xref: /openbmc/linux/arch/x86/kvm/lapic.c (revision dce54888)
1 // SPDX-License-Identifier: GPL-2.0-only
2 
3 /*
4  * Local APIC virtualization
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright (C) 2007 Novell
8  * Copyright (C) 2007 Intel
9  * Copyright 2009 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Dor Laor <dor.laor@qumranet.com>
13  *   Gregory Haskins <ghaskins@novell.com>
14  *   Yaozu (Eddie) Dong <eddie.dong@intel.com>
15  *
16  * Based on Xen 3.1 code, Copyright (c) 2004, Intel Corporation.
17  */
18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
19 
20 #include <linux/kvm_host.h>
21 #include <linux/kvm.h>
22 #include <linux/mm.h>
23 #include <linux/highmem.h>
24 #include <linux/smp.h>
25 #include <linux/hrtimer.h>
26 #include <linux/io.h>
27 #include <linux/export.h>
28 #include <linux/math64.h>
29 #include <linux/slab.h>
30 #include <asm/processor.h>
31 #include <asm/mce.h>
32 #include <asm/msr.h>
33 #include <asm/page.h>
34 #include <asm/current.h>
35 #include <asm/apicdef.h>
36 #include <asm/delay.h>
37 #include <linux/atomic.h>
38 #include <linux/jump_label.h>
39 #include "kvm_cache_regs.h"
40 #include "irq.h"
41 #include "ioapic.h"
42 #include "trace.h"
43 #include "x86.h"
44 #include "cpuid.h"
45 #include "hyperv.h"
46 #include "smm.h"
47 
48 #ifndef CONFIG_X86_64
49 #define mod_64(x, y) ((x) - (y) * div64_u64(x, y))
50 #else
51 #define mod_64(x, y) ((x) % (y))
52 #endif
53 
54 #define PRId64 "d"
55 #define PRIx64 "llx"
56 #define PRIu64 "u"
57 #define PRIo64 "o"
58 
59 /* 14 is the version for Xeon and Pentium 8.4.8*/
60 #define APIC_VERSION			0x14UL
61 #define LAPIC_MMIO_LENGTH		(1 << 12)
62 /* followed define is not in apicdef.h */
63 #define MAX_APIC_VECTOR			256
64 #define APIC_VECTORS_PER_REG		32
65 
66 static bool lapic_timer_advance_dynamic __read_mostly;
67 #define LAPIC_TIMER_ADVANCE_ADJUST_MIN	100	/* clock cycles */
68 #define LAPIC_TIMER_ADVANCE_ADJUST_MAX	10000	/* clock cycles */
69 #define LAPIC_TIMER_ADVANCE_NS_INIT	1000
70 #define LAPIC_TIMER_ADVANCE_NS_MAX     5000
71 /* step-by-step approximation to mitigate fluctuation */
72 #define LAPIC_TIMER_ADVANCE_ADJUST_STEP 8
73 static int kvm_lapic_msr_read(struct kvm_lapic *apic, u32 reg, u64 *data);
74 static int kvm_lapic_msr_write(struct kvm_lapic *apic, u32 reg, u64 data);
75 
76 static inline void __kvm_lapic_set_reg(char *regs, int reg_off, u32 val)
77 {
78 	*((u32 *) (regs + reg_off)) = val;
79 }
80 
81 static inline void kvm_lapic_set_reg(struct kvm_lapic *apic, int reg_off, u32 val)
82 {
83 	__kvm_lapic_set_reg(apic->regs, reg_off, val);
84 }
85 
86 static __always_inline u64 __kvm_lapic_get_reg64(char *regs, int reg)
87 {
88 	BUILD_BUG_ON(reg != APIC_ICR);
89 	return *((u64 *) (regs + reg));
90 }
91 
92 static __always_inline u64 kvm_lapic_get_reg64(struct kvm_lapic *apic, int reg)
93 {
94 	return __kvm_lapic_get_reg64(apic->regs, reg);
95 }
96 
97 static __always_inline void __kvm_lapic_set_reg64(char *regs, int reg, u64 val)
98 {
99 	BUILD_BUG_ON(reg != APIC_ICR);
100 	*((u64 *) (regs + reg)) = val;
101 }
102 
103 static __always_inline void kvm_lapic_set_reg64(struct kvm_lapic *apic,
104 						int reg, u64 val)
105 {
106 	__kvm_lapic_set_reg64(apic->regs, reg, val);
107 }
108 
109 static inline int apic_test_vector(int vec, void *bitmap)
110 {
111 	return test_bit(VEC_POS(vec), (bitmap) + REG_POS(vec));
112 }
113 
114 bool kvm_apic_pending_eoi(struct kvm_vcpu *vcpu, int vector)
115 {
116 	struct kvm_lapic *apic = vcpu->arch.apic;
117 
118 	return apic_test_vector(vector, apic->regs + APIC_ISR) ||
119 		apic_test_vector(vector, apic->regs + APIC_IRR);
120 }
121 
122 static inline int __apic_test_and_set_vector(int vec, void *bitmap)
123 {
124 	return __test_and_set_bit(VEC_POS(vec), (bitmap) + REG_POS(vec));
125 }
126 
127 static inline int __apic_test_and_clear_vector(int vec, void *bitmap)
128 {
129 	return __test_and_clear_bit(VEC_POS(vec), (bitmap) + REG_POS(vec));
130 }
131 
132 __read_mostly DEFINE_STATIC_KEY_DEFERRED_FALSE(apic_hw_disabled, HZ);
133 __read_mostly DEFINE_STATIC_KEY_DEFERRED_FALSE(apic_sw_disabled, HZ);
134 
135 static inline int apic_enabled(struct kvm_lapic *apic)
136 {
137 	return kvm_apic_sw_enabled(apic) &&	kvm_apic_hw_enabled(apic);
138 }
139 
140 #define LVT_MASK	\
141 	(APIC_LVT_MASKED | APIC_SEND_PENDING | APIC_VECTOR_MASK)
142 
143 #define LINT_MASK	\
144 	(LVT_MASK | APIC_MODE_MASK | APIC_INPUT_POLARITY | \
145 	 APIC_LVT_REMOTE_IRR | APIC_LVT_LEVEL_TRIGGER)
146 
147 static inline u32 kvm_x2apic_id(struct kvm_lapic *apic)
148 {
149 	return apic->vcpu->vcpu_id;
150 }
151 
152 static bool kvm_can_post_timer_interrupt(struct kvm_vcpu *vcpu)
153 {
154 	return pi_inject_timer && kvm_vcpu_apicv_active(vcpu) &&
155 		(kvm_mwait_in_guest(vcpu->kvm) || kvm_hlt_in_guest(vcpu->kvm));
156 }
157 
158 bool kvm_can_use_hv_timer(struct kvm_vcpu *vcpu)
159 {
160 	return kvm_x86_ops.set_hv_timer
161 	       && !(kvm_mwait_in_guest(vcpu->kvm) ||
162 		    kvm_can_post_timer_interrupt(vcpu));
163 }
164 
165 static bool kvm_use_posted_timer_interrupt(struct kvm_vcpu *vcpu)
166 {
167 	return kvm_can_post_timer_interrupt(vcpu) && vcpu->mode == IN_GUEST_MODE;
168 }
169 
170 static inline u32 kvm_apic_calc_x2apic_ldr(u32 id)
171 {
172 	return ((id >> 4) << 16) | (1 << (id & 0xf));
173 }
174 
175 static inline bool kvm_apic_map_get_logical_dest(struct kvm_apic_map *map,
176 		u32 dest_id, struct kvm_lapic ***cluster, u16 *mask) {
177 	switch (map->logical_mode) {
178 	case KVM_APIC_MODE_SW_DISABLED:
179 		/* Arbitrarily use the flat map so that @cluster isn't NULL. */
180 		*cluster = map->xapic_flat_map;
181 		*mask = 0;
182 		return true;
183 	case KVM_APIC_MODE_X2APIC: {
184 		u32 offset = (dest_id >> 16) * 16;
185 		u32 max_apic_id = map->max_apic_id;
186 
187 		if (offset <= max_apic_id) {
188 			u8 cluster_size = min(max_apic_id - offset + 1, 16U);
189 
190 			offset = array_index_nospec(offset, map->max_apic_id + 1);
191 			*cluster = &map->phys_map[offset];
192 			*mask = dest_id & (0xffff >> (16 - cluster_size));
193 		} else {
194 			*mask = 0;
195 		}
196 
197 		return true;
198 		}
199 	case KVM_APIC_MODE_XAPIC_FLAT:
200 		*cluster = map->xapic_flat_map;
201 		*mask = dest_id & 0xff;
202 		return true;
203 	case KVM_APIC_MODE_XAPIC_CLUSTER:
204 		*cluster = map->xapic_cluster_map[(dest_id >> 4) & 0xf];
205 		*mask = dest_id & 0xf;
206 		return true;
207 	case KVM_APIC_MODE_MAP_DISABLED:
208 		return false;
209 	default:
210 		WARN_ON_ONCE(1);
211 		return false;
212 	}
213 }
214 
215 static void kvm_apic_map_free(struct rcu_head *rcu)
216 {
217 	struct kvm_apic_map *map = container_of(rcu, struct kvm_apic_map, rcu);
218 
219 	kvfree(map);
220 }
221 
222 static int kvm_recalculate_phys_map(struct kvm_apic_map *new,
223 				    struct kvm_vcpu *vcpu,
224 				    bool *xapic_id_mismatch)
225 {
226 	struct kvm_lapic *apic = vcpu->arch.apic;
227 	u32 x2apic_id = kvm_x2apic_id(apic);
228 	u32 xapic_id = kvm_xapic_id(apic);
229 	u32 physical_id;
230 
231 	/*
232 	 * For simplicity, KVM always allocates enough space for all possible
233 	 * xAPIC IDs.  Yell, but don't kill the VM, as KVM can continue on
234 	 * without the optimized map.
235 	 */
236 	if (WARN_ON_ONCE(xapic_id > new->max_apic_id))
237 		return -EINVAL;
238 
239 	/*
240 	 * Bail if a vCPU was added and/or enabled its APIC between allocating
241 	 * the map and doing the actual calculations for the map.  Note, KVM
242 	 * hardcodes the x2APIC ID to vcpu_id, i.e. there's no TOCTOU bug if
243 	 * the compiler decides to reload x2apic_id after this check.
244 	 */
245 	if (x2apic_id > new->max_apic_id)
246 		return -E2BIG;
247 
248 	/*
249 	 * Deliberately truncate the vCPU ID when detecting a mismatched APIC
250 	 * ID to avoid false positives if the vCPU ID, i.e. x2APIC ID, is a
251 	 * 32-bit value.  Any unwanted aliasing due to truncation results will
252 	 * be detected below.
253 	 */
254 	if (!apic_x2apic_mode(apic) && xapic_id != (u8)vcpu->vcpu_id)
255 		*xapic_id_mismatch = true;
256 
257 	/*
258 	 * Apply KVM's hotplug hack if userspace has enable 32-bit APIC IDs.
259 	 * Allow sending events to vCPUs by their x2APIC ID even if the target
260 	 * vCPU is in legacy xAPIC mode, and silently ignore aliased xAPIC IDs
261 	 * (the x2APIC ID is truncated to 8 bits, causing IDs > 0xff to wrap
262 	 * and collide).
263 	 *
264 	 * Honor the architectural (and KVM's non-optimized) behavior if
265 	 * userspace has not enabled 32-bit x2APIC IDs.  Each APIC is supposed
266 	 * to process messages independently.  If multiple vCPUs have the same
267 	 * effective APIC ID, e.g. due to the x2APIC wrap or because the guest
268 	 * manually modified its xAPIC IDs, events targeting that ID are
269 	 * supposed to be recognized by all vCPUs with said ID.
270 	 */
271 	if (vcpu->kvm->arch.x2apic_format) {
272 		/* See also kvm_apic_match_physical_addr(). */
273 		if (apic_x2apic_mode(apic) || x2apic_id > 0xff)
274 			new->phys_map[x2apic_id] = apic;
275 
276 		if (!apic_x2apic_mode(apic) && !new->phys_map[xapic_id])
277 			new->phys_map[xapic_id] = apic;
278 	} else {
279 		/*
280 		 * Disable the optimized map if the physical APIC ID is already
281 		 * mapped, i.e. is aliased to multiple vCPUs.  The optimized
282 		 * map requires a strict 1:1 mapping between IDs and vCPUs.
283 		 */
284 		if (apic_x2apic_mode(apic))
285 			physical_id = x2apic_id;
286 		else
287 			physical_id = xapic_id;
288 
289 		if (new->phys_map[physical_id])
290 			return -EINVAL;
291 
292 		new->phys_map[physical_id] = apic;
293 	}
294 
295 	return 0;
296 }
297 
298 static void kvm_recalculate_logical_map(struct kvm_apic_map *new,
299 					struct kvm_vcpu *vcpu)
300 {
301 	struct kvm_lapic *apic = vcpu->arch.apic;
302 	enum kvm_apic_logical_mode logical_mode;
303 	struct kvm_lapic **cluster;
304 	u16 mask;
305 	u32 ldr;
306 
307 	if (new->logical_mode == KVM_APIC_MODE_MAP_DISABLED)
308 		return;
309 
310 	if (!kvm_apic_sw_enabled(apic))
311 		return;
312 
313 	ldr = kvm_lapic_get_reg(apic, APIC_LDR);
314 	if (!ldr)
315 		return;
316 
317 	if (apic_x2apic_mode(apic)) {
318 		logical_mode = KVM_APIC_MODE_X2APIC;
319 	} else {
320 		ldr = GET_APIC_LOGICAL_ID(ldr);
321 		if (kvm_lapic_get_reg(apic, APIC_DFR) == APIC_DFR_FLAT)
322 			logical_mode = KVM_APIC_MODE_XAPIC_FLAT;
323 		else
324 			logical_mode = KVM_APIC_MODE_XAPIC_CLUSTER;
325 	}
326 
327 	/*
328 	 * To optimize logical mode delivery, all software-enabled APICs must
329 	 * be configured for the same mode.
330 	 */
331 	if (new->logical_mode == KVM_APIC_MODE_SW_DISABLED) {
332 		new->logical_mode = logical_mode;
333 	} else if (new->logical_mode != logical_mode) {
334 		new->logical_mode = KVM_APIC_MODE_MAP_DISABLED;
335 		return;
336 	}
337 
338 	/*
339 	 * In x2APIC mode, the LDR is read-only and derived directly from the
340 	 * x2APIC ID, thus is guaranteed to be addressable.  KVM reuses
341 	 * kvm_apic_map.phys_map to optimize logical mode x2APIC interrupts by
342 	 * reversing the LDR calculation to get cluster of APICs, i.e. no
343 	 * additional work is required.
344 	 */
345 	if (apic_x2apic_mode(apic)) {
346 		WARN_ON_ONCE(ldr != kvm_apic_calc_x2apic_ldr(kvm_x2apic_id(apic)));
347 		return;
348 	}
349 
350 	if (WARN_ON_ONCE(!kvm_apic_map_get_logical_dest(new, ldr,
351 							&cluster, &mask))) {
352 		new->logical_mode = KVM_APIC_MODE_MAP_DISABLED;
353 		return;
354 	}
355 
356 	if (!mask)
357 		return;
358 
359 	ldr = ffs(mask) - 1;
360 	if (!is_power_of_2(mask) || cluster[ldr])
361 		new->logical_mode = KVM_APIC_MODE_MAP_DISABLED;
362 	else
363 		cluster[ldr] = apic;
364 }
365 
366 /*
367  * CLEAN -> DIRTY and UPDATE_IN_PROGRESS -> DIRTY changes happen without a lock.
368  *
369  * DIRTY -> UPDATE_IN_PROGRESS and UPDATE_IN_PROGRESS -> CLEAN happen with
370  * apic_map_lock_held.
371  */
372 enum {
373 	CLEAN,
374 	UPDATE_IN_PROGRESS,
375 	DIRTY
376 };
377 
378 void kvm_recalculate_apic_map(struct kvm *kvm)
379 {
380 	struct kvm_apic_map *new, *old = NULL;
381 	struct kvm_vcpu *vcpu;
382 	unsigned long i;
383 	u32 max_id = 255; /* enough space for any xAPIC ID */
384 	bool xapic_id_mismatch = false;
385 
386 	/* Read kvm->arch.apic_map_dirty before kvm->arch.apic_map.  */
387 	if (atomic_read_acquire(&kvm->arch.apic_map_dirty) == CLEAN)
388 		return;
389 
390 	WARN_ONCE(!irqchip_in_kernel(kvm),
391 		  "Dirty APIC map without an in-kernel local APIC");
392 
393 	mutex_lock(&kvm->arch.apic_map_lock);
394 	/*
395 	 * Read kvm->arch.apic_map_dirty before kvm->arch.apic_map
396 	 * (if clean) or the APIC registers (if dirty).
