_bits(u64 *sptep) 598 { 599 kvm_pfn_t pfn; 600 u64 old_spte = *sptep; 601 602 if (!spte_has_volatile_bits(old_spte)) 603 __update_clear_spte_fast(sptep, 0ull); 604 else 605 old_spte = __update_clear_spte_slow(sptep, 0ull); 606 607 if (!is_shadow_present_pte(old_spte)) 608 return 0; 609 610 pfn = spte_to_pfn(old_spte); 611 612 /* 613 * KVM does not hold the refcount of the page used by 614 * kvm mmu, before reclaiming the page, we should 615 * unmap it from mmu first. 616 */ 617 WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn))); 618 619 if (is_accessed_spte(old_spte)) 620 kvm_set_pfn_accessed(pfn); 621 622 if (is_dirty_spte(old_spte)) 623 kvm_set_pfn_dirty(pfn); 624 625 return 1; 626 } 627 628 /* 629 * Rules for using mmu_spte_clear_no_track: 630 * Directly clear spte without caring the state bits of sptep, 631 * it is used to set the upper level spte. 632 */ 633 static void mmu_spte_clear_no_track(u64 *sptep) 634 { 635 __update_clear_spte_fast(sptep, 0ull); 636 } 637 638 static u64 mmu_spte_get_lockless(u64 *sptep) 639 { 640 return __get_spte_lockless(sptep); 641 } 642 643 /* Restore an acc-track PTE back to a regular PTE */ 644 static u64 restore_acc_track_spte(u64 spte) 645 { 646 u64 new_spte = spte; 647 u64 saved_bits = (spte >> SHADOW_ACC_TRACK_SAVED_BITS_SHIFT) 648 & SHADOW_ACC_TRACK_SAVED_BITS_MASK; 649 650 WARN_ON_ONCE(spte_ad_enabled(spte)); 651 WARN_ON_ONCE(!is_access_track_spte(spte)); 652 653 new_spte &= ~shadow_acc_track_mask; 654 new_spte &= ~(SHADOW_ACC_TRACK_SAVED_BITS_MASK << 655 SHADOW_ACC_TRACK_SAVED_BITS_SHIFT); 656 new_spte |= saved_bits; 657 658 return new_spte; 659 } 660 661 /* Returns the Accessed status of the PTE and resets it at the same time. */ 662 static bool mmu_spte_age(u64 *sptep) 663 { 664 u64 spte = mmu_spte_get_lockless(sptep); 665 666 if (!is_accessed_spte(spte)) 667 return false; 668 669 if (spte_ad_enabled(spte)) { 670 clear_bit((ffs(shadow_accessed_mask) - 1), 671 (unsigned long *)sptep); 672 } else { 673 /* 674 * Capture the dirty status of the page, so that it doesn't get 675 * lost when the SPTE is marked for access tracking. 676 */ 677 if (is_writable_pte(spte)) 678 kvm_set_pfn_dirty(spte_to_pfn(spte)); 679 680 spte = mark_spte_for_access_track(spte); 681 mmu_spte_update_no_track(sptep, spte); 682 } 683 684 return true; 685 } 686 687 static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu) 688 { 689 /* 690 * Prevent page table teardown by making any free-er wait during 691 * kvm_flush_remote_tlbs() IPI to all active vcpus. 692 */ 693 local_irq_disable(); 694 695 /* 696 * Make sure a following spte read is not reordered ahead of the write 697 * to vcpu->mode. 698 */ 699 smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES); 700 } 701 702 static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu) 703 { 704 /* 705 * Make sure the write to vcpu->mode is not reordered in front of 706 * reads to sptes. If it does, kvm_mmu_commit_zap_page() can see us 707 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table. 708 */ 709 smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE); 710 local_irq_enable(); 711 } 712 713 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu, bool maybe_indirect) 714 { 715 int r; 716 717 /* 1 rmap, 1 parent PTE per level, and the prefetched rmaps. */ 718 r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache, 719 1 + PT64_ROOT_MAX_LEVEL + PTE_PREFETCH_NUM); 720 if (r) 721 return r; 722 r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_shadow_page_cache, 723 PT64_ROOT_MAX_LEVEL); 724 if (r) 725 return r; 726 if (maybe_indirect) { 727 r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_gfn_array_cache, 728 PT64_ROOT_MAX_LEVEL); 729 if (r) 730 return r; 731 } 732 return kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache, 733 PT64_ROOT_MAX_LEVEL); 734 } 735 736 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu) 737 { 738 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache); 739 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_shadow_page_cache); 740 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_gfn_array_cache); 741 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache); 742 } 743 744 static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu) 745 { 746 return kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache); 747 } 748 749 static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc) 750 { 751 kmem_cache_free(pte_list_desc_cache, pte_list_desc); 752 } 753 754 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index) 755 { 756 if (!sp->role.direct) 757 return sp->gfns[index]; 758 759 return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS)); 760 } 761 762 static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn) 763 { 764 if (!sp->role.direct) { 765 sp->gfns[index] = gfn; 766 return; 767 } 768 769 if (WARN_ON(gfn != kvm_mmu_page_get_gfn(sp, index))) 770 pr_err_ratelimited("gfn mismatch under direct page %llx " 771 "(expected %llx, got %llx)\n", 772 sp->gfn, 773 kvm_mmu_page_get_gfn(sp, index), gfn); 774 } 775 776 /* 777 * Return the pointer to the large page information for a given gfn, 778 * handling slots that are not large page aligned. 779 */ 780 static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn, 781 const struct kvm_memory_slot *slot, int level) 782 { 783 unsigned long idx; 784 785 idx = gfn_to_index(gfn, slot->base_gfn, level); 786 return &slot->arch.lpage_info[level - 2][idx]; 787 } 788 789 static void update_gfn_disallow_lpage_count(struct kvm_memory_slot *slot, 790 gfn_t gfn, int count) 791 { 792 struct kvm_lpage_info *linfo; 793 int i; 794 795 for (i = PG_LEVEL_2M; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) { 796 linfo = lpage_info_slot(gfn, slot, i); 797 linfo->disallow_lpage += count; 798 WARN_ON(linfo->disallow_lpage < 0); 799 } 800 } 801 802 void kvm_mmu_gfn_disallow_lpage(struct kvm_memory_slot *slot, gfn_t gfn) 803 { 804 update_gfn_disallow_lpage_count(slot, gfn, 1); 805 } 806 807 void kvm_mmu_gfn_allow_lpage(struct kvm_memory_slot *slot, gfn_t gfn) 808 { 809 update_gfn_disallow_lpage_count(slot, gfn, -1); 810 } 811 812 static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp) 813 { 814 struct kvm_memslots *slots; 815 struct kvm_memory_slot *slot; 816 gfn_t gfn; 817 818 kvm->arch.indirect_shadow_pages++; 819 gfn = sp->gfn; 820 slots = kvm_memslots_for_spte_role(kvm, sp->role); 821 slot = __gfn_to_memslot(slots, gfn); 822 823 /* the non-leaf shadow pages are keeping readonly. */ 824 if (sp->role.level > PG_LEVEL_4K) 825 return kvm_slot_page_track_add_page(kvm, slot, gfn, 826 KVM_PAGE_TRACK_WRITE); 827 828 kvm_mmu_gfn_disallow_lpage(slot, gfn); 829 } 830 831 void account_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp) 832 { 833 if (sp->lpage_disallowed) 834 return; 835 836 ++kvm->stat.nx_lpage_splits; 837 list_add_tail(&sp->lpage_disallowed_link, 838 &kvm->arch.lpage_disallowed_mmu_pages); 839 sp->lpage_disallowed = true; 840 } 841 842 static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp) 843 { 844 struct kvm_memslots *slots; 845 struct kvm_memory_slot *slot; 846 gfn_t gfn; 847 848 kvm->arch.indirect_shadow_pages--; 849 gfn = sp->gfn; 850 slots = kvm_memslots_for_spte_role(kvm, sp->role); 851 slot = __gfn_to_memslot(slots, gfn); 852 if (sp->role.level > PG_LEVEL_4K) 853 return kvm_slot_page_track_remove_page(kvm, slot, gfn, 854 KVM_PAGE_TRACK_WRITE); 855 856 kvm_mmu_gfn_allow_lpage(slot, gfn); 857 } 858 859 void unaccount_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp) 860 { 861 --kvm->stat.nx_lpage_splits; 862 sp->lpage_disallowed = false; 863 list_del(&sp->lpage_disallowed_link); 864 } 865 866 static struct kvm_memory_slot * 867 gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn, 868 bool no_dirty_log) 869 { 870 struct kvm_memory_slot *slot; 871 872 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 873 if (!slot || slot->flags & KVM_MEMSLOT_INVALID) 874 return NULL; 875 if (no_dirty_log && kvm_slot_dirty_track_enabled(slot)) 876 return NULL; 877 878 return slot; 879 } 880 881 /* 882 * About rmap_head encoding: 883 * 884 * If the bit zero of rmap_head->val is clear, then it points to the only spte 885 * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct 886 * pte_list_desc containing more mappings. 887 */ 888 889 /* 890 * Returns the number of pointers in the rmap chain, not counting the new one. 891 */ 892 static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte, 893 struct kvm_rmap_head *rmap_head) 894 { 895 struct pte_list_desc *desc; 896 int i, count = 0; 897 898 if (!rmap_head->val) { 899 rmap_printk("%p %llx 0->1\n", spte, *spte); 900 rmap_head->val = (unsigned long)spte; 901 } else if (!(rmap_head->val & 1)) { 902 rmap_printk("%p %llx 1->many\n", spte, *spte); 903 desc = mmu_alloc_pte_list_desc(vcpu); 904 desc->sptes[0] = (u64 *)rmap_head->val; 905 desc->sptes[1] = spte; 906 rmap_head->val = (unsigned long)desc | 1; 907 ++count; 908 } else { 909 rmap_printk("%p %llx many->many\n", spte, *spte); 910 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul); 911 while (desc->sptes[PTE_LIST_EXT-1]) { 912 count += PTE_LIST_EXT; 913 914 if (!desc->more) { 915 desc->more = mmu_alloc_pte_list_desc(vcpu); 916 desc = desc->more; 917 break; 918 } 919 desc = desc->more; 920 } 921 for (i = 0; desc->sptes[i]; ++i) 922 ++count; 923 desc->sptes[i] = spte; 924 } 925 return count; 926 } 927 928 static void 929 pte_list_desc_remove_entry(struct kvm_rmap_head *rmap_head, 930 struct pte_list_desc *desc, int i, 931 struct pte_list_desc *prev_desc) 932 { 933 int j; 934 935 for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j) 936 ; 937 desc->sptes[i] = desc->sptes[j]; 938 desc->sptes[j] = NULL; 939 if (j != 0) 940 return; 941 if (!prev_desc && !desc->more) 942 rmap_head->val = 0; 943 else 944 if (prev_desc) 945 prev_desc->more = desc->more; 946 else 947 rmap_head->val = (unsigned long)desc->more | 1; 948 mmu_free_pte_list_desc(desc); 949 } 950 951 static void __pte_list_remove(u64 *spte, struct kvm_rmap_head *rmap_head) 952 { 953 struct pte_list_desc *desc; 954 struct pte_list_desc *prev_desc; 955 int i; 956 957 if (!rmap_head->val) { 958 pr_err("%s: %p 0->BUG\n", __func__, spte); 959 BUG(); 960 } else if (!(rmap_head->val & 1)) { 961 rmap_printk("%p 1->0\n", spte); 962 if ((u64 *)rmap_head->val != spte) { 963 pr_err("%s: %p 1->BUG\n", __func__, spte); 964 BUG(); 965 } 966 rmap_head->val = 0; 967 } else { 968 rmap_printk("%p many->many\n", spte); 969 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul); 970 prev_desc = NULL; 971 while (desc) { 972 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i) { 973 if (desc->sptes[i] == spte) { 974 pte_list_desc_remove_entry(rmap_head, 975 desc, i, prev_desc); 976 return; 977 } 978 } 979 prev_desc = desc; 980 desc = desc->more; 981 } 982 pr_err("%s: %p many->many\n", __func__, spte); 983 BUG(); 984 } 985 } 986 987 static void pte_list_remove(struct kvm_rmap_head *rmap_head, u64 *sptep) 988 { 989 mmu_spte_clear_track_bits(sptep); 990 __pte_list_remove(sptep, rmap_head); 991 } 992 993 static struct kvm_rmap_head *__gfn_to_rmap(gfn_t gfn, int level, 994 struct kvm_memory_slot *slot) 995 { 996 unsigned long idx; 997 998 idx = gfn_to_index(gfn, slot->base_gfn, level); 999 return &slot->arch.rmap[level - PG_LEVEL_4K][idx]; 1000 } 1001 1002 static struct kvm_rmap_head *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, 1003 struct kvm_mmu_page *sp) 1004 { 1005 struct kvm_memslots *slots; 1006 struct kvm_memory_slot *slot; 1007 1008 slots = kvm_memslots_for_spte_role(kvm, sp->role); 1009 slot = __gfn_to_memslot(slots, gfn); 1010 return __gfn_to_rmap(gfn, sp->role.level, slot); 1011 } 1012 1013 static bool rmap_can_add(struct kvm_vcpu *vcpu) 1014 { 1015 struct kvm_mmu_memory_cache *mc; 1016 1017 mc = &vcpu->arch.mmu_pte_list_desc_cache; 1018 return kvm_mmu_memory_cache_nr_free_objects(mc); 1019 } 1020 1021 static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn) 1022 { 1023 struct kvm_mmu_page *sp; 1024 struct kvm_rmap_head *rmap_head; 1025 1026 sp = sptep_to_sp(spte); 1027 kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn); 1028 rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp); 1029 return pte_list_add(vcpu, spte, rmap_head); 1030 } 1031 1032 static void rmap_remove(struct kvm *kvm, u64 *spte) 1033 { 1034 struct kvm_mmu_page *sp; 1035 gfn_t gfn; 1036 struct kvm_rmap_head *rmap_head; 1037 1038 sp = sptep_to_sp(spte); 1039 gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt); 1040 rmap_head = gfn_to_rmap(kvm, gfn, sp); 1041 __pte_list_remove(spte, rmap_head); 1042 } 1043 1044 /* 1045 * Used by the following functions to iterate through the sptes linked by a 1046 * rmap. All fields are private and not assumed to be used outside. 1047 */ 1048 struct rmap_iterator { 1049 /* private fields */ 1050 struct pte_list_desc *desc; /* holds the sptep if not NULL */ 1051 int pos; /* index of the sptep */ 1052 }; 1053 1054 /* 1055 * Iteration must be started by this function. This should also be used after 1056 * removing/dropping sptes from the rmap link because in such cases the 1057 * information in the iterator may not be valid. 1058 * 1059 * Returns sptep if found, NULL otherwise. 1060 */ 1061 static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head, 1062 struct rmap_iterator *iter) 1063 { 1064 u64 *sptep; 1065 1066 if (!rmap_head->val) 1067 return NULL; 1068 1069 if (!(rmap_head->val & 1)) { 1070 iter->desc = NULL; 1071 sptep = (u64 *)rmap_head->val; 1072 goto out; 1073 } 1074 1075 iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul); 1076 iter->pos = 0; 1077 sptep = iter->desc->sptes[iter->pos]; 1078 out: 1079 BUG_ON(!is_shadow_present_pte(*sptep)); 1080 return sptep; 1081 } 1082 1083 /* 1084 * Must be used with a valid iterator: e.g. after rmap_get_first(). 1085 * 1086 * Returns sptep if found, NULL otherwise. 1087 */ 1088 static u64 *rmap_get_next(struct rmap_iterator *iter) 1089 { 1090 u64 *sptep; 1091 1092 if (iter->desc) { 1093 if (iter->pos < PTE_LIST_EXT - 1) { 1094 ++iter->pos; 1095 sptep = iter->desc->sptes[iter->pos]; 1096 if (sptep) 1097 goto out; 1098 } 1099 1100 iter->desc = iter->desc->more; 1101 1102 if (iter->desc) { 1103 iter->pos = 0; 1104 /* desc->sptes[0] cannot be NULL */ 1105 sptep = iter->desc->sptes[iter->pos]; 1106 goto out; 1107 } 1108 } 1109 1110 return NULL; 1111 out: 1112 BUG_ON(!is_shadow_present_pte(*sptep)); 1113 return sptep; 1114 } 1115 1116 #define for_each_rmap_spte(_rmap_head_, _iter_, _spte_) \ 1117 for (_spte_ = rmap_get_first(_rmap_head_, _iter_); \ 1118 _spte_; _spte_ = rmap_get_next(_iter_)) 1119 1120 static void drop_spte(struct kvm *kvm, u64 *sptep) 1121 { 1122 if (mmu_spte_clear_track_bits(sptep)) 1123 rmap_remove(kvm, sptep); 1124 } 1125 1126 1127 static bool __drop_large_spte(struct kvm *kvm, u64 *sptep) 1128 { 1129 if (is_large_pte(*sptep)) { 1130 WARN_ON(sptep_to_sp(sptep)->role.level == PG_LEVEL_4K); 1131 drop_spte(kvm, sptep); 1132 --kvm->stat.lpages; 1133 return true; 1134 } 1135 1136 return false; 1137 } 1138 1139 static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep) 1140 { 1141 if (__drop_large_spte(vcpu->kvm, sptep)) { 1142 struct kvm_mmu_page *sp = sptep_to_sp(sptep); 1143 1144 kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn, 1145 KVM_PAGES_PER_HPAGE(sp->role.level)); 1146 } 1147 } 1148 1149 /* 1150 * Write-protect on the specified @sptep, @pt_protect indicates whether 1151 * spte write-protection is caused by protecting shadow page table. 1152 * 1153 * Note: write protection is difference between dirty logging and spte 1154 * protection: 1155 * - for dirty logging, the spte can be set to writable at anytime if 1156 * its dirty bitmap is properly set. 1157 * - for spte protection, the spte can be writable only after unsync-ing 1158 * shadow page. 1159 * 1160 * Return true if tlb need be flushed. 1161 */ 1162 static bool spte_write_protect(u64 *sptep, bool pt_protect) 1163 { 1164 u64 spte = *sptep; 1165 1166 if (!is_writable_pte(spte) && 1167 !(pt_protect && spte_can_locklessly_be_made_writable(spte))) 1168 return false; 1169 1170 rmap_printk("spte %p %llx\n", sptep, *sptep); 1171 1172 if (pt_protect) 1173 spte &= ~shadow_mmu_writable_mask; 1174 spte = spte & ~PT_WRITABLE_MASK; 1175 1176 return mmu_spte_update(sptep, spte); 1177 } 1178 1179 static bool __rmap_write_protect(struct kvm *kvm, 1180 struct kvm_rmap_head *rmap_head, 1181 bool pt_protect) 1182 { 1183 u64 *sptep; 1184 struct rmap_iterator iter; 1185 bool flush = false; 1186 1187 for_each_rmap_spte(rmap_head, &iter, sptep) 1188 flush |= spte_write_protect(sptep, pt_protect); 1189 1190 return flush; 1191 } 1192 1193 static bool spte_clear_dirty(u64 *sptep) 1194 { 1195 u64 spte = *sptep; 1196 1197 rmap_printk("spte %p %llx\n", sptep, *sptep); 1198 1199 MMU_WARN_ON(!spte_ad_enabled(spte)); 1200 spte &= ~shadow_dirty_mask; 1201 return mmu_spte_update(sptep, spte); 1202 } 1203 1204 static bool spte_wrprot_for_clear_dirty(u64 *sptep) 1205 { 1206 bool was_writable = test_and_clear_bit(PT_WRITABLE_SHIFT, 1207 (unsigned long *)sptep); 1208 if (was_writable && !spte_ad_enabled(*sptep)) 1209 kvm_set_pfn_dirty(spte_to_pfn(*sptep)); 1210 1211 return was_writable; 1212 } 1213 1214 /* 1215 * Gets the GFN ready for another round of dirty logging by clearing the 1216 * - D bit on ad-enabled SPTEs, and 1217 * - W bit on ad-disabled SPTEs. 1218 * Returns true iff any D or W bits were cleared. 1219 */ 1220 static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head, 1221 struct kvm_memory_slot *slot) 1222 { 1223 u64 *sptep; 1224 struct rmap_iterator iter; 1225 bool flush = false; 1226 1227 for_each_rmap_spte(rmap_head, &iter, sptep) 1228 if (spte_ad_need_write_protect(*sptep)) 1229 flush |= spte_wrprot_for_clear_dirty(sptep); 1230 else 1231 flush |= spte_clear_dirty(sptep); 1232 1233 return flush; 1234 } 1235 1236 /** 1237 * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages 1238 * @kvm: kvm instance 1239 * @slot: slot to protect 1240 * @gfn_offset: start of the BITS_PER_LONG pages we care about 1241 * @mask: indicates which pages we should protect 1242 * 1243 * Used when we do not need to care about huge page mappings. 1244 */ 1245 static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm, 1246 struct kvm_memory_slot *slot, 1247 gfn_t gfn_offset, unsigned long mask) 1248 { 1249 struct kvm_rmap_head *rmap_head; 1250 1251 if (is_tdp_mmu_enabled(kvm)) 1252 kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot, 1253 slot->base_gfn + gfn_offset, mask, true); 1254 1255 if (!kvm_memslots_have_rmaps(kvm)) 1256 return; 1257 1258 while (mask) { 1259 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask), 1260 PG_LEVEL_4K, slot); 1261 __rmap_write_protect(kvm, rmap_head, false); 1262 1263 /* clear the first set bit */ 1264 mask &= mask - 1; 1265 } 1266 } 1267 1268 /** 1269 * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages, or write 1270 * protect the page if the D-bit isn't supported. 1271 * @kvm: kvm instance 1272 * @slot: slot to clear D-bit 1273 * @gfn_offset: start of the BITS_PER_LONG pages we care about 1274 * @mask: indicates which pages we should clear D-bit 1275 * 1276 * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap. 1277 */ 1278 static void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm, 1279 struct kvm_memory_slot *slot, 1280 gfn_t gfn_offset, unsigned long mask) 1281 { 1282 struct kvm_rmap_head *rmap_head; 1283 1284 if (is_tdp_mmu_enabled(kvm)) 1285 kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot, 1286 slot->base_gfn + gfn_offset, mask, false); 1287 1288 if (!kvm_memslots_have_rmaps(kvm)) 1289 return; 1290 1291 while (mask) { 1292 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask), 1293 PG_LEVEL_4K, slot); 1294 __rmap_clear_dirty(kvm, rmap_head, slot); 1295 1296 /* clear the first set bit */ 1297 mask &= mask - 1; 1298 } 1299 } 1300 1301 /** 1302 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected 1303 * PT level pages. 1304 * 1305 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to 1306 * enable dirty logging for them. 1307 * 1308 * We need to care about huge page mappings: e.g. during dirty logging we may 1309 * have such mappings. 1310 */ 1311 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm, 1312 struct kvm_memory_slot *slot, 1313 gfn_t gfn_offset, unsigned long mask) 1314 { 1315 /* 1316 * Huge pages are NOT write protected when we start dirty logging in 1317 * initially-all-set mode; must write protect them here so that they 1318 * are split to 4K on the first write. 1319 * 1320 * The gfn_offset is guaranteed to be aligned to 64, but the base_gfn 1321 * of memslot has no such restriction, so the range can cross two large 1322 * pages. 