1 // SPDX-License-Identifier: GPL-2.0-only 2 3 /* 4 * Local APIC virtualization 5 * 6 * Copyright (C) 2006 Qumranet, Inc. 7 * Copyright (C) 2007 Novell 8 * Copyright (C) 2007 Intel 9 * Copyright 2009 Red Hat, Inc. and/or its affiliates. 10 * 11 * Authors: 12 * Dor Laor <dor.laor@qumranet.com> 13 * Gregory Haskins <ghaskins@novell.com> 14 * Yaozu (Eddie) Dong <eddie.dong@intel.com> 15 * 16 * Based on Xen 3.1 code, Copyright (c) 2004, Intel Corporation. 17 */ 18 19 #include <linux/kvm_host.h> 20 #include <linux/kvm.h> 21 #include <linux/mm.h> 22 #include <linux/highmem.h> 23 #include <linux/smp.h> 24 #include <linux/hrtimer.h> 25 #include <linux/io.h> 26 #include <linux/export.h> 27 #include <linux/math64.h> 28 #include <linux/slab.h> 29 #include <asm/processor.h> 30 #include <asm/msr.h> 31 #include <asm/page.h> 32 #include <asm/current.h> 33 #include <asm/apicdef.h> 34 #include <asm/delay.h> 35 #include <linux/atomic.h> 36 #include <linux/jump_label.h> 37 #include "kvm_cache_regs.h" 38 #include "irq.h" 39 #include "ioapic.h" 40 #include "trace.h" 41 #include "x86.h" 42 #include "cpuid.h" 43 #include "hyperv.h" 44 45 #ifndef CONFIG_X86_64 46 #define mod_64(x, y) ((x) - (y) * div64_u64(x, y)) 47 #else 48 #define mod_64(x, y) ((x) % (y)) 49 #endif 50 51 #define PRId64 "d" 52 #define PRIx64 "llx" 53 #define PRIu64 "u" 54 #define PRIo64 "o" 55 56 /* 14 is the version for Xeon and Pentium 8.4.8*/ 57 #define APIC_VERSION (0x14UL | ((KVM_APIC_LVT_NUM - 1) << 16)) 58 #define LAPIC_MMIO_LENGTH (1 << 12) 59 /* followed define is not in apicdef.h */ 60 #define MAX_APIC_VECTOR 256 61 #define APIC_VECTORS_PER_REG 32 62 63 static bool lapic_timer_advance_dynamic __read_mostly; 64 #define LAPIC_TIMER_ADVANCE_ADJUST_MIN 100 /* clock cycles */ 65 #define LAPIC_TIMER_ADVANCE_ADJUST_MAX 10000 /* clock cycles */ 66 #define LAPIC_TIMER_ADVANCE_NS_INIT 1000 67 #define LAPIC_TIMER_ADVANCE_NS_MAX 5000 68 /* step-by-step approximation to mitigate fluctuation */ 69 #define LAPIC_TIMER_ADVANCE_ADJUST_STEP 8 70 71 static inline int apic_test_vector(int vec, void *bitmap) 72 { 73 return test_bit(VEC_POS(vec), (bitmap) + REG_POS(vec)); 74 } 75 76 bool kvm_apic_pending_eoi(struct kvm_vcpu *vcpu, int vector) 77 { 78 struct kvm_lapic *apic = vcpu->arch.apic; 79 80 return apic_test_vector(vector, apic->regs + APIC_ISR) || 81 apic_test_vector(vector, apic->regs + APIC_IRR); 82 } 83 84 static inline int __apic_test_and_set_vector(int vec, void *bitmap) 85 { 86 return __test_and_set_bit(VEC_POS(vec), (bitmap) + REG_POS(vec)); 87 } 88 89 static inline int __apic_test_and_clear_vector(int vec, void *bitmap) 90 { 91 return __test_and_clear_bit(VEC_POS(vec), (bitmap) + REG_POS(vec)); 92 } 93 94 struct static_key_deferred apic_hw_disabled __read_mostly; 95 struct static_key_deferred apic_sw_disabled __read_mostly; 96 97 static inline int apic_enabled(struct kvm_lapic *apic) 98 { 99 return kvm_apic_sw_enabled(apic) && kvm_apic_hw_enabled(apic); 100 } 101 102 #define LVT_MASK \ 103 (APIC_LVT_MASKED | APIC_SEND_PENDING | APIC_VECTOR_MASK) 104 105 #define LINT_MASK \ 106 (LVT_MASK | APIC_MODE_MASK | APIC_INPUT_POLARITY | \ 107 APIC_LVT_REMOTE_IRR | APIC_LVT_LEVEL_TRIGGER) 108 109 static inline u32 kvm_x2apic_id(struct kvm_lapic *apic) 110 { 111 return apic->vcpu->vcpu_id; 112 } 113 114 static bool kvm_can_post_timer_interrupt(struct kvm_vcpu *vcpu) 115 { 116 return pi_inject_timer && kvm_vcpu_apicv_active(vcpu); 117 } 118 119 bool kvm_can_use_hv_timer(struct kvm_vcpu *vcpu) 120 { 121 return kvm_x86_ops.set_hv_timer 122 && !(kvm_mwait_in_guest(vcpu->kvm) || 123 kvm_can_post_timer_interrupt(vcpu)); 124 } 125 EXPORT_SYMBOL_GPL(kvm_can_use_hv_timer); 126 127 static bool kvm_use_posted_timer_interrupt(struct kvm_vcpu *vcpu) 128 { 129 return kvm_can_post_timer_interrupt(vcpu) && vcpu->mode == IN_GUEST_MODE; 130 } 131 132 static inline bool kvm_apic_map_get_logical_dest(struct kvm_apic_map *map, 133 u32 dest_id, struct kvm_lapic ***cluster, u16 *mask) { 134 switch (map->mode) { 135 case KVM_APIC_MODE_X2APIC: { 136 u32 offset = (dest_id >> 16) * 16; 137 u32 max_apic_id = map->max_apic_id; 138 139 if (offset <= max_apic_id) { 140 u8 cluster_size = min(max_apic_id - offset + 1, 16U); 141 142 offset = array_index_nospec(offset, map->max_apic_id + 1); 143 *cluster = &map->phys_map[offset]; 144 *mask = dest_id & (0xffff >> (16 - cluster_size)); 145 } else { 146 *mask = 0; 147 } 148 149 return true; 150 } 151 case KVM_APIC_MODE_XAPIC_FLAT: 152 *cluster = map->xapic_flat_map; 153 *mask = dest_id & 0xff; 154 return true; 155 case KVM_APIC_MODE_XAPIC_CLUSTER: 156 *cluster = map->xapic_cluster_map[(dest_id >> 4) & 0xf]; 157 *mask = dest_id & 0xf; 158 return true; 159 default: 160 /* Not optimized. */ 161 return false; 162 } 163 } 164 165 static void kvm_apic_map_free(struct rcu_head *rcu) 166 { 167 struct kvm_apic_map *map = container_of(rcu, struct kvm_apic_map, rcu); 168 169 kvfree(map); 170 } 171 172 /* 173 * CLEAN -> DIRTY and UPDATE_IN_PROGRESS -> DIRTY changes happen without a lock. 174 * 175 * DIRTY -> UPDATE_IN_PROGRESS and UPDATE_IN_PROGRESS -> CLEAN happen with 176 * apic_map_lock_held. 177 */ 178 enum { 179 CLEAN, 180 UPDATE_IN_PROGRESS, 181 DIRTY 182 }; 183 184 void kvm_recalculate_apic_map(struct kvm *kvm) 185 { 186 struct kvm_apic_map *new, *old = NULL; 187 struct kvm_vcpu *vcpu; 188 int i; 189 u32 max_id = 255; /* enough space for any xAPIC ID */ 190 191 /* Read kvm->arch.apic_map_dirty before kvm->arch.apic_map. */ 192 if (atomic_read_acquire(&kvm->arch.apic_map_dirty) == CLEAN) 193 return; 194 195 mutex_lock(&kvm->arch.apic_map_lock); 196 /* 197 * Read kvm->arch.apic_map_dirty before kvm->arch.apic_map 198 * (if clean) or the APIC registers (if dirty). 199 */ 200 if (atomic_cmpxchg_acquire(&kvm->arch.apic_map_dirty, 201 DIRTY, UPDATE_IN_PROGRESS) == CLEAN) { 202 /* Someone else has updated the map. */ 203 mutex_unlock(&kvm->arch.apic_map_lock); 204 return; 205 } 206 207 kvm_for_each_vcpu(i, vcpu, kvm) 208 if (kvm_apic_present(vcpu)) 209 max_id = max(max_id, kvm_x2apic_id(vcpu->arch.apic)); 210 211 new = kvzalloc(sizeof(struct kvm_apic_map) + 212 sizeof(struct kvm_lapic *) * ((u64)max_id + 1), 213 GFP_KERNEL_ACCOUNT); 214 215 if (!new) 216 goto out; 217 218 new->max_apic_id = max_id; 219 220 kvm_for_each_vcpu(i, vcpu, kvm) { 221 struct kvm_lapic *apic = vcpu->arch.apic; 222 struct kvm_lapic **cluster; 223 u16 mask; 224 u32 ldr; 225 u8 xapic_id; 226 u32 x2apic_id; 227 228 if (!kvm_apic_present(vcpu)) 229 continue; 230 231 xapic_id = kvm_xapic_id(apic); 232 x2apic_id = kvm_x2apic_id(apic); 233 234 /* Hotplug hack: see kvm_apic_match_physical_addr(), ... */ 235 if ((apic_x2apic_mode(apic) || x2apic_id > 0xff) && 236 x2apic_id <= new->max_apic_id) 237 new->phys_map[x2apic_id] = apic; 238 /* 239 * ... xAPIC ID of VCPUs with APIC ID > 0xff will wrap-around, 240 * prevent them from masking VCPUs with APIC ID <= 0xff. 241 */ 242 if (!apic_x2apic_mode(apic) && !new->phys_map[xapic_id]) 243 new->phys_map[xapic_id] = apic; 244 245 if (!kvm_apic_sw_enabled(apic)) 246 continue; 247 248 ldr = kvm_lapic_get_reg(apic, APIC_LDR); 249 250 if (apic_x2apic_mode(apic)) { 251 new->mode |= KVM_APIC_MODE_X2APIC; 252 } else if (ldr) { 253 ldr = GET_APIC_LOGICAL_ID(ldr); 254 if (kvm_lapic_get_reg(apic, APIC_DFR) == APIC_DFR_FLAT) 255 new->mode |= KVM_APIC_MODE_XAPIC_FLAT; 256 else 257 new->mode |= KVM_APIC_MODE_XAPIC_CLUSTER; 258 } 259 260 if (!kvm_apic_map_get_logical_dest(new, ldr, &cluster, &mask)) 261 continue; 262 263 if (mask) 264 cluster[ffs(mask) - 1] = apic; 265 } 266 out: 267 old = rcu_dereference_protected(kvm->arch.apic_map, 268 lockdep_is_held(&kvm->arch.apic_map_lock)); 269 rcu_assign_pointer(kvm->arch.apic_map, new); 270 /* 271 * Write kvm->arch.apic_map before clearing apic->apic_map_dirty. 272 * If another update has come in, leave it DIRTY. 273 */ 274 atomic_cmpxchg_release(&kvm->arch.apic_map_dirty, 275 UPDATE_IN_PROGRESS, CLEAN); 276 mutex_unlock(&kvm->arch.apic_map_lock); 277 278 if (old) 279 call_rcu(&old->rcu, kvm_apic_map_free); 280 281 kvm_make_scan_ioapic_request(kvm); 282 } 283 284 static inline void apic_set_spiv(struct kvm_lapic *apic, u32 val) 285 { 286 bool enabled = val & APIC_SPIV_APIC_ENABLED; 287 288 kvm_lapic_set_reg(apic, APIC_SPIV, val); 289 290 if (enabled != apic->sw_enabled) { 291 apic->sw_enabled = enabled; 292 if (enabled) 293 static_key_slow_dec_deferred(&apic_sw_disabled); 294 else 295 static_key_slow_inc(&apic_sw_disabled.key); 296 297 atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY); 298 } 299 } 300 301 static inline void kvm_apic_set_xapic_id(struct kvm_lapic *apic, u8 id) 302 { 303 kvm_lapic_set_reg(apic, APIC_ID, id << 24); 304 atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY); 305 } 306 307 static inline void kvm_apic_set_ldr(struct kvm_lapic *apic, u32 id) 308 { 309 kvm_lapic_set_reg(apic, APIC_LDR, id); 310 atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY); 311 } 312 313 static inline u32 kvm_apic_calc_x2apic_ldr(u32 id) 314 { 315 return ((id >> 4) << 16) | (1 << (id & 0xf)); 316 } 317 318 static inline void kvm_apic_set_x2apic_id(struct kvm_lapic *apic, u32 id) 319 { 320 u32 ldr = kvm_apic_calc_x2apic_ldr(id); 321 322 WARN_ON_ONCE(id != apic->vcpu->vcpu_id); 323 324 kvm_lapic_set_reg(apic, APIC_ID, id); 325 kvm_lapic_set_reg(apic, APIC_LDR, ldr); 326 atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY); 327 } 328 329 static inline int apic_lvt_enabled(struct kvm_lapic *apic, int lvt_type) 330 { 331 return !(kvm_lapic_get_reg(apic, lvt_type) & APIC_LVT_MASKED); 332 } 333 334 static inline int apic_lvtt_oneshot(struct kvm_lapic *apic) 335 { 336 return apic->lapic_timer.timer_mode == APIC_LVT_TIMER_ONESHOT; 337 } 338 339 static inline int apic_lvtt_period(struct kvm_lapic *apic) 340 { 341 return apic->lapic_timer.timer_mode == APIC_LVT_TIMER_PERIODIC; 342 } 343 344 static inline int apic_lvtt_tscdeadline(struct kvm_lapic *apic) 345 { 346 return apic->lapic_timer.timer_mode == APIC_LVT_TIMER_TSCDEADLINE; 347 } 348 349 static inline int apic_lvt_nmi_mode(u32 lvt_val) 350 { 351 return (lvt_val & (APIC_MODE_MASK | APIC_LVT_MASKED)) == APIC_DM_NMI; 352 } 353 354 void kvm_apic_set_version(struct kvm_vcpu *vcpu) 355 { 356 struct kvm_lapic *apic = vcpu->arch.apic; 357 u32 v = APIC_VERSION; 358 359 if (!lapic_in_kernel(vcpu)) 360 return; 361 362 /* 363 * KVM emulates 82093AA datasheet (with in-kernel IOAPIC implementation) 364 * which doesn't have EOI register; Some buggy OSes (e.g. Windows with 365 * Hyper-V role) disable EOI broadcast in lapic not checking for IOAPIC 366 * version first and level-triggered interrupts never get EOIed in 367 * IOAPIC. 