397 	 */
398 	if (atomic_cmpxchg_acquire(&kvm->arch.apic_map_dirty,
399 				   DIRTY, UPDATE_IN_PROGRESS) == CLEAN) {
400 		/* Someone else has updated the map. */
401 		mutex_unlock(&kvm->arch.apic_map_lock);
402 		return;
403 	}
404 
405 	kvm_for_each_vcpu(i, vcpu, kvm)
406 		if (kvm_apic_present(vcpu))
407 			max_id = max(max_id, kvm_x2apic_id(vcpu->arch.apic));
408 
409 	new = kvzalloc(sizeof(struct kvm_apic_map) +
410 	                   sizeof(struct kvm_lapic *) * ((u64)max_id + 1),
411 			   GFP_KERNEL_ACCOUNT);
412 
413 	if (!new)
414 		goto out;
415 
416 	new->max_apic_id = max_id;
417 	new->logical_mode = KVM_APIC_MODE_SW_DISABLED;
418 
419 	kvm_for_each_vcpu(i, vcpu, kvm) {
420 		if (!kvm_apic_present(vcpu))
421 			continue;
422 
423 		if (kvm_recalculate_phys_map(new, vcpu, &xapic_id_mismatch)) {
424 			kvfree(new);
425 			new = NULL;
426 			goto out;
427 		}
428 
429 		kvm_recalculate_logical_map(new, vcpu);
430 	}
431 out:
432 	/*
433 	 * The optimized map is effectively KVM's internal version of APICv,
434 	 * and all unwanted aliasing that results in disabling the optimized
435 	 * map also applies to APICv.
436 	 */
437 	if (!new)
438 		kvm_set_apicv_inhibit(kvm, APICV_INHIBIT_REASON_PHYSICAL_ID_ALIASED);
439 	else
440 		kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_PHYSICAL_ID_ALIASED);
441 
442 	if (!new || new->logical_mode == KVM_APIC_MODE_MAP_DISABLED)
443 		kvm_set_apicv_inhibit(kvm, APICV_INHIBIT_REASON_LOGICAL_ID_ALIASED);
444 	else
445 		kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_LOGICAL_ID_ALIASED);
446 
447 	if (xapic_id_mismatch)
448 		kvm_set_apicv_inhibit(kvm, APICV_INHIBIT_REASON_APIC_ID_MODIFIED);
449 	else
450 		kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_APIC_ID_MODIFIED);
451 
452 	old = rcu_dereference_protected(kvm->arch.apic_map,
453 			lockdep_is_held(&kvm->arch.apic_map_lock));
454 	rcu_assign_pointer(kvm->arch.apic_map, new);
455 	/*
456 	 * Write kvm->arch.apic_map before clearing apic->apic_map_dirty.
457 	 * If another update has come in, leave it DIRTY.
458 	 */
459 	atomic_cmpxchg_release(&kvm->arch.apic_map_dirty,
460 			       UPDATE_IN_PROGRESS, CLEAN);
461 	mutex_unlock(&kvm->arch.apic_map_lock);
462 
463 	if (old)
464 		call_rcu(&old->rcu, kvm_apic_map_free);
465 
466 	kvm_make_scan_ioapic_request(kvm);
467 }
468 
469 static inline void apic_set_spiv(struct kvm_lapic *apic, u32 val)
470 {
471 	bool enabled = val & APIC_SPIV_APIC_ENABLED;
472 
473 	kvm_lapic_set_reg(apic, APIC_SPIV, val);
474 
475 	if (enabled != apic->sw_enabled) {
476 		apic->sw_enabled = enabled;
477 		if (enabled)
478 			static_branch_slow_dec_deferred(&apic_sw_disabled);
479 		else
480 			static_branch_inc(&apic_sw_disabled.key);
481 
482 		atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY);
483 	}
484 
485 	/* Check if there are APF page ready requests pending */
486 	if (enabled)
487 		kvm_make_request(KVM_REQ_APF_READY, apic->vcpu);
488 }
489 
490 static inline void kvm_apic_set_xapic_id(struct kvm_lapic *apic, u8 id)
491 {
492 	kvm_lapic_set_reg(apic, APIC_ID, id << 24);
493 	atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY);
494 }
495 
496 static inline void kvm_apic_set_ldr(struct kvm_lapic *apic, u32 id)
497 {
498 	kvm_lapic_set_reg(apic, APIC_LDR, id);
499 	atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY);
500 }
501 
502 static inline void kvm_apic_set_dfr(struct kvm_lapic *apic, u32 val)
503 {
504 	kvm_lapic_set_reg(apic, APIC_DFR, val);
505 	atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY);
506 }
507 
508 static inline void kvm_apic_set_x2apic_id(struct kvm_lapic *apic, u32 id)
509 {
510 	u32 ldr = kvm_apic_calc_x2apic_ldr(id);
511 
512 	WARN_ON_ONCE(id != apic->vcpu->vcpu_id);
513 
514 	kvm_lapic_set_reg(apic, APIC_ID, id);
515 	kvm_lapic_set_reg(apic, APIC_LDR, ldr);
516 	atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY);
517 }
518 
519 static inline int apic_lvt_enabled(struct kvm_lapic *apic, int lvt_type)
520 {
521 	return !(kvm_lapic_get_reg(apic, lvt_type) & APIC_LVT_MASKED);
522 }
523 
524 static inline int apic_lvtt_oneshot(struct kvm_lapic *apic)
525 {
526 	return apic->lapic_timer.timer_mode == APIC_LVT_TIMER_ONESHOT;
527 }
528 
529 static inline int apic_lvtt_period(struct kvm_lapic *apic)
530 {
531 	return apic->lapic_timer.timer_mode == APIC_LVT_TIMER_PERIODIC;
532 }
533 
534 static inline int apic_lvtt_tscdeadline(struct kvm_lapic *apic)
535 {
536 	return apic->lapic_timer.timer_mode == APIC_LVT_TIMER_TSCDEADLINE;
537 }
538 
539 static inline int apic_lvt_nmi_mode(u32 lvt_val)
540 {
541 	return (lvt_val & (APIC_MODE_MASK | APIC_LVT_MASKED)) == APIC_DM_NMI;
542 }
543 
544 static inline bool kvm_lapic_lvt_supported(struct kvm_lapic *apic, int lvt_index)
545 {
546 	return apic->nr_lvt_entries > lvt_index;
547 }
548 
549 static inline int kvm_apic_calc_nr_lvt_entries(struct kvm_vcpu *vcpu)
550 {
551 	return KVM_APIC_MAX_NR_LVT_ENTRIES - !(vcpu->arch.mcg_cap & MCG_CMCI_P);
552 }
553 
554 void kvm_apic_set_version(struct kvm_vcpu *vcpu)
555 {
556 	struct kvm_lapic *apic = vcpu->arch.apic;
557 	u32 v = 0;
558 
559 	if (!lapic_in_kernel(vcpu))
560 		return;
561 
562 	v = APIC_VERSION | ((apic->nr_lvt_entries - 1) << 16);
563 
564 	/*
565 	 * KVM emulates 82093AA datasheet (with in-kernel IOAPIC implementation)
566 	 * which doesn't have EOI register; Some buggy OSes (e.g. Windows with
567 	 * Hyper-V role) disable EOI broadcast in lapic not checking for IOAPIC
568 	 * version first and level-triggered interrupts never get EOIed in
569 	 * IOAPIC.
570 	 */
571 	if (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) &&
572 	    !ioapic_in_kernel(vcpu->kvm))
573 		v |= APIC_LVR_DIRECTED_EOI;
574 	kvm_lapic_set_reg(apic, APIC_LVR, v);
575 }
576 
577 void kvm_apic_after_set_mcg_cap(struct kvm_vcpu *vcpu)
578 {
579 	int nr_lvt_entries = kvm_apic_calc_nr_lvt_entries(vcpu);
580 	struct kvm_lapic *apic = vcpu->arch.apic;
581 	int i;
582 
583 	if (!lapic_in_kernel(vcpu) || nr_lvt_entries == apic->nr_lvt_entries)
584 		return;
585 
586 	/* Initialize/mask any "new" LVT entries. */
587 	for (i = apic->nr_lvt_entries; i < nr_lvt_entries; i++)
588 		kvm_lapic_set_reg(apic, APIC_LVTx(i), APIC_LVT_MASKED);
589 
590 	apic->nr_lvt_entries = nr_lvt_entries;
591 
592 	/* The number of LVT entries is reflected in the version register. */
593 	kvm_apic_set_version(vcpu);
594 }
595 
596 static const unsigned int apic_lvt_mask[KVM_APIC_MAX_NR_LVT_ENTRIES] = {
597 	[LVT_TIMER] = LVT_MASK,      /* timer mode mask added at runtime */
598 	[LVT_THERMAL_MONITOR] = LVT_MASK | APIC_MODE_MASK,
599 	[LVT_PERFORMANCE_COUNTER] = LVT_MASK | APIC_MODE_MASK,
600 	[LVT_LINT0] = LINT_MASK,
601 	[LVT_LINT1] = LINT_MASK,
602 	[LVT_ERROR] = LVT_MASK,
603 	[LVT_CMCI] = LVT_MASK | APIC_MODE_MASK
604 };
605 
606 static int find_highest_vector(void *bitmap)
607 {
608 	int vec;
609 	u32 *reg;
610 
611 	for (vec = MAX_APIC_VECTOR - APIC_VECTORS_PER_REG;
612 	     vec >= 0; vec -= APIC_VECTORS_PER_REG) {
613 		reg = bitmap + REG_POS(vec);
614 		if (*reg)
615 			return __fls(*reg) + vec;
616 	}
617 
618 	return -1;
619 }
620 
621 static u8 count_vectors(void *bitmap)
622 {
623 	int vec;
624 	u32 *reg;
625 	u8 count = 0;
626 
627 	for (vec = 0; vec < MAX_APIC_VECTOR; vec += APIC_VECTORS_PER_REG) {
628 		reg = bitmap + REG_POS(vec);
629 		count += hweight32(*reg);
630 	}
631 
632 	return count;
633 }
634 
635 bool __kvm_apic_update_irr(u32 *pir, void *regs, int *max_irr)
636 {
637 	u32 i, vec;
638 	u32 pir_val, irr_val, prev_irr_val;
639 	int max_updated_irr;
640 
641 	max_updated_irr = -1;
642 	*max_irr = -1;
643 
644 	for (i = vec = 0; i <= 7; i++, vec += 32) {
645 		pir_val = READ_ONCE(pir[i]);
646 		irr_val = *((u32 *)(regs + APIC_IRR + i * 0x10));
647 		if (pir_val) {
648 			prev_irr_val = irr_val;
649 			irr_val |= xchg(&pir[i], 0);
650 			*((u32 *)(regs + APIC_IRR + i * 0x10)) = irr_val;
651 			if (prev_irr_val != irr_val) {
652 				max_updated_irr =
653 					__fls(irr_val ^ prev_irr_val) + vec;
654 			}
655 		}
656 		if (irr_val)
657 			*max_irr = __fls(irr_val) + vec;
658 	}
659 
660 	return ((max_updated_irr != -1) &&
661 		(max_updated_irr == *max_irr));
662 }
663 EXPORT_SYMBOL_GPL(__kvm_apic_update_irr);
664 
665 bool kvm_apic_update_irr(struct kvm_vcpu *vcpu, u32 *pir, int *max_irr)
666 {
667 	struct kvm_lapic *apic = vcpu->arch.apic;
668 
669 	return __kvm_apic_update_irr(pir, apic->regs, max_irr);
670 }
671 EXPORT_SYMBOL_GPL(kvm_apic_update_irr);
672 
673 static inline int apic_search_irr(struct kvm_lapic *apic)
674 {
675 	return find_highest_vector(apic->regs + APIC_IRR);
676 }
677 
678 static inline int apic_find_highest_irr(struct kvm_lapic *apic)
679 {
680 	int result;
681 
682 	/*
683 	 * Note that irr_pending is just a hint. It will be always
684 	 * true with virtual interrupt delivery enabled.
685 	 */
686 	if (!apic->irr_pending)
687 		return -1;
688 
689 	result = apic_search_irr(apic);
690 	ASSERT(result == -1 || result >= 16);
691 
692 	return result;
693 }
694 
695 static inline void apic_clear_irr(int vec, struct kvm_lapic *apic)
696 {
697 	if (unlikely(apic->apicv_active)) {
698 		/* need to update RVI */
699 		kvm_lapic_clear_vector(vec, apic->regs + APIC_IRR);
700 		static_call_cond(kvm_x86_hwapic_irr_update)(apic->vcpu,
701 							    apic_find_highest_irr(apic));
702 	} else {
703 		apic->irr_pending = false;
704 		kvm_lapic_clear_vector(vec, apic->regs + APIC_IRR);
705 		if (apic_search_irr(apic) != -1)
706 			apic->irr_pending = true;
707 	}
708 }
709 
710 void kvm_apic_clear_irr(struct kvm_vcpu *vcpu, int vec)
711 {
712 	apic_clear_irr(vec, vcpu->arch.apic);
713 }
714 EXPORT_SYMBOL_GPL(kvm_apic_clear_irr);
715 
716 static inline void apic_set_isr(int vec, struct kvm_lapic *apic)
717 {
718 	if (__apic_test_and_set_vector(vec, apic->regs + APIC_ISR))
719 		return;
720 
721 	/*
722 	 * With APIC virtualization enabled, all caching is disabled
723 	 * because the processor can modify ISR under the hood.  Instead
724 	 * just set SVI.
725 	 */
726 	if (unlikely(apic->apicv_active))
727 		static_call_cond(kvm_x86_hwapic_isr_update)(vec);
728 	else {
729 		++apic->isr_count;
730 		BUG_ON(apic->isr_count > MAX_APIC_VECTOR);
731 		/*
732 		 * ISR (in service register) bit is set when injecting an interrupt.
733 		 * The highest vector is injected. Thus the latest bit set matches
734 		 * the highest bit in ISR.
735 		 */
736 		apic->highest_isr_cache = vec;
737 	}
738 }
739 
740 static inline int apic_find_highest_isr(struct kvm_lapic *apic)
741 {
742 	int result;
743 
744 	/*
745 	 * Note that isr_count is always 1, and highest_isr_cache
746 	 * is always -1, with APIC virtualization enabled.
747 	 */
748 	if (!apic->isr_count)
749 		return -1;
750 	if (likely(apic->highest_isr_cache != -1))
751 		return apic->highest_isr_cache;
752 
753 	result = find_highest_vector(apic->regs + APIC_ISR);
754 	ASSERT(result == -1 || result >= 16);
755 
756 	return result;
757 }
758 
759 static inline void apic_clear_isr(int vec, struct kvm_lapic *apic)
760 {
761 	if (!__apic_test_and_clear_vector(vec, apic->regs + APIC_ISR))
762 		return;
763 
764 	/*
765 	 * We do get here for APIC virtualization enabled if the guest
766 	 * uses the Hyper-V APIC enlightenment.  In this case we may need
767 	 * to trigger a new interrupt delivery by writing the SVI field;
768 	 * on the other hand isr_count and highest_isr_cache are unused
769 	 * and must be left alone.
770 	 */
771 	if (unlikely(apic->apicv_active))
772 		static_call_cond(kvm_x86_hwapic_isr_update)(apic_find_highest_isr(apic));
773 	else {
774 		--apic->isr_count;
775 		BUG_ON(apic->isr_count < 0);
776 		apic->highest_isr_cache = -1;
777 	}
778 }
779 
780 int kvm_lapic_find_highest_irr(struct kvm_vcpu *vcpu)
781 {
782 	/* This may race with setting of irr in __apic_accept_irq() and
783 	 * value returned may be wrong, but kvm_vcpu_kick() in __apic_accept_irq
784 	 * will cause vmexit immediately and the value will be recalculated
785 	 * on the next vmentry.
786 	 */
787 	return apic_find_highest_irr(vcpu->arch.apic);
788 }
789 EXPORT_SYMBOL_GPL(kvm_lapic_find_highest_irr);
790 
791 static int __apic_accept_irq(struct kvm_lapic *apic, int delivery_mode,
792 			     int vector, int level, int trig_mode,
793 			     struct dest_map *dest_map);
794 
795 int kvm_apic_set_irq(struct kvm_vcpu *vcpu, struct kvm_lapic_irq *irq,
796 		     struct dest_map *dest_map)
797 {
798 	struct kvm_lapic *apic = vcpu->arch.apic;
799 
800 	return __apic_accept_irq(apic, irq->delivery_mode, irq->vector,
801 			irq->level, irq->trig_mode, dest_map);
802 }
803 
804 static int __pv_send_ipi(unsigned long *ipi_bitmap, struct kvm_apic_map *map,
805 			 struct kvm_lapic_irq *irq, u32 min)
806 {
807 	int i, count = 0;
808 	struct kvm_vcpu *vcpu;
809 
810 	if (min > map->max_apic_id)
811 		return 0;
812 
813 	for_each_set_bit(i, ipi_bitmap,
814 		min((u32)BITS_PER_LONG, (map->max_apic_id - min + 1))) {
815 		if (map->phys_map[min + i]) {
816 			vcpu = map->phys_map[min + i]->vcpu;
817 			count += kvm_apic_set_irq(vcpu, irq, NULL);
818 		}
819 	}
820 
821 	return count;
822 }
823 
824 int kvm_pv_send_ipi(struct kvm *kvm, unsigned long ipi_bitmap_low,
825 		    unsigned long ipi_bitmap_high, u32 min,
826 		    unsigned long icr, int op_64_bit)
827 {
828 	struct kvm_apic_map *map;
829 	struct kvm_lapic_irq irq = {0};
830 	int cluster_size = op_64_bit ? 64 : 32;
831 	int count;
832 
833 	if (icr & (APIC_DEST_MASK | APIC_SHORT_MASK))
834 		return -KVM_EINVAL;
835 
836 	irq.vector = icr & APIC_VECTOR_MASK;
837 	irq.delivery_mode = icr & APIC_MODE_MASK;
838 	irq.level = (icr & APIC_INT_ASSERT) != 0;
839 	irq.trig_mode = icr & APIC_INT_LEVELTRIG;
840 
841 	rcu_read_lock();
842 	map = rcu_dereference(kvm->arch.apic_map);
843 
844 	count = -EOPNOTSUPP;
845 	if (likely(map)) {
846 		count = __pv_send_ipi(&ipi_bitmap_low, map, &irq, min);
847 		min += cluster_size;
848 		count += __pv_send_ipi(&ipi_bitmap_high, map, &irq, min);
849 	}
850 
851 	rcu_read_unlock();
852 	return count;
853 }
854 
855 static int pv_eoi_put_user(struct kvm_vcpu *vcpu, u8 val)
856 {
857 
858 	return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.pv_eoi.data, &val,
859 				      sizeof(val));
860 }
861 
862 static int pv_eoi_get_user(struct kvm_vcpu *vcpu, u8 *val)
863 {
864 
865 	return kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.pv_eoi.data, val,
866 				      sizeof(*val));
867 }
868 
869 static inline bool pv_eoi_enabled(struct kvm_vcpu *vcpu)
870 {
871 	return vcpu->arch.pv_eoi.msr_val & KVM_MSR_ENABLED;
872 }
873 
874 static void pv_eoi_set_pending(struct kvm_vcpu *vcpu)
875 {
876 	if (pv_eoi_put_user(vcpu, KVM_PV_EOI_ENABLED) < 0)
877 		return;
878 
879 	__set_bit(KVM_APIC_PV_EOI_PENDING, &vcpu->arch.apic_attention);
880 }
881 
882 static bool pv_eoi_test_and_clr_pending(struct kvm_vcpu *vcpu)
883 {
884 	u8 val;
885 
886 	if (pv_eoi_get_user(vcpu, &val) < 0)
887 		return false;
888 
889 	val &= KVM_PV_EOI_ENABLED;
890 
891 	if (val && pv_eoi_put_user(vcpu, KVM_PV_EOI_DISABLED) < 0)
892 		return false;
893 
894 	/*
895 	 * Clear pending bit in any case: it will be set again on vmentry.
