1 #ifndef __KVM_X86_MMU_H 2 #define __KVM_X86_MMU_H 3 4 #include <linux/kvm_host.h> 5 #include "kvm_cache_regs.h" 6 7 #define PT64_PT_BITS 9 8 #define PT64_ENT_PER_PAGE (1 << PT64_PT_BITS) 9 #define PT32_PT_BITS 10 10 #define PT32_ENT_PER_PAGE (1 << PT32_PT_BITS) 11 12 #define PT_WRITABLE_SHIFT 1 13 #define PT_USER_SHIFT 2 14 15 #define PT_PRESENT_MASK (1ULL << 0) 16 #define PT_WRITABLE_MASK (1ULL << PT_WRITABLE_SHIFT) 17 #define PT_USER_MASK (1ULL << PT_USER_SHIFT) 18 #define PT_PWT_MASK (1ULL << 3) 19 #define PT_PCD_MASK (1ULL << 4) 20 #define PT_ACCESSED_SHIFT 5 21 #define PT_ACCESSED_MASK (1ULL << PT_ACCESSED_SHIFT) 22 #define PT_DIRTY_SHIFT 6 23 #define PT_DIRTY_MASK (1ULL << PT_DIRTY_SHIFT) 24 #define PT_PAGE_SIZE_SHIFT 7 25 #define PT_PAGE_SIZE_MASK (1ULL << PT_PAGE_SIZE_SHIFT) 26 #define PT_PAT_MASK (1ULL << 7) 27 #define PT_GLOBAL_MASK (1ULL << 8) 28 #define PT64_NX_SHIFT 63 29 #define PT64_NX_MASK (1ULL << PT64_NX_SHIFT) 30 31 #define PT_PAT_SHIFT 7 32 #define PT_DIR_PAT_SHIFT 12 33 #define PT_DIR_PAT_MASK (1ULL << PT_DIR_PAT_SHIFT) 34 35 #define PT32_DIR_PSE36_SIZE 4 36 #define PT32_DIR_PSE36_SHIFT 13 37 #define PT32_DIR_PSE36_MASK \ 38 (((1ULL << PT32_DIR_PSE36_SIZE) - 1) << PT32_DIR_PSE36_SHIFT) 39 40 #define PT64_ROOT_LEVEL 4 41 #define PT32_ROOT_LEVEL 2 42 #define PT32E_ROOT_LEVEL 3 43 44 #define PT_PDPE_LEVEL 3 45 #define PT_DIRECTORY_LEVEL 2 46 #define PT_PAGE_TABLE_LEVEL 1 47 #define PT_MAX_HUGEPAGE_LEVEL (PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES - 1) 48 49 static inline u64 rsvd_bits(int s, int e) 50 { 51 return ((1ULL << (e - s + 1)) - 1) << s; 52 } 53 54 void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask, u64 mmio_value); 55 56 void 57 reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, struct kvm_mmu *context); 58 59 /* 60 * Return values of handle_mmio_page_fault: 61 * RET_MMIO_PF_EMULATE: it is a real mmio page fault, emulate the instruction 62 * directly. 63 * RET_MMIO_PF_INVALID: invalid spte is detected then let the real page 64 * fault path update the mmio spte. 65 * RET_MMIO_PF_RETRY: let CPU fault again on the address. 66 * RET_MMIO_PF_BUG: a bug was detected (and a WARN was printed). 67 */ 68 enum { 69 RET_MMIO_PF_EMULATE = 1, 70 RET_MMIO_PF_INVALID = 2, 71 RET_MMIO_PF_RETRY = 0, 72 RET_MMIO_PF_BUG = -1 73 }; 74 75 int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct); 76 void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu); 77 void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly, 78 bool accessed_dirty); 79 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu); 80 int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code, 81 u64 fault_address, char *insn, int insn_len, 82 bool need_unprotect); 83 84 static inline unsigned int kvm_mmu_available_pages(struct kvm *kvm) 85 { 86 if (kvm->arch.n_max_mmu_pages > kvm->arch.n_used_mmu_pages) 87 return kvm->arch.n_max_mmu_pages - 88 kvm->arch.n_used_mmu_pages; 89 90 return 0; 91 } 92 93 static inline int kvm_mmu_reload(struct kvm_vcpu *vcpu) 94 { 95 if (likely(vcpu->arch.mmu.root_hpa != INVALID_PAGE)) 96 return 0; 97 98 return kvm_mmu_load(vcpu); 99 } 100 101 /* 102 * Currently, we have two sorts of write-protection, a) the first one 103 * write-protects guest page to sync the guest modification, b) another one is 104 * used to sync dirty bitmap when we do KVM_GET_DIRTY_LOG. The differences 105 * between these two sorts are: 106 * 1) the first case clears SPTE_MMU_WRITEABLE bit. 107 * 2) the first case requires flushing tlb immediately avoiding corrupting 108 * shadow page table between all vcpus so it should be in the protection of 109 * mmu-lock. And the another case does not need to flush tlb until returning 110 * the dirty bitmap to userspace since it only write-protects the page 111 * logged in the bitmap, that means the page in the dirty bitmap is not 112 * missed, so it can flush tlb out of mmu-lock. 113 * 114 * So, there is the problem: the