1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef __KVM_X86_MMU_H 3 #define __KVM_X86_MMU_H 4 5 #include <linux/kvm_host.h> 6 #include "kvm_cache_regs.h" 7 #include "cpuid.h" 8 9 #define PT64_PT_BITS 9 10 #define PT64_ENT_PER_PAGE (1 << PT64_PT_BITS) 11 #define PT32_PT_BITS 10 12 #define PT32_ENT_PER_PAGE (1 << PT32_PT_BITS) 13 14 #define PT_WRITABLE_SHIFT 1 15 #define PT_USER_SHIFT 2 16 17 #define PT_PRESENT_MASK (1ULL << 0) 18 #define PT_WRITABLE_MASK (1ULL << PT_WRITABLE_SHIFT) 19 #define PT_USER_MASK (1ULL << PT_USER_SHIFT) 20 #define PT_PWT_MASK (1ULL << 3) 21 #define PT_PCD_MASK (1ULL << 4) 22 #define PT_ACCESSED_SHIFT 5 23 #define PT_ACCESSED_MASK (1ULL << PT_ACCESSED_SHIFT) 24 #define PT_DIRTY_SHIFT 6 25 #define PT_DIRTY_MASK (1ULL << PT_DIRTY_SHIFT) 26 #define PT_PAGE_SIZE_SHIFT 7 27 #define PT_PAGE_SIZE_MASK (1ULL << PT_PAGE_SIZE_SHIFT) 28 #define PT_PAT_MASK (1ULL << 7) 29 #define PT_GLOBAL_MASK (1ULL << 8) 30 #define PT64_NX_SHIFT 63 31 #define PT64_NX_MASK (1ULL << PT64_NX_SHIFT) 32 33 #define PT_PAT_SHIFT 7 34 #define PT_DIR_PAT_SHIFT 12 35 #define PT_DIR_PAT_MASK (1ULL << PT_DIR_PAT_SHIFT) 36 37 #define PT32_DIR_PSE36_SIZE 4 38 #define PT32_DIR_PSE36_SHIFT 13 39 #define PT32_DIR_PSE36_MASK \ 40 (((1ULL << PT32_DIR_PSE36_SIZE) - 1) << PT32_DIR_PSE36_SHIFT) 41 42 #define PT64_ROOT_5LEVEL 5 43 #define PT64_ROOT_4LEVEL 4 44 #define PT32_ROOT_LEVEL 2 45 #define PT32E_ROOT_LEVEL 3 46 47 #define KVM_MMU_CR4_ROLE_BITS (X86_CR4_PSE | X86_CR4_PAE | X86_CR4_LA57 | \ 48 X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE) 49 50 #define KVM_MMU_CR0_ROLE_BITS (X86_CR0_PG | X86_CR0_WP) 51 52 static __always_inline u64 rsvd_bits(int s, int e) 53 { 54 BUILD_BUG_ON(__builtin_constant_p(e) && __builtin_constant_p(s) && e < s); 55 56 if (__builtin_constant_p(e)) 57 BUILD_BUG_ON(e > 63); 58 else 59 e &= 63; 60 61 if (e < s) 62 return 0; 63 64 return ((2ULL << (e - s)) - 1) << s; 65 } 66 67 void kvm_mmu_set_mmio_spte_mask(u64 mmio_value, u64 mmio_mask, u64 access_mask); 68 void kvm_mmu_set_ept_masks(bool has_ad_bits, bool has_exec_only); 69 70 void kvm_init_mmu(struct kvm_vcpu *vcpu); 71 void kvm_init_shadow_npt_mmu(struct kvm_vcpu *vcpu, unsigned long cr0, 72 unsigned long cr4, u64 efer, gpa_t nested_cr3); 73 void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly, 74 int huge_page_level, bool accessed_dirty, 75 gpa_t new_eptp); 76 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu); 77 int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code, 78 u64 fault_address, char *insn, int insn_len); 79 80 int kvm_mmu_load(struct kvm_vcpu *vcpu); 81 void kvm_mmu_unload(struct kvm_vcpu *vcpu); 82 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu); 83 void kvm_mmu_sync_prev_roots(struct kvm_vcpu *vcpu); 84 85 static inline int kvm_mmu_reload(struct kvm_vcpu *vcpu) 86 { 87 if (likely(vcpu->arch.mmu->root_hpa != INVALID_PAGE)) 88 return 0; 89 90 return kvm_mmu_load(vcpu); 91 } 92 93 static inline unsigned long kvm_get_pcid(struct kvm_vcpu *vcpu, gpa_t cr3) 94 { 95 BUILD_BUG_ON((X86_CR3_PCID_MASK & PAGE_MASK) != 