896 	 * While this might not be ideal from performance point of view,
897 	 * this makes sure pv eoi is only enabled when we know it's safe.
898 	 */
899 	__clear_bit(KVM_APIC_PV_EOI_PENDING, &vcpu->arch.apic_attention);
900 
901 	return val;
902 }
903 
904 static int apic_has_interrupt_for_ppr(struct kvm_lapic *apic, u32 ppr)
905 {
906 	int highest_irr;
907 	if (kvm_x86_ops.sync_pir_to_irr)
908 		highest_irr = static_call(kvm_x86_sync_pir_to_irr)(apic->vcpu);
909 	else
910 		highest_irr = apic_find_highest_irr(apic);
911 	if (highest_irr == -1 || (highest_irr & 0xF0) <= ppr)
912 		return -1;
913 	return highest_irr;
914 }
915 
916 static bool __apic_update_ppr(struct kvm_lapic *apic, u32 *new_ppr)
917 {
918 	u32 tpr, isrv, ppr, old_ppr;
919 	int isr;
920 
921 	old_ppr = kvm_lapic_get_reg(apic, APIC_PROCPRI);
922 	tpr = kvm_lapic_get_reg(apic, APIC_TASKPRI);
923 	isr = apic_find_highest_isr(apic);
924 	isrv = (isr != -1) ? isr : 0;
925 
926 	if ((tpr & 0xf0) >= (isrv & 0xf0))
927 		ppr = tpr & 0xff;
928 	else
929 		ppr = isrv & 0xf0;
930 
931 	*new_ppr = ppr;
932 	if (old_ppr != ppr)
933 		kvm_lapic_set_reg(apic, APIC_PROCPRI, ppr);
934 
935 	return ppr < old_ppr;
936 }
937 
938 static void apic_update_ppr(struct kvm_lapic *apic)
939 {
940 	u32 ppr;
941 
942 	if (__apic_update_ppr(apic, &ppr) &&
943 	    apic_has_interrupt_for_ppr(apic, ppr) != -1)
944 		kvm_make_request(KVM_REQ_EVENT, apic->vcpu);
945 }
946 
947 void kvm_apic_update_ppr(struct kvm_vcpu *vcpu)
948 {
949 	apic_update_ppr(vcpu->arch.apic);
950 }
951 EXPORT_SYMBOL_GPL(kvm_apic_update_ppr);
952 
953 static void apic_set_tpr(struct kvm_lapic *apic, u32 tpr)
954 {
955 	kvm_lapic_set_reg(apic, APIC_TASKPRI, tpr);
956 	apic_update_ppr(apic);
957 }
958 
959 static bool kvm_apic_broadcast(struct kvm_lapic *apic, u32 mda)
960 {
961 	return mda == (apic_x2apic_mode(apic) ?
962 			X2APIC_BROADCAST : APIC_BROADCAST);
963 }
964 
965 static bool kvm_apic_match_physical_addr(struct kvm_lapic *apic, u32 mda)
966 {
967 	if (kvm_apic_broadcast(apic, mda))
968 		return true;
969 
970 	/*
971 	 * Hotplug hack: Accept interrupts for vCPUs in xAPIC mode as if they
972 	 * were in x2APIC mode if the target APIC ID can't be encoded as an
973 	 * xAPIC ID.  This allows unique addressing of hotplugged vCPUs (which
974 	 * start in xAPIC mode) with an APIC ID that is unaddressable in xAPIC
975 	 * mode.  Match the x2APIC ID if and only if the target APIC ID can't
976 	 * be encoded in xAPIC to avoid spurious matches against a vCPU that
977 	 * changed its (addressable) xAPIC ID (which is writable).
978 	 */
979 	if (apic_x2apic_mode(apic) || mda > 0xff)
980 		return mda == kvm_x2apic_id(apic);
981 
982 	return mda == kvm_xapic_id(apic);
983 }
984 
985 static bool kvm_apic_match_logical_addr(struct kvm_lapic *apic, u32 mda)
986 {
987 	u32 logical_id;
988 
989 	if (kvm_apic_broadcast(apic, mda))
990 		return true;
991 
992 	logical_id = kvm_lapic_get_reg(apic, APIC_LDR);
993 
994 	if (apic_x2apic_mode(apic))
995 		return ((logical_id >> 16) == (mda >> 16))
996 		       && (logical_id & mda & 0xffff) != 0;
997 
998 	logical_id = GET_APIC_LOGICAL_ID(logical_id);
999 
1000 	switch (kvm_lapic_get_reg(apic, APIC_DFR)) {
1001 	case APIC_DFR_FLAT:
1002 		return (logical_id & mda) != 0;
1003 	case APIC_DFR_CLUSTER:
1004 		return ((logical_id >> 4) == (mda >> 4))
1005 		       && (logical_id & mda & 0xf) != 0;
1006 	default:
1007 		return false;
1008 	}
1009 }
1010 
1011 /* The KVM local APIC implementation has two quirks:
1012  *
1013  *  - Real hardware delivers interrupts destined to x2APIC ID > 0xff to LAPICs
1014  *    in xAPIC mode if the "destination & 0xff" matches its xAPIC ID.
1015  *    KVM doesn't do that aliasing.
1016  *
1017  *  - in-kernel IOAPIC messages have to be delivered directly to
1018  *    x2APIC, because the kernel does not support interrupt remapping.
1019  *    In order to support broadcast without interrupt remapping, x2APIC
1020  *    rewrites the destination of non-IPI messages from APIC_BROADCAST
1021  *    to X2APIC_BROADCAST.
1022  *
1023  * The broadcast quirk can be disabled with KVM_CAP_X2APIC_API.  This is
1024  * important when userspace wants to use x2APIC-format MSIs, because
1025  * APIC_BROADCAST (0xff) is a legal route for "cluster 0, CPUs 0-7".
1026  */
1027 static u32 kvm_apic_mda(struct kvm_vcpu *vcpu, unsigned int dest_id,
1028 		struct kvm_lapic *source, struct kvm_lapic *target)
1029 {
1030 	bool ipi = source != NULL;
1031 
1032 	if (!vcpu->kvm->arch.x2apic_broadcast_quirk_disabled &&
1033 	    !ipi && dest_id == APIC_BROADCAST && apic_x2apic_mode(target))
1034 		return X2APIC_BROADCAST;
1035 
1036 	return dest_id;
1037 }
1038 
1039 bool kvm_apic_match_dest(struct kvm_vcpu *vcpu, struct kvm_lapic *source,
1040 			   int shorthand, unsigned int dest, int dest_mode)
1041 {
1042 	struct kvm_lapic *target = vcpu->arch.apic;
1043 	u32 mda = kvm_apic_mda(vcpu, dest, source, target);
1044 
1045 	ASSERT(target);
1046 	switch (shorthand) {
1047 	case APIC_DEST_NOSHORT:
1048 		if (dest_mode == APIC_DEST_PHYSICAL)
1049 			return kvm_apic_match_physical_addr(target, mda);
1050 		else
1051 			return kvm_apic_match_logical_addr(target, mda);
1052 	case APIC_DEST_SELF:
1053 		return target == source;
1054 	case APIC_DEST_ALLINC:
1055 		return true;
1056 	case APIC_DEST_ALLBUT:
1057 		return target != source;
1058 	default:
1059 		return false;
1060 	}
1061 }
1062 EXPORT_SYMBOL_GPL(kvm_apic_match_dest);
1063 
1064 int kvm_vector_to_index(u32 vector, u32 dest_vcpus,
1065 		       const unsigned long *bitmap, u32 bitmap_size)
1066 {
1067 	u32 mod;
1068 	int i, idx = -1;
1069 
1070 	mod = vector % dest_vcpus;
1071 
1072 	for (i = 0; i <= mod; i++) {
1073 		idx = find_next_bit(bitmap, bitmap_size, idx + 1);
1074 		BUG_ON(idx == bitmap_size);
1075 	}
1076 
1077 	return idx;
1078 }
1079 
1080 static void kvm_apic_disabled_lapic_found(struct kvm *kvm)
1081 {
1082 	if (!kvm->arch.disabled_lapic_found) {
1083 		kvm->arch.disabled_lapic_found = true;
1084 		pr_info("Disabled LAPIC found during irq injection\n");
1085 	}
1086 }
1087 
1088 static bool kvm_apic_is_broadcast_dest(struct kvm *kvm, struct kvm_lapic **src,
1089 		struct kvm_lapic_irq *irq, struct kvm_apic_map *map)
1090 {
1091 	if (kvm->arch.x2apic_broadcast_quirk_disabled) {
1092 		if ((irq->dest_id == APIC_BROADCAST &&
1093 		     map->logical_mode != KVM_APIC_MODE_X2APIC))
1094 			return true;
1095 		if (irq->dest_id == X2APIC_BROADCAST)
1096 			return true;
1097 	} else {
1098 		bool x2apic_ipi = src && *src && apic_x2apic_mode(*src);
1099 		if (irq->dest_id == (x2apic_ipi ?
1100 		                     X2APIC_BROADCAST : APIC_BROADCAST))
1101 			return true;
1102 	}
1103 
1104 	return false;
1105 }
1106 
1107 /* Return true if the interrupt can be handled by using *bitmap as index mask
1108  * for valid destinations in *dst array.
1109  * Return false if kvm_apic_map_get_dest_lapic did nothing useful.
1110  * Note: we may have zero kvm_lapic destinations when we return true, which
1111  * means that the interrupt should be dropped.  In this case, *bitmap would be
1112  * zero and *dst undefined.
1113  */
1114 static inline bool kvm_apic_map_get_dest_lapic(struct kvm *kvm,
1115 		struct kvm_lapic **src, struct kvm_lapic_irq *irq,
1116 		struct kvm_apic_map *map, struct kvm_lapic ***dst,
1117 		unsigned long *bitmap)
1118 {
1119 	int i, lowest;
1120 
1121 	if (irq->shorthand == APIC_DEST_SELF && src) {
1122 		*dst = src;
1123 		*bitmap = 1;
1124 		return true;
1125 	} else if (irq->shorthand)
1126 		return false;
1127 
1128 	if (!map || kvm_apic_is_broadcast_dest(kvm, src, irq, map))
1129 		return false;
1130 
1131 	if (irq->dest_mode == APIC_DEST_PHYSICAL) {
1132 		if (irq->dest_id > map->max_apic_id) {
1133 			*bitmap = 0;
1134 		} else {
1135 			u32 dest_id = array_index_nospec(irq->dest_id, map->max_apic_id + 1);
1136 			*dst = &map->phys_map[dest_id];
1137 			*bitmap = 1;
1138 		}
1139 		return true;
1140 	}
1141 
1142 	*bitmap = 0;
1143 	if (!kvm_apic_map_get_logical_dest(map, irq->dest_id, dst,
1144 				(u16 *)bitmap))
1145 		return false;
1146 
1147 	if (!kvm_lowest_prio_delivery(irq))
1148 		return true;
1149 
1150 	if (!kvm_vector_hashing_enabled()) {
1151 		lowest = -1;
1152 		for_each_set_bit(i, bitmap, 16) {
1153 			if (!(*dst)[i])
1154 				continue;
1155 			if (lowest < 0)
1156 				lowest = i;
1157 			else if (kvm_apic_compare_prio((*dst)[i]->vcpu,
1158 						(*dst)[lowest]->vcpu) < 0)
1159 				lowest = i;
1160 		}
1161 	} else {
1162 		if (!*bitmap)
1163 			return true;
1164 
1165 		lowest = kvm_vector_to_index(irq->vector, hweight16(*bitmap),
1166 				bitmap, 16);
1167 
1168 		if (!(*dst)[lowest]) {
1169 			kvm_apic_disabled_lapic_found(kvm);
1170 			*bitmap = 0;
1171 			return true;
1172 		}
1173 	}
1174 
1175 	*bitmap = (lowest >= 0) ? 1 << lowest : 0;
1176 
1177 	return true;
1178 }
1179 
1180 bool kvm_irq_delivery_to_apic_fast(struct kvm *kvm, struct kvm_lapic *src,
1181 		struct kvm_lapic_irq *irq, int *r, struct dest_map *dest_map)
1182 {
1183 	struct kvm_apic_map *map;
1184 	unsigned long bitmap;
1185 	struct kvm_lapic **dst = NULL;
1186 	int i;
1187 	bool ret;
1188 
1189 	*r = -1;
1190 
1191 	if (irq->shorthand == APIC_DEST_SELF) {
1192 		if (KVM_BUG_ON(!src, kvm)) {
1193 			*r = 0;
1194 			return true;
1195 		}
1196 		*r = kvm_apic_set_irq(src->vcpu, irq, dest_map);
1197 		return true;
1198 	}
1199 
1200 	rcu_read_lock();
1201 	map = rcu_dereference(kvm->arch.apic_map);
1202 
1203 	ret = kvm_apic_map_get_dest_lapic(kvm, &src, irq, map, &dst, &bitmap);
1204 	if (ret) {
1205 		*r = 0;
1206 		for_each_set_bit(i, &bitmap, 16) {
1207 			if (!dst[i])
1208 				continue;
1209 			*r += kvm_apic_set_irq(dst[i]->vcpu, irq, dest_map);
1210 		}
1211 	}
1212 
1213 	rcu_read_unlock();
1214 	return ret;
1215 }
1216 
1217 /*
1218  * This routine tries to handle interrupts in posted mode, here is how
1219  * it deals with different cases:
1220  * - For single-destination interrupts, handle it in posted mode
1221  * - Else if vector hashing is enabled and it is a lowest-priority
1222  *   interrupt, handle it in posted mode and use the following mechanism
1223  *   to find the destination vCPU.
1224  *	1. For lowest-priority interrupts, store all the possible
1225  *	   destination vCPUs in an array.
1226  *	2. Use "guest vector % max number of destination vCPUs" to find
1227  *	   the right destination vCPU in the array for the lowest-priority
1228  *	   interrupt.
1229  * - Otherwise, use remapped mode to inject the interrupt.
1230  */
1231 bool kvm_intr_is_single_vcpu_fast(struct kvm *kvm, struct kvm_lapic_irq *irq,
1232 			struct kvm_vcpu **dest_vcpu)
1233 {
1234 	struct kvm_apic_map *map;
1235 	unsigned long bitmap;
1236 	struct kvm_lapic **dst = NULL;
1237 	bool ret = false;
1238 
1239 	if (irq->shorthand)
1240 		return false;
1241 
1242 	rcu_read_lock();
1243 	map = rcu_dereference(kvm->arch.apic_map);
1244 
1245 	if (kvm_apic_map_get_dest_lapic(kvm, NULL, irq, map, &dst, &bitmap) &&
1246 			hweight16(bitmap) == 1) {
1247 		unsigned long i = find_first_bit(&bitmap, 16);
1248 
1249 		if (dst[i]) {
1250 			*dest_vcpu = dst[i]->vcpu;
1251 			ret = true;
1252 		}
1253 	}
1254 
1255 	rcu_read_unlock();
1256 	return ret;
1257 }
1258 
1259 /*
1260  * Add a pending IRQ into lapic.
1261  * Return 1 if successfully added and 0 if discarded.
