1 // SPDX-License-Identifier: GPL-2.0-only 2 3 /* 4 * Local APIC virtualization 5 * 6 * Copyright (C) 2006 Qumranet, Inc. 7 * Copyright (C) 2007 Novell 8 * Copyright (C) 2007 Intel 9 * Copyright 2009 Red Hat, Inc. and/or its affiliates. 10 * 11 * Authors: 12 * Dor Laor <dor.laor@qumranet.com> 13 * Gregory Haskins <ghaskins@novell.com> 14 * Yaozu (Eddie) Dong <eddie.dong@intel.com> 15 * 16 * Based on Xen 3.1 code, Copyright (c) 2004, Intel Corporation. 17 */ 18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 19 20 #include <linux/kvm_host.h> 21 #include <linux/kvm.h> 22 #include <linux/mm.h> 23 #include <linux/highmem.h> 24 #include <linux/smp.h> 25 #include <linux/hrtimer.h> 26 #include <linux/io.h> 27 #include <linux/export.h> 28 #include <linux/math64.h> 29 #include <linux/slab.h> 30 #include <asm/processor.h> 31 #include <asm/mce.h> 32 #include <asm/msr.h> 33 #include <asm/page.h> 34 #include <asm/current.h> 35 #include <asm/apicdef.h> 36 #include <asm/delay.h> 37 #include <linux/atomic.h> 38 #include <linux/jump_label.h> 39 #include "kvm_cache_regs.h" 40 #include "irq.h" 41 #include "ioapic.h" 42 #include "trace.h" 43 #include "x86.h" 44 #include "cpuid.h" 45 #include "hyperv.h" 46 #include "smm.h" 47 48 #ifndef CONFIG_X86_64 49 #define mod_64(x, y) ((x) - (y) * div64_u64(x, y)) 50 #else 51 #define mod_64(x, y) ((x) % (y)) 52 #endif 53 54 #define PRId64 "d" 55 #define PRIx64 "llx" 56 #define PRIu64 "u" 57 #define PRIo64 "o" 58 59 /* 14 is the version for Xeon and Pentium 8.4.8*/ 60 #define APIC_VERSION 0x14UL 61 #define LAPIC_MMIO_LENGTH (1 << 12) 62 /* followed define is not in apicdef.h */ 63 #define MAX_APIC_VECTOR 256 64 #define APIC_VECTORS_PER_REG 32 65 66 static bool lapic_timer_advance_dynamic __read_mostly; 67 #define LAPIC_TIMER_ADVANCE_ADJUST_MIN 100 /* clock cycles */ 68 #define LAPIC_TIMER_ADVANCE_ADJUST_MAX 10000 /* clock cycles */ 69 #define LAPIC_TIMER_ADVANCE_NS_INIT 1000 70 #define LAPIC_TIMER_ADVANCE_NS_MAX 5000 71 /* step-by-step approximation to mitigate fluctuation */ 72 #define LAPIC_TIMER_ADVANCE_ADJUST_STEP 8 73 static int kvm_lapic_msr_read(struct kvm_lapic *apic, u32 reg, u64 *data); 74 static int kvm_lapic_msr_write(struct kvm_lapic *apic, u32 reg, u64 data); 75 76 static inline void __kvm_lapic_set_reg(char *regs, int reg_off, u32 val) 77 { 78 *((u32 *) (regs + reg_off)) = val; 79 } 80 81 static inline void kvm_lapic_set_reg(struct kvm_lapic *apic, int reg_off, u32 val) 82 { 83 __kvm_lapic_set_reg(apic->regs, reg_off, val); 84 } 85 86 static __always_inline u64 __kvm_lapic_get_reg64(char *regs, int reg) 87 { 88 BUILD_BUG_ON(reg != APIC_ICR); 89 return *((u64 *) (regs + reg)); 90 } 91 92 static __always_inline u64 kvm_lapic_get_reg64(struct kvm_lapic *apic, int reg) 93 { 94 return __kvm_lapic_get_reg64(apic->regs, reg); 95 } 96 97 static __always_inline void __kvm_lapic_set_reg64(char *regs, int reg, u64 val) 98 { 99 BUILD_BUG_ON(reg != APIC_ICR); 100 *((u64 *) (regs + reg)) = val; 101 } 102 103 static __always_inline void kvm_lapic_set_reg64(struct kvm_lapic *apic, 104 int reg, u64 val) 105 { 106 __kvm_lapic_set_reg64(apic->regs, reg, val); 107 } 108 109 static inline int apic_test_vector(int vec, void *bitmap) 110 { 111 return test_bit(VEC_POS(vec), (bitmap) + REG_POS(vec)); 112 } 113 114 bool kvm_apic_pending_eoi(struct kvm_vcpu *vcpu, int vector) 115 { 116 struct kvm_lapic *apic = vcpu->arch.apic; 117 118 return apic_test_vector(vector, apic->regs + APIC_ISR) || 119 apic_test_vector(vector, apic->regs + APIC_IRR); 120 } 121 122 static inline int __apic_test_and_set_vector(int vec, void *bitmap) 123 { 124 return __test_and_set_bit(VEC_POS(vec), (bitmap) + REG_POS(vec)); 125 } 126 127 static inline int __apic_test_and_clear_vector(int vec, void *bitmap) 128 { 129 return __test_and_clear_bit(VEC_POS(vec), (bitmap) + REG_POS(vec)); 130 } 131 132 __read_mostly DEFINE_STATIC_KEY_DEFERRED_FALSE(apic_hw_disabled, HZ); 133 __read_mostly DEFINE_STATIC_KEY_DEFERRED_FALSE(apic_sw_disabled, HZ); 134 135 static inline int apic_enabled(struct kvm_lapic *apic) 136 { 137 return kvm_apic_sw_enabled(apic) && kvm_apic_hw_enabled(apic); 138 } 139 140 #define LVT_MASK \ 141 (APIC_LVT_MASKED | APIC_SEND_PENDING | APIC_VECTOR_MASK) 142 143 #define LINT_MASK \ 144 (LVT_MASK | APIC_MODE_MASK | APIC_INPUT_POLARITY | \ 145 APIC_LVT_REMOTE_IRR | APIC_LVT_LEVEL_TRIGGER) 146 147 static inline u32 kvm_x2apic_id(struct kvm_lapic *apic) 148 { 149 return apic->vcpu->vcpu_id; 150 } 151 152 static bool kvm_can_post_timer_interrupt(struct kvm_vcpu *vcpu) 153 { 154 return pi_inject_timer && kvm_vcpu_apicv_active(vcpu) && 155 (kvm_mwait_in_guest(vcpu->kvm) || kvm_hlt_in_guest(vcpu->kvm)); 156 } 157 158 bool kvm_can_use_hv_timer(struct kvm_vcpu *vcpu) 159 { 160 return kvm_x86_ops.set_hv_timer 161 && !(kvm_mwait_in_guest(vcpu->kvm) || 162 kvm_can_post_timer_interrupt(vcpu)); 163 } 164 165 static bool kvm_use_posted_timer_interrupt(struct kvm_vcpu *vcpu) 166 { 167 return kvm_can_post_timer_interrupt(vcpu) && vcpu->mode == IN_GUEST_MODE; 168 } 169 170 static inline u32 kvm_apic_calc_x2apic_ldr(u32 id) 171 { 172 return ((id >> 4) << 16) | (1 << (id & 0xf)); 173 } 174 175 static inline bool kvm_apic_map_get_logical_dest(struct kvm_apic_map *map, 176 u32 dest_id, struct kvm_lapic ***cluster, u16 *mask) { 177 switch (map->logical_mode) { 178 case KVM_APIC_MODE_SW_DISABLED: 179 /* Arbitrarily use the flat map so that @cluster isn't NULL. */ 180 *cluster = map->xapic_flat_map; 181 *mask = 0; 182 return true; 183 case KVM_APIC_MODE_X2APIC: { 184 u32 offset = (dest_id >> 16) * 16; 185 u32 max_apic_id = map->max_apic_id; 186 187 if (offset <= max_apic_id) { 188 u8 cluster_size = min(max_apic_id - offset + 1, 16U); 189 190 offset = array_index_nospec(offset, map->max_apic_id + 1); 191 *cluster = &map->phys_map[offset]; 192 *mask = dest_id & (0xffff >> (16 - cluster_size)); 193 } else { 194 *mask = 0; 195 } 196 197 return true; 198 } 199 case KVM_APIC_MODE_XAPIC_FLAT: 200 *cluster = map->xapic_flat_map; 201 *mask = dest_id & 0xff; 202 return true; 203 case KVM_APIC_MODE_XAPIC_CLUSTER: 204 *cluster = map->xapic_cluster_map[(dest_id >> 4) & 0xf]; 205 *mask = dest_id & 0xf; 206 return true; 207 case KVM_APIC_MODE_MAP_DISABLED: 208 return false; 209 default: 210 WARN_ON_ONCE(1); 211 return false; 212 } 213 } 214 215 static void kvm_apic_map_free(struct rcu_head *rcu) 216 { 217 struct kvm_apic_map *map = container_of(rcu, struct kvm_apic_map, rcu); 218 219 kvfree(map); 220 } 221 222 static int kvm_recalculate_phys_map(struct kvm_apic_map *new, 223 struct kvm_vcpu *vcpu, 224 bool *xapic_id_mismatch) 225 { 226 struct kvm_lapic *apic = vcpu->arch.apic; 227 u32 x2apic_id = kvm_x2apic_id(apic); 228 u32 xapic_id = kvm_xapic_id(apic); 229 u32 physical_id; 230 231 /* 232 * For simplicity, KVM always allocates enough space for all possible 233 * xAPIC IDs. Yell, but don't kill the VM, as KVM can continue on 234 * without the optimized map. 235 */ 236 if (WARN_ON_ONCE(xapic_id > new->max_apic_id)) 237 return -EINVAL; 238 239 /* 240 * Bail if a vCPU was added and/or enabled its APIC between allocating 241 * the map and doing the actual calculations for the map. Note, KVM 242 * hardcodes the x2APIC ID to vcpu_id, i.e. there's no TOCTOU bug if 243 * the compiler decides to reload x2apic_id after this check. 244 */ 245 if (x2apic_id > new->max_apic_id) 246 return -E2BIG; 247 248 /* 249 * Deliberately truncate the vCPU ID when detecting a mismatched APIC 250 * ID to avoid false positives if the vCPU ID, i.e. x2APIC ID, is a 251 * 32-bit value. Any unwanted aliasing due to truncation results will 252 * be detected below. 253 */ 254 if (!apic_x2apic_mode(apic) && xapic_id != (u8)vcpu->vcpu_id) 255 *xapic_id_mismatch = true; 256 257 /* 258 * Apply KVM's hotplug hack if userspace has enable 32-bit APIC IDs. 259 * Allow sending events to vCPUs by their x2APIC ID even if the target 260 * vCPU is in legacy xAPIC mode, and silently ignore aliased xAPIC IDs 261 * (the x2APIC ID is truncated to 8 bits, causing IDs > 0xff to wrap 262 * and collide). 263 * 264 * Honor the architectural (and KVM's non-optimized) behavior if 265 * userspace has not enabled 32-bit x2APIC IDs. Each APIC is supposed 266 * to process messages independently. If multiple vCPUs have the same 267 * effective APIC ID, e.g. due to the x2APIC wrap or because the guest 268 * manually modified its xAPIC IDs, events targeting that ID are 269 * supposed to be recognized by all vCPUs with said ID. 270 */ 271 if (vcpu->kvm->arch.x2apic_format) { 272 /* See also kvm_apic_match_physical_addr(). */ 273 if (apic_x2apic_mode(apic) || x2apic_id > 0xff) 274 new->phys_map[x2apic_id] = apic; 275 276 if (!apic_x2apic_mode(apic) && !new->phys_map[xapic_id]) 277 new->phys_map[xapic_id] = apic; 278 } else { 279 /* 280 * Disable the optimized map if the physical APIC ID is already 281 * mapped, i.e. is aliased to multiple vCPUs. The optimized 282 * map requires a strict 1:1 mapping between IDs and vCPUs. 283 */ 284 if (apic_x2apic_mode(apic)) 285 physical_id = x2apic_id; 286 else 287 physical_id = xapic_id; 288 289 if (new->phys_map[physical_id]) 290 return -EINVAL; 291 292 new->phys_map[physical_id] = apic; 293 } 294 295 return 0; 296 } 297 298 static void kvm_recalculate_logical_map(struct kvm_apic_map *new, 299 struct kvm_vcpu *vcpu) 300 { 301 struct kvm_lapic *apic = vcpu->arch.apic; 302 enum kvm_apic_logical_mode logical_mode; 303 struct kvm_lapic **cluster; 304 u16 mask; 305 u32 ldr; 306 307 if (new->logical_mode == KVM_APIC_MODE_MAP_DISABLED) 308 return; 309 310 if (!kvm_apic_sw_enabled(apic)) 311 return; 312 313 ldr = kvm_lapic_get_reg(apic, APIC_LDR); 314 if (!ldr) 315 return; 316 317 if (apic_x2apic_mode(apic)) { 318 logical_mode = KVM_APIC_MODE_X2APIC; 319 } else { 320 ldr = GET_APIC_LOGICAL_ID(ldr); 321 if (kvm_lapic_get_reg(apic, APIC_DFR) == APIC_DFR_FLAT) 322 logical_mode = KVM_APIC_MODE_XAPIC_FLAT; 323 else 324 logical_mode = KVM_APIC_MODE_XAPIC_CLUSTER; 325 } 326 327 /* 328 * To optimize logical mode delivery, all software-enabled APICs must 329 * be configured for the same mode. 330 */ 331 if (new->logical_mode == KVM_APIC_MODE_SW_DISABLED) { 332 new->logical_mode = logical_mode; 333 } else if (new->logical_mode != logical_mode) { 334 new->logical_mode = KVM_APIC_MODE_MAP_DISABLED; 335 return; 336 } 337 338 /* 339 * In x2APIC mode, the LDR is read-only and derived directly from the 340 * x2APIC ID, thus is guaranteed to be addressable. KVM reuses 341 * kvm_apic_map.phys_map to optimize logical mode x2APIC interrupts by 342 * reversing the LDR calculation to get cluster of APICs, i.e. no 343 * additional work is required. 344 */ 345 if (apic_x2apic_mode(apic)) { 346 WARN_ON_ONCE(ldr != kvm_apic_calc_x2apic_ldr(kvm_x2apic_id(apic))); 347 return; 348 } 349 350 if (WARN_ON_ONCE(!kvm_apic_map_get_logical_dest(new, ldr, 351 &cluster, &mask))) { 352 new->logical_mode = KVM_APIC_MODE_MAP_DISABLED; 353 return; 354 } 355 356 if (!mask) 357 return; 358 359 ldr = ffs(mask) - 1; 360 if (!is_power_of_2(mask) || cluster[ldr]) 361 new->logical_mode = KVM_APIC_MODE_MAP_DISABLED; 362 else 363 cluster[ldr] = apic; 364 } 365 366 /* 367 * CLEAN -> DIRTY and UPDATE_IN_PROGRESS -> DIRTY changes happen without a lock. 368 * 369 * DIRTY -> UPDATE_IN_PROGRESS and UPDATE_IN_PROGRESS -> CLEAN happen with 370 * apic_map_lock_held. 371 */ 372 enum { 373 CLEAN, 374 UPDATE_IN_PROGRESS, 375 DIRTY 376 }; 377 378 void kvm_recalculate_apic_map(struct kvm *kvm) 379 { 380 struct kvm_apic_map *new, *old = NULL; 381 struct kvm_vcpu *vcpu; 382 unsigned long i; 383 u32 max_id = 255; /* enough space for any xAPIC ID */ 384 bool xapic_id_mismatch = false; 385 386 /* Read kvm->arch.apic_map_dirty before kvm->arch.apic_map. */ 387 if (atomic_read_acquire(&kvm->arch.apic_map_dirty) == CLEAN) 388 return; 389 390 WARN_ONCE(!irqchip_in_kernel(kvm), 391 "Dirty APIC map without an in-kernel local APIC"); 392 393 mutex_lock(&kvm->arch.apic_map_lock); 394 /* 395 * Read kvm->arch.apic_map_dirty before kvm->arch.apic_map 396 * (if clean) or the APIC registers (if dirty). 