1323 */ 1324 if (kvm_dirty_log_manual_protect_and_init_set(kvm)) { 1325 gfn_t start = slot->base_gfn + gfn_offset + __ffs(mask); 1326 gfn_t end = slot->base_gfn + gfn_offset + __fls(mask); 1327 1328 kvm_mmu_slot_gfn_write_protect(kvm, slot, start, PG_LEVEL_2M); 1329 1330 /* Cross two large pages? */ 1331 if (ALIGN(start << PAGE_SHIFT, PMD_SIZE) != 1332 ALIGN(end << PAGE_SHIFT, PMD_SIZE)) 1333 kvm_mmu_slot_gfn_write_protect(kvm, slot, end, 1334 PG_LEVEL_2M); 1335 } 1336 1337 /* Now handle 4K PTEs. */ 1338 if (kvm_x86_ops.cpu_dirty_log_size) 1339 kvm_mmu_clear_dirty_pt_masked(kvm, slot, gfn_offset, mask); 1340 else 1341 kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask); 1342 } 1343 1344 int kvm_cpu_dirty_log_size(void) 1345 { 1346 return kvm_x86_ops.cpu_dirty_log_size; 1347 } 1348 1349 bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm, 1350 struct kvm_memory_slot *slot, u64 gfn, 1351 int min_level) 1352 { 1353 struct kvm_rmap_head *rmap_head; 1354 int i; 1355 bool write_protected = false; 1356 1357 if (kvm_memslots_have_rmaps(kvm)) { 1358 for (i = min_level; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) { 1359 rmap_head = __gfn_to_rmap(gfn, i, slot); 1360 write_protected |= __rmap_write_protect(kvm, rmap_head, true); 1361 } 1362 } 1363 1364 if (is_tdp_mmu_enabled(kvm)) 1365 write_protected |= 1366 kvm_tdp_mmu_write_protect_gfn(kvm, slot, gfn, min_level); 1367 1368 return write_protected; 1369 } 1370 1371 static bool rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn) 1372 { 1373 struct kvm_memory_slot *slot; 1374 1375 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 1376 return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn, PG_LEVEL_4K); 1377 } 1378 1379 static bool kvm_zap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head, 1380 struct kvm_memory_slot *slot) 1381 { 1382 u64 *sptep; 1383 struct rmap_iterator iter; 1384 bool flush = false; 1385 1386 while ((sptep = rmap_get_first(rmap_head, &iter))) { 1387 rmap_printk("spte %p %llx.\n", sptep, *sptep); 1388 1389 pte_list_remove(rmap_head, sptep); 1390 flush = true; 1391 } 1392 1393 return flush; 1394 } 1395 1396 static bool kvm_unmap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head, 1397 struct kvm_memory_slot *slot, gfn_t gfn, int level, 1398 pte_t unused) 1399 { 1400 return kvm_zap_rmapp(kvm, rmap_head, slot); 1401 } 1402 1403 static bool kvm_set_pte_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head, 1404 struct kvm_memory_slot *slot, gfn_t gfn, int level, 1405 pte_t pte) 1406 { 1407 u64 *sptep; 1408 struct rmap_iterator iter; 1409 int need_flush = 0; 1410 u64 new_spte; 1411 kvm_pfn_t new_pfn; 1412 1413 WARN_ON(pte_huge(pte)); 1414 new_pfn = pte_pfn(pte); 1415 1416 restart: 1417 for_each_rmap_spte(rmap_head, &iter, sptep) { 1418 rmap_printk("spte %p %llx gfn %llx (%d)\n", 1419 sptep, *sptep, gfn, level); 1420 1421 need_flush = 1; 1422 1423 if (pte_write(pte)) { 1424 pte_list_remove(rmap_head, sptep); 1425 goto restart; 1426 } else { 1427 new_spte = kvm_mmu_changed_pte_notifier_make_spte( 1428 *sptep, new_pfn); 1429 1430 mmu_spte_clear_track_bits(sptep); 1431 mmu_spte_set(sptep, new_spte); 1432 } 1433 } 1434 1435 if (need_flush && kvm_available_flush_tlb_with_range()) { 1436 kvm_flush_remote_tlbs_with_address(kvm, gfn, 1); 1437 return 0; 1438 } 1439 1440 return need_flush; 1441 } 1442 1443 struct slot_rmap_walk_iterator { 1444 /* input fields. */ 1445 struct kvm_memory_slot *slot; 1446 gfn_t start_gfn; 1447 gfn_t end_gfn; 1448 int start_level; 1449 int end_level; 1450 1451 /* output fields. */ 1452 gfn_t gfn; 1453 struct kvm_rmap_head *rmap; 1454 int level; 1455 1456 /* private field. */ 1457 struct kvm_rmap_head *end_rmap; 1458 }; 1459 1460 static void 1461 rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level) 1462 { 1463 iterator->level = level; 1464 iterator->gfn = iterator->start_gfn; 1465 iterator->rmap = __gfn_to_rmap(iterator->gfn, level, iterator->slot); 1466 iterator->end_rmap = __gfn_to_rmap(iterator->end_gfn, level, 1467 iterator->slot); 1468 } 1469 1470 static void 1471 slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator, 1472 struct kvm_memory_slot *slot, int start_level, 1473 int end_level, gfn_t start_gfn, gfn_t end_gfn) 1474 { 1475 iterator->slot = slot; 1476 iterator->start_level = start_level; 1477 iterator->end_level = end_level; 1478 iterator->start_gfn = start_gfn; 1479 iterator->end_gfn = end_gfn; 1480 1481 rmap_walk_init_level(iterator, iterator->start_level); 1482 } 1483 1484 static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator) 1485 { 1486 return !!iterator->rmap; 1487 } 1488 1489 static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator) 1490 { 1491 if (++iterator->rmap <= iterator->end_rmap) { 1492 iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level)); 1493 return; 1494 } 1495 1496 if (++iterator->level > iterator->end_level) { 1497 iterator->rmap = NULL; 1498 return; 1499 } 1500 1501 rmap_walk_init_level(iterator, iterator->level); 1502 } 1503 1504 #define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_, \ 1505 _start_gfn, _end_gfn, _iter_) \ 1506 for (slot_rmap_walk_init(_iter_, _slot_, _start_level_, \ 1507 _end_level_, _start_gfn, _end_gfn); \ 1508 slot_rmap_walk_okay(_iter_); \ 1509 slot_rmap_walk_next(_iter_)) 1510 1511 typedef bool (*rmap_handler_t)(struct kvm *kvm, struct kvm_rmap_head *rmap_head, 1512 struct kvm_memory_slot *slot, gfn_t gfn, 1513 int level, pte_t pte); 1514 1515 static __always_inline bool kvm_handle_gfn_range(struct kvm *kvm, 1516 struct kvm_gfn_range *range, 1517 rmap_handler_t handler) 1518 { 1519 struct slot_rmap_walk_iterator iterator; 1520 bool ret = false; 1521 1522 for_each_slot_rmap_range(range->slot, PG_LEVEL_4K, KVM_MAX_HUGEPAGE_LEVEL, 1523 range->start, range->end - 1, &iterator) 1524 ret |= handler(kvm, iterator.rmap, range->slot, iterator.gfn, 1525 iterator.level, range->pte); 1526 1527 return ret; 1528 } 1529 1530 bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range) 1531 { 1532 bool flush = false; 1533 1534 if (kvm_memslots_have_rmaps(kvm)) 1535 flush = kvm_handle_gfn_range(kvm, range, kvm_unmap_rmapp); 1536 1537 if (is_tdp_mmu_enabled(kvm)) 1538 flush |= kvm_tdp_mmu_unmap_gfn_range(kvm, range, flush); 1539 1540 return flush; 1541 } 1542 1543 bool kvm_set_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range) 1544 { 1545 bool flush = false; 1546 1547 if (kvm_memslots_have_rmaps(kvm)) 1548 flush = kvm_handle_gfn_range(kvm, range, kvm_set_pte_rmapp); 1549 1550 if (is_tdp_mmu_enabled(kvm)) 1551 flush |= kvm_tdp_mmu_set_spte_gfn(kvm, range); 1552 1553 return flush; 1554 } 1555 1556 static bool kvm_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head, 1557 struct kvm_memory_slot *slot, gfn_t gfn, int level, 1558 pte_t unused) 1559 { 1560 u64 *sptep; 1561 struct rmap_iterator iter; 1562 int young = 0; 1563 1564 for_each_rmap_spte(rmap_head, &iter, sptep) 1565 young |= mmu_spte_age(sptep); 1566 1567 return young; 1568 } 1569 1570 static bool kvm_test_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head, 1571 struct kvm_memory_slot *slot, gfn_t gfn, 1572 int level, pte_t unused) 1573 { 1574 u64 *sptep; 1575 struct rmap_iterator iter; 1576 1577 for_each_rmap_spte(rmap_head, &iter, sptep) 1578 if (is_accessed_spte(*sptep)) 1579 return 1; 1580 return 0; 1581 } 1582 1583 #define RMAP_RECYCLE_THRESHOLD 1000 1584 1585 static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn) 1586 { 1587 struct kvm_rmap_head *rmap_head; 1588 struct kvm_mmu_page *sp; 1589 1590 sp = sptep_to_sp(spte); 1591 1592 rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp); 1593 1594 kvm_unmap_rmapp(vcpu->kvm, rmap_head, NULL, gfn, sp->role.level, __pte(0)); 1595 kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn, 1596 KVM_PAGES_PER_HPAGE(sp->role.level)); 1597 } 1598 1599 bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range) 1600 { 1601 bool young = false; 1602 1603 if (kvm_memslots_have_rmaps(kvm)) 1604 young = kvm_handle_gfn_range(kvm, range, kvm_age_rmapp); 1605 1606 if (is_tdp_mmu_enabled(kvm)) 1607 young |= kvm_tdp_mmu_age_gfn_range(kvm, range); 1608 1609 return young; 1610 } 1611 1612 bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range) 1613 { 1614 bool young = false; 1615 1616 if (kvm_memslots_have_rmaps(kvm)) 1617 young = kvm_handle_gfn_range(kvm, range, kvm_test_age_rmapp); 1618 1619 if (is_tdp_mmu_enabled(kvm)) 1620 young |= kvm_tdp_mmu_test_age_gfn(kvm, range); 1621 1622 return young; 1623 } 1624 1625 #ifdef MMU_DEBUG 1626 static int is_empty_shadow_page(u64 *spt) 1627 { 1628 u64 *pos; 1629 u64 *end; 1630 1631 for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++) 1632 if (is_shadow_present_pte(*pos)) { 1633 printk(KERN_ERR "%s: %p %llx\n", __func__, 1634 pos, *pos); 1635 return 0; 1636 } 1637 return 1; 1638 } 1639 #endif 1640 1641 /* 1642 * This value is the sum of all of the kvm instances's 1643 * kvm->arch.n_used_mmu_pages values. We need a global, 1644 * aggregate version in order to make the slab shrinker 1645 * faster 1646 */ 1647 static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, unsigned long nr) 1648 { 1649 kvm->arch.n_used_mmu_pages += nr; 1650 percpu_counter_add(&kvm_total_used_mmu_pages, nr); 1651 } 1652 1653 static void kvm_mmu_free_page(struct kvm_mmu_page *sp) 1654 { 1655 MMU_WARN_ON(!is_empty_shadow_page(sp->spt)); 1656 hlist_del(&sp->hash_link); 1657 list_del(&sp->link); 1658 free_page((unsigned long)sp->spt); 1659 if (!sp->role.direct) 1660 free_page((unsigned long)sp->gfns); 1661 kmem_cache_free(mmu_page_header_cache, sp); 1662 } 1663 1664 static unsigned kvm_page_table_hashfn(gfn_t gfn) 1665 { 1666 return hash_64(gfn, KVM_MMU_HASH_SHIFT); 1667 } 1668 1669 static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu, 1670 struct kvm_mmu_page *sp, u64 *parent_pte) 1671 { 1672 if (!parent_pte) 1673 return; 1674 1675 pte_list_add(vcpu, parent_pte, &sp->parent_ptes); 1676 } 1677 1678 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp, 1679 u64 *parent_pte) 1680 { 1681 __pte_list_remove(parent_pte, &sp->parent_ptes); 1682 } 1683 1684 static void drop_parent_pte(struct kvm_mmu_page *sp, 1685 u64 *parent_pte) 1686 { 1687 mmu_page_remove_parent_pte(sp, parent_pte); 1688 mmu_spte_clear_no_track(parent_pte); 1689 } 1690 1691 static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu, int direct) 1692 { 1693 struct kvm_mmu_page *sp; 1694 1695 sp = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache); 1696 sp->spt = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_shadow_page_cache); 1697 if (!direct) 1698 sp->gfns = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_gfn_array_cache); 1699 set_page_private(virt_to_page(sp->spt), (unsigned long)sp); 1700 1701 /* 1702 * active_mmu_pages must be a FIFO list, as kvm_zap_obsolete_pages() 1703 * depends on valid pages being added to the head of the list. See 1704 * comments in kvm_zap_obsolete_pages(). 1705 */ 1706 sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen; 1707 list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages); 1708 kvm_mod_used_mmu_pages(vcpu->kvm, +1); 1709 return sp; 1710 } 1711 1712 static void mark_unsync(u64 *spte); 1713 static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp) 1714 { 1715 u64 *sptep; 1716 struct rmap_iterator iter; 1717 1718 for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) { 1719 mark_unsync(sptep); 1720 } 1721 } 1722 1723 static void mark_unsync(u64 *spte) 1724 { 1725 struct kvm_mmu_page *sp; 1726 unsigned int index; 1727 1728 sp = sptep_to_sp(spte); 1729 index = spte - sp->spt; 1730 if (__test_and_set_bit(index, sp->unsync_child_bitmap)) 1731 return; 1732 if (sp->unsync_children++) 1733 return; 1734 kvm_mmu_mark_parents_unsync(sp); 1735 } 1736 1737 static int nonpaging_sync_page(struct kvm_vcpu *vcpu, 1738 struct kvm_mmu_page *sp) 1739 { 1740 return 0; 1741 } 1742 1743 #define KVM_PAGE_ARRAY_NR 16 1744 1745 struct kvm_mmu_pages { 1746 struct mmu_page_and_offset { 1747 struct kvm_mmu_page *sp; 1748 unsigned int idx; 1749 } page[KVM_PAGE_ARRAY_NR]; 1750 unsigned int nr; 1751 }; 1752 1753 static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp, 1754 int idx) 1755 { 1756 int i; 1757 1758 if (sp->unsync) 1759 for (i=0; i < pvec->nr; i++) 1760 if (pvec->page[i].sp == sp) 1761 return 0; 1762 1763 pvec->page[pvec->nr].sp = sp; 1764 pvec->page[pvec->nr].idx = idx; 1765 pvec->nr++; 1766 return (pvec->nr == KVM_PAGE_ARRAY_NR); 1767 } 1768 1769 static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx) 1770 { 1771 --sp->unsync_children; 1772 WARN_ON((int)sp->unsync_children < 0); 1773 __clear_bit(idx, sp->unsync_child_bitmap); 1774 } 1775 1776 static int __mmu_unsync_walk(struct kvm_mmu_page *sp, 1777 struct kvm_mmu_pages *pvec) 1778 { 1779 int i, ret, nr_unsync_leaf = 0; 1780 1781 for_each_set_bit(i, sp->unsync_child_bitmap, 512) { 1782 struct kvm_mmu_page *child; 1783 u64 ent = sp->spt[i]; 1784 1785 if (!is_shadow_present_pte(ent) || is_large_pte(ent)) { 1786 clear_unsync_child_bit(sp, i); 1787 continue; 1788 } 1789 1790 child = to_shadow_page(ent & PT64_BASE_ADDR_MASK); 1791 1792 if (child->unsync_children) { 1793 if (mmu_pages_add(pvec, child, i)) 1794 return -ENOSPC; 1795 1796 ret = __mmu_unsync_walk(child, pvec); 1797 if (!ret) { 1798 clear_unsync_child_bit(sp, i); 1799 continue; 1800 } else if (ret > 0) { 1801 nr_unsync_leaf += ret; 1802 } else 1803 return ret; 1804 } else if (child->unsync) { 1805 nr_unsync_leaf++; 1806 if (mmu_pages_add(pvec, child, i)) 1807 return -ENOSPC; 1808 } else 1809 clear_unsync_child_bit(sp, i); 1810 } 1811 1812 return nr_unsync_leaf; 1813 } 1814 1815 #define INVALID_INDEX (-1) 1816 1817 static int mmu_unsync_walk(struct kvm_mmu_page *sp, 1818 struct kvm_mmu_pages *pvec) 1819 { 1820 pvec->nr = 0; 1821 if (!sp->unsync_children) 1822 return 0; 1823 1824 mmu_pages_add(pvec, sp, INVALID_INDEX); 1825 return __mmu_unsync_walk(sp, pvec); 1826 } 1827 1828 static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp) 1829 { 1830 WARN_ON(!sp->unsync); 1831 trace_kvm_mmu_sync_page(sp); 1832 sp->unsync = 0; 1833 --kvm->stat.mmu_unsync; 1834 } 1835 1836 static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp, 1837 struct list_head *invalid_list); 1838 static void kvm_mmu_commit_zap_page(struct kvm *kvm, 1839 struct list_head *invalid_list); 1840 1841 #define for_each_valid_sp(_kvm, _sp, _list) \ 1842 hlist_for_each_entry(_sp, _list, hash_link) \ 1843 if (is_obsolete_sp((_kvm), (_sp))) { \ 1844 } else 1845 1846 #define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn) \ 1847 for_each_valid_sp(_kvm, _sp, \ 1848 &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)]) \ 1849 if ((_sp)->gfn != (_gfn) || (_sp)->role.direct) {} else 1850 1851 static bool kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp, 1852 struct list_head *invalid_list) 1853 { 1854 if (vcpu->arch.mmu->sync_page(vcpu, sp) == 0) { 1855 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list); 1856 return false; 1857 } 1858 1859 return true; 1860 } 1861 1862 static bool kvm_mmu_remote_flush_or_zap(struct kvm *kvm, 1863 struct list_head *invalid_list, 1864 bool remote_flush) 1865 { 1866 if (!remote_flush && list_empty(invalid_list)) 1867 return false; 1868 1869 if (!list_empty(invalid_list)) 1870 kvm_mmu_commit_zap_page(kvm, invalid_list); 1871 else 1872 kvm_flush_remote_tlbs(kvm); 1873 return true; 1874 } 1875 1876 static void kvm_mmu_flush_or_zap(struct kvm_vcpu *vcpu, 1877 struct list_head *invalid_list, 1878 bool remote_flush, bool local_flush) 1879 { 1880 if (kvm_mmu_remote_flush_or_zap(vcpu->kvm, invalid_list, remote_flush)) 1881 return; 1882 1883 if (local_flush) 1884 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 1885 } 1886 1887 #ifdef CONFIG_KVM_MMU_AUDIT 1888 #include "mmu_audit.c" 1889 #else 1890 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { } 1891 static void mmu_audit_disable(void) { } 1892 #endif 1893 1894 static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp) 1895 { 1896 return sp->role.invalid || 1897 unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen); 1898 } 1899 1900 struct mmu_page_path { 1901 struct kvm_mmu_page *parent[PT64_ROOT_MAX_LEVEL]; 1902 unsigned int idx[PT64_ROOT_MAX_LEVEL]; 1903 }; 1904 1905 #define for_each_sp(pvec, sp, parents, i) \ 1906 for (i = mmu_pages_first(&pvec, &parents); \ 1907 i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \ 1908 i = mmu_pages_next(&pvec, &parents, i)) 1909 1910 static int mmu_pages_next(struct kvm_mmu_pages *pvec, 1911 struct mmu_page_path *parents, 1912 int i) 1913 { 1914 int n; 1915 1916 for (n = i+1; n < pvec->nr; n++) { 1917 struct kvm_mmu_page *sp = pvec->page[n].sp; 1918 unsigned idx = pvec->page[n].idx; 1919 int level = sp->role.level; 1920 1921 parents->idx[level-1] = idx; 1922 if (level == PG_LEVEL_4K) 1923 break; 1924 1925 parents->parent[level-2] = sp; 1926 } 1927 1928 return n; 1929 } 1930 1931 static int mmu_pages_first(struct kvm_mmu_pages *pvec, 1932 struct mmu_page_path *parents) 1933 { 1934 struct kvm_mmu_page *sp; 1935 int level; 1936 1937 if (pvec->nr == 0) 1938 return 0; 1939 1940 WARN_ON(pvec->page[0].idx != INVALID_INDEX); 1941 1942 sp = pvec->page[0].sp; 1943 level = sp->role.level; 1944 WARN_ON(level == PG_LEVEL_4K); 1945 1946 parents->parent[level-2] = sp; 1947 1948 /* Also set up a sentinel. Further entries in pvec are all 1949 * children of sp, so this element is never overwritten. 1950 */ 1951 parents->parent[level-1] = NULL; 1952 return mmu_pages_next(pvec, parents, 0); 1953 } 1954 1955 static void mmu_pages_clear_parents(struct mmu_page_path *parents) 1956 { 1957 struct kvm_mmu_page *sp; 1958 unsigned int level = 0; 1959 1960 do { 1961 unsigned int idx = parents->idx[level]; 1962 sp = parents->parent[level]; 1963 if (!sp) 1964 return; 1965 1966 WARN_ON(idx == INVALID_INDEX); 1967 clear_unsync_child_bit(sp, idx); 1968 level++; 1969 } while (!sp->unsync_children); 1970 } 1971 1972 static void mmu_sync_children(struct kvm_vcpu *vcpu, 1973 struct kvm_mmu_page *parent) 1974 { 1975 int i; 1976 struct kvm_mmu_page *sp; 1977 struct mmu_page_path parents; 1978 struct kvm_mmu_pages pages; 1979 LIST_HEAD(invalid_list); 1980 bool flush = false; 1981 1982 while (mmu_unsync_walk(parent, &pages)) { 1983 bool protected = false; 1984 1985 for_each_sp(pages, sp, parents, i) 1986 protected |= rmap_write_protect(vcpu, sp->gfn); 1987 1988 if (protected) { 1989 kvm_flush_remote_tlbs(vcpu->kvm); 1990 flush = false; 1991 } 1992 1993 for_each_sp(pages, sp, parents, i) { 1994 kvm_unlink_unsync_page(vcpu->kvm, sp); 1995 flush |= kvm_sync_page(vcpu, sp, &invalid_list); 1996 mmu_pages_clear_parents(&parents); 1997 } 1998 if (need_resched() || rwlock_needbreak(&vcpu->kvm->mmu_lock)) { 1999 kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush); 2000 cond_resched_rwlock_write(&vcpu->kvm->mmu_lock); 2001 flush = false; 2002 } 2003 } 2004 2005 kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush); 2006 } 2007 2008 static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp) 2009 { 2010 atomic_set(&sp->write_flooding_count, 0); 2011 } 2012 2013 static void clear_sp_write_flooding_count(u64 *spte) 2014 { 2015 __clear_sp_write_flooding_count(sptep_to_sp(spte)); 2016 } 2017 2018 static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu, 2019 gfn_t gfn, 2020 gva_t gaddr, 2021 unsigned level, 2022 int direct, 2023 unsigned int access) 2024 { 2025 bool direct_mmu = vcpu->arch.mmu->direct_map; 2026 union kvm_mmu_page_role role; 2027 struct hlist_head *sp_list; 2028 unsigned quadrant; 2029 struct kvm_mmu_page *sp; 2030 int collisions = 0; 2031 LIST_HEAD(invalid_list); 2032 2033 role = vcpu->arch.mmu->mmu_role.base; 2034 role.level = level; 2035 role.direct = direct; 2036 if (role.direct) 2037 role.gpte_is_8_bytes = true; 2038 role.access = access; 2039 if (!direct_mmu && vcpu->arch.mmu->root_level <= PT32_ROOT_LEVEL) { 2040 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level)); 2041 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1; 2042 role.quadrant = quadrant; 2043 } 2044 2045 sp_list = &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]; 2046 for_each_valid_sp(vcpu->kvm, sp, sp_list) { 2047 if (sp->gfn != gfn) { 2048 collisions++; 2049 continue; 2050 } 2051 2052 if (sp->role.word != role.word) { 2053 /* 2054 * If the guest is creating an upper-level page, zap 2055 * unsync pages for the same gfn. While it's possible 2056 * the guest is using recursive page tables, in all 2057 * likelihood the guest has stopped using the unsync 2058 * page and is installing a completely unrelated page. 2059 * Unsync pages must not be left as is, because the new 2060 * upper-level page will be write-protected. 2061 */ 2062 if (level > PG_LEVEL_4K && sp->unsync) 2063 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, 2064 &invalid_list); 2065 continue; 2066 } 2067 2068 if (direct_mmu) 2069 goto trace_get_page; 2070 2071 if (sp->unsync) { 2072 /* 2073 * The page is good, but is stale. kvm_sync_page does 2074 * get the latest guest state, but (unlike mmu_unsync_children) 2075 * it doesn't write-protect the page or mark it synchronized! 2076 * This way the validity of the mapping is ensured, but the 2077 * overhead of write protection is not incurred until the 2078 * guest invalidates the TLB mapping. This allows multiple 2079 * SPs for a single gfn to be unsync. 