368 */ 369 if (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) && 370 !ioapic_in_kernel(vcpu->kvm)) 371 v |= APIC_LVR_DIRECTED_EOI; 372 kvm_lapic_set_reg(apic, APIC_LVR, v); 373 } 374 375 static const unsigned int apic_lvt_mask[KVM_APIC_LVT_NUM] = { 376 LVT_MASK , /* part LVTT mask, timer mode mask added at runtime */ 377 LVT_MASK | APIC_MODE_MASK, /* LVTTHMR */ 378 LVT_MASK | APIC_MODE_MASK, /* LVTPC */ 379 LINT_MASK, LINT_MASK, /* LVT0-1 */ 380 LVT_MASK /* LVTERR */ 381 }; 382 383 static int find_highest_vector(void *bitmap) 384 { 385 int vec; 386 u32 *reg; 387 388 for (vec = MAX_APIC_VECTOR - APIC_VECTORS_PER_REG; 389 vec >= 0; vec -= APIC_VECTORS_PER_REG) { 390 reg = bitmap + REG_POS(vec); 391 if (*reg) 392 return __fls(*reg) + vec; 393 } 394 395 return -1; 396 } 397 398 static u8 count_vectors(void *bitmap) 399 { 400 int vec; 401 u32 *reg; 402 u8 count = 0; 403 404 for (vec = 0; vec < MAX_APIC_VECTOR; vec += APIC_VECTORS_PER_REG) { 405 reg = bitmap + REG_POS(vec); 406 count += hweight32(*reg); 407 } 408 409 return count; 410 } 411 412 bool __kvm_apic_update_irr(u32 *pir, void *regs, int *max_irr) 413 { 414 u32 i, vec; 415 u32 pir_val, irr_val, prev_irr_val; 416 int max_updated_irr; 417 418 max_updated_irr = -1; 419 *max_irr = -1; 420 421 for (i = vec = 0; i <= 7; i++, vec += 32) { 422 pir_val = READ_ONCE(pir[i]); 423 irr_val = *((u32 *)(regs + APIC_IRR + i * 0x10)); 424 if (pir_val) { 425 prev_irr_val = irr_val; 426 irr_val |= xchg(&pir[i], 0); 427 *((u32 *)(regs + APIC_IRR + i * 0x10)) = irr_val; 428 if (prev_irr_val != irr_val) { 429 max_updated_irr = 430 __fls(irr_val ^ prev_irr_val) + vec; 431 } 432 } 433 if (irr_val) 434 *max_irr = __fls(irr_val) + vec; 435 } 436 437 return ((max_updated_irr != -1) && 438 (max_updated_irr == *max_irr)); 439 } 440 EXPORT_SYMBOL_GPL(__kvm_apic_update_irr); 441 442 bool kvm_apic_update_irr(struct kvm_vcpu *vcpu, u32 *pir, int *max_irr) 443 { 444 struct kvm_lapic *apic = vcpu->arch.apic; 445 446 return __kvm_apic_update_irr(pir, apic->regs, max_irr); 447 } 448 EXPORT_SYMBOL_GPL(kvm_apic_update_irr); 449 450 static inline int apic_search_irr(struct kvm_lapic *apic) 451 { 452 return find_highest_vector(apic->regs + APIC_IRR); 453 } 454 455 static inline int apic_find_highest_irr(struct kvm_lapic *apic) 456 { 457 int result; 458 459 /* 460 * Note that irr_pending is just a hint. It will be always 461 * true with virtual interrupt delivery enabled. 462 */ 463 if (!apic->irr_pending) 464 return -1; 465 466 result = apic_search_irr(apic); 467 ASSERT(result == -1 || result >= 16); 468 469 return result; 470 } 471 472 static inline void apic_clear_irr(int vec, struct kvm_lapic *apic) 473 { 474 struct kvm_vcpu *vcpu; 475 476 vcpu = apic->vcpu; 477 478 if (unlikely(vcpu->arch.apicv_active)) { 479 /* need to update RVI */ 480 kvm_lapic_clear_vector(vec, apic->regs + APIC_IRR); 481 kvm_x86_ops.hwapic_irr_update(vcpu, 482 apic_find_highest_irr(apic)); 483 } else { 484 apic->irr_pending = false; 485 kvm_lapic_clear_vector(vec, apic->regs + APIC_IRR); 486 if (apic_search_irr(apic) != -1) 487 apic->irr_pending = true; 488 } 489 } 490 491 static inline void apic_set_isr(int vec, struct kvm_lapic *apic) 492 { 493 struct kvm_vcpu *vcpu; 494 495 if (__apic_test_and_set_vector(vec, apic->regs + APIC_ISR)) 496 return; 497 498 vcpu = apic->vcpu; 499 500 /* 501 * With APIC virtualization enabled, all caching is disabled 502 * because the processor can modify ISR under the hood. Instead 503 * just set SVI. 504 */ 505 if (unlikely(vcpu->arch.apicv_active)) 506 kvm_x86_ops.hwapic_isr_update(vcpu, vec); 507 else { 508 ++apic->isr_count; 509 BUG_ON(apic->isr_count > MAX_APIC_VECTOR); 510 /* 511 * ISR (in service register) bit is set when injecting an interrupt. 512 * The highest vector is injected. Thus the latest bit set matches 513 * the highest bit in ISR. 514 */ 515 apic->highest_isr_cache = vec; 516 } 517 } 518 519 static inline int apic_find_highest_isr(struct kvm_lapic *apic) 520 { 521 int result; 522 523 /* 524 * Note that isr_count is always 1, and highest_isr_cache 525 * is always -1, with APIC virtualization enabled. 526 */ 527 if (!apic->isr_count) 528 return -1; 529 if (likely(apic->highest_isr_cache != -1)) 530 return apic->highest_isr_cache; 531 532 result = find_highest_vector(apic->regs + APIC_ISR); 533 ASSERT(result == -1 || result >= 16); 534 535 return result; 536 } 537 538 static inline void apic_clear_isr(int vec, struct kvm_lapic *apic) 539 { 540 struct kvm_vcpu *vcpu; 541 if (!__apic_test_and_clear_vector(vec, apic->regs + APIC_ISR)) 542 return; 543 544 vcpu = apic->vcpu; 545 546 /* 547 * We do get here for APIC virtualization enabled if the guest 548 * uses the Hyper-V APIC enlightenment. In this case we may need 549 * to trigger a new interrupt delivery by writing the SVI field; 550 * on the other hand isr_count and highest_isr_cache are unused 551 * and must be left alone. 552 */ 553 if (unlikely(vcpu->arch.apicv_active)) 554 kvm_x86_ops.hwapic_isr_update(vcpu, 555 apic_find_highest_isr(apic)); 556 else { 557 --apic->isr_count; 558 BUG_ON(apic->isr_count < 0); 559 apic->highest_isr_cache = -1; 560 } 561 } 562 563 int kvm_lapic_find_highest_irr(struct kvm_vcpu *vcpu) 564 { 565 /* This may race with setting of irr in __apic_accept_irq() and 566 * value returned may be wrong, but kvm_vcpu_kick() in __apic_accept_irq 567 * will cause vmexit immediately and the value will be recalculated 568 * on the next vmentry. 569 */ 570 return apic_find_highest_irr(vcpu->arch.apic); 571 } 572 EXPORT_SYMBOL_GPL(kvm_lapic_find_highest_irr); 573 574 static int __apic_accept_irq(struct kvm_lapic *apic, int delivery_mode, 575 int vector, int level, int trig_mode, 576 struct dest_map *dest_map); 577 578 int kvm_apic_set_irq(struct kvm_vcpu *vcpu, struct kvm_lapic_irq *irq, 579 struct dest_map *dest_map) 580 { 581 struct kvm_lapic *apic = vcpu->arch.apic; 582 583 return __apic_accept_irq(apic, irq->delivery_mode, irq->vector, 584 irq->level, irq->trig_mode, dest_map); 585 } 586 587 static int __pv_send_ipi(unsigned long *ipi_bitmap, struct kvm_apic_map *map, 588 struct kvm_lapic_irq *irq, u32 min) 589 { 590 int i, count = 0; 591 struct kvm_vcpu *vcpu; 592 593 if (min > map->max_apic_id) 594 return 0; 595 596 for_each_set_bit(i, ipi_bitmap, 597 min((u32)BITS_PER_LONG, (map->max_apic_id - min + 1))) { 598 if (map->phys_map[min + i]) { 599 vcpu = map->phys_map[min + i]->vcpu; 600 count += kvm_apic_set_irq(vcpu, irq, NULL); 601 } 602 } 603 604 return count; 605 } 606 607 int kvm_pv_send_ipi(struct kvm *kvm, unsigned long ipi_bitmap_low, 608 unsigned long ipi_bitmap_high, u32 min, 609 unsigned long icr, int op_64_bit) 610 { 611 struct kvm_apic_map *map; 612 struct kvm_lapic_irq irq = {0}; 613 int cluster_size = op_64_bit ? 64 : 32; 614 int count; 615 616 if (icr & (APIC_DEST_MASK | APIC_SHORT_MASK)) 617 return -KVM_EINVAL; 618 619 irq.vector = icr & APIC_VECTOR_MASK; 620 irq.delivery_mode = icr & APIC_MODE_MASK; 621 irq.level = (icr & APIC_INT_ASSERT) != 0; 622 irq.trig_mode = icr & APIC_INT_LEVELTRIG; 623 624 rcu_read_lock(); 625 map = rcu_dereference(kvm->arch.apic_map); 626 627 count = -EOPNOTSUPP; 628 if (likely(map)) { 629 count = __pv_send_ipi(&ipi_bitmap_low, map, &irq, min); 630 min += cluster_size; 631 count += __pv_send_ipi(&ipi_bitmap_high, map, &irq, min); 632 } 633 634 rcu_read_unlock(); 635 return count; 636 } 637 638 static int pv_eoi_put_user(struct kvm_vcpu *vcpu, u8 val) 639 { 640 641 return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.pv_eoi.data, &val, 642 sizeof(val)); 643 } 644 645 static int pv_eoi_get_user(struct kvm_vcpu *vcpu, u8 *val) 646 { 647 648 return kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.pv_eoi.data, val, 649 sizeof(*val)); 650 } 651 652 static inline bool pv_eoi_enabled(struct kvm_vcpu *vcpu) 653 { 654 return vcpu->arch.pv_eoi.msr_val & KVM_MSR_ENABLED; 655 } 656 657 static bool pv_eoi_get_pending(struct kvm_vcpu *vcpu) 658 { 659 u8 val; 660 if (pv_eoi_get_user(vcpu, &val) < 0) { 661 printk(KERN_WARNING "Can't read EOI MSR value: 0x%llx\n", 662 (unsigned long long)vcpu->arch.pv_eoi.msr_val); 663 return false; 664 } 665 return val & 0x1; 666 } 667 668 static void pv_eoi_set_pending(struct kvm_vcpu *vcpu) 669 { 670 if (pv_eoi_put_user(vcpu, KVM_PV_EOI_ENABLED) < 0) { 671 printk(KERN_WARNING "Can't set EOI MSR value: 0x%llx\n", 672 (unsigned long long)vcpu->arch.pv_eoi.msr_val); 673 return; 674 } 675 __set_bit(KVM_APIC_PV_EOI_PENDING, &vcpu->arch.apic_attention); 676 } 677 678 static void pv_eoi_clr_pending(struct kvm_vcpu *vcpu) 679 { 680 if (pv_eoi_put_user(vcpu, KVM_PV_EOI_DISABLED) < 0) { 681 printk(KERN_WARNING "Can't clear EOI MSR value: 0x%llx\n", 682 (unsigned long long)vcpu->arch.pv_eoi.msr_val); 683 return; 684 } 685 __clear_bit(KVM_APIC_PV_EOI_PENDING, &vcpu->arch.apic_attention); 686 } 687 688 static int apic_has_interrupt_for_ppr(struct kvm_lapic *apic, u32 ppr) 689 { 690 int highest_irr; 691 if (apic->vcpu->arch.apicv_active) 692 highest_irr = kvm_x86_ops.sync_pir_to_irr(apic->vcpu); 693 else 694 highest_irr = apic_find_highest_irr(apic); 695 if (highest_irr == -1 || (highest_irr & 0xF0) <= ppr) 696 return -1; 697 return highest_irr; 698 } 699 700 static bool __apic_update_ppr(struct kvm_lapic *apic, u32 *new_ppr) 701 { 702 u32 tpr, isrv, ppr, old_ppr; 703 int isr; 704 705 old_ppr = kvm_lapic_get_reg(apic, APIC_PROCPRI); 706 tpr = kvm_lapic_get_reg(apic, APIC_TASKPRI); 707 isr = apic_find_highest_isr(apic); 708 isrv = (isr != -1) ? isr : 0; 709 710 if ((tpr & 0xf0) >= (isrv & 0xf0)) 711 ppr = tpr & 0xff; 712 else 713 ppr = isrv & 0xf0; 714 715 *new_ppr = ppr; 716 if (old_ppr != ppr) 717 kvm_lapic_set_reg(apic, APIC_PROCPRI, ppr); 718 719 return ppr < old_ppr; 720 } 721 722 static void apic_update_ppr(struct kvm_lapic *apic) 723 { 724 u32 ppr; 725 726 if (__apic_update_ppr(apic, &ppr) && 727 apic_has_interrupt_for_ppr(apic, ppr) != -1) 728 kvm_make_request(KVM_REQ_EVENT, apic->vcpu); 729 } 730 731 void kvm_apic_update_ppr(struct kvm_vcpu *vcpu) 732 { 733 apic_update_ppr(vcpu->arch.apic); 734 } 735 EXPORT_SYMBOL_GPL(kvm_apic_update_ppr); 736 737 static void apic_set_tpr(struct kvm_lapic *apic, u32 tpr) 738 { 739 kvm_lapic_set_reg(apic, APIC_TASKPRI, tpr); 740 apic_update_ppr(apic); 741 } 742 743 static bool kvm_apic_broadcast(struct kvm_lapic *apic, u32 mda) 744 { 745 return mda == (apic_x2apic_mode(apic) ? 