1 // SPDX-License-Identifier: GPL-2.0-only 2 3 /* 4 * Local APIC virtualization 5 * 6 * Copyright (C) 2006 Qumranet, Inc. 7 * Copyright (C) 2007 Novell 8 * Copyright (C) 2007 Intel 9 * Copyright 2009 Red Hat, Inc. and/or its affiliates. 10 * 11 * Authors: 12 * Dor Laor <dor.laor@qumranet.com> 13 * Gregory Haskins <ghaskins@novell.com> 14 * Yaozu (Eddie) Dong <eddie.dong@intel.com> 15 * 16 * Based on Xen 3.1 code, Copyright (c) 2004, Intel Corporation. 17 */ 18 19 #include <linux/kvm_host.h> 20 #include <linux/kvm.h> 21 #include <linux/mm.h> 22 #include <linux/highmem.h> 23 #include <linux/smp.h> 24 #include <linux/hrtimer.h> 25 #include <linux/io.h> 26 #include <linux/export.h> 27 #include <linux/math64.h> 28 #include <linux/slab.h> 29 #include <asm/processor.h> 30 #include <asm/msr.h> 31 #include <asm/page.h> 32 #include <asm/current.h> 33 #include <asm/apicdef.h> 34 #include <asm/delay.h> 35 #include <linux/atomic.h> 36 #include <linux/jump_label.h> 37 #include "kvm_cache_regs.h" 38 #include "irq.h" 39 #include "trace.h" 40 #include "x86.h" 41 #include "cpuid.h" 42 #include "hyperv.h" 43 44 #ifndef CONFIG_X86_64 45 #define mod_64(x, y) ((x) - (y) * div64_u64(x, y)) 46 #else 47 #define mod_64(x, y) ((x) % (y)) 48 #endif 49 50 #define PRId64 "d" 51 #define PRIx64 "llx" 52 #define PRIu64 "u" 53 #define PRIo64 "o" 54 55 /* 14 is the version for Xeon and Pentium 8.4.8*/ 56 #define APIC_VERSION (0x14UL | ((KVM_APIC_LVT_NUM - 1) << 16)) 57 #define LAPIC_MMIO_LENGTH (1 << 12) 58 /* followed define is not in apicdef.h */ 59 #define APIC_SHORT_MASK 0xc0000 60 #define APIC_DEST_NOSHORT 0x0 61 #define APIC_DEST_MASK 0x800 62 #define MAX_APIC_VECTOR 256 63 #define APIC_VECTORS_PER_REG 32 64 65 #define APIC_BROADCAST 0xFF 66 #define X2APIC_BROADCAST 0xFFFFFFFFul 67 68 static bool lapic_timer_advance_dynamic __read_mostly; 69 #define LAPIC_TIMER_ADVANCE_ADJUST_MIN 100 70 #define LAPIC_TIMER_ADVANCE_ADJUST_MAX 5000 71 #define LAPIC_TIMER_ADVANCE_ADJUST_INIT 1000 72 /* step-by-step approximation to mitigate fluctuation */ 73 #define LAPIC_TIMER_ADVANCE_ADJUST_STEP 8 74 75 static inline int apic_test_vector(int vec, void *bitmap) 76 { 77 return test_bit(VEC_POS(vec), (bitmap) + REG_POS(vec)); 78 } 79 80 bool kvm_apic_pending_eoi(struct kvm_vcpu *vcpu, int vector) 81 { 82 struct kvm_lapic *apic = vcpu->arch.apic; 83 84 return apic_test_vector(vector, apic->regs + APIC_ISR) || 85 apic_test_vector(vector, apic->regs + APIC_IRR); 86 } 87 88 static inline int __apic_test_and_set_vector(int vec, void *bitmap) 89 { 90 return __test_and_set_bit(VEC_POS(vec), (bitmap) + REG_POS(vec)); 91 } 92 93 static inline int __apic_test_and_clear_vector(int vec, void *bitmap) 94 { 95 return __test_and_clear_bit(VEC_POS(vec), (bitmap) + REG_POS(vec)); 96 } 97 98 struct static_key_deferred apic_hw_disabled __read_mostly; 99 struct static_key_deferred apic_sw_disabled __read_mostly; 100 101 static inline int apic_enabled(struct kvm_lapic *apic) 102 { 103 return kvm_apic_sw_enabled(apic) && kvm_apic_hw_enabled(apic); 104 } 105 106 #define LVT_MASK \ 107 (APIC_LVT_MASKED | APIC_SEND_PENDING | APIC_VECTOR_MASK) 108 109 #define LINT_MASK \ 110 (LVT_MASK | APIC_MODE_MASK | APIC_INPUT_POLARITY | \ 111 APIC_LVT_REMOTE_IRR | APIC_LVT_LEVEL_TRIGGER) 112 113 static inline u8 kvm_xapic_id(struct kvm_lapic *apic) 114 { 115 return kvm_lapic_get_reg(apic, APIC_ID) >> 24; 116 } 117 118 static inline u32 kvm_x2apic_id(struct kvm_lapic *apic) 119 { 120 return apic->vcpu->vcpu_id; 121 } 122 123 bool kvm_can_post_timer_interrupt(struct kvm_vcpu *vcpu) 124 { 125 return pi_inject_timer && kvm_vcpu_apicv_active(vcpu); 126 } 127 EXPORT_SYMBOL_GPL(kvm_can_post_timer_interrupt); 128 129 static bool kvm_use_posted_timer_interrupt(struct kvm_vcpu *vcpu) 130 { 131 return kvm_can_post_timer_interrupt(vcpu) && vcpu->mode == IN_GUEST_MODE; 132 } 133 134 static inline bool kvm_apic_map_get_logical_dest(struct kvm_apic_map *map, 135 u32 dest_id, struct kvm_lapic ***cluster, u16 *mask) { 136 switch (map->mode) { 137 case KVM_APIC_MODE_X2APIC: { 138 u32 offset = (dest_id >> 16) * 16; 139 u32 max_apic_id = map->max_apic_id; 140 141 if (offset <= max_apic_id) { 142 u8 cluster_size = min(max_apic_id - offset + 1, 16U); 143 144 offset = array_index_nospec(offset, map->max_apic_id + 1); 145 *cluster = &map->phys_map[offset]; 146 *mask = dest_id & (0xffff >> (16 - cluster_size)); 147 } else { 148 *mask = 0; 149 } 150 151 return true; 152 } 153 case KVM_APIC_MODE_XAPIC_FLAT: 154 *cluster = map->xapic_flat_map; 155 *mask = dest_id & 0xff; 156 return true; 157 case KVM_APIC_MODE_XAPIC_CLUSTER: 158 *cluster = map->xapic_cluster_map[(dest_id >> 4) & 0xf]; 159 *mask = dest_id & 0xf; 160 return true; 161 default: 162 /* Not optimized. */ 163 return false; 164 } 165 } 166 167 static void kvm_apic_map_free(struct rcu_head *rcu) 168 { 169 struct kvm_apic_map *map = container_of(rcu, struct kvm_apic_map, rcu); 170 171 kvfree(map); 172 } 173 174 static void recalculate_apic_map(struct kvm *kvm) 175 { 176 struct kvm_apic_map *new, *old = NULL; 177 struct kvm_vcpu *vcpu; 178 int i; 179 u32 max_id = 255; /* enough space for any xAPIC ID */ 180 181 mutex_lock(&kvm->arch.apic_map_lock); 182 183 kvm_for_each_vcpu(i, vcpu, kvm) 184 if (kvm_apic_present(vcpu)) 185 max_id = max(max_id, kvm_x2apic_id(vcpu->arch.apic)); 186 187 new = kvzalloc(sizeof(struct kvm_apic_map) + 188 sizeof(struct kvm_lapic *) * ((u64)max_id + 1), 189 GFP_KERNEL_ACCOUNT); 190 191 if (!new) 192 goto out; 193 194 new->max_apic_id = max_id; 195 196 kvm_for_each_vcpu(i, vcpu, kvm) { 197 struct kvm_lapic *apic = vcpu->arch.apic; 198 struct kvm_lapic **cluster; 199 u16 mask; 200 u32 ldr; 201 u8 xapic_id; 202 u32 x2apic_id; 203 204 if (!kvm_apic_present(vcpu)) 205 continue; 206 207 xapic_id = kvm_xapic_id(apic); 208 x2apic_id = kvm_x2apic_id(apic); 209 210 /* Hotplug hack: see kvm_apic_match_physical_addr(), ... */ 211 if ((apic_x2apic_mode(apic) || x2apic_id > 0xff) && 212 x2apic_id <= new->max_apic_id) 213 new->phys_map[x2apic_id] = apic; 214 /* 215 * ... xAPIC ID of VCPUs with APIC ID > 0xff will wrap-around, 216 * prevent them from masking VCPUs with APIC ID <= 0xff. 217 */ 218 if (!apic_x2apic_mode(apic) && !new->phys_map[xapic_id]) 219 new->phys_map[xapic_id] = apic; 220 221 if (!kvm_apic_sw_enabled(apic)) 222 continue; 223 224 ldr = kvm_lapic_get_reg(apic, APIC_LDR); 225 226 if (apic_x2apic_mode(apic)) { 227 new->mode |= KVM_APIC_MODE_X2APIC; 228 } else if (ldr) { 229 ldr = GET_APIC_LOGICAL_ID(ldr); 230 if (kvm_lapic_get_reg(apic, APIC_DFR) == APIC_DFR_FLAT) 231 new->mode |= KVM_APIC_MODE_XAPIC_FLAT; 232 else 233 new->mode |= KVM_APIC_MODE_XAPIC_CLUSTER; 234 } 235 236 if (!kvm_apic_map_get_logical_dest(new, ldr, &cluster, &mask)) 237 continue; 238 239 if (mask) 240 cluster[ffs(mask) - 1] = apic; 241 } 242 out: 243 old = rcu_dereference_protected(kvm->arch.apic_map, 244 lockdep_is_held(&kvm->arch.apic_map_lock)); 245 rcu_assign_pointer(kvm->arch.apic_map, new); 246 mutex_unlock(&kvm->arch.apic_map_lock); 247 248 if (old) 249 call_rcu(&old->rcu, kvm_apic_map_free); 250 251 kvm_make_scan_ioapic_request(kvm); 252 } 253 254 static inline void apic_set_spiv(struct kvm_lapic *apic, u32 val) 255 { 256 bool enabled = val & APIC_SPIV_APIC_ENABLED; 257 258 kvm_lapic_set_reg(apic, APIC_SPIV, val); 259 260 if (enabled != apic->sw_enabled) { 261 apic->sw_enabled = enabled; 262 if (enabled) 263 static_key_slow_dec_deferred(&apic_sw_disabled); 264 else 265 static_key_slow_inc(&apic_sw_disabled.key); 266 267 recalculate_apic_map(apic->vcpu->kvm); 268 } 269 } 270 271 static inline void kvm_apic_set_xapic_id(struct kvm_lapic *apic, u8 id) 272 { 273 kvm_lapic_set_reg(apic, APIC_ID, id << 24); 274 recalculate_apic_map(apic->vcpu->kvm); 275 } 276 277 static inline void kvm_apic_set_ldr(struct kvm_lapic *apic, u32 id) 278 { 279 kvm_lapic_set_reg(apic, APIC_LDR, id); 280 recalculate_apic_map(apic->vcpu->kvm); 281 } 282 283 static inline u32 kvm_apic_calc_x2apic_ldr(u32 id) 284 { 285 return ((id >> 4) << 16) | (1 << (id & 0xf)); 286 } 287 288 static inline void kvm_apic_set_x2apic_id(struct kvm_lapic *apic, u32 id) 289 { 290 u32 ldr = kvm_apic_calc_x2apic_ldr(id); 291 292 WARN_ON_ONCE(id != apic->vcpu->vcpu_id); 293 294 kvm_lapic_set_reg(apic, APIC_ID, id); 295 kvm_lapic_set_reg(apic, APIC_LDR, ldr); 296 recalculate_apic_map(apic->vcpu->kvm); 297 } 298 299 static inline int apic_lvt_enabled(struct kvm_lapic *apic, int lvt_type) 300 { 301 return !(kvm_lapic_get_reg(apic, lvt_type) & APIC_LVT_MASKED); 302 } 303 304 static inline int apic_lvt_vector(struct kvm_lapic *apic, int lvt_type) 305 { 306 return kvm_lapic_get_reg(apic, lvt_type) & APIC_VECTOR_MASK; 307 } 308 309 static inline int apic_lvtt_oneshot(struct kvm_lapic *apic) 310 { 311 return apic->lapic_timer.timer_mode == APIC_LVT_TIMER_ONESHOT; 312 } 313 314 static inline int apic_lvtt_period(struct kvm_lapic *apic) 315 { 316 return apic->lapic_timer.timer_mode == APIC_LVT_TIMER_PERIODIC; 317 } 318 319 static inline int apic_lvtt_tscdeadline(struct kvm_lapic *apic) 320 { 321 return apic->lapic_timer.timer_mode == APIC_LVT_TIMER_TSCDEADLINE; 322 } 323 324 static inline int apic_lvt_nmi_mode(u32 lvt_val) 325 { 326 return (lvt_val & (APIC_MODE_MASK | APIC_LVT_MASKED)) == APIC_DM_NMI; 327 } 328 329 void kvm_apic_set_version(struct kvm_vcpu *vcpu) 330 { 331 struct kvm_lapic *apic = vcpu->arch.apic; 332 struct kvm_cpuid_entry2 *feat; 333 u32 v = APIC_VERSION; 334 335 if (!lapic_in_kernel(vcpu)) 336 return; 337 338 /* 339 * KVM emulates 82093AA datasheet (with in-kernel IOAPIC implementation) 340 * which doesn't have EOI register; Some buggy OSes (e.g. Windows with 341 * Hyper-V role) disable EOI broadcast in lapic not checking for IOAPIC 342 * version first and level-triggered interrupts never get EOIed in 343 * IOAPIC. 