2080 * 2081 * If the sync fails, the page is zapped. If so, break 2082 * in order to rebuild it. 2083 */ 2084 if (!kvm_sync_page(vcpu, sp, &invalid_list)) 2085 break; 2086 2087 WARN_ON(!list_empty(&invalid_list)); 2088 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 2089 } 2090 2091 if (sp->unsync_children) 2092 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu); 2093 2094 __clear_sp_write_flooding_count(sp); 2095 2096 trace_get_page: 2097 trace_kvm_mmu_get_page(sp, false); 2098 goto out; 2099 } 2100 2101 ++vcpu->kvm->stat.mmu_cache_miss; 2102 2103 sp = kvm_mmu_alloc_page(vcpu, direct); 2104 2105 sp->gfn = gfn; 2106 sp->role = role; 2107 hlist_add_head(&sp->hash_link, sp_list); 2108 if (!direct) { 2109 account_shadowed(vcpu->kvm, sp); 2110 if (level == PG_LEVEL_4K && rmap_write_protect(vcpu, gfn)) 2111 kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn, 1); 2112 } 2113 trace_kvm_mmu_get_page(sp, true); 2114 out: 2115 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list); 2116 2117 if (collisions > vcpu->kvm->stat.max_mmu_page_hash_collisions) 2118 vcpu->kvm->stat.max_mmu_page_hash_collisions = collisions; 2119 return sp; 2120 } 2121 2122 static void shadow_walk_init_using_root(struct kvm_shadow_walk_iterator *iterator, 2123 struct kvm_vcpu *vcpu, hpa_t root, 2124 u64 addr) 2125 { 2126 iterator->addr = addr; 2127 iterator->shadow_addr = root; 2128 iterator->level = vcpu->arch.mmu->shadow_root_level; 2129 2130 if (iterator->level == PT64_ROOT_4LEVEL && 2131 vcpu->arch.mmu->root_level < PT64_ROOT_4LEVEL && 2132 !vcpu->arch.mmu->direct_map) 2133 --iterator->level; 2134 2135 if (iterator->level == PT32E_ROOT_LEVEL) { 2136 /* 2137 * prev_root is currently only used for 64-bit hosts. So only 2138 * the active root_hpa is valid here. 2139 */ 2140 BUG_ON(root != vcpu->arch.mmu->root_hpa); 2141 2142 iterator->shadow_addr 2143 = vcpu->arch.mmu->pae_root[(addr >> 30) & 3]; 2144 iterator->shadow_addr &= PT64_BASE_ADDR_MASK; 2145 --iterator->level; 2146 if (!iterator->shadow_addr) 2147 iterator->level = 0; 2148 } 2149 } 2150 2151 static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator, 2152 struct kvm_vcpu *vcpu, u64 addr) 2153 { 2154 shadow_walk_init_using_root(iterator, vcpu, vcpu->arch.mmu->root_hpa, 2155 addr); 2156 } 2157 2158 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator) 2159 { 2160 if (iterator->level < PG_LEVEL_4K) 2161 return false; 2162 2163 iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level); 2164 iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index; 2165 return true; 2166 } 2167 2168 static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator, 2169 u64 spte) 2170 { 2171 if (is_last_spte(spte, iterator->level)) { 2172 iterator->level = 0; 2173 return; 2174 } 2175 2176 iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK; 2177 --iterator->level; 2178 } 2179 2180 static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator) 2181 { 2182 __shadow_walk_next(iterator, *iterator->sptep); 2183 } 2184 2185 static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep, 2186 struct kvm_mmu_page *sp) 2187 { 2188 u64 spte; 2189 2190 BUILD_BUG_ON(VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK); 2191 2192 spte = make_nonleaf_spte(sp->spt, sp_ad_disabled(sp)); 2193 2194 mmu_spte_set(sptep, spte); 2195 2196 mmu_page_add_parent_pte(vcpu, sp, sptep); 2197 2198 if (sp->unsync_children || sp->unsync) 2199 mark_unsync(sptep); 2200 } 2201 2202 static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep, 2203 unsigned direct_access) 2204 { 2205 if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) { 2206 struct kvm_mmu_page *child; 2207 2208 /* 2209 * For the direct sp, if the guest pte's dirty bit 2210 * changed form clean to dirty, it will corrupt the 2211 * sp's access: allow writable in the read-only sp, 2212 * so we should update the spte at this point to get 2213 * a new sp with the correct access. 2214 */ 2215 child = to_shadow_page(*sptep & PT64_BASE_ADDR_MASK); 2216 if (child->role.access == direct_access) 2217 return; 2218 2219 drop_parent_pte(child, sptep); 2220 kvm_flush_remote_tlbs_with_address(vcpu->kvm, child->gfn, 1); 2221 } 2222 } 2223 2224 /* Returns the number of zapped non-leaf child shadow pages. */ 2225 static int mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp, 2226 u64 *spte, struct list_head *invalid_list) 2227 { 2228 u64 pte; 2229 struct kvm_mmu_page *child; 2230 2231 pte = *spte; 2232 if (is_shadow_present_pte(pte)) { 2233 if (is_last_spte(pte, sp->role.level)) { 2234 drop_spte(kvm, spte); 2235 if (is_large_pte(pte)) 2236 --kvm->stat.lpages; 2237 } else { 2238 child = to_shadow_page(pte & PT64_BASE_ADDR_MASK); 2239 drop_parent_pte(child, spte); 2240 2241 /* 2242 * Recursively zap nested TDP SPs, parentless SPs are 2243 * unlikely to be used again in the near future. This 2244 * avoids retaining a large number of stale nested SPs. 2245 */ 2246 if (tdp_enabled && invalid_list && 2247 child->role.guest_mode && !child->parent_ptes.val) 2248 return kvm_mmu_prepare_zap_page(kvm, child, 2249 invalid_list); 2250 } 2251 } else if (is_mmio_spte(pte)) { 2252 mmu_spte_clear_no_track(spte); 2253 } 2254 return 0; 2255 } 2256 2257 static int kvm_mmu_page_unlink_children(struct kvm *kvm, 2258 struct kvm_mmu_page *sp, 2259 struct list_head *invalid_list) 2260 { 2261 int zapped = 0; 2262 unsigned i; 2263 2264 for (i = 0; i < PT64_ENT_PER_PAGE; ++i) 2265 zapped += mmu_page_zap_pte(kvm, sp, sp->spt + i, invalid_list); 2266 2267 return zapped; 2268 } 2269 2270 static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp) 2271 { 2272 u64 *sptep; 2273 struct rmap_iterator iter; 2274 2275 while ((sptep = rmap_get_first(&sp->parent_ptes, &iter))) 2276 drop_parent_pte(sp, sptep); 2277 } 2278 2279 static int mmu_zap_unsync_children(struct kvm *kvm, 2280 struct kvm_mmu_page *parent, 2281 struct list_head *invalid_list) 2282 { 2283 int i, zapped = 0; 2284 struct mmu_page_path parents; 2285 struct kvm_mmu_pages pages; 2286 2287 if (parent->role.level == PG_LEVEL_4K) 2288 return 0; 2289 2290 while (mmu_unsync_walk(parent, &pages)) { 2291 struct kvm_mmu_page *sp; 2292 2293 for_each_sp(pages, sp, parents, i) { 2294 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list); 2295 mmu_pages_clear_parents(&parents); 2296 zapped++; 2297 } 2298 } 2299 2300 return zapped; 2301 } 2302 2303 static bool __kvm_mmu_prepare_zap_page(struct kvm *kvm, 2304 struct kvm_mmu_page *sp, 2305 struct list_head *invalid_list, 2306 int *nr_zapped) 2307 { 2308 bool list_unstable; 2309 2310 trace_kvm_mmu_prepare_zap_page(sp); 2311 ++kvm->stat.mmu_shadow_zapped; 2312 *nr_zapped = mmu_zap_unsync_children(kvm, sp, invalid_list); 2313 *nr_zapped += kvm_mmu_page_unlink_children(kvm, sp, invalid_list); 2314 kvm_mmu_unlink_parents(kvm, sp); 2315 2316 /* Zapping children means active_mmu_pages has become unstable. */ 2317 list_unstable = *nr_zapped; 2318 2319 if (!sp->role.invalid && !sp->role.direct) 2320 unaccount_shadowed(kvm, sp); 2321 2322 if (sp->unsync) 2323 kvm_unlink_unsync_page(kvm, sp); 2324 if (!sp->root_count) { 2325 /* Count self */ 2326 (*nr_zapped)++; 2327 2328 /* 2329 * Already invalid pages (previously active roots) are not on 2330 * the active page list. See list_del() in the "else" case of 2331 * !sp->root_count. 2332 */ 2333 if (sp->role.invalid) 2334 list_add(&sp->link, invalid_list); 2335 else 2336 list_move(&sp->link, invalid_list); 2337 kvm_mod_used_mmu_pages(kvm, -1); 2338 } else { 2339 /* 2340 * Remove the active root from the active page list, the root 2341 * will be explicitly freed when the root_count hits zero. 2342 */ 2343 list_del(&sp->link); 2344 2345 /* 2346 * Obsolete pages cannot be used on any vCPUs, see the comment 2347 * in kvm_mmu_zap_all_fast(). Note, is_obsolete_sp() also 2348 * treats invalid shadow pages as being obsolete. 2349 */ 2350 if (!is_obsolete_sp(kvm, sp)) 2351 kvm_reload_remote_mmus(kvm); 2352 } 2353 2354 if (sp->lpage_disallowed) 2355 unaccount_huge_nx_page(kvm, sp); 2356 2357 sp->role.invalid = 1; 2358 return list_unstable; 2359 } 2360 2361 static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp, 2362 struct list_head *invalid_list) 2363 { 2364 int nr_zapped; 2365 2366 __kvm_mmu_prepare_zap_page(kvm, sp, invalid_list, &nr_zapped); 2367 return nr_zapped; 2368 } 2369 2370 static void kvm_mmu_commit_zap_page(struct kvm *kvm, 2371 struct list_head *invalid_list) 2372 { 2373 struct kvm_mmu_page *sp, *nsp; 2374 2375 if (list_empty(invalid_list)) 2376 return; 2377 2378 /* 2379 * We need to make sure everyone sees our modifications to 2380 * the page tables and see changes to vcpu->mode here. The barrier 2381 * in the kvm_flush_remote_tlbs() achieves this. This pairs 2382 * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end. 2383 * 2384 * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit 2385 * guest mode and/or lockless shadow page table walks. 2386 */ 2387 kvm_flush_remote_tlbs(kvm); 2388 2389 list_for_each_entry_safe(sp, nsp, invalid_list, link) { 2390 WARN_ON(!sp->role.invalid || sp->root_count); 2391 kvm_mmu_free_page(sp); 2392 } 2393 } 2394 2395 static unsigned long kvm_mmu_zap_oldest_mmu_pages(struct kvm *kvm, 2396 unsigned long nr_to_zap) 2397 { 2398 unsigned long total_zapped = 0; 2399 struct kvm_mmu_page *sp, *tmp; 2400 LIST_HEAD(invalid_list); 2401 bool unstable; 2402 int nr_zapped; 2403 2404 if (list_empty(&kvm->arch.active_mmu_pages)) 2405 return 0; 2406 2407 restart: 2408 list_for_each_entry_safe_reverse(sp, tmp, &kvm->arch.active_mmu_pages, link) { 2409 /* 2410 * Don't zap active root pages, the page itself can't be freed 2411 * and zapping it will just force vCPUs to realloc and reload. 2412 */ 2413 if (sp->root_count) 2414 continue; 2415 2416 unstable = __kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list, 2417 &nr_zapped); 2418 total_zapped += nr_zapped; 2419 if (total_zapped >= nr_to_zap) 2420 break; 2421 2422 if (unstable) 2423 goto restart; 2424 } 2425 2426 kvm_mmu_commit_zap_page(kvm, &invalid_list); 2427 2428 kvm->stat.mmu_recycled += total_zapped; 2429 return total_zapped; 2430 } 2431 2432 static inline unsigned long kvm_mmu_available_pages(struct kvm *kvm) 2433 { 2434 if (kvm->arch.n_max_mmu_pages > kvm->arch.n_used_mmu_pages) 2435 return kvm->arch.n_max_mmu_pages - 2436 kvm->arch.n_used_mmu_pages; 2437 2438 return 0; 2439 } 2440 2441 static int make_mmu_pages_available(struct kvm_vcpu *vcpu) 2442 { 2443 unsigned long avail = kvm_mmu_available_pages(vcpu->kvm); 2444 2445 if (likely(avail >= KVM_MIN_FREE_MMU_PAGES)) 2446 return 0; 2447 2448 kvm_mmu_zap_oldest_mmu_pages(vcpu->kvm, KVM_REFILL_PAGES - avail); 2449 2450 /* 2451 * Note, this check is intentionally soft, it only guarantees that one 2452 * page is available, while the caller may end up allocating as many as 2453 * four pages, e.g. for PAE roots or for 5-level paging. Temporarily 2454 * exceeding the (arbitrary by default) limit will not harm the host, 2455 * being too aggressive may unnecessarily kill the guest, and getting an 2456 * exact count is far more trouble than it's worth, especially in the 2457 * page fault paths. 2458 */ 2459 if (!kvm_mmu_available_pages(vcpu->kvm)) 2460 return -ENOSPC; 2461 return 0; 2462 } 2463 2464 /* 2465 * Changing the number of mmu pages allocated to the vm 2466 * Note: if goal_nr_mmu_pages is too small, you will get dead lock 2467 */ 2468 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long goal_nr_mmu_pages) 2469 { 2470 write_lock(&kvm->mmu_lock); 2471 2472 if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) { 2473 kvm_mmu_zap_oldest_mmu_pages(kvm, kvm->arch.n_used_mmu_pages - 2474 goal_nr_mmu_pages); 2475 2476 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages; 2477 } 2478 2479 kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages; 2480 2481 write_unlock(&kvm->mmu_lock); 2482 } 2483 2484 int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn) 2485 { 2486 struct kvm_mmu_page *sp; 2487 LIST_HEAD(invalid_list); 2488 int r; 2489 2490 pgprintk("%s: looking for gfn %llx\n", __func__, gfn); 2491 r = 0; 2492 write_lock(&kvm->mmu_lock); 2493 for_each_gfn_indirect_valid_sp(kvm, sp, gfn) { 2494 pgprintk("%s: gfn %llx role %x\n", __func__, gfn, 2495 sp->role.word); 2496 r = 1; 2497 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list); 2498 } 2499 kvm_mmu_commit_zap_page(kvm, &invalid_list); 2500 write_unlock(&kvm->mmu_lock); 2501 2502 return r; 2503 } 2504 2505 static int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva) 2506 { 2507 gpa_t gpa; 2508 int r; 2509 2510 if (vcpu->arch.mmu->direct_map) 2511 return 0; 2512 2513 gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL); 2514 2515 r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT); 2516 2517 return r; 2518 } 2519 2520 static void kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp) 2521 { 2522 trace_kvm_mmu_unsync_page(sp); 2523 ++vcpu->kvm->stat.mmu_unsync; 2524 sp->unsync = 1; 2525 2526 kvm_mmu_mark_parents_unsync(sp); 2527 } 2528 2529 /* 2530 * Attempt to unsync any shadow pages that can be reached by the specified gfn, 2531 * KVM is creating a writable mapping for said gfn. Returns 0 if all pages 2532 * were marked unsync (or if there is no shadow page), -EPERM if the SPTE must 2533 * be write-protected. 2534 */ 2535 int mmu_try_to_unsync_pages(struct kvm_vcpu *vcpu, gfn_t gfn, bool can_unsync) 2536 { 2537 struct kvm_mmu_page *sp; 2538 2539 /* 2540 * Force write-protection if the page is being tracked. Note, the page 2541 * track machinery is used to write-protect upper-level shadow pages, 2542 * i.e. this guards the role.level == 4K assertion below! 2543 */ 2544 if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE)) 2545 return -EPERM; 2546 2547 /* 2548 * The page is not write-tracked, mark existing shadow pages unsync 2549 * unless KVM is synchronizing an unsync SP (can_unsync = false). In 2550 * that case, KVM must complete emulation of the guest TLB flush before 2551 * allowing shadow pages to become unsync (writable by the guest). 2552 */ 2553 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) { 2554 if (!can_unsync) 2555 return -EPERM; 2556 2557 if (sp->unsync) 2558 continue; 2559 2560 WARN_ON(sp->role.level != PG_LEVEL_4K); 2561 kvm_unsync_page(vcpu, sp); 2562 } 2563 2564 /* 2565 * We need to ensure that the marking of unsync pages is visible 2566 * before the SPTE is updated to allow writes because 2567 * kvm_mmu_sync_roots() checks the unsync flags without holding 2568 * the MMU lock and so can race with this. If the SPTE was updated 2569 * before the page had been marked as unsync-ed, something like the 2570 * following could happen: 2571 * 2572 * CPU 1 CPU 2 2573 * --------------------------------------------------------------------- 2574 * 1.2 Host updates SPTE 2575 * to be writable 2576 * 2.1 Guest writes a GPTE for GVA X. 2577 * (GPTE being in the guest page table shadowed 2578 * by the SP from CPU 1.) 2579 * This reads SPTE during the page table walk. 2580 * Since SPTE.W is read as 1, there is no 2581 * fault. 2582 * 2583 * 2.2 Guest issues TLB flush. 2584 * That causes a VM Exit. 2585 * 2586 * 2.3 Walking of unsync pages sees sp->unsync is 2587 * false and skips the page. 2588 * 2589 * 2.4 Guest accesses GVA X. 2590 * Since the mapping in the SP was not updated, 2591 * so the old mapping for GVA X incorrectly 2592 * gets used. 2593 * 1.1 Host marks SP 2594 * as unsync 2595 * (sp->unsync = true) 2596 * 2597 * The write barrier below ensures that 1.1 happens before 1.2 and thus 2598 * the situation in 2.4 does not arise. The implicit barrier in 2.2 2599 * pairs with this write barrier. 2600 */ 2601 smp_wmb(); 2602 2603 return 0; 2604 } 2605 2606 static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep, 2607 unsigned int pte_access, int level, 2608 gfn_t gfn, kvm_pfn_t pfn, bool speculative, 2609 bool can_unsync, bool host_writable) 2610 { 2611 u64 spte; 2612 struct kvm_mmu_page *sp; 2613 int ret; 2614 2615 sp = sptep_to_sp(sptep); 2616 2617 ret = make_spte(vcpu, pte_access, level, gfn, pfn, *sptep, speculative, 2618 can_unsync, host_writable, sp_ad_disabled(sp), &spte); 2619 2620 if (spte & PT_WRITABLE_MASK) 2621 kvm_vcpu_mark_page_dirty(vcpu, gfn); 2622 2623 if (*sptep == spte) 2624 ret |= SET_SPTE_SPURIOUS; 2625 else if (mmu_spte_update(sptep, spte)) 2626 ret |= SET_SPTE_NEED_REMOTE_TLB_FLUSH; 2627 return ret; 2628 } 2629 2630 static int mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep, 2631 unsigned int pte_access, bool write_fault, int level, 2632 gfn_t gfn, kvm_pfn_t pfn, bool speculative, 2633 bool host_writable) 2634 { 2635 int was_rmapped = 0; 2636 int rmap_count; 2637 int set_spte_ret; 2638 int ret = RET_PF_FIXED; 2639 bool flush = false; 2640 2641 pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__, 2642 *sptep, write_fault, gfn); 2643 2644 if (unlikely(is_noslot_pfn(pfn))) { 2645 mark_mmio_spte(vcpu, sptep, gfn, pte_access); 2646 return RET_PF_EMULATE; 2647 } 2648 2649 if (is_shadow_present_pte(*sptep)) { 2650 /* 2651 * If we overwrite a PTE page pointer with a 2MB PMD, unlink 2652 * the parent of the now unreachable PTE. 2653 */ 2654 if (level > PG_LEVEL_4K && !is_large_pte(*sptep)) { 2655 struct kvm_mmu_page *child; 2656 u64 pte = *sptep; 2657 2658 child = to_shadow_page(pte & PT64_BASE_ADDR_MASK); 2659 drop_parent_pte(child, sptep); 2660 flush = true; 2661 } else if (pfn != spte_to_pfn(*sptep)) { 2662 pgprintk("hfn old %llx new %llx\n", 2663 spte_to_pfn(*sptep), pfn); 2664 drop_spte(vcpu->kvm, sptep); 2665 flush = true; 2666 } else 2667 was_rmapped = 1; 2668 } 2669 2670 set_spte_ret = set_spte(vcpu, sptep, pte_access, level, gfn, pfn, 2671 speculative, true, host_writable); 2672 if (set_spte_ret & SET_SPTE_WRITE_PROTECTED_PT) { 2673 if (write_fault) 2674 ret = RET_PF_EMULATE; 2675 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 2676 } 2677 2678 if (set_spte_ret & SET_SPTE_NEED_REMOTE_TLB_FLUSH || flush) 2679 kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn, 2680 KVM_PAGES_PER_HPAGE(level)); 2681 2682 /* 2683 * The fault is fully spurious if and only if the new SPTE and old SPTE 2684 * are identical, and emulation is not required. 2685 */ 2686 if ((set_spte_ret & SET_SPTE_SPURIOUS) && ret == RET_PF_FIXED) { 2687 WARN_ON_ONCE(!was_rmapped); 2688 return RET_PF_SPURIOUS; 2689 } 2690 2691 pgprintk("%s: setting spte %llx\n", __func__, *sptep); 2692 trace_kvm_mmu_set_spte(level, gfn, sptep); 2693 if (!was_rmapped && is_large_pte(*sptep)) 2694 ++vcpu->kvm->stat.lpages; 2695 2696 if (is_shadow_present_pte(*sptep)) { 2697 if (!was_rmapped) { 2698 rmap_count = rmap_add(vcpu, sptep, gfn); 2699 if (rmap_count > RMAP_RECYCLE_THRESHOLD) 2700 rmap_recycle(vcpu, sptep, gfn); 2701 } 2702 } 2703 2704 return ret; 2705 } 2706 2707 static kvm_pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn, 2708 bool no_dirty_log) 2709 { 2710 struct kvm_memory_slot *slot; 2711 2712 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log); 2713 if (!slot) 2714 return KVM_PFN_ERR_FAULT; 2715 2716 return gfn_to_pfn_memslot_atomic(slot, gfn); 2717 } 2718 2719 static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu, 2720 struct kvm_mmu_page *sp, 2721 u64 *start, u64 *end) 2722 { 2723 struct page *pages[PTE_PREFETCH_NUM]; 2724 struct kvm_memory_slot *slot; 2725 unsigned int access = sp->role.access; 2726 int i, ret; 2727 gfn_t gfn; 2728 2729 gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt); 2730 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK); 2731 if (!slot) 2732 return -1; 2733 2734 ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start); 2735 if (ret <= 0) 2736 return -1; 2737 2738 for (i = 0; i < ret; i++, gfn++, start++) { 2739 mmu_set_spte(vcpu, start, access, false, sp->role.level, gfn, 2740 page_to_pfn(pages[i]), true, true); 2741 put_page(pages[i]); 2742 } 2743 2744 return 0; 2745 } 2746 2747 static void __direct_pte_prefetch(struct kvm_vcpu *vcpu, 2748 struct kvm_mmu_page *sp, u64 *sptep) 2749 { 2750 u64 *spte, *start = NULL; 2751 int i; 2752 2753 WARN_ON(!sp->role.direct); 2754 2755 i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1); 2756 spte = sp->spt + i; 2757 2758 for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) { 2759 if (is_shadow_present_pte(*spte) || spte == sptep) { 2760 if (!start) 2761 continue; 2762 if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0) 2763 break; 2764 start = NULL; 2765 } else if (!start) 2766 start = spte; 2767 } 2768 } 2769 2770 static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep) 2771 { 2772 struct kvm_mmu_page *sp; 2773 2774 sp = sptep_to_sp(sptep); 2775 2776 /* 2777 * Without accessed bits, there's no way to distinguish between 2778 * actually accessed translations and prefetched, so disable pte 2779 * prefetch if accessed bits aren't available. 2780 */ 2781 if (sp_ad_disabled(sp)) 2782 return; 2783 2784 if (sp->role.level > PG_LEVEL_4K) 2785 return; 2786 2787 /* 2788 * If addresses are being invalidated, skip prefetching to avoid 2789 * accidentally prefetching those addresses. 