xref: /openbmc/linux/arch/x86/kvm/mmu.h (revision 7ae5c03a)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef __KVM_X86_MMU_H
3 #define __KVM_X86_MMU_H
4 
5 #include <linux/kvm_host.h>
6 #include "kvm_cache_regs.h"
7 #include "cpuid.h"
8 
9 #define PT_WRITABLE_SHIFT 1
10 #define PT_USER_SHIFT 2
11 
12 #define PT_PRESENT_MASK (1ULL << 0)
13 #define PT_WRITABLE_MASK (1ULL << PT_WRITABLE_SHIFT)
14 #define PT_USER_MASK (1ULL << PT_USER_SHIFT)
15 #define PT_PWT_MASK (1ULL << 3)
16 #define PT_PCD_MASK (1ULL << 4)
17 #define PT_ACCESSED_SHIFT 5
18 #define PT_ACCESSED_MASK (1ULL << PT_ACCESSED_SHIFT)
19 #define PT_DIRTY_SHIFT 6
20 #define PT_DIRTY_MASK (1ULL << PT_DIRTY_SHIFT)
21 #define PT_PAGE_SIZE_SHIFT 7
22 #define PT_PAGE_SIZE_MASK (1ULL << PT_PAGE_SIZE_SHIFT)
23 #define PT_PAT_MASK (1ULL << 7)
24 #define PT_GLOBAL_MASK (1ULL << 8)
25 #define PT64_NX_SHIFT 63
26 #define PT64_NX_MASK (1ULL << PT64_NX_SHIFT)
27 
28 #define PT_PAT_SHIFT 7
29 #define PT_DIR_PAT_SHIFT 12
30 #define PT_DIR_PAT_MASK (1ULL << PT_DIR_PAT_SHIFT)
31 
32 #define PT64_ROOT_5LEVEL 5
33 #define PT64_ROOT_4LEVEL 4
34 #define PT32_ROOT_LEVEL 2
35 #define PT32E_ROOT_LEVEL 3
36 
37 #define KVM_MMU_CR4_ROLE_BITS (X86_CR4_PSE | X86_CR4_PAE | X86_CR4_LA57 | \
38 			       X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE)
39 
40 #define KVM_MMU_CR0_ROLE_BITS (X86_CR0_PG | X86_CR0_WP)
41 #define KVM_MMU_EFER_ROLE_BITS (EFER_LME | EFER_NX)
42 
43 static __always_inline u64 rsvd_bits(int s, int e)
44 {
45 	BUILD_BUG_ON(__builtin_constant_p(e) && __builtin_constant_p(s) && e < s);
46 
47 	if (__builtin_constant_p(e))
48 		BUILD_BUG_ON(e > 63);
49 	else
50 		e &= 63;
51 
52 	if (e < s)
53 		return 0;
54 
55 	return ((2ULL << (e - s)) - 1) << s;
56 }
57 
58 /*
59  * The number of non-reserved physical address bits irrespective of features
60  * that repurpose legal bits, e.g. MKTME.
61  */
62 extern u8 __read_mostly shadow_phys_bits;
63 
64 static inline gfn_t kvm_mmu_max_gfn(void)
65 {
66 	/*
67 	 * Note that this uses the host MAXPHYADDR, not the guest's.
68 	 * EPT/NPT cannot support GPAs that would exceed host.MAXPHYADDR;
69 	 * assuming KVM is running on bare metal, guest accesses beyond
70 	 * host.MAXPHYADDR will hit a #PF(RSVD) and never cause a vmexit
71 	 * (either EPT Violation/Misconfig or #NPF), and so KVM will never
72 	 * install a SPTE for such addresses.  If KVM is running as a VM
73 	 * itself, on the other hand, it might see a MAXPHYADDR that is less
74 	 * than hardware's real MAXPHYADDR.  Using the host MAXPHYADDR
75 	 * disallows such SPTEs entirely and simplifies the TDP MMU.
76 	 */
77 	int max_gpa_bits = likely(tdp_enabled) ? shadow_phys_bits : 52;
78 
79 	return (1ULL << (max_gpa_bits - PAGE_SHIFT)) - 1;
80 }
81 
82 static inline u8 kvm_get_shadow_phys_bits(void)
83 {
84 	/*
85 	 * boot_cpu_data.x86_phys_bits is reduced when MKTME or SME are detected
86 	 * in CPU detection code, but the processor treats those reduced bits as
87 	 * 'keyID' thus they are not reserved bits. Therefore KVM needs to look at
88 	 * the physical address bits reported by CPUID.