344 */ 345 feat = kvm_find_cpuid_entry(apic->vcpu, 0x1, 0); 346 if (feat && (feat->ecx & (1 << (X86_FEATURE_X2APIC & 31))) && 347 !ioapic_in_kernel(vcpu->kvm)) 348 v |= APIC_LVR_DIRECTED_EOI; 349 kvm_lapic_set_reg(apic, APIC_LVR, v); 350 } 351 352 static const unsigned int apic_lvt_mask[KVM_APIC_LVT_NUM] = { 353 LVT_MASK , /* part LVTT mask, timer mode mask added at runtime */ 354 LVT_MASK | APIC_MODE_MASK, /* LVTTHMR */ 355 LVT_MASK | APIC_MODE_MASK, /* LVTPC */ 356 LINT_MASK, LINT_MASK, /* LVT0-1 */ 357 LVT_MASK /* LVTERR */ 358 }; 359 360 static int find_highest_vector(void *bitmap) 361 { 362 int vec; 363 u32 *reg; 364 365 for (vec = MAX_APIC_VECTOR - APIC_VECTORS_PER_REG; 366 vec >= 0; vec -= APIC_VECTORS_PER_REG) { 367 reg = bitmap + REG_POS(vec); 368 if (*reg) 369 return __fls(*reg) + vec; 370 } 371 372 return -1; 373 } 374 375 static u8 count_vectors(void *bitmap) 376 { 377 int vec; 378 u32 *reg; 379 u8 count = 0; 380 381 for (vec = 0; vec < MAX_APIC_VECTOR; vec += APIC_VECTORS_PER_REG) { 382 reg = bitmap + REG_POS(vec); 383 count += hweight32(*reg); 384 } 385 386 return count; 387 } 388 389 bool __kvm_apic_update_irr(u32 *pir, void *regs, int *max_irr) 390 { 391 u32 i, vec; 392 u32 pir_val, irr_val, prev_irr_val; 393 int max_updated_irr; 394 395 max_updated_irr = -1; 396 *max_irr = -1; 397 398 for (i = vec = 0; i <= 7; i++, vec += 32) { 399 pir_val = READ_ONCE(pir[i]); 400 irr_val = *((u32 *)(regs + APIC_IRR + i * 0x10)); 401 if (pir_val) { 402 prev_irr_val = irr_val; 403 irr_val |= xchg(&pir[i], 0); 404 *((u32 *)(regs + APIC_IRR + i * 0x10)) = irr_val; 405 if (prev_irr_val != irr_val) { 406 max_updated_irr = 407 __fls(irr_val ^ prev_irr_val) + vec; 408 } 409 } 410 if (irr_val) 411 *max_irr = __fls(irr_val) + vec; 412 } 413 414 return ((max_updated_irr != -1) && 415 (max_updated_irr == *max_irr)); 416 } 417 EXPORT_SYMBOL_GPL(__kvm_apic_update_irr); 418 419 bool kvm_apic_update_irr(struct kvm_vcpu *vcpu, u32 *pir, int *max_irr) 420 { 421 struct kvm_lapic *apic = vcpu->arch.apic; 422 423 return __kvm_apic_update_irr(pir, apic->regs, max_irr); 424 } 425 EXPORT_SYMBOL_GPL(kvm_apic_update_irr); 426 427 static inline int apic_search_irr(struct kvm_lapic *apic) 428 { 429 return find_highest_vector(apic->regs + APIC_IRR); 430 } 431 432 static inline int apic_find_highest_irr(struct kvm_lapic *apic) 433 { 434 int result; 435 436 /* 437 * Note that irr_pending is just a hint. It will be always 438 * true with virtual interrupt delivery enabled. 439 */ 440 if (!apic->irr_pending) 441 return -1; 442 443 result = apic_search_irr(apic); 444 ASSERT(result == -1 || result >= 16); 445 446 return result; 447 } 448 449 static inline void apic_clear_irr(int vec, struct kvm_lapic *apic) 450 { 451 struct kvm_vcpu *vcpu; 452 453 vcpu = apic->vcpu; 454 455 if (unlikely(vcpu->arch.apicv_active)) { 456 /* need to update RVI */ 457 kvm_lapic_clear_vector(vec, apic->regs + APIC_IRR); 458 kvm_x86_ops->hwapic_irr_update(vcpu, 459 apic_find_highest_irr(apic)); 460 } else { 461 apic->irr_pending = false; 462 kvm_lapic_clear_vector(vec, apic->regs + APIC_IRR); 463 if (apic_search_irr(apic) != -1) 464 apic->irr_pending = true; 465 } 466 } 467 468 static inline void apic_set_isr(int vec, struct kvm_lapic *apic) 469 { 470 struct kvm_vcpu *vcpu; 471 472 if (__apic_test_and_set_vector(vec, apic->regs + APIC_ISR)) 473 return; 474 475 vcpu = apic->vcpu; 476 477 /* 478 * With APIC virtualization enabled, all caching is disabled 479 * because the processor can modify ISR under the hood. Instead 480 * just set SVI. 481 */ 482 if (unlikely(vcpu->arch.apicv_active)) 483 kvm_x86_ops->hwapic_isr_update(vcpu, vec); 484 else { 485 ++apic->isr_count; 486 BUG_ON(apic->isr_count > MAX_APIC_VECTOR); 487 /* 488 * ISR (in service register) bit is set when injecting an interrupt. 489 * The highest vector is injected. Thus the latest bit set matches 490 * the highest bit in ISR. 491 */ 492 apic->highest_isr_cache = vec; 493 } 494 } 495 496 static inline int apic_find_highest_isr(struct kvm_lapic *apic) 497 { 498 int result; 499 500 /* 501 * Note that isr_count is always 1, and highest_isr_cache 502 * is always -1, with APIC virtualization enabled. 503 */ 504 if (!apic->isr_count) 505 return -1; 506 if (likely(apic->highest_isr_cache != -1)) 507 return apic->highest_isr_cache; 508 509 result = find_highest_vector(apic->regs + APIC_ISR); 510 ASSERT(result == -1 || result >= 16); 511 512 return result; 513 } 514 515 static inline void apic_clear_isr(int vec, struct kvm_lapic *apic) 516 { 517 struct kvm_vcpu *vcpu; 518 if (!__apic_test_and_clear_vector(vec, apic->regs + APIC_ISR)) 519 return; 520 521 vcpu = apic->vcpu; 522 523 /* 524 * We do get here for APIC virtualization enabled if the guest 525 * uses the Hyper-V APIC enlightenment. In this case we may need 526 * to trigger a new interrupt delivery by writing the SVI field; 527 * on the other hand isr_count and highest_isr_cache are unused 528 * and must be left alone. 529 */ 530 if (unlikely(vcpu->arch.apicv_active)) 531 kvm_x86_ops->hwapic_isr_update(vcpu, 532 apic_find_highest_isr(apic)); 533 else { 534 --apic->isr_count; 535 BUG_ON(apic->isr_count < 0); 536 apic->highest_isr_cache = -1; 537 } 538 } 539 540 int kvm_lapic_find_highest_irr(struct kvm_vcpu *vcpu) 541 { 542 /* This may race with setting of irr in __apic_accept_irq() and 543 * value returned may be wrong, but kvm_vcpu_kick() in __apic_accept_irq 544 * will cause vmexit immediately and the value will be recalculated 545 * on the next vmentry. 546 */ 547 return apic_find_highest_irr(vcpu->arch.apic); 548 } 549 EXPORT_SYMBOL_GPL(kvm_lapic_find_highest_irr); 550 551 static int __apic_accept_irq(struct kvm_lapic *apic, int delivery_mode, 552 int vector, int level, int trig_mode, 553 struct dest_map *dest_map); 554 555 int kvm_apic_set_irq(struct kvm_vcpu *vcpu, struct kvm_lapic_irq *irq, 556 struct dest_map *dest_map) 557 { 558 struct kvm_lapic *apic = vcpu->arch.apic; 559 560 return __apic_accept_irq(apic, irq->delivery_mode, irq->vector, 561 irq->level, irq->trig_mode, dest_map); 562 } 563 564 int kvm_pv_send_ipi(struct kvm *kvm, unsigned long ipi_bitmap_low, 565 unsigned long ipi_bitmap_high, u32 min, 566 unsigned long icr, int op_64_bit) 567 { 568 int i; 569 struct kvm_apic_map *map; 570 struct kvm_vcpu *vcpu; 571 struct kvm_lapic_irq irq = {0}; 572 int cluster_size = op_64_bit ? 64 : 32; 573 int count = 0; 574 575 irq.vector = icr & APIC_VECTOR_MASK; 576 irq.delivery_mode = icr & APIC_MODE_MASK; 577 irq.level = (icr & APIC_INT_ASSERT) != 0; 578 irq.trig_mode = icr & APIC_INT_LEVELTRIG; 579 580 if (icr & APIC_DEST_MASK) 581 return -KVM_EINVAL; 582 if (icr & APIC_SHORT_MASK) 583 return -KVM_EINVAL; 584 585 rcu_read_lock(); 586 map = rcu_dereference(kvm->arch.apic_map); 587 588 if (unlikely(!map)) { 589 count = -EOPNOTSUPP; 590 goto out; 591 } 592 593 if (min > map->max_apic_id) 594 goto out; 595 /* Bits above cluster_size are masked in the caller. */ 596 for_each_set_bit(i, &ipi_bitmap_low, 597 min((u32)BITS_PER_LONG, (map->max_apic_id - min + 1))) { 598 if (map->phys_map[min + i]) { 599 vcpu = map->phys_map[min + i]->vcpu; 600 count += kvm_apic_set_irq(vcpu, &irq, NULL); 601 } 602 } 603 604 min += cluster_size; 605 606 if (min > map->max_apic_id) 607 goto out; 608 609 for_each_set_bit(i, &ipi_bitmap_high, 610 min((u32)BITS_PER_LONG, (map->max_apic_id - min + 1))) { 611 if (map->phys_map[min + i]) { 612 vcpu = map->phys_map[min + i]->vcpu; 613 count += kvm_apic_set_irq(vcpu, &irq, NULL); 614 } 615 } 616 617 out: 618 rcu_read_unlock(); 619 return count; 620 } 621 622 static int pv_eoi_put_user(struct kvm_vcpu *vcpu, u8 val) 623 { 624 625 return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.pv_eoi.data, &val, 626 sizeof(val)); 627 } 628 629 static int pv_eoi_get_user(struct kvm_vcpu *vcpu, u8 *val) 630 { 631 632 return kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.pv_eoi.data, val, 633 sizeof(*val)); 634 } 635 636 static inline bool pv_eoi_enabled(struct kvm_vcpu *vcpu) 637 { 638 return vcpu->arch.pv_eoi.msr_val & KVM_MSR_ENABLED; 639 } 640 641 static bool pv_eoi_get_pending(struct kvm_vcpu *vcpu) 642 { 643 u8 val; 644 if (pv_eoi_get_user(vcpu, &val) < 0) 645 printk(KERN_WARNING "Can't read EOI MSR value: 0x%llx\n", 646 (unsigned long long)vcpu->arch.pv_eoi.msr_val); 647 return val & 0x1; 648 } 649 650 static void pv_eoi_set_pending(struct kvm_vcpu *vcpu) 651 { 652 if (pv_eoi_put_user(vcpu, KVM_PV_EOI_ENABLED) < 0) { 653 printk(KERN_WARNING "Can't set EOI MSR value: 0x%llx\n", 654 (unsigned long long)vcpu->arch.pv_eoi.msr_val); 655 return; 656 } 657 __set_bit(KVM_APIC_PV_EOI_PENDING, &vcpu->arch.apic_attention); 658 } 659 660 static void pv_eoi_clr_pending(struct kvm_vcpu *vcpu) 661 { 662 if (pv_eoi_put_user(vcpu, KVM_PV_EOI_DISABLED) < 0) { 663 printk(KERN_WARNING "Can't clear EOI MSR value: 0x%llx\n", 664 (unsigned long long)vcpu->arch.pv_eoi.msr_val); 665 return; 666 } 667 __clear_bit(KVM_APIC_PV_EOI_PENDING, &vcpu->arch.apic_attention); 668 } 669 670 static int apic_has_interrupt_for_ppr(struct kvm_lapic *apic, u32 ppr) 671 { 672 int highest_irr; 673 if (apic->vcpu->arch.apicv_active) 674 highest_irr = kvm_x86_ops->sync_pir_to_irr(apic->vcpu); 675 else 676 highest_irr = apic_find_highest_irr(apic); 677 if (highest_irr == -1 || (highest_irr & 0xF0) <= ppr) 678 return -1; 679 return highest_irr; 680 } 681 682 static bool __apic_update_ppr(struct kvm_lapic *apic, u32 *new_ppr) 683 { 684 u32 tpr, isrv, ppr, old_ppr; 685 int isr; 686 687 old_ppr = kvm_lapic_get_reg(apic, APIC_PROCPRI); 688 tpr = kvm_lapic_get_reg(apic, APIC_TASKPRI); 689 isr = apic_find_highest_isr(apic); 690 isrv = (isr != -1) ? isr : 0; 691 692 if ((tpr & 0xf0) >= (isrv & 0xf0)) 693 ppr = tpr & 0xff; 694 else 695 ppr = isrv & 0xf0; 696 697 *new_ppr = ppr; 698 if (old_ppr != ppr) 699 kvm_lapic_set_reg(apic, APIC_PROCPRI, ppr); 700 701 return ppr < old_ppr; 702 } 703 704 static void apic_update_ppr(struct kvm_lapic *apic) 705 { 706 u32 ppr; 707 708 if (__apic_update_ppr(apic, &ppr) && 709 apic_has_interrupt_for_ppr(apic, ppr) != -1) 710 kvm_make_request(KVM_REQ_EVENT, apic->vcpu); 711 } 712 713 void kvm_apic_update_ppr(struct kvm_vcpu *vcpu) 714 { 715 apic_update_ppr(vcpu->arch.apic); 716 } 717 EXPORT_SYMBOL_GPL(kvm_apic_update_ppr); 718 719 static void apic_set_tpr(struct kvm_lapic *apic, u32 tpr) 720 { 721 kvm_lapic_set_reg(apic, APIC_TASKPRI, tpr); 722 apic_update_ppr(apic); 723 } 724 725 static bool kvm_apic_broadcast(struct kvm_lapic *apic, u32 mda) 726 { 727 return mda == (apic_x2apic_mode(apic) ? 