1262  */
1263 static int __apic_accept_irq(struct kvm_lapic *apic, int delivery_mode,
1264 			     int vector, int level, int trig_mode,
1265 			     struct dest_map *dest_map)
1266 {
1267 	int result = 0;
1268 	struct kvm_vcpu *vcpu = apic->vcpu;
1269 
1270 	trace_kvm_apic_accept_irq(vcpu->vcpu_id, delivery_mode,
1271 				  trig_mode, vector);
1272 	switch (delivery_mode) {
1273 	case APIC_DM_LOWEST:
1274 		vcpu->arch.apic_arb_prio++;
1275 		fallthrough;
1276 	case APIC_DM_FIXED:
1277 		if (unlikely(trig_mode && !level))
1278 			break;
1279 
1280 		/* FIXME add logic for vcpu on reset */
1281 		if (unlikely(!apic_enabled(apic)))
1282 			break;
1283 
1284 		result = 1;
1285 
1286 		if (dest_map) {
1287 			__set_bit(vcpu->vcpu_id, dest_map->map);
1288 			dest_map->vectors[vcpu->vcpu_id] = vector;
1289 		}
1290 
1291 		if (apic_test_vector(vector, apic->regs + APIC_TMR) != !!trig_mode) {
1292 			if (trig_mode)
1293 				kvm_lapic_set_vector(vector,
1294 						     apic->regs + APIC_TMR);
1295 			else
1296 				kvm_lapic_clear_vector(vector,
1297 						       apic->regs + APIC_TMR);
1298 		}
1299 
1300 		static_call(kvm_x86_deliver_interrupt)(apic, delivery_mode,
1301 						       trig_mode, vector);
1302 		break;
1303 
1304 	case APIC_DM_REMRD:
1305 		result = 1;
1306 		vcpu->arch.pv.pv_unhalted = 1;
1307 		kvm_make_request(KVM_REQ_EVENT, vcpu);
1308 		kvm_vcpu_kick(vcpu);
1309 		break;
1310 
1311 	case APIC_DM_SMI:
1312 		if (!kvm_inject_smi(vcpu)) {
1313 			kvm_vcpu_kick(vcpu);
1314 			result = 1;
1315 		}
1316 		break;
1317 
1318 	case APIC_DM_NMI:
1319 		result = 1;
1320 		kvm_inject_nmi(vcpu);
1321 		kvm_vcpu_kick(vcpu);
1322 		break;
1323 
1324 	case APIC_DM_INIT:
1325 		if (!trig_mode || level) {
1326 			result = 1;
1327 			/* assumes that there are only KVM_APIC_INIT/SIPI */
1328 			apic->pending_events = (1UL << KVM_APIC_INIT);
1329 			kvm_make_request(KVM_REQ_EVENT, vcpu);
1330 			kvm_vcpu_kick(vcpu);
1331 		}
1332 		break;
1333 
1334 	case APIC_DM_STARTUP:
1335 		result = 1;
1336 		apic->sipi_vector = vector;
1337 		/* make sure sipi_vector is visible for the receiver */
1338 		smp_wmb();
1339 		set_bit(KVM_APIC_SIPI, &apic->pending_events);
1340 		kvm_make_request(KVM_REQ_EVENT, vcpu);
1341 		kvm_vcpu_kick(vcpu);
1342 		break;
1343 
1344 	case APIC_DM_EXTINT:
1345 		/*
1346 		 * Should only be called by kvm_apic_local_deliver() with LVT0,
1347 		 * before NMI watchdog was enabled. Already handled by
1348 		 * kvm_apic_accept_pic_intr().
1349 		 */
1350 		break;
1351 
1352 	default:
1353 		printk(KERN_ERR "TODO: unsupported delivery mode %x\n",
1354 		       delivery_mode);
1355 		break;
1356 	}
1357 	return result;
1358 }
1359 
1360 /*
1361  * This routine identifies the destination vcpus mask meant to receive the
1362  * IOAPIC interrupts. It either uses kvm_apic_map_get_dest_lapic() to find
1363  * out the destination vcpus array and set the bitmap or it traverses to
1364  * each available vcpu to identify the same.
1365  */
1366 void kvm_bitmap_or_dest_vcpus(struct kvm *kvm, struct kvm_lapic_irq *irq,
1367 			      unsigned long *vcpu_bitmap)
1368 {
1369 	struct kvm_lapic **dest_vcpu = NULL;
1370 	struct kvm_lapic *src = NULL;
1371 	struct kvm_apic_map *map;
1372 	struct kvm_vcpu *vcpu;
1373 	unsigned long bitmap, i;
1374 	int vcpu_idx;
1375 	bool ret;
1376 
1377 	rcu_read_lock();
1378 	map = rcu_dereference(kvm->arch.apic_map);
1379 
1380 	ret = kvm_apic_map_get_dest_lapic(kvm, &src, irq, map, &dest_vcpu,
1381 					  &bitmap);
1382 	if (ret) {
1383 		for_each_set_bit(i, &bitmap, 16) {
1384 			if (!dest_vcpu[i])
1385 				continue;
1386 			vcpu_idx = dest_vcpu[i]->vcpu->vcpu_idx;
1387 			__set_bit(vcpu_idx, vcpu_bitmap);
1388 		}
1389 	} else {
1390 		kvm_for_each_vcpu(i, vcpu, kvm) {
1391 			if (!kvm_apic_present(vcpu))
1392 				continue;
1393 			if (!kvm_apic_match_dest(vcpu, NULL,
1394 						 irq->shorthand,
1395 						 irq->dest_id,
1396 						 irq->dest_mode))
1397 				continue;
1398 			__set_bit(i, vcpu_bitmap);
1399 		}
1400 	}
1401 	rcu_read_unlock();
1402 }
1403 
1404 int kvm_apic_compare_prio(struct kvm_vcpu *vcpu1, struct kvm_vcpu *vcpu2)
1405 {
1406 	return vcpu1->arch.apic_arb_prio - vcpu2->arch.apic_arb_prio;
1407 }
1408 
1409 static bool kvm_ioapic_handles_vector(struct kvm_lapic *apic, int vector)
1410 {
1411 	return test_bit(vector, apic->vcpu->arch.ioapic_handled_vectors);
1412 }
1413 
1414 static void kvm_ioapic_send_eoi(struct kvm_lapic *apic, int vector)
1415 {
1416 	int trigger_mode;
1417 
1418 	/* Eoi the ioapic only if the ioapic doesn't own the vector. */
1419 	if (!kvm_ioapic_handles_vector(apic, vector))
1420 		return;
1421 
1422 	/* Request a KVM exit to inform the userspace IOAPIC. */
1423 	if (irqchip_split(apic->vcpu->kvm)) {
1424 		apic->vcpu->arch.pending_ioapic_eoi = vector;
1425 		kvm_make_request(KVM_REQ_IOAPIC_EOI_EXIT, apic->vcpu);
1426 		return;
1427 	}
1428 
1429 	if (apic_test_vector(vector, apic->regs + APIC_TMR))
1430 		trigger_mode = IOAPIC_LEVEL_TRIG;
1431 	else
1432 		trigger_mode = IOAPIC_EDGE_TRIG;
1433 
1434 	kvm_ioapic_update_eoi(apic->vcpu, vector, trigger_mode);
1435 }
1436 
1437 static int apic_set_eoi(struct kvm_lapic *apic)
1438 {
1439 	int vector = apic_find_highest_isr(apic);
1440 
1441 	trace_kvm_eoi(apic, vector);
1442 
1443 	/*
1444 	 * Not every write EOI will has corresponding ISR,
1445 	 * one example is when Kernel check timer on setup_IO_APIC
1446 	 */
1447 	if (vector == -1)
1448 		return vector;
1449 
1450 	apic_clear_isr(vector, apic);
1451 	apic_update_ppr(apic);
1452 
1453 	if (to_hv_vcpu(apic->vcpu) &&
1454 	    test_bit(vector, to_hv_synic(apic->vcpu)->vec_bitmap))
1455 		kvm_hv_synic_send_eoi(apic->vcpu, vector);
1456 
1457 	kvm_ioapic_send_eoi(apic, vector);
1458 	kvm_make_request(KVM_REQ_EVENT, apic->vcpu);
1459 	return vector;
1460 }
1461 
1462 /*
1463  * this interface assumes a trap-like exit, which has already finished
1464  * desired side effect including vISR and vPPR update.
1465  */
1466 void kvm_apic_set_eoi_accelerated(struct kvm_vcpu *vcpu, int vector)
1467 {
1468 	struct kvm_lapic *apic = vcpu->arch.apic;
1469 
1470 	trace_kvm_eoi(apic, vector);
1471 
1472 	kvm_ioapic_send_eoi(apic, vector);
1473 	kvm_make_request(KVM_REQ_EVENT, apic->vcpu);
1474 }
1475 EXPORT_SYMBOL_GPL(kvm_apic_set_eoi_accelerated);
1476 
1477 void kvm_apic_send_ipi(struct kvm_lapic *apic, u32 icr_low, u32 icr_high)
1478 {
1479 	struct kvm_lapic_irq irq;
1480 
1481 	/* KVM has no delay and should always clear the BUSY/PENDING flag. */
1482 	WARN_ON_ONCE(icr_low & APIC_ICR_BUSY);
1483 
1484 	irq.vector = icr_low & APIC_VECTOR_MASK;
1485 	irq.delivery_mode = icr_low & APIC_MODE_MASK;
1486 	irq.dest_mode = icr_low & APIC_DEST_MASK;
1487 	irq.level = (icr_low & APIC_INT_ASSERT) != 0;
1488 	irq.trig_mode = icr_low & APIC_INT_LEVELTRIG;
1489 	irq.shorthand = icr_low & APIC_SHORT_MASK;
1490 	irq.msi_redir_hint = false;
1491 	if (apic_x2apic_mode(apic))
1492 		irq.dest_id = icr_high;
1493 	else
1494 		irq.dest_id = GET_XAPIC_DEST_FIELD(icr_high);
1495 
1496 	trace_kvm_apic_ipi(icr_low, irq.dest_id);
1497 
1498 	kvm_irq_delivery_to_apic(apic->vcpu->kvm, apic, &irq, NULL);
1499 }
1500 EXPORT_SYMBOL_GPL(kvm_apic_send_ipi);
1501 
1502 static u32 apic_get_tmcct(struct kvm_lapic *apic)
1503 {
1504 	ktime_t remaining, now;
1505 	s64 ns;
1506 
1507 	ASSERT(apic != NULL);
1508 
1509 	/* if initial count is 0, current count should also be 0 */
1510 	if (kvm_lapic_get_reg(apic, APIC_TMICT) == 0 ||
1511 		apic->lapic_timer.period == 0)
1512 		return 0;
1513 
1514 	now = ktime_get();
1515 	remaining = ktime_sub(apic->lapic_timer.target_expiration, now);
1516 	if (ktime_to_ns(remaining) < 0)
1517 		remaining = 0;
1518 
1519 	ns = mod_64(ktime_to_ns(remaining), apic->lapic_timer.period);
1520 	return div64_u64(ns, (APIC_BUS_CYCLE_NS * apic->divide_count));
1521 }
1522 
1523 static void __report_tpr_access(struct kvm_lapic *apic, bool write)
1524 {
1525 	struct kvm_vcpu *vcpu = apic->vcpu;
1526 	struct kvm_run *run = vcpu->run;
1527 
1528 	kvm_make_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu);
1529 	run->tpr_access.rip = kvm_rip_read(vcpu);
1530 	run->tpr_access.is_write = write;
1531 }
1532 
1533 static inline void report_tpr_access(struct kvm_lapic *apic, bool write)
1534 {
1535 	if (apic->vcpu->arch.tpr_access_reporting)
1536 		__report_tpr_access(apic, write);
1537 }
1538 
1539 static u32 __apic_read(struct kvm_lapic *apic, unsigned int offset)
1540 {
1541 	u32 val = 0;
1542 
1543 	if (offset >= LAPIC_MMIO_LENGTH)
1544 		return 0;
1545 
1546 	switch (offset) {
1547 	case APIC_ARBPRI:
1548 		break;
1549 
1550 	case APIC_TMCCT:	/* Timer CCR */
1551 		if (apic_lvtt_tscdeadline(apic))
1552 			return 0;
1553 
1554 		val = apic_get_tmcct(apic);
1555 		break;
1556 	case APIC_PROCPRI:
1557 		apic_update_ppr(apic);
1558 		val = kvm_lapic_get_reg(apic, offset);
1559 		break;
1560 	case APIC_TASKPRI:
1561 		report_tpr_access(apic, false);
1562 		fallthrough;
1563 	default:
1564 		val = kvm_lapic_get_reg(apic, offset);
1565 		break;
1566 	}
1567 
1568 	return val;
1569 }
1570 
1571 static inline struct kvm_lapic *to_lapic(struct kvm_io_device *dev)
1572 {
1573 	return container_of(dev, struct kvm_lapic, dev);
1574 }
1575 
1576 #define APIC_REG_MASK(reg)	(1ull << ((reg) >> 4))
1577 #define APIC_REGS_MASK(first, count) \
1578 	(APIC_REG_MASK(first) * ((1ull << (count)) - 1))
1579 
1580 u64 kvm_lapic_readable_reg_mask(struct kvm_lapic *apic)
1581 {
1582 	/* Leave bits '0' for reserved and write-only registers. */
1583 	u64 valid_reg_mask =
1584 		APIC_REG_MASK(APIC_ID) |
1585 		APIC_REG_MASK(APIC_LVR) |
1586 		APIC_REG_MASK(APIC_TASKPRI) |
1587 		APIC_REG_MASK(APIC_PROCPRI) |
1588 		APIC_REG_MASK(APIC_LDR) |
1589 		APIC_REG_MASK(APIC_SPIV) |
1590 		APIC_REGS_MASK(APIC_ISR, APIC_ISR_NR) |
1591 		APIC_REGS_MASK(APIC_TMR, APIC_ISR_NR) |
1592 		APIC_REGS_MASK(APIC_IRR, APIC_ISR_NR) |
1593 		APIC_REG_MASK(APIC_ESR) |
1594 		APIC_REG_MASK(APIC_ICR) |
1595 		APIC_REG_MASK(APIC_LVTT) |
1596 		APIC_REG_MASK(APIC_LVTTHMR) |
1597 		APIC_REG_MASK(APIC_LVTPC) |
1598 		APIC_REG_MASK(APIC_LVT0) |
1599 		APIC_REG_MASK(APIC_LVT1) |
1600 		APIC_REG_MASK(APIC_LVTERR) |
1601 		APIC_REG_MASK(APIC_TMICT) |
1602 		APIC_REG_MASK(APIC_TMCCT) |
1603 		APIC_REG_MASK(APIC_TDCR);
1604 
1605 	if (kvm_lapic_lvt_supported(apic, LVT_CMCI))
1606 		valid_reg_mask |= APIC_REG_MASK(APIC_LVTCMCI);
1607 
1608 	/* ARBPRI, DFR, and ICR2 are not valid in x2APIC mode. */
1609 	if (!apic_x2apic_mode(apic))
1610 		valid_reg_mask |= APIC_REG_MASK(APIC_ARBPRI) |
1611 				  APIC_REG_MASK(APIC_DFR) |
1612 				  APIC_REG_MASK(APIC_ICR2);
1613 
1614 	return valid_reg_mask;
1615 }
1616 EXPORT_SYMBOL_GPL(kvm_lapic_readable_reg_mask);
1617 
1618 static int kvm_lapic_reg_read(struct kvm_lapic *apic, u32 offset, int len,
1619 			      void *data)
1620 {
1621 	unsigned char alignment = offset & 0xf;
1622 	u32 result;
1623 
1624 	/*
1625 	 * WARN if KVM reads ICR in x2APIC mode, as it's an 8-byte register in
1626 	 * x2APIC and needs to be manually handled by the caller.
1627 	 */
1628 	WARN_ON_ONCE(apic_x2apic_mode(apic) && offset == APIC_ICR);
1629 
1630 	if (alignment + len > 4)
1631 		return 1;
1632 
1633 	if (offset > 0x3f0 ||
1634 	    !(kvm_lapic_readable_reg_mask(apic) & APIC_REG_MASK(offset)))
1635 		return 1;
1636 
1637 	result = __apic_read(apic, offset & ~0xf);
1638 
1639 	trace_kvm_apic_read(offset, result);
1640 
1641 	switch (len) {
1642 	case 1:
1643 	case 2:
1644 	case 4:
1645 		memcpy(data, (char *)&result + alignment, len);
1646 		break;
1647 	default:
1648 		printk(KERN_ERR "Local APIC read with len = %x, "
1649 		       "should be 1,2, or 4 instead\n", len);
1650 		break;
1651 	}
1652 	return 0;
1653 }
1654 
1655 static int apic_mmio_in_range(struct kvm_lapic *apic, gpa_t addr)
1656 {
1657 	return addr >= apic->base_address &&
1658 		addr < apic->base_address + LAPIC_MMIO_LENGTH;
1659 }
1660 
1661 static int apic_mmio_read(struct kvm_vcpu *vcpu, struct kvm_io_device *this,
1662 			   gpa_t address, int len, void *data)
1663 {
1664 	struct kvm_lapic *apic = to_lapic(this);
1665 	u32 offset = address - apic->base_address;
1666 
1667 	if (!apic_mmio_in_range(apic, address))
1668 		return -EOPNOTSUPP;
1669 
1670 	if (!kvm_apic_hw_enabled(apic) || apic_x2apic_mode(apic)) {
1671 		if (!kvm_check_has_quirk(vcpu->kvm,
1672 					 KVM_X86_QUIRK_LAPIC_MMIO_HOLE))
1673 			return -EOPNOTSUPP;
1674 
1675 		memset(data, 0xff, len);
1676 		return 0;
1677 	}
1678 
1679 	kvm_lapic_reg_read(apic, offset, len, data);
1680 
1681 	return 0;
1682 }
1683 
1684 static void update_divide_count(struct kvm_lapic *apic)
1685 {
1686 	u32 tmp1, tmp2, tdcr;
1687 
1688 	tdcr = kvm_lapic_get_reg(apic, APIC_TDCR);
1689 	tmp1 = tdcr & 0xf;
1690 	tmp2 = ((tmp1 & 0x3) | ((tmp1 & 0x8) >> 1)) + 1;
1691 	apic->divide_count = 0x1 << (tmp2 & 0x7);
1692 }
1693 
1694 static void limit_periodic_timer_frequency(struct kvm_lapic *apic)
1695 {
1696 	/*
1697 	 * Do not allow the guest to program periodic timers with small
1698 	 * interval, since the hrtimers are not throttled by the host
1699 	 * scheduler.