first case can meet the corrupted tlb caused 115 * by another case which write-protects pages but without flush tlb 116 * immediately. In order to making the first case be aware this problem we let 117 * it flush tlb if we try to write-protect a spte whose SPTE_MMU_WRITEABLE bit 118 * is set, it works since another case never touches SPTE_MMU_WRITEABLE bit. 119 * 120 * Anyway, whenever a spte is updated (only permission and status bits are 121 * changed) we need to check whether the spte with SPTE_MMU_WRITEABLE becomes 122 * readonly, if that happens, we need to flush tlb. Fortunately, 123 * mmu_spte_update() has already handled it perfectly. 124 * 125 * The rules to use SPTE_MMU_WRITEABLE and PT_WRITABLE_MASK: 126 * - if we want to see if it has writable tlb entry or if the spte can be 127 * writable on the mmu mapping, check SPTE_MMU_WRITEABLE, this is the most 128 * case, otherwise 129 * - if we fix page fault on the spte or do write-protection by dirty logging, 130 * check PT_WRITABLE_MASK. 131 * 132 * TODO: introduce APIs to split these two cases. 133 */ 134 static inline int is_writable_pte(unsigned long pte) 135 { 136 return pte & PT_WRITABLE_MASK; 137 } 138 139 static inline bool is_write_protection(struct kvm_vcpu *vcpu) 140 { 141 return kvm_read_cr0_bits(vcpu, X86_CR0_WP); 142 } 143 144 /* 145 * Check if a given access (described through the I/D, W/R and U/S bits of a 146 * page fault error code pfec) causes a permission fault with the given PTE 147 * access rights (in ACC_* format). 148 * 149 * Return zero if the access does not fault; return the page fault error code 150 * if the access faults. 151 */ 152 static inline u8 permission_fault(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, 153 unsigned pte_access, unsigned pte_pkey, 154 unsigned pfec) 155 { 156 int cpl = kvm_x86_ops->get_cpl(vcpu); 157 unsigned long rflags = kvm_x86_ops->get_rflags(vcpu); 158 159 /* 160 * If CPL < 3, SMAP prevention are disabled if EFLAGS.AC = 1. 161 * 162 * If CPL = 3, SMAP applies to all supervisor-mode data accesses 163 * (these are implicit supervisor accesses) regardless of the value 164 * of EFLAGS.AC. 165 * 166 * This computes (cpl < 3) && (rflags & X86_EFLAGS_AC), leaving 167 * the result in X86_EFLAGS_AC. We then insert it in place of 168 * the PFERR_RSVD_MASK bit; this bit will always be zero in pfec, 169 * but it will be one in index if SMAP checks are being overridden. 170 * It is important to keep this branchless. 171 */ 172 unsigned long smap = (cpl - 3) & (rflags & X86_EFLAGS_AC); 173 int index = (pfec >> 1) + 174 (smap >> (X86_EFLAGS_AC_BIT - PFERR_RSVD_BIT + 1)); 175 bool fault = (mmu->permissions[index] >> pte_access) & 1; 176 u32 errcode = PFERR_PRESENT_MASK; 177 178 WARN_ON(pfec & (PFERR_PK_MASK | PFERR_RSVD_MASK)); 179 if (unlikely(mmu->pkru_mask)) { 180 u32 pkru_bits, offset; 181 182 /* 183 * PKRU defines 32 bits, there are 16 domains and 2 184 * attribute bits per domain in pkru. pte_pkey is the 185 * index of the protection domain, so pte_pkey * 2 is 186 * is the index of the first bit for the domain. 187 */ 188 pkru_bits = (vcpu->arch.pkru >> (pte_pkey * 2)) & 3; 189 190 /* clear present bit, replace PFEC.RSVD with ACC_USER_MASK. */ 191 offset = (pfec & ~1) + 192 ((pte_access & PT_USER_MASK) << (PFERR_RSVD_BIT - PT_USER_SHIFT)); 193 194 pkru_bits &= mmu->pkru_mask >> offset; 195 errcode |= -pkru_bits & PFERR_PK_MASK; 196 fault |= (pkru_bits != 0); 197 } 198 199 return -(u32)fault & errcode; 200 } 201 202 void kvm_mmu_invalidate_zap_all_pages(struct kvm *kvm); 203 void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end); 204 205 void kvm_mmu_gfn_disallow_lpage(struct kvm_memory_slot *slot, gfn_t gfn); 206 void kvm_mmu_gfn_allow_lpage(struct kvm_memory_slot *slot, gfn_t gfn); 207 bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm, 208 struct kvm_memory_slot *slot, u64 gfn); 209 int kvm_arch_write_log_dirty(struct kvm_vcpu *vcpu); 210 #endif 211