728 X2APIC_BROADCAST : APIC_BROADCAST); 729 } 730 731 static bool kvm_apic_match_physical_addr(struct kvm_lapic *apic, u32 mda) 732 { 733 if (kvm_apic_broadcast(apic, mda)) 734 return true; 735 736 if (apic_x2apic_mode(apic)) 737 return mda == kvm_x2apic_id(apic); 738 739 /* 740 * Hotplug hack: Make LAPIC in xAPIC mode also accept interrupts as if 741 * it were in x2APIC mode. Hotplugged VCPUs start in xAPIC mode and 742 * this allows unique addressing of VCPUs with APIC ID over 0xff. 743 * The 0xff condition is needed because writeable xAPIC ID. 744 */ 745 if (kvm_x2apic_id(apic) > 0xff && mda == kvm_x2apic_id(apic)) 746 return true; 747 748 return mda == kvm_xapic_id(apic); 749 } 750 751 static bool kvm_apic_match_logical_addr(struct kvm_lapic *apic, u32 mda) 752 { 753 u32 logical_id; 754 755 if (kvm_apic_broadcast(apic, mda)) 756 return true; 757 758 logical_id = kvm_lapic_get_reg(apic, APIC_LDR); 759 760 if (apic_x2apic_mode(apic)) 761 return ((logical_id >> 16) == (mda >> 16)) 762 && (logical_id & mda & 0xffff) != 0; 763 764 logical_id = GET_APIC_LOGICAL_ID(logical_id); 765 766 switch (kvm_lapic_get_reg(apic, APIC_DFR)) { 767 case APIC_DFR_FLAT: 768 return (logical_id & mda) != 0; 769 case APIC_DFR_CLUSTER: 770 return ((logical_id >> 4) == (mda >> 4)) 771 && (logical_id & mda & 0xf) != 0; 772 default: 773 return false; 774 } 775 } 776 777 /* The KVM local APIC implementation has two quirks: 778 * 779 * - Real hardware delivers interrupts destined to x2APIC ID > 0xff to LAPICs 780 * in xAPIC mode if the "destination & 0xff" matches its xAPIC ID. 781 * KVM doesn't do that aliasing. 782 * 783 * - in-kernel IOAPIC messages have to be delivered directly to 784 * x2APIC, because the kernel does not support interrupt remapping. 785 * In order to support broadcast without interrupt remapping, x2APIC 786 * rewrites the destination of non-IPI messages from APIC_BROADCAST 787 * to X2APIC_BROADCAST. 788 * 789 * The broadcast quirk can be disabled with KVM_CAP_X2APIC_API. This is 790 * important when userspace wants to use x2APIC-format MSIs, because 791 * APIC_BROADCAST (0xff) is a legal route for "cluster 0, CPUs 0-7". 792 */ 793 static u32 kvm_apic_mda(struct kvm_vcpu *vcpu, unsigned int dest_id, 794 struct kvm_lapic *source, struct kvm_lapic *target) 795 { 796 bool ipi = source != NULL; 797 798 if (!vcpu->kvm->arch.x2apic_broadcast_quirk_disabled && 799 !ipi && dest_id == APIC_BROADCAST && apic_x2apic_mode(target)) 800 return X2APIC_BROADCAST; 801 802 return dest_id; 803 } 804 805 bool kvm_apic_match_dest(struct kvm_vcpu *vcpu, struct kvm_lapic *source, 806 int short_hand, unsigned int dest, int dest_mode) 807 { 808 struct kvm_lapic *target = vcpu->arch.apic; 809 u32 mda = kvm_apic_mda(vcpu, dest, source, target); 810 811 ASSERT(target); 812 switch (short_hand) { 813 case APIC_DEST_NOSHORT: 814 if (dest_mode == APIC_DEST_PHYSICAL) 815 return kvm_apic_match_physical_addr(target, mda); 816 else 817 return kvm_apic_match_logical_addr(target, mda); 818 case APIC_DEST_SELF: 819 return target == source; 820 case APIC_DEST_ALLINC: 821 return true; 822 case APIC_DEST_ALLBUT: 823 return target != source; 824 default: 825 return false; 826 } 827 } 828 EXPORT_SYMBOL_GPL(kvm_apic_match_dest); 829 830 int kvm_vector_to_index(u32 vector, u32 dest_vcpus, 831 const unsigned long *bitmap, u32 bitmap_size) 832 { 833 u32 mod; 834 int i, idx = -1; 835 836 mod = vector % dest_vcpus; 837 838 for (i = 0; i <= mod; i++) { 839 idx = find_next_bit(bitmap, bitmap_size, idx + 1); 840 BUG_ON(idx == bitmap_size); 841 } 842 843 return idx; 844 } 845 846 static void kvm_apic_disabled_lapic_found(struct kvm *kvm) 847 { 848 if (!kvm->arch.disabled_lapic_found) { 849 kvm->arch.disabled_lapic_found = true; 850 printk(KERN_INFO 851 "Disabled LAPIC found during irq injection\n"); 852 } 853 } 854 855 static bool kvm_apic_is_broadcast_dest(struct kvm *kvm, struct kvm_lapic **src, 856 struct kvm_lapic_irq *irq, struct kvm_apic_map *map) 857 { 858 if (kvm->arch.x2apic_broadcast_quirk_disabled) { 859 if ((irq->dest_id == APIC_BROADCAST && 860 map->mode != KVM_APIC_MODE_X2APIC)) 861 return true; 862 if (irq->dest_id == X2APIC_BROADCAST) 863 return true; 864 } else { 865 bool x2apic_ipi = src && *src && apic_x2apic_mode(*src); 866 if (irq->dest_id == (x2apic_ipi ? 867 X2APIC_BROADCAST : APIC_BROADCAST)) 868 return true; 869 } 870 871 return false; 872 } 873 874 /* Return true if the interrupt can be handled by using *bitmap as index mask 875 * for valid destinations in *dst array. 876 * Return false if kvm_apic_map_get_dest_lapic did nothing useful. 877 * Note: we may have zero kvm_lapic destinations when we return true, which 878 * means that the interrupt should be dropped. In this case, *bitmap would be 879 * zero and *dst undefined. 880 */ 881 static inline bool kvm_apic_map_get_dest_lapic(struct kvm *kvm, 882 struct kvm_lapic **src, struct kvm_lapic_irq *irq, 883 struct kvm_apic_map *map, struct kvm_lapic ***dst, 884 unsigned long *bitmap) 885 { 886 int i, lowest; 887 888 if (irq->shorthand == APIC_DEST_SELF && src) { 889 *dst = src; 890 *bitmap = 1; 891 return true; 892 } else if (irq->shorthand) 893 return false; 894 895 if (!map || kvm_apic_is_broadcast_dest(kvm, src, irq, map)) 896 return false; 897 898 if (irq->dest_mode == APIC_DEST_PHYSICAL) { 899 if (irq->dest_id > map->max_apic_id) { 900 *bitmap = 0; 901 } else { 902 u32 dest_id = array_index_nospec(irq->dest_id, map->max_apic_id + 1); 903 *dst = &map->phys_map[dest_id]; 904 *bitmap = 1; 905 } 906 return true; 907 } 908 909 *bitmap = 0; 910 if (!kvm_apic_map_get_logical_dest(map, irq->dest_id, dst, 911 (u16 *)bitmap)) 912 return false; 913 914 if (!kvm_lowest_prio_delivery(irq)) 915 return true; 916 917 if (!kvm_vector_hashing_enabled()) { 918 lowest = -1; 919 for_each_set_bit(i, bitmap, 16) { 920 if (!(*dst)[i]) 921 continue; 922 if (lowest < 0) 923 lowest = i; 924 else if (kvm_apic_compare_prio((*dst)[i]->vcpu, 925 (*dst)[lowest]->vcpu) < 0) 926 lowest = i; 927 } 928 } else { 929 if (!*bitmap) 930 return true; 931 932 lowest = kvm_vector_to_index(irq->vector, hweight16(*bitmap), 933 bitmap, 16); 934 935 if (!(*dst)[lowest]) { 936 kvm_apic_disabled_lapic_found(kvm); 937 *bitmap = 0; 938 return true; 939 } 940 } 941 942 *bitmap = (lowest >= 0) ? 1 << lowest : 0; 943 944 return true; 945 } 946 947 bool kvm_irq_delivery_to_apic_fast(struct kvm *kvm, struct kvm_lapic *src, 948 struct kvm_lapic_irq *irq, int *r, struct dest_map *dest_map) 949 { 950 struct kvm_apic_map *map; 951 unsigned long bitmap; 952 struct kvm_lapic **dst = NULL; 953 int i; 954 bool ret; 955 956 *r = -1; 957 958 if (irq->shorthand == APIC_DEST_SELF) { 959 *r = kvm_apic_set_irq(src->vcpu, irq, dest_map); 960 return true; 961 } 962 963 rcu_read_lock(); 964 map = rcu_dereference(kvm->arch.apic_map); 965 966 ret = kvm_apic_map_get_dest_lapic(kvm, &src, irq, map, &dst, &bitmap); 967 if (ret) { 968 *r = 0; 969 for_each_set_bit(i, &bitmap, 16) { 970 if (!dst[i]) 971 continue; 972 *r += kvm_apic_set_irq(dst[i]->vcpu, irq, dest_map); 973 } 974 } 975 976 rcu_read_unlock(); 977 return ret; 978 } 979 980 /* 981 * This routine tries to handler interrupts in posted mode, here is how 982 * it deals with different cases: 983 * - For single-destination interrupts, handle it in posted mode 984 * - Else if vector hashing is enabled and it is a lowest-priority 985 * interrupt, handle it in posted mode and use the following mechanism 986 * to find the destinaiton vCPU. 987 * 1. For lowest-priority interrupts, store all the possible 988 * destination vCPUs in an array. 989 * 2. Use "guest vector % max number of destination vCPUs" to find 990 * the right destination vCPU in the array for the lowest-priority 991 * interrupt. 992 * - Otherwise, use remapped mode to inject the interrupt. 993 */ 994 bool kvm_intr_is_single_vcpu_fast(struct kvm *kvm, struct kvm_lapic_irq *irq, 995 struct kvm_vcpu **dest_vcpu) 996 { 997 struct kvm_apic_map *map; 998 unsigned long bitmap; 999 struct kvm_lapic **dst = NULL; 1000 bool ret = false; 1001 1002 if (irq->shorthand) 1003 return false; 1004 1005 rcu_read_lock(); 1006 map = rcu_dereference(kvm->arch.apic_map); 1007 1008 if (kvm_apic_map_get_dest_lapic(kvm, NULL, irq, map, &dst, &bitmap) && 1009 hweight16(bitmap) == 1) { 1010 unsigned long i = find_first_bit(&bitmap, 16); 1011 1012 if (dst[i]) { 1013 *dest_vcpu = dst[i]->vcpu; 1014 ret = true; 1015 } 1016 } 1017 1018 rcu_read_unlock(); 1019 return ret; 1020 } 1021 1022 /* 1023 * Add a pending IRQ into lapic. 1024 * Return 1 if successfully added and 0 if discarded. 