1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef __KVM_X86_MMU_H 3 #define __KVM_X86_MMU_H 4 5 #include <linux/kvm_host.h> 6 #include "kvm_cache_regs.h" 7 #include "cpuid.h" 8 9 #define PT64_PT_BITS 9 10 #define PT64_ENT_PER_PAGE (1 << PT64_PT_BITS) 11 #define PT32_PT_BITS 10 12 #define PT32_ENT_PER_PAGE (1 << PT32_PT_BITS) 13 14 #define PT_WRITABLE_SHIFT 1 15 #define PT_USER_SHIFT 2 16 17 #define PT_PRESENT_MASK (1ULL << 0) 18 #define PT_WRITABLE_MASK (1ULL << PT_WRITABLE_SHIFT) 19 #define PT_USER_MASK (1ULL << PT_USER_SHIFT) 20 #define PT_PWT_MASK (1ULL << 3) 21 #define PT_PCD_MASK (1ULL << 4) 22 #define PT_ACCESSED_SHIFT 5 23 #define PT_ACCESSED_MASK (1ULL << PT_ACCESSED_SHIFT) 24 #define PT_DIRTY_SHIFT 6 25 #define PT_DIRTY_MASK (1ULL << PT_DIRTY_SHIFT) 26 #define PT_PAGE_SIZE_SHIFT 7 27 #define PT_PAGE_SIZE_MASK (1ULL << PT_PAGE_SIZE_SHIFT) 28 #define PT_PAT_MASK (1ULL << 7) 29 #define PT_GLOBAL_MASK (1ULL << 8) 30 #define PT64_NX_SHIFT 63 31 #define PT64_NX_MASK (1ULL << PT64_NX_SHIFT) 32 33 #define PT_PAT_SHIFT 7 34 #define PT_DIR_PAT_SHIFT 12 35 #define PT_DIR_PAT_MASK (1ULL << PT_DIR_PAT_SHIFT) 36 37 #define PT32_DIR_PSE36_SIZE 4 38 #define PT32_DIR_PSE36_SHIFT 13 39 #define PT32_DIR_PSE36_MASK \ 40 (((1ULL << PT32_DIR_PSE36_SIZE) - 1) << PT32_DIR_PSE36_SHIFT) 41 42 #define PT64_ROOT_5LEVEL 5 43 #define PT64_ROOT_4LEVEL 4 44 #define PT32_ROOT_LEVEL 2 45 #define PT32E_ROOT_LEVEL 3 46 47 #define KVM_MMU_CR4_ROLE_BITS (X86_CR4_PSE | X86_CR4_PAE | X86_CR4_LA57 | \ 48 X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE) 49 50 #define KVM_MMU_CR0_ROLE_BITS (X86_CR0_PG | X86_CR0_WP) 51 52 static __always_inline u64 rsvd_bits(int s, int e) 53 { 54 BUILD_BUG_ON(__builtin_constant_p(e) && __builtin_constant_p(s) && e < s); 55 56 if (__builtin_constant_p(e)) 57 BUILD_BUG_ON(e > 63); 58 else 59 e &= 63; 60 61 if (e < s) 62 return 0; 63 64 return ((2ULL << (e - s)) - 1) << s; 65 } 66 67 void kvm_mmu_set_mmio_spte_mask(u64 mmio_value, u64 mmio_mask, u64 access_mask); 68 void kvm_mmu_set_ept_masks(bool has_ad_bits, bool has_exec_only); 69 70 void kvm_init_mmu(struct kvm_vcpu *vcpu); 71 void kvm_init_shadow_npt_mmu(struct kvm_vcpu *vcpu, unsigned long cr0, 72 unsigned long cr4, u64 efer, gpa_t nested_cr3); 73 void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly, 74 bool accessed_dirty, gpa_t new_eptp); 75 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu); 76 int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code, 77 u64 fault_address, char *insn, int insn_len); 78 79 int kvm_mmu_load(struct kvm_vcpu *vcpu); 80 void kvm_mmu_unload(struct kvm_vcpu *vcpu); 81 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu); 82 void kvm_mmu_sync_prev_roots(struct kvm_vcpu *vcpu); 83 84 static inline int kvm_mmu_reload(struct kvm_vcpu *vcpu) 85 { 86 if (likely(vcpu->arch.mmu->root_hpa != INVALID_PAGE)) 87 return 0; 88 89 return kvm_mmu_load(vcpu); 90 } 91 92 static inline unsigned long kvm_get_pcid(struct kvm_vcpu *vcpu, gpa_t cr3) 93 { 94 BUILD_BUG_ON((X86_CR3_PCID_MASK & PAGE_MASK) != 0); 95 96 return kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE) 97 ? cr3 & X86_CR3_PCID_MASK 98 : 0; 99 } 100 101 static inline unsigned long kvm_get_active_pcid(struct kvm_vcpu *vcpu) 102 { 103 return kvm_get_pcid(vcpu, kvm_read_cr3(vcpu)); 104 } 105 106 static inline void kvm_mmu_load_pgd(struct kvm_vcpu *vcpu) 107 { 108 u64 root_hpa = vcpu->arch.mmu->root_hpa; 109 110 if (!VALID_PAGE(root_hpa)) 111 return; 112 113 static_call(kvm_x86_load_mmu_pgd)(vcpu, root_hpa, 114 vcpu->arch.mmu->shadow_root_level); 115 } 116 117 struct kvm_page_fault { 118 /* arguments to kvm_mmu_do_page_fault. */ 119 const gpa_t addr; 120 const u32 error_code; 121 const bool prefetch; 122 123 /* Derived from error_code. */ 124 const bool exec; 125 const bool write; 126 const bool present; 127 const bool rsvd; 128 const bool user; 129 130 /* Derived from mmu and global state. */ 131 const bool is_tdp; 132 const bool nx_huge_page_workaround_enabled; 133 134 /* 135 * Whether a >4KB mapping can be created or is forbidden due to NX 136 * hugepages. 