397 */ 398 if (atomic_cmpxchg_acquire(&kvm->arch.apic_map_dirty, 399 DIRTY, UPDATE_IN_PROGRESS) == CLEAN) { 400 /* Someone else has updated the map. */ 401 mutex_unlock(&kvm->arch.apic_map_lock); 402 return; 403 } 404 405 kvm_for_each_vcpu(i, vcpu, kvm) 406 if (kvm_apic_present(vcpu)) 407 max_id = max(max_id, kvm_x2apic_id(vcpu->arch.apic)); 408 409 new = kvzalloc(sizeof(struct kvm_apic_map) + 410 sizeof(struct kvm_lapic *) * ((u64)max_id + 1), 411 GFP_KERNEL_ACCOUNT); 412 413 if (!new) 414 goto out; 415 416 new->max_apic_id = max_id; 417 new->logical_mode = KVM_APIC_MODE_SW_DISABLED; 418 419 kvm_for_each_vcpu(i, vcpu, kvm) { 420 if (!kvm_apic_present(vcpu)) 421 continue; 422 423 if (kvm_recalculate_phys_map(new, vcpu, &xapic_id_mismatch)) { 424 kvfree(new); 425 new = NULL; 426 goto out; 427 } 428 429 kvm_recalculate_logical_map(new, vcpu); 430 } 431 out: 432 /* 433 * The optimized map is effectively KVM's internal version of APICv, 434 * and all unwanted aliasing that results in disabling the optimized 435 * map also applies to APICv. 436 */ 437 if (!new) 438 kvm_set_apicv_inhibit(kvm, APICV_INHIBIT_REASON_PHYSICAL_ID_ALIASED); 439 else 440 kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_PHYSICAL_ID_ALIASED); 441 442 if (!new || new->logical_mode == KVM_APIC_MODE_MAP_DISABLED) 443 kvm_set_apicv_inhibit(kvm, APICV_INHIBIT_REASON_LOGICAL_ID_ALIASED); 444 else 445 kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_LOGICAL_ID_ALIASED); 446 447 if (xapic_id_mismatch) 448 kvm_set_apicv_inhibit(kvm, APICV_INHIBIT_REASON_APIC_ID_MODIFIED); 449 else 450 kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_APIC_ID_MODIFIED); 451 452 old = rcu_dereference_protected(kvm->arch.apic_map, 453 lockdep_is_held(&kvm->arch.apic_map_lock)); 454 rcu_assign_pointer(kvm->arch.apic_map, new); 455 /* 456 * Write kvm->arch.apic_map before clearing apic->apic_map_dirty. 457 * If another update has come in, leave it DIRTY. 458 */ 459 atomic_cmpxchg_release(&kvm->arch.apic_map_dirty, 460 UPDATE_IN_PROGRESS, CLEAN); 461 mutex_unlock(&kvm->arch.apic_map_lock); 462 463 if (old) 464 call_rcu(&old->rcu, kvm_apic_map_free); 465 466 kvm_make_scan_ioapic_request(kvm); 467 } 468 469 static inline void apic_set_spiv(struct kvm_lapic *apic, u32 val) 470 { 471 bool enabled = val & APIC_SPIV_APIC_ENABLED; 472 473 kvm_lapic_set_reg(apic, APIC_SPIV, val); 474 475 if (enabled != apic->sw_enabled) { 476 apic->sw_enabled = enabled; 477 if (enabled) 478 static_branch_slow_dec_deferred(&apic_sw_disabled); 479 else 480 static_branch_inc(&apic_sw_disabled.key); 481 482 atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY); 483 } 484 485 /* Check if there are APF page ready requests pending */ 486 if (enabled) 487 kvm_make_request(KVM_REQ_APF_READY, apic->vcpu); 488 } 489 490 static inline void kvm_apic_set_xapic_id(struct kvm_lapic *apic, u8 id) 491 { 492 kvm_lapic_set_reg(apic, APIC_ID, id << 24); 493 atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY); 494 } 495 496 static inline void kvm_apic_set_ldr(struct kvm_lapic *apic, u32 id) 497 { 498 kvm_lapic_set_reg(apic, APIC_LDR, id); 499 atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY); 500 } 501 502 static inline void kvm_apic_set_dfr(struct kvm_lapic *apic, u32 val) 503 { 504 kvm_lapic_set_reg(apic, APIC_DFR, val); 505 atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY); 506 } 507 508 static inline void kvm_apic_set_x2apic_id(struct kvm_lapic *apic, u32 id) 509 { 510 u32 ldr = kvm_apic_calc_x2apic_ldr(id); 511 512 WARN_ON_ONCE(id != apic->vcpu->vcpu_id); 513 514 kvm_lapic_set_reg(apic, APIC_ID, id); 515 kvm_lapic_set_reg(apic, APIC_LDR, ldr); 516 atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY); 517 } 518 519 static inline int apic_lvt_enabled(struct kvm_lapic *apic, int lvt_type) 520 { 521 return !(kvm_lapic_get_reg(apic, lvt_type) & APIC_LVT_MASKED); 522 } 523 524 static inline int apic_lvtt_oneshot(struct kvm_lapic *apic) 525 { 526 return apic->lapic_timer.timer_mode == APIC_LVT_TIMER_ONESHOT; 527 } 528 529 static inline int apic_lvtt_period(struct kvm_lapic *apic) 530 { 531 return apic->lapic_timer.timer_mode == APIC_LVT_TIMER_PERIODIC; 532 } 533 534 static inline int apic_lvtt_tscdeadline(struct kvm_lapic *apic) 535 { 536 return apic->lapic_timer.timer_mode == APIC_LVT_TIMER_TSCDEADLINE; 537 } 538 539 static inline int apic_lvt_nmi_mode(u32 lvt_val) 540 { 541 return (lvt_val & (APIC_MODE_MASK | APIC_LVT_MASKED)) == APIC_DM_NMI; 542 } 543 544 static inline bool kvm_lapic_lvt_supported(struct kvm_lapic *apic, int lvt_index) 545 { 546 return apic->nr_lvt_entries > lvt_index; 547 } 548 549 static inline int kvm_apic_calc_nr_lvt_entries(struct kvm_vcpu *vcpu) 550 { 551 return KVM_APIC_MAX_NR_LVT_ENTRIES - !(vcpu->arch.mcg_cap & MCG_CMCI_P); 552 } 553 554 void kvm_apic_set_version(struct kvm_vcpu *vcpu) 555 { 556 struct kvm_lapic *apic = vcpu->arch.apic; 557 u32 v = 0; 558 559 if (!lapic_in_kernel(vcpu)) 560 return; 561 562 v = APIC_VERSION | ((apic->nr_lvt_entries - 1) << 16); 563 564 /* 565 * KVM emulates 82093AA datasheet (with in-kernel IOAPIC implementation) 566 * which doesn't have EOI register; Some buggy OSes (e.g. Windows with 567 * Hyper-V role) disable EOI broadcast in lapic not checking for IOAPIC 568 * version first and level-triggered interrupts never get EOIed in 569 * IOAPIC. 570 */ 571 if (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) && 572 !ioapic_in_kernel(vcpu->kvm)) 573 v |= APIC_LVR_DIRECTED_EOI; 574 kvm_lapic_set_reg(apic, APIC_LVR, v); 575 } 576 577 void kvm_apic_after_set_mcg_cap(struct kvm_vcpu *vcpu) 578 { 579 int nr_lvt_entries = kvm_apic_calc_nr_lvt_entries(vcpu); 580 struct kvm_lapic *apic = vcpu->arch.apic; 581 int i; 582 583 if (!lapic_in_kernel(vcpu) || nr_lvt_entries == apic->nr_lvt_entries) 584 return; 585 586 /* Initialize/mask any "new" LVT entries. */ 587 for (i = apic->nr_lvt_entries; i < nr_lvt_entries; i++) 588 kvm_lapic_set_reg(apic, APIC_LVTx(i), APIC_LVT_MASKED); 589 590 apic->nr_lvt_entries = nr_lvt_entries; 591 592 /* The number of LVT entries is reflected in the version register. */ 593 kvm_apic_set_version(vcpu); 594 } 595 596 static const unsigned int apic_lvt_mask[KVM_APIC_MAX_NR_LVT_ENTRIES] = { 597 [LVT_TIMER] = LVT_MASK, /* timer mode mask added at runtime */ 598 [LVT_THERMAL_MONITOR] = LVT_MASK | APIC_MODE_MASK, 599 [LVT_PERFORMANCE_COUNTER] = LVT_MASK | APIC_MODE_MASK, 600 [LVT_LINT0] = LINT_MASK, 601 [LVT_LINT1] = LINT_MASK, 602 [LVT_ERROR] = LVT_MASK, 603 [LVT_CMCI] = LVT_MASK | APIC_MODE_MASK 604 }; 605 606 static int find_highest_vector(void *bitmap) 607 { 608 int vec; 609 u32 *reg; 610 611 for (vec = MAX_APIC_VECTOR - APIC_VECTORS_PER_REG; 612 vec >= 0; vec -= APIC_VECTORS_PER_REG) { 613 reg = bitmap + REG_POS(vec); 614 if (*reg) 615 return __fls(*reg) + vec; 616 } 617 618 return -1; 619 } 620 621 static u8 count_vectors(void *bitmap) 622 { 623 int vec; 624 u32 *reg; 625 u8 count = 0; 626 627 for (vec = 0; vec < MAX_APIC_VECTOR; vec += APIC_VECTORS_PER_REG) { 628 reg = bitmap + REG_POS(vec); 629 count += hweight32(*reg); 630 } 631 632 return count; 633 } 634 635 bool __kvm_apic_update_irr(u32 *pir, void *regs, int *max_irr) 636 { 637 u32 i, vec; 638 u32 pir_val, irr_val, prev_irr_val; 639 int max_updated_irr; 640 641 max_updated_irr = -1; 642 *max_irr = -1; 643 644 for (i = vec = 0; i <= 7; i++, vec += 32) { 645 pir_val = READ_ONCE(pir[i]); 646 irr_val = *((u32 *)(regs + APIC_IRR + i * 0x10)); 647 if (pir_val) { 648 prev_irr_val = irr_val; 649 irr_val |= xchg(&pir[i], 0); 650 *((u32 *)(regs + APIC_IRR + i * 0x10)) = irr_val; 651 if (prev_irr_val != irr_val) { 652 max_updated_irr = 653 __fls(irr_val ^ prev_irr_val) + vec; 654 } 655 } 656 if (irr_val) 657 *max_irr = __fls(irr_val) + vec; 658 } 659 660 return ((max_updated_irr != -1) && 661 (max_updated_irr == *max_irr)); 662 } 663 EXPORT_SYMBOL_GPL(__kvm_apic_update_irr); 664 665 bool kvm_apic_update_irr(struct kvm_vcpu *vcpu, u32 *pir, int *max_irr) 666 { 667 struct kvm_lapic *apic = vcpu->arch.apic; 668 669 return __kvm_apic_update_irr(pir, apic->regs, max_irr); 670 } 671 EXPORT_SYMBOL_GPL(kvm_apic_update_irr); 672 673 static inline int apic_search_irr(struct kvm_lapic *apic) 674 { 675 return find_highest_vector(apic->regs + APIC_IRR); 676 } 677 678 static inline int apic_find_highest_irr(struct kvm_lapic *apic) 679 { 680 int result; 681 682 /* 683 * Note that irr_pending is just a hint. It will be always 684 * true with virtual interrupt delivery enabled. 685 */ 686 if (!apic->irr_pending) 687 return -1; 688 689 result = apic_search_irr(apic); 690 ASSERT(result == -1 || result >= 16); 691 692 return result; 693 } 694 695 static inline void apic_clear_irr(int vec, struct kvm_lapic *apic) 696 { 697 if (unlikely(apic->apicv_active)) { 698 /* need to update RVI */ 699 kvm_lapic_clear_vector(vec, apic->regs + APIC_IRR); 700 static_call_cond(kvm_x86_hwapic_irr_update)(apic->vcpu, 701 apic_find_highest_irr(apic)); 702 } else { 703 apic->irr_pending = false; 704 kvm_lapic_clear_vector(vec, apic->regs + APIC_IRR); 705 if (apic_search_irr(apic) != -1) 706 apic->irr_pending = true; 707 } 708 } 709 710 void kvm_apic_clear_irr(struct kvm_vcpu *vcpu, int vec) 711 { 712 apic_clear_irr(vec, vcpu->arch.apic); 713 } 714 EXPORT_SYMBOL_GPL(kvm_apic_clear_irr); 715 716 static inline void apic_set_isr(int vec, struct kvm_lapic *apic) 717 { 718 if (__apic_test_and_set_vector(vec, apic->regs + APIC_ISR)) 719 return; 720 721 /* 722 * With APIC virtualization enabled, all caching is disabled 723 * because the processor can modify ISR under the hood. Instead 724 * just set SVI. 725 */ 726 if (unlikely(apic->apicv_active)) 727 static_call_cond(kvm_x86_hwapic_isr_update)(vec); 728 else { 729 ++apic->isr_count; 730 BUG_ON(apic->isr_count > MAX_APIC_VECTOR); 731 /* 732 * ISR (in service register) bit is set when injecting an interrupt. 733 * The highest vector is injected. Thus the latest bit set matches 734 * the highest bit in ISR. 735 */ 736 apic->highest_isr_cache = vec; 737 } 738 } 739 740 static inline int apic_find_highest_isr(struct kvm_lapic *apic) 741 { 742 int result; 743 744 /* 745 * Note that isr_count is always 1, and highest_isr_cache 746 * is always -1, with APIC virtualization enabled. 747 */ 748 if (!apic->isr_count) 749 return -1; 750 if (likely(apic->highest_isr_cache != -1)) 751 return apic->highest_isr_cache; 752 753 result = find_highest_vector(apic->regs + APIC_ISR); 754 ASSERT(result == -1 || result >= 16); 755 756 return result; 757 } 758 759 static inline void apic_clear_isr(int vec, struct kvm_lapic *apic) 760 { 761 if (!__apic_test_and_clear_vector(vec, apic->regs + APIC_ISR)) 762 return; 763 764 /* 765 * We do get here for APIC virtualization enabled if the guest 766 * uses the Hyper-V APIC enlightenment. In this case we may need 767 * to trigger a new interrupt delivery by writing the SVI field; 768 * on the other hand isr_count and highest_isr_cache are unused 769 * and must be left alone. 770 */ 771 if (unlikely(apic->apicv_active)) 772 static_call_cond(kvm_x86_hwapic_isr_update)(apic_find_highest_isr(apic)); 773 else { 774 --apic->isr_count; 775 BUG_ON(apic->isr_count < 0); 776 apic->highest_isr_cache = -1; 777 } 778 } 779 780 int kvm_lapic_find_highest_irr(struct kvm_vcpu *vcpu) 781 { 782 /* This may race with setting of irr in __apic_accept_irq() and 783 * value returned may be wrong, but kvm_vcpu_kick() in __apic_accept_irq 784 * will cause vmexit immediately and the value will be recalculated 785 * on the next vmentry. 786 */ 787 return apic_find_highest_irr(vcpu->arch.apic); 788 } 789 EXPORT_SYMBOL_GPL(kvm_lapic_find_highest_irr); 790 791 static int __apic_accept_irq(struct kvm_lapic *apic, int delivery_mode, 792 int vector, int level, int trig_mode, 793 struct dest_map *dest_map); 794 795 int kvm_apic_set_irq(struct kvm_vcpu *vcpu, struct kvm_lapic_irq *irq, 796 struct dest_map *dest_map) 797 { 798 struct kvm_lapic *apic = vcpu->arch.apic; 799 800 return __apic_accept_irq(apic, irq->delivery_mode, irq->vector, 801 irq->level, irq->trig_mode, dest_map); 802 } 803 804 static int __pv_send_ipi(unsigned long *ipi_bitmap, struct kvm_apic_map *map, 805 struct kvm_lapic_irq *irq, u32 min) 806 { 807 int i, count = 0; 808 struct kvm_vcpu *vcpu; 809 810 if (min > map->max_apic_id) 811 return 0; 812 813 for_each_set_bit(i, ipi_bitmap, 814 min((u32)BITS_PER_LONG, (map->max_apic_id - min + 1))) { 815 if (map->phys_map[min + i]) { 816 vcpu = map->phys_map[min + i]->vcpu; 817 count += kvm_apic_set_irq(vcpu, irq, NULL); 818 } 819 } 820 821 return count; 822 } 823 824 int kvm_pv_send_ipi(struct kvm *kvm, unsigned long ipi_bitmap_low, 825 unsigned long ipi_bitmap_high, u32 min, 826 unsigned long icr, int op_64_bit) 827 { 828 struct kvm_apic_map *map; 829 struct kvm_lapic_irq irq = {0}; 830 int cluster_size = op_64_bit ? 