0); 96 97 return kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE) 98 ? cr3 & X86_CR3_PCID_MASK 99 : 0; 100 } 101 102 static inline unsigned long kvm_get_active_pcid(struct kvm_vcpu *vcpu) 103 { 104 return kvm_get_pcid(vcpu, kvm_read_cr3(vcpu)); 105 } 106 107 static inline void kvm_mmu_load_pgd(struct kvm_vcpu *vcpu) 108 { 109 u64 root_hpa = vcpu->arch.mmu->root_hpa; 110 111 if (!VALID_PAGE(root_hpa)) 112 return; 113 114 static_call(kvm_x86_load_mmu_pgd)(vcpu, root_hpa, 115 vcpu->arch.mmu->shadow_root_level); 116 } 117 118 struct kvm_page_fault { 119 /* arguments to kvm_mmu_do_page_fault. */ 120 const gpa_t addr; 121 const u32 error_code; 122 const bool prefetch; 123 124 /* Derived from error_code. */ 125 const bool exec; 126 const bool write; 127 const bool present; 128 const bool rsvd; 129 const bool user; 130 131 /* Derived from mmu and global state. */ 132 const bool is_tdp; 133 const bool nx_huge_page_workaround_enabled; 134 135 /* 136 * Whether a >4KB mapping can be created or is forbidden due to NX 137 * hugepages. 138 */ 139 bool huge_page_disallowed; 140 141 /* 142 * Maximum page size that can be created for this fault; input to 143 * FNAME(fetch), __direct_map and kvm_tdp_mmu_map. 144 */ 145 u8 max_level; 146 147 /* 148 * Page size that can be created based on the max_level and the 149 * page size used by the host mapping. 150 */ 151 u8 req_level; 152 153 /* 154 * Page size that will be created based on the req_level and 155 * huge_page_disallowed. 156 */ 157 u8 goal_level; 158 159 /* Shifted addr, or result of guest page table walk if addr is a gva. */ 160 gfn_t gfn; 161 162 /* The memslot containing gfn. May be NULL. */ 163 struct kvm_memory_slot *slot; 164 165 /* Outputs of kvm_faultin_pfn. */ 166 kvm_pfn_t pfn; 167 hva_t hva; 168 bool map_writable; 169 }; 170 171 int kvm_tdp_page_fault(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault); 172 173 extern int nx_huge_pages; 174 static inline bool is_nx_huge_page_enabled(void) 175 { 176 return READ_ONCE(nx_huge_pages); 177 } 178 179 static inline int kvm_mmu_do_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, 180 u32 err, bool prefetch) 181 { 182 struct kvm_page_fault fault = { 183 .addr = cr2_or_gpa, 184 .error_code = err, 185 .exec = err & PFERR_FETCH_MASK, 186 .write = err & PFERR_WRITE_MASK, 187 .present = err & PFERR_PRESENT_MASK, 188 .rsvd = err & PFERR_RSVD_MASK, 189 .user = err & PFERR_USER_MASK, 190 .prefetch = prefetch, 191 .is_tdp = likely(vcpu->arch.mmu->page_fault == kvm_tdp_page_fault), 192 .nx_huge_page_workaround_enabled = is_nx_huge_page_enabled(), 193 194 .max_level = KVM_MAX_HUGEPAGE_LEVEL, 195 .req_level = PG_LEVEL_4K, 196 .goal_level = PG_LEVEL_4K, 197 }; 198 #ifdef CONFIG_RETPOLINE 199 if (fault.is_tdp) 200 return kvm_tdp_page_fault(vcpu, &fault); 201 #endif 202 return vcpu->arch.mmu->page_fault(vcpu, &fault); 203 } 204 205 /* 206 * Currently, we have two sorts of write-protection, a) the first one 207 * write-protects guest page to sync the guest modification, b) another one is 208 * used to sync dirty bitmap when