xref: /openbmc/linux/arch/x86/kvm/mmu.h (revision c8f14e2b)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef __KVM_X86_MMU_H
3 #define __KVM_X86_MMU_H
4 
5 #include <linux/kvm_host.h>
6 #include "kvm_cache_regs.h"
7 #include "cpuid.h"
8 
9 #define PT64_PT_BITS 9
10 #define PT64_ENT_PER_PAGE (1 << PT64_PT_BITS)
11 #define PT32_PT_BITS 10
12 #define PT32_ENT_PER_PAGE (1 << PT32_PT_BITS)
13 
14 #define PT_WRITABLE_SHIFT 1
15 #define PT_USER_SHIFT 2
16 
17 #define PT_PRESENT_MASK (1ULL << 0)
18 #define PT_WRITABLE_MASK (1ULL << PT_WRITABLE_SHIFT)
19 #define PT_USER_MASK (1ULL << PT_USER_SHIFT)
20 #define PT_PWT_MASK (1ULL << 3)
21 #define PT_PCD_MASK (1ULL << 4)
22 #define PT_ACCESSED_SHIFT 5
23 #define PT_ACCESSED_MASK (1ULL << PT_ACCESSED_SHIFT)
24 #define PT_DIRTY_SHIFT 6
25 #define PT_DIRTY_MASK (1ULL << PT_DIRTY_SHIFT)
26 #define PT_PAGE_SIZE_SHIFT 7
27 #define PT_PAGE_SIZE_MASK (1ULL << PT_PAGE_SIZE_SHIFT)
28 #define PT_PAT_MASK (1ULL << 7)
29 #define PT_GLOBAL_MASK (1ULL << 8)
30 #define PT64_NX_SHIFT 63
31 #define PT64_NX_MASK (1ULL << PT64_NX_SHIFT)
32 
33 #define PT_PAT_SHIFT 7
34 #define PT_DIR_PAT_SHIFT 12
35 #define PT_DIR_PAT_MASK (1ULL << PT_DIR_PAT_SHIFT)
36 
37 #define PT32_DIR_PSE36_SIZE 4
38 #define PT32_DIR_PSE36_SHIFT 13
39 #define PT32_DIR_PSE36_MASK \
40 	(((1ULL << PT32_DIR_PSE36_SIZE) - 1) << PT32_DIR_PSE36_SHIFT)
41 
42 #define PT64_ROOT_5LEVEL 5
43 #define PT64_ROOT_4LEVEL 4
44 #define PT32_ROOT_LEVEL 2
45 #define PT32E_ROOT_LEVEL 3
46 
47 #define KVM_MMU_CR4_ROLE_BITS (X86_CR4_PSE | X86_CR4_PAE | X86_CR4_LA57 | \
48 			       X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE)
49 
50 #define KVM_MMU_CR0_ROLE_BITS (X86_CR0_PG | X86_CR0_WP)
51 #define KVM_MMU_EFER_ROLE_BITS (EFER_LME | EFER_NX)
52 
53 static __always_inline u64 rsvd_bits(int s, int e)
54 {
55 	BUILD_BUG_ON(__builtin_constant_p(e) && __builtin_constant_p(s) && e < s);
56 
57 	if (__builtin_constant_p(e))
58 		BUILD_BUG_ON(e > 63);
59 	else
60 		e &= 63;
61 
62 	if (e < s)
63 		return 0;
64 
65 	return ((2ULL << (e - s)) - 1) << s;
66 }
67 
68 void kvm_mmu_set_mmio_spte_mask(u64 mmio_value, u64 mmio_mask, u64 access_mask);
69 void kvm_mmu_set_ept_masks(bool has_ad_bits, bool has_exec_only);
70 
71 void kvm_init_mmu(struct kvm_vcpu *vcpu);
72 void kvm_init_shadow_npt_mmu(struct kvm_vcpu *vcpu, unsigned long cr0,
73 			     unsigned long cr4, u64 efer, gpa_t nested_cr3);
74 void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly,
75 			     int huge_page_level, bool accessed_dirty,
76 			     gpa_t new_eptp);
77 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu);
78 int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code,
79 				u64 fault_address, char *insn, int insn_len);
80 
81 int kvm_mmu_load(struct kvm_vcpu *vcpu);
82 void kvm_mmu_unload(struct kvm_vcpu *vcpu);
83 void kvm_mmu_free_obsolete_roots(struct kvm_vcpu *vcpu);
84 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu);
85 void kvm_mmu_sync_prev_roots(struct kvm_vcpu *vcpu);
86 
87 static inline int kvm_mmu_reload(struct kvm_vcpu *vcpu)
88 {
89 	if (likely(vcpu->arch.mmu->root.hpa != INVALID_PAGE))
90 		return 0;
91 
92 	return kvm_mmu_load(vcpu);
93 }
94 
95 static inline unsigned long kvm_get_pcid(struct kvm_vcpu *vcpu, gpa_t cr3)
96 {
97 	BUILD_BUG_ON((X86_CR3_PCID_MASK & PAGE_MASK) != 0);
98 
99 	return kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE)
100 	       ? cr3 & X86_CR3_PCID_MASK
101 	       : 0;
102 }
103 
104 static inline unsigned long kvm_get_active_pcid(struct kvm_vcpu *vcpu)
105 {
106 	return kvm_get_pcid(vcpu, kvm_read_cr3(vcpu));