64 : 32; 831 int count; 832 833 if (icr & (APIC_DEST_MASK | APIC_SHORT_MASK)) 834 return -KVM_EINVAL; 835 836 irq.vector = icr & APIC_VECTOR_MASK; 837 irq.delivery_mode = icr & APIC_MODE_MASK; 838 irq.level = (icr & APIC_INT_ASSERT) != 0; 839 irq.trig_mode = icr & APIC_INT_LEVELTRIG; 840 841 rcu_read_lock(); 842 map = rcu_dereference(kvm->arch.apic_map); 843 844 count = -EOPNOTSUPP; 845 if (likely(map)) { 846 count = __pv_send_ipi(&ipi_bitmap_low, map, &irq, min); 847 min += cluster_size; 848 count += __pv_send_ipi(&ipi_bitmap_high, map, &irq, min); 849 } 850 851 rcu_read_unlock(); 852 return count; 853 } 854 855 static int pv_eoi_put_user(struct kvm_vcpu *vcpu, u8 val) 856 { 857 858 return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.pv_eoi.data, &val, 859 sizeof(val)); 860 } 861 862 static int pv_eoi_get_user(struct kvm_vcpu *vcpu, u8 *val) 863 { 864 865 return kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.pv_eoi.data, val, 866 sizeof(*val)); 867 } 868 869 static inline bool pv_eoi_enabled(struct kvm_vcpu *vcpu) 870 { 871 return vcpu->arch.pv_eoi.msr_val & KVM_MSR_ENABLED; 872 } 873 874 static void pv_eoi_set_pending(struct kvm_vcpu *vcpu) 875 { 876 if (pv_eoi_put_user(vcpu, KVM_PV_EOI_ENABLED) < 0) 877 return; 878 879 __set_bit(KVM_APIC_PV_EOI_PENDING, &vcpu->arch.apic_attention); 880 } 881 882 static bool pv_eoi_test_and_clr_pending(struct kvm_vcpu *vcpu) 883 { 884 u8 val; 885 886 if (pv_eoi_get_user(vcpu, &val) < 0) 887 return false; 888 889 val &= KVM_PV_EOI_ENABLED; 890 891 if (val && pv_eoi_put_user(vcpu, KVM_PV_EOI_DISABLED) < 0) 892 return false; 893 894 /* 895 * Clear pending bit in any case: it will be set again on vmentry. 896 * While this might not be ideal from performance point of view, 897 * this makes sure pv eoi is only enabled when we know it's safe. 898 */ 899 __clear_bit(KVM_APIC_PV_EOI_PENDING, &vcpu->arch.apic_attention); 900 901 return val; 902 } 903 904 static int apic_has_interrupt_for_ppr(struct kvm_lapic *apic, u32 ppr) 905 { 906 int highest_irr; 907 if (kvm_x86_ops.sync_pir_to_irr) 908 highest_irr = static_call(kvm_x86_sync_pir_to_irr)(apic->vcpu); 909 else 910 highest_irr = apic_find_highest_irr(apic); 911 if (highest_irr == -1 || (highest_irr & 0xF0) <= ppr) 912 return -1; 913 return highest_irr; 914 } 915 916 static bool __apic_update_ppr(struct kvm_lapic *apic, u32 *new_ppr) 917 { 918 u32 tpr, isrv, ppr, old_ppr; 919 int isr; 920 921 old_ppr = kvm_lapic_get_reg(apic, APIC_PROCPRI); 922 tpr = kvm_lapic_get_reg(apic, APIC_TASKPRI); 923 isr = apic_find_highest_isr(apic); 924 isrv = (isr != -1) ? isr : 0; 925 926 if ((tpr & 0xf0) >= (isrv & 0xf0)) 927 ppr = tpr & 0xff; 928 else 929 ppr = isrv & 0xf0; 930 931 *new_ppr = ppr; 932 if (old_ppr != ppr) 933 kvm_lapic_set_reg(apic, APIC_PROCPRI, ppr); 934 935 return ppr < old_ppr; 936 } 937 938 static void apic_update_ppr(struct kvm_lapic *apic) 939 { 940 u32 ppr; 941 942 if (__apic_update_ppr(apic, &ppr) && 943 apic_has_interrupt_for_ppr(apic, ppr) != -1) 944 kvm_make_request(KVM_REQ_EVENT, apic->vcpu); 945 } 946 947 void kvm_apic_update_ppr(struct kvm_vcpu *vcpu) 948 { 949 apic_update_ppr(vcpu->arch.apic); 950 } 951 EXPORT_SYMBOL_GPL(kvm_apic_update_ppr); 952 953 static void apic_set_tpr(struct kvm_lapic *apic, u32 tpr) 954 { 955 kvm_lapic_set_reg(apic, APIC_TASKPRI, tpr); 956 apic_update_ppr(apic); 957 } 958 959 static bool kvm_apic_broadcast(struct kvm_lapic *apic, u32 mda) 960 { 961 return mda == (apic_x2apic_mode(apic) ? 962 X2APIC_BROADCAST : APIC_BROADCAST); 963 } 964 965 static bool kvm_apic_match_physical_addr(struct kvm_lapic *apic, u32 mda) 966 { 967 if (kvm_apic_broadcast(apic, mda)) 968 return true; 969 970 /* 971 * Hotplug hack: Accept interrupts for vCPUs in xAPIC mode as if they 972 * were in x2APIC mode if the target APIC ID can't be encoded as an 973 * xAPIC ID. This allows unique addressing of hotplugged vCPUs (which 974 * start in xAPIC mode) with an APIC ID that is unaddressable in xAPIC 975 * mode. Match the x2APIC ID if and only if the target APIC ID can't 976 * be encoded in xAPIC to avoid spurious matches against a vCPU that 977 * changed its (addressable) xAPIC ID (which is writable). 978 */ 979 if (apic_x2apic_mode(apic) || mda > 0xff) 980 return mda == kvm_x2apic_id(apic); 981 982 return mda == kvm_xapic_id(apic); 983 } 984 985 static bool kvm_apic_match_logical_addr(struct kvm_lapic *apic, u32 mda) 986 { 987 u32 logical_id; 988 989 if (kvm_apic_broadcast(apic, mda)) 990 return true; 991 992 logical_id = kvm_lapic_get_reg(apic, APIC_LDR); 993 994 if (apic_x2apic_mode(apic)) 995 return ((logical_id >> 16) == (mda >> 16)) 996 && (logical_id & mda & 0xffff) != 0; 997 998 logical_id = GET_APIC_LOGICAL_ID(logical_id); 999 1000 switch (kvm_lapic_get_reg(apic, APIC_DFR)) { 1001 case APIC_DFR_FLAT: 1002 return (logical_id & mda) != 0; 1003 case APIC_DFR_CLUSTER: 1004 return ((logical_id >> 4) == (mda >> 4)) 1005 && (logical_id & mda & 0xf) != 0; 1006 default: 1007 return false; 1008 } 1009 } 1010 1011 /* The KVM local APIC implementation has two quirks: 1012 * 1013 * - Real hardware delivers interrupts destined to x2APIC ID > 0xff to LAPICs 1014 * in xAPIC mode if the "destination & 0xff" matches its xAPIC ID. 1015 * KVM doesn't do that aliasing. 1016 * 1017 * - in-kernel IOAPIC messages have to be delivered directly to 1018 * x2APIC, because the kernel does not support interrupt remapping. 1019 * In order to support broadcast without interrupt remapping, x2APIC 1020 * rewrites the destination of non-IPI messages from APIC_BROADCAST 1021 * to X2APIC_BROADCAST. 1022 * 1023 * The broadcast quirk can be disabled with KVM_CAP_X2APIC_API. This is 1024 * important when userspace wants to use x2APIC-format MSIs, because 1025 * APIC_BROADCAST (0xff) is a legal route for "cluster 0, CPUs 0-7". 1026 */ 1027 static u32 kvm_apic_mda(struct kvm_vcpu *vcpu, unsigned int dest_id, 1028 struct kvm_lapic *source, struct kvm_lapic *target) 1029 { 1030 bool ipi = source != NULL; 1031 1032 if (!vcpu->kvm->arch.x2apic_broadcast_quirk_disabled && 1033 !ipi && dest_id == APIC_BROADCAST && apic_x2apic_mode(target)) 1034 return X2APIC_BROADCAST; 1035 1036 return dest_id; 1037 } 1038 1039 bool kvm_apic_match_dest(struct kvm_vcpu *vcpu, struct kvm_lapic *source, 1040 int shorthand, unsigned int dest, int dest_mode) 1041 { 1042 struct kvm_lapic *target = vcpu->arch.apic; 1043 u32 mda = kvm_apic_mda(vcpu, dest, source, target); 1044 1045 ASSERT(target); 1046 switch (shorthand) { 1047 case APIC_DEST_NOSHORT: 1048 if (dest_mode == APIC_DEST_PHYSICAL) 1049 return kvm_apic_match_physical_addr(target, mda); 1050 else 1051 return kvm_apic_match_logical_addr(target, mda); 1052 case APIC_DEST_SELF: 1053 return target == source; 1054 case APIC_DEST_ALLINC: 1055 return true; 1056 case APIC_DEST_ALLBUT: 1057 return target != source; 1058 default: 1059 return false; 1060 } 1061 } 1062 EXPORT_SYMBOL_GPL(kvm_apic_match_dest); 1063 1064 int kvm_vector_to_index(u32 vector, u32 dest_vcpus, 1065 const unsigned long *bitmap, u32 bitmap_size) 1066 { 1067 u32 mod; 1068 int i, idx = -1; 1069 1070 mod = vector % dest_vcpus; 1071 1072 for (i = 0; i <= mod; i++) { 1073 idx = find_next_bit(bitmap, bitmap_size, idx + 1); 1074 BUG_ON(idx == bitmap_size); 1075 } 1076 1077 return idx; 1078 } 1079 1080 static void kvm_apic_disabled_lapic_found(struct kvm *kvm) 1081 { 1082 if (!kvm->arch.disabled_lapic_found) { 1083 kvm->arch.disabled_lapic_found = true; 1084 pr_info("Disabled LAPIC found during irq injection\n"); 1085 } 1086 } 1087 1088 static bool kvm_apic_is_broadcast_dest(struct kvm *kvm, struct kvm_lapic **src, 1089 struct kvm_lapic_irq *irq, struct kvm_apic_map *map) 1090 { 1091 if (kvm->arch.x2apic_broadcast_quirk_disabled) { 1092 if ((irq->dest_id == APIC_BROADCAST && 1093 map->logical_mode != KVM_APIC_MODE_X2APIC)) 1094 return true; 1095 if (irq->dest_id == X2APIC_BROADCAST) 1096 return true; 1097 } else { 1098 bool x2apic_ipi = src && *src && apic_x2apic_mode(*src); 1099 if (irq->dest_id == (x2apic_ipi ? 1100 X2APIC_BROADCAST : APIC_BROADCAST)) 1101 return true; 1102 } 1103 1104 return false; 1105 } 1106 1107 /* Return true if the interrupt can be handled by using *bitmap as index mask 1108 * for valid destinations in *dst array. 1109 * Return false if kvm_apic_map_get_dest_lapic did nothing useful. 1110 * Note: we may have zero kvm_lapic destinations when we return true, which 1111 * means that the interrupt should be dropped. In this case, *bitmap would be 1112 * zero and *dst undefined. 1113 */ 1114 static inline bool kvm_apic_map_get_dest_lapic(struct kvm *kvm, 1115 struct kvm_lapic **src, struct kvm_lapic_irq *irq, 1116 struct kvm_apic_map *map, struct kvm_lapic ***dst, 1117 unsigned long *bitmap) 1118 { 1119 int i, lowest; 1120 1121 if (irq->shorthand == APIC_DEST_SELF && src) { 1122 *dst = src; 1123 *bitmap = 1; 1124 return true; 1125 } else if (irq->shorthand) 1126 return false; 1127 1128 if (!map || kvm_apic_is_broadcast_dest(kvm, src, irq, map)) 1129 return false; 1130 1131 if (irq->dest_mode == APIC_DEST_PHYSICAL) { 1132 if (irq->dest_id > map->max_apic_id) { 1133 *bitmap = 0; 1134 } else { 1135 u32 dest_id = array_index_nospec(irq->dest_id, map->max_apic_id + 1); 1136 *dst = &map->phys_map[dest_id]; 1137 *bitmap = 1; 1138 } 1139 return true; 1140 } 1141 1142 *bitmap = 0; 1143 if (!kvm_apic_map_get_logical_dest(map, irq->dest_id, dst, 1144 (u16 *)bitmap)) 1145 return false; 1146 1147 if (!kvm_lowest_prio_delivery(irq)) 1148 return true; 1149 1150 if (!kvm_vector_hashing_enabled()) { 1151 lowest = -1; 1152 for_each_set_bit(i, bitmap, 16) { 1153 if (!(*dst)[i]) 1154 continue; 1155 if (lowest < 0) 1156 lowest = i; 1157 else if (kvm_apic_compare_prio((*dst)[i]->vcpu, 1158 (*dst)[lowest]->vcpu) < 0) 1159 lowest = i; 1160 } 1161 } else { 1162 if (!*bitmap) 1163 return true; 1164 1165 lowest = kvm_vector_to_index(irq->vector, hweight16(*bitmap), 1166 bitmap, 16); 1167 1168 if (!(*dst)[lowest]) { 1169 kvm_apic_disabled_lapic_found(kvm); 1170 *bitmap = 0; 1171 return true; 1172 } 1173 } 1174 1175 *bitmap = (lowest >= 0) ? 1 << lowest : 0; 1176 1177 return true; 1178 } 1179 1180 bool kvm_irq_delivery_to_apic_fast(struct kvm *kvm, struct kvm_lapic *src, 1181 struct kvm_lapic_irq *irq, int *r, struct dest_map *dest_map) 1182 { 1183 struct kvm_apic_map *map; 1184 unsigned long bitmap; 1185 struct kvm_lapic **dst = NULL; 1186 int i; 1187 bool ret; 1188 1189 *r = -1; 1190 1191 if (irq->shorthand == APIC_DEST_SELF) { 1192 if (KVM_BUG_ON(!src, kvm)) { 1193 *r = 0; 1194 return true; 1195 } 1196 *r = kvm_apic_set_irq(src->vcpu, irq, dest_map); 1197 return true; 1198 } 1199 1200 rcu_read_lock(); 1201 map = rcu_dereference(kvm->arch.apic_map); 1202 1203 ret = kvm_apic_map_get_dest_lapic(kvm, &src, irq, map, &dst, &bitmap); 1204 if (ret) { 1205 *r = 0; 1206 for_each_set_bit(i, &bitmap, 16) { 1207 if (!dst[i]) 1208 continue; 1209 *r += kvm_apic_set_irq(dst[i]->vcpu, irq, dest_map); 1210 } 1211 } 1212 1213 rcu_read_unlock(); 1214 return ret; 1215 } 1216 1217 /* 1218 * This routine tries to handle interrupts in posted mode, here is how 1219 * it deals with different cases: 1220 * - For single-destination interrupts, handle it in posted mode 1221 * - Else if vector hashing is enabled and it is a lowest-priority 1222 * interrupt, handle it in posted mode and use the following mechanism 1223 * to find the destination vCPU. 1224 * 1. For lowest-priority interrupts, store all the possible 1225 * destination vCPUs in an array. 1226 * 2. Use "guest vector % max number of destination vCPUs" to find 1227 * the right destination vCPU in the array for the lowest-priority 1228 * interrupt. 