2790 */ 2791 if (unlikely(vcpu->kvm->mmu_notifier_count)) 2792 return; 2793 2794 __direct_pte_prefetch(vcpu, sp, sptep); 2795 } 2796 2797 static int host_pfn_mapping_level(struct kvm *kvm, gfn_t gfn, kvm_pfn_t pfn, 2798 const struct kvm_memory_slot *slot) 2799 { 2800 unsigned long hva; 2801 pte_t *pte; 2802 int level; 2803 2804 if (!PageCompound(pfn_to_page(pfn)) && !kvm_is_zone_device_pfn(pfn)) 2805 return PG_LEVEL_4K; 2806 2807 /* 2808 * Note, using the already-retrieved memslot and __gfn_to_hva_memslot() 2809 * is not solely for performance, it's also necessary to avoid the 2810 * "writable" check in __gfn_to_hva_many(), which will always fail on 2811 * read-only memslots due to gfn_to_hva() assuming writes. Earlier 2812 * page fault steps have already verified the guest isn't writing a 2813 * read-only memslot. 2814 */ 2815 hva = __gfn_to_hva_memslot(slot, gfn); 2816 2817 pte = lookup_address_in_mm(kvm->mm, hva, &level); 2818 if (unlikely(!pte)) 2819 return PG_LEVEL_4K; 2820 2821 return level; 2822 } 2823 2824 int kvm_mmu_max_mapping_level(struct kvm *kvm, 2825 const struct kvm_memory_slot *slot, gfn_t gfn, 2826 kvm_pfn_t pfn, int max_level) 2827 { 2828 struct kvm_lpage_info *linfo; 2829 2830 max_level = min(max_level, max_huge_page_level); 2831 for ( ; max_level > PG_LEVEL_4K; max_level--) { 2832 linfo = lpage_info_slot(gfn, slot, max_level); 2833 if (!linfo->disallow_lpage) 2834 break; 2835 } 2836 2837 if (max_level == PG_LEVEL_4K) 2838 return PG_LEVEL_4K; 2839 2840 return host_pfn_mapping_level(kvm, gfn, pfn, slot); 2841 } 2842 2843 int kvm_mmu_hugepage_adjust(struct kvm_vcpu *vcpu, gfn_t gfn, 2844 int max_level, kvm_pfn_t *pfnp, 2845 bool huge_page_disallowed, int *req_level) 2846 { 2847 struct kvm_memory_slot *slot; 2848 kvm_pfn_t pfn = *pfnp; 2849 kvm_pfn_t mask; 2850 int level; 2851 2852 *req_level = PG_LEVEL_4K; 2853 2854 if (unlikely(max_level == PG_LEVEL_4K)) 2855 return PG_LEVEL_4K; 2856 2857 if (is_error_noslot_pfn(pfn) || kvm_is_reserved_pfn(pfn)) 2858 return PG_LEVEL_4K; 2859 2860 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, true); 2861 if (!slot) 2862 return PG_LEVEL_4K; 2863 2864 level = kvm_mmu_max_mapping_level(vcpu->kvm, slot, gfn, pfn, max_level); 2865 if (level == PG_LEVEL_4K) 2866 return level; 2867 2868 *req_level = level = min(level, max_level); 2869 2870 /* 2871 * Enforce the iTLB multihit workaround after capturing the requested 2872 * level, which will be used to do precise, accurate accounting. 2873 */ 2874 if (huge_page_disallowed) 2875 return PG_LEVEL_4K; 2876 2877 /* 2878 * mmu_notifier_retry() was successful and mmu_lock is held, so 2879 * the pmd can't be split from under us. 2880 */ 2881 mask = KVM_PAGES_PER_HPAGE(level) - 1; 2882 VM_BUG_ON((gfn & mask) != (pfn & mask)); 2883 *pfnp = pfn & ~mask; 2884 2885 return level; 2886 } 2887 2888 void disallowed_hugepage_adjust(u64 spte, gfn_t gfn, int cur_level, 2889 kvm_pfn_t *pfnp, int *goal_levelp) 2890 { 2891 int level = *goal_levelp; 2892 2893 if (cur_level == level && level > PG_LEVEL_4K && 2894 is_shadow_present_pte(spte) && 2895 !is_large_pte(spte)) { 2896 /* 2897 * A small SPTE exists for this pfn, but FNAME(fetch) 2898 * and __direct_map would like to create a large PTE 2899 * instead: just force them to go down another level, 2900 * patching back for them into pfn the next 9 bits of 2901 * the address. 2902 */ 2903 u64 page_mask = KVM_PAGES_PER_HPAGE(level) - 2904 KVM_PAGES_PER_HPAGE(level - 1); 2905 *pfnp |= gfn & page_mask; 2906 (*goal_levelp)--; 2907 } 2908 } 2909 2910 static int __direct_map(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code, 2911 int map_writable, int max_level, kvm_pfn_t pfn, 2912 bool prefault, bool is_tdp) 2913 { 2914 bool nx_huge_page_workaround_enabled = is_nx_huge_page_enabled(); 2915 bool write = error_code & PFERR_WRITE_MASK; 2916 bool exec = error_code & PFERR_FETCH_MASK; 2917 bool huge_page_disallowed = exec && nx_huge_page_workaround_enabled; 2918 struct kvm_shadow_walk_iterator it; 2919 struct kvm_mmu_page *sp; 2920 int level, req_level, ret; 2921 gfn_t gfn = gpa >> PAGE_SHIFT; 2922 gfn_t base_gfn = gfn; 2923 2924 level = kvm_mmu_hugepage_adjust(vcpu, gfn, max_level, &pfn, 2925 huge_page_disallowed, &req_level); 2926 2927 trace_kvm_mmu_spte_requested(gpa, level, pfn); 2928 for_each_shadow_entry(vcpu, gpa, it) { 2929 /* 2930 * We cannot overwrite existing page tables with an NX 2931 * large page, as the leaf could be executable. 2932 */ 2933 if (nx_huge_page_workaround_enabled) 2934 disallowed_hugepage_adjust(*it.sptep, gfn, it.level, 2935 &pfn, &level); 2936 2937 base_gfn = gfn & ~(KVM_PAGES_PER_HPAGE(it.level) - 1); 2938 if (it.level == level) 2939 break; 2940 2941 drop_large_spte(vcpu, it.sptep); 2942 if (!is_shadow_present_pte(*it.sptep)) { 2943 sp = kvm_mmu_get_page(vcpu, base_gfn, it.addr, 2944 it.level - 1, true, ACC_ALL); 2945 2946 link_shadow_page(vcpu, it.sptep, sp); 2947 if (is_tdp && huge_page_disallowed && 2948 req_level >= it.level) 2949 account_huge_nx_page(vcpu->kvm, sp); 2950 } 2951 } 2952 2953 ret = mmu_set_spte(vcpu, it.sptep, ACC_ALL, 2954 write, level, base_gfn, pfn, prefault, 2955 map_writable); 2956 if (ret == RET_PF_SPURIOUS) 2957 return ret; 2958 2959 direct_pte_prefetch(vcpu, it.sptep); 2960 ++vcpu->stat.pf_fixed; 2961 return ret; 2962 } 2963 2964 static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk) 2965 { 2966 send_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, PAGE_SHIFT, tsk); 2967 } 2968 2969 static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, kvm_pfn_t pfn) 2970 { 2971 /* 2972 * Do not cache the mmio info caused by writing the readonly gfn 2973 * into the spte otherwise read access on readonly gfn also can 2974 * caused mmio page fault and treat it as mmio access. 2975 */ 2976 if (pfn == KVM_PFN_ERR_RO_FAULT) 2977 return RET_PF_EMULATE; 2978 2979 if (pfn == KVM_PFN_ERR_HWPOISON) { 2980 kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current); 2981 return RET_PF_RETRY; 2982 } 2983 2984 return -EFAULT; 2985 } 2986 2987 static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn, 2988 kvm_pfn_t pfn, unsigned int access, 2989 int *ret_val) 2990 { 2991 /* The pfn is invalid, report the error! */ 2992 if (unlikely(is_error_pfn(pfn))) { 2993 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn); 2994 return true; 2995 } 2996 2997 if (unlikely(is_noslot_pfn(pfn))) { 2998 vcpu_cache_mmio_info(vcpu, gva, gfn, 2999 access & shadow_mmio_access_mask); 3000 /* 3001 * If MMIO caching is disabled, emulate immediately without 3002 * touching the shadow page tables as attempting to install an 3003 * MMIO SPTE will just be an expensive nop. 3004 */ 3005 if (unlikely(!shadow_mmio_value)) { 3006 *ret_val = RET_PF_EMULATE; 3007 return true; 3008 } 3009 } 3010 3011 return false; 3012 } 3013 3014 static bool page_fault_can_be_fast(u32 error_code) 3015 { 3016 /* 3017 * Do not fix the mmio spte with invalid generation number which 3018 * need to be updated by slow page fault path. 3019 */ 3020 if (unlikely(error_code & PFERR_RSVD_MASK)) 3021 return false; 3022 3023 /* See if the page fault is due to an NX violation */ 3024 if (unlikely(((error_code & (PFERR_FETCH_MASK | PFERR_PRESENT_MASK)) 3025 == (PFERR_FETCH_MASK | PFERR_PRESENT_MASK)))) 3026 return false; 3027 3028 /* 3029 * #PF can be fast if: 3030 * 1. The shadow page table entry is not present, which could mean that 3031 * the fault is potentially caused by access tracking (if enabled). 3032 * 2. The shadow page table entry is present and the fault 3033 * is caused by write-protect, that means we just need change the W 3034 * bit of the spte which can be done out of mmu-lock. 3035 * 3036 * However, if access tracking is disabled we know that a non-present 3037 * page must be a genuine page fault where we have to create a new SPTE. 3038 * So, if access tracking is disabled, we return true only for write 3039 * accesses to a present page. 3040 */ 3041 3042 return shadow_acc_track_mask != 0 || 3043 ((error_code & (PFERR_WRITE_MASK | PFERR_PRESENT_MASK)) 3044 == (PFERR_WRITE_MASK | PFERR_PRESENT_MASK)); 3045 } 3046 3047 /* 3048 * Returns true if the SPTE was fixed successfully. Otherwise, 3049 * someone else modified the SPTE from its original value. 3050 */ 3051 static bool 3052 fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp, 3053 u64 *sptep, u64 old_spte, u64 new_spte) 3054 { 3055 gfn_t gfn; 3056 3057 WARN_ON(!sp->role.direct); 3058 3059 /* 3060 * Theoretically we could also set dirty bit (and flush TLB) here in 3061 * order to eliminate unnecessary PML logging. See comments in 3062 * set_spte. But fast_page_fault is very unlikely to happen with PML 3063 * enabled, so we do not do this. This might result in the same GPA 3064 * to be logged in PML buffer again when the write really happens, and 3065 * eventually to be called by mark_page_dirty twice. But it's also no 3066 * harm. This also avoids the TLB flush needed after setting dirty bit 3067 * so non-PML cases won't be impacted. 3068 * 3069 * Compare with set_spte where instead shadow_dirty_mask is set. 3070 */ 3071 if (cmpxchg64(sptep, old_spte, new_spte) != old_spte) 3072 return false; 3073 3074 if (is_writable_pte(new_spte) && !is_writable_pte(old_spte)) { 3075 /* 3076 * The gfn of direct spte is stable since it is 3077 * calculated by sp->gfn. 3078 */ 3079 gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt); 3080 kvm_vcpu_mark_page_dirty(vcpu, gfn); 3081 } 3082 3083 return true; 3084 } 3085 3086 static bool is_access_allowed(u32 fault_err_code, u64 spte) 3087 { 3088 if (fault_err_code & PFERR_FETCH_MASK) 3089 return is_executable_pte(spte); 3090 3091 if (fault_err_code & PFERR_WRITE_MASK) 3092 return is_writable_pte(spte); 3093 3094 /* Fault was on Read access */ 3095 return spte & PT_PRESENT_MASK; 3096 } 3097 3098 /* 3099 * Returns one of RET_PF_INVALID, RET_PF_FIXED or RET_PF_SPURIOUS. 3100 */ 3101 static int fast_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, 3102 u32 error_code) 3103 { 3104 struct kvm_shadow_walk_iterator iterator; 3105 struct kvm_mmu_page *sp; 3106 int ret = RET_PF_INVALID; 3107 u64 spte = 0ull; 3108 uint retry_count = 0; 3109 3110 if (!page_fault_can_be_fast(error_code)) 3111 return ret; 3112 3113 walk_shadow_page_lockless_begin(vcpu); 3114 3115 do { 3116 u64 new_spte; 3117 3118 for_each_shadow_entry_lockless(vcpu, cr2_or_gpa, iterator, spte) 3119 if (!is_shadow_present_pte(spte)) 3120 break; 3121 3122 if (!is_shadow_present_pte(spte)) 3123 break; 3124 3125 sp = sptep_to_sp(iterator.sptep); 3126 if (!is_last_spte(spte, sp->role.level)) 3127 break; 3128 3129 /* 3130 * Check whether the memory access that caused the fault would 3131 * still cause it if it were to be performed right now. If not, 3132 * then this is a spurious fault caused by TLB lazily flushed, 3133 * or some other CPU has already fixed the PTE after the 3134 * current CPU took the fault. 3135 * 3136 * Need not check the access of upper level table entries since 3137 * they are always ACC_ALL. 3138 */ 3139 if (is_access_allowed(error_code, spte)) { 3140 ret = RET_PF_SPURIOUS; 3141 break; 3142 } 3143 3144 new_spte = spte; 3145 3146 if (is_access_track_spte(spte)) 3147 new_spte = restore_acc_track_spte(new_spte); 3148 3149 /* 3150 * Currently, to simplify the code, write-protection can 3151 * be removed in the fast path only if the SPTE was 3152 * write-protected for dirty-logging or access tracking. 3153 */ 3154 if ((error_code & PFERR_WRITE_MASK) && 3155 spte_can_locklessly_be_made_writable(spte)) { 3156 new_spte |= PT_WRITABLE_MASK; 3157 3158 /* 3159 * Do not fix write-permission on the large spte. Since 3160 * we only dirty the first page into the dirty-bitmap in 3161 * fast_pf_fix_direct_spte(), other pages are missed 3162 * if its slot has dirty logging enabled. 3163 * 3164 * Instead, we let the slow page fault path create a 3165 * normal spte to fix the access. 3166 * 3167 * See the comments in kvm_arch_commit_memory_region(). 3168 */ 3169 if (sp->role.level > PG_LEVEL_4K) 3170 break; 3171 } 3172 3173 /* Verify that the fault can be handled in the fast path */ 3174 if (new_spte == spte || 3175 !is_access_allowed(error_code, new_spte)) 3176 break; 3177 3178 /* 3179 * Currently, fast page fault only works for direct mapping 3180 * since the gfn is not stable for indirect shadow page. See 3181 * Documentation/virt/kvm/locking.rst to get more detail. 3182 */ 3183 if (fast_pf_fix_direct_spte(vcpu, sp, iterator.sptep, spte, 3184 new_spte)) { 3185 ret = RET_PF_FIXED; 3186 break; 3187 } 3188 3189 if (++retry_count > 4) { 3190 printk_once(KERN_WARNING 3191 "kvm: Fast #PF retrying more than 4 times.\n"); 3192 break; 3193 } 3194 3195 } while (true); 3196 3197 trace_fast_page_fault(vcpu, cr2_or_gpa, error_code, iterator.sptep, 3198 spte, ret); 3199 walk_shadow_page_lockless_end(vcpu); 3200 3201 return ret; 3202 } 3203 3204 static void mmu_free_root_page(struct kvm *kvm, hpa_t *root_hpa, 3205 struct list_head *invalid_list) 3206 { 3207 struct kvm_mmu_page *sp; 3208 3209 if (!VALID_PAGE(*root_hpa)) 3210 return; 3211 3212 sp = to_shadow_page(*root_hpa & PT64_BASE_ADDR_MASK); 3213 3214 if (is_tdp_mmu_page(sp)) 3215 kvm_tdp_mmu_put_root(kvm, sp, false); 3216 else if (!--sp->root_count && sp->role.invalid) 3217 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list); 3218 3219 *root_hpa = INVALID_PAGE; 3220 } 3221 3222 /* roots_to_free must be some combination of the KVM_MMU_ROOT_* flags */ 3223 void kvm_mmu_free_roots(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, 3224 ulong roots_to_free) 3225 { 3226 struct kvm *kvm = vcpu->kvm; 3227 int i; 3228 LIST_HEAD(invalid_list); 3229 bool free_active_root = roots_to_free & KVM_MMU_ROOT_CURRENT; 3230 3231 BUILD_BUG_ON(KVM_MMU_NUM_PREV_ROOTS >= BITS_PER_LONG); 3232 3233 /* Before acquiring the MMU lock, see if we need to do any real work. */ 3234 if (!(free_active_root && VALID_PAGE(mmu->root_hpa))) { 3235 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 3236 if ((roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) && 3237 VALID_PAGE(mmu->prev_roots[i].hpa)) 3238 break; 3239 3240 if (i == KVM_MMU_NUM_PREV_ROOTS) 3241 return; 3242 } 3243 3244 write_lock(&kvm->mmu_lock); 3245 3246 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 3247 if (roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) 3248 mmu_free_root_page(kvm, &mmu->prev_roots[i].hpa, 3249 &invalid_list); 3250 3251 if (free_active_root) { 3252 if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL && 3253 (mmu->root_level >= PT64_ROOT_4LEVEL || mmu->direct_map)) { 3254 mmu_free_root_page(kvm, &mmu->root_hpa, &invalid_list); 3255 } else if (mmu->pae_root) { 3256 for (i = 0; i < 4; ++i) { 3257 if (!IS_VALID_PAE_ROOT(mmu->pae_root[i])) 3258 continue; 3259 3260 mmu_free_root_page(kvm, &mmu->pae_root[i], 3261 &invalid_list); 3262 mmu->pae_root[i] = INVALID_PAE_ROOT; 3263 } 3264 } 3265 mmu->root_hpa = INVALID_PAGE; 3266 mmu->root_pgd = 0; 3267 } 3268 3269 kvm_mmu_commit_zap_page(kvm, &invalid_list); 3270 write_unlock(&kvm->mmu_lock); 3271 } 3272 EXPORT_SYMBOL_GPL(kvm_mmu_free_roots); 3273 3274 void kvm_mmu_free_guest_mode_roots(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu) 3275 { 3276 unsigned long roots_to_free = 0; 3277 hpa_t root_hpa; 3278 int i; 3279 3280 /* 3281 * This should not be called while L2 is active, L2 can't invalidate 3282 * _only_ its own roots, e.g. INVVPID unconditionally exits. 3283 */ 3284 WARN_ON_ONCE(mmu->mmu_role.base.guest_mode); 3285 3286 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) { 3287 root_hpa = mmu->prev_roots[i].hpa; 3288 if (!VALID_PAGE(root_hpa)) 3289 continue; 3290 3291 if (!to_shadow_page(root_hpa) || 3292 to_shadow_page(root_hpa)->role.guest_mode) 3293 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i); 3294 } 3295 3296 kvm_mmu_free_roots(vcpu, mmu, roots_to_free); 3297 } 3298 EXPORT_SYMBOL_GPL(kvm_mmu_free_guest_mode_roots); 3299 3300 3301 static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn) 3302 { 3303 int ret = 0; 3304 3305 if (!kvm_vcpu_is_visible_gfn(vcpu, root_gfn)) { 3306 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 3307 ret = 1; 3308 } 3309 3310 return ret; 3311 } 3312 3313 static hpa_t mmu_alloc_root(struct kvm_vcpu *vcpu, gfn_t gfn, gva_t gva, 3314 u8 level, bool direct) 3315 { 3316 struct kvm_mmu_page *sp; 3317 3318 sp = kvm_mmu_get_page(vcpu, gfn, gva, level, direct, ACC_ALL); 3319 ++sp->root_count; 3320 3321 return __pa(sp->spt); 3322 } 3323 3324 static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu) 3325 { 3326 struct kvm_mmu *mmu = vcpu->arch.mmu; 3327 u8 shadow_root_level = mmu->shadow_root_level; 3328 hpa_t root; 3329 unsigned i; 3330 int r; 3331 3332 write_lock(&vcpu->kvm->mmu_lock); 3333 r = make_mmu_pages_available(vcpu); 3334 if (r < 0) 3335 goto out_unlock; 3336 3337 if (is_tdp_mmu_enabled(vcpu->kvm)) { 3338 root = kvm_tdp_mmu_get_vcpu_root_hpa(vcpu); 3339 mmu->root_hpa = root; 3340 } else if (shadow_root_level >= PT64_ROOT_4LEVEL) { 3341 root = mmu_alloc_root(vcpu, 0, 0, shadow_root_level, true); 3342 mmu->root_hpa = root; 3343 } else if (shadow_root_level == PT32E_ROOT_LEVEL) { 3344 if (WARN_ON_ONCE(!mmu->pae_root)) { 3345 r = -EIO; 3346 goto out_unlock; 3347 } 3348 3349 for (i = 0; i < 4; ++i) { 3350 WARN_ON_ONCE(IS_VALID_PAE_ROOT(mmu->pae_root[i])); 3351 3352 root = mmu_alloc_root(vcpu, i << (30 - PAGE_SHIFT), 3353 i << 30, PT32_ROOT_LEVEL, true); 3354 mmu->pae_root[i] = root | PT_PRESENT_MASK | 3355 shadow_me_mask; 3356 } 3357 mmu->root_hpa = __pa(mmu->pae_root); 3358 } else { 3359 WARN_ONCE(1, "Bad TDP root level = %d\n", shadow_root_level); 3360 r = -EIO; 3361 goto out_unlock; 3362 } 3363 3364 /* root_pgd is ignored for direct MMUs. */ 3365 mmu->root_pgd = 0; 3366 out_unlock: 3367 write_unlock(&vcpu->kvm->mmu_lock); 3368 return r; 3369 } 3370 3371 static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu) 3372 { 3373 struct kvm_mmu *mmu = vcpu->arch.mmu; 3374 u64 pdptrs[4], pm_mask; 3375 gfn_t root_gfn, root_pgd; 3376 hpa_t root; 3377 unsigned i; 3378 int r; 3379 3380 root_pgd = mmu->get_guest_pgd(vcpu); 3381 root_gfn = root_pgd >> PAGE_SHIFT; 3382 3383 if (mmu_check_root(vcpu, root_gfn)) 3384 return 1; 3385 3386 /* 3387 * On SVM, reading PDPTRs might access guest memory, which might fault 3388 * and thus might sleep. Grab the PDPTRs before acquiring mmu_lock. 3389 */ 3390 if (mmu->root_level == PT32E_ROOT_LEVEL) { 3391 for (i = 0; i < 4; ++i) { 3392 pdptrs[i] = mmu->get_pdptr(vcpu, i); 3393 if (!(pdptrs[i] & PT_PRESENT_MASK)) 3394 continue; 3395 3396 if (mmu_check_root(vcpu, pdptrs[i] >> PAGE_SHIFT)) 3397 return 1; 3398 } 3399 } 3400 3401 r = alloc_all_memslots_rmaps(vcpu->kvm); 3402 if (r) 3403 return r; 3404 3405 write_lock(&vcpu->kvm->mmu_lock); 3406 r = make_mmu_pages_available(vcpu); 3407 if (r < 0) 3408 goto out_unlock; 3409 3410 /* 3411 * Do we shadow a long mode page table? If so we need to 3412 * write-protect the guests page table root. 3413 */ 3414 if (mmu->root_level >= PT64_ROOT_4LEVEL) { 3415 root = mmu_alloc_root(vcpu, root_gfn, 0, 3416 mmu->shadow_root_level, false); 3417 mmu->root_hpa = root; 3418 goto set_root_pgd; 3419 } 3420 3421 if (WARN_ON_ONCE(!mmu->pae_root)) { 3422 r = -EIO; 3423 goto out_unlock; 3424 } 3425 3426 /* 3427 * We shadow a 32 bit page table. This may be a legacy 2-level 3428 * or a PAE 3-level page table. In either case we need to be aware that 3429 * the shadow page table may be a PAE or a long mode page table. 3430 */ 3431 pm_mask = PT_PRESENT_MASK | shadow_me_mask; 3432 if (mmu->shadow_root_level == PT64_ROOT_4LEVEL) { 3433 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK; 3434 3435 if (WARN_ON_ONCE(!mmu->pml4_root)) { 3436 r = -EIO; 3437 goto out_unlock; 3438 } 3439 3440 mmu->pml4_root[0] = __pa(mmu->pae_root) | pm_mask; 3441 } 3442 3443 for (i = 0; i < 4; ++i) { 3444 WARN_ON_ONCE(IS_VALID_PAE_ROOT(mmu->pae_root[i])); 3445 3446 if (mmu->root_level == PT32E_ROOT_LEVEL) { 3447 if (!(pdptrs[i] & PT_PRESENT_MASK)) { 3448 mmu->pae_root[i] = INVALID_PAE_ROOT; 3449 continue; 3450 } 3451 root_gfn = pdptrs[i] >> PAGE_SHIFT; 3452 } 3453 3454 root = mmu_alloc_root(vcpu, root_gfn, i << 30, 3455 PT32_ROOT_LEVEL, false); 3456 mmu->pae_root[i] = root | pm_mask; 3457 } 3458 3459 if (mmu->shadow_root_level == PT64_ROOT_4LEVEL) 3460 mmu->root_hpa = __pa(mmu->pml4_root); 3461 else 3462 mmu->root_hpa = __pa(mmu->pae_root); 3463 3464 set_root_pgd: 3465 mmu->root_pgd = root_pgd; 3466 out_unlock: 3467 write_unlock(&vcpu->kvm->mmu_lock); 3468 3469 return 0; 3470 } 3471 3472 static int mmu_alloc_special_roots(struct kvm_vcpu *vcpu) 3473 { 3474 struct kvm_mmu *mmu = vcpu->arch.mmu; 3475 u64 *pml4_root, *pae_root; 3476 3477 /* 3478 * When shadowing 32-bit or PAE NPT with 64-bit NPT, the PML4 and PDP 3479 * tables are allocated and initialized at root creation as there is no 3480 * equivalent level in the guest's NPT to shadow. Allocate the tables 3481 * on demand, as running a 32-bit L1 VMM on 64-bit KVM is very rare. 3482 */ 3483 if (mmu->direct_map || mmu->root_level >= PT64_ROOT_4LEVEL || 3484 mmu->shadow_root_level < PT64_ROOT_4LEVEL) 3485 return 0; 3486 3487 /* 3488 * This mess only works with 4-level paging and needs to be updated to 3489 * work with 5-level paging. 