xref: /openbmc/linux/arch/x86/kvm/mmu.h (revision 023e41632e065d49bcbe31b3c4b336217f96a271)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef __KVM_X86_MMU_H
3 #define __KVM_X86_MMU_H
4 
5 #include <linux/kvm_host.h>
6 #include "kvm_cache_regs.h"
7 
8 #define PT64_PT_BITS 9
9 #define PT64_ENT_PER_PAGE (1 << PT64_PT_BITS)
10 #define PT32_PT_BITS 10
11 #define PT32_ENT_PER_PAGE (1 << PT32_PT_BITS)
12 
13 #define PT_WRITABLE_SHIFT 1
14 #define PT_USER_SHIFT 2
15 
16 #define PT_PRESENT_MASK (1ULL << 0)
17 #define PT_WRITABLE_MASK (1ULL << PT_WRITABLE_SHIFT)
18 #define PT_USER_MASK (1ULL << PT_USER_SHIFT)
19 #define PT_PWT_MASK (1ULL << 3)
20 #define PT_PCD_MASK (1ULL << 4)
21 #define PT_ACCESSED_SHIFT 5
22 #define PT_ACCESSED_MASK (1ULL << PT_ACCESSED_SHIFT)
23 #define PT_DIRTY_SHIFT 6
24 #define PT_DIRTY_MASK (1ULL << PT_DIRTY_SHIFT)
25 #define PT_PAGE_SIZE_SHIFT 7
26 #define PT_PAGE_SIZE_MASK (1ULL << PT_PAGE_SIZE_SHIFT)
27 #define PT_PAT_MASK (1ULL << 7)
28 #define PT_GLOBAL_MASK (1ULL << 8)
29 #define PT64_NX_SHIFT 63
30 #define PT64_NX_MASK (1ULL << PT64_NX_SHIFT)
31 
32 #define PT_PAT_SHIFT 7
33 #define PT_DIR_PAT_SHIFT 12
34 #define PT_DIR_PAT_MASK (1ULL << PT_DIR_PAT_SHIFT)
35 
36 #define PT32_DIR_PSE36_SIZE 4
37 #define PT32_DIR_PSE36_SHIFT 13
38 #define PT32_DIR_PSE36_MASK \
39 	(((1ULL << PT32_DIR_PSE36_SIZE) - 1) << PT32_DIR_PSE36_SHIFT)
40 
41 #define PT64_ROOT_5LEVEL 5
42 #define PT64_ROOT_4LEVEL 4
43 #define PT32_ROOT_LEVEL 2
44 #define PT32E_ROOT_LEVEL 3
45 
46 static inline u64 rsvd_bits(int s, int e)
47 {
48 	if (e < s)
49 		return 0;
50 
51 	return ((1ULL << (e - s + 1)) - 1) << s;
52 }
53 
54 void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask, u64 mmio_value);
55 
56 void
57 reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, struct kvm_mmu *context);
58 
59 void kvm_init_mmu(struct kvm_vcpu *vcpu, bool reset_roots);
60 void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu);
61 void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly,
62 			     bool accessed_dirty, gpa_t new_eptp);
63 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu);
64 int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code,
65 				u64 fault_address, char *insn, int insn_len);
66 
67 static inline unsigned int kvm_mmu_available_pages(struct kvm *kvm)
68 {
69 	if (kvm->arch.n_max_mmu_pages > kvm->arch.n_used_mmu_pages)
70 		return kvm->arch.n_max_mmu_pages -
71 			kvm->arch.n_used_mmu_pages;
72 
73 	return 0;
74 }
75 
76 static inline int kvm_mmu_reload(struct kvm_vcpu *vcpu)
77 {
78 	if (likely(vcpu->arch.mmu->root_hpa != INVALID_PAGE))
79 		return 0;
80 
81 	return kvm_mmu_load(vcpu);
82 }
83 
84 static inline unsigned long kvm_get_pcid(struct kvm_vcpu *vcpu, gpa_t cr3)
85 {
86 	BUILD_BUG_ON((X86_CR3_PCID_MASK & PAGE_MASK) != 0);
87 
88 	return kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE)
89 	       ? cr3 & X86_CR3_PCID_MASK
90 	       : 0;
91 }
92 
93 static inline unsigned long kvm_get_active_pcid(struct kvm_vcpu *vcpu)
94 {
95 	return kvm_get_pcid(vcpu, kvm_read_cr3(vcpu));
96 }
97 
98 static inline void kvm_mmu_load_cr3(struct kvm_vcpu *vcpu)
99 {
100 	if (VALID_PAGE(vcpu->arch.mmu->root_hpa))
101 		vcpu->arch.mmu->set_cr3(vcpu, vcpu->arch.mmu->root_hpa |
102 					      kvm_get_active_pcid(vcpu));
103 }
104 
105 /*
106  * Currently, we have two sorts of write-protection, a) the first one
107  * write-protects guest page to sync the guest modification, b) another one is
108  * used to sync dirty bitmap when we do KVM_GET_DIRTY_LOG. The differences
109  * between these two sorts are:
110  * 1) the first case clears SPTE_MMU_WRITEABLE bit.