107 }
108 
109 static inline void kvm_mmu_load_pgd(struct kvm_vcpu *vcpu)
110 {
111 	u64 root_hpa = vcpu->arch.mmu->root.hpa;
112 
113 	if (!VALID_PAGE(root_hpa))
114 		return;
115 
116 	static_call(kvm_x86_load_mmu_pgd)(vcpu, root_hpa,
117 					  vcpu->arch.mmu->shadow_root_level);
118 }
119 
120 struct kvm_page_fault {
121 	/* arguments to kvm_mmu_do_page_fault.  */
122 	const gpa_t addr;
123 	const u32 error_code;
124 	const bool prefetch;
125 
126 	/* Derived from error_code.  */
127 	const bool exec;
128 	const bool write;
129 	const bool present;
130 	const bool rsvd;
131 	const bool user;
132 
133 	/* Derived from mmu and global state.  */
134 	const bool is_tdp;
135 	const bool nx_huge_page_workaround_enabled;
136 
137 	/*
138 	 * Whether a >4KB mapping can be created or is forbidden due to NX
139 	 * hugepages.
140 	 */
141 	bool huge_page_disallowed;
142 
143 	/*
144 	 * Maximum page size that can be created for this fault; input to
145 	 * FNAME(fetch), __direct_map and kvm_tdp_mmu_map.
146 	 */
147 	u8 max_level;
148 
149 	/*
150 	 * Page size that can be created based on the max_level and the
151 	 * page size used by the host mapping.
152 	 */
153 	u8 req_level;
154 
155 	/*
156 	 * Page size that will be created based on the req_level and
157 	 * huge_page_disallowed.
158 	 */
159 	u8 goal_level;
160 
161 	/* Shifted addr, or result of guest page table walk if addr is a gva.  */
162 	gfn_t gfn;
163 
164 	/* The memslot containing gfn. May be NULL. */
165 	struct kvm_memory_slot *slot;
166 
167 	/* Outputs of kvm_faultin_pfn.  */
168 	kvm_pfn_t pfn;
169 	hva_t hva;
170 	bool map_writable;
171 };
172 
173 int kvm_tdp_page_fault(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault);
174 
175 extern int nx_huge_pages;
176 static inline bool is_nx_huge_page_enabled(void)
177 {
178 	return READ_ONCE(nx_huge_pages);
179 }
180 
181 static inline int kvm_mmu_do_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
182 					u32 err, bool prefetch)
183 {
184 	struct kvm_page_fault fault = {
185 		.addr = cr2_or_gpa,
186 		.error_code = err,
187 		.exec = err & PFERR_FETCH_MASK,
188 		.write = err & PFERR_WRITE_MASK,
189 		.present = err & PFERR_PRESENT_MASK,
190 		.rsvd = err & PFERR_RSVD_MASK,
191 		.user = err & PFERR_USER_MASK,
192 		.prefetch = prefetch,
193 		.is_tdp = likely(vcpu->arch.mmu->page_fault == kvm_tdp_page_fault),
194 		.nx_huge_page_workaround_enabled = is_nx_huge_page_enabled(),
195 
196 		.max_level = KVM_MAX_HUGEPAGE_LEVEL,
197 		.req_level = PG_LEVEL_4K,
198 		.goal_level = PG_LEVEL_4K,
199 	};
200 #ifdef CONFIG_RETPOLINE
201 	if (fault.is_tdp)
202 		return kvm_tdp_page_fault(vcpu, &fault);
203 #endif
204 	return vcpu->arch.mmu->page_fault(vcpu, &fault);
205 }
206 
207 /*
208  * Check if a given access (described through the I/D, W/R and U/S bits of a
209  * page fault error code pfec) causes a permission fault with the given PTE
210  * access rights (in ACC_* format).
211  *
212  * Return zero if the access does not fault; return the page fault error code
213  * if the access faults.
214  */
215 static inline u8 permission_fault(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
216 				  unsigned pte_access, unsigned pte_pkey,
217 				  u64 access)
218 {
219 	/* strip nested paging fault error codes */
220 	unsigned int pfec = access;
221 	unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu);
222 
223 	/*
224 	 * For explicit supervisor accesses, SMAP is disabled if EFLAGS.AC = 1.
225 	 * For implicit supervisor accesses, SMAP cannot be overridden.