1025 */ 1026 static int __apic_accept_irq(struct kvm_lapic *apic, int delivery_mode, 1027 int vector, int level, int trig_mode, 1028 struct dest_map *dest_map) 1029 { 1030 int result = 0; 1031 struct kvm_vcpu *vcpu = apic->vcpu; 1032 1033 trace_kvm_apic_accept_irq(vcpu->vcpu_id, delivery_mode, 1034 trig_mode, vector); 1035 switch (delivery_mode) { 1036 case APIC_DM_LOWEST: 1037 vcpu->arch.apic_arb_prio++; 1038 /* fall through */ 1039 case APIC_DM_FIXED: 1040 if (unlikely(trig_mode && !level)) 1041 break; 1042 1043 /* FIXME add logic for vcpu on reset */ 1044 if (unlikely(!apic_enabled(apic))) 1045 break; 1046 1047 result = 1; 1048 1049 if (dest_map) { 1050 __set_bit(vcpu->vcpu_id, dest_map->map); 1051 dest_map->vectors[vcpu->vcpu_id] = vector; 1052 } 1053 1054 if (apic_test_vector(vector, apic->regs + APIC_TMR) != !!trig_mode) { 1055 if (trig_mode) 1056 kvm_lapic_set_vector(vector, 1057 apic->regs + APIC_TMR); 1058 else 1059 kvm_lapic_clear_vector(vector, 1060 apic->regs + APIC_TMR); 1061 } 1062 1063 if (vcpu->arch.apicv_active) 1064 kvm_x86_ops->deliver_posted_interrupt(vcpu, vector); 1065 else { 1066 kvm_lapic_set_irr(vector, apic); 1067 1068 kvm_make_request(KVM_REQ_EVENT, vcpu); 1069 kvm_vcpu_kick(vcpu); 1070 } 1071 break; 1072 1073 case APIC_DM_REMRD: 1074 result = 1; 1075 vcpu->arch.pv.pv_unhalted = 1; 1076 kvm_make_request(KVM_REQ_EVENT, vcpu); 1077 kvm_vcpu_kick(vcpu); 1078 break; 1079 1080 case APIC_DM_SMI: 1081 result = 1; 1082 kvm_make_request(KVM_REQ_SMI, vcpu); 1083 kvm_vcpu_kick(vcpu); 1084 break; 1085 1086 case APIC_DM_NMI: 1087 result = 1; 1088 kvm_inject_nmi(vcpu); 1089 kvm_vcpu_kick(vcpu); 1090 break; 1091 1092 case APIC_DM_INIT: 1093 if (!trig_mode || level) { 1094 result = 1; 1095 /* assumes that there are only KVM_APIC_INIT/SIPI */ 1096 apic->pending_events = (1UL << KVM_APIC_INIT); 1097 /* make sure pending_events is visible before sending 1098 * the request */ 1099 smp_wmb(); 1100 kvm_make_request(KVM_REQ_EVENT, vcpu); 1101 kvm_vcpu_kick(vcpu); 1102 } 1103 break; 1104 1105 case APIC_DM_STARTUP: 1106 result = 1; 1107 apic->sipi_vector = vector; 1108 /* make sure sipi_vector is visible for the receiver */ 1109 smp_wmb(); 1110 set_bit(KVM_APIC_SIPI, &apic->pending_events); 1111 kvm_make_request(KVM_REQ_EVENT, vcpu); 1112 kvm_vcpu_kick(vcpu); 1113 break; 1114 1115 case APIC_DM_EXTINT: 1116 /* 1117 * Should only be called by kvm_apic_local_deliver() with LVT0, 1118 * before NMI watchdog was enabled. Already handled by 1119 * kvm_apic_accept_pic_intr(). 1120 */ 1121 break; 1122 1123 default: 1124 printk(KERN_ERR "TODO: unsupported delivery mode %x\n", 1125 delivery_mode); 1126 break; 1127 } 1128 return result; 1129 } 1130 1131 int kvm_apic_compare_prio(struct kvm_vcpu *vcpu1, struct kvm_vcpu *vcpu2) 1132 { 1133 return vcpu1->arch.apic_arb_prio - vcpu2->arch.apic_arb_prio; 1134 } 1135 1136 static bool kvm_ioapic_handles_vector(struct kvm_lapic *apic, int vector) 1137 { 1138 return test_bit(vector, apic->vcpu->arch.ioapic_handled_vectors); 1139 } 1140 1141 static void kvm_ioapic_send_eoi(struct kvm_lapic *apic, int vector) 1142 { 1143 int trigger_mode; 1144 1145 /* Eoi the ioapic only if the ioapic doesn't own the vector. */ 1146 if (!kvm_ioapic_handles_vector(apic, vector)) 1147 return; 1148 1149 /* Request a KVM exit to inform the userspace IOAPIC. */ 1150 if (irqchip_split(apic->vcpu->kvm)) { 1151 apic->vcpu->arch.pending_ioapic_eoi = vector; 1152 kvm_make_request(KVM_REQ_IOAPIC_EOI_EXIT, apic->vcpu); 1153 return; 1154 } 1155 1156 if (apic_test_vector(vector, apic->regs + APIC_TMR)) 1157 trigger_mode = IOAPIC_LEVEL_TRIG; 1158 else 1159 trigger_mode = IOAPIC_EDGE_TRIG; 1160 1161 kvm_ioapic_update_eoi(apic->vcpu, vector, trigger_mode); 1162 } 1163 1164 static int apic_set_eoi(struct kvm_lapic *apic) 1165 { 1166 int vector = apic_find_highest_isr(apic); 1167 1168 trace_kvm_eoi(apic, vector); 1169 1170 /* 1171 * Not every write EOI will has corresponding ISR, 1172 * one example is when Kernel check timer on setup_IO_APIC 1173 */ 1174 if (vector == -1) 1175 return vector; 1176 1177 apic_clear_isr(vector, apic); 1178 apic_update_ppr(apic); 1179 1180 if (test_bit(vector, vcpu_to_synic(apic->vcpu)->vec_bitmap)) 1181 kvm_hv_synic_send_eoi(apic->vcpu, vector); 1182 1183 kvm_ioapic_send_eoi(apic, vector); 1184 kvm_make_request(KVM_REQ_EVENT, apic->vcpu); 1185 return vector; 1186 } 1187 1188 /* 1189 * this interface assumes a trap-like exit, which has already finished 1190 * desired side effect including vISR and vPPR update. 1191 */ 1192 void kvm_apic_set_eoi_accelerated(struct kvm_vcpu *vcpu, int vector) 1193 { 1194 struct kvm_lapic *apic = vcpu->arch.apic; 1195 1196 trace_kvm_eoi(apic, vector); 1197 1198 kvm_ioapic_send_eoi(apic, vector); 1199 kvm_make_request(KVM_REQ_EVENT, apic->vcpu); 1200 } 1201 EXPORT_SYMBOL_GPL(kvm_apic_set_eoi_accelerated); 1202 1203 static void apic_send_ipi(struct kvm_lapic *apic, u32 icr_low, u32 icr_high) 1204 { 1205 struct kvm_lapic_irq irq; 1206 1207 irq.vector = icr_low & APIC_VECTOR_MASK; 1208 irq.delivery_mode = icr_low & APIC_MODE_MASK; 1209 irq.dest_mode = icr_low & APIC_DEST_MASK; 1210 irq.level = (icr_low & APIC_INT_ASSERT) != 0; 1211 irq.trig_mode = icr_low & APIC_INT_LEVELTRIG; 1212 irq.shorthand = icr_low & APIC_SHORT_MASK; 1213 irq.msi_redir_hint = false; 1214 if (apic_x2apic_mode(apic)) 1215 irq.dest_id = icr_high; 1216 else 1217 irq.dest_id = GET_APIC_DEST_FIELD(icr_high); 1218 1219 trace_kvm_apic_ipi(icr_low, irq.dest_id); 1220 1221 kvm_irq_delivery_to_apic(apic->vcpu->kvm, apic, &irq, NULL); 1222 } 1223 1224 static u32 apic_get_tmcct(struct kvm_lapic *apic) 1225 { 1226 ktime_t remaining, now; 1227 s64 ns; 1228 u32 tmcct; 1229 1230 ASSERT(apic != NULL); 1231 1232 /* if initial count is 0, current count should also be 0 */ 1233 if (kvm_lapic_get_reg(apic, APIC_TMICT) == 0 || 1234 apic->lapic_timer.period == 0) 1235 return 0; 1236 1237 now = ktime_get(); 1238 remaining = ktime_sub(apic->lapic_timer.target_expiration, now); 1239 if (ktime_to_ns(remaining) < 0) 1240 remaining = 0; 1241 1242 ns = mod_64(ktime_to_ns(remaining), apic->lapic_timer.period); 1243 tmcct = div64_u64(ns, 1244 (APIC_BUS_CYCLE_NS * apic->divide_count)); 1245 1246 return tmcct; 1247 } 1248 1249 static void __report_tpr_access(struct kvm_lapic *apic, bool write) 1250 { 1251 struct kvm_vcpu *vcpu = apic->vcpu; 1252 struct kvm_run *run = vcpu->run; 1253 1254 kvm_make_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu); 1255 run->tpr_access.rip = kvm_rip_read(vcpu); 1256 run->tpr_access.is_write = write; 1257 } 1258 1259 static inline void report_tpr_access(struct kvm_lapic *apic, bool write) 1260 { 1261 if (apic->vcpu->arch.tpr_access_reporting) 1262 __report_tpr_access(apic, write); 1263 } 1264 1265 static u32 __apic_read(struct kvm_lapic *apic, unsigned int offset) 1266 { 1267 u32 val = 0; 1268 1269 if (offset >= LAPIC_MMIO_LENGTH) 1270 return 0; 1271 1272 switch (offset) { 1273 case APIC_ARBPRI: 1274 break; 1275 1276 case APIC_TMCCT: /* Timer CCR */ 1277 if (apic_lvtt_tscdeadline(apic)) 1278 return 0; 1279 1280 val = apic_get_tmcct(apic); 1281 break; 1282 case APIC_PROCPRI: 1283 apic_update_ppr(apic); 1284 val = kvm_lapic_get_reg(apic, offset); 1285 break; 1286 case APIC_TASKPRI: 1287 report_tpr_access(apic, false); 1288 /* fall thru */ 1289 default: 1290 val = kvm_lapic_get_reg(apic, offset); 1291 break; 1292 } 1293 1294 return val; 1295 } 1296 1297 static inline struct kvm_lapic *to_lapic(struct kvm_io_device *dev) 1298 { 1299 return container_of(dev, struct kvm_lapic, dev); 1300 } 1301 1302 #define APIC_REG_MASK(reg) (1ull << ((reg) >> 4)) 1303 #define APIC_REGS_MASK(first, count) \ 1304 (APIC_REG_MASK(first) * ((1ull << (count)) - 1)) 1305 1306 int kvm_lapic_reg_read(struct kvm_lapic *apic, u32 offset, int len, 1307 void *data) 1308 { 1309 unsigned char alignment = offset & 0xf; 1310 u32 result; 1311 /* this bitmask has a bit cleared for each reserved register */ 1312 u64 valid_reg_mask = 1313 APIC_REG_MASK(APIC_ID) | 1314 APIC_REG_MASK(APIC_LVR) | 1315 APIC_REG_MASK(APIC_TASKPRI) | 1316 APIC_REG_MASK(APIC_PROCPRI) | 1317 APIC_REG_MASK(APIC_LDR) | 1318 APIC_REG_MASK(APIC_DFR) | 1319 APIC_REG_MASK(APIC_SPIV) | 1320 APIC_REGS_MASK(APIC_ISR, APIC_ISR_NR) | 1321 APIC_REGS_MASK(APIC_TMR, APIC_ISR_NR) | 1322 APIC_REGS_MASK(APIC_IRR, APIC_ISR_NR) | 1323 APIC_REG_MASK(APIC_ESR) | 1324 APIC_REG_MASK(APIC_ICR) | 1325 APIC_REG_MASK(APIC_ICR2) | 1326 APIC_REG_MASK(APIC_LVTT) | 1327 APIC_REG_MASK(APIC_LVTTHMR) | 1328 APIC_REG_MASK(APIC_LVTPC) | 1329 APIC_REG_MASK(APIC_LVT0) | 1330 APIC_REG_MASK(APIC_LVT1) | 1331 APIC_REG_MASK(APIC_LVTERR) | 1332 APIC_REG_MASK(APIC_TMICT) | 1333 APIC_REG_MASK(APIC_TMCCT) | 1334 APIC_REG_MASK(APIC_TDCR); 1335 1336 /* ARBPRI is not valid on x2APIC */ 1337 if (!apic_x2apic_mode(apic)) 1338 valid_reg_mask |= APIC_REG_MASK(APIC_ARBPRI); 1339 1340 if (offset > 0x3f0 || !(valid_reg_mask & APIC_REG_MASK(offset))) 1341 return 1; 1342 1343 result = __apic_read(apic, offset & ~0xf); 1344 1345 trace_kvm_apic_read(offset, result); 1346 1347 switch (len) { 1348 case 1: 1349 case 2: 1350 case 4: 1351 memcpy(data, (char *)&result + alignment, len); 1352 break; 1353 default: 1354 printk(KERN_ERR "Local APIC read with len = %x, " 1355 "should be 1,2, or 4 instead\n", len); 1356 break; 1357 } 1358 return 0; 1359 } 1360 EXPORT_SYMBOL_GPL(kvm_lapic_reg_read); 1361 1362 static int apic_mmio_in_range(struct kvm_lapic *apic, gpa_t addr) 1363 { 1364 return addr >= apic->base_address && 1365 addr < apic->base_address + LAPIC_MMIO_LENGTH; 1366 } 1367 1368 static int apic_mmio_read(struct kvm_vcpu *vcpu, struct kvm_io_device *this, 1369 gpa_t address, int len, void *data) 1370 { 1371 struct kvm_lapic *apic = to_lapic(this); 1372 u32 offset = address - apic->base_address; 1373 1374 if (!apic_mmio_in_range(apic, address)) 1375 return -EOPNOTSUPP; 1376 1377 if (!kvm_apic_hw_enabled(apic) || apic_x2apic_mode(apic)) { 1378 if (!kvm_check_has_quirk(vcpu->kvm, 1379 KVM_X86_QUIRK_LAPIC_MMIO_HOLE)) 1380 return -EOPNOTSUPP; 1381 1382 memset(data, 0xff, len); 1383 return 0; 1384 } 1385 1386 kvm_lapic_reg_read(apic, offset, len, data); 1387 1388 return 0; 1389 } 1390 1391 static void update_divide_count(struct kvm_lapic *apic) 1392 { 1393 u32 tmp1, tmp2, tdcr; 1394 1395 tdcr = kvm_lapic_get_reg(apic, APIC_TDCR); 1396 tmp1 = tdcr & 0xf; 1397 tmp2 = ((tmp1 & 0x3) | ((tmp1 & 0x8) >> 1)) + 1; 1398 apic->divide_count = 0x1 << (tmp2 & 0x7); 1399 } 1400 1401 static void limit_periodic_timer_frequency(struct kvm_lapic *apic) 1402 { 1403 /* 1404 * Do not allow the guest to program periodic timers with small 1405 * interval, since the hrtimers are not throttled by the host 1406 * scheduler. 