1229 * - Otherwise, use remapped mode to inject the interrupt. 1230 */ 1231 bool kvm_intr_is_single_vcpu_fast(struct kvm *kvm, struct kvm_lapic_irq *irq, 1232 struct kvm_vcpu **dest_vcpu) 1233 { 1234 struct kvm_apic_map *map; 1235 unsigned long bitmap; 1236 struct kvm_lapic **dst = NULL; 1237 bool ret = false; 1238 1239 if (irq->shorthand) 1240 return false; 1241 1242 rcu_read_lock(); 1243 map = rcu_dereference(kvm->arch.apic_map); 1244 1245 if (kvm_apic_map_get_dest_lapic(kvm, NULL, irq, map, &dst, &bitmap) && 1246 hweight16(bitmap) == 1) { 1247 unsigned long i = find_first_bit(&bitmap, 16); 1248 1249 if (dst[i]) { 1250 *dest_vcpu = dst[i]->vcpu; 1251 ret = true; 1252 } 1253 } 1254 1255 rcu_read_unlock(); 1256 return ret; 1257 } 1258 1259 /* 1260 * Add a pending IRQ into lapic. 1261 * Return 1 if successfully added and 0 if discarded. 1262 */ 1263 static int __apic_accept_irq(struct kvm_lapic *apic, int delivery_mode, 1264 int vector, int level, int trig_mode, 1265 struct dest_map *dest_map) 1266 { 1267 int result = 0; 1268 struct kvm_vcpu *vcpu = apic->vcpu; 1269 1270 trace_kvm_apic_accept_irq(vcpu->vcpu_id, delivery_mode, 1271 trig_mode, vector); 1272 switch (delivery_mode) { 1273 case APIC_DM_LOWEST: 1274 vcpu->arch.apic_arb_prio++; 1275 fallthrough; 1276 case APIC_DM_FIXED: 1277 if (unlikely(trig_mode && !level)) 1278 break; 1279 1280 /* FIXME add logic for vcpu on reset */ 1281 if (unlikely(!apic_enabled(apic))) 1282 break; 1283 1284 result = 1; 1285 1286 if (dest_map) { 1287 __set_bit(vcpu->vcpu_id, dest_map->map); 1288 dest_map->vectors[vcpu->vcpu_id] = vector; 1289 } 1290 1291 if (apic_test_vector(vector, apic->regs + APIC_TMR) != !!trig_mode) { 1292 if (trig_mode) 1293 kvm_lapic_set_vector(vector, 1294 apic->regs + APIC_TMR); 1295 else 1296 kvm_lapic_clear_vector(vector, 1297 apic->regs + APIC_TMR); 1298 } 1299 1300 static_call(kvm_x86_deliver_interrupt)(apic, delivery_mode, 1301 trig_mode, vector); 1302 break; 1303 1304 case APIC_DM_REMRD: 1305 result = 1; 1306 vcpu->arch.pv.pv_unhalted = 1; 1307 kvm_make_request(KVM_REQ_EVENT, vcpu); 1308 kvm_vcpu_kick(vcpu); 1309 break; 1310 1311 case APIC_DM_SMI: 1312 if (!kvm_inject_smi(vcpu)) { 1313 kvm_vcpu_kick(vcpu); 1314 result = 1; 1315 } 1316 break; 1317 1318 case APIC_DM_NMI: 1319 result = 1; 1320 kvm_inject_nmi(vcpu); 1321 kvm_vcpu_kick(vcpu); 1322 break; 1323 1324 case APIC_DM_INIT: 1325 if (!trig_mode || level) { 1326 result = 1; 1327 /* assumes that there are only KVM_APIC_INIT/SIPI */ 1328 apic->pending_events = (1UL << KVM_APIC_INIT); 1329 kvm_make_request(KVM_REQ_EVENT, vcpu); 1330 kvm_vcpu_kick(vcpu); 1331 } 1332 break; 1333 1334 case APIC_DM_STARTUP: 1335 result = 1; 1336 apic->sipi_vector = vector; 1337 /* make sure sipi_vector is visible for the receiver */ 1338 smp_wmb(); 1339 set_bit(KVM_APIC_SIPI, &apic->pending_events); 1340 kvm_make_request(KVM_REQ_EVENT, vcpu); 1341 kvm_vcpu_kick(vcpu); 1342 break; 1343 1344 case APIC_DM_EXTINT: 1345 /* 1346 * Should only be called by kvm_apic_local_deliver() with LVT0, 1347 * before NMI watchdog was enabled. Already handled by 1348 * kvm_apic_accept_pic_intr(). 1349 */ 1350 break; 1351 1352 default: 1353 printk(KERN_ERR "TODO: unsupported delivery mode %x\n", 1354 delivery_mode); 1355 break; 1356 } 1357 return result; 1358 } 1359 1360 /* 1361 * This routine identifies the destination vcpus mask meant to receive the 1362 * IOAPIC interrupts. It either uses kvm_apic_map_get_dest_lapic() to find 1363 * out the destination vcpus array and set the bitmap or it traverses to 1364 * each available vcpu to identify the same. 1365 */ 1366 void kvm_bitmap_or_dest_vcpus(struct kvm *kvm, struct kvm_lapic_irq *irq, 1367 unsigned long *vcpu_bitmap) 1368 { 1369 struct kvm_lapic **dest_vcpu = NULL; 1370 struct kvm_lapic *src = NULL; 1371 struct kvm_apic_map *map; 1372 struct kvm_vcpu *vcpu; 1373 unsigned long bitmap, i; 1374 int vcpu_idx; 1375 bool ret; 1376 1377 rcu_read_lock(); 1378 map = rcu_dereference(kvm->arch.apic_map); 1379 1380 ret = kvm_apic_map_get_dest_lapic(kvm, &src, irq, map, &dest_vcpu, 1381 &bitmap); 1382 if (ret) { 1383 for_each_set_bit(i, &bitmap, 16) { 1384 if (!dest_vcpu[i]) 1385 continue; 1386 vcpu_idx = dest_vcpu[i]->vcpu->vcpu_idx; 1387 __set_bit(vcpu_idx, vcpu_bitmap); 1388 } 1389 } else { 1390 kvm_for_each_vcpu(i, vcpu, kvm) { 1391 if (!kvm_apic_present(vcpu)) 1392 continue; 1393 if (!kvm_apic_match_dest(vcpu, NULL, 1394 irq->shorthand, 1395 irq->dest_id, 1396 irq->dest_mode)) 1397 continue; 1398 __set_bit(i, vcpu_bitmap); 1399 } 1400 } 1401 rcu_read_unlock(); 1402 } 1403 1404 int kvm_apic_compare_prio(struct kvm_vcpu *vcpu1, struct kvm_vcpu *vcpu2) 1405 { 1406 return vcpu1->arch.apic_arb_prio - vcpu2->arch.apic_arb_prio; 1407 } 1408 1409 static bool kvm_ioapic_handles_vector(struct kvm_lapic *apic, int vector) 1410 { 1411 return test_bit(vector, apic->vcpu->arch.ioapic_handled_vectors); 1412 } 1413 1414 static void kvm_ioapic_send_eoi(struct kvm_lapic *apic, int vector) 1415 { 1416 int trigger_mode; 1417 1418 /* Eoi the ioapic only if the ioapic doesn't own the vector. */ 1419 if (!kvm_ioapic_handles_vector(apic, vector)) 1420 return; 1421 1422 /* Request a KVM exit to inform the userspace IOAPIC. */ 1423 if (irqchip_split(apic->vcpu->kvm)) { 1424 apic->vcpu->arch.pending_ioapic_eoi = vector; 1425 kvm_make_request(KVM_REQ_IOAPIC_EOI_EXIT, apic->vcpu); 1426 return; 1427 } 1428 1429 if (apic_test_vector(vector, apic->regs + APIC_TMR)) 1430 trigger_mode = IOAPIC_LEVEL_TRIG; 1431 else 1432 trigger_mode = IOAPIC_EDGE_TRIG; 1433 1434 kvm_ioapic_update_eoi(apic->vcpu, vector, trigger_mode); 1435 } 1436 1437 static int apic_set_eoi(struct kvm_lapic *apic) 1438 { 1439 int vector = apic_find_highest_isr(apic); 1440 1441 trace_kvm_eoi(apic, vector); 1442 1443 /* 1444 * Not every write EOI will has corresponding ISR, 1445 * one example is when Kernel check timer on setup_IO_APIC 1446 */ 1447 if (vector == -1) 1448 return vector; 1449 1450 apic_clear_isr(vector, apic); 1451 apic_update_ppr(apic); 1452 1453 if (to_hv_vcpu(apic->vcpu) && 1454 test_bit(vector, to_hv_synic(apic->vcpu)->vec_bitmap)) 1455 kvm_hv_synic_send_eoi(apic->vcpu, vector); 1456 1457 kvm_ioapic_send_eoi(apic, vector); 1458 kvm_make_request(KVM_REQ_EVENT, apic->vcpu); 1459 return vector; 1460 } 1461 1462 /* 1463 * this interface assumes a trap-like exit, which has already finished 1464 * desired side effect including vISR and vPPR update. 1465 */ 1466 void kvm_apic_set_eoi_accelerated(struct kvm_vcpu *vcpu, int vector) 1467 { 1468 struct kvm_lapic *apic = vcpu->arch.apic; 1469 1470 trace_kvm_eoi(apic, vector); 1471 1472 kvm_ioapic_send_eoi(apic, vector); 1473 kvm_make_request(KVM_REQ_EVENT, apic->vcpu); 1474 } 1475 EXPORT_SYMBOL_GPL(kvm_apic_set_eoi_accelerated); 1476 1477 void kvm_apic_send_ipi(struct kvm_lapic *apic, u32 icr_low, u32 icr_high) 1478 { 1479 struct kvm_lapic_irq irq; 1480 1481 /* KVM has no delay and should always clear the BUSY/PENDING flag. */ 1482 WARN_ON_ONCE(icr_low & APIC_ICR_BUSY); 1483 1484 irq.vector = icr_low & APIC_VECTOR_MASK; 1485 irq.delivery_mode = icr_low & APIC_MODE_MASK; 1486 irq.dest_mode = icr_low & APIC_DEST_MASK; 1487 irq.level = (icr_low & APIC_INT_ASSERT) != 0; 1488 irq.trig_mode = icr_low & APIC_INT_LEVELTRIG; 1489 irq.shorthand = icr_low & APIC_SHORT_MASK; 1490 irq.msi_redir_hint = false; 1491 if (apic_x2apic_mode(apic)) 1492 irq.dest_id = icr_high; 1493 else 1494 irq.dest_id = GET_XAPIC_DEST_FIELD(icr_high); 1495 1496 trace_kvm_apic_ipi(icr_low, irq.dest_id); 1497 1498 kvm_irq_delivery_to_apic(apic->vcpu->kvm, apic, &irq, NULL); 1499 } 1500 EXPORT_SYMBOL_GPL(kvm_apic_send_ipi); 1501 1502 static u32 apic_get_tmcct(struct kvm_lapic *apic) 1503 { 1504 ktime_t remaining, now; 1505 s64 ns; 1506 1507 ASSERT(apic != NULL); 1508 1509 /* if initial count is 0, current count should also be 0 */ 1510 if (kvm_lapic_get_reg(apic, APIC_TMICT) == 0 || 1511 apic->lapic_timer.period == 0) 1512 return 0; 1513 1514 now = ktime_get(); 1515 remaining = ktime_sub(apic->lapic_timer.target_expiration, now); 1516 if (ktime_to_ns(remaining) < 0) 1517 remaining = 0; 1518 1519 ns = mod_64(ktime_to_ns(remaining), apic->lapic_timer.period); 1520 return div64_u64(ns, (APIC_BUS_CYCLE_NS * apic->divide_count)); 1521 } 1522 1523 static void __report_tpr_access(struct kvm_lapic *apic, bool write) 1524 { 1525 struct kvm_vcpu *vcpu = apic->vcpu; 1526 struct kvm_run *run = vcpu->run; 1527 1528 kvm_make_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu); 1529 run->tpr_access.rip = kvm_rip_read(vcpu); 1530 run->tpr_access.is_write = write; 1531 } 1532 1533 static inline void report_tpr_access(struct kvm_lapic *apic, bool write) 1534 { 1535 if (apic->vcpu->arch.tpr_access_reporting) 1536 __report_tpr_access(apic, write); 1537 } 1538 1539 static u32 __apic_read(struct kvm_lapic *apic, unsigned int offset) 1540 { 1541 u32 val = 0; 1542 1543 if (offset >= LAPIC_MMIO_LENGTH) 1544 return 0; 1545 1546 switch (offset) { 1547 case APIC_ARBPRI: 1548 break; 1549 1550 case APIC_TMCCT: /* Timer CCR */ 1551 if (apic_lvtt_tscdeadline(apic)) 1552 return 0; 1553 1554 val = apic_get_tmcct(apic); 1555 break; 1556 case APIC_PROCPRI: 1557 apic_update_ppr(apic); 1558 val = kvm_lapic_get_reg(apic, offset); 1559 break; 1560 case APIC_TASKPRI: 1561 report_tpr_access(apic, false); 1562 fallthrough; 1563 default: 1564 val = kvm_lapic_get_reg(apic, offset); 1565 break; 1566 } 1567 1568 return val; 1569 } 1570 1571 static inline struct kvm_lapic *to_lapic(struct kvm_io_device *dev) 1572 { 1573 return container_of(dev, struct kvm_lapic, dev); 1574 } 1575 1576 #define APIC_REG_MASK(reg) (1ull << ((reg) >> 4)) 1577 #define APIC_REGS_MASK(first, count) \ 1578 (APIC_REG_MASK(first) * ((1ull << (count)) - 1)) 1579 1580 u64 kvm_lapic_readable_reg_mask(struct kvm_lapic *apic) 1581 { 1582 /* Leave bits '0' for reserved and write-only registers. */ 1583 u64 valid_reg_mask = 1584 APIC_REG_MASK(APIC_ID) | 1585 APIC_REG_MASK(APIC_LVR) | 1586 APIC_REG_MASK(APIC_TASKPRI) | 1587 APIC_REG_MASK(APIC_PROCPRI) | 1588 APIC_REG_MASK(APIC_LDR) | 1589 APIC_REG_MASK(APIC_SPIV) | 1590 APIC_REGS_MASK(APIC_ISR, APIC_ISR_NR) | 1591 APIC_REGS_MASK(APIC_TMR, APIC_ISR_NR) | 1592 APIC_REGS_MASK(APIC_IRR, APIC_ISR_NR) | 1593 APIC_REG_MASK(APIC_ESR) | 1594 APIC_REG_MASK(APIC_ICR) | 1595 APIC_REG_MASK(APIC_LVTT) | 1596 APIC_REG_MASK(APIC_LVTTHMR) | 1597 APIC_REG_MASK(APIC_LVTPC) | 1598 APIC_REG_MASK(APIC_LVT0) | 1599 APIC_REG_MASK(APIC_LVT1) | 1600 APIC_REG_MASK(APIC_LVTERR) | 1601 APIC_REG_MASK(APIC_TMICT) | 1602 APIC_REG_MASK(APIC_TMCCT) | 1603 APIC_REG_MASK(APIC_TDCR); 1604 1605 if (kvm_lapic_lvt_supported(apic, LVT_CMCI)) 1606 valid_reg_mask |= APIC_REG_MASK(APIC_LVTCMCI); 1607 1608 /* ARBPRI, DFR, and ICR2 are not valid in x2APIC mode. */ 1609 if (!apic_x2apic_mode(apic)) 1610 valid_reg_mask |= APIC_REG_MASK(APIC_ARBPRI) | 1611 APIC_REG_MASK(APIC_DFR) | 1612 APIC_REG_MASK(APIC_ICR2); 1613 1614 return valid_reg_mask; 1615 } 1616 EXPORT_SYMBOL_GPL(kvm_lapic_readable_reg_mask); 1617 1618 static int kvm_lapic_reg_read(struct kvm_lapic *apic, u32 offset, int len, 1619 void *data) 1620 { 1621 unsigned char alignment = offset & 0xf; 1622 u32 result; 1623 1624 /* 1625 * WARN if KVM reads ICR in x2APIC mode, as it's an 8-byte register in 1626 * x2APIC and needs to be manually handled by the caller. 1627 */ 1628 WARN_ON_ONCE(apic_x2apic_mode(apic) && offset == APIC_ICR); 1629 1630 if (alignment + len > 4) 1631 return 1; 1632 1633 if (offset > 0x3f0 || 1634 !