we do KVM_GET_DIRTY_LOG. The differences 209 * between these two sorts are: 210 * 1) the first case clears MMU-writable bit. 211 * 2) the first case requires flushing tlb immediately avoiding corrupting 212 * shadow page table between all vcpus so it should be in the protection of 213 * mmu-lock. And the another case does not need to flush tlb until returning 214 * the dirty bitmap to userspace since it only write-protects the page 215 * logged in the bitmap, that means the page in the dirty bitmap is not 216 * missed, so it can flush tlb out of mmu-lock. 217 * 218 * So, there is the problem: the first case can meet the corrupted tlb caused 219 * by another case which write-protects pages but without flush tlb 220 * immediately. In order to making the first case be aware this problem we let 221 * it flush tlb if we try to write-protect a spte whose MMU-writable bit 222 * is set, it works since another case never touches MMU-writable bit. 223 * 224 * Anyway, whenever a spte is updated (only permission and status bits are 225 * changed) we need to check whether the spte with MMU-writable becomes 226 * readonly, if that happens, we need to flush tlb. Fortunately, 227 * mmu_spte_update() has already handled it perfectly. 228 * 229 * The rules to use MMU-writable and PT_WRITABLE_MASK: 230 * - if we want to see if it has writable tlb entry or if the spte can be 231 * writable on the mmu mapping, check MMU-writable, this is the most 232 * case, otherwise 233 * - if we fix page fault on the spte or do write-protection by dirty logging, 234 * check PT_WRITABLE_MASK. 235 * 236 * TODO: introduce APIs to split these two cases. 237 */ 238 static inline bool is_writable_pte(unsigned long pte) 239 { 240 return pte & PT_WRITABLE_MASK; 241 } 242 243 /* 244 * Check if a given access (described through the I/D, W/R and U/S bits of a 245 * page fault error code pfec) causes a permission fault with the given PTE 246 * access rights (in ACC_* format). 247 * 248 * Return zero if the access does not fault; return the page fault error code 249 * if the access faults. 250 */ 251 static inline u8 permission_fault(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, 252 unsigned pte_access, unsigned pte_pkey, 253 unsigned pfec) 254 { 255 int cpl = static_call(kvm_x86_get_cpl)(vcpu); 256 unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu); 257 258 /* 259 * If CPL < 3, SMAP prevention are disabled if EFLAGS.AC = 1. 260 * 261 * If CPL = 3, SMAP applies to all supervisor-mode data accesses 262 * (these are implicit supervisor accesses) regardless of the value 263 * of EFLAGS.AC. 264 * 265 * This computes (cpl < 3) && (rflags & X86_EFLAGS_AC), leaving 266 * the result in X86_EFLAGS_AC. We then insert it in place of 267 * the PFERR_RSVD_MASK bit; this bit will always be zero in pfec, 268 * but it will be one in index if SMAP checks are being overridden. 269 * It is important to keep this branchless. 