1407 */ 1408 if (apic_lvtt_period(apic) && apic->lapic_timer.period) { 1409 s64 min_period = min_timer_period_us * 1000LL; 1410 1411 if (apic->lapic_timer.period < min_period) { 1412 pr_info_ratelimited( 1413 "kvm: vcpu %i: requested %lld ns " 1414 "lapic timer period limited to %lld ns\n", 1415 apic->vcpu->vcpu_id, 1416 apic->lapic_timer.period, min_period); 1417 apic->lapic_timer.period = min_period; 1418 } 1419 } 1420 } 1421 1422 static void apic_update_lvtt(struct kvm_lapic *apic) 1423 { 1424 u32 timer_mode = kvm_lapic_get_reg(apic, APIC_LVTT) & 1425 apic->lapic_timer.timer_mode_mask; 1426 1427 if (apic->lapic_timer.timer_mode != timer_mode) { 1428 if (apic_lvtt_tscdeadline(apic) != (timer_mode == 1429 APIC_LVT_TIMER_TSCDEADLINE)) { 1430 hrtimer_cancel(&apic->lapic_timer.timer); 1431 kvm_lapic_set_reg(apic, APIC_TMICT, 0); 1432 apic->lapic_timer.period = 0; 1433 apic->lapic_timer.tscdeadline = 0; 1434 } 1435 apic->lapic_timer.timer_mode = timer_mode; 1436 limit_periodic_timer_frequency(apic); 1437 } 1438 } 1439 1440 /* 1441 * On APICv, this test will cause a busy wait 1442 * during a higher-priority task. 1443 */ 1444 1445 static bool lapic_timer_int_injected(struct kvm_vcpu *vcpu) 1446 { 1447 struct kvm_lapic *apic = vcpu->arch.apic; 1448 u32 reg = kvm_lapic_get_reg(apic, APIC_LVTT); 1449 1450 if (kvm_apic_hw_enabled(apic)) { 1451 int vec = reg & APIC_VECTOR_MASK; 1452 void *bitmap = apic->regs + APIC_ISR; 1453 1454 if (vcpu->arch.apicv_active) 1455 bitmap = apic->regs + APIC_IRR; 1456 1457 if (apic_test_vector(vec, bitmap)) 1458 return true; 1459 } 1460 return false; 1461 } 1462 1463 static inline void __wait_lapic_expire(struct kvm_vcpu *vcpu, u64 guest_cycles) 1464 { 1465 u64 timer_advance_ns = vcpu->arch.apic->lapic_timer.timer_advance_ns; 1466 1467 /* 1468 * If the guest TSC is running at a different ratio than the host, then 1469 * convert the delay to nanoseconds to achieve an accurate delay. Note 1470 * that __delay() uses delay_tsc whenever the hardware has TSC, thus 1471 * always for VMX enabled hardware. 1472 */ 1473 if (vcpu->arch.tsc_scaling_ratio == kvm_default_tsc_scaling_ratio) { 1474 __delay(min(guest_cycles, 1475 nsec_to_cycles(vcpu, timer_advance_ns))); 1476 } else { 1477 u64 delay_ns = guest_cycles * 1000000ULL; 1478 do_div(delay_ns, vcpu->arch.virtual_tsc_khz); 1479 ndelay(min_t(u32, delay_ns, timer_advance_ns)); 1480 } 1481 } 1482 1483 static inline void adjust_lapic_timer_advance(struct kvm_vcpu *vcpu, 1484 s64 advance_expire_delta) 1485 { 1486 struct kvm_lapic *apic = vcpu->arch.apic; 1487 u32 timer_advance_ns = apic->lapic_timer.timer_advance_ns; 1488 u64 ns; 1489 1490 /* Do not adjust for tiny fluctuations or large random spikes. */ 1491 if (abs(advance_expire_delta) > LAPIC_TIMER_ADVANCE_ADJUST_MAX || 1492 abs(advance_expire_delta) < LAPIC_TIMER_ADVANCE_ADJUST_MIN) 1493 return; 1494 1495 /* too early */ 1496 if (advance_expire_delta < 0) { 1497 ns = -advance_expire_delta * 1000000ULL; 1498 do_div(ns, vcpu->arch.virtual_tsc_khz); 1499 timer_advance_ns -= ns/LAPIC_TIMER_ADVANCE_ADJUST_STEP; 1500 } else { 1501 /* too late */ 1502 ns = advance_expire_delta * 1000000ULL; 1503 do_div(ns, vcpu->arch.virtual_tsc_khz); 1504 timer_advance_ns += ns/LAPIC_TIMER_ADVANCE_ADJUST_STEP; 1505 } 1506 1507 if (unlikely(timer_advance_ns > LAPIC_TIMER_ADVANCE_ADJUST_MAX)) 1508 timer_advance_ns = LAPIC_TIMER_ADVANCE_ADJUST_INIT; 1509 apic->lapic_timer.timer_advance_ns = timer_advance_ns; 1510 } 1511 1512 static void __kvm_wait_lapic_expire(struct kvm_vcpu *vcpu) 1513 { 1514 struct kvm_lapic *apic = vcpu->arch.apic; 1515 u64 guest_tsc, tsc_deadline; 1516 1517 if (apic->lapic_timer.expired_tscdeadline == 0) 1518 return; 1519 1520 tsc_deadline = apic->lapic_timer.expired_tscdeadline; 1521 apic->lapic_timer.expired_tscdeadline = 0; 1522 guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc()); 1523 apic->lapic_timer.advance_expire_delta = guest_tsc - tsc_deadline; 1524 1525 if (guest_tsc < tsc_deadline) 1526 __wait_lapic_expire(vcpu, tsc_deadline - guest_tsc); 1527 1528 if (lapic_timer_advance_dynamic) 1529 adjust_lapic_timer_advance(vcpu, apic->lapic_timer.advance_expire_delta); 1530 } 1531 1532 void kvm_wait_lapic_expire(struct kvm_vcpu *vcpu) 1533 { 1534 if (lapic_timer_int_injected(vcpu)) 1535 __kvm_wait_lapic_expire(vcpu); 1536 } 1537 EXPORT_SYMBOL_GPL(kvm_wait_lapic_expire); 1538 1539 static void kvm_apic_inject_pending_timer_irqs(struct kvm_lapic *apic) 1540 { 1541 struct kvm_timer *ktimer = &apic->lapic_timer; 1542 1543 kvm_apic_local_deliver(apic, APIC_LVTT); 1544 if (apic_lvtt_tscdeadline(apic)) 1545 ktimer->tscdeadline = 0; 1546 if (apic_lvtt_oneshot(apic)) { 1547 ktimer->tscdeadline = 0; 1548 ktimer->target_expiration = 0; 1549 } 1550 } 1551 1552 static void apic_timer_expired(struct kvm_lapic *apic) 1553 { 1554 struct kvm_vcpu *vcpu = apic->vcpu; 1555 struct kvm_timer *ktimer = &apic->lapic_timer; 1556 1557 if (atomic_read(&apic->lapic_timer.pending)) 1558 return; 1559 1560 if (apic_lvtt_tscdeadline(apic) || ktimer->hv_timer_in_use) 1561 ktimer->expired_tscdeadline = ktimer->tscdeadline; 1562 1563 if (kvm_use_posted_timer_interrupt(apic->vcpu)) { 1564 if (apic->lapic_timer.timer_advance_ns) 1565 __kvm_wait_lapic_expire(vcpu); 1566 kvm_apic_inject_pending_timer_irqs(apic); 1567 return; 1568 } 1569 1570 atomic_inc(&apic->lapic_timer.pending); 1571 kvm_set_pending_timer(vcpu); 1572 } 1573 1574 static void start_sw_tscdeadline(struct kvm_lapic *apic) 1575 { 1576 struct kvm_timer *ktimer = &apic->lapic_timer; 1577 u64 guest_tsc, tscdeadline = ktimer->tscdeadline; 1578 u64 ns = 0; 1579 ktime_t expire; 1580 struct kvm_vcpu *vcpu = apic->vcpu; 1581 unsigned long this_tsc_khz = vcpu->arch.virtual_tsc_khz; 1582 unsigned long flags; 1583 ktime_t now; 1584 1585 if (unlikely(!tscdeadline || !this_tsc_khz)) 1586 return; 1587 1588 local_irq_save(flags); 1589 1590 now = ktime_get(); 1591 guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc()); 1592 1593 ns = (tscdeadline - guest_tsc) * 1000000ULL; 1594 do_div(ns, this_tsc_khz); 1595 1596 if (likely(tscdeadline > guest_tsc) && 1597 likely(ns > apic->lapic_timer.timer_advance_ns)) { 1598 expire = ktime_add_ns(now, ns); 1599 expire = ktime_sub_ns(expire, ktimer->timer_advance_ns); 1600 hrtimer_start(&ktimer->timer, expire, HRTIMER_MODE_ABS_HARD); 1601 } else 1602 apic_timer_expired(apic); 1603 1604 local_irq_restore(flags); 1605 } 1606 1607 static void update_target_expiration(struct kvm_lapic *apic, uint32_t old_divisor) 1608 { 1609 ktime_t now, remaining; 1610 u64 ns_remaining_old, ns_remaining_new; 1611 1612 apic->lapic_timer.period = (u64)kvm_lapic_get_reg(apic, APIC_TMICT) 1613 * APIC_BUS_CYCLE_NS * apic->divide_count; 1614 limit_periodic_timer_frequency(apic); 1615 1616 now = ktime_get(); 1617 remaining = ktime_sub(apic->lapic_timer.target_expiration, now); 1618 if (ktime_to_ns(remaining) < 0) 1619 remaining = 0; 1620 1621 ns_remaining_old = ktime_to_ns(remaining); 1622 ns_remaining_new = mul_u64_u32_div(ns_remaining_old, 1623 apic->divide_count, old_divisor); 1624 1625 apic->lapic_timer.tscdeadline += 1626 nsec_to_cycles(apic->vcpu, ns_remaining_new) - 1627 nsec_to_cycles(apic->vcpu, ns_remaining_old); 1628 apic->lapic_timer.target_expiration = ktime_add_ns(now, ns_remaining_new); 1629 } 1630 1631 static bool set_target_expiration(struct kvm_lapic *apic) 1632 { 1633 ktime_t now; 1634 u64 tscl = rdtsc(); 1635 1636 now = ktime_get(); 1637 apic->lapic_timer.period = (u64)kvm_lapic_get_reg(apic, APIC_TMICT) 1638 * APIC_BUS_CYCLE_NS * apic->divide_count; 1639 1640 if (!apic->lapic_timer.period) { 1641 apic->lapic_timer.tscdeadline = 0; 1642 return false; 1643 } 1644 1645 limit_periodic_timer_frequency(apic); 1646 1647 apic->lapic_timer.tscdeadline = kvm_read_l1_tsc(apic->vcpu, tscl) + 1648 nsec_to_cycles(apic->vcpu, apic->lapic_timer.period); 1649 apic->lapic_timer.target_expiration = ktime_add_ns(now, apic->lapic_timer.period); 1650 1651 return true; 1652 } 1653 1654 static void advance_periodic_target_expiration(struct kvm_lapic *apic) 1655 { 1656 ktime_t now = ktime_get(); 1657 u64 tscl = rdtsc(); 1658 ktime_t delta; 1659 1660 /* 1661 * Synchronize both deadlines to the same time source or 1662 * differences in the periods (caused by differences in the 1663 * underlying clocks or numerical approximation errors) will 1664 * cause the two to drift apart over time as the errors 1665 * accumulate. 1666 */ 1667 apic->lapic_timer.target_expiration = 1668 ktime_add_ns(apic->lapic_timer.target_expiration, 1669 apic->lapic_timer.period); 1670 delta = ktime_sub(apic->lapic_timer.target_expiration, now); 1671 apic->lapic_timer.tscdeadline = kvm_read_l1_tsc(apic->vcpu, tscl) + 1672 nsec_to_cycles(apic->vcpu, delta); 1673 } 1674 1675 static void start_sw_period(struct kvm_lapic *apic) 1676 { 1677 if (!apic->lapic_timer.period) 1678 return; 1679 1680 if (ktime_after(ktime_get(), 1681 apic->lapic_timer.target_expiration)) { 1682 apic_timer_expired(apic); 1683 1684 if (apic_lvtt_oneshot(apic)) 1685 return; 1686 1687 advance_periodic_target_expiration(apic); 1688 } 1689 1690 hrtimer_start(&apic->lapic_timer.timer, 1691 apic->lapic_timer.target_expiration, 1692 HRTIMER_MODE_ABS); 1693 } 1694 1695 bool kvm_lapic_hv_timer_in_use(struct kvm_vcpu *vcpu) 1696 { 1697 if (!lapic_in_kernel(vcpu)) 1698 return false; 1699 1700 return vcpu->arch.apic->lapic_timer.hv_timer_in_use; 1701 } 1702 EXPORT_SYMBOL_GPL(kvm_lapic_hv_timer_in_use); 1703 1704 static void cancel_hv_timer(struct kvm_lapic *apic) 1705 { 1706 WARN_ON(preemptible()); 1707 WARN_ON(!apic->lapic_timer.hv_timer_in_use); 1708 kvm_x86_ops->cancel_hv_timer(apic->vcpu); 1709 apic->lapic_timer.hv_timer_in_use = false; 1710 } 1711 1712 static bool start_hv_timer(struct kvm_lapic *apic) 1713 { 1714 struct kvm_timer *ktimer = &apic->lapic_timer; 1715 struct kvm_vcpu *vcpu = apic->vcpu; 1716 bool expired; 1717 1718 WARN_ON(preemptible()); 1719 if (!kvm_x86_ops->set_hv_timer) 1720 return false; 1721 1722 if (!ktimer->tscdeadline) 1723 return false; 1724 1725 if (kvm_x86_ops->set_hv_timer(vcpu, ktimer->tscdeadline, &expired)) 1726 return false; 1727 1728 ktimer->hv_timer_in_use = true; 1729 hrtimer_cancel(&ktimer->timer); 1730 1731 /* 1732 * To simplify handling the periodic timer, leave the hv timer running 1733 * even if the deadline timer has expired, i.e. rely on the resulting 1734 * VM-Exit to recompute the periodic timer's target expiration. 