137 */ 138 bool huge_page_disallowed; 139 140 /* 141 * Maximum page size that can be created for this fault; input to 142 * FNAME(fetch), __direct_map and kvm_tdp_mmu_map. 143 */ 144 u8 max_level; 145 146 /* 147 * Page size that can be created based on the max_level and the 148 * page size used by the host mapping. 149 */ 150 u8 req_level; 151 152 /* 153 * Page size that will be created based on the req_level and 154 * huge_page_disallowed. 155 */ 156 u8 goal_level; 157 158 /* Shifted addr, or result of guest page table walk if addr is a gva. */ 159 gfn_t gfn; 160 161 /* The memslot containing gfn. May be NULL. */ 162 struct kvm_memory_slot *slot; 163 164 /* Outputs of kvm_faultin_pfn. */ 165 kvm_pfn_t pfn; 166 hva_t hva; 167 bool map_writable; 168 }; 169 170 int kvm_tdp_page_fault(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault); 171 172 extern int nx_huge_pages; 173 static inline bool is_nx_huge_page_enabled(void) 174 { 175 return READ_ONCE(nx_huge_pages); 176 } 177 178 static inline int kvm_mmu_do_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, 179 u32 err, bool prefetch) 180 { 181 struct kvm_page_fault fault = { 182 .addr = cr2_or_gpa, 183 .error_code = err, 184 .exec = err & PFERR_FETCH_MASK, 185 .write = err & PFERR_WRITE_MASK, 186 .present = err & PFERR_PRESENT_MASK, 187 .rsvd = err & PFERR_RSVD_MASK, 188 .user = err & PFERR_USER_MASK, 189 .prefetch = prefetch, 190 .is_tdp = likely(vcpu->arch.mmu->page_fault == kvm_tdp_page_fault), 191 .nx_huge_page_workaround_enabled = is_nx_huge_page_enabled(), 192 193 .max_level = KVM_MAX_HUGEPAGE_LEVEL, 194 .req_level = PG_LEVEL_4K, 195 .goal_level = PG_LEVEL_4K, 196 }; 197 #ifdef CONFIG_RETPOLINE 198 if (fault.is_tdp) 199 return kvm_tdp_page_fault(vcpu, &fault); 200 #endif 201 return vcpu->arch.mmu->page_fault(vcpu, &fault); 202 } 203 204 /* 205 * Currently, we have two sorts of write-protection, a) the first one 206 * write-protects guest page to sync the guest modification, b) another one is 207 * used to sync dirty bitmap when we do KVM_GET_DIRTY_LOG. The differences 208 * between these two sorts are: 209 * 1) the first case clears MMU-writable bit. 210 * 2) the first case requires flushing tlb immediately avoiding corrupting 211 * shadow page table between all vcpus so it should be in the protection of 212 * mmu-lock. And the another case does not need to flush tlb until returning 213 * the dirty bitmap to userspace since it only write-protects the page 214 * logged in the bitmap, that means the page in the dirty bitmap is not 215 * missed, so it can flush tlb out of mmu-lock. 216 * 217 * So, there is the problem: the first case can meet the corrupted tlb caused 218 * by another case which write-protects pages but without flush tlb 219 * immediately. In order to making the first case be aware this problem we let 220 * it flush tlb if we try to write-protect a spte whose MMU-writable bit 221 * is set, it works since another case never touches MMU-writable bit. 222 * 223 * Anyway, whenever a spte is updated (only permission and status bits are 224 * changed) we need to check whether the spte with MMU-writable becomes 225 * readonly, if that happens, we need to flush tlb. Fortunately, 226 * mmu_spte_update() has already handled it perfectly. 227 * 228 * The rules to use MMU-writable and PT_WRITABLE_MASK: 229 * - if we want to see if it has writable tlb entry or if the spte can be 230 * writable on the mmu mapping, check MMU-writable, this is the most 231 * case, otherwise 232 * - if we fix page fault on the spte or do write-protection by dirty logging, 233 * check PT_WRITABLE_MASK. 234 * 235 * TODO: introduce APIs to split these two cases. 