(kvm_lapic_readable_reg_mask(apic) & APIC_REG_MASK(offset))) 1635 return 1; 1636 1637 result = __apic_read(apic, offset & ~0xf); 1638 1639 trace_kvm_apic_read(offset, result); 1640 1641 switch (len) { 1642 case 1: 1643 case 2: 1644 case 4: 1645 memcpy(data, (char *)&result + alignment, len); 1646 break; 1647 default: 1648 printk(KERN_ERR "Local APIC read with len = %x, " 1649 "should be 1,2, or 4 instead\n", len); 1650 break; 1651 } 1652 return 0; 1653 } 1654 1655 static int apic_mmio_in_range(struct kvm_lapic *apic, gpa_t addr) 1656 { 1657 return addr >= apic->base_address && 1658 addr < apic->base_address + LAPIC_MMIO_LENGTH; 1659 } 1660 1661 static int apic_mmio_read(struct kvm_vcpu *vcpu, struct kvm_io_device *this, 1662 gpa_t address, int len, void *data) 1663 { 1664 struct kvm_lapic *apic = to_lapic(this); 1665 u32 offset = address - apic->base_address; 1666 1667 if (!apic_mmio_in_range(apic, address)) 1668 return -EOPNOTSUPP; 1669 1670 if (!kvm_apic_hw_enabled(apic) || apic_x2apic_mode(apic)) { 1671 if (!kvm_check_has_quirk(vcpu->kvm, 1672 KVM_X86_QUIRK_LAPIC_MMIO_HOLE)) 1673 return -EOPNOTSUPP; 1674 1675 memset(data, 0xff, len); 1676 return 0; 1677 } 1678 1679 kvm_lapic_reg_read(apic, offset, len, data); 1680 1681 return 0; 1682 } 1683 1684 static void update_divide_count(struct kvm_lapic *apic) 1685 { 1686 u32 tmp1, tmp2, tdcr; 1687 1688 tdcr = kvm_lapic_get_reg(apic, APIC_TDCR); 1689 tmp1 = tdcr & 0xf; 1690 tmp2 = ((tmp1 & 0x3) | ((tmp1 & 0x8) >> 1)) + 1; 1691 apic->divide_count = 0x1 << (tmp2 & 0x7); 1692 } 1693 1694 static void limit_periodic_timer_frequency(struct kvm_lapic *apic) 1695 { 1696 /* 1697 * Do not allow the guest to program periodic timers with small 1698 * interval, since the hrtimers are not throttled by the host 1699 * scheduler. 1700 */ 1701 if (apic_lvtt_period(apic) && apic->lapic_timer.period) { 1702 s64 min_period = min_timer_period_us * 1000LL; 1703 1704 if (apic->lapic_timer.period < min_period) { 1705 pr_info_ratelimited( 1706 "vcpu %i: requested %lld ns " 1707 "lapic timer period limited to %lld ns\n", 1708 apic->vcpu->vcpu_id, 1709 apic->lapic_timer.period, min_period); 1710 apic->lapic_timer.period = min_period; 1711 } 1712 } 1713 } 1714 1715 static void cancel_hv_timer(struct kvm_lapic *apic); 1716 1717 static void cancel_apic_timer(struct kvm_lapic *apic) 1718 { 1719 hrtimer_cancel(&apic->lapic_timer.timer); 1720 preempt_disable(); 1721 if (apic->lapic_timer.hv_timer_in_use) 1722 cancel_hv_timer(apic); 1723 preempt_enable(); 1724 atomic_set(&apic->lapic_timer.pending, 0); 1725 } 1726 1727 static void apic_update_lvtt(struct kvm_lapic *apic) 1728 { 1729 u32 timer_mode = kvm_lapic_get_reg(apic, APIC_LVTT) & 1730 apic->lapic_timer.timer_mode_mask; 1731 1732 if (apic->lapic_timer.timer_mode != timer_mode) { 1733 if (apic_lvtt_tscdeadline(apic) != (timer_mode == 1734 APIC_LVT_TIMER_TSCDEADLINE)) { 1735 cancel_apic_timer(apic); 1736 kvm_lapic_set_reg(apic, APIC_TMICT, 0); 1737 apic->lapic_timer.period = 0; 1738 apic->lapic_timer.tscdeadline = 0; 1739 } 1740 apic->lapic_timer.timer_mode = timer_mode; 1741 limit_periodic_timer_frequency(apic); 1742 } 1743 } 1744 1745 /* 1746 * On APICv, this test will cause a busy wait 1747 * during a higher-priority task. 1748 */ 1749 1750 static bool lapic_timer_int_injected(struct kvm_vcpu *vcpu) 1751 { 1752 struct kvm_lapic *apic = vcpu->arch.apic; 1753 u32 reg = kvm_lapic_get_reg(apic, APIC_LVTT); 1754 1755 if (kvm_apic_hw_enabled(apic)) { 1756 int vec = reg & APIC_VECTOR_MASK; 1757 void *bitmap = apic->regs + APIC_ISR; 1758 1759 if (apic->apicv_active) 1760 bitmap = apic->regs + APIC_IRR; 1761 1762 if (apic_test_vector(vec, bitmap)) 1763 return true; 1764 } 1765 return false; 1766 } 1767 1768 static inline void __wait_lapic_expire(struct kvm_vcpu *vcpu, u64 guest_cycles) 1769 { 1770 u64 timer_advance_ns = vcpu->arch.apic->lapic_timer.timer_advance_ns; 1771 1772 /* 1773 * If the guest TSC is running at a different ratio than the host, then 1774 * convert the delay to nanoseconds to achieve an accurate delay. Note 1775 * that __delay() uses delay_tsc whenever the hardware has TSC, thus 1776 * always for VMX enabled hardware. 1777 */ 1778 if (vcpu->arch.tsc_scaling_ratio == kvm_caps.default_tsc_scaling_ratio) { 1779 __delay(min(guest_cycles, 1780 nsec_to_cycles(vcpu, timer_advance_ns))); 1781 } else { 1782 u64 delay_ns = guest_cycles * 1000000ULL; 1783 do_div(delay_ns, vcpu->arch.virtual_tsc_khz); 1784 ndelay(min_t(u32, delay_ns, timer_advance_ns)); 1785 } 1786 } 1787 1788 static inline void adjust_lapic_timer_advance(struct kvm_vcpu *vcpu, 1789 s64 advance_expire_delta) 1790 { 1791 struct kvm_lapic *apic = vcpu->arch.apic; 1792 u32 timer_advance_ns = apic->lapic_timer.timer_advance_ns; 1793 u64 ns; 1794 1795 /* Do not adjust for tiny fluctuations or large random spikes. */ 1796 if (abs(advance_expire_delta) > LAPIC_TIMER_ADVANCE_ADJUST_MAX || 1797 abs(advance_expire_delta) < LAPIC_TIMER_ADVANCE_ADJUST_MIN) 1798 return; 1799 1800 /* too early */ 1801 if (advance_expire_delta < 0) { 1802 ns = -advance_expire_delta * 1000000ULL; 1803 do_div(ns, vcpu->arch.virtual_tsc_khz); 1804 timer_advance_ns -= ns/LAPIC_TIMER_ADVANCE_ADJUST_STEP; 1805 } else { 1806 /* too late */ 1807 ns = advance_expire_delta * 1000000ULL; 1808 do_div(ns, vcpu->arch.virtual_tsc_khz); 1809 timer_advance_ns += ns/LAPIC_TIMER_ADVANCE_ADJUST_STEP; 1810 } 1811 1812 if (unlikely(timer_advance_ns > LAPIC_TIMER_ADVANCE_NS_MAX)) 1813 timer_advance_ns = LAPIC_TIMER_ADVANCE_NS_INIT; 1814 apic->lapic_timer.timer_advance_ns = timer_advance_ns; 1815 } 1816 1817 static void __kvm_wait_lapic_expire(struct kvm_vcpu *vcpu) 1818 { 1819 struct kvm_lapic *apic = vcpu->arch.apic; 1820 u64 guest_tsc, tsc_deadline; 1821 1822 tsc_deadline = apic->lapic_timer.expired_tscdeadline; 1823 apic->lapic_timer.expired_tscdeadline = 0; 1824 guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc()); 1825 trace_kvm_wait_lapic_expire(vcpu->vcpu_id, guest_tsc - tsc_deadline); 1826 1827 if (lapic_timer_advance_dynamic) { 1828 adjust_lapic_timer_advance(vcpu, guest_tsc - tsc_deadline); 1829 /* 1830 * If the timer fired early, reread the TSC to account for the 1831 * overhead of the above adjustment to avoid waiting longer 1832 * than is necessary. 1833 */ 1834 if (guest_tsc < tsc_deadline) 1835 guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc()); 1836 } 1837 1838 if (guest_tsc < tsc_deadline) 1839 __wait_lapic_expire(vcpu, tsc_deadline - guest_tsc); 1840 } 1841 1842 void kvm_wait_lapic_expire(struct kvm_vcpu *vcpu) 1843 { 1844 if (lapic_in_kernel(vcpu) && 1845 vcpu->arch.apic->lapic_timer.expired_tscdeadline && 1846 vcpu->arch.apic->lapic_timer.timer_advance_ns && 1847 lapic_timer_int_injected(vcpu)) 1848 __kvm_wait_lapic_expire(vcpu); 1849 } 1850 EXPORT_SYMBOL_GPL(kvm_wait_lapic_expire); 1851 1852 static void kvm_apic_inject_pending_timer_irqs(struct kvm_lapic *apic) 1853 { 1854 struct kvm_timer *ktimer = &apic->lapic_timer; 1855 1856 kvm_apic_local_deliver(apic, APIC_LVTT); 1857 if (apic_lvtt_tscdeadline(apic)) { 1858 ktimer->tscdeadline = 0; 1859 } else if (apic_lvtt_oneshot(apic)) { 1860 ktimer->tscdeadline = 0; 1861 ktimer->target_expiration = 0; 1862 } 1863 } 1864 1865 static void apic_timer_expired(struct kvm_lapic *apic, bool from_timer_fn) 1866 { 1867 struct kvm_vcpu *vcpu = apic->vcpu; 1868 struct kvm_timer *ktimer = &apic->lapic_timer; 1869 1870 if (atomic_read(&apic->lapic_timer.pending)) 1871 return; 1872 1873 if (apic_lvtt_tscdeadline(apic) || ktimer->hv_timer_in_use) 1874 ktimer->expired_tscdeadline = ktimer->tscdeadline; 1875 1876 if (!from_timer_fn && apic->apicv_active) { 1877 WARN_ON(kvm_get_running_vcpu() != vcpu); 1878 kvm_apic_inject_pending_timer_irqs(apic); 1879 return; 1880 } 1881 1882 if (kvm_use_posted_timer_interrupt(apic->vcpu)) { 1883 /* 1884 * Ensure the guest's timer has truly expired before posting an 1885 * interrupt. Open code the relevant checks to avoid querying 1886 * lapic_timer_int_injected(), which will be false since the 1887 * interrupt isn't yet injected. Waiting until after injecting 1888 * is not an option since that won't help a posted interrupt. 1889 */ 1890 if (vcpu->arch.apic->lapic_timer.expired_tscdeadline && 1891 vcpu->arch.apic->lapic_timer.timer_advance_ns) 1892 __kvm_wait_lapic_expire(vcpu); 1893 kvm_apic_inject_pending_timer_irqs(apic); 1894 return; 1895 } 1896 1897 atomic_inc(&apic->lapic_timer.pending); 1898 kvm_make_request(KVM_REQ_UNBLOCK, vcpu); 1899 if (from_timer_fn) 1900 kvm_vcpu_kick(vcpu); 1901 } 1902 1903 static void start_sw_tscdeadline(struct kvm_lapic *apic) 1904 { 1905 struct kvm_timer *ktimer = &apic->lapic_timer; 1906 u64 guest_tsc, tscdeadline = ktimer->tscdeadline; 1907 u64 ns = 0; 1908 ktime_t expire; 1909 struct kvm_vcpu *vcpu = apic->vcpu; 1910 unsigned long this_tsc_khz = vcpu->arch.virtual_tsc_khz; 1911 unsigned long flags; 1912 ktime_t now; 1913 1914 if (unlikely(!tscdeadline || !this_tsc_khz)) 1915 return; 1916 1917 local_irq_save(flags); 1918 1919 now = ktime_get(); 1920 guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc()); 1921 1922 ns = (tscdeadline - guest_tsc) * 1000000ULL; 1923 do_div(ns, this_tsc_khz); 1924 1925 if (likely(tscdeadline > guest_tsc) && 1926 likely(ns > apic->lapic_timer.timer_advance_ns)) { 1927 expire = ktime_add_ns(now, ns); 1928 expire = ktime_sub_ns(expire, ktimer->timer_advance_ns); 1929 hrtimer_start(&ktimer->timer, expire, HRTIMER_MODE_ABS_HARD); 1930 } else 1931 apic_timer_expired(apic, false); 1932 1933 local_irq_restore(flags); 1934 } 1935 1936 static inline u64 tmict_to_ns(struct kvm_lapic *apic, u32 tmict) 1937 { 1938 return (u64)tmict * APIC_BUS_CYCLE_NS * (u64)apic->divide_count; 1939 } 1940 1941 static void update_target_expiration(struct kvm_lapic *apic, uint32_t old_divisor) 1942 { 1943 ktime_t now, remaining; 1944 u64 ns_remaining_old, ns_remaining_new; 1945 1946 apic->lapic_timer.period = 1947 tmict_to_ns(apic, kvm_lapic_get_reg(apic, APIC_TMICT)); 1948 limit_periodic_timer_frequency(apic); 1949 1950 now = ktime_get(); 1951 remaining = ktime_sub(apic->lapic_timer.target_expiration, now); 1952 if (ktime_to_ns(remaining) < 0) 1953 remaining = 0; 1954 1955 ns_remaining_old = ktime_to_ns(remaining); 1956 ns_remaining_new = mul_u64_u32_div(ns_remaining_old, 1957 apic->divide_count, old_divisor); 1958 1959 apic->lapic_timer.tscdeadline += 1960 nsec_to_cycles(apic->vcpu, ns_remaining_new) - 1961 nsec_to_cycles(apic->vcpu, ns_remaining_old); 1962 apic->lapic_timer.target_expiration = ktime_add_ns(now, ns_remaining_new); 1963 } 1964 1965 static bool set_target_expiration(struct kvm_lapic *apic, u32 count_reg) 1966 { 1967 ktime_t now; 1968 u64 tscl = rdtsc(); 1969 s64 deadline; 1970 1971 now = ktime_get(); 1972 apic->lapic_timer.period = 1973 tmict_to_ns(apic, kvm_lapic_get_reg(apic, APIC_TMICT)); 1974 1975 if (!apic->lapic_timer.period) { 1976 apic->lapic_timer.tscdeadline = 0; 1977 return false; 1978 } 1979 1980 limit_periodic_timer_frequency(apic); 1981 deadline = apic->lapic_timer.period; 1982 1983 if (apic_lvtt_period(apic) || apic_lvtt_oneshot(apic)) { 1984 if (unlikely(count_reg != APIC_TMICT)) { 1985 deadline = tmict_to_ns(apic, 1986 kvm_lapic_get_reg(apic, count_reg)); 1987 if (unlikely(deadline <= 0)) { 1988 if (apic_lvtt_period(apic)) 1989 deadline = apic->lapic_timer.period; 1990 else 1991 deadline = 0; 1992 } 1993 else if (unlikely(deadline > apic->lapic_timer.period)) { 1994 pr_info_ratelimited( 1995 "vcpu %i: requested lapic timer restore with " 1996 "starting count register %#x=%u (%lld ns) > initial count (%lld ns). " 1997 "Using initial count to start timer.\n", 1998 apic->vcpu->vcpu_id, 1999 count_reg, 2000 kvm_lapic_get_reg(apic, count_reg), 2001 deadline, apic->lapic_timer.period); 2002 kvm_lapic_set_reg(apic, count_reg, 0); 2003 deadline = apic->lapic_timer.period; 2004 } 2005 } 2006 } 2007 2008 apic->lapic_timer.tscdeadline = kvm_read_l1_tsc(apic->vcpu, tscl) + 2009 nsec_to_cycles(apic->vcpu, deadline); 2010 apic->lapic_timer.target_expiration = ktime_add_ns(now, deadline); 2011 2012 return true; 2013 } 2014 2015 static void advance_periodic_target_expiration(struct kvm_lapic *apic) 2016 { 2017 ktime_t now = ktime_get(); 2018 u64 tscl = rdtsc(); 2019 ktime_t delta; 2020 2021 /* 2022 * Synchronize both deadlines to the same time source or 2023 * differences in the periods (caused by differences in the 2024 * underlying clocks or numerical approximation errors) will 2025 * cause the two to drift apart over time as the errors 2026 * accumulate. 