1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef __KVM_X86_MMU_H 3 #define __KVM_X86_MMU_H 4 5 #include <linux/kvm_host.h> 6 #include "kvm_cache_regs.h" 7 8 #define PT64_PT_BITS 9 9 #define PT64_ENT_PER_PAGE (1 << PT64_PT_BITS) 10 #define PT32_PT_BITS 10 11 #define PT32_ENT_PER_PAGE (1 << PT32_PT_BITS) 12 13 #define PT_WRITABLE_SHIFT 1 14 #define PT_USER_SHIFT 2 15 16 #define PT_PRESENT_MASK (1ULL << 0) 17 #define PT_WRITABLE_MASK (1ULL << PT_WRITABLE_SHIFT) 18 #define PT_USER_MASK (1ULL << PT_USER_SHIFT) 19 #define PT_PWT_MASK (1ULL << 3) 20 #define PT_PCD_MASK (1ULL << 4) 21 #define PT_ACCESSED_SHIFT 5 22 #define PT_ACCESSED_MASK (1ULL << PT_ACCESSED_SHIFT) 23 #define PT_DIRTY_SHIFT 6 24 #define PT_DIRTY_MASK (1ULL << PT_DIRTY_SHIFT) 25 #define PT_PAGE_SIZE_SHIFT 7 26 #define PT_PAGE_SIZE_MASK (1ULL << PT_PAGE_SIZE_SHIFT) 27 #define PT_PAT_MASK (1ULL << 7) 28 #define PT_GLOBAL_MASK (1ULL << 8) 29 #define PT64_NX_SHIFT 63 30 #define PT64_NX_MASK (1ULL << PT64_NX_SHIFT) 31 32 #define PT_PAT_SHIFT 7 33 #define PT_DIR_PAT_SHIFT 12 34 #define PT_DIR_PAT_MASK (1ULL << PT_DIR_PAT_SHIFT) 35 36 #define PT32_DIR_PSE36_SIZE 4 37 #define PT32_DIR_PSE36_SHIFT 13 38 #define PT32_DIR_PSE36_MASK \ 39 (((1ULL << PT32_DIR_PSE36_SIZE) - 1) << PT32_DIR_PSE36_SHIFT) 40 41 #define PT64_ROOT_5LEVEL 5 42 #define PT64_ROOT_4LEVEL 4 43 #define PT32_ROOT_LEVEL 2 44 #define PT32E_ROOT_LEVEL 3 45 46 #define PT_PDPE_LEVEL 3 47 #define PT_DIRECTORY_LEVEL 2 48 #define PT_PAGE_TABLE_LEVEL 1 49 #define PT_MAX_HUGEPAGE_LEVEL (PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES - 1) 50 51 static inline u64 rsvd_bits(int s, int e) 52 { 53 if (e < s) 54 return 0; 55 56 return ((1ULL << (e - s + 1)) - 1) << s; 57 } 58 59 void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask, u64 mmio_value); 60 61 void 62 reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, struct kvm_mmu *context); 63 64 void kvm_init_mmu(struct kvm_vcpu *vcpu, bool reset_roots); 65 void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu); 66 void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly, 67 bool accessed_dirty, gpa_t new_eptp); 68 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu); 69 int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code, 70 u64 fault_address, char *insn, int insn_len); 71 72 static inline unsigned int kvm_mmu_available_pages(struct kvm *kvm) 73 { 74 if (kvm->arch.n_max_mmu_pages > kvm->arch.n_used_mmu_pages) 75 return kvm->arch.n_max_mmu_pages - 76 kvm->arch.n_used_mmu_pages; 77 78 return 0; 79 } 80 81 static inline int kvm_mmu_reload(struct kvm_vcpu *vcpu) 82 { 83 if (likely(vcpu->arch.mmu.root_hpa != INVALID_PAGE)) 84 return 0; 85 86 return kvm_mmu_load(vcpu); 87 } 88 89 static inline unsigned long kvm_get_pcid(struct kvm_vcpu *vcpu, gpa_t cr3) 90 { 91 BUILD_BUG_ON((X86_CR3_PCID_MASK & PAGE_MASK) != 0); 92 93 return kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE) 94 ? cr3 & X86_CR3_PCID_MASK 95 : 0; 96 } 97 98 static inline unsigned long kvm_get_active_pcid(struct kvm_vcpu *vcpu) 99 { 100 return kvm_get_pcid(vcpu, kvm_read_cr3(vcpu)); 101 } 102 103 static inline void kvm_mmu_load_cr3(struct kvm_vcpu *vcpu) 104 { 105 if (VALID_PAGE(vcpu->arch.mmu.root_hpa)) 106 vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa | 107 kvm_get_active_pcid(vcpu)); 108 } 109 110 /* 111 * Currently, we have two sorts of write-protection, a) the first one 112 * write-protects guest page to sync the guest modification, b) another one is 113 * used to sync dirty bitmap when we do KVM_GET_DIRTY_LOG. The differences 114 * between these two sorts are: 115 * 1) the first case clears SPTE_MMU_WRITEABLE bit. 116 * 2) the first case requires flushing tlb immediately avoiding corrupting 117 * shadow page table between all vcpus so it should be in the protection of 118 * mmu-lock. And the another case does not need to flush tlb until returning 119 * the dirty bitmap to userspace since it only write-protects the page 120 * logged in the bitmap, that means the page in the dirty bitmap is