270 */ 271 unsigned long smap = (cpl - 3) & (rflags & X86_EFLAGS_AC); 272 int index = (pfec >> 1) + 273 (smap >> (X86_EFLAGS_AC_BIT - PFERR_RSVD_BIT + 1)); 274 bool fault = (mmu->permissions[index] >> pte_access) & 1; 275 u32 errcode = PFERR_PRESENT_MASK; 276 277 WARN_ON(pfec & (PFERR_PK_MASK | PFERR_RSVD_MASK)); 278 if (unlikely(mmu->pkru_mask)) { 279 u32 pkru_bits, offset; 280 281 /* 282 * PKRU defines 32 bits, there are 16 domains and 2 283 * attribute bits per domain in pkru. pte_pkey is the 284 * index of the protection domain, so pte_pkey * 2 is 285 * is the index of the first bit for the domain. 286 */ 287 pkru_bits = (vcpu->arch.pkru >> (pte_pkey * 2)) & 3; 288 289 /* clear present bit, replace PFEC.RSVD with ACC_USER_MASK. */ 290 offset = (pfec & ~1) + 291 ((pte_access & PT_USER_MASK) << (PFERR_RSVD_BIT - PT_USER_SHIFT)); 292 293 pkru_bits &= mmu->pkru_mask >> offset; 294 errcode |= -pkru_bits & PFERR_PK_MASK; 295 fault |= (pkru_bits != 0); 296 } 297 298 return -(u32)fault & errcode; 299 } 300 301 void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end); 302 303 int kvm_arch_write_log_dirty(struct kvm_vcpu *vcpu); 304 305 int kvm_mmu_post_init_vm(struct kvm *kvm); 306 void kvm_mmu_pre_destroy_vm(struct kvm *kvm); 307 308 static inline bool kvm_shadow_root_allocated(struct kvm *kvm) 309 { 310 /* 311 * Read shadow_root_allocated before related pointers. Hence, threads 312 * reading shadow_root_allocated in any lock context are guaranteed to 313 * see the pointers. Pairs with smp_store_release in 314 * mmu_first_shadow_root_alloc. 315 */ 316 return smp_load_acquire(&kvm->arch.shadow_root_allocated); 317 } 318 319 #ifdef CONFIG_X86_64 320 static inline bool is_tdp_mmu_enabled(struct kvm *kvm) { return kvm->arch.tdp_mmu_enabled; } 321 #else 322 static inline bool is_tdp_mmu_enabled(struct kvm *kvm) { return false; } 323 #endif 324 325 static inline bool kvm_memslots_have_rmaps(struct kvm *kvm) 326 { 327 return !is_tdp_mmu_enabled(kvm) || kvm_shadow_root_allocated(kvm); 328 } 329 330 static inline gfn_t gfn_to_index(gfn_t gfn, gfn_t base_gfn, int level) 331 { 332 /* KVM_HPAGE_GFN_SHIFT(PG_LEVEL_4K) must be 0. */ 333 return (gfn >> KVM_HPAGE_GFN_SHIFT(level)) - 334 (base_gfn >> KVM_HPAGE_GFN_SHIFT(level)); 335 } 336 337 static inline unsigned long 338 __kvm_mmu_slot_lpages(struct kvm_memory_slot *slot, unsigned long npages, 339 int level) 340 { 341 return gfn_to_index(slot->base_gfn + npages - 1, 342 slot->base_gfn, level) + 1; 343 } 344 345 static inline unsigned long 346 kvm_mmu_slot_lpages(struct kvm_memory_slot *slot, int level) 347 { 348 return __kvm_mmu_slot_lpages(slot, slot->npages, level); 349 } 350 351 static inline void kvm_update_page_stats(struct kvm *kvm, int level, int count) 352 { 353 atomic64_add(count, &kvm->stat.pages[level - 1]); 354 } 355 356 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access, 357 struct x86_exception *exception); 358 359 static inline gpa_t kvm_translate_gpa(struct kvm_vcpu *vcpu, 360 struct kvm_mmu *mmu, 361 gpa_t gpa, u32 access, 362 struct x86_exception *exception) 363 { 364 if (mmu != &vcpu->arch.nested_mmu) 365 return gpa; 366 return translate_nested_gpa(vcpu, gpa, access, exception); 367 } 368 #endif 369