746 X2APIC_BROADCAST : APIC_BROADCAST); 747 } 748 749 static bool kvm_apic_match_physical_addr(struct kvm_lapic *apic, u32 mda) 750 { 751 if (kvm_apic_broadcast(apic, mda)) 752 return true; 753 754 if (apic_x2apic_mode(apic)) 755 return mda == kvm_x2apic_id(apic); 756 757 /* 758 * Hotplug hack: Make LAPIC in xAPIC mode also accept interrupts as if 759 * it were in x2APIC mode. Hotplugged VCPUs start in xAPIC mode and 760 * this allows unique addressing of VCPUs with APIC ID over 0xff. 761 * The 0xff condition is needed because writeable xAPIC ID. 762 */ 763 if (kvm_x2apic_id(apic) > 0xff && mda == kvm_x2apic_id(apic)) 764 return true; 765 766 return mda == kvm_xapic_id(apic); 767 } 768 769 static bool kvm_apic_match_logical_addr(struct kvm_lapic *apic, u32 mda) 770 { 771 u32 logical_id; 772 773 if (kvm_apic_broadcast(apic, mda)) 774 return true; 775 776 logical_id = kvm_lapic_get_reg(apic, APIC_LDR); 777 778 if (apic_x2apic_mode(apic)) 779 return ((logical_id >> 16) == (mda >> 16)) 780 && (logical_id & mda & 0xffff) != 0; 781 782 logical_id = GET_APIC_LOGICAL_ID(logical_id); 783 784 switch (kvm_lapic_get_reg(apic, APIC_DFR)) { 785 case APIC_DFR_FLAT: 786 return (logical_id & mda) != 0; 787 case APIC_DFR_CLUSTER: 788 return ((logical_id >> 4) == (mda >> 4)) 789 && (logical_id & mda & 0xf) != 0; 790 default: 791 return false; 792 } 793 } 794 795 /* The KVM local APIC implementation has two quirks: 796 * 797 * - Real hardware delivers interrupts destined to x2APIC ID > 0xff to LAPICs 798 * in xAPIC mode if the "destination & 0xff" matches its xAPIC ID. 799 * KVM doesn't do that aliasing. 800 * 801 * - in-kernel IOAPIC messages have to be delivered directly to 802 * x2APIC, because the kernel does not support interrupt remapping. 803 * In order to support broadcast without interrupt remapping, x2APIC 804 * rewrites the destination of non-IPI messages from APIC_BROADCAST 805 * to X2APIC_BROADCAST. 806 * 807 * The broadcast quirk can be disabled with KVM_CAP_X2APIC_API. This is 808 * important when userspace wants to use x2APIC-format MSIs, because 809 * APIC_BROADCAST (0xff) is a legal route for "cluster 0, CPUs 0-7". 810 */ 811 static u32 kvm_apic_mda(struct kvm_vcpu *vcpu, unsigned int dest_id, 812 struct kvm_lapic *source, struct kvm_lapic *target) 813 { 814 bool ipi = source != NULL; 815 816 if (!vcpu->kvm->arch.x2apic_broadcast_quirk_disabled && 817 !ipi && dest_id == APIC_BROADCAST && apic_x2apic_mode(target)) 818 return X2APIC_BROADCAST; 819 820 return dest_id; 821 } 822 823 bool kvm_apic_match_dest(struct kvm_vcpu *vcpu, struct kvm_lapic *source, 824 int shorthand, unsigned int dest, int dest_mode) 825 { 826 struct kvm_lapic *target = vcpu->arch.apic; 827 u32 mda = kvm_apic_mda(vcpu, dest, source, target); 828 829 ASSERT(target); 830 switch (shorthand) { 831 case APIC_DEST_NOSHORT: 832 if (dest_mode == APIC_DEST_PHYSICAL) 833 return kvm_apic_match_physical_addr(target, mda); 834 else 835 return kvm_apic_match_logical_addr(target, mda); 836 case APIC_DEST_SELF: 837 return target == source; 838 case APIC_DEST_ALLINC: 839 return true; 840 case APIC_DEST_ALLBUT: 841 return target != source; 842 default: 843 return false; 844 } 845 } 846 EXPORT_SYMBOL_GPL(kvm_apic_match_dest); 847 848 int kvm_vector_to_index(u32 vector, u32 dest_vcpus, 849 const unsigned long *bitmap, u32 bitmap_size) 850 { 851 u32 mod; 852 int i, idx = -1; 853 854 mod = vector % dest_vcpus; 855 856 for (i = 0; i <= mod; i++) { 857 idx = find_next_bit(bitmap, bitmap_size, idx + 1); 858 BUG_ON(idx == bitmap_size); 859 } 860 861 return idx; 862 } 863 864 static void kvm_apic_disabled_lapic_found(struct kvm *kvm) 865 { 866 if (!kvm->arch.disabled_lapic_found) { 867 kvm->arch.disabled_lapic_found = true; 868 printk(KERN_INFO 869 "Disabled LAPIC found during irq injection\n"); 870 } 871 } 872 873 static bool kvm_apic_is_broadcast_dest(struct kvm *kvm, struct kvm_lapic **src, 874 struct kvm_lapic_irq *irq, struct kvm_apic_map *map) 875 { 876 if (kvm->arch.x2apic_broadcast_quirk_disabled) { 877 if ((irq->dest_id == APIC_BROADCAST && 878 map->mode != KVM_APIC_MODE_X2APIC)) 879 return true; 880 if (irq->dest_id == X2APIC_BROADCAST) 881 return true; 882 } else { 883 bool x2apic_ipi = src && *src && apic_x2apic_mode(*src); 884 if (irq->dest_id == (x2apic_ipi ? 885 X2APIC_BROADCAST : APIC_BROADCAST)) 886 return true; 887 } 888 889 return false; 890 } 891 892 /* Return true if the interrupt can be handled by using *bitmap as index mask 893 * for valid destinations in *dst array. 894 * Return false if kvm_apic_map_get_dest_lapic did nothing useful. 895 * Note: we may have zero kvm_lapic destinations when we return true, which 896 * means that the interrupt should be dropped. In this case, *bitmap would be 897 * zero and *dst undefined. 898 */ 899 static inline bool kvm_apic_map_get_dest_lapic(struct kvm *kvm, 900 struct kvm_lapic **src, struct kvm_lapic_irq *irq, 901 struct kvm_apic_map *map, struct kvm_lapic ***dst, 902 unsigned long *bitmap) 903 { 904 int i, lowest; 905 906 if (irq->shorthand == APIC_DEST_SELF && src) { 907 *dst = src; 908 *bitmap = 1; 909 return true; 910 } else if (irq->shorthand) 911 return false; 912 913 if (!map || kvm_apic_is_broadcast_dest(kvm, src, irq, map)) 914 return false; 915 916 if (irq->dest_mode == APIC_DEST_PHYSICAL) { 917 if (irq->dest_id > map->max_apic_id) { 918 *bitmap = 0; 919 } else { 920 u32 dest_id = array_index_nospec(irq->dest_id, map->max_apic_id + 1); 921 *dst = &map->phys_map[dest_id]; 922 *bitmap = 1; 923 } 924 return true; 925 } 926 927 *bitmap = 0; 928 if (!kvm_apic_map_get_logical_dest(map, irq->dest_id, dst, 929 (u16 *)bitmap)) 930 return false; 931 932 if (!kvm_lowest_prio_delivery(irq)) 933 return true; 934 935 if (!kvm_vector_hashing_enabled()) { 936 lowest = -1; 937 for_each_set_bit(i, bitmap, 16) { 938 if (!(*dst)[i]) 939 continue; 940 if (lowest < 0) 941 lowest = i; 942 else if (kvm_apic_compare_prio((*dst)[i]->vcpu, 943 (*dst)[lowest]->vcpu) < 0) 944 lowest = i; 945 } 946 } else { 947 if (!*bitmap) 948 return true; 949 950 lowest = kvm_vector_to_index(irq->vector, hweight16(*bitmap), 951 bitmap, 16); 952 953 if (!(*dst)[lowest]) { 954 kvm_apic_disabled_lapic_found(kvm); 955 *bitmap = 0; 956 return true; 957 } 958 } 959 960 *bitmap = (lowest >= 0) ? 1 << lowest : 0; 961 962 return true; 963 } 964 965 bool kvm_irq_delivery_to_apic_fast(struct kvm *kvm, struct kvm_lapic *src, 966 struct kvm_lapic_irq *irq, int *r, struct dest_map *dest_map) 967 { 968 struct kvm_apic_map *map; 969 unsigned long bitmap; 970 struct kvm_lapic **dst = NULL; 971 int i; 972 bool ret; 973 974 *r = -1; 975 976 if (irq->shorthand == APIC_DEST_SELF) { 977 *r = kvm_apic_set_irq(src->vcpu, irq, dest_map); 978 return true; 979 } 980 981 rcu_read_lock(); 982 map = rcu_dereference(kvm->arch.apic_map); 983 984 ret = kvm_apic_map_get_dest_lapic(kvm, &src, irq, map, &dst, &bitmap); 985 if (ret) { 986 *r = 0; 987 for_each_set_bit(i, &bitmap, 16) { 988 if (!dst[i]) 989 continue; 990 *r += kvm_apic_set_irq(dst[i]->vcpu, irq, dest_map); 991 } 992 } 993 994 rcu_read_unlock(); 995 return ret; 996 } 997 998 /* 999 * This routine tries to handle interrupts in posted mode, here is how 1000 * it deals with different cases: 1001 * - For single-destination interrupts, handle it in posted mode 1002 * - Else if vector hashing is enabled and it is a lowest-priority 1003 * interrupt, handle it in posted mode and use the following mechanism 1004 * to find the destination vCPU. 1005 * 1. For lowest-priority interrupts, store all the possible 1006 * destination vCPUs in an array. 1007 * 2. Use "guest vector % max number of destination vCPUs" to find 1008 * the right destination vCPU in the array for the lowest-priority 1009 * interrupt. 1010 * - Otherwise, use remapped mode to inject the interrupt. 1011 */ 1012 bool kvm_intr_is_single_vcpu_fast(struct kvm *kvm, struct kvm_lapic_irq *irq, 1013 struct kvm_vcpu **dest_vcpu) 1014 { 1015 struct kvm_apic_map *map; 1016 unsigned long bitmap; 1017 struct kvm_lapic **dst = NULL; 1018 bool ret = false; 1019 1020 if (irq->shorthand) 1021 return false; 1022 1023 rcu_read_lock(); 1024 map = rcu_dereference(kvm->arch.apic_map); 1025 1026 if (kvm_apic_map_get_dest_lapic(kvm, NULL, irq, map, &dst, &bitmap) && 1027 hweight16(bitmap) == 1) { 1028 unsigned long i = find_first_bit(&bitmap, 16); 1029 1030 if (dst[i]) { 1031 *dest_vcpu = dst[i]->vcpu; 1032 ret = true; 1033 } 1034 } 1035 1036 rcu_read_unlock(); 1037 return ret; 1038 } 1039 1040 /* 1041 * Add a pending IRQ into lapic. 1042 * Return 1 if successfully added and 0 if discarded. 1043 */ 1044 static int __apic_accept_irq(struct kvm_lapic *apic, int delivery_mode, 1045 int vector, int level, int trig_mode, 1046 struct dest_map *dest_map) 1047 { 1048 int result = 0; 1049 struct kvm_vcpu *vcpu = apic->vcpu; 1050 1051 trace_kvm_apic_accept_irq(vcpu->vcpu_id, delivery_mode, 1052 trig_mode, vector); 1053 switch (delivery_mode) { 1054 case APIC_DM_LOWEST: 1055 vcpu->arch.apic_arb_prio++; 1056 fallthrough; 1057 case APIC_DM_FIXED: 1058 if (unlikely(trig_mode && !level)) 1059 break; 1060 1061 /* FIXME add logic for vcpu on reset */ 1062 if (unlikely(!apic_enabled(apic))) 1063 break; 1064 1065 result = 1; 1066 1067 if (dest_map) { 1068 __set_bit(vcpu->vcpu_id, dest_map->map); 1069 dest_map->vectors[vcpu->vcpu_id] = vector; 1070 } 1071 1072 if (apic_test_vector(vector, apic->regs + APIC_TMR) != !!trig_mode) { 1073 if (trig_mode) 1074 kvm_lapic_set_vector(vector, 1075 apic->regs + APIC_TMR); 1076 else 1077 kvm_lapic_clear_vector(vector, 1078 apic->regs + APIC_TMR); 1079 } 1080 1081 if (kvm_x86_ops.deliver_posted_interrupt(vcpu, vector)) { 1082 kvm_lapic_set_irr(vector, apic); 1083 kvm_make_request(KVM_REQ_EVENT, vcpu); 1084 kvm_vcpu_kick(vcpu); 1085 } 1086 break; 1087 1088 case APIC_DM_REMRD: 1089 result = 1; 1090 vcpu->arch.pv.pv_unhalted = 1; 1091 kvm_make_request(KVM_REQ_EVENT, vcpu); 1092 kvm_vcpu_kick(vcpu); 1093 break; 1094 1095 case APIC_DM_SMI: 1096 result = 1; 1097 kvm_make_request(KVM_REQ_SMI, vcpu); 1098 kvm_vcpu_kick(vcpu); 1099 break; 1100 1101 case APIC_DM_NMI: 1102 result = 1; 1103 kvm_inject_nmi(vcpu); 1104 kvm_vcpu_kick(vcpu); 1105 break; 1106 1107 case APIC_DM_INIT: 1108 if (!trig_mode || level) { 1109 result = 1; 1110 /* assumes that there are only KVM_APIC_INIT/SIPI */ 1111 apic->pending_events = (1UL << KVM_APIC_INIT); 1112 kvm_make_request(KVM_REQ_EVENT, vcpu); 1113 kvm_vcpu_kick(vcpu); 1114 } 1115 break; 1116 1117 case APIC_DM_STARTUP: 1118 result = 1; 1119 apic->sipi_vector = vector; 1120 /* make sure sipi_vector is visible for the receiver */ 1121 smp_wmb(); 1122 set_bit(KVM_APIC_SIPI, &apic->pending_events); 1123 kvm_make_request(KVM_REQ_EVENT, vcpu); 1124 kvm_vcpu_kick(vcpu); 1125 break; 1126 1127 case APIC_DM_EXTINT: 1128 /* 1129 * Should only be called by kvm_apic_local_deliver() with LVT0, 1130 * before NMI watchdog was enabled. Already handled by 1131 * kvm_apic_accept_pic_intr(). 