3490 */ 3491 if (WARN_ON_ONCE(mmu->shadow_root_level != PT64_ROOT_4LEVEL)) 3492 return -EIO; 3493 3494 if (mmu->pae_root && mmu->pml4_root) 3495 return 0; 3496 3497 /* 3498 * The special roots should always be allocated in concert. Yell and 3499 * bail if KVM ends up in a state where only one of the roots is valid. 3500 */ 3501 if (WARN_ON_ONCE(!tdp_enabled || mmu->pae_root || mmu->pml4_root)) 3502 return -EIO; 3503 3504 /* 3505 * Unlike 32-bit NPT, the PDP table doesn't need to be in low mem, and 3506 * doesn't need to be decrypted. 3507 */ 3508 pae_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT); 3509 if (!pae_root) 3510 return -ENOMEM; 3511 3512 pml4_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT); 3513 if (!pml4_root) { 3514 free_page((unsigned long)pae_root); 3515 return -ENOMEM; 3516 } 3517 3518 mmu->pae_root = pae_root; 3519 mmu->pml4_root = pml4_root; 3520 3521 return 0; 3522 } 3523 3524 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu) 3525 { 3526 int i; 3527 struct kvm_mmu_page *sp; 3528 3529 if (vcpu->arch.mmu->direct_map) 3530 return; 3531 3532 if (!VALID_PAGE(vcpu->arch.mmu->root_hpa)) 3533 return; 3534 3535 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY); 3536 3537 if (vcpu->arch.mmu->root_level >= PT64_ROOT_4LEVEL) { 3538 hpa_t root = vcpu->arch.mmu->root_hpa; 3539 sp = to_shadow_page(root); 3540 3541 /* 3542 * Even if another CPU was marking the SP as unsync-ed 3543 * simultaneously, any guest page table changes are not 3544 * guaranteed to be visible anyway until this VCPU issues a TLB 3545 * flush strictly after those changes are made. We only need to 3546 * ensure that the other CPU sets these flags before any actual 3547 * changes to the page tables are made. The comments in 3548 * mmu_try_to_unsync_pages() describe what could go wrong if 3549 * this requirement isn't satisfied. 3550 */ 3551 if (!smp_load_acquire(&sp->unsync) && 3552 !smp_load_acquire(&sp->unsync_children)) 3553 return; 3554 3555 write_lock(&vcpu->kvm->mmu_lock); 3556 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC); 3557 3558 mmu_sync_children(vcpu, sp); 3559 3560 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC); 3561 write_unlock(&vcpu->kvm->mmu_lock); 3562 return; 3563 } 3564 3565 write_lock(&vcpu->kvm->mmu_lock); 3566 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC); 3567 3568 for (i = 0; i < 4; ++i) { 3569 hpa_t root = vcpu->arch.mmu->pae_root[i]; 3570 3571 if (IS_VALID_PAE_ROOT(root)) { 3572 root &= PT64_BASE_ADDR_MASK; 3573 sp = to_shadow_page(root); 3574 mmu_sync_children(vcpu, sp); 3575 } 3576 } 3577 3578 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC); 3579 write_unlock(&vcpu->kvm->mmu_lock); 3580 } 3581 3582 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gpa_t vaddr, 3583 u32 access, struct x86_exception *exception) 3584 { 3585 if (exception) 3586 exception->error_code = 0; 3587 return vaddr; 3588 } 3589 3590 static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gpa_t vaddr, 3591 u32 access, 3592 struct x86_exception *exception) 3593 { 3594 if (exception) 3595 exception->error_code = 0; 3596 return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception); 3597 } 3598 3599 static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct) 3600 { 3601 /* 3602 * A nested guest cannot use the MMIO cache if it is using nested 3603 * page tables, because cr2 is a nGPA while the cache stores GPAs. 3604 */ 3605 if (mmu_is_nested(vcpu)) 3606 return false; 3607 3608 if (direct) 3609 return vcpu_match_mmio_gpa(vcpu, addr); 3610 3611 return vcpu_match_mmio_gva(vcpu, addr); 3612 } 3613 3614 /* 3615 * Return the level of the lowest level SPTE added to sptes. 3616 * That SPTE may be non-present. 3617 */ 3618 static int get_walk(struct kvm_vcpu *vcpu, u64 addr, u64 *sptes, int *root_level) 3619 { 3620 struct kvm_shadow_walk_iterator iterator; 3621 int leaf = -1; 3622 u64 spte; 3623 3624 walk_shadow_page_lockless_begin(vcpu); 3625 3626 for (shadow_walk_init(&iterator, vcpu, addr), 3627 *root_level = iterator.level; 3628 shadow_walk_okay(&iterator); 3629 __shadow_walk_next(&iterator, spte)) { 3630 leaf = iterator.level; 3631 spte = mmu_spte_get_lockless(iterator.sptep); 3632 3633 sptes[leaf] = spte; 3634 3635 if (!is_shadow_present_pte(spte)) 3636 break; 3637 } 3638 3639 walk_shadow_page_lockless_end(vcpu); 3640 3641 return leaf; 3642 } 3643 3644 /* return true if reserved bit(s) are detected on a valid, non-MMIO SPTE. */ 3645 static bool get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep) 3646 { 3647 u64 sptes[PT64_ROOT_MAX_LEVEL + 1]; 3648 struct rsvd_bits_validate *rsvd_check; 3649 int root, leaf, level; 3650 bool reserved = false; 3651 3652 if (is_tdp_mmu(vcpu->arch.mmu)) 3653 leaf = kvm_tdp_mmu_get_walk(vcpu, addr, sptes, &root); 3654 else 3655 leaf = get_walk(vcpu, addr, sptes, &root); 3656 3657 if (unlikely(leaf < 0)) { 3658 *sptep = 0ull; 3659 return reserved; 3660 } 3661 3662 *sptep = sptes[leaf]; 3663 3664 /* 3665 * Skip reserved bits checks on the terminal leaf if it's not a valid 3666 * SPTE. Note, this also (intentionally) skips MMIO SPTEs, which, by 3667 * design, always have reserved bits set. The purpose of the checks is 3668 * to detect reserved bits on non-MMIO SPTEs. i.e. buggy SPTEs. 3669 */ 3670 if (!is_shadow_present_pte(sptes[leaf])) 3671 leaf++; 3672 3673 rsvd_check = &vcpu->arch.mmu->shadow_zero_check; 3674 3675 for (level = root; level >= leaf; level--) 3676 reserved |= is_rsvd_spte(rsvd_check, sptes[level], level); 3677 3678 if (reserved) { 3679 pr_err("%s: reserved bits set on MMU-present spte, addr 0x%llx, hierarchy:\n", 3680 __func__, addr); 3681 for (level = root; level >= leaf; level--) 3682 pr_err("------ spte = 0x%llx level = %d, rsvd bits = 0x%llx", 3683 sptes[level], level, 3684 get_rsvd_bits(rsvd_check, sptes[level], level)); 3685 } 3686 3687 return reserved; 3688 } 3689 3690 static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct) 3691 { 3692 u64 spte; 3693 bool reserved; 3694 3695 if (mmio_info_in_cache(vcpu, addr, direct)) 3696 return RET_PF_EMULATE; 3697 3698 reserved = get_mmio_spte(vcpu, addr, &spte); 3699 if (WARN_ON(reserved)) 3700 return -EINVAL; 3701 3702 if (is_mmio_spte(spte)) { 3703 gfn_t gfn = get_mmio_spte_gfn(spte); 3704 unsigned int access = get_mmio_spte_access(spte); 3705 3706 if (!check_mmio_spte(vcpu, spte)) 3707 return RET_PF_INVALID; 3708 3709 if (direct) 3710 addr = 0; 3711 3712 trace_handle_mmio_page_fault(addr, gfn, access); 3713 vcpu_cache_mmio_info(vcpu, addr, gfn, access); 3714 return RET_PF_EMULATE; 3715 } 3716 3717 /* 3718 * If the page table is zapped by other cpus, let CPU fault again on 3719 * the address. 3720 */ 3721 return RET_PF_RETRY; 3722 } 3723 3724 static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu, 3725 u32 error_code, gfn_t gfn) 3726 { 3727 if (unlikely(error_code & PFERR_RSVD_MASK)) 3728 return false; 3729 3730 if (!(error_code & PFERR_PRESENT_MASK) || 3731 !(error_code & PFERR_WRITE_MASK)) 3732 return false; 3733 3734 /* 3735 * guest is writing the page which is write tracked which can 3736 * not be fixed by page fault handler. 3737 */ 3738 if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE)) 3739 return true; 3740 3741 return false; 3742 } 3743 3744 static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr) 3745 { 3746 struct kvm_shadow_walk_iterator iterator; 3747 u64 spte; 3748 3749 walk_shadow_page_lockless_begin(vcpu); 3750 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) { 3751 clear_sp_write_flooding_count(iterator.sptep); 3752 if (!is_shadow_present_pte(spte)) 3753 break; 3754 } 3755 walk_shadow_page_lockless_end(vcpu); 3756 } 3757 3758 static bool kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, 3759 gfn_t gfn) 3760 { 3761 struct kvm_arch_async_pf arch; 3762 3763 arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id; 3764 arch.gfn = gfn; 3765 arch.direct_map = vcpu->arch.mmu->direct_map; 3766 arch.cr3 = vcpu->arch.mmu->get_guest_pgd(vcpu); 3767 3768 return kvm_setup_async_pf(vcpu, cr2_or_gpa, 3769 kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch); 3770 } 3771 3772 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn, 3773 gpa_t cr2_or_gpa, kvm_pfn_t *pfn, hva_t *hva, 3774 bool write, bool *writable) 3775 { 3776 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 3777 bool async; 3778 3779 /* 3780 * Retry the page fault if the gfn hit a memslot that is being deleted 3781 * or moved. This ensures any existing SPTEs for the old memslot will 3782 * be zapped before KVM inserts a new MMIO SPTE for the gfn. 3783 */ 3784 if (slot && (slot->flags & KVM_MEMSLOT_INVALID)) 3785 return true; 3786 3787 /* Don't expose private memslots to L2. */ 3788 if (is_guest_mode(vcpu) && !kvm_is_visible_memslot(slot)) { 3789 *pfn = KVM_PFN_NOSLOT; 3790 *writable = false; 3791 return false; 3792 } 3793 3794 async = false; 3795 *pfn = __gfn_to_pfn_memslot(slot, gfn, false, &async, 3796 write, writable, hva); 3797 if (!async) 3798 return false; /* *pfn has correct page already */ 3799 3800 if (!prefault && kvm_can_do_async_pf(vcpu)) { 3801 trace_kvm_try_async_get_page(cr2_or_gpa, gfn); 3802 if (kvm_find_async_pf_gfn(vcpu, gfn)) { 3803 trace_kvm_async_pf_doublefault(cr2_or_gpa, gfn); 3804 kvm_make_request(KVM_REQ_APF_HALT, vcpu); 3805 return true; 3806 } else if (kvm_arch_setup_async_pf(vcpu, cr2_or_gpa, gfn)) 3807 return true; 3808 } 3809 3810 *pfn = __gfn_to_pfn_memslot(slot, gfn, false, NULL, 3811 write, writable, hva); 3812 return false; 3813 } 3814 3815 static int direct_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code, 3816 bool prefault, int max_level, bool is_tdp) 3817 { 3818 bool is_tdp_mmu_fault = is_tdp_mmu(vcpu->arch.mmu); 3819 bool write = error_code & PFERR_WRITE_MASK; 3820 bool map_writable; 3821 3822 gfn_t gfn = gpa >> PAGE_SHIFT; 3823 unsigned long mmu_seq; 3824 kvm_pfn_t pfn; 3825 hva_t hva; 3826 int r; 3827 3828 if (page_fault_handle_page_track(vcpu, error_code, gfn)) 3829 return RET_PF_EMULATE; 3830 3831 if (!is_tdp_mmu_fault) { 3832 r = fast_page_fault(vcpu, gpa, error_code); 3833 if (r != RET_PF_INVALID) 3834 return r; 3835 } 3836 3837 r = mmu_topup_memory_caches(vcpu, false); 3838 if (r) 3839 return r; 3840 3841 mmu_seq = vcpu->kvm->mmu_notifier_seq; 3842 smp_rmb(); 3843 3844 if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, &hva, 3845 write, &map_writable)) 3846 return RET_PF_RETRY; 3847 3848 if (handle_abnormal_pfn(vcpu, is_tdp ? 0 : gpa, gfn, pfn, ACC_ALL, &r)) 3849 return r; 3850 3851 r = RET_PF_RETRY; 3852 3853 if (is_tdp_mmu_fault) 3854 read_lock(&vcpu->kvm->mmu_lock); 3855 else 3856 write_lock(&vcpu->kvm->mmu_lock); 3857 3858 if (!is_noslot_pfn(pfn) && mmu_notifier_retry_hva(vcpu->kvm, mmu_seq, hva)) 3859 goto out_unlock; 3860 r = make_mmu_pages_available(vcpu); 3861 if (r) 3862 goto out_unlock; 3863 3864 if (is_tdp_mmu_fault) 3865 r = kvm_tdp_mmu_map(vcpu, gpa, error_code, map_writable, max_level, 3866 pfn, prefault); 3867 else 3868 r = __direct_map(vcpu, gpa, error_code, map_writable, max_level, pfn, 3869 prefault, is_tdp); 3870 3871 out_unlock: 3872 if (is_tdp_mmu_fault) 3873 read_unlock(&vcpu->kvm->mmu_lock); 3874 else 3875 write_unlock(&vcpu->kvm->mmu_lock); 3876 kvm_release_pfn_clean(pfn); 3877 return r; 3878 } 3879 3880 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa, 3881 u32 error_code, bool prefault) 3882 { 3883 pgprintk("%s: gva %lx error %x\n", __func__, gpa, error_code); 3884 3885 /* This path builds a PAE pagetable, we can map 2mb pages at maximum. */ 3886 return direct_page_fault(vcpu, gpa & PAGE_MASK, error_code, prefault, 3887 PG_LEVEL_2M, false); 3888 } 3889 3890 int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code, 3891 u64 fault_address, char *insn, int insn_len) 3892 { 3893 int r = 1; 3894 u32 flags = vcpu->arch.apf.host_apf_flags; 3895 3896 #ifndef CONFIG_X86_64 3897 /* A 64-bit CR2 should be impossible on 32-bit KVM. */ 3898 if (WARN_ON_ONCE(fault_address >> 32)) 3899 return -EFAULT; 3900 #endif 3901 3902 vcpu->arch.l1tf_flush_l1d = true; 3903 if (!flags) { 3904 trace_kvm_page_fault(fault_address, error_code); 3905 3906 if (kvm_event_needs_reinjection(vcpu)) 3907 kvm_mmu_unprotect_page_virt(vcpu, fault_address); 3908 r = kvm_mmu_page_fault(vcpu, fault_address, error_code, insn, 3909 insn_len); 3910 } else if (flags & KVM_PV_REASON_PAGE_NOT_PRESENT) { 3911 vcpu->arch.apf.host_apf_flags = 0; 3912 local_irq_disable(); 3913 kvm_async_pf_task_wait_schedule(fault_address); 3914 local_irq_enable(); 3915 } else { 3916 WARN_ONCE(1, "Unexpected host async PF flags: %x\n", flags); 3917 } 3918 3919 return r; 3920 } 3921 EXPORT_SYMBOL_GPL(kvm_handle_page_fault); 3922 3923 int kvm_tdp_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code, 3924 bool prefault) 3925 { 3926 int max_level; 3927 3928 for (max_level = KVM_MAX_HUGEPAGE_LEVEL; 3929 max_level > PG_LEVEL_4K; 3930 max_level--) { 3931 int page_num = KVM_PAGES_PER_HPAGE(max_level); 3932 gfn_t base = (gpa >> PAGE_SHIFT) & ~(page_num - 1); 3933 3934 if (kvm_mtrr_check_gfn_range_consistency(vcpu, base, page_num)) 3935 break; 3936 } 3937 3938 return direct_page_fault(vcpu, gpa, error_code, prefault, 3939 max_level, true); 3940 } 3941 3942 static void nonpaging_init_context(struct kvm_mmu *context) 3943 { 3944 context->page_fault = nonpaging_page_fault; 3945 context->gva_to_gpa = nonpaging_gva_to_gpa; 3946 context->sync_page = nonpaging_sync_page; 3947 context->invlpg = NULL; 3948 context->direct_map = true; 3949 } 3950 3951 static inline bool is_root_usable(struct kvm_mmu_root_info *root, gpa_t pgd, 3952 union kvm_mmu_page_role role) 3953 { 3954 return (role.direct || pgd == root->pgd) && 3955 VALID_PAGE(root->hpa) && to_shadow_page(root->hpa) && 3956 role.word == to_shadow_page(root->hpa)->role.word; 3957 } 3958 3959 /* 3960 * Find out if a previously cached root matching the new pgd/role is available. 3961 * The current root is also inserted into the cache. 3962 * If a matching root was found, it is assigned to kvm_mmu->root_hpa and true is 3963 * returned. 3964 * Otherwise, the LRU root from the cache is assigned to kvm_mmu->root_hpa and 3965 * false is returned. This root should now be freed by the caller. 3966 */ 3967 static bool cached_root_available(struct kvm_vcpu *vcpu, gpa_t new_pgd, 3968 union kvm_mmu_page_role new_role) 3969 { 3970 uint i; 3971 struct kvm_mmu_root_info root; 3972 struct kvm_mmu *mmu = vcpu->arch.mmu; 3973 3974 root.pgd = mmu->root_pgd; 3975 root.hpa = mmu->root_hpa; 3976 3977 if (is_root_usable(&root, new_pgd, new_role)) 3978 return true; 3979 3980 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) { 3981 swap(root, mmu->prev_roots[i]); 3982 3983 if (is_root_usable(&root, new_pgd, new_role)) 3984 break; 3985 } 3986 3987 mmu->root_hpa = root.hpa; 3988 mmu->root_pgd = root.pgd; 3989 3990 return i < KVM_MMU_NUM_PREV_ROOTS; 3991 } 3992 3993 static bool fast_pgd_switch(struct kvm_vcpu *vcpu, gpa_t new_pgd, 3994 union kvm_mmu_page_role new_role) 3995 { 3996 struct kvm_mmu *mmu = vcpu->arch.mmu; 3997 3998 /* 3999 * For now, limit the fast switch to 64-bit hosts+VMs in order to avoid 4000 * having to deal with PDPTEs. We may add support for 32-bit hosts/VMs 4001 * later if necessary. 4002 */ 4003 if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL && 4004 mmu->root_level >= PT64_ROOT_4LEVEL) 4005 return cached_root_available(vcpu, new_pgd, new_role); 4006 4007 return false; 4008 } 4009 4010 static void __kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd, 4011 union kvm_mmu_page_role new_role) 4012 { 4013 if (!fast_pgd_switch(vcpu, new_pgd, new_role)) { 4014 kvm_mmu_free_roots(vcpu, vcpu->arch.mmu, KVM_MMU_ROOT_CURRENT); 4015 return; 4016 } 4017 4018 /* 4019 * It's possible that the cached previous root page is obsolete because 4020 * of a change in the MMU generation number. However, changing the 4021 * generation number is accompanied by KVM_REQ_MMU_RELOAD, which will 4022 * free the root set here and allocate a new one. 4023 */ 4024 kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu); 4025 4026 if (force_flush_and_sync_on_reuse) { 4027 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu); 4028 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 4029 } 4030 4031 /* 4032 * The last MMIO access's GVA and GPA are cached in the VCPU. When 4033 * switching to a new CR3, that GVA->GPA mapping may no longer be 4034 * valid. So clear any cached MMIO info even when we don't need to sync 4035 * the shadow page tables. 4036 */ 4037 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY); 4038 4039 /* 4040 * If this is a direct root page, it doesn't have a write flooding 4041 * count. Otherwise, clear the write flooding count. 4042 */ 4043 if (!new_role.direct) 4044 __clear_sp_write_flooding_count( 4045 to_shadow_page(vcpu->arch.mmu->root_hpa)); 4046 } 4047 4048 void kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd) 4049 { 4050 __kvm_mmu_new_pgd(vcpu, new_pgd, kvm_mmu_calc_root_page_role(vcpu)); 4051 } 4052 EXPORT_SYMBOL_GPL(kvm_mmu_new_pgd); 4053 4054 static unsigned long get_cr3(struct kvm_vcpu *vcpu) 4055 { 4056 return kvm_read_cr3(vcpu); 4057 } 4058 4059 static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn, 4060 unsigned int access, int *nr_present) 4061 { 4062 if (unlikely(is_mmio_spte(*sptep))) { 4063 if (gfn != get_mmio_spte_gfn(*sptep)) { 4064 mmu_spte_clear_no_track(sptep); 4065 return true; 4066 } 4067 4068 (*nr_present)++; 4069 mark_mmio_spte(vcpu, sptep, gfn, access); 4070 return true; 4071 } 4072 4073 return false; 4074 } 4075 4076 #define PTTYPE_EPT 18 /* arbitrary */ 4077 #define PTTYPE PTTYPE_EPT 4078 #include "paging_tmpl.h" 4079 #undef PTTYPE 4080 4081 #define PTTYPE 64 4082 #include "paging_tmpl.h" 4083 #undef PTTYPE 4084 4085 #define PTTYPE 32 4086 #include "paging_tmpl.h" 4087 #undef PTTYPE 4088 4089 static void 4090 __reset_rsvds_bits_mask(struct rsvd_bits_validate *rsvd_check, 4091 u64 pa_bits_rsvd, int level, bool nx, bool gbpages, 4092 bool pse, bool amd) 4093 { 4094 u64 gbpages_bit_rsvd = 0; 4095 u64 nonleaf_bit8_rsvd = 0; 4096 u64 high_bits_rsvd; 4097 4098 rsvd_check->bad_mt_xwr = 0; 4099 4100 if (!gbpages) 4101 gbpages_bit_rsvd = rsvd_bits(7, 7); 4102 4103 if (level == PT32E_ROOT_LEVEL) 4104 high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 62); 4105 else 4106 high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 51); 4107 4108 /* Note, NX doesn't exist in PDPTEs, this is handled below. */ 4109 if (!nx) 4110 high_bits_rsvd |= rsvd_bits(63, 63); 4111 4112 /* 4113 * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for 4114 * leaf entries) on AMD CPUs only. 4115 */ 4116 if (amd) 4117 nonleaf_bit8_rsvd = rsvd_bits(8, 8); 4118 4119 switch (level) { 4120 case PT32_ROOT_LEVEL: 4121 /* no rsvd bits for 2 level 4K page table entries */ 4122 rsvd_check->rsvd_bits_mask[0][1] = 0; 4123 rsvd_check->rsvd_bits_mask[0][0] = 0; 4124 rsvd_check->rsvd_bits_mask[1][0] = 4125 rsvd_check->rsvd_bits_mask[0][0]; 4126 4127 if (!pse) { 4128 rsvd_check->rsvd_bits_mask[1][1] = 0; 4129 break; 4130 } 4131 4132 if (is_cpuid_PSE36()) 4133 /* 36bits PSE 4MB page */ 4134 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21); 4135 else 4136 /* 32 bits PSE 4MB page */ 4137 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21); 4138 break; 4139 case PT32E_ROOT_LEVEL: 4140 rsvd_check->rsvd_bits_mask[0][2] = rsvd_bits(63, 63) | 4141 high_bits_rsvd | 4142 rsvd_bits(5, 8) | 4143 rsvd_bits(1, 2); /* PDPTE */ 4144 rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd; /* PDE */ 4145 rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd; /* PTE */ 4146 rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd | 4147 rsvd_bits(13, 20); /* large page */ 4148 rsvd_check->rsvd_bits_mask[1][0] = 4149 rsvd_check->rsvd_bits_mask[0][0]; 4150 break; 4151 case PT64_ROOT_5LEVEL: 4152 rsvd_check->rsvd_bits_mask[0][4] = high_bits_rsvd | 4153 nonleaf_bit8_rsvd | 4154 rsvd_bits(7, 7); 4155 rsvd_check->rsvd_bits_mask[1][4] = 4156 rsvd_check->rsvd_bits_mask[0][4]; 4157 fallthrough; 4158 case PT64_ROOT_4LEVEL: 4159 rsvd_check->rsvd_bits_mask[0][3] = high_bits_rsvd | 4160 nonleaf_bit8_rsvd | 4161 rsvd_bits(7, 7); 4162 rsvd_check->rsvd_bits_mask[0][2] = high_bits_rsvd | 4163 gbpages_bit_rsvd; 4164 rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd; 4165 rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd; 4166 rsvd_check->rsvd_bits_mask[1][3] = 4167 rsvd_check->rsvd_bits_mask[0][3]; 4168 rsvd_check->rsvd_bits_mask[1][2] = high_bits_rsvd | 4169 gbpages_bit_rsvd | 4170 rsvd_bits(13, 29); 4171 rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd | 4172 rsvd_bits(13, 20); /* large page */ 4173 rsvd_check->rsvd_bits_mask[1][0] = 4174 rsvd_check->rsvd_bits_mask[0][0]; 4175 break; 4176 } 4177 } 4178 4179 static bool guest_can_use_gbpages(struct kvm_vcpu *vcpu) 4180 { 4181 /* 4182 * If TDP is enabled, let the guest use GBPAGES if they're supported in 4183 * hardware. The hardware page walker doesn't let KVM disable GBPAGES, 4184 * i.e. won't treat them as reserved, and KVM doesn't redo the GVA->GPA 4185 * walk for performance and complexity reasons. Not to mention KVM 4186 * _can't_ solve the problem because GVA->GPA walks aren't visible to 4187 * KVM once a TDP translation is installed. Mimic hardware behavior so 4188 * that KVM's is at least consistent, i.e. doesn't randomly inject #PF. 4189 */ 4190 return tdp_enabled ? boot_cpu_has(X86_FEATURE_GBPAGES) : 4191 guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES); 4192 } 4193 4194 static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu, 4195 struct kvm_mmu *context) 4196 { 4197 __reset_rsvds_bits_mask(&context->guest_rsvd_check, 4198 vcpu->arch.reserved_gpa_bits, 4199 context->root_level, is_efer_nx(context), 4200 guest_can_use_gbpages(vcpu), 4201 is_cr4_pse(context), 4202 guest_cpuid_is_amd_or_hygon(vcpu)); 4203 } 4204 4205 static void 4206 __reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check, 4207 u64 pa_bits_rsvd, bool execonly) 4208 { 4209 u64 high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 51); 4210 u64 bad_mt_xwr; 4211 4212 rsvd_check->rsvd_bits_mask[0][4] = high_bits_rsvd | rsvd_bits(3, 7); 4213 rsvd_check->rsvd_bits_mask[0][3] = high_bits_rsvd | rsvd_bits(3, 7); 4214 rsvd_check->rsvd_bits_mask[0][2] = high_bits_rsvd | rsvd_bits(3, 6); 4215 rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd | rsvd_bits(3, 6); 4216 rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd; 4217 4218 /* large page */ 4219 rsvd_check->rsvd_bits_mask[1][4] = rsvd_check->rsvd_bits_mask[0][4]; 4220 rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3]; 4221 rsvd_check->rsvd_bits_mask[1][2] = high_bits_rsvd | rsvd_bits(12, 29); 4222 rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd | rsvd_bits(12, 20); 4223 rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0]; 4224 4225 bad_mt_xwr = 0xFFull << (2 * 8); /* bits 3..5 must not be 2 */ 4226 bad_mt_xwr |= 0xFFull << (3 * 8); /* bits 3..5 must not be 3 */ 4227 bad_mt_xwr |= 0xFFull << (7 * 8); /* bits 3..5 must not be 7 */ 4228 bad_mt_xwr |= REPEAT_BYTE(1ull << 2); /* bits 0..2 must not be 010 */ 4229 bad_mt_xwr |= REPEAT_BYTE(1ull << 6); /* bits 0..2 must not be 110 */ 4230 if (!execonly) { 4231 /* bits 0..2 must not be 100 unless VMX capabilities allow it */ 4232 bad_mt_xwr |= REPEAT_BYTE(1ull << 4); 4233 } 4234 rsvd_check->bad_mt_xwr = bad_mt_xwr; 4235 } 4236 4237 static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu, 4238 struct kvm_mmu *context, bool execonly) 4239 { 4240 __reset_rsvds_bits_mask_ept(&context->guest_rsvd_check, 4241 vcpu->arch.reserved_gpa_bits, execonly); 4242 } 4243 4244 static inline u64 reserved_hpa_bits(void) 4245 { 4246 return rsvd_bits(shadow_phys_bits, 63); 4247 } 4248 4249 /* 4250 * the page table on host is the shadow page table for the page 4251 * table in guest or amd nested guest, its mmu features completely 4252 * follow the features in guest. 