236 */ 237 static inline bool is_writable_pte(unsigned long pte) 238 { 239 return pte & PT_WRITABLE_MASK; 240 } 241 242 /* 243 * Check if a given access (described through the I/D, W/R and U/S bits of a 244 * page fault error code pfec) causes a permission fault with the given PTE 245 * access rights (in ACC_* format). 246 * 247 * Return zero if the access does not fault; return the page fault error code 248 * if the access faults. 249 */ 250 static inline u8 permission_fault(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, 251 unsigned pte_access, unsigned pte_pkey, 252 unsigned pfec) 253 { 254 int cpl = static_call(kvm_x86_get_cpl)(vcpu); 255 unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu); 256 257 /* 258 * If CPL < 3, SMAP prevention are disabled if EFLAGS.AC = 1. 259 * 260 * If CPL = 3, SMAP applies to all supervisor-mode data accesses 261 * (these are implicit supervisor accesses) regardless of the value 262 * of EFLAGS.AC. 263 * 264 * This computes (cpl < 3) && (rflags & X86_EFLAGS_AC), leaving 265 * the result in X86_EFLAGS_AC. We then insert it in place of 266 * the PFERR_RSVD_MASK bit; this bit will always be zero in pfec, 267 * but it will be one in index if SMAP checks are being overridden. 268 * It is important to keep this branchless. 269 */ 270 unsigned long smap = (cpl - 3) & (rflags & X86_EFLAGS_AC); 271 int index = (pfec >> 1) + 272 (smap >> (X86_EFLAGS_AC_BIT - PFERR_RSVD_BIT + 1)); 273 bool fault = (mmu->permissions[index] >> pte_access) & 1; 274 u32 errcode = PFERR_PRESENT_MASK; 275 276 WARN_ON(pfec & (PFERR_PK_MASK | PFERR_RSVD_MASK)); 277 if (unlikely(mmu->pkru_mask)) { 278 u32 pkru_bits, offset; 279 280 /* 281 * PKRU defines 32 bits, there are 16 domains and 2 282 * attribute bits per domain in pkru. pte_pkey is the 283 * index of the protection domain, so pte_pkey * 2 is 284 * is the index of the first bit for the domain. 285 */ 286 pkru_bits = (vcpu->arch.pkru >> (pte_pkey * 2)) & 3; 287 288 /* clear present bit, replace PFEC.RSVD with ACC_USER_MASK. */ 289 offset = (pfec & ~1) + 290 ((pte_access & PT_USER_MASK) << (PFERR_RSVD_BIT - PT_USER_SHIFT)); 291 292 pkru_bits &= mmu->pkru_mask >> offset; 293 errcode |= -pkru_bits & PFERR_PK_MASK; 294 fault |= (pkru_bits != 0); 295 } 296 297 return -(u32)fault & errcode; 298 } 299 300 void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end); 301 302 int kvm_arch_write_log_dirty(struct kvm_vcpu *vcpu); 303 304 int kvm_mmu_post_init_vm(struct kvm *kvm); 305 void kvm_mmu_pre_destroy_vm(struct kvm *kvm); 306 307 static inline bool kvm_shadow_root_allocated(struct kvm *kvm) 308 { 309 /* 310 * Read shadow_root_allocated before related pointers. Hence, threads 311 * reading shadow_root_allocated in any lock context are guaranteed to 312 * see the pointers. Pairs with smp_store_release in 313 * mmu_first_shadow_root_alloc. 314 */ 315 return smp_load_acquire(&kvm->arch.shadow_root_allocated); 316 } 317 318 #ifdef CONFIG_X86_64 319 static inline bool is_tdp_mmu_enabled(struct kvm *kvm) { return kvm->arch.tdp_mmu_enabled; } 320 #else 321 static inline bool is_tdp_mmu_enabled(struct kvm *kvm) { return false; } 322 #endif 323 324 static inline bool kvm_memslots_have_rmaps(struct kvm *kvm) 325 { 326 return !is_tdp_mmu_enabled(kvm) || kvm_shadow_root_allocated(kvm); 327 } 328 329 static inline gfn_t gfn_to_index(gfn_t gfn, gfn_t base_gfn, int level) 330 { 331 /* KVM_HPAGE_GFN_SHIFT(PG_LEVEL_4K) must be 0. */ 332 return (gfn >> KVM_HPAGE_GFN_SHIFT(level)) - 333 (base_gfn >> KVM_HPAGE_GFN_SHIFT(level)); 334 } 335 336 static inline unsigned long 337 __kvm_mmu_slot_lpages(struct kvm_memory_slot *slot, unsigned long npages, 338 int level) 339 { 340 return gfn_to_index(slot->base_gfn + npages - 1, 341 slot->base_gfn, level) + 1; 342 } 343 344 static inline unsigned long 345 kvm_mmu_slot_lpages(struct kvm_memory_slot *slot, int level) 346 { 347 return __kvm_mmu_slot_lpages(slot, slot->npages, level); 348 } 349 350 static inline void kvm_update_page_stats(struct kvm *kvm, int level, int count) 351 { 352 atomic64_add(count, &kvm->stat.pages[level - 1]); 353 } 354 #endif 355