1132 */ 1133 break; 1134 1135 default: 1136 printk(KERN_ERR "TODO: unsupported delivery mode %x\n", 1137 delivery_mode); 1138 break; 1139 } 1140 return result; 1141 } 1142 1143 /* 1144 * This routine identifies the destination vcpus mask meant to receive the 1145 * IOAPIC interrupts. It either uses kvm_apic_map_get_dest_lapic() to find 1146 * out the destination vcpus array and set the bitmap or it traverses to 1147 * each available vcpu to identify the same. 1148 */ 1149 void kvm_bitmap_or_dest_vcpus(struct kvm *kvm, struct kvm_lapic_irq *irq, 1150 unsigned long *vcpu_bitmap) 1151 { 1152 struct kvm_lapic **dest_vcpu = NULL; 1153 struct kvm_lapic *src = NULL; 1154 struct kvm_apic_map *map; 1155 struct kvm_vcpu *vcpu; 1156 unsigned long bitmap; 1157 int i, vcpu_idx; 1158 bool ret; 1159 1160 rcu_read_lock(); 1161 map = rcu_dereference(kvm->arch.apic_map); 1162 1163 ret = kvm_apic_map_get_dest_lapic(kvm, &src, irq, map, &dest_vcpu, 1164 &bitmap); 1165 if (ret) { 1166 for_each_set_bit(i, &bitmap, 16) { 1167 if (!dest_vcpu[i]) 1168 continue; 1169 vcpu_idx = dest_vcpu[i]->vcpu->vcpu_idx; 1170 __set_bit(vcpu_idx, vcpu_bitmap); 1171 } 1172 } else { 1173 kvm_for_each_vcpu(i, vcpu, kvm) { 1174 if (!kvm_apic_present(vcpu)) 1175 continue; 1176 if (!kvm_apic_match_dest(vcpu, NULL, 1177 irq->shorthand, 1178 irq->dest_id, 1179 irq->dest_mode)) 1180 continue; 1181 __set_bit(i, vcpu_bitmap); 1182 } 1183 } 1184 rcu_read_unlock(); 1185 } 1186 1187 int kvm_apic_compare_prio(struct kvm_vcpu *vcpu1, struct kvm_vcpu *vcpu2) 1188 { 1189 return vcpu1->arch.apic_arb_prio - vcpu2->arch.apic_arb_prio; 1190 } 1191 1192 static bool kvm_ioapic_handles_vector(struct kvm_lapic *apic, int vector) 1193 { 1194 return test_bit(vector, apic->vcpu->arch.ioapic_handled_vectors); 1195 } 1196 1197 static void kvm_ioapic_send_eoi(struct kvm_lapic *apic, int vector) 1198 { 1199 int trigger_mode; 1200 1201 /* Eoi the ioapic only if the ioapic doesn't own the vector. */ 1202 if (!kvm_ioapic_handles_vector(apic, vector)) 1203 return; 1204 1205 /* Request a KVM exit to inform the userspace IOAPIC. */ 1206 if (irqchip_split(apic->vcpu->kvm)) { 1207 apic->vcpu->arch.pending_ioapic_eoi = vector; 1208 kvm_make_request(KVM_REQ_IOAPIC_EOI_EXIT, apic->vcpu); 1209 return; 1210 } 1211 1212 if (apic_test_vector(vector, apic->regs + APIC_TMR)) 1213 trigger_mode = IOAPIC_LEVEL_TRIG; 1214 else 1215 trigger_mode = IOAPIC_EDGE_TRIG; 1216 1217 kvm_ioapic_update_eoi(apic->vcpu, vector, trigger_mode); 1218 } 1219 1220 static int apic_set_eoi(struct kvm_lapic *apic) 1221 { 1222 int vector = apic_find_highest_isr(apic); 1223 1224 trace_kvm_eoi(apic, vector); 1225 1226 /* 1227 * Not every write EOI will has corresponding ISR, 1228 * one example is when Kernel check timer on setup_IO_APIC 1229 */ 1230 if (vector == -1) 1231 return vector; 1232 1233 apic_clear_isr(vector, apic); 1234 apic_update_ppr(apic); 1235 1236 if (test_bit(vector, vcpu_to_synic(apic->vcpu)->vec_bitmap)) 1237 kvm_hv_synic_send_eoi(apic->vcpu, vector); 1238 1239 kvm_ioapic_send_eoi(apic, vector); 1240 kvm_make_request(KVM_REQ_EVENT, apic->vcpu); 1241 return vector; 1242 } 1243 1244 /* 1245 * this interface assumes a trap-like exit, which has already finished 1246 * desired side effect including vISR and vPPR update. 1247 */ 1248 void kvm_apic_set_eoi_accelerated(struct kvm_vcpu *vcpu, int vector) 1249 { 1250 struct kvm_lapic *apic = vcpu->arch.apic; 1251 1252 trace_kvm_eoi(apic, vector); 1253 1254 kvm_ioapic_send_eoi(apic, vector); 1255 kvm_make_request(KVM_REQ_EVENT, apic->vcpu); 1256 } 1257 EXPORT_SYMBOL_GPL(kvm_apic_set_eoi_accelerated); 1258 1259 void kvm_apic_send_ipi(struct kvm_lapic *apic, u32 icr_low, u32 icr_high) 1260 { 1261 struct kvm_lapic_irq irq; 1262 1263 irq.vector = icr_low & APIC_VECTOR_MASK; 1264 irq.delivery_mode = icr_low & APIC_MODE_MASK; 1265 irq.dest_mode = icr_low & APIC_DEST_MASK; 1266 irq.level = (icr_low & APIC_INT_ASSERT) != 0; 1267 irq.trig_mode = icr_low & APIC_INT_LEVELTRIG; 1268 irq.shorthand = icr_low & APIC_SHORT_MASK; 1269 irq.msi_redir_hint = false; 1270 if (apic_x2apic_mode(apic)) 1271 irq.dest_id = icr_high; 1272 else 1273 irq.dest_id = GET_APIC_DEST_FIELD(icr_high); 1274 1275 trace_kvm_apic_ipi(icr_low, irq.dest_id); 1276 1277 kvm_irq_delivery_to_apic(apic->vcpu->kvm, apic, &irq, NULL); 1278 } 1279 1280 static u32 apic_get_tmcct(struct kvm_lapic *apic) 1281 { 1282 ktime_t remaining, now; 1283 s64 ns; 1284 u32 tmcct; 1285 1286 ASSERT(apic != NULL); 1287 1288 /* if initial count is 0, current count should also be 0 */ 1289 if (kvm_lapic_get_reg(apic, APIC_TMICT) == 0 || 1290 apic->lapic_timer.period == 0) 1291 return 0; 1292 1293 now = ktime_get(); 1294 remaining = ktime_sub(apic->lapic_timer.target_expiration, now); 1295 if (ktime_to_ns(remaining) < 0) 1296 remaining = 0; 1297 1298 ns = mod_64(ktime_to_ns(remaining), apic->lapic_timer.period); 1299 tmcct = div64_u64(ns, 1300 (APIC_BUS_CYCLE_NS * apic->divide_count)); 1301 1302 return tmcct; 1303 } 1304 1305 static void __report_tpr_access(struct kvm_lapic *apic, bool write) 1306 { 1307 struct kvm_vcpu *vcpu = apic->vcpu; 1308 struct kvm_run *run = vcpu->run; 1309 1310 kvm_make_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu); 1311 run->tpr_access.rip = kvm_rip_read(vcpu); 1312 run->tpr_access.is_write = write; 1313 } 1314 1315 static inline void report_tpr_access(struct kvm_lapic *apic, bool write) 1316 { 1317 if (apic->vcpu->arch.tpr_access_reporting) 1318 __report_tpr_access(apic, write); 1319 } 1320 1321 static u32 __apic_read(struct kvm_lapic *apic, unsigned int offset) 1322 { 1323 u32 val = 0; 1324 1325 if (offset >= LAPIC_MMIO_LENGTH) 1326 return 0; 1327 1328 switch (offset) { 1329 case APIC_ARBPRI: 1330 break; 1331 1332 case APIC_TMCCT: /* Timer CCR */ 1333 if (apic_lvtt_tscdeadline(apic)) 1334 return 0; 1335 1336 val = apic_get_tmcct(apic); 1337 break; 1338 case APIC_PROCPRI: 1339 apic_update_ppr(apic); 1340 val = kvm_lapic_get_reg(apic, offset); 1341 break; 1342 case APIC_TASKPRI: 1343 report_tpr_access(apic, false); 1344 fallthrough; 1345 default: 1346 val = kvm_lapic_get_reg(apic, offset); 1347 break; 1348 } 1349 1350 return val; 1351 } 1352 1353 static inline struct kvm_lapic *to_lapic(struct kvm_io_device *dev) 1354 { 1355 return container_of(dev, struct kvm_lapic, dev); 1356 } 1357 1358 #define APIC_REG_MASK(reg) (1ull << ((reg) >> 4)) 1359 #define APIC_REGS_MASK(first, count) \ 1360 (APIC_REG_MASK(first) * ((1ull << (count)) - 1)) 1361 1362 int kvm_lapic_reg_read(struct kvm_lapic *apic, u32 offset, int len, 1363 void *data) 1364 { 1365 unsigned char alignment = offset & 0xf; 1366 u32 result; 1367 /* this bitmask has a bit cleared for each reserved register */ 1368 u64 valid_reg_mask = 1369 APIC_REG_MASK(APIC_ID) | 1370 APIC_REG_MASK(APIC_LVR) | 1371 APIC_REG_MASK(APIC_TASKPRI) | 1372 APIC_REG_MASK(APIC_PROCPRI) | 1373 APIC_REG_MASK(APIC_LDR) | 1374 APIC_REG_MASK(APIC_DFR) | 1375 APIC_REG_MASK(APIC_SPIV) | 1376 APIC_REGS_MASK(APIC_ISR, APIC_ISR_NR) | 1377 APIC_REGS_MASK(APIC_TMR, APIC_ISR_NR) | 1378 APIC_REGS_MASK(APIC_IRR, APIC_ISR_NR) | 1379 APIC_REG_MASK(APIC_ESR) | 1380 APIC_REG_MASK(APIC_ICR) | 1381 APIC_REG_MASK(APIC_ICR2) | 1382 APIC_REG_MASK(APIC_LVTT) | 1383 APIC_REG_MASK(APIC_LVTTHMR) | 1384 APIC_REG_MASK(APIC_LVTPC) | 1385 APIC_REG_MASK(APIC_LVT0) | 1386 APIC_REG_MASK(APIC_LVT1) | 1387 APIC_REG_MASK(APIC_LVTERR) | 1388 APIC_REG_MASK(APIC_TMICT) | 1389 APIC_REG_MASK(APIC_TMCCT) | 1390 APIC_REG_MASK(APIC_TDCR); 1391 1392 /* ARBPRI is not valid on x2APIC */ 1393 if (!apic_x2apic_mode(apic)) 1394 valid_reg_mask |= APIC_REG_MASK(APIC_ARBPRI); 1395 1396 if (offset > 0x3f0 || !(valid_reg_mask & APIC_REG_MASK(offset))) 1397 return 1; 1398 1399 result = __apic_read(apic, offset & ~0xf); 1400 1401 trace_kvm_apic_read(offset, result); 1402 1403 switch (len) { 1404 case 1: 1405 case 2: 1406 case 4: 1407 memcpy(data, (char *)&result + alignment, len); 1408 break; 1409 default: 1410 printk(KERN_ERR "Local APIC read with len = %x, " 1411 "should be 1,2, or 4 instead\n", len); 1412 break; 1413 } 1414 return 0; 1415 } 1416 EXPORT_SYMBOL_GPL(kvm_lapic_reg_read); 1417 1418 static int apic_mmio_in_range(struct kvm_lapic *apic, gpa_t addr) 1419 { 1420 return addr >= apic->base_address && 1421 addr < apic->base_address + LAPIC_MMIO_LENGTH; 1422 } 1423 1424 static int apic_mmio_read(struct kvm_vcpu *vcpu, struct kvm_io_device *this, 1425 gpa_t address, int len, void *data) 1426 { 1427 struct kvm_lapic *apic = to_lapic(this); 1428 u32 offset = address - apic->base_address; 1429 1430 if (!apic_mmio_in_range(apic, address)) 1431 return -EOPNOTSUPP; 1432 1433 if (!kvm_apic_hw_enabled(apic) || apic_x2apic_mode(apic)) { 1434 if (!kvm_check_has_quirk(vcpu->kvm, 1435 KVM_X86_QUIRK_LAPIC_MMIO_HOLE)) 1436 return -EOPNOTSUPP; 1437 1438 memset(data, 0xff, len); 1439 return 0; 1440 } 1441 1442 kvm_lapic_reg_read(apic, offset, len, data); 1443 1444 return 0; 1445 } 1446 1447 static void update_divide_count(struct kvm_lapic *apic) 1448 { 1449 u32 tmp1, tmp2, tdcr; 1450 1451 tdcr = kvm_lapic_get_reg(apic, APIC_TDCR); 1452 tmp1 = tdcr & 0xf; 1453 tmp2 = ((tmp1 & 0x3) | ((tmp1 & 0x8) >> 1)) + 1; 1454 apic->divide_count = 0x1 << (tmp2 & 0x7); 1455 } 1456 1457 static void limit_periodic_timer_frequency(struct kvm_lapic *apic) 1458 { 1459 /* 1460 * Do not allow the guest to program periodic timers with small 1461 * interval, since the hrtimers are not throttled by the host 1462 * scheduler. 