2027 */ 2028 apic->lapic_timer.target_expiration = 2029 ktime_add_ns(apic->lapic_timer.target_expiration, 2030 apic->lapic_timer.period); 2031 delta = ktime_sub(apic->lapic_timer.target_expiration, now); 2032 apic->lapic_timer.tscdeadline = kvm_read_l1_tsc(apic->vcpu, tscl) + 2033 nsec_to_cycles(apic->vcpu, delta); 2034 } 2035 2036 static void start_sw_period(struct kvm_lapic *apic) 2037 { 2038 if (!apic->lapic_timer.period) 2039 return; 2040 2041 if (ktime_after(ktime_get(), 2042 apic->lapic_timer.target_expiration)) { 2043 apic_timer_expired(apic, false); 2044 2045 if (apic_lvtt_oneshot(apic)) 2046 return; 2047 2048 advance_periodic_target_expiration(apic); 2049 } 2050 2051 hrtimer_start(&apic->lapic_timer.timer, 2052 apic->lapic_timer.target_expiration, 2053 HRTIMER_MODE_ABS_HARD); 2054 } 2055 2056 bool kvm_lapic_hv_timer_in_use(struct kvm_vcpu *vcpu) 2057 { 2058 if (!lapic_in_kernel(vcpu)) 2059 return false; 2060 2061 return vcpu->arch.apic->lapic_timer.hv_timer_in_use; 2062 } 2063 2064 static void cancel_hv_timer(struct kvm_lapic *apic) 2065 { 2066 WARN_ON(preemptible()); 2067 WARN_ON(!apic->lapic_timer.hv_timer_in_use); 2068 static_call(kvm_x86_cancel_hv_timer)(apic->vcpu); 2069 apic->lapic_timer.hv_timer_in_use = false; 2070 } 2071 2072 static bool start_hv_timer(struct kvm_lapic *apic) 2073 { 2074 struct kvm_timer *ktimer = &apic->lapic_timer; 2075 struct kvm_vcpu *vcpu = apic->vcpu; 2076 bool expired; 2077 2078 WARN_ON(preemptible()); 2079 if (!kvm_can_use_hv_timer(vcpu)) 2080 return false; 2081 2082 if (!ktimer->tscdeadline) 2083 return false; 2084 2085 if (static_call(kvm_x86_set_hv_timer)(vcpu, ktimer->tscdeadline, &expired)) 2086 return false; 2087 2088 ktimer->hv_timer_in_use = true; 2089 hrtimer_cancel(&ktimer->timer); 2090 2091 /* 2092 * To simplify handling the periodic timer, leave the hv timer running 2093 * even if the deadline timer has expired, i.e. rely on the resulting 2094 * VM-Exit to recompute the periodic timer's target expiration. 2095 */ 2096 if (!apic_lvtt_period(apic)) { 2097 /* 2098 * Cancel the hv timer if the sw timer fired while the hv timer 2099 * was being programmed, or if the hv timer itself expired. 2100 */ 2101 if (atomic_read(&ktimer->pending)) { 2102 cancel_hv_timer(apic); 2103 } else if (expired) { 2104 apic_timer_expired(apic, false); 2105 cancel_hv_timer(apic); 2106 } 2107 } 2108 2109 trace_kvm_hv_timer_state(vcpu->vcpu_id, ktimer->hv_timer_in_use); 2110 2111 return true; 2112 } 2113 2114 static void start_sw_timer(struct kvm_lapic *apic) 2115 { 2116 struct kvm_timer *ktimer = &apic->lapic_timer; 2117 2118 WARN_ON(preemptible()); 2119 if (apic->lapic_timer.hv_timer_in_use) 2120 cancel_hv_timer(apic); 2121 if (!apic_lvtt_period(apic) && atomic_read(&ktimer->pending)) 2122 return; 2123 2124 if (apic_lvtt_period(apic) || apic_lvtt_oneshot(apic)) 2125 start_sw_period(apic); 2126 else if (apic_lvtt_tscdeadline(apic)) 2127 start_sw_tscdeadline(apic); 2128 trace_kvm_hv_timer_state(apic->vcpu->vcpu_id, false); 2129 } 2130 2131 static void restart_apic_timer(struct kvm_lapic *apic) 2132 { 2133 preempt_disable(); 2134 2135 if (!apic_lvtt_period(apic) && atomic_read(&apic->lapic_timer.pending)) 2136 goto out; 2137 2138 if (!start_hv_timer(apic)) 2139 start_sw_timer(apic); 2140 out: 2141 preempt_enable(); 2142 } 2143 2144 void kvm_lapic_expired_hv_timer(struct kvm_vcpu *vcpu) 2145 { 2146 struct kvm_lapic *apic = vcpu->arch.apic; 2147 2148 preempt_disable(); 2149 /* If the preempt notifier has already run, it also called apic_timer_expired */ 2150 if (!apic->lapic_timer.hv_timer_in_use) 2151 goto out; 2152 WARN_ON(kvm_vcpu_is_blocking(vcpu)); 2153 apic_timer_expired(apic, false); 2154 cancel_hv_timer(apic); 2155 2156 if (apic_lvtt_period(apic) && apic->lapic_timer.period) { 2157 advance_periodic_target_expiration(apic); 2158 restart_apic_timer(apic); 2159 } 2160 out: 2161 preempt_enable(); 2162 } 2163 EXPORT_SYMBOL_GPL(kvm_lapic_expired_hv_timer); 2164 2165 void kvm_lapic_switch_to_hv_timer(struct kvm_vcpu *vcpu) 2166 { 2167 restart_apic_timer(vcpu->arch.apic); 2168 } 2169 2170 void kvm_lapic_switch_to_sw_timer(struct kvm_vcpu *vcpu) 2171 { 2172 struct kvm_lapic *apic = vcpu->arch.apic; 2173 2174 preempt_disable(); 2175 /* Possibly the TSC deadline timer is not enabled yet */ 2176 if (apic->lapic_timer.hv_timer_in_use) 2177 start_sw_timer(apic); 2178 preempt_enable(); 2179 } 2180 2181 void kvm_lapic_restart_hv_timer(struct kvm_vcpu *vcpu) 2182 { 2183 struct kvm_lapic *apic = vcpu->arch.apic; 2184 2185 WARN_ON(!apic->lapic_timer.hv_timer_in_use); 2186 restart_apic_timer(apic); 2187 } 2188 2189 static void __start_apic_timer(struct kvm_lapic *apic, u32 count_reg) 2190 { 2191 atomic_set(&apic->lapic_timer.pending, 0); 2192 2193 if ((apic_lvtt_period(apic) || apic_lvtt_oneshot(apic)) 2194 && !set_target_expiration(apic, count_reg)) 2195 return; 2196 2197 restart_apic_timer(apic); 2198 } 2199 2200 static void start_apic_timer(struct kvm_lapic *apic) 2201 { 2202 __start_apic_timer(apic, APIC_TMICT); 2203 } 2204 2205 static void apic_manage_nmi_watchdog(struct kvm_lapic *apic, u32 lvt0_val) 2206 { 2207 bool lvt0_in_nmi_mode = apic_lvt_nmi_mode(lvt0_val); 2208 2209 if (apic->lvt0_in_nmi_mode != lvt0_in_nmi_mode) { 2210 apic->lvt0_in_nmi_mode = lvt0_in_nmi_mode; 2211 if (lvt0_in_nmi_mode) { 2212 atomic_inc(&apic->vcpu->kvm->arch.vapics_in_nmi_mode); 2213 } else 2214 atomic_dec(&apic->vcpu->kvm->arch.vapics_in_nmi_mode); 2215 } 2216 } 2217 2218 static int get_lvt_index(u32 reg) 2219 { 2220 if (reg == APIC_LVTCMCI) 2221 return LVT_CMCI; 2222 if (reg < APIC_LVTT || reg > APIC_LVTERR) 2223 return -1; 2224 return array_index_nospec( 2225 (reg - APIC_LVTT) >> 4, KVM_APIC_MAX_NR_LVT_ENTRIES); 2226 } 2227 2228 static int kvm_lapic_reg_write(struct kvm_lapic *apic, u32 reg, u32 val) 2229 { 2230 int ret = 0; 2231 2232 trace_kvm_apic_write(reg, val); 2233 2234 switch (reg) { 2235 case APIC_ID: /* Local APIC ID */ 2236 if (!apic_x2apic_mode(apic)) { 2237 kvm_apic_set_xapic_id(apic, val >> 24); 2238 } else { 2239 ret = 1; 2240 } 2241 break; 2242 2243 case APIC_TASKPRI: 2244 report_tpr_access(apic, true); 2245 apic_set_tpr(apic, val & 0xff); 2246 break; 2247 2248 case APIC_EOI: 2249 apic_set_eoi(apic); 2250 break; 2251 2252 case APIC_LDR: 2253 if (!apic_x2apic_mode(apic)) 2254 kvm_apic_set_ldr(apic, val & APIC_LDR_MASK); 2255 else 2256 ret = 1; 2257 break; 2258 2259 case APIC_DFR: 2260 if (!apic_x2apic_mode(apic)) 2261 kvm_apic_set_dfr(apic, val | 0x0FFFFFFF); 2262 else 2263 ret = 1; 2264 break; 2265 2266 case APIC_SPIV: { 2267 u32 mask = 0x3ff; 2268 if (kvm_lapic_get_reg(apic, APIC_LVR) & APIC_LVR_DIRECTED_EOI) 2269 mask |= APIC_SPIV_DIRECTED_EOI; 2270 apic_set_spiv(apic, val & mask); 2271 if (!(val & APIC_SPIV_APIC_ENABLED)) { 2272 int i; 2273 2274 for (i = 0; i < apic->nr_lvt_entries; i++) { 2275 kvm_lapic_set_reg(apic, APIC_LVTx(i), 2276 kvm_lapic_get_reg(apic, APIC_LVTx(i)) | APIC_LVT_MASKED); 2277 } 2278 apic_update_lvtt(apic); 2279 atomic_set(&apic->lapic_timer.pending, 0); 2280 2281 } 2282 break; 2283 } 2284 case APIC_ICR: 2285 WARN_ON_ONCE(apic_x2apic_mode(apic)); 2286 2287 /* No delay here, so we always clear the pending bit */ 2288 val &= ~APIC_ICR_BUSY; 2289 kvm_apic_send_ipi(apic, val, kvm_lapic_get_reg(apic, APIC_ICR2)); 2290 kvm_lapic_set_reg(apic, APIC_ICR, val); 2291 break; 2292 case APIC_ICR2: 2293 if (apic_x2apic_mode(apic)) 2294 ret = 1; 2295 else 2296 kvm_lapic_set_reg(apic, APIC_ICR2, val & 0xff000000); 2297 break; 2298 2299 case APIC_LVT0: 2300 apic_manage_nmi_watchdog(apic, val); 2301 fallthrough; 2302 case APIC_LVTTHMR: 2303 case APIC_LVTPC: 2304 case APIC_LVT1: 2305 case APIC_LVTERR: 2306 case APIC_LVTCMCI: { 2307 u32 index = get_lvt_index(reg); 2308 if (!kvm_lapic_lvt_supported(apic, index)) { 2309 ret = 1; 2310 break; 2311 } 2312 if (!kvm_apic_sw_enabled(apic)) 2313 val |= APIC_LVT_MASKED; 2314 val &= apic_lvt_mask[index]; 2315 kvm_lapic_set_reg(apic, reg, val); 2316 break; 2317 } 2318 2319 case APIC_LVTT: 2320 if (!kvm_apic_sw_enabled(apic)) 2321 val |= APIC_LVT_MASKED; 2322 val &= (apic_lvt_mask[0] | apic->lapic_timer.timer_mode_mask); 2323 kvm_lapic_set_reg(apic, APIC_LVTT, val); 2324 apic_update_lvtt(apic); 2325 break; 2326 2327 case APIC_TMICT: 2328 if (apic_lvtt_tscdeadline(apic)) 2329 break; 2330 2331 cancel_apic_timer(apic); 2332 kvm_lapic_set_reg(apic, APIC_TMICT, val); 2333 start_apic_timer(apic); 2334 break; 2335 2336 case APIC_TDCR: { 2337 uint32_t old_divisor = apic->divide_count; 2338 2339 kvm_lapic_set_reg(apic, APIC_TDCR, val & 0xb); 2340 update_divide_count(apic); 2341 if (apic->divide_count != old_divisor && 2342 apic->lapic_timer.period) { 2343 hrtimer_cancel(&apic->lapic_timer.timer); 2344 update_target_expiration(apic, old_divisor); 2345 restart_apic_timer(apic); 2346 } 2347 break; 2348 } 2349 case APIC_ESR: 2350 if (apic_x2apic_mode(apic) && val != 0) 2351 ret = 1; 2352 break; 2353 2354 case APIC_SELF_IPI: 2355 /* 2356 * Self-IPI exists only when x2APIC is enabled. Bits 7:0 hold 2357 * the vector, everything else is reserved. 2358 */ 2359 if (!apic_x2apic_mode(apic) || (val & ~APIC_VECTOR_MASK)) 2360 ret = 1; 2361 else 2362 kvm_apic_send_ipi(apic, APIC_DEST_SELF | val, 0); 2363 break; 2364 default: 2365 ret = 1; 2366 break; 2367 } 2368 2369 /* 2370 * Recalculate APIC maps if necessary, e.g. if the software enable bit 2371 * was toggled, the APIC ID changed, etc... The maps are marked dirty 2372 * on relevant changes, i.e. this is a nop for most writes. 2373 */ 2374 kvm_recalculate_apic_map(apic->vcpu->kvm); 2375 2376 return ret; 2377 } 2378 2379 static int apic_mmio_write(struct kvm_vcpu *vcpu, struct kvm_io_device *this, 2380 gpa_t address, int len, const void *data) 2381 { 2382 struct kvm_lapic *apic = to_lapic(this); 2383 unsigned int offset = address - apic->base_address; 2384 u32 val; 2385 2386 if (!apic_mmio_in_range(apic, address)) 2387 return -EOPNOTSUPP; 2388 2389 if (!kvm_apic_hw_enabled(apic) || apic_x2apic_mode(apic)) { 2390 if (!kvm_check_has_quirk(vcpu->kvm, 2391 KVM_X86_QUIRK_LAPIC_MMIO_HOLE)) 2392 return -EOPNOTSUPP; 2393 2394 return 0; 2395 } 2396 2397 /* 2398 * APIC register must be aligned on 128-bits boundary. 2399 * 32/64/128 bits registers must be accessed thru 32 bits. 2400 * Refer SDM 8.4.1 2401 */ 2402 if (len != 4 || (offset & 0xf)) 2403 return 0; 2404 2405 val = *(u32*)data; 2406 2407 kvm_lapic_reg_write(apic, offset & 0xff0, val); 2408 2409 return 0; 2410 } 2411 2412 void kvm_lapic_set_eoi(struct kvm_vcpu *vcpu) 2413 { 2414 kvm_lapic_reg_write(vcpu->arch.apic, APIC_EOI, 0); 2415 } 2416 EXPORT_SYMBOL_GPL(kvm_lapic_set_eoi); 2417 2418 /* emulate APIC access in a trap manner */ 2419 void kvm_apic_write_nodecode(struct kvm_vcpu *vcpu, u32 offset) 2420 { 2421 struct kvm_lapic *apic = vcpu->arch.apic; 2422 u64 val; 2423 2424 /* 2425 * ICR is a single 64-bit register when x2APIC is enabled. For legacy 2426 * xAPIC, ICR writes need to go down the common (slightly slower) path 2427 * to get the upper half from ICR2. 2428 */ 2429 if (apic_x2apic_mode(apic) && offset == APIC_ICR) { 2430 val = kvm_lapic_get_reg64(apic, APIC_ICR); 2431 kvm_apic_send_ipi(apic, (u32)val, (u32)(val >> 32)); 2432 trace_kvm_apic_write(APIC_ICR, val); 2433 } else { 2434 /* TODO: optimize to just emulate side effect w/o one more write */ 2435 val = kvm_lapic_get_reg(apic, offset); 2436 kvm_lapic_reg_write(apic, offset, (u32)val); 2437 } 2438 } 2439 EXPORT_SYMBOL_GPL(kvm_apic_write_nodecode); 2440 2441 void kvm_free_lapic(struct kvm_vcpu *vcpu) 2442 { 2443 struct kvm_lapic *apic = vcpu->arch.apic; 2444 2445 if (!vcpu->arch.apic) 2446 return; 2447 2448 hrtimer_cancel(&apic->lapic_timer.timer); 2449 2450 if (!