1700 	 */
1701 	if (apic_lvtt_period(apic) && apic->lapic_timer.period) {
1702 		s64 min_period = min_timer_period_us * 1000LL;
1703 
1704 		if (apic->lapic_timer.period < min_period) {
1705 			pr_info_ratelimited(
1706 			    "vcpu %i: requested %lld ns "
1707 			    "lapic timer period limited to %lld ns\n",
1708 			    apic->vcpu->vcpu_id,
1709 			    apic->lapic_timer.period, min_period);
1710 			apic->lapic_timer.period = min_period;
1711 		}
1712 	}
1713 }
1714 
1715 static void cancel_hv_timer(struct kvm_lapic *apic);
1716 
1717 static void cancel_apic_timer(struct kvm_lapic *apic)
1718 {
1719 	hrtimer_cancel(&apic->lapic_timer.timer);
1720 	preempt_disable();
1721 	if (apic->lapic_timer.hv_timer_in_use)
1722 		cancel_hv_timer(apic);
1723 	preempt_enable();
1724 	atomic_set(&apic->lapic_timer.pending, 0);
1725 }
1726 
1727 static void apic_update_lvtt(struct kvm_lapic *apic)
1728 {
1729 	u32 timer_mode = kvm_lapic_get_reg(apic, APIC_LVTT) &
1730 			apic->lapic_timer.timer_mode_mask;
1731 
1732 	if (apic->lapic_timer.timer_mode != timer_mode) {
1733 		if (apic_lvtt_tscdeadline(apic) != (timer_mode ==
1734 				APIC_LVT_TIMER_TSCDEADLINE)) {
1735 			cancel_apic_timer(apic);
1736 			kvm_lapic_set_reg(apic, APIC_TMICT, 0);
1737 			apic->lapic_timer.period = 0;
1738 			apic->lapic_timer.tscdeadline = 0;
1739 		}
1740 		apic->lapic_timer.timer_mode = timer_mode;
1741 		limit_periodic_timer_frequency(apic);
1742 	}
1743 }
1744 
1745 /*
1746  * On APICv, this test will cause a busy wait
1747  * during a higher-priority task.
1748  */
1749 
1750 static bool lapic_timer_int_injected(struct kvm_vcpu *vcpu)
1751 {
1752 	struct kvm_lapic *apic = vcpu->arch.apic;
1753 	u32 reg = kvm_lapic_get_reg(apic, APIC_LVTT);
1754 
1755 	if (kvm_apic_hw_enabled(apic)) {
1756 		int vec = reg & APIC_VECTOR_MASK;
1757 		void *bitmap = apic->regs + APIC_ISR;
1758 
1759 		if (apic->apicv_active)
1760 			bitmap = apic->regs + APIC_IRR;
1761 
1762 		if (apic_test_vector(vec, bitmap))
1763 			return true;
1764 	}
1765 	return false;
1766 }
1767 
1768 static inline void __wait_lapic_expire(struct kvm_vcpu *vcpu, u64 guest_cycles)
1769 {
1770 	u64 timer_advance_ns = vcpu->arch.apic->lapic_timer.timer_advance_ns;
1771 
1772 	/*
1773 	 * If the guest TSC is running at a different ratio than the host, then
1774 	 * convert the delay to nanoseconds to achieve an accurate delay.  Note
1775 	 * that __delay() uses delay_tsc whenever the hardware has TSC, thus
1776 	 * always for VMX enabled hardware.
1777 	 */
1778 	if (vcpu->arch.tsc_scaling_ratio == kvm_caps.default_tsc_scaling_ratio) {
1779 		__delay(min(guest_cycles,
1780 			nsec_to_cycles(vcpu, timer_advance_ns)));
1781 	} else {
1782 		u64 delay_ns = guest_cycles * 1000000ULL;
1783 		do_div(delay_ns, vcpu->arch.virtual_tsc_khz);
1784 		ndelay(min_t(u32, delay_ns, timer_advance_ns));
1785 	}
1786 }
1787 
1788 static inline void adjust_lapic_timer_advance(struct kvm_vcpu *vcpu,
1789 					      s64 advance_expire_delta)
1790 {
1791 	struct kvm_lapic *apic = vcpu->arch.apic;
1792 	u32 timer_advance_ns = apic->lapic_timer.timer_advance_ns;
1793 	u64 ns;
1794 
1795 	/* Do not adjust for tiny fluctuations or large random spikes. */
1796 	if (abs(advance_expire_delta) > LAPIC_TIMER_ADVANCE_ADJUST_MAX ||
1797 	    abs(advance_expire_delta) < LAPIC_TIMER_ADVANCE_ADJUST_MIN)
1798 		return;
1799 
1800 	/* too early */
1801 	if (advance_expire_delta < 0) {
1802 		ns = -advance_expire_delta * 1000000ULL;
1803 		do_div(ns, vcpu->arch.virtual_tsc_khz);
1804 		timer_advance_ns -= ns/LAPIC_TIMER_ADVANCE_ADJUST_STEP;
1805 	} else {
1806 	/* too late */
1807 		ns = advance_expire_delta * 1000000ULL;
1808 		do_div(ns, vcpu->arch.virtual_tsc_khz);
1809 		timer_advance_ns += ns/LAPIC_TIMER_ADVANCE_ADJUST_STEP;
1810 	}
1811 
1812 	if (unlikely(timer_advance_ns > LAPIC_TIMER_ADVANCE_NS_MAX))
1813 		timer_advance_ns = LAPIC_TIMER_ADVANCE_NS_INIT;
1814 	apic->lapic_timer.timer_advance_ns = timer_advance_ns;
1815 }
1816 
1817 static void __kvm_wait_lapic_expire(struct kvm_vcpu *vcpu)
1818 {
1819 	struct kvm_lapic *apic = vcpu->arch.apic;
1820 	u64 guest_tsc, tsc_deadline;
1821 
1822 	tsc_deadline = apic->lapic_timer.expired_tscdeadline;
1823 	apic->lapic_timer.expired_tscdeadline = 0;
1824 	guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
1825 	trace_kvm_wait_lapic_expire(vcpu->vcpu_id, guest_tsc - tsc_deadline);
1826 
1827 	if (lapic_timer_advance_dynamic) {
1828 		adjust_lapic_timer_advance(vcpu, guest_tsc - tsc_deadline);
1829 		/*
1830 		 * If the timer fired early, reread the TSC to account for the
1831 		 * overhead of the above adjustment to avoid waiting longer
1832 		 * than is necessary.
1833 		 */
1834 		if (guest_tsc < tsc_deadline)
1835 			guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
1836 	}
1837 
1838 	if (guest_tsc < tsc_deadline)
1839 		__wait_lapic_expire(vcpu, tsc_deadline - guest_tsc);
1840 }
1841 
1842 void kvm_wait_lapic_expire(struct kvm_vcpu *vcpu)
1843 {
1844 	if (lapic_in_kernel(vcpu) &&
1845 	    vcpu->arch.apic->lapic_timer.expired_tscdeadline &&
1846 	    vcpu->arch.apic->lapic_timer.timer_advance_ns &&
1847 	    lapic_timer_int_injected(vcpu))
1848 		__kvm_wait_lapic_expire(vcpu);
1849 }
1850 EXPORT_SYMBOL_GPL(kvm_wait_lapic_expire);
1851 
1852 static void kvm_apic_inject_pending_timer_irqs(struct kvm_lapic *apic)
1853 {
1854 	struct kvm_timer *ktimer = &apic->lapic_timer;
1855 
1856 	kvm_apic_local_deliver(apic, APIC_LVTT);
1857 	if (apic_lvtt_tscdeadline(apic)) {
1858 		ktimer->tscdeadline = 0;
1859 	} else if (apic_lvtt_oneshot(apic)) {
1860 		ktimer->tscdeadline = 0;
1861 		ktimer->target_expiration = 0;
1862 	}
1863 }
1864 
1865 static void apic_timer_expired(struct kvm_lapic *apic, bool from_timer_fn)
1866 {
1867 	struct kvm_vcpu *vcpu = apic->vcpu;
1868 	struct kvm_timer *ktimer = &apic->lapic_timer;
1869 
1870 	if (atomic_read(&apic->lapic_timer.pending))
1871 		return;
1872 
1873 	if (apic_lvtt_tscdeadline(apic) || ktimer->hv_timer_in_use)
1874 		ktimer->expired_tscdeadline = ktimer->tscdeadline;
1875 
1876 	if (!from_timer_fn && apic->apicv_active) {
1877 		WARN_ON(kvm_get_running_vcpu() != vcpu);
1878 		kvm_apic_inject_pending_timer_irqs(apic);
1879 		return;
1880 	}
1881 
1882 	if (kvm_use_posted_timer_interrupt(apic->vcpu)) {
1883 		/*
1884 		 * Ensure the guest's timer has truly expired before posting an
1885 		 * interrupt.  Open code the relevant checks to avoid querying
1886 		 * lapic_timer_int_injected(), which will be false since the
1887 		 * interrupt isn't yet injected.  Waiting until after injecting
1888 		 * is not an option since that won't help a posted interrupt.
1889 		 */
1890 		if (vcpu->arch.apic->lapic_timer.expired_tscdeadline &&
1891 		    vcpu->arch.apic->lapic_timer.timer_advance_ns)
1892 			__kvm_wait_lapic_expire(vcpu);
1893 		kvm_apic_inject_pending_timer_irqs(apic);
1894 		return;
1895 	}
1896 
1897 	atomic_inc(&apic->lapic_timer.pending);
1898 	kvm_make_request(KVM_REQ_UNBLOCK, vcpu);
1899 	if (from_timer_fn)
1900 		kvm_vcpu_kick(vcpu);
1901 }
1902 
1903 static void start_sw_tscdeadline(struct kvm_lapic *apic)
1904 {
1905 	struct kvm_timer *ktimer = &apic->lapic_timer;
1906 	u64 guest_tsc, tscdeadline = ktimer->tscdeadline;
1907 	u64 ns = 0;
1908 	ktime_t expire;
1909 	struct kvm_vcpu *vcpu = apic->vcpu;
1910 	unsigned long this_tsc_khz = vcpu->arch.virtual_tsc_khz;
1911 	unsigned long flags;
1912 	ktime_t now;
1913 
1914 	if (unlikely(!tscdeadline || !this_tsc_khz))
1915 		return;
1916 
1917 	local_irq_save(flags);
1918 
1919 	now = ktime_get();
1920 	guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
1921 
1922 	ns = (tscdeadline - guest_tsc) * 1000000ULL;
1923 	do_div(ns, this_tsc_khz);
1924 
1925 	if (likely(tscdeadline > guest_tsc) &&
1926 	    likely(ns > apic->lapic_timer.timer_advance_ns)) {
1927 		expire = ktime_add_ns(now, ns);
1928 		expire = ktime_sub_ns(expire, ktimer->timer_advance_ns);
1929 		hrtimer_start(&ktimer->timer, expire, HRTIMER_MODE_ABS_HARD);
1930 	} else
1931 		apic_timer_expired(apic, false);
1932 
1933 	local_irq_restore(flags);
1934 }
1935 
1936 static inline u64 tmict_to_ns(struct kvm_lapic *apic, u32 tmict)
1937 {
1938 	return (u64)tmict * APIC_BUS_CYCLE_NS * (u64)apic->divide_count;
1939 }
1940 
1941 static void update_target_expiration(struct kvm_lapic *apic, uint32_t old_divisor)
1942 {
1943 	ktime_t now, remaining;
1944 	u64 ns_remaining_old, ns_remaining_new;
1945 
1946 	apic->lapic_timer.period =
1947 			tmict_to_ns(apic, kvm_lapic_get_reg(apic, APIC_TMICT));
1948 	limit_periodic_timer_frequency(apic);
1949 
1950 	now = ktime_get();
1951 	remaining = ktime_sub(apic->lapic_timer.target_expiration, now);
1952 	if (ktime_to_ns(remaining) < 0)
1953 		remaining = 0;
1954 
1955 	ns_remaining_old = ktime_to_ns(remaining);
1956 	ns_remaining_new = mul_u64_u32_div(ns_remaining_old,
1957 	                                   apic->divide_count, old_divisor);
1958 
1959 	apic->lapic_timer.tscdeadline +=
1960 		nsec_to_cycles(apic->vcpu, ns_remaining_new) -
1961 		nsec_to_cycles(apic->vcpu, ns_remaining_old);
1962 	apic->lapic_timer.target_expiration = ktime_add_ns(now, ns_remaining_new);
1963 }
1964 
1965 static bool set_target_expiration(struct kvm_lapic *apic, u32 count_reg)
1966 {
1967 	ktime_t now;
1968 	u64 tscl = rdtsc();
1969 	s64 deadline;
1970 
1971 	now = ktime_get();
1972 	apic->lapic_timer.period =
1973 			tmict_to_ns(apic, kvm_lapic_get_reg(apic, APIC_TMICT));
1974 
1975 	if (!apic->lapic_timer.period) {
1976 		apic->lapic_timer.tscdeadline = 0;
1977 		return false;
1978 	}
1979 
1980 	limit_periodic_timer_frequency(apic);
1981 	deadline = apic->lapic_timer.period;
1982 
1983 	if (apic_lvtt_period(apic) || apic_lvtt_oneshot(apic)) {
1984 		if (unlikely(count_reg != APIC_TMICT)) {
1985 			deadline = tmict_to_ns(apic,
1986 				     kvm_lapic_get_reg(apic, count_reg));
1987 			if (unlikely(deadline <= 0)) {
1988 				if (apic_lvtt_period(apic))
1989 					deadline = apic->lapic_timer.period;
1990 				else
1991 					deadline = 0;
1992 			}
1993 			else if (unlikely(deadline > apic->lapic_timer.period)) {
1994 				pr_info_ratelimited(
1995 				    "vcpu %i: requested lapic timer restore with "
1996 				    "starting count register %#x=%u (%lld ns) > initial count (%lld ns). "
1997 				    "Using initial count to start timer.\n",
1998 				    apic->vcpu->vcpu_id,
1999 				    count_reg,
2000 				    kvm_lapic_get_reg(apic, count_reg),
2001 				    deadline, apic->lapic_timer.period);
2002 				kvm_lapic_set_reg(apic, count_reg, 0);
2003 				deadline = apic->lapic_timer.period;
2004 			}
2005 		}
2006 	}
2007 
2008 	apic->lapic_timer.tscdeadline = kvm_read_l1_tsc(apic->vcpu, tscl) +
2009 		nsec_to_cycles(apic->vcpu, deadline);
2010 	apic->lapic_timer.target_expiration = ktime_add_ns(now, deadline);
2011 
2012 	return true;
2013 }
2014 
2015 static void advance_periodic_target_expiration(struct kvm_lapic *apic)
2016 {
2017 	ktime_t now = ktime_get();
2018 	u64 tscl = rdtsc();
2019 	ktime_t delta;
2020 
2021 	/*
2022 	 * Synchronize both deadlines to the same time source or
2023 	 * differences in the periods (caused by differences in the
2024 	 * underlying clocks or numerical approximation errors) will
2025 	 * cause the two to drift apart over time as the errors
2026 	 * accumulate.
2027 	 */
2028 	apic->lapic_timer.target_expiration =
2029 		ktime_add_ns(apic->lapic_timer.target_expiration,
2030 				apic->lapic_timer.period);
2031 	delta = ktime_sub(apic->lapic_timer.target_expiration, now);
2032 	apic->lapic_timer.tscdeadline = kvm_read_l1_tsc(apic->vcpu, tscl) +
2033 		nsec_to_cycles(apic->vcpu, delta);
2034 }
2035 
2036 static void start_sw_period(struct kvm_lapic *apic)
2037 {
2038 	if (!apic->lapic_timer.period)
2039 		return;
2040 
2041 	if (ktime_after(ktime_get(),
2042 			apic->lapic_timer.target_expiration)) {
2043 		apic_timer_expired(apic, false);
2044 
2045 		if (apic_lvtt_oneshot(apic))
2046 			return;
2047 
2048 		advance_periodic_target_expiration(apic);
2049 	}
2050 
2051 	hrtimer_start(&apic->lapic_timer.timer,
2052 		apic->lapic_timer.target_expiration,
2053 		HRTIMER_MODE_ABS_HARD);
2054 }
2055 
2056 bool kvm_lapic_hv_timer_in_use(struct kvm_vcpu *vcpu)
2057 {
2058 	if (!lapic_in_kernel(vcpu))
2059 		return false;
2060 
2061 	return vcpu->arch.apic->lapic_timer.hv_timer_in_use;
2062 }
2063 
2064 static void cancel_hv_timer(struct kvm_lapic *apic)
2065 {
2066 	WARN_ON(preemptible());
2067 	WARN_ON(!apic->lapic_timer.hv_timer_in_use);
2068 	static_call(kvm_x86_cancel_hv_timer)(apic->vcpu);
2069 	apic->lapic_timer.hv_timer_in_use = false;
2070 }
2071 
2072 static bool start_hv_timer(struct kvm_lapic *apic)
2073 {
2074 	struct kvm_timer *ktimer = &apic->lapic_timer;
2075 	struct kvm_vcpu *vcpu = apic->vcpu;
2076 	bool expired;
2077 
2078 	WARN_ON(preemptible());
2079 	if (!kvm_can_use_hv_timer(vcpu))
2080 		return false;
2081 
2082 	if (!ktimer->tscdeadline)
2083 		return false;
2084 
2085 	if (static_call(kvm_x86_set_hv_timer)(vcpu, ktimer->tscdeadline, &expired))
2086 		return false;
2087 
2088 	ktimer->hv_timer_in_use = true;
2089 	hrtimer_cancel(&ktimer->timer);
2090 
2091 	/*
2092 	 * To simplify handling the periodic timer, leave the hv timer running
2093 	 * even if the deadline timer has expired, i.e. rely on the resulting
2094 	 * VM-Exit to recompute the periodic timer's target expiration.