1463 */ 1464 if (apic_lvtt_period(apic) && apic->lapic_timer.period) { 1465 s64 min_period = min_timer_period_us * 1000LL; 1466 1467 if (apic->lapic_timer.period < min_period) { 1468 pr_info_ratelimited( 1469 "kvm: vcpu %i: requested %lld ns " 1470 "lapic timer period limited to %lld ns\n", 1471 apic->vcpu->vcpu_id, 1472 apic->lapic_timer.period, min_period); 1473 apic->lapic_timer.period = min_period; 1474 } 1475 } 1476 } 1477 1478 static void cancel_hv_timer(struct kvm_lapic *apic); 1479 1480 static void apic_update_lvtt(struct kvm_lapic *apic) 1481 { 1482 u32 timer_mode = kvm_lapic_get_reg(apic, APIC_LVTT) & 1483 apic->lapic_timer.timer_mode_mask; 1484 1485 if (apic->lapic_timer.timer_mode != timer_mode) { 1486 if (apic_lvtt_tscdeadline(apic) != (timer_mode == 1487 APIC_LVT_TIMER_TSCDEADLINE)) { 1488 hrtimer_cancel(&apic->lapic_timer.timer); 1489 preempt_disable(); 1490 if (apic->lapic_timer.hv_timer_in_use) 1491 cancel_hv_timer(apic); 1492 preempt_enable(); 1493 kvm_lapic_set_reg(apic, APIC_TMICT, 0); 1494 apic->lapic_timer.period = 0; 1495 apic->lapic_timer.tscdeadline = 0; 1496 } 1497 apic->lapic_timer.timer_mode = timer_mode; 1498 limit_periodic_timer_frequency(apic); 1499 } 1500 } 1501 1502 /* 1503 * On APICv, this test will cause a busy wait 1504 * during a higher-priority task. 1505 */ 1506 1507 static bool lapic_timer_int_injected(struct kvm_vcpu *vcpu) 1508 { 1509 struct kvm_lapic *apic = vcpu->arch.apic; 1510 u32 reg = kvm_lapic_get_reg(apic, APIC_LVTT); 1511 1512 if (kvm_apic_hw_enabled(apic)) { 1513 int vec = reg & APIC_VECTOR_MASK; 1514 void *bitmap = apic->regs + APIC_ISR; 1515 1516 if (vcpu->arch.apicv_active) 1517 bitmap = apic->regs + APIC_IRR; 1518 1519 if (apic_test_vector(vec, bitmap)) 1520 return true; 1521 } 1522 return false; 1523 } 1524 1525 static inline void __wait_lapic_expire(struct kvm_vcpu *vcpu, u64 guest_cycles) 1526 { 1527 u64 timer_advance_ns = vcpu->arch.apic->lapic_timer.timer_advance_ns; 1528 1529 /* 1530 * If the guest TSC is running at a different ratio than the host, then 1531 * convert the delay to nanoseconds to achieve an accurate delay. Note 1532 * that __delay() uses delay_tsc whenever the hardware has TSC, thus 1533 * always for VMX enabled hardware. 1534 */ 1535 if (vcpu->arch.tsc_scaling_ratio == kvm_default_tsc_scaling_ratio) { 1536 __delay(min(guest_cycles, 1537 nsec_to_cycles(vcpu, timer_advance_ns))); 1538 } else { 1539 u64 delay_ns = guest_cycles * 1000000ULL; 1540 do_div(delay_ns, vcpu->arch.virtual_tsc_khz); 1541 ndelay(min_t(u32, delay_ns, timer_advance_ns)); 1542 } 1543 } 1544 1545 static inline void adjust_lapic_timer_advance(struct kvm_vcpu *vcpu, 1546 s64 advance_expire_delta) 1547 { 1548 struct kvm_lapic *apic = vcpu->arch.apic; 1549 u32 timer_advance_ns = apic->lapic_timer.timer_advance_ns; 1550 u64 ns; 1551 1552 /* Do not adjust for tiny fluctuations or large random spikes. */ 1553 if (abs(advance_expire_delta) > LAPIC_TIMER_ADVANCE_ADJUST_MAX || 1554 abs(advance_expire_delta) < LAPIC_TIMER_ADVANCE_ADJUST_MIN) 1555 return; 1556 1557 /* too early */ 1558 if (advance_expire_delta < 0) { 1559 ns = -advance_expire_delta * 1000000ULL; 1560 do_div(ns, vcpu->arch.virtual_tsc_khz); 1561 timer_advance_ns -= ns/LAPIC_TIMER_ADVANCE_ADJUST_STEP; 1562 } else { 1563 /* too late */ 1564 ns = advance_expire_delta * 1000000ULL; 1565 do_div(ns, vcpu->arch.virtual_tsc_khz); 1566 timer_advance_ns += ns/LAPIC_TIMER_ADVANCE_ADJUST_STEP; 1567 } 1568 1569 if (unlikely(timer_advance_ns > LAPIC_TIMER_ADVANCE_NS_MAX)) 1570 timer_advance_ns = LAPIC_TIMER_ADVANCE_NS_INIT; 1571 apic->lapic_timer.timer_advance_ns = timer_advance_ns; 1572 } 1573 1574 static void __kvm_wait_lapic_expire(struct kvm_vcpu *vcpu) 1575 { 1576 struct kvm_lapic *apic = vcpu->arch.apic; 1577 u64 guest_tsc, tsc_deadline; 1578 1579 if (apic->lapic_timer.expired_tscdeadline == 0) 1580 return; 1581 1582 tsc_deadline = apic->lapic_timer.expired_tscdeadline; 1583 apic->lapic_timer.expired_tscdeadline = 0; 1584 guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc()); 1585 apic->lapic_timer.advance_expire_delta = guest_tsc - tsc_deadline; 1586 1587 if (guest_tsc < tsc_deadline) 1588 __wait_lapic_expire(vcpu, tsc_deadline - guest_tsc); 1589 1590 if (lapic_timer_advance_dynamic) 1591 adjust_lapic_timer_advance(vcpu, apic->lapic_timer.advance_expire_delta); 1592 } 1593 1594 void kvm_wait_lapic_expire(struct kvm_vcpu *vcpu) 1595 { 1596 if (lapic_timer_int_injected(vcpu)) 1597 __kvm_wait_lapic_expire(vcpu); 1598 } 1599 EXPORT_SYMBOL_GPL(kvm_wait_lapic_expire); 1600 1601 static void kvm_apic_inject_pending_timer_irqs(struct kvm_lapic *apic) 1602 { 1603 struct kvm_timer *ktimer = &apic->lapic_timer; 1604 1605 kvm_apic_local_deliver(apic, APIC_LVTT); 1606 if (apic_lvtt_tscdeadline(apic)) { 1607 ktimer->tscdeadline = 0; 1608 } else if (apic_lvtt_oneshot(apic)) { 1609 ktimer->tscdeadline = 0; 1610 ktimer->target_expiration = 0; 1611 } 1612 } 1613 1614 static void apic_timer_expired(struct kvm_lapic *apic, bool from_timer_fn) 1615 { 1616 struct kvm_vcpu *vcpu = apic->vcpu; 1617 struct kvm_timer *ktimer = &apic->lapic_timer; 1618 1619 if (atomic_read(&apic->lapic_timer.pending)) 1620 return; 1621 1622 if (apic_lvtt_tscdeadline(apic) || ktimer->hv_timer_in_use) 1623 ktimer->expired_tscdeadline = ktimer->tscdeadline; 1624 1625 if (!from_timer_fn && vcpu->arch.apicv_active) { 1626 WARN_ON(kvm_get_running_vcpu() != vcpu); 1627 kvm_apic_inject_pending_timer_irqs(apic); 1628 return; 1629 } 1630 1631 if (kvm_use_posted_timer_interrupt(apic->vcpu)) { 1632 if (apic->lapic_timer.timer_advance_ns) 1633 __kvm_wait_lapic_expire(vcpu); 1634 kvm_apic_inject_pending_timer_irqs(apic); 1635 return; 1636 } 1637 1638 atomic_inc(&apic->lapic_timer.pending); 1639 kvm_set_pending_timer(vcpu); 1640 } 1641 1642 static void start_sw_tscdeadline(struct kvm_lapic *apic) 1643 { 1644 struct kvm_timer *ktimer = &apic->lapic_timer; 1645 u64 guest_tsc, tscdeadline = ktimer->tscdeadline; 1646 u64 ns = 0; 1647 ktime_t expire; 1648 struct kvm_vcpu *vcpu = apic->vcpu; 1649 unsigned long this_tsc_khz = vcpu->arch.virtual_tsc_khz; 1650 unsigned long flags; 1651 ktime_t now; 1652 1653 if (unlikely(!tscdeadline || !this_tsc_khz)) 1654 return; 1655 1656 local_irq_save(flags); 1657 1658 now = ktime_get(); 1659 guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc()); 1660 1661 ns = (tscdeadline - guest_tsc) * 1000000ULL; 1662 do_div(ns, this_tsc_khz); 1663 1664 if (likely(tscdeadline > guest_tsc) && 1665 likely(ns > apic->lapic_timer.timer_advance_ns)) { 1666 expire = ktime_add_ns(now, ns); 1667 expire = ktime_sub_ns(expire, ktimer->timer_advance_ns); 1668 hrtimer_start(&ktimer->timer, expire, HRTIMER_MODE_ABS_HARD); 1669 } else 1670 apic_timer_expired(apic, false); 1671 1672 local_irq_restore(flags); 1673 } 1674 1675 static inline u64 tmict_to_ns(struct kvm_lapic *apic, u32 tmict) 1676 { 1677 return (u64)tmict * APIC_BUS_CYCLE_NS * (u64)apic->divide_count; 1678 } 1679 1680 static void update_target_expiration(struct kvm_lapic *apic, uint32_t old_divisor) 1681 { 1682 ktime_t now, remaining; 1683 u64 ns_remaining_old, ns_remaining_new; 1684 1685 apic->lapic_timer.period = 1686 tmict_to_ns(apic, kvm_lapic_get_reg(apic, APIC_TMICT)); 1687 limit_periodic_timer_frequency(apic); 1688 1689 now = ktime_get(); 1690 remaining = ktime_sub(apic->lapic_timer.target_expiration, now); 1691 if (ktime_to_ns(remaining) < 0) 1692 remaining = 0; 1693 1694 ns_remaining_old = ktime_to_ns(remaining); 1695 ns_remaining_new = mul_u64_u32_div(ns_remaining_old, 1696 apic->divide_count, old_divisor); 1697 1698 apic->lapic_timer.tscdeadline += 1699 nsec_to_cycles(apic->vcpu, ns_remaining_new) - 1700 nsec_to_cycles(apic->vcpu, ns_remaining_old); 1701 apic->lapic_timer.target_expiration = ktime_add_ns(now, ns_remaining_new); 1702 } 1703 1704 static bool set_target_expiration(struct kvm_lapic *apic, u32 count_reg) 1705 { 1706 ktime_t now; 1707 u64 tscl = rdtsc(); 1708 s64 deadline; 1709 1710 now = ktime_get(); 1711 apic->lapic_timer.period = 1712 tmict_to_ns(apic, kvm_lapic_get_reg(apic, APIC_TMICT)); 1713 1714 if (!apic->lapic_timer.period) { 1715 apic->lapic_timer.tscdeadline = 0; 1716 return false; 1717 } 1718 1719 limit_periodic_timer_frequency(apic); 1720 deadline = apic->lapic_timer.period; 1721 1722 if (apic_lvtt_period(apic) || apic_lvtt_oneshot(apic)) { 1723 if (unlikely(count_reg != APIC_TMICT)) { 1724 deadline = tmict_to_ns(apic, 1725 kvm_lapic_get_reg(apic, count_reg)); 1726 if (unlikely(deadline <= 0)) 1727 deadline = apic->lapic_timer.period; 1728 else if (unlikely(deadline > apic->lapic_timer.period)) { 1729 pr_info_ratelimited( 1730 "kvm: vcpu %i: requested lapic timer restore with " 1731 "starting count register %#x=%u (%lld ns) > initial count (%lld ns). " 1732 "Using initial count to start timer.\n", 1733 apic->vcpu->vcpu_id, 1734 count_reg, 1735 kvm_lapic_get_reg(apic, count_reg), 1736 deadline, apic->lapic_timer.period); 1737 kvm_lapic_set_reg(apic, count_reg, 0); 1738 deadline = apic->lapic_timer.period; 1739 } 1740 } 1741 } 1742 1743 apic->lapic_timer.tscdeadline = kvm_read_l1_tsc(apic->vcpu, tscl) + 1744 nsec_to_cycles(apic->vcpu, deadline); 1745 apic->lapic_timer.target_expiration = ktime_add_ns(now, deadline); 1746 1747 return true; 1748 } 1749 1750 static void advance_periodic_target_expiration(struct kvm_lapic *apic) 1751 { 1752 ktime_t now = ktime_get(); 1753 u64 tscl = rdtsc(); 1754 ktime_t delta; 1755 1756 /* 1757 * Synchronize both deadlines to the same time source or 1758 * differences in the periods (caused by differences in the 1759 * underlying clocks or numerical approximation errors) will 1760 * cause the two to drift apart over time as the errors 1761 * accumulate. 1762 */ 1763 apic->lapic_timer.target_expiration = 1764 ktime_add_ns(apic->lapic_timer.target_expiration, 1765 apic->lapic_timer.period); 1766 delta = ktime_sub(apic->lapic_timer.target_expiration, now); 1767 apic->lapic_timer.tscdeadline = kvm_read_l1_tsc(apic->vcpu, tscl) + 1768 nsec_to_cycles(apic->vcpu, delta); 1769 } 1770 1771 static void start_sw_period(struct kvm_lapic *apic) 1772 { 1773 if (!apic->lapic_timer.period) 1774 return; 1775 1776 if (ktime_after(ktime_get(), 1777 apic->lapic_timer.target_expiration)) { 1778 apic_timer_expired(apic, false); 1779 1780 if (apic_lvtt_oneshot(apic)) 1781 return; 1782 1783 advance_periodic_target_expiration(apic); 1784 } 1785 1786 hrtimer_start(&apic->lapic_timer.timer, 1787 apic->lapic_timer.target_expiration, 1788 HRTIMER_MODE_ABS_HARD); 1789 } 1790 1791 bool kvm_lapic_hv_timer_in_use(struct kvm_vcpu *vcpu) 1792 { 1793 if (!lapic_in_kernel(vcpu)) 1794 return false; 1795 1796 return vcpu->arch.apic->lapic_timer.hv_timer_in_use; 1797 } 1798 EXPORT_SYMBOL_GPL(kvm_lapic_hv_timer_in_use); 1799 1800 static void cancel_hv_timer(struct kvm_lapic *apic) 1801 { 1802 WARN_ON(preemptible()); 1803 WARN_ON(!apic->lapic_timer.hv_timer_in_use); 1804 kvm_x86_ops.cancel_hv_timer(apic->vcpu); 1805 apic->lapic_timer.hv_timer_in_use = false; 1806 } 1807 1808 static bool start_hv_timer(struct kvm_lapic *apic) 1809 { 1810 struct kvm_timer *ktimer = &apic->lapic_timer; 1811 struct kvm_vcpu *vcpu = apic->vcpu; 1812 bool expired; 1813 1814 WARN_ON(preemptible()); 1815 if (!kvm_can_use_hv_timer(vcpu)) 1816 return false; 1817 1818 if (!ktimer->tscdeadline) 1819 return false; 1820 1821 if (kvm_x86_ops.set_hv_timer(vcpu, ktimer->tscdeadline, &expired)) 1822 return false; 1823 1824 ktimer->hv_timer_in_use = true; 1825 hrtimer_cancel(&ktimer->timer); 1826 1827 /* 1828 * To simplify handling the periodic timer, leave the hv timer running 1829 * even if the deadline timer has expired, i.e. rely on the resulting 1830 * VM-Exit to recompute the periodic timer's target expiration. 