(vcpu->arch.apic_base & MSR_IA32_APICBASE_ENABLE)) 2451 static_branch_slow_dec_deferred(&apic_hw_disabled); 2452 2453 if (!apic->sw_enabled) 2454 static_branch_slow_dec_deferred(&apic_sw_disabled); 2455 2456 if (apic->regs) 2457 free_page((unsigned long)apic->regs); 2458 2459 kfree(apic); 2460 } 2461 2462 /* 2463 *---------------------------------------------------------------------- 2464 * LAPIC interface 2465 *---------------------------------------------------------------------- 2466 */ 2467 u64 kvm_get_lapic_tscdeadline_msr(struct kvm_vcpu *vcpu) 2468 { 2469 struct kvm_lapic *apic = vcpu->arch.apic; 2470 2471 if (!kvm_apic_present(vcpu) || !apic_lvtt_tscdeadline(apic)) 2472 return 0; 2473 2474 return apic->lapic_timer.tscdeadline; 2475 } 2476 2477 void kvm_set_lapic_tscdeadline_msr(struct kvm_vcpu *vcpu, u64 data) 2478 { 2479 struct kvm_lapic *apic = vcpu->arch.apic; 2480 2481 if (!kvm_apic_present(vcpu) || !apic_lvtt_tscdeadline(apic)) 2482 return; 2483 2484 hrtimer_cancel(&apic->lapic_timer.timer); 2485 apic->lapic_timer.tscdeadline = data; 2486 start_apic_timer(apic); 2487 } 2488 2489 void kvm_lapic_set_tpr(struct kvm_vcpu *vcpu, unsigned long cr8) 2490 { 2491 apic_set_tpr(vcpu->arch.apic, (cr8 & 0x0f) << 4); 2492 } 2493 2494 u64 kvm_lapic_get_cr8(struct kvm_vcpu *vcpu) 2495 { 2496 u64 tpr; 2497 2498 tpr = (u64) kvm_lapic_get_reg(vcpu->arch.apic, APIC_TASKPRI); 2499 2500 return (tpr & 0xf0) >> 4; 2501 } 2502 2503 void kvm_lapic_set_base(struct kvm_vcpu *vcpu, u64 value) 2504 { 2505 u64 old_value = vcpu->arch.apic_base; 2506 struct kvm_lapic *apic = vcpu->arch.apic; 2507 2508 vcpu->arch.apic_base = value; 2509 2510 if ((old_value ^ value) & MSR_IA32_APICBASE_ENABLE) 2511 kvm_update_cpuid_runtime(vcpu); 2512 2513 if (!apic) 2514 return; 2515 2516 /* update jump label if enable bit changes */ 2517 if ((old_value ^ value) & MSR_IA32_APICBASE_ENABLE) { 2518 if (value & MSR_IA32_APICBASE_ENABLE) { 2519 kvm_apic_set_xapic_id(apic, vcpu->vcpu_id); 2520 static_branch_slow_dec_deferred(&apic_hw_disabled); 2521 /* Check if there are APF page ready requests pending */ 2522 kvm_make_request(KVM_REQ_APF_READY, vcpu); 2523 } else { 2524 static_branch_inc(&apic_hw_disabled.key); 2525 atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY); 2526 } 2527 } 2528 2529 if ((old_value ^ value) & X2APIC_ENABLE) { 2530 if (value & X2APIC_ENABLE) 2531 kvm_apic_set_x2apic_id(apic, vcpu->vcpu_id); 2532 else if (value & MSR_IA32_APICBASE_ENABLE) 2533 kvm_apic_set_xapic_id(apic, vcpu->vcpu_id); 2534 } 2535 2536 if ((old_value ^ value) & (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE)) { 2537 kvm_make_request(KVM_REQ_APICV_UPDATE, vcpu); 2538 static_call_cond(kvm_x86_set_virtual_apic_mode)(vcpu); 2539 } 2540 2541 apic->base_address = apic->vcpu->arch.apic_base & 2542 MSR_IA32_APICBASE_BASE; 2543 2544 if ((value & MSR_IA32_APICBASE_ENABLE) && 2545 apic->base_address != APIC_DEFAULT_PHYS_BASE) { 2546 kvm_set_apicv_inhibit(apic->vcpu->kvm, 2547 APICV_INHIBIT_REASON_APIC_BASE_MODIFIED); 2548 } 2549 } 2550 2551 void kvm_apic_update_apicv(struct kvm_vcpu *vcpu) 2552 { 2553 struct kvm_lapic *apic = vcpu->arch.apic; 2554 2555 if (apic->apicv_active) { 2556 /* irr_pending is always true when apicv is activated. */ 2557 apic->irr_pending = true; 2558 apic->isr_count = 1; 2559 } else { 2560 /* 2561 * Don't clear irr_pending, searching the IRR can race with 2562 * updates from the CPU as APICv is still active from hardware's 2563 * perspective. The flag will be cleared as appropriate when 2564 * KVM injects the interrupt. 2565 */ 2566 apic->isr_count = count_vectors(apic->regs + APIC_ISR); 2567 } 2568 apic->highest_isr_cache = -1; 2569 } 2570 2571 int kvm_alloc_apic_access_page(struct kvm *kvm) 2572 { 2573 struct page *page; 2574 void __user *hva; 2575 int ret = 0; 2576 2577 mutex_lock(&kvm->slots_lock); 2578 if (kvm->arch.apic_access_memslot_enabled || 2579 kvm->arch.apic_access_memslot_inhibited) 2580 goto out; 2581 2582 hva = __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 2583 APIC_DEFAULT_PHYS_BASE, PAGE_SIZE); 2584 if (IS_ERR(hva)) { 2585 ret = PTR_ERR(hva); 2586 goto out; 2587 } 2588 2589 page = gfn_to_page(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT); 2590 if (is_error_page(page)) { 2591 ret = -EFAULT; 2592 goto out; 2593 } 2594 2595 /* 2596 * Do not pin the page in memory, so that memory hot-unplug 2597 * is able to migrate it. 2598 */ 2599 put_page(page); 2600 kvm->arch.apic_access_memslot_enabled = true; 2601 out: 2602 mutex_unlock(&kvm->slots_lock); 2603 return ret; 2604 } 2605 EXPORT_SYMBOL_GPL(kvm_alloc_apic_access_page); 2606 2607 void kvm_inhibit_apic_access_page(struct kvm_vcpu *vcpu) 2608 { 2609 struct kvm *kvm = vcpu->kvm; 2610 2611 if (!kvm->arch.apic_access_memslot_enabled) 2612 return; 2613 2614 kvm_vcpu_srcu_read_unlock(vcpu); 2615 2616 mutex_lock(&kvm->slots_lock); 2617 2618 if (kvm->arch.apic_access_memslot_enabled) { 2619 __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 0, 0); 2620 /* 2621 * Clear "enabled" after the memslot is deleted so that a 2622 * different vCPU doesn't get a false negative when checking 2623 * the flag out of slots_lock. No additional memory barrier is 2624 * needed as modifying memslots requires waiting other vCPUs to 2625 * drop SRCU (see above), and false positives are ok as the 2626 * flag is rechecked after acquiring slots_lock. 2627 */ 2628 kvm->arch.apic_access_memslot_enabled = false; 2629 2630 /* 2631 * Mark the memslot as inhibited to prevent reallocating the 2632 * memslot during vCPU creation, e.g. if a vCPU is hotplugged. 2633 */ 2634 kvm->arch.apic_access_memslot_inhibited = true; 2635 } 2636 2637 mutex_unlock(&kvm->slots_lock); 2638 2639 kvm_vcpu_srcu_read_lock(vcpu); 2640 } 2641 2642 void kvm_lapic_reset(struct kvm_vcpu *vcpu, bool init_event) 2643 { 2644 struct kvm_lapic *apic = vcpu->arch.apic; 2645 u64 msr_val; 2646 int i; 2647 2648 if (!init_event) { 2649 msr_val = APIC_DEFAULT_PHYS_BASE | MSR_IA32_APICBASE_ENABLE; 2650 if (kvm_vcpu_is_reset_bsp(vcpu)) 2651 msr_val |= MSR_IA32_APICBASE_BSP; 2652 kvm_lapic_set_base(vcpu, msr_val); 2653 } 2654 2655 if (!apic) 2656 return; 2657 2658 /* Stop the timer in case it's a reset to an active apic */ 2659 hrtimer_cancel(&apic->lapic_timer.timer); 2660 2661 /* The xAPIC ID is set at RESET even if the APIC was already enabled. */ 2662 if (!init_event) 2663 kvm_apic_set_xapic_id(apic, vcpu->vcpu_id); 2664 kvm_apic_set_version(apic->vcpu); 2665 2666 for (i = 0; i < apic->nr_lvt_entries; i++) 2667 kvm_lapic_set_reg(apic, APIC_LVTx(i), APIC_LVT_MASKED); 2668 apic_update_lvtt(apic); 2669 if (kvm_vcpu_is_reset_bsp(vcpu) && 2670 kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_LINT0_REENABLED)) 2671 kvm_lapic_set_reg(apic, APIC_LVT0, 2672 SET_APIC_DELIVERY_MODE(0, APIC_MODE_EXTINT)); 2673 apic_manage_nmi_watchdog(apic, kvm_lapic_get_reg(apic, APIC_LVT0)); 2674 2675 kvm_apic_set_dfr(apic, 0xffffffffU); 2676 apic_set_spiv(apic, 0xff); 2677 kvm_lapic_set_reg(apic, APIC_TASKPRI, 0); 2678 if (!apic_x2apic_mode(apic)) 2679 kvm_apic_set_ldr(apic, 0); 2680 kvm_lapic_set_reg(apic, APIC_ESR, 0); 2681 if (!apic_x2apic_mode(apic)) { 2682 kvm_lapic_set_reg(apic, APIC_ICR, 0); 2683 kvm_lapic_set_reg(apic, APIC_ICR2, 0); 2684 } else { 2685 kvm_lapic_set_reg64(apic, APIC_ICR, 0); 2686 } 2687 kvm_lapic_set_reg(apic, APIC_TDCR, 0); 2688 kvm_lapic_set_reg(apic, APIC_TMICT, 0); 2689 for (i = 0; i < 8; i++) { 2690 kvm_lapic_set_reg(apic, APIC_IRR + 0x10 * i, 0); 2691 kvm_lapic_set_reg(apic, APIC_ISR + 0x10 * i, 0); 2692 kvm_lapic_set_reg(apic, APIC_TMR + 0x10 * i, 0); 2693 } 2694 kvm_apic_update_apicv(vcpu); 2695 update_divide_count(apic); 2696 atomic_set(&apic->lapic_timer.pending, 0); 2697 2698 vcpu->arch.pv_eoi.msr_val = 0; 2699 apic_update_ppr(apic); 2700 if (apic->apicv_active) { 2701 static_call_cond(kvm_x86_apicv_post_state_restore)(vcpu); 2702 static_call_cond(kvm_x86_hwapic_irr_update)(vcpu, -1); 2703 static_call_cond(kvm_x86_hwapic_isr_update)(-1); 2704 } 2705 2706 vcpu->arch.apic_arb_prio = 0; 2707 vcpu->arch.apic_attention = 0; 2708 2709 kvm_recalculate_apic_map(vcpu->kvm); 2710 } 2711 2712 /* 2713 *---------------------------------------------------------------------- 2714 * timer interface 2715 *---------------------------------------------------------------------- 2716 */ 2717 2718 static bool lapic_is_periodic(struct kvm_lapic *apic) 2719 { 2720 return apic_lvtt_period(apic); 2721 } 2722 2723 int apic_has_pending_timer(struct kvm_vcpu *vcpu) 2724 { 2725 struct kvm_lapic *apic = vcpu->arch.apic; 2726 2727 if (apic_enabled(apic) && apic_lvt_enabled(apic, APIC_LVTT)) 2728 return atomic_read(&apic->lapic_timer.pending); 2729 2730 return 0; 2731 } 2732 2733 int kvm_apic_local_deliver(struct kvm_lapic *apic, int lvt_type) 2734 { 2735 u32 reg = kvm_lapic_get_reg(apic, lvt_type); 2736 int vector, mode, trig_mode; 2737 2738 if (kvm_apic_hw_enabled(apic) && !(reg & APIC_LVT_MASKED)) { 2739 vector = reg & APIC_VECTOR_MASK; 2740 mode = reg & APIC_MODE_MASK; 2741 trig_mode = reg & APIC_LVT_LEVEL_TRIGGER; 2742 return __apic_accept_irq(apic, mode, vector, 1, trig_mode, 2743 NULL); 2744 } 2745 return 0; 2746 } 2747 2748 void kvm_apic_nmi_wd_deliver(struct kvm_vcpu *vcpu) 2749 { 2750 struct kvm_lapic *apic = vcpu->arch.apic; 2751 2752 if (apic) 2753 kvm_apic_local_deliver(apic, APIC_LVT0); 2754 } 2755 2756 static const struct kvm_io_device_ops apic_mmio_ops = { 2757 .read = apic_mmio_read, 2758 .write = apic_mmio_write, 2759 }; 2760 2761 static enum hrtimer_restart apic_timer_fn(struct hrtimer *data) 2762 { 2763 struct kvm_timer *ktimer = container_of(data, struct kvm_timer, timer); 2764 struct kvm_lapic *apic = container_of(ktimer, struct kvm_lapic, lapic_timer); 2765 2766 apic_timer_expired(apic, true); 2767 2768 if (lapic_is_periodic(apic)) { 2769 advance_periodic_target_expiration(apic); 2770 hrtimer_add_expires_ns(&ktimer->timer, ktimer->period); 2771 return HRTIMER_RESTART; 2772 } else 2773 return HRTIMER_NORESTART; 2774 } 2775 2776 int kvm_create_lapic(struct kvm_vcpu *vcpu, int timer_advance_ns) 2777 { 2778 struct kvm_lapic *apic; 2779 2780 ASSERT(vcpu != NULL); 2781 2782 apic = kzalloc(sizeof(*apic), GFP_KERNEL_ACCOUNT); 2783 if (!apic) 2784 goto nomem; 2785 2786 vcpu->arch.apic = apic; 2787 2788 apic->regs = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT); 2789 if (!apic->regs) { 2790 printk(KERN_ERR "malloc apic regs error for vcpu %x\n", 2791 vcpu->vcpu_id); 2792 goto nomem_free_apic; 2793 } 2794 apic->vcpu = vcpu; 2795 2796 apic->nr_lvt_entries = kvm_apic_calc_nr_lvt_entries(vcpu); 2797 2798 hrtimer_init(&apic->lapic_timer.timer, CLOCK_MONOTONIC, 2799 HRTIMER_MODE_ABS_HARD); 2800 apic->lapic_timer.timer.function = apic_timer_fn; 2801 if (timer_advance_ns == -1) { 2802 apic->lapic_timer.timer_advance_ns = LAPIC_TIMER_ADVANCE_NS_INIT; 2803 lapic_timer_advance_dynamic = true; 2804 } else { 2805 apic->lapic_timer.timer_advance_ns = timer_advance_ns; 2806 lapic_timer_advance_dynamic = false; 2807 } 2808 2809 /* 2810 * Stuff the APIC ENABLE bit in lieu of temporarily incrementing 2811 * apic_hw_disabled; the full RESET value is set by kvm_lapic_reset(). 2812 */ 2813 vcpu->arch.apic_base = MSR_IA32_APICBASE_ENABLE; 2814 static_branch_inc(&apic_sw_disabled.key); /* sw disabled at reset */ 2815 kvm_iodevice_init(&apic->dev, &apic_mmio_ops); 2816 2817 return 0; 2818 nomem_free_apic: 2819 kfree(apic); 2820 vcpu->arch.apic = NULL; 2821 nomem: 2822 return -ENOMEM; 2823 } 2824 2825 int kvm_apic_has_interrupt(struct kvm_vcpu *vcpu) 2826 { 2827 struct kvm_lapic *apic = vcpu->arch.apic; 2828 u32 ppr; 2829 2830 if (!kvm_apic_present(vcpu)) 2831 return -1; 2832 2833 __apic_update_ppr(apic, &ppr); 2834 return apic_has_interrupt_for_ppr(apic, ppr); 2835 } 2836 EXPORT_SYMBOL_GPL(kvm_apic_has_interrupt); 2837 2838 int kvm_apic_accept_pic_intr(struct kvm_vcpu *vcpu) 2839 { 2840 u32 lvt0 = kvm_lapic_get_reg(vcpu->arch.apic, APIC_LVT0); 2841 2842 if (!kvm_apic_hw_enabled(vcpu->arch.apic)) 2843 return 1; 2844 if ((lvt0 & APIC_LVT_MASKED) == 0 && 2845 GET_APIC_DELIVERY_MODE(lvt0) == APIC_MODE_EXTINT) 2846 return 1; 2847 return 0; 2848 } 2849 2850 void kvm_inject_apic_timer_irqs(struct kvm_vcpu *vcpu) 2851 { 2852 struct kvm_lapic *apic = vcpu->arch.apic; 2853 2854 if (atomic_read(&apic->lapic_timer.pending) > 0) { 2855 kvm_apic_inject_pending_timer_irqs(apic); 2856 atomic_set(&apic->lapic_timer.pending, 0); 2857 } 2858 } 2859 2860 int kvm_get_apic_interrupt(struct kvm_vcpu *vcpu) 2861 { 2862 int vector = kvm_apic_has_interrupt(vcpu); 2863 struct kvm_lapic *apic = vcpu->arch.apic; 2864 u32 ppr; 2865 2866 if (vector == -1) 2867 return -1; 2868 2869 /* 2870 * We get here even with APIC virtualization enabled, if doing 2871 * nested virtualization and L1 runs with the "acknowledge interrupt 2872 * on exit" mode. Then we cannot inject the interrupt via RVI, 2873 * because the process would deliver it through the IDT. 2874 */ 2875 2876 apic_clear_irr(vector, apic); 2877 if (to_hv_vcpu(vcpu) && test_bit(vector, to_hv_synic(vcpu)->auto_eoi_bitmap)) { 2878 /* 2879 * For auto-EOI interrupts, there might be another pending 2880 * interrupt above PPR, so check whether to raise another 2881 * KVM_REQ_EVENT. 