2095 	 */
2096 	if (!apic_lvtt_period(apic)) {
2097 		/*
2098 		 * Cancel the hv timer if the sw timer fired while the hv timer
2099 		 * was being programmed, or if the hv timer itself expired.
2100 		 */
2101 		if (atomic_read(&ktimer->pending)) {
2102 			cancel_hv_timer(apic);
2103 		} else if (expired) {
2104 			apic_timer_expired(apic, false);
2105 			cancel_hv_timer(apic);
2106 		}
2107 	}
2108 
2109 	trace_kvm_hv_timer_state(vcpu->vcpu_id, ktimer->hv_timer_in_use);
2110 
2111 	return true;
2112 }
2113 
2114 static void start_sw_timer(struct kvm_lapic *apic)
2115 {
2116 	struct kvm_timer *ktimer = &apic->lapic_timer;
2117 
2118 	WARN_ON(preemptible());
2119 	if (apic->lapic_timer.hv_timer_in_use)
2120 		cancel_hv_timer(apic);
2121 	if (!apic_lvtt_period(apic) && atomic_read(&ktimer->pending))
2122 		return;
2123 
2124 	if (apic_lvtt_period(apic) || apic_lvtt_oneshot(apic))
2125 		start_sw_period(apic);
2126 	else if (apic_lvtt_tscdeadline(apic))
2127 		start_sw_tscdeadline(apic);
2128 	trace_kvm_hv_timer_state(apic->vcpu->vcpu_id, false);
2129 }
2130 
2131 static void restart_apic_timer(struct kvm_lapic *apic)
2132 {
2133 	preempt_disable();
2134 
2135 	if (!apic_lvtt_period(apic) && atomic_read(&apic->lapic_timer.pending))
2136 		goto out;
2137 
2138 	if (!start_hv_timer(apic))
2139 		start_sw_timer(apic);
2140 out:
2141 	preempt_enable();
2142 }
2143 
2144 void kvm_lapic_expired_hv_timer(struct kvm_vcpu *vcpu)
2145 {
2146 	struct kvm_lapic *apic = vcpu->arch.apic;
2147 
2148 	preempt_disable();
2149 	/* If the preempt notifier has already run, it also called apic_timer_expired */
2150 	if (!apic->lapic_timer.hv_timer_in_use)
2151 		goto out;
2152 	WARN_ON(kvm_vcpu_is_blocking(vcpu));
2153 	apic_timer_expired(apic, false);
2154 	cancel_hv_timer(apic);
2155 
2156 	if (apic_lvtt_period(apic) && apic->lapic_timer.period) {
2157 		advance_periodic_target_expiration(apic);
2158 		restart_apic_timer(apic);
2159 	}
2160 out:
2161 	preempt_enable();
2162 }
2163 EXPORT_SYMBOL_GPL(kvm_lapic_expired_hv_timer);
2164 
2165 void kvm_lapic_switch_to_hv_timer(struct kvm_vcpu *vcpu)
2166 {
2167 	restart_apic_timer(vcpu->arch.apic);
2168 }
2169 
2170 void kvm_lapic_switch_to_sw_timer(struct kvm_vcpu *vcpu)
2171 {
2172 	struct kvm_lapic *apic = vcpu->arch.apic;
2173 
2174 	preempt_disable();
2175 	/* Possibly the TSC deadline timer is not enabled yet */
2176 	if (apic->lapic_timer.hv_timer_in_use)
2177 		start_sw_timer(apic);
2178 	preempt_enable();
2179 }
2180 
2181 void kvm_lapic_restart_hv_timer(struct kvm_vcpu *vcpu)
2182 {
2183 	struct kvm_lapic *apic = vcpu->arch.apic;
2184 
2185 	WARN_ON(!apic->lapic_timer.hv_timer_in_use);
2186 	restart_apic_timer(apic);
2187 }
2188 
2189 static void __start_apic_timer(struct kvm_lapic *apic, u32 count_reg)
2190 {
2191 	atomic_set(&apic->lapic_timer.pending, 0);
2192 
2193 	if ((apic_lvtt_period(apic) || apic_lvtt_oneshot(apic))
2194 	    && !set_target_expiration(apic, count_reg))
2195 		return;
2196 
2197 	restart_apic_timer(apic);
2198 }
2199 
2200 static void start_apic_timer(struct kvm_lapic *apic)
2201 {
2202 	__start_apic_timer(apic, APIC_TMICT);
2203 }
2204 
2205 static void apic_manage_nmi_watchdog(struct kvm_lapic *apic, u32 lvt0_val)
2206 {
2207 	bool lvt0_in_nmi_mode = apic_lvt_nmi_mode(lvt0_val);
2208 
2209 	if (apic->lvt0_in_nmi_mode != lvt0_in_nmi_mode) {
2210 		apic->lvt0_in_nmi_mode = lvt0_in_nmi_mode;
2211 		if (lvt0_in_nmi_mode) {
2212 			atomic_inc(&apic->vcpu->kvm->arch.vapics_in_nmi_mode);
2213 		} else
2214 			atomic_dec(&apic->vcpu->kvm->arch.vapics_in_nmi_mode);
2215 	}
2216 }
2217 
2218 static int get_lvt_index(u32 reg)
2219 {
2220 	if (reg == APIC_LVTCMCI)
2221 		return LVT_CMCI;
2222 	if (reg < APIC_LVTT || reg > APIC_LVTERR)
2223 		return -1;
2224 	return array_index_nospec(
2225 			(reg - APIC_LVTT) >> 4, KVM_APIC_MAX_NR_LVT_ENTRIES);
2226 }
2227 
2228 static int kvm_lapic_reg_write(struct kvm_lapic *apic, u32 reg, u32 val)
2229 {
2230 	int ret = 0;
2231 
2232 	trace_kvm_apic_write(reg, val);
2233 
2234 	switch (reg) {
2235 	case APIC_ID:		/* Local APIC ID */
2236 		if (!apic_x2apic_mode(apic)) {
2237 			kvm_apic_set_xapic_id(apic, val >> 24);
2238 		} else {
2239 			ret = 1;
2240 		}
2241 		break;
2242 
2243 	case APIC_TASKPRI:
2244 		report_tpr_access(apic, true);
2245 		apic_set_tpr(apic, val & 0xff);
2246 		break;
2247 
2248 	case APIC_EOI:
2249 		apic_set_eoi(apic);
2250 		break;
2251 
2252 	case APIC_LDR:
2253 		if (!apic_x2apic_mode(apic))
2254 			kvm_apic_set_ldr(apic, val & APIC_LDR_MASK);
2255 		else
2256 			ret = 1;
2257 		break;
2258 
2259 	case APIC_DFR:
2260 		if (!apic_x2apic_mode(apic))
2261 			kvm_apic_set_dfr(apic, val | 0x0FFFFFFF);
2262 		else
2263 			ret = 1;
2264 		break;
2265 
2266 	case APIC_SPIV: {
2267 		u32 mask = 0x3ff;
2268 		if (kvm_lapic_get_reg(apic, APIC_LVR) & APIC_LVR_DIRECTED_EOI)
2269 			mask |= APIC_SPIV_DIRECTED_EOI;
2270 		apic_set_spiv(apic, val & mask);
2271 		if (!(val & APIC_SPIV_APIC_ENABLED)) {
2272 			int i;
2273 
2274 			for (i = 0; i < apic->nr_lvt_entries; i++) {
2275 				kvm_lapic_set_reg(apic, APIC_LVTx(i),
2276 					kvm_lapic_get_reg(apic, APIC_LVTx(i)) | APIC_LVT_MASKED);
2277 			}
2278 			apic_update_lvtt(apic);
2279 			atomic_set(&apic->lapic_timer.pending, 0);
2280 
2281 		}
2282 		break;
2283 	}
2284 	case APIC_ICR:
2285 		WARN_ON_ONCE(apic_x2apic_mode(apic));
2286 
2287 		/* No delay here, so we always clear the pending bit */
2288 		val &= ~APIC_ICR_BUSY;
2289 		kvm_apic_send_ipi(apic, val, kvm_lapic_get_reg(apic, APIC_ICR2));
2290 		kvm_lapic_set_reg(apic, APIC_ICR, val);
2291 		break;
2292 	case APIC_ICR2:
2293 		if (apic_x2apic_mode(apic))
2294 			ret = 1;
2295 		else
2296 			kvm_lapic_set_reg(apic, APIC_ICR2, val & 0xff000000);
2297 		break;
2298 
2299 	case APIC_LVT0:
2300 		apic_manage_nmi_watchdog(apic, val);
2301 		fallthrough;
2302 	case APIC_LVTTHMR:
2303 	case APIC_LVTPC:
2304 	case APIC_LVT1:
2305 	case APIC_LVTERR:
2306 	case APIC_LVTCMCI: {
2307 		u32 index = get_lvt_index(reg);
2308 		if (!kvm_lapic_lvt_supported(apic, index)) {
2309 			ret = 1;
2310 			break;
2311 		}
2312 		if (!kvm_apic_sw_enabled(apic))
2313 			val |= APIC_LVT_MASKED;
2314 		val &= apic_lvt_mask[index];
2315 		kvm_lapic_set_reg(apic, reg, val);
2316 		break;
2317 	}
2318 
2319 	case APIC_LVTT:
2320 		if (!kvm_apic_sw_enabled(apic))
2321 			val |= APIC_LVT_MASKED;
2322 		val &= (apic_lvt_mask[0] | apic->lapic_timer.timer_mode_mask);
2323 		kvm_lapic_set_reg(apic, APIC_LVTT, val);
2324 		apic_update_lvtt(apic);
2325 		break;
2326 
2327 	case APIC_TMICT:
2328 		if (apic_lvtt_tscdeadline(apic))
2329 			break;
2330 
2331 		cancel_apic_timer(apic);
2332 		kvm_lapic_set_reg(apic, APIC_TMICT, val);
2333 		start_apic_timer(apic);
2334 		break;
2335 
2336 	case APIC_TDCR: {
2337 		uint32_t old_divisor = apic->divide_count;
2338 
2339 		kvm_lapic_set_reg(apic, APIC_TDCR, val & 0xb);
2340 		update_divide_count(apic);
2341 		if (apic->divide_count != old_divisor &&
2342 				apic->lapic_timer.period) {
2343 			hrtimer_cancel(&apic->lapic_timer.timer);
2344 			update_target_expiration(apic, old_divisor);
2345 			restart_apic_timer(apic);
2346 		}
2347 		break;
2348 	}
2349 	case APIC_ESR:
2350 		if (apic_x2apic_mode(apic) && val != 0)
2351 			ret = 1;
2352 		break;
2353 
2354 	case APIC_SELF_IPI:
2355 		/*
2356 		 * Self-IPI exists only when x2APIC is enabled.  Bits 7:0 hold
2357 		 * the vector, everything else is reserved.
2358 		 */
2359 		if (!apic_x2apic_mode(apic) || (val & ~APIC_VECTOR_MASK))
2360 			ret = 1;
2361 		else
2362 			kvm_apic_send_ipi(apic, APIC_DEST_SELF | val, 0);
2363 		break;
2364 	default:
2365 		ret = 1;
2366 		break;
2367 	}
2368 
2369 	/*
2370 	 * Recalculate APIC maps if necessary, e.g. if the software enable bit
2371 	 * was toggled, the APIC ID changed, etc...   The maps are marked dirty
2372 	 * on relevant changes, i.e. this is a nop for most writes.
2373 	 */
2374 	kvm_recalculate_apic_map(apic->vcpu->kvm);
2375 
2376 	return ret;
2377 }
2378 
2379 static int apic_mmio_write(struct kvm_vcpu *vcpu, struct kvm_io_device *this,
2380 			    gpa_t address, int len, const void *data)
2381 {
2382 	struct kvm_lapic *apic = to_lapic(this);
2383 	unsigned int offset = address - apic->base_address;
2384 	u32 val;
2385 
2386 	if (!apic_mmio_in_range(apic, address))
2387 		return -EOPNOTSUPP;
2388 
2389 	if (!kvm_apic_hw_enabled(apic) || apic_x2apic_mode(apic)) {
2390 		if (!kvm_check_has_quirk(vcpu->kvm,
2391 					 KVM_X86_QUIRK_LAPIC_MMIO_HOLE))
2392 			return -EOPNOTSUPP;
2393 
2394 		return 0;
2395 	}
2396 
2397 	/*
2398 	 * APIC register must be aligned on 128-bits boundary.
2399 	 * 32/64/128 bits registers must be accessed thru 32 bits.
2400 	 * Refer SDM 8.4.1
2401 	 */
2402 	if (len != 4 || (offset & 0xf))
2403 		return 0;
2404 
2405 	val = *(u32*)data;
2406 
2407 	kvm_lapic_reg_write(apic, offset & 0xff0, val);
2408 
2409 	return 0;
2410 }
2411 
2412 void kvm_lapic_set_eoi(struct kvm_vcpu *vcpu)
2413 {
2414 	kvm_lapic_reg_write(vcpu->arch.apic, APIC_EOI, 0);
2415 }
2416 EXPORT_SYMBOL_GPL(kvm_lapic_set_eoi);
2417 
2418 /* emulate APIC access in a trap manner */
2419 void kvm_apic_write_nodecode(struct kvm_vcpu *vcpu, u32 offset)
2420 {
2421 	struct kvm_lapic *apic = vcpu->arch.apic;
2422 	u64 val;
2423 
2424 	/*
2425 	 * ICR is a single 64-bit register when x2APIC is enabled.  For legacy
2426 	 * xAPIC, ICR writes need to go down the common (slightly slower) path
2427 	 * to get the upper half from ICR2.