111  * 2) the first case requires flushing tlb immediately avoiding corrupting
112  *    shadow page table between all vcpus so it should be in the protection of
113  *    mmu-lock. And the another case does not need to flush tlb until returning
114  *    the dirty bitmap to userspace since it only write-protects the page
115  *    logged in the bitmap, that means the page in the dirty bitmap is not
116  *    missed, so it can flush tlb out of mmu-lock.
117  *
118  * So, there is the problem: the first case can meet the corrupted tlb caused
119  * by another case which write-protects pages but without flush tlb
120  * immediately. In order to making the first case be aware this problem we let
121  * it flush tlb if we try to write-protect a spte whose SPTE_MMU_WRITEABLE bit
122  * is set, it works since another case never touches SPTE_MMU_WRITEABLE bit.
123  *
124  * Anyway, whenever a spte is updated (only permission and status bits are
125  * changed) we need to check whether the spte with SPTE_MMU_WRITEABLE becomes
126  * readonly, if that happens, we need to flush tlb. Fortunately,
127  * mmu_spte_update() has already handled it perfectly.
128  *
129  * The rules to use SPTE_MMU_WRITEABLE and PT_WRITABLE_MASK:
130  * - if we want to see if it has writable tlb entry or if the spte can be
131  *   writable on the mmu mapping, check SPTE_MMU_WRITEABLE, this is the most
132  *   case, otherwise
133  * - if we fix page fault on the spte or do write-protection by dirty logging,
134  *   check PT_WRITABLE_MASK.
135  *
136  * TODO: introduce APIs to split these two cases.
137  */
138 static inline int is_writable_pte(unsigned long pte)
139 {
140 	return pte & PT_WRITABLE_MASK;
141 }
142 
143 static inline bool is_write_protection(struct kvm_vcpu *vcpu)
144 {
145 	return kvm_read_cr0_bits(vcpu, X86_CR0_WP);
146 }
147 
148 /*
149  * Check if a given access (described through the I/D, W/R and U/S bits of a
150  * page fault error code pfec) causes a permission fault with the given PTE
151  * access rights (in ACC_* format).
152  *
153  * Return zero if the access does not fault; return the page fault error code
154  * if the access faults.
155  */
156 static inline u8 permission_fault(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
157 				  unsigned pte_access, unsigned pte_pkey,
158 				  unsigned pfec)
159 {
160 	int cpl = kvm_x86_ops->get_cpl(vcpu);
161 	unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
162 
163 	/*
164 	 * If CPL < 3, SMAP prevention are disabled if EFLAGS.AC = 1.
165 	 *
166 	 * If CPL = 3, SMAP applies to all supervisor-mode data accesses
167 	 * (these are implicit supervisor accesses) regardless of the value
168 	 * of EFLAGS.AC.
169 	 *
170 	 * This computes (cpl < 3) && (rflags & X86_EFLAGS_AC), leaving
171 	 * the result in X86_EFLAGS_AC. We then insert it in place of
172 	 * the PFERR_RSVD_MASK bit; this bit will always be zero in pfec,
173 	 * but it will be one in index if SMAP checks are being overridden.
174 	 * It is important to keep this branchless.
175 	 */
176 	unsigned long smap = (cpl - 3) & (rflags & X86_EFLAGS_AC);
177 	int index = (pfec >> 1) +
178 		    (smap >> (X86_EFLAGS_AC_BIT - PFERR_RSVD_BIT + 1));
179 	bool fault = (mmu->permissions[index] >> pte_access) & 1;
180 	u32 errcode = PFERR_PRESENT_MASK;
181 
182 	WARN_ON(pfec & (PFERR_PK_MASK | PFERR_RSVD_MASK));
183 	if (unlikely(mmu->pkru_mask)) {
184 		u32 pkru_bits, offset;
185 
186 		/*
187 		* PKRU defines 32 bits, there are 16 domains and 2
188 		* attribute bits per domain in pkru.  pte_pkey is the
189 		* index of the protection domain, so pte_pkey * 2 is
190 		* is the index of the first bit for the domain.
191 		*/
192 		pkru_bits = (vcpu->arch.pkru >> (pte_pkey * 2)) & 3;
193 
194 		/* clear present bit, replace PFEC.RSVD with ACC_USER_MASK. */
195 		offset = (pfec & ~1) +
196 			((pte_access & PT_USER_MASK) << (PFERR_RSVD_BIT - PT_USER_SHIFT));
197 
198 		pkru_bits &= mmu->pkru_mask >> offset;
199 		errcode |= -pkru_bits & PFERR_PK_MASK;
200 		fault |= (pkru_bits != 0);
201 	}
202 
203 	return -(u32)fault & errcode;
204 }
205 
206 void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end);
207 
208 void kvm_mmu_gfn_disallow_lpage(struct kvm_memory_slot *slot, gfn_t gfn);
209 void kvm_mmu_gfn_allow_lpage(struct kvm_memory_slot *slot, gfn_t gfn);
210 bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
211 				    struct kvm_memory_slot *slot, u64 gfn);
212 int kvm_arch_write_log_dirty(struct kvm_vcpu *vcpu);
213 #endif
214