4253 */ 4254 static void reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, 4255 struct kvm_mmu *context) 4256 { 4257 /* 4258 * KVM uses NX when TDP is disabled to handle a variety of scenarios, 4259 * notably for huge SPTEs if iTLB multi-hit mitigation is enabled and 4260 * to generate correct permissions for CR0.WP=0/CR4.SMEP=1/EFER.NX=0. 4261 * The iTLB multi-hit workaround can be toggled at any time, so assume 4262 * NX can be used by any non-nested shadow MMU to avoid having to reset 4263 * MMU contexts. Note, KVM forces EFER.NX=1 when TDP is disabled. 4264 */ 4265 bool uses_nx = is_efer_nx(context) || !tdp_enabled; 4266 4267 /* @amd adds a check on bit of SPTEs, which KVM shouldn't use anyways. */ 4268 bool is_amd = true; 4269 /* KVM doesn't use 2-level page tables for the shadow MMU. */ 4270 bool is_pse = false; 4271 struct rsvd_bits_validate *shadow_zero_check; 4272 int i; 4273 4274 WARN_ON_ONCE(context->shadow_root_level < PT32E_ROOT_LEVEL); 4275 4276 shadow_zero_check = &context->shadow_zero_check; 4277 __reset_rsvds_bits_mask(shadow_zero_check, reserved_hpa_bits(), 4278 context->shadow_root_level, uses_nx, 4279 guest_can_use_gbpages(vcpu), is_pse, is_amd); 4280 4281 if (!shadow_me_mask) 4282 return; 4283 4284 for (i = context->shadow_root_level; --i >= 0;) { 4285 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask; 4286 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask; 4287 } 4288 4289 } 4290 4291 static inline bool boot_cpu_is_amd(void) 4292 { 4293 WARN_ON_ONCE(!tdp_enabled); 4294 return shadow_x_mask == 0; 4295 } 4296 4297 /* 4298 * the direct page table on host, use as much mmu features as 4299 * possible, however, kvm currently does not do execution-protection. 4300 */ 4301 static void 4302 reset_tdp_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, 4303 struct kvm_mmu *context) 4304 { 4305 struct rsvd_bits_validate *shadow_zero_check; 4306 int i; 4307 4308 shadow_zero_check = &context->shadow_zero_check; 4309 4310 if (boot_cpu_is_amd()) 4311 __reset_rsvds_bits_mask(shadow_zero_check, reserved_hpa_bits(), 4312 context->shadow_root_level, false, 4313 boot_cpu_has(X86_FEATURE_GBPAGES), 4314 false, true); 4315 else 4316 __reset_rsvds_bits_mask_ept(shadow_zero_check, 4317 reserved_hpa_bits(), false); 4318 4319 if (!shadow_me_mask) 4320 return; 4321 4322 for (i = context->shadow_root_level; --i >= 0;) { 4323 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask; 4324 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask; 4325 } 4326 } 4327 4328 /* 4329 * as the comments in reset_shadow_zero_bits_mask() except it 4330 * is the shadow page table for intel nested guest. 4331 */ 4332 static void 4333 reset_ept_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, 4334 struct kvm_mmu *context, bool execonly) 4335 { 4336 __reset_rsvds_bits_mask_ept(&context->shadow_zero_check, 4337 reserved_hpa_bits(), execonly); 4338 } 4339 4340 #define BYTE_MASK(access) \ 4341 ((1 & (access) ? 2 : 0) | \ 4342 (2 & (access) ? 4 : 0) | \ 4343 (3 & (access) ? 8 : 0) | \ 4344 (4 & (access) ? 16 : 0) | \ 4345 (5 & (access) ? 32 : 0) | \ 4346 (6 & (access) ? 64 : 0) | \ 4347 (7 & (access) ? 128 : 0)) 4348 4349 4350 static void update_permission_bitmask(struct kvm_mmu *mmu, bool ept) 4351 { 4352 unsigned byte; 4353 4354 const u8 x = BYTE_MASK(ACC_EXEC_MASK); 4355 const u8 w = BYTE_MASK(ACC_WRITE_MASK); 4356 const u8 u = BYTE_MASK(ACC_USER_MASK); 4357 4358 bool cr4_smep = is_cr4_smep(mmu); 4359 bool cr4_smap = is_cr4_smap(mmu); 4360 bool cr0_wp = is_cr0_wp(mmu); 4361 bool efer_nx = is_efer_nx(mmu); 4362 4363 for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) { 4364 unsigned pfec = byte << 1; 4365 4366 /* 4367 * Each "*f" variable has a 1 bit for each UWX value 4368 * that causes a fault with the given PFEC. 4369 */ 4370 4371 /* Faults from writes to non-writable pages */ 4372 u8 wf = (pfec & PFERR_WRITE_MASK) ? (u8)~w : 0; 4373 /* Faults from user mode accesses to supervisor pages */ 4374 u8 uf = (pfec & PFERR_USER_MASK) ? (u8)~u : 0; 4375 /* Faults from fetches of non-executable pages*/ 4376 u8 ff = (pfec & PFERR_FETCH_MASK) ? (u8)~x : 0; 4377 /* Faults from kernel mode fetches of user pages */ 4378 u8 smepf = 0; 4379 /* Faults from kernel mode accesses of user pages */ 4380 u8 smapf = 0; 4381 4382 if (!ept) { 4383 /* Faults from kernel mode accesses to user pages */ 4384 u8 kf = (pfec & PFERR_USER_MASK) ? 0 : u; 4385 4386 /* Not really needed: !nx will cause pte.nx to fault */ 4387 if (!efer_nx) 4388 ff = 0; 4389 4390 /* Allow supervisor writes if !cr0.wp */ 4391 if (!cr0_wp) 4392 wf = (pfec & PFERR_USER_MASK) ? wf : 0; 4393 4394 /* Disallow supervisor fetches of user code if cr4.smep */ 4395 if (cr4_smep) 4396 smepf = (pfec & PFERR_FETCH_MASK) ? kf : 0; 4397 4398 /* 4399 * SMAP:kernel-mode data accesses from user-mode 4400 * mappings should fault. A fault is considered 4401 * as a SMAP violation if all of the following 4402 * conditions are true: 4403 * - X86_CR4_SMAP is set in CR4 4404 * - A user page is accessed 4405 * - The access is not a fetch 4406 * - Page fault in kernel mode 4407 * - if CPL = 3 or X86_EFLAGS_AC is clear 4408 * 4409 * Here, we cover the first three conditions. 4410 * The fourth is computed dynamically in permission_fault(); 4411 * PFERR_RSVD_MASK bit will be set in PFEC if the access is 4412 * *not* subject to SMAP restrictions. 4413 */ 4414 if (cr4_smap) 4415 smapf = (pfec & (PFERR_RSVD_MASK|PFERR_FETCH_MASK)) ? 0 : kf; 4416 } 4417 4418 mmu->permissions[byte] = ff | uf | wf | smepf | smapf; 4419 } 4420 } 4421 4422 /* 4423 * PKU is an additional mechanism by which the paging controls access to 4424 * user-mode addresses based on the value in the PKRU register. Protection 4425 * key violations are reported through a bit in the page fault error code. 4426 * Unlike other bits of the error code, the PK bit is not known at the 4427 * call site of e.g. gva_to_gpa; it must be computed directly in 4428 * permission_fault based on two bits of PKRU, on some machine state (CR4, 4429 * CR0, EFER, CPL), and on other bits of the error code and the page tables. 4430 * 4431 * In particular the following conditions come from the error code, the 4432 * page tables and the machine state: 4433 * - PK is always zero unless CR4.PKE=1 and EFER.LMA=1 4434 * - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch) 4435 * - PK is always zero if U=0 in the page tables 4436 * - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access. 4437 * 4438 * The PKRU bitmask caches the result of these four conditions. The error 4439 * code (minus the P bit) and the page table's U bit form an index into the 4440 * PKRU bitmask. Two bits of the PKRU bitmask are then extracted and ANDed 4441 * with the two bits of the PKRU register corresponding to the protection key. 4442 * For the first three conditions above the bits will be 00, thus masking 4443 * away both AD and WD. For all reads or if the last condition holds, WD 4444 * only will be masked away. 4445 */ 4446 static void update_pkru_bitmask(struct kvm_mmu *mmu) 4447 { 4448 unsigned bit; 4449 bool wp; 4450 4451 if (!is_cr4_pke(mmu)) { 4452 mmu->pkru_mask = 0; 4453 return; 4454 } 4455 4456 wp = is_cr0_wp(mmu); 4457 4458 for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) { 4459 unsigned pfec, pkey_bits; 4460 bool check_pkey, check_write, ff, uf, wf, pte_user; 4461 4462 pfec = bit << 1; 4463 ff = pfec & PFERR_FETCH_MASK; 4464 uf = pfec & PFERR_USER_MASK; 4465 wf = pfec & PFERR_WRITE_MASK; 4466 4467 /* PFEC.RSVD is replaced by ACC_USER_MASK. */ 4468 pte_user = pfec & PFERR_RSVD_MASK; 4469 4470 /* 4471 * Only need to check the access which is not an 4472 * instruction fetch and is to a user page. 4473 */ 4474 check_pkey = (!ff && pte_user); 4475 /* 4476 * write access is controlled by PKRU if it is a 4477 * user access or CR0.WP = 1. 4478 */ 4479 check_write = check_pkey && wf && (uf || wp); 4480 4481 /* PKRU.AD stops both read and write access. */ 4482 pkey_bits = !!check_pkey; 4483 /* PKRU.WD stops write access. */ 4484 pkey_bits |= (!!check_write) << 1; 4485 4486 mmu->pkru_mask |= (pkey_bits & 3) << pfec; 4487 } 4488 } 4489 4490 static void reset_guest_paging_metadata(struct kvm_vcpu *vcpu, 4491 struct kvm_mmu *mmu) 4492 { 4493 if (!is_cr0_pg(mmu)) 4494 return; 4495 4496 reset_rsvds_bits_mask(vcpu, mmu); 4497 update_permission_bitmask(mmu, false); 4498 update_pkru_bitmask(mmu); 4499 } 4500 4501 static void paging64_init_context(struct kvm_mmu *context) 4502 { 4503 context->page_fault = paging64_page_fault; 4504 context->gva_to_gpa = paging64_gva_to_gpa; 4505 context->sync_page = paging64_sync_page; 4506 context->invlpg = paging64_invlpg; 4507 context->direct_map = false; 4508 } 4509 4510 static void paging32_init_context(struct kvm_mmu *context) 4511 { 4512 context->page_fault = paging32_page_fault; 4513 context->gva_to_gpa = paging32_gva_to_gpa; 4514 context->sync_page = paging32_sync_page; 4515 context->invlpg = paging32_invlpg; 4516 context->direct_map = false; 4517 } 4518 4519 static union kvm_mmu_extended_role kvm_calc_mmu_role_ext(struct kvm_vcpu *vcpu, 4520 struct kvm_mmu_role_regs *regs) 4521 { 4522 union kvm_mmu_extended_role ext = {0}; 4523 4524 if (____is_cr0_pg(regs)) { 4525 ext.cr0_pg = 1; 4526 ext.cr4_pae = ____is_cr4_pae(regs); 4527 ext.cr4_smep = ____is_cr4_smep(regs); 4528 ext.cr4_smap = ____is_cr4_smap(regs); 4529 ext.cr4_pse = ____is_cr4_pse(regs); 4530 4531 /* PKEY and LA57 are active iff long mode is active. */ 4532 ext.cr4_pke = ____is_efer_lma(regs) && ____is_cr4_pke(regs); 4533 ext.cr4_la57 = ____is_efer_lma(regs) && ____is_cr4_la57(regs); 4534 } 4535 4536 ext.valid = 1; 4537 4538 return ext; 4539 } 4540 4541 static union kvm_mmu_role kvm_calc_mmu_role_common(struct kvm_vcpu *vcpu, 4542 struct kvm_mmu_role_regs *regs, 4543 bool base_only) 4544 { 4545 union kvm_mmu_role role = {0}; 4546 4547 role.base.access = ACC_ALL; 4548 if (____is_cr0_pg(regs)) { 4549 role.base.efer_nx = ____is_efer_nx(regs); 4550 role.base.cr0_wp = ____is_cr0_wp(regs); 4551 } 4552 role.base.smm = is_smm(vcpu); 4553 role.base.guest_mode = is_guest_mode(vcpu); 4554 4555 if (base_only) 4556 return role; 4557 4558 role.ext = kvm_calc_mmu_role_ext(vcpu, regs); 4559 4560 return role; 4561 } 4562 4563 static inline int kvm_mmu_get_tdp_level(struct kvm_vcpu *vcpu) 4564 { 4565 /* Use 5-level TDP if and only if it's useful/necessary. */ 4566 if (max_tdp_level == 5 && cpuid_maxphyaddr(vcpu) <= 48) 4567 return 4; 4568 4569 return max_tdp_level; 4570 } 4571 4572 static union kvm_mmu_role 4573 kvm_calc_tdp_mmu_root_page_role(struct kvm_vcpu *vcpu, 4574 struct kvm_mmu_role_regs *regs, bool base_only) 4575 { 4576 union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, regs, base_only); 4577 4578 role.base.ad_disabled = (shadow_accessed_mask == 0); 4579 role.base.level = kvm_mmu_get_tdp_level(vcpu); 4580 role.base.direct = true; 4581 role.base.gpte_is_8_bytes = true; 4582 4583 return role; 4584 } 4585 4586 static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu) 4587 { 4588 struct kvm_mmu *context = &vcpu->arch.root_mmu; 4589 struct kvm_mmu_role_regs regs = vcpu_to_role_regs(vcpu); 4590 union kvm_mmu_role new_role = 4591 kvm_calc_tdp_mmu_root_page_role(vcpu, ®s, false); 4592 4593 if (new_role.as_u64 == context->mmu_role.as_u64) 4594 return; 4595 4596 context->mmu_role.as_u64 = new_role.as_u64; 4597 context->page_fault = kvm_tdp_page_fault; 4598 context->sync_page = nonpaging_sync_page; 4599 context->invlpg = NULL; 4600 context->shadow_root_level = kvm_mmu_get_tdp_level(vcpu); 4601 context->direct_map = true; 4602 context->get_guest_pgd = get_cr3; 4603 context->get_pdptr = kvm_pdptr_read; 4604 context->inject_page_fault = kvm_inject_page_fault; 4605 context->root_level = role_regs_to_root_level(®s); 4606 4607 if (!is_cr0_pg(context)) 4608 context->gva_to_gpa = nonpaging_gva_to_gpa; 4609 else if (is_cr4_pae(context)) 4610 context->gva_to_gpa = paging64_gva_to_gpa; 4611 else 4612 context->gva_to_gpa = paging32_gva_to_gpa; 4613 4614 reset_guest_paging_metadata(vcpu, context); 4615 reset_tdp_shadow_zero_bits_mask(vcpu, context); 4616 } 4617 4618 static union kvm_mmu_role 4619 kvm_calc_shadow_root_page_role_common(struct kvm_vcpu *vcpu, 4620 struct kvm_mmu_role_regs *regs, bool base_only) 4621 { 4622 union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, regs, base_only); 4623 4624 role.base.smep_andnot_wp = role.ext.cr4_smep && !____is_cr0_wp(regs); 4625 role.base.smap_andnot_wp = role.ext.cr4_smap && !____is_cr0_wp(regs); 4626 role.base.gpte_is_8_bytes = ____is_cr0_pg(regs) && ____is_cr4_pae(regs); 4627 4628 return role; 4629 } 4630 4631 static union kvm_mmu_role 4632 kvm_calc_shadow_mmu_root_page_role(struct kvm_vcpu *vcpu, 4633 struct kvm_mmu_role_regs *regs, bool base_only) 4634 { 4635 union kvm_mmu_role role = 4636 kvm_calc_shadow_root_page_role_common(vcpu, regs, base_only); 4637 4638 role.base.direct = !____is_cr0_pg(regs); 4639 4640 if (!____is_efer_lma(regs)) 4641 role.base.level = PT32E_ROOT_LEVEL; 4642 else if (____is_cr4_la57(regs)) 4643 role.base.level = PT64_ROOT_5LEVEL; 4644 else 4645 role.base.level = PT64_ROOT_4LEVEL; 4646 4647 return role; 4648 } 4649 4650 static void shadow_mmu_init_context(struct kvm_vcpu *vcpu, struct kvm_mmu *context, 4651 struct kvm_mmu_role_regs *regs, 4652 union kvm_mmu_role new_role) 4653 { 4654 if (new_role.as_u64 == context->mmu_role.as_u64) 4655 return; 4656 4657 context->mmu_role.as_u64 = new_role.as_u64; 4658 4659 if (!is_cr0_pg(context)) 4660 nonpaging_init_context(context); 4661 else if (is_cr4_pae(context)) 4662 paging64_init_context(context); 4663 else 4664 paging32_init_context(context); 4665 context->root_level = role_regs_to_root_level(regs); 4666 4667 reset_guest_paging_metadata(vcpu, context); 4668 context->shadow_root_level = new_role.base.level; 4669 4670 reset_shadow_zero_bits_mask(vcpu, context); 4671 } 4672 4673 static void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, 4674 struct kvm_mmu_role_regs *regs) 4675 { 4676 struct kvm_mmu *context = &vcpu->arch.root_mmu; 4677 union kvm_mmu_role new_role = 4678 kvm_calc_shadow_mmu_root_page_role(vcpu, regs, false); 4679 4680 shadow_mmu_init_context(vcpu, context, regs, new_role); 4681 } 4682 4683 static union kvm_mmu_role 4684 kvm_calc_shadow_npt_root_page_role(struct kvm_vcpu *vcpu, 4685 struct kvm_mmu_role_regs *regs) 4686 { 4687 union kvm_mmu_role role = 4688 kvm_calc_shadow_root_page_role_common(vcpu, regs, false); 4689 4690 role.base.direct = false; 4691 role.base.level = kvm_mmu_get_tdp_level(vcpu); 4692 4693 return role; 4694 } 4695 4696 void kvm_init_shadow_npt_mmu(struct kvm_vcpu *vcpu, unsigned long cr0, 4697 unsigned long cr4, u64 efer, gpa_t nested_cr3) 4698 { 4699 struct kvm_mmu *context = &vcpu->arch.guest_mmu; 4700 struct kvm_mmu_role_regs regs = { 4701 .cr0 = cr0, 4702 .cr4 = cr4, 4703 .efer = efer, 4704 }; 4705 union kvm_mmu_role new_role; 4706 4707 new_role = kvm_calc_shadow_npt_root_page_role(vcpu, ®s); 4708 4709 __kvm_mmu_new_pgd(vcpu, nested_cr3, new_role.base); 4710 4711 shadow_mmu_init_context(vcpu, context, ®s, new_role); 4712 } 4713 EXPORT_SYMBOL_GPL(kvm_init_shadow_npt_mmu); 4714 4715 static union kvm_mmu_role 4716 kvm_calc_shadow_ept_root_page_role(struct kvm_vcpu *vcpu, bool accessed_dirty, 4717 bool execonly, u8 level) 4718 { 4719 union kvm_mmu_role role = {0}; 4720 4721 /* SMM flag is inherited from root_mmu */ 4722 role.base.smm = vcpu->arch.root_mmu.mmu_role.base.smm; 4723 4724 role.base.level = level; 4725 role.base.gpte_is_8_bytes = true; 4726 role.base.direct = false; 4727 role.base.ad_disabled = !accessed_dirty; 4728 role.base.guest_mode = true; 4729 role.base.access = ACC_ALL; 4730 4731 /* EPT, and thus nested EPT, does not consume CR0, CR4, nor EFER. */ 4732 role.ext.word = 0; 4733 role.ext.execonly = execonly; 4734 role.ext.valid = 1; 4735 4736 return role; 4737 } 4738 4739 void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly, 4740 bool accessed_dirty, gpa_t new_eptp) 4741 { 4742 struct kvm_mmu *context = &vcpu->arch.guest_mmu; 4743 u8 level = vmx_eptp_page_walk_level(new_eptp); 4744 union kvm_mmu_role new_role = 4745 kvm_calc_shadow_ept_root_page_role(vcpu, accessed_dirty, 4746 execonly, level); 4747 4748 __kvm_mmu_new_pgd(vcpu, new_eptp, new_role.base); 4749 4750 if (new_role.as_u64 == context->mmu_role.as_u64) 4751 return; 4752 4753 context->mmu_role.as_u64 = new_role.as_u64; 4754 4755 context->shadow_root_level = level; 4756 4757 context->ept_ad = accessed_dirty; 4758 context->page_fault = ept_page_fault; 4759 context->gva_to_gpa = ept_gva_to_gpa; 4760 context->sync_page = ept_sync_page; 4761 context->invlpg = ept_invlpg; 4762 context->root_level = level; 4763 context->direct_map = false; 4764 4765 update_permission_bitmask(context, true); 4766 update_pkru_bitmask(context); 4767 reset_rsvds_bits_mask_ept(vcpu, context, execonly); 4768 reset_ept_shadow_zero_bits_mask(vcpu, context, execonly); 4769 } 4770 EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu); 4771 4772 static void init_kvm_softmmu(struct kvm_vcpu *vcpu) 4773 { 4774 struct kvm_mmu *context = &vcpu->arch.root_mmu; 4775 struct kvm_mmu_role_regs regs = vcpu_to_role_regs(vcpu); 4776 4777 kvm_init_shadow_mmu(vcpu, ®s); 4778 4779 context->get_guest_pgd = get_cr3; 4780 context->get_pdptr = kvm_pdptr_read; 4781 context->inject_page_fault = kvm_inject_page_fault; 4782 } 4783 4784 static union kvm_mmu_role 4785 kvm_calc_nested_mmu_role(struct kvm_vcpu *vcpu, struct kvm_mmu_role_regs *regs) 4786 { 4787 union kvm_mmu_role role; 4788 4789 role = kvm_calc_shadow_root_page_role_common(vcpu, regs, false); 4790 4791 /* 4792 * Nested MMUs are used only for walking L2's gva->gpa, they never have 4793 * shadow pages of their own and so "direct" has no meaning. Set it 4794 * to "true" to try to detect bogus usage of the nested MMU. 4795 */ 4796 role.base.direct = true; 4797 role.base.level = role_regs_to_root_level(regs); 4798 return role; 4799 } 4800 4801 static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu) 4802 { 4803 struct kvm_mmu_role_regs regs = vcpu_to_role_regs(vcpu); 4804 union kvm_mmu_role new_role = kvm_calc_nested_mmu_role(vcpu, ®s); 4805 struct kvm_mmu *g_context = &vcpu->arch.nested_mmu; 4806 4807 if (new_role.as_u64 == g_context->mmu_role.as_u64) 4808 return; 4809 4810 g_context->mmu_role.as_u64 = new_role.as_u64; 4811 g_context->get_guest_pgd = get_cr3; 4812 g_context->get_pdptr = kvm_pdptr_read; 4813 g_context->inject_page_fault = kvm_inject_page_fault; 4814 g_context->root_level = new_role.base.level; 4815 4816 /* 4817 * L2 page tables are never shadowed, so there is no need to sync 4818 * SPTEs. 