1831 */ 1832 if (!apic_lvtt_period(apic)) { 1833 /* 1834 * Cancel the hv timer if the sw timer fired while the hv timer 1835 * was being programmed, or if the hv timer itself expired. 1836 */ 1837 if (atomic_read(&ktimer->pending)) { 1838 cancel_hv_timer(apic); 1839 } else if (expired) { 1840 apic_timer_expired(apic, false); 1841 cancel_hv_timer(apic); 1842 } 1843 } 1844 1845 trace_kvm_hv_timer_state(vcpu->vcpu_id, ktimer->hv_timer_in_use); 1846 1847 return true; 1848 } 1849 1850 static void start_sw_timer(struct kvm_lapic *apic) 1851 { 1852 struct kvm_timer *ktimer = &apic->lapic_timer; 1853 1854 WARN_ON(preemptible()); 1855 if (apic->lapic_timer.hv_timer_in_use) 1856 cancel_hv_timer(apic); 1857 if (!apic_lvtt_period(apic) && atomic_read(&ktimer->pending)) 1858 return; 1859 1860 if (apic_lvtt_period(apic) || apic_lvtt_oneshot(apic)) 1861 start_sw_period(apic); 1862 else if (apic_lvtt_tscdeadline(apic)) 1863 start_sw_tscdeadline(apic); 1864 trace_kvm_hv_timer_state(apic->vcpu->vcpu_id, false); 1865 } 1866 1867 static void restart_apic_timer(struct kvm_lapic *apic) 1868 { 1869 preempt_disable(); 1870 1871 if (!apic_lvtt_period(apic) && atomic_read(&apic->lapic_timer.pending)) 1872 goto out; 1873 1874 if (!start_hv_timer(apic)) 1875 start_sw_timer(apic); 1876 out: 1877 preempt_enable(); 1878 } 1879 1880 void kvm_lapic_expired_hv_timer(struct kvm_vcpu *vcpu) 1881 { 1882 struct kvm_lapic *apic = vcpu->arch.apic; 1883 1884 preempt_disable(); 1885 /* If the preempt notifier has already run, it also called apic_timer_expired */ 1886 if (!apic->lapic_timer.hv_timer_in_use) 1887 goto out; 1888 WARN_ON(rcuwait_active(&vcpu->wait)); 1889 cancel_hv_timer(apic); 1890 apic_timer_expired(apic, false); 1891 1892 if (apic_lvtt_period(apic) && apic->lapic_timer.period) { 1893 advance_periodic_target_expiration(apic); 1894 restart_apic_timer(apic); 1895 } 1896 out: 1897 preempt_enable(); 1898 } 1899 EXPORT_SYMBOL_GPL(kvm_lapic_expired_hv_timer); 1900 1901 void kvm_lapic_switch_to_hv_timer(struct kvm_vcpu *vcpu) 1902 { 1903 restart_apic_timer(vcpu->arch.apic); 1904 } 1905 EXPORT_SYMBOL_GPL(kvm_lapic_switch_to_hv_timer); 1906 1907 void kvm_lapic_switch_to_sw_timer(struct kvm_vcpu *vcpu) 1908 { 1909 struct kvm_lapic *apic = vcpu->arch.apic; 1910 1911 preempt_disable(); 1912 /* Possibly the TSC deadline timer is not enabled yet */ 1913 if (apic->lapic_timer.hv_timer_in_use) 1914 start_sw_timer(apic); 1915 preempt_enable(); 1916 } 1917 EXPORT_SYMBOL_GPL(kvm_lapic_switch_to_sw_timer); 1918 1919 void kvm_lapic_restart_hv_timer(struct kvm_vcpu *vcpu) 1920 { 1921 struct kvm_lapic *apic = vcpu->arch.apic; 1922 1923 WARN_ON(!apic->lapic_timer.hv_timer_in_use); 1924 restart_apic_timer(apic); 1925 } 1926 1927 static void __start_apic_timer(struct kvm_lapic *apic, u32 count_reg) 1928 { 1929 atomic_set(&apic->lapic_timer.pending, 0); 1930 1931 if ((apic_lvtt_period(apic) || apic_lvtt_oneshot(apic)) 1932 && !set_target_expiration(apic, count_reg)) 1933 return; 1934 1935 restart_apic_timer(apic); 1936 } 1937 1938 static void start_apic_timer(struct kvm_lapic *apic) 1939 { 1940 __start_apic_timer(apic, APIC_TMICT); 1941 } 1942 1943 static void apic_manage_nmi_watchdog(struct kvm_lapic *apic, u32 lvt0_val) 1944 { 1945 bool lvt0_in_nmi_mode = apic_lvt_nmi_mode(lvt0_val); 1946 1947 if (apic->lvt0_in_nmi_mode != lvt0_in_nmi_mode) { 1948 apic->lvt0_in_nmi_mode = lvt0_in_nmi_mode; 1949 if (lvt0_in_nmi_mode) { 1950 atomic_inc(&apic->vcpu->kvm->arch.vapics_in_nmi_mode); 1951 } else 1952 atomic_dec(&apic->vcpu->kvm->arch.vapics_in_nmi_mode); 1953 } 1954 } 1955 1956 int kvm_lapic_reg_write(struct kvm_lapic *apic, u32 reg, u32 val) 1957 { 1958 int ret = 0; 1959 1960 trace_kvm_apic_write(reg, val); 1961 1962 switch (reg) { 1963 case APIC_ID: /* Local APIC ID */ 1964 if (!apic_x2apic_mode(apic)) 1965 kvm_apic_set_xapic_id(apic, val >> 24); 1966 else 1967 ret = 1; 1968 break; 1969 1970 case APIC_TASKPRI: 1971 report_tpr_access(apic, true); 1972 apic_set_tpr(apic, val & 0xff); 1973 break; 1974 1975 case APIC_EOI: 1976 apic_set_eoi(apic); 1977 break; 1978 1979 case APIC_LDR: 1980 if (!apic_x2apic_mode(apic)) 1981 kvm_apic_set_ldr(apic, val & APIC_LDR_MASK); 1982 else 1983 ret = 1; 1984 break; 1985 1986 case APIC_DFR: 1987 if (!apic_x2apic_mode(apic)) { 1988 kvm_lapic_set_reg(apic, APIC_DFR, val | 0x0FFFFFFF); 1989 atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY); 1990 } else 1991 ret = 1; 1992 break; 1993 1994 case APIC_SPIV: { 1995 u32 mask = 0x3ff; 1996 if (kvm_lapic_get_reg(apic, APIC_LVR) & APIC_LVR_DIRECTED_EOI) 1997 mask |= APIC_SPIV_DIRECTED_EOI; 1998 apic_set_spiv(apic, val & mask); 1999 if (!(val & APIC_SPIV_APIC_ENABLED)) { 2000 int i; 2001 u32 lvt_val; 2002 2003 for (i = 0; i < KVM_APIC_LVT_NUM; i++) { 2004 lvt_val = kvm_lapic_get_reg(apic, 2005 APIC_LVTT + 0x10 * i); 2006 kvm_lapic_set_reg(apic, APIC_LVTT + 0x10 * i, 2007 lvt_val | APIC_LVT_MASKED); 2008 } 2009 apic_update_lvtt(apic); 2010 atomic_set(&apic->lapic_timer.pending, 0); 2011 2012 } 2013 break; 2014 } 2015 case APIC_ICR: 2016 /* No delay here, so we always clear the pending bit */ 2017 val &= ~(1 << 12); 2018 kvm_apic_send_ipi(apic, val, kvm_lapic_get_reg(apic, APIC_ICR2)); 2019 kvm_lapic_set_reg(apic, APIC_ICR, val); 2020 break; 2021 2022 case APIC_ICR2: 2023 if (!apic_x2apic_mode(apic)) 2024 val &= 0xff000000; 2025 kvm_lapic_set_reg(apic, APIC_ICR2, val); 2026 break; 2027 2028 case APIC_LVT0: 2029 apic_manage_nmi_watchdog(apic, val); 2030 fallthrough; 2031 case APIC_LVTTHMR: 2032 case APIC_LVTPC: 2033 case APIC_LVT1: 2034 case APIC_LVTERR: { 2035 /* TODO: Check vector */ 2036 size_t size; 2037 u32 index; 2038 2039 if (!kvm_apic_sw_enabled(apic)) 2040 val |= APIC_LVT_MASKED; 2041 size = ARRAY_SIZE(apic_lvt_mask); 2042 index = array_index_nospec( 2043 (reg - APIC_LVTT) >> 4, size); 2044 val &= apic_lvt_mask[index]; 2045 kvm_lapic_set_reg(apic, reg, val); 2046 break; 2047 } 2048 2049 case APIC_LVTT: 2050 if (!kvm_apic_sw_enabled(apic)) 2051 val |= APIC_LVT_MASKED; 2052 val &= (apic_lvt_mask[0] | apic->lapic_timer.timer_mode_mask); 2053 kvm_lapic_set_reg(apic, APIC_LVTT, val); 2054 apic_update_lvtt(apic); 2055 break; 2056 2057 case APIC_TMICT: 2058 if (apic_lvtt_tscdeadline(apic)) 2059 break; 2060 2061 hrtimer_cancel(&apic->lapic_timer.timer); 2062 kvm_lapic_set_reg(apic, APIC_TMICT, val); 2063 start_apic_timer(apic); 2064 break; 2065 2066 case APIC_TDCR: { 2067 uint32_t old_divisor = apic->divide_count; 2068 2069 kvm_lapic_set_reg(apic, APIC_TDCR, val & 0xb); 2070 update_divide_count(apic); 2071 if (apic->divide_count != old_divisor && 2072 apic->lapic_timer.period) { 2073 hrtimer_cancel(&apic->lapic_timer.timer); 2074 update_target_expiration(apic, old_divisor); 2075 restart_apic_timer(apic); 2076 } 2077 break; 2078 } 2079 case APIC_ESR: 2080 if (apic_x2apic_mode(apic) && val != 0) 2081 ret = 1; 2082 break; 2083 2084 case APIC_SELF_IPI: 2085 if (apic_x2apic_mode(apic)) { 2086 kvm_lapic_reg_write(apic, APIC_ICR, 2087 APIC_DEST_SELF | (val & APIC_VECTOR_MASK)); 2088 } else 2089 ret = 1; 2090 break; 2091 default: 2092 ret = 1; 2093 break; 2094 } 2095 2096 kvm_recalculate_apic_map(apic->vcpu->kvm); 2097 2098 return ret; 2099 } 2100 EXPORT_SYMBOL_GPL(kvm_lapic_reg_write); 2101 2102 static int apic_mmio_write(struct kvm_vcpu *vcpu, struct kvm_io_device *this, 2103 gpa_t address, int len, const void *data) 2104 { 2105 struct kvm_lapic *apic = to_lapic(this); 2106 unsigned int offset = address - apic->base_address; 2107 u32 val; 2108 2109 if (!apic_mmio_in_range(apic, address)) 2110 return -EOPNOTSUPP; 2111 2112 if (!kvm_apic_hw_enabled(apic) || apic_x2apic_mode(apic)) { 2113 if (!kvm_check_has_quirk(vcpu->kvm, 2114 KVM_X86_QUIRK_LAPIC_MMIO_HOLE)) 2115 return -EOPNOTSUPP; 2116 2117 return 0; 2118 } 2119 2120 /* 2121 * APIC register must be aligned on 128-bits boundary. 2122 * 32/64/128 bits registers must be accessed thru 32 bits. 2123 * Refer SDM 8.4.1 2124 */ 2125 if (len != 4 || (offset & 0xf)) 2126 return 0; 2127 2128 val = *(u32*)data; 2129 2130 kvm_lapic_reg_write(apic, offset & 0xff0, val); 2131 2132 return 0; 2133 } 2134 2135 void kvm_lapic_set_eoi(struct kvm_vcpu *vcpu) 2136 { 2137 kvm_lapic_reg_write(vcpu->arch.apic, APIC_EOI, 0); 2138 } 2139 EXPORT_SYMBOL_GPL(kvm_lapic_set_eoi); 2140 2141 /* emulate APIC access in a trap manner */ 2142 void kvm_apic_write_nodecode(struct kvm_vcpu *vcpu, u32 offset) 2143 { 2144 u32 val = 0; 2145 2146 /* hw has done the conditional check and inst decode */ 2147 offset &= 0xff0; 2148 2149 kvm_lapic_reg_read(vcpu->arch.apic, offset, 4, &val); 2150 2151 /* TODO: optimize to just emulate side effect w/o one more write */ 2152 kvm_lapic_reg_write(vcpu->arch.apic, offset, val); 2153 } 2154 EXPORT_SYMBOL_GPL(kvm_apic_write_nodecode); 2155 2156 void kvm_free_lapic(struct kvm_vcpu *vcpu) 2157 { 2158 struct kvm_lapic *apic = vcpu->arch.apic; 2159 2160 if (!vcpu->arch.apic) 2161 return; 2162 2163 hrtimer_cancel(&apic->lapic_timer.timer); 2164 2165 if (!