2882 */ 2883 apic_update_ppr(apic); 2884 } else { 2885 /* 2886 * For normal interrupts, PPR has been raised and there cannot 2887 * be a higher-priority pending interrupt---except if there was 2888 * a concurrent interrupt injection, but that would have 2889 * triggered KVM_REQ_EVENT already. 2890 */ 2891 apic_set_isr(vector, apic); 2892 __apic_update_ppr(apic, &ppr); 2893 } 2894 2895 return vector; 2896 } 2897 2898 static int kvm_apic_state_fixup(struct kvm_vcpu *vcpu, 2899 struct kvm_lapic_state *s, bool set) 2900 { 2901 if (apic_x2apic_mode(vcpu->arch.apic)) { 2902 u32 *id = (u32 *)(s->regs + APIC_ID); 2903 u32 *ldr = (u32 *)(s->regs + APIC_LDR); 2904 u64 icr; 2905 2906 if (vcpu->kvm->arch.x2apic_format) { 2907 if (*id != vcpu->vcpu_id) 2908 return -EINVAL; 2909 } else { 2910 if (set) 2911 *id >>= 24; 2912 else 2913 *id <<= 24; 2914 } 2915 2916 /* 2917 * In x2APIC mode, the LDR is fixed and based on the id. And 2918 * ICR is internally a single 64-bit register, but needs to be 2919 * split to ICR+ICR2 in userspace for backwards compatibility. 2920 */ 2921 if (set) { 2922 *ldr = kvm_apic_calc_x2apic_ldr(*id); 2923 2924 icr = __kvm_lapic_get_reg(s->regs, APIC_ICR) | 2925 (u64)__kvm_lapic_get_reg(s->regs, APIC_ICR2) << 32; 2926 __kvm_lapic_set_reg64(s->regs, APIC_ICR, icr); 2927 } else { 2928 icr = __kvm_lapic_get_reg64(s->regs, APIC_ICR); 2929 __kvm_lapic_set_reg(s->regs, APIC_ICR2, icr >> 32); 2930 } 2931 } 2932 2933 return 0; 2934 } 2935 2936 int kvm_apic_get_state(struct kvm_vcpu *vcpu, struct kvm_lapic_state *s) 2937 { 2938 memcpy(s->regs, vcpu->arch.apic->regs, sizeof(*s)); 2939 2940 /* 2941 * Get calculated timer current count for remaining timer period (if 2942 * any) and store it in the returned register set. 2943 */ 2944 __kvm_lapic_set_reg(s->regs, APIC_TMCCT, 2945 __apic_read(vcpu->arch.apic, APIC_TMCCT)); 2946 2947 return kvm_apic_state_fixup(vcpu, s, false); 2948 } 2949 2950 int kvm_apic_set_state(struct kvm_vcpu *vcpu, struct kvm_lapic_state *s) 2951 { 2952 struct kvm_lapic *apic = vcpu->arch.apic; 2953 int r; 2954 2955 kvm_lapic_set_base(vcpu, vcpu->arch.apic_base); 2956 /* set SPIV separately to get count of SW disabled APICs right */ 2957 apic_set_spiv(apic, *((u32 *)(s->regs + APIC_SPIV))); 2958 2959 r = kvm_apic_state_fixup(vcpu, s, true); 2960 if (r) { 2961 kvm_recalculate_apic_map(vcpu->kvm); 2962 return r; 2963 } 2964 memcpy(vcpu->arch.apic->regs, s->regs, sizeof(*s)); 2965 2966 atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY); 2967 kvm_recalculate_apic_map(vcpu->kvm); 2968 kvm_apic_set_version(vcpu); 2969 2970 apic_update_ppr(apic); 2971 cancel_apic_timer(apic); 2972 apic->lapic_timer.expired_tscdeadline = 0; 2973 apic_update_lvtt(apic); 2974 apic_manage_nmi_watchdog(apic, kvm_lapic_get_reg(apic, APIC_LVT0)); 2975 update_divide_count(apic); 2976 __start_apic_timer(apic, APIC_TMCCT); 2977 kvm_lapic_set_reg(apic, APIC_TMCCT, 0); 2978 kvm_apic_update_apicv(vcpu); 2979 if (apic->apicv_active) { 2980 static_call_cond(kvm_x86_apicv_post_state_restore)(vcpu); 2981 static_call_cond(kvm_x86_hwapic_irr_update)(vcpu, apic_find_highest_irr(apic)); 2982 static_call_cond(kvm_x86_hwapic_isr_update)(apic_find_highest_isr(apic)); 2983 } 2984 kvm_make_request(KVM_REQ_EVENT, vcpu); 2985 if (ioapic_in_kernel(vcpu->kvm)) 2986 kvm_rtc_eoi_tracking_restore_one(vcpu); 2987 2988 vcpu->arch.apic_arb_prio = 0; 2989 2990 return 0; 2991 } 2992 2993 void __kvm_migrate_apic_timer(struct kvm_vcpu *vcpu) 2994 { 2995 struct hrtimer *timer; 2996 2997 if (!lapic_in_kernel(vcpu) || 2998 kvm_can_post_timer_interrupt(vcpu)) 2999 return; 3000 3001 timer = &vcpu->arch.apic->lapic_timer.timer; 3002 if (hrtimer_cancel(timer)) 3003 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_HARD); 3004 } 3005 3006 /* 3007 * apic_sync_pv_eoi_from_guest - called on vmexit or cancel interrupt 3008 * 3009 * Detect whether guest triggered PV EOI since the 3010 * last entry. If yes, set EOI on guests's behalf. 3011 * Clear PV EOI in guest memory in any case. 3012 */ 3013 static void apic_sync_pv_eoi_from_guest(struct kvm_vcpu *vcpu, 3014 struct kvm_lapic *apic) 3015 { 3016 int vector; 3017 /* 3018 * PV EOI state is derived from KVM_APIC_PV_EOI_PENDING in host 3019 * and KVM_PV_EOI_ENABLED in guest memory as follows: 3020 * 3021 * KVM_APIC_PV_EOI_PENDING is unset: 3022 * -> host disabled PV EOI. 3023 * KVM_APIC_PV_EOI_PENDING is set, KVM_PV_EOI_ENABLED is set: 3024 * -> host enabled PV EOI, guest did not execute EOI yet. 3025 * KVM_APIC_PV_EOI_PENDING is set, KVM_PV_EOI_ENABLED is unset: 3026 * -> host enabled PV EOI, guest executed EOI. 3027 */ 3028 BUG_ON(!pv_eoi_enabled(vcpu)); 3029 3030 if (pv_eoi_test_and_clr_pending(vcpu)) 3031 return; 3032 vector = apic_set_eoi(apic); 3033 trace_kvm_pv_eoi(apic, vector); 3034 } 3035 3036 void kvm_lapic_sync_from_vapic(struct kvm_vcpu *vcpu) 3037 { 3038 u32 data; 3039 3040 if (test_bit(KVM_APIC_PV_EOI_PENDING, &vcpu->arch.apic_attention)) 3041 apic_sync_pv_eoi_from_guest(vcpu, vcpu->arch.apic); 3042 3043 if (!test_bit(KVM_APIC_CHECK_VAPIC, &vcpu->arch.apic_attention)) 3044 return; 3045 3046 if (kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.apic->vapic_cache, &data, 3047 sizeof(u32))) 3048 return; 3049 3050 apic_set_tpr(vcpu->arch.apic, data & 0xff); 3051 } 3052 3053 /* 3054 * apic_sync_pv_eoi_to_guest - called before vmentry 3055 * 3056 * Detect whether it's safe to enable PV EOI and 3057 * if yes do so. 3058 */ 3059 static void apic_sync_pv_eoi_to_guest(struct kvm_vcpu *vcpu, 3060 struct kvm_lapic *apic) 3061 { 3062 if (!pv_eoi_enabled(vcpu) || 3063 /* IRR set or many bits in ISR: could be nested. */ 3064 apic->irr_pending || 3065 /* Cache not set: could be safe but we don't bother. */ 3066 apic->highest_isr_cache == -1 || 3067 /* Need EOI to update ioapic. */ 3068 kvm_ioapic_handles_vector(apic, apic->highest_isr_cache)) { 3069 /* 3070 * PV EOI was disabled by apic_sync_pv_eoi_from_guest 3071 * so we need not do anything here. 3072 */ 3073 return; 3074 } 3075 3076 pv_eoi_set_pending(apic->vcpu); 3077 } 3078 3079 void kvm_lapic_sync_to_vapic(struct kvm_vcpu *vcpu) 3080 { 3081 u32 data, tpr; 3082 int max_irr, max_isr; 3083 struct kvm_lapic *apic = vcpu->arch.apic; 3084 3085 apic_sync_pv_eoi_to_guest(vcpu, apic); 3086 3087 if (!test_bit(KVM_APIC_CHECK_VAPIC, &vcpu->arch.apic_attention)) 3088 return; 3089 3090 tpr = kvm_lapic_get_reg(apic, APIC_TASKPRI) & 0xff; 3091 max_irr = apic_find_highest_irr(apic); 3092 if (max_irr < 0) 3093 max_irr = 0; 3094 max_isr = apic_find_highest_isr(apic); 3095 if (max_isr < 0) 3096 max_isr = 0; 3097 data = (tpr & 0xff) | ((max_isr & 0xf0) << 8) | (max_irr << 24); 3098 3099 kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apic->vapic_cache, &data, 3100 sizeof(u32)); 3101 } 3102 3103 int kvm_lapic_set_vapic_addr(struct kvm_vcpu *vcpu, gpa_t vapic_addr) 3104 { 3105 if (vapic_addr) { 3106 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, 3107 &vcpu->arch.apic->vapic_cache, 3108 vapic_addr, sizeof(u32))) 3109 return -EINVAL; 3110 __set_bit(KVM_APIC_CHECK_VAPIC, &vcpu->arch.apic_attention); 3111 } else { 3112 __clear_bit(KVM_APIC_CHECK_VAPIC, &vcpu->arch.apic_attention); 3113 } 3114 3115 vcpu->arch.apic->vapic_addr = vapic_addr; 3116 return 0; 3117 } 3118 3119 int kvm_x2apic_icr_write(struct kvm_lapic *apic, u64 data) 3120 { 3121 data &= ~APIC_ICR_BUSY; 3122 3123 kvm_apic_send_ipi(apic, (u32)data, (u32)(data >> 32)); 3124 kvm_lapic_set_reg64(apic, APIC_ICR, data); 3125 trace_kvm_apic_write(APIC_ICR, data); 3126 return 0; 3127 } 3128 3129 static int kvm_lapic_msr_read(struct kvm_lapic *apic, u32 reg, u64 *data) 3130 { 3131 u32 low; 3132 3133 if (reg == APIC_ICR) { 3134 *data = kvm_lapic_get_reg64(apic, APIC_ICR); 3135 return 0; 3136 } 3137 3138 if (kvm_lapic_reg_read(apic, reg, 4, &low)) 3139 return 1; 3140 3141 *data = low; 3142 3143 return 0; 3144 } 3145 3146 static int kvm_lapic_msr_write(struct kvm_lapic *apic, u32 reg, u64 data) 3147 { 3148 /* 3149 * ICR is a 64-bit register in x2APIC mode (and Hyper-V PV vAPIC) and 3150 * can be written as such, all other registers remain accessible only 3151 * through 32-bit reads/writes. 3152 */ 3153 if (reg == APIC_ICR) 3154 return kvm_x2apic_icr_write(apic, data); 3155 3156 /* Bits 63:32 are reserved in all other registers. */ 3157 if (data >> 32) 3158 return 1; 3159 3160 return kvm_lapic_reg_write(apic, reg, (u32)data); 3161 } 3162 3163 int kvm_x2apic_msr_write(struct kvm_vcpu *vcpu, u32 msr, u64 data) 3164 { 3165 struct kvm_lapic *apic = vcpu->arch.apic; 3166 u32 reg = (msr - APIC_BASE_MSR) << 4; 3167 3168 if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(apic)) 3169 return 1; 3170 3171 return kvm_lapic_msr_write(apic, reg, data); 3172 } 3173 3174 int kvm_x2apic_msr_read(struct kvm_vcpu *vcpu, u32 msr, u64 *data) 3175 { 3176 struct kvm_lapic *apic = vcpu->arch.apic; 3177 u32 reg = (msr - APIC_BASE_MSR) << 4; 3178 3179 if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(apic)) 3180 return 1; 3181 3182 return kvm_lapic_msr_read(apic, reg, data); 3183 } 3184 3185 int kvm_hv_vapic_msr_write(struct kvm_vcpu *vcpu, u32 reg, u64 data) 3186 { 3187 if (!lapic_in_kernel(vcpu)) 3188 return 1; 3189 3190 return kvm_lapic_msr_write(vcpu->arch.apic, reg, data); 3191 } 3192 3193 int kvm_hv_vapic_msr_read(struct kvm_vcpu *vcpu, u32 reg, u64 *data) 3194 { 3195 if (!lapic_in_kernel(vcpu)) 3196 return 1; 3197 3198 return kvm_lapic_msr_read(vcpu->arch.apic, reg, data); 3199 } 3200 3201 int kvm_lapic_set_pv_eoi(struct kvm_vcpu *vcpu, u64 data, unsigned long len) 3202 { 3203 u64 addr = data & ~KVM_MSR_ENABLED; 3204 struct gfn_to_hva_cache *ghc = &vcpu->arch.pv_eoi.data; 3205 unsigned long new_len; 3206 int ret; 3207 3208 if (!IS_ALIGNED(addr, 4)) 3209 return 1; 3210 3211 if (data & KVM_MSR_ENABLED) { 3212 if (addr == ghc->gpa && len <= ghc->len) 3213 new_len = ghc->len; 3214 else 3215 new_len = len; 3216 3217 ret = kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, addr, new_len); 3218 if (ret) 3219 return ret; 3220 } 3221 3222 vcpu->arch.pv_eoi.msr_val = data; 3223 3224 return 0; 3225 } 3226 3227 int kvm_apic_accept_events(struct kvm_vcpu *vcpu) 3228 { 3229 struct kvm_lapic *apic = vcpu->arch.apic; 3230 u8 sipi_vector; 3231 int r; 3232 3233 if (!kvm_apic_has_pending_init_or_sipi(vcpu)) 3234 return 0; 3235 3236 if (is_guest_mode(vcpu)) { 3237 r = kvm_check_nested_events(vcpu); 3238 if (r < 0) 3239 return r == -EBUSY ? 0 : r; 3240 /* 3241 * Continue processing INIT/SIPI even if a nested VM-Exit 3242 * occurred, e.g. pending SIPIs should be dropped if INIT+SIPI 3243 * are blocked as a result of transitioning to VMX root mode. 3244 */ 3245 } 3246 3247 /* 3248 * INITs are blocked while CPU is in specific states (SMM, VMX root 3249 * mode, SVM with GIF=0), while SIPIs are dropped if the CPU isn't in 3250 * wait-for-SIPI (WFS). 3251 */ 3252 if (!kvm_apic_init_sipi_allowed(vcpu)) { 3253 WARN_ON_ONCE(vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED); 3254 clear_bit(KVM_APIC_SIPI, &apic->pending_events); 3255 return 0; 3256 } 3257 3258 if (test_and_clear_bit(KVM_APIC_INIT, &apic->pending_events)) { 3259 kvm_vcpu_reset(vcpu, true); 3260 if (kvm_vcpu_is_bsp(apic->vcpu)) 3261 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 3262 else 3263 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED; 3264 } 3265 if (test_and_clear_bit(KVM_APIC_SIPI, &apic->pending_events)) { 3266 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) { 3267 /* evaluate pending_events before reading the vector */ 3268 smp_rmb(); 3269 sipi_vector = apic->sipi_vector; 3270 static_call(kvm_x86_vcpu_deliver_sipi_vector)(vcpu, sipi_vector); 3271 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 3272 } 3273 } 3274 return 0; 3275 } 3276 3277 void kvm_lapic_exit(void) 3278 { 3279 static_key_deferred_flush(&apic_hw_disabled); 3280 WARN_ON(static_branch_unlikely(&apic_hw_disabled.key)); 3281 static_key_deferred_flush(&apic_sw_disabled); 3282 WARN_ON(static_branch_unlikely(&apic_sw_disabled.key)); 3283 } 3284