4819 */ 4820 g_context->invlpg = NULL; 4821 4822 /* 4823 * Note that arch.mmu->gva_to_gpa translates l2_gpa to l1_gpa using 4824 * L1's nested page tables (e.g. EPT12). The nested translation 4825 * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using 4826 * L2's page tables as the first level of translation and L1's 4827 * nested page tables as the second level of translation. Basically 4828 * the gva_to_gpa functions between mmu and nested_mmu are swapped. 4829 */ 4830 if (!is_paging(vcpu)) 4831 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested; 4832 else if (is_long_mode(vcpu)) 4833 g_context->gva_to_gpa = paging64_gva_to_gpa_nested; 4834 else if (is_pae(vcpu)) 4835 g_context->gva_to_gpa = paging64_gva_to_gpa_nested; 4836 else 4837 g_context->gva_to_gpa = paging32_gva_to_gpa_nested; 4838 4839 reset_guest_paging_metadata(vcpu, g_context); 4840 } 4841 4842 void kvm_init_mmu(struct kvm_vcpu *vcpu) 4843 { 4844 if (mmu_is_nested(vcpu)) 4845 init_kvm_nested_mmu(vcpu); 4846 else if (tdp_enabled) 4847 init_kvm_tdp_mmu(vcpu); 4848 else 4849 init_kvm_softmmu(vcpu); 4850 } 4851 EXPORT_SYMBOL_GPL(kvm_init_mmu); 4852 4853 static union kvm_mmu_page_role 4854 kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu) 4855 { 4856 struct kvm_mmu_role_regs regs = vcpu_to_role_regs(vcpu); 4857 union kvm_mmu_role role; 4858 4859 if (tdp_enabled) 4860 role = kvm_calc_tdp_mmu_root_page_role(vcpu, ®s, true); 4861 else 4862 role = kvm_calc_shadow_mmu_root_page_role(vcpu, ®s, true); 4863 4864 return role.base; 4865 } 4866 4867 void kvm_mmu_after_set_cpuid(struct kvm_vcpu *vcpu) 4868 { 4869 /* 4870 * Invalidate all MMU roles to force them to reinitialize as CPUID 4871 * information is factored into reserved bit calculations. 4872 */ 4873 vcpu->arch.root_mmu.mmu_role.ext.valid = 0; 4874 vcpu->arch.guest_mmu.mmu_role.ext.valid = 0; 4875 vcpu->arch.nested_mmu.mmu_role.ext.valid = 0; 4876 kvm_mmu_reset_context(vcpu); 4877 4878 /* 4879 * KVM does not correctly handle changing guest CPUID after KVM_RUN, as 4880 * MAXPHYADDR, GBPAGES support, AMD reserved bit behavior, etc.. aren't 4881 * tracked in kvm_mmu_page_role. As a result, KVM may miss guest page 4882 * faults due to reusing SPs/SPTEs. Alert userspace, but otherwise 4883 * sweep the problem under the rug. 4884 * 4885 * KVM's horrific CPUID ABI makes the problem all but impossible to 4886 * solve, as correctly handling multiple vCPU models (with respect to 4887 * paging and physical address properties) in a single VM would require 4888 * tracking all relevant CPUID information in kvm_mmu_page_role. That 4889 * is very undesirable as it would double the memory requirements for 4890 * gfn_track (see struct kvm_mmu_page_role comments), and in practice 4891 * no sane VMM mucks with the core vCPU model on the fly. 4892 */ 4893 if (vcpu->arch.last_vmentry_cpu != -1) { 4894 pr_warn_ratelimited("KVM: KVM_SET_CPUID{,2} after KVM_RUN may cause guest instability\n"); 4895 pr_warn_ratelimited("KVM: KVM_SET_CPUID{,2} will fail after KVM_RUN starting with Linux 5.16\n"); 4896 } 4897 } 4898 4899 void kvm_mmu_reset_context(struct kvm_vcpu *vcpu) 4900 { 4901 kvm_mmu_unload(vcpu); 4902 kvm_init_mmu(vcpu); 4903 } 4904 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context); 4905 4906 int kvm_mmu_load(struct kvm_vcpu *vcpu) 4907 { 4908 int r; 4909 4910 r = mmu_topup_memory_caches(vcpu, !vcpu->arch.mmu->direct_map); 4911 if (r) 4912 goto out; 4913 r = mmu_alloc_special_roots(vcpu); 4914 if (r) 4915 goto out; 4916 if (vcpu->arch.mmu->direct_map) 4917 r = mmu_alloc_direct_roots(vcpu); 4918 else 4919 r = mmu_alloc_shadow_roots(vcpu); 4920 if (r) 4921 goto out; 4922 4923 kvm_mmu_sync_roots(vcpu); 4924 4925 kvm_mmu_load_pgd(vcpu); 4926 static_call(kvm_x86_tlb_flush_current)(vcpu); 4927 out: 4928 return r; 4929 } 4930 4931 void kvm_mmu_unload(struct kvm_vcpu *vcpu) 4932 { 4933 kvm_mmu_free_roots(vcpu, &vcpu->arch.root_mmu, KVM_MMU_ROOTS_ALL); 4934 WARN_ON(VALID_PAGE(vcpu->arch.root_mmu.root_hpa)); 4935 kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL); 4936 WARN_ON(VALID_PAGE(vcpu->arch.guest_mmu.root_hpa)); 4937 } 4938 4939 static bool need_remote_flush(u64 old, u64 new) 4940 { 4941 if (!is_shadow_present_pte(old)) 4942 return false; 4943 if (!is_shadow_present_pte(new)) 4944 return true; 4945 if ((old ^ new) & PT64_BASE_ADDR_MASK) 4946 return true; 4947 old ^= shadow_nx_mask; 4948 new ^= shadow_nx_mask; 4949 return (old & ~new & PT64_PERM_MASK) != 0; 4950 } 4951 4952 static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa, 4953 int *bytes) 4954 { 4955 u64 gentry = 0; 4956 int r; 4957 4958 /* 4959 * Assume that the pte write on a page table of the same type 4960 * as the current vcpu paging mode since we update the sptes only 4961 * when they have the same mode. 4962 */ 4963 if (is_pae(vcpu) && *bytes == 4) { 4964 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */ 4965 *gpa &= ~(gpa_t)7; 4966 *bytes = 8; 4967 } 4968 4969 if (*bytes == 4 || *bytes == 8) { 4970 r = kvm_vcpu_read_guest_atomic(vcpu, *gpa, &gentry, *bytes); 4971 if (r) 4972 gentry = 0; 4973 } 4974 4975 return gentry; 4976 } 4977 4978 /* 4979 * If we're seeing too many writes to a page, it may no longer be a page table, 4980 * or we may be forking, in which case it is better to unmap the page. 4981 */ 4982 static bool detect_write_flooding(struct kvm_mmu_page *sp) 4983 { 4984 /* 4985 * Skip write-flooding detected for the sp whose level is 1, because 4986 * it can become unsync, then the guest page is not write-protected. 4987 */ 4988 if (sp->role.level == PG_LEVEL_4K) 4989 return false; 4990 4991 atomic_inc(&sp->write_flooding_count); 4992 return atomic_read(&sp->write_flooding_count) >= 3; 4993 } 4994 4995 /* 4996 * Misaligned accesses are too much trouble to fix up; also, they usually 4997 * indicate a page is not used as a page table. 4998 */ 4999 static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa, 5000 int bytes) 5001 { 5002 unsigned offset, pte_size, misaligned; 5003 5004 pgprintk("misaligned: gpa %llx bytes %d role %x\n", 5005 gpa, bytes, sp->role.word); 5006 5007 offset = offset_in_page(gpa); 5008 pte_size = sp->role.gpte_is_8_bytes ? 8 : 4; 5009 5010 /* 5011 * Sometimes, the OS only writes the last one bytes to update status 5012 * bits, for example, in linux, andb instruction is used in clear_bit(). 5013 */ 5014 if (!(offset & (pte_size - 1)) && bytes == 1) 5015 return false; 5016 5017 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1); 5018 misaligned |= bytes < 4; 5019 5020 return misaligned; 5021 } 5022 5023 static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte) 5024 { 5025 unsigned page_offset, quadrant; 5026 u64 *spte; 5027 int level; 5028 5029 page_offset = offset_in_page(gpa); 5030 level = sp->role.level; 5031 *nspte = 1; 5032 if (!sp->role.gpte_is_8_bytes) { 5033 page_offset <<= 1; /* 32->64 */ 5034 /* 5035 * A 32-bit pde maps 4MB while the shadow pdes map 5036 * only 2MB. So we need to double the offset again 5037 * and zap two pdes instead of one. 5038 */ 5039 if (level == PT32_ROOT_LEVEL) { 5040 page_offset &= ~7; /* kill rounding error */ 5041 page_offset <<= 1; 5042 *nspte = 2; 5043 } 5044 quadrant = page_offset >> PAGE_SHIFT; 5045 page_offset &= ~PAGE_MASK; 5046 if (quadrant != sp->role.quadrant) 5047 return NULL; 5048 } 5049 5050 spte = &sp->spt[page_offset / sizeof(*spte)]; 5051 return spte; 5052 } 5053 5054 static void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa, 5055 const u8 *new, int bytes, 5056 struct kvm_page_track_notifier_node *node) 5057 { 5058 gfn_t gfn = gpa >> PAGE_SHIFT; 5059 struct kvm_mmu_page *sp; 5060 LIST_HEAD(invalid_list); 5061 u64 entry, gentry, *spte; 5062 int npte; 5063 bool remote_flush, local_flush; 5064 5065 /* 5066 * If we don't have indirect shadow pages, it means no page is 5067 * write-protected, so we can exit simply. 5068 */ 5069 if (!READ_ONCE(vcpu->kvm->arch.indirect_shadow_pages)) 5070 return; 5071 5072 remote_flush = local_flush = false; 5073 5074 pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes); 5075 5076 /* 5077 * No need to care whether allocation memory is successful 5078 * or not since pte prefetch is skipped if it does not have 5079 * enough objects in the cache. 5080 */ 5081 mmu_topup_memory_caches(vcpu, true); 5082 5083 write_lock(&vcpu->kvm->mmu_lock); 5084 5085 gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, &bytes); 5086 5087 ++vcpu->kvm->stat.mmu_pte_write; 5088 kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE); 5089 5090 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) { 5091 if (detect_write_misaligned(sp, gpa, bytes) || 5092 detect_write_flooding(sp)) { 5093 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list); 5094 ++vcpu->kvm->stat.mmu_flooded; 5095 continue; 5096 } 5097 5098 spte = get_written_sptes(sp, gpa, &npte); 5099 if (!spte) 5100 continue; 5101 5102 local_flush = true; 5103 while (npte--) { 5104 entry = *spte; 5105 mmu_page_zap_pte(vcpu->kvm, sp, spte, NULL); 5106 if (gentry && sp->role.level != PG_LEVEL_4K) 5107 ++vcpu->kvm->stat.mmu_pde_zapped; 5108 if (need_remote_flush(entry, *spte)) 5109 remote_flush = true; 5110 ++spte; 5111 } 5112 } 5113 kvm_mmu_flush_or_zap(vcpu, &invalid_list, remote_flush, local_flush); 5114 kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE); 5115 write_unlock(&vcpu->kvm->mmu_lock); 5116 } 5117 5118 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 error_code, 5119 void *insn, int insn_len) 5120 { 5121 int r, emulation_type = EMULTYPE_PF; 5122 bool direct = vcpu->arch.mmu->direct_map; 5123 5124 if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa))) 5125 return RET_PF_RETRY; 5126 5127 r = RET_PF_INVALID; 5128 if (unlikely(error_code & PFERR_RSVD_MASK)) { 5129 r = handle_mmio_page_fault(vcpu, cr2_or_gpa, direct); 5130 if (r == RET_PF_EMULATE) 5131 goto emulate; 5132 } 5133 5134 if (r == RET_PF_INVALID) { 5135 r = kvm_mmu_do_page_fault(vcpu, cr2_or_gpa, 5136 lower_32_bits(error_code), false); 5137 if (WARN_ON_ONCE(r == RET_PF_INVALID)) 5138 return -EIO; 5139 } 5140 5141 if (r < 0) 5142 return r; 5143 if (r != RET_PF_EMULATE) 5144 return 1; 5145 5146 /* 5147 * Before emulating the instruction, check if the error code 5148 * was due to a RO violation while translating the guest page. 5149 * This can occur when using nested virtualization with nested 5150 * paging in both guests. If true, we simply unprotect the page 5151 * and resume the guest. 5152 */ 5153 if (vcpu->arch.mmu->direct_map && 5154 (error_code & PFERR_NESTED_GUEST_PAGE) == PFERR_NESTED_GUEST_PAGE) { 5155 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(cr2_or_gpa)); 5156 return 1; 5157 } 5158 5159 /* 5160 * vcpu->arch.mmu.page_fault returned RET_PF_EMULATE, but we can still 5161 * optimistically try to just unprotect the page and let the processor 5162 * re-execute the instruction that caused the page fault. Do not allow 5163 * retrying MMIO emulation, as it's not only pointless but could also 5164 * cause us to enter an infinite loop because the processor will keep 5165 * faulting on the non-existent MMIO address. Retrying an instruction 5166 * from a nested guest is also pointless and dangerous as we are only 5167 * explicitly shadowing L1's page tables, i.e. unprotecting something 5168 * for L1 isn't going to magically fix whatever issue cause L2 to fail. 5169 */ 5170 if (!mmio_info_in_cache(vcpu, cr2_or_gpa, direct) && !is_guest_mode(vcpu)) 5171 emulation_type |= EMULTYPE_ALLOW_RETRY_PF; 5172 emulate: 5173 return x86_emulate_instruction(vcpu, cr2_or_gpa, emulation_type, insn, 5174 insn_len); 5175 } 5176 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault); 5177 5178 void kvm_mmu_invalidate_gva(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, 5179 gva_t gva, hpa_t root_hpa) 5180 { 5181 int i; 5182 5183 /* It's actually a GPA for vcpu->arch.guest_mmu. */ 5184 if (mmu != &vcpu->arch.guest_mmu) { 5185 /* INVLPG on a non-canonical address is a NOP according to the SDM. */ 5186 if (is_noncanonical_address(gva, vcpu)) 5187 return; 5188 5189 static_call(kvm_x86_tlb_flush_gva)(vcpu, gva); 5190 } 5191 5192 if (!mmu->invlpg) 5193 return; 5194 5195 if (root_hpa == INVALID_PAGE) { 5196 mmu->invlpg(vcpu, gva, mmu->root_hpa); 5197 5198 /* 5199 * INVLPG is required to invalidate any global mappings for the VA, 5200 * irrespective of PCID. Since it would take us roughly similar amount 5201 * of work to determine whether any of the prev_root mappings of the VA 5202 * is marked global, or to just sync it blindly, so we might as well 5203 * just always sync it. 5204 * 5205 * Mappings not reachable via the current cr3 or the prev_roots will be 5206 * synced when switching to that cr3, so nothing needs to be done here 5207 * for them. 5208 */ 5209 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 5210 if (VALID_PAGE(mmu->prev_roots[i].hpa)) 5211 mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa); 5212 } else { 5213 mmu->invlpg(vcpu, gva, root_hpa); 5214 } 5215 } 5216 5217 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva) 5218 { 5219 kvm_mmu_invalidate_gva(vcpu, vcpu->arch.mmu, gva, INVALID_PAGE); 5220 ++vcpu->stat.invlpg; 5221 } 5222 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg); 5223 5224 5225 void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid) 5226 { 5227 struct kvm_mmu *mmu = vcpu->arch.mmu; 5228 bool tlb_flush = false; 5229 uint i; 5230 5231 if (pcid == kvm_get_active_pcid(vcpu)) { 5232 mmu->invlpg(vcpu, gva, mmu->root_hpa); 5233 tlb_flush = true; 5234 } 5235 5236 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) { 5237 if (VALID_PAGE(mmu->prev_roots[i].hpa) && 5238 pcid == kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd)) { 5239 mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa); 5240 tlb_flush = true; 5241 } 5242 } 5243 5244 if (tlb_flush) 5245 static_call(kvm_x86_tlb_flush_gva)(vcpu, gva); 5246 5247 ++vcpu->stat.invlpg; 5248 5249 /* 5250 * Mappings not reachable via the current cr3 or the prev_roots will be 5251 * synced when switching to that cr3, so nothing needs to be done here 5252 * for them. 5253 */ 5254 } 5255 5256 void kvm_configure_mmu(bool enable_tdp, int tdp_max_root_level, 5257 int tdp_huge_page_level) 5258 { 5259 tdp_enabled = enable_tdp; 5260 max_tdp_level = tdp_max_root_level; 5261 5262 /* 5263 * max_huge_page_level reflects KVM's MMU capabilities irrespective 5264 * of kernel support, e.g. KVM may be capable of using 1GB pages when 5265 * the kernel is not. But, KVM never creates a page size greater than 5266 * what is used by the kernel for any given HVA, i.e. the kernel's 5267 * capabilities are ultimately consulted by kvm_mmu_hugepage_adjust(). 5268 */ 5269 if (tdp_enabled) 5270 max_huge_page_level = tdp_huge_page_level; 5271 else if (boot_cpu_has(X86_FEATURE_GBPAGES)) 5272 max_huge_page_level = PG_LEVEL_1G; 5273 else 5274 max_huge_page_level = PG_LEVEL_2M; 5275 } 5276 EXPORT_SYMBOL_GPL(kvm_configure_mmu); 5277 5278 /* The return value indicates if tlb flush on all vcpus is needed. */ 5279 typedef bool (*slot_level_handler) (struct kvm *kvm, struct kvm_rmap_head *rmap_head, 5280 struct kvm_memory_slot *slot); 5281 5282 /* The caller should hold mmu-lock before calling this function. */ 5283 static __always_inline bool 5284 slot_handle_level_range(struct kvm *kvm, struct kvm_memory_slot *memslot, 5285 slot_level_handler fn, int start_level, int end_level, 5286 gfn_t start_gfn, gfn_t end_gfn, bool flush_on_yield, 5287 bool flush) 5288 { 5289 struct slot_rmap_walk_iterator iterator; 5290 5291 for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn, 5292 end_gfn, &iterator) { 5293 if (iterator.rmap) 5294 flush |= fn(kvm, iterator.rmap, memslot); 5295 5296 if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) { 5297 if (flush && flush_on_yield) { 5298 kvm_flush_remote_tlbs_with_address(kvm, 5299 start_gfn, 5300 iterator.gfn - start_gfn + 1); 5301 flush = false; 5302 } 5303 cond_resched_rwlock_write(&kvm->mmu_lock); 5304 } 5305 } 5306 5307 return flush; 5308 } 5309 5310 static __always_inline bool 5311 slot_handle_level(struct kvm *kvm, struct kvm_memory_slot *memslot, 5312 slot_level_handler fn, int start_level, int end_level, 5313 bool flush_on_yield) 5314 { 5315 return slot_handle_level_range(kvm, memslot, fn, start_level, 5316 end_level, memslot->base_gfn, 5317 memslot->base_gfn + memslot->npages - 1, 5318 flush_on_yield, false); 5319 } 5320 5321 static __always_inline bool 5322 slot_handle_leaf(struct kvm *kvm, struct kvm_memory_slot *memslot, 5323 slot_level_handler fn, bool flush_on_yield) 5324 { 5325 return slot_handle_level(kvm, memslot, fn, PG_LEVEL_4K, 5326 PG_LEVEL_4K, flush_on_yield); 5327 } 5328 5329 static void free_mmu_pages(struct kvm_mmu *mmu) 5330 { 5331 if (!tdp_enabled && mmu->pae_root) 5332 set_memory_encrypted((unsigned long)mmu->pae_root, 1); 5333 free_page((unsigned long)mmu->pae_root); 5334 free_page((unsigned long)mmu->pml4_root); 5335 } 5336 5337 static int __kvm_mmu_create(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu) 5338 { 5339 struct page *page; 5340 int i; 5341 5342 mmu->root_hpa = INVALID_PAGE; 5343 mmu->root_pgd = 0; 5344 mmu->translate_gpa = translate_gpa; 5345 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 5346 mmu->prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID; 5347 5348 /* 5349 * When using PAE paging, the four PDPTEs are treated as 'root' pages, 5350 * while the PDP table is a per-vCPU construct that's allocated at MMU 5351 * creation. When emulating 32-bit mode, cr3 is only 32 bits even on 5352 * x86_64. Therefore we need to allocate the PDP table in the first 5353 * 4GB of memory, which happens to fit the DMA32 zone. TDP paging 5354 * generally doesn't use PAE paging and can skip allocating the PDP 5355 * table. The main exception, handled here, is SVM's 32-bit NPT. The 5356 * other exception is for shadowing L1's 32-bit or PAE NPT on 64-bit 5357 * KVM; that horror is handled on-demand by mmu_alloc_shadow_roots(). 5358 */ 5359 if (tdp_enabled && kvm_mmu_get_tdp_level(vcpu) > PT32E_ROOT_LEVEL) 5360 return 0; 5361 5362 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_DMA32); 5363 if (!page) 5364 return -ENOMEM; 5365 5366 mmu->pae_root = page_address(page); 5367 5368 /* 5369 * CR3 is only 32 bits when PAE paging is used, thus it's impossible to 5370 * get the CPU to treat the PDPTEs as encrypted. Decrypt the page so 5371 * that KVM's writes and the CPU's reads get along. Note, this is 5372 * only necessary when using shadow paging, as 64-bit NPT can get at 5373 * the C-bit even when shadowing 32-bit NPT, and SME isn't supported 5374 * by 32-bit kernels (when KVM itself uses 32-bit NPT). 5375 */ 5376 if (!tdp_enabled) 5377 set_memory_decrypted((unsigned long)mmu->pae_root, 1); 5378 else 5379 WARN_ON_ONCE(shadow_me_mask); 5380 5381 for (i = 0; i < 4; ++i) 5382 mmu->pae_root[i] = INVALID_PAE_ROOT; 5383 5384 return 0; 5385 } 5386 5387 int kvm_mmu_create(struct kvm_vcpu *vcpu) 5388 { 5389 int ret; 5390 5391 vcpu->arch.mmu_pte_list_desc_cache.kmem_cache = pte_list_desc_cache; 5392 vcpu->arch.mmu_pte_list_desc_cache.gfp_zero = __GFP_ZERO; 5393 5394 vcpu->arch.mmu_page_header_cache.kmem_cache = mmu_page_header_cache; 5395 vcpu->arch.mmu_page_header_cache.gfp_zero = __GFP_ZERO; 5396 5397 vcpu->arch.mmu_shadow_page_cache.gfp_zero = __GFP_ZERO; 5398 5399 vcpu->arch.mmu = &vcpu->arch.root_mmu; 5400 vcpu->arch.walk_mmu = &vcpu->arch.root_mmu; 5401 5402 vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa; 5403 5404 ret = __kvm_mmu_create(vcpu, &vcpu->arch.guest_mmu); 5405 if (ret) 5406 return ret; 5407 5408 ret = __kvm_mmu_create(vcpu, &vcpu->arch.root_mmu); 5409 if (ret) 5410 goto fail_allocate_root; 5411 5412 return ret; 5413 fail_allocate_root: 5414 free_mmu_pages(&vcpu->arch.guest_mmu); 5415 return ret; 5416 } 5417 5418 #define BATCH_ZAP_PAGES 10 5419 static void kvm_zap_obsolete_pages(struct kvm *kvm) 5420 { 5421 struct kvm_mmu_page *sp, *node; 5422 int nr_zapped, batch = 0; 5423 5424 restart: 5425 list_for_each_entry_safe_reverse(sp, node, 5426 &kvm->arch.active_mmu_pages, link) { 5427 /* 5428 * No obsolete valid page exists before a newly created page 5429 * since active_mmu_pages is a FIFO list. 5430 */ 5431 if (!is_obsolete_sp(kvm, sp)) 5432 break; 5433 5434 /* 5435 * Invalid pages should never land back on the list of active 5436 * pages. Skip the bogus page, otherwise we'll get stuck in an 5437 * infinite loop if the page gets put back on the list (again). 