2428 	 */
2429 	if (apic_x2apic_mode(apic) && offset == APIC_ICR) {
2430 		val = kvm_lapic_get_reg64(apic, APIC_ICR);
2431 		kvm_apic_send_ipi(apic, (u32)val, (u32)(val >> 32));
2432 		trace_kvm_apic_write(APIC_ICR, val);
2433 	} else {
2434 		/* TODO: optimize to just emulate side effect w/o one more write */
2435 		val = kvm_lapic_get_reg(apic, offset);
2436 		kvm_lapic_reg_write(apic, offset, (u32)val);
2437 	}
2438 }
2439 EXPORT_SYMBOL_GPL(kvm_apic_write_nodecode);
2440 
2441 void kvm_free_lapic(struct kvm_vcpu *vcpu)
2442 {
2443 	struct kvm_lapic *apic = vcpu->arch.apic;
2444 
2445 	if (!vcpu->arch.apic)
2446 		return;
2447 
2448 	hrtimer_cancel(&apic->lapic_timer.timer);
2449 
2450 	if (!(vcpu->arch.apic_base & MSR_IA32_APICBASE_ENABLE))
2451 		static_branch_slow_dec_deferred(&apic_hw_disabled);
2452 
2453 	if (!apic->sw_enabled)
2454 		static_branch_slow_dec_deferred(&apic_sw_disabled);
2455 
2456 	if (apic->regs)
2457 		free_page((unsigned long)apic->regs);
2458 
2459 	kfree(apic);
2460 }
2461 
2462 /*
2463  *----------------------------------------------------------------------
2464  * LAPIC interface
2465  *----------------------------------------------------------------------
2466  */
2467 u64 kvm_get_lapic_tscdeadline_msr(struct kvm_vcpu *vcpu)
2468 {
2469 	struct kvm_lapic *apic = vcpu->arch.apic;
2470 
2471 	if (!kvm_apic_present(vcpu) || !apic_lvtt_tscdeadline(apic))
2472 		return 0;
2473 
2474 	return apic->lapic_timer.tscdeadline;
2475 }
2476 
2477 void kvm_set_lapic_tscdeadline_msr(struct kvm_vcpu *vcpu, u64 data)
2478 {
2479 	struct kvm_lapic *apic = vcpu->arch.apic;
2480 
2481 	if (!kvm_apic_present(vcpu) || !apic_lvtt_tscdeadline(apic))
2482 		return;
2483 
2484 	hrtimer_cancel(&apic->lapic_timer.timer);
2485 	apic->lapic_timer.tscdeadline = data;
2486 	start_apic_timer(apic);
2487 }
2488 
2489 void kvm_lapic_set_tpr(struct kvm_vcpu *vcpu, unsigned long cr8)
2490 {
2491 	apic_set_tpr(vcpu->arch.apic, (cr8 & 0x0f) << 4);
2492 }
2493 
2494 u64 kvm_lapic_get_cr8(struct kvm_vcpu *vcpu)
2495 {
2496 	u64 tpr;
2497 
2498 	tpr = (u64) kvm_lapic_get_reg(vcpu->arch.apic, APIC_TASKPRI);
2499 
2500 	return (tpr & 0xf0) >> 4;
2501 }
2502 
2503 void kvm_lapic_set_base(struct kvm_vcpu *vcpu, u64 value)
2504 {
2505 	u64 old_value = vcpu->arch.apic_base;
2506 	struct kvm_lapic *apic = vcpu->arch.apic;
2507 
2508 	vcpu->arch.apic_base = value;
2509 
2510 	if ((old_value ^ value) & MSR_IA32_APICBASE_ENABLE)
2511 		kvm_update_cpuid_runtime(vcpu);
2512 
2513 	if (!apic)
2514 		return;
2515 
2516 	/* update jump label if enable bit changes */
2517 	if ((old_value ^ value) & MSR_IA32_APICBASE_ENABLE) {
2518 		if (value & MSR_IA32_APICBASE_ENABLE) {
2519 			kvm_apic_set_xapic_id(apic, vcpu->vcpu_id);
2520 			static_branch_slow_dec_deferred(&apic_hw_disabled);
2521 			/* Check if there are APF page ready requests pending */
2522 			kvm_make_request(KVM_REQ_APF_READY, vcpu);
2523 		} else {
2524 			static_branch_inc(&apic_hw_disabled.key);
2525 			atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY);
2526 		}
2527 	}
2528 
2529 	if ((old_value ^ value) & X2APIC_ENABLE) {
2530 		if (value & X2APIC_ENABLE)
2531 			kvm_apic_set_x2apic_id(apic, vcpu->vcpu_id);
2532 		else if (value & MSR_IA32_APICBASE_ENABLE)
2533 			kvm_apic_set_xapic_id(apic, vcpu->vcpu_id);
2534 	}
2535 
2536 	if ((old_value ^ value) & (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE)) {
2537 		kvm_make_request(KVM_REQ_APICV_UPDATE, vcpu);
2538 		static_call_cond(kvm_x86_set_virtual_apic_mode)(vcpu);
2539 	}
2540 
2541 	apic->base_address = apic->vcpu->arch.apic_base &
2542 			     MSR_IA32_APICBASE_BASE;
2543 
2544 	if ((value & MSR_IA32_APICBASE_ENABLE) &&
2545 	     apic->base_address != APIC_DEFAULT_PHYS_BASE) {
2546 		kvm_set_apicv_inhibit(apic->vcpu->kvm,
2547 				      APICV_INHIBIT_REASON_APIC_BASE_MODIFIED);
2548 	}
2549 }
2550 
2551 void kvm_apic_update_apicv(struct kvm_vcpu *vcpu)
2552 {
2553 	struct kvm_lapic *apic = vcpu->arch.apic;
2554 
2555 	if (apic->apicv_active) {
2556 		/* irr_pending is always true when apicv is activated. */
2557 		apic->irr_pending = true;
2558 		apic->isr_count = 1;
2559 	} else {
2560 		/*
2561 		 * Don't clear irr_pending, searching the IRR can race with
2562 		 * updates from the CPU as APICv is still active from hardware's
2563 		 * perspective.  The flag will be cleared as appropriate when
2564 		 * KVM injects the interrupt.
2565 		 */
2566 		apic->isr_count = count_vectors(apic->regs + APIC_ISR);
2567 	}
2568 	apic->highest_isr_cache = -1;
2569 }
2570 
2571 int kvm_alloc_apic_access_page(struct kvm *kvm)
2572 {
2573 	struct page *page;
2574 	void __user *hva;
2575 	int ret = 0;
2576 
2577 	mutex_lock(&kvm->slots_lock);
2578 	if (kvm->arch.apic_access_memslot_enabled ||
2579 	    kvm->arch.apic_access_memslot_inhibited)
2580 		goto out;
2581 
2582 	hva = __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
2583 				      APIC_DEFAULT_PHYS_BASE, PAGE_SIZE);
2584 	if (IS_ERR(hva)) {
2585 		ret = PTR_ERR(hva);
2586 		goto out;
2587 	}
2588 
2589 	page = gfn_to_page(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
2590 	if (is_error_page(page)) {
2591 		ret = -EFAULT;
2592 		goto out;
2593 	}
2594 
2595 	/*
2596 	 * Do not pin the page in memory, so that memory hot-unplug
2597 	 * is able to migrate it.
2598 	 */
2599 	put_page(page);
2600 	kvm->arch.apic_access_memslot_enabled = true;
2601 out:
2602 	mutex_unlock(&kvm->slots_lock);
2603 	return ret;
2604 }
2605 EXPORT_SYMBOL_GPL(kvm_alloc_apic_access_page);
2606 
2607 void kvm_inhibit_apic_access_page(struct kvm_vcpu *vcpu)
2608 {
2609 	struct kvm *kvm = vcpu->kvm;
2610 
2611 	if (!kvm->arch.apic_access_memslot_enabled)
2612 		return;
2613 
2614 	kvm_vcpu_srcu_read_unlock(vcpu);
2615 
2616 	mutex_lock(&kvm->slots_lock);
2617 
2618 	if (kvm->arch.apic_access_memslot_enabled) {
2619 		__x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 0, 0);
2620 		/*
2621 		 * Clear "enabled" after the memslot is deleted so that a
2622 		 * different vCPU doesn't get a false negative when checking
2623 		 * the flag out of slots_lock.  No additional memory barrier is
2624 		 * needed as modifying memslots requires waiting other vCPUs to
2625 		 * drop SRCU (see above), and false positives are ok as the
2626 		 * flag is rechecked after acquiring slots_lock.
2627 		 */
2628 		kvm->arch.apic_access_memslot_enabled = false;
2629 
2630 		/*
2631 		 * Mark the memslot as inhibited to prevent reallocating the
2632 		 * memslot during vCPU creation, e.g. if a vCPU is hotplugged.
2633 		 */
2634 		kvm->arch.apic_access_memslot_inhibited = true;
2635 	}
2636 
2637 	mutex_unlock(&kvm->slots_lock);
2638 
2639 	kvm_vcpu_srcu_read_lock(vcpu);
2640 }
2641 
2642 void kvm_lapic_reset(struct kvm_vcpu *vcpu, bool init_event)
2643 {
2644 	struct kvm_lapic *apic = vcpu->arch.apic;
2645 	u64 msr_val;
2646 	int i;
2647 
2648 	if (!init_event) {
2649 		msr_val = APIC_DEFAULT_PHYS_BASE | MSR_IA32_APICBASE_ENABLE;
2650 		if (kvm_vcpu_is_reset_bsp(vcpu))
2651 			msr_val |= MSR_IA32_APICBASE_BSP;
2652 		kvm_lapic_set_base(vcpu, msr_val);
2653 	}
2654 
2655 	if (!apic)
2656 		return;
2657 
2658 	/* Stop the timer in case it's a reset to an active apic */
2659 	hrtimer_cancel(&apic->lapic_timer.timer);
2660 
2661 	/* The xAPIC ID is set at RESET even if the APIC was already enabled. */
2662 	if (!init_event)
2663 		kvm_apic_set_xapic_id(apic, vcpu->vcpu_id);
2664 	kvm_apic_set_version(apic->vcpu);
2665 
2666 	for (i = 0; i < apic->nr_lvt_entries; i++)
2667 		kvm_lapic_set_reg(apic, APIC_LVTx(i), APIC_LVT_MASKED);
2668 	apic_update_lvtt(apic);
2669 	if (kvm_vcpu_is_reset_bsp(vcpu) &&
2670 	    kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_LINT0_REENABLED))
2671 		kvm_lapic_set_reg(apic, APIC_LVT0,
2672 			     SET_APIC_DELIVERY_MODE(0, APIC_MODE_EXTINT));
2673 	apic_manage_nmi_watchdog(apic, kvm_lapic_get_reg(apic, APIC_LVT0));
2674 
2675 	kvm_apic_set_dfr(apic, 0xffffffffU);
2676 	apic_set_spiv(apic, 0xff);
2677 	kvm_lapic_set_reg(apic, APIC_TASKPRI, 0);
2678 	if (!apic_x2apic_mode(apic))
2679 		kvm_apic_set_ldr(apic, 0);
2680 	kvm_lapic_set_reg(apic, APIC_ESR, 0);
2681 	if (!apic_x2apic_mode(apic)) {
2682 		kvm_lapic_set_reg(apic, APIC_ICR, 0);
2683 		kvm_lapic_set_reg(apic, APIC_ICR2, 0);
2684 	} else {
2685 		kvm_lapic_set_reg64(apic, APIC_ICR, 0);
2686 	}
2687 	kvm_lapic_set_reg(apic, APIC_TDCR, 0);
2688 	kvm_lapic_set_reg(apic, APIC_TMICT, 0);
2689 	for (i = 0; i < 8; i++) {
2690 		kvm_lapic_set_reg(apic, APIC_IRR + 0x10 * i, 0);
2691 		kvm_lapic_set_reg(apic, APIC_ISR + 0x10 * i, 0);
2692 		kvm_lapic_set_reg(apic, APIC_TMR + 0x10 * i, 0);
2693 	}
2694 	kvm_apic_update_apicv(vcpu);
2695 	update_divide_count(apic);
2696 	atomic_set(&apic->lapic_timer.pending, 0);
2697 
2698 	vcpu->arch.pv_eoi.msr_val = 0;
2699 	apic_update_ppr(apic);
2700 	if (apic->apicv_active) {
2701 		static_call_cond(kvm_x86_apicv_post_state_restore)(vcpu);
2702 		static_call_cond(kvm_x86_hwapic_irr_update)(vcpu, -1);
2703 		static_call_cond(kvm_x86_hwapic_isr_update)(-1);
2704 	}
2705 
2706 	vcpu->arch.apic_arb_prio = 0;
2707 	vcpu->arch.apic_attention = 0;
2708 
2709 	kvm_recalculate_apic_map(vcpu->kvm);
2710 }
2711 
2712 /*
2713  *----------------------------------------------------------------------
2714  * timer interface
2715  *----------------------------------------------------------------------
2716  */
2717 
2718 static bool lapic_is_periodic(struct kvm_lapic *apic)
2719 {
2720 	return apic_lvtt_period(apic);
2721 }
2722 
2723 int apic_has_pending_timer(struct kvm_vcpu *vcpu)
2724 {
2725 	struct kvm_lapic *apic = vcpu->arch.apic;
2726 
2727 	if (apic_enabled(apic) && apic_lvt_enabled(apic, APIC_LVTT))
2728 		return atomic_read(&apic->lapic_timer.pending);
2729 
2730 	return 0;
2731 }
2732 
2733 int kvm_apic_local_deliver(struct kvm_lapic *apic, int lvt_type)
2734 {
2735 	u32 reg = kvm_lapic_get_reg(apic, lvt_type);
2736 	int vector, mode, trig_mode;
2737 
2738 	if (kvm_apic_hw_enabled(apic) && !(reg & APIC_LVT_MASKED)) {
2739 		vector = reg & APIC_VECTOR_MASK;
2740 		mode = reg & APIC_MODE_MASK;
2741 		trig_mode = reg & APIC_LVT_LEVEL_TRIGGER;
2742 		return __apic_accept_irq(apic, mode, vector, 1, trig_mode,
2743 					NULL);
2744 	}
2745 	return 0;
2746 }
2747 
2748 void kvm_apic_nmi_wd_deliver(struct kvm_vcpu *vcpu)
2749 {
2750 	struct kvm_lapic *apic = vcpu->arch.apic;
2751 
2752 	if (apic)
2753 		kvm_apic_local_deliver(apic, APIC_LVT0);
2754 }
2755 
2756 static const struct kvm_io_device_ops apic_mmio_ops = {
2757 	.read     = apic_mmio_read,
2758 	.write    = apic_mmio_write,
2759 };
2760 
2761 static enum hrtimer_restart apic_timer_fn(struct hrtimer *data)
2762 {
2763 	struct kvm_timer *ktimer = container_of(data, struct kvm_timer, timer);
2764 	struct kvm_lapic *apic = container_of(ktimer, struct kvm_lapic, lapic_timer);
2765 
2766 	apic_timer_expired(apic, true);
2767 
2768 	if (lapic_is_periodic(apic)) {
2769 		advance_periodic_target_expiration(apic);
2770 		hrtimer_add_expires_ns(&ktimer->timer, ktimer->period);
2771 		return HRTIMER_RESTART;
2772 	} else
2773 		return HRTIMER_NORESTART;
2774 }
2775 
2776 int kvm_create_lapic(struct kvm_vcpu *vcpu, int timer_advance_ns)
2777 {
2778 	struct kvm_lapic *apic;
2779 
2780 	ASSERT(vcpu != NULL);
2781 
2782 	apic = kzalloc(sizeof(*apic), GFP_KERNEL_ACCOUNT);
2783 	if (!apic)
2784 		goto nomem;
2785 
2786 	vcpu->arch.apic = apic;
2787 
2788 	apic->regs = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT);
2789 	if (!apic->regs) {
2790 		printk(KERN_ERR "malloc apic regs error for vcpu %x\n",
2791 		       vcpu->vcpu_id);
2792 		goto nomem_free_apic;
2793 	}
2794 	apic->vcpu = vcpu;
2795 
2796 	apic->nr_lvt_entries = kvm_apic_calc_nr_lvt_entries(vcpu);
2797 
2798 	hrtimer_init(&apic->lapic_timer.timer, CLOCK_MONOTONIC,
2799 		     HRTIMER_MODE_ABS_HARD);
2800 	apic->lapic_timer.timer.function = apic_timer_fn;
2801 	if (timer_advance_ns == -1) {
2802 		apic->lapic_timer.timer_advance_ns = LAPIC_TIMER_ADVANCE_NS_INIT;
2803 		lapic_timer_advance_dynamic = true;
2804 	} else {
2805 		apic->lapic_timer.timer_advance_ns = timer_advance_ns;
2806 		lapic_timer_advance_dynamic = false;
2807 	}
2808 
2809 	/*
2810 	 * Stuff the APIC ENABLE bit in lieu of temporarily incrementing
2811 	 * apic_hw_disabled; the full RESET value is set by kvm_lapic_reset().
2812 	 */
2813 	vcpu->arch.apic_base = MSR_IA32_APICBASE_ENABLE;
2814 	static_branch_inc(&apic_sw_disabled.key); /* sw disabled at reset */
2815 	kvm_iodevice_init(&apic->dev, &apic_mmio_ops);
2816 
2817 	return 0;
2818 nomem_free_apic:
2819 	kfree(apic);
2820 	vcpu->arch.apic = NULL;
2821 nomem:
2822 	return -ENOMEM;
2823 }
2824 
2825 int kvm_apic_has_interrupt(struct kvm_vcpu *vcpu)
2826 {
2827 	struct kvm_lapic *apic = vcpu->arch.apic;
2828 	u32 ppr;
2829 
2830 	if (!kvm_apic_present(vcpu))
2831 		return -1;
2832 
2833 	__apic_update_ppr(apic, &ppr);
2834 	return apic_has_interrupt_for_ppr(apic, ppr);
2835 }
2836 EXPORT_SYMBOL_GPL(kvm_apic_has_interrupt);
2837 
2838 int kvm_apic_accept_pic_intr(struct kvm_vcpu *vcpu)
2839 {
2840 	u32 lvt0 = kvm_lapic_get_reg(vcpu->arch.apic, APIC_LVT0);
2841 
2842 	if (!kvm_apic_hw_enabled(vcpu->arch.apic))
2843 		return 1;
2844 	if ((lvt0 & APIC_LVT_MASKED) == 0 &&
2845 	    GET_APIC_DELIVERY_MODE(lvt0) == APIC_MODE_EXTINT)
2846 		return 1;
2847 	return 0;
2848 }
2849 
2850 void kvm_inject_apic_timer_irqs(struct kvm_vcpu *vcpu)
2851 {
2852 	struct kvm_lapic *apic = vcpu->arch.apic;
2853 
2854 	if (atomic_read(&apic->lapic_timer.pending) > 0) {
2855 		kvm_apic_inject_pending_timer_irqs(apic);
2856 		atomic_set(&apic->lapic_timer.pending, 0);
2857 	}
2858 }
2859 
2860 int kvm_get_apic_interrupt(struct kvm_vcpu *vcpu)
2861 {
2862 	int vector = kvm_apic_has_interrupt(vcpu);
2863 	struct kvm_lapic *apic = vcpu->arch.apic;
2864 	u32 ppr;
2865 
2866 	if (vector == -1)
2867 		return -1;
2868 
2869 	/*
2870 	 * We get here even with APIC virtualization enabled, if doing
2871 	 * nested virtualization and L1 runs with the "acknowledge interrupt
2872 	 * on exit" mode.  Then we cannot inject the interrupt via RVI,
2873 	 * because the process would deliver it through the IDT.
2874 	 */
2875 
2876 	apic_clear_irr(vector, apic);
2877 	if (to_hv_vcpu(vcpu) && test_bit(vector, to_hv_synic(vcpu)->auto_eoi_bitmap)) {
2878 		/*
2879 		 * For auto-EOI interrupts, there might be another pending
2880 		 * interrupt above PPR, so check whether to raise another
2881 		 * KVM_REQ_EVENT.