1735 */ 1736 if (!apic_lvtt_period(apic)) { 1737 /* 1738 * Cancel the hv timer if the sw timer fired while the hv timer 1739 * was being programmed, or if the hv timer itself expired. 1740 */ 1741 if (atomic_read(&ktimer->pending)) { 1742 cancel_hv_timer(apic); 1743 } else if (expired) { 1744 apic_timer_expired(apic); 1745 cancel_hv_timer(apic); 1746 } 1747 } 1748 1749 trace_kvm_hv_timer_state(vcpu->vcpu_id, ktimer->hv_timer_in_use); 1750 1751 return true; 1752 } 1753 1754 static void start_sw_timer(struct kvm_lapic *apic) 1755 { 1756 struct kvm_timer *ktimer = &apic->lapic_timer; 1757 1758 WARN_ON(preemptible()); 1759 if (apic->lapic_timer.hv_timer_in_use) 1760 cancel_hv_timer(apic); 1761 if (!apic_lvtt_period(apic) && atomic_read(&ktimer->pending)) 1762 return; 1763 1764 if (apic_lvtt_period(apic) || apic_lvtt_oneshot(apic)) 1765 start_sw_period(apic); 1766 else if (apic_lvtt_tscdeadline(apic)) 1767 start_sw_tscdeadline(apic); 1768 trace_kvm_hv_timer_state(apic->vcpu->vcpu_id, false); 1769 } 1770 1771 static void restart_apic_timer(struct kvm_lapic *apic) 1772 { 1773 preempt_disable(); 1774 1775 if (!apic_lvtt_period(apic) && atomic_read(&apic->lapic_timer.pending)) 1776 goto out; 1777 1778 if (!start_hv_timer(apic)) 1779 start_sw_timer(apic); 1780 out: 1781 preempt_enable(); 1782 } 1783 1784 void kvm_lapic_expired_hv_timer(struct kvm_vcpu *vcpu) 1785 { 1786 struct kvm_lapic *apic = vcpu->arch.apic; 1787 1788 preempt_disable(); 1789 /* If the preempt notifier has already run, it also called apic_timer_expired */ 1790 if (!apic->lapic_timer.hv_timer_in_use) 1791 goto out; 1792 WARN_ON(swait_active(&vcpu->wq)); 1793 cancel_hv_timer(apic); 1794 apic_timer_expired(apic); 1795 1796 if (apic_lvtt_period(apic) && apic->lapic_timer.period) { 1797 advance_periodic_target_expiration(apic); 1798 restart_apic_timer(apic); 1799 } 1800 out: 1801 preempt_enable(); 1802 } 1803 EXPORT_SYMBOL_GPL(kvm_lapic_expired_hv_timer); 1804 1805 void kvm_lapic_switch_to_hv_timer(struct kvm_vcpu *vcpu) 1806 { 1807 restart_apic_timer(vcpu->arch.apic); 1808 } 1809 EXPORT_SYMBOL_GPL(kvm_lapic_switch_to_hv_timer); 1810 1811 void kvm_lapic_switch_to_sw_timer(struct kvm_vcpu *vcpu) 1812 { 1813 struct kvm_lapic *apic = vcpu->arch.apic; 1814 1815 preempt_disable(); 1816 /* Possibly the TSC deadline timer is not enabled yet */ 1817 if (apic->lapic_timer.hv_timer_in_use) 1818 start_sw_timer(apic); 1819 preempt_enable(); 1820 } 1821 EXPORT_SYMBOL_GPL(kvm_lapic_switch_to_sw_timer); 1822 1823 void kvm_lapic_restart_hv_timer(struct kvm_vcpu *vcpu) 1824 { 1825 struct kvm_lapic *apic = vcpu->arch.apic; 1826 1827 WARN_ON(!apic->lapic_timer.hv_timer_in_use); 1828 restart_apic_timer(apic); 1829 } 1830 1831 static void start_apic_timer(struct kvm_lapic *apic) 1832 { 1833 atomic_set(&apic->lapic_timer.pending, 0); 1834 1835 if ((apic_lvtt_period(apic) || apic_lvtt_oneshot(apic)) 1836 && !set_target_expiration(apic)) 1837 return; 1838 1839 restart_apic_timer(apic); 1840 } 1841 1842 static void apic_manage_nmi_watchdog(struct kvm_lapic *apic, u32 lvt0_val) 1843 { 1844 bool lvt0_in_nmi_mode = apic_lvt_nmi_mode(lvt0_val); 1845 1846 if (apic->lvt0_in_nmi_mode != lvt0_in_nmi_mode) { 1847 apic->lvt0_in_nmi_mode = lvt0_in_nmi_mode; 1848 if (lvt0_in_nmi_mode) { 1849 atomic_inc(&apic->vcpu->kvm->arch.vapics_in_nmi_mode); 1850 } else 1851 atomic_dec(&apic->vcpu->kvm->arch.vapics_in_nmi_mode); 1852 } 1853 } 1854 1855 int kvm_lapic_reg_write(struct kvm_lapic *apic, u32 reg, u32 val) 1856 { 1857 int ret = 0; 1858 1859 trace_kvm_apic_write(reg, val); 1860 1861 switch (reg) { 1862 case APIC_ID: /* Local APIC ID */ 1863 if (!apic_x2apic_mode(apic)) 1864 kvm_apic_set_xapic_id(apic, val >> 24); 1865 else 1866 ret = 1; 1867 break; 1868 1869 case APIC_TASKPRI: 1870 report_tpr_access(apic, true); 1871 apic_set_tpr(apic, val & 0xff); 1872 break; 1873 1874 case APIC_EOI: 1875 apic_set_eoi(apic); 1876 break; 1877 1878 case APIC_LDR: 1879 if (!apic_x2apic_mode(apic)) 1880 kvm_apic_set_ldr(apic, val & APIC_LDR_MASK); 1881 else 1882 ret = 1; 1883 break; 1884 1885 case APIC_DFR: 1886 if (!apic_x2apic_mode(apic)) { 1887 kvm_lapic_set_reg(apic, APIC_DFR, val | 0x0FFFFFFF); 1888 recalculate_apic_map(apic->vcpu->kvm); 1889 } else 1890 ret = 1; 1891 break; 1892 1893 case APIC_SPIV: { 1894 u32 mask = 0x3ff; 1895 if (kvm_lapic_get_reg(apic, APIC_LVR) & APIC_LVR_DIRECTED_EOI) 1896 mask |= APIC_SPIV_DIRECTED_EOI; 1897 apic_set_spiv(apic, val & mask); 1898 if (!(val & APIC_SPIV_APIC_ENABLED)) { 1899 int i; 1900 u32 lvt_val; 1901 1902 for (i = 0; i < KVM_APIC_LVT_NUM; i++) { 1903 lvt_val = kvm_lapic_get_reg(apic, 1904 APIC_LVTT + 0x10 * i); 1905 kvm_lapic_set_reg(apic, APIC_LVTT + 0x10 * i, 1906 lvt_val | APIC_LVT_MASKED); 1907 } 1908 apic_update_lvtt(apic); 1909 atomic_set(&apic->lapic_timer.pending, 0); 1910 1911 } 1912 break; 1913 } 1914 case APIC_ICR: 1915 /* No delay here, so we always clear the pending bit */ 1916 val &= ~(1 << 12); 1917 apic_send_ipi(apic, val, kvm_lapic_get_reg(apic, APIC_ICR2)); 1918 kvm_lapic_set_reg(apic, APIC_ICR, val); 1919 break; 1920 1921 case APIC_ICR2: 1922 if (!apic_x2apic_mode(apic)) 1923 val &= 0xff000000; 1924 kvm_lapic_set_reg(apic, APIC_ICR2, val); 1925 break; 1926 1927 case APIC_LVT0: 1928 apic_manage_nmi_watchdog(apic, val); 1929 /* fall through */ 1930 case APIC_LVTTHMR: 1931 case APIC_LVTPC: 1932 case APIC_LVT1: 1933 case APIC_LVTERR: 1934 /* TODO: Check vector */ 1935 if (!kvm_apic_sw_enabled(apic)) 1936 val |= APIC_LVT_MASKED; 1937 1938 val &= apic_lvt_mask[(reg - APIC_LVTT) >> 4]; 1939 kvm_lapic_set_reg(apic, reg, val); 1940 1941 break; 1942 1943 case APIC_LVTT: 1944 if (!kvm_apic_sw_enabled(apic)) 1945 val |= APIC_LVT_MASKED; 1946 val &= (apic_lvt_mask[0] | apic->lapic_timer.timer_mode_mask); 1947 kvm_lapic_set_reg(apic, APIC_LVTT, val); 1948 apic_update_lvtt(apic); 1949 break; 1950 1951 case APIC_TMICT: 1952 if (apic_lvtt_tscdeadline(apic)) 1953 break; 1954 1955 hrtimer_cancel(&apic->lapic_timer.timer); 1956 kvm_lapic_set_reg(apic, APIC_TMICT, val); 1957 start_apic_timer(apic); 1958 break; 1959 1960 case APIC_TDCR: { 1961 uint32_t old_divisor = apic->divide_count; 1962 1963 kvm_lapic_set_reg(apic, APIC_TDCR, val); 1964 update_divide_count(apic); 1965 if (apic->divide_count != old_divisor && 1966 apic->lapic_timer.period) { 1967 hrtimer_cancel(&apic->lapic_timer.timer); 1968 update_target_expiration(apic, old_divisor); 1969 restart_apic_timer(apic); 1970 } 1971 break; 1972 } 1973 case APIC_ESR: 1974 if (apic_x2apic_mode(apic) && val != 0) 1975 ret = 1; 1976 break; 1977 1978 case APIC_SELF_IPI: 1979 if (apic_x2apic_mode(apic)) { 1980 kvm_lapic_reg_write(apic, APIC_ICR, 0x40000 | (val & 0xff)); 1981 } else 1982 ret = 1; 1983 break; 1984 default: 1985 ret = 1; 1986 break; 1987 } 1988 1989 return ret; 1990 } 1991 EXPORT_SYMBOL_GPL(kvm_lapic_reg_write); 1992 1993 static int apic_mmio_write(struct kvm_vcpu *vcpu, struct kvm_io_device *this, 1994 gpa_t address, int len, const void *data) 1995 { 1996 struct kvm_lapic *apic = to_lapic(this); 1997 unsigned int offset = address - apic->base_address; 1998 u32 val; 1999 2000 if (!apic_mmio_in_range(apic, address)) 2001 return -EOPNOTSUPP; 2002 2003 if (!kvm_apic_hw_enabled(apic) || apic_x2apic_mode(apic)) { 2004 if (!kvm_check_has_quirk(vcpu->kvm, 2005 KVM_X86_QUIRK_LAPIC_MMIO_HOLE)) 2006 return -EOPNOTSUPP; 2007 2008 return 0; 2009 } 2010 2011 /* 2012 * APIC register must be aligned on 128-bits boundary. 2013 * 32/64/128 bits registers must be accessed thru 32 bits. 2014 * Refer SDM 8.4.1 2015 */ 2016 if (len != 4 || (offset & 0xf)) 2017 return 0; 2018 2019 val = *(u32*)data; 2020 2021 kvm_lapic_reg_write(apic, offset & 0xff0, val); 2022 2023 return 0; 2024 } 2025 2026 void kvm_lapic_set_eoi(struct kvm_vcpu *vcpu) 2027 { 2028 kvm_lapic_reg_write(vcpu->arch.apic, APIC_EOI, 0); 2029 } 2030 EXPORT_SYMBOL_GPL(kvm_lapic_set_eoi); 2031 2032 /* emulate APIC access in a trap manner */ 2033 void kvm_apic_write_nodecode(struct kvm_vcpu *vcpu, u32 offset) 2034 { 2035 u32 val = 0; 2036 2037 /* hw has done the conditional check and inst decode */ 2038 offset &= 0xff0; 2039 2040 kvm_lapic_reg_read(vcpu->arch.apic, offset, 4, &val); 2041 2042 /* TODO: optimize to just emulate side effect w/o one more write */ 2043 kvm_lapic_reg_write(vcpu->arch.apic, offset, val); 2044 } 2045 EXPORT_SYMBOL_GPL(kvm_apic_write_nodecode); 2046 2047 void kvm_free_lapic(struct kvm_vcpu *vcpu) 2048 { 2049 struct kvm_lapic *apic = vcpu->arch.apic; 2050 2051 if (!vcpu->arch.apic) 2052 return; 2053 2054 hrtimer_cancel(&apic->lapic_timer.timer); 2055 2056 if (!