5438 */ 5439 if (WARN_ON(sp->role.invalid)) 5440 continue; 5441 5442 /* 5443 * No need to flush the TLB since we're only zapping shadow 5444 * pages with an obsolete generation number and all vCPUS have 5445 * loaded a new root, i.e. the shadow pages being zapped cannot 5446 * be in active use by the guest. 5447 */ 5448 if (batch >= BATCH_ZAP_PAGES && 5449 cond_resched_rwlock_write(&kvm->mmu_lock)) { 5450 batch = 0; 5451 goto restart; 5452 } 5453 5454 if (__kvm_mmu_prepare_zap_page(kvm, sp, 5455 &kvm->arch.zapped_obsolete_pages, &nr_zapped)) { 5456 batch += nr_zapped; 5457 goto restart; 5458 } 5459 } 5460 5461 /* 5462 * Trigger a remote TLB flush before freeing the page tables to ensure 5463 * KVM is not in the middle of a lockless shadow page table walk, which 5464 * may reference the pages. 5465 */ 5466 kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages); 5467 } 5468 5469 /* 5470 * Fast invalidate all shadow pages and use lock-break technique 5471 * to zap obsolete pages. 5472 * 5473 * It's required when memslot is being deleted or VM is being 5474 * destroyed, in these cases, we should ensure that KVM MMU does 5475 * not use any resource of the being-deleted slot or all slots 5476 * after calling the function. 5477 */ 5478 static void kvm_mmu_zap_all_fast(struct kvm *kvm) 5479 { 5480 lockdep_assert_held(&kvm->slots_lock); 5481 5482 write_lock(&kvm->mmu_lock); 5483 trace_kvm_mmu_zap_all_fast(kvm); 5484 5485 /* 5486 * Toggle mmu_valid_gen between '0' and '1'. Because slots_lock is 5487 * held for the entire duration of zapping obsolete pages, it's 5488 * impossible for there to be multiple invalid generations associated 5489 * with *valid* shadow pages at any given time, i.e. there is exactly 5490 * one valid generation and (at most) one invalid generation. 5491 */ 5492 kvm->arch.mmu_valid_gen = kvm->arch.mmu_valid_gen ? 0 : 1; 5493 5494 /* In order to ensure all threads see this change when 5495 * handling the MMU reload signal, this must happen in the 5496 * same critical section as kvm_reload_remote_mmus, and 5497 * before kvm_zap_obsolete_pages as kvm_zap_obsolete_pages 5498 * could drop the MMU lock and yield. 5499 */ 5500 if (is_tdp_mmu_enabled(kvm)) 5501 kvm_tdp_mmu_invalidate_all_roots(kvm); 5502 5503 /* 5504 * Notify all vcpus to reload its shadow page table and flush TLB. 5505 * Then all vcpus will switch to new shadow page table with the new 5506 * mmu_valid_gen. 5507 * 5508 * Note: we need to do this under the protection of mmu_lock, 5509 * otherwise, vcpu would purge shadow page but miss tlb flush. 5510 */ 5511 kvm_reload_remote_mmus(kvm); 5512 5513 kvm_zap_obsolete_pages(kvm); 5514 5515 write_unlock(&kvm->mmu_lock); 5516 5517 if (is_tdp_mmu_enabled(kvm)) { 5518 read_lock(&kvm->mmu_lock); 5519 kvm_tdp_mmu_zap_invalidated_roots(kvm); 5520 read_unlock(&kvm->mmu_lock); 5521 } 5522 } 5523 5524 static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm) 5525 { 5526 return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages)); 5527 } 5528 5529 static void kvm_mmu_invalidate_zap_pages_in_memslot(struct kvm *kvm, 5530 struct kvm_memory_slot *slot, 5531 struct kvm_page_track_notifier_node *node) 5532 { 5533 kvm_mmu_zap_all_fast(kvm); 5534 } 5535 5536 void kvm_mmu_init_vm(struct kvm *kvm) 5537 { 5538 struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker; 5539 5540 if (!kvm_mmu_init_tdp_mmu(kvm)) 5541 /* 5542 * No smp_load/store wrappers needed here as we are in 5543 * VM init and there cannot be any memslots / other threads 5544 * accessing this struct kvm yet. 5545 */ 5546 kvm->arch.memslots_have_rmaps = true; 5547 5548 node->track_write = kvm_mmu_pte_write; 5549 node->track_flush_slot = kvm_mmu_invalidate_zap_pages_in_memslot; 5550 kvm_page_track_register_notifier(kvm, node); 5551 } 5552 5553 void kvm_mmu_uninit_vm(struct kvm *kvm) 5554 { 5555 struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker; 5556 5557 kvm_page_track_unregister_notifier(kvm, node); 5558 5559 kvm_mmu_uninit_tdp_mmu(kvm); 5560 } 5561 5562 void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end) 5563 { 5564 struct kvm_memslots *slots; 5565 struct kvm_memory_slot *memslot; 5566 int i; 5567 bool flush = false; 5568 5569 if (kvm_memslots_have_rmaps(kvm)) { 5570 write_lock(&kvm->mmu_lock); 5571 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { 5572 slots = __kvm_memslots(kvm, i); 5573 kvm_for_each_memslot(memslot, slots) { 5574 gfn_t start, end; 5575 5576 start = max(gfn_start, memslot->base_gfn); 5577 end = min(gfn_end, memslot->base_gfn + memslot->npages); 5578 if (start >= end) 5579 continue; 5580 5581 flush = slot_handle_level_range(kvm, memslot, 5582 kvm_zap_rmapp, PG_LEVEL_4K, 5583 KVM_MAX_HUGEPAGE_LEVEL, start, 5584 end - 1, true, flush); 5585 } 5586 } 5587 if (flush) 5588 kvm_flush_remote_tlbs_with_address(kvm, gfn_start, gfn_end); 5589 write_unlock(&kvm->mmu_lock); 5590 } 5591 5592 if (is_tdp_mmu_enabled(kvm)) { 5593 flush = false; 5594 5595 read_lock(&kvm->mmu_lock); 5596 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) 5597 flush = kvm_tdp_mmu_zap_gfn_range(kvm, i, gfn_start, 5598 gfn_end, flush, true); 5599 if (flush) 5600 kvm_flush_remote_tlbs_with_address(kvm, gfn_start, 5601 gfn_end); 5602 5603 read_unlock(&kvm->mmu_lock); 5604 } 5605 } 5606 5607 static bool slot_rmap_write_protect(struct kvm *kvm, 5608 struct kvm_rmap_head *rmap_head, 5609 struct kvm_memory_slot *slot) 5610 { 5611 return __rmap_write_protect(kvm, rmap_head, false); 5612 } 5613 5614 void kvm_mmu_slot_remove_write_access(struct kvm *kvm, 5615 struct kvm_memory_slot *memslot, 5616 int start_level) 5617 { 5618 bool flush = false; 5619 5620 if (kvm_memslots_have_rmaps(kvm)) { 5621 write_lock(&kvm->mmu_lock); 5622 flush = slot_handle_level(kvm, memslot, slot_rmap_write_protect, 5623 start_level, KVM_MAX_HUGEPAGE_LEVEL, 5624 false); 5625 write_unlock(&kvm->mmu_lock); 5626 } 5627 5628 if (is_tdp_mmu_enabled(kvm)) { 5629 read_lock(&kvm->mmu_lock); 5630 flush |= kvm_tdp_mmu_wrprot_slot(kvm, memslot, start_level); 5631 read_unlock(&kvm->mmu_lock); 5632 } 5633 5634 /* 5635 * We can flush all the TLBs out of the mmu lock without TLB 5636 * corruption since we just change the spte from writable to 5637 * readonly so that we only need to care the case of changing 5638 * spte from present to present (changing the spte from present 5639 * to nonpresent will flush all the TLBs immediately), in other 5640 * words, the only case we care is mmu_spte_update() where we 5641 * have checked Host-writable | MMU-writable instead of 5642 * PT_WRITABLE_MASK, that means it does not depend on PT_WRITABLE_MASK 5643 * anymore. 5644 */ 5645 if (flush) 5646 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot); 5647 } 5648 5649 static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm, 5650 struct kvm_rmap_head *rmap_head, 5651 struct kvm_memory_slot *slot) 5652 { 5653 u64 *sptep; 5654 struct rmap_iterator iter; 5655 int need_tlb_flush = 0; 5656 kvm_pfn_t pfn; 5657 struct kvm_mmu_page *sp; 5658 5659 restart: 5660 for_each_rmap_spte(rmap_head, &iter, sptep) { 5661 sp = sptep_to_sp(sptep); 5662 pfn = spte_to_pfn(*sptep); 5663 5664 /* 5665 * We cannot do huge page mapping for indirect shadow pages, 5666 * which are found on the last rmap (level = 1) when not using 5667 * tdp; such shadow pages are synced with the page table in 5668 * the guest, and the guest page table is using 4K page size 5669 * mapping if the indirect sp has level = 1. 5670 */ 5671 if (sp->role.direct && !kvm_is_reserved_pfn(pfn) && 5672 sp->role.level < kvm_mmu_max_mapping_level(kvm, slot, sp->gfn, 5673 pfn, PG_LEVEL_NUM)) { 5674 pte_list_remove(rmap_head, sptep); 5675 5676 if (kvm_available_flush_tlb_with_range()) 5677 kvm_flush_remote_tlbs_with_address(kvm, sp->gfn, 5678 KVM_PAGES_PER_HPAGE(sp->role.level)); 5679 else 5680 need_tlb_flush = 1; 5681 5682 goto restart; 5683 } 5684 } 5685 5686 return need_tlb_flush; 5687 } 5688 5689 void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm, 5690 const struct kvm_memory_slot *memslot) 5691 { 5692 /* FIXME: const-ify all uses of struct kvm_memory_slot. */ 5693 struct kvm_memory_slot *slot = (struct kvm_memory_slot *)memslot; 5694 bool flush = false; 5695 5696 if (kvm_memslots_have_rmaps(kvm)) { 5697 write_lock(&kvm->mmu_lock); 5698 flush = slot_handle_leaf(kvm, slot, kvm_mmu_zap_collapsible_spte, true); 5699 if (flush) 5700 kvm_arch_flush_remote_tlbs_memslot(kvm, slot); 5701 write_unlock(&kvm->mmu_lock); 5702 } 5703 5704 if (is_tdp_mmu_enabled(kvm)) { 5705 read_lock(&kvm->mmu_lock); 5706 flush = kvm_tdp_mmu_zap_collapsible_sptes(kvm, slot, flush); 5707 if (flush) 5708 kvm_arch_flush_remote_tlbs_memslot(kvm, slot); 5709 read_unlock(&kvm->mmu_lock); 5710 } 5711 } 5712 5713 void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm, 5714 const struct kvm_memory_slot *memslot) 5715 { 5716 /* 5717 * All current use cases for flushing the TLBs for a specific memslot 5718 * related to dirty logging, and many do the TLB flush out of mmu_lock. 5719 * The interaction between the various operations on memslot must be 5720 * serialized by slots_locks to ensure the TLB flush from one operation 5721 * is observed by any other operation on the same memslot. 5722 */ 5723 lockdep_assert_held(&kvm->slots_lock); 5724 kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn, 5725 memslot->npages); 5726 } 5727 5728 void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm, 5729 struct kvm_memory_slot *memslot) 5730 { 5731 bool flush = false; 5732 5733 if (kvm_memslots_have_rmaps(kvm)) { 5734 write_lock(&kvm->mmu_lock); 5735 flush = slot_handle_leaf(kvm, memslot, __rmap_clear_dirty, 5736 false); 5737 write_unlock(&kvm->mmu_lock); 5738 } 5739 5740 if (is_tdp_mmu_enabled(kvm)) { 5741 read_lock(&kvm->mmu_lock); 5742 flush |= kvm_tdp_mmu_clear_dirty_slot(kvm, memslot); 5743 read_unlock(&kvm->mmu_lock); 5744 } 5745 5746 /* 5747 * It's also safe to flush TLBs out of mmu lock here as currently this 5748 * function is only used for dirty logging, in which case flushing TLB 5749 * out of mmu lock also guarantees no dirty pages will be lost in 5750 * dirty_bitmap. 5751 */ 5752 if (flush) 5753 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot); 5754 } 5755 5756 void kvm_mmu_zap_all(struct kvm *kvm) 5757 { 5758 struct kvm_mmu_page *sp, *node; 5759 LIST_HEAD(invalid_list); 5760 int ign; 5761 5762 write_lock(&kvm->mmu_lock); 5763 restart: 5764 list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link) { 5765 if (WARN_ON(sp->role.invalid)) 5766 continue; 5767 if (__kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list, &ign)) 5768 goto restart; 5769 if (cond_resched_rwlock_write(&kvm->mmu_lock)) 5770 goto restart; 5771 } 5772 5773 kvm_mmu_commit_zap_page(kvm, &invalid_list); 5774 5775 if (is_tdp_mmu_enabled(kvm)) 5776 kvm_tdp_mmu_zap_all(kvm); 5777 5778 write_unlock(&kvm->mmu_lock); 5779 } 5780 5781 void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen) 5782 { 5783 WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS); 5784 5785 gen &= MMIO_SPTE_GEN_MASK; 5786 5787 /* 5788 * Generation numbers are incremented in multiples of the number of 5789 * address spaces in order to provide unique generations across all 5790 * address spaces. Strip what is effectively the address space 5791 * modifier prior to checking for a wrap of the MMIO generation so 5792 * that a wrap in any address space is detected. 5793 */ 5794 gen &= ~((u64)KVM_ADDRESS_SPACE_NUM - 1); 5795 5796 /* 5797 * The very rare case: if the MMIO generation number has wrapped, 5798 * zap all shadow pages. 5799 */ 5800 if (unlikely(gen == 0)) { 5801 kvm_debug_ratelimited("kvm: zapping shadow pages for mmio generation wraparound\n"); 5802 kvm_mmu_zap_all_fast(kvm); 5803 } 5804 } 5805 5806 static unsigned long 5807 mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc) 5808 { 5809 struct kvm *kvm; 5810 int nr_to_scan = sc->nr_to_scan; 5811 unsigned long freed = 0; 5812 5813 mutex_lock(&kvm_lock); 5814 5815 list_for_each_entry(kvm, &vm_list, vm_list) { 5816 int idx; 5817 LIST_HEAD(invalid_list); 5818 5819 /* 5820 * Never scan more than sc->nr_to_scan VM instances. 5821 * Will not hit this condition practically since we do not try 5822 * to shrink more than one VM and it is very unlikely to see 5823 * !n_used_mmu_pages so many times. 5824 */ 5825 if (!nr_to_scan--) 5826 break; 5827 /* 5828 * n_used_mmu_pages is accessed without holding kvm->mmu_lock 5829 * here. We may skip a VM instance errorneosly, but we do not 5830 * want to shrink a VM that only started to populate its MMU 5831 * anyway. 5832 */ 5833 if (!kvm->arch.n_used_mmu_pages && 5834 !kvm_has_zapped_obsolete_pages(kvm)) 5835 continue; 5836 5837 idx = srcu_read_lock(&kvm->srcu); 5838 write_lock(&kvm->mmu_lock); 5839 5840 if (kvm_has_zapped_obsolete_pages(kvm)) { 5841 kvm_mmu_commit_zap_page(kvm, 5842 &kvm->arch.zapped_obsolete_pages); 5843 goto unlock; 5844 } 5845 5846 freed = kvm_mmu_zap_oldest_mmu_pages(kvm, sc->nr_to_scan); 5847 5848 unlock: 5849 write_unlock(&kvm->mmu_lock); 5850 srcu_read_unlock(&kvm->srcu, idx); 5851 5852 /* 5853 * unfair on small ones 5854 * per-vm shrinkers cry out 5855 * sadness comes quickly 5856 */ 5857 list_move_tail(&kvm->vm_list, &vm_list); 5858 break; 5859 } 5860 5861 mutex_unlock(&kvm_lock); 5862 return freed; 5863 } 5864 5865 static unsigned long 5866 mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc) 5867 { 5868 return percpu_counter_read_positive(&kvm_total_used_mmu_pages); 5869 } 5870 5871 static struct shrinker mmu_shrinker = { 5872 .count_objects = mmu_shrink_count, 5873 .scan_objects = mmu_shrink_scan, 5874 .seeks = DEFAULT_SEEKS * 10, 5875 }; 5876 5877 static void mmu_destroy_caches(void) 5878 { 5879 kmem_cache_destroy(pte_list_desc_cache); 5880 kmem_cache_destroy(mmu_page_header_cache); 5881 } 5882 5883 static bool get_nx_auto_mode(void) 5884 { 5885 /* Return true when CPU has the bug, and mitigations are ON */ 5886 return boot_cpu_has_bug(X86_BUG_ITLB_MULTIHIT) && !cpu_mitigations_off(); 5887 } 5888 5889 static void __set_nx_huge_pages(bool val) 5890 { 5891 nx_huge_pages = itlb_multihit_kvm_mitigation = val; 5892 } 5893 5894 static int set_nx_huge_pages(const char *val, const struct kernel_param *kp) 5895 { 5896 bool old_val = nx_huge_pages; 5897 bool new_val; 5898 5899 /* In "auto" mode deploy workaround only if CPU has the bug. */ 5900 if (sysfs_streq(val, "off")) 5901 new_val = 0; 5902 else if (sysfs_streq(val, "force")) 5903 new_val = 1; 5904 else if (sysfs_streq(val, "auto")) 5905 new_val = get_nx_auto_mode(); 5906 else if (strtobool(val, &new_val) < 0) 5907 return -EINVAL; 5908 5909 __set_nx_huge_pages(new_val); 5910 5911 if (new_val != old_val) { 5912 struct kvm *kvm; 5913 5914 mutex_lock(&kvm_lock); 5915 5916 list_for_each_entry(kvm, &vm_list, vm_list) { 5917 mutex_lock(&kvm->slots_lock); 5918 kvm_mmu_zap_all_fast(kvm); 5919 mutex_unlock(&kvm->slots_lock); 5920 5921 wake_up_process(kvm->arch.nx_lpage_recovery_thread); 5922 } 5923 mutex_unlock(&kvm_lock); 5924 } 5925 5926 return 0; 5927 } 5928 5929 int kvm_mmu_module_init(void) 5930 { 5931 int ret = -ENOMEM; 5932 5933 if (nx_huge_pages == -1) 5934 __set_nx_huge_pages(get_nx_auto_mode()); 5935 5936 /* 5937 * MMU roles use union aliasing which is, generally speaking, an 5938 * undefined behavior. However, we supposedly know how compilers behave 5939 * and the current status quo is unlikely to change. Guardians below are 5940 * supposed to let us know if the assumption becomes false. 5941 */ 5942 BUILD_BUG_ON(sizeof(union kvm_mmu_page_role) != sizeof(u32)); 5943 BUILD_BUG_ON(sizeof(union kvm_mmu_extended_role) != sizeof(u32)); 5944 BUILD_BUG_ON(sizeof(union kvm_mmu_role) != sizeof(u64)); 5945 5946 kvm_mmu_reset_all_pte_masks(); 5947 5948 pte_list_desc_cache = kmem_cache_create("pte_list_desc", 5949 sizeof(struct pte_list_desc), 5950 0, SLAB_ACCOUNT, NULL); 5951 if (!pte_list_desc_cache) 5952 goto out; 5953 5954 mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header", 5955 sizeof(struct kvm_mmu_page), 5956 0, SLAB_ACCOUNT, NULL); 5957 if (!mmu_page_header_cache) 5958 goto out; 5959 5960 if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL)) 5961 goto out; 5962 5963 ret = register_shrinker(&mmu_shrinker); 5964 if (ret) 5965 goto out; 5966 5967 return 0; 5968 5969 out: 5970 mmu_destroy_caches(); 5971 return ret; 5972 } 5973 5974 /* 5975 * Calculate mmu pages needed for kvm. 5976 */ 5977 unsigned long kvm_mmu_calculate_default_mmu_pages(struct kvm *kvm) 5978 { 5979 unsigned long nr_mmu_pages; 5980 unsigned long nr_pages = 0; 5981 struct kvm_memslots *slots; 5982 struct kvm_memory_slot *memslot; 5983 int i; 5984 5985 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { 5986 slots = __kvm_memslots(kvm, i); 5987 5988 kvm_for_each_memslot(memslot, slots) 5989 nr_pages += memslot->npages; 5990 } 5991 5992 nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000; 5993 nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES); 5994 5995 return nr_mmu_pages; 5996 } 5997 5998 void kvm_mmu_destroy(struct kvm_vcpu *vcpu) 5999 { 6000 kvm_mmu_unload(vcpu); 6001 free_mmu_pages(&vcpu->arch.root_mmu); 6002 free_mmu_pages(&vcpu->arch.guest_mmu); 6003 mmu_free_memory_caches(vcpu); 6004 } 6005 6006 void kvm_mmu_module_exit(void) 6007 { 6008 mmu_destroy_caches(); 6009 percpu_counter_destroy(&kvm_total_used_mmu_pages); 6010 unregister_shrinker(&mmu_shrinker); 6011 mmu_audit_disable(); 6012 } 6013 6014 static int set_nx_huge_pages_recovery_ratio(const char *val, const struct kernel_param *kp) 6015 { 6016 unsigned int old_val; 6017 int err; 6018 6019 old_val = nx_huge_pages_recovery_ratio; 6020 err = param_set_uint(val, kp); 6021 if (err) 6022 return err; 6023 6024 if (READ_ONCE(nx_huge_pages) && 6025 !old_val && nx_huge_pages_recovery_ratio) { 6026 struct kvm *kvm; 6027 6028 mutex_lock(&kvm_lock); 6029 6030 list_for_each_entry(kvm, &vm_list, vm_list) 6031 wake_up_process(kvm->arch.nx_lpage_recovery_thread); 6032 6033 mutex_unlock(&kvm_lock); 6034 } 6035 6036 return err; 6037 } 6038 6039 static void kvm_recover_nx_lpages(struct kvm *kvm) 6040 { 6041 unsigned long nx_lpage_splits = kvm->stat.nx_lpage_splits; 6042 int rcu_idx; 6043 struct kvm_mmu_page *sp; 6044 unsigned int ratio; 6045 LIST_HEAD(invalid_list); 6046 bool flush = false; 6047 ulong to_zap; 6048 6049 rcu_idx = srcu_read_lock(&kvm->srcu); 6050 write_lock(&kvm->mmu_lock); 6051 6052 ratio = READ_ONCE(nx_huge_pages_recovery_ratio); 6053 to_zap = ratio ? DIV_ROUND_UP(nx_lpage_splits, ratio) : 0; 6054 for ( ; to_zap; --to_zap) { 6055 if (list_empty(&kvm->arch.lpage_disallowed_mmu_pages)) 6056 break; 6057 6058 /* 6059 * We use a separate list instead of just using active_mmu_pages 6060 * because the number of lpage_disallowed pages is expected to 6061 * be relatively small compared to the total. 6062 */ 6063 sp = list_first_entry(&kvm->arch.lpage_disallowed_mmu_pages, 6064 struct kvm_mmu_page, 6065 lpage_disallowed_link); 6066 WARN_ON_ONCE(!sp->lpage_disallowed); 6067 if (is_tdp_mmu_page(sp)) { 6068 flush |= kvm_tdp_mmu_zap_sp(kvm, sp); 6069 } else { 6070 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list); 6071 WARN_ON_ONCE(sp->lpage_disallowed); 6072 } 6073 6074 if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) { 6075 kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush); 6076 cond_resched_rwlock_write(&kvm->mmu_lock); 6077 flush = false; 6078 } 6079 } 6080 kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush); 6081 6082 write_unlock(&kvm->mmu_lock); 6083 srcu_read_unlock(&kvm->srcu, rcu_idx); 6084 } 6085 6086 static long get_nx_lpage_recovery_timeout(u64 start_time) 6087 { 6088 return READ_ONCE(nx_huge_pages) && READ_ONCE(nx_huge_pages_recovery_ratio) 6089 ? start_time + 60 * HZ - get_jiffies_64() 6090 : MAX_SCHEDULE_TIMEOUT; 6091 } 6092 6093 static int kvm_nx_lpage_recovery_worker(struct kvm *kvm, uintptr_t data) 6094 { 6095 u64 start_time; 6096 long remaining_time; 6097 6098 while (true) { 6099 start_time = get_jiffies_64(); 6100 remaining_time = get_nx_lpage_recovery_timeout(start_time); 6101 6102 set_current_state(TASK_INTERRUPTIBLE); 6103 while (!kthread_should_stop() && remaining_time > 0) { 6104 schedule_timeout(remaining_time); 6105 remaining_time = get_nx_lpage_recovery_timeout(start_time); 6106 set_current_state(TASK_INTERRUPTIBLE); 6107 } 6108 6109 set_current_state(TASK_RUNNING); 6110 6111 if (kthread_should_stop()) 6112 return 0; 6113 6114 kvm_recover_nx_lpages(kvm); 6115 } 6116 } 6117 6118 int kvm_mmu_post_init_vm(struct kvm *kvm) 6119 { 6120 int err; 6121 6122 err = kvm_vm_create_worker_thread(kvm, kvm_nx_lpage_recovery_worker, 0, 6123 "kvm-nx-lpage-recovery", 6124 &kvm->arch.nx_lpage_recovery_thread); 6125 if (!err) 6126 kthread_unpark(kvm->arch.nx_lpage_recovery_thread); 6127 6128 return err; 6129 } 6130 6131 void kvm_mmu_pre_destroy_vm(struct kvm *kvm) 6132 { 6133 if (kvm->arch.nx_lpage_recovery_thread) 6134 kthread_stop(kvm->arch.nx_lpage_recovery_thread); 6135 } 6136