226 	 *
227 	 * SMAP works on supervisor accesses only, and not_smap can
228 	 * be set or not set when user access with neither has any bearing
229 	 * on the result.
230 	 *
231 	 * We put the SMAP checking bit in place of the PFERR_RSVD_MASK bit;
232 	 * this bit will always be zero in pfec, but it will be one in index
233 	 * if SMAP checks are being disabled.
234 	 */
235 	u64 implicit_access = access & PFERR_IMPLICIT_ACCESS;
236 	bool not_smap = ((rflags & X86_EFLAGS_AC) | implicit_access) == X86_EFLAGS_AC;
237 	int index = (pfec + (not_smap << PFERR_RSVD_BIT)) >> 1;
238 	bool fault = (mmu->permissions[index] >> pte_access) & 1;
239 	u32 errcode = PFERR_PRESENT_MASK;
240 
241 	WARN_ON(pfec & (PFERR_PK_MASK | PFERR_RSVD_MASK));
242 	if (unlikely(mmu->pkru_mask)) {
243 		u32 pkru_bits, offset;
244 
245 		/*
246 		* PKRU defines 32 bits, there are 16 domains and 2
247 		* attribute bits per domain in pkru.  pte_pkey is the
248 		* index of the protection domain, so pte_pkey * 2 is
249 		* is the index of the first bit for the domain.
250 		*/
251 		pkru_bits = (vcpu->arch.pkru >> (pte_pkey * 2)) & 3;
252 
253 		/* clear present bit, replace PFEC.RSVD with ACC_USER_MASK. */
254 		offset = (pfec & ~1) +
255 			((pte_access & PT_USER_MASK) << (PFERR_RSVD_BIT - PT_USER_SHIFT));
256 
257 		pkru_bits &= mmu->pkru_mask >> offset;
258 		errcode |= -pkru_bits & PFERR_PK_MASK;
259 		fault |= (pkru_bits != 0);
260 	}
261 
262 	return -(u32)fault & errcode;
263 }
264 
265 void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end);
266 
267 int kvm_arch_write_log_dirty(struct kvm_vcpu *vcpu);
268 
269 int kvm_mmu_post_init_vm(struct kvm *kvm);
270 void kvm_mmu_pre_destroy_vm(struct kvm *kvm);
271 
272 static inline bool kvm_shadow_root_allocated(struct kvm *kvm)
273 {
274 	/*
275 	 * Read shadow_root_allocated before related pointers. Hence, threads
276 	 * reading shadow_root_allocated in any lock context are guaranteed to
277 	 * see the pointers. Pairs with smp_store_release in
278 	 * mmu_first_shadow_root_alloc.
279 	 */
280 	return smp_load_acquire(&kvm->arch.shadow_root_allocated);
281 }
282 
283 #ifdef CONFIG_X86_64
284 static inline bool is_tdp_mmu_enabled(struct kvm *kvm) { return kvm->arch.tdp_mmu_enabled; }
285 #else
286 static inline bool is_tdp_mmu_enabled(struct kvm *kvm) { return false; }
287 #endif
288 
289 static inline bool kvm_memslots_have_rmaps(struct kvm *kvm)
290 {
291 	return !is_tdp_mmu_enabled(kvm) || kvm_shadow_root_allocated(kvm);
292 }
293 
294 static inline gfn_t gfn_to_index(gfn_t gfn, gfn_t base_gfn, int level)
295 {
296 	/* KVM_HPAGE_GFN_SHIFT(PG_LEVEL_4K) must be 0. */
297 	return (gfn >> KVM_HPAGE_GFN_SHIFT(level)) -
298 		(base_gfn >> KVM_HPAGE_GFN_SHIFT(level));
299 }
300 
301 static inline unsigned long
302 __kvm_mmu_slot_lpages(struct kvm_memory_slot *slot, unsigned long npages,
303 		      int level)
304 {
305 	return gfn_to_index(slot->base_gfn + npages - 1,
306 			    slot->base_gfn, level) + 1;
307 }
308 
309 static inline unsigned long
310 kvm_mmu_slot_lpages(struct kvm_memory_slot *slot, int level)
311 {
312 	return __kvm_mmu_slot_lpages(slot, slot->npages, level);
313 }
314 
315 static inline void kvm_update_page_stats(struct kvm *kvm, int level, int count)
316 {
317 	atomic64_add(count, &kvm->stat.pages[level - 1]);
318 }
319 
320 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u64 access,
321 			   struct x86_exception *exception);
322 
323 static inline gpa_t kvm_translate_gpa(struct kvm_vcpu *vcpu,
324 				      struct kvm_mmu *mmu,
325 				      gpa_t gpa, u64 access,
326 				      struct x86_exception *exception)
327 {
328 	if (mmu != &vcpu->arch.nested_mmu)
329 		return gpa;
330 	return translate_nested_gpa(vcpu, gpa, access, exception);
331 }
332 #endif
333