(vcpu->arch.apic_base & MSR_IA32_APICBASE_ENABLE)) 2057 static_key_slow_dec_deferred(&apic_hw_disabled); 2058 2059 if (!apic->sw_enabled) 2060 static_key_slow_dec_deferred(&apic_sw_disabled); 2061 2062 if (apic->regs) 2063 free_page((unsigned long)apic->regs); 2064 2065 kfree(apic); 2066 } 2067 2068 /* 2069 *---------------------------------------------------------------------- 2070 * LAPIC interface 2071 *---------------------------------------------------------------------- 2072 */ 2073 u64 kvm_get_lapic_tscdeadline_msr(struct kvm_vcpu *vcpu) 2074 { 2075 struct kvm_lapic *apic = vcpu->arch.apic; 2076 2077 if (!lapic_in_kernel(vcpu) || 2078 !apic_lvtt_tscdeadline(apic)) 2079 return 0; 2080 2081 return apic->lapic_timer.tscdeadline; 2082 } 2083 2084 void kvm_set_lapic_tscdeadline_msr(struct kvm_vcpu *vcpu, u64 data) 2085 { 2086 struct kvm_lapic *apic = vcpu->arch.apic; 2087 2088 if (!lapic_in_kernel(vcpu) || apic_lvtt_oneshot(apic) || 2089 apic_lvtt_period(apic)) 2090 return; 2091 2092 hrtimer_cancel(&apic->lapic_timer.timer); 2093 apic->lapic_timer.tscdeadline = data; 2094 start_apic_timer(apic); 2095 } 2096 2097 void kvm_lapic_set_tpr(struct kvm_vcpu *vcpu, unsigned long cr8) 2098 { 2099 struct kvm_lapic *apic = vcpu->arch.apic; 2100 2101 apic_set_tpr(apic, ((cr8 & 0x0f) << 4) 2102 | (kvm_lapic_get_reg(apic, APIC_TASKPRI) & 4)); 2103 } 2104 2105 u64 kvm_lapic_get_cr8(struct kvm_vcpu *vcpu) 2106 { 2107 u64 tpr; 2108 2109 tpr = (u64) kvm_lapic_get_reg(vcpu->arch.apic, APIC_TASKPRI); 2110 2111 return (tpr & 0xf0) >> 4; 2112 } 2113 2114 void kvm_lapic_set_base(struct kvm_vcpu *vcpu, u64 value) 2115 { 2116 u64 old_value = vcpu->arch.apic_base; 2117 struct kvm_lapic *apic = vcpu->arch.apic; 2118 2119 if (!apic) 2120 value |= MSR_IA32_APICBASE_BSP; 2121 2122 vcpu->arch.apic_base = value; 2123 2124 if ((old_value ^ value) & MSR_IA32_APICBASE_ENABLE) 2125 kvm_update_cpuid(vcpu); 2126 2127 if (!apic) 2128 return; 2129 2130 /* update jump label if enable bit changes */ 2131 if ((old_value ^ value) & MSR_IA32_APICBASE_ENABLE) { 2132 if (value & MSR_IA32_APICBASE_ENABLE) { 2133 kvm_apic_set_xapic_id(apic, vcpu->vcpu_id); 2134 static_key_slow_dec_deferred(&apic_hw_disabled); 2135 } else { 2136 static_key_slow_inc(&apic_hw_disabled.key); 2137 recalculate_apic_map(vcpu->kvm); 2138 } 2139 } 2140 2141 if (((old_value ^ value) & X2APIC_ENABLE) && (value & X2APIC_ENABLE)) 2142 kvm_apic_set_x2apic_id(apic, vcpu->vcpu_id); 2143 2144 if ((old_value ^ value) & (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE)) 2145 kvm_x86_ops->set_virtual_apic_mode(vcpu); 2146 2147 apic->base_address = apic->vcpu->arch.apic_base & 2148 MSR_IA32_APICBASE_BASE; 2149 2150 if ((value & MSR_IA32_APICBASE_ENABLE) && 2151 apic->base_address != APIC_DEFAULT_PHYS_BASE) 2152 pr_warn_once("APIC base relocation is unsupported by KVM"); 2153 } 2154 2155 void kvm_lapic_reset(struct kvm_vcpu *vcpu, bool init_event) 2156 { 2157 struct kvm_lapic *apic = vcpu->arch.apic; 2158 int i; 2159 2160 if (!apic) 2161 return; 2162 2163 /* Stop the timer in case it's a reset to an active apic */ 2164 hrtimer_cancel(&apic->lapic_timer.timer); 2165 2166 if (!init_event) { 2167 kvm_lapic_set_base(vcpu, APIC_DEFAULT_PHYS_BASE | 2168 MSR_IA32_APICBASE_ENABLE); 2169 kvm_apic_set_xapic_id(apic, vcpu->vcpu_id); 2170 } 2171 kvm_apic_set_version(apic->vcpu); 2172 2173 for (i = 0; i < KVM_APIC_LVT_NUM; i++) 2174 kvm_lapic_set_reg(apic, APIC_LVTT + 0x10 * i, APIC_LVT_MASKED); 2175 apic_update_lvtt(apic); 2176 if (kvm_vcpu_is_reset_bsp(vcpu) && 2177 kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_LINT0_REENABLED)) 2178 kvm_lapic_set_reg(apic, APIC_LVT0, 2179 SET_APIC_DELIVERY_MODE(0, APIC_MODE_EXTINT)); 2180 apic_manage_nmi_watchdog(apic, kvm_lapic_get_reg(apic, APIC_LVT0)); 2181 2182 kvm_lapic_set_reg(apic, APIC_DFR, 0xffffffffU); 2183 apic_set_spiv(apic, 0xff); 2184 kvm_lapic_set_reg(apic, APIC_TASKPRI, 0); 2185 if (!apic_x2apic_mode(apic)) 2186 kvm_apic_set_ldr(apic, 0); 2187 kvm_lapic_set_reg(apic, APIC_ESR, 0); 2188 kvm_lapic_set_reg(apic, APIC_ICR, 0); 2189 kvm_lapic_set_reg(apic, APIC_ICR2, 0); 2190 kvm_lapic_set_reg(apic, APIC_TDCR, 0); 2191 kvm_lapic_set_reg(apic, APIC_TMICT, 0); 2192 for (i = 0; i < 8; i++) { 2193 kvm_lapic_set_reg(apic, APIC_IRR + 0x10 * i, 0); 2194 kvm_lapic_set_reg(apic, APIC_ISR + 0x10 * i, 0); 2195 kvm_lapic_set_reg(apic, APIC_TMR + 0x10 * i, 0); 2196 } 2197 apic->irr_pending = vcpu->arch.apicv_active; 2198 apic->isr_count = vcpu->arch.apicv_active ? 1 : 0; 2199 apic->highest_isr_cache = -1; 2200 update_divide_count(apic); 2201 atomic_set(&apic->lapic_timer.pending, 0); 2202 if (kvm_vcpu_is_bsp(vcpu)) 2203 kvm_lapic_set_base(vcpu, 2204 vcpu->arch.apic_base | MSR_IA32_APICBASE_BSP); 2205 vcpu->arch.pv_eoi.msr_val = 0; 2206 apic_update_ppr(apic); 2207 if (vcpu->arch.apicv_active) { 2208 kvm_x86_ops->apicv_post_state_restore(vcpu); 2209 kvm_x86_ops->hwapic_irr_update(vcpu, -1); 2210 kvm_x86_ops->hwapic_isr_update(vcpu, -1); 2211 } 2212 2213 vcpu->arch.apic_arb_prio = 0; 2214 vcpu->arch.apic_attention = 0; 2215 } 2216 2217 /* 2218 *---------------------------------------------------------------------- 2219 * timer interface 2220 *---------------------------------------------------------------------- 2221 */ 2222 2223 static bool lapic_is_periodic(struct kvm_lapic *apic) 2224 { 2225 return apic_lvtt_period(apic); 2226 } 2227 2228 int apic_has_pending_timer(struct kvm_vcpu *vcpu) 2229 { 2230 struct kvm_lapic *apic = vcpu->arch.apic; 2231 2232 if (apic_enabled(apic) && apic_lvt_enabled(apic, APIC_LVTT)) 2233 return atomic_read(&apic->lapic_timer.pending); 2234 2235 return 0; 2236 } 2237 2238 int kvm_apic_local_deliver(struct kvm_lapic *apic, int lvt_type) 2239 { 2240 u32 reg = kvm_lapic_get_reg(apic, lvt_type); 2241 int vector, mode, trig_mode; 2242 2243 if (kvm_apic_hw_enabled(apic) && !(reg & APIC_LVT_MASKED)) { 2244 vector = reg & APIC_VECTOR_MASK; 2245 mode = reg & APIC_MODE_MASK; 2246 trig_mode = reg & APIC_LVT_LEVEL_TRIGGER; 2247 return __apic_accept_irq(apic, mode, vector, 1, trig_mode, 2248 NULL); 2249 } 2250 return 0; 2251 } 2252 2253 void kvm_apic_nmi_wd_deliver(struct kvm_vcpu *vcpu) 2254 { 2255 struct kvm_lapic *apic = vcpu->arch.apic; 2256 2257 if (apic) 2258 kvm_apic_local_deliver(apic, APIC_LVT0); 2259 } 2260 2261 static const struct kvm_io_device_ops apic_mmio_ops = { 2262 .read = apic_mmio_read, 2263 .write = apic_mmio_write, 2264 }; 2265 2266 static enum hrtimer_restart apic_timer_fn(struct hrtimer *data) 2267 { 2268 struct kvm_timer *ktimer = container_of(data, struct kvm_timer, timer); 2269 struct kvm_lapic *apic = container_of(ktimer, struct kvm_lapic, lapic_timer); 2270 2271 apic_timer_expired(apic); 2272 2273 if (lapic_is_periodic(apic)) { 2274 advance_periodic_target_expiration(apic); 2275 hrtimer_add_expires_ns(&ktimer->timer, ktimer->period); 2276 return HRTIMER_RESTART; 2277 } else 2278 return HRTIMER_NORESTART; 2279 } 2280 2281 int kvm_create_lapic(struct kvm_vcpu *vcpu, int timer_advance_ns) 2282 { 2283 struct kvm_lapic *apic; 2284 2285 ASSERT(vcpu != NULL); 2286 2287 apic = kzalloc(sizeof(*apic), GFP_KERNEL_ACCOUNT); 2288 if (!apic) 2289 goto nomem; 2290 2291 vcpu->arch.apic = apic; 2292 2293 apic->regs = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT); 2294 if (!apic->regs) { 2295 printk(KERN_ERR "malloc apic regs error for vcpu %x\n", 2296 vcpu->vcpu_id); 2297 goto nomem_free_apic; 2298 } 2299 apic->vcpu = vcpu; 2300 2301 hrtimer_init(&apic->lapic_timer.timer, CLOCK_MONOTONIC, 2302 HRTIMER_MODE_ABS_HARD); 2303 apic->lapic_timer.timer.function = apic_timer_fn; 2304 if (timer_advance_ns == -1) { 2305 apic->lapic_timer.timer_advance_ns = LAPIC_TIMER_ADVANCE_ADJUST_INIT; 2306 lapic_timer_advance_dynamic = true; 2307 } else { 2308 apic->lapic_timer.timer_advance_ns = timer_advance_ns; 2309 lapic_timer_advance_dynamic = false; 2310 } 2311 2312 /* 2313 * APIC is created enabled. This will prevent kvm_lapic_set_base from 2314 * thinking that APIC state has changed. 2315 */ 2316 vcpu->arch.apic_base = MSR_IA32_APICBASE_ENABLE; 2317 static_key_slow_inc(&apic_sw_disabled.key); /* sw disabled at reset */ 2318 kvm_iodevice_init(&apic->dev, &apic_mmio_ops); 2319 2320 return 0; 2321 nomem_free_apic: 2322 kfree(apic); 2323 vcpu->arch.apic = NULL; 2324 nomem: 2325 return -ENOMEM; 2326 } 2327 2328 int kvm_apic_has_interrupt(struct kvm_vcpu *vcpu) 2329 { 2330 struct kvm_lapic *apic = vcpu->arch.apic; 2331 u32 ppr; 2332 2333 if (!kvm_apic_hw_enabled(apic)) 2334 return -1; 2335 2336 __apic_update_ppr(apic, &ppr); 2337 return apic_has_interrupt_for_ppr(apic, ppr); 2338 } 2339 2340 int kvm_apic_accept_pic_intr(struct kvm_vcpu *vcpu) 2341 { 2342 u32 lvt0 = kvm_lapic_get_reg(vcpu->arch.apic, APIC_LVT0); 2343 int r = 0; 2344 2345 if (!kvm_apic_hw_enabled(vcpu->arch.apic)) 2346 r = 1; 2347 if ((lvt0 & APIC_LVT_MASKED) == 0 && 2348 GET_APIC_DELIVERY_MODE(lvt0) == APIC_MODE_EXTINT) 2349 r = 1; 2350 return r; 2351 } 2352 2353 void kvm_inject_apic_timer_irqs(struct kvm_vcpu *vcpu) 2354 { 2355 struct kvm_lapic *apic = vcpu->arch.apic; 2356 2357 if (atomic_read(&apic->lapic_timer.pending) > 0) { 2358 kvm_apic_inject_pending_timer_irqs(apic); 2359 atomic_set(&apic->lapic_timer.pending, 0); 2360 } 2361 } 2362 2363 int kvm_get_apic_interrupt(struct kvm_vcpu *vcpu) 2364 { 2365 int vector = kvm_apic_has_interrupt(vcpu); 2366 struct kvm_lapic *apic = vcpu->arch.apic; 2367 u32 ppr; 2368 2369 if (vector == -1) 2370 return -1; 2371 2372 /* 2373 * We get here even with APIC virtualization enabled, if doing 2374 * nested virtualization and L1 runs with the "acknowledge interrupt 2375 * on exit" mode. Then we cannot inject the interrupt via RVI, 2376 * because the process would deliver it through the IDT. 2377 */ 2378 2379 apic_clear_irr(vector, apic); 2380 if (test_bit(vector, vcpu_to_synic(vcpu)->auto_eoi_bitmap)) { 2381 /* 2382 * For auto-EOI interrupts, there might be another pending 2383 * interrupt above PPR, so check whether to raise another 2384 * KVM_REQ_EVENT. 2385 */ 2386 apic_update_ppr(apic); 2387 } else { 2388 /* 2389 * For normal interrupts, PPR has been raised and there cannot 2390 * be a higher-priority pending interrupt---except if there was 2391 * a concurrent interrupt injection, but that would have 2392 * triggered KVM_REQ_EVENT already. 