89 	 */
90 	if (likely(boot_cpu_data.extended_cpuid_level >= 0x80000008))
91 		return cpuid_eax(0x80000008) & 0xff;
92 
93 	/*
94 	 * Quite weird to have VMX or SVM but not MAXPHYADDR; probably a VM with
95 	 * custom CPUID.  Proceed with whatever the kernel found since these features
96 	 * aren't virtualizable (SME/SEV also require CPUIDs higher than 0x80000008).
97 	 */
98 	return boot_cpu_data.x86_phys_bits;
99 }
100 
101 void kvm_mmu_set_mmio_spte_mask(u64 mmio_value, u64 mmio_mask, u64 access_mask);
102 void kvm_mmu_set_me_spte_mask(u64 me_value, u64 me_mask);
103 void kvm_mmu_set_ept_masks(bool has_ad_bits, bool has_exec_only);
104 
105 void kvm_init_mmu(struct kvm_vcpu *vcpu);
106 void kvm_init_shadow_npt_mmu(struct kvm_vcpu *vcpu, unsigned long cr0,
107 			     unsigned long cr4, u64 efer, gpa_t nested_cr3);
108 void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly,
109 			     int huge_page_level, bool accessed_dirty,
110 			     gpa_t new_eptp);
111 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu);
112 int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code,
113 				u64 fault_address, char *insn, int insn_len);
114 
115 int kvm_mmu_load(struct kvm_vcpu *vcpu);
116 void kvm_mmu_unload(struct kvm_vcpu *vcpu);
117 void kvm_mmu_free_obsolete_roots(struct kvm_vcpu *vcpu);
118 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu);
119 void kvm_mmu_sync_prev_roots(struct kvm_vcpu *vcpu);
120 
121 static inline int kvm_mmu_reload(struct kvm_vcpu *vcpu)
122 {
123 	if (likely(vcpu->arch.mmu->root.hpa != INVALID_PAGE))
124 		return 0;
125 
126 	return kvm_mmu_load(vcpu);
127 }
128 
129 static inline unsigned long kvm_get_pcid(struct kvm_vcpu *vcpu, gpa_t cr3)
130 {
131 	BUILD_BUG_ON((X86_CR3_PCID_MASK & PAGE_MASK) != 0);
132 
133 	return kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE)
134 	       ? cr3 & X86_CR3_PCID_MASK
135 	       : 0;
136 }
137 
138 static inline unsigned long kvm_get_active_pcid(struct kvm_vcpu *vcpu)
139 {
140 	return kvm_get_pcid(vcpu, kvm_read_cr3(vcpu));
141 }
142 
143 static inline void kvm_mmu_load_pgd(struct kvm_vcpu *vcpu)
144 {
145 	u64 root_hpa = vcpu->arch.mmu->root.hpa;
146 
147 	if (!VALID_PAGE(root_hpa))
148 		return;
149 
150 	static_call(kvm_x86_load_mmu_pgd)(vcpu, root_hpa,
151 					  vcpu->arch.mmu->root_role.level);
152 }
153 
154 /*
155  * Check if a given access (described through the I/D, W/R and U/S bits of a
156  * page fault error code pfec) causes a permission fault with the given PTE
157  * access rights (in ACC_* format).
158  *
159  * Return zero if the access does not fault; return the page fault error code
160  * if the access faults.
161  */
162 static inline u8 permission_fault(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
163 				  unsigned pte_access, unsigned pte_pkey,
164 				  u64 access)
165 {
166 	/* strip nested paging fault error codes */
167 	unsigned int pfec = access;
168 	unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu);
169 
170 	/*
171 	 * For explicit supervisor accesses, SMAP is disabled if EFLAGS.AC = 1.
172 	 * For implicit supervisor accesses, SMAP cannot be overridden.
173 	 *
174 	 * SMAP works on supervisor accesses only, and not_smap can
175 	 * be set or not set when user access with neither has any bearing
176 	 * on the result.
177 	 *
178 	 * We put the SMAP checking bit in place of the PFERR_RSVD_MASK bit;
179 	 * this bit will always be zero in pfec, but it will be one in index
180 	 * if SMAP checks are being disabled.