not 121 * missed, so it can flush tlb out of mmu-lock. 122 * 123 * So, there is the problem: the first case can meet the corrupted tlb caused 124 * by another case which write-protects pages but without flush tlb 125 * immediately. In order to making the first case be aware this problem we let 126 * it flush tlb if we try to write-protect a spte whose SPTE_MMU_WRITEABLE bit 127 * is set, it works since another case never touches SPTE_MMU_WRITEABLE bit. 128 * 129 * Anyway, whenever a spte is updated (only permission and status bits are 130 * changed) we need to check whether the spte with SPTE_MMU_WRITEABLE becomes 131 * readonly, if that happens, we need to flush tlb. Fortunately, 132 * mmu_spte_update() has already handled it perfectly. 133 * 134 * The rules to use SPTE_MMU_WRITEABLE and PT_WRITABLE_MASK: 135 * - if we want to see if it has writable tlb entry or if the spte can be 136 * writable on the mmu mapping, check SPTE_MMU_WRITEABLE, this is the most 137 * case, otherwise 138 * - if we fix page fault on the spte or do write-protection by dirty logging, 139 * check PT_WRITABLE_MASK. 140 * 141 * TODO: introduce APIs to split these two cases. 142 */ 143 static inline int is_writable_pte(unsigned long pte) 144 { 145 return pte & PT_WRITABLE_MASK; 146 } 147 148 static inline bool is_write_protection(struct kvm_vcpu *vcpu) 149 { 150 return kvm_read_cr0_bits(vcpu, X86_CR0_WP); 151 } 152 153 /* 154 * Check if a given access (described through the I/D, W/R and U/S bits of a 155 * page fault error code pfec) causes a permission fault with the given PTE 156 * access rights (in ACC_* format). 157 * 158 * Return zero if the access does not fault; return the page fault error code 159 * if the access faults. 160 */ 161 static inline u8 permission_fault(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, 162 unsigned pte_access, unsigned pte_pkey, 163 unsigned pfec) 164 { 165 int cpl = kvm_x86_ops->get_cpl(vcpu); 166 unsigned long rflags = kvm_x86_ops->get_rflags(vcpu); 167 168 /* 169 * If CPL < 3, SMAP prevention are disabled if EFLAGS.AC = 1. 170 * 171 * If CPL = 3, SMAP applies to all supervisor-mode data accesses 172 * (these are implicit supervisor accesses) regardless of the value 173 * of EFLAGS.AC. 174 * 175 * This computes (cpl < 3) && (rflags & X86_EFLAGS_AC), leaving 176 * the result in X86_EFLAGS_AC. We then insert it in place of 177 * the PFERR_RSVD_MASK bit; this bit will always be zero in pfec, 178 * but it will be one in index if SMAP checks are being overridden. 179 * It is important to keep this branchless. 180 */ 181 unsigned long smap = (cpl - 3) & (rflags & X86_EFLAGS_AC); 182 int index = (pfec >> 1) + 183 (smap >> (X86_EFLAGS_AC_BIT - PFERR_RSVD_BIT + 1)); 184 bool fault = (mmu->permissions[index] >> pte_access) & 1; 185 u32 errcode = PFERR_PRESENT_MASK; 186 187 WARN_ON(pfec & (PFERR_PK_MASK | PFERR_RSVD_MASK)); 188 if (unlikely(mmu->pkru_mask)) { 189 u32 pkru_bits, offset; 190 191 /* 192 * PKRU defines 32 bits, there are 16 domains and 2 193 * attribute bits per domain in pkru. pte_pkey is the 194 * index of the protection domain, so pte_pkey * 2 is 195 * is the index of the first bit for the domain. 196 */ 197 pkru_bits = (vcpu->arch.pkru >> (pte_pkey * 2)) & 3; 198 199 /* clear present bit, replace PFEC.RSVD with ACC_USER_MASK. */ 200 offset = (pfec & ~1) + 201 ((pte_access & PT_USER_MASK) << (PFERR_RSVD_BIT - PT_USER_SHIFT)); 202 203 pkru_bits &= mmu->pkru_mask >> offset; 204 errcode |= -pkru_bits & PFERR_PK_MASK; 205 fault |= (pkru_bits != 0); 206 } 207 208 return -(u32)fault & errcode; 209 } 210 211 void kvm_mmu_invalidate_zap_all_pages(struct kvm *kvm); 212 void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end); 213 214 void kvm_mmu_gfn_disallow_lpage(struct kvm_memory_slot *slot, gfn_t gfn); 215 void kvm_mmu_gfn_allow_lpage(struct kvm_memory_slot *slot, gfn_t gfn); 216 bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm, 217 struct kvm_memory_slot *slot, u64 gfn); 218 int kvm_arch_write_log_dirty(struct kvm_vcpu *vcpu); 219 #endif 220