2393 */ 2394 apic_set_isr(vector, apic); 2395 __apic_update_ppr(apic, &ppr); 2396 } 2397 2398 return vector; 2399 } 2400 2401 static int kvm_apic_state_fixup(struct kvm_vcpu *vcpu, 2402 struct kvm_lapic_state *s, bool set) 2403 { 2404 if (apic_x2apic_mode(vcpu->arch.apic)) { 2405 u32 *id = (u32 *)(s->regs + APIC_ID); 2406 u32 *ldr = (u32 *)(s->regs + APIC_LDR); 2407 2408 if (vcpu->kvm->arch.x2apic_format) { 2409 if (*id != vcpu->vcpu_id) 2410 return -EINVAL; 2411 } else { 2412 if (set) 2413 *id >>= 24; 2414 else 2415 *id <<= 24; 2416 } 2417 2418 /* In x2APIC mode, the LDR is fixed and based on the id */ 2419 if (set) 2420 *ldr = kvm_apic_calc_x2apic_ldr(*id); 2421 } 2422 2423 return 0; 2424 } 2425 2426 int kvm_apic_get_state(struct kvm_vcpu *vcpu, struct kvm_lapic_state *s) 2427 { 2428 memcpy(s->regs, vcpu->arch.apic->regs, sizeof(*s)); 2429 return kvm_apic_state_fixup(vcpu, s, false); 2430 } 2431 2432 int kvm_apic_set_state(struct kvm_vcpu *vcpu, struct kvm_lapic_state *s) 2433 { 2434 struct kvm_lapic *apic = vcpu->arch.apic; 2435 int r; 2436 2437 2438 kvm_lapic_set_base(vcpu, vcpu->arch.apic_base); 2439 /* set SPIV separately to get count of SW disabled APICs right */ 2440 apic_set_spiv(apic, *((u32 *)(s->regs + APIC_SPIV))); 2441 2442 r = kvm_apic_state_fixup(vcpu, s, true); 2443 if (r) 2444 return r; 2445 memcpy(vcpu->arch.apic->regs, s->regs, sizeof(*s)); 2446 2447 recalculate_apic_map(vcpu->kvm); 2448 kvm_apic_set_version(vcpu); 2449 2450 apic_update_ppr(apic); 2451 hrtimer_cancel(&apic->lapic_timer.timer); 2452 apic_update_lvtt(apic); 2453 apic_manage_nmi_watchdog(apic, kvm_lapic_get_reg(apic, APIC_LVT0)); 2454 update_divide_count(apic); 2455 start_apic_timer(apic); 2456 apic->irr_pending = true; 2457 apic->isr_count = vcpu->arch.apicv_active ? 2458 1 : count_vectors(apic->regs + APIC_ISR); 2459 apic->highest_isr_cache = -1; 2460 if (vcpu->arch.apicv_active) { 2461 kvm_x86_ops->apicv_post_state_restore(vcpu); 2462 kvm_x86_ops->hwapic_irr_update(vcpu, 2463 apic_find_highest_irr(apic)); 2464 kvm_x86_ops->hwapic_isr_update(vcpu, 2465 apic_find_highest_isr(apic)); 2466 } 2467 kvm_make_request(KVM_REQ_EVENT, vcpu); 2468 if (ioapic_in_kernel(vcpu->kvm)) 2469 kvm_rtc_eoi_tracking_restore_one(vcpu); 2470 2471 vcpu->arch.apic_arb_prio = 0; 2472 2473 return 0; 2474 } 2475 2476 void __kvm_migrate_apic_timer(struct kvm_vcpu *vcpu) 2477 { 2478 struct hrtimer *timer; 2479 2480 if (!lapic_in_kernel(vcpu) || 2481 kvm_can_post_timer_interrupt(vcpu)) 2482 return; 2483 2484 timer = &vcpu->arch.apic->lapic_timer.timer; 2485 if (hrtimer_cancel(timer)) 2486 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_HARD); 2487 } 2488 2489 /* 2490 * apic_sync_pv_eoi_from_guest - called on vmexit or cancel interrupt 2491 * 2492 * Detect whether guest triggered PV EOI since the 2493 * last entry. If yes, set EOI on guests's behalf. 2494 * Clear PV EOI in guest memory in any case. 2495 */ 2496 static void apic_sync_pv_eoi_from_guest(struct kvm_vcpu *vcpu, 2497 struct kvm_lapic *apic) 2498 { 2499 bool pending; 2500 int vector; 2501 /* 2502 * PV EOI state is derived from KVM_APIC_PV_EOI_PENDING in host 2503 * and KVM_PV_EOI_ENABLED in guest memory as follows: 2504 * 2505 * KVM_APIC_PV_EOI_PENDING is unset: 2506 * -> host disabled PV EOI. 2507 * KVM_APIC_PV_EOI_PENDING is set, KVM_PV_EOI_ENABLED is set: 2508 * -> host enabled PV EOI, guest did not execute EOI yet. 2509 * KVM_APIC_PV_EOI_PENDING is set, KVM_PV_EOI_ENABLED is unset: 2510 * -> host enabled PV EOI, guest executed EOI. 2511 */ 2512 BUG_ON(!pv_eoi_enabled(vcpu)); 2513 pending = pv_eoi_get_pending(vcpu); 2514 /* 2515 * Clear pending bit in any case: it will be set again on vmentry. 2516 * While this might not be ideal from performance point of view, 2517 * this makes sure pv eoi is only enabled when we know it's safe. 2518 */ 2519 pv_eoi_clr_pending(vcpu); 2520 if (pending) 2521 return; 2522 vector = apic_set_eoi(apic); 2523 trace_kvm_pv_eoi(apic, vector); 2524 } 2525 2526 void kvm_lapic_sync_from_vapic(struct kvm_vcpu *vcpu) 2527 { 2528 u32 data; 2529 2530 if (test_bit(KVM_APIC_PV_EOI_PENDING, &vcpu->arch.apic_attention)) 2531 apic_sync_pv_eoi_from_guest(vcpu, vcpu->arch.apic); 2532 2533 if (!test_bit(KVM_APIC_CHECK_VAPIC, &vcpu->arch.apic_attention)) 2534 return; 2535 2536 if (kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.apic->vapic_cache, &data, 2537 sizeof(u32))) 2538 return; 2539 2540 apic_set_tpr(vcpu->arch.apic, data & 0xff); 2541 } 2542 2543 /* 2544 * apic_sync_pv_eoi_to_guest - called before vmentry 2545 * 2546 * Detect whether it's safe to enable PV EOI and 2547 * if yes do so. 2548 */ 2549 static void apic_sync_pv_eoi_to_guest(struct kvm_vcpu *vcpu, 2550 struct kvm_lapic *apic) 2551 { 2552 if (!pv_eoi_enabled(vcpu) || 2553 /* IRR set or many bits in ISR: could be nested. */ 2554 apic->irr_pending || 2555 /* Cache not set: could be safe but we don't bother. */ 2556 apic->highest_isr_cache == -1 || 2557 /* Need EOI to update ioapic. */ 2558 kvm_ioapic_handles_vector(apic, apic->highest_isr_cache)) { 2559 /* 2560 * PV EOI was disabled by apic_sync_pv_eoi_from_guest 2561 * so we need not do anything here. 2562 */ 2563 return; 2564 } 2565 2566 pv_eoi_set_pending(apic->vcpu); 2567 } 2568 2569 void kvm_lapic_sync_to_vapic(struct kvm_vcpu *vcpu) 2570 { 2571 u32 data, tpr; 2572 int max_irr, max_isr; 2573 struct kvm_lapic *apic = vcpu->arch.apic; 2574 2575 apic_sync_pv_eoi_to_guest(vcpu, apic); 2576 2577 if (!test_bit(KVM_APIC_CHECK_VAPIC, &vcpu->arch.apic_attention)) 2578 return; 2579 2580 tpr = kvm_lapic_get_reg(apic, APIC_TASKPRI) & 0xff; 2581 max_irr = apic_find_highest_irr(apic); 2582 if (max_irr < 0) 2583 max_irr = 0; 2584 max_isr = apic_find_highest_isr(apic); 2585 if (max_isr < 0) 2586 max_isr = 0; 2587 data = (tpr & 0xff) | ((max_isr & 0xf0) << 8) | (max_irr << 24); 2588 2589 kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apic->vapic_cache, &data, 2590 sizeof(u32)); 2591 } 2592 2593 int kvm_lapic_set_vapic_addr(struct kvm_vcpu *vcpu, gpa_t vapic_addr) 2594 { 2595 if (vapic_addr) { 2596 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, 2597 &vcpu->arch.apic->vapic_cache, 2598 vapic_addr, sizeof(u32))) 2599 return -EINVAL; 2600 __set_bit(KVM_APIC_CHECK_VAPIC, &vcpu->arch.apic_attention); 2601 } else { 2602 __clear_bit(KVM_APIC_CHECK_VAPIC, &vcpu->arch.apic_attention); 2603 } 2604 2605 vcpu->arch.apic->vapic_addr = vapic_addr; 2606 return 0; 2607 } 2608 2609 int kvm_x2apic_msr_write(struct kvm_vcpu *vcpu, u32 msr, u64 data) 2610 { 2611 struct kvm_lapic *apic = vcpu->arch.apic; 2612 u32 reg = (msr - APIC_BASE_MSR) << 4; 2613 2614 if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(apic)) 2615 return 1; 2616 2617 if (reg == APIC_ICR2) 2618 return 1; 2619 2620 /* if this is ICR write vector before command */ 2621 if (reg == APIC_ICR) 2622 kvm_lapic_reg_write(apic, APIC_ICR2, (u32)(data >> 32)); 2623 return kvm_lapic_reg_write(apic, reg, (u32)data); 2624 } 2625 2626 int kvm_x2apic_msr_read(struct kvm_vcpu *vcpu, u32 msr, u64 *data) 2627 { 2628 struct kvm_lapic *apic = vcpu->arch.apic; 2629 u32 reg = (msr - APIC_BASE_MSR) << 4, low, high = 0; 2630 2631 if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(apic)) 2632 return 1; 2633 2634 if (reg == APIC_DFR || reg == APIC_ICR2) 2635 return 1; 2636 2637 if (kvm_lapic_reg_read(apic, reg, 4, &low)) 2638 return 1; 2639 if (reg == APIC_ICR) 2640 kvm_lapic_reg_read(apic, APIC_ICR2, 4, &high); 2641 2642 *data = (((u64)high) << 32) | low; 2643 2644 return 0; 2645 } 2646 2647 int kvm_hv_vapic_msr_write(struct kvm_vcpu *vcpu, u32 reg, u64 data) 2648 { 2649 struct kvm_lapic *apic = vcpu->arch.apic; 2650 2651 if (!lapic_in_kernel(vcpu)) 2652 return 1; 2653 2654 /* if this is ICR write vector before command */ 2655 if (reg == APIC_ICR) 2656 kvm_lapic_reg_write(apic, APIC_ICR2, (u32)(data >> 32)); 2657 return kvm_lapic_reg_write(apic, reg, (u32)data); 2658 } 2659 2660 int kvm_hv_vapic_msr_read(struct kvm_vcpu *vcpu, u32 reg, u64 *data) 2661 { 2662 struct kvm_lapic *apic = vcpu->arch.apic; 2663 u32 low, high = 0; 2664 2665 if (!lapic_in_kernel(vcpu)) 2666 return 1; 2667 2668 if (kvm_lapic_reg_read(apic, reg, 4, &low)) 2669 return 1; 2670 if (reg == APIC_ICR) 2671 kvm_lapic_reg_read(apic, APIC_ICR2, 4, &high); 2672 2673 *data = (((u64)high) << 32) | low; 2674 2675 return 0; 2676 } 2677 2678 int kvm_lapic_enable_pv_eoi(struct kvm_vcpu *vcpu, u64 data, unsigned long len) 2679 { 2680 u64 addr = data & ~KVM_MSR_ENABLED; 2681 struct gfn_to_hva_cache *ghc = &vcpu->arch.pv_eoi.data; 2682 unsigned long new_len; 2683 2684 if (!IS_ALIGNED(addr, 4)) 2685 return 1; 2686 2687 vcpu->arch.pv_eoi.msr_val = data; 2688 if (!pv_eoi_enabled(vcpu)) 2689 return 0; 2690 2691 if (addr == ghc->gpa && len <= ghc->len) 2692 new_len = ghc->len; 2693 else 2694 new_len = len; 2695 2696 return kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, addr, new_len); 2697 } 2698 2699 void kvm_apic_accept_events(struct kvm_vcpu *vcpu) 2700 { 2701 struct kvm_lapic *apic = vcpu->arch.apic; 2702 u8 sipi_vector; 2703 unsigned long pe; 2704 2705 if (!lapic_in_kernel(vcpu) || !apic->pending_events) 2706 return; 2707 2708 /* 2709 * INITs are latched while CPU is in specific states 2710 * (SMM, VMX non-root mode, SVM with GIF=0). 2711 * Because a CPU cannot be in these states immediately 2712 * after it has processed an INIT signal (and thus in 2713 * KVM_MP_STATE_INIT_RECEIVED state), just eat SIPIs 2714 * and leave the INIT pending. 2715 */ 2716 if (is_smm(vcpu) || kvm_x86_ops->apic_init_signal_blocked(vcpu)) { 2717 WARN_ON_ONCE(vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED); 2718 if (test_bit(KVM_APIC_SIPI, &apic->pending_events)) 2719 clear_bit(KVM_APIC_SIPI, &apic->pending_events); 2720 return; 2721 } 2722 2723 pe = xchg(&apic->pending_events, 0); 2724 if (test_bit(KVM_APIC_INIT, &pe)) { 2725 kvm_vcpu_reset(vcpu, true); 2726 if (kvm_vcpu_is_bsp(apic->vcpu)) 2727 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 2728 else 2729 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED; 2730 } 2731 if (test_bit(KVM_APIC_SIPI, &pe) && 2732 vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) { 2733 /* evaluate pending_events before reading the vector */ 2734 smp_rmb(); 2735 sipi_vector = apic->sipi_vector; 2736 kvm_vcpu_deliver_sipi_vector(vcpu, sipi_vector); 2737 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 2738 } 2739 } 2740 2741 void kvm_lapic_init(void) 2742 { 2743 /* do not patch jump label more than once per second */ 2744 jump_label_rate_limit(&apic_hw_disabled, HZ); 2745 jump_label_rate_limit(&apic_sw_disabled, HZ); 2746 } 2747 2748 void kvm_lapic_exit(void) 2749 { 2750 static_key_deferred_flush(&apic_hw_disabled); 2751 static_key_deferred_flush(&apic_sw_disabled); 2752 } 2753