2882 		 */
2883 		apic_update_ppr(apic);
2884 	} else {
2885 		/*
2886 		 * For normal interrupts, PPR has been raised and there cannot
2887 		 * be a higher-priority pending interrupt---except if there was
2888 		 * a concurrent interrupt injection, but that would have
2889 		 * triggered KVM_REQ_EVENT already.
2890 		 */
2891 		apic_set_isr(vector, apic);
2892 		__apic_update_ppr(apic, &ppr);
2893 	}
2894 
2895 	return vector;
2896 }
2897 
2898 static int kvm_apic_state_fixup(struct kvm_vcpu *vcpu,
2899 		struct kvm_lapic_state *s, bool set)
2900 {
2901 	if (apic_x2apic_mode(vcpu->arch.apic)) {
2902 		u32 *id = (u32 *)(s->regs + APIC_ID);
2903 		u32 *ldr = (u32 *)(s->regs + APIC_LDR);
2904 		u64 icr;
2905 
2906 		if (vcpu->kvm->arch.x2apic_format) {
2907 			if (*id != vcpu->vcpu_id)
2908 				return -EINVAL;
2909 		} else {
2910 			if (set)
2911 				*id >>= 24;
2912 			else
2913 				*id <<= 24;
2914 		}
2915 
2916 		/*
2917 		 * In x2APIC mode, the LDR is fixed and based on the id.  And
2918 		 * ICR is internally a single 64-bit register, but needs to be
2919 		 * split to ICR+ICR2 in userspace for backwards compatibility.
2920 		 */
2921 		if (set) {
2922 			*ldr = kvm_apic_calc_x2apic_ldr(*id);
2923 
2924 			icr = __kvm_lapic_get_reg(s->regs, APIC_ICR) |
2925 			      (u64)__kvm_lapic_get_reg(s->regs, APIC_ICR2) << 32;
2926 			__kvm_lapic_set_reg64(s->regs, APIC_ICR, icr);
2927 		} else {
2928 			icr = __kvm_lapic_get_reg64(s->regs, APIC_ICR);
2929 			__kvm_lapic_set_reg(s->regs, APIC_ICR2, icr >> 32);
2930 		}
2931 	}
2932 
2933 	return 0;
2934 }
2935 
2936 int kvm_apic_get_state(struct kvm_vcpu *vcpu, struct kvm_lapic_state *s)
2937 {
2938 	memcpy(s->regs, vcpu->arch.apic->regs, sizeof(*s));
2939 
2940 	/*
2941 	 * Get calculated timer current count for remaining timer period (if
2942 	 * any) and store it in the returned register set.
2943 	 */
2944 	__kvm_lapic_set_reg(s->regs, APIC_TMCCT,
2945 			    __apic_read(vcpu->arch.apic, APIC_TMCCT));
2946 
2947 	return kvm_apic_state_fixup(vcpu, s, false);
2948 }
2949 
2950 int kvm_apic_set_state(struct kvm_vcpu *vcpu, struct kvm_lapic_state *s)
2951 {
2952 	struct kvm_lapic *apic = vcpu->arch.apic;
2953 	int r;
2954 
2955 	kvm_lapic_set_base(vcpu, vcpu->arch.apic_base);
2956 	/* set SPIV separately to get count of SW disabled APICs right */
2957 	apic_set_spiv(apic, *((u32 *)(s->regs + APIC_SPIV)));
2958 
2959 	r = kvm_apic_state_fixup(vcpu, s, true);
2960 	if (r) {
2961 		kvm_recalculate_apic_map(vcpu->kvm);
2962 		return r;
2963 	}
2964 	memcpy(vcpu->arch.apic->regs, s->regs, sizeof(*s));
2965 
2966 	atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY);
2967 	kvm_recalculate_apic_map(vcpu->kvm);
2968 	kvm_apic_set_version(vcpu);
2969 
2970 	apic_update_ppr(apic);
2971 	cancel_apic_timer(apic);
2972 	apic->lapic_timer.expired_tscdeadline = 0;
2973 	apic_update_lvtt(apic);
2974 	apic_manage_nmi_watchdog(apic, kvm_lapic_get_reg(apic, APIC_LVT0));
2975 	update_divide_count(apic);
2976 	__start_apic_timer(apic, APIC_TMCCT);
2977 	kvm_lapic_set_reg(apic, APIC_TMCCT, 0);
2978 	kvm_apic_update_apicv(vcpu);
2979 	if (apic->apicv_active) {
2980 		static_call_cond(kvm_x86_apicv_post_state_restore)(vcpu);
2981 		static_call_cond(kvm_x86_hwapic_irr_update)(vcpu, apic_find_highest_irr(apic));
2982 		static_call_cond(kvm_x86_hwapic_isr_update)(apic_find_highest_isr(apic));
2983 	}
2984 	kvm_make_request(KVM_REQ_EVENT, vcpu);
2985 	if (ioapic_in_kernel(vcpu->kvm))
2986 		kvm_rtc_eoi_tracking_restore_one(vcpu);
2987 
2988 	vcpu->arch.apic_arb_prio = 0;
2989 
2990 	return 0;
2991 }
2992 
2993 void __kvm_migrate_apic_timer(struct kvm_vcpu *vcpu)
2994 {
2995 	struct hrtimer *timer;
2996 
2997 	if (!lapic_in_kernel(vcpu) ||
2998 		kvm_can_post_timer_interrupt(vcpu))
2999 		return;
3000 
3001 	timer = &vcpu->arch.apic->lapic_timer.timer;
3002 	if (hrtimer_cancel(timer))
3003 		hrtimer_start_expires(timer, HRTIMER_MODE_ABS_HARD);
3004 }
3005 
3006 /*
3007  * apic_sync_pv_eoi_from_guest - called on vmexit or cancel interrupt
3008  *
3009  * Detect whether guest triggered PV EOI since the
3010  * last entry. If yes, set EOI on guests's behalf.
3011  * Clear PV EOI in guest memory in any case.
3012  */
3013 static void apic_sync_pv_eoi_from_guest(struct kvm_vcpu *vcpu,
3014 					struct kvm_lapic *apic)
3015 {
3016 	int vector;
3017 	/*
3018 	 * PV EOI state is derived from KVM_APIC_PV_EOI_PENDING in host
3019 	 * and KVM_PV_EOI_ENABLED in guest memory as follows:
3020 	 *
3021 	 * KVM_APIC_PV_EOI_PENDING is unset:
3022 	 * 	-> host disabled PV EOI.
3023 	 * KVM_APIC_PV_EOI_PENDING is set, KVM_PV_EOI_ENABLED is set:
3024 	 * 	-> host enabled PV EOI, guest did not execute EOI yet.
3025 	 * KVM_APIC_PV_EOI_PENDING is set, KVM_PV_EOI_ENABLED is unset:
3026 	 * 	-> host enabled PV EOI, guest executed EOI.
3027 	 */
3028 	BUG_ON(!pv_eoi_enabled(vcpu));
3029 
3030 	if (pv_eoi_test_and_clr_pending(vcpu))
3031 		return;
3032 	vector = apic_set_eoi(apic);
3033 	trace_kvm_pv_eoi(apic, vector);
3034 }
3035 
3036 void kvm_lapic_sync_from_vapic(struct kvm_vcpu *vcpu)
3037 {
3038 	u32 data;
3039 
3040 	if (test_bit(KVM_APIC_PV_EOI_PENDING, &vcpu->arch.apic_attention))
3041 		apic_sync_pv_eoi_from_guest(vcpu, vcpu->arch.apic);
3042 
3043 	if (!test_bit(KVM_APIC_CHECK_VAPIC, &vcpu->arch.apic_attention))
3044 		return;
3045 
3046 	if (kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.apic->vapic_cache, &data,
3047 				  sizeof(u32)))
3048 		return;
3049 
3050 	apic_set_tpr(vcpu->arch.apic, data & 0xff);
3051 }
3052 
3053 /*
3054  * apic_sync_pv_eoi_to_guest - called before vmentry
3055  *
3056  * Detect whether it's safe to enable PV EOI and
3057  * if yes do so.
3058  */
3059 static void apic_sync_pv_eoi_to_guest(struct kvm_vcpu *vcpu,
3060 					struct kvm_lapic *apic)
3061 {
3062 	if (!pv_eoi_enabled(vcpu) ||
3063 	    /* IRR set or many bits in ISR: could be nested. */
3064 	    apic->irr_pending ||
3065 	    /* Cache not set: could be safe but we don't bother. */
3066 	    apic->highest_isr_cache == -1 ||
3067 	    /* Need EOI to update ioapic. */
3068 	    kvm_ioapic_handles_vector(apic, apic->highest_isr_cache)) {
3069 		/*
3070 		 * PV EOI was disabled by apic_sync_pv_eoi_from_guest
3071 		 * so we need not do anything here.
3072 		 */
3073 		return;
3074 	}
3075 
3076 	pv_eoi_set_pending(apic->vcpu);
3077 }
3078 
3079 void kvm_lapic_sync_to_vapic(struct kvm_vcpu *vcpu)
3080 {
3081 	u32 data, tpr;
3082 	int max_irr, max_isr;
3083 	struct kvm_lapic *apic = vcpu->arch.apic;
3084 
3085 	apic_sync_pv_eoi_to_guest(vcpu, apic);
3086 
3087 	if (!test_bit(KVM_APIC_CHECK_VAPIC, &vcpu->arch.apic_attention))
3088 		return;
3089 
3090 	tpr = kvm_lapic_get_reg(apic, APIC_TASKPRI) & 0xff;
3091 	max_irr = apic_find_highest_irr(apic);
3092 	if (max_irr < 0)
3093 		max_irr = 0;
3094 	max_isr = apic_find_highest_isr(apic);
3095 	if (max_isr < 0)
3096 		max_isr = 0;
3097 	data = (tpr & 0xff) | ((max_isr & 0xf0) << 8) | (max_irr << 24);
3098 
3099 	kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apic->vapic_cache, &data,
3100 				sizeof(u32));
3101 }
3102 
3103 int kvm_lapic_set_vapic_addr(struct kvm_vcpu *vcpu, gpa_t vapic_addr)
3104 {
3105 	if (vapic_addr) {
3106 		if (kvm_gfn_to_hva_cache_init(vcpu->kvm,
3107 					&vcpu->arch.apic->vapic_cache,
3108 					vapic_addr, sizeof(u32)))
3109 			return -EINVAL;
3110 		__set_bit(KVM_APIC_CHECK_VAPIC, &vcpu->arch.apic_attention);
3111 	} else {
3112 		__clear_bit(KVM_APIC_CHECK_VAPIC, &vcpu->arch.apic_attention);
3113 	}
3114 
3115 	vcpu->arch.apic->vapic_addr = vapic_addr;
3116 	return 0;
3117 }
3118 
3119 int kvm_x2apic_icr_write(struct kvm_lapic *apic, u64 data)
3120 {
3121 	data &= ~APIC_ICR_BUSY;
3122 
3123 	kvm_apic_send_ipi(apic, (u32)data, (u32)(data >> 32));
3124 	kvm_lapic_set_reg64(apic, APIC_ICR, data);
3125 	trace_kvm_apic_write(APIC_ICR, data);
3126 	return 0;
3127 }
3128 
3129 static int kvm_lapic_msr_read(struct kvm_lapic *apic, u32 reg, u64 *data)
3130 {
3131 	u32 low;
3132 
3133 	if (reg == APIC_ICR) {
3134 		*data = kvm_lapic_get_reg64(apic, APIC_ICR);
3135 		return 0;
3136 	}
3137 
3138 	if (kvm_lapic_reg_read(apic, reg, 4, &low))
3139 		return 1;
3140 
3141 	*data = low;
3142 
3143 	return 0;
3144 }
3145 
3146 static int kvm_lapic_msr_write(struct kvm_lapic *apic, u32 reg, u64 data)
3147 {
3148 	/*
3149 	 * ICR is a 64-bit register in x2APIC mode (and Hyper-V PV vAPIC) and
3150 	 * can be written as such, all other registers remain accessible only
3151 	 * through 32-bit reads/writes.
3152 	 */
3153 	if (reg == APIC_ICR)
3154 		return kvm_x2apic_icr_write(apic, data);
3155 
3156 	/* Bits 63:32 are reserved in all other registers. */
3157 	if (data >> 32)
3158 		return 1;
3159 
3160 	return kvm_lapic_reg_write(apic, reg, (u32)data);
3161 }
3162 
3163 int kvm_x2apic_msr_write(struct kvm_vcpu *vcpu, u32 msr, u64 data)
3164 {
3165 	struct kvm_lapic *apic = vcpu->arch.apic;
3166 	u32 reg = (msr - APIC_BASE_MSR) << 4;
3167 
3168 	if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(apic))
3169 		return 1;
3170 
3171 	return kvm_lapic_msr_write(apic, reg, data);
3172 }
3173 
3174 int kvm_x2apic_msr_read(struct kvm_vcpu *vcpu, u32 msr, u64 *data)
3175 {
3176 	struct kvm_lapic *apic = vcpu->arch.apic;
3177 	u32 reg = (msr - APIC_BASE_MSR) << 4;
3178 
3179 	if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(apic))
3180 		return 1;
3181 
3182 	return kvm_lapic_msr_read(apic, reg, data);
3183 }
3184 
3185 int kvm_hv_vapic_msr_write(struct kvm_vcpu *vcpu, u32 reg, u64 data)
3186 {
3187 	if (!lapic_in_kernel(vcpu))
3188 		return 1;
3189 
3190 	return kvm_lapic_msr_write(vcpu->arch.apic, reg, data);
3191 }
3192 
3193 int kvm_hv_vapic_msr_read(struct kvm_vcpu *vcpu, u32 reg, u64 *data)
3194 {
3195 	if (!lapic_in_kernel(vcpu))
3196 		return 1;
3197 
3198 	return kvm_lapic_msr_read(vcpu->arch.apic, reg, data);
3199 }
3200 
3201 int kvm_lapic_set_pv_eoi(struct kvm_vcpu *vcpu, u64 data, unsigned long len)
3202 {
3203 	u64 addr = data & ~KVM_MSR_ENABLED;
3204 	struct gfn_to_hva_cache *ghc = &vcpu->arch.pv_eoi.data;
3205 	unsigned long new_len;
3206 	int ret;
3207 
3208 	if (!IS_ALIGNED(addr, 4))
3209 		return 1;
3210 
3211 	if (data & KVM_MSR_ENABLED) {
3212 		if (addr == ghc->gpa && len <= ghc->len)
3213 			new_len = ghc->len;
3214 		else
3215 			new_len = len;
3216 
3217 		ret = kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, addr, new_len);
3218 		if (ret)
3219 			return ret;
3220 	}
3221 
3222 	vcpu->arch.pv_eoi.msr_val = data;
3223 
3224 	return 0;
3225 }
3226 
3227 int kvm_apic_accept_events(struct kvm_vcpu *vcpu)
3228 {
3229 	struct kvm_lapic *apic = vcpu->arch.apic;
3230 	u8 sipi_vector;
3231 	int r;
3232 
3233 	if (!kvm_apic_has_pending_init_or_sipi(vcpu))
3234 		return 0;
3235 
3236 	if (is_guest_mode(vcpu)) {
3237 		r = kvm_check_nested_events(vcpu);
3238 		if (r < 0)
3239 			return r == -EBUSY ? 0 : r;
3240 		/*
3241 		 * Continue processing INIT/SIPI even if a nested VM-Exit
3242 		 * occurred, e.g. pending SIPIs should be dropped if INIT+SIPI
3243 		 * are blocked as a result of transitioning to VMX root mode.
3244 		 */
3245 	}
3246 
3247 	/*
3248 	 * INITs are blocked while CPU is in specific states (SMM, VMX root
3249 	 * mode, SVM with GIF=0), while SIPIs are dropped if the CPU isn't in
3250 	 * wait-for-SIPI (WFS).
3251 	 */
3252 	if (!kvm_apic_init_sipi_allowed(vcpu)) {
3253 		WARN_ON_ONCE(vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED);
3254 		clear_bit(KVM_APIC_SIPI, &apic->pending_events);
3255 		return 0;
3256 	}
3257 
3258 	if (test_and_clear_bit(KVM_APIC_INIT, &apic->pending_events)) {
3259 		kvm_vcpu_reset(vcpu, true);
3260 		if (kvm_vcpu_is_bsp(apic->vcpu))
3261 			vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
3262 		else
3263 			vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
3264 	}
3265 	if (test_and_clear_bit(KVM_APIC_SIPI, &apic->pending_events)) {
3266 		if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
3267 			/* evaluate pending_events before reading the vector */
3268 			smp_rmb();
3269 			sipi_vector = apic->sipi_vector;
3270 			static_call(kvm_x86_vcpu_deliver_sipi_vector)(vcpu, sipi_vector);
3271 			vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
3272 		}
3273 	}
3274 	return 0;
3275 }
3276 
3277 void kvm_lapic_exit(void)
3278 {
3279 	static_key_deferred_flush(&apic_hw_disabled);
3280 	WARN_ON(static_branch_unlikely(&apic_hw_disabled.key));
3281 	static_key_deferred_flush(&apic_sw_disabled);
3282 	WARN_ON(static_branch_unlikely(&apic_sw_disabled.key));
3283 }
3284