181 	 */
182 	u64 implicit_access = access & PFERR_IMPLICIT_ACCESS;
183 	bool not_smap = ((rflags & X86_EFLAGS_AC) | implicit_access) == X86_EFLAGS_AC;
184 	int index = (pfec + (not_smap << PFERR_RSVD_BIT)) >> 1;
185 	bool fault = (mmu->permissions[index] >> pte_access) & 1;
186 	u32 errcode = PFERR_PRESENT_MASK;
187 
188 	WARN_ON(pfec & (PFERR_PK_MASK | PFERR_RSVD_MASK));
189 	if (unlikely(mmu->pkru_mask)) {
190 		u32 pkru_bits, offset;
191 
192 		/*
193 		* PKRU defines 32 bits, there are 16 domains and 2
194 		* attribute bits per domain in pkru.  pte_pkey is the
195 		* index of the protection domain, so pte_pkey * 2 is
196 		* is the index of the first bit for the domain.
197 		*/
198 		pkru_bits = (vcpu->arch.pkru >> (pte_pkey * 2)) & 3;
199 
200 		/* clear present bit, replace PFEC.RSVD with ACC_USER_MASK. */
201 		offset = (pfec & ~1) +
202 			((pte_access & PT_USER_MASK) << (PFERR_RSVD_BIT - PT_USER_SHIFT));
203 
204 		pkru_bits &= mmu->pkru_mask >> offset;
205 		errcode |= -pkru_bits & PFERR_PK_MASK;
206 		fault |= (pkru_bits != 0);
207 	}
208 
209 	return -(u32)fault & errcode;
210 }
211 
212 void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end);
213 
214 int kvm_arch_write_log_dirty(struct kvm_vcpu *vcpu);
215 
216 int kvm_mmu_post_init_vm(struct kvm *kvm);
217 void kvm_mmu_pre_destroy_vm(struct kvm *kvm);
218 
219 static inline bool kvm_shadow_root_allocated(struct kvm *kvm)
220 {
221 	/*
222 	 * Read shadow_root_allocated before related pointers. Hence, threads
223 	 * reading shadow_root_allocated in any lock context are guaranteed to
224 	 * see the pointers. Pairs with smp_store_release in
225 	 * mmu_first_shadow_root_alloc.
226 	 */
227 	return smp_load_acquire(&kvm->arch.shadow_root_allocated);
228 }
229 
230 #ifdef CONFIG_X86_64
231 static inline bool is_tdp_mmu_enabled(struct kvm *kvm) { return kvm->arch.tdp_mmu_enabled; }
232 #else
233 static inline bool is_tdp_mmu_enabled(struct kvm *kvm) { return false; }
234 #endif
235 
236 static inline bool kvm_memslots_have_rmaps(struct kvm *kvm)
237 {
238 	return !is_tdp_mmu_enabled(kvm) || kvm_shadow_root_allocated(kvm);
239 }
240 
241 static inline gfn_t gfn_to_index(gfn_t gfn, gfn_t base_gfn, int level)
242 {
243 	/* KVM_HPAGE_GFN_SHIFT(PG_LEVEL_4K) must be 0. */
244 	return (gfn >> KVM_HPAGE_GFN_SHIFT(level)) -
245 		(base_gfn >> KVM_HPAGE_GFN_SHIFT(level));
246 }
247 
248 static inline unsigned long
249 __kvm_mmu_slot_lpages(struct kvm_memory_slot *slot, unsigned long npages,
250 		      int level)
251 {
252 	return gfn_to_index(slot->base_gfn + npages - 1,
253 			    slot->base_gfn, level) + 1;
254 }
255 
256 static inline unsigned long
257 kvm_mmu_slot_lpages(struct kvm_memory_slot *slot, int level)
258 {
259 	return __kvm_mmu_slot_lpages(slot, slot->npages, level);
260 }
261 
262 static inline void kvm_update_page_stats(struct kvm *kvm, int level, int count)
263 {
264 	atomic64_add(count, &kvm->stat.pages[level - 1]);
265 }
266 
267 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u64 access,
268 			   struct x86_exception *exception);
269 
270 static inline gpa_t kvm_translate_gpa(struct kvm_vcpu *vcpu,
271 				      struct kvm_mmu *mmu,
272 				      gpa_t gpa, u64 access,
273 				      struct x86_exception *exception)
274 {
275 	if (mmu != &vcpu->arch.nested_mmu)
276 		return gpa;
277 	return translate_nested_gpa(vcpu, gpa, access, exception);
278 }
279 #endif
280