(vcpu->arch.apic_base & MSR_IA32_APICBASE_ENABLE)) 2166 static_key_slow_dec_deferred(&apic_hw_disabled); 2167 2168 if (!apic->sw_enabled) 2169 static_key_slow_dec_deferred(&apic_sw_disabled); 2170 2171 if (apic->regs) 2172 free_page((unsigned long)apic->regs); 2173 2174 kfree(apic); 2175 } 2176 2177 /* 2178 *---------------------------------------------------------------------- 2179 * LAPIC interface 2180 *---------------------------------------------------------------------- 2181 */ 2182 u64 kvm_get_lapic_tscdeadline_msr(struct kvm_vcpu *vcpu) 2183 { 2184 struct kvm_lapic *apic = vcpu->arch.apic; 2185 2186 if (!lapic_in_kernel(vcpu) || 2187 !apic_lvtt_tscdeadline(apic)) 2188 return 0; 2189 2190 return apic->lapic_timer.tscdeadline; 2191 } 2192 2193 void kvm_set_lapic_tscdeadline_msr(struct kvm_vcpu *vcpu, u64 data) 2194 { 2195 struct kvm_lapic *apic = vcpu->arch.apic; 2196 2197 if (!kvm_apic_present(vcpu) || apic_lvtt_oneshot(apic) || 2198 apic_lvtt_period(apic)) 2199 return; 2200 2201 hrtimer_cancel(&apic->lapic_timer.timer); 2202 apic->lapic_timer.tscdeadline = data; 2203 start_apic_timer(apic); 2204 } 2205 2206 void kvm_lapic_set_tpr(struct kvm_vcpu *vcpu, unsigned long cr8) 2207 { 2208 struct kvm_lapic *apic = vcpu->arch.apic; 2209 2210 apic_set_tpr(apic, ((cr8 & 0x0f) << 4) 2211 | (kvm_lapic_get_reg(apic, APIC_TASKPRI) & 4)); 2212 } 2213 2214 u64 kvm_lapic_get_cr8(struct kvm_vcpu *vcpu) 2215 { 2216 u64 tpr; 2217 2218 tpr = (u64) kvm_lapic_get_reg(vcpu->arch.apic, APIC_TASKPRI); 2219 2220 return (tpr & 0xf0) >> 4; 2221 } 2222 2223 void kvm_lapic_set_base(struct kvm_vcpu *vcpu, u64 value) 2224 { 2225 u64 old_value = vcpu->arch.apic_base; 2226 struct kvm_lapic *apic = vcpu->arch.apic; 2227 2228 if (!apic) 2229 value |= MSR_IA32_APICBASE_BSP; 2230 2231 vcpu->arch.apic_base = value; 2232 2233 if ((old_value ^ value) & MSR_IA32_APICBASE_ENABLE) 2234 kvm_update_cpuid_runtime(vcpu); 2235 2236 if (!apic) 2237 return; 2238 2239 /* update jump label if enable bit changes */ 2240 if ((old_value ^ value) & MSR_IA32_APICBASE_ENABLE) { 2241 if (value & MSR_IA32_APICBASE_ENABLE) { 2242 kvm_apic_set_xapic_id(apic, vcpu->vcpu_id); 2243 static_key_slow_dec_deferred(&apic_hw_disabled); 2244 } else { 2245 static_key_slow_inc(&apic_hw_disabled.key); 2246 atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY); 2247 } 2248 } 2249 2250 if (((old_value ^ value) & X2APIC_ENABLE) && (value & X2APIC_ENABLE)) 2251 kvm_apic_set_x2apic_id(apic, vcpu->vcpu_id); 2252 2253 if ((old_value ^ value) & (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE)) 2254 kvm_x86_ops.set_virtual_apic_mode(vcpu); 2255 2256 apic->base_address = apic->vcpu->arch.apic_base & 2257 MSR_IA32_APICBASE_BASE; 2258 2259 if ((value & MSR_IA32_APICBASE_ENABLE) && 2260 apic->base_address != APIC_DEFAULT_PHYS_BASE) 2261 pr_warn_once("APIC base relocation is unsupported by KVM"); 2262 } 2263 2264 void kvm_apic_update_apicv(struct kvm_vcpu *vcpu) 2265 { 2266 struct kvm_lapic *apic = vcpu->arch.apic; 2267 2268 if (vcpu->arch.apicv_active) { 2269 /* irr_pending is always true when apicv is activated. */ 2270 apic->irr_pending = true; 2271 apic->isr_count = 1; 2272 } else { 2273 apic->irr_pending = (apic_search_irr(apic) != -1); 2274 apic->isr_count = count_vectors(apic->regs + APIC_ISR); 2275 } 2276 } 2277 EXPORT_SYMBOL_GPL(kvm_apic_update_apicv); 2278 2279 void kvm_lapic_reset(struct kvm_vcpu *vcpu, bool init_event) 2280 { 2281 struct kvm_lapic *apic = vcpu->arch.apic; 2282 int i; 2283 2284 if (!apic) 2285 return; 2286 2287 /* Stop the timer in case it's a reset to an active apic */ 2288 hrtimer_cancel(&apic->lapic_timer.timer); 2289 2290 if (!init_event) { 2291 kvm_lapic_set_base(vcpu, APIC_DEFAULT_PHYS_BASE | 2292 MSR_IA32_APICBASE_ENABLE); 2293 kvm_apic_set_xapic_id(apic, vcpu->vcpu_id); 2294 } 2295 kvm_apic_set_version(apic->vcpu); 2296 2297 for (i = 0; i < KVM_APIC_LVT_NUM; i++) 2298 kvm_lapic_set_reg(apic, APIC_LVTT + 0x10 * i, APIC_LVT_MASKED); 2299 apic_update_lvtt(apic); 2300 if (kvm_vcpu_is_reset_bsp(vcpu) && 2301 kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_LINT0_REENABLED)) 2302 kvm_lapic_set_reg(apic, APIC_LVT0, 2303 SET_APIC_DELIVERY_MODE(0, APIC_MODE_EXTINT)); 2304 apic_manage_nmi_watchdog(apic, kvm_lapic_get_reg(apic, APIC_LVT0)); 2305 2306 kvm_lapic_set_reg(apic, APIC_DFR, 0xffffffffU); 2307 apic_set_spiv(apic, 0xff); 2308 kvm_lapic_set_reg(apic, APIC_TASKPRI, 0); 2309 if (!apic_x2apic_mode(apic)) 2310 kvm_apic_set_ldr(apic, 0); 2311 kvm_lapic_set_reg(apic, APIC_ESR, 0); 2312 kvm_lapic_set_reg(apic, APIC_ICR, 0); 2313 kvm_lapic_set_reg(apic, APIC_ICR2, 0); 2314 kvm_lapic_set_reg(apic, APIC_TDCR, 0); 2315 kvm_lapic_set_reg(apic, APIC_TMICT, 0); 2316 for (i = 0; i < 8; i++) { 2317 kvm_lapic_set_reg(apic, APIC_IRR + 0x10 * i, 0); 2318 kvm_lapic_set_reg(apic, APIC_ISR + 0x10 * i, 0); 2319 kvm_lapic_set_reg(apic, APIC_TMR + 0x10 * i, 0); 2320 } 2321 kvm_apic_update_apicv(vcpu); 2322 apic->highest_isr_cache = -1; 2323 update_divide_count(apic); 2324 atomic_set(&apic->lapic_timer.pending, 0); 2325 if (kvm_vcpu_is_bsp(vcpu)) 2326 kvm_lapic_set_base(vcpu, 2327 vcpu->arch.apic_base | MSR_IA32_APICBASE_BSP); 2328 vcpu->arch.pv_eoi.msr_val = 0; 2329 apic_update_ppr(apic); 2330 if (vcpu->arch.apicv_active) { 2331 kvm_x86_ops.apicv_post_state_restore(vcpu); 2332 kvm_x86_ops.hwapic_irr_update(vcpu, -1); 2333 kvm_x86_ops.hwapic_isr_update(vcpu, -1); 2334 } 2335 2336 vcpu->arch.apic_arb_prio = 0; 2337 vcpu->arch.apic_attention = 0; 2338 2339 kvm_recalculate_apic_map(vcpu->kvm); 2340 } 2341 2342 /* 2343 *---------------------------------------------------------------------- 2344 * timer interface 2345 *---------------------------------------------------------------------- 2346 */ 2347 2348 static bool lapic_is_periodic(struct kvm_lapic *apic) 2349 { 2350 return apic_lvtt_period(apic); 2351 } 2352 2353 int apic_has_pending_timer(struct kvm_vcpu *vcpu) 2354 { 2355 struct kvm_lapic *apic = vcpu->arch.apic; 2356 2357 if (apic_enabled(apic) && apic_lvt_enabled(apic, APIC_LVTT)) 2358 return atomic_read(&apic->lapic_timer.pending); 2359 2360 return 0; 2361 } 2362 2363 int kvm_apic_local_deliver(struct kvm_lapic *apic, int lvt_type) 2364 { 2365 u32 reg = kvm_lapic_get_reg(apic, lvt_type); 2366 int vector, mode, trig_mode; 2367 2368 if (kvm_apic_hw_enabled(apic) && !(reg & APIC_LVT_MASKED)) { 2369 vector = reg & APIC_VECTOR_MASK; 2370 mode = reg & APIC_MODE_MASK; 2371 trig_mode = reg & APIC_LVT_LEVEL_TRIGGER; 2372 return __apic_accept_irq(apic, mode, vector, 1, trig_mode, 2373 NULL); 2374 } 2375 return 0; 2376 } 2377 2378 void kvm_apic_nmi_wd_deliver(struct kvm_vcpu *vcpu) 2379 { 2380 struct kvm_lapic *apic = vcpu->arch.apic; 2381 2382 if (apic) 2383 kvm_apic_local_deliver(apic, APIC_LVT0); 2384 } 2385 2386 static const struct kvm_io_device_ops apic_mmio_ops = { 2387 .read = apic_mmio_read, 2388 .write = apic_mmio_write, 2389 }; 2390 2391 static enum hrtimer_restart apic_timer_fn(struct hrtimer *data) 2392 { 2393 struct kvm_timer *ktimer = container_of(data, struct kvm_timer, timer); 2394 struct kvm_lapic *apic = container_of(ktimer, struct kvm_lapic, lapic_timer); 2395 2396 apic_timer_expired(apic, true); 2397 2398 if (lapic_is_periodic(apic)) { 2399 advance_periodic_target_expiration(apic); 2400 hrtimer_add_expires_ns(&ktimer->timer, ktimer->period); 2401 return HRTIMER_RESTART; 2402 } else 2403 return HRTIMER_NORESTART; 2404 } 2405 2406 int kvm_create_lapic(struct kvm_vcpu *vcpu, int timer_advance_ns) 2407 { 2408 struct kvm_lapic *apic; 2409 2410 ASSERT(vcpu != NULL); 2411 2412 apic = kzalloc(sizeof(*apic), GFP_KERNEL_ACCOUNT); 2413 if (!apic) 2414 goto nomem; 2415 2416 vcpu->arch.apic = apic; 2417 2418 apic->regs = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT); 2419 if (!apic->regs) { 2420 printk(KERN_ERR "malloc apic regs error for vcpu %x\n", 2421 vcpu->vcpu_id); 2422 goto nomem_free_apic; 2423 } 2424 apic->vcpu = vcpu; 2425 2426 hrtimer_init(&apic->lapic_timer.timer, CLOCK_MONOTONIC, 2427 HRTIMER_MODE_ABS_HARD); 2428 apic->lapic_timer.timer.function = apic_timer_fn; 2429 if (timer_advance_ns == -1) { 2430 apic->lapic_timer.timer_advance_ns = LAPIC_TIMER_ADVANCE_NS_INIT; 2431 lapic_timer_advance_dynamic = true; 2432 } else { 2433 apic->lapic_timer.timer_advance_ns = timer_advance_ns; 2434 lapic_timer_advance_dynamic = false; 2435 } 2436 2437 /* 2438 * APIC is created enabled. This will prevent kvm_lapic_set_base from 2439 * thinking that APIC state has changed. 2440 */ 2441 vcpu->arch.apic_base = MSR_IA32_APICBASE_ENABLE; 2442 static_key_slow_inc(&apic_sw_disabled.key); /* sw disabled at reset */ 2443 kvm_iodevice_init(&apic->dev, &apic_mmio_ops); 2444 2445 return 0; 2446 nomem_free_apic: 2447 kfree(apic); 2448 vcpu->arch.apic = NULL; 2449 nomem: 2450 return -ENOMEM; 2451 } 2452 2453 int kvm_apic_has_interrupt(struct kvm_vcpu *vcpu) 2454 { 2455 struct kvm_lapic *apic = vcpu->arch.apic; 2456 u32 ppr; 2457 2458 if (!kvm_apic_hw_enabled(apic)) 2459 return -1; 2460 2461 __apic_update_ppr(apic, &ppr); 2462 return apic_has_interrupt_for_ppr(apic, ppr); 2463 } 2464 2465 int kvm_apic_accept_pic_intr(struct kvm_vcpu *vcpu) 2466 { 2467 u32 lvt0 = kvm_lapic_get_reg(vcpu->arch.apic, APIC_LVT0); 2468 2469 if (!kvm_apic_hw_enabled(vcpu->arch.apic)) 2470 return 1; 2471 if ((lvt0 & APIC_LVT_MASKED) == 0 && 2472 GET_APIC_DELIVERY_MODE(lvt0) == APIC_MODE_EXTINT) 2473 return 1; 2474 return 0; 2475 } 2476 2477 void kvm_inject_apic_timer_irqs(struct kvm_vcpu *vcpu) 2478 { 2479 struct kvm_lapic *apic = vcpu->arch.apic; 2480 2481 if (atomic_read(&apic->lapic_timer.pending) > 0) { 2482 kvm_apic_inject_pending_timer_irqs(apic); 2483 atomic_set(&apic->lapic_timer.pending, 0); 2484 } 2485 } 2486 2487 int kvm_get_apic_interrupt(struct kvm_vcpu *vcpu) 2488 { 2489 int vector = kvm_apic_has_interrupt(vcpu); 2490 struct kvm_lapic *apic = vcpu->arch.apic; 2491 u32 ppr; 2492 2493 if (vector == -1) 2494 return -1; 2495 2496 /* 2497 * We get here even with APIC virtualization enabled, if doing 2498 * nested virtualization and L1 runs with the "acknowledge interrupt 2499 * on exit" mode. Then we cannot inject the interrupt via RVI, 2500 * because the process would deliver it through the IDT. 2501 */ 2502 2503 apic_clear_irr(vector, apic); 2504 if (test_bit(vector, vcpu_to_synic(vcpu)->auto_eoi_bitmap)) { 2505 /* 2506 * For auto-EOI interrupts, there might be another pending 2507 * interrupt above PPR, so check whether to raise another 2508 * KVM_REQ_EVENT. 2509 */ 2510 apic_update_ppr(apic); 2511 } else { 2512 /* 2513 * For normal interrupts, PPR has been raised and there cannot 2514 * be a higher-priority pending interrupt---except if there was 2515 * a concurrent interrupt injection, but that would have 2516 * triggered KVM_REQ_EVENT already. 2517 */ 2518 apic_set_isr(vector, apic); 2519 __apic_update_ppr(apic, &ppr); 2520 } 2521 2522 return vector; 2523 } 2524 2525 static int kvm_apic_state_fixup(struct kvm_vcpu *vcpu, 2526 struct kvm_lapic_state *s, bool set) 2527 { 2528 if (apic_x2apic_mode(vcpu->arch.apic)) { 2529 u32 *id = (u32 *)(s->regs + APIC_ID); 2530 u32 *ldr = (u32 *)(s->regs + APIC_LDR); 2531 2532 if (vcpu->kvm->arch.x2apic_format) { 2533 if (*id != vcpu->vcpu_id) 2534 return -EINVAL; 2535 } else { 2536 if (set) 2537 *id >>= 24; 2538 else 2539 *id <<= 24; 2540 } 2541 2542 /* In x2APIC mode, the LDR is fixed and based on the id */ 2543 if (set) 2544 *ldr = kvm_apic_calc_x2apic_ldr(*id); 2545 } 2546 2547 return 0; 2548 } 2549 2550 int kvm_apic_get_state(struct kvm_vcpu *vcpu, struct kvm_lapic_state *s) 2551 { 2552 memcpy(s->regs, vcpu->arch.apic->regs, sizeof(*s)); 2553 2554 /* 2555 * Get calculated timer current count for remaining timer period (if 2556 * any) and store it in the returned register set. 2557 */ 2558 __kvm_lapic_set_reg(s->regs, APIC_TMCCT, 2559 __apic_read(vcpu->arch.apic, APIC_TMCCT)); 2560 2561 return kvm_apic_state_fixup(vcpu, s, false); 2562 } 2563 2564 int kvm_apic_set_state(struct kvm_vcpu *vcpu, struct kvm_lapic_state *s) 2565 { 2566 struct kvm_lapic *apic = vcpu->arch.apic; 2567 int r; 2568 2569 kvm_lapic_set_base(vcpu, vcpu->arch.apic_base); 2570 /* set SPIV separately to get count of SW disabled APICs right */ 2571 apic_set_spiv(apic, *((u32 *)(s->regs + APIC_SPIV))); 2572 2573 r = kvm_apic_state_fixup(vcpu, s, true); 2574 if (r) { 2575 kvm_recalculate_apic_map(vcpu->kvm); 2576 return r; 2577 } 2578 memcpy(vcpu->arch.apic->regs, s->regs, sizeof(*s)); 2579 2580 atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY); 2581 kvm_recalculate_apic_map(vcpu->kvm); 2582 kvm_apic_set_version(vcpu); 2583 2584 apic_update_ppr(apic); 2585 hrtimer_cancel(&apic->lapic_timer.timer); 2586 apic_update_lvtt(apic); 2587 apic_manage_nmi_watchdog(apic, kvm_lapic_get_reg(apic, APIC_LVT0)); 2588 update_divide_count(apic); 2589 __start_apic_timer(apic, APIC_TMCCT); 2590 kvm_apic_update_apicv(vcpu); 2591 apic->highest_isr_cache = -1; 2592 if (vcpu->arch.apicv_active) { 2593 kvm_x86_ops.apicv_post_state_restore(vcpu); 2594 kvm_x86_ops.hwapic_irr_update(vcpu, 2595 apic_find_highest_irr(apic)); 2596 kvm_x86_ops.hwapic_isr_update(vcpu, 2597 apic_find_highest_isr(apic)); 2598 } 2599 kvm_make_request(KVM_REQ_EVENT, vcpu); 2600 if (ioapic_in_kernel(vcpu->kvm)) 2601 kvm_rtc_eoi_tracking_restore_one(vcpu); 2602 2603 vcpu->arch.apic_arb_prio = 0; 2604 2605 return 0; 2606 } 2607 2608 void __kvm_migrate_apic_timer(struct kvm_vcpu *vcpu) 2609 { 2610 struct hrtimer *timer; 2611 2612 if (!lapic_in_kernel(vcpu) || 2613 kvm_can_post_timer_interrupt(vcpu)) 2614 return; 2615 2616 timer = &vcpu->arch.apic->lapic_timer.timer; 2617 if (hrtimer_cancel(timer)) 2618 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_HARD); 2619 } 2620 2621 /* 2622 * apic_sync_pv_eoi_from_guest - called on vmexit or cancel interrupt 2623 * 2624 * Detect whether guest triggered PV EOI since the 2625 * last entry. If yes, set EOI on guests's behalf. 2626 * Clear PV EOI in guest memory in any case. 2627 */ 2628 static void apic_sync_pv_eoi_from_guest(struct kvm_vcpu *vcpu, 2629 struct kvm_lapic *apic) 2630 { 2631 bool pending; 2632 int vector; 2633 /* 2634 * PV EOI state is derived from KVM_APIC_PV_EOI_PENDING in host 2635 * and KVM_PV_EOI_ENABLED in guest memory as follows: 2636 * 2637 * KVM_APIC_PV_EOI_PENDING is unset: 2638 * -> host disabled PV EOI. 2639 * KVM_APIC_PV_EOI_PENDING is set, KVM_PV_EOI_ENABLED is set: 2640 * -> host enabled PV EOI, guest did not execute EOI yet. 2641 * KVM_APIC_PV_EOI_PENDING is set, KVM_PV_EOI_ENABLED is unset: 2642 * -> host enabled PV EOI, guest executed EOI. 2643 */ 2644 BUG_ON(!pv_eoi_enabled(vcpu)); 2645 pending = pv_eoi_get_pending(vcpu); 2646 /* 2647 * Clear pending bit in any case: it will be set again on vmentry. 2648 * While this might not be ideal from performance point of view, 2649 * this makes sure pv eoi is only enabled when we know it's safe. 2650 */ 2651 pv_eoi_clr_pending(vcpu); 2652 if (pending) 2653 return; 2654 vector = apic_set_eoi(apic); 2655 trace_kvm_pv_eoi(apic, vector); 2656 } 2657 2658 void kvm_lapic_sync_from_vapic(struct kvm_vcpu *vcpu) 2659 { 2660 u32 data; 2661 2662 if (test_bit(KVM_APIC_PV_EOI_PENDING, &vcpu->arch.apic_attention)) 2663 apic_sync_pv_eoi_from_guest(vcpu, vcpu->arch.apic); 2664 2665 if (!test_bit(KVM_APIC_CHECK_VAPIC, &vcpu->arch.apic_attention)) 2666 return; 2667 2668 if (kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.apic->vapic_cache, &data, 2669 sizeof(u32))) 2670 return; 2671 2672 apic_set_tpr(vcpu->arch.apic, data & 0xff); 2673 } 2674 2675 /* 2676 * apic_sync_pv_eoi_to_guest - called before vmentry 2677 * 2678 * Detect whether it's safe to enable PV EOI and 2679 * if yes do so. 2680 */ 2681 static void apic_sync_pv_eoi_to_guest(struct kvm_vcpu *vcpu, 2682 struct kvm_lapic *apic) 2683 { 2684 if (!pv_eoi_enabled(vcpu) || 2685 /* IRR set or many bits in ISR: could be nested. */ 2686 apic->irr_pending || 2687 /* Cache not set: could be safe but we don't bother. */ 2688 apic->highest_isr_cache == -1 || 2689 /* Need EOI to update ioapic. */ 2690 kvm_ioapic_handles_vector(apic, apic->highest_isr_cache)) { 2691 /* 2692 * PV EOI was disabled by apic_sync_pv_eoi_from_guest 2693 * so we need not do anything here. 2694 */ 2695 return; 2696 } 2697 2698 pv_eoi_set_pending(apic->vcpu); 2699 } 2700 2701 void kvm_lapic_sync_to_vapic(struct kvm_vcpu *vcpu) 2702 { 2703 u32 data, tpr; 2704 int max_irr, max_isr; 2705 struct kvm_lapic *apic = vcpu->arch.apic; 2706 2707 apic_sync_pv_eoi_to_guest(vcpu, apic); 2708 2709 if (!test_bit(KVM_APIC_CHECK_VAPIC, &vcpu->arch.apic_attention)) 2710 return; 2711 2712 tpr = kvm_lapic_get_reg(apic, APIC_TASKPRI) & 0xff; 2713 max_irr = apic_find_highest_irr(apic); 2714 if (max_irr < 0) 2715 max_irr = 0; 2716 max_isr = apic_find_highest_isr(apic); 2717 if (max_isr < 0) 2718 max_isr = 0; 2719 data = (tpr & 0xff) | ((max_isr & 0xf0) << 8) | (max_irr << 24); 2720 2721 kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apic->vapic_cache, &data, 2722 sizeof(u32)); 2723 } 2724 2725 int kvm_lapic_set_vapic_addr(struct kvm_vcpu *vcpu, gpa_t vapic_addr) 2726 { 2727 if (vapic_addr) { 2728 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, 2729 &vcpu->arch.apic->vapic_cache, 2730 vapic_addr, sizeof(u32))) 2731 return -EINVAL; 2732 __set_bit(KVM_APIC_CHECK_VAPIC, &vcpu->arch.apic_attention); 2733 } else { 2734 __clear_bit(KVM_APIC_CHECK_VAPIC, &vcpu->arch.apic_attention); 2735 } 2736 2737 vcpu->arch.apic->vapic_addr = vapic_addr; 2738 return 0; 2739 } 2740 2741 int kvm_x2apic_msr_write(struct kvm_vcpu *vcpu, u32 msr, u64 data) 2742 { 2743 struct kvm_lapic *apic = vcpu->arch.apic; 2744 u32 reg = (msr - APIC_BASE_MSR) << 4; 2745 2746 if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(apic)) 2747 return 1; 2748 2749 if (reg == APIC_ICR2) 2750 return 1; 2751 2752 /* if this is ICR write vector before command */ 2753 if (reg == APIC_ICR) 2754 kvm_lapic_reg_write(apic, APIC_ICR2, (u32)(data >> 32)); 2755 return kvm_lapic_reg_write(apic, reg, (u32)data); 2756 } 2757 2758 int kvm_x2apic_msr_read(struct kvm_vcpu *vcpu, u32 msr, u64 *data) 2759 { 2760 struct kvm_lapic *apic = vcpu->arch.apic; 2761 u32 reg = (msr - APIC_BASE_MSR) << 4, low, high = 0; 2762 2763 if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(apic)) 2764 return 1; 2765 2766 if (reg == APIC_DFR || reg == APIC_ICR2) 2767 return 1; 2768 2769 if (kvm_lapic_reg_read(apic, reg, 4, &low)) 2770 return 1; 2771 if (reg == APIC_ICR) 2772 kvm_lapic_reg_read(apic, APIC_ICR2, 4, &high); 2773 2774 *data = (((u64)high) << 32) | low; 2775 2776 return 0; 2777 } 2778 2779 int kvm_hv_vapic_msr_write(struct kvm_vcpu *vcpu, u32 reg, u64 data) 2780 { 2781 struct kvm_lapic *apic = vcpu->arch.apic; 2782 2783 if (!lapic_in_kernel(vcpu)) 2784 return 1; 2785 2786 /* if this is ICR write vector before command */ 2787 if (reg == APIC_ICR) 2788 kvm_lapic_reg_write(apic, APIC_ICR2, (u32)(data >> 32)); 2789 return kvm_lapic_reg_write(apic, reg, (u32)data); 2790 } 2791 2792 int kvm_hv_vapic_msr_read(struct kvm_vcpu *vcpu, u32 reg, u64 *data) 2793 { 2794 struct kvm_lapic *apic = vcpu->arch.apic; 2795 u32 low, high = 0; 2796 2797 if (!lapic_in_kernel(vcpu)) 2798 return 1; 2799 2800 if (kvm_lapic_reg_read(apic, reg, 4, &low)) 2801 return 1; 2802 if (reg == APIC_ICR) 2803 kvm_lapic_reg_read(apic, APIC_ICR2, 4, &high); 2804 2805 *data = (((u64)high) << 32) | low; 2806 2807 return 0; 2808 } 2809 2810 int kvm_lapic_enable_pv_eoi(struct kvm_vcpu *vcpu, u64 data, unsigned long len) 2811 { 2812 u64 addr = data & ~KVM_MSR_ENABLED; 2813 struct gfn_to_hva_cache *ghc = &vcpu->arch.pv_eoi.data; 2814 unsigned long new_len; 2815 2816 if (!IS_ALIGNED(addr, 4)) 2817 return 1; 2818 2819 vcpu->arch.pv_eoi.msr_val = data; 2820 if (!pv_eoi_enabled(vcpu)) 2821 return 0; 2822 2823 if (addr == ghc->gpa && len <= ghc->len) 2824 new_len = ghc->len; 2825 else 2826 new_len = len; 2827 2828 return kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, addr, new_len); 2829 } 2830 2831 void kvm_apic_accept_events(struct kvm_vcpu *vcpu) 2832 { 2833 struct kvm_lapic *apic = vcpu->arch.apic; 2834 u8 sipi_vector; 2835 unsigned long pe; 2836 2837 if (!lapic_in_kernel(vcpu) || !apic->pending_events) 2838 return; 2839 2840 /* 2841 * INITs are latched while CPU is in specific states 2842 * (SMM, VMX non-root mode, SVM with GIF=0). 2843 * Because a CPU cannot be in these states immediately 2844 * after it has processed an INIT signal (and thus in 2845 * KVM_MP_STATE_INIT_RECEIVED state), just eat SIPIs 2846 * and leave the INIT pending. 2847 */ 2848 if (kvm_vcpu_latch_init(vcpu)) { 2849 WARN_ON_ONCE(vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED); 2850 if (test_bit(KVM_APIC_SIPI, &apic->pending_events)) 2851 clear_bit(KVM_APIC_SIPI, &apic->pending_events); 2852 return; 2853 } 2854 2855 pe = xchg(&apic->pending_events, 0); 2856 if (test_bit(KVM_APIC_INIT, &pe)) { 2857 kvm_vcpu_reset(vcpu, true); 2858 if (kvm_vcpu_is_bsp(apic->vcpu)) 2859 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 2860 else 2861 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED; 2862 } 2863 if (test_bit(KVM_APIC_SIPI, &pe) && 2864 vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) { 2865 /* evaluate pending_events before reading the vector */ 2866 smp_rmb(); 2867 sipi_vector = apic->sipi_vector; 2868 kvm_vcpu_deliver_sipi_vector(vcpu, sipi_vector); 2869 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 2870 } 2871 } 2872 2873 void kvm_lapic_init(void) 2874 { 2875 /* do not patch jump label more than once per second */ 2876 jump_label_rate_limit(&apic_hw_disabled, HZ); 2877 jump_label_rate_limit(&apic_sw_disabled, HZ); 2878 } 2879 2880 void kvm_lapic_exit(void) 2881 { 2882 static_key_deferred_flush(&apic_hw_disabled); 2883 static_key_deferred_flush(&apic_sw_disabled); 2884 } 2885